
EDITED BY : Marco Pellegrini, Marco Antoniotti and Bud (Bhubaneswar) Mishra

PUBLISHED IN :  Frontiers in Genetics, Frontiers in Physiology and 

Frontiers in Applied Mathematics and Statistics

NETWORK BIOSCIENCE,
2nd Edition

https://www.frontiersin.org/research-topics/7394/network-bioscience
https://www.frontiersin.org/research-topics/7394/network-bioscience
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/research-topics/7394/network-bioscience


Frontiers in Genetics 1 March 2020 | Network Bioscience

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88963-650-1 

DOI 10.3389/978-2-88963-650-1

https://www.frontiersin.org/research-topics/7394/network-bioscience
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org


Frontiers in Genetics 2 March 2020 | Network Bioscience

Topic Editors: 
Marco Pellegrini, Italian National Research Council, Italy
Marco Antoniotti, University of Milano Bicocca, Italy 
Bud (Bhubaneswar) Mishra, New York University, United States

Publisher’s note: In this 2nd edition, the following article has been updated: Yepiskoposyan H, Talikka 

M, Vavassori S, Martin F, Sewer A, Gubian S, Luettich K, Peitsch MC and Hoeng J (2019) Construction of 

a Suite of Computable Biological Network Models Focused on Mucociliary Clearance in the Respiratory 

Tract. Front. Genet. 10:87. doi: 10.3389/fgene.2019.00087

Citation: Pellegrini, M., Antoniotti, M., Mishra, B., eds. (2020). Network Bioscience, 
2nd Edition. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88963-650-1

NETWORK BIOSCIENCE,
2nd Edition

https://www.frontiersin.org/research-topics/7394/network-bioscience
https://www.frontiersin.org/journals/genetics
http://doi.org/10.3389/978-2-88963-650-1
http://doi.org/10.3389/fgene.2019.00087


Frontiers in Genetics 3 March 2020 | Network Bioscience

05 Editorial: Network Bioscience

Marco Antoniotti, Bud Mishra and Marco Pellegrini

07 On the Origin of Biomolecular Networks

Heeralal Janwa, Steven E. Massey, Julian Velev and Bud Mishra

25 Metabolic Games

Taneli Pusa, Martin Wannagat and Marie-France Sagot

38 Network Medicine in the Age of Biomedical Big Data

Abhijeet R. Sonawane, Scott T. Weiss, Kimberly Glass and Amitabh Sharma

54 Comparative Analysis of Normalization Methods for Network Propagation

Hadas Biran, Martin Kupiec and Roded Sharan

62 To Embed or Not: Network Embedding as a Paradigm in Computational 
Biology

Walter Nelson, Marinka Zitnik, Bo Wang, Jure Leskovec, Anna Goldenberg 
and Roded Sharan

73 Comprehensive Review of Models and Methods for Inferences in 
Bio-Chemical Reaction Networks

Pavel Loskot, Komlan Atitey and Lyudmila Mihaylova

102 Construction of a Suite of Computable Biological Network Models 
Focused on Mucociliary Clearance in the Respiratory Tract

Hasmik Yepiskoposyan, Marja Talikka, Stefano Vavassori, Florian Martin, 
Alain Sewer, Sylvain Gubian, Karsta Luettich, Manuel Claude Peitsch and 
Julia Hoeng

114 Beyond Pathway Analysis: Identification of Active Subnetworks in Rett 
Syndrome

Ryan A. Miller, Friederike Ehrhart, Lars M. T. Eijssen, Denise N. Slenter, 
Leopold M. G. Curfs, Chris T. Evelo, Egon L. Willighagen and 
Martina Kutmon

124 A Comprehensive Survey of Tools and Software for Active Subnetwork 
Identification

Hung Nguyen, Sangam Shrestha, Duc Tran, Adib Shafi, Sorin Draghici and 
Tin Nguyen

139 NoMAS: A Computational Approach to Find Mutated Subnetworks 
Associated With Survival in Genome-Wide Cancer Studies

Federico Altieri, Tommy V. Hansen and Fabio Vandin

151 pathfindR: An R Package for Comprehensive Identification of Enriched 
Pathways in Omics Data Through Active Subnetworks

Ege Ulgen, Ozan Ozisik and Osman Ugur Sezerman

184 Adapting Community Detection Algorithms for Disease Module 
Identification in Heterogeneous Biological Networks

Beethika Tripathi, Srinivasan Parthasarathy, Himanshu Sinha, Karthik Raman 
and Balaraman Ravindran

201 QS-Net: Reconstructing Phylogenetic Networks Based on Quartet and 
Sextet

Ming Tan, Haixia Long, Bo Liao, Zhi Cao, Dawei Yuan, Geng Tian, 
Jujuan Zhuang and Jialiang Yang

Table of Contents

https://www.frontiersin.org/research-topics/7394/network-bioscience
https://www.frontiersin.org/journals/genetics


Frontiers in Genetics 4 March 2020 | Network Bioscience

210 A Computational Pipeline for the Extraction of Actionable Biological 
Information From NGS-Phage Display Experiments

Antonios Vekris, Eleftherios Pilalis, Aristotelis Chatziioannou and Klaus G. Petry

221 ANASTASIA: An Automated Metagenomic Analysis Pipeline for Novel 
Enzyme Discovery Exploiting Next Generation Sequencing Data

Theodoros Koutsandreas, Efthymios Ladoukakis, Eleftherios Pilalis, 
Dimitra Zarafeta, Fragiskos N. Kolisis, Georgios Skretas and 
Aristotelis A. Chatziioannou

236 A Multi-Cohort and Multi-Omics Meta-Analysis Framework to Identify 
Network-Based Gene Signatures

Adib Shafi, Tin Nguyen, Azam Peyvandipour, Hung Nguyen and 
Sorin Draghici

252 Multi-Phenotype Association Decomposition: Unraveling Complex 
Gene-Phenotype Relationships

Deborah Weighill, Piet Jones, Carissa Bleker, Priya Ranjan, Manesh Shah, 
Nan Zhao, Madhavi Martin, Stephen DiFazio, David Macaya-Sanz, 
Jeremy Schmutz, Avinash Sreedasyam, Timothy Tschaplinski, Gerald Tuskan 
and Daniel Jacobson

https://www.frontiersin.org/research-topics/7394/network-bioscience
https://www.frontiersin.org/journals/genetics


1

Edited and reviewed by: 
Richard D. Emes, 

University of Nottingham, 
United Kingdom

*Correspondence: 
Marco Pellegrini 

marco.pellegrini@iit.cnr.it

Specialty section: 
This article was submitted to 

 Bioinformatics and  
Computational Biology, 
 a section of the journal 

 Frontiers in Genetics

Received: 03 October 2019
Accepted: 23 October 2019

Published: 20 November 2019

Citation: 
Antoniotti M, Mishra B and 

Pellegrini M (2019)  
Editorial: Network Bioscience. 

 Front. Genet. 10:1160. 
 doi: 10.3389/fgene.2019.01160

Editorial: Network Bioscience
Marco Antoniotti 1, Bud Mishra 2 and Marco Pellegrini 3*

1 Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Milan, Italy, 2 Courant 
Institute of Mathematical Sciences, New York University, New York, NY, United States, 3 Istituto di Informatica e Telematica, 
Consiglio Nazionale delle Ricerche, Pisa, Italy

Keywords: systems biology, network science, network biology, cancer networks, hypothesis generation and 
verification, computational biology

Editorial on the Research Topic 

Network Bioscience

NETWORKS IN MANY GUISES FOR BIOSCIENCE
In the last decade, the very nature of biological research has changed as large-scale data arrive at 
torrential force and it has ushered in a new era of Bioscience; but also this high dimensional big data 
is being used to support inference of various types and multiplicities of hypotheses about the extant 
relationships among the “variables” being measured.

The typical current example in the biomedical field is sequencing data (in various forms: DNA 
sequencing, RNA sequencing, ATAC using sequencing, etc.). Another kind of data currently collected is 
proteomic data, often with the goal of producing protein-protein interaction networks (PPI networks). 
Yet another is data about the metabolome of a biological system. Moreover recently, also phenotypic 
data, data on diseases, symptoms, patients, etc., are being collected at nation-wide level thus giving 
us another source of highly related (causal) “big data.”

From these kinds of data, biologists and bioinformaticians, can make many inferences, and, 
more often than not, such inferences now reuse several notions, theories, and tools from the field 
of network science. Network science has accelerated a deep and successful trend in research that 
influences a range of disciplines like mathematics, graph theory, physics, statistics, data science, and 
computer science (just to name a few), and adapts the relevant techniques and insights to address 
relevant but disparate social, biological, technological questions.

Most of the data kinds just mentioned naturally lend themselves to a network analysis. The network 
model is a key viewpoint leading to the uncovering of mesoscale phenomena, thus providing an 
essential bridge between the observable phenotypes and omics underlying mechanisms. Moreover, 
network analysis is a powerful hypothesis generation tool guiding the scientific cycle of data gathering, 
data interpretation, hypothesis generation, and hypothesis testing.

The papers contained in the present research topic—Network Bioscience—are examples of how 
network and graph analysis can be used to elucidate various aspect of biological systems from 
metabolic regimes, to phenotype-genotype linking, to relationships assessment among diverse omics 
data for therapy design, to functional submodule identification in a gene network for cancer studies.

PAPERS PRESENTATION

The papers collected in this research topic are roughly grouped as follows:

• “Foundational” papers,
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• Analysis of particular biomedical problems,
• Tool presentations.

Several contributions tackle foundational aspects of network 
bioscience, relative to their origin, evolution, underlying 
philosophy, mathematical modelling, as well as connections to 
network medicine on one hand and dynamics of bio-chemical 
reactions on the other hand.

Janwa et al. explore the role of information asymmetry in 
the genesis and evolution of pairwise biomolecular interactions 
leading to the formation of extensive and complex networks of 
biomolecular interactions. Pusa et al. review a network-based 
evolutionary game-theoretic view of emerging phenotypes and its 
use in the context of metabolic modeling. Sonawane et al. connect 
the emerging field of network medicine with the opportunity of 
collecting big biomedical data identifying three different network 
archetypes according to different underlying philosophies.

Biran et al. and Nelson et al. discuss mathematical aspects 
of bio-networks science relative to the benefits of propagation 
of information in bio-networks and the benefits of embedding 
bio-networks into low-dimensional Euclidean spaces both 
for visualization and for tasks such as network de-noising, 
modularization, and function prediction.

Loskot et al. survey recent advances in the broad area of bio-
chemical reaction networks, which constitute a crucial model for 
elucidating non-linear dynamics of bio-chemical processes.

Two papers report on the application of network-based models 
to unravel complex physiological and pathological processes, 
namely the molecular mechanisms causing mucociliary clearance 
in the human respiratory tract (Yepiskoposyan et al.) and the role 
of active regulatory sub-networks characterizing a genetic brain 
disorder: Rett Syndrome (Miller et al.).

Active subnetwork/module identification is a key step in the 
process of discovering differences between cases and controls 
(e.g., pathological and healthy states) that fully exploit the rich 
structure of the bio-network models, and play a key role parallel 
to that of DGE (differential gene expression) in comparative 
genomic expression analysis. Nguyen et al. contributed a review 
of 22 state-of-the-art integrative tools and algorithms for such 
problem, including a discussion of outstanding challenges and 
open problems. Two new original methods: NoMAS by Altieri 
et al. and PathFindR Ulgen et al. push forward the state of the art 
on active subnetwork/module identification. Tripathi et al. discuss 
important issues relative to benchmarking of active subnetwork/
module identification methods, and to the adaptation of existing 
general-purpose community detection algorithms for this task.

Converting raw-data into a suitable network model is a non-
trivial task, a source of very important and challenging problems. 
Here we have a few such examples. Tan et al. describe QS-Net, 

an accurate methodology for building phylogenetic networks 
from basic sequencing data. Vekris et al. develop analytical tools 
and strategies for de-noising phage display data, employing 
graph-theoretic methods. Koutsandreas et al. report on the new 
pipeline ANASTASIA for metagenomic analysis of environmental 
samples, which is a challenging source of data. Shafi et al. focus 
on the challenge of defining multi-cohort and multi-omics meta-
analysis framework that overcomes limitations of less integrative 
approaches in order to identify robust molecular subnetworks 
that capture the key dynamic nature of a given biological 
condition. Weighill et al. unravel the multi-phenotype signatures 
of genes on a genome-wide network built from SNP-phenotype 
association data, thus improving the interpretation of large 
GWAS datasets and aiding in future synthetic biology efforts 
designed to optimize phenotypes of interest.
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On the Origin of Biomolecular
Networks
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Biomolecular networks have already found great utility in characterizing complex

biological systems arising from pairwise interactions amongst biomolecules. Here, we

explore the important and hitherto neglected role of information asymmetry in the

genesis and evolution of such pairwise biomolecular interactions. Information asymmetry

between sender and receiver genes is identified as a key feature distinguishing early

biochemical reactions from abiotic chemistry, and a driver of network topology as

biomolecular systems become more complex. In this context, we review how graph

theoretical approaches can be applied not only for a better understanding of various

proximate (mechanistic) relations, but also, ultimate (evolutionary) structures encoded in

such networks from among all types of variations they induce. Among many possible

variations, we emphasize particularly the essential role of gene duplication in terms of

signaling game theory, whereby sender and receiver gene players accrue benefit from

gene duplication, leading to a preferential attachment mode of network growth. The

study of the resulting dynamics suggests many mathematical/computational problems,

the majority of which are intractable yet yield to efficient approximation algorithms, when

studied through an algebraic graph theoretic lens. We relegate for future work the role

of other possible generalizations, additionally involving horizontal gene transfer, sexual

recombination, endo-symbiosis, etc., which enrich the underlying graph theory even

further.

Keywords: biomolecules, regulation and communication, interaction (binary) relationship, networkmodel, network

analysis, spectral analysis

1. GENESIS OF BIO-MOLECULAR INTERACTIONS

1.1. Introduction and a Road Map
A range of complex phenotypes of biomolecular systems can be inferred from macromolecular
interactions, represented using combinatorial networks. Such biomolecular networks include gene
(regulatory) networks (GRNs) (Thompson et al., 2015), protein-protein interaction (PPI) networks
(Huang et al., 2017), protein and RNA neutral networks (Schuster et al., 1994; Govindarajan
and Goldstein, 1997), metabolic networks (McCloskey et al., 2013), and meta-metabolic networks
(composite metabolic networks of communities) (Yamada et al., 2011). Here, we will focus on the
neglected role of information asymmetry between genes and their gene products, which is identified
as a key factor distinguishing biochemistry from abiotic chemistry in early life, and which has
subsequently influenced biochemical processes. Such pairwise interactions led to the establishment
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of the earliest biomolecular networks, and their nature influenced
subsequent network growth. We will concentrate on GRNs and
PPI networks as illustrative examples, but the principles outlined
are also applicable to the other types of biomolecular networks.
We focus on mathematical and algorithmic techniques that by
analyzing evolutionary dynamics may shed light on possible
approaches to speculate on the very “origin of networks,” and the
challenges they pose. For simplicity, we illustrate the approaches
highlighting “Evolution by Duplication” (EBD); other dynamics
may be handledmutatis mutandis.

The paper will adhere to the following road-map, aimed
at identifying and explaining several challenges for the field
of “evolutionary biology of networks” by first building on a
review of biological and mathematical notions and frameworks,
within which the open questions are formulated. First, a brief
introduction presents biomolecular networks, and biomolecular
signaling games between gene players. Second, it is followed
by a consideration of the role of gene duplication from
the perspective of information asymmetry. Switching to a
mathematical formulation, a compendium of known results
in (algebraic and combinatorial) graph theory are presented,
comprising a toolbox for addressing the topics raised here. Last
but not least, a series of open problems are described. These open
problems focus largely on the following: How to devise efficient
(algebraic) algorithms that can shed important lights on game
theoretic models of the evolution of biomolecular interactions,
given that they are driven by information asymmetry (leading
to duplications, complementation, pseudogenization, etc.). Some
of these important mechanisms have been studied qualitatively
elsewhere, albeit not mathematically rigorously.

1.2. Ohno’s Evolution by Duplication
At the genetic level, the growth of a GRN (gene regulatory)
or PPI (protein-protein interaction) network is driven by
gene mutation, including duplication, translocation, inversion,
deletion, short indels, and point mutations, of which duplication
plays an outsized role, although as we incorporate other
known and unknown mechanisms (e.g., non-orthologous
gene displacement, HGT, sexual recombination, etc.) a more
complete picture may emerge. Susumu Ohno coined the phrase
“evolution by duplication” (EBD) to emphasize duplication
in the evolutionary dynamic (Ohno, 1970). Consequently, we
will mainly consider the process of gene duplication, but the
principles outlined may be regarded as an idealization, which
may be extended to other mutational processes—some yet
to be discovered.

The classic view of molecular evolution is that gene families
may expand and contract over evolutionary time largely due
to gene duplication and deletion (Demuth et al., 2018). Here,
we wish to present a more complex view, by exploring how
biomolecular networks may grow, contract, or alter their
topology over time, from the relative dynamic contributions
and interactions of their constituent genes and gene families,
and we do so through the prism of signaling game theory.
Mechanistically, this evolution is driven in large part by the
process of gene duplication and deletion, which lead to node
and edge addition, or removal, from a biomolecular network,

respectively. Since such variations in the network alter the
phenotypes, over which selection operates, the evolution of
networks and their features ultimately capture the essence of
Darwinian evolution.

Recently, we introduced a signaling games perspective of
biochemistry and molecular evolution (Massey and Mishra,
2018). There, we focused on interactions between biological
macromolecules, which may be described using the framework
of sender-receiver signaling games, where an expressed macro-
molecule such as a protein or RNA, constitutes a signal sent
on behalf of a sender agent (e.g., gene). The signal comprises
the three-dimensional (3D) conformation and physico-chemical
properties of the macromolecule. A receiver agent (e.g., a gene
product, another macromolecule) may then bind to the signal
macro-molecule, which produces an action (such as an enzymatic
reaction). The action produces utility for the participating agents,
sender and receiver, and thereby—albeit indirectly—a change in
overall fitness of the genome (in evolutionary game theory, utility
and fitness are treated as analogous). When there is common
interest, the utility is expected to benefit both sender and receiver
and their selection, thus driving Darwinian evolution.

Replicator dynamics allow the signaling game to be couched in
evolutionary terms (Taylor and Jonker, 1978). These arise from
the increased replication of players with higher utility (fitness).
Thus, if a gene has a strategy that results in increased utility, then
it will increase in frequency in a population. For a sender gene
this would entail sending a signal that results in an increase in
utility, while for a receiver gene this would entail undertaking an
action that likewise results in an increase in utility. As already
suggested, these dynamics represent a process analogous to
Darwinian (adaptive) evolution or positive selection.

Biomolecular signaling games are sustained by information
asymmetry between sender and receiver, and so their interactions
can be represented using directed graphs (as defined in section 2).
Information asymmetry arises because the receiver is uninformed
regarding the identity of the sender gene: it must rely on the
signal macromolecule to determine its identity. But, this strategy
may be open to deception. However, most biomolecular signaling
games in the cell are between sender and receiver genes which
have perfect common interest. This is so, because they are
cellularized, chromosome replication is synchronized and so
the genes replicate in concert. Such games are termed “Lewis
signaling games,” and rely on honest signaling from sender to the
receiver, which constitutes a signaling convention (Lewis, 1969).
A biomolecular signaling game is illustrated in Figure 1, part (1).

On occasion, situations may arise where a sender has a conflict
of interest with the receiver. In the cell, this kind of misalignment
of interests can occur when a sender gene is selfish, and would
prefer to replicate itself at the expense of the rest of the genome.
Such genes are termed “selfish elements,” and come in a variety
of forms, marked by decoupled replication from the rest of the
genome (Burt and Trivers, 2006). In a signaling game, when
there is such a conflict of interest, then the sender is expected to
adopt a degree of deceptive signaling (Crawford and Sobel, 1982).
Consistent with this, there are a range of selfish elements that
utilize molecular deception, which implies that there is a cost to
the host genome (Massey and Mishra, 2018). In addition, cancer
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FIGURE 1 | The influence of information asymmetry on growth of a PPI network. Interactions between macromolecules are envisaged as a biomolecular signaling

game whereby a sender gene expresses a macromolecule, the signal, that then binds specifically to a receiver macromolecule, which then undergoes an action (such

as an enzymatic reaction, or conformational change), which produces utility (fitness). The signal consists of the three-dimensional conformation and physicochemical

properties of the macromolecule (1). The sender gene may undergo duplication, which has a dosage effect on the expressed macromolecule, resulting in signal

amplification (2). This mechanism is expected to lower the Shapley value of the gene players in the genome, as the signal is partially redundant and so inefficient.

Subsequently, the sender gene duplicate may acquire a new function (evolve a new signal) although the majority would be expected to undergo pseudogenization (3).

Both these scenarios represent the re-establishment of a Nash equilibrium. If a new signal macromolecule evolves, it is likely to bind to the same receiver

macromolecule initially. This preferential attachment arises because gene duplicates have a tendency to bind to their original interaction partner initially, and then

subsequently undergo interaction turnover (Zhang et al., 2005), and is illustrated to the right of the figure. A key problem is how a new action by the receiver arises as

the result of the evolution of a new signal; the new action may co-evolve with the new signal, or may be necessary first before a new signal can evolve. The latter

would imply that receiver gene duplication and action genesis facilitates the evolution of new signals and sender genes (an exception would be when there is a conflict

of interest; here the sender is more likely to make the first move in evolving a novel deceptive signal, and then the receiver would respond with a better discriminative

recognition mechanism). This key, and novel aspect of gene duplication might be deciphered via consideration of the topology of directed graph representations of

biomolecular interactions as sender-receiver signaling games. Refinements to the illustrated scheme include situations where the original signal protein binds to a

variety of receiver proteins, or where the gene that codes for the receiver protein undergoes duplication (Figure 2).

and pathogens alsomake widespread use of deceptive strategies at
the molecular level, which is expected given their clearly opposed
interests with the host (Massey and Mishra, 2018).

The importance of information asymmetry at the molecular
level is manifold. Given that information asymmetry leads
to the possibility of molecular deception, this means that in
a biomolecular network, in principle honest and deceptive
signals could be mapped as honest or deceptive biomolecular
interactions, respectively. This viewpoint may have importance
in better understanding of processes such as cancer, in which
molecular deception plays a central role in its progression
(section 4.3) where we also formulate open problem 4.H),
as well as of the dynamics of persistent infections. Given
the harmful effects of molecular deception, it is necessary to

reduce information asymmetry, in order to promote cooperation
between gene players, in the normal functioning of the genome.
For instance, in the theory of incomplete contracts, a topic linked
with the economics of information, reduction in information
asymmetry reduces the likelihood of deception between parties,
which consequently promotes trust (Devos et al., 2012) and
so cooperation (Lorenz, 1999). Given this framework, one may
suggest a form of “molecular trust” that is promoted when the
information asymmetry between two gene players is reduced
(effectively increasing transparency), with the effect of promoting
utility (fitness) for both players, since deception is less likely
to occur. One means to achieve this effect is by the use of
costly signals, which are costly to produce and so are more
likely to be honest (Veblen, 1899; Spence, 1973; Zahavi, 1975);
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such signaling establishes “molecular trust” because mimicking
the signals is expensive. In biomolecular terms, a costly signal
is represented by the unique 3D conformation and physico-
chemical properties of a macromolecule, which are difficult to
imitate given its complexity.

When biomolecules are expressed from sender genes of
an unknown type, identity signals are necessary, and so
information asymmetry provides additional explanatory power
for understanding the dynamics of molecular recognition.
Biomolecules may be considered as belonging to two groups,
namely, self and non-self, corresponding to cooperative members
of the genome, or not, respectively. Self or non-self biomolecules
might be equivalated to an in-group and out-group respectively,
in sociological terms, and this view then might then imply
some loose parallels between the dynamics of bio-molecular
and social networks. In this context, it is of interest to
consider how non-self gene players may become integrated
into the cell and its biomolecular networks. This process may
result from the endosymbiosis of a microbial genome, or the
acquisition of plasmids. As the non-self genes evolve increasing
cooperativity with the host genome over time, the occurrence
of molecular deception is expected to reduce. This is because
the level of deception is correlated with the level of conflict
of interest (Martinez and Godfrey-Smith, 2016) with the host
genome; the greater the misalignment of interests, the greater
the level of deception that is expected from the non-self
genes (Massey and Mishra, 2018).

Under the scenarios supported by a game theoretic
framework, one may speculate how biomolecular networks
may have originated. The very first biomolecular interactions in
early life would have been characterized by molecular specificity,
a distinguishing feature of biochemistry (Konnyu and Czaran,
2011). Molecular specificity arises when organic molecules reach
a certain size, additional size being necessary to bind a smaller
ligand. Molecular specificity is a form of recognition, which
effectively allows verification of a ligand. Considering the ligand
as a signal, then the macromolecule is the receiver, and the gene
that produces the ligand can be considered the sender agent.
The very first biomolecular network would have consisted of
two nodes, sender and receiver, with the edge connecting the
two representing the signal. As more biomolecular interactions
evolved, the network increased in numbers of nodes and edges.
Increases in organismal complexity may be viewed as an increase
in the numbers of genes in the genome, but the numbers of
biomolecular interactions has more explanatory power. Thus
fully understanding the nature of these interactions and how
they evolve is necessary for better understanding the emergent
phenotype of an organism. In the genome of the ancestral life
form, once a number of genes with separate function had evolved,
it then would have become beneficial to evolve gene regulation.
Therefore, genes with the dedicated function of regulating other
genes in the genome would have arisen (transcription factors).
The combination of regulatory and functional genes would have
comprised the first GRN. Increases in organismal complexity
have been facilitated by an increase in the complexity of the
GRN (Burton, 2014).

Gene duplication, accompanied by the establishment of
new biomolecular interactions, therefore is a fundamental

evolutionary driver of organismal complexity (Lespinet et al.,
2002), from the first life forms onward. Although the precise
mechanism(s) of gene duplication remains to be established
(Reams and Roth, 2015), some generalities may be made
in terms of signaling games. The first step in the process
of duplication of a sender gene may be viewed as one of
signal enhancement. Because gene duplication results in gene
dosage effects, it also results in amplification of the signal, the
expressed gene product (resulting in weighted graphs—discussed
in section 2). This strategy can be viewed as lowering the overall
utility of the genome, given that there is a cost involved in
producing excessive signal. It is, thus, expected to lower the
Shapley value (Shapley, 1969) of the gene players that cooperate
within the genome. This conflict is usually resolved when the
duplicated gene becomes pseudogenized, the usual fate of gene
duplicates (Innan and Kondrashov, 2010).

Subsequent to duplication, the gene duplicates will sometimes
diverge in function, although the exact mechanism remains
to be elucidated (Innan and Kondrashov, 2010). This process
represents signal divergence if the gene is a sender gene, and
action divergence if the gene codes for a receiver macromolecule.
The genesis of a new sender gene with a new signal may
then promote evolution of a novel action by the receiver
macromolecule, potentially facilitating duplication of the receiver
gene itself. Likewise, the duplication of a receiver gene may
facilitate the diversification of macromolecular signals that
interact with the two duplicated receiver macromolecules. The
process modifies the GRN or PPI network in a non-obvious
manner and it deviates considerably from the way evolution of
random graphs is usually treated, following Erdös and Rényi,
discussed in more detail in section 3 (Erdös and Rényi, 1959).
These entail more complex randomnetwork evolutionarymodels
(several of which are discussed in further detail in section 3).

Signal and action genesis via gene duplication may have
features in common with a Pólya’s urn model of signal genesis
(Alexander et al., 2012) (Pólya’s urn models are statistical
models that involve sampling with replacement influenced by
the identity of the sampled element. These models can lead
to a “rich get richer” effect, of which “preferential attachment”
is an example, discussed in more detail in subsection 3.2). In
this model, reinforcement of signals (similar to reinforcement
learning) may promote the invention of new synonyms. These
considerations may provide parallels for how signals originate
elsewhere, not dissimilar to how new words in a language can
arise from existing words by a process of derivation (Cotterell
et al., 2017). Mechanistic commonalities in the process of
signal genesis in these diverse systems as exhibited in GRNs
remain to be explored. These models hint at a possibly new,
but universal form of “preferential attachment” that drives the
variations in biomolecular networks as well as the selectivity in
Darwinian evolution.

1.3. Network Topology, Evolution by
Duplication, and Preferential Attachments
Consequently, the topology of gene networks is non-
deterministic and yet not memoryless, since it must encode
layers of ripples produced earlier via the dynamics of gene
duplication (paralogs and orthologs), as amplified during the
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network’s history. Just as physicists infer the theories of origin of
the universe from the cosmic background radiation, we expect to
enrich our understanding of the origin of machinery of life (e.g.,
codon evolution, evolution of multicellularity, evolution of sex
etc.) from a rigorous analysis of the signaling games and their
equilibria, which has rippled through the extant biomolecular
networks. Taking this analogy further, we observe that the ripples
in gravitational waves have been proposed to reflect the existence
of parallel universes, whose presence created asymmetries in the
initial conditions, giving rise to filamentary structures in the
visible universe (Hawking and Hertog, 2018) This comparison is
inspired by the notion of a “protein big bang” from a single (or
handful of) ur-protein(s) in the first complex life forms, evolving
by gene duplication into the extant “protein universe,” hinting
at the information asymmetries fossilized in the GRN and PPI
networks (Dokholyan et al., 2002).

Likewise, we point out that information asymmetry in
macromolecular sender-receiver interactions may point to
evolutionary paths that might have been abandoned unexplored;
which may suggest new engineering approaches needed by
synthetic biology, or in drug discovery, or immuno-therapy.
Note that during the process of evolution of signaling, gene
duplication and deletion contribute to a certain degree of
non-determinism and “conventionality” to the Nash equilibria
that stabilize and manifest as non-trivial anisotropies in gene
network topology.

In summary, the process of gene duplication, tempered
by signal and action genesis can be thought of as a driver
of preferential attachment in shaping the topology of gene
networks, in which information asymmetry between senders
and receivers is expected to play an indelible role. Figure 1
illustrates a basic mechanism whereby signal genesis may
lead to preferential attachment during the growth of a PPI
network. Topological features expected to hint at this process
include: (i) the degree distribution, (ii) hierarchicity, (iii)
assortativity and many others; they require powerful statistical
and algebraic tools—covered in the later sections, where it is
assumed that genome evolution is a complex process involving
diverse groups of mutations such as insertions, deletions,
conversions, duplications, transpositions, translocations, and
recombinations, and that it is further affected by selective
constraints and effective population size and other factors
such as the environment. With recent understanding of large
scale cellular networks (regulatory, metabolic, protein-protein
interactions) one must now aim at investigation between the
evolutionary rates of a gene mutations and its effects on the
network topology using mathematical models and analytics
(see Wagner, 1994). For instance, combining sequence analysis
in a single genome and its close relatives, one can infer the
rate and tempo of the evolutionary dynamics acting on the
genome, and the resulting effects on the network’s algebraic
structures. We provide an example of how evolution by
duplication leads to a preferential attachment mode of gene
network growth in Figure 2, using the duplication of the
p53 gene, and its paralogs p63 and p73—all transcription
factors regulating pathways involved in related phenotypes
of somatic or developmental surveillance and interacting

with similar family of genes (e.g., MDM2 or MDMX), as
illustration1.

Note that these abstract models generate refutable
hypotheses that need experimental verification and support
from mechanistic explanations. However, unfortunately, the
biochemical processes involved in the hypothesized preferential
attachment dynamics are not fully understood. For example, the
duplication processes are often driven by Non-Homologous End
Joining (NHEJ), a pathway that repairs double-strand breaks in
DNA. To guide repair, NHEJ typically uses short homologous
DNA sequences called microhomologies, which are often present
in single-stranded overhangs on the ends of double-strand
breaks (Chang et al., 2017). When the overhangs are perfectly
compatible, NHEJ usually repairs the break accurately. However,
imprecise repair can lead to inappropriate NHEJ resulting
in translocations, duplications, and rearrangements (Rodgers
and McVey, 2016), which add to variational processes that are
random but not memoryless. Perhaps some of such hypotheses
may need to be carefully examined using cancer genome data
such as The Cancer Genome Atlas (TCGA), andmodels of tumor
progression. This analysis may also explain efficacy of certain
therapeutic interventions in cancer as well as their failures via
drug and immuno resistance.

2. NETWORK ANALYSIS

In this section, in order to address the potential impact of
information asymmetry on network evolution, it is first necessary
to discuss fundamentals of graphs (in particular directed and
weighted graphs), a mathematical formalism used in the study
of biomolecular networks, as well as other related important
topics. Consider a set of entities, denoted V and a set of
binary relations between the entities E ⊆ V × V . When V
denotes biomolecules and E denotes interactions between them
(e.g., regulations, proximity, synteny, etc.), the resulting graph
represents a biomolecular network. One important advantage of
graphs is that they have an intuitive graphical representation.
Such networks evolve over time with additions and deletions
to the sets V and E. In order to create a bridge to algebraic
approaches, we extend the standard combinatorial definition by
endowing it with additional maps.

Formally, a graph is a pair of sets G = (V ,E) where V are
the vertices (nodes, points) and E ⊆ V × V are the edges (arcs),
respectively. When E is a set of unordered pair of vertices the
graph is said to be undirected or simple. In a directed graph
(which could result from information asymmetry, for example)
G = (V ,E, o, t), E consists of an ordered set of vertex pairs,
i.e., for each edge e ∈ E, e → (o (e) , t (e)) where o (e) is called
the origin of the edge e and t (e) is called the terminus of the
edge e (Serre, 1980; Biggs, 1993). A graph is weighted if there is a
map (weighting function, w :E → R+) assigning to each edge a
positive real-valued weight. Weighting can represent the strength
of a signal in a sender-receiver interaction, for example.

1A mutation in MDM affects all p53, p63, and p73 allowing utility tradeoffs

between fecundity (through decreased embryonic lethality) and cancer risks

(through reduced somatic surveillance) in a population.
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FIGURE 2 | Gene duplication of p53, p63, and p73 as a signaling game, and GRN growth. An illustrative example of a signaling games view of network growth is

provided by the paralogs p53, p63, and p73, which code for transcription factors, p53 being of critical importance in many cancers (Joerger and Fersht, 2006). Here,

p53 and the common ancestor of p63/p73 duplicated (2), followed by the duplication and divergence of p63 and p73 (Lu et al., 2009; Belyi et al., 2010) (3). The signal

is the DNA binding site, while the receivers are the p53, p63, and p73 proteins (here the sender is the protein coding gene downstream of the DNA binding site). The

receiver protein undergoes an action upon binding to the DNA binding site (the signal), which consists of the recruitment of additional transcription factors, and

contribution to the assembly of the transcription initiation complex (Nogales et al., 2017). The gene products of p53, p63, and p73 mostly bind to the same DNA

binding sites (Smeenk et al., 2008), thus each signal (and ultimately sender gene) has acquired two new binding partners, in addition to the original interaction with the

gene product of the common ancestor of p53/p63/p73. This is a form of preferential attachment, which should influence network topology as the number of genes

increase by duplication, as illustrated to the right of the figure. The signaling games perspective allows us to better understand scenarios where there is a conflict of

interest between the genome, and a selfish entity such as a selfish element, a cancer or a virus. When there is a conflict of interest, a deceptive signal is expected to

be emitted by the sender (Crawford and Sobel, 1982) (the selfish entity). Here, the DNA binding site of the selfish entity will mimic that of canonical DNA binding sites

associated with normal cellular function, “tricking” a transcription factor to bind to it, and altering the transcription of the sender gene (or alternatively abolishing

transcription factor binding). Examples include cis-regulatory mutations in cancer (Poulos et al., 2015).

If G = (V ,E, ·, ·) and G′ = (V ′,E′, ·, ·) are two graphs such
that V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′), then G′ ⊆ G, G′ is a
subgraph of G. If E′ = E ∩ (V ′ × V ′) (E′ contains every edge in
e ∈ E with o(e), t(e) ∈ V ′) then G′ is an induced subgraph of G. G′

and G are isomorphic (G′ ≡ G) if there is a bijection f :V ′ → V
with (u, v) ∈ E′ ⇐⇒ (f (u), f (v)) ∈ E, ∀u, v ∈ V ′.

2.1. Topological Properties
A network’s properties are governed by its topology, such as the
degree distribution, clustering coefficients, motifs, assortativity,
etc. Comprehensive treatments for general networks can
be found in Thulasiraman et al. (2015) and Loscalzo and
Barabási (2016), and for more in-depth treatment regarding
biomedical networks in Loscalzo et al. (2017). Here we discuss
these properties in the context of biomolecuar networks,
more specifically with respect to information asymmetry.
The Supplementary Material contains a more complex
combinatorial and algebraic graph theoretic approach.

Degree Distribution
The degree of a vertex v, deg(v), is the number of edges that
connect the vertex with other vertices. In other words, the degree
is the number of immediate neighbors of a vertex. In directed
graphs the in-degree and out-degree of a vertex can be defined
as the number of incoming and outgoing edges, respectively. Let
nk be the number of vertices of degree k and |V| = N, the total
number of vertices in the graph and |E| = M, the total number
of edges in the graph. Note that

∑

k nk = N and
∑

knk =
∑

v∈V deg(v) = 2|E| = 2M. The degree distribution is the
fraction of vertices of degree k, P(k) = nk/N, and two isomorphic
networks will have the same degree distributions (though not
necessarily the converse). Thus, the degree distributions can tell
a great deal about the structure of a family of networks. For
example, if the degree distribution is singly peaked, following
the Poisson (or its Gaussian approximation) distributions, the
statistical properties of the nodes can be described by the average
degree 〈k〉 =

∑

k kP(k) = 2M/N. The graph is said to be
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sparse, if 〈k〉 = o(logN) (or M = o(N logN)). Biomolecular
networks are usually sparse, which can be fruitfully exploited in
their algorithmic analysis. We can talk of typical nodes of the
networks as being those that have degree distribution as those
within 1 to 2 standard deviations from the average, while, with
probability decreasing exponentially, it is possible to find nodes
with a degree much different from the average. While power-law
degree distributions follow a completely different pattern: they
are fat-tailed; the majority of the nodes have only a few neighbors,
while many nodes have a relatively large number of neighbors.
The highly connected nodes are known as hubs.

Distance Metrics
One of the most fundamental metrics is the distance on a graph.
First we define a walk of length m in a graph G from a vertex
u to v as a finite alternating sequence of vertices and edges
〈v0, e1, v1, e2, . . . , em, vm〉, such that o (ei) = vi−1 and t (ei) = vi,
for 0 < i ≤ m, such that u = v0 and v = vm. Then the number
of edges traversed in the shortest walk joining u to v is called the
distance inG between u and v denoted by d(u, v). If there is a walk
from u to itself, then we say that the set of vertices (respectively
edges) form a cycle. The smallest number of m edges in a walk
from u to itself is called a cycle of lengthm. The girth g(G), is the
shortest cycle in G. A walk whose vertices are distinct is called a
(simple) path.

The concept of a walk allows us to define other properties
of the graph. A graph G = (V ,E, o, e) is said to be connected,
if any two vertices are the extremities of at least one walk.
The maximally connected subgraphs are called the connected
components of G. A giant component is a connected component
containing a significant fraction of the nodes. The maximum
value of the distance function in a connected graph is called the
diameter of the graph. Frequently real life networks have a small
diameter and are said to exhibit the small world phenomenon.
For many biomolecular networks the average distance between
two nodes depends logarithmically on the number of vertices in
the graph.

Additionally, a complete graph G is the undirected graph, in
which each vertex is a neighbor of all other vertices; deg(v) =

N − 1, ∀v ∈ V ; or equivalently, each distinct pair of vertices
are connected (or are adjacent) by a unique edge. G is then
denoted as KN . A clique in an undirected graph is a subset of
vertices such that its induced subgraph is complete. Additional
combinatorial invariants of graphs useful in the analysis
of networks can be defined (see Supplementary Material

for details).

Expanding Constants
Let G = (V ,E, ·, ·) be an undirected graph. Then for all F ⊂ V ,
the boundary ∂F is the set of edges connecting F to V \ F. The
expanding constant, or isoperimetric constant of X is defined as,

h(X) = min
∅6=F⊂V

|∂F|

min{|F|, |V \ F|}
.

For a biomolecular network, then, the invariant h(X) measures
the quality of the network with respect to the flow of information
within it, (e.g., via chemical reactions, or signaling). A larger
h(X) implies better expansion, faster mixing, faster partitioning,

and many other related properties that may give the network a
selective advantage.

Using various combinatorial algorithms devised for the study
and analysis of biomolecular networks, one may compute h(X) to
determine their complexity. However, a precise characterization
of h(X) itself is an intractable (i.e., NP-complete) problem.
Isoperimetric inequalities give bounds on h(X) in terms of
a related algebraic invariant, γ (X) – called its spectral gap,
determination of which has complexity O(|V|)c, where c is at
most 3; furthermore, c = 1 for many sparse graphs. We
give isoperimetric bounds and results applicable to biomolecular
networks in the Supplementary Material, where we also
introduce a local Cheeger constant. We also introduce algebraic
invariants in section 2.2.

Clustering and Clustering Coefficients
Biomolecular networks are modular, forming communities and
hierarchies, likely to have been sculpted by EBD (Evolution by
Duplication). To study these local structures in network science,
one may perform community analysis, which aims to identify
a group of nodes that have a higher probability of connecting
to each other than to nodes from other communities [see for
example (Pellegrini, 2019)]. These can be explained by our
game theoretic formalism, and local Nash equilibria (see Massey
and Mishra, 2018). Various notions such as k-cliques, k-clubs,
and k-clans have been developed to detect communities, but
they are ultimately closely connected to the problem of finding
cliques and consequently, do not generally lend themselves to
any reasonable algorithm other than brute-force enumeration.
However, even detecting communities approximately may
prove valuable for general evolutionary studies, since these

FIGURE 3 | Topological alignment of networks. Similar biomolecular networks

could be topologically aligned and compared in order to express an

evolutionary distance, which may then augment the traditional approaches of

phylogenetic study. In order to account for the evolution by gene duplications,

genes (or gene families) are to be identified and connected to their roles in

biochemical pathways. Such an approach would lead to a program to

understand the critical role of information asymmetries in driving evolution.

Network alignment, a core problem in this program, is computationally

intractable. To sharpen our intuition, we illustrate the problem using the social

networks of the Gospels of Matthew and Luke. These networks represent

social interactions between characters in the gospels of Matthew (A) and Luke

(B). These were chosen as a basic test for topological alignment procedures,

given that they share a similar number of nodes, and the highly connected

node of Jesus. A straightforward test for the efficacy of a topological alignment

algorithm therefore constitutes aligning both networks and verifying that the

Jesus node from both networks is matched. Edge lists for the two social

networks may be found in the Supplementary Materials.
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FIGURE 4 | Interactome networks used in the study of diseases. Undesirable

interactions within a biomolecular network result in various disease states.

Disease neighborhoods within the interactome can then be mapped to

understand the progression of the disease [details can be found in Loscalzo

et al. (2017)]. The progression of cancer has been studied using analysis of

functionalization of oncogenes and dysfunctionalization of tumor suppressor

genes via copy number fluctuations, but much more can be learned from the

topological features of these genes in their interaction neighborhood. This

illustration is from Figure 2.3 (A–D) of Menche and Barabási (2017). (A) Global

map of the interactome, illustrating its heterogeneity. Node sizes are

proportional to their degree, that is, the number of links each node has to

other nodes. (B) Basic characteristics of the interactome. (C) Distribution of

the shortest paths within the interactome. The average shortest path is

〈d〉 = 3.6. (D) The degree distribution of the interactome is approximately

scale-free (reproduced with permission from the publisher and authors of

Menche and Barabási, 2017).

biomolecular network communities determine how specific
biological functions are encoded in cellular networks—and are
thus subjected to Darwinian selective pressure, since these players
are likely to have formed communities in the first place to
carry out specific cellular functions (see Hartwell et al., 1999),
maximizing the utility of the cell. Figure 4 highlights significant
evidence that communities play an important role in human
disease networks (see Loscalzo et al., 2017).

Usually a simpler approach is commonly employed and
deals with the problem of clustering in a graph, which seeks
to partition the graph into disjoint subgraphs such that nodes
in each such subgraph are “closer” to the other nodes in
the same subgraph, while they are “farther” from the nodes
of other subgraphs. Hierarchical clustering algorithms have
been developed to uncover communities (approximately) in
polynomial time and depend upon the similarity matrix (xij),
where the entry xij equals the distance between node i and node
j. Among the classical algorithms are included those by Girvan
and Newman (2002). Other related algorithms include those for
random-walk betweenness and network centrality.

The local clustering coefficient captures the degree to which
the neighbors of a given node link to each other. In general, for
undirected graphs, the local clustering coefficient Ci of node iwith
degree ki is defined as

Ci : =
Li

ki(ki − 1)/2

where the numerator Li is the actual number of connections
between ki immediate neighbors of i, and the denominator is the
number of connections if the neighbors formed a complete graph
(i.e. a clique). Note that an undirected complete graph Kki of ki
nodes has ki(ki−1)/2 edges. Thus, a fully clustered node will have
Ci = 1 and for completely isolated node Ci = 0. We can define
the (average) clustering coefficient of the whole network with N
nodes as

〈C〉 =
1

N

∑

Ci.

The clustering coefficients can be used to characterize a network’s
modularity, as discussed later (in section 3) in detail. For
weighted graphs and directed graphs (as in the context of
information asymmetry), a similar formalism is discussed in the
Supplementary Material.

Subgraphs and Motifs
Biomolecular networks have been found to contain network
motifs, representing elementary interaction patterns between
small subgraphs that occur substantially more often than as
predicted by a completely random network of similar size
and connectivity. The presence of such motifs is usually
explained by an evolutionary process that can quickly create
(usually by a variation involving duplication) or eliminate
(usually by a selection process that favors pseudogenization and
complementation) regulatory interactions in a fast evolutionary
time scale—relative to the rate at which individual genes mutate.
It is usually hypothesized that the underlying evolutionary
processes are convergent. Thus efficient algorithms to detect such
motifs are important in the analysis of biomolecular networks.
These algorithms focus on estimating howmuchmore frequently
a subgraph isomorphic to a motif graph (with n vertices and m
edges) occurs relative to what would be expected by pure chance.

The number Nmn of subgraphs with n nodes and m
interactions expected of a network of N nodes can be estimated
from the two key topological parameters of a complex network—
namely the power-law exponent β and the hierarchical exponent
α as we discuss in Equations (1 and 2) below. In general the
subgraph motifs can be classified in two types: Type I motifs
are those where (m − n + 1)α − (n − β) < 0, and type II
subgraph motifs are those that satisfy the reverse inequality. One
can determine their numbers NI and NII approximately as a
function of (m−n+1)α−(n−β) and nmax, the degree of themost
connected node in the network. One can show that NI >> NII .
One can also show that the relative number of Type II subgraphs
is vanishingly small compared to Type I.

2.2. Algebraic Invariants and Spectrum
The intuitive pictorial/combinatorial representation of graphs
is an extremely useful aid to their understanding. However,
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computing the topological properties of graphs combinatorially
is computationally challenging especially when the size of
the graph becomes large. As noted earlier, indeed, most
combinatorial algorithms on biomolecular networks such as on
PPI networks and GRNs are computationally complex problems
(most of them fall in the NP-complete complexity class) (Karp,
2011). Therefore, in order to carry out any quantitative and
computational analysis, graphs are better represented as algebraic
objects. This representation allows us to use linear algebra and
mathematical analysis techniques. The key to this representation
is the adjacency matrix A(G). It is defined as {0, 1}n×n matrix in
which, Aij = 1 if the vertices i and j are connected [∃e ∈ E, o(e) =
i, t(e) = j] and 0 otherwise. The matrix is symmetric if the
graph is undirected. For weighted graphs we can assign weights
wij for existing edges. Networks that incorporate information
asymmetry are directed, and the analysis becomes more complex.
We refer to the Supplementary Material for this treatment.

Algebraic properties provide us with tools to deduce various
properties of the biomolecular networks. In particular, the
spectral representation of the graph is of importance for a
number of applications such as graph classification, diffusion,
expansion and mixing (see the Supplementary Material). We
can think of the adjacency matrix A as operating on the space
V = Cn of complex n-tuples written as column vectors x,y as
follows Ax → y. It can be shown that there are directions left
invariant in this space. That is to say, Axi = λixi where λi are
the eigenvalues and corresponding xi the eigenvectors (spanning
invariant directions) of the adjacency matrix for 1 ≤ i ≤ n.
The spectrum of the graph G is defined as the collection of
eigenvalues of the adjacency matrix Spec(G) = Spec(A) =

λ1, .., λn. Naturally, if A is a real symmetric matrix, then the
eigenvalues of A are real.

In particular, one algebraic invariant of the graph is the
spectral gap γ (G). It can be shown that the spectral gap
gives excellent bounds on a combinatorial invariant, the
Cheeger constant h(G). Since information asymmetry leads
to directed, weighted graphs, some of which are bipartite
networks, we discuss these deeper algebraic analytics in the
Supplementary Material.

3. NETWORK EVOLUTION

Starting with the seminal work of Erdös and Rényi (1959),
a number of mathematical frameworks have been developed
to model the “evolution” of graphs, covering the family
of biomolecular networks. These frameworks may prove
useful in explaining why most biological networks have
certain non-obvious properties: namely, (i) The small world
property; (ii) High clustering coefficients (varying with
degree distribution); (iii) Emergence of “hubs.” Such network
models are ultimately expected to capture various observed
properties of biomolecular networks, and the evolutionary
trajectories leading up to them. The novel factor of information
asymmetry, modeling genes as players, may also be incorporated,
using the basic principles outlined in the Introduction,
and Figures 1, 2.

3.1. Random Network Models
Erdös and Rényi Model
The Erdös and Rényi model of random graphs [ER-graphs,
denoted G(n, p)] is characterized by two parameters, the number
of vertices in the networkN and the fixed probability of choosing
edges p (Erdös and Rényi, 1959). The graph G is generated by
choosing N vertices and connecting each pair of vertices with
probability p. The model yields a network with approximately
p
(N
2

)

= O(pN2) randomly distributed edges. The probability
of choosing a specified graph G with N vertices and e edges is
therefore

(M
e

)

pe(1 − p)M−e, where M =
(N
2

)

= the maximum
number of possible edges connecting N vertices.

It can be shown that in such random graphs the average vertex
degree is 〈k〉 = p(N − 1) = O(pN). The diameter of such a
graph is d = lnN/ ln〈k〉 ≈ lnN/(lnN − ln(1/p)) which is small
compared to the graph size. Thus, random graphs exhibit “the
small world property.” The degree distribution for ER graphs is a

binomial distribution P[deg(u) = k] =
((N−1)

k

)

pk(1 − p)N−k−1,
which for large N (relative to 1/p: where N = λ/p) converges to

the Poisson distribution P[deg(u) = k] = e−λ λk

k!
. Then the local

clustering coefficient is Ci = p is independent of the degree of
the node and the average clustering coefficient C = p/N scales
with the network size. Therefore, the standard ER randommodel
seems not to capture either the properties of degree distribution
or the clustering coefficient of biomolecular networks.

Typically, an ER random graph model is used as a “null
model” for the evolutionary process. However, while deviations
from randomness are frequently used as evidence for the
direct action of natural selection, often non-randomness may
reflect neutrally generated (non-adaptive) emergent phenomena
(Massey, 2015). We emphasize here that many topological
features of biomolecular networks are unlikely to be directly
selected for, but instead are a side-product of network growth,
and decay, captured by the dynamics of edge and node addition
and removal.

Small World Model
Biomolecular networks have features that are not captured by the
Erdös and Rényi random graph model. As we have seen, random
graphs have a low clustering coefficient and they do not account
for the formation of hubs. To rectify some of these shortcomings,
the small world model or popularly known as the six degree of
separation model was introduced as the next level of complexity
for a probabilistic model with features that are closer to real
world networks (Watts and Strogatz, 1998; Watts, 1999). The
evolution and dynamics of such networks have been discussed
in detail (Watts, 2003), in particular in the diseases propagation
literature (Dodds and Watts, 2005).

In this model, the graph G of N nodes is constructed as a ring
lattice, in which, (i) first, wire: that is, connect every node to K/2
neighbors on each side and (ii) second, rewire: that is, for every
edge connecting a particular node, with probability p reconnect
it to a randomly selected node.

The average number of such edges is pNK/2. The first
step of the algorithm produces local clustering, while the
second dramatically reduces the distance in the network. Unlike
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random graphs, the clustering coefficient of this network
C = 3(K − 2)/4(K − 1) is independent of the system size. Thus,
the small world network model displays the small world property
and the clustering of real networks, however, it does not
capture the emergence of hubby nodes (e.g., p53 in biomolecular
networks)(part of one of the eight open problems that we
formulate in section 4).

3.2. Scale-Free Network Models
Most biomolecular networks are hypothesized to have a degree
distribution, described as scale-free. In a scale free network the
number of nodes nk of degree k is proportional to a power of
the degree, namely, the degree distribution of the nodes follows a
power-law

nk = k−β , (1)

where β > 1 is a coefficient characteristic of the network
(Barabási and Albert, 1999). Unlike in random networks, where
the degree of all nodes is centered around a single value – with
the probability of finding nodes with much larger (or smaller)
degree decaying exponentially, in scale-free networks there are
nodes of large degree with relatively higher probability (fat tail).
In other words, since the power low distribution decreases much
more slowly than exponential, for large k (heavy or fat tails),
scale-free networks support nodes with extremely high number
of connections called “hubs.” Power law distribution has been
observed inmany large networks, such as the Internet, phone-call
maps, collaboration networks, etc. (Képès, 2007; Barabási, 2009;
Loscalzo and Barabási, 2016). A caveat to these reports is that
inappropriate statistical techniques have often been used to infer
power law distributions, and alternative heavy tailed distributions
may fit the data better (Clauset et al., 2009). However, the
power law is a useful approximation that allows mechanisms of
network growth to be explored, such as preferential attachment,
discussed next, while the examination of alternative heavy tailed
distributions is set as an Open Problem.

Preferential Attachment
The original model of preferential attachment was proposed by
Barabási and Albert (1999). The scheme consists of a local growth
rule that leads to a global consequence, namely a power law
distribution. The network grows through the addition of new
nodes linking to nodes already present in the system. There is
higher probability to preferentially link to a node with a large
number of connections. Thus, this rule gives more preferences
to those vertices that have larger degrees. For this reason it is
often referred to as the “rich-get-richer” or “Matthew” effect.
This can be formulated as a game theoretic problem originating
from information asymmetry and associated Nash equilibrium,
discussed in the Open Problems.

With an initial graph G0 and a fixed probability parameter p,
the preferential attachment random graph model G(p,G0) can
be described as follows: at each step the graph Gt is formed by
modifying the earlier graph Gt−1 in two steps – with probability
p take a vertex-step; otherwise, take an edge-step:

(i) Vertex step: Add a new vertex v and an edge {u, v} from v to
u by randomly and independently choosing u proportional its
degree;

(ii) Edge step: Add a new edge {r, s} by independently choosing
vertices r and s with probability proportional to their degrees.

That is, at each step, we add a vertex with probability p, while
for sure, we add an additional edge. If we denote by nt and et the
number of vertices and edges respectively at step t, then et = t+1
and nt = 1 +

∑t
i=1 zi, where zi’s are Bernoulli random variables

with probability of success = p. Hence the expected value of
nodes is 〈nt〉 = 1+ pt.

It can be shown that exponentially (as t asymptotically
approaches infinity) this process leads to a scale-free network.
The degree distribution of G(p) satisfies a power law with the
parameter for exponent being β = 2 +

p
2−p . Scale-free networks

also exhibit hierarchicity. The local clustering coefficient is
proportional to a power of the node degree

C(k) ≈ k−α (2)

where α is called the hierarchy coefficient.
This distribution implies that the low-degree nodes belong to

very dense sub-graphs and those sub-graphs are connected to
each other through hubs. In other words, it means that the level
of clustering is much larger than that in random networks.

Consequently, many of the network properties in a scale-
free network are determined by local structures—namely, by
a relatively small number of highly connected nodes (hubs).
A consequence of this structure of the scale-free network is
its extreme robustness to failure, a property also displayed
by biomolecular networks and their modular structures. Such
networks are highly tolerant of random failures (perturbations);
however, they remain extremely sensitive to targeted attacks.

Assortativity Network Model
Assortative mixing refers to the property exhibited by a preference
of nodes to attach to similar (respectively, dissimilar) nodes;
for example, high-degree vertices exhibit preference to attach
to high-degree (resp. low-degree) vertices. Network models,
discussed earlier and including the preferential attachment
model, do not capture such important properties exhibited
by real biomolecular networks (Girvan and Newman, 2002).
Assortativity can be measured by the Pearson correlation
coefficient r of degrees of linked nodes (Girvan and Newman,
2002). A positive correlation means connections between nodes
of similar degree (assortativity) and a negative correlation
means connections between nodes with different degree
(disassortativity). Unlike technological networks and social
networks (that show assortative mixing), biological networks
appear to evolve in a disassortative manner.

GRNs are represented by directed graphs, and all biomolecular
networks may be represented as directed graphs when the
factor of information asymmetry is introduced (Figures 1, 2).
Assortative mixing can be generalized to directed biological
graphs (Piraveenan et al., 2012). For directed networks two
new measures, in-assortativity and the out-assortativity , can
be defined measuring the correlation between the in-degree
rin and out-degree rout of the nodes respectively. Biological
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networks, which have been previously classified as disassortative,
have been shown to be assortative with respect to these
new measures. Also it has been shown that in directed
biological networks, out-degree mixing patterns contain the
highest amount of Shannon information, suggesting that
nodes with high local out-assortativity (regulators) dominate
the connectivity of the network (Piraveenan et al., 2012).
The occurrence of assortativity in social networks has been
attributed to a process of homophily [that is people tend to
associate with others on the basis of ethnicity, religion, sports
preferences etc. (McPherson et al., 2001; Newman, 2003a)].
The mechanisms that give rise to assortativity in biomolecular
networks likely arises by a similar proximate mechanism of like
nodes forming edges with like nodes, but the ultimate cause(s)
remain unclear.

Duplication Model
Our earlier discussions suggest that biomolecular networks
exhibit power-law degree distribution. However, unlike other
complex networks, such as the Internet, the growth exponent of
biomolecular networks typically falls into a lower range 1 < β <

2, as opposed to β ≥ 2. This difference has been suggested to
have resulted from evolution by gene duplication dominating the
evolutionary mechanism (Chung et al., 2003). We have already
discussed the duplication phenomenon based on information
asymmetry in GRNs in section 1. Various biomolecular networks
have been studied using a partial duplication process, which
proceeds in the following manner: Let the initial graph G0 have
N0 vertices. In each step, Gt is constructed from its previous
graph Gt−1 as follows: A random vertex u is selected. Then a
new vertex v is added in such a way that for each neighbor w of
u, a new edge (u,w) is added with probability p. The process is
then applied repeatedly. The full duplication model is simply the
partial model with p = 1.

It has been shown that as the number N of vertices becomes
infinitely large (as is the case for most biomolecular networks),
the partial duplication model with selection probability p
generates power-law graphs with the exponent satisfying the
transcendental equation (Chung et al., 2003)

p(β − 1) = 1− pβ−1,

whose solution determines the scale-free exponent β as
a function of p. In particular, if 1/2 < p < 1
then β < 2.

For illustrative purposes, we describe below an abstract gene
network growth model incorporating the processes of gene
duplication and deletion, as described above ( Mishra and Zhou,
2004; Zhou, 2005). Using a Markov chain model the following
features were investigated: (i) the origination of the segmental
duplication; (ii) the effect of the duplication on the genome
structure; and (iii) the role of duplication and deletion process
in the genomic evolutionary distance. Unlike standard models of
stationary Markov chain models, most processes in evolutionary
biology belong to the group of non-stationary Markov processes,
in which the transition matrix changes over time, or depends
upon the current state.

This model results in the neutral emergence of scale-
free degree distributions. It shows that the genomes of

different organisms exhibit different network properties, likely
reflecting differences in the rates of gene duplication and
deletion (Mishra and Zhou, 2004). The additional factor of
information asymmetry is likely to affect the nature of gene
duplication in terms of gene identity and rate of duplication,
and may provide additional explanatory power for differences
in network properties. This analysis provides an example of
how network topology can be used to provide insight into
fundamental molecular evolutionary (neutral/Markov) processes
in different species. Note that the model is relatively idealized,
as it does not account for higher order interactions in
a population involving: effective population size and allelic
fixations; sex, diploidy, and sex-chromosomes (e.g., X and
Y in mammals or W and Z in birds, etc.); surveillance
and repair in somatic cells; embryonic lethality; homologous
recombination, etc. The mathematical model explored here is
kept simple to motivate the machinery from graph theory
developed later.

Hierarchical Network Models
Another interesting model, introduced by Ravasz and Barabasi
and dubbed the hierarchical network model, simulates the
characteristics of many real life complex models and may
be relevant. The resulting networks have modularity,
a high degree of clustering, and the scale-free property.
Modularity refers to the network phenomenon where many
sparsely inter-connected dense subgraphs can be identified—
“one can easily identify groups of nodes that are highly
interconnected with each other, but have only a few or no
links to nodes outside of the group to which they belong”
(from Ravasz and Barabási, 2003).

A generative process for a hierarchical network model may be
described as follows: For instance, consider an initial networkH0

of c fully interconnected nodes (e.g., c = 5). As a next step, create
(c − 1) replicas of this cluster H0 and connect the peripheral
nodes of each replica to the central node of the original cluster
to create H1 with c2 (e.g., c2 = 25) nodes. This step can be
repeated recursively and indefinitely, thereby for any k steps the
number of nodes generating the graph Hk with ck+1 nodes. If the
central nodes of H0 is called a hub and other nodes peripheral,
then each recursion replicates additional copies of hubs and
peripheral nodes.

One can carry out a recursive analysis and show that one
obtains a power-law (i.e., scale-free) network with exponent

β = 1 + ln(c)
ln (c−1)

. The local clustering coefficients (for the

hub-nodes) follow C(k) ≈ 2
k
. Also, one can show that

this duplication feature of the evolutionary process leads to
hierarchical behavior of the network. The resulting networks
are expected to be fundamentally modular, in other words, the
network can be seamlessly partitioned into collections ofmodules
where each module performs an identifiable task, separate from
the function(s) of other modules. One can also show that the
average clustering coefficient on N nodes at any given stage is
about C = 0.7419282.. (for c = 4), C = 0.741840 (for c = 5),
and a constant for a fixed c, independent of N (see Ravasz and
Barabási, 2003, and for exact computations Noh, 2003).
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4. OPEN PROBLEMS AND FUTURE
CHALLENGES

The study of biomolecular networks is still a relatively young field
and has thus far focused on a mechanistic perspective. As we
begin to explore biomolecular networks from a more involved
evolutionary view point, we encounter a large array of promising
areas of investigation—most of which focus on how information
asymmetries among the gene players ultimately sculpt the
information flow, as necessary for an organism to navigate in a
complex and fluctuating environment. Molecular evolution has
classically been concerned with the dualism of selection and
neutrality, however here we have highlighted a third important
component, information asymmetry, and suggest a series of
Open Problems that may help to begin to better understand
its impact. The traditional approaches of phylogenetic study
may be applied here, but examining specifically the family of
species-specific biomolecular networks. Thus, mathematically we
would need the networks to be aligned, motifs to be mapped
to each other and network-distances to be correlated to deep
evolutionary time. In order to account for the evolution by
duplications, orthologs and paralogs of a gene (or gene families)
are to be identified and connected to their roles in biochemical
pathways. Ultimately, this analysis could be targeted at extracting
the origin of various information-asymmetric signaling games
and how they are stabilized in their Nash equilibria.

Key questions include whether signaling game characteristics
differ between species. For example, species may differ in
their average sender/receiver ratio, and the average complexity
of signals produced (which may be indicated by protein
size, variability in expression, and degree of post-translational
regulation). Such differences may be linked to organismal
complexity, variability in the environment and multicellularity.
In so doing an overarching picture of how information is
gathered from the environment, and how it is shared and
distributed amongst gene players might be intimated. In
particular, at its core this program requires an explanation
of how features of genome evolution and structure might be
algorithmically inferred from a network science perspective,
as follows.

4.1. Algorithmic Complexity Issues
A key problem central to this program would be in detecting
isomorphism mappings among pairs of graphs or subgraphs, a
problem of infeasible algorithmic complexity (assuming P 6=

NP). We start with a discussion of these issues and cite
heuristics that can tame the problem, albeit computing the
solutions approximately.

Intractability: NP-Completeness
Many combinatorial optimization problems seem impossible
to solve except by brute-force searches evaluating all possible
configurations in the search space. They belong to a complexity
class called NP-complete and include such problems as whether a
graph has a clique of size k. Since finding certain recurrent motifs
in a class of networks shares many computational characteristics
of the clique problem and since it could be central to discovering

important evolutionary signatures (e.g., EBD), it seems unlikely
that it would be possible to characterize the evolutionary
trajectories precisely—especially when the number of genes
involved are in the thousands. See the Supplementary Material

for additional discussions on graph representations and to derive
their algebraic invariants, that provide bounds on complexity of
algorithms possibly leading to excellent approximate results in
the study of sparse complex networks (see Chung, 1997; Chung
and Lu, 2006).

Problem4.AClassify various computational problems involved
in detecting evolutionary trajectories of biomolecular networks and
characterize their algorithmic complexity.

Problem 4.B Explore PTAS (Polynomial Time Approximation
Schemes) for these problems—Especially when the graphs satisfy
certain sparsity, modularity and/or hierarchy properties.

Algebraic Approximation
As described earlier, many interesting topological features
of a graph can be computed efficiently (on both sequential
and parallel computers) from their descriptions in terms of
adjacency matrices. The resulting spectral methods have found
recent applications in complex networks (e.g., communication,
social, Internet) (see Spielman, 1996, 2018; Chung, 1997, 2010;
MacKay, 2003; Spielman and Teng, 2004, 2011, 2013, 2014;
Chung and Lu, 2006). These methods are efficient (linear
time complexity) for sparse graphs, whose number of edges
is roughly of the same order as the number of vertices. Thus,
they are well suited to biomolecular networks (for example for
clustering, community detection, hubs, robustness, assortative
mixing, spreading and mixing, closeness, isomorphism,
among others).

Thus, spectral graph theory may be expected to have
many applications in the analysis of biomolecular networks,
most prominently, in clustering, graph similarity, and graph
approximation, but also in smoothing analysis and sparsification.
One can envisage that many, if not most, classical network
algorithms in biomolecular networks can be made faster by
spectral methods. Indeed, since most biomolecular networks
are sparse—both in terms of sparse connections, and in
precise algebraic sense (see the Supplementary Material), these
algorithms likely lead to linear time algorithms. The smoothing
analysis methods, as well as sparsification approximations are
worth exploring in these contexts.

Another fruitful direction is in parallelizing these algorithms.
As an illustration, in several studies of biomolecular networks
it would be useful to identify when two networks X1 and
X2 are “close.” We may wish to say that two networks are
close if Spec(X1) and Spec(X2) are close—a computational
problem that is polynomially computable (and efficiently
parallelizable) (see Spielman and Teng, 2013). We can now
give a mathematical formulation of this closeness, which
can also be incorporated into phylogenetic studies. These
biomolecular networks may be annotated with weights
that are linear or quadratic approximation of relations, as
common in these studies. These analyses may identify sub-
networks that have been influenced by EBD, in concert
with selection.
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Problem 4.C Classify various algebraic problems involved in
detecting evolutionary trajectories of biomolecular networks and
characterize their ability to approximate. Explore their practical
implementations on sequential and parallel computers.

4.2. Design Principles via Motif Analysis
The study of Systems Biology postulates that there are important
design principles of biological circuits that provide a great deal
of insight. The connections of gene and protein interaction
networks are assumed to provide the necessary robustness and
control to achieve cellular function in the face of chemical
noise. However, it remains unclear how random variations alone
provide such robustness. A possible explanation may come
from a game-theoretic model that leads to stable equilibria
and is expected to have precipitated from duplication of
genes, interactions, and motifs. In addition, in principle,
the dynamics of biomolecular sender-receiver signaling games
should be reflected in network topologies, and so give rise to
particular motifs. While the specific types of motifs expected
to be observed remains to be developed further, some general
principles can be identified. As discussed in section 1, the
dynamics of signal genesis are driven by gene duplication,
which affects overall network topology, in terms of the degree
distribution. However, subgraphs consist of groups of senders
and receivers, which likely have a related role in the cell,
this may be tested by approaches outlined by Dotan-Cohen
et al. (2009). The topology of these subgraphs contain localized
motifs, which again reflect the addition and deletion of sender
and receiver genes. The impact of information asymmetry is
expected to lie in the Nash equilibria and associated utilities
of sender-receiver interactions, which should be an influence
on whether a new biomolecular interaction is established,
or not.

Machine Learning
The biomolecular networks of interest are derived from highly
noisy data e.g., CHIP-Chip, CHIP-Seq (for GRN), or co-
localization or two-hybrid (for PPI) and consequently, the
inferred edges of the network may miss certain genuine
interactions or include several spurious interactions. Various
machine learning algorithms (with false discovery rates, control,
and regularization techniques) have been devised in order to
improve the accuracy of such models. Biomolecular networks
from related species (with ortholog and paralog analysis) are
often combined to improve the accuracies and cross-validate
results. The accuracies may be further ascertained via various
local properties.

One important local property of networks is determined by
so-called network motifs, which are defined as recurrent and
statistically significant sub-graphs or patterns. Thus, network
motifs are sub-graphs that repeat themselves in a specific network
or even among various networks. Each of these sub-graphs,
defined by a particular pattern of interactions between vertices,
may reflect a framework in which particular functions are
achieved efficiently. Indeed, motifs are of notable importance
largely because they may reflect functional properties. They
have recently gathered much attention as a useful concept

to uncover structural design principles of complex networks.
Although network motifs may provide a deep insight into the
network’s functional abilities, their detection is computationally
challenging. Thus an important challenge for both experimental
and computational scientists would be to study the evolutionary
dynamics starting with the experimental data ab initio, as well as
in improving the accuracy and efficiency of both the experimental
and algorithmic techniques simultaneously.

Problem 4.D Classify the species distributions of the different
forms of heavy tailed distributions (e.g., power law, exponential,
power law with exponential decay, lognormal), in different types
of biomolecular network, and infer the mechanistic causes during
network growth, and ultimate molecular evolutionary origins.

Problem 4.E Characterize the motifs in the biomolecular
networks of closely related species starting with the noisy
experimental data. Explain the structure of the motifs via their
effect on the information flow. For instance, one may focus on DOR
(Dense Overlapping Regulons) motifs and how they might have
evolved from a simpler ancestral regulon (Alon, 2006).

Problem 4.F Study Subgraph Isomorphism Algorithms (and
heuristics) for sparse graphs and identify special cases most suitable
for studying evolutionary trajectories, while relating them to
biomolecular design principles.

Network Alignment
Critical to the evolutionary studies, described above, is the topic
of network alignment and subsequent network tree building,
which may be used for the comparative approach, between
species-specific networks. Networks may be aligned in a pairwise
fashion to calculate similarity, and from this a distance matrix
is calculated, and used for the construction of a network
tree, showing the relationships between multiple networks.
For example, in the case of meta-metabolic networks, such
studies will reveal relationships between the meta-metabolic
networks of different microhabitats. A plausible prediction
is that the network tree should show convergent evolution
in microbial communities from microhabitats with similar
conditions (e.g., anaerobic habitats). Thus this approach could
lead to a tool to study convergent evolution of microbial
community structure in similar habitats (Goldford et al., 2018).
The signaling games perspective promises a more complete
view of the cooperation, and conflict, that is present in all
microbial communities, and is expected to be reflected in the
structure of meta-metabolic networks. In particular, cooperation
will be indicated by honest signals, whereas conflict by the
occurrence of deceptive signals, which are expected to include
molecular mimics.

From an algorithmic point of view, onemay employ any of the
three types of network alignment approaches:

1. where node identity is known;
2. where node similarity can be determined (based on sequence

similarity for example); and
3. where node identity is unknown, here only network topology

is used for alignment.

The first is a straightforward edge alignment. However, a
refined expression is required that incorporates similarities
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in edge widths in addition to the basic edge alignment
(presence/absence of common edges between networks). Most
effort in bioinformatics has gone into the second type network
alignment, where there is partial information regarding node
identity (for example Kalaev et al., 2005; Pinter et al., 2005). There
do exist some first generation heuristics that utilize the third type
of alignment approach (only topology) (Kuchaiev and Przulj,
2011), but the underlying graph isomorphism problem is known
to be #P-complete. But these heuristics, as would be expected, do
not work well—a straightforward test for this problem is applying
them to align the social networks of the Gospels of Luke and
Matthew (Figure 3)—the Jesus node should always align, as it is
rather obvious topologically; but often leads to failure.

Problem 4.G Classify and characterize the graph alignment
algorithms.

4.3. Somatic Evolution and Cancer
Network analysis is used in disease studies, but there have been
more focused studies with applications to disease processes in
cancer. In Figure 4 we show part of an interactome network
useful in deciphering aberrant interactions in diseases (Figure
2.3 from Loscalzo et al., 2017). Cancer is a complex disease,
but governed by somatic genomic evolution, as propelled by
mutation. Thus as a consequence, GRNs may be used to
better understand cancer susceptibility, map its progression,
design better tailored therapies, and better understand the
evolution of endogenous anti-cancer strategies. Cancer genes
are often network hubs (Karimzadeh et al., 2018), as they are
often involved in critical developmental pathways. But a better
network analysis will shed light on many natural questions:
Why is it so? How does this come about from the process of
network growth over evolutionary time? What clues do they
provide to understand the somatic evolution in cancer and
its progression?

During cancer progression, the disease reduces a cell’s healthy
genome into an aberrant mutant, where cancer eventually
leads to metastasis, ultimately resulting in death of the patient.
The healthy cells in the patient may be thought to possess
a normal network, that is a gene network that engenders
health and well-being. Cancer progression is reflected by a
dynamic change of the normal network into an aberrant network.
The aberrant network manifests itself by tumorigenesis, and
finally metastasis. There is a substantial literature enumerating
the identity of oncogenes and tumor suppressor genes, which
aberrantly gain function (e.g., amplification of copy number)
or lose function (e.g., deletion in copy number, hemi- or
homo-zygously), respectively. They modify the cell biology of
cancer progression, effected via the dynamics of GRN and
PPI networks in cancer progression—all remain to be fully
characterized.

Figure 2 shows a simple model for how the evolution
of p53 and its paralogs may affect GRN topology; such
molecular evolutionary information-asymmetric signaling games
approaches may help to better understand the motifs associated
with oncogenes in GRNs. An additional important factor in
cancer is the pervasive occurrence of molecular deception (Bhatia
and Kumar, 2013). From a signaling games perspective, the

use of deception is consistent with cancer’s conflict of interest
with somatic cells. The identity of deceptive macromolecular
signals may be incorporated into the network, potentially
shedding a novel light on the mechanism of carcinogenesis.
The genesis of deceptive signals therefore is expected to
impact and drive carcinogenesis, with the level of deception
increasing as the cancer progresses, and as its conflict with
the soma intensifies. Of interest is the question whether
there is an identifiable phase transition in network topology
associated with metastasis. Taming this deception should
therefore constitute a key counter-strategy in combating cancer,
and is currently represented by the use of immunotherapy
approaches (Zhang and Chen, 2018), although the game
theoretical underpinning of these techniques has not been
appreciated.

An additional factor to understanding this biology are copy
number variants (CNVs)—types of gene mutations where a
number of large sections of genomic DNA may be duplicated
(or deleted), resulting in dosage effects of the resident gene
sequences, which are exactly duplicated (or deleted). The
numbers of CNVs can commonly vary substantially within a
population, and have been shown to have significant roles in the
propensity to develop cancer (Krepischi et al., 2012). An increase
in the number of CNVs would have the effect of enhancing
the weight of an edge, which represents the interaction of the
CNV gene product with its macromolecular binding partner.
Such a network variant represents an increased disposition
to develop cancer, and can be understood as occupying a
position in “network space” (the space of all possible network
topologies) in greater proximity to an aberrant network, than a
normal network.

Problem 4.H Study Cancer progression models in terms of
GRN’s and identify the role of driver and passenger genes in the
somatically evolving networks, and the number and distribution of
deceptive signals.

4.4. Gene Regulation and 3D Networks
The origin and development of GRNs from a signaling games
perspective is discussed in the Introduction. However, GRNs
typically do not take into account 3D spatial orientation,
and this provides a more complete view of gene regulation.
Recent work has outlined the importance of three-dimensional
proximity of genes to genes on other chromosomes, in addition
to their immediate neighborhood on their own chromosome
(Li et al., 2018). This effect implies that gene proximity and
spatial relationships within the nucleus can be meaningfully
represented as a network. Such a network would be comprised of
two types of edge: (1) linear distance on the same chromosome
(centimorgans), (2) physical distance with genes on other
chromosomes (nanometers). Such networks may be termed “3D
gene orientation networks.”

Gene regulation and co-regulation may be better understood
by the construction and analysis of 3D gene orientation networks.
This is because the proximity of regulatory modules to a
gene has an influence on gene expression. Most genes have a
regulatory region 5′ of the transcription start site, the promoter.
In addition, regulatory enhancers and other regulatory elements
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may be located distant from the gene, generally on the same
chromosome (Gondor and Ohlsson, 2018). It is thought that the
bending and juxtaposition of chromosomes within the nucleus
may bring such elements into physical proximity to the gene
(Gondor and Ohlsson, 2018). Clearly, the physical distance,
and frequency with which the element is brought into contact
with the gene will influence the nature of its regulatory input.
Using 3D gene orientation networks, additional information
may be incorporated into edges, such as whether physical
proximity is static, or has movement. If there is movement,
this may be coordinated (or not) with other regulatory elements
affecting the same gene. Likewise, interactions with regulatory
elements may show some coordination between genes. A
signaling games aspect is incorporated by considering the
regulatory elements as signals, the gene that is regulated as the
sender, and DNA binding proteins that bind to the regulatory
elements as receiver molecules, this scheme is illustrated in
Figure 2.

Problem 4.I Describe the Gene Duplication process and their
signaling game utilities in terms of the genome’s 3D structure.

4.5. Generalization of Genetic Variations
This paper describes an idealized picture: it describes a
canonical gene regulation network and variations affecting the
associated (single) genome, among which gene duplication has
taken a lion’s share of the focus. This picture needs to be
generalized to consider an ensemble of genomes, and variations
to the implied ensemble of genetic networks, which can vary
based on additional intra-genome variations: e.g., horizontal
gene transfer, reverse transcription and recombination, but
also due to effects such as cell-fusion and endosymbiosis
and effect of population sizes (e.g., in allelic fixation, for
instance in sex chromosomes). Mathematically, the implied
models of family of graphs would be significantly complex
and may require theories from large networks and graph
limits to understand the asymptotic properties. We leave
these and associated algorithmic questions as topics of future
research.

Problem 4.J Adding genome duplication and fusion, gene
transfer, gene conversion, endosymbiosis, sexual recombination,
fixation etc. to describe evolution of an ensemble of GRNs.

5. CONCLUSION

Here, we have outlined graph theoretical approaches that
may reveal some novel aspects of the molecular evolutionary
process, incorporating the understudied factor of information
asymmetry, whose effect may become manifest at the level of the
phenome. Further work is required to link the diverse features of
network topology with network evolution and growth. While the
evolutionary aspects shaping individual gene-gene interactions
has been addressed by geneticists and molecular evolutionists,
we believe that a synthesis entailing a multi-disciplinary effort
combining game theory, graph theory, and algebraic/statistical
analysis will provide a more informative omnigenic model of
gene interactions, in contrast to the traditional homogenic view.
Given our view that biomolecular networks may be modeled

using evolutionary game theory, and given that evolutionary
game theoretical approaches have been used in the study of
social networks, we expect that some surprising similarities
and convergences between the topologies of the two might be
observed. Finally, we note that the field of statistics gained
impetus from the consideration of biological problems, from
workers such as Fisher, Haldane, Rao, Wright, Kimura, Crow,
and others, and so we suggest that consideration of the open
problems listed here might also lead to a similar development of
new mathematics.

6. BIBLIOGRAPHIC NOTES

We recommend the following articles for further reading: (Albert
and Barabási, 2002; Barabási et al., 2002, 2003, 2004; Farkas et al.,
2002; Schwartz et al., 2002; Barabási, 2003; Chung and Lu, 2004,
2006; Candia et al., 2008; Goh and Barabási, 2008; Vazquez et al.,
2008; Davis et al., 2010; Song et al., 2010; Liu et al., 2013; Janwa
and Rangachari, 2015). For other important sources (especially
with respect to directed graphs), we refer to Newman and Watts
(1999), Newman (2001, 2003b,c,d, 2004, 2006, 2010), Girvan and
Newman (2002), Meyers et al. (2006), Moore et al. (2006), Clauset
et al. (2009), Karrer and Newman (2010), Newman et al. (2011),
Zhang et al. (2016, 2017). For evolution of networks (see for
example Sharan et al., 2005; Mazurie et al., 2010). For bipartite
networks (Janwa and Lal, 2003; Hø holdt and Janwa, 2012). For
Spectral methods (Cvetković et al., 1980; Lubotzky et al., 1988;
Lubotzky, 1994, 2012; Chung, 1997; Davidoff et al., 2003; Sarnak,
2004; Chung and Lu, 2006; Spielman and Teng, 2011; Janwa and
Rangachari, 2015).
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Metabolic networks have been used to successfully predict phenotypes based on

optimization principles. However, a general framework that would extend to situations

not governed by simple optimization, such as multispecies communities, is still lacking.

Concepts from evolutionary game theory have been proposed to amend the situation.

Alternative metabolic states can be seen as strategies in a “metabolic game,” and

phenotypes can be predicted based on the equilibria of this game. In this survey, we

review the literature on applying game theory to the study of metabolism, present the

general idea of a metabolic game, and discuss open questions and future challenges.

Keywords: metabolic modeling, flux balance analysis, evolutionary game theory, microbial interactions, metabolic

networks

1. INTRODUCTION

Metabolic networks have become a standard model in computational biology and high quality
genome-scale reconstructions are now available for a wide range of micro-organisms as well as of
some eukaryotes. Often the ultimate aim of these models is phenotype prediction, which means
predicting from the genome how an organism would behave in a given environment. In this
context, constraint-based methods, most prominently Flux Balance Analysis (FBA), have a proven
track record in accurately predicting the metabolic behavior of single organisms [1–5].

FBA relies on assumptions about the underlying optimization principles guiding metabolic
behavior, and biomass yield relative to nutrient intake is often chosen as the target of maximization.
While this assumption is often justified when considering single species systems, it becomes
troublesome if one wishes to model several species at the same time [6]. Simple optimization is
usually not enough, because competition and interspecies interactions complicate the situation
considerably. Formulating a “common goal” for a community of organisms can only be done ad-
hoc [7–9]. Moreover, there are situations where even in single species communities, selection can
be unfavorable to optimal choices such as maximizing efficiency in nutrient use [10–12].

Game theory is a branch of applied mathematics originally developed to describe and reason
about situations where two or more rational agents, the “homo economicus,” are faced with choices
and have potentially conflicting goals [13]. All participants want to maximize their own well-
being, but are doing so taking into account that everyone else is doing the same. Thus paradoxical,
suboptimal, outcomes are possible and even common. Evolutionary game theory was born out of
the realization that rational choice can be replaced by natural selection: in the course of evolution
the strategy (phenotype) that would “win” the game would prevail by simply proliferating more
successfully thanks to its success in the “game” [14, 15].

It turns out that phenotype prediction in the context of metabolic networks is exactly the type of
problem that evolutionary game theory was meant to answer: given a set of choices (as defined by a
metabolic network reconstruction), what will be the actual metabolism observed? In other words, if
we culture a set of organisms together in a given medium, which are the phenotype(s) that emerge
as winners?
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In this review, we seek to provide a short introduction to
both evolutionary game theory and its use in the context of
metabolic modeling. We first present the relevant preliminaries
and introduce the idea of a metabolic game. We then further
expand on the idea by reviewing work done on the topic
so far. Finally, we discuss these ideas and contemplate on
future prospects.

We wish to call attention to the fact that our focus
here is strictly on the idea of using the principles of game
theory to reason about metabolic networks. While some papers
that address this topic have been included for the sake of
completeness, we decided to omit part of the related literature
to keep the scope of this review under control. For previous
reviews discussing the use of game theory in the context of micro-
organisms with slightly different emphases, see [11, 16–18].

Game Theory
The main concepts that compose a game are a set of players, a
set of actions for each player, and a payoff function. The players
are the participants in the interaction. In the simplest case, they
can be interchangeable, meaning they all have the same set of
available actions and the same payoff function. A set of actions
defines the choice that each player faces and can correspond for
example to the expressed phenotype. Finally, the payoff function
determines the outcome for each player in each scenario, that is,
a combination of actions chosen by the players.

The simplest game is the 2-player, 2-strategy matrix game. If
the players are interchangeable, it can be expressed concisely by
the payoff matrix:

A B

A a b
B c d

whereA and B denote the actions and the entries are payoff values
for the row player. For example, if the row player plays A and the
column player B, the payoffs for the row and column players are
b and c, respectively.

Some of these games have become famous and the actions and
payoffs can be given generic interpretations, usually denoted by:

C D

C R S
D T P

where C stands for “cooperation” and D for “defection,” and the
payoffs, denoted by their initials, are known as “Temptation,”
“Reward,” “Punishment,” and “Sucker’s payoff.” If T > R > P >

S, the game is a Prisoner’s Dilemma (PD). It corresponds to a
situation where the players would both be better off cooperating,
but because they will always have the incentive to defect, they end
up choosing this inferior outcome, hence the “dilemma.”

A common way to analyse games is using a solution concept.
A solution is a state of the game (in other words, a configuration
of actions/strategies) that can be reasonably assumed to follow
from choices made based on some underlying logic. Arguably the
two most well-known examples—as well as the ones most often
encountered in the context of evolutionary game theory—are the

Nash equilibrium [19, 20] and the Evolutionarily Stable Strategy
(ESS) [14]. In a Nash equilibrium, all strategies are chosen in such
a way that no player has an incentive to unilaterally change theirs.
An ESS is a strategy such that if adopted by every member of a
population, a small minority of players using any other strategy
cannot invade. In the Prisoner’s Dilemma, for both players to
choose D is a Nash equilibrium of the game: D dominates the
other action in all scenarios (T > R and P > S) [13]. In this case,
it is also an ESS.

If the payoffs are switched so that T > R > S > P, the
game is called Hawk-Dove or Snowdrift (SD). In contrast to the
PD, in this situation it is still better to cooperate even if one’s
partner fails to do so. Here the Nash equilibrium is to choose an
action opposite of one’s opponent. If mixed strategies are allowed,
meaning a player can choose its action probabilistically, we have
a mixed Nash equilibrium where both players follow the same
strategy of choosing C with some probability (or a portion of the
time). This is also an ESS, and can be interpreted as a population
of individuals that comprises a mix of C- and D-players.

The simple matrix game can be readily extended in two
ways. First, the number of strategies can be increased, effectively
increasing the dimensions of the matrix. This in general leads
to no extra complications apart from eventually requiring
computational tools for the analysis of the equilibrium structure
(see [21–23]). Second, the number of payoff matrices and
players can be increased. In other words, players are no longer
interchangeable and there can be more than two parties in the
interaction. In general, matrix games with more than two players
are much harder to analyse than simpler games [24].

The most prominent multiplayer game is the Public Goods.
It can be thought of as an extension of the PD to more than
two players. In the simplest form, n players each choose whether
or not to make a contribution to the common good. The
contribution has a cost c for the individual, and yields a benefit
r · c that is distributed evenly amongst the group. If r/n < 1,
no one will contribute, even though everyone would be better
off with all members making the contribution. However, this is
true with the kind of linear benefits in the simplest game, but
not necessarily in a more general case where the benefit acquired
can be a non-linear function of the contributions. In Archetti
and Scheuring [25] and Broom and Rychtár̆ [24], it has been
argued that in real situations, benefits are usually not linear, but
for example saturating.

In principle, any population dynamics model can be used
in combination with a game by simply making the growth
rate a function of the payoff. Obviously this requires defining
with whom and how the game is played. For example, it can
be assumed that the population is well-mixed, so that players
encounter different types of opponents in a random fashion
according to their prevalence. The payoff that an individual is
obtaining at a given moment is thus the expectation, calculated
over the different possible encounters. The most commonly used
formulation is the replicator equation [26, 27]. It describes the
dynamics of the frequencies of strategies as:

dni

dt
= ni(Ei − Ē), (1)
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where ni is the relative density of strategy i in the population, Ei
is its expected payoff, and Ē is the average (expected) payoff of
the population.

Adaptive dynamics is a framework that combines the
ecological and evolutionary time scales to study how strategies
will evolve under natural selection [28–30]. Under the
assumptions that changes in strategy undergo gradual mutation
so that each new genotype changes the phenotype only slightly,
and that the mutations occur rarely enough for the ecological
and evolutionary dynamics to be separable, adaptive dynamics
offers a view beyond simply reasoning about the stable points
of evolution such as an ESS. For example, an ESS can be
unattainable through gradual mutations. Adaptive dynamics
can also explain how evolution toward higher fitness in a
homogeneous population can lead to diversity, or so-called
branching of the evolutionary tree [30].

Metabolic Games
A metabolic network (see Figure 1) is represented by the so-
called stoichiometric matrix S with m rows corresponding to the
number of metabolites and n columns to reactions. The standard
steady state assumption:

S · v = 0 (2)

expresses the condition that any flux vector v must render the
net production of all internal metabolites zero. However, this
still leaves the state of the metabolism largely undetermined. In
fact, the steady state condition merely defines the set of possible
metabolic strategies available to the organism, comprising all the
different pathways at its disposal. The question then is what is
the choice made by the organism: which pathways it chooses
to activate.

“Choice” here obviously refers to that made by natural
selection. Thus, the question could be put more appropriately as:
given the environment, as determined by both abiotic factors as
well as the surrounding members of the same and of different
species, what is the best response to this environment. Again,
“best response” refers to the ability to persist in competition with
other members of the community, generally referred to as fitness.

In FBA, the metabolic state is inferred through
straightforward optimization (for an illustration of the FBA
workflow, see Figure 2). A standard choice is the flux through a
biomass reaction. While this is often referred to as growth rate,
strictly speaking it corresponds to growth yield [6, 10] (see also
section 2). It can be seen as fitness maximization in isolation. As
argued throughout this paper, this might not correspond to the
strategy of choice if the surrounding community is taken into
account. However, if the metabolic state is already sufficiently
specified through additional constraints, this growth yield
maximization can still be used to determine the fitness given that
specific choice. We can thus define a metabolic game: the players
are cells, actions are the different metabolic states available to
them, and payoffs are calculated using FBA with additional
constraints specifying the states chosen in each combination

of actions. A schematic representation of this idea is given
in Figure 3.

Consider the toy-model example in Figure 4. The simple
network represents a situation where an organism has two
options for a primary nutrient: A and B. We assume that in
order to efficiently utilize whichever nutrient is chosen, the cell
has to specialize. Thus, uptake of both A and B is not feasible.
Furthermore, nutrient A is superior, yielding 3 units of the
biomass precursor M1 per one unit of A as opposed to a yield of
only 2 for B. Thus, following standard FBA, we would conclude
that by choosing to uptake A at the maximum rate 1, the cell
maximizes its biomass production (vBiom = 3).

We now add a social interaction component by assuming that
the presence of A in the environment is limited (for the sake of
simplicity we assume that B is abundant). This can be modeled by
a simple 2-player matrix game with two actions: to only uptake
A and to only uptake B (denoted by “MS1” and “MS2” resp.).
Should both players choose A as their nutrient, the maximum
uptake rate is halved (vTA ≤ 0.5), reflecting a scarcity of the
compound. In this case, maximizing biomass production only
yields 1.5 (assuming that vTB = 0).

The pure NE of the game is the “anti-coordination” scenario
where the players choose differing strategies. The mixed NE and
as well as the ESS is a strategy where both players’ choice can
be expressed as 2/3MS1 + 1/3MS2, meaning that nutrient A
is chosen two-thirds of the time. This can be interpreted as a
stochastic strategy where the cell switches from pure MS1 to
pure MS2 randomly. The equilibrium of the replicator dynamics
(Equation 1) corresponds to the mixed NE and the ESS but with
a different interpretation: in a well-mixed population, two-thirds
of the cells will use A while the remaining uses B.

The most complete realization to date of this formalism was
presented in Zomorrodi and Segre [23]. Indeed, Zomorrodi and
Segrè construct different metabolic strategies by setting selected
fluxes to zero to simulate knock-outs, and forcing the excretion
of “leaky” metabolites that can be taken up by neighboring cells.
Payoffs are obtained by maximizing the biomass flux for both
genotypes in each pairwise interaction. Together, these define a
2-player matrix game with 2 or more actions (genotypes). To
determine which genotype(s) are able to persist, the authors
search for Nash equilibria and ESSs using the replicator equation.

As a proof of concept, Zomorrodi and Segrè apply
their framework to study invertase production in the yeast
Saccharomyces cerevisiae: in order to grow on sucrose, the yeast
needs to hydrolyse the sugar molecule. Because invertase is a
surface enzyme, much of the resulting monosaccharides leak
out. Because producing invertase is costly, it constitutes a public
good. This cost is modeled by reducing the ATP production of
invertase-producers. It was found that depending on how much
of the sugar leaks out and on the cost of producing the enzyme,
three different payoff schemes are possible: Prisoner’s Dilemma,
Snowdrift, and Mutually Beneficial.

The authors also studied amino acid mediated ecological
interactions in Escherichia coli. Producer strains leak out amino
acids which are costly to produce, and can be taken up by
mutants lacking the ability to synthesize them. Several different
amino acids were investigated, with up to two at a time spanning
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FIGURE 1 | A metabolic reconstruction. (A) A metabolic network is constructed by joining together reactions whose enzymes are recognized in the organism’s

genome. (B) The most commonly used mathematical representation is the stoichiometric matrix: its rows correspond to the metabolites of the network and columns

to reactions. The entries are stoichiometric coefficients: how much of the metabolite is consumed or produced in the reaction. (C) The flux vector expresses the state

of the metabolism: its entries correspond to reaction rates. (D) Each reaction rate has a lower and an upper bound.

four possible strategies (genotypes). Again, both the level of
leakiness and the cost of production influence the type of
equilibria observed. With low enough levels of leakiness, both
an equilibrium with a full producer coexisting with a complete
auxotroph, as well as cross-feeding are possible. With increasing
leakiness, the full producer becomes non-viable. However, it
was also observed that due to interdepencies in amino acid
production, in some situations cross-feeding is not possible
because losing the ability to produce one amino acid leads to
the loss of the ability to produce the other. Zomorrodi and Segrè
also studied the evolutionary dynamics of these interactions by
performing in silico invasion experiments. They found that cross-
feeding can emerge through the progressive loss of amino acid
synthesis capabilities, and that this mutually dependent coalition
is often stable against invasion by non-producers, consistent with
previous experimental findings [31, 32].

2. YIELD VS. RATE

One of the questions already extensively explored through
applying game theory to metabolism is ATP production. There
is a fundamental trade-off between yield and rate of ATP
production in heterotrophic organisms: some of the free energy
obtained from substrate degradation is needed to drive the
reaction. Increasing the portion of free energy that is used
for driving the reaction increases the rate of ATP production
but lowers the yield. The choice of pathway thus presents a

social dilemma. Choosing the efficient strategy would maximize
resource usage and benefit the population as a whole. However,
if an individual cell chooses to stray from this cooperative path,
its faster growth rate will allow it to increase in numbers and
eventually overcome the cooperators at the cost of the interest
of the community.

In Pfeiffer et al. [33], this question is explored in the context
of respiration vs. fermentation. This paper is to our knowledge
the first to apply game theory specifically to metabolic pathways.
Most organisms can in principle choose to degrade sugar by both
the respiration and fermentation pathways. While fermentation
provides ATP faster, it has a significantly lower yield. Thus,
fermentation can be seen as a wasteful, “selfish” strategy, while
respiration is more efficient in terms of nutrient use.

By constructing a simple population model, the authors show
that while a population of fermenters will be smaller due to
a faster depletion of resources, they can nevertheless take over
a population of respirators due to their faster growth rate.
This constitutes the famous “tragedy of the commons” [34].
However, if a spatial component is added, respirators can have
a chance. This is because at lower nutrient levels, fermenters
will deplete their immediate environment of resources and suffer
the consequences.

Frick and Schuster [35] explore this question further. They too
construct a population model for slow but efficient vs. fast but
wasteful resource use. The authors then interpret the steady state
population densities of both strategies in each different scenario
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FIGURE 2 | Flux Balance Analysis: (1) The starting point is the metabolic reconstruction. (2) The flux space is a space of possible flux vectors v. (3) Constraints are

imposed on the flux space: the steady state condition requires that the net production of all internal metabolites equals zero. This confines the flux vector into a

cone-shaped subspace. The upper and lower bounds (li and ui ) of the reactions bound the cone, establishing a maximum magnitude. (4) Finally, using linear

programming, an objective function (usually a linear combination of certain reaction fluxes that corresponds to a biological objective such as biomass) is maximized to

find the predicted flux vector.
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FIGURE 3 | Schematic overview of the tentative framework for metabolic games: (1) Starting from the metabolic network(s) of one or several organisms, possible

metabolic phenotypes are subdivided into distinct metabolic strategies (denoted by MS1 and MS2 above). (2) Payoffs for each configuration of strategies are

calculated using a method such as FBA. New constraints are added in each scenario to reflect the choice of phenotype implicated by the strategy as well as possible

environmental interactions due to the strategy choices of other players (e.g., changes in substrate availability can be enforced by restricting fluxes of import reactions

accordingly). (3) Predicted configuration(s) of metabolic strategies is determined by looking for the solutions of the game (e.g., finding the Nash equilibria or studying

the dynamics of the strategies).

as payoffs: in this way, the situation is a Prisoner’s Dilemma
with pure respiration forming the cooperation strategy. This is
important because were the growth rates to be taken as the
payoffs, one would conclude that fermentation is the optimal
choice in all instances. However, from the point of view of
sustaining the highest possible population density, cooperation,
that is respiration, is the best choice.

Experimental evidence for the results described above was
provided in MacLean and Gudelj [36]. The authors used yeast
as their model organism and grew pure respirators and respiro-
fermenters together in different culture set-ups. They found that
while the “cheaters” win in a chemostat, in serial batch and
spatially structured populations, the two strategies can coexist.

Schuster et al. [10] critically examined the assumption made
in FBA of maximization of biomass yield. They argued that in
general there is a trade-off between yield and rate, and that
it is not a priori clear which of these conflicting goals would
be selected for. Based on the theoretical results previously put
forth by Pfeiffer et al. [33] as well as several examples from
nature, the authors conclude that maximization of yield cannot
be considered a universal principle.

Aledo et al. [37] also studied the yield vs. rate question but this
time in glycolysis itself, which can operate under two different
regimes: one with a high yield but a slower rate, another with a
low yield but a faster rate. Using a simple matrix game model,
with payoffs derived as functions of extracellular free energy and
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FIGURE 4 | An example of a metabolic game: the choice of nutrient forms the actions of the game. Payoffs are determined using FBA with additional constraints

enforcing both the chosen metabolic strategy as well as the impact of the choice of the co-player. The outcome of the game can be analyzed using either static or

dynamic solution concepts. In this case, both indicate the same result: expected phenotypic heterogeneity.

in agreement with the Prisoner’s Dilemma payoff scheme, the
authors showed that in a well-mixed population, cooperation
cannot persist. In contrast, if the game is played on a lattice so
that players only interact with their neighbors, cooperation is a
possible outcome.

Schuster et al. [38] returned to the question of yield vs. rate.
They presented a toy model representing a simplified version
of ATP production to show that whether maximizing the yield
coincides with maximizing the rate depends on the particulars of
the system. They also further articulated the idea that alternative
pathways can be seen as strategies in the game theoretical sense,
and that “choosing” which pathway to use can happen not

only through changes in genotype, but also through regulatory
changes within the life-span of a cell.

Kareva [39] investigated the yield vs. rate question in the
context of cancer cells where the use of the more inefficient
glycolysis pathway is observed as one of the hallmarks of
cancerous growth and is known as the Warburg effect [40, 41].
However, in contrast to the previous models, the author argued
that the use of glycolysis is the cooperative strategy: while
recognizing the possibility to increase the rate of glucose uptake,
she considered the use of glycolysis to remain detrimental to the
individual cell due to its low yield. Meanwhile, the associated
lactic acid production can benefit the cancer cell population
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as a whole, if undertaken in sufficient numbers, because it
disproportionately harms non-cancerous cells. Thus, glycolysis
can be considered as public goods production. The contradiction
with previous studies is clear. However, in the ODE system used
to model a population of cells with varying rates of carbon
allocated to glycolysis in Kareva [39], it was observed that
glycolytic cells do increase in frequency if they have a faster
growth rate.

In two successive papers [42, 43], Archetti presented a public
goods model of the Warburg effect. He took the same view as
Kareva [39] and considered glycolysis as the cooperative strategy
amongst cancer cells. The benefit accrued by all participants from
glycolysis—increased acidity—is modeled by a double sigmoid
function: increased acidity yields a benefit over healthy cells if
enough cells are producing lactic acid, but too much will start
to hamper the growth of even cancer cells. The dynamics of the
frequencies of glycolytic and non-glycolytic cells were modeled
using the replicator equation. Because an exact solution of the
dynamics for a sigmoid shaped benefit is not available, Bernstein
polynomials were used to find an approximate solution. Archetti
found that if the cost attached to glycolysis is not too high,
glycolytic cooperators can persist at intermediate frequencies.

3. PUBLIC GOODS

Another possible social dilemma within microbial communities
occurs with necessary but costly functions. If a metabolic
function is performed at the cell surface or outside the cell, it
means that the benefit incurred can be shared by other cells
that are possibly not contributing to the undertaking of the
said function. Such a situation is best described by a public
goods game.

Gore et al. [44] studied the invertase production system of
S. cerevisiae described in section . Their model is a sort of mix
between a public goods game and a matrix game: the authors
define payoffs in terms of the fraction of invertase-producers
in the population but then go on to compare these payoff
values to the well-known 2-player games. If the benefits are
linear, cooperation cannot persist unless the benefit derived from
sucrose degradation by the invertase-producer exceeds the cost,
in which case producing the enzyme is not a public good. On
the other hand, with non-linear benefits, frequency-dependent
selection allows for a fraction of the cooperators to persist. This
result was in line with experimental evidence which confirmed
both the coexistence of producers and non-producers as well as
the non-linear benefit function.

A similar model was presented in Schuster et al.[45]. In this
paper, Schuster et al. studied generic exoenzyme production
assuming again that some fraction of the transformed growth
product diffuses directly into the producer cell while the rest is
available to the surrounding community. This time the benefit
from the public good is given by a Monod function modeling the
growth rate attained through the available nutrient. The nutrient
acquired in turn depends on the fraction of cooperators in the
population and cell density, which is a parameter of the model.
The authors conclude that depending on the parameters, the

fraction of public good that diffuses away, the cost of enzyme
production, and the cell density, the model can be seen as a
Prisoner’s Dilemma, a Snowdrift or a Harmony game.

Archetti [46] studied growth factor production in cancer cells
as a public goods game. Growth factor production is costly but
the benefits are available to all surrounding cells. The benefit
function was assumed to have sigmoid shape and population
dynamics weremodeled by the replicator equation. As in Archetti
[42, 43], Bernstein polynomials were used to circumvent the
problem caused by the sigmoid function. Archetti found that
depending on how exactly the fraction of producers influences
the benefit from growth factor, different types of dynamics are
possible: a globally attractingmixed equilibriumwhere producers
and non-producers coexist, the fixation of one type depending on
the initial frequencies, or the fixation of producers regardless of
the initial conditions.

The model presented in Archetti [46] was expanded on in
Archetti [47] by introducing a spatial component. In this model,
cells are placed in the nodes of a Voronoi graph. A Voronoi
graph has the average connectivity of 6, with very few nodes
beyond degree 4–8. Cells receive benefits from growth factors
produced by producer-cells within a neighborhood defined by
a diffusion parameter, discounted with the distance to the focal
cell. The benefit itself is given by a normalized logistic function.
In other words, benefits are non-linear. Archetti found that
similar to well-mixed populations, cooperation declines as the
cost of production increases. Stochasticity in the update rules
used to model proliferation and a steeper benefit function also
decrease cooperation.

4. NUTRIENT CHOICE

Perhaps the best examples showcasing the usefulness of game
theoretic thinking are situations where frequency-dependent
selection leads to polymorphisms in nutrient use. It is often the
case that in a given environment, there is a preferred choice
for the main carbon source. However, in any realistic scenario,
nutrient availability is limited, and it can be beneficial for the
individual to opt for a carbon source that is slightly less optimal,
but abundant due to being the “unpopular” choice.

Doebeli [48] considered the evolution of cross-feeding. He
constructed a model for a bacterial culture growing in a
chemostat, using glucose as its main nutrient. During growth
on glucose, acetate is secreted which can also be used as a
nutrient, albeit with a lower growth rate. Doebeli assumed
that there is a trade-off in using the secondary metabolite:
becoming more proficient in using acetate lowers the ability
to use glucose efficiently. Furthermore, this trade-off is subject
to gradual change through mutations. Bacterial growth and
nutrient concentration was modeled using a Michaelis-Menten
type model.

Using the theory of adaptive dynamics, Doebeli showed that
the frequency-dependent selection following from the trade-off
can lead to evolutionary branching and the emergence of a stable
polymorphism of glucose and acetate specialists. He also found
that if the dynamics are changed to model a serial batch culture
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instead of a chemostat, evolution of cross-feeding becomes much
less likely. In a chemostat culture, the concentration of nutrients
is kept constant, while in a batch culture nutrients are allowed to
be depleted. These results were further expanded and provided
experimental confirmation in Friesen et al. [49].

Kianercy et al. [50] studied the Warburg effect and the
reverse Warburg effect. The reverse Warburg effect refers to the
phenomenon wherein some cells in a tumor use lactate secreted
as a by-product of glycolysis as their energy source. The authors’
model is a 2-player matrix game with two types of players:
hypoxic and oxygenated cells. Both types have the same available
strategies: using either glucose or lactate as their nutrient. Lactate
is secreted by hypoxic cells using glucose. Similarly to Kareva [39]
and Archetti [42, 43], the authors take yields as payoffs. Thus,
using glucose gives a lower payoff for hypoxic cells. The authors
found that there exist two stable states and conclude that lactate
secretion can induce a transition between high and low levels of
glucose consumption.

Healey et al. [51] investigated phenotypic bet-hedging
by experiments and a game theory model. Bet-hedging
refers to a hypothesis that microbes may increase their
survival in fluctuating environments by implementing a
stochastic phenotype. In other words, a genetically homogeneous
population might display two (or more) distinct phenotypes.
In the language of game theory, this would constitute a mixed
strategy. The model system in Healey et al.[51] was S. cerevisiae
that prefers glucose as its carbon source, but also harbors the
GAL network for metabolizing galactose. The game theory model
used was a simple foraging game, where a population of players
must choose between two resources. One of the resources is
the preferred one, and so there is an additional cost associated
with using the inferior resource. However, if all members of the
population have chosen the preferred resource, it is better for
an individual to choose the other. This leads to a stable mixed
equilibrium of users of both resources. Experiments performed
by Healey et al. corroborated this theoretical result.

5. DISCUSSION

In this paper, we presented the idea of a metabolic game and
reviewed the main existing literature on applying evolutionary
game theory to the study of metabolism. Most studies so far
have evoked game theory as an explanatory device, making
use of established knowledge on famous games such as the
Prisoner’s Dilemma to qualitatively describe specific observed
phenomena. We believe that it is possible to go beyond that,
and to develop a formalism for the metabolic modeling of
multicellular and multispecies communities by combining the
ideas behind evolutionary game theory with the existing tools of
constraint-based modeling.

The recent paper by Zomorrodi and Segre [23] is a first
step in this direction. However, there are significant challenges
remaining before the game theoretical perspective can be
taken full advantage of. Namely, properly defining the different
components of a game must be carefully considered in order to
make the models derived as reliable and descriptive as possible.

The first component of a game are the players. They are
the participants in the interaction under study. Many of the
papers discussed in this survey used some form of a 2-
player matrix game to make their arguments. In principle,
this type of game represents a situation where two individuals
face each other in a single interaction to obtain a single
payoff. With this in mind, it seems strange to use this model
when talking about microbial populations. However, when
the matrix game is embedded in the replicator dynamics
or another kind of frequency dependent selection model, it
starts to more closely resemble a microbe culture. In a way,
payoffs are obtained according to who one’s average neighbor
is at any given time, as might be imagined to happen in a
well-mixed culture.

Yet the question remains if pairwise encounters are sufficient
to capture the interaction dynamics of microbes that mainly
influence each other through diffusible molecules. The other type
of model often used is the public goods game. At first glance
it seems to more accurately describe an interaction through
diffusible molecules because it considers several players to take
part in the game at the same time. For example, in the case
of invertase production, it is intuitive to consider the game to
comprise those cells that the released glucose can be assumed to
reach. However, there are some problems with using the public
goods game as a general model. Firstly, the benefit function
must be accurately estimated since its form can greatly influence
the type of dynamics it gives rise to (see for example [46], see
also [44]). This might be difficult to do without experimental
evidence. Secondly, public goods games with non-linear benefit
functions can be difficult to analyse [46], although some progress
has been made in this area recently [52].

Explicit consideration of spatial structure could facilitate
properly defining interacting agents. Even if the underlying
model is a 2-player game, embedding it into a spatial model
so that individuals interact with those around them, and
the changes resulting in the environment from these actions
(depletion of nutrients etc.) happen locally, will be more faithful
to nature. The standard way to represent spatial structure in
game theory is to assign players to nodes in a graph as was
done in Archetti [47]. This approach might be most applicable
to environments such as biofilms. The other option is to use
partial differential equations to include spatial dimensions in the
population dynamics. The main problem with both approaches
is that usually the only analysis possible is through simulations.
Furthermore, parameters such as diffusion coefficients might be
needed to specify the model.

Considering all of the above, it seems that if the goal is to
specify a systematic framework in which a metabolic game can
be defined based mainly on the metabolic reconstructions of the
organisms, the simplematrix game should be themodel of choice.
Indeed, in order to have a computational framework anywhere
close to the simplicity of the original FBA formalism, it seems that
only the high level ideas from game theory, mainly considering
the choice available for one individual in conjunction with the
choices available to their opponents, can be included. This is
already captured by the matrix game. In addition, authors have
arrived at similar conclusions modeling the same situation with
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various more complicatedmodels [44, 45] and the simpler matrix
game [23].

With regard to the choice of action/strategy space, the
question is mostly a technical one. In principle, a game
constructed on the basis of metabolic networks would consider
as available actions the range of feasible metabolic behaviors, in
other words, the flux cone [53, 54]. However, from a practical
standpoint it is evident that some abstraction is needed. Firstly,
in order for a matrix game to be defined, the action space needs
to be discretized. Secondly, with the number of reactions and thus
of flux values to be defined routinely reaching to thousands, the
game would surely quickly become intractable.

Several approaches to a decomposition of the flux cone have
been proposed. Most notably, three related concepts, elementary
flux modes [55, 56], extreme currents [53], and extreme pathways
[57] all formulate a mathematical definition of a pathway using
concepts from linear algebra and convex analysis. Using such
concepts, the space of available metabolic phenotypes can be
characterized in terms of which reactions are active, each set
corresponding roughly to separate biochemical pathways that
are able to operate at a steady state. Unfortunately, the number
of elements in such a decomposition grows exponentially with
the size of the network [58–60]. It might thus be impossible in
practice to define the action space simply using these concepts, at
least at the level of genome-scale reconstructions. De Figueiredo
et al. [61] have offered a possible amendment by proposing an
efficient procedure to compute elementary flux modes in order
of increasing number of reactions.

Other concepts worth exploring are the phenotypic phase plane
put forth by Edwards et al. [62] and the flux tope by Gerstl et al.
[63]. A phenotypic phase plane is defined by the uptake rates of
two nutrients. The optimal metabolic behavior is calculated at
each point of the plane using a biomass function. It turns out that
such a plane is divided into a finite number of distinct regions
with qualitatively different metabolic behavior. A flux tope is
obtained by specifying a direction for all reversible reactions. It
corresponds to a maximal “pathway” (as opposed to a minimal
one, such as an elementary flux mode). The authors report that
the calculation of all flux topes is possible even at a larger scale.

In Zomorrodi and Segre [23], available metabolic actions
were not defined explicitly in terms of flux distributions but
rather by excreted compounds. One or several metabolites of
interest were first forced to be exported and hence produced (or
alternatively to not be produced simulating auxotrophy), after
which the metabolic state can be determined using standard
optimization principles with the additional constraints. There are
compelling arguments for defining actions in metabolic games
using extracellular compounds. In general, microbial interactions
are often mediated by the exchange of molecules. By focusing on
these compounds, the elements of the action space have a clear
interpretation in the context of interaction. The set of possible
secretions is also much more tractable than the space of all
possible metabolic phenotypes.

Interactions based on extracellular metabolites were
characterized from a slightly different point of view in Klitgord
and Segre [64]. The authors asked whether it is possible to predict
species interactions based on culture media. Using genome-scale

stoichiometric models they tested whether growth of two
organisms was possible in isolation and in tandem in a given
medium. This approach showed examples of both mutualistic
and commensal relationship induced by growth media.

Wintermute and Silver [65] used a similar model to study the
exchange of metabolites. The authors showed how the costs and
benefits of extracellular metabolites can be estimated using the
concept of shadow prices from constraint-based analysis. The
shadow price of a metabolite can be understood as a measure of
how much the objective, for example biomass flux, would change
if the production of the said metabolite changed. Such an analysis
could be very useful for metabolic games since it allows one to
compute both the cost of producing a diffusible molecule as well
as the benefit derived from it by the organism that is able to
receive it.

In a thesis work, Wannagat [66] showed how to compute the
minimal sets of compounds two organisms need to exchange in
order to be able to grow. Here the approach was qualitative and
was used to categorize interactions in terms of their type, but such
a procedure could be used also to define the action space in a
metabolic game.

Finally, in order to construct a game, one needs to define
the payoffs. This is arguably the most crucial step since the
payoff values will largely determine the predictions of the model.
There is a particular importance to not only qualitatively, but
also quantitatively establish accurate payoffs here since the
hope is for metabolic game theory to match the predictive
ability of FBA. One example from the literature discussed in
this paper highlights both the importance and the difficulty in
defining payoffs.

In several papers [10, 33, 35, 36], fermentation in the presence
of oxygen is seen as a classic “cheater” strategy. From an
individual’s point of view, the inefficiency of fermentation in
terms of yield is not “seen”: what the cell experiences as the
consequence of its choice is a growth rate exceeding that of its
conspecifics. The result of a wasteful use of resources is only
felt at the population level, resulting in a lower sustainable cell
density. This is the (in)famous Prisoner’s Dilemma. However,
when essentially the same situation has been discussed in the
context of cancer [39, 42, 47], a completely opposite view has
been adopted. Here, fermentation was seen as the cooperation
strategy. For example, Archetti [42] described using fermentation
as a contribution to a public good, the cost of the action being the
loss in yield compared to respiration. While it can be argued that
the underlying biology is very different for single-celled microbes
and cancerous tissue, the discrepancy is still puzzling.

The problem of properly defining payoffs in the yield vs.
rate dilemma is related to that of normalization in FBA [10].
In order to “ground” the flux vector, normalization is needed.
A common choice for a numeraire is the uptake of a primary
nutrient. The fact that maximization of flux through the biomass
reaction in FBA leads to a de facto maximization of biomass
yield follows from this operation. Consider now the situation
in ATP production. If the value of the objective function in
a standard FBA approach is taken as the payoff, respiration
is a better strategy than fermentation. However, as already
discussed, a fermenter can outgrow its respiring neighbor. From
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the perspective of evolutionary game theory, it is thus clearly
the winner, and its payoff should reflect this fact. However, if
we simply switch the payoff from yield to actual rate of biomass
production, two fermenters would also obtain the highest payoff
together. This is because we have assumed in a simplified
way that the external resources are infinite, and hence two
fermenters are able to sustain the increased uptake of nutrients
they achieve in the presence of respirators. In order to arrive at
the Prisoner’s Dilemma payoff structure, we need to take into
account that if everyone uses fermentation, it can no longer
provide the benefit it has over respiration because of a depletion
of nutrients.

The above example showcases the difficulty in appropriately
quantifying the outcomes in a metabolic game. Optimization
of an appropriate objective function can certainly accurately
identify “catastrophic” outcomes where growth is not possible,
but when conclusions are drawn as to which metabolic
strategy would win in intra- or interspecific competition,
caution is warranted. One must make sure that the quantity
under consideration is apt to decide the winner(s) in an
evolutionary sense.

The definition of the action space can also offer a way
to quantify the payoffs. For example, if different metabolic
phenotypes are characterized by imported and exported
metabolites, benefits and costs can be calculated following [65].
This could open the way for a more systematic definition of
public goods games using only the knowledge obtained from
metabolic models.

To further develop these ideas, finding new suitable model
organisms, especially for interspecies interactions, would be of
great interest. However, if a generally applicable framework
for metabolic games is desired, it is important to avoid over-
fitting the model to specific situations. Since for single-species
communities the work of Zomorrodi and Segre [23] already
offers an excellent starting point, a good goal for future research
would be a systematic definition of the action space that
does not rely on context-specific biological information. With
regard to multispecies interactions, this area of research remains
less explored. Thus, even a proof of concept application with

metabolic strategies derived based on biological knowledge
would be desirable.

Besides games, other models from economics have generated
interest in the field of microbiology. The concept of comparative
advantage [67] was thus applied to gene circuits in Enyeart
et al. [68]. The authors showed that when two bacterial
species trade signaling molecules necessary for survival, they
both enjoy improved growth, as predicted by the theory
of comparative advantage. Tasoff et al. [69] used general
equilibrium theory [70] to understand the mutualistic exchange
of compounds between micro-organisms. The authors argued
that comparative advantage is a necessary condition for
the exchange to take place. This theory can be further
extended to several organisms exchanging multiple compounds.
Other concepts that have been suggested for applications
in the microbial context include avoidance of bad trading
partners, establishment of local business ties, diversification or
specialization, monopolization of a market, and elimination of
competitors [71].
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Network medicine is an emerging area of research dealing with molecular and genetic
interactions, network biomarkers of disease, and therapeutic target discovery. Large-
scale biomedical data generation offers a unique opportunity to assess the effect
and impact of cellular heterogeneity and environmental perturbations on the observed
phenotype. Marrying the two, network medicine with biomedical data provides a
framework to build meaningful models and extract impactful results at a network
level. In this review, we survey existing network types and biomedical data sources.
More importantly, we delve into ways in which the network medicine approach, aided
by phenotype-specific biomedical data, can be gainfully applied. We provide three
paradigms, mainly dealing with three major biological network archetypes: protein-
protein interaction, expression-based, and gene regulatory networks. For each of these
paradigms, we discuss a broad overview of philosophies under which various network
methods work. We also provide a few examples in each paradigm as a test case of its
successful application. Finally, we delineate several opportunities and challenges in the
field of network medicine. We hope this review provides a lexicon for researchers from
biological sciences and network theory to come on the same page to work on research
areas that require interdisciplinary expertise. Taken together, the understanding gained
from combining biomedical data with networks can be useful for characterizing disease
etiologies and identifying therapeutic targets, which, in turn, will lead to better preventive
medicine with translational impact on personalized healthcare.

Keywords: network medicine, biological networks, biomedical big data, interactome, co-expression, gene
regulations, phenotype-specificity, systems medicine

INTRODUCTION

Biological systems are comprised of various molecular entities such as genes, proteins and other
biological molecules, as well as interactions between those components. Understanding a given
phenotype, the functioning of a cell or tissue, etiology of disease, or cellular organization, requires
accurate measurements of the abundance profiles of these molecular entities in the form of
biomedical data. Analysis of the biomedical data allows us to explain important features of the
interactions leading to a mechanistic understanding of the observed phenotype. The interplay
between different components at different levels can be represented in the form of biological

Abbreviations: CNV, copy number variation; ENCODE, ENCyclopedia Of DNA elements; FANTOM5, Functional
ANnoTation Of Mammalian Genome; GCNs, gene co-expression networks; GRNs, gene regulatory networks; GTEx,
genotype-tissue expression; HCA, human cell atlas; HMP, human microbiome project; HPA, human protein atlas;
modENCODE, model organism ENCyclopedia Of DNA Elements; NGS, next generation sequencing; PPIs, protein-
protein interactions; SNP, single nucleotide polymorphism; TCGA, the cancer genome atlas; TOPMed, trans-omics for
precision medicine.
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networks, for example, protein-protein interactions (PPIs) (Uetz
et al., 2000; Cusick et al., 2005) and gene regulatory networks
(GRNs) (Davidson, 2006). Different biological networks
capture the complex interactions between genes, proteins,
RNA molecules, metabolites and genetic variants in the cells
of organisms. These networks, also interchangeably known
as graphs, are representations in which the complex system
components are simplified as nodes that are connected by links
(edges) (Vidal et al., 2011). Networks provide a conceptual and
intuitive framework to model different components of multiple
omics data from the genome, transcriptome, proteome, and
metabolome (Figure 1; Liu and Lauffenburger, 2009).

The convenient representation of the biological components
in graphs led to the field of network biology – a discipline
that studies holistic relationships between various biological
components by combining graph theory, systems biology, and
statistical analyses (Lindfors, 2011; Walhout et al., 2012).
Moreover, the quantitative tools of network biology offer the
potential to understand cellular organization and capture the
impact of perturbations on these complex intracellular networks
(Wang et al., 2011). Network Medicine is an extension of network
biology with a set of focused goals related to disease biology,
including understanding disease etiology, identifying potential
biomarkers, and designing therapeutic interventions, including
drug targets, dosage, and synergism discovery (Loscalzo et al.,
2017). Research in network medicine heavily depends on large
datasets for building models, making predictions and assessing
their validity. The promise of network medicine research is
to develop a more global understanding of how perturbations
propagate in the system by identifying the pathways, sub-types
of disease states, and key components in the networks that
can be targeted in clinical interventions. Moreover, networks
are the centerpiece of the “new biology” in the biomedical
data revolution and translation to personalized medicine
(Schadt and Bjorkegren, 2012).

Advances in high-throughput biotechnologies have led to
the generation of massive amounts of biomedical data that
provides new research avenues. The rapid decline in costs due to
technological advancements such as next generation sequencing
(NGS) have provided the necessary impetus to generate
multiple large-scale multi-omics biomedical data-sets that
characterize various phenotypes. This includes exome and whole
genome sequencing, transcriptomics, proteomics, lipidomics,
microbiomics, etc. (Schadt and Bjorkegren, 2012). Constructing
appropriate network models is a challenging problem that heavily
depends on the study design, the phenotype under study, the
molecular entities measured, and the type and size of the data.
The field of network medicine is largely discovery — rather
than hypothesis — driven, uncovering previously unknown
relationships and leading to the identification of new biomarkers.
The statistical rigor of network predictions comes from the study
design and the size of the datasets. Large-scale consortium-
based efforts looking at the various aspects of human biology
have allowed the application of network-based methods to
uncover new insights into the molecular mechanisms of the given
phenotype, such as tissue specificity or disease context. In this
review, we first examine various large-scale biomedical datasets

and types of biological networks as summarized by Figure 1.
We then provide three paradigms in which biological networks
can be combined with big biomedical data to understand the
given phenotype.

BIOMEDICAL DATA SOURCES

Recent technological advancements in sequencing technologies,
resulting in a reduction in cost per base pair, have heralded an
era of massive data generation for different types of molecular
profiles across a broad range of phenotypes and diseases.
After the completion of the human genome project (Collins
et al., 2003), the HapMap project (The International HapMap
Consortium, 2003) created an extensive catalog of common
human genetic variants, the differences in DNA sequences,
based on microarray data. These studies eventually progressed
into the “1000 Genomes Project” (The 1000 Genomes Project
Consortium, 2015), which leveraged NGS technologies. In cancer
research, the cancer genome atlas (TCGA) (Cancer Genome
Atlas Research Network, 2008) contains profiles of tumors
and matched normal samples from more than 11000 subjects
for 33 cancer types. The repertoire of TCGA data includes
clinical information (demographic, treatment, and survival
information), gene expression profiling, microRNA profiling,
copy number variation (CNV) (genomic structural variations)
identifications, single nucleotide polymorphism (SNP), DNA
methylation (whole genome methylation calls for each CpG site),
and exon sequencing (expression signal of particular composite
exon of a gene). Together these data have helped in the
identification of driver somatic mutations, the molecular basis
of cancer progression, and potential therapeutic interventions
for cancer subtypes. To understand the role of the epigenetic
state in gene regulation and to characterize the functional
elements of the transcriptional machinery, the ENCyclopedia Of
DNA elements (ENCODE) consortium for humans (ENCODE
Project Consortium, 2012), model organism ENCyclopedia Of
DNA Elements (modENCODE) for model organisms (Yue
et al., 2014), and ROADMAP Epigenomics project (Romanoski
et al., 2015) were commissioned to improve the understanding
of how epigenomics contributes to disease. The Riken-led
Functional ANnoTation Of Mammalian Genome (FANTOM5)
(Andersson et al., 2014) project provided cell-type-specific
enhancer elements and identified pathobiological regulatory
SNPs. To further understand transcriptional patterns in human
tissues and their relationship with the genotype, genotype-tissue
expression (GTEx) data was generated (GTEx Consortium, 2015;
Mele et al., 2015). Trans-omics for precision medicine (TOPMed)
(Prokopenko et al., 2018) is another set of multi-omics data on
100k individuals that also includes clinical data and is aimed at
understanding the fundamental biological processes that underlie
heart, lung, blood, and sleep disorders. The Precision Medicine
Initiative or “All of Us” program1 aims to acquire a broad range
of data from about 1 million individuals.

1https://allofus.nih.gov/
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FIGURE 1 | Overview of network medicine approach depicting various biomedical data types discussed at length in the manuscript, along with network
representations that simplify different components of multiple omics data from the genome, transcriptome, proteome, and metabolome as nodes that are connected
by links (edges). Combining biomedical data with the appropriate network modeling approach allows derivation of disease associated information and outcomes like
biomarkers, therapeutics targets, phenotype-specific genes and interactions, and disease subtypes.

Since 2003, the human protein atlas (HPA) (Uhlen et al.,
2005; Uhlen et al., 2015), curated by Swedish consortium, has
been releasing data on protein expression levels in cells, tissues,
and various pathologies, including 17 cancer types. Similarly,
the human cell atlas (HCA) (Rozenblatt-Rosen et al., 2017)
aims to provide a reference map of single cell omics data in
human cells and cell types. The UK-Biobank (Allen et al., 2014;
Sudlow et al., 2015) is another commercial resource that has
an array of health-related measurements on patients, including
biomarkers, images, clinical information, and genetic data. The
human microbiome project (HMP) (Turnbaugh et al., 2007) is
a categorization of microbiota on different human body sites
whose goal is to understand the role of the microbiome and
the impact of its dysbiosis on human disease. Apart from these
large international databases looking at one or more aspects of
health or disease, many other resources from the concerted efforts
over decades of data collection are also available. This includes
the Nurses’ Health Study (Belanger et al., 1978; Colditz et al.,

2016), Health Professionals Follow-up Study (Grobbee et al.,
1990), Framingham Heart Study (Dawber et al., 1951; Mahmood
et al., 2014), and COPDGene (Pillai et al., 2009). This wealth
of biomedical data not only allows for a deeper probing of the
underlying biological systems, but also inspires the development
of novel methods that can maximize the information that can be
extracted from these data. The tools developed within the field of
network medicine are highly versatile, enabling their customized
application depending on the given biological or disease context.

Collecting large-scale multi-time point data across multiple
omics in different disease conditions is expensive and often
not feasible, especially for human subjects. However, small-scale
longitudinal data for a single omic, such as gene expression,
is available in biomedical databases (Jung et al., 2015; Bouquet
et al., 2016). High resolution mass spectrometry has also allowed
for the collection of longitudinal proteome data, for example
to test the effect of drugs (Fournier et al., 2010) or oxidative
stress (Vogel et al., 2011) in yeast. A longitudinal multi-omic
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dataset containing both human transcriptomic and proteomic
information has been analyzed to study changes in molecular
profiles (Chen et al., 2012). Multi-omic datasets such as this
one allows us to probe the relationship between biological
molecules based on the central dogma of biology, such as the
connection between transcript abundance and protein levels
(Marguerat et al., 2012; Liu et al., 2016). Longitudinal data is also
amenable to temporal or dynamical network analysis, wherein
one can evaluate the statistical dependence of the state of a
network on the gene expression patterns from previous time steps
(Kim and Kim, 2018; Dondelinger and Mukherjee, 2019). Kim
et al. provide a summary of several methods to infer temporal
regulatory relationships (Kim et al., 2014).

In the next section, we will review some of the main
types of biological networks constructed using high throughput
molecular profiling, literature mining, or manual curation of
scientific literature.

PRIMER ON BIOLOGICAL NETWORKS

Each network-based study has to primarily identify two things:
what are the critical entities in the system under investigation
(nodes), and what is the nature of the interactions between these
entities (edges) (de Silva and Stumpf, 2005). This information
often comes from multiple different data sources, dealing with
the various facets of the biological system. For example, PPIs,
also defined as the interactome, is a network of proteins and the
physical interactions between them (Cusick et al., 2005). These
interactions can be obtained from yeast-2-hybrid assays (Li et al.,
2004; Vidal and Fields, 2014), co-immunoprecipitation (Lin and
Lai, 2017), literature text-mining (Papanikolaou et al., 2015),
3D structure (Lu et al., 2013), co-expression of genes (Bhardwaj
and Lu, 2005), sequence homology (Shen et al., 2007), and
other sources. Each of these data sources have both merits and
demerits (Cusick et al., 2005). These networks inform us about
the overall topological properties of protein interactions as well
as the positions of specific proteins within this network. However,
extracting phenotype specific (i.e., cell, tissue or disease-specific)
information based on the PPI remains an open challenge and
requires the development of novel ways of integrating biomedical
data with these networks.

Gene co-expression and regulatory networks often make
direct use of phenotype-specific gene expression data in the
network construction, with additional analysis required to extract
meaningful biological information for the underlying phenotype.
The availability of transcriptomic data for a wide range of
phenotypes presents an opportunity to probe the patterns of
molecular co-abundance, albeit with limitations concerning the
interpretation of the biology. Gene co-expression networks
(GCNs) can be constructed in many ways, including information
theoretic, regression-based, and Bayesian approaches (Butte
and Kohane, 1999). Several common methods for constructing
GCNs include Weighted Gene Co-expression Network Analysis
(WGCNA; Langfelder and Horvath, 2008), Context Likelihood
of Relatedness (CLR; Faith et al., 2007), Algorithm for
the Reconstruction of Accurate Cellular Networks (ARACNe;

Margolin et al., 2006), Partial Correlation and Information
Theory (PCIT; Reverter and Chan, 2008), Gene Network
Inference with Ensemble of Trees (GENIE3; Huynh-Thu et al.,
2010), Supervised Inference of Regulatory Networks (SIRENE;
Mordelet and Vert, 2008), and Gene CO-expression Network
method (GeCON; Roy et al., 2014). GRNs are a related type
of network that attempts to look beyond the co-abundance of
gene expression and instead identify the influencing patterns of
transcription factor genes over others in a mechanistic fashion
(Marbach et al., 2012). Since transcriptional regulation depends
on cis and trans-regulatory elements as well as transcription
factor binding, GRNs often incorporate this information during
model construction. Many methods with a modified definition
of correlations have been proposed to infer GRNs. However,
identifying the putative cis-regulatory sequences, such as those
found in the promoter regions of genes, that are relevant
for a specific biological context is important to enable the
understanding of disease, tissue, or cell-specific regulatory
perturbations. The location of TF binding to the DNA can be
assayed using yeast-1-hybrid (Deplancke et al., 2004), ChIP-
Seq (Jaini et al., 2014), or inferred by other means (Mundade
et al., 2014). However, the cost and other limitations involved in
generating these data in a context-specific manner have meant
that incorporating this information when constructing putative
regulatory networks remains a challenge.

Other types of biological networks include metabolic
networks, which represent a collection of biochemical
interactions between metabolites and enzymes (Terzer et al.,
2009). Ecological networks, which represent biotic interactions,
can also be applied to microbiome data, the collection of
microbes’ genes, to construct microbiome networks (Coyte et al.,
2015; Layeghifard et al., 2017; Bauer and Thiele, 2018; Rottjers
and Faust, 2018). Together, genotype and transcriptomic data can
be used to map genetic variants to genes and then summarized
in an expression Quantitative Trait Loci (eQTL) network (Platig
et al., 2016; Fagny et al., 2017). A network of immune cell
communication has been constructed using high-resolution
mass spectrometry-based proteomics data and was shown to
exhibit social network-like properties. Disease networks, also
known as the diseasome, have been proposed; these networks
connect diseases and disorders with disease genes based on
Online Mendelian Inheritance in Man (OMIM) associations
(Boyadjiev and Jabs, 2000; Hamosh et al., 2002; Goh et al.,
2007; Wysocki and Ritter, 2011; Zhang et al., 2011). Similarly,
networks connecting symptoms with diseases have helped to
shed light on the shared genetic associations between diseases
(Zhou et al., 2014). Efforts to identify specific disease-causing
genes, using genomic intervals obtained from linkage mappings
or Genome-Wide Association Studies (GWAS), have been
undertaken using hybrid heterogeneous networks. These hybrid
networks often include a combination of disease-gene networks,
generic or tissue-specific molecular networks such as PPIs or
GCNs, and prior knowledge of disease similarities (Navlakha and
Kingsford, 2010; Moreau and Tranchevent, 2012; Ni et al., 2016).
Various network-based tools have been implemented in the
gene prioritization problem (Wu et al., 2008; Li and Patra, 2010;
Tian et al., 2017). All these aforementioned types of network
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biology approaches are particularly useful in understanding
complex diseases, which result from multiple genetic factors and
environmental influences (Moreau and Tranchevent, 2012).

Analysis of biological networks also necessitates
understanding their structural or topological properties.
This includes the identification of important modulators, driver
nodes, local network structures, and recurrent subgraphs in the
network. Local connectivity properties such as degree and other
centrality metrics can help to identify key molecular entities
that dominate various network neighborhoods, such as hubs,
bottlenecks, or core nodes. At the global level, properties like
average path length, degree distribution, diameter, clustering
coefficients, and controllability (Liu et al., 2011) help with
the characterization and comparison of network topologies.
Mesoscale measures such subgraphs or network motifs –
recurrent patterns connecting a fixed number of nodes (typically
3 or 4) – are considered fundamental components of biological
networks (Milo et al., 2002). An extension of network motifs to
include more nodes, or graphlets, has been used to analyze the
interactome (Przulj et al., 2004; Davis et al., 2015; Malod-Dognin
et al., 2017). Identifying the connectivity patterns enriched in
a network (i.e., over-represented with respect to a null model)
can help to compare, characterize, and discriminate between
networks (Shen-Orr et al., 2002; Alon, 2007; Przulj, 2007). These
patterns are also commonly associated with control substructures
that dominate information flow in the networks, especially in
transcriptional regulatory, neuronal, and social networks.

INTEGRATING BIOMEDICAL DATA WITH
NETWORKS: CHALLENGES AND WAYS

The ultimate aim of inferring biological networks using
biomedical data is to provide lab-testable hypotheses by
identifying biomolecular entities that play a crucial role in the
observed phenotype (Figure 1). Detecting changes in abundance
levels of these biomolecules and their interaction landscape in the
context of a tissue, cell, or disease-specific environment requires
both relevant data and the application of appropriate network
analysis. Each biological network analysis has strengths and
limitations based on how it incorporates phenotype specific data,
and the research question being addressed (Altaf-Ul-Amin et al.,
2014; Kanaya et al., 2014). In some cases, it is possible to identify
a baseline network from general physical interactions between
proteins, after which disease or phenotype-specific information
from specific experiments can be overlaid to generate a more
context-specific network.

Protein-protein interaction networks provide a fabric of
potential interactions between proteins, but phenotype-specific
interactions can only be added as an extra layer from separate
biomedical data. The hypothesis behind analyzing such networks,
combination of baseline PPI with disease information added
as next step, is that the defects or mutations in only a few
genes or proteins may propagate to other components in the
network, and that this collection of affected genes constitute a
critical module in the network (Schadt and Bjorkegren, 2012).
Previous work along these lines has shown that these modules

are not only structurally related but are also functionally relevant
to the observed phenotype. This central tenet of network
medicine from the interactome has been successfully tested
for many diseases and other phenotypes (Lim et al., 2006;
Goh et al., 2007; Taylor et al., 2009; Sharma et al., 2013, 2015,
2018; Menche et al., 2015; Sahni et al., 2015; Huttlin et al.,
2017; Huang J.K. et al., 2018; Wang et al., 2018; Willsey
et al., 2018) and has also led to novel drug-target discoveries
(Yildirim et al., 2007; Guney et al., 2016; Luo et al., 2017)
along with novel interactions between genes. Despite recent
advances, the PPI is incomplete and inferring disease-specific
interactions requires innovative strategies in order to overcome
this deficiency.

Gene co-expression networks are by definition context-
specific, as they are constructed by calculating correlations
in a given gene expression data set. In contrast, GRNs
often are built starting from a baseline network composed
of all potential interactions between transcription factors and
genes. This baseline network can be derived from genetic
sequence information and DNA-binding domain sequences
within regulatory proteins, such that an interaction is inferred if
a given gene’s promoter contains the binding motif of a particular
TF. Disease or tissue-specific information then has to be
integrated with this baseline prior network to obtain meaningful
information about perturbations caused due to the disease.

In this review, we explore the PPI, GCNs, and GRNs, and
also provide exemplar methods for each. Based on these three
types of networks, we describe three complimentary philosophies
and modus-operandi to embed phenotypic specific molecular
information from biomedical data into a network framework, as
shown in Figure 2. We present these paradigms to demonstrate
that applying network phenomenology to big biomedical data
requires a nuanced, condition-specific approach. In the following
sections, we will focus on each paradigm separately, providing
their examples, the questions they intend to answer, and the
diagnostics of the outcomes. We mainly focus on reviewing
methods to integrate multi-omic data to extract phenotype
specific information, specifically disease and tissue specificity in
the PPI, GCNs, and GRNs.

PARADIGM I: Network-Based Approach
to Human Disease Using the Interactome
The high-throughput mapping of the interactome has provided a
molecular interaction map of the genes encoding proteins that
might drive an underlying pathophenotype (Kamburov et al.,
2009; Barabasi et al., 2011; Zhang et al., 2013; Rolland et al., 2014;
Hein et al., 2015; Huttlin et al., 2015). Understanding disease
associated biomedical data in the context of network principles
supports the discovery of more accurate biomarkers, localization
of the disease perturbation in the network, personalized
networks, better disease sub-type classifications, better targets
for drug development, and better drug repurposing. Using this
paradigm, one can extract disease-specific signals in a variety of
ways. One may consider topological properties of the nodes and
assess the functional role of their hubness, i.e., a node property
of having a higher number of connections. Alternatively, one can
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FIGURE 2 | Schematic of three paradigms for combining biological networks with phenotype-specific biomedical data, such as a set of disease genes and
transcriptomic profiles for case and control groups. (A) Identification of disease associated network components within the interactome, (B) Co-expression based
network modeling to identify disease biomarkers, (C) Constructing phenotype-specific GRNs to identify perturbations and condition-specific regulatory changes.

also identify new disease genes in the network by using “guilt-
by-association” (Aravind, 2000; Quackenbush, 2003; Stuart et al.,
2003; Lage et al., 2007; Sharma et al., 2010; Lee et al., 2011;
Sharma et al., 2013; Huang J.K. et al., 2018) — a property ascribed
not based on direct evidence but association with other disease
genes, albeit with care (Gillis and Pavlidis, 2012). In addition
to prioritizing candidate disease genes, molecular interaction
networks can assist in identifying the sub-networks that are
mechanistically linked to disease phenotypes (Menche et al.,
2015; Sharma et al., 2015; Emamjomeh et al., 2017; van Dam et al.,
2018). The proteins in these connected subnetworks may have
clinical importance by being therapeutic targets and biomarkers
(Sharma et al., 2015). Network tools can also provide a framework
for disease classification (Halu et al., 2017; Zhou et al., 2018).

Assessing disease genes from other, non-disease genes by
their topological properties on the interactome have provided
new insight into disease pathobiology. It was found that disease
genes tend to have non-hub properties (Goh et al., 2007). Later,
it was reported that genes from OMIM and those associated
with cancer are more central in a literature-curated interactome
(Jonsson and Bates, 2006; Xu and Li, 2006; Ideker and Sharan,
2008). Further, several studies demonstrated that disease genes,
in general, mostly have a high-degree and a low clustering
coefficient (number of mutual connections with the neighboring
nodes) (Feldman et al., 2008; Cai et al., 2010). Moreover, recently
it was reported that disease genes have a higher degree, but it
was discovered that the cancer-related genes are the primary

drivers of this trend (Wachi et al., 2005; Jonsson and Bates,
2006). Genes associated with either Mendelian or complex
diseases also have higher degree and lower clustering coefficients
compared to non-disease genes (Cai et al., 2010; Pinero et al.,
2016). The topological properties of disease-associated genes
vary significantly from disease to disease. The factors that
influence these discrepancies include the incompleteness of
the current interactome, bias toward well-studied genes, and
incomplete knowledge about the number genes associated with
various diseases (Menche et al., 2015). It is anticipated that
the alliance of different technologies like yeast-2-hybrid, affinity
purification mass-spectrometry (AP-MS), and cross-linking AP-
MS (Schweppe et al., 2018) will provide access to larger data
that will be helpful in providing knowledge about the missing
interactions. On the disease-gene discovery side, projects like the
UK biobank prospective cohort study, which includes in-depth
genetic and phenotypic data, will enhance knowledge regarding
the missing disease genes (Bycroft et al., 2018).

An important area in which the interactome has helped in
understanding complex diseases is the prediction of disease
associated genes. The goal is to identify novel genes and
proteins, which are involved in the regulation of tissues, or
dysregulated in the case of disease, through the association with
observed disease candidate genes using the biological hierarchy
of molecular interactions. Figure 2A depicts this paradigm where
the PPI network serves as map of potential biological interactions
between various proteins over which disease associated genes
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are mapped to uncover relevant biology. The central philosophy
in most methods under this paradigm is that the neighbors of
the disease associated components or network modules, such
as a set of differentially expressed genes (Chuang et al., 2007)
or genes with disease-associated SNPs (Oti et al., 2006; Lage
et al., 2007; Feldman et al., 2008; Barrenas et al., 2012), could
potentially be associated with similar diseases (Goh et al., 2007),
and are closer to each other as compared to the other nodes
in the network. The definition of this closeness, or vicinity of
nodes, just like the definition of modules and clusters, varies with
different research strategies. Some methods assume topological
closeness in terms of the number of shortest paths connecting
given nodes, while others take the similarity of biological function
into account. Guilt-by-association methods focus on identifying
new disease genes by optimizing based on both the local and
global properties of the network and by considering the role
of other disease genes and their neighborhood. Network-based
strategies to find disease genes and their associated mechanisms
can be divided in two types: exploratory and analytic methods
(Carter et al., 2013). In exploratory methods one can analyze the
biological trends due to perturbations. For example, Chu et al.
(2012) expanded on known angiogenesis pathways to construct
a PPI network for angiogenesis. In contrast, analytic methods
aim to identify specific genes and pathways associated with a
disease. For example, Gilman and group developed a method
for network-based analysis of genetic associations to identify a
biological network of genes affected by rare de novo CNVs in
autism (Gilman et al., 2011). Recently, Huang J.K. et al. (2018)
systematically evaluated 21 protein-interaction networks for the
ability to recover disease genes sets. After correcting for size, they
found that the Database for Interacting Proteins (DIP) network
(Xenarios et al., 2000) had the highest efficiency in recovering
disease genes (Huang J.K. et al., 2018).

In contrast to predicting the disease candidate proteins,
finding the associated disease-related network components, or
sub-networks, provides a more substantial network space to
discover the pathways and mechanisms that influence disease.
Goh et al. (2007) proposed a correlation between the location
of disease-associated genes and the topology of the molecular
interaction network. The tendency of disease-associated genes
to interact more often with others compared to random genes
in the interactome led to the establishment of the ‘local impact’
hypothesis (Barabasi et al., 2011). According to this hypothesis,
molecular entities involved in similar diseases have an increased
tendency to interact with each other and to localize in a specific
neighborhood of the interactome (Barabasi et al., 2011). The
search for these modules involves exploring the structural and
topological properties of the PPI network. Community detection
algorithms (Spirin and Mirny, 2003), clique percolation (Sun
et al., 2011), and genetic algorithms (Liu et al., 2018) have been
applied to uncover disease modules using network properties
(Vlaic et al., 2018). Module prediction and identifying non-
overlapping clusters with the PPI remains challenging since the
PPI network has a short diameter, i.e., most nodes are close to
all other nodes in terms of network distance. Novel distance
metrics and community detection algorithms have been proposed
to overcome this problem (Hall-Swan et al., 2018). The recently

proposed DIseAse MOdule Detection (DIAMOnD) algorithm
(Ghiassian et al., 2015) associates the functional modules of
known disease-associated proteins (seed proteins) and identifies
the close neighbors of these genes (candidate disease-associated
proteins) using topological properties of the interactome. The
method suggests that the connectivity significance among the
disease-associated proteins is the best predictive quantity to
find the disease related components in the interactome. The
underlying hypothesis is that close neighbors of known disease
proteins may be involved in the disease. The working principle of
DIAMOnD is as follows: first, a pool of disease genes encoding
proteins is identified for a disease of interest from biological
experiments, GWAS, linkage analysis, or other disease associated
data sources (Pinero et al., 2017). Next, these disease proteins
(seeds) are mapped onto the interactome. Further, neighbor
proteins are added iteratively to the set of seed proteins based
on the condition that each neighbor added is most significantly
connected to the seed proteins. A hypergeometric test assigns a
p-value to the proteins that share more connections with seed
proteins than expected by chance. Finally, the seed proteins plus
the added neighbor proteins are part of network components
that represent a disease module, or a subnetwork of proteins in
the interactome, the members of which are more functionally
and topologically related to each other than to other portions
of the network. These subnetworks are designated as disease-
specific modules based on the source of initial seed proteins.
Disease module identification has also led to endophenotypes,
intermediate pathophenotypes, and network modules describing
their common and distinctive molecular mediators (Lage et al.,
2008; Ghiassian et al., 2016).

As mentioned previously, significant progress has been made
in mapping the interactome by high-throughput approaches
like yeast-2-hybrid (Rual et al., 2005; Venkatesan et al., 2009;
Dreze et al., 2010; Rolland et al., 2014), AP/MS (Hein et al.,
2015; Huttlin et al., 2015, 2017) and various literature-curated
data sources, such as ConsensusPathDB, STRING, and PCNet,
which collate the known and predicted interactions between
proteins (Klingstrom and Plewczynski, 2011). Despite these
efforts, the current interactome mapping is 80% incomplete
(Hart et al., 2006; Venkatesan et al., 2009; Mosca et al., 2013;
Menche et al., 2015) and is affected by many experimental and
literature biases. Given the incompleteness of the interactome, it
is possible that the disease modules are also far from complete.
An attempt to overcome this limitation was made using a
network-based closeness approach that compares the weighted
distance between different disease and seed-gene neighborhoods
to random expectation on the network. In the context of
Chronic Obstructive Pulmonary Disease (COPD), 140 potential
candidate genes (Sharma et al., 2018) were identified. Another
shortcoming of disease module detection related to the lack
of context-dependence and tissue-specificity within the PPI
was studied by Kitsak et al. (2016). They found that the
genes expressed in a particular tissue tend to form localized
connected subnetworks, which overlap between similar tissues
and are situated in the different neighborhoods for pathologically
distinct pairs of tissues. The perturbations in tissue-dependent
subnetworks may help us understand disease manifestations
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or pathophenotypes. Integrating multi-omics data, including
epigenomics, proteomics, and metabolomics, with PPI analysis
remains challenging, but is critical for identifying disease or
tissue-specific modules in the interactome.

PARADIGM II: Identifying Important
Genes Using Patterns of Co-abundance
of Biomolecules
Measuring transcript abundance or gene expression patterns
for given phenotypes (case-control) across multiple samples is
one of the main research strategies used to probe the system
as it is connected to the central dogma of molecular biology.
Performing differential gene expression analysis often identifies
important genes affected by the disease. However, it does not
provide information regarding how these genes are influenced
by or influence other genes. It has been observed that genes with
similar expression patterns might be part of complexes, influence
each other, or be part of the same pathways or mechanisms
(Serin et al., 2016). This inspired the construction of GCNs where
the patterns of transcript abundance are studied in the context
of the disease. The central philosophy of this paradigm is to
combine important seed genes with an organic network of co-
expression patterns derived from the gene expression data from
the same system.

There are many ways to compute co-expression or co-
abundance patterns, including using Pearson correlations (Stuart
et al., 2003), Spearman rank correlations (Song et al., 2012;
Liesecke et al., 2018), mutual information (Butte and Kohane,
1999; Margolin et al., 2006; Meyer et al., 2007), Gaussian graphical
models (Toh and Horimoto, 2002), regression-based methods
(Yeung et al., 2002; van Someren et al., 2006; Pirgazi and
Khanteymoori, 2018), Bayesian approaches (Friedman et al.,
2000; Perrin et al., 2003; Li et al., 2007; Xing et al., 2017),
random matrix theory (Luo et al., 2007; Jalan et al., 2010;
Jalan et al., 2012), and partial correlations (Reverter and Chan,
2008). GCNs identify the functionally coordinated participation
of genes in response to an external stimulus or condition. GCNs
can be signed or unsigned, weighted or unweighted, and may
either be constructed using microarray or RNA-Seq data. Care
must be exercised when using thresholding methods to obtain
unweighted co-expression networks as these are subjective and
can change the network structure and topology (Elo et al.,
2007); methods based on the clustering coefficient (Boyadjiev
and Jabs, 2000), random matrix theory (Luo et al., 2007), or
soft thresholding, which raises the weights by a certain power to
penalize weaker edges (Langfelder and Horvath, 2008), have been
used to address this limitation. Along with total gene expression
levels, isoform abundance and alternative splicing can also be
used in constructing GCNs (Saha et al., 2017).

Gene co-expression networks are also used to identify co-
expression modules. Clusters, modules, or subgraphs of genes
that have similar functions are often highly interconnected in
GCNs. These clusters can be identified using network topology-
based methods like community detection (Girvan and Newman,
2002), modularity maximization (Newman, 2004), K-means
clustering (Stuart et al., 2003), or variants of hierarchical

clustering methods (Langfelder and Horvath, 2008; Serin
et al., 2016). The genes in the most significant modules are
then assessed for their biological importance using functional
enrichment methods. The genes in the clusters are also often
tested for their enrichment with differentially expressed genes
from transcriptomic analysis, as illustrated in Figure 2B.
Based on these results, other non-differentially expressed genes
in the enriched clusters can be implicated in the disease
using ‘guilt-by-association’ approaches. The newly implicated
genes may have clinical importance as potential therapeutic
targets and biomarkers.

Despite the aphorism “correlation is not causation”, partial
yet informative insights can be gleaned from co-expression
networks, such as an underlying regulatory framework mediating
the co-expression patterns. New methods based on partial-
correlations, Bayesian, and graphical Gaussian models (Werhli
et al., 2006) take into account local connectivity when estimating
edge strengths and a few methods work by combining prior-
knowledge of expression patterns of TFs with co-expression
information (Huynh-Thu et al., 2010; Rotival and Petretto,
2014). Gene-gene interaction network methods like ARACNe
(Margolin et al., 2006) and CLR (Faith et al., 2007) attempt to
better capture these regulatory associations by accounting for
connections within a shared neighborhood of genes in order to
infer the strength of a link between two genes. Applying these
approaches in complex conditions, like a gene being regulated by
many regulators, becomes more challenging. Inferring the direct
regulatory influence of transcription factors on target genes is
central to interpreting the regulatory networks. Concerted efforts
to support network-inference, such as the DREAM5 benchmark
challenge (Marbach et al., 2012), have summarized different
strategies that can be employed to infer regulatory networks.
The accuracy of reconstruction approaches is often tested
by comparing the predicted networks with high-confidence
transcription factor binding data (He and Tan, 2016). However,
integrating multi-omic data into these models to understand the
pathobiology of disease states is an open challenge. Methods
like CellNet (Cahan et al., 2014), an extension of CLR, and
MOGRIFY (Rackham et al., 2016) take into account differentially
expressed genes within the co-expression network framework
in order to predict cellular reprogramming by transcription
factors. Thus, co-expression methods have also been used
to infer regulatory networks and to delineate the influence
of regulatory genes, such as transcription factors, on their
targets. However, obtaining condition-specific GRNs requires
information regarding transcription factor binding activity in the
given context. We will review some of the methods that utilize TF
binding information in the next section.

To summarize, inferring disease-specific information from
GCN is possible from co-expressed or co-regulated clusters,
differentially expressed and co-expressed genes, as well as the
topological and functional properties of these. Biomedical big
data measuring the transcriptome is highly leveraged by GCNs.
For example, human tissue-specific GCNs have been constructed
and analyzed (Pierson et al., 2015) using consortium data such as
GTEx (Mele et al., 2015). These analyses revealed that genes with
tissue-specific function are not hubs but connect to tissue-specific
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transcription factor hubs. Explorations using relative isoform
ratios (RNA transcripts from the same genes with different
exons removed) and splicing data revealed distinct co-expression
relationships unique to the tissues (Saha et al., 2017). Tissue
specificity of GCNs have also been assessed in rats (Xiao et al.,
2014), humans (Prieto et al., 2008; Xiao et al., 2014; Kogelman
et al., 2016; Ni et al., 2016; Farahbod and Pavlidis, 2018), bats
(Rodenas-Cuadrado et al., 2015), and plants (Aravind, 2000).
Similarly, TCGA data has been analyzed using WGCNA in order
to study the system-level properties of prognostic genes (Yang
et al., 2014). Similar to gene co-expression, protein co-abundance
networks can also be used to pinpoint influential proteins as
potential regulators of the observed phenotype, and have been
used to study inflammation (Halu et al., 2018), HCV infections
(McDermott et al., 2012), and cancer, including breast cancer
(Ryan et al., 2017) and glioblastoma (Kanonidis et al., 2016).

PARADIGM III: Inferring Phenotype
Specific Gene Regulatory Networks
In the previous sections, we studied various ways to construct
networks and integrate molecular data to extract phenotype-
specific biology in the form of gene prioritization, disease
modules, or therapeutic targets. Those included immutable PPIs
allowing disease-specific information to be embedded onto them
and organic ways to model disease-specific information using co-
expression networks. Here, separate networks are built for each
phenotype which may be case-control, disease-specific, tissue
or cell-specific, sex-specific, or for different disease subtypes.
The network comparison model stems from the axiom of
“differential networking” over “differential expression.” Many
examples of differential networking can be found, including
the INtegrated DiffErential Expression and Differential network
analysis (INDEED) (Zuo et al., 2016) and DICER (Amar
et al., 2013) algorithms. In this paradigm, we aim to discuss
ways of leveraging phenotype-specific biomedical information to
construct condition-specific GRNs. In principle, GCNs can also
be phenotype-specific and can be used to infer condition-specific
signals, but they lack the underlying set of canonical interactions
unlike GRNs which include protein-DNA interaction in the form
of TF binding information.

Instead of combining data from cases and controls to obtain
key molecular elements, such as differentially expressed genes or
genes annotated to GWAS SNPs, in this paradigm the data is used
to construct separate networks for each of the conditions. This
construction of phenotype specific networks helps to mitigate
systematic experimental biases and errors in both conditions
(de la Fuente, 2010; Ideker and Krogan, 2012). It allows the
comparison of networks to help uncover the specific rewiring
of pathways, such as those induced by disease, pharmacological
treatment (Bandyopadhyay et al., 2010), or environmental
stimuli. GCNs can also be constructed in a phenotype-specific
manner, as seen in the previous section. In Figure 2C, we depict
an approach where phenotype-specific networks are constructed
to uncover differentially targeted interactions. In this section,
we focus on transcriptional regulatory networks that depend
not only on co-expression, but also on modeling the binding

propensities of TFs. These networks may also incorporate other
multi-omic data to obtain condition-specific regulatory models.

The primary benefit of comparing phenotype-specific
networks, particularly in GRNs, is to better delineate the role
of genes in each condition. The “rewiring” of the TFs targeting
each of the genes can be tracked and the perturbations leading to
these changes can convey information regarding the mechanistic
underpinnings of the observed phenotype. An apt extension
of “differential networking” to the transcriptional regulatory
network framework is “differential targeting,” which captures
the highly dynamic nature of gene regulation. Changes in
network topology, driven by underlying condition-specific
data, can yield valuable insights and help to identify driver
nodes and network biomarkers, such as a set of strengthened
or weakened interactions between TF and target genes in the
context of disease.

We review the Passing Attributes between Networks for Data
Assimilation (PANDA) algorithm (Glass et al., 2013) as an
exemplary method for constructing condition-specific regulatory
networks, allowing for robust differential targeting analysis.
PANDA is initiated by constructing a prior regulatory network
consisting of potential routes for communication by mapping
transcription factor motifs to a reference genome and assigning
them to genes if they are in the regulatory region of the
genes. PANDA then integrates other sources of information
to iteratively optimize the flow of information through the
network, modifying the prior to obtain a condition-specific
regulatory network. The phenotype-specific regulatory networks
are then compared to identify the structures most affected by this
“rewiring” and their biological significance. PANDA models the
interactions between transcription factors based on the following
principles. Firstly, if two transcription factors have a similar
targeting profile, i.e., target similar genes or have binding motifs
in the promoters of the same genes, they are more likely to
physically interact or be members of the same TF complex
(Hemberg and Kreiman, 2011; Guo et al., 2016). Cooperative
binding of TFs is found to be evolutionarily constrained and
conserved (Goke et al., 2011; He et al., 2011), and impacts crucial
eukaryotic functions (Hochedlinger and Plath, 2009; Wilson
et al., 2010; He et al., 2011; Will and Helms, 2014). Likewise, if two
genes are targeted by the same set of TFs, these genes are likely
to share similar expression patterns (Yu et al., 2003; Kim et al.,
2006; Marco et al., 2009), or be part of the same functional module
(Goh et al., 2007; Feldman et al., 2008). For this purpose, PANDA
incorporates PPI networks to determine the “responsibility” of
TFs co-binding based on shared targets. It also uses GCNs
to determine the “availability” of genes to be simultaneously
co-regulated, as evidenced by common co-expression. A vital
component in PANDA is a “prior” network composed of all
potential regulatory routes based on the existence of binding
sites for TFs in the regulatory regions of genes. All three
ingredients (PPI, GCN, and a network prior) are then assimilated
to uncover consistent patterns among these networks using a
message-passing framework similar to affinity-propagation (Frey
and Dueck, 2007). The outcome is a network elucidating the
edges that form self-consistent modules, identifying relevant
biological processes.
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The phenotype-specific applications of PANDA are broad
and include the comparison of disease and control networks
in both complex diseases and cancers. For example, PANDA
has been used to identify potential drug targets in ovarian
cancer subtypes (Glass et al., 2015). Comparing PANDA networks
between poor and good responders to asthma therapies identified
potential transcriptional mediators of corticosteroid response
in asthma (Qiu et al., 2018). The role of serotonin (5HT)
dysregulation in mitral valve disease was explored using PANDA
to find upregulation in 5HTR2B expression and an increase
5HT receptor signaling (Driesbaugh et al., 2018). The effect of
weight-loss on decreased risk of colorectal cancer was evaluated
by applying PANDA to gene expression data on rectal mucosa
biopsies (Vargas et al., 2016). In cancer research, PANDA
network analysis in triple-negative breast cancer (TNBC)
identified new core modules of functionally essential TFs and
genes in cancer cells (Min et al., 2017). PANDA has also
been used to investigate non-epithelial cancers like glioma to
identify prognostic biomarkers mainly concerning mesenchymal
signatures (Celiku et al., 2017). Sexual dimorphism, where
the phenotypes are males and females, is another area where
PANDA has been applied extensively, from sex-related targeting
differences in COPD (Glass et al., 2014), colorectal cancer
(Lopes-Ramos et al., 2018), and understanding crucial sex-related
differences in various tissues in the human body (Chen et al.,
2016). Differences between cell-lines and their host tissues have
also been investigated using PANDA (Lopes-Ramos et al., 2017).

The issue of tissue-specificity can also be addressed by the
paradigm of condition-specific networks, where the phenotype
is the tissue or cell type. Various methods use gene expression
data with regression trees (Huynh-Thu et al., 2010) or consider
the context of pathways (Jambusaria et al., 2018). Enhancer and
promoter data (Marbach et al., 2016) have been used to construct
tissue-specific networks in humans and plants (Huang J. et al.,
2018). Using GTEx transcriptome data, PANDA has been used
to construct GRNs for 38 distinct human tissues (Sonawane
et al., 2017). This analysis assessed the inter-relationship between
tissue-specific genes and TFs based on expression data and
tissue-specific interactions and the topological positions of
functionally important genes in respective tissues. This study
also used network centrality measures like betweenness and
degree to assess the topological properties of the nodes to
identify rewiring around these genes in various tissues. Another
significant contribution of this work is the elucidation of the
tissue-specific regulatory roles of transcription factors, which
were found to be independent of their expression levels.
Instead, transcription factors appeared to mediate critical tissue-
specific processes through subtle shifts in the GRNs, providing
functional redundancy and, as a consequence, phenotypic
stability of tissues.

CONCLUSION AND
FUTURE DIRECTIONS

Above we reviewed a limited set of network medicine
philosophies that seek to integrate biomedical big data to uncover

meaningful biology. Network medicine approaches provide
customized and optimized ways to leverage biomedical data. The
choice of the appropriate network method is largely dictated
by the underlying biological inquiry, hypotheses, study design,
and available data. Although this review is not meant to be
exhaustive, our intent was to give a essence of how biomedical
data requires a nuanced approach when selecting network
analyses and provide a resource for both network scientists and
biologists to better understand the lexicon of network modeling
of biomedical data.

We believe that network medicine approaches will be
vital in the future with the increasing emergence of diverse
technologies, multi-omic data types, deeper levels of inquiry
from tissues to cellular levels, platforms that include large
amounts of publicly available biomedical data, and efforts
in precision medicine, which aim to find the right drugs
for the right patients at the right time. There is a growing
realization that genomics is only a part of the story when
it comes to cancer and other complex diseases. The field is
working to augment genetic information (mutations, deletions,
and other somatic genetic alterations) with other omics data,
such as epigenomics (methylation, non-coding RNAs, histone
modifications, chromatin structures), proteomics (in vitro studies
on proteins), and lipidomics (survey of cellular lipids), to name a
few. The network medicine framework presents a promising way
of thinking about and integrating these heterogeneous data types
by elucidating their mutual influences to help explain disease
etiologies and cellular functions and providing the basis for
personalized therapeutics.

Multi-omics data integration using networks has already
started gaining a wide amount of attention in the scientific
community (Gligorijevic and Przulj, 2015; Tuncbag et al.,
2016; Yugi et al., 2016; Hasin et al., 2017; Huang et al.,
2017; Malod-Dognin et al., 2019). Moreover, relatively
newer network tools like multiplex networks (Didier et al.,
2018), network fusion (Wang et al., 2014), more innovative
community detection strategies (Gligorijevic et al., 2016),
and higher order structural modularity (Didier et al., 2018),
have the potential to be applied to these problems to gain an
even deeper and more nuance understanding of biological
systems. Multilayer network approaches (De Domenico
et al., 2015) for human diseases have unraveled important
associations between rare and complex diseases (Halu et al.,
2017). Despite several open challenges (Stegle et al., 2015;
Ziegenhain et al., 2017), new technologies like single-cell
transcriptomics (Hon et al., 2018), have started to be used
to construct GRNs (Herbach et al., 2017; Fiers et al., 2018)
and cell-specific coactivation networks (Ghazanfar et al.,
2016). As the field of network medicine moves forward,
one thing that is required more than ever before is the
development of methods for systematically validating network
predictions. Such validation will provide a greater confidence
in network predictions and facilitate their incorporation into
translational medicine. We also think active trans-disciplinary
collaboration between biologists and scientists from the field
of complex networks is required to infuse the field of network
medicine with novel algorithms and innovative strategies.
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The application of network methods to biomedical data presents
a great opportunity to test and improve upon the tools
originating from the general field of complex networks. We
also take this opportunity to thank the many experimental
biologists whose operose efforts have led to the generation of
the vast amount of invaluable biomedical data, and to the
numerous individuals who have donated their data for the
sake of science.
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Network propagation is a central tool in biological research. While a number of variants
and normalizations have been proposed for this method, each has its own shortcomings
and no large scale assessment of those variants is available. Here we propose a
novel normalization method for network propagation that is based on evaluating the
propagation results against those obtained on randomized networks that preserve node
degrees. In this way, our method overcomes potential biases of previous methods. We
evaluate its performance on multiple large scale datasets and find that it compares
favorably to previous approaches in diverse gene prioritization tasks. We further
demonstrate its utility on a focused dataset of telomere length maintenance in yeast.
The normalization method is available at http://anat.cs.tau.ac.il/WebPropagate.

Keywords: network diffusion, protein–protein interaction network, gene prioritization, p-value computation,
degree-preserving randomization, telomere length maintenance

INTRODUCTION

Network propagation is a method of choice for diverse analyses such as protein function prediction,
gene prioritization and identification of disease modules (Cowen et al., 2017). There are at least 17
available software tools that employ different variants of network propagation for these purposes
(Cowen et al., 2017; Biran et al., 2018).

However, the basic propagation technique has some known limitations: First, raw propagation
scores do not carry any statistical significance information and can only be used to rank proteins.
Second, they are greatly affected by the degrees of initial proteins implicated in the process under
study (termed seed set below) and the degree of any candidate protein being scored. This biases the
results toward high degree, well studied proteins.

To deal with the second challenge, Erten et al. (2011) suggested the DADA normalization
approach. This method normalizes the raw propagation scores with the eigenvector centrality
measure for each protein, and then produces ranks based on either these normalizations or the
raw propagation scores, depending on the seed set average weighted degree.
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Mazza et al. (2016) tackled the first challenge by evaluating
propagation scores against those obtained from propagating
random seed sets. Nevertheless, none of the methods solves both
problems, calling for a more complete solution.

In this work we present a novel normalization technique that
tackles both challenges. We developed a new technique, in which
the raw propagation scores are normalized through propagation
scores obtained in random degree-preserving networks (RDPN).
In cross validation tests, our method outperforms previous
normalizations in gene prioritization tasks on diverse disease-
related and function-related data sets in both human and
yeast. Furthermore, it eliminates the degree biases of previous
approaches and allows the assessment of statistical significance of
the results by providing p-values that are corrected for multiple
testing of candidate proteins.

RESULTS

Network Propagation
Network propagation is a process in which a preselected set of
seed proteins that underlie some phenotype of interest are viewed
as “heat sources” in a PPI network. The heat is diffused to the
rest of the proteins in the network in an iterative process until
a steady-state is attained. Proteins that are relatively close to the
seed set get higher propagation scores than distant proteins and
are therefore considered to be associated with the phenotype
in question. Network propagation is widely used for protein
prioritization and related tasks (Cowen et al., 2017).

Formally, given a binary vector P0 denoting seed proteins,
a normalized network adjacency matrix W (see below) and a
smoothing parameter α controlling the relative importance of
the network vs. the seed information, it can be shown that the
propagation process converges to a score vector.

P = (1− a) (I − αW)−1 P0

Henceforth, we follow (Vanunu et al., 2010) and set α = 0.8 (unless
stated otherwise), to allow a fairly high network influence over the
prior (seed) knowledge.

There are two main ways by which the adjacency matrix
A (which could be weighted or unweighted) is normalized to
ensure the convergence of the process: (i) a symmetric variant
in, which W = D−1/2AD−1/2 and (ii) a degree-based variant, in
which W = AD−1. Here D denotes the diagonal weighted degree
matrix.

Previously Suggested Normalization
Solutions
The raw scores from the propagation process do not carry a
statistical meaning, and highly depend on the size of the seed
set and the degrees of the proteins involved. It is thus desirable
to normalize them. In the following we describe three previous
normalization methods and a new hybrid of two of the methods;
full details can be found in the Methods.

Erten et al. (2011) suggested the DADA method that builds on
normalizing each propagation score by the eigenvector centrality

measure of the same protein, which can be calculated by
propagating with α = 1 from the same seed set (Brin and Page,
1998; Bryan and Leise, 2006; Erten et al., 2011). Here we analyze
both this simple EC method and the full DADA method which
uses ranks (rather than the scores themselves) of the regular
propagation scores in case the average weighted degree of the seed
set exceeds the network average weighted degree, or the logarithm
of the EC score otherwise.

Mazza et al. (2016) suggested normalizing propagation scores
by comparing them to propagations from random seed sets (RSS).
This method produces p-values and is implemented as a web tool
at http://anat.cs.tau.ac.il/WebPropagate/ (Biran et al., 2018).

We also examine here a hybrid of RSS and DADA, which we
call RSS_SD. This variant produces p-values in the same manner
RSS does, but the random seed sets are chosen to be degree-
distributed like the original seed set using the method of Erten
et al. (2011).

Normalization With Random
Degree-Preserving Networks (RDPN)
The only previous normalization method we are aware of that
assigns statistical significance to the propagation scores is based
on propagating random seed sets. Such computations do not
take into account the degrees of the seed nodes. To overcome
this shortcoming, we propose a novel method that is based on
randomizations of the input network rather than the seed sets.
Specifically, the propagation score of a protein is compared to the
scores the protein attains on random degree-preserving networks
under the same seed set. Our normalization method with random
degree-preserving networks, RDPN, is schematically depicted in
Figure 1.

In order to execute this method, one first has to compute
n random degree-preserving networks (we use n = 100 unless
otherwise stated). We implemented the “switching” method, in
which in each iteration two edges (u, v) and (s, t) are picked
randomly, and if u6=v 6=s6=t and the edges (u, t), (s, v) do not
already exist, then they are “switched,” namely the edges (u, v) and
(s, t) are removed and the edges (u, t) and (s, v) are added. For the
construction of one random network, we executed 100∗|E| such
iterations, where |E| denotes the number of edges in the network,
per the recommendation in Milo et al. (2003).

One issue that immediately emerges is the question of
connectivity. Network propagation relies on the fact that all
relevant proteins are part of one connected component, otherwise
the information will not diffuse in a desired way. For example,
suppose that during the randomization process two proteins got
disconnected from the main component, creating a very small
connected component of their own. If one of them is a seed
protein, then the propagation score of the other one will be
unreasonably high. However, if none of them is a seed protein,
then their propagation scores will be 0. We addressed this issue
by considering for each protein only the instances in which it was
part of the main connected component in the network.

In detail, p-values are computed as follows: Each protein v
gets a “real” propagation score Xv

real by propagating from the
seed set on the original network; it also gets n random scores Xv

i
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FIGURE 1 | Schematic pipeline of the RDPN method.

(0 ≤ i ≤ n−1) by propagating from the same seed set on the n
random networks. Then its p-value is computed as the fraction of
random instances in which its score exceeded its real propagation
score, i.e.:

pv =

|{i|(Xv
i ≥ Xv

real and v is part of the main connected
component in the i’th network)}| + 1

|{i|(v is part of the main connected component in
the i’th network)}| + 1

To overcome the infrequent case in which a protein has a
high tendency to get disconnected and, therefore, its p-value is
determined based on an insufficient number of instances, we
determined that a protein with less than n/2 relevant instances
(instances in which it was part of the main connected component)
will be assigned a p-value of one. Empirically, in our pre-
computed random networks there was no such protein and
therefore this condition was never used.

Performance Evaluation
We compared the basic propagation computation with the
three previously suggested normalization techniques (EC,
DADA, and RSS), RSS_SD and our own Random Degree-
Preserving Networks (RDPN) normalization with respect to their

performance in multiple disease-related and function-related
prioritization tasks as described below.

Overall Performance
We evaluated the performance of the six methods and two matrix
normalization variants on four large-scale data sets in a fivefold
cross validation setting. Each data set contained multiple groups
of function-related or disease-related genes with respect to which
the prioritization of each normalization method was evaluated.
Each method’s performance was summarized by the area under
the ROC curve (AUROC) measure, when using similar-degree
negative samples (Methods).

The evaluation results are given in Table 1. Regarding the
two variants of adjacency matrix normalization, we found that
in 12 out of 24 method-data set pairs (and also on average) the
symmetric variant performs better (in 10 of them the degree-
based variant performed better, and 2 were ties). Therefore, we
focused on this variant in all subsequent evaluations. On average,
the three top performing normalization methods were RDPN,
RSS_SD, and EC, attaining similar AUROCs across the four data
sets.

However, when examining the performance on the individual
groups within the data sets, we found that the RDPN method
greatly outperformed all others with the highest number of
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TABLE 1 | Average AUROC of the six methods across four data sets, using two variants of adjacency matrix normalization.

Dataset Symmetric adjacency matrix normalization Degree-based adjacency matrix normalization

Propagation EC DADA RSS RSS_SD RDPN Propagation EC DADA RSS RSS_SD RDPN

Menche-OMIM 0.695 0.74 0.707 0.729 0.745 0.746 0.663 0.742 0.685 0.738 0.742 0.742

GO_MF 0.76 0.83 0.783 0.805 0.827 0.832 0.715 0.83 0.749 0.826 0.832 0.831

GO_CC 0.763 0.833 0.782 0.812 0.829 0.833 0.721 0.833 0.75 0.83 0.833 0.831

GO_BP 0.74 0.798 0.757 0.774 0.797 0.801 0.707 0.802 0.734 0.798 0.8 0.803

For each dataset, the best performing method in each variant is shown in bold.

groups for which it gave the best results across all data sets
(Figure 2).

Degree Bias of the Different Methods
A good normalization method should account for the degrees of
the candidate proteins, as these influence propagation scores. To
test this, we focused on the Menche-OMIM set. Expectedly, the
raw propagation scores are highly correlated with the weighted
degree of the candidate protein (0.901 Spearman correlation).
A similar anti-correlation level (−0.749) was observed for
DADA’s ranks. In contrast, EC scores were only weakly correlated
with the candidate protein weighted degree (average Spearman
coefficient of 0.238), and the p-values computed by RSS,
RSS_SD, and RDPN were relatively unbiased (average Spearman
coefficients of 0.019, 0.035, and 0.078, respectively). These results
are depicted in Figure 3.

P-Value Biases
While the regular propagation, EC and DADA produce scores
or ranks, which are only expected to be meaningful for ranking
proteins within the same run, RSS, RSS_SD, and RDPN produce
p-values, which can be thresholded within and across runs
to yield statistically significant hits. In order to evaluate the
robustness of the assigned p-values, we tested their dependence

on the average weighted degree of the seed set, focusing on the
Menche-OMIM set. We found that both RDPN’s and RSS_SD’s
percents of significant hits (p-value < 0.05) are only mildly
affected by the seed set average weighted degree (Spearman
correlation coefficients of−0.511 and 0.427, respectively) and are
robust across runs (stds of 1.23 and 1.34%, respectively), while
RSS’s percent of significant hits is both strongly correlated with
the seed set average weighted degree (Spearman 0.945) and much
more sensitive to the input seed set (std 12.46%) (Figure 4).

A Telomere-Length Maintenance Case
Study
In order to study the biological implications of the different
normalization methods, we used a telomere length maintenance
(TLM) data set from yeast. Specifically, we used a seed set of
known TLM genes from Askree et al. (2004) (see Methods and
Supplementary Table S1). We compiled lists of top-ranking
proteins by looking at the top 30 proteins for each of the
methods (for RSS, RSS_SD, and RDPN we used n = 5000
to increase the resolution of p-values produced). We then
manually evaluated the relevance of these predicted proteins to
telomere length maintenance based on the literature (Table 2).
We found that the basic propagation produced 4 TLM-related
proteins (out of 30), EC produced 5, DADA produced 11,

FIGURE 2 | “Best method” counts, based on the AUROC measure, of the six methods across four data sets: Menche-OMIM (173 diseases), GO-MF (358 terms),
GO-CC (306 terms), and GO-BP (1237 terms).
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FIGURE 3 | Average rank vs. weighted degree of candidate proteins. Depicted here are ranks based on seed sets from five arbitrary diseases in the Menche-OMIM
set (Menche et al., 2015); bins contain approximately equal numbers of proteins. Ranks are derived from the methods’ scores the better the score the lower the rank.

FIGURE 4 | Percent of proteins with p-values below 0.05 vs. seed set average weighted degree, using 173 seed sets from the Menche-OMIM data set (Menche
et al., 2015).

RSS produced 10, RSS_SD produced 12 and RDPN produced
25. This high specificity (25/30) highlights again the advantage
of the newly suggested normalization over previous ones.
The newly identified proteins participate in telomere length
maintenance as part of large complexes or pathways, such as
the VPS pathway, the THO, Mediator and RPD3 complex.
The RDPN procedure correctly identified known proteins of
these complex previously not characterized. Moreover, out of

the 5 proteins not known to be involved in telomere length
maintenance, two of them (RNH202 and RNH203) encode
subunits of the Rnase H, a nuclease with important roles in
genome maintenance, mutated in the human Aicardi-Goutieres
syndrome (Crow et al., 2006). Its roles in R-loop repair have
suggested possible involvement in telomere biology, although
no clear telomere length defect has been detected (Lafuente-
Barquero et al., 2017).
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TABLE 2 | Top 30 proteins obtained by the different methods in the telomere-length maintenance case study.

Propagation EC DADA RSS RSS_SD RDPN

1 VPS2015 LIP2 VPS2015 TFG2 SAE28,13 VPS241,10

2 SSB1 RNH203 SRN21,10 SCW10 GBP27,14 SDS35

3 SSA1 RPI1 SSA1 RPB3 TEX16 SRN21,10

4 RPN11 RNH202 SSB1 SUB2 HRB14 MGM1

5 HHT1 PMT5 RNH203 DOA412 THO26 THO26

6 SRN21,10 SRN21,10 RPN11 CPR7 VPS2015 RSC816

7 CRM1 RFU1 RNH202 RPO21 CPR7 VPS2115

8 HHT2 FLO11 HHT1 GBP27,14 PAF1 VPS2015

9 HHF1 SPL2 CRM1 RSC816 SUB2 GAL1112

10 HSP82 MVB12 MGM1 DLT1 RAP13 RPO21

11 CDC28 VPS2015 HHT2 UBP16 SRN21,10 VPS411,10

12 RNH203 MGM1 HHF1 SUP35 BUD17 MED22

13 RSP5 FMS1 HSP82 VPS241,10 OLA1 GBP27,14

14 RNH202 NTG2 RSP5 RAP13 RIM8 VPS331,10

15 SSB2 SAY1 VPS241,10 HRB14 MTG2 SRB62

16 RPO21 SCW10 RPO21 TEX16 RSC816 MED72

17 HHF2 YKR051W PEP5 HTB1 RPI1 PEP5

18 DSN1 BSC1 VPS161,10 GAL1112 SUP35 VPS81,10

19 MGM1 YBR063C CDC28 HTA2 RSC3 RXT25

20 CMR1 VPS241,10 SSB2 SCP160 VPS81,10 RNH203

21 VPS241,10 PUT3 THO26 YPK9 DOA412 MED82

22 RVB1 MLH3 HHF2 HHT2 MVB12 VPS41,10

23 RVB2 IBA57 DSN1 NTG2 PEP5 RGR116

24 TOM1 CIA2 VPS331,10 STH1 ALG3 VPS161,10

25 RPC82 MHF1 VPS411,10 HHF1 REB1 DOA412

26 SSC1 ERD2 CMR1 MRX1 SIR29,11 RNH202

27 PEP5 BUD17 SRB42 RGR116 RSC9 CTI65

28 SRB42 CTF812 GAL1112 YPR202W TFG2 HRB14

29 HTA2 RIM8 RGR116 SIR412 YJL070C RAP13

30 MMS22 VPS381,10 MED82 SRB4 SCW10 TEX16

Proteins in green are related to the TLM mechanism by the following explanations or references: 1TLM, belongs to the VPS pathway; 2part of the mediator complex (with
SRB2, SRB3, SRB8, SSN2, SSN3, SSN8, GAL11, MED1, NUT1, PGD1, RGR1, and all TLMs); 3this is the main telomere-length determining protein; 4paralog of GBP2,
the telomere-binding protein; 5part of RPD3 complex, as DEP1, SAP30, and SIN3 (TLMs); 6part of the THO/TREX complex (with THP2, HPR1, MFT1 and SOH1, and
all TLMs); 7telomere binding protein; 8regulator of the MRX complex that processes telomeres; 9affects telomere chromatin, although not telomere length; 10Dieckmann
et al. (2016); 11Ellahi et al. (2015); 12Gatbonton et al. (2006); 13Hardy et al. (2014); 14Konkel et al. (1995); 15Shachar et al. (2008); 16Ungar et al. (2009).

CONCLUSION

In summary, we have devised a new method (RDPN)
for normalizing propagation results that accounts for the
degrees of the involved proteins and produces robust p-value
estimations. The method was shown to outperform previous
ones across diverse disease-related and function-related data sets.
Importantly, we have shown that the p-values it assigns do not
depend on the degree of the protein being scored, hence this
method is less prone to literature biases and more likely to
discover new associations. Moreover, we have shown that its
assigned p-values are robust to the average degree of the seed
set, allowing significance assessment across different data sets.
Finally, in testing the biological implications of the method’s
predictions, we found that it greatly outperforms previous
normalizations and leads to new biological insights.

Considering all evaluated parameters, it seems that three of
the tested methods outshine the others: RDPN, which generates

robust p-values and displays the best performance, RSS_SD
which also generates robust p-values but doesn’t perform as well,
and EC which is easy to implement and has good performance
although its nominal scores are harder to interpret.

We note that there are many variants in the literature of
the basic network propagation methodology, such as random
walk with restart and diffusion kernel (Cowen et al., 2017). Our
normalization method is readily applicable to all these variants
and can be used to eliminate potential degree biases and assign
statistical significance values.

METHODS

Normalization Methods
Normalization With Random Seed Sets (RSS)
This method uses propagation scores from n random seed sets
(we use n = 100 unless stated otherwise) to normalize the real
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propagation scores, as suggested by Mazza et al. (2016). In detail,
each protein v has a “real” propagation score Xv

real the score it got
by propagating from the real seed set; and n random scores Xv

i
(0 ≤ i ≤ n−1) derived by propagating from n random seed sets
(each with the same number of proteins as the real seed set). For
every protein v only the instances in which it was not part of the
random seed set are considered, and its p-value is the fraction of
random instances in which its score exceeded its real propagation
score, i.e.:

pv =

|{i|(Xv
i ≥ Xv

real and v was not part of the
i’th random seed set)}| + 1

|{i|(v was not part of the i’th random seed set)}| + 1

Normalization With Eigenvector Centrality (EC)
The EC scores are computed as follows:

pv =
Xv

α=0.8
Xv

α=1

where Xv
α=0.8 is the propagation score of protein v when

propagating from the seed set with α = 0.8, and Xv
α=1 is its

propagation score when propagating from the same seed set with
α = 1 (i.e., disregarding the seed set in the computation).

DADA
The DADA ranks, as described in Erten et al. (2011), are
computed as follows: first EC scores are computed as:

ECv
= log

(
Xv

α=0.7
Xv

α=1

)
for all the proteins in the network whereXv

α=0.7 is the propagation
score of protein v when propagating from the seed set with
α = 0.7, and Xv

α=1 is its propagation score when propagating from
the same seed set with α = 1. Then each protein gets a rank RiEC
which is its position in a descending order of EC scores, and also
a rank Rvprop which is its position in a descending order of the
regular propagation scoresXv

α=0.7. Finally, if the average weighted
degree of the seed set exceeds the network average weighted
degree, all proteins final ranks are set to Rvprop. Otherwise, they
are set to RvEC.

Normalization With Random Similar Degree
Distributed Seed Sets (RSS_SD)
Following Erten et al. (2011), we first construct seed sets S(i)
(0≤ i≤ n−1, we use n = 100) that have a degree distribution that
is similar to the original seed set S by applying this procedure:
We assign each v∈V to a bucket B(u) such that u∈S and
|W(v)−W(u)| is minimized (ties are broken randomly).

In case there are two or more seed proteins with an equal
weighted degree, there is a possibility that one of their buckets will
remain empty. If that happens, we reassign all network proteins
(we repeat this step if necessary).

We generate S(i) by choosing a protein from each bucket
uniformly at random.

We then propagate from these seed sets, as well as from the
original seed set, and proceed to compute p-values as in the RSS
method.

Data Sets
Menche-OMIM Data Set
Menche et al. (2015) compiled a list of 299 diseases defined by the
Medical Subject Headings (MeSH) that have at least 20 associated
genes from either the Online Mendelian Inheritance in Man
(OMIM) data set or the genome-wide association study (GWAS)
data set (or both). We empirically found that all methods perform
better when using only the genes from OMIM, so only the 173
diseases out of that list that have at least 20 and up to 1000
associated genes from OMIM in the HIPPIE network were used
for evaluation.

GO Data Set
We used geneSCF (Subhash and Kanduri, 2016) to get a list
of all GO terms (Ashburner et al., 2000; The Gene Ontology
Consortium, 2017) (in all three sub-ontologies) with their
corresponding genes. We focused the evaluation on terms that
included between 20 and 1000 genes (1237 GO Biological Process
(BP) terms, 306 GO Cellular Component (CC) terms and 358 GO
Molecular Function (MF) terms).

TLM Data Set
A genome wide-screen study by Askree et al. (2004) found 173
S. cerevisiae genes that affect telomere length. We used 163 of
them that are found in the ANAT S. cerevisiae network as the seed
set (Supplementary Table S1).

PPI Networks
For the performance evaluation section we used the HIPPIE
network which has 17335 proteins and 330028 (non self-loops)
interactions in its main connected component (Alanis-Lobato
et al., 2017) (version 18-Jul-2017).

For the TLM case study we used the ANAT Saccharomyces
cerevisiae network which has 5527 proteins and 75678 (non self-
loops) interactions in its main connected component (Almozlino
et al., 2017).

Area Under ROC Curve (AUROC)
Measure
For each group of disease-related or function-related genes,
we randomly split it to five equally sized parts. In each
cross-validation iteration we hid one of the parts, used
the other four as a seed set, and tested the success of
the method in predicting the hidden proteins (serving as
positive samples) using the AUROC measure. We then
averaged the performance across the five iterations. To
compute the AUROC scores, we picked negative samples
with similar weighted degrees as the positive samples. This
was implemented as follows: for each positive protein with a
weighted degree w, we chose the smallest integer r such that
there are at least 100 proteins in the network (excluding the
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seed set, the positive samples and the already chosen negative
samples) with weighted degree in the range [w−r, w+r]. We
then randomly picked a protein from this group to be used as
a negative sample.
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Current technology is producing high throughput biomedical data at an ever-growing
rate. A common approach to interpreting such data is through network-based analyses.
Since biological networks are notoriously complex and hard to decipher, a growing
body of work applies graph embedding techniques to simplify, visualize, and facilitate
the analysis of the resulting networks. In this review, we survey traditional and new
approaches for graph embedding and compare their application to fundamental
problems in network biology with using the networks directly. We consider a broad
variety of applications including protein network alignment, community detection, and
protein function prediction. We find that in all of these domains both types of approaches
are of value and their performance depends on the evaluation measures being used
and the goal of the project. In particular, network embedding methods outshine direct
methods according to some of those measures and are, thus, an essential tool in
bioinformatics research.

Keywords: network biology, network embedding, network alignment, community detection, protein function
prediction

INTRODUCTION

Network biology is a powerful paradigm for representing, interpreting and visualizing biological
data (Barabási and Oltvai, 2004). One of the standard approaches to computing on networks is
to transform such data into vectorial data, aka network embedding, to facilitate similarity search,
clustering and visualization (Hamilton et al., 2017b; Cai et al., 2018).

In a network embedding problem, one is given a network and an induced similarity (or distance)
function between its nodes; the goal is to find a low dimensional representation of the network
nodes in some metric space so that the given similarity (or distance) function is preserved as much
as possible. For example, if the input network is unweighted and the distance between nodes is
defined to be the graph geodesic distance, then a possible goal could be to find an embedding into
Euclidean space that minimizes the sum of squared differences between graph distances and the
corresponding Euclidean distances (Tenenbaum, 2000).

The classical approach to network embedding employs matrix factorization and is based on the
fact that if the desired similarity matrix is positive semi-definite then it can be decomposed into the
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product of a real matrix and its transpose. Thus, if one
represents each node by a row of that matrix then the
given similarity is completely captured by the dot-product
between the corresponding vector representations. Similarly, if
one is given distances between nodes that satisfy the triangle
inequality then double centering the distance matrix gives
a positive semi-definite matrix whose decomposition yields
vector representations that respect the given distances. This
approach is precisely the multidimensional scaling procedure
(Cox and Cox, 2000).

Embedding approaches have several potential advantages.
Algorithms making use of embeddings are frequently faster
than their counterparts which operate on the original networks.
Additionally, the learned embeddings are often applicable for
downstream analysis, either by direct interpretation of the
embedding space or through the application of machine learning
techniques which are designed for vectorial data. Beyond its
computational advantages, network embedding is natural to use
in biological problems that concern physical entities (such as
proteins) that function in 3D space. In such scenarios, Euclidean
representations may capture many of the functional properties of
those entities. Finally, by working in lower dimensional space, the
results are more likely to be robust to the noise inherently present
in the networks. Indeed, recent network denoising approaches
employed embedding for this purpose (Wang et al., 2018).

In this review, we describe several current approaches for
graph embedding including spectral-based, diffusion-based and
deep-learning-based methods. We provide comparisons applying
representative embedding approaches to fundamental problems
in network biology with using the networks directly in three
distinct tasks: protein network alignment, protein module
detection, and protein function prediction (Figure 1). We further
review network embedding methods and their application to
network denoising and pharmacogenomics. We conclude that
network embedding methods are an essential component in the
bioinformatics tool box.

METHODOLOGY

Methods for network embedding aim to optimize the difference
between the node similarities/distances in the original network
space and their similarities/distances under the embedding,
which is typically constrained to have a low dimension. In the
following, we describe various methods for embedding a given
network in Euclidean space. For a graph G with n nodes, a
weighted adjacency matrix W and a diagonal degree matrix D,
we define its Laplacian matrix as L = D-W.

Graph drawing algorithms are perhaps the best-known
embedding techniques, commonly used to visualize a graph in
2D space. Initially proposed in (Eades, 1984) as an extension
of (Tutte, 1963), and further developed in (Fruchterman and
Reingold, 1991), the spring-embedder model is a particularly
elegant example: one can imagine that connected pairs of nodes
are attached to springs which bring them closer together, while
all nodes repel each other so as not to be placed too closely
together. Other classes of graph drawing algorithms, including

multi-level and dimensionality reduction-based techniques, are
described in detail in a recent review (Gibson et al., 2013). Spatial
analysis of functional enrichment (Baryshnikova, 2018) is one
recent application of force-directed graph drawing algorithm,
designed for the annotation and visualization of large, complex
biological networks.

One of the fundamental methods to decompose a matrix is
spectral decomposition, i.e., decomposing the matrix into its
eigenvectors and eigenvalues. Given a network, the principal
eigenvectors Q of its Laplacian matrix capture membership
of nodes in implicit network clusters, commonly used for
embedding (Belkin and Niyogi, 2003). The matrix Q is obtained
by optimizing minQ∈Rn×C Trace

(
QTL+Q

)
, s.t. QTQ = I, where

L+ = I-D−1/2WD−1/2 is a normalized Laplacian and C is the
number of clusters. However, this spectral embedding reflects the
global structure in the network without taking into consideration
more fine-grained local structures and is therefore sensitive to
noise. Wang et al. (2017a) recently introduced the Vicus matrix as
a local-neighborhood version of the Laplacian matrix. Each cell of
the Vicus matrix represents the probability of node j having the
same label as node i if we did a random walk around the local
neighborhood of node i. Encoding local neighborhoods in this
fashion does not only preserve the geometric properties of the
original Laplacian matrix but also reduces the noise and improves
the quality of the embedding. Wang et al. showed that for a
variety of tasks, including network clustering of single-cell RNA-
seq data, cluster stability, identification of rare cell populations,
and ranking of genes associated with cancer subtypes, Vicus-
based spectral methods outperformed Laplacian-based spectral
methods on a wide variety of biological tasks.

Diffusion-based approaches focus on embedding nodes into
low-dimensional vector spaces by first using random walks
to construct a network neighborhood of every node in the
network, and then optimizing an objective function with network
neighborhoods as input (Perozzi et al., 2014a; Tang et al.,
2015; Grover and Leskovec, 2016). The objective function
is carefully designed to preserve both the local and global
network structures. For example, a popular method, Mashup,
complements traditional random walks, which yield only
diffusion states, with a dimensionality reduction step that is
aimed at reducing the noise in these diffusion computations.
To this end, Mashup approximates each diffusion state si
with a multinomial logistic model based on a latent vector
representation of nodes that uses far fewer dimensions than the
original, n-dimensional state. Specifically, if the latent vector
representation for node i is denoted by xi, Mashup also constructs
a contextual vector wi that has the same dimensionality as xi
and captures the topology of the subnetwork around node i. To
this end, Mashup computes the probability assigned to node j

in the diffusion state of node i as ŝij =
exp
(
xT

i wj
)∑

k exp
(
xT

i wk
) , so that these

computed diffusion states align with the original diffusion states.
Mashup constructs an optimization framework to minimize the
KL-divergence of these two diffusion states and applies standard
gradient descent methods to solve for the latent representations.

Another widely used network embedding algorithm that
uses random walks is node2vec (Grover and Leskovec, 2016).
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FIGURE 1 | Schematic representing three applications applied to networks directly as well as applied to the network embeddings. Colors represent some node
features in the network; for example, protein families. (A,B) Visualization of the embedding process for two networks in 2D space. (C) Visualization of community
detection in embedded space (top) and directly on the network (bottom). (D) Top: visualization of network alignment in embedded space. In this example, the
network embedding in panel (B) is rotated, translated and reflected to find an optimal alignment with the embedding in panel (A). Bottom: visualization of direct
alignment of two networks: vertical proximity represents the found alignment. (E) Visualization of function prediction in embedded space. The previously unlabeled
(white) nodes (bottom) or their embeddings (top) are labeled (colored).

Node2vec learns node embeddings so that a node’s embedding
can predict nearby (neighborhood) nodes. Technically, the
network neighborhood N(u) is a set of nodes that appear in an
appropriately biased, short random walk from node u (Grover
and Leskovec, 2016). The goal of the algorithm is to find an
embedding f(u) such that the conditional probability of observing
u’s network neighbors N(u) is maximized. This conditional
probability is modeled using a softmax function, leading to the
following log likelihood:

∑
u

∑
v∈N(u)

log exp(f (u)·f (v))∑
w exp(f (w)·f (u))

, across all

nodes u in the network. Once embeddings are learned, one
can use them for any downstream prediction task, including
node classification, link prediction, and clustering. A similar
network embedding algorithm is DeepWalk (Perozzi et al.,
2014b). DeepWalk has been originally proposed to embed nodes
in a social network setting, taking ideas from the linguistics
literature (Perozzi et al., 2014b). In DeepWalk, the embeddings
are learned based on truncated random walks which can be
intuitively thought of as putting words (nodes) into sentences
(sequences of nodes visited by a random walk). In the biological
context, DeepWalk has been used to associate miRNAs with
diseases (Li et al., 2017), predict drug target associations (Zong
et al., 2017), and predict protein function (Kulmanov et al., 2017).

With the advent of deep learning methods, several deep
learning approaches were proposed to embed networks. An

important class of deep learning methods for network embedding
are graph neural networks that generalize the notion of
convolutions typically applied to image datasets to operations
that can operate on arbitrary graphs (Defferrard et al., 2016;
Kipf and Welling, 2016; Gilmer et al., 2017; Hamilton et al.,
2017a). One can see graph neural networks as an embedding
methodology that distills high-dimensional information about
each node’s neighborhood into a dense vector embedding without
requiring manual feature engineering (Defferrard et al., 2016;
Kipf and Welling, 2016; Gilmer et al., 2017; Hamilton et al.,
2017a). A graph neural network has two main components. First,
the encoder, maps a node u to a low-dimensional embedding
f(u), based on u’s local neighborhood structure, its position in
the graph, and/or its attributes. Next, the decoder takes the
embeddings and extracts user-specified predictions from these
embeddings. In contrast to embedding approaches that use
random walks (reviewed above), graph neural networks support
end-to-end learning. One can jointly optimize all trainable
parameters and propagate gradients of the objective function
through the encoder as well as the decoder. End-to-end learning
can lead to substantial improvements in performance (Defferrard
et al., 2016; Zitnik et al., 2018).

There has been significant recent interest in graph embeddings
in non-Euclidean spaces. In particular, hyperbolic spaces have
attracted much attention due to successful natural language
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processing models which use them for embedding words
(Chamberlain et al., 2017). Muscoloni et al. (2017) describe
a general algorithm termed “coalescent embedding” for
embedding vertices in hyperbolic spaces. The algorithm
proceeds by pre-weighting the network and applying a
non-linear dimension reduction technique, followed by
computing and adjusting the angular positions of the Euclidean
embeddings and radial positioning according to node degree.
More generally, networks and their respective embeddings
can be interpreted geometrically, as described in recent
reviews (Barthélemy, 2011; Papadopoulos et al., 2015; Moyano,
2017). These geometric models have been used successfully
in applications to biological networks, particularly protein–
protein interaction (PPI) networks (Serrano et al., 2012;
Alanis-Lobato et al., 2016, 2018).

APPLICATIONS

Network Alignment
A basic operation in biological research is to transfer knowledge
across species. Indeed, sequence alignment has been the power
horse of computational biology for almost five decades now.
With the availability of physical interaction data, it was suggested
to generalize alignment concepts to the network level (Kelley
et al., 2003; Sharan and Ideker, 2006). There are several types of
network alignment problems, here we focus on global network
alignment where given the networks of two species (typically, PPI
networks) one wishes to identify a 1–1 correspondence between
the proteins of the two species under which the networks are most
similar (Figure 1D).

A leading approach to this problem is the IsoRank algorithm
(Singh et al., 2008) which is based on Google’s PageRank method,
essentially measuring the correspondence, or similarity, between
two proteins from different species based on the similarities of
their neighboring nodes in the two corresponding networks.
Thus, if we denote by Rij the similarity between proteins i and
j (from two different species), and we let N(i) denote the (open)
neighborhood of protein i in its network, then:

Rij =
1

|N(i)||N(j)|

∑
u∈N(i),v∈N(j)

Ruv

These recursive equations give rise to an eigenvalue problem
and their solution is used as an input to a maximum matching
algorithm to compute the eventual correspondence.

Another, more recent approach is MAGNA (Saraph and
Milenkoviæ, 2014) and its successor MAGNA++ (Vijayan et al.,
2015). MAGNA uses a genetic algorithm to find the optimal
alignment, where individuals are viewed as permutations of the
nodes. Crossover relies on the notion of adjacency, where a pair
of permutations is adjacent if they differ only by a single swap
of two nodes; the crossover of two permutations is then the
midpoint of the shortest path between the two permutations in
the graph constructed from these adjacencies. Selection can be
based on any metric, such as EC. MAGNA++ augments this
approach by including cross-species node similarity information.

An extensive review of methods for biological network alignment
can be found in (Guzzi and Milenkovic, 2018) that mentions
over thirty different approaches. Comparative network analysis
methods are further reviewed in (Emmert-Streib et al., 2016).

A recent work by Fan et al. (2017) uses an embedding-
based approach, MuNK, to compare networks across species
by assessing similarity via embedded network topologies. The
idea is to project the nodes of the two networks into the
same Euclidean space in a way that preserves their intra-species
network similarity and inter-species sequence similarity. For
each species separately, a kernel similarity function is defined,
and the corresponding embedding is computed by matrix
decomposition. To tie the projections together, Fan et al. (2017)
assume a given set of known matches, regarded as landmarks,
between the two networks. A similar embedding approach
that does not require a known subset of correspondences was
suggested in (Heimann et al., 2018).

As a test case for network embedding, we evaluated the two
algorithms, IsoRank and MuNK, using metrics of alignment
quality. A common and simple metric is the edge correctness
(EC), defined as the percentage of edges conserved under the
mapping f (Kuchaiev et al., 2009; Clark and Kalita, 2014):

EC =
|f (EA) ∩ EB|

|EA|
× 100%

Note that the EC metric is asymmetric, and the order of the
networks is traditionally chosen to maximize EC, i.e., A is chosen
to be the smaller of the two networks. Beyond topological
similarity, one can use different biological annotations, such
as the Gene Ontology (GO) functional annotation, to compute
biologically relevant measures of alignment quality such as
GO functional consistency (Aladag and Erten, 2013), defined
as the proportion of aligned pairs with more than k GO
terms in common.

Similar to the use of landmarks in MuNK, IsoRank can
incorporate additional similarity information in its computation
of the score matrix, so the landmark pairs are provided as a
binary information matrix to the IsoRank algorithm. In our
experiments, we produce two outputs for method comparison:
cross-species pairwise similarity scores and the node-to-node
mappings. Thus, in addition to the two measures described above
that use the node-to-node mappings, we also evaluated IsoRank
and MuNK using AUPR as a measure of enrichment of GO
functional consistency with respect to the cross-species pairwise
similarity scores. When comparing MuNK to the more recent
MAGNA++, MAGNA++ performs very well according to EC
(as it optimizes EC directly), but it does not output node scores so
we could not directly compare MuNK to MAGNA++ according
to AUPR and other metrics. Per the author recommendation,
the regularization parameter for the Laplacian in MuNK was
fixed at λ = 0.05. Damping can be used in the PageRank step
of the IsoRank algorithm, and therefore we performed a grid
search with step size 0.05 over possible convexity parameters
α ∈ (0, 1), optimizing for EC score. As input data, we use
the PPI networks for two species of yeast, S. cerevisiae and
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S. pombe, extracted from the BioGRID interaction database
(Oughtred et al., 2018).

IsoRank performs better on the measures directly related
to the node mapping (Table 1). This may be due to the fact
that the cross-species similarity coefficients in IsoRank directly
incorporate local neighborhood (i.e., topological) information,
a fact that the IsoRank greedy algorithm is designed to take
advantage of. The MuNK scores predict functional correctness
better than the scores produced by IsoRank, suggesting that
MuNK’s learned embedded space is biologically meaningful
potentially even beyond alignment. In comparing network
alignment methods (Guzzi and Milenkovic, 2018) also found
that methods that do very well according to the topological
quality measures are not very good as far as functional quality
is concerned. The interpretability of the embedding space is one
of the primary benefits of embedding techniques over standard
approaches in the case of network alignment. For example,
the embedding space learned by MuNK captures biological
information beyond pairwise node alignment, specifically, cross-
species synthetic lethal interactions (Fan et al., 2017).

Community Detection
One of the natural uses of a network is the identification
of clusters, or modules of similar nodes, a task known as
community detection (Fortunato, 2010). Community detection
methods (Figure 1C) have great uses in biology from protein

module identification to disease subnetwork discovery (Ghiassian
et al., 2015; Menche et al., 2015). Among the most popular
community detection methods on networks are random walk-
based approaches including Louvain (Blondel et al., 2008),
Infomap (Rosvall and Bergstrom, 2011), Label propagation
(Raghavan et al., 2007), and Walktrap (Pons and Latapy, 2005),
that came up as best performers in a review comparing these
and other approaches (Yang et al., 2016). Originally developed
for community detection in social networks, these methods are
frequently used in biology (Barabási et al., 2011), for example to
identify cancer drivers (Cantini et al., 2015).

Network embedding for the purpose of community detection
was covered in a recent review (Hamilton et al., 2017b).
The authors hypothesized that due to vector-like embedding
representation of a network, there is a wider range of clustering
and community detection methods that can be applied to
embedded networks as compared to graphs directly. The
authors further introduced an encoder-decoder framework
that unifies many of the recently popularized approaches,
including DeepWalk (Perozzi et al., 2014a) and node2vec (Grover
and Leskovec, 2016). A geometric approach, not covered in
the review, suggests a scalable embedding of networks in a
hyperbolic circle and show that the popular random walk-
based community detection methods (Louvain, Infomap, Label
propagation, and Walktrap) can be significantly boosted when
applied to hyperbolic distances (Muscoloni et al., 2017).

TABLE 1 | Comparative analysis of direct vs. embedding methods across a range of problems in network biology.

IsoRank (α = 0.5) MuNK (λ = 0.05)

A. Network alignment

EC 39.0% 21.9%

GOC

K = 20 63.4% 57.6%

K = 50 20.7% 17.9%

K = 100 1.2% 1.0%

GOC (AUPR) 0.721 0.746

Runtime 26 min 40 s (incl. grid search) 1 min 52 s (incl. alignment)

densityCut (K = 4, α = 0.9) Vicus (K = 10, σ = 0.5)

B. Community detection

Buettner (C = 2, Ct = 11) 0.256 0.316

Kolodziejczyk (C = 5, Ct = 4) 0.325 0.552

Pollen (C = 13, Ct = 11) 0.931 0.928

Usoskin (C = 9, Ct = 4) 0.373 0.591

Avg. Runtime 1 min 15 s (incl. parameter grid search) <5 s

STRING v9.1 Homo sapiens. Included with the Mashup distribution.

GeneMANIA Mashup

C. Function prediction

AUPR

MF 0.327 0.372

BP 0.213 0.222

CC 0.514 0.487

Avg. Runtime 3 min 57 s 14 min 56 s (incl. recommended SVM tuning procedure)

Running times were obtained on a 64-bit machine with Intel Core i5-8400 CPU @ 2.80 GHz × 6 with 16 GB RAM running Ubuntu 18.04. Bold refers to the most
successful result, according to the referenced metric.

Frontiers in Genetics | www.frontiersin.org 5 May 2019 | Volume 10 | Article 38166

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00381 April 29, 2019 Time: 15:10 # 6

Nelson et al. To Embed or Not

We compared two community detection methods, an
embedding-based and a graph-based, on the problem of single-
cell RNA-seq (scRNA-seq) analysis. scRNA-seq data has recently
emerged as a powerful tool to decipher the heterogeneity of cell
populations. This is an important and growing area of network
applications where community detection methods are used
to perform clustering on the constructed cell-to-cell networks
(Wang et al., 2018). Given a gene expression matrix, Gaussian
kernel is usually adopted to construct a pairwise similarity
network in which nodes represent cells and edge weights depict
the similarity between cells.

The first method is Vicus, a generalization of spectral
clustering, which we combined with k-means clustering in
the embedded space. For the network-based approach, we
used densityCut, a random walk-based community detection
method, which approximates clusters using the density of
local neighborhoods. The densityCut method approximates
the true network using a k-nearest neighbor graph, and
selects the number of clusters using an automated procedure.
Therefore, this number of clusters was used as input to the
k-means step of the Vicus evaluation. We used four scRNA-seq
datasets, all from Mus musculus (Pollen et al., 2014; Buettner
et al., 2015; Kolodziejczyk et al., 2015; Usoskin et al., 2015)
but which vary according to tissue of origin (neural, blood
and stem cells) and have known ground truth labels. We
evaluated performance using normalized mutual information
(NMI). Vicus outperformed densityCut on three of the four
datasets (Table 1).

Function Prediction
Another fundamental problem in network biology is the
inference of protein function from the known functions of
its network neighbors (Sharan et al., 2007). The earliest
approach to this problem, neighborhood counting (Schwikowski
et al., 2000), predicted a protein to be involved in a certain
function if a sufficient number of its direct (or up to some
specified distance) neighbors had this property. Current state
of the art methods are based on similar guilt-by-association
principles (Figure 1E). For example, Cao et al. (2013) define
a distance metric between proteins that is based on network
diffusion, thus capturing similarities that are based on multiple
paths in the network.

These single-network methods were generalized in several
ways (Cho et al., 2016) integrate information across multiple
networks and use a low rank approximation of the network
diffusion based similarities to reduce potential noise. The
integration challenge is also tackled by (Gligorijevic et al.,
2018) who learn a compact node representation using
deep autoencoders. In Fan et al. (2017), the cross-species
embedding is utilized to infer protein function. Zitnik and
Leskovec (2017) suggest a network embedding approach
for predicting tissue-specific protein function, which
encourages proteins to share features not only with their
network neighbors but also with proteins that are active in
similar tissues.

Two recent methods were compared on the task of
protein function prediction using multiple interaction networks.

GeneMANIA performs label diffusion, while Mashup finds
an embedding for each of the proteins, allowing one to use
traditional classification techniques such as support vector
machines (SVMs). The area under the precision-recall curve
(AUPR) was used as an evaluation metric. Overall, Mashup
performed better with respect to molecular function and
biological process annotations, while GeneMANIA performed
better on the cellular compartment annotation (Table 1).

Network Denoising
The application of network biology techniques to experimental
data depends on the accuracy and completeness of the network
of interest. The challenge of noisy interaction measurements
plagues many different types of biological networks, such as
Hi-C interaction networks (Rao et al., 2014), cell–cell interaction
networks (Wang et al., 2017b), and PPI networks (Saito et al.,
2002; Przulj et al., 2004; Chua and Wong, 2008; Higham
et al., 2008; Kuchaiev et al., 2009; You et al., 2010; Marras
et al., 2011; Alanis-Lobato et al., 2013; Cannistraci et al.,
2013; Newman, 2018a,b). Such noise adversely impacts the
performance of downstream analysis, calling for methods for
network denoising.

The most common approach to denoise any given network
is to perform diffusions on the network to exploit high-
order structures that can potentially improve the qualities
of the direct links between nodes. Diffusion maps (Coifman
et al., 2005) employ high-order random walks and then
use spectral decomposition to construct an affinity measure.
A tensor-based dynamical model (Wang et al., 2012) aims
to search high-order paths between pairs of objects through
their common nearest neighbors. A low-rank constraint has
been employed to help denoise the network manifold (Wang
and Tu, 2013). Diffusion-state distance (DSD) (Cao et al.,
2013) was utilized to denoise PPI networks and improve the
signal-to-noise ratio for better prediction of protein functions.
To tackle the problem of transitive edges in networks in a
computationally efficient way (Feizi et al., 2013) proposed a
simple closed-form solution, called Network Deconvolution
(ND), to infer direct links.

An alternative direction of network denoising takes
embedding-based approaches. For instance, Mashup (Cho
et al., 2016) aims to learn compact low-dimensional vector
representation of proteins that best explains their wiring
patterns for the input protein–protein association networks
by applying a matrix factorization method on the diffused
network. The embeddings of the nodes (proteins) reflect the
relational structures of the original network, therefore facilitating
the downstream applications by feeding the embeddings to a
support vector machine.

A recent study (Wang et al., 2018) performed an in-depth
comparison between these network denoising methods in three
different experimental settings: PPI function predictions, HiC
network module detection, and species identification. The study
highlighted the advantages of embedding-based methods such as
Mashup (Cho et al., 2016) when the network contains distinct
cluster structures and the noise level is small. However, it also
showed that when the cluster structures are corrupted by high
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noise, existing methods usually fail to uncover the underlying
network structure.

Pharmacogenomics
Modern pharmaceutical research faces challenges with
decreasing productivity in drug development and a
persistent gap between therapeutic needs and available
treatments (Hodos et al., 2016; Moffat et al., 2017).
Network approaches have emerged as a promising
direction to address these challenges and improve our
understanding of the therapeutic and side effects of drugs
(Hopkins, 2008; Berger and Iyengar, 2009). We review
three practically important problems within the realm of
pharmacogenomics that have been tackled with network
embedding methods: drug-target prediction, drug–drug
interaction prediction and prediction problems involving
small molecules.

Drugs influence biological systems by binding to target
proteins and affecting their downstream activity (Imming
et al., 2006). Network approaches formulate drug–target
interaction prediction as a link prediction task on a graph

of drugs/chemicals and the proteins which they interact with
(Yildirim et al., 2007; Yamanishi et al., 2010; Perlman et al.,
2011; Chen et al., 2012; Cheng et al., 2012; Gönen, 2012;
Isik et al., 2015; Zitnik and Zupan, 2016; Luo et al., 2017;
Wen et al., 2017; Lee and Nam, 2018). Given such a graph
(Crichton et al., 2018) use various node embedding methods,
including node2vec (Grover and Leskovec, 2016), DeepWalk
(Perozzi et al., 2014b), and LINE (Tang et al., 2015), to
embed nodes into a compact vector space in a manner
that preserves local network structure. As a result, drugs
with many shared target proteins obtain similar embeddings,
and vice-versa, proteins targeted by similar drugs obtain
similar embeddings. These embeddings are thus well-suited for
predicting drug–target interactions by calculating the similarity
between embeddings representing the drug and the protein,
or by using embeddings as inputs to a machine learning
method (Crichton et al., 2018). Alternatively, predictions can
be made in an end-to-end fashion, where a neural network
learns node embeddings and predicts interactions directly
from the graph (Wang and Zeng, 2013; Gao et al., 2018;
Wan et al., 2018).

TABLE 2 | A summary of network embedding tools and their applications.

Name of the tool Availability What was it applied to

Denoising

Network enhancement Matlab code http://snap.stanford.edu/ne/ Hi-C interaction networks combining gene interaction
networks across tissues

Single-cell representation learning Binary https://github.com/SuntreeLi/SCRL Single-cell RNA-seq data

Geometric denoising http://kuchaev.com/Denoising/ PPI networks

Network alignment

MuNK Python code and all Anaconda-reproducible experiments
https://github.com/lrgr/munk

Cross-species functional PPIs (yeast, mouse, human)

Community detection

Minimum curvilinearity embedding II https:
//sites.google.com/site/carlovittoriocannistraci/5-datasets-
and-matlab-code/minimum-curvilinearity-ii-april-2012

(i) Cerebrospinal fluid proteomics – neuropathic pain

(ii) Transcription factor expressions – tissue prediction

Vicus Single-cell RNA-seq:

(i) Pollen – neural and stem cells

(ii) Usoskin – mouse neurons, sensory subtypes

(iii) Buettner – embryonic stem cells

(iv) Kolodziejczyk – pluripotent cells

Coalescent embedding https://github.com/biomedical-cybernetics/coalescent_
embedding

Non-biological

Function prediction

Mashup http://cb.csail.mit.edu/cb/mashup/ Protein function prediction, gene ontology reconstruction,
and genetic interaction prediction

OhmNet http://snap.stanford.edu/ohmnet/ Tissue-specific gene function prediction

Disease gene discovery http://snap.stanford.edu/pathways/ Disease pathway detection

Pharmacogenomics

Molecular fingerprints https://github.com/HIPS/neural-fingerprint Prediction of molecular properties, including drug efficacy,
solubility, and photovoltaic efficiency

Decagon http://snap.stanford.edu/decagon/ (i) Polypharmacy side-effect prediction

(ii) Drug–drug interaction prediction

Graph convolutional policy network https://github.com/bowenliu16/rl_graph_generation Molecular graph generation

Residual LSTM Embeddings https://github.com/deepchem/deepchem (i) Drug side-effect prediction

(ii) Drug toxicity prediction
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Detecting drug–drug interactions, in which the activity of one
drug changes, favorably or unfavorably, if taken with another
drug, is an important challenge with significant implications
for patient mortality and morbidity (Chan and Giaccia, 2011;
Guthrie et al., 2015; Han et al., 2017). Ma et al. (2018) model
each drug as a node in a multi-view drug association graph,
where edges between drugs in different views encode different
types of similarity between drugs. The approach uses graph
convolutional networks (Kipf and Welling, 2016) to embed
the multi-view graph and attentive mechanisms (Veličković
et al., 2018) to fuse information from multiple views and to
make learning more interpretable. By such embedding, the
approach learns a similarity score between any two drugs and
uses the scores to predict drug–drug interactions. While such
an approach can be useful to describe drug interactions at
the cellular level (Sridhar et al., 2016; Ryu et al., 2018), it
cannot predict the safety or side effects of drug combinations.
To identify the side effects of drug combinations and provide
guidance on the development of new drug therapies (Zitnik
et al., 2018) developed an embedding approach that constructs
a multi-modal graph of PPIs, drug–protein interactions, and
drug–drug interactions, where each drug–drug interaction is
labeled by a different edge type signifying the type of the
side effect. The approach takes the multi-modal graph and
uses graph neural networks as an embedding methodology to
distill information about each node’s network neighborhood into
an embedding vector without any hand-engineering. The final
approach is an end-to-end method for predicting side effects of
drug combinations that considers all types of side effects at once.
The approach learns embeddings of side effects that are indicative
of polypharmacy in patients.

Chemical prediction problems represent another class of
practically important graph problems (Ralaivola et al., 2005;
Altae-Tran et al., 2017; Gilmer et al., 2017; Gómez-Bombarelli
et al., 2018). One key distinction between these problems
and standard network prediction tasks discussed above is
that chemical prediction problems are graph-level classification
problems where individual data examples are graphs (rather
than nodes) representing small molecules. Typical prediction
tasks aim to predict various molecular properties such as
drug efficacy or solubility (Coley et al., 2017; Jin et al.,
2017), predict which drugs bind to which target proteins
(Morris et al., 2018), and identify sites at which a particular
candidate drug binds to a target protein (Feinberg et al.,
2018). The input to a predictor is a small molecule, which is
commonly represented as a graph in which nodes and edges
represent atoms and bonds between atoms, respectively. One
difficulty with such inputs is that molecular graphs can be
of arbitrary size and shape (Niepert et al., 2016; Xu et al.,
2017). However, currently, most machine learning pipelines can
only handle inputs of a fixed size. For this reason, state-of-
the-art systems use embedding techniques to embed molecular
graphs into fixed-dimensional embeddings and then use the
learned representations as inputs to a fully connected deep
neural network or other standard machine learning methods
(Duvenaud et al., 2015; Kearnes et al., 2016). The proposed
graph convolution models do not yet consistently outperform

traditional structural-based fingerprints, however, their flexibility
and potential for further optimization and development have led
to models that provide significant boosts in the predictive power
over older fingerprints.

CONCLUSION

We have reviewed several classes of approaches for network
embedding, including spectral-based methods, random-walk
based approaches and deep neural network techniques. We have
demonstrated the utility of these approaches in a broad set of
applications, ranging from network alignment to community
detection, protein function prediction, and network denoising.
We have also discussed recent embedding approaches in
pharmacogenomics. We were interested in seeing whether the
field of network embedding indeed enhances the types of
questions that can be answered using graph-based approaches
and our conclusion is that there is value in both graph-based and
graph-embedding-based methods in a variety of applications.

In our experiments we found that depending on the task
at hand and metric used, sometimes graph-based methods
outperformed network embedding tools. This was the case
with, for example, IsoRank beating MuNK with respect to
edge conservation in network alignment, whereas MuNK
outperformed IsoRank according to the area under the precision
recall curve with respect to node mapping. In community
detection experiments, our results were reversed, where the
embedding method outperformed the graph-based method 3 out
of 4 times. In fact, there is no single metric according to which
one type of method is consistently better than the other. Even
in compute time, where embedding methods outperform graph-
based methods most of the time, on the function prediction task
graph-based GeneMANIA outperforms the embedding method
Mashup. This implies that the choice of graph-based versus
embedding-based method will depend on many factors, not just
the task at hand, but also the aspect or evaluation measure of
highest importance to the user.

The network embedding principles create new opportunities
to model large network datasets and move beyond standard
prediction tasks of node classification, link prediction, and node
clustering. For example, given a partially observed network of
interactions between drugs, diseases, and proteins, one might be
interested in posing a logical query: “What proteins are likely to
be associated with diseases that have both symptoms X and Y?”
Such a query requires reasoning about all possible proteins that
might be associated with at least two diseases, which, in turn,
clinically manifest through symptoms X and Y. Valid answers to
such queries correspond to subgraphs. Since edges in the network
might be missing because of biotechnological limits and natural
variation, naively answering the queries requires enumeration
over all possible combinations of diseases (Hamilton et al.,
2018) developed a network embedding approach that answers
such complex logical queries and achieves a time complexity
linear in the size of a query, compared to the exponential
complexity required by a naive enumeration-based approach.
The approach embeds nodes into a low-dimensional space and
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represents logical operators as learned geometric operations
in this embedding space. They demonstrated the utility of
the approach in a study involving a biomedical network of
drugs, diseases, proteins, side effects, and protein functions with
millions of edges.

We summarize network embedding tools that are used in the
biomedical field in Table 2. We expect the importance of these
tools to grow with the magnitude and complexity of biomedical
data that are being generated.

AUTHOR CONTRIBUTIONS

WN did the performance comparisons. All authors participated
in writing the manuscript.

FUNDING

AG and RS were supported by a TAU-UOT cooperation grant.

REFERENCES
Aladag, A. E., and Erten, C. (2013). SPINAL: scalable protein interaction network

alignment. Bioinformatics 29, 917–924. doi: 10.1093/bioinformatics/btt071
Alanis-Lobato, G., Cannistraci, C. V., and Ravasi, T. (2013). Exploitation of genetic

interaction network topology for the prediction of epistatic behavior. Genomics
102, 202–208. doi: 10.1016/j.ygeno.2013.07.010

Alanis-Lobato, G., Mier, P., and Andrade-Navarro, M. (2018). The latent geometry
of the human protein interaction network. Bioinformatics 34, 2826–2834. doi:
10.1093/bioinformatics/bty206

Alanis-Lobato, G., Mier, P., and Andrade-Navarro, M. A. (2016). Manifold learning
and maximum likelihood estimation for hyperbolic network embedding. Appl.
Netw. Sci. 1:10. doi: 10.1007/s41109-016-0013-0

Altae-Tran, H., Ramsundar, B., Pappu, A. S., and Pande, V. (2017). Low data
drug discovery with one-shot learning. ACS Cent. Sci. 3, 283–293. doi: 10.1021/
acscentsci.6b00367

Barabási, A.-L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: a
network-based approach to human disease. Nat. Rev. Genet. 12, 56–68. doi:
10.1038/nrg2918

Barabási, A.-L., and Oltvai, Z. N. (2004). Network biology: understanding the cell’s
functional organization. Nat. Rev. Genet. 5, 101–113. doi: 10.1038/nrg1272

Barthélemy, M. (2011). Spatial networks. Phys. Rep. 499, 1–101.
Baryshnikova, A. (2018). Spatial analysis of functional enrichment (SAFE) in large

biological networks. Methods Mol. Biol. 1819, 249–268. doi: 10.1007/978-1-
4939-8618-7_12

Belkin, M., and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality
reduction and data representation. Neural Comput. 15, 1373–1396. doi: 10.
1162/089976603321780317

Berger, S. I., and Iyengar, R. (2009). Network analyses in systems pharmacology.
Bioinformatics 25, 2466–2472. doi: 10.1093/bioinformatics/btp465

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. J. Stat. Mech. 2008:10008.

Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J.,
et al. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell
RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol.
33, 155–160. doi: 10.1038/nbt.3102

Cai, H., Zheng, V. W., and Chang, K. C.-C. (2018). A comprehensive survey of
graph embedding: problems, techniques, and applications. IEEE Trans. Knowl.
Data Eng. 30, 1616–1637. doi: 10.1109/tkde.2018.2807452

Cannistraci, C. V., Alanis-Lobato, G., and Ravasi, T. (2013). Minimum
curvilinearity to enhance topological prediction of protein interactions by
network embedding. Bioinformatics 29, i199–i209. doi: 10.1093/bioinformatics/
btt208

Cantini, L., Medico, E., Fortunato, S., and Caselle, M. (2015). Detection of gene
communities in multi-networks reveals cancer drivers. Sci. Rep. 5: 17386.

Cao, M., Zhang, H., Park, J., Daniels, N. M., Crovella, M. E., Cowen, L. J., et al.
(2013). Going the distance for protein function prediction: a new distance
metric for protein interaction networks. PLoS One 8:e76339. doi: 10.1371/
journal.pone.0076339

Chamberlain, B. P., Clough, J., and Deisenroth, M. P. (2017). Neural embeddings of
graphs in hyperbolic space. arXiv:1705.10359 [Preprint]. doi: 10.1371/journal.
pone.0076339

Chan, D. A., and Giaccia, A. J. (2011). Harnessing synthetic lethal interactions in
anticancer drug discovery. Nat. Rev. Drug Discov. 10, 351–364. doi: 10.1038/
nrd3374

Chen, X., Liu, M.-X., and Yan, G.-Y. (2012). Drug-target interaction prediction
by random walk on the heterogeneous network. Mol. Biosyst. 8, 1970–
1978.

Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., et al. (2012). Prediction of drug-
target interactions and drug repositioning via network-based inference. PLoS
Comput. Biol. 8:e1002503. doi: 10.1371/journal.pcbi.1002503

Cho, H., Berger, B., and Peng, J. (2016). Compact integration of multi-network
topology for functional analysis of genes. Cell Syst. 3, 540.e5–548.e5.

Chua, H. N., and Wong, L. (2008). Increasing the reliability of protein
interactomes. Drug Discov. Today 13, 652–658. doi: 10.1016/j.drudis.2008.05.
004

Clark, C., and Kalita, J. (2014). A comparison of algorithms for the pairwise
alignment of biological networks. Bioinformatics 30, 2351–2359. doi: 10.1093/
bioinformatics/btu307

Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., et al.
(2005). Geometric diffusions as a tool for harmonic analysis and structure
definition of data: diffusion maps. Proc. Natl. Acad. Sci. U.S.A. 102, 7426–7431.
doi: 10.1073/pnas.0500334102

Coley, C. W., Barzilay, R., Green, W. H., Jaakkola, T. S., and Jensen, K. F. (2017).
Convolutional embedding of attributed molecular graphs for physical property
prediction. J. Chem. Inf. Model. 57, 1757–1772. doi: 10.1021/acs.jcim.6b00601

Cox, T. F., and Cox, M. A. A. (2000). Multidimensional Scaling, 2nd Edn. Boca
Raton, FL: CRC Press.

Crichton, G., Guo, Y., Pyysalo, S., and Korhonen, A. (2018). Neural networks for
link prediction in realistic biomedical graphs: a multi-dimensional evaluation of
graph embedding-based approaches. BMC Bioinformatics 19:176. doi: 10.1186/
s12859-018-2163-9

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proceedings of
the 30th Conference on Neural Information Processing Systems (NIPS 2016)
(Barcelona: NIPS), 3844–3852.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-
Guzik, A., et al. (2015). “Convolutional networks on graphs for learning
molecular fingerprints,” in Proceedings of the Advances in Neural Information
Processing Systems 28 (NIPS 2015) (Barcelona: NIPS), 2224–2232.

Eades, P. (1984). A heuristic for graph drawing. Congr. Numer. 42, 149–160.
Emmert-Streib, F., Dehmer, M., and Shi, Y. (2016). Fifty years of graph matching,

network alignment and network comparison. Inf. Sci. 34, 180–197. doi: 10.1016/
j.ins.2016.01.074

Fan, J., Cannistra, A., Fried, I., Lim, T., Schaffner, T., Crovella, M., et al. (2017).
A multi-species functional embedding integrating sequence and network
structure. bioRxiv [Preprint].

Feinberg, E. N., Sur, D., Husic, B. E., Mai, D., Li, Y., Yang, J., et al. (2018). Spatial
graph convolutions for drug discovery. arXiv:1803.04465 [Preprint].

Feizi, S., Marbach, D., Médard, M., and Kellis, M. (2013). Network deconvolution
as a general method to distinguish direct dependencies in networks. Nat.
Biotechnol. 31, 726–733. doi: 10.1038/nbt.2635

Fortunato, S. (2010). Community detection in graphs. Phys. Rep. 486, 75–174.
doi: 10.1016/j.physrep.2009.11.002

Fruchterman, T. M. J., and Reingold, E. M. (1991). Graph Drawing by Force-
Directed Placement. Hoboken, NJ: Wiley.

Gao, K. Y., Fokoue, A., Luo, H., Iyengar, A., Dey, S., and Zhang, P. (2018).
“Interpretable drug target prediction using deep neural representation,” in
Proceedings of the Conference: Twenty-Seventh International Joint Conference
on Artificial Intelligence (New York, NY: IJCAI), 3371–3377.

Frontiers in Genetics | www.frontiersin.org 9 May 2019 | Volume 10 | Article 38170

https://doi.org/10.1093/bioinformatics/btt071
https://doi.org/10.1016/j.ygeno.2013.07.010
https://doi.org/10.1093/bioinformatics/bty206
https://doi.org/10.1093/bioinformatics/bty206
https://doi.org/10.1007/s41109-016-0013-0
https://doi.org/10.1021/acscentsci.6b00367
https://doi.org/10.1021/acscentsci.6b00367
https://doi.org/10.1038/nrg2918
https://doi.org/10.1038/nrg2918
https://doi.org/10.1038/nrg1272
https://doi.org/10.1007/978-1-4939-8618-7_12
https://doi.org/10.1007/978-1-4939-8618-7_12
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1093/bioinformatics/btp465
https://doi.org/10.1038/nbt.3102
https://doi.org/10.1109/tkde.2018.2807452
https://doi.org/10.1093/bioinformatics/btt208
https://doi.org/10.1093/bioinformatics/btt208
https://doi.org/10.1371/journal.pone.0076339
https://doi.org/10.1371/journal.pone.0076339
https://arxiv.org/abs/1705.10359
https://doi.org/10.1371/journal.pone.0076339
https://doi.org/10.1371/journal.pone.0076339
https://doi.org/10.1038/nrd3374
https://doi.org/10.1038/nrd3374
https://doi.org/10.1371/journal.pcbi.1002503
https://doi.org/10.1016/j.drudis.2008.05.004
https://doi.org/10.1016/j.drudis.2008.05.004
https://doi.org/10.1093/bioinformatics/btu307
https://doi.org/10.1093/bioinformatics/btu307
https://doi.org/10.1073/pnas.0500334102
https://doi.org/10.1021/acs.jcim.6b00601
https://doi.org/10.1186/s12859-018-2163-9
https://doi.org/10.1186/s12859-018-2163-9
https://doi.org/10.1016/j.ins.2016.01.074
https://doi.org/10.1016/j.ins.2016.01.074
https://arxiv.org/abs/1803.04465
https://doi.org/10.1038/nbt.2635
https://doi.org/10.1016/j.physrep.2009.11.002
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00381 April 29, 2019 Time: 15:10 # 10

Nelson et al. To Embed or Not

Ghiassian, S. D., Menche, J., and Barabási, A.-L. (2015). A DIseAse
MOdule detection (DIAMOnD) algorithm derived from a systematic
analysis of connectivity patterns of disease proteins in the human
interactome. PLoS Comput. Biol. 11:e1004120. doi: 10.1371/journal.pcbi.100
4120

Gibson, H., Faith, J., and Vickers, P. (2013). A survey of two-dimensional graph
layout techniques for information visualisation. Inf. Visual. 12, 324–357. doi:
10.1177/1473871612455749

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural
message passing for quantum chemistry. arXiv:1704.01212v2 [Preprint].

Gligorijevic, V., Barot, M., and Bonneau, R. (2018). deepNF: deep network fusion
for protein function prediction. Bioinformatics 34, 3873–3881. doi: 10.1093/
bioinformatics/bty440

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M.,
Sánchez-Lengeling, B., Sheberla, D., et al. (2018). Automatic chemical design
using a data-driven continuous representation of molecules. ACS Cent. Sci. 4,
268–276. doi: 10.1021/acscentsci.7b00572

Gönen, M. (2012). Predicting drug-target interactions from chemical and genomic
kernels using Bayesian matrix factorization. Bioinformatics 28, 2304–2310. doi:
10.1093/bioinformatics/bts360

Grover, A., and Leskovec, J. (2016). “node2vec: scalable feature learning for
networks,” in Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD), Vol. 22 (New York, NY: ACM), 855–864.

Guthrie, B., Makubate, B., Hernandez-Santiago, V., and Dreischulte, T. (2015). The
rising tide of polypharmacy and drug-drug interactions: population database
analysis 1995–2010. BMC Med. 13:74. doi: 10.1186/s12916-015-0322-7

Guzzi, P. H., and Milenkovic, T. (2018). Survey of local and global biological
network alignment: the need to reconcile the two sides of the same coin. Brief.
Bioinform. 19, 472–481.

Hamilton, W. L., Bajaj, P., Zitnik, M., Jurafsky, D., and Leskovec, J.
(2018). Embedding logical queries on knowledge graphs. arXiv:1806.01445v3
[Preprint].

Hamilton, W. L., Ying, R., and Leskovec, J. (2017a). Inductive representation
learning on large graphs. arxiv.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017b). Representation learning on
graphs: methods and applications. arxiv.

Han, K., Jeng, E. E., Hess, G. T., Morgens, D. W., Li, A., and Bassik, M. C. (2017).
Synergistic drug combinations for cancer identified in a CRISPR screen for
pairwise genetic interactions. Nat. Biotechnol. 35, 463–474. doi: 10.1038/nbt.
3834

Heimann, M., Shen, H., Safavi, T., and Koutra, D. (2018). “REGAL: representation
learning-based graph alignment,” in Proceedings of the 27th ACM International
Conference on Information and Knowledge Management – CIKM ’18 (New York,
NY: ACM), doi: 10.1145/3269206.3271788

Higham, D. J., Rašajski, M., and Pržulj, N. (2008). Fitting a geometric graph
to a protein–protein interaction network. Bioinformatics 24, 1093–1099. doi:
10.1093/bioinformatics/btn079

Hodos, R. A., Kidd, B. A., Shameer, K., Readhead, B. P., and Dudley, J. T. (2016).
In silico methods for drug repurposing and pharmacology. Wiley Interdiscip.
Rev. Syst. Biol. Med. 8, 186–210. doi: 10.1002/wsbm.1337

Hopkins, A. L. (2008). Network pharmacology: the next paradigm in drug
discovery. Nat. Chem. Biol. 4, 682–690. doi: 10.1038/nchembio.118

Imming, P., Sinning, C., and Meyer, A. (2006). Drugs, their targets and the nature
and number of drug targets. Nat. Rev. Drug Discov. 5, 821–834. doi: 10.1038/
nrd2132

Isik, Z., Baldow, C., Cannistraci, C. V., and Schroeder, M. (2015). Drug target
prioritization by perturbed gene expression and network information. Sci. Rep.
5:17417.

Jin, W., Coley, C., Barzilay, R., and Jaakkola, T. (2017). “Predicting organic reaction
outcomes with weisfeiler-lehman network,” in Advances in Neural Information
Processing Systems 30, eds I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, et al. (New York, NY: Curran Associates, Inc.),
2607–2616.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Riley, P. (2016). Molecular
graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des.
30, 595–608. doi: 10.1007/s10822-016-9938-8

Kelley, B. P., Sharan, R., Karp, R. M., Sittler, T., Root, D. E., Stockwell, B. R., et al.
(2003). Conserved pathways within bacteria and yeast as revealed by global

protein network alignment. Proc. Natl. Acad. Sci. U.S.A. 100, 11394–11399.
doi: 10.1073/pnas.1534710100

Kipf, T. N., and Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. arXiv:1609.02907v4 [Preprint].

Kolodziejczyk, A. A., Kim, J. K., Tsang, J. C. H., Ilicic, T., Henriksson, J., Natarajan,
K. N., et al. (2015). Single cell RNA-sequencing of pluripotent states unlocks
modular transcriptional variation. Cell Stem Cell 17, 471–485. doi: 10.1016/j.
stem.2015.09.011

Kuchaiev, O., Rasajski, M., Higham, D. J., and Przulj, N. (2009). Geometric
de-noising of protein-protein interaction networks. PLoS Comput. Biol.
5:e1000454. doi: 10.1371/journal.pcbi.1000454

Kulmanov, M., Khan, M. A., Hoehndorf, R., and Wren, J. (2017). DeepGO:
predicting protein functions from sequence using a deep ontology-
aware classifier. Bioinformatics 34, 660–668. doi: 10.1093/bioinformatics/
btx624

Lee, I., and Nam, H. (2018). Identification of drug-target interaction by a random
walk with restart method on an interactome network. BMC Bioinformatics
19:208. doi: 10.1186/s12859-018-2199-x

Li, G., Luo, J., Xiao, Q., Liang, C., Ding, P., and Cao, B. (2017). Predicting
MicroRNA-disease associations using network topological similarity based on
deepwalk. IEEE Access 5, 24032–24039. doi: 10.1109/access.2017.2766758

Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., et al. (2017). A network
integration approach for drug-target interaction prediction and computational
drug repositioning from heterogeneous information. Nat. Commun. 8:573.

Ma, T., Xiao, C., Zhou, J., and Wang, F. (2018). Drug similarity integration through
attentive multi-view graph auto-encoders. arXiv:1804.10850v1 [Preprint].

Marras, E., Travaglione, A., and Capobianco, E. (2011). Manifold learning in
protein interactomes. J. Comput. Biol. 18, 81–96. doi: 10.1089/cmb.2009.0258

Menche, J., Sharma, A., Kitsak, M., Ghiassian, S. D., Vidal, M., Loscalzo, J., et al.
(2015). Disease networks. Uncovering disease-disease relationships through the
incomplete interactome. Science 347:1257601. doi: 10.1126/science.1257601

Moffat, J. G., Vincent, F., Lee, J. A., Eder, J., and Prunotto, M. (2017). Opportunities
and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev.
Drug Discov. 16, 531–543. doi: 10.1038/nrd.2017.111

Morris, P., DaSilva, Y., Clark, E., Hahn, W. E., and Barenholtz, E. (2018).
“Convolutional neural networks for predicting molecular binding affinity to
HIV-1 proteins,” in Proceedings of the 2018 ACM International Conference
on Bioinformatics, Computational Biology, and Health Informatics BCB ’18
(New York, NY: ACM), 220–225.

Moyano, L. G. (2017). Learning network representations. Eur. Phys. J. Spec. Top.
226, 499–518.

Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G., and Cannistraci, C. V.
(2017). Machine learning meets complex networks via coalescent embedding
in the hyperbolic space. Nat. Commun. 8:1615.

Newman, M. E. J. (2018a). Estimating network structure from unreliable
measurements. Phys. Rev. E 98:062321.

Newman, M. E. J. (2018b). Network structure from rich but noisy data. Nat. Phys.
14, 542–545. doi: 10.1038/s41567-018-0076-1

Niepert, M., Ahmed, M., and Kutzkov, K. (2016). “Learning convolutional neural
networks for graphs,” in Proceedings of the International Conference on Machine
Learning (jmlr.org), Bejing, 2014–2023.

Oughtred, R., Stark, C., Breitkreutz, B.-J., Rust, J., Boucher, L., Chang, C., et al.
(2018). The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47,
D529–D541.

Papadopoulos, F., Aldecoa, R., and Krioukov, D. (2015). Network geometry
inference using common neighbors. Phys. Rev. E 92:022807.

Perlman, L., Gottlieb, A., Atias, N., Ruppin, E., and Sharan, R. (2011). Combining
drug and gene similarity measures for drug-target elucidation. J. Comput. Biol.
18, 133–145. doi: 10.1089/cmb.2010.0213

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014a). “Deepwalk: online learning of social
representations,” in Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD) (New York, NY: ACM), 701–710.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014b). “DeepWalk: online learning of
social representations,” in Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining KDD ’14 (New York, NY:
ACM), 701–710.

Pollen, A. A., Nowakowski, T. J., Shuga, J., Wang, X., Leyrat, A. A., Lui, J. H.,
et al. (2014). Low-coverage single-cell mRNA sequencing reveals cellular

Frontiers in Genetics | www.frontiersin.org 10 May 2019 | Volume 10 | Article 38171

https://doi.org/10.1371/journal.pcbi.1004120
https://doi.org/10.1371/journal.pcbi.1004120
https://doi.org/10.1177/1473871612455749
https://doi.org/10.1177/1473871612455749
https://arxiv.org/abs/1704.01212v2
https://doi.org/10.1093/bioinformatics/bty440
https://doi.org/10.1093/bioinformatics/bty440
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1093/bioinformatics/bts360
https://doi.org/10.1093/bioinformatics/bts360
https://doi.org/10.1186/s12916-015-0322-7
https://arxiv.org/abs/1806.01445v3.
https://doi.org/10.1038/nbt.3834
https://doi.org/10.1038/nbt.3834
https://doi.org/10.1145/3269206.3271788
https://doi.org/10.1093/bioinformatics/btn079
https://doi.org/10.1093/bioinformatics/btn079
https://doi.org/10.1002/wsbm.1337
https://doi.org/10.1038/nchembio.118
https://doi.org/10.1038/nrd2132
https://doi.org/10.1038/nrd2132
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1073/pnas.1534710100
https://arxiv.org/abs/1609.02907v4
https://doi.org/10.1016/j.stem.2015.09.011
https://doi.org/10.1016/j.stem.2015.09.011
https://doi.org/10.1371/journal.pcbi.1000454
https://doi.org/10.1093/bioinformatics/btx624
https://doi.org/10.1093/bioinformatics/btx624
https://doi.org/10.1186/s12859-018-2199-x
https://doi.org/10.1109/access.2017.2766758
https://arxiv.org/abs/1804.10850v1
https://doi.org/10.1089/cmb.2009.0258
https://doi.org/10.1126/science.1257601
https://doi.org/10.1038/nrd.2017.111
https://doi.org/10.1038/s41567-018-0076-1
https://doi.org/10.1089/cmb.2010.0213
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00381 April 29, 2019 Time: 15:10 # 11

Nelson et al. To Embed or Not

heterogeneity and activated signaling pathways in developing cerebral cortex.
Nat. Biotechnol. 32, 1053–1058. doi: 10.1038/nbt.2967

Pons, P., and Latapy, M. (2005). “Computing communities in large networks using
random walks,” in Computer and Information Sciences – ISCIS 2005 Lecture
Notes in Computer Science, eds P. Yolum, T. Güngör, F. Gürgen, and C. Özturan
(Berlin: Springer), 284–293. doi: 10.1007/11569596_31

Przulj, N., Corneil, D. G., and Jurisica, I. (2004). Modeling interactome: scale-
free or geometric? Bioinformatics 20, 3508–3515. doi: 10.1093/bioinformatics/
bth436

Raghavan, U. N., Albert, R., and Kumara, S. (2007). Near linear time algorithm to
detect community structures in large-scale networks. Phys. Rev. E 76:036106.

Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. (2005). Graph kernels for
chemical informatics. Neural Netw. 18, 1093–1110. doi: 10.1016/j.neunet.2005.
07.009

Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D.,
Robinson, J. T., et al. (2014). A 3D map of the human genome at kilobase
resolution reveals principles of chromatin looping. Cell 159, 1665–1680. doi:
10.1016/j.cell.2014.11.021

Rosvall, M., and Bergstrom, C. T. (2011). Multilevel compression of random walks
on networks reveals hierarchical organization in large integrated systems. PLoS
One 6:e18209. doi: 10.1371/journal.pone.0018209

Ryu, J. Y., Kim, H. U., and Lee, S. Y. (2018). Deep learning improves prediction
of drug–drug and drug-food interactions. Proc. Natl. Acad. Sci. U.S.A. 115,
E4304–E4311.

Saito, R., Suzuki, H., and Hayashizaki, Y. (2002). Interaction generality, a
measurement to assess the reliability of a protein-protein interaction. Nucleic
Acids Res. 30, 1163–1168. doi: 10.1093/nar/30.5.1163

Saraph, V., and Milenkoviæ, T. (2014). MAGNA: maximizing accuracy in global
network alignment. Bioinformatics 30, 2931–2940. doi: 10.1093/bioinformatics/
btu409

Schwikowski, B., Uetz, P., and Fields, S. (2000). A network of protein-protein
interactions in yeast. Nat. Biotechnol. 18, 1257–1261. doi: 10.1038/82360

Serrano, M. Á, Boguñá, M., and Sagués, F. (2012). Uncovering the hidden geometry
behind metabolic networks. Mol. Biosyst. 8, 843–850.

Sharan, R., and Ideker, T. (2006). Modeling cellular machinery through biological
network comparison. Nat. Biotechnol. 24, 427–433. doi: 10.1038/nbt1196

Sharan, R., Ulitsky, I., and Shamir, R. (2007). Network-based prediction of protein
function. Mol. Syst. Biol. 3:88.

Singh, R., Xu, J., and Berger, B. (2008). Global alignment of multiple protein
interaction networks with application to functional orthology detection.
Proc. Natl. Acad. Sci. U.S.A. 105, 12763–12768. doi: 10.1073/pnas.08066
27105

Sridhar, D., Fakhraei, S., and Getoor, L. (2016). A probabilistic approach for
collective similarity-based drug–drug interaction prediction. Bioinformatics 32,
3175–3182. doi: 10.1093/bioinformatics/btw342

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). “LINE: large-
scale information network embedding,” in Proceedings of the 24th International
Conference on World Wide Web WWW ’15 (Geneva: International World Wide
Web Conferences Steering Committee), 1067–1077.

Tenenbaum, J. B. (2000). A global geometric framework for nonlinear
dimensionality reduction. Science 290, 2319–2323. doi: 10.1126/science.290.
5500.2319

Tutte, W. T. (1963). How to draw a graph. Proc. Lond. Math. Soc. 3, 743–767.
Usoskin, D., Furlan, A., Islam, S., Abdo, H., Lönnerberg, P., Lou, D., et al. (2015).

Unbiased classification of sensory neuron types by large-scale single-cell RNA
sequencing. Nat. Neurosci. 18, 145–153. doi: 10.1038/nn.3881
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The key processes in biological and chemical systems are described by networks of

chemical reactions. Frommolecular biology to biotechnology applications, computational

models of reaction networks are used extensively to elucidate their non-linear dynamics.

The model dynamics are crucially dependent on the parameter values which are often

estimated from observations. Over the past decade, the interest in parameter and state

estimation in models of (bio-) chemical reaction networks (BRNs) grew considerably. The

related inference problems are also encountered in many other tasks including model

calibration, discrimination, identifiability, and checking, and optimum experiment design,

sensitivity analysis, and bifurcation analysis. The aim of this review paper is to examine

the developments in literature to understand what BRN models are commonly used,

and for what inference tasks and inference methods. The initial collection of about 700

documents concerning estimation problems in BRNs excluding books and textbooks in

computational biology and chemistry were screened to select over 270 research papers

and 20 graduate research theses. The paper selection was facilitated by text mining

scripts to automate the search for relevant keywords and terms. The outcomes are

presented in tables revealing the levels of interest in different inference tasks andmethods

for given models in the literature as well as the research trends are uncovered. Our

findings indicate that many combinations of models, tasks and methods are still relatively

unexplored, and there are many new research opportunities to explore combinations that

have not been considered—perhaps for good reasons. The most common models of

BRNs in literature involve differential equations, Markov processes, mass action kinetics,

and state space representations whereas the most common tasks are the parameter

inference and model identification. The most common methods in literature are Bayesian

analysis, Monte Carlo sampling strategies, and model fitting to data using evolutionary

algorithms. The new research problems which cannot be directly deduced from the text

mining data are also discussed.

Keywords: automation, Bayesian analysis, biochemical reaction network, estimation, inference, modeling, survey,

text mining

1. INTRODUCTION

Biological systems are presently subject to extensive research efforts to ultimately control the
underlying biological processes. The challenge is the level of complexity of these systems with
intricate dependencies on the internal and external conditions. Biological systems are inherently
non-linear, dynamic as well as stochastic. Their responses to input perturbations are often
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difficult to predict as they may respond differently to the same
inputs. Moreover, biological phenomena must be considered at
different spatio-temporal scales, from single molecules to gene-
scale reaction networks.

Many biological systems can be conveniently represented as
biological circuits (Zamora-Sillero et al., 2011), or as networks
of biochemical reactions (Ashyraliyev et al., 2009). Common
examples of biological systems which can be described as
BRNs are: metabolic networks, signal transduction networks,
gene regulatory networks (GRNs), and more generally, the
networks of biochemical pathways.Moreover, BRNs share similar
characteristics with evolutionary and prey-predatory networks
in population biology, and disease spreading networks in
epidemiology. Synthetic bio-reactors and other types of chemical
reactors used in industrial production are other examples of
BRNs (Ali et al., 2015).

Qualitative as well as quantitative observations of biological
systems are necessary to elucidate their functional and structural
properties. Despite the advent of high throughput experiments,
the biological phenomena are often only partially observed. Since
the internal system state cannot be fully nor directly observed,
it must be inferred from the measurements. Such inferences
are possible due to the dependency of observations on the
internal states and parameter values (Fröhlich et al., 2017).
Single molecule techniques are promising for advancing the cell
biology as they enable more focused observations, however, their
resolution and dimensionality is still limited.

The observations in experiments are often distorted and noisy,
and involve some form of averaging. Extended models can be
assumed for the measurements involving distortion (Ruttor and
Opper, 2009). The measurement noise may not be additive nor
Gaussian, and its variance may be dependent on the values
of other parameters. The parameter values may differ for in
vitro and in vivo experiments (Famili et al., 2005). In systems
comprising chemical reactions, the parameters of interest are
usually initial and instantaneous concentrations, reaction rates

Abbreviations: ABC, approximate Bayesian computation, artificial bee colony;

ABM, agent based model; AR, alternating regression; CCA, canonical correlation

analysis; CDIS, conditional density importance sampling; CGA, continuous

genetic algorithm; CLE, chemical Langevin equation; CME, chemical master

equation; CRO, chemical reaction optimization; CS, compressive sensing;

CTMC, continuous time Markov chain; CTMP, continuous time Markov

process; DE, differential evolution; DLR, deep learning; EKF, extended Kalman

filter; EM, expectation-maximization; EP, expectation propagation; FA, firefly

algorithm; FDM, finite differences method; GLR, generalized linear regression;

GLR, generalized linear regression; GP, genetic programming; HDL, hardware

description language; KF, Kalman filter; LFM, linear fractional model; LNA, linear

noise approximation; LS, least squares; MAP, maximum a posterior; MC, Monte

Carlo; MCEM, MC expectation-maximization; MCMC, MC Markov Chain; MES,

maximum entropy sampling; ML, maximum likelihood; MLR, machine learning;

MM, method of moments; MMSE, minimum mean square error; NLP, non-
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NLSQ, non-linear least squares; ODE, ordinary differential equation; PDF, portable

document format, probability density function; PMC, population Monte Carlo;
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SA, simulated annealing; SMC, sequential Monte Carlo; SMCMC, sequential

Markov chain Monte Carlo; SS, scatter search; SSE, sum of squared errors, system

size expansion; SLR, systematic literature review; TLR, transfer learning; UKF,

unscented Kalman filter.

and possibly other kinetic constants including the diffusion
and drift coefficients. The molecular concentrations can be
usually measured directly whereas the other parameters must
be inferred from measurements (Fröhlich et al., 2017). The
parameter inferences as well as measurements can be performed
sequentially (online) or in batches (off-line) (Arnold et al., 2014).

In BRNs, the number of chemical species is usually much
smaller than the number of chemical reactions. In some cases,
it may be useful to estimate the number of reactions between
consecutive measurements (Reinker et al., 2006). The structural
identifiability of a chemical reaction system is affected by which
reactions are occurring.

The observations at possibly non-equidistant time instances
represent longitudinal data which can be used to create
or validate mathematical models. The rate of discrete time
observations is important (Fearnhead et al., 2014), since more
frequent observations can be costly, and affect the observed
biological processes. Processing the large volumes of data is
also computationally demanding. The observations and their
processing can be merged to create so-called observers in
order to replace the high-cost sensors in chemical reactors
(Rapaport and Dochain, 2005). Observers can be classified as
explanatory or predictive to describe the existing or future data,
respectively (Ali et al., 2015). Observers can process discretized
and delayed measurements, and yield the interval measurements
of quantities with a variable observation gain (Vargas et al., 2014).
The average state observers of large-scale systems are defined
in Sadamoto et al. (2017).

The dynamics of biological processes can be elucidated from
their mathematical models. The importance of modeling in
biology is discussed in Chevaliera and Samadb (2011), and
general modeling strategies are described in Banga and Canto
(2008). The research problems in biology dictate what physical
and chemical processes must be included in the models. It is
usually more efficient to only collect the observations which are
necessary to formulate and test a biological hypothesis than to
perform extensive, time consuming and expensive laboratory
experiments. Such a strategy is referred to as a forward modeling
(Reinker et al., 2006). On the other hand, finding the parameter
values to reproduce the observations can be enhanced by the
experiment design, and it is known as a reverse modeling
(Hagen et al., 2013). The differences between forward and reverse
modeling strategies are explained in Ashyraliyev et al. (2009).

The models of biological systems are dependent on the in
vivo or in vitro experiments considered. BRNs can be modeled
as deterministic input-output non-linear transformations
which can be sometimes locally linearized at a given time
scale and resolution. The models can be modified using
additional transformations to facilitate their analysis. Apart from
deterministic models, there are also stochastic, event-driven and
probabilistic models of BRNs. When the number of species is
large, the stochastic models converge to deterministic models
(Rempala, 2012). The same model used multiple times can
represent a biological population (Woodcock et al., 2011).

Biological models need to be unbiased in order to avoid
systematic errors. Since they are usually evaluated many
times, they need to be computationally fast, and at the right
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level of coarse grain description. For instance, microscopic
stochastic models may be computationally expensive whereas
a deterministic macroscopic description, such as population-
average modeling may not be sufficiently accurate due to a low
level of resolution.

Development of large-scale kinetic systems is one of the
key tasks in contemporary computational biology (Penas et al.,
2017). The corresponding models can be multidimensional
and have 100’s or even 1000’s of parameters, and constraints
while the initial conditions are not known. The models can
be hierarchical or nested, and have parts interconnected by
multiple feedback loops (Rodriguez-Fernandez et al., 2013).
The parameter estimation for large-scale reaction networks is
considered in Remlia et al. (2017).

The model analysis can yield the transient responses of a
biological system, and to obtain the behavior at steady state
or in equilibrium (Atitey et al., 2018a). It may be also useful
to explore complex multi-dimensional parameter spaces. The
viable parameter values of many models of biological systems
form only a small fraction of the overall parameter space (Atitey
et al., 2019), so identifying this sub-volume by simple sampling
is rather inefficient (Zamora-Sillero et al., 2011). The model
analysis is further complicated by the size of the state space,
the number of unknown parameters, the analytical intractability,
and various numerical problems. Evaluation of the observation
errors can both facilitate as well as validate the model analysis
(Bouraoui et al., 2015).

The majority of analytical and numerical methods can be
used universally for models with different structures. The
efficiency of model analysis can be considered in the statistical
or computational sense. In the statistical sense, the analysis
needs to be robust against the uncertainty in model structure
and the parameter values estimated from noisy and limited
observations. The computational efficiency can be achieved by
developing the algorithms which are prone to massively parallel
implementations (Nobile et al., 2012).

In this review paper, we are primarily concerned with the
parameter inference in biological and chemical systems described
by various models of BRNs. We use the terms inference and
estimation interchangeably. In the literature, the parameter
inference is also referred to as an inverse problem (Engl
et al., 2009), point estimation, model calibration and model
identification. The key objective of the parameter inference is to
minimize a suitably defined estimation error while suppressing
the effects of measurement errors (Sadamoto et al., 2017). More
recently, machine learning methods are becoming popular as
an alternative to learn not only the model parameters, but also
to learn the model features from the labeled and unlabeled
observations (Sun et al., 2012; Schnoerr et al., 2017).

The parameter inference is affected by many factors. For
instance, different models experience a different degree of
structural identifiability. Provided that different parameter values
or different inputs generate the same dynamic response, such
as the statistics of synthesized molecules, the model parameters
cannot be identified, or can only be partially identified. In some
cases, the structural identifiability can be overcome by changing
the modeling strategy (Yenkie et al., 2016). The structural
identifiability is a necessary but not sufficient condition for the

overall model identifiability (Gábor et al., 2017). A relationship
between the identifiability and observability is discussed in
Baker et al. (2011). The practical identifiability (also known
as a posterior identifiability) assesses whether there is enough
data to suppress the measurement noises. It may be beneficial
to test the identifiability of the parameters of interest prior to
attempting their inference. For instance, the parameters may
not be identifiable at a given time scale, or the data may not
have sufficient dimensionality (variability) or volume. The lack of
suitable data makes the inference problem to be ill conditioned. A
crucial issue is then how well the parameters need to be known in
order to answer a given biological question. However, in all cases,
it is important to validate the obtained estimates.

Sensitivity analysis can complement as well as support the
parameter estimation (Saltelli et al., 2004; Fröhlich et al., 2016).
In particular, the parameters can be ranked in the order of
their importance, from the most easy to the most difficult to
estimate. The parameters can be screened using a small amount
of observations to select those which are identifiable prior to their
inference from a full set of data. Other tasks in sensitivity analysis
include prioritizing the parameters, testing their independence,
and fixing or identifying the important regions of their values.
A survey of methods used for the sensitivity analysis in BRNs
is provided in Saltelli et al. (2005). The sensitivity profiles
of 180 biological models were compared and analyzed in
Erguler and Stumpf (2011).

In the rest of this paper, our main objective is to survey the
models and methods which have been used in the literature
to perform the parameter and state inferences in BRNs. After
explaining our methodology in Section 2, different modeling
strategies for BRNs are outlined in Section 3. It is followed by
a survey of the estimation methods for BRNs and the related
computational tasks in Section 4. Since the performance and
effectiveness of estimation methods is crucially dependent on
the specific models adopted, in Section 5, we explore what
methods are used in literature for given models, and also,
what estimation methods are used in given tasks. This enables
us to uncover the possible future research directions in sub-
section 5.1. We also mention several inference techniques which
are used in other fields, but which can likely be assumed
for BRNs.

Our contributions are 3-fold, and they are structured as the
following surveys:

1. Models and modeling strategies of BRNs;
2. Parameter estimation methods, strategies and related tasks for

models of BRNs;
3. Combinations of models and parameter estimation methods

and tasks for BRNs.

The first version of this review appeared online as
Loskot et al. (2019).

2. METHODOLOGY

It is important to define first the scope of our comprehensive
review in order to understand its aims and constraints. In
particular, there are at least 14 types of literature reviews
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which differ in their purpose, methodology, and limitations
(Grant and Booth, 2009). For example, the literature review
can be systematic (SLR) to a various degree (Tranfield et al.,
2003). The purpose of SLR is to answer an a priori formulated
question or hypothesis using a clearly defined procedure of
searching and examining the literature, so that it can be
reproduced by others. The SLRs are particularly suitable for the
evidence (data) based research fields as in biology and medicine
(Grant and Booth, 2009).

However, the main purpose of our review is to present a
comprehensive and critical overview of the models and methods
which have been popular in literature to perform different
inference tasks in BRNs. Such a review is known as the
traditional or narrative literature review (NLR) (Onwuegbuzie
and Frels, 2016). The outcome of NLR is state-of-the art of
current knowledge, and identifying knowledge gaps, patterns,
and emerging trends which can guide future research. The
present review is comprehensive in the sense of striving to collect
and categorize as many models and methods for inferences in
BRNs as possible in order to provide a reference for further
research on this topic. It leaves out the requirement for the review
to be systematic and reproducible. We also cannot guarantee
that all important and relevant papers in the field were identified
or considered.

Our review resumed by collecting a relatively large number
of representative and otherwise relevant papers. The papers were
first identified using various keyword searches in Google. The
subsequent more refined searches were performed in Google
Scholar which also provides information on the citing papers,
and contains the collections of papers by individual authors. Our
intention was to specifically consider the papers on inference
problems in BRNs; there are many other papers which are
concerned with methods and strategies for general dynamic
systems. We have also considered a number of graduate research
theses which are publicly accessible online. The theses were
evaluated separately from the papers. Moreover, we decided
to exclude electronic books and textbooks from our study as
their coverage is normally rather broad, and their contents
processing would require to identify and extract chapters into
separate files.

Almost 700 electronic documents in the portable document
format (PDF) were collected from various sources using
the following search keywords and their combinations:
biochemical, network, model, inference, estimation, parameters,
and identification. The initially collected papers were manually
evaluated whether they are sufficiently relevant to the purpose
of our study. For example, many papers involving parameter
estimation in general dynamic systems were discarded unless
they were deemed to have some other value for our review.While
evaluating the papers, we were updating 2 lists of keywords.
The first list contains keywords representing the models of
BRNs, such as state-space, differential equation, Markov chain,
and similar. The second keyword list describes the inference
methods, for example, Bayesian, MCMC, least squares, and
other. The keywords were used to perform more focused
searches for additional papers, and to screen and classify the
already collected papers. In the end, we assumed 25 BRN

FIGURE 1 | A workflow for processing the PDF files to automate the

production of the BIBTEX reference file, and the LATEX tables with statistical data.

models and 23 inference methods, and also defined the 5
inference-related tasks: estimation, inference, identifiability,
observability, reachability, experiment design, bifurcation analysis,
and sensitivity analysis.

All PDF documents were converted into ordinary text files
to enable text mining of their contents. The text files were
scanned to find occurrences of the keywords from the 2 lists
defined above using the regular expressions representing textual
patterns. The papers containing sufficiently large number of
keywords were kept whereas the papers that did not pass the
test were manually checked before being discarded. It allowed
us to quickly reduce the number of papers from 700 to <300.
There is a trade-off between the strictness (i.e., reliability) of
the automated paper selection and possibility to automatically
discard some papers, and how many of the remaining papers
have to be checked manually. We observed that a small
number of occurrences of a keyword usually indicates that the
keyword appeared mainly within the references of the paper.
A high-level view of our paper selection process is depicted
in Figure 1.

As the number of published papers is increasing exponentially,
there is clearly a need to develop new tools to facilitate
more automated paper selection and pre-screening (Loskot,
2018). In order to automate many text processing tasks and
enable evaluation of the 100’s of papers in our study, we took
advantage of the text processing capabilities readily available on
the Linux operating systems. In particular, all PDF files were
first converted to ordinary text files with the ascii encoding
of characters (UTF-8) and the transliterated special characters
in the foreign alphabets. The conversion was done using the
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standard pdftotext utility version 0.62 which is based on the
open source Poppler library developed for rendering the PDF
files. The PDF conversion is not and does not have to be 100%
accurate. For example, the words containing characters which
are not recognized can be omitted. Moreover, some words are
occasionally split into several parts which can be detected using
a dictionary. However, such undesirable cases can be largely
neglected for our purposes. It is also useful to remove the end-
of-line characters from within the paragraphs, and to merge parts
of the paragraphs which were split by displayed equations or by
page breaks in order to improve the searches for more complex
text patterns.

The scripts to automate many text processing tasks were
programmed in the BASH interpreter version 4.4 running
in a Linux terminal. The scripts use extensively standard
Linux tools including grep, sed, and awk programmable text
filters. In particular, the scripts were used to automatically
identify and count relevant papers, generate LaTeX tables
to visualize the results, facilitate semi-automated creation of
bibliographic entries in the master BibTeX file, and to obtain
URL links for citing papers in Google Scholar (Table S3). The
keyword searches can assume multiple terms combined in
sophisticated hierarchical expressions with AND-OR operators,
include conditions on the number of occurrences, and sort the
results as required.

However, the adopted procedure and the tools we developed
for identifying and selecting the most relevant papers have some
limitations. In particular, the paper selection and text mining
in our study is restricted to keyword searches using regular
expressions. A certain level of manual processing is still required,
although it is likely that this can be reduced with future versions
of the tools. A fully automated paper analysis with minimum
human interventions would require the use of natural language
processing (NLP). The NLP libraries are already available in
many programming languages, but it is outside the scope of the
present paper.

Furthermore, our study is mostly concerned with inferences
of parameters and states whereas the inferences of network
structures (i.e., which chemical reactions are occurring) is
omitted. Our classification of models and methods have been
developed to facilitate the analysis of trends and patterns in the
literature. For instance, some models and methods considered
in the next sections may be related, or a special case of one
another. However, for the purpose of our study, the models and
methods are presented as they appear in the cited references.
In addition, although we generally distinguish between the
deterministic and stochastic inference methods, we do not make
such strict distinction between the deterministic and stochastic
models. It should be also noted that many references can be
cited in multiple contexts, i.e., for several models or methods
considered. In many cases, the papers are chosen as illustrative
examples for a given model or method, so they are likely many
other important references which could be cited. Finally, more
complete information how the papers cited in this review are
related to the assumed models and methods is given in the
Supplementary Tables.

3. REVIEW OF MODELING STRATEGIES
FOR BRNS

Mathematical models describe dependencies of observations on
the model parameters. A general procedure for constructing
mathematical models of biological systems is described in Chou
and Voit (2009). The bio-reactors are mathematically described
in Vargas et al. (2014), Ali et al. (2015), and Farza et al. (2016). The
model building is an iterative process which is often combined
with the optimum experiment design (Rodriguez-Fernandez
et al., 2006b). The model structure affects the selection as well
as the performance of parameter estimators. The structural
identifiability and validity of multiple models together with the
parameter sensitivity was considered in Jaqaman and Danuser
(2006). The parameter estimation can be performed together
with the discrimination among several competing models, for
instance, when the model structure is only partially known.
The model structure and the parameter values to achieve the
desired dynamics can be obtained by the means of statistical
inference (Barnes et al., 2011). The synthesis of parameter
values for BRNs is also considered in Češka et al. (2017).
The probabilistic model checking can be used to facilitate the
robustness analysis of stochastic biochemical models (Česka
et al., 2014). The model checking is investigated in a number of
references including Palmisano (2010), Brim et al. (2013), Česka
et al. (2014), Mizera et al. (2014), Hussain et al. (2015), Mancini
et al. (2015), Češka et al. (2017), and Milios et al. (2018). An
iterative, feedback dependent modularization of models with the
parameters identification was devised in Lang and Stelling (2016).
A selection among several hierarchical models assuming Akaike
information was studied in Rodriguez-Fernandez et al. (2013).

Modeling strategies of BRNs often involve the kinetics of
chemical reactants which are described by the law of mass
action or by the rate law (Schnoerr et al., 2017). Both these
laws model the dependency of chemical reaction rates on the
species concentrations. The reaction kinetics can be considered
at steady state or in the transition to steady state, although the
steady state may not be always achieved. There are also other
kinetic models, such as the Michaelis-Menten kinetics for the
enzyme-substrate reactions (Rumschinski et al., 2010), the Hill
kinetics for cooperative ligand binding to macromolecules (Fey
and Bullinger, 2010), the kinetics for logistic growth models in
GRNs (Ghusinga et al., 2017), the kinetics for the birth-death
processes (Daigle et al., 2012), and the stochastic Lotka-Volterra
kinetics which are associated with the prey-predatory networks
(Boys et al., 2008).

Single molecule stochastic models describe BRNs qualitatively
by generating the probabilistic trajectories of species counts.
A BRN can be modeled as a sequence of reactions occurring
at random time instances (Amrein and Künsch, 2012). The
stochastic kinetics mathematically correspond to a Markov jump
process with the random state transitions between the species
counts (Andreychenko et al., 2012). Alternatively, the time
sequence of chemical reactions can be viewed as a hiddenMarkov
process (Reinker et al., 2006). The Markov jump processes can
be simulated exactly using the classical Gillespie algorithm, so
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that the competing reactions are selected assuming a Poisson
process with the intensity proportional to the species counts
(Golightly et al., 2012; Kügler, 2012), although, in general, the
intensity can be an arbitrary function of the species counts. The
random occurrences of reactions can be also described using the
hazard function (Boys et al., 2008). Non-homogeneous Poisson
processes can be simulated by the thinning algorithm of Lewis
and Shedler (Sherlock et al., 2014).

The number of species in BRN and their molecule counts
can be large, so the state space of the corresponding continuous
time Markov chain (CTMC) model is huge (Angius and
Horváth, 2011). The large state space can be truncated by
considering only the states significantly contributing to the
parameter likelihood (Singh and Hahn, 2005). The parameter
likelihoods can be updated iteratively assuming the increments
and decrements of the species counts (Lecca et al., 2009). The
probabilistic state space representations of BRNs as dynamic
systems were considered in Andreychenko et al. (2011), Gupta
and Rawlings (2014), McGoff et al. (2015), and Schnoerr et al.
(2017). An augmented state space representation of BRN derived
from the ordinary differential equations (ODEs) is obtained in
Baker et al. (2013).

More generally, mechanistic models of BRNs are obtained by
assuming that biological systems are built up from the actual
or perceived components which are governed by the physical
laws (Hasenauer, 2013; Pullen and Morris, 2014; White et al.,
2016; Fröhlich et al., 2017). It is a different strategy to empirical
models which are reverse-engineered from observations (Geffen
et al., 2008; Bronstein et al., 2015; Dattner, 2015). The black-
box modeling can be assumed with some limitations when there
is little knowledge about the underlying biological processes
(Chou and Voit, 2009).

Many models containing multiple unknown parameters are
often poorly constrained. Even though such models may be
still fully identifiable, they are usually ill-conditioned, and often
referred to as being sloppy (Toni and Stumpf, 2010; Erguler
and Stumpf, 2011; White et al., 2016). The parameter estimation
and experimental design for sloppy models are investigated in
Mannakee et al. (2016) where it is shown that the dynamic
properties of sloppy models usually depend only on several
key parameters with the remaining parameters being largely
unimportant. A sequence of hierarchical models with increasing
complexity was proposed in White et al. (2016) to overcome the
complexity and sloppiness of conventional models.

3.1. Modeling BRNs by Differential
Equations
The time evolution of states with the probabilistic transitions is
described by a chemical master equation (CME) (Andreychenko
et al., 2011; Weber and Frey, 2017). The CME is a set of
coupled first-order ODEs or partial differential equations (PDEs)
(Fearnhead et al., 2014; Penas et al., 2017; Teijeiro et al., 2017)
representing a continuous time approximation and describing
the BRN quantitatively. The ODE model of a BRN can be
also derived as a low-order moment approximation of the
CME (Bogomolov et al., 2015). For the models with stochastic

differential equations (SDEs), it is often difficult to find the
transition probabilities (Karimi and Mcauley, 2013; Fearnhead
et al., 2014; Sherlock et al., 2014). The PDE approximation can
be obtained assuming a Taylor expansion of the CME (Schnoerr
et al., 2017). The error bounds for the numerically obtained
stationary distributions of the CME are obtained in Kuntz et al.
(2017). The CME for a hierarchical BRN consisting of the
dependent and independent sub-networks is solved analytically
in Reis et al. (2018). A path integral form of the ODEs has
been considered in Liu and Gunawan (2014) and Weber and
Frey (2017). The BRN models with memory described by the
delay differential equations (DDEs) are investigated in Zhan et al.
(2014). Themixed-effect models assumemultiple instances of the
SDE based models to evaluate statistical variations between and
within these models (Whitaker et al., 2017).

A comprehensive tutorial on the ODE modeling of biological
systems is provided in Gratie et al. (2013). The ODE models
can be solved numerically via discretization. For instance, the
finite differences method (FDM) can be used to obtain difference
equations (Fröhlich et al., 2016). However, the algorithms for
numerically solving the deterministic ODE models or simulating
the models with SDEs may not be easily parallelizable, and they
may have problems with numerical stability. The ODE models
are said to be stiff, if they are difficult to solve or simulate, for
example, if they comprise multiple processes at largely different
time scales (Sun et al., 2012; Cazzaniga et al., 2015; Kulikov
and Kulikova, 2017). Alternatively, the BRN structure can be
derived from its ODE representation (Fages et al., 2015). A
similar strategy is assumed in Plesa et al. (2017) where the BRN is
inferred from the deterministic ODE representation of the time
series data.

A survey of methods for solving the CME of gene expression
circuits is provided in Veerman et al. (2018). These methods
involve propagators, time-scale separation, and the generating
functions (Schnoerr et al., 2017). For instance, the time-scale
separation can be used to robustly decompose the CME into a
hierarchy of models (Radulescu et al., 2012). A reduced stochastic
description of BRNs exploiting the time-scale separation is
studied in Thomas et al. (2012).

If the deterministic ODEs cannot be solved analytically,
one can use Langevin and Fokker-Planck equations as the
stochastic diffusion approximations of the CME (Hasenauer,
2013; Schnoerr et al., 2017). The Fokker-Planck equation can
be solved to obtain a deterministic time evolution of the system
state distribution (Kügler, 2012; Liao et al., 2015; Schnoerr et al.,
2017). The deterministic and stochastic diffusion approximations
of stochastic kinetics are reviewed in Mozgunov et al. (2018).
The chemical Langevin equation (CLE) is a SDE consisting of
a deterministic part describing the slow macroscopic changes,
and a stochastic part representing the fast microscopic changes
which are dependent on the size of the deterministic part
(Golightly et al., 2012; Cseke et al., 2016; Dey et al., 2018).
In the limit, as the deterministic part increases, the random
fluctuations can be neglected, and the deterministic kinetics
described by the Langevin equation becomes the reaction rate
equation (RRE) (Bronstein et al., 2015; Fröhlich et al., 2016;
Loos et al., 2016).
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3.2. Modeling BRNs by Approximations
A popular strategy to obtain computationally efficient models is
to assume approximations, such as meta-heuristics and meta-
modeling (Sun et al., 2012; Cedersund et al., 2016). The quasi-
steady state (QSS) and quasi-equilibrium (QE) approximations
of BRNs are investigated in Radulescu et al. (2012). The
modifications of QSS models are investigated in Wong et al.
(2015). It is also common to approximate the system dynamics
assuming continuous ODEs or SDEs (Fearnhead et al., 2014).
The SDE model is preferred when the number of molecules is
small, since the deterministic ODE model may be inaccurate
(Gillespie and Golightly, 2012). It is generally difficult to
quantify the approximation errors in the diffusion-based models.
The forward-reverse stochastic diffusion with the deterministic
approximation of propensities by the observed data was
considered in Bayer et al. (2016).

The mass action kinetics can be used to obtain a deterministic
approximation of CME. The corresponding deterministic ODEs
can accurately describe the system dynamics, provided that the
molecule counts of all the species are sufficiently large (Sherlock
et al., 2014; Yenkie et al., 2016). Other CME approximations
assume the finite state projections, the system size expansion,
and the moment closure methods (Chevaliera and Samadb,
2011; Schnoerr et al., 2017). These methods are attractive,
since they are easy to implement and efficient computationally.
They do not require the complete statistical description, and
they achieve good accuracy if the species appear in large copy
numbers (Schnoerr et al., 2017). The moment closure methods
leading to the coupled ODEs can approach the CME solution
with a low computational complexity (Bogomolov et al., 2015;
Fröhlich et al., 2016; Schilling et al., 2016). Specifically, the
n-th moment of the population size depends on its (n + 1)
moment, and to close the model, the (n + 1)-th moment is
approximated by a function of the lower moments (Ruess et al.,
2011; Ghusinga et al., 2017). Only the first several moments
can be used to approximate the deterministic solution of CME
(Schnoerr et al., 2017). The limitations of the moment closure
methods are analyzed in Bronstein and Koeppl (2018). A
multivariate moment closure method is developed in Lakatos
et al. (2015) to describe the non-linear dynamics of stochastic
kinetics. The general moment expansion method for stochastic
kinetics is derived in Ale et al. (2013). The approximations
of the state probabilities by their statistical moments can be
used to conduct efficient simulations of stochastic kinetics
(Andreychenko et al., 2015).

The leading term of the CME approximation in the system
size expansion (SSE) method corresponds to a linear noise
approximation (LNA). It is the first order Taylor expansion of
the deterministic CME with a stochastic component where the
transition probabilities are additive Gaussian noises. Other terms
of the Taylor expansion can be included in order to improve
the modeling accuracy (Fröhlich et al., 2016). In Sherlock et al.
(2014), the LNA is used to approximate the fast chemical
reactions as a continuous time Markov process (CTMP) whereas
the slow reactions are represented as a Markov jump process
with the time-varying hazards. There are other variants of the
LNA, such as a restarting LNAmodel (Fearnhead et al., 2014), the

LNA with time integrated observations (Folia and Rattray, 2018),
and the LNA with time-scale separation (Thomas et al., 2012).
The LNA for the reaction-diffusion master equation (RDME) is
computed in Lötstedt (2018). The impact of parameter values on
the stochastic fluctuations in a LNA of BRN is investigated in
Pahle et al. (2012).

The so-called S-system model is a set of decoupled non-linear
ODEs in the form of product of power-law functions (Chou et al.,
2006; Meskin et al., 2011; Liu et al., 2012; Iwata et al., 2014). Such
models are justified by assuming a multivariate linearization in
the logarithmic coordinates. These models provide a good trade-
off between the flexibility and accuracy, and offer other properties
which are particularly suitable for modeling complex non-linear
systems. The S-system models with additional constraints are
assumed in Sun et al. (2012). The S-systemmodeling of biological
pathways is investigated in Mansouri et al. (2015). The S-system
model with weighted kinetic orders is obtained in Liu and
Wang (2008a). The Bayesian inference for S-system models is
investigated in Mansouri et al. (2014).

Polynomial models of biological systems are investigated in
Kuepfer et al. (2007), Vrettas et al. (2011), Fey and Bullinger
(2010), and Dattner (2015). Rational models as fractions of
polynomial functions are examined in Fey and Bullinger
(2010), Eisenberg and Hayashi (2014), and Villaverde et al.
(2016). The methods for validating polynomial and rational
models of BRNs are studied in Rumschinski et al. (2010).
The eigenvalues are used in Hori et al. (2013) to obtain
a low order linear approximation of the time series data.
More generally, the models with differential-algebraic equations
(DAEs) are considered in Ashyraliyev et al. (2009), Michalik
et al. (2009), Rodriguez-Fernandez et al. (2013), and Deng and
Tian (2014). These models have different characteristics than the
ODE based models, and they are also more difficult to solve.
The review of autoregressive models for parameter inferences
including the stability and causality issues is presented in
Michailidis and dAlchéBuc (2013).

3.3. Other Models of BRNs
There are many other types of BRN models considered in the
literature. The birth-death process is a special case of the CTMP
having only two states (Daigle et al., 2012; Paul, 2014; Zechner,
2014). It is closely related to a telegraph process (Veerman et al.,
2018). A computationally efficient tensor representation of BRNs
to facilitate the parameter estimation and sensitivity analysis is
devised in Liao et al. (2015). Other computational models for
a qualitative description of interactions and behavioral logic in
BRNs involve the Petri nets (Mazur, 2012; Sun et al., 2012;
Schnoerr et al., 2017), the probabilistic Boolean networks (Liu
et al., 2012; Mazur, 2012; Mizera et al., 2014), the continuous
time recurrent neural networks (Berrones et al., 2016), and the
agent based models (ABMs) (Hussain et al., 2015). The hardware
description language (HDL) originally devised to describe the
logic of electronic circuits is adopted in Rosati et al. (2018)
to model spatially-dependent biological systems with the PDEs.
The multi-parameter space was mapped onto a 1D manifold in
Zimmer et al. (2014).

Frontiers in Genetics | www.frontiersin.org 7 June 2019 | Volume 10 | Article 54979

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Loskot et al. Models and Methods for Inferences in BRNs

TABLE 1 | An overview of the main modeling strategies for BRNs.

Strategy Motivation and key papers

Physical laws Reaction rates in dynamic equilibrium are functions of reactant concentrations

• Kinetic rate laws Joshia et al., 2006; Chou and Voit, 2009; Engl et al., 2009; Baker et al., 2011; Villaverde et al., 2012; Voit, 2013

• Mass action kinetics Angius and Horváth, 2011; Lindera and Rempala, 2015; Wong et al., 2015; Smith and Grima, 2018

• Mechanistic models Chou and Voit, 2009; Pullen and Morris, 2014; von Stosch et al., 2014; White et al., 2016

Random processes Probabilistic behavioral description of chemical reactions

• Markov process Andrieu et al., 2010; Goutsias and Jenkinson, 2013; Septier and Peters, 2016; Weber and Frey, 2017

• Poisson process Daigle et al., 2012; Weber and Frey, 2017; Bronstein and Koeppl, 2018; Reis et al., 2018

• Birth-death process Wang et al., 2010; Daigle et al., 2012; Mikelson and Khammash, 2016; Weber and Frey, 2017

• Telegraph process Weber and Frey, 2017; Veerman et al., 2018

Mathematical models Adopted models for dynamic systems

• Quasi-state models Radulescu et al., 2012; Srivastava, 2012; Thomas et al., 2012; Wong et al., 2015; Liao, 2017; Schnoerr et al., 2017

• State space representation Andrieu et al., 2010; Andreychenko et al., 2011; Brim et al., 2013; Weber and Frey, 2017

• ODEs, PDEs, SDEs, DDEs J. O. Ramsay and Cao, 2007; Jia et al., 2011; Liu and Gunawan, 2014; Fages et al., 2015; Teijeiro et al., 2017; Weber

and Frey, 2017

• Path integral form of ODEs Weber and Frey, 2017

• Rational model Sun et al., 2012; Vanlier et al., 2013; Hussain et al., 2015; Villaverde et al., 2016

• Differential algebraic eqns. J. O. Ramsay and Cao, 2007; Ashyraliyev et al., 2009; Michalik et al., 2009; Deng and Tian, 2014

• Tensor representation Liao et al., 2015; Wong et al., 2015; Smith and Grima, 2018

• S-system model Kutalik et al., 2007; Chou and Voit, 2009; Meskin et al., 2011; Liu et al., 2012; Voit, 2013

• Polynomial model Vrettas et al., 2011; Češka et al., 2017; Kuntz et al., 2017; Weber and Frey, 2017

• Manifold map Radulescu et al., 2012; Mannakee et al., 2016; Septier and Peters, 2016; White et al., 2016

Interaction models Qualitative modeling of chemical interactions

• Petri nets Chou and Voit, 2009; Liu et al., 2012; Voit, 2013

• Boolean networks Chou and Voit, 2009; Emmert-Streib et al., 2012

• Neural networks Goutsias and Jenkinson, 2013; von Stosch et al., 2014; Ali et al., 2015; Camacho et al., 2018

• Agent based models Carmi et al., 2013; Goutsias and Jenkinson, 2013; Hussain et al., 2015; Jagiella et al., 2017

CME based models Stochastic and deterministic approximations of CME

• Langevin equation Thomas et al., 2012; Goutsias and Jenkinson, 2013; Septier and Peters, 2016; Schnoerr et al., 2017; Weber and Frey,

2017; Smith and Grima, 2018

• Fokker-Planck equation Liao et al., 2015; Schnoerr et al., 2017; Weber and Frey, 2017

• Reaction rate equation Koeppl et al., 2012; Liu and Gunawan, 2014; Lindera and Rempala, 2015; Loos et al., 2016

• Moment closure Ruess et al., 2011; Andreychenko et al., 2015; Lakatos et al., 2015; Schilling et al., 2016; Schnoerr et al., 2017;

Bronstein and Koeppl, 2018

• Linear noise approximation Golightly et al., 2012, 2015; Thomas et al., 2012; Fearnhead et al., 2014; Schnoerr et al., 2017; Whitaker et al., 2017

• System size expansion Fröhlich et al., 2016; Schnoerr et al., 2017

The hybrid models generally combine different modeling
strategies in order to mitigate various drawbacks of specific
strategies (Mikeev and Wolf, 2012; Sherlock et al., 2014; Babtie
and Stumpf, 2017). For example, a hybrid model can assume
deterministic description of large species populations with the
stochastic variations of small populations (Mikeev and Wolf,
2012). The hybrid model consisting of the parametric and
non-parametric sub-models can offer some advantages over
mechanistic models (von Stosch et al., 2014).

The modeling strategies discussed in this section are
summarized in Table 1. The models are loosely categorized
as physical laws, random processes, mathematical models,
interaction models and the CME based models. These models

are mostly quantitative except the interaction based models
which are qualitative. Note that the model properties, such as
sloppiness, and the model structures which may be hierarchical,
modular or sequential are not distinguished in Table 1.

In order to assess the level of interest in different BRN models
in literature, Table S1 presents the number of occurrences for
the 25 selected modeling strategies in all references cited in this
review. The summary of Table S1 is reproduced in Table 2 with
the inserted bar graph, and further visualized as a word cloud
in Figure 2. We observe that differential equations are the most
commonly assumed models of BRNs in the literature. About half
of the papers cited consider the Markov chain models or their
variants, since these models naturally and accurately represent
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TABLE 2 | The coverage of modeling strategies for BRNs.
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FIGURE 2 | A word cloud visualizing the levels of interest in different models of BRNs.

the time sequences of randomly occurring reactions in BRNs.
The state space representations are assumed in over one third of
the cited papers. Other more common models of BRNs include
the mass action kinetics, mechanistic models, and the models
involving polynomial functions.

Another viewpoint on BRN models in literature is to consider
the publication years of papers. Table 3 shows the number of
papers for a given modeling strategy in a given year starting from
the year 2005. The dot values in tables represent zero counts to
improve the readability. We can observe that the interest in some
modeling strategies remain stable over the whole decade, for
example, for themodels involving state space representations and
the models involving differential equations. The number of cited
papers is the largest in years 2013 and 2014. The paper counts in

Table 3 indicate that the interest in computational modeling of
BRNs has been increasing steadily over the past decade.

4. REVIEW OF PARAMETER ESTIMATION
STRATEGIES FOR BRNS

The parameter estimation or inference appears in many other
computational problems including model identification (Banga
and Canto, 2008), model calibration (Zechner et al., 2011),
model discrimination (Kuepfer et al., 2007), model identifiability
(Geffen et al., 2008), model checking (Hussain et al., 2015),
sensitivity analysis (Erguler and Stumpf, 2011), optimum
experiment design (Ruess and Lygeros, 2015), bifurcation
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TABLE 3 | The number of papers concerning models of BRNs in given years.

Physical

laws

Random

processes

Mathematical

models

Interaction

models

CME based

models

Y
e
a
r

K
in
e
tic

ra
te

la
w
s

M
a
ss

a
c
tio

n
k
in
e
tic

s

M
e
c
h
a
n
is
tic

m
o
d
e
ls

M
a
rk
o
v
p
ro
c
e
ss

P
o
is
so

n
p
ro
c
e
ss

B
ir
th
-d
e
a
th

p
ro
c
e
ss

Te
le
g
ra
p
h
p
ro
c
e
ss

S
ta
te

sp
a
c
e
re
p
re
se

n
ta
tio

n

O
D
E
s,

P
D
E
s,

S
D
E
s,

D
D
E
s

R
a
tio

n
a
lm

o
d
e
l

D
iff
e
re
n
tia

la
lg
e
b
ra
ic
e
q
n
s.

Te
n
so

r
re
p
re
se

n
ta
tio

n

S
-s
ys
te
m

m
o
d
e
l

P
o
ly
n
o
m
ia
lm

o
d
e
l

M
a
n
ifo
ld

m
a
p

P
e
tr
in
e
ts

B
o
o
le
a
n
n
e
tw

o
rk
s

N
e
u
ra
ln
e
tw

o
rk
s

A
g
e
n
t
b
a
se

d
m
o
d
e
ls

L
a
n
g
e
vi
n
e
q
u
a
tio

n

F
o
k
k
e
r-
P
la
n
c
k
e
q
u
a
tio

n

R
e
a
c
tio

n
ra
te

e
q
u
a
tio

n

M
o
m
e
n
t
c
lo
su

re

L
in
e
a
r
n
o
is
e
a
p
p
ro
xi
m
a
tio

n

S
ys
te
m

si
ze

e
xp

a
n
si
o
n

2005 3 3 1 2 2 . . 4 5 . 2 . . . . . . . . 1 2 . . . .

2006 2 4 2 2 . . . 2 3 4 1 . 1 3 . . . 2 . . . . . . .

2007 . 4 1 3 2 . . 2 6 1 1 . 2 4 2 . . 1 1 1 . . . . .

2008 1 4 2 2 1 . . 6 6 1 1 . 2 2 1 . . 2 . . . 1 . . .

2009 4 7 2 5 1 . . 6 11 1 2 1 4 2 2 2 2 2 3 1 1 . . 1 .

2010 7 11 5 12 3 1 . 8 13 6 2 . 4 5 5 1 1 2 5 7 2 1 . 2 .

2011 5 4 5 11 4 . . 10 13 2 . . 3 4 1 . . 2 2 4 2 2 2 2 .

2012 6 11 6 22 11 3 . 15 20 6 4 1 5 6 3 2 3 6 7 9 6 1 4 9 .

2013 7 9 12 16 8 3 . 17 26 9 3 1 7 12 4 2 . 3 7 6 2 2 4 4 .

2014 8 13 14 33 11 4 . 26 33 7 4 2 5 14 2 1 3 7 6 7 5 5 10 9 .

2015 7 10 8 15 5 2 . 20 24 5 1 2 3 10 4 2 1 1 3 4 4 . 6 5 .

2016 4 8 13 20 5 2 . 14 23 4 1 2 3 11 5 1 2 5 7 6 3 3 7 8 2

2017 4 8 8 14 11 6 1 12 18 7 4 8 . 10 7 1 1 4 4 6 5 2 8 5 2

2018 4 8 4 11 8 1 1 7 14 5 . 3 . 5 . 1 . 1 2 4 3 2 4 5 .

analysis (Engl et al., 2009), reachability analysis (Tenazinha and
Vinga, 2011), causality analysis (Carmi et al., 2013), stability
analysis (Dochain, 2003), network inference (Smet and Marchal,
2010), and network control (Venayak et al., 2018). A chemical
reaction optimization (CRO) can be used to maximize the
production of a bio-reactor (Abdullah et al., 2013b). The surveys
of parameter estimation methods for chemical reaction systems
can be found, for example, in Chou and Voit (2009), Gupta
(2013), Baker et al. (2015), andMcGoff et al. (2015). Other review
papers on parameter estimation in BRNs and dynamic systems
are listed in Table 4.

A survey of tasks concerning modeling and system
identification is provided in Chou and Voit (2009). The
model identifiability determines which parameters can be
estimated from observations (Villaverde et al., 2016). It is
inspired by the concept of system observability and known as
a structural identifiability. It is useful to consider the structural
identifiability prior to estimating the parameters. There is
also a practical identifiability which accounts for the quality and
quantity of observations, i.e., whether it is possible to obtain good
parameter estimates from noisy and limited data. The theory

and tools for the model identifiability and other closely related
concepts, such as the sensitivity to parameter perturbations,
the observability, the distinguishability and the optimum
experiment design are reviewed in Villaverde and Barreiro
(2016). The models which are not identifiable can be modified
or simplified to make them identifiable (Baker et al., 2015;
Villaverde and Barreiro, 2016; Villaverde et al., 2016). The model
identifiability is formulated as the model observability in Geffen
et al. (2008) by replacing traditional analytical approaches which
often require model simplifications with other deterministic
empirical methods.

The changes in the structural and practical identifiability
of models when new knowledge and data become available is
studied in Babtie and Stumpf (2017). The global observability
and detectability of reaction systems was studied in Moreno and
Denis (2005). The parameter identifiability of the power law
models is investigated in Srinath and Gunawan (2010) and of
the linear dynamic models in Li and Vu (2013). The parameter
dependencies are considered in Li and Vu (2015) to determine
the structural and practical identifiability. The intrinsic noise in
the species counts can be exploited to overcome the structural
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TABLE 4 | The review papers on the parameter estimation in BRNs and other dynamic systems.

Reference Focus

Banga and Canto, 2008 Model calibration using global optimization methods supported by maximum information experiment design

Chou and Voit, 2009 Very comprehensive survey of available optimization methods for parameter estimation and model-free and model-based

structure identification from data

Ashyraliyev et al., 2009 A priori and a posteriori model identifiability and survey of parameter space search strategies

Smet and Marchal, 2010 Methods for under-determined inferences of BRNs from data

Tenazinha and Vinga, 2011 Integrated models of BRNs reflecting availability of omics data assuming chemical organization theory, flux-balance analysis,

logical discrete modeling, Petri nets, kinetic models, stochastic models, and hybrid models

Daigle et al., 2012 Survey of maximum-likelihood based methods

Emmert-Streib et al., 2012 Systematic and conceptual overview of methods for inferring gene regulatory networks from gene expression data; survey of

strategies to compare performance of inference methods

Sun et al., 2012 Survey of metaheuristic methods applied to reliability and identifiability of biochemical model parameters including optimum

experiment design

Goutsias and Jenkinson, 2013 Comprehensive review of analytical methods for evaluating dynamics of Markov reaction networks

Kuwahara et al., 2013 Scalable framework for parameter estimation in genetic circuits assuming mean time evolution of gene products

Voit, 2013 Review of biological system models and methods for their analysis as well as design

Baker et al., 2015 General framework to deal with non-identifiable parameters in BRNs using constrained parameter estimation

McGoff et al., 2015 Mathematical survey of statistical methods for parameter inference in general non-linear dynamical systems

Drovandi et al., 2016 Survey of approximate Bayesian computation methods

Kurt et al., 2016 Review of 27 estimators of association scores of data from gene networks

Weiss et al., 2016 Survey of transfer learning methods

Schnoerr et al., 2017 A comprehensive survey of deterministic and stochastic models of BRNs followed by introduction to Bayesian parameter

inference from data

Camacho et al., 2018 Application of machine learning techniques to computational problems in biological networks

Smith and Grima, 2018 Review of spatial stochastic kinetics including reaction-diffusion master equation and models involving Brownian dynamics

Koblents et al., 2019 Bayesian inference methods with stochastic kinetic models

non-identifiability within a deterministic framework as shown in
Zimmer et al. (2014).

In general, many different parameter estimation methods
have been devised in literature for BRNs and dynamic systems.
However, many of these methods are often modifications of a
few fundamental estimation strategies which are adopted for the
specific models and the availability and quality of measurements.
All parameter estimation problems lead to the minimization or
maximization of some fitness function. Deriving the optimum
value analytically is rarely possible whereas a numerical search
for the optimum in high-dimensional parameter spaces can be
ill-conditioned when the fitness function is multi-modal. The
numerical strategies normally experience a trade-off between the
efficiency and robustness. If there is a large flat surface about the
minimum, the obtained solution cannot be trusted (Rodriguez-
Fernandez et al., 2006a; Srinivas and Rangaiah, 2007). Moreover,
the optimum values can change over an order of magnitude
under different implicit or explicit constraints which is often the
case for biological systems. The numerical algorithms for non-
convex optimization problems need to be stable as well as provide
the convergence guarantees. Other important aspects to consider
include scalability, computational efficiency, numerical stability
and robustness. All methods need to be also statistically validated.

The measurements can be produced from different
heterogeneous sources (omics data), and from heterogeneous
populations (Zechner et al., 2011). In literature, the deterministic

methods appear to be assumed much more often than the
stochastic methods (Daigle et al., 2012). The parameter
estimation in deterministic models is often carried out by
fitting the model to the data. The parameter uncertainty
analysis can be used to assess how well the model explains
the experimental data (Vanlier et al., 2013). The stochastic
models require more sophisticated strategies to perform
parameter estimation (Zimmer and Sahle, 2012), such as
the multiple-shooting methods (Zimmer, 2016). Moreover,
since the mean approximation of SDEs may differ from the
solution obtained for deterministic ODEs, the parameter
estimation assuming stochastic rather than deterministic models
is preferable when some of the species counts are relatively small
(Andreychenko et al., 2012).

The parameter estimations in the transient and at steady
state are quite different (Ko et al., 2009). At steady state, small
perturbations are sufficient to observe the system responses
whereas at the transient state, the experiment design for
model identification is more complicated. A fast transient
response after the external perturbation limits the information
content in measurements (Zechner et al., 2012). The sensitivity
analysis can be used to improve the computational efficiency
of parameter estimation (Fröhlich et al., 2017). The parameter
value boundaries can be estimated by sampling (Fey and
Bullinger, 2010). The confidence and credible intervals can
be obtained also for the stiff and sloppy models assuming
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the inferability, sensitivity and sloppiness (Erguler and Stumpf,
2011). Furthermore, the observer design may be different for
systems with and without inputs (Singh and Hahn, 2005).

The scalability of parameter estimation can be resolved by
decoupling the rate equations and by assuming the mean-
time evolution of the species counts (Kuwahara et al., 2013).
However, exploring large parameter spaces can be complicated,
if the estimation problems are ill-conditioned and multi-modal
(Liu and Wang, 2009). The state-dependent Markov jump
processes are difficult to estimate at large scale, especially
when these processes are faster than the rate of observations
(Fearnhead et al., 2014).

The model parameters can be mutually dependent (Fey
et al., 2008). The parameter dependencies can be measured by
correlations and other higher order moments. The parameter
estimation can be facilitated by grouping the parameters, and
then identifying which are uncorrelated (Gábor et al., 2017).
The parameter estimation in groups can provide robustness
against the noisy and incomplete data (Jia et al., 2011). Only
the parameters which are consistent with the measured data can
be selected and jointly estimated (Hasenauer et al., 2010). The
parameter clustering can also improve the model tractability and
identifiability, since the changes in some parameters could be
compensated by changes in other parameters (Nienaltowski et al.,
2015). The groupings of parameters to elucidate the dynamics
of genetic circuits are assumed in Atitey et al. (2019). The
parameters can be assumed hierarchically to gradually estimate
their values starting from a suitably defined minimum set
(Shacham and Brauner, 2014). A hybrid hierarchical parameter
estimation method which is prone to parallel implementation is
devised in He et al. (2004).

An incremental parameter estimation usually requires data
smoothing which can create the estimation biases (Liu and
Gunawan, 2014). Such biases can be mitigated by estimating
the independent parameters before the dependent ones. The
parameter inference can be paired with the hypothesis testing
and model selection (Rodriguez-Fernandez et al., 2013). The
joint model and parameter identification with incremental one-
at-a-time parameter estimation and model building is performed
in Gennemark and Wedelin (2007). The unobserved states,
latent variables and other parameters in BRNs can be estimated
jointly by sequentially processing the measurements (Zimmer
and Sahle, 2012; Arnold et al., 2014), by using the sliding window
observers (Liu et al., 2006), and by other numerical methods
(Karnaukhov et al., 2007). The estimation of kinetic rates in
BRNs is transformed into a problem of the state estimation in
Fey and Bullinger (2010). The parameter estimation and the state
reconstruction are linked via the extended models in Busetto and
Buhmann (2009). The unobservable sub-spaces can be excluded,
and only the model parts which are identified reliably can
be considered (Singh and Hahn, 2005). Another strategy is to
reconstruct the states prior to estimating the parameters (Fey
et al., 2008). The unknown parameters which are not of interest
can be margninalized (Bronstein et al., 2015).

Themodel overfitting leads to a poor generalization capability.
In order to avoid the overfitting and to constrain the model
complexity, a penalty can be assumed to minimize the number

of estimated model parameters. The overfitting can be resolved
by the model reduction techniques (Srivastava, 2012; Sadamoto
et al., 2017). For instance, only essential chemical reactions can
be considered in BRN model (Zamora-Sillero et al., 2011). A
simplified modeling with the reduced number of parameters and
the parameter subset selection is used in Eghtesadi and Mcauley
(2014) to avoid overfitting the noisy data. On the other hand, the
under-determined models may yield several or infinitely many
solutions of fitting the data. In such cases, the models are not
identifiable, and the data fitting can be performed subject to
additional constraints. There are also cases where the measured
data can be fit well by several models. However, the model with
the best fit to the data may not necessarily provide a satisfactory
biological explanation (Slezak et al., 2010).

The information theoretic metrics can be used to infer the
structure of BRNs (Villaverde et al., 2014), and to perform
the identifiability analysis of parameters (Nienaltowski et al.,
2015). Akaike information is used to assess the quality of
statistical models given observations, so the best model can be
selected (Guillén-Gosálbez et al., 2013; Pullen and Morris, 2014).
The simultaneous estimation of parameters and the structure
of BRN formulated as a mixed binary dynamic optimization
problem with Akaike information is assumed in Guillén-
Gosálbez et al. (2013) to trade-off the estimation accuracy and the
evaluation complexity. Fisher information is the mean amount of
information gained from the observed data. It is often used when
estimating the non-random parameters, for instance, using the
maximum likelihood (ML) (Rodriguez-Fernandez et al., 2006b;
Kyriakopoulos and Wolf, 2015). Fisher information can be
exploited to perform the sensitivity, robustness and identifiability
of parameters. It is especially useful when the measurements
and parameters are correlated (Komorowski et al., 2011). Fisher
information is also used to improve the parameter estimation
(Transtrum and Qiu, 2012), to design the optimum experiments
(Kyriakopoulos and Wolf, 2015; Zimmer, 2016), and to select
the subsets of identifiable parameters (Eisenberg and Hayashi,
2014). Mutual information can be used as a similarity measure. It
statistically outperforms correlations in the canonical correlation
analysis (CCA) (Nienaltowski et al., 2015). Other uses of mutual
information are outlined in Mazur (2012), and for the parameter
estimation in Emmert-Streib et al. (2012).

The cross-entropy methods can be combined with stochastic
simulations (Revell and Zuliani, 2018), and used to improve
the computational efficiency of the parameter estimation (Daigle
et al., 2012). The maximum entropy sampling (MES) methods
for the experiment design and for the parameter estimation are
discussed in Mazur and Kaderali (2013). The maximum entropy
principle to reconstruct the probability distributions is described
in Schnoerr et al. (2017). The relative entropy rate is assumed
in Pantazis et al. (2013) to perform the sensitivity analysis
of BRNs. The Kantorovich distance between two probability
measures is used in Koeppl et al. (2010) to estimate the BRN
model parameters.

The sum of squared errors (SSE) is often assumed to define the
regression estimators (Chou et al., 2006), to evaluate the goodness
of fit, and to assess the quality of estimators (Nim et al., 2013;
Iwata et al., 2014; Kimura et al., 2015). The SSE acronym should
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TABLE 5 | The selected research theses concerning the parameter estimation and related problems in BRNs.

Thesis Main research focus

Dargatz, 2010 Bayesian inference for biochemical models involving diffusion

Mu, 2010 Rate and state estimation in S-system and linear fractional model (LFM)

Palmisano, 2010 Software tools for modeling and parameter estimation in BRNs

Mazur, 2012 Inference via stochastic sampling and Bayesian learning framework

Srivastava, 2012 Stochastic simulations of BRNs combined with likelihood based parameter estimation, confidence intervals, sensitivity analysis

Gupta, 2013 Parameter estimation in deterministic and stochastic BRNs, inference with model reduction, mostly MCMC methods

Hasenauer, 2013 Bayesian estimation and uncertainty analysis of population heterogeneity and proliferation dynamics

Linder, 2013 Penalized LS algorithm and diffusion and linear noise approximations and algebraic statistical models

Flassig, 2014 Model identification for large scale gene regulatory networks

Liu, 2014 Approximate Bayesian inference methods and sensitivity analysis

Moritz, 2014 Structural identification and parameter estimation for modular and layered type of modes

Paul, 2014 Analysis of MCMC based methods

Ruess, 2014 Optimum estimation and experiment design assuming ML and Bayesian inference and Fisher information

Schenkendorf, 2014 Quantification of parameter uncertainty, optimal experiment design for parameter estimation and model selection

Smadbeck, 2014 Moment closure methods, model reduction, stability and spectral analysis of BRNs

Zechner, 2014 Inference from heterogeneous snapshot and time-lapse data

Schnoerr, 2016 Langevin equation, moment closure approximations, representations of stochastic RDME

Galagali, 2016 Bayesian and non-Bayesian inference in BRNs, adaptive MCMC methods, network-aware inference, inference for approximated BRNs

Hussain, 2016 Sequential probability ratio test, Bayesian model checking, automated and formal verification, parameter discovery

Lakatos, 2017 Multivariate moment closure and reachability analysis

Liao, 2017 Tensor representation and analysis of BRNs

not be confused with the system size expansion (SSE) which is
a modeling strategy discussed previously (Fröhlich et al., 2016;
Schnoerr et al., 2017).

Furthermore, the graduate research theses usually contain
more or less comprehensive and up to date surveys of the relevant
literature. The theses which are concerned with the parameter
estimation in BRNs are summarized in Table 5. We can observe
that the largest number of the research theses involving the
parameter estimation problems in BRNs were produced in 2014.

In the rest of this section, we will survey specific methods for
the parameter estimation in BRNs. These methods are organized
in the following four subsections: Bayesian methods, Monte
Carlo methods, other statistical methods including Kalman
filtering, and the model fitting methods.

4.1. Bayesian Methods
The fundamental premise of the Bayesian estimation methods
is that the prior probabilities or distributions of parameters
are known. The objective is then to evaluate the posterior
distributions for the parameters of interest. It is often sufficient
to find the maximum value of the posterior distribution as
the maximum a posterior (MAP) estimate. The value of this
maximum can be also used to select among several competing
models (Andreychenko et al., 2012) and to design the optimum
experiments (Mazur, 2012). The model checking via the time-
bounded path properties is represented as the Bayesian inference
problem in Milios et al. (2018). The conjugate priors are often
assumed in biological models to perform the Bayesian inferences
(Boys et al., 2008; Mazur, 2012; Murakami, 2014; Galagali, 2016).

The Bayesian inference for the low copy counts can be improved
by separating the intrinsic and extrinsic noises (Koeppl et al.,
2012). The Bayesian analysis is facilitated by separating the
slow and fast reactions in Sherlock et al. (2014). The Bayesian
inference strategies for biological models involving diffusion
processes are investigated in Dargatz (2010).

In many cases, determining the exact posterior distribution in
the Bayesian analysis is analytically intractable. The approximate
Bayesian computation (ABC) is a computational strategy for
estimating the posterior distribution or the likelihood function
(Tanevski et al., 2010). The survey of ABC approaches is provided
in Drovandi et al. (2016). The basic idea is to find the parameter
values which can generate the same statistics as the observed
data. The ABC can be performed sequentially, and used for the
sensitivity analysis (Liu, 2014). The parameter estimation and the
model selection using the ABC framework is studied in Liepe
et al. (2014) and Murakami (2014). The non-identifiability of
parameters due to the flat-shaped posterior can be resolved by
the ABC approach as shown in Murakami (2014). The efficient
generation of summary statistics for the ABC is presented in
Fearnhead and Prangle (2012). The piece-wise ABC to estimate
the posterior density for Markov models is proposed in White
et al. (2015). The parallel implementations of the ABC and SMC
methods are introduced in Jagiella et al. (2017).

The expectation-maximization (EM) is a popular
implementation of the MAP estimators where there are
some other unobserved or unknown parameters (Daigle et al.,
2012; Karimi and Mcauley, 2014a; Bayer et al., 2016). The EM
can be combined with the Monte Carlo (MC) sampling, and
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such methods are known as the MC expectation-maximization
(MCEM) (Angius and Horváth, 2011). The computationally
efficient method for obtaining the ML estimates by the MCEM
with a modified cross-entropy method (MCEM2) is developed
in Daigle et al. (2012). The approximate EM algorithm is devised
in Karimi and Mcauley (2013) which is robust against the
unknown initial estimates, and which is useful for the online
state estimation during the process monitoring.

Another parameter estimation strategy having the same
structure as the EM is known as the variational Bayesian
inference (Vrettas et al., 2011; Weber and Frey, 2017). It is
more general than the EM method, and it exploits the analytical
approximations of the posterior density to obtain the parameter
estimates and their likelihoods. The analytical approximations
are usually computationally faster than the sampling based
methods, but the approximation methods are still less well-
understood (Blei et al., 2017). For instance, the posterior density
is approximated by radial basis functions (RBFs) in Fröhlich
et al. (2014) to reduce the number of model evaluations.
The variational inference with stochastic approximations for
Gaussian mixture models and massive data is considered in Blei
et al. (2017). The variational approximate inference with the
continuous time constraints is investigated in Cseke et al. (2016).

TheML estimation is a popular parameter estimation strategy,
provided that the likelihoods of the observed data can be
computed efficiently for the givenmodel. The survey ofML based
methods for the parameter estimation in BRNs is provided in
Daigle et al. (2012). The likelihood function can be approximated
analytically using the Laplace and the B-spline approximations
(Karimi and Mcauley, 2014b), or numerically by assuming the
derivatives (Mikeev and Wolf, 2012). The likelihood function
is obtained by simulations in Tian et al. (2007). The moment
closure is used for the fast approximations of the parameter
likelihoods in Milner et al. (2013). Stochastic simulations can
be avoided by approximating the transition distributions by the
Gaussian distribution in the parameter likelihood calculations
(Zimmer and Sahle, 2015). In Chen et al. (2017), the transition
probabilities are used in the ML calculations to devise the new
estimation algorithmwhich can improve the variational Bayesian
inference. The ML estimation combined with regularization to
penalize the complexity is investigated in Jang et al. (2016).
The ML estimation for BRN models with the concentration
increments and decrements is studied in Lecca et al. (2009).

4.2. Monte Carlo Methods
The motivation behind the MC methods is to represent the
probabilities and density functions as the relative frequencies
of samples or particles in order to overcome mathematical
intractability of the Bayesian inference. However, even the
sampling methods can be computationally overwhelming due
to frequent model evaluations. The Markov chain Monte Carlo
(MCMC) methods are the most often used sampling strategies to
generate conditional trajectories of the system states. TheMCMC
sampling having good mixing properties requires a carefully
chosen proposal distribution and also a good selection of the
initial samples in order to avoid the sample degeneracy and
instability problems. The most well-known sampling MCMC

procedures are the Metropolis and the Metropolis-Hastings
algorithms (Golightly andWilkinson, 2011; Zamora-Sillero et al.,
2011; Mazur, 2012; Galagali, 2016). An overview of the particle
filtering and the MCMC methods for the spatial objects tracking
is presented in Mihaylova et al. (2014). The MCMC methods
for causality reasoning are introduced in Carmi et al. (2013).
The design of proposal distributions for the MCMC and the
SMC methods assuming a large number of correlated variables
is studied in Andrieu et al. (2010).

Since the convergence rate of the MCMC sampling can be
rather slow for heavy tail distributions, the factorization and
approximations of the posterior can be used to improve the
performance (Fröhlich et al., 2014). The MCMC methods can
be made adaptive to improve their convergence properties as
shown in Mazur (2012); Müller et al. (2012); Hasenauer (2013);
Galagali (2016). The interpolation of the observed data via the
MCMC sampling is assumed in Golightly and Wilkinson (2005)
to jointly estimate the unobserved states and reaction rates.
The MCMC sampling can be combined with the importance
sampling to reduce the computational complexity and simulation
times (Golightly et al., 2015). The conditional density importance
sampling (CDIS) is introduced in Gupta and Rawlings (2014) as
an alternative to the MCMC parameter estimation.

A strategy for dealing with high-dimensional sampling
problems is to combine the particle filters with the MCMC
methods to obtain the sequential MCMC (SMCMC) algorithms
(Septier and Peters, 2016). The MCMC methods for high-
dimensional systems are compared in Septier and Peters (2016).
The population MC (PMC) sampling framework to perform the
Bayesian inference in high-dimensional models is developed in
Koblents and Míguez (2011).

The Bayesian inference via the MC sampling utilizing the
stochastic gradient descent is studied in Wang et al. (2010).
The parameter likelihoods are calculated by combining the MC
global sampling with the locally optimum gradient methods
in Kimura et al. (2015). The nested Bayesian sampling is
used in Pullen and Morris (2014) to compute the marginal
likelihoods, and to compare or rank several competing models.
The MCMC sampling for the mixed-effects SDE models is
considered in Whitaker et al. (2017). In order to overcome
the ill-conditioned least squares (LS) data fitting and the
associated numerical instability problems, the bootstrapped MC
procedure based on the diffusion and the LNA was proposed in
Lindera and Rempala (2015).

The sequential MC (SMC) methods represent the posterior
distribution by a set of samples referred to as particles (Gordon
et al., 1993; Doucet et al., 2001; Tanevski et al., 2010; Yang
et al., 2014), so these methods are also known as particle
filters (Gordon et al., 1993; Doucet et al., 2001; Lillacci and
Khammash, 2012; Golightly et al., 2015). The particle filters
assume specific types of random processes to identify the
posterior while bounding the computational complexity for
the models with large number of parameters (Mikelson and
Khammash, 2016). The particle filters are shown to be more
robust than the LS data fitting, if the data statistics are exploited
(Lillacci and Khammash, 2012). The SMC methods for the joint
estimation of states and parameters are developed in Nemeth
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et al. (2014). The degeneracy phenomenon commonly occurring
in particle filters can be mitigated by more efficient sampling
strategies (Golightly and Kypraios, 2017). A parallelization of
the SMC computations is devised in Mihaylova et al. (2012).
More efficient generation and processing of particles to improve
the computational efficiency of particle filters is investigated in
Golightly et al. (2019). The computationally efficient particle
MCMC (pMCMC) method is devised in Koblents and Míguez
(2014) and Koblents et al. (2019). The pMCMC method can
be combined with the diffusion approximation (Golightly and
Wilkinson, 2011), and further refined to improve its scalability
(Golightly and Kypraios, 2017). The proposal distribution for
the Bayesian analysis is obtained using the pMCMC sampling
in Sherlock et al. (2014). The proposal samples for calculating
the marginal likelihoods are obtained for the CLE and the LNA
approximations in Golightly et al. (2015).

4.3. Other Statistical Methods
The key assumption for using the standard Kalman filter is the
linearity of measurements. The Kalman filter is used with the
CME approximation and the noise covariance estimation in Dey
et al. (2018) while allowing for the dependency of the noise
statistics on the states and parameter values. The Kalman filter
is used to obtain the initial guess of the parameter values for
the subsequent parameter estimation by data fitting in Lillacci
and Khammash (2010). The Kalman filter can be merged with
the particle filters to perform the inferences in stochastic (Vrettas
et al., 2011) as well as deterministic systems (Arnold et al., 2014).
The Kalman filter for the time integrated observations is assumed
in Folia and Rattray (2018).

Since the BRNs are generally highly non-linear, the extended
and unscented Kalman filters (EKFs and UKFs) must be assumed
(Baker et al., 2011). The EKF was modified for stiff ODEs in
Kulikov and Kulikova (2015a) and Kulikov and Kulikova (2017).
The joint estimation of parameters and states by the EKF is
investigated in Sun et al. (2008) and Ji and Brown (2009). The
EKF is combined with the moment closure methods in Ruess
et al. (2011), and it is modified for the parameter estimation in
the S-system models in Meskin et al. (2011). A hybrid method
combining the EKF and the particle swarm optimization (PSO)
for the joint estimation of parameters and states is developed
in Zeng et al. (2012). A modified EKF to penalize the modeling
uncertainty due to linearization errors is proposed in Xiong
and Zhou (2013) which improves the estimation accuracy. The
square-root UKF achieves good numerical stability, and it can
also assume the state constraints (Baker et al., 2013, 2015).
For infrequent sampling and sparse observations, the UKF and
the cubature Kalman filter outperform the EKF (Kulikov and
Kulikova, 2015b, 2017).

The classical bootstrapping with data replication and
resampling to enable the repeated estimations is described
in Vanlier et al. (2013). The bootstrapping can be also used
to obtain the confidence intervals of the parameter estimates
(Joshia et al., 2006; Srivastavaa and Rawlingsb, 2014), and to
improve the computational efficiency in recomputed model
trajectories (Lindera and Rempala, 2015). The bootstrap filter can
outperform the EKF (Gordon et al., 1993).

There are also many other less commonly used inference
strategies which have not been mentioned so far. For instance,
the Gaussian smoothing to compensate for the missing and noisy
data is used in Sun et al. (2012). The parameter estimation
assuming a non-linear ODE model combined with the data
smoothing was investigated in J. O. Ramsay and Cao (2007). The
inference of the state distribution via the optimized histograms
and statistical fitting is performed in Atitey et al. (2018b). A
formal verification and the sequential probability ratio test for
the parameter estimation are considered in Hussain (2016).
The moment closure modeling is combined with stochastic
simulations for the parameter estimation in Bogomolov et al.
(2015). A generalized method of moments incorporating the
empirical sample moments is performed in Kügler (2012);
Lück and Wolf (2016) whereas the moment based methods for
the parameter estimation and the optimum experiment design
are considered in Ruess and Lygeros (2015). The expectation
propagation (EP) for the approximate Bayesian inference is
studied in Cseke et al. (2016). The Lyapunov exponent can be
used to infer the level of predictability of the dynamic systems
including BRNs (Barnes et al., 2011; McGoff et al., 2015).

4.4. Model Fitting Methods
The parameter estimation by fitting the measured data appears to
be by far themost commonly usedmethod in literature. Themain
reason is that, unlike other estimation strategies, the data fitting
problem is relatively easy to formulate with minimum knowledge
and assumptions. It is possible to consider multiple fitness
functions. Various continuous and discrete fitness functions are
explored in Deng and Tian (2014). The fitness function can be
derived from the likelihood function (Rodriguez-Fernandez et al.,
2006a), or the approximated likelihood function (Srivastavaa and
Rawlingsb, 2014).

Even though the derivative free methods are easier to
implement, the gradient based methods have faster albeit only
local convergence. For instance, the gradient based optimization
with sensitivity analysis assuming finite differences is investigated
in Loos et al. (2016). The derivative free methods are necessary
for the combinatorial and the integer constrained problems
(Cedersund et al., 2016; Gábor et al., 2017).

The challenge is to develop numerically efficient methods
to solve high-dimensional problems with possibly many
constraints. The observations are interpolated with the spline
functions in Nim et al. (2013), so that the derivatives can be
used to estimate the production and consumption of molecules
in BRNs. It decomposes a high-dimensional problem into the
product of low-dimensional factors. The fitness function is
interpolated with the spline functions in Zhan and Yeung (2011).

The data fitting is generally more computationally demanding
for stochastic than for deterministic models, but the former is
more likely to find a global solution (Rodriguez-Fernandez et al.,
2006b). Since many practical optimization problems are non-
convex, the global optimization methods are generally preferred.
They can be implemented as multi-start or multi-shooting
local methods, or by selecting a subset of parameters to be
estimated. The sensitivity to initial values can be reduced by
trackingmultiple solutions.Many of thesemethods can be readily
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TABLE 6 | Common evolutionary algorithms for the parameter estimation in BRNs and dynamic systems.

Algorithm Motivation and selected papers

Genetic algorithms (GAs) Largest class of EAs, inspired by evolution and natural selection, often near optimum solution

Matsubara et al., 2006; Tian et al., 2007; Besozzi et al., 2009; Chou and Voit, 2009; Liu et al., 2012; Sun et al., 2012

Genetic programming (GP) Evolution of computer programs toward improving their fitness to solve a given task

Chou and Voit, 2009; Sun et al., 2012; Nobile et al., 2013

Evolutionary programming (EP) Parameters of computer program evolve toward improving its fitness to solve a given task

Baker et al., 2010; Sun et al., 2012; Revell and Zuliani, 2018

Simulated annealing (SA) Probabilistic search combining sampling with random but controlled acceptance of candidate solutions

Ashyraliyev et al., 2009; Chou and Voit, 2009; Dai and Lai, 2010; Sun et al., 2012; Hussain et al., 2015; Cedersund et al., 2016

Differential evolution (DE) Derivative free method, linearly combining randomly selected candidate solutions to obtain iterative improvements

Srinivas and Rangaiah, 2007; Liu and Wang, 2009; Chong et al., 2012, 2014; Sun et al., 2012; Teijeiro et al., 2017

Scatter search (SS) Often combined with tabu search, it is local search with temporarily accepting worse solutions and avoiding already visited regions

Rodriguez-Fernandez et al., 2006a; Villaverde et al., 2012; Cedersund et al., 2016; Penas et al., 2017; Remlia et al., 2017

Particle swarm optimiz. (PSO) Derivative free method, moving particles (i.e., samples or candidate solutions) toward better solution

Besozzi et al., 2009; Abdullah et al., 2013c; Sun et al., 2014; Cazzaniga et al., 2015; Nobile et al., 2016; Tangherloni et al., 2016

parallelized to overcome the computational burden (Mancini
et al., 2015; Teijeiro et al., 2017). The parallel implementations
of data fitting algorithms including Spark, MapReduce, and MPI
messaging are considered in Teijeiro et al. (2017). Recently, the
implementations exploiting the affordable graphical processing
units (GPUs) have become popular (Nobile et al., 2012). The
computational complexity of global methods can be mitigated by
the incremental identification strategies (Michalik et al., 2009).
The global methods also require to properly set the search
parameters which can be done via multiple initial exploratory
runs (Penas et al., 2017). Another global search strategy assumes
a model transformation followed by the non-uniform sampling
(Kleinstein et al., 2006). There are also hybrid strategies switching
between the global and local searches (Rodriguez-Fernandez
et al., 2006a,b; Ashyraliyev et al., 2009).

The majority of data fitting methods are rooted in the simple
LS regression, or assume the non-linear least squares (NLSQ)
(Baker et al., 2011). The alternating regression (AR) reformulates
the non-linear fitting as an iterative linear regression problem
(Chou et al., 2006). The non-linear regression is converted into a
non-linear programming problem which is solved by the random
drift PSO in Sun et al. (2014). The asymptotic properties of the
LS estimation were evaluated in Rempala (2012). The iterative
linear LS for systems described by a ratio of linear functions is
considered in Tian et al. (2010).

The regularization is a strategy to deal with the ill-conditioned
optimization problems due to insufficient or noisy data (Gábor
and Banga, 2014; Gábor et al., 2017). The regularization
introduces additional constraints to penalize the complexity, or it
uses prior knowledge to constrain the parameter values to trade-
off the estimator bias with its variance in order to avoid themodel
overfitting (Liu et al., 2012; Kravaris et al., 2013; Jang et al., 2016).
Alternatively, the perturbation method has been developed for
fitting the data in Shiang (2009).

The evolutionary algorithms (EAs) are the most frequently
used methods for solving the high-dimensional constrained

optimization problems. They do not require any particular
assumptions, and they are not limited by the dimensionality of
the problem. The EAs adopt various heuristic strategies to find
the optimum assuming the population of candidate solutions
which are iteratively improved by reproduction, mutation,
crossover or recombination, selection and other operations until
the fitness or loss function reaches the desired value. The specific
EAs commonly used in literature for the identification of BRNs
and other dynamic systems are summarized in Table 6. Several
EAs and the PSO methods are compared in Nobile et al. (2018b).
Different EAs are compared with other deterministic search
methods in Mendes and Kell (1998).

The cuckoo search utilizes random sub-populations which
can be discarded to improve the solution (Rakhshania et al.,
2016). The optimization programs include non-linear simplex
method (Cazzaniga et al., 2015), non-linear programming (NLP)
(Moles et al., 2003; Zhan and Yeung, 2011; Sun et al., 2012;
Rodriguez-Fernandez et al., 2013), semi-definite programming
(Kuepfer et al., 2007; Rumschinski et al., 2010), and quadratic
programming (Gupta, 2013). The Nelder-Mead method (also
known as the downhill simplex method) maintains a simplex of
the test points which evolve until the data fit is found (Abdullah
et al., 2013a). The quantifier elimination (QE) is used to simplify
the constrained optimization problems (Anai et al., 2006). Other
examples of the nature inspired algorithms include the firefly
algorithm (FA) (Abdullah et al., 2013a,b) and the artificial bee
colony (ABC) algorithm (Chong et al., 2014). Neural networks
are becoming popular especially due to multi-layer deep learning
methods. Other tasks encountered in traditional neural networks
involve training, overfitting, smoothing, and the mean value
approximations (Matsubara et al., 2006; Chou and Voit, 2009; Ali
et al., 2015; Berrones et al., 2016). The parallel implementation of
the scatter search for large-scale systems is devised in Villaverde
et al. (2012) and Penas et al. (2017).

The benefits of individual optimization methods can be
utilized by adaptively combining different algorithms. For
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TABLE 7 | The coverage of the parameter estimation methods for BRNs.

Tasks Measures Bayesian methods Monte Carlo Kalman filter Model fitting XLR
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FIGURE 3 | A word cloud visualizing the levels of interest in different parameter estimation methods and tasks for models of BRNs.

instance, the DE is combined with the tabu search in Srinath and
Gunawan (2010), and another hybrid DE method is considered
in Liu and Wang (2008b). The genetic programming and the
PSO are combined in Nobile et al. (2013), the multi-swarm
PSO is considered in Nobile et al. (2012), and the fuzzy logic
based PSO is developed in Nobile et al. (2015), Nobile et al.
(2016), and Nobile et al. (2018a). The regularization, pruning
and the continuous genetic algorithm (CGA) are combined in
Liu et al. (2012).

Machine learning (MLR) methods can be very effective
provided that there is enough training data drawn from some
fixed distribution (Pan and Yang, 2010). If there are not enough
labeled data, or the generating distribution changes in time, it

may be better to employ transfer learning (TLR) methods which
exploit data from multiple domains (Pan and Yang, 2010; Weiss
et al., 2016; Azab et al., 2018). A primer on the MLR and the deep
learning (DLR) methods for biological networks is provided in
Camacho et al. (2018).

The survey of 5 estimation tasks and 23 estimation methods
for BRNs identified in the references listed at the end of this
paper is provided in Table S2. This table is summarized in
Table 7 for convenience, and the corresponding word cloud
is shown in Figure 3. Other tasks related to the parameter
estimation which are commonly used in literature are the model
identifiability, the parameter observability, and the reachability
analysis. The information theoretic measures are assumed
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relatively often as an alternative to the probabilistic measures
to define the rigorous inference problems. The parameter
identification by model fitting appears to be the most common
strategy in literature. The Bayesian analysis which accounts
for the prior distribution of parameters is often performed
numerically by adopting the MCMC and other statistical
i sampling methods.

In order to visualize a timeline of interest in different
parameter estimation methods, Table 8 contains the numbers
of cited papers concerning the specific estimation methods and
tasks in given years. As for the methods in Table 3, we can
observe that the general interest appears to have peaked in 2014,
although the considerable interest has remained strong over
the past decade. This indicates that the parameter estimation
strategies are closely related to the modeling strategies as
discussed previously.

5. CHOICES OF MODELS AND METHODS
FOR INFERENCES IN BRNS

We now evaluate what BRN models are preferred with the
different parameter estimation strategies, and also explore
what parameter estimation methods are assumed in different
parameter estimation tasks. The models and the estimation tasks
and methods are the same as those considered in Tables 2, 7,
respectively.

Table 9 shows the number of papers concerning given BRN
models and given estimation strategies. The paper counts were
adjusted to exclude papers which were deemed to onlymarginally
consider a given combination of the BRN model and the
estimation task or method. In particular, the papers containing
<5 occurrences of the search keywords for either a given
model, task or method were excluded. We can observe that
the parameter inference tasks have been considered for all the
BRN models, however, some models have been investigated
much more than the others. The most popular models for the
parameter inferences and other related tasks are the models
involving differential equations, Markov processes, and state
space representations. The second most popular group of models
considered for the parameter estimation include the S-system
and polynomial models, and the moment closure and the
LNA models.

The sensitivity analysis using the information theoretic
measures and evaluation of the confidence and credible intervals
have been considered for most BRN models. The sensitivity
analysis has somewhat similar use of models as the parameter
inference, except the level of interest in the former is about
ten times smaller. Moreover, the sensitivity analysis is often
combined with the bifurcation analysis, so the latter may not be
referred to explicitly in many papers. The optimum experiment
design has been assumed for several models, but there seems to be
no clear model preference. The sum of squares measure is likely
quite underestimated inTable 9, since it is often assumedwithout
being explicitly referred to.

The probabilistic MAP and ML measures have been
assumed for all model types. In many cases, the corresponding

inference tasks involve the prior and posterior distributions
and probabilities, and the parameter likelihoods. The variational
Bayesian and the ABCmethods are mostly used with the Markov
processes, since this is where they were originally developed for
whereas the Markov processes can be derived from differential
equations. The EM method is mostly used with the differential
equations. The MC based sampling methods including particle
filters are important for practical implementation of the Bayesian
inference strategies. However, these methods seem to be rarely
used with less popular BRN models. Similar comments can be
made about the Kalman filtering, the LS regression, and most
of the data fitting methods considered. The PSO method has
been mainly considered with the models involving differential
equations, and to some extent also with several other models.
There are several BRN models which are not assumed with other
inference algorithms, such as neural networks.

The statistical learning methods including MLR, DLR and
TLR are still used sporadically compared to the other methods
discussed so far. Consequently, it is still difficult to identify which
BRN models in literature are preferred for statistical learning.
The statistical learning requires enough training data as well
as some level of time invariance in order to find generalized
descriptions of systems, and to make predictions from the data.
However, as the interest in applications of the MLR techniques
continues to grow, and the efficiency of learning from data
improves, it will also affect suitability of the MLR techniques for
use with the different BRN models.

Another interesting viewpoint is to evaluate what inference
methods are used for different inference tasks. The numbers of
papers for given combinations of the inference tasks and the
inference methods are provided in Table 10. With one exception,
there is at least one paper for each such combination, however,
the level of interest varies considerably. In particular, the largest
number of papers for all the inference tasks considered assume
the Bayesian analysis and the methods for the model fitting to
data. On the other hand, the sum of squared errors, the UKF, and
the PSO methods are generally the least assumed. As discussed
previously, the sum of squared errors is used often, but rarely
mentioned explicitly whereas the UKF and the PSO methods are
usually rather difficult to implement.

Assuming Table 10, we can compare the levels of interest for
two or more methods and the given inference task. For example,
the EM and the MCMC methods are used equally often for
the sensitivity analysis whereas the MCMC method is preferred
over the EM method for the identifiability task. The LS and the
regression methods seem to be always preferred over Kalman
filtering due to its implementation complexity. Interestingly, the
MLR methods appear to be considered more often than the
ABC, the variational Bayesian inference, the UKF, and the PSO
methods, but comparably often to the EKF.

5.1. Future Research Directions
Tables 9, 10 together with the data in Tables 2, 7 can be used
as guidelines to define new research problems which have not
been sufficiently investigated in literature. We can separate
the models, tasks and methods into the groups according to
their levels of interest. Due to sparsity of data in Table 9, it
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TABLE 8 | The number of papers concerning the estimation tasks and methods for BRNs in given years.
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TABLE 9 | The adjusted number of papers concerning given estimation methods and given BRN models.
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is easier to enumerate the problems which have already been
well-investigated in the literature. Such cases are highlighted in
Table 9, and they include:

• The identification and inference tasks with the Markov
processes, state space representations, differential equations,
polynomial function, S-system, Langevin and Fokker-Planck
equations, and the CME approximation models;

• Most of the inference methods with the Markov processes,
state space representations, and the differential equation
models;

• Some inference methods assuming the Poisson process, S-
system, polynomial function, Langevin equation, and the CME
approximation models;

• The Bayesian methods with the MAP and ML inferences with
most of the models considered;

• The LS regression and the optimization programming mainly
with the Markov processes, state space representations,
differential equations, S-system and the polynomial models;
and

• The search methods with the Markov processes, state
space representations, differential equations, and the CME
approximation models.

The bifurcation analysis appears to be the least considered task
for all models. However, in many papers, the bifurcation analysis
may not be referred to explicitly as it is performed as part of
the sensitivity analysis. Similar comments can be made about
the sum of squared errors. From Table 9, we observe that also
machine learning methods have been considered sporadically
and only for some BRN models to solve the inference problems.
Comparing machine learning methods with the conventional
methods of statistical inference may be one of the most
interesting research avenues in near future. It is likely that
machine learning is more beneficial for some models, depending
on the availability of observations and training data. In addition,
we can observe from Table 10 that the optimum experiment
design did not receive as much attention in literature as other
inference tasks.

There are likely other research opportunities which are not
immediately apparent from the tables in previous sections. For
instance, the minimum mean square error (MMSE) estimator
is only discussed in the reference (Koeppl et al., 2012). Since
the estimation errors may have different distributions depending
on the BRN model considered, the generalized linear regression
(GLR) can be assumed as a simple to implement, universal and
yet powerful statistical learning technique. The GLR method
has not been investigated for the inferences in BRNs. It is
also useful to estimate other quantities in addition to inferring
the parameter values. For example, the distributions of species
counts are estimated in Atitey et al. (2018b). Knowledge of
the parameter distributions greatly affects the available choices
of estimators and their performance. Another unexplored
strategy is the compressive sensing (CS) which exploits the
sparsity in parameter spaces. Among machine learning methods,
the transfer learning has not been used for inferences in
BRNs in order to exploit the increasing production of omics
data (Weiss et al., 2016).
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Furthermore, the vast majority of inference problems in
literature assume the well-stirred models of BRNs with the
reactions dependent solely on the species concentrations,
but not on the species spatial distributions. Assuming the
spatially resolved models of BRNs with the diffusion and other
phenomena of the molecular transport through complex fluids
is much more realistic. Such models are usually described by the
RDME (Lötstedt, 2018). Moreover, in many BRNs, the reaction
rates are time varying. The inferences of time varying parameters
in BRN models have not been explicitly considered in literature.

Most inference problems in literature assume simple models
of measurements, such as obtaining the noisy concentrations
of species at discrete time instances. In order to increase
the sensitivity of measurements, the observations are
often accumulated in time (Folia and Rattray, 2018). The
transformations, such as the time integration of measurements
must be incorporated into the BRN models when devising
the interference strategies. Since the measurements may affect
the biological processes, the number and duration of the
measurements should be minimized in space and in time.
In addition, the measurement noise is often (but not always)
assumed to be independent of the species concentrations and
Gaussian distributed. In realistic in vivo and in vitro experiments,
the measurement noises are correlated in time and with other
measurements, and also dependent on the reaction rates and
the species concentrations. It would be very useful to report
the statistical properties of measurements from the different
laboratory experiments. Having such statistical description of
measurements can considerably improve the efficiency and
accuracy of the inference methods in BRNs.

More generally, the performance of various inference
strategies is greatly dependent on the structure, parameter values
and the initial state of the BRN considered. These aspects were
consideredmostly to optimize the data fittingmethods, but much
less for the other inference methods. There is a trade-off in
mechanistically employing the universal inference methods, and
adopting these methods to specific scenarios of the BRNs. The
latter approach may improve the performance and efficiency of
the parameter inference at the cost of increased implementation
complexity. More research is needed to jointly explore the
model simplification strategies and the parameter estimation
strategies as in Eghtesadi and Mcauley (2014). However, it is
always important to test and validate all the inference algorithms
devised. In some papers, the inference algorithms are tested
on multiple data sets, but a general methodology for testing
and validating the inference algorithms for BRNs have not been
presented in literature.

Many papers on the inferences in BRNs are concerned with
the implementation aspects rather than the concepts. It would
be useful to separate the inference concepts and strategies form
their implementation. For example, the Bayesian inference can
be implemented using the stochastic sampling, the ABC, the
variational inference, the EM and several other methods.

Finally, let’s not forget that the ultimate goal of performing the
statistical inferences in BRNs is to improve our understanding of
the in vivo and in vitro biological systems and phenomena. It is
primarily dependent on having the sufficiently accuratemodels of

these systems including knowing the values of their parameters.
As the experimental techniques improve, the new data from
the experiments will likely stimulate the developments of new
biological models, and thus, there will also be the need for new
inference methods and strategies.

6. CONCLUSIONS

The aim of this review paper was to explore how various inference
tasks and methods are used with different models of BRNs. The
key concepts of modeling and the parameter inferences for BRNs
were discussed. The dependency between tasks, methods and
models were captured in tables containing the paper counts.
More detailed information is provided in Supplementary Tables

including the links for selected papers to their citations in
Google Scholar.

The common models and inference tasks and methods for
BRNs were identified by text mining the cited references. The text
mining was partly automated using text processing scripts. Such
automation is indispensable when dealing with a large number
of references as is the case in this paper. For convenience, the
identified models and methods were presented under several
loosely defined categories. The most common models of BRNs
in literature are the mass action kinetics, Markov processes, state
space representations, and differential equations. Somewhat less
common, but still popular models include the kinetic rate law,
mechanistic models, Poisson processes, polynomial and rational
functions, the S-system model, the Langevin equation, and the
CME based approximation models.

Several previously published review papers concerning
the inferences in BRNs were listed. The relevant graduate
research theses from the past decade were also outlined,
since they tend to contain comprehensive literature surveys
and tutorial style explanations. We observed that the most
common inference tasks are concerned with the model
identifiability, the parameter inference and the sensitivity
analysis. The most common inference methods are the
Bayesian analysis using the MAP and ML estimators, the MC
sampling techniques, the LS regression, and the evolutionary
algorithms for data fitting including the optimization
programming, the simulated annealing, and the scatter and
other searches.

In the last part of the paper, the levels of interest in different
inference tasks andmethods for given BRNmodels were assessed.
This allowed us to identify the inference problems for BRNs
which were less explored in the literature previously. Our study
revealed that the interest in the inference problems in BRNs
peaked in 2014. This may indicate that development of the
traditional statistical methods has saturated, and the current
focus is more on their efficient implementation, especially to
process the massive amounts of data. The new developments
will likely be driven by the machine learning methods and
the continuing progress experimental techniques. The results
presented in this review can be used to develop a coherent theory
comprising the models and methods for the statistical inferences
in BRNs.
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Mucociliary clearance (MCC), considered as a collaboration of mucus secreted from
goblet cells, the airway surface liquid layer, and the beating of cilia of ciliated cells, is
the airways’ defense system against airborne contaminants. Because the process is
well described at the molecular level, we gathered the available information into a suite
of comprehensive causal biological network (CBN) models. The suite consists of three
independent models that represent (1) cilium assembly, (2) ciliary beating, and (3) goblet
cell hyperplasia/metaplasia and that were built in the Biological Expression Language,
which is both human-readable and computable. The network analysis of highly
connected nodes and pathways demonstrated that the relevant biology was captured in
the MCC models. We also show the scoring of transcriptomic data onto these network
models and demonstrate that the models capture the perturbation in each dataset
accurately. This work is a continuation of our approach to use computational biological
network models and mathematical algorithms that allow for the interpretation of high-
throughput molecular datasets in the context of known biology. The MCC network
model suite can be a valuable tool in personalized medicine to further understand
heterogeneity and individual drug responses in complex respiratory diseases.

Keywords: mucociliary clearance, network models, biological expression language, respiratory tract, network
perturbation amplitude

INTRODUCTION

The respiratory tract is under constant challenge to provide the body with oxygen while monitoring
air quality for pollutants and microorganisms. The mucous membranes in the airways, which
are lined with microtubule-based projections, the cilia, represent a powerful first-line defense. In
response to irritants and infection, mucus is secreted by goblet cells, and cilia on the surface of
ciliated cells move mucus upward in coordinated waving and beating motions. Eventually, particles
are expelled through sneeze and cough (Wanner et al., 1996). This self-clearing mechanism,
mucociliary clearance (MCC), ensures proper functioning of the respiratory tract.

Cilia have attracted increasing attention because of the growing number of diseases
caused by mutations in genes that impact cilium assembly, function, and turnover
(Fliegauf et al., 2007; Kempeneers and Chilvers, 2018). Traditionally, cilia are classified
as primary or motile (Wheatley, 1995; Satir and Christensen, 2007). Primary cilia are
present on almost all cell types and are involved in tissue homeostasis (Gerdes et al., 2009;
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Nozawa et al., 2013). Motile cilia often occur as clusters of
several hundred protrusions covering cells and direct fluid flow
(Choksi et al., 2014).

Cilia assembly and resorption often depend on the cell cycle
(Kim and Tsiokas, 2011), with a neatly interwoven mode of
regulation assuring timely and developmentally precise control
of cilium biogenesis. The regulatory factor X (RFX) family of
transcription factors is a key regulator of both primary and
motile cilia assembly programs (reviewed in Thomas et al.,
2010; Choksi et al., 2014). A master regulator of motile cilia
assembly across the vertebrates is forkhead box J (FOXJ1), a
member of the forkhead/winged-helix family of transcription
factors (Murphy et al., 1997; Chen et al., 1998; Brody et al.,
2000), which is under control of multiciliate differentiation
and DNA synthesis-associated cell cycle protein (MCIDAS) and
geminin coiled-coil domain-containing (GMNC) protein in the
respiratory epithelium (Stubbs et al., 2012; Arbi et al., 2016).
Mutations in MCIDAS and its downstream effector cyclin O are
implicated in an MCC disorder known as reduced generation
of multiple motile cilia (RGMC) (Boon et al., 2014). In RGMC
patients, cilia numbers are reduced, resulting in impaired MCC,
airway obstruction, and recurring respiratory infections.

An alternative mechanism of ciliary regulation is the
disassembly of the organelle by aurora A kinase (AURKA), which
also regulates the entry into mitosis (Pan et al., 2004; Pugacheva
et al., 2007). AURKA phosphorylates histone deacetylase
6 (HDAC6), stimulating HDAC6-dependent deacetylation of
axonemal microtubules (Hubbert et al., 2002), destabilization of
the ciliary shaft, and subsequent collapse of the cilium.

Exposure to air pollutants, cigarette smoke, drugs, or
infectious agents can affect ciliary beating frequency (CBF)
(Workman and Cohen, 2014; Yaghi and Dolovich, 2016). On
the molecular level, CBF increases in response to high mucus
viscosity (Fernandes et al., 2008) and fluctuations in the levels
of second messengers, such as cyclic adenosine 3′,5′-mono-
phosphate (cAMP), cyclic guanidine 3′,5′-mono- phosphate
(cGMP), intracellular Ca2+, calmodulin, nitric oxide (Jain et al.,
1993; Korngreen and Priel, 1996; Yang et al., 1996; Wyatt et al.,
1998; Zagoory et al., 2001, 2002), and intracellular pH (Sutto
et al., 2004). Mechanistically, CBF increases as a result of cAMP-
and cGMP-mediated activation of respective protein kinases via
Ca2+ release or by a calcium-independent mechanism.

While mucus secretion is a normal defense response, mucin
synthesis in goblet cells and mucus secretion are amplified
in respiratory diseases such as asthma or chronic obstructive
pulmonary disease (COPD). In addition, the number of
goblet cells can increase by proliferation (hyperplasia) and by
airway epithelial cell transdifferentiation (metaplasia), further
contributing to increased mucus production (Blyth et al., 1998;
Rogers, 2007; Turner and Jones, 2009; Boucherat et al., 2013;
Ramos et al., 2014). This airway epithelial remodeling decreases
ciliated cell numbers and ciliary beating efficiency, reducing MCC
and aggravating airway plugging (Nini et al., 2012; Yaghi et al.,
2012; Yaghi and Dolovich, 2016).

There is overwhelming evidence that oxidative stress and
oxidative damage play a pivotal role in the pathogenesis of
COPD (Rahman and MacNee, 1999; Rahman and Adcock, 2006;

Anderson and Macnee, 2009; Kim and Criner, 2015; Matera et al.,
2016). Oxidative stress is a well-described trigger of the epidermal
growth factor receptor (EGFR) signaling pathway that leads
to mucus hypersecretion (Takeyama et al., 1999, 2001; Perrais
et al., 2002; Hewson et al., 2004; Casalino-Matsuda et al., 2006;
Hao et al., 2014). We recently published an adverse outcome
pathway that describes the events that follow oxidative stress-
mediated EGFR activation to goblet cell hyperplasia/metaplasia
and decreased lung function following mucus overproduction
(Luettich et al., 2017).

Signaling downstream of interleukin (IL) 13 is involved
in the pathogenesis of asthma (Wills-Karp, 2004). The IL13
receptor complex initiates several cascades of molecular events
that result in goblet cell metaplasia/hyperplasia. One important
downstream effector of IL13 is the sterile alpha motif pointed
domain-containing ETS transcription factor (SPDEF), which is
directly involved in mucin gene expression (Park et al., 2007;
Chen et al., 2009).

The vast volume and diversity of biological data available on
cilium assembly, CBF, and goblet cell hyperplasia/metaplasia
require that the information be integrated for better visualization
and understanding of the processes that underlie respiratory
diseases. Biological network models offer a framework for
understanding biological processes and diseases and aid
in drawing new, often unpredicted conclusions. Over the
years, we have built several causal biological network (CBN)
models that capture biological processes that are impacted
in COPD. These models, stored in the CBN database, are
emerging as an innovative and powerful tool to quantify
the impact of exposure or potentially affected biological
processes in disease (Cho et al., 2012; Martin et al., 2014;
Boue et al., 2015; Talikka et al., 2017). The major advantage
of the CBN approach is that it transforms unstructured
data into interconnected and organized knowledge that
describes biological processes precisely and accurately (Schlage
et al., 2011; Westra et al., 2011, 2013; Cho et al., 2012;
Gebel et al., 2013; De Leon et al., 2014; Martin et al., 2014;
Szostak et al., 2016).

In this study, we present a suite of causal biological
models that describe important molecular events involved in
MCC, from cilium assembly to ciliary beating, goblet cell
hyperplasia/metaplasia, and mucus hypersecretion. We also show
how transcriptomic data are scored onto these network models
and how the models can provide mechanistic understanding of
gene expression changes.

MATERIALS AND METHODS

Literature Curation
Biological Expression Language (BEL)1 version 1.0 is used
for scientific text curation. BEL is a computable language
that converts causal and correlative biological observations to
statements consisting of two biological entities connected by a
relationship predicate1. Relevant original research articles for

1http://openbel.org/
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curation were identified from pertinent review articles in the
field. The journal impact factor or any other means to rank
the publications was not considered. If the statements in the
original research articles were sufficiently supported by the results
presented in figures, the information was considered reliable
and captured. To retrieve causal relationships the result sections
were extracted from these articles for curation. The introduction,
discussion and conclusion sections were avoided because the
evidences therein largely contain data from earlier studies,
repetition of the results, hypotheses and assumptions. Although
several evidences supporting an interaction would provide more
confidence on the edge, we capture the interactions even when
a single experiment is provided in the literature, in order to
not omit the relevant information. Contradicting statements
were captured without preferential treatment and with proper
annotations (model organism, tissue, cell line, treatment/disease,
experimental setup). The experimental information from the
relevant peer-reviewed scientific articles is semi-automatically
processed through the BEL Information Extraction workFlow
(BELIEF) platform (Szostak et al., 2015, 2016). BELIEF contains
a text-mining software that recognizes biological terms in the
text and assembles them into BEL statements. The curation
interface allows review, correction, and annotations (cell/tissue
type, disease if applicable, species, and experimental design) of
the statements that BELIEF proposes. The literature curation is
an iterative process. After the curation of initial articles, a gap
analysis is performed, and more literature is identified based on
gaps in the network models.

Network Model Assembly and
Visualization
BEL statements are then compiled to generate a cohesive
knowledge assembly model using the OpenBEL framework 3.0.0,
an open source compilation framework. The network model
consists of nodes that are the biological entities in the network
models connected by edges (i.e., the relationships between the
biological entities). Any RNA nodes are removed from the model
backbone and used in the downstream layer for model scoring as
described in Martin et al. (2014). The Cytoscape web application2

is used to visualize and analyze the network properties (Shannon
et al., 2003). Cytoscape supports powerful visual mapping
whereby biological entities are depicted as defined-shaped nodes
connected by the relationship edges. The network visualization
is used also during the curation process to identify the gaps
and to trim the network models. The trimming here means that
any nodes that are “hanging” and do not lead to a biological
process described in the model are removed, or further curation is
performed to add molecular relationships to connect such nodes
to the biological process.

The network model suite is available in the CBN
database. The NPA algorithm as well as some measurable
“downstream” relationships (backbone node to mRNA)
can be downloaded as R packages from the GitHub
project pages https://github.com/pmpsa-hpc/NPA and
https://github.com/pmpsa-hpc/NPAModels.

2http://www.cytoscape.org/

Network Model Scoring
The network perturbation amplitude (NPA) methodology is used
to obtain a quantitative assessment of how each of the models
interprets the transcriptomic changes in the datasets we selected
(GSE22430, GSE37693, and GSE5264). This methodology allows
for the translation of gene expression fold-changes to differential
values for each network node as well as enabling a network-
level summary to provide a quantitation of the degree of
network model perturbation (Hoeng et al., 2012; Martin et al.,
2014; Sewer et al., 2015; Szostak et al., 2016). Raw data were
obtained from Gene Expression Omnibus (GEO) repository
and normalized following a standard pipeline based on robust
multiarray normalization implemented in the R environment for
statistical computing (Smyth, 2004). The differential expression
values and statistics were calculated using the Bioconductor
LIMMA package with appropriate experimental comparisons.
“O” and “K” statistics was used to test the specificity of
the network models (including the “downstream edges” that
connect the network nodes to gene differential expression nodes
according to the underlying reverse-causal concept; Catlett et al.,
2013). They compare the actual NPA value to the distributions
of alternative NPA values obtained by permuting the edges of
the networks (the connections between nodes for “K” and the
connection between nodes and gene differential expression nodes
for “O”). If the actual NPA value is significantly different from
these “background” non-biological values, then we consider it as
significantly specific.

The leading node analysis allows to focus on a fewer number
of nodes in the network by ranking the nodes based on their
contribution (%). Using an empirical 80% collective contribution
instead of the actual rank, does not limit the number of the
nodes, when the contribution of several nodes is almost equal
(Martin et al., 2014).

RESULTS

Model Description
Cilium Assembly Model
The cilium assembly network model is a collection of intertwined
biological entities and processes that are supported by 59 relevant
peer-reviewed articles. The network contains 209 nodes and 319
edges that represent relationships between nodes (Figure 1).
When the connections between the nodes in the network were
analyzed, many poorly connected nodes and a few highly
connected ones, “hubs,” were observed. The most connected node
(63 indegree edges) was the biological process “cilium assembly,”
and the transcription factor FOXJ1, which is downstream of
MCIDAS and GMNC, had the most outdegree edges (Figure 1).

A number of pathways, including delta-like canonical
notch ligand (DLL)/NOTCH (through MCIDAS/GMNC),
smoothened/hedgehog, and grainyhead-like transcription factor
2, converge into a FOXJ1/RFX module that triggers cilium
assembly in the network model. This shows a high level of
cooperativity between FOXJ1 and RFX factors; FOXJ1 can
induce RFX2 and RFX3 expression, FOXJ1 gene expression is
partially dependent on RFX3 activity, and a subset of FOXJ1
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FIGURE 1 | Causal biological network model for cilium assembly. The table shows the top 10 highly connected nodes and their degrees of distribution. The
vocabulary for the BEL is provided in http://www.openbel.org/. The Cytoscape layout is the Yfiles hierarchical layout. The network model can be downloaded from
causalbionet.com.

and RFX target genes overlap (Figure 1). This assures timely
and developmentally precise control of cilium biogenesis. In
addition, numerous molecules and complexes necessary for
structural integrity of cilia, such as the axoneme constituents,
BBSome complex (structural components of the basal body),
and exocyst complex (membrane transport to cilium), support
the “cilium assembly” hub as immediate neighbor nodes.
With regard to the “cilium disassembly” hub, as expected, the
AURKA-HDAC6 axis and their upstream regulators emerged as
a supporting subnetwork.

Ciliary Beating Model
The ciliary beating network model was computed from 52
articles and comprises 80 nodes and 137 edges. The network
illustrates the path from various stimuli through intermediate
signaling molecules converging into consecutive biological
processes, with “mucociliary clearance” as the final node
(Figure 2). “Epithelial cilium movement” has the most inward
connections in the network, and adenosine triphosphate has
the most outward connections. Calcium and “nitric oxide
synthase family” are central hubs in the network, with several
incoming and outgoing edges. The model shows the CBF
increases as a result of cAMP- and cGMP-mediated activation
of the respective protein kinases through Ca2+ release or by
a calcium-independent mechanism. The model also captures

cystic fibrosis transmembrane conductance regulator, whose
activation triggers the adenylate cyclase (ADCY)/cAMP pathway.
Several other stimuli, such as serotonin or macrophage-
stimulating protein, via corresponding receptors (HTR and
MST1R, respectively), lead to increased ciliary motion in the
model. Another level of regulation is added through sex
hormone-dependent modulation, such as progesterone-mediated
decreases or estrogen-mediated increases in CBF.

Goblet Cell Hyperplasia/Metaplasia Model
The goblet cell hyperplasia/metaplasia model covers 172
nodes and 335 edges that were obtained from 58 articles. The
hierarchical view of the network model clearly indicates that,
as expected, the biological process “mucus secretion” is the
endpoint of the model (Figure 3). The network model hinges
on EGFR and IL signaling pathways (Figure 3). An array of
growth factors such as epidermal growth factor, transforming
growth factor, tumor necrosis factor, amphiregulin, IL4, IL6,
IL7, IL8, and IL13 initiate goblet cell-specific mucus secretion
by activating their respective receptors (EGFR and IL6R, IL13R,
IL17R) and subsequent signaling events, notably through
Ras/Raf/mitogen-activated protein kinase kinase/mitogen-
activated protein kinase (MAPK)/extracellular signal-regulated
kinase 1/2 (ERK1/2) or janus kinase/signal transducer and
activator of transcription/SPDEF effectors, modulating mucin
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a(CHEBI:ethanol)act(p(PMIPFAM:"EDNR
Family"))act(p(HGNC:TNF)) p(SFAM:"NOS

Family") act(p(EDNRA)) act(p(HGNC:TACR1))act(p(HGNC:ADRB2))
act(a(GOCC:"voltage-gated

calcium channel 
complex"))

act(p(SFAM:"PLA2
Family"))

bp(GOBP:"response
to mechanical 

stimulus")

a(CHEBI:ATP) act(p(SFAM:"CHRM
Family"))

a(CHEBI:"5,6-EET")

act(p(HGNC:PTGS2))

act(p(HGNC:NR3C1))

tloc(complex(p(HGNC:HSP90B1),p(HGNC:NOS3)),MESHCS:"Basal
Bodies",MESHCS:Axoneme)p(HGNC:HSP90B1,pmod(P,Thr))

complex(p(HGNC:HSP90B1),p(HGNC:NOS3))

act(p(SFAM:"NOS
Family"))p(HGNC:NOS2)

act(p(HGNC:NOS2)) act(p(HGNC:NOS3)) act(p(HGNC:CAV3))

a(CHEBI:"nitric
oxide") complex(p(HGNC:CAV3),p(HGNC:NOS3))

a(SCHEM:CO2) a(CHEBI:"3',5'-cyclic
GMP")act(p(HGNC:CFTR))p(HGNC:ADCY10) act(p(HGNC:PTGS1))

act(p(HGNC:NPPC))act(p(HGNC:GUCY1))act(p(SFAM:"PDE3
Family"))a(CHEBI:hydrogencarbonate) act(p(HGNC:PDE5A))

act(p(SFAM:"GUCY
Family"))

act(p(SFAM:"PRKG
Family"))act(p(HGNC:ADCY10))p(SFAM:"ADCY

Family")

complex(GOCC:"protein
phosphatase type 

1 complex") 

bp(MESHPP:"Mucociliary
Clearance")

a(CHEBI:"3',5'-cyclic
AMP")

tloc(p(HGNC:PGR),MESHCS:Cilia,MESHCS:"Cell
Nucleus")

bp(GOBP:"epithelial
cilium

movement")

act(p(HGNC:PRKA)) bp(PMIBP:"mucociliary
transport")

complex(p(HGNC:HMMR),p(HGNC:MST1R))

act(p(HGNC:PGR)) act(p(SFAM:"ADCY
Family")) act(p(HGNC:HMMR)) act(p(SFAM:"ESR

Family"))
p(SFAM:"PRKG

Family")p(HGNC:AGR3) act(p(HGNC:NOS1)) bp(GOBP:"cilium
assembly")

act(p(PMIPFAM:"BDKR
Family"))act(p(HGNC:MST1R))

act(p(HGNC:RFX3))p(HGNC:PRKG1)

a(CHEBI:"calcium(2+)")

bp(GOBP:"hyaluronan
catabolic
process")

act(p(HGNC:ADORA2B))act(p(SFAM:"CAMK
Family")) p(HGNC:MST1R,pmod(P))

bp(GOBP:"intracellular
pH elevation") 

act(p(SFAM:"P2RX
Family"))

act(p(HGNC:PRKG1))act(p(SFAM:"PDE4
Family"))

p(HGNC:ALMS1)act(p(HGNC:TRPV4))

act(p(PMIPFAM:"HTR
Family"))

act(p(HGNC:CALM1))

act(p(SFAM:"PLC
Family"))

a(CHEBI:"reactive
oxygen species") p(HGNC:MST1)

act(p(HGNC:CHRM1)) act(p(SFAM:"PRKA
Family"))

a(CHEBI:"1D-myo-inositol
1,4,5-trisphosphate")

act(p(HGNC:ITPR3))

act(p(SFAM:"P2RY
Family"))

Node name Edge count Indegree Outdegree
bp(GOBP:"epithelial cilium movement 21 20 1
a(CHEBI:"calcium(2+)") 13 9 4
act(p(SFAM:"NOS Family")) 13 8 5
a(CHEBI:"3',5'-cyclic AMP") 10 7 3
a(CHEBI:"3',5'-cyclic GMP") 10 6 4
act(p(SFAM:"PRKA Family")) 10 7 3
a(CHEBI:ATP) 9 1 8
a(CHEBI:"nitric oxide") 8 5 3
act(p(SFAM:"PRKG Family")) 8 6 2
a(CHEBI:ethanol) 7 0 7

FIGURE 2 | Causal biological network model for ciliary beating. The table shows the top 10 highly connected nodes and their degrees of distribution. The vocabulary
for the BEL is provided in http://www.openbel.org/. The Cytoscape layout is the Yfiles hierarchical layout. The network model can be downloaded from
causalbionet.com.
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complex")
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Membrane")
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Membrane")
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receptor

complex")
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r(HGNC:TFF1)r(HGNC:DPP4)

act(p(HGNC:MMP9)) p(SFAM:"MMP
Family")

p(HGNC:TGFA)

act(p(SFAM:"ADAM
Family"))

p(SFAM:"ADAM
Family")

act(p(HGNC:TMPRSS11D))

p(HGNC:ADAM17)

sec(p(HGNC:TGFA))act(p(SFAM:"MMP
Family"))

p(HGNC:MMP9)

complex(p(HGNC:IL17RA),p(HGNC:IL17RC))

p(HGNC:IL17)

act(p(SFAM:"KLK
Family"))

act(p(HGNC:CD44))p(HGNC:IL17A)

act(p(HGNC:EGFR))

p(HGNC:EGF) p(HGNC:TNF)

bp(GOBP:"hyaluronan
catabolic
process")

p(HGNC:CD44)

composite(p(HGNC:TNF),p(HGNC:TGFA))

act(p(HGNC:HYAL2))

p(HGNC:EGFR)

composite(p(HGNC:TNF),p(HGNC:EGF))

complex(p(HGNC:CD44),p(HGNC:EGFR))

p(HGNC:IL13)

act(p(HGNC:ADAM17))

act(p(HGNC:CAMP))

sec(p(HGNC:AREG))

complex(SCOMP:"AP-1
Complex")

act(p(SFAM:"MAPK
p38 Family")) 

act(p(SFAM:"ADRB
Family")) act(p(HGNC:GABRA2))

bp(GOBP:"mucus
secretion")

p(HGNC:MUC5AC) r(HGNC:MUC5AC)

act(p(HGNC:PTPN1))

r(HGNC:MMP14)

act(p(HGNC:MAPK8))

r(HGNC:MMP9)

act(p(HGNC:CYBB))

complex(p(HGNC:JUND),p(HGNC:FOSL2))

act(p(HGNC:CHRNA7))

p(HGNC:GABRA2) r(HGNC:GABRA2)

act(p(HGNC:SRC))p(HGNC:MUC5B)bp(MESHD:Hyperplasia)

p(HGNC:AGR2)r(HGNC:ITLN1)

r(HGNC:SCGB1A1)p(HGNC:SCGB1A1)r(HGNC:SFTPA1) r(HGNC:MUC5B) r(HGNC:SFTPB)

Node name Edge count Indegree Outdegree
complex(GOCC:"interleukin-13 receptor co 50 2 48
act(p(HGNC:EGFR)) 32 11 21
act(p(HGNC:SPDEF)) 25 2 23
act(p(SFAM:"MAPK Erk1/2 Family")) 22 8 14
r(HGNC:MUC5AC) 22 22 0
a(CHEBI:"reactive oxygen species") 17 9 8
p(HGNC:MUC5AC) 15 14 1
act(p(HGNC:FOXA3)) 13 1 12
act(p(HGNC:STAT6)) 12 5 7
act(p(HGNC:FOXA2)) 11 1 10

FIGURE 3 | Causal biological network model for goblet cell hyperplasia/metaplasia. The table shows the top 10 highly connected nodes and their degrees of
distribution. The vocabulary for the BEL is provided in http://www.openbel.org/. The Cytoscape layout is the Yfiles hierarchical layout. The network model can be
downloaded from causalbionet.com.
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gene expression. Multiple additional factors leading to mucus
hypersecretion and their interactions are also depicted in the
network model. FOXA2 transcription factor, in contrast, limits
goblet cell differentiation in the lung and directly represses
mucin gene expression. The network displays the inhibition of
FOXA2 by EGFR and IL13 pathways that results in goblet cell
hyperplasia and mucus secretion.

Model Scoring With Transcriptomic Data
NPA
Network scoring with transcriptomic data is based on the
inference of activities of the molecular entities in the network
from gene expression changes. This backward reasoning employs
a downstream layer with information on gene expression changes
known to be induced by the backbone entities (Martin et al.,
2014). To test the ability of the MCC network models to
provide a quantitative measure of MCC, we identified publicly
available datasets in Gene Expression Omnibus. The first
dataset selected for model scoring (GSE22430) was from lung
epithelial cells treated with the redox-active toxin pyocyanin
from Pseudomonas aeruginosa that stimulates EGFR (Rada et al.,
2011). Dataset GSE5264 was derived from an in vitro experiment,
in which airway epithelial cells were allowed to differentiate
to a pseudostratified epithelium at the air-liquid interface
(Ross et al., 2007). Finally, we used a transcriptomic dataset
from IL13-treated human airway epithelial cells (GSE37693)
(Alevy et al., 2012).

The cilium assembly network model responded strongly to the
treatment of lung cells with pyocyanin and to the time-course of
bronchial epithelial cell differentiation with increasing amplitude
over time. There was no impact on the models in response to the
IL13 treatment (Figure 4). When the same datasets were used
to score the cilia beating network models, the largest amplitude
of network perturbation was observed in response to pyocyanin
treatment of lung cells (Figure 4). Similar to the cilium assembly
model, the amplitude of cilia beating network perturbation
increased with advanced mucociliary differentiation, and the

model did not respond to the IL13 treatment. The scoring of the
goblet cell hyperplasia/metaplasia network model again showed a
very strong response to the pyocyanin treatment and, to a lesser
extent, to mucociliary differentiation of airway cells. This model
responded to IL13 treatment (Figure 4).

Leading Node Analysis
To investigate the mechanistic foundation underlying the
perturbations of the network models from transcriptomic data
and to further validate the biology in the models, we used the
leading node analysis (Martin et al., 2014). Leading nodes are the
entities in the network models upon which the impact contributes
80% of the observed effect on the network as a whole. Leading
node analysis also allows for the assessment of the directionality
(activation or inhibition) of the inferred effect on each node.
All leading nodes for all contrasts and models are provided in
Supplementary Data Sheets S1–S3.

Cilium assembly model
Figure 5 shows the leading node analysis of the cilium assembly
network model scored with transcriptomic data from early,
intermediate, and late time points of human airway epithelial
cell mucociliary differentiation. At the early time point, bone
morphogenic protein (BMP) signaling was inferred to be
upregulated. The mechanistic target of rapamycin (mTOR),
platelet-derived growth factor A (PDGFA), and protein kinase B
(AKT) signaling were inferred to be downregulated, in contrast
with the inferred upregulation of cilium assembly. At the same
time, NudE neurodevelopment protein 1 like 1 (NDEL1) was
inferred to be downregulated, resulting in downregulation of
cyclin A2 (CCNA2) and cell cycle arrest. At the intermediate and
late time points of mucociliary differentiation, BMP signaling was
no longer inferred to be upregulated. Instead, DLL1/NOTCH1
signaling was inferred to be downregulated, resulting in an
increase in MCIDAS and FOXJ1, the master transcription factors
required for the formation of motile cilia. RFX3, also known to
induce FOXJ1, was inferred to be upregulated at the intermediate

FIGURE 4 | The network perturbation amplitude (NPA). The NPA scores are shown with their confidence interval, accounting for experimental variation. The red star
indicates that NPA is statistically different from 0. In addition, companion statistics derived to inform on the specificity of the NPA score with respect to the network
structure are shown as ∗O and K∗, respectively, if their p-values are below the significance level of 0.05, and by O and K when the corresponding p-values are
between 0.05 and 0.1. ∗ indicates O and K statistic p-values below 0.05 (in color), O and K p-values between 0.05 and 0.1 (in gray). Lanes: 1. GSE22430,
pyocyanin-treated vs. control; 2. GSE5264, early time points of mucociliary differentiation in human airway epithelial cells; 3. GSE5264, intermediate time points of
mucociliary differentiation in human airway epithelial cells; 4. GSE5264, late time points of mucociliary differentiation in human airway epithelial cells; 5. GSE37693,
IL13-treated vs. control.
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FIGURE 5 | Cilium assembly subnetwork based on leading nodes. The graphical representation shows an example of connected leading nodes common for early
(first lane), intermediate (second lane), and late (third lane) time points of human airway epithelial cell mucociliary differentiation. The top 10 leading nodes were
prioritized and connected with other leading nodes from the analysis. The backbone NPA values with directionalities of inferred regulation are shown as bar graphs
for each node. Orange/red bars indicate inferred upregulation and blue bars indicate inferred downregulation. The green asterisk indicates that the node is a leading
node. The vocabulary for the BEL is provided in http://www.openbel.org/.

and late time points. PDGFA, mTOR, AKT, and NDEL1/CCNA2
continued to be downregulated in the leading node analysis.

The leading node analysis of the pyocyanin treatment data
scored on the cilium assembly network model indicated the
upregulation of PDGFA and downregulation of BMP signaling
(Supplementary Data Sheet S1).

Ciliary beating model
Figure 6 shows the leading node analysis of the ciliary beating
network model scored with transcriptomic data from early,
intermediate, and late time points of human airway epithelial cell
mucociliary differentiation. The β2-adrenergic receptor/ADCY
signaling pathway, leading to an increase in cAMP levels and

subsequent Ca2+ increase via the activation of the PRKA
family, was inferred to be upregulated. The analysis also
inferred the activation of cGMP-dependent protein kinase 1
(PRKG1). In addition, the leading node analysis of the pyocyanin
treatment data scored on the ciliary beating network model
indicated the upregulation of ADCY and calcium signaling
(Supplementary Data Sheet S2).

Goblet cell hyperplasia/metaplasia model
Figure 7 shows the leading-node analysis of the goblet cell
hyperplasia/metaplasia model with the pyocyanin and IL13
datasets. The levels of reactive oxygen species (ROS) were
inferred to increase with subsequent activation of EGFR
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FIGURE 6 | Ciliary beating subnetwork based on leading nodes. The graphical representation shows an example of connected leading nodes common for early (first
lane), intermediate (second lane), and late (third lane) time points of human airway epithelial cell mucociliary differentiation. The top 10 leading nodes were prioritized
and connected with other leadin g nodes from the analysis. The backbone NPA values with directionalities of inferred regulation are shown as bar graphs for each
node. Orange/red bars indicate inferred upregulation and blue bars indicate inferred downregulation. Bold edges indicate “direct regulation.” The green asterisk
indicates that the node is a leading node. The vocabulary for the BEL is provided in http://www.openbel.org/.

and ERK1/2, followed by an inferred increase in mucin
production. Three other branches of the network that were
highlighted and led to increases in mucins included the AP-
1, FOXA3/SPDEF, and IL13/SPDEF pathways. The inferred
activation of the IL13 receptor complex mirrored the activation
of the matrix metalloproteinase family. The inferred activation
of the p38 MAPK family upstream of MUC5AC was unique
to the pyocyanin dataset. While the NPA analysis showed
a significant network perturbation in response to human
airway epithelial cell mucociliary differentiation, a closer
examination of the leading nodes clearly indicated inferred

downregulation of ROS and the EGFR and MAPK ERK1/2
pathways (Supplementary Data Sheet S3).

DISCUSSION

MCC is an important defense mechanism that protects the
respiratory tract, and thus the body, from infections and airborne
pollutants. In this article, we presented a suite of CBN models that
describe relevant molecular processes related to MCC. Derived
from original articles, the BEL-scripted scientific statements
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FIGURE 7 | Goblet cell hyperplasia/metaplasia subnetwork based on leading nodes. The graphical representation shows an example of connected leading nodes for
pyocyanin treatment (first lane) and IL13 treatment (second lane) compared with experimental controls. The top 10 leading nodes were prioritized and connected with
other leading nodes from the analysis. Orange/red bars indicate inferred upregulation. Bold edges indicate “direct regulation.” The dotted edge denotes a member of
a protein family. The green asterisk indicates that the node is a leading node in a given contrast. The vocabulary for the BEL is provided in http://www.openbel.org/.

were assembled into three separate network models that capture
molecular processes involved in cilium assembly, ciliary beating,
and goblet cell hyperplasia/metaplasia accurately. The key factors
involved in these processes are part of the backbone that
interconnects various entities in the network models. As an
example, the cilium assembly hub integrates the diversity of the
cascades that are determined by the variety of cilia types, each
requiring precise regulation (for review, see Choksi et al., 2014).

As part of network model validation, we conducted network
scoring with gene expression data from experiments that were
expected to trigger perturbation of the MCC models. The scoring
also allowed us to look farther from the static network view
into the key factors that impact the network and assess the
behavior (activation or inhibition) of molecular entities in the
model backbone based on differential gene expression in the
selected datasets.

As expected, the biology in the redox-active pyocyanin
treatment experiment was best reflected in the goblet cell
hyperplasia/metaplasia model, with EGFR and downstream
MAPK ERK1/2 factors predicted to be activated, leading to

mucin production. This was in line with other experimental
observations of increased numbers of goblet cells and increased
mucin production in response to pyocyanin treatment
(Rada et al., 2011).

Impact on the cilium-focused network models could be
explained by the cell redox state and ROS levels affecting multiple
cellular signaling pathways, some of which overlap with cilium
biology. As an example, the activity of the nitric oxide synthase
(NOS) family as well as the nitric oxide (NO) chemical node
were inferred to be upregulated by pyocyanin treatment in the
ciliary beating network model (Supplementary Data Sheet S2).
NO is a redox molecule that regulates tissue oxidative balance
through direct and indirect mechanisms of action and can lead
to an increase in ciliary beat frequency through the activation of
NOS family.

Network scoring with the airway epithelial cell differentiation
dataset clearly showed time-dependent activation of pathways
leading to cilium assembly and ciliary beating. At the early
stage, BMP signaling was inferred to be upregulated, indicating
the lack of cilium assembly, while at later time points, BMP
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released the inhibitory effect on cilium assembly, with the
MCIDAS/FOXJ1/RFX3 pathway inferred to be activated to
promote cilium assembly. Network scoring, however, indicated
that mTOR and AKT were downregulated in the dataset,
contradictory to the causal connection from mTOR and AKT
to cilium assembly that was inferred to be upregulated. These
relationships were derived from articles describing primary
cilium assembly and may not appropriately reflect the biology in
the respiratory tract, where the operating process is the motile
cilia assembly program that culminates in the FOXJ1/RFX3
module (Wang et al., 2015; Suizu et al., 2016).

Downregulation of CCNA2 and cell cycle arrest in the cilium
assembly network model could indicate a slowing down in
cell proliferation to enforce cell differentiation. This was in
accordance with the inferred inhibition of the mTOR/AKT
pathway in the cilium assembly model. The results were
further enforced by the scoring of the goblet cell network.
The inferred reduction in EGFR signaling could indicate
loss of proliferative potential in cultures differentiating to
pseudostratified epithelium. This result also suggests that the
network model discriminates between a physiological (i.e.,
differentiation) and pathological (i.e., COPD-related) increase in
the number of goblet cells in airways. Finally, the cilia beating
model appropriately captured the activation of cAMP/PRKA and
cGMP/PRKG signaling that elevates cellular Ca2+ levels, leading
to increases in cilia beating.

Scoring the three network models with the datasets from IL13-
treated lung cells highlighted the specificities of the different
networks: IL13-induced airway mucus production affected
several hubs in the hyperplasia/metaplasia model, notably the
SPDEF transcription factor, while impacts on the cilium assembly
and ciliary beating models did not reach statistical significance.

In conclusion, the representation of cilium assembly, ciliary
beating, and airway remodeling processes through CBN models
is a potential powerful tool for systems medicine (Talikka et al.,
2017). MCC networks can be used as a substrate for scoring high-
throughput data for mechanistic understanding of the differences
between diseased and healthy tissue. The MCC network model
suite presented here, along with gene expression data from well-
controlled clinical studies, could be used in individuals with
MCC disorders for subject classification, identification of mode
of action of novel drug candidates, or prediction of treatment
outcome. Ultimately, the MCC network model suite provides
perspectives for tailored drug therapy and precision medicine.
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DATA SHEET S1 | Leading node analysis for cilium assembly network model
scored with transcriptomic data from pyocyanin treatment, IL-13 treatment, and
mucociliary differentiation datasets. For each node, an ∗ indicates it is a leading
node and the number denotes its rank among the leading nodes. + or − in
parenthesis indicates inferred up- or down-regulation, respectively. Value in % is
the contribution of the node to the overall NPA.

DATA SHEET S2 | Leading node analysis for ciliary beating network model scored
with transcriptomic data from pyocyanin treatment, IL-13 treatment, and
mucociliary differentiation datasets. For each node, an ∗ indicates it is a leading
node and the number denotes its rank among the leading nodes. + or − in
parenthesis indicates inferred up- or down-regulation, respectively. Value in % is
the contribution of the node to the overall NPA.

DATA SHEET S3 | Leading node analysis for goblet cell hyperplasia/metaplasia
network model scored with transcriptomic data from pyocyanin treatment, IL-13
treatment, and mucociliary differentiation datasets. For each node, an ∗ indicates it
is a leading node and the number denotes its rank among the leading nodes. + or
− in parenthesis indicates inferred up- or down-regulation, respectively. Value in %
is the contribution of the node to the overall NPA.
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Pathway and network approaches are valuable tools in analysis and interpretation of

large complex omics data. Even in the field of rare diseases, like Rett syndrome,

omics data are available, and the maximum use of such data requires sophisticated

tools for comprehensive analysis and visualization of the results. Pathway analysis with

differential gene expression data has proven to be extremely successful in identifying

affected processes in disease conditions. In this type of analysis, pathways from different

databases like WikiPathways and Reactome are used as separate, independent entities.

Here, we show for the first time how these pathway models can be used and integrated

into one large network using the WikiPathways RDF containing all human WikiPathways

and Reactome pathways, to perform network analysis on transcriptomics data. This

network was imported into the network analysis tool Cytoscape to perform active

submodule analysis. Using a publicly available Rett syndrome gene expression dataset

from frontal and temporal cortex, classical enrichment analysis, including pathway

and Gene Ontology analysis, revealed mainly immune response, neuron specific and

extracellular matrix processes. Our active module analysis provided a valuable extension

of the analysis prominently showing the regulatory mechanism of MECP2, especially on

DNAmaintenance, cell cycle, transcription, and translation. In conclusion, using pathway

models for classical enrichment and more advanced network analysis enables a more

comprehensive analysis of gene expression data and provides novel results.

Keywords: pathway analysis, WikiPathways, Reactome, Rett syndrome, network analysis, RDF, topology, active

subnetworks

1. INTRODUCTION

In a diseased state, many molecular processes in the human body are affected and dysregulated.
Performing pathway analysis on molecular data sets comparing healthy vs. diseased subjects is
immensely effective in finding affected pathways and it enables researchers to study the underlying
processes in detail, to reveal possible disease mechanisms. While standard enrichment methods
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have limitations and pathways are analyzed independently with
their arbitrary process boundaries (Khatri et al., 2012), the
pathway models themselves are very interesting from a network
science perspective. These models contain detailed information
about biological molecules and their interactions with one
another, which can be visualized and analyzed using network
biology tools (Kutmon et al., 2014). The detailed models of these
biological processes are collected in online pathway databases
like WikiPathways (Slenter et al., 2017) and Reactome (Fabregat
et al., 2017). The availability of pathway models in the structured
and semantic Resource Description Framework format (RDF)
creates the possibility to integrate all pathway models into one
large network and therefore incorporate the relations and overlap
between them (Waagmeester et al., 2016). By removing artificial
boundaries, this will enable us to study the systemic effects of
diseases, such as Rett syndrome, using network biology methods.
Specifically, we can look for subnetworks, even if not present in
pathways as found in pathway databases, which reflect modules
of differential biological activity.

Rett syndrome (MIM: 312750, Rett, 1966) is a rare genetic
disorder, caused in most patients by a loss of function mutation
in the MECP2 gene (Amir et al., 1999). The accompanying
MECP2 protein is multifunctional and acts as an epigenetic
repressor, transcriptional repressor, and transcriptional activator.
MECP2 binds DNA on methylated CpG islands and is involved
in several regulatory activities: attracting histone deacetylases
(HDAC1), increasing packing density of DNA, repressing and
in specific genes also activating gene expression, and due
to its phosphorylation sites, MECP2 activity is sensitive to
intracellular signaling (Chunshu et al., 2006; Ehrhart et al.,
2016). Due to its regulatory role, many downstream genes
are affected in case of loss of function, resulting in a broad
range of symptoms including moderate to severe intellectual
disability, gait problems, stereotypic movements, dystonia,
scoliosis, epileptic seizures, and sleep problems (Hagberg et al.,
2002; Neul et al., 2010). In the past 10 years, omics data
analysis on the level of genome, transcriptome, or proteome
saw an increase in importance, to analyse and understand
the holistic impact of MECP2, respectively, the impact of an
impaired MECP2. Shovlin and Tropea (2018) recently reviewed
the available transcriptomics studies on Rett syndrome and
came to the conclusion that the most researched impact of
MECP2 dysfunction lies with dendritic connectivity and synapse
maturation, mitochondrial dysfunction, and glial cell activity.
Recent pathway analysis results of single and integrated studies
identified changes in intracellular signaling, including EIF2
(eukaryotic translation initiation) signaling, cytoskeleton, and
cell metabolism includingmitochondrial function (Bedogni et al.,
2014; Ehrhart et al., 2018) .

In this study, we aim to investigate the molecular changes
in Rett syndrome patients using a network-based approach
by integrating existing pathway models from WikiPathways
and Reactome into one large network and identifying disease-
affected submodules that show differential gene expression.
We will compare the results with standard enrichment
analysis methods, including pathway and Gene Ontology
analysis, and expect that the identified disease modules will

also contain interactions in pathways not found through
those methods.

2. MATERIALS AND METHODS

Dataset
The publicly available dataset studying the transcriptome in
human brain tissue of Rett syndrome patients and healthy
controls from the Gene Expression Omnibus (GEO) was used
(GEO:GSE75303). The original study was published by Lin et al.
(2016). The dataset contains transcriptome data obtained with
Illumina HumanHT-12 V4.0 expression beadchips. The samples
were taken postmortem from human frontal and temporal cortex
of three Rett syndrome patients (MECP2mutations c.378-2A>G,
c.763C>T, c.451G>T) and three age-, gender-, and ethnicity-
matched controls.

Raw and normalized data as well as study metadata were
obtained (GEO:GSE75303) and subjected to quality control,
including signal distribution and sample grouping analyses, using
plotting functions from ArrayAnalysis.org (Eijssen et al., 2013).
No samples were excluded for further analysis. The provided
normalized data on GEO was filtered to remove all probes
with a detection p-value of 1 for all samples, indicating overall
absence of expression. Thereafter, the limma package for R
(version 3.30.13, Ritchie et al., 2015) was used to compute
differential expression between Rett patients and controls for
the frontal and temporal cortex samples separately. For each
probe, this results in estimates of the fold change and p-value
significance between the patient and control groups. Probes were
re-annotated with Ensembl gene identifiers based on Ensembl
build 91 using the BridgeDbR package (version 1.16.0, Leemans
et al., 2018) with the Hs_Derby_Ensembl_91.bridge database
(van Iersel et al., 2010).

Enrichment Analysis
We performed pathway analysis with PathVisio (version 3.3.0,
Kutmon et al., 2015) and Gene Ontology (GO) analysis with
GO-Elite (version 1.2, Zambon et al., 2012).

For GO analysis with GO-Elite, the input gene lists for
frontal and temporal cortex contained all significantly changed
genes (p-value < 0.05) with an absolute fold change cutoff
of 1.5. Ensembl identifiers of all measured genes in the
datasets were provided as the background list. Number of
permutations was set to 2,000. Pruned GO-term results (i.e.,
GO terms for which genes in subterms that were found to
be significant were removed) were filtered based on Z-score
(> 1.96), permuted p-value (< 0.05) and a minimum number
of changed genes of five. Pathway analysis was performed
on a combined human pathway collection from all curated
WikiPathways pathways including the Reactome pathway set
(in total 903 pathways, October 2018 release). Differential gene
expression was mapped to genes on the pathway diagrams using
the Hs_Derby_Ensembl_91.bridge identifier mapping database.
Thereafter, pathway statistics was performed on differential gene
expression for temporal and frontal cortex using the following
criteria to select only significantly differentially expressed genes
(absolute fold change cutoff of 1.5 and p-value < 0.05):
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(log2FC < -0.58 OR log2FC > 0.58) AND p-value < 0.05.

The resulting ranked pathway list was filtered based on Z-score
(> 1.96), permuted p-value (< 0.05), and minimum number of
changes (positive) genes of five.

Pathway-Based Network Construction
Biological pathway models are small sub-networks describing
specific biological processes. Connecting and integrating
pathway models in one large network enables us to use
network biology tools and approaches to study and investigate
the network.

We used the WikiPathways RDF from October 2018 release
(Waagmeester et al., 2016) to retrieve information about all
interactions in the pathway models of two major pathway
databases, WikiPathways and Reactome. With this network
approach, the pathway models are not treated as independent
modules, but they are integrated on an interaction level,
which enables linking information from different pathways
based on their shared participants and thus bringing related
interactions closer to each other. As shown in Figure 1,
each interaction is represented by an interaction node in the
network with edges to all participant nodes (either source,
target, or participant). For each interaction, it is recorded
in which pathway or pathways the interaction is present.
By connecting all the retrieved interactions, a large network
representing all human pathway models was created. The
SPARQL query language was used to retrieve the relevant data.
The scripts to generate the constructed network are available on
GitHub (https://github.com/wikipathways/wprdf2cytoscape).
Interactions with at least two annotated interaction participants
(gene product, metabolite, complex) are included. Gene

products have unified Ensembl (Zerbino et al., 2017) identifiers,
metabolites have either Wikidata (Mietchen et al., 2015), ChEBI
(Hastings et al., 2015) or HMDB identifiers (Wishart et al., 2017),
and complexes have Reactome identifiers. A list of frequently
occurring small molecules (Supplementary Table 1), e.g., H+,
H20, ATP, were removed from the network to prevent inclusion
of paths with no specific biological relevance. Such small
molecules tend to create artificial hub nodes simply because e.g.,
ATP is used/produced in a lot of metabolic reactions.

Active Module Analysis
The constructed network was loaded into Cytoscape (version
3.7.0), a network analysis and visualization tool (Shannon et al.,
2003). Differential expression analysis data (log2 fold changes
and p-values) for both frontal and temporal cortex were added
as node attributes to the network.

The Cytoscape app jActiveModules (version 3.2.1, Ideker
et al., 2002) was used to identify active submodules in the
large network that show significant changes in expression. These
subnetworks are freed from the artificial pathway boundaries
of conventional pathway models found in WikiPathways and
Reactome. The following parameters were used to find active
submodules: p-value as the node attribute, number of modules
was set to five, overlap threshold of 0.8, and search strategy with
a search depth of two.

Tools and Settings
• Dataset: Normalized data from GEO, plotting functions

from ArrayAnalysis.org, limma package for R (version
3.30.13), BridgeDbR package (version 1.16.0) with
Hs_Derby_Ensembl_91.bridge database.

FIGURE 1 | WikiPathways network structure. Every interaction is represented as a node in the network with links to all participants. If the interaction is directed, the

information about source and target nodes is added as an edge attribute. The nodes represented as small, red rounded rectangles are interactions, blue circles

represent gene products and green diamonds embody metabolites. Interactions that share certain participants, such as GeneProduct 1, are brought close together in

the resulting network even if they are from different pathways, such as Pathway 1 and 3.
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• Enrichment analysis: PathVisio (version 3.3.0) and GO-Elite

(version 1.2).
• Pathway-based network construction: Script available on

Github
(https://github.com/wikipathways/wprdf2cytoscape)

• Active module analysis: Cytoscape (version 3.7.0),

jActiveModules app (version 3.2.1)

3. RESULTS

Gene Expression
The total number of probes measured was 37,707 from which
29,024 could be linked to Ensembl identifiers. After merging
multiple probe identifiers for the same Ensembl identifier,
19,023 unique gene identifiers remained. Differential gene
expression analysis revealed 1,953 in the frontal cortex and 2,436
significantly changed genes in the temporal cortex samples of
RETT syndrome patients vs. controls. Only 221 in frontal and
341 of the significantly changed genes in temporal cortex had
a more than 1.5-fold increase or decrease in expression (|log2
fold change| > 0.58). In both brain regions, more genes were
down-regulated in Rett syndrome patients than up-regulated,
see Table 1, which matches with findings from the original
publication (Lin et al., 2016).

Gene Ontology Analysis
Gene Ontology overrepresentation analysis identified 39 and
50 biological processes as altered in frontal and temporal
cortex, respectively (Supplementary Tables 2, 3). Summarizing,
neuron specific and immune system-related processes were
found to be enriched in both brain regions for Rett syndrome
patients. In temporal cortex, additionally, regulation of
translational initiation (GO:0006446) and an extracellular
matrix/cytoskeleton-related process (GO:0007229) were found
to be enriched. Interestingly, the microglia relevant complement
factors C1QB and C1QC were found in the enriched GO classes
defense response (GO:0006952) and immune effector process
(GO:0002252).

Pathway Analysis
Pathway analysis was performed in PathVisio for both brain
regions separately. Overrepresentation analysis revealed
18 and 21 pathways altered in the datasets for frontal and
temporal cortex, respectively (Z-score > 1.96, minimum
five changed genes), see Figure 2. Interestingly, eight
pathways were altered in both frontal and temporal cortex.
Similar to the results of the GO analysis, several immune
system-related and extracellular matrix/cytoskeleton-related
pathways were found to be enriched. Additionally, calcium
channel related processes including muscle contraction
pathways were found in both brain regions. Although
muscle contraction pathways are not expected in brain
tissue samples, the overlapping differentially expressed genes
were mostly ion channels and signaling cascade proteins
also highly relevant for neurons. Supplementary Figure 1

shows the heatmap with a more lenient filter (Z-score >

1.96, minimum three changed genes). Figure 3 is an example
pathway visualization for a pathway that has a high Z-score in
both tissue types, Microglia Pathogen Phagocytosis Pathway
(Hanspers and Slenter, 2017).

Pathway-Based Network Construction
From the 903 pathway models in the WikiPathways and
Reactome collection, 860 pathways contained 27,410 unique
interactions. On average, a pathway contained 35 interactions
(min = 1, max = 510, median = 22). Interestingly, 3,264
interactions occur multiple times but only 2,103 interactions are
present in more than one pathway. As an example, one of the
highest occurring interactions is the complex binding of the three
subunits of the IκB kinase complex which plays an important role
in the propagation of cellular response to inflammation (Häcker
and Karin, 2006) and is present in 25 different pathways.

The resulting network consists of 48,639 nodes and 106,137
edges. The network consists of one major component (46,756
nodes) and 427 smaller components with each less than
twenty nodes. The network contains 8,643 gene products, 2,704
metabolites and 9,882 complex / group nodes. Most common
interaction types are directed interaction (13,572), complex /
group participation (5,298), catalysis (4,787), inhibition (1,185),
and conversions (896).

TABLE 1 | Differentially expressed genes in frontal and temporal cortex.

Temporal cortex down-regulated Temporal cortex not changed Temporal cortex up-regulated

Frontal cortex 88 44 1

down-regulated -

Frontal cortex 171 18,576 55

not changed - - - -

Frontal cortex 3 62 23

up-regulated -

133 and 88 genes were significantly down- and up-regulated in frontal cortex, respectively. Two hundred sixty-two and 79 genes were significantly down- and up-regulated in temporal
cortex, respectively. Eighty-eight genes are down-regulated, and 23 genes are up-regulated in both brain regions. Only four genes show different expression patterns. The following
filtering criteria were used: p-value < 0.05 and absolute log2 fold change > 0.58.
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FIGURE 2 | Pathway analysis results for frontal and temporal cortex data. Pathways are clustered in this heatmap based on their Z-scores. Pathways with a high

Z-score (>1.96) contain significantly more changed genes than expected and are considered pathways of interest. An asterisk next to the Z-score value indicates

pathways with a significant Z-score (>1.96) but less than five changed genes.

Active Module Analysis
Active modules were calculated using the jActiveModules app.
The top five modules with the highest active paths scores were
identified for both comparisons, frontal and temporal cortex. The
modules for frontal cortex contained between 300–350 nodes
and 560–1,020 edges. The top modules for temporal cortex
tended to be smaller ranging from 230–290 nodes and 450–1,000
edges. Figures 4, 5 show the highest-ranked module for frontal
and temporal cortex, respectively. Gene expression changes are
visualized as node color and significance is indicated by the
node border color. All modules only contained gene products; no
metabolites were found. The complete submodule analysis results
for both datasets can be found in Supplementary Data 1 (zip file
containing two Cytoscape session files).

The highest ranked active module for frontal cortex contains
303 nodes (79 interactions and 224 gene products) and 568
edges, see Figure 4. Two hundred and ten of the gene products
are measured in the dataset and 112 are changed significantly
(p-value < 0.05). Twelve gene products have an absolute log2
fold change > 0.58. The subnetwork contains eight significantly
down-regulated genes (blue rounded rectangles) including two
F-Box genes, FBOX32 and FBXO9, involved in phosphorylation-
dependent ubiquitination. The subnetwork contains five
significantly up-regulated genes (red rounded rectangles) with

diverse roles. The genes identified as hubs in the active module
network of frontal cortex are two gene products which are not
measured in the dataset, RPS27A and UBA52. Both are involved
in protein degradation via 26S proteasome, ubiquitination,
translation, and DNA excision repair. In the central part of
the network, the ribosomal proteins including RPL14, RPL29,
and RPL3 form a cluster. This cluster is connected via PPP2CA
and PPP2R1A, two phosphatases involved in cell cycle, DNA
replication and transcription, to a cluster of centrosomal proteins
including CEP78, CEP57, and CEP131. The module combines
interactions from 47 unique pathways (Supplementary Table 4)
including class I MHC mediated antigen processing and
presentation (WP3577), non-sense-mediated decay (WP2710),
cell-cycle related pathways (WP1859, WP1775, WP1858,
WP2772), and eukaryotic translation elongation and initiation
(WP1811, WP1812).

The highest ranked active module for temporal cortex
contains 238 nodes (84 interactions and 154 gene products)
and 457 edges, see Figure 5. The module partially overlaps
with the module found for frontal cortex. One hundred
and fourty three of the gene products are measured in
the dataset and 137 are changed significantly (p-value <

0.05). Twenty-nine gene products have an absolute log2
fold change > 0.58. The module contains 24 significantly
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FIGURE 3 | Visualization of the frontal and temporal cortex gene expression on the Microglia Pathway Phagocytosis Pathway. In the left half of the gene boxes, the

gene expression change in the frontal cortex is shown. In the right half of the gene boxes, the gene expression in the temporal cortex is shown. The blue colors

represent down-regulation of the gene in Rett syndrome patients (negative log2 fold change), while the red shades visualize the up-regulated genes. The darker the

color, the stronger the effect. Green borders indicate significance of the change (p-value < 0.05). Gray colored nodes are not annotated or measured in the dataset.

down-regulated genes (blue rounded rectangles) including
several ubiquitin conjugating enzymes (UBE2E1, UBE2E3)
and translation initiation factors (EIF4A2, EIF4H, EIF4G2).
Only five significantly up-regulated genes are found in the
subnetwork (red rounded rectangles) but the distance between
them is large. This subnetwork contains similar hub nodes as
in the frontal cortex subnetwork including RPS27A, UBA52,
and PPP2R1A. Additionally, NCBP2 and NCBP1, proteins
involved in RNA processing, play an important role in the
subnetwork. The module combines interactions from 51 unique
pathways (Supplementary Table 5) including transcription /
translation (WP1889, WP1906, WP1812), cell cycle (WP1859,
WP1775, WP4109), and immune response (WP3577, WP2658)
related processes.

4. DISCUSSION

MECP2 is a multifunctional protein which is involved in
several transcriptional inhibitory and activational processes.
MECP2 was generally regarded as a repressor, however its
role as genetic activator has also been confirmed (Chahrour
et al., 2008). In previous studies, a loss of function in

MECP2 due to a mutation has been found to influence a
variety of pathways and biological processes, including pathways
related to not only neuron development and function, but
also to the immune system, transcription, and translation
related processes (which were identified mainly by transcriptome
analysis, Colantuoni et al., 2001; Bedogni et al., 2014; Ehrhart
et al., 2018; Shovlin and Tropea, 2018). The affected pathways
identified with our study closely match the results previously
found by Ehrhart et al. (2018), in which human brain tissue
data of Rett syndrome patients (published by Deng et al.,
2007) was analyzed. The expression of the MECP2 protein
itself is not significantly affected in this dataset (minor,
insignificant down regulation, log2 fold change of –0.1, in both
brain regions).

The original study by Lin et al. (2016) from which the dataset
analyzed in this paper was acquired, focused on the significant
down-regulation of certain complement system factors in Rett
syndrome (C1QA, C1QB, C1QC). Complement system factors
are produced generally in liver, however their expression was
also found to be changed in stimulated microglia. Furthermore,
there is emerging evidence that C1Q factors are involved in
several non-immunogenic activities, such as synaptic pruning in
microglia (Kouser et al., 2015).
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FIGURE 4 | Top-ranked active module for frontal cortex data. The highest-ranked subnetwork contains 303 nodes and 568 edges. It contains 13 significantly

changed genes (rounded rectangles) when applying the same cutoff as for enrichment analysis (absolute log2 fold change > 0.58). Other measured gene products

are visualized as circular nodes. Blue fill color indicates down-regulation while red indicates up-regulation. The darker the color, the stronger the effect. Gray hexagons

are gene products not measured in the data set. The very small, gray nodes represent interaction nodes. These were combined from 47 different pathways, with none

of the pathways providing more than six interactions.

As expected, our pathway and GO analysis revealed a
substantial number of immune system related pathways to
be affected in Rett syndrome frontal and temporal cortex
tissue samples. Inflammatory processes have been identified
previously in Rett syndrome patients, mouse models and in vitro
systems, and are suspected to contribute to the development
of Rett syndrome (De Felice et al., 2016; Ehrhart et al.,
2018). Figure 2 shows many of affected pathways in both
frontal and temporal cortex, with similar results found by GO
analysis. Interestingly, no complement system or transcription
/ translation related pathways show up (except Microglia
Pathogen Phagocytosis Pathway, which includes C1Q factors).
Only seven of the 31 pathways found through pathway analysis
contribute interactions to the active modules identified for
frontal and temporal cortex. The modules mainly contained
interactions from transcription / translation and cell cycle

related pathways, which were not found with the classical
enrichment analysis. These processes were also previously
found in transcriptome pathway analysis of Rett syndrome
(Bedogni et al., 2014; Ehrhart et al., 2018). Not surprisingly,
the subnetworks do not contain metabolic reactions. Only
metabolites connecting at least two genes affected by MECP2
would be present in an active subnetwork. The enrichment
analysis did not show any metabolic processes that are affected,
which is in line with the manifestation of Rett syndrome.
Overall, the regulatory effects of MECP2, especially on DNA
maintenance, cell cycle, transcription, and translation, is more
prominently shown in the active modules, while immune
system related responses are more present in pathway analysis.
Importantly, the active module approach does not replace
analyses like classical enrichment analysis but augments it.
When running the active module analysis on the same
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FIGURE 5 | Top-ranked active module for temporal cortex data. The subnetwork contains 238 nodes and 457 edges. It contains 29 significantly changed genes

(rounded rectangles) when applying the same cutoff as for enrichment analysis (absolute log2 fold change > 0.58). Other measured gene products are visualized as

circular nodes. Blue fill color indicates down-regulation while red indicates up-regulation. The darker the color, the stronger the effect. Gray hexagons are gene

products not measured in the data set. The very small, gray nodes represent interaction nodes. These were combined from 51 different pathways, with none of the

pathways providing more than six interactions.

network using the dataset with permuted gene labels, the
resulting subnetworks are very different from the identified
Rett subnetworks. This basic computational validation further
strengthens our confidence that we indeed have subnetworks
specific and strongly affected in Rett syndrome patients.
The results of the permutation analysis are summarized
in Supplementary Data 2.

This was the first time the entirety of the WikiPathways
knowledgebase, including Reactome pathways, has been used
to create a comprehensive human pathway-based network for
network analysis of transcriptomics data. While the pathway
content of both databases overlaps, both resources also contain
unique information. By building a network out of pathways from
a combination of pathway databases, a more complete biological
(and therefore genome) coverage is enabled. Identifying active
modules from a large network has some major benefits, such as
the easy applicability to any gene expression dataset, ignoring
predefined boundaries used in traditional pathway diagrams, and
incorporating the relations and overlap between the pathways.
Additionally, this method does not require researchers to

predefine a certain cutoff, since genes are ranked based on
their significance.

Some considerations arose when constructing and analyzing
the network. For instance, some common metabolites like ATP,
ADP, or NADH, while biologically necessary, were excluded
from the network, since their involvement in a multitude
of interactions created links between almost every node.
Additionally, this approach is strongly depending on the a priori
input of pathway data in terms of coverage and quality. Currently,
human pathway databases contain a little over 50% of the protein
coding genes (Slenter et al., 2017), which is also a probable
number for the coverage ofmetabolites and interactions. Pathway
models generally contain information about directionality
of the interactions. However, available active subnetwork
analysis methods only take topology but not directionality
into account. This could strongly affect the identification of
active submodules and would be an important extension of
existing algorithms.

The active module discovery approach should be considered
as an additional step after classical enrichment analysis. In this
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study, we used human brain transcriptomics data from a study
with Rett syndrome patients, however our approach is not
unique to this application or rare diseases. These diseases are
by definition less common and often less extensively studied,
which may result in lower availability of specific pathway
models. Nonetheless, the active module approach succeeds
and shows great power for additional discoveries. While rare
genetic diseases have the advantage that the causative gene is
(usually) known, the resulting downstream consequences can
be diverse and affect a variety of pathways. By using pathway
models in an integrative network approach, further use of the
invaluable resources present in pathway databases is enabled
and subnetworks of interest can be retrieved based on the
entire body of pathways available. Using Cytoscape allows using
all available apps such as the jActiveModules app to analyse
our network. Importantly, the complete interaction network
of WikiPathways with 48,639 nodes and 106,137 edges can be
opened and analyzed in Cytoscape, despite of the network to
be too large to be visualized. The use of graph databases like
Neo4j, which already have connections available to Cytoscape
(cyNeo4j app, Summer et al., 2015), could be a useful addition to
the approach. Importantly, as part of the systems biology cycle,
advanced computational analyses like the one reported in this
manuscript lead to new hypotheses and ideas for experiments,
which then need to be tested and validated in a laboratory.

Conclusion
Pathway models have proven themselves as powerful tools for
biologists to describe and analyse biological processes. The
collaboration between the widely-adopted pathway databases
WikiPathways and Reactome and the availability of their data in
RDF format allowed us to integrate a large number of pathways
from both databases into one large network. This enables us
to perform advanced network analyses like active submodule
identification. By comparing classical enrichment methods with
the active submodule identification on a Rett syndrome dataset
in two different brain regions, we found that both approaches
provided valuable insights into the disease. Importantly, they
were strongly complementary and did not show the same results.
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A recent focus of computational biology has been to integrate the complementary

information available inmolecular profiles as well as inmultiple network databases in order

to identify connected regions that show significant changes under different conditions.

This allows for capturing dynamic and condition-specific mechanisms of the underlying

phenomena and disease stages. Here we review 22 such integrative approaches for

active module identification published over the last decade. This article only focuses on

tools that are currently available for use and are well-maintained. We compare these

methods focusing on their primary features, integrative abilities, network structures,

mathematical models, and implementations. We also provide real-world scenarios in

which these methods have been successfully applied, as well as highlight outstanding

challenges in the field that remain to be addressed. The main objective of this review is to

help potential users and researchers to choose the best method that is suitable for their

data and analysis purpose.

Keywords: active module, active subnetwork, subnetwork identification, data integration, PPI network, network

analysis

1. INTRODUCTION

From human society to cellular activity, collaborative interactions, i.e., small units working in
concert to accomplish certain functions, are an essential part of life. In complex multicellular
organisms, their survival and health depend on the integrated activity of billions or trillions of
cells organized into organ systems. Even in a single cell, the smallest structural and biological unit
of life, fundamental processes, from DNA replication and energy production, to intercellular and
intracellular signaling, often involve multiple biochemical reactions and molecular interactions
taking place at multiple levels (transcriptomics, epigenomics etc.).

In order to have a good understanding of cellular functions at the systems-level, one needs to
correctly identify and interpret all functional interactions of DNA, RNA, and proteins of organisms
of interest (Szklarczyk et al., 2010). In turn, this has lead to the development of knowledge bases
of functional modules and large networks of intermolecular interactions and pathways. Biological
networks, which are graphical representation of genes, proteins, DNAs, RNAs, or even small
miRNAs and their functional interactions, are rapidly accumulated in public databases, including
HPRD (Keshava Prasad et al., 2008), DIP (Salwinski et al., 2004), KEGG (Kanehisa et al., 2017),
Reactome (Croft et al., 2014), and many other curated interactome networks developed for human
and model species (Harbison et al., 2004; Stelzl et al., 2005; Yu et al., 2008; Ravasi et al., 2010).
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Many computational approaches have been developed to mine
such interactome networks in order to better understand cellular
processes and disease mechanisms (Spirin and Mirny, 2003).
Topological modules (Girvan and Newman, 2002), within
which nodes are well-connected and the interactions are more
concentrated compared with those outside, are among the
most intensively studied research areas. However, as functional
interactions are annotated in static experimental conditions,
network databases alone fail to account for the dynamic nature
of biological systems and thus fail to provide a full representation
of cellular interactions.

Recently, with the advancement of high-throughput
technologies, biological data of different kinds have rapidly
accumulated in public repositories. Taken alone, molecular
data only represents a snapshot of biological systems and often
fail to elucidate biological mechanisms. When projected onto
biological networks, however, molecular profiles and expression
changes have the potential to reflect the perturbation of complex
cellular network and thus allow for comprehensive monitoring
of biological systems (Cowen et al., 2017; Yi et al., 2017). A
recent focus of computational biology has been to integrate the
complementary information available in molecular profiles as
well as in multiple network databases in order to identify active
modules, i.e., well-connected subnetworks that are significantly
perturbed under different conditions (Mitra et al., 2013). These
approaches have been widely applied and proven to be powerful
in elucidating biological mechanisms of underlying physiological
and disease phenotypes (Chuang et al., 2007; Bapat et al., 2010;
Qiu et al., 2010; Zhang and Ouellette, 2011; Shafi et al., 2019).

In this document, we categorize and review 22 such
subnetwork identification methods based on the following
criteria: their availability and user interface, the type of input
the method requires, subnetwork seeding and construction,
and statistical approaches used to assess the significance of the
identified subnetworks. We classify these approaches into six
different categories according to the techniques used to traverse
the global network in order to construct the active subnetworks.
In section 2, we discuss the availability, implementation, types
of experimental input and reference network databases that the
surveyed methods use. In section 3, we categorize and compare
the methods according to the way they traverse and expand
the subnetwork. In section 4, we include real-world scenarios
in which the surveyed methods were successfully applied. In
section 5, we discuss the limitations of current knowledge bases
and outstanding challenges in method development. In section 6,
we systematically recapitulate the 22 approaches by highlighting
their key characteristics and differences. We also provide detailed
descriptions for individual methods in Supplementary Material.

To the best of our knowledge, this is the first article that
provides such in-depth discussion and covers a large number
of tools for active subnetwork identification. A recent survey
of biological networks (Mitra et al., 2013) discussed active
network identification, among other topics, and provided a
list of tools. However, this article covers many topics and its
wide breadth means there was some limitation in the depth
to which these tools could be covered. In addition, many
of the tools listed there are outdated and/or not maintained

anymore. More recently, another survey (He et al., 2017)
focused on assessing the performance of 10 subnetwork analysis
methods using simulations. This survey, however, provides even
fewer details and discussion of each individual method. In
contrast, here we provide a comprehensive review of a total of
22 methods for active subnetwork identification, highlighting
their availability, implementation, applicable network databases,
underlying mathematical and algorithmic principles, as well as
advantages and limitations for each method. The main objective
of this review is to help potential users and researchers to choose
methods that are suitable for their data and analysis purpose.

2. SOFTWARE AND DATABASES

2.1. Availability and Implementation
Table 1 shows the 22 methods we review in this article. Although
more computational methods for subnetwork identification have
been published, we only review methods that are associated
with executable packages that can actually be used by people
other than the authors. This table provides the following
information about each tool: (i) their availability (link to the
tool), (ii) implementation (standalone package, web interface,
user interface, programming language), (iii) reference to the
original articles, (iv) citations, and (v) software license. We
believe that these details are crucial for users to know before
spending a significant amount of time to understand the software
and perform analyses.

One often thinks that the strengths of a computational
approach mostly depend on its algorithmic novelty and time and
space complexity. However, the availability and implementation
of the software have become more and more important (Nguyen
et al., 2018). Since there aremany tools available in themarket, if a
method is not well-implemented, potential users will simply pick
another tool that is ready-to-run. It is unlikely that life scientists,
who are the intended audience of these software, invest time to
learn a programming language in order to implement complex
algorithms reported in some papers. Practically, input and output
format, graphical user interface, programming language, user-
friendliness, and documentation are all important factors to be
considered. More importantly, since reproducibility has become
an outstanding issue recently, software availability and version
control are critical for quality control and for reproducing the
results reported in scientific papers (Sandve et al., 2013). For that
reason, many journals today require authors to make their code
available before publishing the paper.

At the time of this review, all of the 22 surveyed methods
are available as either a standalone package or a web-based tool.
Among these, there are 20 standalone packages and three web-
based tools (one tool has both standalone package and web-
based tool). Standalone tools are more often chosen to make
use of the computational power of users’ local machines or
servers. Some of these packages provide a friendly interface
for users to interact with. These software usually provides
interactive features for users to manipulate the network and
explore the data, which is illustrative and convenient. Some
of them, e.g., PinnacleZ, BMRF-Net, and jActiveModules, are
distributed as plugins of Cytoscape (Shannon et al., 2003) to
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make use of its friendly interactive interface in manipulating
networks. The rest provide command line interface or APIs for
users to conduct experiments. Users usually need a third-party
software to visualize the result networks such as Cytoscape. An
advantage of tools with a command line interface is that it is
easier for advanced users to integrate and embed these tools in
their automated analysis pipeline. Most standalone tools require
some administrative skills to install. Since these tools require
interactome data, users are expected to download, locally store,
and periodically update the network databases (partial or full
copy). A standalone tool usually does not require internet access
to perform analysis, which enhances the security and privacy of
the experimental data.

Web-based tools (ResponseNet, TimeXNet, and EnrichNet),
on the other hand, rely on a remote server to conduct analysis
and provide computational power and a graphical interface;
therefore, a local installation is generally not needed. Web-
based tools are more user-friendly than standalone tools;
however, they require an internet connection and a browser
for access. In terms of cybersecurity and data privacy, this is
considered a disadvantage compared to standalone tools. One
major advantage of web-based tools is that most updates are
transparent. In turn, this enhances the users’ performance and
enables collaboration between users by eliminating the burden of
local installation and the need to keep it up-to-date.

The choice of the programming language used for the
implementation also influences how well the method will be
received. Tools that are well-implemented and packaged are
more accepted than those that are poorly implemented or not
user-friendly. Many methods implemented in Java provide good
performance, can run on multiple platforms (Windows, Linux,
MacOS), and offer a nice interactive user interface. For packages
providing command line or APIs, it is worth to mention that
the programming language plays a vital role in attracting users.
For example, R users will prefer using an R package rather
than learning a new language (such as Python or MATLAB).
The programming language can also be an obstacle when there
is a need to integrate a tool written in a different language
to the current analysis pipeline. Most tools published as R
packages can be easily installed due to R’s user-friendly package
manager. Other standalone tools written in C++, Python, and
Ruby provide a command line interface to execute the analysis.
Tools implemented in C++ also need to be compiled before using.

We also report the number of citations (and citations per
year) for each method according to Google Scholar. Although
the number of Google citation is not the right metric to assess
a method’s novelty or performance, it partially reflects how well a
tool is accepted or known among researchers in the community.
Finally, we report the license of each software. All of the surveyed
software are free-of-charge for academic purposes. Many of them
are freely available for non-academic users as well.

2.2. Experimental Data and Network
Databases
Table 2 shows the input of each method, as well as the
corresponding network databases and applicable species. Up to
date, most methods are designed for analyzing human diseases
using protein-protein interactions. Among the 22 methods, only

six were designed to work with other species, including Rattus
norvegicus (ModuleDiscoverer), Mus musculus (MATISSE,
CEZANNE, TimeXNet), Saccharomyces cerevisiae (MATISSE,
CEZANNE, jActiveModule, ResponseNet, TimeXNet, SAMBA),
Drosophila melanogaster (MATISSE, CEZANNE), and C. elegans
(MATISSE, CEZANNE). Most methods claim to be able to
work with other species provided that the interaction network
is available.

A subnetwork detection analysis typically requires two
different kinds of input: (1) experimental data, and (2)
interactome networks. Experimental data is generally data
obtained from high-throughput technologies, such as gene
and protein expression, somatic mutation, and copy number
alteration. Among the 22 methods, only BioNet & Heinz uses
the survival information to score genes in addition to differential
analysis of expression data (Supplementary section 1.12).
Most methods are designed for comparative analysis of two
phenotypes, e.g., condition (disease) vs. control (healthy).
Among the 22 methods, only four methods can detect
subnetworks that are perturbed across multiple diseases or
conditions. These are PinnacleZ, COSINE, GLADIATOR, and
jActiveModules. These methods use statistics and tests (e.g.,
F-test, mutual information) that are able to compare more
than two groups of samples in order to score the candidate
subnetworks (see section 6 for discussions).

Different analysis methods use different input formats. There
are only three methods that use mutation profiles as input,
including RME Module Detection, HotNet, and MEMo. These
methods aim to identify subnetworks that have more genes
with mutations than expected. Most other methods accept the
whole gene expression matrix, in which rows represent genes
and columns represent samples from different phenotypes. Some
methods accept only differentially expressed (DE) genes/proteins
and their corresponding statistics (fold-change, p-value).
TimeXNet is the only method that requires time-course data in
the format of DE genes. The list of DE genes or proteins can be
obtained by using a predefined cut-off based on p-value, fold-
change, or both. Network approaches relying on input DE genes,
however, might be overly sensitive to both selection method
and cut-off threshold. First, a slight change in the threshold can
greatly alter the list of DE genes (Nam and Kim, 2008). Second,
different selection methods often produce different lists of DE
genes. For example, the list of genes with high fold-changes is
often not identical to the list of genes with significant p-values.
In addition, for the same disease, independent studies or
measurements often produce inconsistent sets of DE genes (Tan
et al., 2003; Ein-Dor et al., 2005, 2006). This makes network
analysis methods that rely on DE gene list even less reliable.

The input format for each method can be different depending
on the programming language and the implementation of the
method. For R packages, a common input of gene expression
profiles is usually a matrix object where rows represent samples
and columns represent genes (or vice versa). The input
network can be passed as an adjacency matrix representing the
relationship between nodes. For Cytoscape’s plugins, the input
network is in the format of Cytoscape network input files. With
other methods, gene expression and network data are usually
stored in flat files with a specific format defined by the software.
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Besides experimental data, most methods also require
interactome data or biological networks for their analysis.
Biological networks are graphs representing either protein-
protein networks or gene-gene networks. In these networks, the
nodes are proteins or genes, and edges are interactions between
them. Each network can contain additional information such as
directions of the interactions (in directed networks), weights of
nodes and edges, and other knowledge about the proteins, genes
or their interactions (e.g., different types of interactions). RME
Module Detection is the only method that does not require a
predefined network as input. It constructs the global network
from mutation data before extracting active subnetworks.

Among the network databases presented in Table 2, many of
them are widely used in pathway analysis such as KEGG, HPRD,
STRING, Reactome, NCI-PID, and BioGRID. In the subnetwork
analysis, while most methods use a single protein network
database to conduct the experiment, some methods, such as
jActiveModules, MOEA, MEMo, TimeXNet, and DIAMOnD,
combine multiple networks from different sources to construct
a larger network. Since overlap among network databases
is small (Chaurasia et al., 2006; Prieto and De Las Rivas,
2006), combining multiple databases can potentially increase
the knowledge about interactome networks to build a more
comprehensive biological network.

3. METHODS

Figure 1 shows the schematic representation of computational
approaches that integrate phenotypic molecular profiles with
known interactions accumulated in network databases. Most
methods start by scoring the nodes and calculate node similarity
that reflects the expression change (e.g., between disease and
control) and the correlation between genes, respectively. Then,
they adjust the scores and edge weights by taking into
consideration the topological order and interaction between
genes and proteins. The next step is to construct the subnetworks
using edge weights and node scores. Typically, each method
deploys its own subnetwork extension strategy in order to
optimize a particular subnetwork scoring function using node
scores and edge weights. After the subnetworks are constructed,
eachmethod performs a hypothesis testing to assess the statistical
significance of identified modules. Some methods also repeatedly
reconstruct the subnetwork after the statistical tests in order to
find a more optimal solution.

Here we divide the methods into 6 categories according to
the way the subnetworks are expanded: (1) greedy algorithms,
(2) evolutionary algorithms, (3) maximal clique identification,
(4) randomwalk algorithms, (5) diffusion emulation models, and
(6) clustering-based methods. We summarize the methods in
each category, providing the big picture and insights. Section 6
contains a detailed characteristics of each method.

3.1. Greedy Algorithms
In this section, we review six approaches that utilize a greedy
strategy in order to construct active subnetworks, including
GXNA (Gene eXpression Network Analysis), CEZANNE (Co-
Expression Zone ANalysis using NEtworks), MATISSE (Module

Analysis via Topology of Interactions and Similarity SEts),
DIAMOnD (DIseAse MOdule Detection), PinnacleZ, and RME
(recurrent and mutually exclusive) Module Detection.

The common flow of greedy algorithms consists of threemajor
steps: (i) seed nodes selection (ii) subnetwork expansion, and (iii)
significance testing. In the first step, the seeds can be randomly
selected nodes (GXNA and PinnacleZ), high-scoring nodes
(MATISSE and CEZANNE), user-defined nodes (DIAMOND
and GXNA), or all nodes in the network (RME Module
Detection). In the second step, each method then greedily
extends the seeds with neighboring nodes with the objective to
maximize the subnetwork’s score. The procedure is repeated until
further expansion does not increase the objective function. Some
methods introduce early stopping criteria, such as the maximum
size (RME Module Detection) or the improvement rate
(PinnacleZ). In the third step, the statistical significance of the
identified subnetworks is assessed by comparing its score against
the scores obtained from random subnetworks (CEZANNE,
PinnacleZ, RME Module Detection), or from permuting sample
and gene labels (GXNA, MATISSE, PinnacleZ). This statistical
significance of a subnetwork represents the probability of
observing such score or higher, just by chance. The smaller
the p-value, the less likely that such extreme score is observed
by chance, i.e., the more likely the subnetwork has significant
changes or significantly perturbed under the impact of the
disease. DIAMOnD is the only method in this category that does
not assess the statistical significance of the resulted subnetworks.

Greedy algorithms are fast and intuitive. However, since the
decision at each step aims to improve the current state of the
solution without paying attention to the global situation, it
does not guarantee to produce the most optimal path. In fact,
there is a high chance that the greedy algorithm does not find
the global optima. Therefore, the selection of starting points
plays a vital role in identifying optimal solutions. In addition,
since this approach depends heavily on maximizing the score of
the network by repeatedly adding adjacent nodes, the scoring
function plays a vital role in the entire analysis, affecting the
construction as well as the statistical significance of the obtained
subnetworks. The methods scoring the network based on the
similarity or correlation in gene expression change (MATISSE,
CEZANNE, RME Module Detection, and PinnacleZ) tend to
expand the modules to contain only highly similar genes, which
can result in subnetworks missing important intermediate genes.
Moreover, in some cases, these methods can produce large
subnetworks with hundreds of genes that are difficult to interpret.

3.2. Evolutionary Algorithms
Here we review five approaches that use evolutionary algorithms
to search for active modules with optimal scores: BMRF-
Net (Bagging Markov Random Field), COSINE (COndition
SpecIfic sub-NEtwork), GLADIATOR (GLobal Approach for
DIsease AssociaTed mOdule Reconstruction), jActiveModule,
and MOEA (Multi-Objective Evolutionary Algorithm). Similar
to greedy approaches, evolutionary methods first define a scoring
formula for each node and each edge as well as for a subnetwork
whose score is often a weighted aggregation of nodes and edges
belonging to the subnetwork. Each tool then uses either Generic
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FIGURE 1 | Overall workflow of active subnetwork identification. (A) Schematic representation of computational approaches that integrate molecular profiles with

known interactions accumulated in knowledge bases. Most methods start by scoring the nodes and calculating node similarity that reflects the expression change

(e.g., between disease and control) and correlation between genes, respectively. Then, they adjust the scores and edge weights by taking into consideration the

topological order and interaction between genes and proteins. The next step is to construct the subnetworks using edge weights and node scores. Typically, each

method develops a specific subnetwork extension strategy in order to optimize a specific subnetwork scoring function using node scores and edge weights. After the

subnetworks are constructed, each method performs a hypothesis testing to assess the statistical significance of identified modules. Some methods also repeatedly

reconstruct the subnetwork after statistical tests to find a more optimal solution. (B) An example network and identified active subnetwork. The subnetwork are often

a very well-connected component of the global network.

Algorithm (COSINE and MOEA) or Simulated Annealing
(BMRF-Net, GLADIATOR, and jActiveModules) to search for
an optimal subnetwork with the highest aggregate score. Among
the five methods, only BMRF-Net and jActiveModule access
the statistical significance of the obtained subnetwork using
resampling and bootstrap, respectively.

Abstractly, the subnetwork construction can be formulated as
a global optimization problem. Given p as the total number of
genes, a subnetwork is represented as a binary vector of length
p. The ith element in the vector being 1 means that the ith gene
is present in the network. Evolutionary algorithms seek to find a

binary vector that optimizes a certain scoring function. Simulated
Annealing (SA) algorithm initializes a subnetwork by assigning
each node as either active or inactive with a probability (default
1
2 ). At each iteration, the algorithm randomly chooses a node and
toggle the node’s state (from active to inactive and vice versa).
It then recalculates the aggregate score of the subnetwork. If the
new score is greater than the old score, the state of the node is
kept toggled. Otherwise, the node is kept toggled with a certain
probability (to avoid being trapped in a local minimum). The
algorithm returns the highest scoring subgraph after a number
of iterations. Note that GLADIATOR maximizes the similarity
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(using Jaccard index) between the connected modules provided
for different diseases instead of optimizing the aggregate score
of nodes and edges. The classical simulated annealing algorithm
gets its inspiration from heat treatment in metallurgy which
involves annealing metal to increase crystal size while reducing
defects (Kirkpatrick et al., 1983).

Genetic Algorithms (SA), on the other hand, are inspired by
natural selection, the process that drives biological evolution.
The algorithm initialization sets certain genes (e.g., nodes with
high scores) to 1 (active) and considers these genes as the
starting population. Individuals in the population (parents) are
then selected in pairs for reproduction based on their fitness
score, in which crossover andmutation are happening. Crossover
involves exchanging information from the parents to produce
offspring while random mutations (with a low probability) alter
the offspring to maintain diversity. The algorithm stops when the
population has converged.

Although both GA and SA produce good quality solutions
in the problem of finding optimal subnetworks, there is always
a trade-off between running time and solution quality, which is
affected by the size of the solution in GA and the temperature
decay rate in SA (Adewole et al., 2012). The advantage of these
algorithms is that they are not limited to the size and the
complexity of the search space. Therefore, it can work with
very large networks. In contrast to greedy algorithms, genetic
algorithms aim to find the global solution and have proven to
be very efficient in finding an approximation of global optima.
Since GA and SA are both efficient in solving the problem of
finding optimal subnetworks, it is important that the scoring
process reflects precisely the perturbation and signal propagation
of the subnetworks.

3.3. Diffusion-Flow Emulation Models
In this section, we discuss five methods that emulate diffusion
flow phenomena in order to construct active subnetworks. Two
of these are inspired by the heat diffusion process (HotNet and
RegMod), while three others by the water flow phenomenon
(BioNet & Heinz, ResponseNet, and TimeXNet). These are
methods that aim to find a global solution through algorithmic
optimization. Among the five, only TimeXNet and HotNet
provide a statistical significance of the obtained active modules
by using a permutation test.

Given a weighted and directed protein-protein interaction
(PPI) network, BioNet & Heinz, ResponseNet, and TimeXNet
emulate an abstract flow from a source node to a sink node
through capacity- and cost-associated edges. The objective is
to minimize the total cost from a source node to a sink node
through a linear formulation in which variables represent the
flow over each edge. Each edge of the network is assigned
with: (i) a cost that is inversely proportional to the interaction
reliability between the two connected nodes, and (ii) a flow
capacity that is proportional to the similarity in molecular
measurements of the two connected genes. The optimization
problem is then solved using constrained linear programming,
in which constraints (linear equalities or inequalities) are given
to nodes and edges. While ResponseNet and TimeXNet produce
only one optimal solution, Heinz allows users to explore different

sub-optimal networks by adding a hamming distance to the
optimal subnetwork to constrain the differences of the returned
sub-optimal networks.

Heat diffusion algorithms, HotNet and RegMod, define
the problem of finding active subnetworks as a heat diffusion
model. Given a PPI network in which nodes weight represents
initial heat, the optimization process delivers heat through
edges until the heat in the network is equilibrium. Hot
subnetworks are constructed after selecting edges transferring a
total heat amount larger than a certain threshold. RegMod
uses a heat diffusion kernel to calculate the similarity
between two nodes, then computes the score for each
gene that represents its relationship with other genes in the
network. Active subnetworks are obtained by extracting high
scoring genes.

3.4. Random Walk Algorithms
A random walk is a simulated path consisting of successive
random transitions through a mathematical space, for example,
an integer set or a 2-D plane. The transitions are not necessarily
a complete random action but rather can be biased toward
a specific direction. In a biological network, the connections
(or interaction intensities) between different pairs of proteins
are different. When applying the random walk algorithm
on the network, the walk is more likely to stay in the
subnetwork with high interactions among the members, because
the chance of the walk choose the lower interaction paths
to escape the subnetwork is small. The performance of the
algorithm is heavily affected by the method used to weight
the interactions.

Walktrap-GM (R package) and EnrichNet (web interface)
are the two tools that utilize random walks to identify active
subnetworks. EnrichNet requires a list of starting proteins
while Walktrap-GM uses as input gene expression data. To
build the weighted interaction network, Walktrap-GM calculates
the weight of each edge as the average fold-change of the
two connected nodes. In contrast, ErinchNet uses the weight
extracted from STRING 9.0 database, which could be argued to
be better, as it is combined confidence from different sources
such as curated databases, gene co-occurrence, text mining,
etc. To travel in the network, Walktrap-GM uses the random
walk algorithm which transits from the current node to its
adjacent nodes with a probability based on the weight of the
linking edge and the degree of the current node. Using the
transition probabilities, the distance between two nodes and
between two communities formed by the random walk process
are then calculated. The traverse will merge two communities
if it minimizes the mean of the squared distances between each
node and its community. On the other hand, EnrichNet uses a
randomwalk with restart to emphasize the importance of starting
nodes. Therefore, the result would be subnetworks that has strong
connections with the input gene list. Overall, Walktrap-GM is
expected to be more useful to look for new active modules
while EnrichNet is expected to perform better in the deeper
investigation of already-known modules. Walktrap-GM also
assesses the statistical significance of the obtained subnetworks
using bootstrap.
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3.5. Maximal Cliques Identification
This class of methods for active subnetwork identification is
focusing on finding cliques, i.e., subnetworks in which every
node is connected with all others. This approach is based on
the assumption that all the proteins in an active module would
have tight connections with the rest. Due to the lack of efficient
algorithms to find these cliques in a dense network (Tomita et al.,
2006), a preprocessing step to simplify the network is necessary.
Two methods in this review (MEMo and ModuleDiscover) have
different solutions to this problem. ModuleDiscover tries to filter
out the interactions that are not strong enough based on the
data from STRING database. In contrast, MEMo applies three
different kinds of filters based on significantly mutated gene, copy
number regions of interest and mRNA expression to retain only
the altered genes in their network. Then, cliques are extracted
from these filtered networks.

The advantage of these methods is the reliability of the
identified subnetworks, due to the nature of clique (strong
interaction in subnetwork). Moreover, by modifying the
algorithm, various kinds of data could be applied to the
simplification step to refine the network even more before the
identification of active modules. As a potential disadvantage,
ModuleDiscover’s reliance on the prior knowledge in the
STRING database means that the discovery of new modules is
essentially impossible. Also for MEMo, the aggressive filtering
(three filter layers) means that some important information may
be lost in the process.

3.6. Clustering-Based Methods
In this section, we review twomethods using different approaches
in the identification of active modules from other groups. These
are ClustEx, which is based on a hierarchical clustering algorithm,
and SAMBA, which uses biclustering on a bipartite graph.
ClustEx first calculates weights and distances for the edges using
the Pearson correlation of the expression of the genes associated
with the nodes. Subsequently, ClustEx clusters the genes using
hierarchical clustering. It then identifies the active modules
through two steps. In the first step, it looks for node pairs with
the distance below a given threshold and assigns the connecting
path as the initial clusters. In the second step, it expands the
initial cluster to the surrounding genes. Finally, the nodes that
are visited by the 10-shortest path in this expanded cluster
are identified as belonging to an active module. As potential
limitations, one can note that during the first step, ClustEx
calculates the distances between every pair of nodes which could
be a heavy computational task. Moreover, due to the nature of
the expanding process, which is determined by the 10-shortest
path, some important nodes in a tightly connected cluster could
be left out.

Unlike other methods, SAMBA takes a completely different
approach to identify the active modules. Instead of building
one single interaction network using genes as nodes, they build
a weighted bipartite graph where nodes on one side represent
the genes and nodes on the other side represent properties of
proteins encoded by them. The connection between two parts
represents the probability for a gene to have a specific property.
The locally optimal subgraphs are identified using biclustering

and overlapping is minimized by limiting the shared properties
between subgraphs. The performance of this model is heavily
dependent on the selections of properties layer, which couldmake
it challenging to apply SAMBA to a new disease.

4. APPLICATIONS

The 22 surveyed methods have been widely applied in real-world
scenarios to find disease gene signatures, dysfunctional pathways,
common mechanisms of different diseases, as well as to discover
drug and toxicity effects on different organisms. PinnacleZ,
despite being the most highly cited method, was mostly cited for
the discovery reported in the paper. The method jActiveModules
appears to be the most used tool for discovery and understanding
biological mechanisms. As a Cytoscape plugin, jActiveModules
has its advantages in network visualization and manipulation.
At the time of this survey, we found approximately 80 studies
that utilized this software. BioNET as an R package, was also
applied in real-world settings in more than 30 studies. Other
tools including EnrichNet, MEMo, and MATISSE were utilized
in more than 10 studies. The number of studies and manuscript
DOIs are reported in Supplementary section 2.

PPI networks have been widely used in identifying disease
biomarker and sample classification. For example, Chuang
et al. (2007) used PinnacleZ to classify patients with breast
cancer and Yuan et al. (2017) applied jActiveModules to find
gene signatures for leukemia patients for sample stratification
purposes. Network-based signatures have proven to be more
reliable and reproducible than signatures identified from gene
expression data alone. In fact, proteins involved in cancers
tend to show a high level of connectivity in the PPI
networks (Jonsson and Bates, 2006). Therefore, discovering
gene signatures for specific diseases can be greatly improved
by identifying significantly impacted subnetworks from the PPI
network, especially when the known disease genes are highlighted
as seed genes in the network (Shafi et al., 2019).

Active subnetwork approaches have also been utilized to
discover dysfunctional pathways of diseases. For example, Skov
et al. (2012) used jActiveModules to study biological pathways
and networks that are dysregulated in type 2 diabetes. The
study by Riazuddin et al. (2017) made use of MATISSE to
find novel gene candidates for the biological pathways of
intellectual disability disorder. Similarly, Sharma et al. (2015)
identified key pathways within the asthma module discovered
by the DIAMOnD method. Resulted modules from subnetwork
methods provide meaningful insights to dysfunctional processes
of the underlying disease phenotypes.

The discovered subnetworks, although are resulted from a
specific disease, can also be used to predict disease-causing genes
for similar diseases or other complex diseases (Oti and Brunner,
2007). By identifying responsive modules corresponding to
certain diseases, the associations among diseases can be
discovered by network similarity. For example, Dong et al.
(2014) used jActiveModules to extract active modules of type
2 diabetes and coronary heart disease to find pathways that
are important to both diseases. In another study, Wuchty et al.
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(2010) used significant subnetworks discovered by PinnacleZ to
find pathways that help to discriminate major glioma subtypes.
Studying associations between dysfunctional modules from
different phenotypes may reveal the true mechanism of complex
diseases such as cancers.

Drug and toxicity studies have also made use of active
subnetwork identification to discover their effects on different
organisms. For example, jActiveModules was used to identify
the network regions that is active under methamphetamine
(Bortell et al., 2017) and dioxin (Alexeyenko et al., 2010)
exposure. Similarly, BioNet was applied to extract top-scoring
networks to understand the impact of drug combinations on
lymphoma disease (Zhao et al., 2014). BioNet was also used to
find candidates for drug targets (Cursons et al., 2015). Although
drug targets are typically regarded as single proteins, most drugs
often interact with a larger number of proteins. By studying
drug-response subnetworks, the overall effects of a drug can be
revealed not only the efficacy of the drug to the target proteins
but also its side effects.

5. CHALLENGES IN SUBNETWORK
IDENTIFICATION

Even though subnetwork identification methods have
been applied in many real-world applications, there are
challenges that have not been addressed. In this section,
we highlight the limitations of existing knowledge bases,
as well as identify outstanding challenges from the method
development perspectives.

5.1. Knowledge Bases
One major challenge is that most PPI knowledge bases are
incomplete. For example, widely used networks in HPRD
and BioGRID cover at most 50% of the known human PPIs
(De Las Rivas and Fontanillo, 2010). In consequences, analysis
results using these knowledge bases may be incomplete due to
possible omissions of important factors. Another example is that
the number of genes in KEGG remained around 5,000 over the
past few years whereas the number of protein-coding genes is
estimated to be between 19,000 and 20,000 (Ezkurdia et al., 2014).
Integrative methods using networks and gene expression data are
forced to work on a much reduced gene space. In many cases,
using the reduced number of features in a classification algorithm
decreases the classification performance (Staiger et al., 2013),
suggesting that some important features (genes) had been left out
by the PPI networks. One approach to increase the coverage of
the PPI networks is to combinemultiple knowledge bases to build
a more comprehensive biological network.

Another important limitation of existing knowledge bases
is that they are unable to keep up with the high-resolution
information that has become available with the advancement
of high-throughput technologies and multi-omics assays. For
example, data obtained from RNA-Seq experiments allows us
to identify transcripts that are active under certain conditions.
Multiple transcripts mapping to the same gene can have distinct
or even opposite functions due to the alternative splicing (Wang

et al., 2008). Although this information is crucial to reveal
the underlying biological mechanisms, the majority of the PPI
knowledge bases only provides information at the gene level. In
addition, knowledge bases do not provide information regarding
cell types, conditions and time points each of which is essential
to reveal the true phenomenon of a given biological condition.
Finally, existing knowledge bases offer at most limited options
to integrate multi-omics data. In the past decade, molecular data
of all kinds, from transcriptomics to genomics, epigenetics, and
non-coding RNA have accumulated on public repositories with
unprecedented rates. However, most subnetwork approaches
are limited to gene/protein data. A great wealth of these data
remain unused since knowledge bases mostly store information
about protein or gene interactions. Future approaches need to
develop graphical models that take into consideration changes
at different levels (e.g., methylation, miRNA, mRNA) to exploit
the complementary information available in different types of
omics data.

5.2. Method Development
One key challenge for subnetwork method development is
the lack of universally accepted gold-standard to validate the
identified subnetwork modules. Computational approaches are
typically assessed by simulated data or by well-studied biological
datasets (He et al., 2017; Vlaic et al., 2018). The advantage of using
simulation data is that the ground truth is always known. Thus
it can be used to compare different methods using sensitivity
and specificity. However, simulation is often oversimplified and
unable to capture the complexity of living organisms. On the
other hand, when using real biological data, the biology is never
fully known. In addition, many papers presenting new analysis
methods include results obtained from only a couple of datasets
and researchers are often influenced by the observer-expectancy
effect (Sackett, 1979). Designing benchmark real datasets where
the true mechanisms are known would help address this issue.

Furthermore, the majority of the active subnetwork
identification methods do not account for the complexity
of protein interactions. Most of active subnetwork identification
methods and network clustering approaches, produce only
non-overlap modules. These methods were developed based
on the assumption that a protein can be active in at most one
module. However, it is known that most proteins may involve in
many biological processes. In addition, a disease can go through
different stages and a protein may take place in different active
modules at different time points. Producing large networks
containing all possible interactions is insufficient to reveal
the underlying mechanisms for complex diseases. Reporting
different networks for different stages of dynamic networks,
in this case, will significantly help to interpret the signal of
the disease.

Finally, p-value-based approaches are subject to potential bias
under the null hypothesis. In principle, the null distribution is
used to assess the significance of the observed result obtained
from an experiment. The p-values obtained from any sound
statistical test are assumed to follow a uniform distribution
(with the interval 0–1) (Fodor et al., 2007; Barton et al.,
2013). Although this issue is yet to be investigated in the field
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of subnetwork identification, it has been shown that many
computational methods for network and pathway analysis have
a systematic bias toward pathways related to cancer and well-
studied diseases (Nguyen et al., 2017). In the study, the authors
created a large pool of healthy individuals and then randomly
compare two groups of healthy people. Interestingly, the p-value
distributions of cancer pathways are extremely biased toward
zero and thus are found significant in many analyses that have
nothing to do with cancer. Similarly, subnetwork analyses are
expected to be biased toward well-studied diseases and network
modules. To overcome this problem, p-values of the candidate
modules should be calculated under the null to demonstrate that
a method is not biased under the null.

6. DISCUSSIONS

All of the methods surveyed here aim to identify one or several
active subnetworks for one or several input datasets. However,
they differ in their assumptions about the relationship among
genes, protein, or both, which leads to different scoring functions
and traversal strategies. Figure 2 shows the workflows of the
22 methods, highlighting their characteristics and differences.
From left to right are the techniques applied in each approaches:
(i) node scoring, (ii) edge scoring, (iii) algorithm used to
construct the subnetworks, and (iv) statistical test for assessing
the significance of the identified active subnetworks. Note that
GLADIATOR does not score nodes nor edges but rather it uses
the Jaccard Index between input gene sets (of different diseases)
as the objective for its simulated annealing algorithm. In this
review, we categorize the 22 approaches according to the way they
construct their network (main algorithm).

The problem of finding optimal subnetworks with the highest
network score is NP-hard. Therefore, many methods address
this problem via a heuristic approach that does not guarantee a
global optimum. Random walk and greedy algorithms construct
their modules by initializing the seeds and greedily extend the
modules. Therefore, the results obtained with these methods will
depend on the choice of the seeds. In a large network of tens
of thousands nodes, it is harder to find a seed that leads to the
global optima. Diffusion-flow emulation models, on the other
hand, model the problem as a mathematical optimization that
aims to find the global optimum using algorithmic optimization.
For example, maximum-flow algorithms assign flow capacity and
flow cost to nodes and edges and then find the global optimum
using constrained linear programming. These mathematical
approaches guarantee to reach a global optimum. Similarly,
evolutionary algorithms also aim to find the global optimum
or at least an approximation of it. The algorithms allow for
transitions to states with a lower score in order to avoid being
trapped at a local maximum/minimum. In principle, with a
large number of iterations, these algorithms are likely to find a
global solution.

Maximal clique approaches and clustering-based methods
are distinct from the rest in terms of their goals and
objectives. Maximal clique methods do not aim to find
connected nodes with the best score. Instead, they aim to find

groups of genes that interact with one another (every pair
of nodes in a clique has an edge between them). However,
it is not necessarily true that all genes in a clique always
take part in certain biological processes. In addition, these
methods may miss intermediate genes or proteins that play
important roles in connecting those cliques. The clustering-
based methods, on the other hand, assume that co-expressed
genes are all involved in the same cellular process (ClustEx)
or there is a hierarchical structure in the biological network
(SAMBA). Since clustering approaches aim to group high-
similarity genes into the same cluster without paying attention
to the size of each cluster, the output can be highly
imbalanced, including extremely large subnetworks that fail
to provide insights into the underlying mechanisms of the
given phenotypes.

The methods surveyed here use a wide range of scoring
functions to score the nodes and edges. Most of them (except
GLADIATOR) provide a scoring function for nodes or edges,
but only some of them take into account the scores of both
nodes and edges. While node-based scoring approaches look
at the significance of one gene or protein in the context of
the whole network, edge-based scoring networks look at the
strength of the relationship among protein or gene. Without
paying attention to the weight of the relationship between
proteins or genes, node-based scoring methods may produce
subnetworks that have high scoring nodes but do not have a
meaningful relationship between nodes. Also, the edge-based
scoring network may produce subnetworks that contain highly
similar genes but have low significance in the network. These
resulted subnetworks, unfortunately, will be difficult to interpret.
Methods that take into account the scores of both nodes and
edges are likely to produce a more accurate active module.

Node and edge scoring functions are the building blocks
of the subnetwork score. In principle, they should be the
summary statistics that capture the network perturbation, signal
propagation as well as the changes between different phenotypes.
Since each test and score is based on a certain assumption,
users need to check if the assumption of each test matches
the property of their data. For instance, the z-test and t-
test assume that the data follows a normal distribution, while
methods using fold-change assume that the effect size is the
most important factor to capture the difference between the
two conditions. Note that fold-change is highly dependent
on the background signal, i.e., a shift in the range will
significantly change fold change (e.g., 101 compared to 103
vs. 1 compared to 3) (Drăghici, 2011). Furthermore, the t-
test, z-test, and fold-change approaches can only compare
two conditions, while the F-test, mutual information, and
binomial test allow users to capture changes across multiple
conditions. Some methods do not take into account the scores
of the nodes but rather require the user to input a gene list
or protein list (GLADIATOR, ResponseNet, EnrichNet, and
ClustEx) as the significant gene set to serve as starting points
of the algorithm. These methods can be sensitive to the input
gene list, in which small changes in the list can dramatically
affect the resulted subnetworks. In contrast to the variety of
node scoring, the edge scoring functions mostly rely on the
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FIGURE 2 | Workflows of active module identification approaches. The figure highlights the key characteristics and key differences between each method. From left to

right are the techniques applied in each approach: (i) node scoring, (ii) edge scoring, (iii) algorithm used to construct the subnetworks, and (iv) statistical test for

assessing the significance of the identified active subnetworks. We note that GLADIATOR does not score nodes nor edges but uses Jaccard Index between input

gene sets (of different diseases) as the objective for its simulated annealing algorithm.

correlation between two adjacent nodes to indicate the similarity
between nodes.

The significance test used in a particular tool is also an
important factor to consider. An aggregated score calculated for a
module represents the level of signal perturbation or the degree of
change observed in the subnetwork between different conditions.
Similar to fold-change or effect-size, this score can be either
the result of real biological changes or just by chance due to
random noise. One needs to assess whether the observed change
represents real biological differences. Therefore, a significance
assessment should be done to assess how likely the aggregated
score is observed just by chance under the null hypothesis,
i.e., due to noise and chance alone. DIAMOnD, COSINE,
MOEA, Bionet & Heinz, ResponseNet, and EnrichNet output
the subnetworks and aggregated scores without performing
a significance assessment. Thus, it is totally up to users to
interpret the identified subnetworks and their scores. The
remaining methods perform a significance assessment and
calculate a p-value for each resulted subnetwork. For methods
that provide multiple active subnetworks, a correction for
multiple comparisons should be performed. Users can determine
whether each subnetwork is significantly impacted by comparing
the p-values with a pre-defined threshold.

7. CONCLUSIONS

In the past decades, there have been great efforts to mine network
databases for identifying condition-specific cellular processes.
One successful strategy has been to integrate these networks with
molecular data to identify active subnetworks or modules that
are involved in condition-specific biological functions. In this
article, we review 22 methods that identify active subnetworks
by integrating molecular data (e.g., expression profiles, protein,
mutation) with known biological interaction accumulated in
knowledge bases and public repositories. At the time of preparing
this article, all surveyed methods are available as either a
working standalone package or through a web-based interface.
We categorize the 22 methods into five different categories
according to the way they construct and extend the subnetwork.
We summarize the pros and cons of each approach and category,
focusing on their distinguishing characteristics andmathematical
models. Our main objective is to help potential users and life
scientists to choose methods that are most suitable for their
available data and analysis purpose. This review will also help
computational scientists to identify shortcomings of existing
approaches in order to develop new methods that address
current limitations.
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Next-generation sequencing technologies allow to measure somatic mutations in a large

number of patients from the same cancer type: one of the main goals in their analysis

is the identification of mutations associated with clinical parameters. The identification of

such relationships is hindered by extensive genetic heterogeneity in tumors, with different

genes mutated in different patients, due, in part, to the fact that genes and mutations

act in the context of pathways: it is therefore crucial to study mutations in the context of

interactions among genes. In this work we study the problem of identifying subnetworks

of a large gene-gene interaction network with mutations associated with survival time.We

formally define the associated computational problem by using a score for subnetworks

based on the log-rank statistical test to compare the survival of two given populations.

We propose a novel approach, based on a new algorithm, called Network of Mutations

Associated with Survival (NoMAS) to find subnetworks of a large interaction network

whose mutations are associated with survival time. NoMAS is based on the color-coding

technique, that has been previously employed in other applications to find the highest

scoring subnetwork with high probability when the subnetwork score is additive. In our

case the score is not additive, so our algorithm cannot identify the optimal solution with

the same guarantees associated to additive scores. Nonetheless, we prove that, under

a reasonable model for mutations in cancer, NoMAS identifies the optimal solution with

high probability. We also design a holdout approach to identify subnetworks significantly

associated with survival time. We test NoMAS on simulated and cancer data, comparing

it to approaches based on single gene tests and to various greedy approaches. We show

that our method does indeed find the optimal solution and performs better than the other

approaches. Moreover, on three cancer datasets our method identifies subnetworks with

significant association to survival when none of the genes has significant association with

survival when considered in isolation.
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1. INTRODUCTION

Recent advances in next-generation sequencing technologies
have enabled the collection of sequence information from many
genomes and exomes, with many large human and cancer
genetic studies measuring mutations in all genes for a large
number of patients of a specific disease (Cancer Genome Atlas
Research Network, 2013, 2014; Cancer Genome Atlas Network,
2015; Cancer Genome Atlas Research Network et al., 2017;
Raphael et al., 2017). One of the main challenges in these
studies is the interpretation of such mutations, in particular
the identification of mutations that are clinically relevant.
For example, in large cancer studies one is interested in
finding somatic mutations that are associated with survival
and that can be used for prognosis and therapeutic decisions.
One of the main obstacles in finding mutations that are
clinically relevant is the large number of mutations present
in each cancer genome. Recent studies have shown that
each cancer genome harbors hundreds or thousands of
somatic mutations (Garraway and Lander, 2013), with only
a small number (e.g., ≤ 10) of driver mutations related
to the disease, while the vast majority of mutations are
passenger, random mutations that are accumulated during
the process that leads to cancer but not related to the
disease (Vogelstein et al., 2013).

In recent years, several computational and statistical methods
have been designed to identify driver mutations and distinguish
them from passenger mutations, exploiting data from large
cancer studies (Raphael et al., 2014). Many of these methods
analyze each gene in isolation, and use different single gene
scores (e.g., mutation frequency, clustering of mutations, etc.)
to identify significant genes (Dees et al., 2012; Lawrence et al.,
2013; Tamborero et al., 2013). While useful in finding driver
genes, these methods suffer from the extensive heterogeneity of
mutations in cancer, with different patients showingmutations in
different cancer genes (Kandoth et al., 2013). One of the reasons
of such mutational heterogeneity is the fact that driver mutations
do not target single genes but rather pathways (Vogelstein
et al., 2013), groups of interacting genes that perform different
functions in the cell. Several methods have been recently
proposed to identify significant groups of interacting genes in
cancer (Vandin et al., 2012b; Hofree et al., 2013; Kim et al.,
2015; Leiserson et al., 2015a,b; Shrestha et al., 2017). Many
of these methods integrate mutations with interactions from
genome-scale interaction networks, without restricting to already
known pathways, that would hinder the ability to discover new
important groups of genes.

In addition to mutation data, large cancer studies often collect
also clinical data, including survival information, regarding
the patients. An important feature of survival data is that it
often contains censoredmeasurements (Kalbfleisch and Prentice,
2002): in many studies a patient may be alive at the end of
the study or may leave the study before it ends, therefore
only a lower bound to the survival of the patient is known.
Survival information is crucial in identifying mutations that
have a clinical impact. However, the survival information is
commonly used only after candidate genes or groups of genes

have been identified using other methods, as the ones described
above, to evaluate the clinical significance of such genes or
groups of genes (Cancer Genome Atlas Research Network,
2011; Hofree et al., 2013). Overall, there is a lack of methods
that integrate mutations, interaction information, and survival
data to directly identify groups of interacting genes associated
with survival.

The field of survival analysis has produced an extensive
literature on the analysis of survival data, in particular for the
comparison of the survival of two given populations (sets of
samples) (Kalbfleisch and Prentice, 2002). The most commonly
used test for this purpose is the log-rank test (Mantel, 1966;
Peto and Peto, 1972). In genomic studies we are not given two
populations, but a single set of samples, and are required to
identify mutations that are associated with survival. The log-rank
test can be used to this end to identify single genes associated
with survival time by comparing the survival of the patients
with a mutation in the gene with the survival of the patients
with no mutation in the gene. The other commonly used test,
the Cox Proportional-Hazards model (Kalbfleisch and Prentice,
2002), is equivalent to the log-rank test when the association
of a binary feature with survival is tested, as it is in the case
of interest to genomic studies. For a given group of genes,
one can assess the association of mutations in the genes of the
group with survival by comparing the survival of the patients
having a mutation in at least one of the genes with the survival
of the patients with no mutation in the genes. However, this
approach cannot be used to discover sets of genes, since one
would have to screen all possible subsets of genes and test
their association with survival, and the number of subsets of
genes to screen is enormous even considering only groups of
genes interacting in a protein interaction network (e.g., there
are > 1015 groups of 8 interacting genes in HINT+HI2012
network; Leiserson et al., 2015b).

In this paper we study the problem of finding sets of
interacting genes withmutations associated to survival using data
from large cancer sequencing studies and interaction information
from a genome-scale interaction network. We focus on the
widely used log-rank statistic as a measure of the association
between mutations in a group of genes and survival. Our
contribution is in five parts: first, we formally define the problem
of finding the set of k genes whose mutations show the maximum
association to survival time by using the log-rank statistic as
a score for a set of genes: we show that such problem is NP-
hard. We show that the problem remains hard when the set of
k genes is required to form a connected subnetwork in a large
graph with at least one node of large degree (hub). Second, we
propose an efficient algorithm, Network of Mutations Associated
with Survival (NoMAS), based on the color-coding technique,
to identify subnetworks associated with survival time. Color-
coding has been previously used to find high scoring graphs
for bioinformatics applications (Dao et al., 2011; Hormozdiari
et al., 2015) when the score for a subnetwork is set additive
(i.e., the score of a subnetwork is the sum of the scores of
the genes in the subnetwork). In our case the log-rank statistic
is not set additive, and we prove that there is a family of
instances for which our algorithm cannot identify the optimal
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solution. Nonetheless, we prove that, under a reasonable model
for mutations in cancer, our algorithm identifies the optimal
solution with high probability. Third, we test our algorithm
on simulated data and on data from three large cancer studies
from The Cancer Genome Atlas (TCGA). On simulated data,
we show that our algorithm does find the optimal solution
while being much more efficient than the exhaustive algorithm
that screens all sets of genes. On cancer data, we show that
our algorithm finds the optimal solution for all values of k
for which the use of the exhaustive algorithm is feasible, and
identifies better solutions (in terms of association to survival)
than a greedy algorithm similar to the one used in Reimand
and Bader (2013). Fourth, to strengthen the statistical reliability
of NoMAS’s results, we employ a holdout scheme, splitting the
patients dataset in two parts, a training set and a holdout set.
While solutions of the NoMAS are computed on the former, the
assessments of their statistical significance are performed on the
latter, thus providing a correction for the multiple hypothesis
testing performed on the training set. Finally, we show that
NoMAS identifies better solutions than using an (additive) score
(i.e., the same gene score used in Vandin et al., 2012a) for a set
of genes. For the cancer datasets, we show that our algorithm
identifies novel groups of genes associated with survival where
none of them is associated with survival when considered in
isolation. The work is organized as follows: in section 2 we
provide the description of the model and NoMAS; section 3
presents the analysis of the algorithm (section 3.1), including
the analysis under a reasonable model for mutations in cancer
and analysis of our experiments on both simulated and real
data (section 3.2); finally section 4 presents the discussion of
our results. Details for our theoretical results are given in
Supplementary Material.

2. MATERIALS AND METHODS

In this section we present the model we consider, our algorithm
NoMAS, and the tests we have designed to assess the statistical
significance of the results.

2.1. Computational Problem
In survival analysis, we are given two populations (i.e., sets of
samples) P0 and P1, and for each sample i ∈ P0 ∪ P1 we have
its survival data: i) the survival time ti and ii) the censoring
information ci, where ci = 1 if ti is the exact survival time
for sample i (i.e., sample i is not censored), and ci = 0 if ti
is a lower bound to the survival time for sample i (i.e., sample
i is censored). Let m0 be the number of samples in P0, m1

be the number of samples in P1, and m = m0 + m1 be the
total number of samples. Without loss of generality, the samples
are {1, 2, . . . ,m}, the survival times are t = 1, 2, . . . ,m, with
ti = i (i.e., the samples are sorted by increasing values of
survival), and we assume that there are no ties in survival times.
The survival data is represented by two vectors c and x, with
ci representing the censoring information for sample i, and xi
represents the population information: xi = 1 if sample i is in
population P1, and xi = 0 otherwise. Given the survival data for
two populations P0 and P1, the significance in the difference of

survival between P0 and P1 can be assessed by the widely used
log-rank test (Mantel, 1966; Peto and Peto, 1972). The log-rank
statistic is

V(x, c) =

m
∑

j=1

cj

(

xj −
m1 −

∑j−1
i=1 xi

m− j+ 1

)

(1)

Under the (null) hypothesis of no difference in survival between
P0 and P1, the log-rank statistic asymptotically follows a normal
distribution N (0, σ 2), where the standard deviation1 is given

by: σ (x, c) =

√

m0m1
m(m−1)

((

∑m
j=1 cj

)

−
∑m

j=1 ci
1

m−j+1

)

. Thus the

normalized log-rank statistic, defined as V(x,c)
σ (x,c)

, asymptotically

follows a standard normalN (0, 1) distribution, and the deviation
of V(x,c)

σ (x,c)
from 0 is a measure of the difference in survival between

P0 and P1.
In genomic studies, we are given mutation data for a set G

of n genes in a set P of m samples, represented by a mutation
matrix M with Mi,j = 1 if gene i is mutated in patient j and
Mi,j = 0 otherwise. We are also given survival data (survival time
and censoring information) for all the m samples. Given a set
S ⊂ G of genes, we can assess the association of mutations in the
set S with survival by comparing the survival of the population
PS1 of samples with a mutation in at least one gene of S and
the survival of the population PS0 of samples with no mutation
in the genes of S . That is, PS0 = {j ∈ P :

∑

i∈S Mi,j = 0} and

PS1 = {j ∈ P :

∑

i∈S Mi,j > 0}.
Given the set G of all genes for which mutations have been

measured, we are interested in finding the set S ⊂ G with
|S| = k that has maximum association with survival by finding
the set S that maximizes the absolute value of the normalized
log-rank statistic. Given a set S of genes, let xS be a 0 − 1
vector, with xSi = 1 if at least one gene of S is mutated in
patient i, and xSi = 0 otherwise. The normalized log-rank

statistic for the set S is then V(xS ,c)
σ (xS ,c)

. Note that for a given

set of patients the censoring information c is fixed, therefore
we can consider the log-rank statistic as a function V(xS ) of
xS only. Analogously, we can rewrite σ (xS , c) = σ (xS )f (c),
where σ (xS ) =

√
m1(m−m1) with m1 = |PS1 |, and f (c) =

√

1
m(m−1)

((

∑m
j=1 cj

)

−
∑m

j=1 cj
1

m−j+1

)

does not depend on xS

and is fixed given c.
To identify the set of k genes most associated with survival,

we can then consider the score |w(S)| =

∣

∣

∣

V(xS )
σ (xS )

∣

∣

∣
. For

ease of exposition in what follows we consider the score
w(S), corresponding to a one tail log-rank test for the
identification of sets of genes with mutations associated with
reduced survival; the identification of sets of genes with
mutations associated with increased survival is done in an

1In the literature two different standard deviations (corresponding to two

related but different null distributions, permutational and conditional) have been

proposed for the normal approximation of the distribution of the log-rank

statistic; we have previously shown (Vandin et al., 2015) that the one we use here

(corresponding to the permutational distribution) is more appropriate for genomic

studies.
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analogous way by maximizing the score −w(S). We define the
following problem.

The max k-set log-rank problem: Given a set G of genes, an

n × m mutation matrix M and the survival information (time
and censoring) for the m patients in M, find the set S ⊂ G of k
genes maximizing w(S).

We have the following.

Theorem 1. The max k-set log-rank problem is NP-hard.

We now define the max connected k-set log-rank problem
that is analogous to the max k-set log-rank problem but requires
feasible solutions to be connected subnetworks of a given graph
I , representing gene-gene interactions.

The max connected k-set log-rank problem: Given a set G of

genes, a graph I = (G,E) with E ⊆ G × G, an n × m mutation
matrix M and the survival information (time and censoring)
for the m patients in M, find the set S of k genes maximizing
w(S) with the constraint that the subnetwork induced by S in I

is connected.
If I is the complete graph, the max connected k-set log-rank

problem is the same as the max k-set log-rank problem. Thus, the
max connected k-set log-rank problem is NP-hard for a general
graph. However, we can prove that the problem is NP-hard for a
much more general class of graphs.

Theorem 2. The max connected k-set log-rank problem on graphs

with at least one node of degree O
(

n
1
c

)

, where c > 1 is constant,

is NP-hard.

2.2. Algorithm NoMAS
We design a new algorithm, Network of Mutations Associated
with Survival (NoMAS)2, to solve the max connected k-set log-
rank problem. The algorithm is based on an adaptation of the
color-coding technique (Alon et al., 1994). Our algorithm is
analogous to other color-coding based algorithms that have been
used before to identify subnetworks associated with phenotypes
in other applications where the score is additive (Dao et al., 2011;
Hormozdiari et al., 2015).

Figure 1 provides an overview of NoMAS. The input to
NoMAS is an undirected graph G = (V ,E), an n × m mutation
matrix M, and the survival information x, c for the m patients
in M. NoMAS first identifies a subnetwork S with high weight
w(xS )
σ (xS )

. To identify a subnetwork of high weight, the algorithm

proceeds in iterations. In each iteration NoMAS colors G with
k colors by assigning to each vertex v a color C(v) ∈ {1, . . . , k}
chosen uniformly at random. For a given coloring of G, a
subnetwork S is said to be colorful if all vertices in S have distinct
colors. The colorset of S is the set of colors of the vertices in S .
Note that the number of different colorsets (subsets of {1, . . . , k})
is 2k. In each iteration the algorithm efficiently identifies high-
scoring colorful subnetworks, and at the end the highest-scoring
subnetwork among all iterations is reported.

2The implementation of NoMAS is available at https://github.com/VandinLab/

NoMAS

Consider a given coloring of G. Let W be a (2k − 1) × |V|
table with a row for each non-empty colorset and a column for
each vertex in G. Entry W(T, u) stores the set of vertices of one
connected colorful subnetwork that has colorset T and includes
vertex u. Entries of W can be filled by dynamic programming.
For colorsets of size 1, the corresponding rows in W are filled
out trivially: W({α}, u) = {u} if α = C(u), and W({α}, u) = ∅

otherwise.
For entry W(T, u) with |T| ≥ 2, NoMAS computes W(T, u)

by combining a previously computedW(Q, u) for u with another
previously computed W(R, v) where v is a neighbor of u in
G, ensuring that the resulting subnetwork is connected and
contains u. Colorfulness is ensured by selecting Q and R such
that Q ∩ R = ∅ and Q ∪ R = T, and in turn ensures that
W(T, u) contains |T| distinct vertices. Note that for a given T
the choice of Q uniquely defines R. Thus, for each neighbor v of
u there are (at most) 2|T|−1 possible combinations. Let S ′(T, u)
be the set of all colorful subnetworks that can be obtained by
combining an entry W(Q, u) for u and an appropriate entry
W(R, v) for a neighbor v of u so that Q ∪ R = T,Q ∩ R = ∅.
That is: S ′(T, u) =

⋃

v :(u,v)∈E
Q∪R=T,Q∩T=∅

{

W(Q, u) ∪W(R, v)
}

(in the

definition of S ′(T, u) we assume that the union with ∅ returns
∅). W(T, u) stores the element of S ′(T, u) with largest value of
our objective function, that is W(T, u) = argmax

S∈S ′(T,u) w(S).
At the end, the best solution is identified by finding the entry
of W of maximum weight. Analogously, NoMAS identifies sets
that minimize w(S) (sets associated to increased survival) by
maximizing the score−w(S). (See Appendix for pseudo code and
illustrations of the working of NoMAS).

Parallelization
The computation of W is parallelized using N ≤ |V| processors.
All entries of W are kept in shared memory and |V|/N unique
columns uniformly at random are assigned to each processor.
Entries of W are computed in order of increasing colorset sizes.

We define the i-th colorset group as the set of all
(k
i

)

colorsets of
size i. We exploit the fact that the rows within the i-th colorset
group are computed by reading entries exclusively from rows
belonging to colorset groups < i. When a processor has finished
the rows of the i-th colorset group it waits for the other processors
to do the same. When the last processor completes the i-th
colorset group, allN processors can safely begin to compute rows
of colorset group i+1. In total, k synchronization steps are carried
out, one for each colorset group.

2.3. Statistical Significance
We designed two procedures to assess the statistical significance
of the results found by NoMAS: the first is based on permutation
testing, while the second uses a holdout approach.

Permutation Testing
After identifying the best solution S for the mutation matrix
M, NoMAS can assess its statistical significance by i) estimating
the p-value p(S) for the log-rank statistic (using a Monte-Carlo
estimate with 108 samples), and then ii) using a permutation
test in which S is compared to the best solution Sp for the

Frontiers in Genetics | www.frontiersin.org 4 April 2019 | Volume 10 | Article 265142

https://github.com/VandinLab/NoMAS
https://github.com/VandinLab/NoMAS
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Altieri et al. Networks of Mutations Associated With Survival

FIGURE 1 | Algorithm NoMAS. Given alteration data and survival information (time and censoring status) for a set of patients, NoMAS employs a color coding

approach to identify subnetworks with mutations associated with survival time, i.e., with high log-rank statistic, and then assesses the statistical significance of the

subnetworks using (i) permutation testing and (ii) a holdout approach.

mutation matrix Mp obtained by randomly permuting the rows
of M. A total of 100 permutations are performed and the
permutation p-value is recorded as the ratio of permutations in
which w(Sp) ≥ w(S). While the p-value from the log-rank test
reflects the association between mutations in the subnetwork and
survival, the permutation p-value assesses whether a subnetwork
with association with survival at least as extreme as the one
observed in the input data can be observed when the genes
are placed randomly in the network. Note that we can identify
multiple solutions by considering different entries of W (even if
the same solution may appear in multiple entries of W), and we
obtain a permutation p-value for the i-th top scoring solution by
comparing its score with the score of the i-th top scoring solution
in the permuted datasets.

Holdout Method
We designed a holdout method to strengthen the statistical
robustness of the results produced by NoMAS. We split the
dataset in two parts, called training and holdout, and then
run NoMAS on the former, obtaining subnetworks with high
weight. The p-value of these subnetworks is then computed
with a Monte-Carlo procedure estimate with 108 samples on
the holdout dataset. More in detail, assuming that a set P of m
patients is analyzed, let v be a parameter with value in (0, 1) that
represents the proportion of data in the training set: we partition
P into two parts, Pt and Ph, sized mt = ⌊mv⌋ and mh = m − mt

respectively. In order to preserve the survival distribution in both
the training and the holdout set, the partition is performed over
each of g temporal intervals of the same length, where g is a
parameter to be passed in input by the user. The sets Pt and Ph are
obtained by the union of the corresponding sets in each interval.
Once we obtain the partition of P into Pt and Ph, NoMAS is

executed over the population Pt and p-value of the found solution
is computed over Ph.

3. RESULTS

3.1. Analysis of NoMAS
We consider the performance of NoMAS excluding the statistical
significance testing. The log-rank statistic w(S) is computed in
time O (m1) ∈ O (m). The total time complexity for computing
a single entry W(T, u) is then bounded by O

(

mdeg(u)2|T|−1
)

∈

O
(

mdeg(u)2k
)

, where deg(u) is the degree of u in G. Given a

coloring of G, the computation of the entire table can thus be

performed in time O
(

2k
∑

u∈V mdeg(u)2k
)

∈ O
(

m|E|4k
)

. If L

iterations are performed, then the complexity of the algorithm is

O
(

Lm|E|4k
)

.

Let OPT be the optimal solution. If the score w(S) was set
additive, as the scores considered in previous applications of
color-coding for optimization problems on graphs, to discover
OPT it would be sufficient that OPT be colorful, that happens
with probability k!/kk ≥ e−k for each random coloring.

Therefore O
(

ln(1/δ)ek
)

iterations would be enough to ensure

that the probability of OPT not being discovered is≤ δ, resulting

in an overall time complexity of O
(

m ln(1/δ)|E|(4e)k
)

.

However, our score w(S) is not set additive [e.g., if
two genes in S have a mutation in the same patient the
weight of the patient is considered only once in w(S)].
Therefore, while OPT being colorful is still a necessary
condition for the algorithm to identify OPT, the colorfulness
of OPT is not a sufficient condition. In fact, we have
the following.
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Proposition 1. For every k ≥ 3 there is a family of instances of
the max connected k-set log-rank problem and colorings for which
OPT is not found by NoMAS when it is colorful.

Even more, we prove that when mutations are placed
arbitrarily then for every subnetwork S and a given coloring of
S , any color-coding algorithm that adds subnetworks of size k
to W by merging neighboring subnetworks of size < k could be
“fooled” to not add S to W by simply adding 3 vertices to G and
assigning them a specific color.

Theorem 3. For any optimal colorful connected subnetwork S

of size k ≥ 3 and any color-coding algorithm A which
obtains subnetworks with colorsets of cardinality i by combining
2 subnetworks with colorsets of cardinality < i, by adding 3
neighbors to S we have thatAmay not discover S.

Intuitively, Proposition 1 and Theorem 3 show that if
mutations are placed adversarially (and the optimal solution
OPT has many neighbors), our algorithm may not identify
OPT. However, we prove that our algorithm identifies the
optimal solution under a generative model for mutations, that we
deem the Planted Subnetwork Model. We consider w(S) as the
unnormalized version of the log-rank statistic. In this model: i)
there is a subnetworkD, |D| = k, withw(D) ≥ cm, for a constant
c > 0; ii) each gene g ∈ D is such that w(D)− w(D \ {g}) ≥ c′m

k
,

for a constant c′ > 0; iii) for each gene g ∈ D: w({g}) > 0; iv)
for each gene ĝ /∈ D, ĝ is mutated with probability pg in each
patient, independently of all other events (and of survival time
and censoring status).

Intuitively: (3.1) above states that the subnetwork D has
mutations associated with survival; (3.1) states that each gene
g ∈ D contributes to the association of mutations in D to
survival; (3.1) states that each gene g ∈ D should have the same
association to survival (increased or decreased) as D; and (3.1)
states that all mutations outside D are independent of all other
events (including survival time and censoring of patients).

We show that when enough samples are generated from
the model above, our algorithm identifies the optimal solution
with the same probability guarantee given by the color-coding
technique for additive scores.

Theorem 4. Let M be a mutation matrix corresponding to
m samples from the Planted Subnetwork Model. If m ∈

�
(

k4(k+ ε) ln n
)

for a given constant ε > 0 and O
(

ln(1/δ)ek
)

color-coding iterations are performed, then our algorithm identifies
the optimal solution D to the max connected k-set log-rank with
probability ≥ 1− 1

nε − δ.

3.2. Experimental Results
We assessed the performance of NoMAS by using simulated and
cancer data. We compared NoMAS to the exhaustive algorithm
that identifies the subnetwork of k vertices with the highest
score w(S) for the values of k for which we could run the
exhaustive algorithm (we implemented a parallelized version of
the algorithm described in Maxwell et al., 2014 to efficiently
enumerate all connected subnetworks), to three variants of a

greedy algorithm similar to the one from Reimand and Bader
(2013), and to the use of a score given by the sum of single
gene scores. Cancer data is obtained from The Cancer Genome
Atlas (TCGA). In particular, we consider somatic mutations
(single nucleotide variants and small indels) for 268 samples
of glioblastoma multiforme (GBM), 315 samples of ovarian
adenocarcinoma (OV) and 174 samples of lung squamous cell
carcinoma (LUSC) for which survival data is available.

For all our experiments we used as interaction graph G
the graph derived from the application of a diffusion process
on the HINT+HI2012 network3, a combination of the HINT
network (Das and Yu, 2012) and the HI-2012 (Yu et al., 2011)
set of protein-protein interactions, previously used in Leiserson
et al. (2015a). The details of the diffusion process are described
in Leiserson et al. (2015a). In brief, for two genes gi, gj the
diffusion process gives the amount of heat h(gi, gj) observed on
gj when gi has one mutation, and the amount of heat h(gj, gi)
observed on gi when gj has one mutation. The graph used for
our analyses is obtained retaining an edge between gi and gj if
max{h(gi, gj), h(gj, gi)} ≥ 0.012. The resulting graph has 9, 859
vertices and 42, 480 edges, with the maximum degree of a node
being 438. In all our experiments we removed mutations in genes
mutated in < 3 of the samples. For cancer data, this resulted in
890 mutated genes removed in GBM, 780 in OV, and 2, 915 in
LUSC. The machine, on which all our experiments were carried
out, consists of two CPUs of the type Intel Xeon E5-2698 v3 (2.30
GHz), each with 16 physical cores, for a total of 64 virtual cores,
and 16 banks of 32 GB DDR4 (2,133 MHz) memory modules for
a total of 512 GB of memory.

The remaining of the section is organized as follow:
section 3.2.1 presents the results on simulated data, while
section 3.2.2 presents the results on cancer data.

3.2.1. Simulated Data
We assess the performance of NoMAS on simulated data
generated under the Planted subnetworkModel. The subnetwork
D ⊂ G, |D| = k associated with survival is generated by a random
walk on the graph G. We model the association of D to survival
bymutating with probability p one gene ofD chosen uniformly at
random in each sample among the m

4 of lowest survival. All other
genes in D are mutated independently with probability 0.01 in
all samples, to simulate passenger mutations (not associated with
survival) inD (Lawrence et al., 2013). For genes in G \D, we used
the same mutation frequencies observed in the GBM study, and
mutate each gene independently of all other events.

We fixed k = 5 and considered the values of p ∈

{0.5, 0.75, 0.85} and m ∈ {268, 500, 750, 1, 000}. We kept the
same ratio of censored observations as in GBM and chose the
censored samples uniformly among all samples. For every pair
(p,m) we performed 100 simulations, running NoMAS on the
dataset with L = 256 color-coding iterations, and recorded
whether NoMAS reported D as the highest scoring subnetwork.
Results are shown in Figure 2A. For sample sizes similar to the
currently available ones, NoMAS frequently reports D as the
highest scoring solutions when there is a quite strong association

3http://compbio-research.cs.brown.edu/pancancer/hotnet2/
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FIGURE 2 | Results of NoMAS on simulated data from the Planted Subnetwork Model. One hundred datasets were generated for each pair (m,p), where m is the

number of samples and for different probabilities p of mutations in the set D of genes associated with survival. (A) Probability that D is reported as the highest scoring

solution by NoMAS. (B) Ratio of genes from the set D that are in the best solution when D is not the highest scoring solution by NoMAS. (C) Probability that D is

among the top-10 solutions reported by NoMAS. All probabilities are estimated from the simulated datasets.

of D with survival (p ≥ 0.85), but for m = 1, 000 the highest
scoring subnetwork reported by NoMAS is D in > 80% of the
cases even for p = 0.5. Figure 2B shows that even when NoMAS
does not report D as the highest scoring solution, the solution
reported by NoMAS contains mostly genes that are in D, even
for current sample size (e.g., on average 74% of the genes in the
D are reported by NoMAS form = 268 and p = 0.85 even when
D is not the highest scoring solution by NoMAS). Finally, we
assessed whetherDwould be among the highest scoring solutions
in the table W computed by NoMAS: Figure 2C shows that by
considering the top-10 solutions W the chances to identify D

increase substantially even for m = 268 and p = 0.5, with
most configurations having > 0.8 probability of finding D in the
top-10 solutions by NoMAS. For a fixed p = 0.75 and for each
value of m we assessed whether NoMAS identified the optimal
solution even when it was not D (an event not excluded in the
Planted subnetwork Model) and found that form ≥ 500 NoMAS
reported the optimal solution in 10 out of 10 cases (for m = 268
NoMAS identified the optimal solution 9 out of 10 times). These
results show that NoMAS does indeed find the optimal solution
in almost all cases even for sample sizes currently available (while
the theoretical analysis of section 3.1 suggests that much larger
sample sizes are required) and it can be used to identify D or the
majority of it by considering the top-10 highest scoring solutions.

3.2.2. Cancer Data
We assessed the performance of NoMAS on the GBM, OV,
and LUSC datasets. We first assessed whether NoMAS identified
the optimal solution by comparing the highest scoring solution
reported by NoMAS with the one identified by using the
exhaustive algorithm for k = 2, 3, 4, 5. In all cases we found
that NoMAS does identify the optimal solution, while requiring
much less running time compared to the exhaustive algorithm
(Supplementary Figure 2). For k > 5 we could not run the
exhaustive algorithm, while the runtime of NoMAS is still
reasonable. The runtime of NoMAS can be greatly improved
by using the parallelization strategy described in section 2.2
(Supplementary Figure 3). We therefore used NoMAS to find
subnetworks of size k = 6 and k = 8. We also considered

two modifications of NoMAS that solve some easy cases where
NoMAS may not identify the highest scoring solution due to its
subnetworkmerging strategy (see Appendix for a description and
pseudocode of the modifications). We run both modifications on
GBM, OV, and LUSC for k = 6, 8 (using the same colorings
used by the original version of NoMAS): in all cases the modified
versions of NoMAS did not report subnetworks with higher
scores than the ones from the original version of NoMAS. We
also note that the original version of NoMAS is significantly faster
in practice than its two modifications (Supplementary Figure 3)
and, therefore, we used the original version of NoMAS in the
remaining experiments.

We also compared NoMAS with three different greedy
strategies for the max connected k-set log-rank problem. All
three algorithms build solutions starting from each node u ∈ G
and, in iterations, by adding nodes to the current solution S ,
diversifying in the way they enlarge the current subnetwork S

of size 1 ≤ i < k. (See Appendix for a description of the
three greedy strategies). We run the three greedy algorithms
on GBM, OV, and LUSC for k = 4, 5, 6, 8. For each dataset
we compared the resulting subnetworks with the ones identified
by NoMAS. Results are shown in Figure 3. In almost all cases
we found that NoMAS discovered subnetworks with higher
score than the subnetworks found by using greedy strategies,
even if in some cases there is a greedy strategy that identifies
the same subnetworks for all values of k. The difference in
score increases as k increases, showing the ability of NoMAS
to discover better solutions for larger values of k, with the
main expense being the running time of NoMAS as opposed
to the greedy strategies (Supplementary Figure 4). We also
assessed whether the fact that greedy strategies discover lower
scoring solutions than NoMAS has an impact on the estimate
of the p-value in the permutational test. We considered the
top-10 scoring solutions (corresponding to 10 different starting
nodes u ∈ G) discovered by the best greedy strategy in
the GBM dataset and computed the permutational p-value
for each solution by generating 100 permuted datasets either
using the (same) greedy strategy or NoMAS for (with only
32 iterations on the permuted data). Supplementary Figure 1
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shows a comparison of the distribution of the p-values. As
we can see, the greedy strategy incorrectly underestimate the
permutational p-values for the solutions, due to the greedy
algorithm not being able to identify solutions of score as high
as NoMAS in the permuted datasets. The use of the greedy
algorithms would then lead to both 1. identify solutions in real
data with lower association to survival compared to NoMAS
and 2. wrongly estimate their permutational p-value as more
significant than it is.

Finally, we compared NoMAS with the use of an (additive)
score that sums single gene scores (similar to the ones used
in Vandin et al. (2012a). For each gene g ∈ G we computed the p-
value p(g) for the association of g with survival using the log-rank
test and defined a(S) =

∑

g∈S − log10 p(g). We then partitioned

the genes according to their association with increased survival
or with decreased survival and modified our algorithm to look
for high scoring solutions in a partition using score a(S). Results
are in Figure 3. We found that NoMAS outperforms the use of a

FIGURE 3 | Comparison of the normalized log-rank statistic of the best solution reported by NoMAS, by greedy algorithms (see Appendix for the description), and by

the algorithm that uses an additive scoring function a(S ) (denote by “additive” in the plots). To maintain readability we omit values above −4.0 when considering

mutations associated with increased survival. For each datasets the results for the maximization of w(S ) (top panel) and the maximization of −w(S ) (bottom panel) are

shown separately. (A) Results for GBM dataset. (B) Results for OV dataset. (C) Results for LUSC dataset.

FIGURE 4 | Subnetworks identified by NoMAS on GBM data. Subnetwork S associated with survival in GBM, Kaplan–Meier plot for the samples with mutations in S

vs. samples with no mutation in S. The bottom panel shows the mutations in patients for the genes and the entire subnetwork (last row); patients with censored

survival are in gray, other patients are in light blue; mutations in patients are show in dark color.
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single gene score, with a very large difference for certain values of
parameters.

We then used the holdout approach to identify significant
subnetworks for GBM, LUSC, and OV, considering the top-
10 highest scoring subnetworks found in the training set and
compute their p-value in the holdout set. We test all datasets
using k = 3, 4, 8, 256 iterations of the color coding algorithm.
As before, as pre-processing, genes mutated in < 3 samples
were eliminated. NoMAS identified several subnetworks with
significant association to survival. In GBM, for k = 8, NoMAS
found the subnetwork including COL5A3, DCN, EGFR, IGF1R,
LAMA2, MYLK, PIK3R1, and PIK3CA (p ≤ 0.05; Figure 4).
None of the genes is associated with survival when considered
in isolation. DCN, EGFR, IGF1R, PIK3R1 recur in various
metabolic functions related to lipids and enzymes signaling
and reception. These genes, together with PIK3CA, MYLK,
and LAMA2, are involved in formation and maintenance of
biological tissues, in cell movement and migration and cell
protection organization. Moreover, EGFR, PIK3R1, and PIK3CA
are well-known cancer genes. EGFR, IGF1R, LAMA2, MYLK,
PIK3CA, PIK3R1, and MYLK are members of the focal adhesion
pathway, whose dynamics are highly altered in cancer cells.
In LUSC, NoMAS found the subnetwork including MAD1L1,
USP15, and ZNF434 (p ≤ 0.03; Figure 5). None of the genes
is associated with survival when considered in isolation. USP15
stabilizes MDM2, a well-known cancer gene, to regulate cancer-
cell survival and mediates antitumor T cell responses (Zou et al.,
2014), while increased expression of MAD1L1 is associated with
poor prognosis in breast cancer (Sun et al., 2013). In OV, NoMAS
identified the subnetwork including EP300, NCOA3, NOTCH1,
andNOTCH4 (p ≤ 0.1; Figure 6). None of the genes is associated
with survival when considered in isolation. These genes are part
of a pathway related to RNA metabolic processes and have a role
in regulation of epidermis development and cell differentiation
within its layers. All genes are also linked to the thyroid hormone
signaling pathway, that is related to cell death and DNA damage
in ovarian cancer (Shinderman-Maman et al., 2017).

4. DISCUSSION

In this work, we study the problem of identifying subnetworks
of a large gene-gene interaction network that are associated with
survival using mutations from large cancer genomic studies.
Few methods have been proposed to identify groups of genes
with mutations associated with survival in genomic studies.
The work of Vandin et al. (2012a) combines mutations and
survival data with interaction information using a diffusion
process on graphs starting from gene scores derived from p-
values of individual genes, but did not consider the problem
of directly identifying groups of genes associated with survival.
The work of Reimand and Bader (2013) combines mutation
information and patient survival to identify subnetworks of a
kinase-substrate interaction network associated with survival.
It only focuses on phosphorylation-associated mutations, and
the approach is based on a local search algorithm that builds
a subnetwork by starting from one seed vertex and then

FIGURE 5 | Subnetworks identified by NoMAS on LUSC data. Subnetwork S

associated with survival in LUSC, Kaplan–Meier plot for the samples with

mutations in S vs. samples with no mutation in S. The bottom panel shows the

mutations in patients for the genes and the entire subnetwork (last row);

patients with censored survival are in gray, other patients are in light blue;

mutations in patients are show in dark color.

greedily adding neighbors (at distance at most 2) from the
seed, extending the approach used in different types of network
analyses (Chuang et al., 2007). A similar greedy approach is used
by Wu and Stein (2012) to identify groups of genes significantly
associated with survival in cancer from gene expression data.
For gene expression studies, Chowdhury et al. (2011) proposes
an approach to enumerate dysregulated subnetworks in cancer
based on an efficient search space pruning strategy, inspired
by previous work on the identification of association rules in
databases (Smyth and Goodman, 1992). Patel et al. (2013) uses
the general approach described in Chowdhury et al. (2011) to
identify subnetworks of genes with expression status associated
to survival.

Color-coding is a probabilistic method that was originally
described for finding simple paths, cycles and other small
subnetworks of size k within a given network (Alon et al., 1994).
The core of the color-coding technique is the assignment of
random colors to the vertices, as a result of which the search
space can be reduced, by restricting the subnetworks under
consideration to colorful ones, those in which each vertex has
a distinct color. For the identification of colorful subnetworks,
dynamic programming is employed. The process is repeated until
the desired subnetwork has been identified, that is having been
colorful at least once, with high probability. When the dynamic
programming algorithm is polynomial in n and the subnetworks
being screened are of size k ∈ O(log n), the overall running
time of the color-coding method too remains polynomial in
n. Color-coding has been previously used to count or search
for subgraphs of large interaction networks (Alon et al., 2008;
Bruckner et al., 2010). Color-coding has also been used to
identify groups of interacting genes in an interaction network
that are associated with a phenotype of interest, but restricted
to additive scores for sets of genes (i.e., the score of a set is
the sum of the scores of the single genes); for example, Dao
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FIGURE 6 | Subnetworks identified by NoMAS on OV data. Subnetwork S associated with survival in OV, Kaplan-Meier plot for the samples with mutations in S vs.

samples with no mutation in S. The bottom panel shows the mutations in patients for the genes and the entire subnetwork (last row); patients with censored survival

are in gray, other patients are in light blue; mutations in patients are show in dark color.

et al. (2011) uses color-coding to find optimally discriminative
subnetwork markers that predict response to chemotherapy from
a large interaction network by defining a single gene score as
− log10 d(g), where d(g) is the discriminative score for gene g
(i.e., a measure of the ability of g to discriminate two classes
of patients); similarly, Hormozdiari et al. (2015) uses color-
coding to find groups of interacting genes with discriminative
mutations in case-control studies, using as gene score the
− log10 of the p-value from the binomial test of recurrence of
mutations in the cases (while limiting the number of mutations
in the controls).

In this work we formally define the associated computational
problem, that we call the max connected k-set log-rank problem,
by using as score for a subnetwork the test statistic of the
log-rank test, one of the most widely used statistical tests
to assess the significance in the difference in survival among
two populations. We prove that the max connected k-set log-
rank problem is NP-hard in general, and is NP-hard even
when restricted to graphs with at least one node of large
degree. We develop a new algorithm, NoMAS, based on
the color-coding technique, to efficiently identify high-scoring
subnetworks associated with survival. We prove that even
if our algorithm is not guaranteed to identify the optimal
solution with the probability given by the color-coding technique
(due the non-additivity of our scoring function), it does
identify the optimal solution with the same guarantees given
by the color-coding technique when the data comes from
a reasonable model for mutations and independently of the
survival data. Using simulated data, we show that NoMAS
is more efficient than the exhaustive algorithm while still
identifying the optimal solution, and that our algorithm will
identify subnetworks associated with survival when sample sizes
larger than most currently available ones, but still reasonable,
are available.

We use cancer data from three cancer studies from TCGA
to compare NoMAS to approaches based on single gene
scores and to greedy methods similar to ones proposed in

the literature for the identification of subnetworks associated
with survival and for other problems on graphs. Our results
show that NoMAS identifies subnetworks with stronger
association to survival compared to other approaches, and
allows the correct estimation of p-values using a permutation
test. Moreover, in two datasets NoMAS identifies two
subnetworks associated with survival containing genes
previously reported to be important for prognosis in the
same cancer type as well as novel genes, while no gene
is significantly associated with survival when considered
in isolation.

There aremany directions in which this work can be extended.
First, we only considered single nucleotide variants and indels
in our analysis; we plan to extend our method to consider more
complex variants (e.g., copy number aberrations and differential
methylation) in the analysis. Second, we believe that our
algorithm and its analysis could be extended to the identification
of subnetworks associated with clinical parameters other than
survival time and to case-control studies, but substantial
modifications to the algorithm and to its analysis will be required.
Third, this work considers the log-rank statistic as a measure of
association with survival; another popular test in survival analysis
is the use of Cox’s regression model (Kalbfleisch and Prentice,
2002). The two tests are identical in the case of two populations,
therefore our algorithm identifies subnetworks with high score
w.r.t. Cox’s regression model as well. However, Cox’s regression
model allows for the correction for covariates (e.g., gender, age,
etc.) in the analysis of survival data. A similar approach could be
obtained by stratifying the patients in the log-rank test, but how
to efficiently identify subnetworks, and in general combinations
of genomic features, associated with survival while correcting for
covariates remains a challenging open problem. Fourth, genomic
regions other than genes (e.g., regulatory regions) or even other
regulatory elements (e.g., microRNAs regulating the expression
of driver genes) may be important for survival: the incorporation
in our method of alterations in such regions and elements is an
interesting direction for future research. Finally, in some studies
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the information regarding tumor (sub)clones and theirmutations
may be available: how to properly integrate such information in
our analyses is a challenging direction for further investigation.
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pathfindR: An R Package for 
Comprehensive Identification of 
Enriched Pathways in Omics Data 
Through Active Subnetworks
Ege Ulgen 1*, Ozan Ozisik 2 and Osman Ugur Sezerman 1

1 Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 
Istanbul, Turkey, 2 Department of Computer Engineering, Electrical & Electronics Faculty, Yildiz Technical University, 
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Pathway analysis is often the first choice for studying the mechanisms underlying a 
phenotype. However, conventional methods for pathway analysis do not take into account 
complex protein-protein interaction information, resulting in incomplete conclusions. 
Previously, numerous approaches that utilize protein-protein interaction information to 
enhance pathway analysis yielded superior results compared to conventional methods. 
Hereby, we present pathfindR, another approach exploiting protein-protein interaction 
information and the first R package for active-subnetwork-oriented pathway enrichment 
analyses for class comparison omics experiments. Using the list of genes obtained from 
an omics experiment comparing two groups of samples, pathfindR identifies active 
subnetworks in a protein-protein interaction network. It then performs pathway enrichment 
analyses on these identified subnetworks. To further reduce the complexity, it provides 
functionality for clustering the resulting pathways. Moreover, through a scoring function, 
the overall activity of each pathway in each sample can be estimated. We illustrate the 
capabilities of our pathway analysis method on three gene expression datasets and 
compare our results with those obtained from three popular pathway analysis tools. The 
results demonstrate that literature-supported disease-related pathways ranked higher in 
our approach compared to the others. Moreover, pathfindR identified additional pathways 
relevant to the conditions that were not identified by other tools, including pathways 
named after the conditions.

Keywords: pathway analysis, enrichment, tool, active subnetworks, biological interaction network

INTRODUCTION

High-throughput technologies revolutionized biomedical research by enabling comprehensive 
characterization of biological systems. One of the most common use cases of these technologies 
is to perform experiments comparing two groups of samples (typically disease versus control) and 
identify a list of altered genes. However, this list alone often falls short of providing mechanistic 
insights into the underlying biology of the disease being studied (Khatri et al., 2012). Therefore, 
researchers face a challenge posed by high-throughput experiments: extracting relevant information 
that allows them to understand the underlying mechanisms from a long list of genes.
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One approach that reduces the complexity of analysis while 
simultaneously providing great explanatory power is identifying 
groups of genes that function in the same pathways, i.e., pathway 
analysis. Pathway analysis has been successfully and repeatedly 
applied to gene expression (Werner, 2008; Emmert-Streib 
and Glazko, 2011), proteomics (Wu et al., 2014), and DNA 
methylation data (Wang et al., 2017).

Most commonly used pathway analysis methods are 
overrepresentation analysis (ORA) and functional class scoring 
(FCS). For each pathway, ORA statistically evaluates the 
proportion of altered genes among the pathway genes against the 
proportion among a set of background genes. In FCS, a gene-
level statistic is calculated using the measurements from the 
experiment. These gene-level statistics are then aggregated into a 
pathway-level statistic for each pathway. Finally, the significance 
of each pathway-level statistic is assessed, and significant 
pathways are determined.

While they are widely used, there are drawbacks to 
conventional pathway analysis methods. The statistics used 
by ORA approaches usually consider the number of genes in 
a list alone. ORA methods are also independent of the values 
associated with these genes, such as fold changes or p values. Most 
importantly, both ORA and FCS methods lack in incorporating 
interaction information. We propose that directly performing 
pathway analysis on a gene set is not completely informative 
because this approach reduces gene-phenotype association 
evidence by ignoring information on interactions of genes.

We propose a pathway analysis method, which we named 
pathfindR, that first identifies active subnetworks and then 
performs enrichment analysis using the identified active 
subnetworks. For a given list of significantly altered genes, an 
active subnetwork is defined as a group of interconnected genes in 
a protein-protein interaction network (PIN) that predominantly 
consists of significantly altered genes. In other words, active 
subnetworks define distinct disease-associated sets of interacting 
genes. 

The idea of utilizing PIN information to enhance pathway 
enrichment results was sought and successfully implemented 
in numerous studies. Gene Network Enrichment Analysis 
(GNEA) (Liu et al., 2007) analyzes gene expression data. The 
mRNA expression of every gene is mapped onto a PIN, and a 
significantly transcriptionally affected subnetwork is identified 
via jActiveModules (Ideker et al., 2002). To determine the gene 
set enrichment, each gene set is then tested for overrepresentation 
in the subnetwork. In EnrichNet (Glaab et al., 2012), input genes 
and pathway genes are mapped on a PIN. Using the random walk 
with restart (RWR) algorithm, distances between input genes and 
pathway genes are calculated. Enrichment results are obtained 
by comparing these distances to a background model. In both 
NetPEA and NetPEA′ (Liu et al., 2017a), initially, the RWR 
algorithm is used to measure distances between pathways and 
input gene sets. The significances of pathways are then calculated 
by comparing against a background model created with two 
different approaches: a) randomizing input genes (NetPEA) and 
b) randomizing input genes and the PIN (NetPEA′).

With pathfindR, our aim was likewise to exploit interaction 
information to extract the most relevant pathways. We aimed 

to combine together active subnetwork search and pathway 
enrichment analysis. By implementing this original active-
subnetwork-oriented pathway analysis approach as an R 
package, our intention was to provide the research community 
with a set of utilities (in addition to pathway analysis, clustering 
of pathways, scoring of pathways, and visualization utilities) that 
will be effective, beneficial, and straightforward to utilize for 
pathway enrichment analysis exploiting interaction information.

The active-subnetwork-oriented pathway enrichment 
paradigm of pathfindR can be summarized as follows: Mapping 
the statistical significance of each gene onto a PIN, active 
subnetworks, i.e., subnetworks in the PIN that contain an optimal 
number of significant nodes maximizing the overall significance 
of the subnetwork, either in direct contact or in indirect contact 
via an insignificant (non-input) node, are identified. Following 
a subnetwork filtering step, enrichment analyses are then 
performed on these active subnetworks. Similar to the above-
mentioned PIN-aided enrichment approaches, utilization of 
active subnetworks allows for efficient exploitation of interaction 
information and enhances enrichment analysis.

For the identification of active subnetworks, various 
algorithms have been proposed, such as greedy algorithms 
(Breitling et al., 2004; Sohler et al., 2004; Chuang et al., 2007; Nacu 
et al., 2007; Ulitsky and Shamir, 2007; Karni et al., 2009; Ulitsky 
and Shamir, 2009; Fortney et al., 2010; Doungpan et al., 2016), 
simulated annealing (Ideker et al., 2002; Guo et al., 2007), genetic 
algorithms (Klammer et al., 2010; Ma et al., 2011; Wu et al., 2011; 
Amgalan and Lee, 2014; Ozisik et al., 2017), and mathematical 
programming-based methods (Dittrich et al., 2008; Zhao et al., 
2008; Qiu et al., 2009; Backes et al., 2012; Beisser et al., 2012). In 
pathfindR, we provide implementations for a greedy algorithm, a 
simulated annealing algorithm, and a genetic algorithm.

In summary, pathfindR integrates information from three 
main resources to enhance determination of the mechanisms 
underlying a phenotype: (i) differential expression/methylation 
information obtained through omics analyses, (ii) interaction 
information through a PIN via active subnetwork identification, 
and (iii) pathway/gene set annotations from sources such as 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa 
and Goto, 2000; Kanehisa et al., 2017), Reactome (Fabregat et al., 
2018), BioCarta (Nishimura, 2001), and Gene Ontology (GO) 
(Ashburner et al., 2000).

The pathfindR R (https://www.R-project.org/) package was 
developed based on a previous approach developed by our group 
for genome-wide association studies (GWASes): Pathway and 
Network-Oriented GWAS Analysis (PANOGA) (Bakir-Gungor 
et al., 2014). PANOGA was successfully applied to uncover the 
underlying mechanisms in GWASes of various diseases, such 
as intracranial aneurysm (Bakir-Gungor and Sezerman, 2013), 
epilepsy (Bakir-Gungor et al., 2013), and Behcet’s disease (Bakir-
Gungor et al., 2015). With pathfindR, we aimed to extend the 
approach of PANOGA to omics analyses and provide novel 
functionality.

In this article, we present an overview of pathfindR, example 
applications on three gene expression data sets, and comparison 
of the results of pathfindR with those obtained using three 
tools widely used for enrichment analyses: The Database for 
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Annotation, Visualization and Integrated Discovery (DAVID) 
(Huang da et al., 2009), Signaling Pathway Impact Analysis 
(SPIA) (Tarca et al., 2009), and Gene Set Enrichment Analysis 
(GSEA) (Subramanian et al., 2005).

MATERIAL AND METHODS

PINs and Gene Sets
PIN data available in pathfindR by default are KEGG, Biogrid (Stark 
et al., 2006; Chatr-Aryamontri et al., 2017), GeneMania (Warde-
Farley et al., 2010), and IntAct (Orchard et al., 2014). The default 
PIN is Biogrid. Besides these four default PINs, the researcher can 
also use any other PIN of their choice on the condition that they 
provide the PIN file in simple interaction file (SIF) format.

The KEGG Homo sapiens PIN was created by an in-house 
script using the KEGG pathways. In KEGG, pathways are 
represented in XML files that contain genes and gene groups, such 
as protein complexes as entries and interactions as entry pairs. The 
KEGG pathway XML files were obtained using the official KEGG 
Application Programming Interface (API) which is a REST-style 
interface to the KEGG database resource. Using the in-house 
script, the XML files were parsed; the interactions were added 
as undirected pairs, while interaction types were disregarded. In 
cases of an entry in an interacting pair containing multiple genes, 
interactions from all of these genes to the other entry were built.

For Biogrid, Homo sapiens PIN data in tab-delimited text 
format from release 3.4.156 (BIOGRID-ORGANISM-Homo_
sapiens-3.4.156.tab.txt) was obtained from the Biogrid Download 
File Repository (https://downloads.thebiogrid.org/BioGRID).

For IntAct, the PIN data in Proteomics Standards Initiative – 
Molecular Interactions tab-delimited (PSI-MI TAB) (MITAB) 
format (intact.txt) were obtained from the IntAct Molecular 
Interaction Database FTP site (ftp://ftp.ebi.ac.uk/pub/databases/
intact/current) in January 2018. 

For GeneMania, Homo sapiens PIN data in tab-delimited 
text format from the latest release (COMBINED.DEFAULT_
NETWORKS.BP_COMBINING.txt) was obtained from the 
official data repository (http://genemania.org/data/current/
Homo_sapiens.COMBINED/). For this PIN only, only 
interactions with GeneMania weights ≥0.0006 were kept, 
allowing only strong interactions.

No filtration for interaction types were performed for any 
PIN (i.e., all types of interactions were kept). The processing 
steps performed for all the PINs were (1.) if the HUGO Gene 
Nomenclature Committee (HGNC) symbols for interacting 
genes were not provided, conversion of provided gene identifiers 
to HGNC symbols using biomaRt (Durinck et al., 2009) was 
performed; (2.) duplicate interactions and self-interactions (if 
any) were removed; and (3.) all PINs were formatted as SIFs.

Gene sets available in pathfindR are KEGG, Reactome, BioCarta, 
GO-Biological Process (GO-BP), GO-Cellular Component (GO-
CC), GO-Molecular Function (GO-MF) and GO-All (GO-BP, 
GO-CC, and GO-MF combined).

KEGG gene sets were obtained using the R package KEGGREST. 
Reactome gene sets in Gene Matrix Transposed (GMT) file 
format were obtained from the Reactome website (https://

reactome.org/download/current/). BioCarta gene sets in GMT 
format were retrieved from the Molecular Signatures Database 
(MSigDB) (Liberzon et al., 2011) website (http://software.
broadinstitute.org/gsea/msigdb). All “High-quality” GO gene 
sets were obtained from GO2MSIG (Powell, 2014) web interface 
(http://www.go2msig.org/cgi-bin/prebuilt.cgi?taxid=9606) in 
GMT format. All of the datasets were processed using R to obtain 
(1) a list containing the genes involved in each given gene set/
pathway (hence, each element of the list is named by the gene set 
ID and is a vector of gene symbols located in the given gene set/
pathway) and (2) a list containing the descriptions for each gene 
set/pathway (i.e., a list linking gene set IDs to description).

All of the gene sets in pathfindR are for Homo sapiens, and 
the default gene set is KEGG. The researcher can also use a gene 
set of their choice following the instructions on pathfindR wiki.

All of the default data for PINs and gene sets are planned to 
be updated annually.

Scoring of Subnetworks
In pathfindR, we followed the scoring scheme that was 
proposed by Ideker et al., 2002). The p value of each gene is 
converted to a z score using equation (1), and the score of a 
subnetwork is calculated using equation (2). In equation (1) 
Φ–1 is the inverse normal cumulative distribution function. In 
equation (2), A is the set of genes in the subnetwork and k is 
its cardinality.

 zi i= −−Φ 1 1( )p  (1)

 
z

k
zA i

i A
=

∈∑1
 (2)

In the same scoring scheme, a Monte Carlo approach is 
used for the calibration of the scores of subnetworks against a 
background distribution. Using randomly selected genes, 2,000 
subnetworks of each possible size are constructed, and for each 
possible size, the mean and standard deviation of the score is 
calculated. These values are used to calibrate the subnetwork 
score using equation (3).

 
sA

A k

k
= −(z )µ

σ  (3)

Active Subnetwork Search Algorithms
Currently, there are three algorithms implemented in the 
pathfindR package for active subnetwork search, described 
below.

Greedy Algorithm
Greedy algorithm is the problem-solving/optimization concept 
that chooses locally the best option in each stage with the 
expectation of reaching the global optimum. In active subnetwork 
search, this is generally applied by starting with a significant 

153

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://downloads.thebiogrid.org/BioGRID
ftp://ftp.ebi.ac.uk/pub/databases/intact/current
ftp://ftp.ebi.ac.uk/pub/databases/intact/current
http://genemania.org/data/current/Homo_sapiens.COMBINED/
http://genemania.org/data/current/Homo_sapiens.COMBINED/
https://reactome.org/download/current/
https://reactome.org/download/current/
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
http://www.go2msig.org/cgi-bin/prebuilt.cgi?taxid=9606


pathfindR: Enrichment via Active ModulesUlgen et al.

4 September 2019 | Volume 10 | Article 858Frontiers in Genetics | www.frontiersin.org

seed node and considering addition of a neighbor in each step 
to maximize the subnetwork score. In pathfindR, we used the 
approach described by Chuang et al. (2007). This algorithm 
considers addition of a node within a specified distance d to the 
current subnetwork. In our method, the maximum depth from 
the seed can also be set. With the default parameters, our greedy 
method considers addition of direct neighbors (d = 1) and forms 
a subnetwork with a maximum depth of 1 for each seed. Because 
the expansion process runs for each significant seed node, several 
overlapping subnetworks emerge. Overlapping subnetworks are 
handled by discarding a subnetwork that overlaps with a higher 
scoring subnetwork more than a given threshold, which is set to 
0.5 by default.

Simulated Annealing Algorithm
Simulated annealing is an optimization algorithm inspired by 
annealing in metallurgy. In the annealing process, the material is 
heated above its recrystallization temperature and cooled slowly, 
allowing atoms to diffuse within the material and decrease 
dislocations. Analogous to this process, simulated annealing 
algorithm starts with a “high temperature” in which there is a 
high probability of accepting a solution that is worse than the 
current one as the solution space is explored. The acceptability 
of worse solutions allows a global search and escaping from local 
optima. The equation connecting temperature and probability 
of accepting a new solution is given in equation (4). In this 
equation, P(Acceptance) is the probability of accepting the new 
solution. In scorenew and scorecurrent are the scores of the new and 
the current solutions, respectively. Finally, temperature is the 
current temperature.
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new current
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− >
 

,    1 0
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new current

otherwise
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, 
  (4)

A less worse solution and higher temperature are the conditions 
that increase the chance of acceptation of a new solution. The 
probability of accepting a non-optimal action decreases in each 
iteration, as the temperature decreases in each step.

Simulated annealing provides improved performance over 
the greedy search by accepting non-optimal actions to increase 
exploration in the search space. In the active subnetwork search 
context, the search begins with a set of randomly chosen genes 
(the chosen genes are referred to as genes in “on” state and the not 
chosen genes are referred to as genes in “off ” state). Connected 
components in this candidate solution are found, and the scores 
are calculated. In each iteration, the state of a random node is 
changed from on to off and vice versa. Connected components 
are found in the new solution, and their scores are calculated. If 
the score improves, the change is accepted. If the score decreases, 
the change is accepted with a probability proportional to the 
temperature parameter that decreases in each step.

Genetic Algorithm
Genetic algorithm is a bio-inspired algorithm that mimics 
evolution by implementing natural selection, chromosomal 

crossover, and mutation. The main phases of the genetic 
algorithm are “the selection phase” and “the crossover phase.”

In the selection phase, parents from the existing population 
are selected through a fitness-based process to breed a new 
generation. Common selection methods are (i) roulette 
wheel selection in which a solution’s selection probability is 
proportional to its fitness score, (ii) rank selection in which a 
solution’s selection probability is proportional to its rank, thus 
preventing the domination of a high fitness solution to the rest, 
and (iii) tournament selection in which parents are selected 
among the members of randomly selected groups of solutions, 
thus giving more chance to small fitness solutions that would 
have little chance in other selection methods.

In the crossover phase, encoded solution parameters of the 
parents are exchanged analogous to chromosomal crossover. 
The common crossover operators are (i) single-point crossover 
in which the segment next to a randomly chosen point in the 
solution representation is substituted between parents, (ii) two-
point crossover in which the segment between two randomly 
chosen points is substituted, and (iii) uniform crossover in which 
each parameter is randomly selected from either of the parents. 
Mutation is the process of randomly changing parameters in the 
offspring solutions in order to maintain genetic diversity and 
explore search space.

In our genetic algorithm implementation, candidate 
solutions represent the on/off state of each gene. In the 
implementation, we used rank selection and uniform crossover. 
In each iteration, the fittest solution of the previous population 
is preserved if the highest score of the current population is less 
than the previous population’s score. In every 10 iterations, the 
worst scoring 10% of the population is replaced with random 
solutions. Because uniform cross-over and addition of random 
solutions make adequate contribution to the exploration 
of the search space, mutation is not performed under the 
default settings.

Selecting the Active Subnetwork Search Algorithm
The default search method in pathfindR is greedy algorithm with 
a search depth of 1 and maximum depth of 1. This method stands 
out with its simplicity and speed. This is also the “local subnetwork 
approach” used in the Local Enrichment Analysis (LEAN) 
method (Gwinner et al., 2017). As mentioned in the LEAN study, 
the number of subnetworks to be identified typically increases 
exponentially with increasing number of genes in the PIN, and 
the “local subnetwork approach” enables iterating over each local 
subnetwork and determining phenotype-related clusters. Greedy 
algorithm with search depth and maximum depth equal to 2 or 
more lets the search algorithm look further in the network for 
another significant gene to add to the cluster, but this may result 
in a slower runtime and a loss in interpretability.

Simulated annealing and genetic algorithms are heuristic 
methods that do not make any assumptions on the active 
subnetwork model. They can let insignificant genes between two 
clusters of significant genes to create a single connected active 
subnetwork. Thus, these algorithms may result in a large highest 
scoring active subnetwork, while the remaining subnetworks 
identified become small and therefore uninformative. This 
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tendency towards large subnetworks was attributed to a 
statistical bias prevalent in many tools (Nikolayeva et al., 2018).

The default active search method (greedy algorithm with a 
search depth of 1 and maximum depth of 1) in pathfindR was 
preferred because multiple active subnetworks are used for 
enrichment analyses. If the researcher decides to use the single 
highest scoring active subnetwork for the enrichment process, 
they are encouraged to consider greedy algorithm with greater 
depth, simulated annealing, or genetic algorithm.

Active-Subnetwork-Oriented Pathway 
Enrichment Analysis
The overview of the active-subnetwork-oriented pathway 
enrichment approach is presented in Figure 1A.

The required input is a two- or three-column table: Gene 
symbols, change values as log-fold change (optional) and 
adjusted p values associated with the differential expression/
methylation data.

Initially, the input is filtered so that all p values are less than or 
equal to the given threshold (default is 0.05). Next, gene symbols 
that are not in the PIN are identified. If aliases of these gene 
symbols are found in the PIN, these symbols are converted to the 
corresponding aliases. 

The processed data are then used for active subnetwork search. 
The identified active subnetworks are filtered via the following 
criteria: (i) has a score larger than the given quantile threshold 
(default is 0.80) and (ii) contains at least a specified number of 
input genes (default is 10). 

For each filtered active subnetwork, using the genes contained 
in each of these subnetworks, separate pathway enrichment 
analyses are performed via one-sided hypergeometric testing. 
The enrichment tests use the genes in the PIN as the gene pool 
(i.e., background genes). Using the genes in the PIN instead of the 
whole genome is more appropriate and provides more statistical 
strength because active subnetworks are identified using only the 
genes in the PIN. Next, the p values obtained from the enrichment 
tests are adjusted (default is by Bonferroni method. However, the 
researcher may choose another method they prefer). Pathways 
with adjusted p values larger than the given threshold (default 
is 0.05) are discarded. These significantly enriched pathways per 
all filtered subnetworks are then aggregated by keeping only the 
lowest adjusted p value for each pathway if a pathway was found 
to be significantly enriched in the enrichment analysis of more 
than one subnetwork.

This process of active subnetwork search and enrichment 
analysis (active subnetwork search, filtering of subnetworks, 
enrichment analysis on each filtered subnetwork, and aggregation 

FIGURE 1 | Flow diagrams of the pathfindR methods. (A) Flow diagram of the pathfindR active-subnetwork-oriented pathway enrichment analysis approach. 
(B) Flow diagram of the pathfindR pathway clustering approaches.
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of enrichment results over all subnetworks) is repeated for a 
selected number of iterations (default is 10 iterations for greedy 
and simulated annealing algorithms, 1 for genetic algorithm).

Finally, the lowest and the highest adjusted p values, the 
number of occurrences over all iterations, and up-regulated and 
down-regulated genes in each enriched pathway are returned as 
a table. Additionally, a Hypertext Markup Language (HTML) 
format report with the pathfindR enrichment results is created. 
Pathways are linked to the visualizations of the pathways if 
KEGG gene sets are chosen. The KEGG pathway diagrams are 
created using the R package pathview (Luo and Brouwer, 2013). 
By default, these diagrams display the involved genes colored 
by change values, normalized between −1 and 1, on a KEGG 
pathway graph. If a gene set other than KEGG is chosen and 
visualization is required, graphs of interactions of genes involved 
in the enriched pathways in the chosen PIN are visualized via the 
R package igraph (Csardi and Nepusz, 2006).

Pathway Clustering
Enrichment analysis usually yields a large number of related pathways. 
In order to establish representative pathways among similar groups 
of pathways, we propose that clustering can be performed either via 
hierarchical clustering (default) or via a fuzzy clustering method as 
described by Huang et al. (2007). These clustering approaches are 
visually outlined in Figure 1B and described below:

Firstly, using the input genes in each pathway, a kappa 
statistics matrix containing the pairwise kappa statistics, a 
chance-corrected measure of co-occurrence between two sets 
of categorized data, between the pathways is calculated (Huang 
et al., 2007).

By default, the wrapper function for pathway clustering, 
cluster_pathways, performs agglomerative hierarchical clustering 
(defining the distance as 1 − kappa statistic), automatically 
determines the optimal number of clusters by maximizing the 
average silhouette width, and returns a table of pathways with 
cluster assignments.

Alternatively, the fuzzy clustering method, previously 
proposed and described in detail by Huang et al. (2007), can 
be used to obtain fuzzy cluster assignments. Hence, this fuzzy 
approach allows a pathway to be a member of multiple clusters.

Finally, the representative pathway for each cluster is assigned 
as the pathway with the lowest adjusted p value.

Pathway Scoring Per Sample
The researcher can get an overview of the alterations of genes in 
a pathway via the KEGG pathway graph. To provide even more 
insight into the activation/repression statuses of pathways per 
each sample, we devised a simple scoring scheme that aggregates 
gene-level values to pathway scores, described below.

For an experiment values matrix (e.g., gene expression values 
matrix), EM, where columns indicate samples and rows indicate 
genes, the gene score GS of a gene g in a sample s is calculated as:

 
GS g s

EM X
sd
g s g

g
,  

 ,( ) =
−

 (5)

Here, Xg  is the mean value for gene g across all samples, and 
sdg is the standard deviation for gene g across all samples.

For a set Pi, the set of k genes in pathway i, and a sample 
j, the ith row and jth column of the pathway score matrix PS is 
calculated as follows:

 
PS

k
GS g ji j

g Pi
,   , = ( )

∈∑1
 (6)

The pathway score of a sample for a given pathway is therefore 
the average value of the scores of the genes in the pathway for the 
given sample.

After calculation of the pathway score matrix, a heat map 
of these scores is plotted. Via this heat map, the researcher can 
examine the activity of a pathway in individual samples as well 
as compare the overall activity of the pathway between cases and 
controls.

Application on Gene Expression Datasets
To analyze the performance of pathfindR, we used three gene 
expression datasets. All datasets were obtained via the Gene 
Expression Omnibus (GEO) (Edgar et al., 2002). The first 
dataset (GSE15573) aimed to characterize and compare gene 
expression profiles in the peripheral blood mononuclear cells 
of 18 rheumatoid arthritis (RA) patients versus 15 healthy 
subjects using the Illumina human-6 v2.0 expression bead chip 
platform. This dataset will be referred to as RA. The second 
dataset (GSE4107) compared the gene expression profiles of the 
colonic mucosa of 12 early onset colorectal cancer patients and 
10 healthy controls using the Affymetrix Human Genome U133 
Plus 2.0 Array platform. The second dataset will be referred to 
as CRC. The third dataset (GSE55945) compared the expression 
profiles of prostate tissue from 13 prostate cancer patients versus 
8 controls using the Affymetrix Human Genome U133 Plus 2.0 
Array platform. This dataset will be referred to as PCa.

After preprocessing, which included log2 transformation 
and quantile normalization, differential expression testing via a 
moderated t test using limma (Ritchie et al., 2015) was performed. 
Next, the resulting p values were corrected using false discovery 
rate (FDR) adjustment. The differentially expressed genes 
(DEGs) were defined as those with FDR < 0.05. Probes mapping 
to multiple genes and probes that do not map to any gene were 
excluded. If a gene was targeted by multiple probes, the lowest 
p value was kept. The results of differential expression analyses 
for RA, CRC, and PCa, prior to filtering (differential expression 
statistics for all probes) and after filtering (lists of DEGs), are 
provided in Supplementary Data Sheet 1.

We chose to use these three datasets because these are well-
studied diseases and the involved mechanisms are considerably 
well characterized. These different datasets also allowed us to test 
the capabilities of pathfindR on DEGs obtained from different 
platforms. 

We performed enrichment analysis with pathfindR, using the 
default settings. Greedy algorithm for active subnetwork search 
was used, and the analysis was carried out over 10 iterations. 
The enrichment significance cutoff value was set to 0.25 for each 
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analysis (changing the argument enrichment_threshold of run_
pathfindR function) as we later performed validation of the results 
using the three significance cutoff values of 0.05, 0.1, and 0.25

To better evaluate the performance of pathfindR, we compared 
results on the three gene expression datasets by three widely used 
pathway analysis tools, namely, DAVID (Huang da et al., 2009), 
SPIA (Tarca et al., 2009), and GSEA (Subramanian et al., 2005). 
DAVID 6.8 was used for the analyses. SPIA was performed using 
the default settings. GSEA was also performed using the default 
settings (using phenotype permutations). Additionally, pre-
ranked GSEA was performed (GSEAPreranked) using the default 
settings. The rank of the ith gene ranki was calculated as follows:

 

rank
p if logFC

p otherwise
i

i i

i

=
− <






−

−
 

,  

,

1

1

0
 (7)

The unfiltered results of enrichment analyses using the 
different methods on the three datasets are presented in 
Supplementary Data Sheet 2.

For each analysis, the Bonferroni-corrected p values for 
pathfindR were used to filter the results. For all the other tools, 
as the Bonferroni method would be too strict and result in too 
few or no significant pathways, the FDR-corrected p values 
were used.

Because there is no definitive answer to which pathways are 
involved in the pathogenesis of the conditions under study, we 
analyzed the results in light of the existing biological knowledge 
on the conditions and compared our results with other tools 
in this context. The significant pathways were assessed on the 
basis of how well they fitted with the existing knowledge. For 
this, two separate approaches were taken: (i) assessment of 
literature support for the significantly enriched pathways (using 
a significance threshold of 0.05), and (ii) assessment of the 
percentages of pathway genes that are also known disease genes 
(using the three significance thresholds of 0.05, 0.10, and 0.25). 
While both assessments could be separately used to determine 
the “disease-relatedness” of a pathway, we chose to use them 
both as these are complementary measures: the former is a more 
subjective but a comprehensive measure of association, and the 
latter is a limited but a more objective measure of association. 
For determining the percentages of known disease genes in 
each significantly enriched pathway, two curated lists were used. 
For the RA dataset, mapped genes in the curated list of SNPs 
associated with RA was obtained from the NHGRI-EBI Catalog 
of published genome-wide association studies (GWAS Catalog, 
retrieved on 19.12.2018) (MacArthur et al., 2017). These genes 
will be referred to as “RA Genes.” For the CRC and PCa datasets, 
the “Cancer Gene Census” (CGC) genes from the Catalogue of 
Somatic Mutations in Cancer (COSMIC, http://cancer.sanger.
ac.uk, retrieved on 19.12.2018) were used. These genes will be 
referred to as “CGC Genes.”

Assessment Using Permuted Inputs
We performed pathfindR analyses using real and permuted 
data with different sizes to assess the number of enriched 

pathways identified in the permuted data against the 
actual data. For this assessment, the RA data was used. The 
analyses were performed on data subsets taken as the top 
200, 300, 400, and 500 most significant DEGs as well as the 
complete list of 572 DEGs. For each input size, 100 separate 
pathfindR analyses were performed on both the actual input 
data and permuted data. While the real input data were kept 
unchanged, for the permuted data, a random permutation of 
genes (using the set of all genes available on the microarray 
platform) was carried out at each iteration over 100 analyses. 
Analyses with pathfindR were performed using the default 
settings described above.

The distributions of the number of enriched pathways for 
actual vs. permuted data were compared using Wilcoxon rank 
sum test.

ORA Assessment of the Effect of DEGs 
Without Any Interactions
We performed ORA as implemented in pathfindR (as the 
“enrichment” function) to assess any effect of removing DEGs 
without any interactions on enrichment results. For this purpose, 
ORA were performed for (i) the full lists of DEGs for all datasets 
and (ii) the lists of DEGs that are found in the Biogrid PIN. As 
gene sets, KEGG pathways were used. As background genes, all 
of the genes in the Biogrid PIN were used for both analyses so 
that the results could be comparable. The enrichment p values 
were adjusted using the FDR method. Pathway enrichment was 
considered significant if FDR was <0.05.

Assessment of the Effect of PINs on 
Enrichment Results
To analyze the effect of the chosen PIN on the enrichment results, 
we performed pathfindR analyses using the four PINs provided 
by default: the Biogrid, GeneMania, IntAct, and KEGGPINs. For 
these analyses, the default settings were used with the default active 
search algorithm (greedy) and the default gene sets (KEGG).

Software Availability
The pathfindR package is freely available for use under MIT 
license: https://cran.r-project.org/package=pathfindR. The code 
of the pathfindR package is deposited in a GitHub repository 
(https://github.com/egeulgen/pathfindR) along with a detailed 
wiki, documenting the features of pathfindR in detail. Docker 
images for the latest stable version and the development version 
of pathfindR are deposited on Docker Hub (https://hub.docker.
com/r/egeulgen/pathfindr)

RESULTS

The RA Dataset
A total of 572 DEGs were identified for the RA dataset 
(Supplementary Data Sheet 1). Filtered by adjusted p values 
(adjusted-p ≤ 0.05), pathfindR identified 78 significantly 
enriched KEGG pathways which were partitioned into 10 clusters 
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(Figures 2A, B). The relevancy of 31 out of 78 (39.74%) pathways 
was supported by literature, briefly stated in Table 1.

The summary of results obtained using the different tools and 
literature support for the identified pathways (where applicable) 
are presented in Table 1. For this dataset, SPIA identified 
two significant pathways, which were both also identified by 
pathfindR. No significant pathway was identified by the other 
tools.

Clustering allowed us to obtain coherent groups of pathways 
and identify mechanisms relevant to RA, including autoimmune 
response to the spliceosome (Hassfeld et al., 1995), mechanisms 
related with response to microbial infection, such as generation 
of neo-autoantigens and molecular mimicry (Li et al., 2013), 
dysregulation of various signaling pathways (Remans et al., 
2002; Rihl et al., 2005; Barthel et al., 2009; Malemud, 2015), 
DNA damage repair (Lee et al., 2003), dysregulation of energy 
metabolism (Yang et al., 2015), and modulation of immune 
response and inflammation by the proteasome (Wang and 
Maldonado, 2006).

The activity scores of the representative pathways for each 
subject indicated that most representative pathways were down-
regulated in the majority of subjects (Figure 2C).

The CRC Dataset
For the CRC dataset, 1,356 DEGs were identified (Supplementary 
Data Sheet 1). pathfindR identified 100 significantly enriched 
pathways (adjusted-p ≤ 0.05) which were partitioned into 14 
coherent clusters (Figures 3A, B). Forty-eight (48%) of these 
enriched pathways were relevant to CRC biology, as supported 
by literature. Brief descriptions of how these are relevant are 
provided in Table 2.

The results obtained using the different tools and literature 
support for the identified pathways (where applicable) are 
presented in Table 2. For this dataset, DAVID identified 20 
significant pathways, 15 of which were also found by pathfindR 
(4 out of the remaining 5 were not supported by literature to 
be relevant to CRC). SPIA identified 13 significantly enriched 
pathways, 11 of which were also identified by pathfindR. Out 
of the remaining two enriched pathways, only “PPAR signaling 
pathway” was related to CRC biology (You et al., 2015). Neither 
GSEA nor GSEAPreranked yielded any significant pathways for 
the CRC dataset. The Colorectal cancer pathway was identified to 
be significantly enriched only by pathfindR.

Upon clustering, 14 clusters were identified (Figures 3A, 
B). These clusters implied processes previously indicated 

FIGURE 2 | pathfindR enrichment and clustering results on the rheumatoid arthritis (RA) dataset (lowest p ≤ 0.05). (A) Clustering graph, each color displaying 
the clusters obtained for RA. Each node is an enriched pathway. Size of a node corresponds to its −log(lowest_p). The thickness of the edges between nodes 
corresponds to the kappa statistic between the two terms. (B) Bubble chart of enrichment results grouped by clusters (labeled on the right-hand side of each 
panel). The x axis corresponds to fold enrichment values, while the y axis indicates the enriched pathways. The size of the bubble indicates the number of 
differentially expressed genes (DEGs) in the given pathway. Color indicates the −log10(lowest-p) value; the more it shifts to red, the more significantly the pathway 
is enriched. (C) Heat map of pathway scores per subject. The x axis indicates subjects, whereas the y axis indicates representative pathways. Color scale for the 
pathway score is provided in the right-hand legend.
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TABLE 1 | Pathway analysis results for the rheumatoid arthritis (RA) dataset (adjusted p < 0.05).

ID Pathway % RA 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa00190 Oxidative 
phosphorylation

0 <0.001 0.28157363 – 0.50656915 1 Oxygen metabolism 
has an important role in 
the pathogenesis of RA 
(Hitchon and El-Gabalawy, 
2004; Yang et al., 2015).

hsa05012 Parkinson disease 1.41 <0.001 0.35202042 0.03287527 0.5198511 1
hsa03040 Spliceosome 0 <0.001 0.19110635 – – – Autoimmune response 

to the spliceosome was 
previously reported in 
numerous autoimmune 
diseases (Hassfeld et al., 
1995).

hsa04932 Non-alcoholic 
fatty liver disease 
(NAFLD)

2.01 <0.001 – – – –

hsa05010 Alzheimer disease 0.58 <0.001 0.40188326 0.070524222 0.49685246 0.99091035
hsa03013 RNA transport 0.61 <0.001 0.49158247 0.080862112 – –
hsa05016 Huntington 

disease
0.52 <0.001 0.24543866 0.03287527 0.5436461 1

hsa04064 NF-kappa B 
signaling pathway

8.42 <0.001 0.634065 0.206122248 – – NF-kB is a pivotal mediator 
of inflammatory responses 
(Liu et al., 2017b) and an 
important player in RA 
pathogenesis (Makarov, 
2001).

hsa03010 Ribosome 0 <0.001 – – 0.6974111 –
hsa04714 Thermogenesis 0.43 <0.001 – – – –

hsa05130 Pathogenic 
Escherichia coli 
infection

0 <0.001 0.42959791 0.103834432 0.740603 0.96458197 Possibly related to 
generation of neo-
autoantigens, molecular 
mimicry, and bystander 
activation of the immune 
system (Li et al., 2013)

hsa04659 Th17 cell 
differentiation

19.63 <0.001 – – – – Th17 cells play an important 
role in inflammation in 
human autoimmune 
arthritides, including RA 
(Pernis, 2009; Leipe et al., 
2010).

hsa04921 Oxytocin signaling 
pathway

1.97 <0.001 – – – –

hsa04722 Neurotrophin 
signaling pathway

2.52 <0.001 0.55824289 0.331277414 – – Neurotrophin signaling is 
altered in RA (Rihl et al., 
2005; Barthel et al., 2009).

hsa04130 SNARE 
interactions 
in vesicular 
transport

0 <0.001 0.51353532 0.205302976 0.69465846 0.9727782

hsa04920 Adipocytokine 
signaling pathway

2.9 <0.001 – 0.999995202 – – The adipocytokines and 
the adipokine network 
have extensive roles in 
the pathogenesis of RA 
(Frommer et al., 2011; Del 
Prete et al., 2014).

hsa05167 Kaposi sarcoma-
associated herpes 
virus infection

5.91 <0.001 – – – –

hsa04630 JAK-STAT 
signaling pathway

9.26 <0.001 – 0.980050749 – – Disruption of the JAK-STAT 
pathway is a critical event 
in the pathogenesis and 
progression of rheumatoid 
arthritis (Malemud, 2018).

(Continued)
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TABLE 1 | Continued

ID Pathway % RA 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04931 Insulin resistance 1.85 <0.001 – – – –

hsa04260 Cardiac muscle 
contraction

0 <0.001 – – 0.6976311 1

hsa05142 Chagas disease 
(American 
trypanosomiasis)

7.77 <0.001 – 0.999995202 – –

hsa05100 Bacterial invasion 
of epithelial cells

1.35 <0.001 – 0.743380146 – – Possibly related to 
generation of neo-
autoantigens, molecular 
mimicry, and bystander 
activation of the immune 
system (Li et al., 2013).

hsa05163 Human 
cytomegalovirus 
infection

4 <0.001 – – – –

hsa04660 T cell receptor 
signaling pathway

10.89 <0.001 – 0.743380146 – – Dysregulation of the TCR 
signaling pathway was 
previously implicated in RA 
biology (Sumitomo et al., 
2018).

hsa05131 Shigellosis 3.08 <0.001 0.51130292 0.137642182 – – Possibly related to 
generation of neo-
autoantigens, molecular 
mimicry, and bystander 
activation of the immune 
system (Li et al., 2013).

hsa05203 Viral 
carcinogenesis

2.99 <0.001 – 0.999995202 – –

hsa05166 Human T-cell 
leukemia virus 1 
infection

7.31 <0.001 0.48795724 0.137642182 – –

hsa04210 Apoptosis 1.47 <0.001 – 0.827952041 – – Apoptosis may play 
divergent roles in RA biology 
(Liu and Pope, 2003).

hsa05165 Human 
papillomavirus 
infection

1.82 <0.001 – – – –

hsa05161 Hepatitis B 6.13 <0.001 – – – –
hsa04150 mTOR signaling 

pathway
0.66 0.001061744 – 0.743380146 – – Intracellular signaling 

pathway (including mTOR 
signaling) play a critical role in 
rheumatoid arthritis (Malemud, 
2013; Malemud, 2015).

hsa05418 Fluid shear 
stress and 
atherosclerosis

1.44 0.001166905 – – – –

hsa04218 Cellular 
senescence

2.5 0.001351009 – – – –

hsa04217 Necroptosis 4.32 0.001442161 – – – – Necroptosis suppresses 
inflammation via termination of 
TNF- or LPS-induced cytokine 
and chemokine production 
(Kearney et al., 2015).

hsa04145 Phagosome 5.26 0.001665316 0.49641734 – – –
hsa03050 Proteasome 2.22 0.001881322 – – 0.7889826 – Proteasome modulates 

immune and inflammatory 
responses in autoimmune 
diseases (Wang and 
Maldonado, 2006).

hsa05168 Herpes simplex 
infection

8.65 0.002442405 – 0.53977679 – –

(Continued)
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TABLE 1 | Continued

ID Pathway % RA 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa05200 Pathways in 
cancer

4.56 0.002463658 – 0.743380146 – –

hsa04621 NOD-like receptor 
signaling pathway

5.06 0.002477183 – 0.909381246 – – NOD-like receptors are 
being implicated in the 
pathology of RA and 
other rheumatic diseases 
(McCormack et al., 2009).

hsa05202 Transcriptional 
misregulation in 
cancer

4.84 0.002495122 – 0.743380146 – –

hsa04151 PI3K-Akt signaling 
pathway

2.82 0.00331152 – – – – PI3K-Akt signaling regulates 
diverse cellular processes 
and was proposed as a 
target for inducing cell death 
in RA (Malemud, 2015).

hsa05215 Prostate cancer 1.03 0.003884234 – 0.999995202 – –
hsa05170 Human 

immunodeficiency 
virus 1 infection

3.3 0.004185672 – – – –

hsa04066 HIF-1 signaling 
pathway

5 0.004382877 – – – – Alterations in hypoxia-
related signaling pathways 
are considered potential 
mechanisms of RA 
pathogenesis (Quiñonez-
Flores et al., 2016).

hsa05225 Hepatocellular 
carcinoma

3.57 0.004782642 – – – –

hsa04922 Glucagon 
signaling pathway

0 0.004927201 – – – –

hsa03420 Nucleotide 
excision repair

0 0.005418059 0.63260927 – – – DNA damage load is 
higher in RA patients, thus 
activating repair pathways 
(Lee et al., 2003).

hsa04015 Rap1 signaling 
pathway

0.97 0.005543915 – – – – Deregulation of Rap1 
signaling pathway was 
shown to be a critical 
event altering the response 
of synovial T cells in RA 
(Remans et al., 2002).

hsa05221 Acute myeloid 
leukemia

3.03 0.006008327 – 0.999995202 – –

hsa05132 Salmonella 
infection

3.49 0.006557353 – 0.721697645 – – Possibly related to 
generation of neo-
autoantigens, molecular 
mimicry, and bystander 
activation of the immune 
system (Li et al., 2013).

hsa05212 Pancreatic cancer 4 0.006646458 – 0.743380146 – –
hsa04662 B cell receptor 

signaling pathway
2.82 0.00748718 – 0.851804025 – –

hsa04971 Gastric acid 
secretion

4 0.008829291 – 0.743380146 – –

hsa04020 Calcium signaling 
pathway

3.19 0.009304653 – 0.999995202 – – Dysregulation of the calcium 
signaling pathway was 
implicated in RA pathogenesis 
(Berridge, 2016).

hsa04919 Thyroid hormone 
signaling pathway

3.45 0.009478272 – – – –

hsa05220 Chronic myeloid 
leukemia

3.95 0.011899647 – 0.743380146 – –

hsa04728 Dopaminergic 
synapse

1.53 0.012701709 – 0.743380146 – –

(Continued)
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TABLE 1 | Continued

ID Pathway % RA 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa05412 Arrhythmogenic 
right ventricular 
cardiomyopathy 
(ARVC)

1.39 0.012829444 – 0.96639695 – –

hsa04371 Apelin signaling 
pathway

1.46 0.015134748 – – – –

hsa04910 Insulin signaling 
pathway

0 0.015134748 – 0.999995202 – 0.95215786

hsa03015 mRNA surveillance 
pathway

0 0.015767824 – – – –

hsa04658 Th1 and Th2 cell 
differentiation

17.39 0.016291789 – – – – RA patients were 
characterized by a disruption 
of Th1/Th2 balance towards 
Th1(He et al., 2017).

hsa04620 Toll-like receptor 
signaling pathway

5.77 0.017712009 – 0.743380146 0.72964895 1 Toll-like receptors are 
being implicated in the 
pathology of RA and 
other rheumatic diseases 
(McCormack et al., 2009).

hsa05410 Hypertrophic 
cardiomyopathy 
(HCM)

2.41 0.019642576 – – – –

hsa04668 TNF signaling 
pathway

5.45 0.0209396 – – – – Intracellular signaling 
pathway (including TNF 
signaling) play a critical 
role in rheumatoid arthritis 
(Malemud, 2013).

hsa05169 Epstein-Barr virus 
infection

8.96 0.022925676 – 0.743380146 – –

hsa05031 Amphetamine 
addiction

2.94 0.023901842 – 0.743380146 – –

hsa05414 Dilated 
cardiomyopathy 
(DCM)

2.22 0.025016113 – 0.851804025 – –

hsa04012 ErbB signaling 
pathway

2.35 0.026253837 – 0.999995202 – – Intracellular signaling 
pathway play a critical 
role in rheumatoid arthritis 
(Malemud, 2013).

hsa04510 Focal adhesion 0.5 0.02805129 – 0.999995202 0.77597433 – Adhesion molecules have 
an important role in RA 
(Pitzalis et al., 1994).

hsa04110 Cell cycle 4.03 0.029916503 – 0.743380146 – – Cell cycle stalling was 
recently linked to arthritis 
(Matsuda et al., 2017).

hsa05206 MicroRNAs in 
cancer

1.34 0.03026234 – – – –

hsa03460 Fanconi anemia 
pathway

0 0.033094195 – 0.743380146 – – DNA damage load is 
higher in RA patients, thus 
activating repair pathways 
(Lee et al., 2003).

hsa05160 Hepatitis C 3.23 0.035219047 – 0.743380146 – –
hsa04721 Synaptic vesicle 

cycle
1.28 0.035442941 – – – –

hsa04810 Regulation of 
actin cytoskeleton

0.47 0.036496481 – 0.96639695 0.80830806 – Actin cytoskeleton dynamics 
is linked to synovial fibroblast 
activation (Vasilopoulos et al., 
2007). Autoimmune response 
to cytoskeletal proteins 
(including actin) was reported 
in RA (Shrivastav et al., 2002).

hsa04270 Vascular 
smooth muscle 
contraction

2.48 0.036862558 – 0.070524222 – 1

(Continued)
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in colorectal cancer, including but not limited to colorectal 
cancer and related signaling pathways (Fang and Richardson, 
2005; Zenonos and Kyprianou, 2013; Francipane and Lagasse, 
2014), apoptosis (Watson, 2004), p53 signaling (Slattery et al., 
2018), dysregulation of metabolic functions, including glucose 
metabolism (Fang and Fang, 2016), fatty acid metabolism 
(Wen et al., 2017), and amino acid metabolism (Santhanam 
et al., 2016; Antanaviciute et al., 2017), and cell cycle (Hartwell 
and Kastan, 1994; Collins et al., 1997; Jarry et al., 2004). Brief 
descriptions of all pathways relevant to CRC are provided in 
Table 2.

Representative pathways that were upregulated in the 
majority of subjects included important pathways related to 
cancer in general and colorectal cancer, such as the proteoglycans 
in cancer, adherens junction, gap junction, and Hippo signaling 
pathway. Representative pathways that were downregulated in 
the majority of subjects included other important pathways 
related to colorectal cancer, such as valine, leucine, and 
isoleucine degradation, mTOR signaling pathway, and cell cycle 
(Figure 3C).

The PCa Dataset
For the PCa dataset, 1,240 DEGs were identified (Supplementary 
Data Sheet 1). pathfindR identified 92 significantly enriched 
pathways (adjusted-p ≤ 0.05) which were clustered into 14 
coherent clusters (Figures 4A, B). Forty-six (50%) of these 
enriched pathways were relevant to PCa biology, as supported 
by literature. Brief descriptions of the relevancies are provided 
in Table 3. 

The results obtained using the different tools and literature 
support for the identified pathways (where applicable) are 
presented in Table 3. DAVID identified eight significant 
pathways, which were all also identified by pathfindR and 
only half of which were relevant to PCa. SPIA identified five 
significantly enriched pathways, all of which were also identified 
by pathfindR. GSEA identified no significant pathways, whereas 
GSEAPreranked identified one significant pathway, for which no 
association with PCa was provided by the literature. The prostate 
cancer pathway was identified to be significantly enriched only 
by pathfindR.

The clusters identified by pathfindR pointed to several 
mechanisms previously shown to be important for prostate 
cancer. These mechanisms included but were not limited to 

the prostate cancer pathway and related signaling pathways (El 
Sheikh et al., 2003; Shukla et al., 2007; Rodríguez-Berriguete 
et al., 2012), cancer immunity (Knutson and Disis, 2005; Zhao 
et al., 2014), Hippo signaling (Zhang et al., 2015), cell cycle (Balk 
and Knudsen, 2008), autophagy (Farrow et al., 2014), and insulin 
signaling (Cox et al., 2009; Bertuzzi et al., 2016).

The majority of representative pathways relevant to PCa were 
down-regulated (Figure 4C).

Common Pathways Between the CRC and 
PCa Datasets
Because the CRC and PCa datasets were both cancers, they were 
expected to have common pathways identified by pathfindR. 
Indeed, 47 common significant pathways (adjusted-p ≤ 0.05) were 
identified (Supplementary Table 1). These common pathways 
included general cancer-related pathways, such as pathways in 
cancer, proteoglycans in cancer, MAPK signaling pathway, Ras 
signaling pathway, Hippo signaling pathway, mTOR signaling 
pathway, Toll-like receptor signaling pathway, Wnt signaling 
pathway, and adherens junction.

Disease-Related Genes in the Significantly 
Enriched Pathways
The percentages of disease-related genes for each pathway found 
to be enriched by any tool (adjusted-p ≤ 0.05) are presented in 
the corresponding columns of Tables 1, 2, and 3 (“% RA Genes” 
for the RA dataset and “% CGC Genes” for the CRC and PCa 
datasets). These percentages show great variability but support 
the literature search results in assessing the disease-relatedness of 
the enriched pathways.

The distributions of disease-related gene percentages in 
pathways identified by each tool in the three different datasets, 
filtered by the adjusted-p value thresholds of 0.05, 0.1, and 0.25, 
are presented in Figure 5. As stated before, for the RA dataset, 
only pathfindR and SPIA identified significant pathways. The 
median percentages of RA-associated genes of the enriched 
pathways of pathfindR was higher than the median percentages 
of SPIA (2.43% vs. 0.96% for the 0.05 cutoff, 2.5% vs. 0.61% for 
the 0.1 cutoff, and 2.27% vs. 0.67% for the 0.25 cutoff). For CRC, 
pathfindR displayed the highest median percentage of CGC 
genes for all the cutoff values (17.84%, 17.72%, and 16.7% for 
0.05, 0.1, and 0.25, respectively). For the PCa dataset, the median 

TABLE 1 | Continued

ID Pathway % RA 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa05230 Central carbon 
metabolism in 
cancer

1.54 0.038909519 – – – – Dysregulation of energy 
metabolism is indicated in 
RA (Yang et al., 2015).

“ID” indicates the Kyoto Encyclopedia of Genes and Genomes (KEGG) ID for the enriched pathway, whereas “Pathway” indicates the KEGG pathway name. “% RA genes” 
indicates the percentage of RA genes in the pathway. The lowest Bonferroni-adjusted p value for pathfindR analysis is provided in “pathfindR,” the false discovery rate (FDR)-
adjusted p value for Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis is provided in “DAVID,” the FDR-adjusted p value for Signaling Pathway 
Impact Analysis (SPIA) is presented in “SPIA,” and the FDR-adjusted p values for Gene Set Enrichment Analysis (GSEA) and GSEAPreranked are presented in “GSEA” and 
“GSEAPreranked,” respectively. Significant p values (i.e., adjusted p value <0.05) are given in bold font. “-“ indicates the pathway was not found to be enriched by the given tool. If 
a pathway is relevant to RA, a brief description of its relevance is provided in “Brief Description.”

163

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


pathfindR: Enrichment via Active ModulesUlgen et al.

14 September 2019 | Volume 10 | Article 858Frontiers in Genetics | www.frontiersin.org

TABLE 2 | Pathway analysis results for the colorectal cancer (CRC) dataset (adjusted p < 0.05).

ID Pathway % CGC 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04974 Protein digestion 
and absorption

5.56 <0.001 0.01573699 – – –

hsa04512 ECM-receptor 
interaction

6.1 <0.001 0.00010652 <0.001 0.3232827 0.92760116 The extracellular matrix 
modulates the hallmarks 
of cancer (Pickup et al., 
2014).

hsa04380 Osteoclast 
differentiation

21.26 <0.001 – 0.418726575 – –

hsa05205 Proteoglycans in 
cancer

27.86 <0.001 0.02168567 – – – Proteoglycans play roles 
in modulating cancer 
progression, invasion and 
metastasis (Iozzo and 
Sanderson, 2011).

hsa05130 Pathogenic 
Escherichia coli 
infection

10.91 <0.001 0.25769925 0.015730997 0.23110063 1 Pathogenic E. coli is 
claimed to be a cofactor in 
pathogenesis of colorectal 
cancer (Bonnet et al., 
2014).

hsa00280 Valine, leucine 
and isoleucine 
degradation

2.08 <0.001 <0.001 – – – Degradation of branched 
chain amino acids could 
play an important role in the 
energy supply of cancer 
cells (Antanaviciute et al., 
2017).

hsa04010 MAPK signaling 
pathway

17.97 <0.001 0.08238577 0.004151739 0.28760567 1 MAPK signaling plays 
an important part in 
progression of colorectal 
cancer (Fang and 
Richardson, 2005).

hsa04520 Adherens junction 31.94 <0.001 0.0852993 – 0.39334586 0.98078984 Dysregulation of the 
adherens junction system 
has particular implications 
in transformation and tumor 
invasion (Knights et al., 
2012).

hsa04810 Regulation of 
actin cytoskeleton

15.02 <0.001 0.01469723 0.004105905 0.31124064 1 Regulation of actin 
cytoskeleton is dysregulated 
in cancer cell migration and 
invasion (Yamaguchi and 
Condeelis, 2007).

hsa05166 Human T-cell 
leukemia virus 1 
infection

27.4 <0.001 – 0.858709076 – –

hsa04510 Focal adhesion 19.1 <0.001 <0.001 <0.001 0.2348305 0.95611423 Cancer cells exhibit highly 
altered focal adhesion 
dynamics (Maziveyi and 
Alahari, 2017).

hsa04540 Gap junction 19.32 <0.001 0.03853227 0.009701705 0.24327032 0.9830453 Deficiencies in cell-to-cell 
communication, particularly 
gap junctional intercellular 
communication are 
observed in CRC (Bigelow 
and Nguyen, 2014).

hsa05012 Parkinson disease 6.34 <0.001 0.28728621 0.025978875 – 0.91026866
hsa04662 B cell receptor 

signaling pathway
42.25 <0.001 – 0.500093708 0.27041057 1

hsa00071 Fatty acid 
degradation

6.82 <0.001 <0.001 – – – Adipocytes activate 
mitochondrial fatty acid 
oxidation and autophagy 
to promote tumor growth 
in colon cancer (Wen et al., 
2017).
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ID Pathway % CGC 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04145 Phagosome 5.26 <0.001 – – – –
hsa04658 Th1 and Th2 cell 

differentiation
19.57 <0.001 – – – – T helper cells are important 

in cancer immunity 
(Knutson and Disis, 2005).

hsa05165 Human 
papillomavirus 
infection

19.09 <0.001 – – – –

hsa05161 Hepatitis B 31.29 <0.001 – – – –
hsa00640 Propanoate 

metabolism
0 <0.001 <0.001 – – –

hsa04151 PI3K-Akt signaling 
pathway

21.47 <0.001 0.07244833 – – – PI3K-Akt signaling is 
deregulated in CRC 
(Danielsen et al., 2015; 
Zhang et al., 2017a).

hsa04660 T cell receptor 
signaling pathway

31.68 <0.001 – 0.698350894 0.44643503 0.965013 T-cell receptor signaling 
modulates control of anti-
cancer immunity (Cronin 
and Penninger, 2007).

hsa04659 Th17 cell 
differentiation

26.17 <0.001 – – – – A unique change of Th17 
cells was observed in the 
progression of CRC (Wang 
et al., 2012).

hsa04933 AGE-RAGE 
signaling pathway 
in diabetic 
complications

31 <0.001 – – – –

hsa04657 IL-17 signaling 
pathway

9.68 <0.001 – – – – IL-17 is considered as a 
promoter factor in CRC 
progression (Wu et al., 
2013).

hsa04625 C-type lectin 
receptor signaling 
pathway

27.88 <0.001 – – – – C-Type lectin receptors 
may be targeted for cancer 
immunity (Yan et al., 2015).

hsa05167 Kaposi sarcoma-
associated 
herpesvirus 
infection

24.73 <0.001 – – – –

hsa05170 Human 
immunodeficiency 
virus 1 infection

16.98 <0.001 – – – –

hsa04921 Oxytocin signaling 
pathway

13.16 <0.001 0.1513106 – – –

hsa05168 Herpes simplex 
infection

10.81 <0.001 – 0.840617856 – –

hsa04668 TNF signaling 
pathway

18.18 <0.001 – – – – TNF-α was shown to 
promote colon cancer cell 
migration and invasion 
(Zhao and Zhang, 2018).

hsa04022 cGMP-PKG 
signaling pathway

11.04 <0.001 0.00352246 – – – cGMP-PKG signaling 
inhibits cell proliferation and 
induces apoptosis (Fajardo 
et al., 2014).

hsa00650 Butanoate 
metabolism

0 <0.001 <0.001 – – – Butanoate has the ability 
to inhibit carcinogenesis 
(Goncalves and Martel, 
2013).

hsa05132 Salmonella 
infection

8.14 <0.001 – 0.524757851 – –

hsa05014 Amyotrophic 
lateral sclerosis 
(ALS)

15.69 <0.001 0.36800171 0.200174194 0.27973756 1
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ID Pathway % CGC 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04530 Tight junction 11.18 <0.001 0.0915822 0.02704172 0.27459267 0.98746127 Dysregulation of tight 
junctions promote 
tumorigenesis as well 
as tumor progression in 
colorectal cancer (Hollande 
and Papin, 2013).

hsa04150 mTOR signaling 
pathway

16.45 <0.001 – 0.999999998 0.31433496 1 mTOR signaling is 
accepted as one of the 
primary mechanisms 
for sustaining tumor 
outgrowth and metastasis 
and is dysregulated in 
many cancers, including 
colorectal cancer 
(Francipane and Lagasse, 
2014).

hsa05120 Epithelial cell 
signaling in 
Helicobacter 
pylori infection

14.71 <0.001 – 0.552502996 0.327181 1

hsa05418 Fluid shear 
stress and 
atherosclerosis

18.71 <0.001 – – – –

hsa04015 Rap1 signaling 
pathway

18.93 <0.001 – – – – Rap1 signaling has roles 
in tumor cell migration 
and invasion (Zhang et al., 
2017b).

hsa05164 Influenza A 15.79 <0.001 – 0.999999998 – –
hsa05100 Bacterial invasion 

of epithelial cells
22.97 <0.001 – 0.167771421 – –

hsa05146 Amebiasis 12.5 <0.001 – 0.418726575 – –
hsa00380 Tryptophan 

metabolism
2.5 <0.001 0.0036283 – – – Tryptophan metabolism 

is a promising target for 
immunotherapy in CRC 
(Santhanam et al., 2016).

hsa04072 Phospholipase D 
signaling pathway

20.55 0.001079935 – – – – Phospholipase D signaling 
has roles in cell migration, 
invasion and metastasis 
(Gomez-Cambronero, 
2014).

hsa04014 Ras signaling 
pathway

18.1 0.001165472 – – – – Ras signaling has roles 
in colorectal cancer 
progression, treatment 
response, prognosis 
(Zenonos and Kyprianou, 
2013).

hsa05210 Colorectal cancer 51.16 0.00129243 – 0.177026287 0.5272962 1 The pathway of the 
disease.

hsa05200 Pathways in 
cancer

26.81 0.001394025 0.01610123 0.004421859 0.23207118 0.99618906 “Meta”-pathway of cancer 
pathways.

hsa05169 Epstein-Barr virus 
infection

21.39 0.001483431 – 0.999999998 – –

hsa04934 Cushing 
syndrome

22.73 0.002134647 – – – –

hsa00190 Oxidative 
phosphorylation

3.76 0.002190056 – – – 1 Glucose metabolism 
is altered in cancers, 
including CRC (Fang and 
Fang, 2016).

hsa04144 Endocytosis 11.48 0.00223191 – – 0.74809563 0.9971049
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hsa04722 Neurotrophin 
signaling pathway

26.05 0.00225063 – 0.869732385 0.22082567 0.9303874 Neurotrophin signaling and 
related factors were found 
to clearly exert several 
biological and clinical 
features in CRC (Akil et al., 
2016).

hsa04926 Relaxin signaling 
pathway

20.77 0.002413722 – – – – Relaxin signaling has a role 
in tumor cell growth and 
differentiation (Silvertown 
et al., 2003).

hsa04024 cAMP signaling 
pathway

14.57 0.002417989 0.37342574 – – – Dysregulation cAMP 
signaling was implicated 
in many cancer types, 
including CRC (Löffler et al., 
2008; Fajardo et al., 2014).

hsa04310 Wnt signaling 
pathway

17.72 0.002418113 – 0.068851256 0.3056234 1 Wnt signaling is a key 
player in many cancers, 
responsible for maintenance 
of cancer stem cells, 
metastasis and immune 
control (Zhan et al., 2017).

hsa05226 Gastric cancer 30.87 0.00267019 – – – –
hsa04392 Hippo signaling 

pathway - multiple 
species

17.24 0.002915258 – – – – Hippo signaling is involved 
in the control of intestinal 
stem cell proliferation 
and colorectal cancer 
development (Wierzbicki 
and Rybarczyk, 2015).

hsa04390 Hippo signaling 
pathway

16.23 0.003135632 – – – – Hippo signaling is involved 
in the control of intestinal 
stem cell proliferation 
and colorectal cancer 
development (Wierzbicki 
and Rybarczyk, 2015).

hsa00630 Glyoxylate and 
dicarboxylate 
metabolism

0 0.003236188 0.30407411 – – –

hsa04110 Cell cycle 23.39 0.003442925 – 0.987280486 – 0.9898676 Dysregulation of the cell 
cycle is implicated in the 
biology of many cancers, 
including CRC (Hartwell 
and Kastan, 1994; Collins 
et al., 1997; Jarry et al., 
2004).

hsa04932 Non-alcoholic 
fatty liver disease 
(NAFLD)

13.42 0.003808796 – – – –

hsa05142 Chagas disease 
(American 
trypanosomiasis)

21.36 0.003899445 – 0.937326751 – –

hsa00410 beta-Alanine 
metabolism

3.23 0.005120816 0.00196409 – – 1

hsa04670 Leukocyte 
transendothelial 
migration

16.07 0.005646255 0.35563014 0.167771421 0.27631387 1

hsa00620 Pyruvate 
metabolism

5.13 0.00565919 0.09639534 – – – Glucose metabolism 
is altered in cancers, 
including CRC (Fang and 
Fang, 2016).

hsa04114 Oocyte meiosis 7.2 0.006872183 – 0.792716868 0.72884667 0.97175264
hsa05215 Prostate cancer 51.55 0.007778647 – 0.598712628 0.32108408 1
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hsa04210 Apoptosis 22.06 0.007963488 – 0.869732385 – – Abnormalities in apoptotic 
function contribute to 
both the pathogenesis 
of colorectal cancer 
and its resistance to 
chemotherapeutic drugs 
and radiotherapy (Watson, 
2004).

hsa05140 Leishmaniasis 10.81 0.008480037 – 0.999999998 0.24636032 1
hsa05222 Small cell lung 

cancer
27.96 0.008933391 – 0.120809416 0.45156074 1

hsa05160 Hepatitis C 22.58 0.010464676 – 0.869732385 – –
hsa05031 Amphetamine 

addiction
13.24 0.010805065 – 0.107609007 – –

hsa04621 NOD-like receptor 
signaling pathway

6.74 0.011387668 – 0.999999998 0.5148187 0.9774175 NOD-like receptors are 
accepted as master 
regulators of inflammation 
and cancer (Saxena and 
Yeretssian, 2014).

hsa04914 Progesterone-
mediated oocyte 
maturation

16.16 0.011933047 – 0.857467386 0.5950144 0.9922697

hsa04923 Regulation 
of lipolysis in 
adipocytes

18.52 0.011957867 0.19643837 – – – Adipocytes activate 
mitochondrial fatty acid 
oxidation and autophagy 
to promote tumor growth 
in colon cancer (Wen et al., 
2017).

hsa04071 Sphingolipid 
signaling pathway

18.64 0.012088886 – – – – Sphingolipids have 
emerging roles in CRC 
(García-Barros et al., 2014).

hsa05016 Huntington 
disease

10.88 0.013246653 – 0.494422017 – 1

hsa05030 Cocaine addiction 16.33 0.014430369 – 0.310528247 – –
hsa04270 Vascular 

smooth muscle 
contraction

12.4 0.014703261 0.01450931 <0.001 0.31157959 0.91536194

hsa04915 Estrogen signaling 
pathway

22.06 0.014973032 – – – –

hsa04664 Fc epsilon RI 
signaling pathway

29.41 0.016512816 – 0.552502996 0.7568524 0.99502826

hsa05211 Renal cell 
carcinoma

44.93 0.017251888 – 0.107609007 0.59724545 1

hsa05202 Transcriptional 
misregulation in 
cancer

44.09 0.017926078 – 0.329766057 – – Core cancer pathway

hsa04913 Ovarian 
steroidogenesis

4.08 0.021805547 – – – –

hsa04620 Toll-like receptor 
signaling pathway

14.42 0.023494048 – 0.968714181 0.44691193 1 Toll-like receptor signaling 
pathway is being 
considered as a potential 
therapeutic target in 
colorectal cancer (Moradi-
Marjaneh et al., 2018).

hsa04370 VEGF signaling 
pathway

33.9 0.025228423 – 0.768939947 0.53752804 1 Dysregulation of VEGF 
signaling is observed 
in numerous cancers, 
including CRC (Sun, 2012; 
Stacker and Achen, 2013).
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hsa04020 Calcium signaling 
pathway

9.57 0.025565655 0.33050764 0.057419238 0.3367621 0.9716838 Alterations of calcium 
signaling modulate tumor 
initiation, angiogenesis, 
progression and metastasis 
(Cui et al., 2017).

hsa05224 Breast cancer 31.29 0.028494806 – – – –
hsa04630 JAK-STAT 

signaling pathway
24.07 0.029068433 – 0.494422017 0.40343955 1 Jak-STAT signaling is 

involved in immune function 
and cell growth and has an 
important role in colorectal 
cancer (Slattery et al., 
2013).

hsa04723 Retrograde 
endocannabinoid 
signaling

4.05 0.029254258 – 0.147248603 – –

hsa04622 RIG-I-like receptor 
signaling pathway

7.14 0.030848585 – 0.524757851 0.95792913 – RIG-I-like receptors are 
important in immune 
signaling (Loo and Gale, 
2011).

hsa04720 Long-term 
potentiation

22.39 0.031734969 – 0.899457922 0.7634754 0.9743132

hsa04360 Axon guidance 14.36 0.032363714 0.14566283 0.03397083 0.31695387 0.98838806
hsa04115 p53 signaling 

pathway
33.33 0.033554867 – 0.869732385 – 0.9952885 p53 signaling influences 

many key processes 
such as cell cycle 
arrest, apoptosis, and 
angiogenesis (Slattery 
et al., 2018).

hsa05131 Shigellosis 10.77 0.033710491 – 0.87420689 – –
hsa05203 Viral 

carcinogenesis
23.38 0.036540488 – 0.999999998 – –

hsa05416 Viral myocarditis 18.64 0.038063956 – 0.418726575 0.27175233 0.9940278
hsa04666 Fc gamma 

R-mediated 
phagocytosis

20.88 0.039418918 – 0.141340043 0.32853782 –

hsa00010 Glycolysis / 
Gluconeogenesis

1.47 0.044512411 0.35158586 – – 1 Glucose metabolism 
is altered in cancers, 
including CRC (Fang and 
Fang, 2016).

hsa01212 Fatty acid 
metabolism

0 – <0.001 – – 1

hsa01130 Biosynthesis of 
antibiotics

0 – <0.001 – – –

hsa04924 Renin secretion 7.69 0.050814742 <0.001 – – –
hsa05414 Dilated 

cardiomyopathy
8.89 0.211547395 0.10754894 0.009508921 0.29030624 0.95637035

hsa03320 PPAR signaling 
pathway

4.05 – 0.11340534 0.015730997 0.5118186 0.98862046 PPARδ acts as a tumor 
suppressor in colorectal 
cancer (You et al., 2015).

hsa01200 Carbon 
metabolism

0 – 0.003293423 – – –

hsa01100 Metabolic 
pathways

0 – 0.015541794 – – – Metabolic reprogramming 
has consequences at the 
cellular and molecular 
level with implications for 
cancer initiation and growth 
(Hagland et al., 2013)

“ID” indicates the Kyoto Encyclopedia of Genes and Genomes (KEGG) ID for the enriched pathway, whereas “Pathway” indicates the KEGG pathway name. “% CGC genes” 
indicates the percentage of Cancer Gene Census (CGC) genes in the pathway. The lowest Bonferroni-adjusted p value for pathfindR analysis is provided in “pathfindR,” the false 
discovery rate (FDR)-adjusted p value for Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis is provided in “DAVID,” the FDR-adjusted p value for 
Signaling Pathway Impact Analysis (SPIA) is presented in “SPIA,” and the FDR-adjusted p values for Gene Set Enrichment Analysis (GSEA) and GSEAPreranked are presented in 
“GSEA” and “GSEAPreranked,” respectively. Significant p values (i.e., adjusted p value < 0.05) are given in bold font. “-“ indicates the pathway was not found to be enriched by the 
given tool. If a pathway is relevant to CRC, a brief description of its relevance is provided in “Brief Description.”
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percentages of CGC genes of the enriched pathways of pathfindR 
were again the highest among all tools for all significance cutoff 
values (18.73%, 18.37%, and 17.93% for 0.05, 0.1, and 0.25, 
respectively).

Permutation Assessment
To assess the number of pathways identified to be enriched by 
pathfindR, we performed analyses using actual and permuted 
data of different sizes. Comparison of the distributions of actual 
vs. permuted data is presented in Figure 6. Wilcoxon rank sum 
tests revealed that the distributions of the numbers of enriched 
pathways obtained using actual and permuted input data were 
significantly different (all p < 0.001). The median number of 
enriched pathways was lower for permuted data in each case.

It was observed that the ratio of the median number of 
pathways (permuted/actual) tended to increase as the number of 
input genes increased. This is most likely because as the input size 
gets larger, there is higher chance in finding highly connected 
subnetworks that in turn leads to identifying a higher number of 
enriched pathways.

Assessment of the Effect of DEGs Without 
Any Interactions on Enrichment Results
To gain further support for our proposal that directly performing 
enrichment analysis on a list of genes is not completely 
informative because this ignores the interaction information, we 
performed ORA (as implemented in pathfindR) on (i) all of the 
DEG lists (RA, CRC, and PCa) and (ii) the filtered list of DEGs 
for the same datasets so that they only contain DEGs found in the 
Biogrid PIN. This allowed us to assess any effect of eliminating 
DEGs with no interactions on the enrichment results.

The numbers of DEGs found in the Biogrid PIN for each 
dataset was as follows: RA—481 (out of 572 total), CRC—
989 (out of 1,356) and PCa—900 (out of 1,240). The ORA 
results are presented in Supplementary Data Sheet 3. The 
elimination of DEGs without any interaction clearly affected 
numbers of significantly enriched (FDR < 0.05) KEGG 
pathways (Supplementary Table  2). For the RA dataset, no 
significantly enriched pathways were found using all DEGs, 
whereas elimination of non-interacting DEGs resulted in one 
significant pathway. For CRC and PCa, using only DEGs found 

FIGURE 3 | pathfindR enrichment and clustering results on the colorectal cancer (CRC) dataset (lowest p ≤ 0.05). (A) Clustering graph, each color displaying 
the clusters obtained for CRC. Each node is an enriched pathway. The size of a node corresponds to its −log(lowest_p). The thickness of the edges between 
nodes corresponds to the kappa statistic between the two terms. (B) Bubble chart of enrichment results grouped by clusters (labeled on the right-hand side of 
each panel). The x axis corresponds to fold enrichment values, while the y axis indicates the enriched pathways. The size of the bubble indicates the number 
of differentially expressed genes (DEGs) in the given pathway. The color indicates the −log10(lowest-p) value; the more it shifts to red, the more significantly the 
pathway is enriched. (C) Heat map of pathway scores per subject. The x axis indicates subjects, whereas the y axis indicates representative pathways. Color scale 
for the pathway score is provided in the right-hand legend.
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in the PIN, the number of significantly enriched pathways were 
doubled compared to using all of the genes without taking into 
account any interaction information. We would like to note that 
these results partly explain why taking interaction information 
into account results in enhanced enrichment results.

Assessment of the Effect of PINs on 
Enrichment Results
To assess any effect of the choice of PIN on pathfindR results, 
we first compared the default PINs in terms of the interactions 
they contain. The number of interactions in the PINs were as 
follows: 289,417 interactions in Biogrid, 79,741 interactions 
in GeneMania, 121,007 interactions in IntAct, and 53,047 
interactions in KEGG. The numbers of common interactions 
between any pair of PINs and the overlap percentages of the 
interactions are presented in Supplementary Table 3. The results 
show that there is very little overlap between the PINs. Despite 
the fact that Biogrid has more than double the interactions of 
IntAct and 3 times the interactions of GeneMania, it remarkably 

does not contain half of the interactions they contain, implying 
this lack of overlap between PINs may affect pathfindR results.

We then proceeded with analyzing any effect of the choice 
of PIN on active-subnetwork-oriented pathway enrichment 
analysis. Venn diagrams comparing enrichment results obtained 
through pathfindR analyses with all available PINs are presented 
in Supplementary Figure 1. This comparison revealed that 
there was no compelling overlap among the enriched pathways 
obtained by using different PINs. Overall, using Biogrid and 
KEGG resulted in the highest number of significantly enriched 
pathways for all datasets.

As described in Materials and Methods, the results presented in 
this subsection were obtained using greedy search with search depth 
of 1 and maximum depth of 1, which results in multiple subnetworks 
structured as local subnetworks. Although it is not fully dependent 
on it, this method requires direct interactions between input genes. 
In the extreme case where there is no direct connection between 
any pair of two input genes, it is impossible to get any multi-node 
subnetworks with this method. Therefore, in order to gain a better 
understanding of the lack of overlap between the enrichment results 

FIGURE 4 | pathfindR enrichment and clustering results on the prostate cancer (PCa) dataset (lowest p ≤ 0.05). (A) Clustering graph, each color displaying 
the clusters obtained for PCa. Each node is an enriched pathway. The size of a node corresponds to its −log(lowest_p). The thickness of the edges between 
nodes corresponds to the kappa statistic between the two terms. (B) Bubble chart of enrichment results grouped by clusters (labeled on the right-hand side of 
each panel). The x axis corresponds to fold enrichment values, while the y axis indicates the enriched pathways. The size of the bubble indicates the number 
of differentially expressed genes (DEGs) in the given pathway. The color indicates the −log10(lowest-p) value; the more it shifts to red, the more significantly the 
pathway is enriched. (C) Heat map of pathway scores per subject. The x axis indicates subjects, whereas the y axis indicates representative pathways. Color scale 
for the pathway score is provided in the right-hand legend.
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TABLE 3 | Pathway analysis results for the prostate cancer (PCa) dataset (adjusted p < 0.05).

ID Pathway % CGC 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04392 Hippo signaling 
pathway - multiple 
species

17.24 <0.001 – – – – The hippo pathway effector 
YAP regulates motility, 
invasion, and castration-
resistant growth of prostate 
cancer cells (Zhang et al., 
2015).

hsa03010 Ribosome 1.96 <0.001 – – 0.425191 1 Certain ribosomal proteins 
are altered and may serve 
as putative biomarkers for 
prostate cancer (Arthurs 
et al., 2017).

hsa04012 ErbB signaling 
pathway

40 <0.001 – 0.637063484 – – There are interactions 
among the ErbB receptor 
network, its downstream 
pathways, and androgen 
receptor signaling (El 
Sheikh et al., 2003).

hsa04625 C-type lectin 
receptor signaling 
pathway

27.88 <0.001 – – – – C-type lectin receptors are 
emerging orchestrators 
of sterile inflammation 
and represent potential 
therapeutic targets in many 
cancers, including PCa 
(Chiffoleau, 2018). C-type 
lectins were shown to 
facilitate tumor metastasis 
(Ding et al., 2017).

hsa04010 MAPK signaling 
pathway

17.97 <0.001 – 0.282733912 – 0.90003437 MAPK signaling pathways 
act through their effects 
on apoptosis, survival, 
metastatic potential, and 
androgen-independent 
growth in prostate cancer 
(Rodríguez-Berriguete 
et al., 2012).

hsa05205 Proteoglycans in 
cancer

27.86 <0.001 0.02399376 – – – Proteoglycans play roles 
in modulating cancer 
progression, invasion and 
metastasis (Iozzo and 
Sanderson, 2011).

hsa04919 Thyroid hormone 
signaling pathway

32.76 <0.001 0.5109672 – – –

hsa04390 Hippo signaling 
pathway

16.23 <0.001 0.10679672 – – – The hippo pathway effector 
YAP regulates motility, 
invasion, and castration-
resistant growth of prostate 
cancer cells (Zhang et al., 
2015).

hsa04728 Dopaminergic 
synapse

11.45 <0.001 0.06897641 0.034643839 – –

hsa04270 Vascular smooth 
muscle contraction

12.4 <0.001 <0.001 <0.001 – 0.9954409

hsa04810 Regulation of actin 
cytoskeleton

15.02 <0.001 0.02727598 0.033699531 – – Dysregulated in cancer 
cell migration and invasion 
(Yamaguchi and Condeelis, 
2007).

hsa04218 Cellular senescence 25.63 <0.001 – – – – Cellular senescence may 
play a role in treatment 
resistance in PCa (Blute 
et al., 2017).
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TABLE 3 | Continued

ID Pathway % CGC 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04520 Adherens junction 31.94 <0.001 – – – – Dysregulation of the 
adherens junction system 
has particular implications 
in transformation and 
tumor invasion (Knights 
et al., 2012).

hsa04962 Vasopressin-
regulated water 
reabsorption

13.64 <0.001 – 0.655412336 – –

hsa04310 Wnt signaling 
pathway

17.72 <0.001 0.14714863 0.174150166 – – Wnt signaling is implicated 
in PCa biology (Murillo-
Garzon and Kypta, 2017).

hsa04151 PI3K-Akt signaling 
pathway

21.47 <0.001 – – – – Activation of PI3K-
Akt signaling pathway 
promotes prostate cancer 
cell invasion (Shukla et al., 
2007).

hsa04921 Oxytocin signaling 
pathway

13.16 <0.001 0.09939094 – – – Oxytocin signaling has 
a role in prostate cancer 
metastasis (Zhong et al., 
2010).

hsa04144 Endocytosis 11.48 <0.001 0.14183304 – – – Defective vesicular 
trafficking of growth 
factor receptors, as 
well as unbalanced 
recycling of integrin- and 
cadherin-based adhesion 
complexes, has emerged 
as a multifaceted hallmark 
of malignant cells 
(Mosesson et al., 2008).

hsa04928 Parathyroid 
hormone synthesis, 
secretion and 
action

20.75 <0.001 – – – –

hsa04931 Insulin resistance 14.81 <0.001 0.44248049 – – – Men in the highest tertile 
of insulin resistance (IR) 
had an increased risk of 
prostate cancer, indicating 
a potential pathogenetic 
link of IR with prostate 
cancer (Hsing et al., 2003).

hsa05170 Human 
immunodeficiency 
virus 1 infection

16.98 <0.001 – – – –

hsa04071 Sphingolipid 
signaling pathway

18.64 <0.001 – – – – Sphingolipids are 
modulators of cancer 
cell death and represent 
potential therapeutic 
targets (Segui et al., 2006; 
Shaw et al., 2018).

hsa04510 Focal adhesion 19.1 <0.001 0.01182864 0.003797795 – – Cancer cells exhibit highly 
altered focal adhesion 
dynamics (Maziveyi and 
Alahari, 2017).

hsa04014 Ras signaling 
pathway

18.1 <0.001 – – – – Ras signaling plays an 
important role in prostate 
cancer progression and 
is a possibly mediator of 
hormone resistance (Weber 
and Gioeli, 2004; Whitaker 
and Neal, 2010).
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ID Pathway % CGC 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04140 Autophagy - animal 17.19 <0.001 – 0.91466497 0.7367432 – Autophagy is a modulator 
of PCa biology and is a 
therapeutic target (Farrow 
et al., 2014).

hsa04360 Axon guidance 14.36 <0.001 0.36615434 0.174150166 – –
hsa04910 Insulin signaling 

pathway
18.98 <0.001 – 0.592610905 – – Insulin signaling has crucial 

roles in cell proliferation 
and death. Insulin 
receptors were detected 
on primary human prostate 
cancers (Cox et al., 2009; 
Bertuzzi et al., 2016).

hsa05132 Salmonella infection 8.14 0.001024926 – 0.884388639 – –
hsa04261 Adrenergic 

signaling in 
cardiomyocytes

11.81 0.001251519 0.1359051 – – –

hsa05213 Endometrial cancer 60.34 0.001571998 – 0.889535144 0.9776995 0.9350631
hsa05211 Renal cell 

carcinoma
44.93 0.001704596 – 0.958690885 – –

hsa05200 Pathways in cancer 26.81 0.001864931 0.44205232 0.592610905 – – “Meta”-pathway of cancer 
pathways.

hsa05214 Glioma 44 0.00191144 – 0.678606672 – –
hsa04110 Cell cycle 23.39 0.00200072 – 0.53576482 0.73860705 – Dysregulation of the cell 

cycle is implicated in the 
biology of many cancers, 
including PCa (Hartwell 
and Kastan, 1994; Collins 
et al., 1997; Balk and 
Knudsen, 2008).

hsa05410 Hypertrophic 
cardiomyopathy 
(HCM)

6.02 0.002088682 0.01508581 – – 0.94539815

hsa05202 Transcriptional 
misregulation in 
cancer

44.09 0.002227785 – 0.909985754 – – Core cancer pathway.

hsa04068 FoxO signaling 
pathway

29.55 0.00256445 – – – – FOXO signaling is 
implicated and considered 
as a therapeutic target in 
many cancers, including 
PCa (Farhan et al., 2017).

hsa04620 Toll-like receptor 
signaling pathway

14.42 0.002757387 – 0.999737262 1 – TLRs may serve as a 
double-edged sword 
in prostate cancer 
tumorigenesis by 
promoting malignant 
transformation of epithelial 
cells and tumor growth, or 
on the contrary, inducing 
apoptosis, and inhibiting 
tumor progression (Zhao 
et al., 2014).

hsa05414 Dilated 
cardiomyopathy 
(DCM)

8.89 0.002884316 0.00445895 0.00145624 – 0.9310661

hsa05224 Breast cancer 31.29 0.002996465 – – – –

hsa04340 Hedgehog signaling 
pathway

21.28 0.003701704 – 0.603911642 – – Hedgehog signaling 
plays an important role 
in the development and 
progression of PCa 
(Gonnissen et al., 2013).

hsa05215 Prostate cancer 51.55 0.004678127 – 0.637063484 – – The pathway of the disease.
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ID Pathway % CGC 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04211 Longevity regulating 
pathway

25.84 0.004704898 – – – –

hsa04022 cGMP-PKG 
signaling pathway

11.04 0.004947514 0.00142051 – – – cGMP-PKG signaling 
inhibits cell proliferation 
and induces apoptosis 
(Fajardo et al., 2014).

hsa05032 Morphine addiction 4.4 0.005138281 0.37736294 0.174150166 – –
hsa04550 Signaling pathways 

regulating 
pluripotency of 
stem cells

31.65 0.00540706 – – – –

hsa04912 GnRH signaling 
pathway

19.35 0.005600378 0.37736294 0.340227111 – 0.9284794 GnRH signaling has roles 
in cancer cell proliferation 
and metastasis in many 
cancers, including PCa 
(Gründker and Emons, 
2017).

hsa05165 Human 
papillomavirus 
infection

19.09 0.005787239 – – – – HPV infection is associated 
with increasing risk of 
PCa, indicating a potential 
pathogenetic link between 
HPV and prostate cancer 
(Yin et al., 2017).

hsa05012 Parkinson disease 6.34 0.005882045 – 0.895565575 – –
hsa04070 Phosphatidylinositol 

signaling system
6.06 0.007170858 0.47255633 0.592215095 – – Deregulation PI3 kinase 

signaling is implicated in 
prostate carcinogenesis 
(Elfiky and Jiang, 2013).

hsa04750 Inflammatory 
mediator regulation 
of TRP channels

10.1 0.007170858 0.47255633 – – – TRP channels have 
emerged as key proteins 
in central mechanisms of 
the carcinogenesis such as 
cell proliferation, apoptosis 
and migration (Gkika and 
Prevarskaya, 2011).

hsa04933 AGE-RAGE 
signaling pathway 
in diabetic 
complications

31 0.007170858 – – – –

hsa05231 Choline metabolism 
in cancer

27.27 0.007170858 – – – – Core cancer pathway. 
Choline metabolites can 
be used as potential 
prognostic biomarkers 
for the management of 
prostate cancer patients 
(Awwad et al., 2012).

hsa04730 Long-term 
depression

23.33 0.007411265 0.29433246 0.228920589 – –

hsa04152 AMPK signaling 
pathway

15.83 0.007412407 – – – – First identified as a master 
regulator of metabolism, 
AMPK may have numerous 
roles beyond metabolism. 
AMPK signaling can have 
context-dependent effects 
in prostate cancer (Khan 
and Frigo, 2017).

hsa05210 Colorectal cancer 51.16 0.007572536 – 0.53576482 – 0.8859366
hsa04660 T cell receptor 

signaling pathway
31.68 0.007759806 – 0.999737262 – – T-cell receptor signaling 

modulates control of anti-
cancer immunity (Cronin 
and Penninger, 2007).

hsa04916 Melanogenesis 20.79 0.007759806 0.23117007 0.191012563 – –

(Continued)

175

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


pathfindR: Enrichment via Active ModulesUlgen et al.

26 September 2019 | Volume 10 | Article 858Frontiers in Genetics | www.frontiersin.org

TABLE 3 | Continued

ID Pathway % CGC 
genes
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hsa04922 Glucagon signaling 
pathway

11.65 0.008383558 – – – –

hsa04971 Gastric acid 
secretion

8 0.008625239 0.17201492 0.174150166 – –

hsa05164 Influenza A 15.79 0.009418672 – 0.871606688 – –
hsa05230 Central carbon 

metabolism in 
cancer

49.23 0.00943342 – – – – Core cancer pathway.

hsa05163 Human 
cytomegalovirus 
infection

24 0.010897057 – – – –

hsa04920 Adipocytokine 
signaling pathway

18.84 0.011289828 – 0.573213367 – – Adipocytokines are 
implicated in many 
cancers, including PCa 
(Housa et al., 2006).

hsa05130 Pathogenic 
Escherichia coli 
infection

10.91 0.012638019 – 0.914414969 – –

hsa05160 Hepatitis C 22.58 0.012701709 – 0.952731561 – –
hsa05168 Herpes simplex 

infection
10.81 0.012818879 – 0.999737262 – –

hsa04934 Cushing syndrome 22.73 0.012968007 – – – –
hsa04662 B cell receptor 

signaling pathway
42.25 0.015323796 – 0.871606688 – –

hsa05418 Fluid shear stress 
and atherosclerosis

18.71 0.016016719 – – – –

hsa05216 Thyroid cancer 70.27 0.016672034 – 0.77019655 – –
hsa05221 Acute myeloid 

leukemia
50 0.018273818 – 0.916809245 0.9737256 0.9253648

hsa04371 Apelin signaling 
pathway

13.14 0.019388476 – – – – Various apelin peptides 
can stimulate tumor growth 
and proliferation of many 
types of cancer cells, 
including PCa (Wysocka 
et al., 2018).

hsa05016 Huntington disease 10.88 0.019575207 – 0.887106943 1 0.9790702
hsa04911 Insulin secretion 11.76 0.021091491 0.02334547 – – –
hsa04917 Prolactin signaling 

pathway
31.43 0.021797194 – – – – Prolactin signalling 

promotes prostate 
tumorigenesis and may be 
targeted for therapy (Goffin 
et al., 2011; Sackmann-
Sala and Goffin, 2015).

hsa03440 Homologous 
recombination

24.39 0.027879334 – – 0.82518643 0.88681024 Homologous 
recombination offers a 
model for novel DNA repair 
targets and therapies in 
PCa (Bristow et al., 2007).

hsa04713 Circadian 
entrainment

10.31 0.028299959 0.11376372 – – –

hsa03013 RNA transport 5.45 0.029590861 – 0.887106943 – – Many common and 
specialized mRNA export 
factors are dysregulated 
in cancer (Siddiqui and 
Borden, 2012).

hsa04260 Cardiac muscle 
contraction

6.41 0.030119546 – – – 0.92371947

hsa05161 Hepatitis B 31.29 0.031074222 – – – –
hsa04666 Fc gamma 

R-mediated 
phagocytosis

20.88 0.032172546 – 0.838868067 – –

hsa04976 Bile secretion 4.23 0.032183139 – 0.77019655 – –
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presented above, we analyzed the numbers of direct interactions 
of input genes in each PIN. These results are presented as Venn 
diagrams in Supplementary Figure 2. It is striking that there are only 
nine common interactions of RA DEGs in all PINs (although there 
are 54 common interactions in PINs except KEGG). The findings 
are similar for the CRC and PCa datasets: there are 11 common CRC 
DEG interactions in all PINs (81 in PINs except KEGG), and 5 PCa 
DEG interactions (56 in PINs except KEGG).

In case of utilizing KEGG PIN and KEGG pathways, the same 
interactions for both subnetwork interaction and enrichment 
analysis are considered. This approach does not introduce any 
extra information to the analysis, and it is clear that interacting 
gene groups in the KEGG PIN will be enriched in KEGG 
pathways. This explains the high number of pathways obtained 
using the KEGG PIN. Moreover, it is known that pathways in 
pathway databases may be strongly biased by some classes of 
genes or phenotypes that are popular targets, such as cancer 

signaling (Liu et al., 2017a). Therefore, the PIN obtained 
through KEGG pathway interactions are biased. Biogrid has the 
highest coverage for direct interactions among DEGs as seen in 
Supplementary Figure 2. It is unbiased in terms of phenotypes, 
and using Biogrid to extract KEGG pathways combines the two 
sources of information. 

Considering all of the above-mentioned findings, we conclude 
that utilizing the Biogrid PIN can provide the researcher with the 
most extensive enrichment results.

DISCUSSION

PathfindR is an R package that enables active subnetwork-
oriented pathway analysis, complementing the gene-phenotype 
associations identified through differential expression/
methylation analysis. 

TABLE 3 | Continued

ID Pathway % CGC 
genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04024 cAMP signaling 
pathway

14.57 0.035154932 0.12151133 – – – Dysregulation cAMP 
signaling was implicated 
in many cancer types, 
including PCa (Fajardo 
et al., 2014).

hsa05226 Gastric cancer 30.87 0.035466235 – – – –
hsa04622 RIG-I-like receptor 

signaling pathway
7.14 0.036168176 – 0.678606672 0.998692 1

hsa04150 mTOR signaling 
pathway

16.45 0.03639603 – 0.608898009 0.97279966 0.8907857 mTOR signaling is 
implicated in prostate 
cancer progression and 
androgen deprivation 
therapy resistance (Edlind 
and Hsieh, 2014).

hsa04064 NF-kappa B 
signaling pathway

17.89 0.036565869 – 0.999737262 – – The NF-kappa B signaling 
pathway controls the 
progression of Pca (Jin 
et al., 2008).

hsa04970 Salivary secretion 6.67 0.038144831 0.35044831 0.228920589 – –
hsa04658 Th1 and Th2 cell 

differentiation
19.57 0.040720473 – – – – T helper cells are important 

in cancer immunity 
(Knutson and Disis, 2005).

hsa04370 VEGF signaling 
pathway

33.9 0.043130708 – 0.889535144 – – Angiogenesis has been 
shown to play an important 
role in tumorigenesis, 
proliferation and metastasis 
in PCa. Various promising 
agents that target VEGF 
signaling have been tested 
(Aragon-Ching and Dahut, 
2009).

hsa04725 Cholinergic 
synapse

18.75 0.04793374 0.13876451 0.129551973 – –

hsa00120 Primary bile acid 
biosynthesis

0 – – – 0.78211117 <0.001

“ID” indicates the Kyoto Encyclopedia of Genes and Genomes (KEGG) ID for the enriched pathway, whereas “Pathway” indicates the KEGG pathway name. “% CGC genes” 
indicates the percentage of Cancer Gene Census (CGC) genes in the pathway. The lowest Bonferroni-adjusted p value for pathfindR analysis is provided in “pathfindR,” the false 
discovery rate (FDR)-adjusted p value for Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis is provided in “DAVID,” the FDR-adjusted p value for 
Signaling Pathway Impact Analysis (SPIA) is presented in “SPIA,” and the FDR-adjusted p values for Gene Set Enrichment Analysis (GSEA) and GSEAPreranked are presented in 
“GSEA” and “GSEAPreranked,” respectively. Significant p values (i.e., adjusted p value < 0.05) are given in bold font. “-“ indicates the pathway was not found to be enriched by the 
given tool. If a pathway is relevant to PCa, a brief description of its relevance is provided in “Brief Description.”
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In most gene set enrichment approaches, relational information 
captured in the graph structure of a PIN is overlooked. Hence, 
during these analyses, genes in the network neighborhood of 
significant genes are not taken into account. The approach we 
considered for exploiting interaction information to enhance 
pathway enrichment analysis was active subnetwork search. In 

a nutshell, active subnetwork search enables inclusion of genes 
that are not significant genes themselves but connect significant 
genes. This results in the identification of phenotype-associated 
connected significant subnetworks. Initially identifying active 
subnetworks in a list of significant genes and then performing 
pathway enrichment analysis of these active subnetworks efficiently 

FIGURE 5 | Distributions of disease-associated genes in the enriched pathways. Boxplots displaying the distributions of the percentages of disease-related genes 
in the pathways found to be enriched by pathfindR, Database for Annotation, Visualization and Integrated Discovery (DAVID), Signaling Pathway Impact Analysis 
(SPIA), Gene Set Enrichment Analysis (GSEA), and GSEAPreranked in the datasets rheumatoid arthritis (RA), colorectal cancer (CRC), and prostate cancer (PCa). 
No boxplot for a tool in a particular dataset indicates that the given tool did not identify any enriched pathways in the given dataset. (A) Boxplots for all the results 
filtered for adjusted-p ≤ 0.05. (B) Boxplots for all the results filtered for adjusted-p ≤ 0.1. (C) Boxplots for all the results filtered for adjusted-p ≤ 0.25.

FIGURE 6 | Distributions of the number of enriched pathways for actual vs. permuted data. Histograms displaying the distributions of the number of enriched 
pathways for actual and permuted data for input sizes of 200, 300, 400, 500, and 572. The x axes correspond to the number of enriched pathways, and the y axes 
correspond to relative frequencies. On the right bottom, a table summarizing the results is provided.
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exploits interaction information between the genes. This, in turn, 
helps uncover relevant phenotype-related mechanisms underlying 
the disease, as demonstrated in the example applications.

Through pathfindR, numerous relevant pathways were 
identified in each example. The literature-supported disease-
related pathways mostly ranked higher in the pathfindR results. 
The majority of additional pathways identified through pathfindR 
were relevant to the pathogenesis of the diseases under study, 
as supported by literature. A separate confirmation of disease-
relatedness was provided by analysis of the distributions of the 
percentage of disease genes in the identified pathways. This analysis 
revealed that pathfindR pathways contained the highest median 
percentages of disease-related genes in each dataset regardless of 
significance cutoff value, implying that the pathways identified by 
pathfindR are indeed associated with the given disease. Together, 
these two assessments of disease-relatedness of pathways indicate 
that pathfindR produces pathway enrichment results at least as 
relevant as the other tools widely used for enrichment analysis.

We propose that pathfindR performed better than the 
analyzed pathway analysis tools because, for enrichment analysis, 
it included disease-related genes that were not in the DEG list 
but that were known to interact with the DEGs, which most 
enrichment tools disregard. By performing enrichment analyses 
on distinct sets of interacting genes (i.e., active subnetworks), 
pathfindR also eliminated “false positive” genes that lacked any 
strong interaction. The above findings indicate that incorporating 
interaction information prior to enrichment analysis results in 
better identification of disease-related mechanisms.

This package extends the use of the active-subnetwork-oriented 
pathway analysis approach to omics data. Additionally, it provides 
numerous improvements and useful new features. The package 
provides three active subnetwork search algorithms. The researcher 
is therefore able to choose between the different algorithms to 
obtain the optimal results. For the greedy and simulated annealing 
active subnetwork search algorithms, the search and enrichment 
processes are executed several times. By summarizing results over 
the iterations and identifying consistently enriched pathways, the 
stochasticity of these algorithms is overcome. Additionally, the 
researcher is able to choose from several built-in PINs and can 
use their own custom PIN by providing the path to the SIF file. 
The researcher is also able to choose from numerous built-in gene 
sets, listed above, and can also provide a custom gene set resource. 
pathfindR also allows for clustering of related pathways. This allows 
for combining relevant pathways together, uncovering coherent 
“meta-pathways” and reducing complexity for easier interpretation 
of findings. This clustering functionality also aids in eliminating 
falsely enriched pathways that are initially found because of their 

similarity to the actual pathway of interest. The package also allows 
for scoring of pathways in individual subjects, denoting the pathway 
activity. Finally, pathfindR is built as a stand-alone package, but it can 
easily be integrated with other tools, such as differential expression/
methylation analysis tools, for building fully automated pipelines.

To the best of our knowledge, pathfindR is the first and, so 
far, the only R package for active-subnetwork-oriented pathway 
enrichment analysis. It also offers functionality for pathway 
clustering, scoring, and visualization. All features in pathfindR 
work together to enable identification and further investigation 
of dysregulated pathways that potentially reflect the underlying 
pathological mechanisms. We hope that this approach will 
allow researchers to better answer their research questions and 
discover mechanisms underlying the phenotype being studied.
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SUPPLEMENTARY FIGURE 1 | Venn diagram of enrichment results obtained 
through pathfindR analyses with all available PINs.

SUPPLEMENTARY FIGURE 2 | Venn diagram of the numbers of direct 
interactions of input genes in each PIN.

SUPPLEMENTARY DATASHEET 1 | The results of differential expression 
analyses for RA, CRC and PCa, prior to filtering (differential expression statistics 
for all probes) and after filtering (lists of DEGs).

SUPPLEMENTARY DATASHEET 2 | The unfiltered results of enrichment 
analyses using all the different methods on each of the datasets.

SUPPLEMENTARY DATASHEET 3 | ORA results using all DEGs and using only 

DEGs found in the BioGRID PIN for each dataset.
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Biological networks catalog the complex web of interactions happening between

different molecules, typically proteins, within a cell. These networks are known to be

highly modular, with groups of proteins associated with specific biological functions.

Human diseases often arise from the dysfunction of one or more such proteins of

the biological functional group. The ability, to identify and automatically extract these

modules has implications for understanding the etiology of different diseases as well as

the functional roles of different protein modules in disease. The recent DREAM challenge

posed the problem of identifying disease modules from six heterogeneous networks of

proteins/genes. There exist many community detection algorithms, but all of them are

not adaptable to the biological context, as these networks are densely connected and

the size of biologically relevant modules is quite small. The contribution of this study

is 3-fold: first, we present a comprehensive assessment of many classic community

detection algorithms for biological networks to identify non-overlapping communities,

and propose heuristics to identify small and structurally well-defined communities—core

modules. We evaluated our performance over 180 GWAS datasets. In comparison

to traditional approaches, with our proposed approach we could identify 50% more

number of disease-relevant modules. Thus, we show that it is important to identify more

compact modules for better performance. Next, we sought to understand the peculiar

characteristics of disease-enriched modules and what causes standard community

detection algorithms to detect so few of them. We performed a comprehensive analysis

of the interaction patterns of known disease genes to understand the structure of

disease modules and show that merely considering the known disease genes set as

a module does not give good quality clusters, as measured by typical metrics such

as modularity and conductance. We go on to present a methodology leveraging these

known disease genes, to also include the neighboring nodes of these genes into
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a module, to form good quality clusters and subsequently extract a “gold-standard

set” of disease modules. Lastly, we demonstrate, with justification, that “overlapping”

community detection algorithms should be the preferred choice for disease module

identification since several genes participate in multiple biological functions.

Keywords: overlapping community detection, non-overlapping community detection, disease module

identification, biological networks, heterogeneous networks

1. INTRODUCTION

Biological networks, such as protein–protein interaction
networks, gene regulatory networks, gene co-expression
networks, metabolic networks, signaling networks provide
a mathematical representation of biological systems. In this
work, we are interested in the study of networks that encode
interactions among proteins. These interactions can be physical,
where proteins bind to one another, or functional, where proteins
are associated with one another for performing a particular task.
Analyzing biological networks is essential for guiding biological
experiments—these experiments could otherwise be very difficult
to perform, or even intractable, if every gene or protein were to
be characterized individually.

Biological networks have been observed to be highly
modular (Hartwell et al., 1999), where a tightly connected
group of genes (nodes) are involved in similar biological
functions. These groups are referred to as communities, modules,
or clusters. Modules detected from biological networks are
usually responsible for a common phenotype and are useful in
providing insights pertaining to biological functionality. Module
identification methods (also known as community detection
methods) play a crucial role in obtaining these functional
modules.

Disease phenotypes are usually caused by the malfunctioning
of certain genes, these group of genes is referred to as disease
module. As genes responsible for a phenotype often possess
common functionality, there exists a strong association between
disease modules and functional modules (Goh et al., 2007;
Zanzoni et al., 2009; Barabási et al., 2011). We know that the
modular structure of the biological network is often useful
in identifying functional modules; so, we proceed with the
assumption that the same would be useful to identify disease
modules. It is essential to identify these disease modules,
as it could be helpful for various applications, such as
the comprehensive molecular understanding of the disease,
identification of co-occurring diseases, or the identification of
extensive set of genes for targeted therapies.

Present Work. Various algorithms exist in the literature
for community detection (module identification). Many are
evaluated on in silico generated benchmark networks (Friedman
et al., 2001; Girvan and Newman, 2002; Newman, 2006).
However, performance of these multitude of community
detection approaches across variety of these biological networks
to discover biologically relevant modules (disease modules or
functional modules) remains poorly understood. Such a diverse
set of biological networks are fundamentally different owing
to the generative processes underpinning their structure, it is

important to evaluate performance of different approaches across
them. In this work, we study the adaptability of these community
detection approaches for disease module identification, notably
in the context of the recent an open-community challenge called
as the DREAM challenge (Dialogue for Reverse Engineering
Assessments and Methods) on Disease Module Identification
(DMI)1. The challenge posed the problem of predicting “non-
overlapping” and small modules of size ranging from 3 to
100 nodes, across six different networks. The set of predicted
modules from a community detection method were evaluated
against 180 GWAS datasets to find out any significant association
of modules with complex trait or disease, to identify disease
modules amongst them.

We comprehensively assessed various existing module
identification algorithms across diverse biological networks and
propose novel algorithms with the notion of core communities,
to identify small and structurally well-defined communities.
We obtained a substantial improvement over the traditional
approaches. To our concern, a common problem existed for
all the non-overlapping clustering approaches—the number
of enriched modules were quite less in comparison to the
number of modules predicted. Also, the number of diseases
enriching the modules were very less in comparison to the
number of different GWAS datasets (180 GWAS datasets)
available for testing. These observations beg multiple questions:
(1) Does the disease module possess a community structure
at all? (2) Could we build “ground-truth disease modules”
whose structural properties could be analyzed? (3) Do all of
the diseases have structurally well-defined modules associated
with them? (4) Most importantly, is “non-overlapping”
community detection suitable for disease module identification
as in this challenge? (5) Lastly, is there any association
between the diseases, in terms of common nodes in the
community structure?

We address all of these questions in the present study. In
summary, our main contributions are as follows:

• We have introduced a framework for core module
identification, to identify small and structurally well-defined
communities. We show that this is important to identify
compact modules from biological networks, and to achieve a
better performance in identifying disease-relevant modules.

• We report a comprehensive assessment of many classic
community detection algorithms across 6 different types
of biological networks, evaluated over 180 GWAS datasets.
With our proposed approach, we achieved 50% performance

1https://www.synapse.org/#!Synapse:syn6156761/wiki/400645
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improvement in identifying disease-relevant modules over
classical approaches.

• We have also analyzed the patterns of connectivity in a disease
module to better understand the properties of diseasemodules.
We propose amethod to identify gold standard disease modules
based on the genes already shown to be associated with a
particular disease.

• We show that overlapping community detection is a better
approach for the identification of disease-relevant modules.
Overlapping community detection is a preferred solution as
a gene could be responsible for multiple diseases, and hence
should be part of various disease modules.

• We have utilized overlaps of the disease modules, which
are genes that are involved in multiple diseases (or
disease module), to identify diseases that occur together,
i.e., co-morbid diseases.

2. MATERIALS AND METHODS

2.1. Data
In this section, we summarize the six different biological
networks that were made available as part of the DREAM
challenge. We have identified disease modules in each of these
networks. We also introduce the Genome-Wide Association
Study (GWAS) dataset that is central for evaluating the modules
predicted by the community detection algorithms.

2.1.1. DREAM Challenge Biological Networks
The organizers of the DMI DREAM challenge provided a
unique collection of biological networks for humans. This
collection included multiple physical interaction networks
(protein interaction networks, signaling network) and functional
gene networks (co-expression, homology, and cancer). The
statistics on the number of nodes and edges in these networks
are presented in Table 1. In this section, we will briefly describe
these networks.
Protein-Protein Interaction Network-1: The human protein-
protein interaction network-1 (PPI-1) data were obtained from
STRING version 10.0 (Szklarczyk et al., 2014) after removing the
interactions derived from text mining. In this network, the nodes
represent proteins, and the edges represent interactions, with the
weights representing confidence scores.
Protein-Protein Interaction Network-2: Similar to PPI-1, this
is also a protein interaction network, obtained from InWeb (Li
et al., 2017), where the interactions are aggregated from primary
databases and literature. Again, the proteins are the nodes in the
network, and their reported physical interactions are the edges.
The edge weights represent the confidence in each interaction.
Signaling Network: Türei et al. (2016) have provided the
signaling network, which represents signaling pathways. In this
case, the nodes are the genes, and the directed edges between
them represent the gene interactions responsible for a cellular
function. The weights represent the confidence scores from
the experiments that have reported the interaction. Genes in
this network can be mapped to corresponding proteins in the
other networks.

Co-expression Network: Co-expression network was obtained
from Gene Expression Omnibus (Barrett et al., 2010) and
captures the correlation between the expression patterns of
genes. These expression patterns of genes are observed across
various samples of the experiments performed under different
experimental conditions. The network is created with genes as
nodes and co-expression as the edge between them.
Cancer Network: The cancer network is derived from Project
Achilles (Cowley et al., 2014), which performed experiments
to determine tumor-wise essential genes that are critical for
the survival of that tumor. Those genes that are essential and
are absolutely necessary for a tumor to function are connected
through an edge in the cancer network. These correlations
between the gene expression patterns with respect to a tumor
are studied across various tumor samples. The correlation
scores obtained through these experiments are represented
as edge weights.
Homology Network: The homology network is constructed by
connecting genes which are evolutionarily related. Evolutionarily
related genes were identified using the Clustering by Inferred
Models of Evolution (CLIME) (Li et al., 2014) algorithm.
The algorithm partitions the genes into sets of evolutionarily
conserved module. The algorithm also provides the confidence
scores based on the evolutionary evidence, which are represented
as weights of the edges connecting the evolutionarily connected
genes in the homology network.

2.1.2. Pre-processing
Biological networks being noisy, pre-processing these networks
plays an important role. We sparsified the networks by removing
the edges with low weights. We removed edges having weights
lesser than two standard deviations from the mean. This not only
reduces computation time for the various approaches but also
improves the performance of methods by reducing noise.

2.1.3. Genome-Wide Association Study (GWAS)
A Genome-Wide Association Study is an observational study
conducted across different individuals. The objective of the study
is to investigate the association between genetic variants across
the whole genome and traits. The genetic variants refer to the
variations that occur in a nucleotide at any specific position in
a genome. We have a comprehensive set of 180 GWAS datasets
associated with various complex traits and diseases, which belong
to broader categories of 15 diseases, as shown in Table S1.
Modules predicted by the community detection algorithms are
tested against each of these GWAS datasets.

2.2. Methods for Module Identification
This section details the various approaches that have been
used in our experiments. Methods discussed under “Module
identification using non-overlapping community detection”
form the basis for our proposed framework, as we detail in
section 2.3. Methods discussed under “Overlapping community
detection” are primarily used to analyse the properties of
disease modules, as discussed in section 3. The purpose of this
section is to give an overview of the methods available for
module identification in networks, which are leveraged by us to
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TABLE 1 | Network statistics of different biological networks.

Network

type

#Nodes #Edges Edge

Weight

Density Clustering

coefficient

PPI-1 17,397 2,232,405 Confidence 0.01475 0.13759

PPI-2 12,420 397,309 Confidence 0.00515 0.12421

Signaling 5,254 21,826 Confidence 0.00133 0.00227

Co-expression 12,588 1,000,000 Correlation 0.01262 0.05209

Cancer 14,679 1,000,000 Correlation 0.00928 0.14288

Homology 10,405 4,223,606 Confidence 0.07803 0.04153

improve module identification in biological networks to identify
disease modules.

2.2.1. Module Identification Using Non-overlapping

Community Detection
Non-overlapping community detection methods are frequently
adopted in the biomedical research (Choobdar et al., 2018).
However, such methods restricts every node in a network to
belong to a single community, and due to extensive cross talk
among various genes and pathways, this restriction in biological
networks is untenable. To understand the performance of
different module identification methods with such restrictions,
we tried some of the most commonly accepted approaches in
the field of biology such as modularity maximization (Newman,
2004; Blondel et al., 2008), Markov chain CLustering
(MCL) (Dongen, 2000), and Community detection using
External and Internal scores in Large networks (CEIL) (Sankar
et al., 2015) across various biological networks. We now
discuss various state-of-the-art approaches based on (1) quality
measures to define community structure, and (2) random-walk
based methods to identify community structure.

2.2.1.1. Community quality measures
A network can be defined as G = {V , E}, where V is a set of
n nodes and E ⊆ V × V , is a set of e edges. The network are
represented using an adjacency matrix A, which is square matrix
of dimension |V| × |V|. The element Aij in the matrix is zero
when there is no edge between node i and node j, and non-zero
representing the weight of the edges connecting the nodes; for
unweighted networks the value is one. The degree of a node i
in the network denoted as di, is the number of edges from a
node to the other nodes, i.e., di =

∑

j∈V Aij. Next, we define

some important network parameters that enable measurement of
community quality.
Modularity: Modularity is defined for a group of nodes, as
the difference between the number of edges between those
nodes in the original network and a null model, which
is essentially a random rewiring of the original network,
retaining degree distribution. The higher the difference, the
better is the connectivity between the nodes. For a good
community the modularity score should be high. The highest
value is one. Modularity for a community c is defined

as follows:

Modularity(c) =
1

2e

∑

i,j i6=j

(

Ai,j −
didj

2e

)

δc(i)c(j) (1)

where
didj
2e represents the expected number of edges between

nodes i and j, c(i) represents the community to which node i
belongs and

δc(i)c(j) =

{

1 if c(i) = c(j)

0 otherwise
(2)

Modularity based method for community detection prefers
group of nodes with higher concentration of edges than expected
as communities.
Conductance: Conductance is a measure to define the quality of
the community, based on how well-separated the nodes in the
community are to the rest of the network. It measures the cut of
the community concerning the internal connectivity of the nodes
in the network. A good community is isolated from rest of the
networks thus have low conductance. The conductance of the
community c is defined as:

Conductance(c) =

∑

i∈c,j∈c̄ Ai,j

min(InternalEdge(c), InternalEdge(c̄))
(3)

where c̄i comprises of the rest of the network other than the nodes
in ci and,

InternalEdge(c) =
∑

i∈c

∑

j∈V

Ai,j (4)

CEIL: Community detection using External and Internal scores
in Large networks (CEIL) (Sankar et al., 2015) is another way of
measuring the quality of the community. CEIL strikes the middle
ground between modularity and conductance which takes into
account: (1) the internal density of the community, and (2) the
separability of the community from the rest of the network,
measured by internal and external score respectively.

The density of the community is the ratio of internal
community edges and possible edges inside the community. The
separability of the community from the rest of the network is
measured as the ratio of internal community edges and edges that
are incident on that community. CEIL Score for a community c
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with nc nodes is the product of internal and external score which
are defined below.

InternalScore(c) =

{

InternalEdge(c)

(nc2 )
if nc > 1

0 if nc = 0
(5)

ExternalScore(c) =
InternalEdge(c)

InternalEdge(c)+
∑

i∈c,j∈c̄ Ai,j
(6)

CEIL(c) = InternalScore(c)× ExternalScore(c) (7)

2.2.1.2. Markov Chain Clustering
Markov Chain Clustering (MCL) (Dongen, 2000) is a random
walk-based approach. With the help of random walks, the flow of
the network is analyzed and communities are located where the
flow tends to gather. For MCL, two processes are alternated on
the network, (1) expansion, which involves taking powers of the
transition matrix to determine the flow of the network, and (2)
inflation, which involves re-scaling and normalizing the columns
and then taking the power of the column.

The application on real-world network of thesemethods could
be found in the work of Fortunato (2010).

2.2.2. Module Identification Using Overlapping

Community Detection
Overlapping community detection allows a node to be part
of multiple communities thus resulting in overlapping
communities. As genes are commonly involved in multiple
functionalities, we have explored overlapping clustering
to identify disease modules. The overlapping clustering
approaches that we have explored involve two phases to identify
communities: (1) “seed node” selection and (2) seed expansion.
Since seed node selection is the most critical step to initialize the
communities, we have explored multiple strategies to identify
nodes that are likely to be “disease nodes.” The phases of
community detection are discussed below.

2.2.2.1. Seed node selection
We now describe our approach to identify seed nodes,
which forms the basis for our algorithm to predict
overlapping communities.
Disease seed nodes: Considering the genome-wide significance
threshold of 10−4 as defined by Choobdar et al. (2018), the genes
having a p-value below this threshold were considered as disease
seed genes. We also considered 10−6 as a threshold to keep a
stricter constraint. We defined disease seed nodes as the set of
genes that pass the threshold across the 180 GWAS datasets.
Unsupervised seed nodes: In the absence of information about
known disease nodes, we find a correlation between disease
genes and network centrality measures like degree centrality and
clustering coefficient of nodes. We observed that disease genes
have a higher degree in comparison to the non-disease genes.
Consequently, we used HITS (Schütze et al., 2008) and spread
hubs (Whang et al., 2016), which are based on the degree of a
node, as a seed selection mechanism, to select some important
nodes from the network. We grow the communities using PPR
scores as described in Andersen et al. (2006). As there is no

information involved about the disease seed nodes, we call this
process as unsupervised seed node.

2.2.2.2. Seed expansion
The seed expansion is done based on the Personalized PageRank
(PPR) scores as described in Andersen et al. (2006). PPR
scores are used to rank the nodes in the neighborhood of a
seed node. The nodes, in the order of their ranking based on
PPR scores, are added to the module one by one till the size
of the set reaches a particular value (100 for us) as shown in
Figure 1. The modularity score of the group is computed after
the addition of every node. The group of nodes that has the
maximummodularity among the different groups, obtained after
each addition, forms a module. This seed node expansion process
is done for all the seed nodes.
From next section onwards we will discuss about our
proposed work.

2.3. Proposed Framework—Core Module
Identification
Biological networks exhibit a power-law (Barabási and Albert,
1999) degree distribution, where a few nodes have very
high degrees whereas most of the nodes have small degrees.
Performing community detection on these networks results in a
few giant communities corresponding to the high degree nodes,
along withmultiple small communities. These giant communities
cover most of the network and are least informative to derive
any biological insights. Thus, there exists a need to improve the
setup to perform community detection. Works in the past, such
as those done by Berger and co-workers Singh et al. (2006),
take into account the domain knowledge for generating finer
clusters. However, identifying finer clusters without any domain
knowledge is an interesting problem to be studied. We have
proposed few approaches in this section to obtain finer clusters.

We introduce the term core of the module to represent finer
modules. A core is structurally the strongest part of the module.
We have designed four different frameworks to extract the core
module, which are explained below:

2.3.1. Ensemble Approach to Clustering
There exist multiple topological definitions of communities
and multiple metrics like modularity, conductance, etc. to
identify them. However, which topological definition suits a
“biologically meaningful” community, is not well-studied. It
would be interesting to incorporate multiple topological aspects
to generate biologically meaningful modules.

Asur et al. (2007) and subsequent followup (See surveys Ghosh
and Acharya, 2013; Ji et al., 2014), suggest ensemble frameworks
to combine different clustering algorithms on biological data.
Many approaches are suitable for base clustering approaches,
that have a fixed number of predicted clusters. Working with a
fixed number of clusters might not be the best way of identifying
communities from a network, as we do not know a priori the
desired number of clusters. We develop a simple yet novel
approach to compute a consensus from the approaches that do
not require the number of clusters to be fixed.
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FIGURE 1 | Red nodes represent the module formed by disease seed genes; the set of potential candidate nodes in the local neighborhood of the module is shown

in gray; the green node represents the detected gene based on the personalized page rank score and will be included in the module at the next step. This is adapted

from the image licensed under the CC BY 4.0 license and attributed to Ghiassian et al. (2015). A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a

Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome. PLoS Comput Biol 11(4): e1004120. https://doi.org/10.1371/journal.

pcbi.1004120.

We have built an ensemble framework that takes consensus
across various approaches, like modularity maximization (with
different resistance parameter settings to obtain modules of
different sizes), MCL and CEIL. These approaches captures
varied aspects of the network structure without fixing the number
of clusters to be predicted. We consider r base clustering
approaches for a network with a set of nodes V = {vi}

n
i=1. We

build a vector for each node, v, {[v]q| q = 1, 2, ..r}, where each
element corresponds to the community assignment of that node
in the qth clustering algorithm (see Figure 2A left).

The pairwise Jaccard similarity (Jaccard, 1901) between nodes,

represented as Jsim{vi, vj} =
‖{vi∩vj}‖

‖{vi∪vj}‖
, is computed to obtain the

similarity between the community assignments across all the
nodes (as demonstrated in Figure 2A right). For example,
if the similarity between a given pair of nodes is unity, it
means that the nodes co-occurred in the communities predicted
by all the algorithms. We then built a similarity matrix out
of these pairwise Jaccard similarity values, and subsequently
constructed a network from this similarity matrix by linking
the nodes having a similarity greater than 0.5. Finally, we use
modularity maximization to perform module identification on
the resultant network.

2.3.2. Perturbations to Identify Robust Communities
Biological networks have a lot of inherent noise (Bader
and Hogue, 2002), caused by the incompleteness of data or
experimental biases. Therefore, it is important to identify
communities that are robust to noise in the network. To identify
robust communities, we follow a setup of perturbing the network
multiple times and then performing a community detection on
the perturbed networks.

We perturbed the network by randomly dropping 1% of edges.
We repeated this for 100 iterations as indicated in Figures 2B,C.
To detect communities on all the perturbed networks, we follow

a setup similar to the ensemble approach described earlier,
performing modularity maximization on the similarity network.
This enabled us to identify modules persistent across perturbed
networks. The process is explained in the Figure 2D.

2.3.3. Core With Minimum Outgoing Edges
A community should have a higher number of edges connecting
the nodes within a community (“internal edges”) (Newman,
2004) and a fewer number of edges connecting nodes outside the
community (“outgoing edges”) (Kannan et al., 2004). For large
communities, we identify a core that consists of the nodes that
satisfy the property of a good community. These are the nodes
that have a higher number of internal edges and a fewer number
of outgoing edges. To this end, we have computed a core score
for each node n, which considers the ratio of outgoing edges to
internal edges from that node as follows:

CoreScore(n) =
OutgoingEdges(n)

InternalEdges(n)
(8)

We rank the nodes in a module on the basis of their core
score, i.e., nodes with lower scores get better ranks. In the
case of larger communities of size more than 100, we consider
the top 60 nodes as the core and ignore the remaining nodes
(Figure 2F). We consider only top 60 nodes as we figured out
through empirical studies by running multiple experiments that
the average size of a disease module is 60. Figure 3 shows the
size distribution of the disease modules obtained using multiple
approaches. This approach helped in pruning the least important
nodes from modules.

2.3.4. Multiple Core Identification
We defined an iterative way of performing community
refinement. In the first step, we used modularity maximization
to identify modules in the network. Some of the resulting
modules can be quite large due to the high connectivity of
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FIGURE 2 | Core module identification methods (A) The process of ensemble clustering, which uses the power of multiple community detection approaches. A vector

of community assignment is created for each node (left). The consensus is taken by computing the Jaccard similarity between the community assignment vectors, for

every pair of nodes (right). (B–D) Perturbation, the process of perturbing the network and finding consensus module across the set of perturbed networks: (B,C) are

examples of perturbed network after randomly dropping 1% of the edges (dashed lines), (D) community detected across the set of 100 perturbed networks.

(E) Multiple Core Identification breaks the large module identified by a community detection algorithm into smaller modules as shown in the example where the dotted

circle represents a large module and the colored circles represent the multiple cores obtained, by breaking down the larger modules. (F) From a large module min

outgoing edges selects the group of nodes with minimum outgoing edges and maximum internal connection as in the example where dotted circle represents the

large module and colored circle represents the core.

FIGURE 3 | Size distribution of disease-enriched modules identified by various

methods across networks. The X-axis represent different network and Y-axis

represents the size distribution of disease enriched modules. The orange line

in the box-plot represents the mean of the distribution and bubbles represents

the outlier data points.

few of the nodes. There is a higher chance of occurrence
of multiple well-connected cores in a single large module, as
depicted in Figure 2E. However, it is difficult to avoid merging

of these modules at the time of module formation process
during the modularity maximization step. Generally, modules
grow quickly around a high-degree node due to the frequent
merging of communities around it, whereas modules grow slowly
around the section of a network having low-degree nodes. If
we stop the iterative module formation early, to capture smaller
communities, it often compromises on the module lying in
the sparser regions of the network. Therefore, we allow the
module formation step to progress until there is no change in the
modularity score of the entire network. Thereafter, we perform
an iterative partitioning of larger modules into multiple smaller
modules. This re-clustering resulted in many smaller modules
fitting the size requirements of the challenge.

2.4. Overlapping to Non-overlapping
Community Assignment
For understanding the sensitivity of the overlapping and non-
overlapping clustering approaches, we convert the overlapping
communities to non-overlapping communities and compare
their performance. Initially, we form a base community, which
is comprised of only those nodes that got a single community
assignment. To obtain non-overlapping communities the nodes
that are part of multiple communities, i.e., the overlaps of the
communities, needs to be assigned to one of the base community.
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We have suggested the following three ways of assigning the
overlap to the base community:
Random Allocation: Random allocation involves assigning the
nodes in the overlap randomly to one of the base communities.
The drawback of this method is that the community structure is
not well-defined after the assignment.
Conductance Assignment: In order to maintain the structure
of a community, the node assignment should be based on some
quality measure for the community. We have used conductance.
We assign nodes in the overlap to the base community with
which it has the minimum conductance score.

However, while assigning a node to a base community, the
conductance score for each node is independently checked
against each base community. This means that, toward the end
of the node assignment, the community structure need not be
preserved, as all the nodes were independently assigned and
the inclusion of even a single node can drastically change the
community structure.
Iterative Conductance Assignment: To resolve the problem
addressed in the previous approach, we follow an iterative way
of assigning the node to the base community. Each node in the
overlap is assigned to the base community with the minimum
conductance, one after the other, and the conductance score is
re-computed for the base community. This a called as a phase of
community assignment.

After completion of a community assignment phase, the nodes
which were part of the overlap are extracted from the base
community one by one and reassigned to the community with
which it has the best conductance score. This is done to avoid
any bias due to the order in which the nodes were assigned.
Thus, the phases are repeated iteratively till convergence, when
no node changes its community. Though we do not give a proof
of convergence, we have empirically observed that this approach
converges after a few (typically 3–5) iterations.

2.5. Evaluating Disease Modules
The DREAM challenge organizers provided a novel framework
for assessing the methods based on the number of predicted
modules that are significantly associated with complex traits
and diseases (with the help of GWAS data). Instead of using
traditional methods that take into consideration the functional
annotation or pathway databases, they used GWAS datasets. This
methodology of scoring is better, unlike functional annotations
that originate from a similar type of functional genomics as the
networks themselves. GWAS provides an entirely orthogonal
view, for validation.

2.5.1. Module Scoring Using PASCAL
PASCAL (Lamparter et al., 2016) stands for PAthway SCoring
ALgorithm, which is a tool used to integrate SNP-trait
associated p-values to incorporate gene-score and module score
as illustrated in Figure S1. The gene score is computed by
aggregating SNP-p-values for a GWAS dataset while correcting
for confounders such as Linkage Disequilibrium (LD) correlation
structure as explained in Figure S1A. For the module genes
which are in LD and cannot be treated independently, this fast
gene scoring method fuses the genes and recomputes the gene
score as in Figure S1B. Modified Fisher method is used for

computing enrichment in high scoring genes, where genes in
the network become the “background gene set”. The enrichment

score is defined as the number of modules with the significant
score at 5% FDR (false discovery rate) cut-off for at least one of
the GWAS dataset. The final score of the method is the number
of disease enriched modules it discovers.

2.6. Implementation
All the approaches in core module identification, module
identification using non-overlapping community detection and
overlapping to non-overlapping community assignment were
implemented in Python. For modularity maximization, we
have used the implementation from the NetworkX package for
Python (Hagberg et al., 2008). The MCL-edge software provided
by Enright et al. (2002) was used for finding clusters using
MCL. The implementation of CEIL algorithm was taken from
the source code provided by Sankar et al. (2015). The evaluation
script was provided by DREAM challenge organizers.

3. RESULTS

Next, we study the community structure of the networks, to
investigate if the disease modules are indeed clusterable, and
proceed to answer the questions posed in section 1. We then
show the importance of performing an overlapping community
detection, and how it captures far more relevant modules. We
further go on to illustrate how some knowledge of communities,
in terms of “seed nodes” can positively impact the quality of
clusters. Lastly, we show that overlaps of the disease modules
helps in identifying comorbid diseases.

3.1. Core Module Identification Captures a
Higher Number of Disease-Relevant
Modules Than Traditional Community
Detection Approaches
The well-known non-overlapping clustering approaches like
MCL, modularity maximization and CEIL, tend to identify
communities that are large and their size is dependent on the size
of the network. However, disease modules are generally small.
Wilber et al. (2009) have shown that small communities in these
networks are biologically homogeneous. Biological homogeneity
is evaluated from the functional similarity between pairs of
genes, which is available from resources such as the Gene
Ontology Database (Ashburner et al., 2000). They have shown
that the functional similarity between pairs of genes in a small
module is significantly higher than the functional similarity
between all possible pairs. Core module identification methods
identify smaller and structurally better communities. The size
distribution of the traditional and core module based methods
can be seen in the Figure S2.

Most of the methods that are considered have hyper-
parameters; varying them could control the size and the number
of modules detected. We have evaluated all the methods
through an extensive grid search (parameter tuning) and report
the best result for each method; the corresponding hyper-
parameters are mentioned in the Table S2. For MCL, we vary
the inflation (I) parameter in the range [2, 9] at intervals of 1
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TABLE 2 | Results of module identification approaches on simple networks, using off-the-shelf approaches mentioned as baselines, core module identification proposed

by us and Diffusion State Distance (DSD) which is the winning method of DREAM challenge.

Network Baselines Core module based methods DSD

MCL Modularity

maximization

CEIL Perturbation Ensemble Recluster Min

outgoing

(A)

PPI 1 16 (872) 8 (262) 12 (1398) 18 (260) 16 (250) 20 (460) 22 (462) 24 (1020)

PPI 2 18 (1125) 9 (209) 11 (1696) 17 (284) 17 (601) 19 (1311) 21 (1311) 19 (445)

Signaling 9 (268) 10 (111) 6 (320) 9(180) 8 (191) 11 (144) 14 (77) 17 (194)

Co-expression 9 (463) 10 (194) 5 (1336) 13 (126) 12 (202) 17 (145) 20 (205) 24 (207)

Cancer 4 (598) 4 (164) 5 (831) 6(598) 5(249) 3(518) 9 (114) 7 (329)

Homology 8 (180) 6 (177) 7 (320) 7 (168) 7 (87) 7 (212) 10 (149) 11 (212)

Score 64 47 46 70 65 77 96 102

(B)

PPI-1 0.0183 0.0305 0.0086 0.0692 0.064 0.0435 0.0476 0.0235

PPI-2 0.016 0.0431 0.0065 0.0599 0.0283 0.0176 0.0195 0.0427

Signaling 0.0336 0.0901 0.0188 0.05 0.0419 0.0764 0.1818 0.0876

Co-expression 0.0194 0.0515 0.0037 0.1032 0.0594 0.1172 0.0976 0.1159

Cancer 0.0067 0.0244 0.006 0.01 0.0201 0.0058 0.0789 0.0212

Homology 0.0444 0.0339 0.0219 0.0417 0.0805 0.033 0.0671 0.0519

The result contains, for different methods, (A) the number of enriched modules out of the total number of predicted modules in brackets. The score in the last row represents the sum

of disease modules predicted across the six different networks, and (B) “hit ratio”, illustrating the fraction of predicted modules that are enriched.

The numbers in bold highlight the best approach for each of the 6 networks. The results show that DSD approach predicts more enriched modules, while core-module based approaches

give higher hit-ratio (ratio of enriched to total predicted modules).

and the expansion is fixed at 2. The resistance (R) parameter
for modularity is varied in the range [0.1, 1] at intervals of
0.1. CEIL does not have any hyper-parameter to be tuned.
Table S3 presents the detailed results at each parameter setting.
Core module identification methods are frameworks to extract
compact modules and are built on top of the baseline methods.
For core module identification, we have experimented with all
the baseline methods and have reported the one’s giving the
best performance along with its hyper-parameter. The winners
of DREAM challenge used Diffusion State Distance (DSD) (Cao
et al., 2013, 2014) as a distance measure to perform kernel-based
clustering. We have compared against their winning results. For
the perturbation method, modularity maximization (with R as
0.1) is applied on all the perturbed networks; then consensus
is taken over the modules predicted across perturbed networks.
Ensemble uses all the baseline methods with all possible hyper-
parameters. Recluster was done on the giant modules obtained
from the best reported baseline method for that network.

Therefore, the baseline method along with their hyper-parameter
are reported in the table. The method for selecting nodes with

minimum outgoing edges was applied after recluster method.
The results denote the number of enriched modules out of

the predicted modules from the methods. The enrichment of a
module is tested using PASCAL tool across 180 GWAS datasets.
The results with best hyper-parameter setting are given in the
Table 2; the number of disease-enriched modules identified by
core module-based methods is much higher than those identified
by the baseline approaches (Table 2A). In addition, we also show
the “hit ratio” (Table 2B), illustrating the fraction of predicted
modules that are enriched. Some methods, such as CEIL predict
a large number of modules, but not many of them are enriched.

On the other hand, our method, although it predicts marginally
fewer modules, shows a much higher hit ratio. The reason for
performance improvement on applying the proposed heuristics
is due to the identification of core modules, which are smaller and
structurally better, as discussed in section 2.3. From our proposed
methods, min outgoing edges has the best performance with
respect to number of disease-enriched modules identified, as it
is a two-way refinement process (1) reclusters the giant modules
obtained from baseline methods; therefore making the modules
small with better internal connectivity (2) selects the nodes based
on core score thus pruning away the less important nodes.
The performance of our model is comparable to the winning
team’s performance, and in networks like PPI and Cancer, our
method even outperforms the winning team’s method, showing
the strength of our model.

3.2. Clusterability of Disease Modules: An
Analysis of Non-overlapping Community
Detection
On analyzing the results of non-overlapping clustering
approaches a common problem existed for all the methods,
the number of enriched modules was quite less in comparison to
the number of modules predicted. Also, the number of diseases
enriching the modules were very less in comparison to the
number of different (180) GWAS datasets available for testing.

To understand the network structure of disease module
we studied the “clusterability” of disease modules. We define
clusterability as the connectivity strength or the quality of the
module. The ground truth disease modules are readily not
available. To analyse the clusterability of a disease module, we
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try to understand the connectivity between the genes that are
known to have an association with the same phenotype. These
disease genes need not be highly interconnected to possess the
graph-theoretic community structure. This phenomenon could
be explained with the help of the Figure 4, where, the same
colored nodes represents genes associated with a disease. As is
evident from the figure, there are two possibilities: (1) genes
associated to disease are in the neighborhood but are not so
strongly connected to qualify the definition of community, or
(2) structurally well-defined community need not be associated
with a particular phenotype.

To understand clusterability, we examined the cluster quality
of the largest connected component (LCC) of genes (nodes)
in the network associated with the same GWAS dataset. Here,
the cluster quality is defined on the structural properties of
the cluster. We obtain cluster quality based on modularity and
conductance scores. Modularity score is the difference between
the number of edges that fall within the given clusters and
the expected number of edges if edges were distributed at
random (Newman, 2004). Whereas, conductance is indicative of
dense connections within the group, and fewer links to the rest of
the network. For good quality clusters, a higher modularity score
(best is 1.0) and a lower conductance (best is 0.0) are preferred.

We observed that the cluster quality of the LCC of trait-
associated genes is quite poor. The cluster quality of the LCC
is depicted by the heatmaps representing as shown in Figure 5:
the X-axis represents cluster quality across 180 GWAS datasets,
which are stacked one above the other in groups of 30 datasets
(stacking was done to aid visualization). The Y-axis represents the
six networks. All the LCC have poor modularity scores, which are
close to 0 as in Figure 5A. The conductance score is also poor for
most of the LCCs, as shown in Figure 5B.

Community detection methods based on optimizing cluster
quality measures fail to identify disease modules because of poor

FIGURE 4 | Group of genes associated with a disease do not necessarily

possess graph-theoretic community structure. Nodes with the same color

represent genes associated with the same phenotype. The shaded circle over

the colored nodes represents the possible disease module while a “structurally

well-defined community” need not be enriched with a specific disease.

modularity and conductance scores of these modules. Therefore,
it is hard to identify disease modules using community detection
approaches based on optimizing these cluster quality measures.
However, it would be interesting to study the structurally well-
defined community that could be obtained from these LCC.

3.3. Approximating Gold Standard Disease
Modules
The ground truth disease module are readily not available in
order to substitute we identify structurally well-defined modules
initiated from known disease-associated gene and define it as
gold-standard disease module. We obtain the trait-associated
genes from the 180 GWAS datasets and call them as disease seed
nodes. We explicitly try to enforce the community structure into
these groups by adding the neighborhood nodes using the seed
expansion process.

3.3.1. Gold Standard Modules Exhibit Clusterability
The modules obtained after this disease seed node expansion
procedure were checked for enrichment using the PASCAL
tool as described in section 2.5.1. The enriched communities
so obtained are called as the gold-standard disease modules.
Thesemodules have proper community structure and are curated
from the significant disease nodes. The statistics pertaining to
the number of disease seed nodes obtained and the number
of gold-standard modules identified are shown in Table 3.
The percentage of the seed nodes covered in the enriched
communities represents that these seed nodes have a well-
structured disease neighborhood around them. “Disease spread”
represents the number of GWAS datasets from out of 180
of them that could be identified in a particular network. The
empirical results as in Table 3 suggest that many diseases have
a good community structure in the PPI-1 network. These
results also show that prior knowledge of disease seed nodes
improves the performance of community identification by ten
times as opposed to purely network driven community detection
(Table 2). For example, in the case of PPI-1, we find 337
disease-enriched modules with this approach, compared to 22
from section 2.3.

The disease seed node expansion procedure is helpful in
identifying many disease enriched modules in comparison to
the methods described in section 2.3. However, along with the
increase in the number of enriched modules, there is also an
increase in the number of non-enriched modules. We now study
the difference in cluster quality of the enriched and the non-
enriched modules.

We calculate the cluster quality of all the modules, predicted
by the gold standard module identification process, using
modularity and conductance scores. The predicted modules are
divided into two sets—enriched and non-enriched modules—
based on the enrichment predicted by the PASCAL tool (section
2.5.1). The distributions of cluster quality scores for the enriched
and non-enriched modules across the six networks were then
compared using notched box plots.

The distributions of the modularity and conductance scores
of enriched and non-enriched modules can be visualized in the
Figure 6. The notch represents the confidence interval around
the median. The visual interpretation of these notches is that,

Frontiers in Genetics | www.frontiersin.org 10 March 2019 | Volume 10 | Article 164193

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tripathi et al. Disease Module Identification

FIGURE 5 | Heatmap for measuring the quality of the largest connected component of genes associated with a single disease using: (A) modularity score, where

higher score is preferable and (B) conductance score, where lower score is preferable. The X-axis represents the 180 GWAS datasets and Y-axis represents the six

networks. The color bar on the right represents the color coding for values marked in the heat map.

if notches of box plot of two distributions do not overlap,
then their medians differ with 95% confidence. The mean
of the distributions of scores for enriched and non-enriched
counterparts vary significantly as there is no overlap between the
notches of the two distributions. This variation is quite significant
for PPI-2 and signaling networks.

We can conclude from the study that disease-enriched
modules in all the networks have better clusterability properties.
So the predicted modules could be ranked on the basis of
modularity or conductance scores, and the higher ranked
modules are more likely to be disease modules.

3.3.2. Amount of Disease Seed Nodes Required for

Expansion
We took 10−4 and 10−6 as p-value thresholds, to identify disease
seed nodes. The identified disease seed nodes across the set of 180
GWAS dataset is quite large in comparison to the total number
of genes in the network as can be seen in Table 3. For example, in
the case of PPI-1, 5436 disease seed nodes are identified, whereas
there were 17397 genes in the network (from section 2.1), which
means 30% of the network is a part of disease seed nodes.

The percentage of genes covered in the disease modules
indicate that not all disease seed nodes are required for disease
module identification. Here, we proceeded to analyse the amount
of known disease seed nodes required for expansion, and how the
performance is impacted knowing a fewer number of disease seed
nodes. We randomly selected 10, 50, and 80% of the known seed
nodes (with a p-value cutoff of 10−6) and performed disease seed
node expansion from these and observed the enriched modules
obtained. This step of randomly selecting k% nodes was repeated
five times to avoid any bias due to a single run. The enriched
modules reported in Table 4 shows the average of the modules
predicted in five runs. It is observed that for some networks like

PPI-1, PPI-2, and signaling, increasing the number of known
seed nodes improves the number of disease modules recovered.
In other networks, namely, homology, cancer and co-expression,
the number of known seed nodes did not substantially change the
number of disease modules identified.

3.4. Disease Modules Are Naturally
Overlapping and Transcription Factors
Mostly Lie in the Overlaps of Disease
Modules
From the gold standard module identification procedure we
obtain overlapping communities and the drastic increase of
almost 10 times in the number disease modules identified in
comparison to non-overlapping methods (Tables 2, 3) suggests
that “overlapping methods” should be a preferred choice for
disease module identification. We also try to find out the
biological relevance for the nodes that are part of multiple
communities. An overlap is defined as the nodes that are shared
by a pair of overlapping modules. We find that nodes that lie
in the overlap of the gold standard disease modules are mostly
transcription factors (TF). Figure 7 shows the box plot of the
distribution of the number of enriched modules the TFs are part
of. Transcription factors regulate the expression ofmultiple genes
and hence affect multiple pathways of varying functions. Since
TFs control different functions, they are expected to be found in
overlapping regions of the disease modules.

3.5. Overlapping Community Detection in
the Absence of Known Disease Seed
Nodes
As we established the importance of overlapping community
detection for disease module identification it is also necessary to
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TABLE 3 | Gold standard disease modules identified from disease seed node expansion, keeping p-value threshold as 10−4 and 10−6 across 180 GWAS datasets.

Network Significance threshold 10−4 Significance threshold 10−6

# Seed

nodes

Enriched Disease

spread

Seed nodes in

enriched (%)

# Seed

nodes

Enriched Disease

spread

Seed nodes in

enriched (%)

PPI 1 5436 337 (5433) 52 39.09 3103 266 (3101) 57 37.12

PPI 2 3876 130 (3844) 28 21.05 2267 103 (2250) 32 21.53

Signaling 1893 158 (1840) 36 31.80 1174 126 (1139) 44 37.39

Co-expression 4099 174 (4094) 34 53.86 2406 152 (2404) 38 54.61

Cancer 4507 6 (4429) 5 2.37 2555 2 (2522) 2 1.76

Homology 3227 28 (3154) 7 13.39 1861 14 (1826) 6 10.31

The number of seed nodes obtained is mentioned in the 2nd and 6th column. The 3rd and 7th columns show the number of enriched modules against the predicted ones mentioned

in the brackets. Disease spread represents the number of unique GWAS datasets identified across all the predicted modules. Percentage of seed nodes covered in the module is

also tabulated.

FIGURE 6 | Notched box-plot representing (A) modularity and (B) conductance of enriched modules (pink) compared to non-enriched modules (blue) across the six

networks. High modularity and low conductance is preferred for better quality clusters. Owing to the lack of overlap between the notches of the two distribution, the

enriched modules have a significantly higher modularity and lower conductance score in comparison to non-enriched modules. A notched box plot is a graphical

way of representing data. The box represents the interquartile range (IQR) of the data, where 50% of the data fall. The middle line denotes the median of the data. The

top whisker is 1.5 times more than 75 percentile (Q3), and bottom whisker is 1.5 times lesser than 25 percentile. The notch represents the confidence interval around

the median. The visual interpretation of these notches is that, if notches of box plot of two distributions do not overlap, then their medians differ with 95% confidence.
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TABLE 4 | The number of modules predicted when starting with different fraction of initial known seed nodes (10−6).

Disease Seed PPI 1 PPI 2 Signaling Co-expression Cancer Homology

100% 10−6 266 (3101) 103 (2250) 126 (1139) 152 (2404) 2 (2522) 14 (1826)

80% 10−6 165.8 (2147.6) 90 (1357.2) 53.4 (597.6) 152.2 (1859.4) 5 (1484.2) 14 (1221.8)

50% 10−6 111 (1378.4) 60.6 (897.4) 35.2 (407.6) 105.8 (1167.4) 5.2 (979.6) 13 (793.8)

10% 10−6 40 (292.8) 20.6 (202.6) 16.8 (98.2) 29 (236) 8.4 (216.8) 12 (174.2)

Here, the value represents the number of enriched modules out of the total number of modules predicted mentioned in brackets.

explore this approach in the absence of known disease seed nodes.
We have selected HITS and spread hubs, which selects nodes
based on their degree, to identify seed nodes. For each network,
we kept the number of seed nodes fixed as for gold-standard
disease module, and selected those many seed nodes using HITS
and spread hub. The enriched and predicted modules obtained
after seed node expansion can be found in theTable S4. This table
also compares against the gold standard disease module results.
It is observed that the best results in terms of the number of
enriched modules predicted, is obtained for the PPI-1 network.

The performance of unsupervised seed node expansion is
visually compared with the gold standard module identification
process with the help of scatter-plots as in Figure 8. The X-axis
and the Y-axis of the plot represent the number of enriched
modules as predicted by gold-standard module identification
and unsupervised seed node expansion respectively. Different
colors in the plots correspond to different networks as mentioned
in the legend. For the same network, the plot shows multiple
bubbles; those are with respect to the different number of seed
nodes used for expansion. The line in the plot is for x = y,
where the performance of disease seed node expansion is similar
to unsupervised seed node expansion. As is quite intuitive,
all the bubbles are below the partition line which means that
the performance of disease seed node expansion is consistently
better. It is observed that the performance of unsupervised seed
node expansion on PPI-2 is comparable to its gold-standard
disease module counterpart. Also, Figure 8B shows that the
performance of spread hub as seed node selection is quite close
to the disease seed node expansion as all the bubbles are much
closer to the partition line.

3.5.1. Sensitivity Analysis of Non-overlapping and

Overlapping Clustering Approaches
The methods based on optimizing a “quality function,” such
as conductance or modularity, non-overlapping communities,
which means a node is part of a single module. The other class
of methods we concern ourselves with are the non-overlapping
clustering approaches using seed node based expansion methods.
Below, we perform a detailed comparison of both classes of
methods.We compare the number of enrichedmodules obtained
from seed node based expansion methods with the quality
function based approaches to understand the superiority of one
over the other.

However, for a fair comparison between the approaches
all of them should have a similar setup that is they should
have either overlapping or non-overlapping communities.

FIGURE 7 | Box-plot representing transcription factors involved in multiple

diseases. The X-axis represent different network and Y-axis represents

distribution of number of disease module a TF is involved. The notches in the

box-plot represents the mean of the distribution.

Therefore, we convert overlapping communities to non-
overlapping communities using methods defined in section 2.4

The performance of the quality function-based community
detection and seed node expansion methods are compared
in the Table 5. The results suggest that identifying important
nodes in the network and localizing communities around
them is a better way of performing disease module
identification, where compared to growing and merging
communities from all possible nodes as done in quality function
based approaches.

3.6. Overlapping Disease Modules Helps in
Identifying Comorbid Diseases
We proceeded to derive useful insights from gold standard
modules by studying comorbidity among diseases, i.e.,
those disease which have chances of co-occurring together.
Comorbidity study is done by identifying diseases associated
with the same disease enriched modules. Figure 9 shows a box-
plot, representative of the distribution of the number of diseases
that are associated with an enriched module; these modules are
identified by various approaches which are already discussed in
this and previous chapters. The distribution shows that there are
multiple diseases associated with a disease enriched modules,
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FIGURE 8 | Scatter plot comparing number of enriched module predicted by (A) HITS (B) Spread hub seed node expansion against disease seed node expansion.

The X and the Y axis represents the number of enriched modules disease seed node and unsupervised seed node expansion respectively. Different colored bubbles

represents different network as mentioned in the legend. The partition line in the plot is x=y where performance of disease seed node expansion is similar to

unsupervised seed node expansion.

TABLE 5 | Comparing quality function-based community detection with seed nodes expansion method after converting overlapping to non-overlapping communities for

fair comparison.

Network Quality function based Seed expansion based

Modularity CEIL Disease HITS Spread hub

PPI 1 8 (262) 12 (1398) 26 (283) 24 (921) 28 (888)

PPI 2 9 (209) 11 (1696) 16 (191) 11 (659) 16 (207)

Signaling 10 (111) 6 (320) 15 (219) 10 (192) 12 (183)

Co-expression 10 (194) 5 (1336) 24 (234) 15 (743) 11 (240)

Cancer 4 (164) 5 (831) 11 (209) 6 (239) 7 (962)

Homology 6 (177) 7 (320) 9 (159) 3 (172) 9 (185)

Total 47 46 101 69 83

The values in the table represent the number of enriched modules along with the predicted modules in the bracket.

especially in PPI-1. Modules enriched for multiple diseases are
helpful in finding the association between the diseases. A module
represents a group of genes responsible for diseases. Thus, if a
person gets a particular disease due to improper functioning
of few genes, then (s)he is likely to get another disease whose
underlying responsible genes are the same. This study can help in
answering questions such as, if a person has a particular disease,
then how likely he can have another disease. As PPI-1 has the
highest number of comorbid associations, we choose modules
identified on this network for co-morbidity study.

We formed a comorbid network where the nodes are different
diseases as shown in Table S1 and the edges are indicative of a
module being enriched with the connected disease nodes. We
consider the modules that are getting enriched with multiple
diseases and connect all these diseases with an edge, and we also
keep an edge count as to how many times those two diseases

occurred together. Figure 10 shows the comorbid network
created from the association between diseases of enriched
modules on PPI-1, here we have kept top 50% associations based
on the edge count.

The top associations represent the most frequently
co-occurring diseases identified, based on the modules
enriched with multiple diseases. Higher association between
two disease means that there is more evidence for their
correlation, as they have been grouped together more
number of times. From Figure 10, anthropomorphic
disease are seen to be connected with most of the other
diseases suggesting that it is linked with many of the
diseases. Further, the links between Glucose Metabolism
and Lipid/Heart are also not very surprising, given the
remarkable co-ocurrences of diabetes, coronary heart diseases,
and hypercholesterolemia etc.
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FIGURE 9 | Distribution of number of GWAS datasets associated with the

disease enriched module identified by various approaches. The X-axis

represents different networks and Y-axis represents number of GWAS

datasets associated with the disease module. The orange line represents the

mean of the distribution.

FIGURE 10 | Comorbidity network showing associations between different

diseases, created on the basis of number of GWAS datasets associated with

enriched modules. The nodes are sized based on the number of GWAS

datasets associated with the disease. AMD stands for Advanced Macular

Disorder and BMD stands for Bone Mineral Density. These diseases are the

same as those in Table S1. Hepatitis-C mentioned in the table is not in the

comorbid network as there is minimal evidence of it being associated with any

other disease.

4. DISCUSSION

The identification of communities in networks is a well-
studied problem in computer science. In this DREAM challenge,
the goal was to identify such modules, or communities,
in various biological networks, and study their association
with diseases. In the present study, we examined various
approaches for community detection, and their applicability
to biological networks, to identify disease-relevant modules.

Notably, we illustrate the importance of identifying smaller
“core” communities compared to standard non-overlapping
clustering algorithms. Further, we analyse the need and
importance of overlapping communities and the utility of seed
nodes or partial knowledge in greatly improving the prediction
of biological relevant disease modules from diverse networks.

We have three key results. First, we show that well-known
non-overlapping clustering approaches fail to identify sufficient
number of relevant disease modules. Our core-module based
identification methods, which identify smaller and structurally
better communities, could identify larger number of disease-
enriched modules than those identified by well-known non-
overlapping community detection approaches. The state-of-
the-art non-overlapping clustering approaches detect large
communities and the core module identification approaches
detect small communities as can be seen in the Figure S2.
In almost all the cases, we saw an improvement in the
performance on downsizing the size of the communities. It is
important to note that this was also affected by the DREAM
challenge evaluation, which mandated the identification of
smaller communities ranging from 3–100 nodes. Nevertheless,
such smaller communities are more common in biological
networks (Wilber et al., 2009), and can indeed capture more
disease-relevant communities as observed in the results. Another
important observation was that the different networks provided
in the challenge present diverse views of the interactions
happening in the cell. Therefore, each network has different
network properties and consequently need different approaches
to identify disease modules in them. For example, PPI-1 had
smaller-sized disease modules than PPI-2 as can be observed
in Figure 9, and hence Multiple Core Identification was able to
perform better than MCL as the former method downsizes the
size of the community. Min Outgoing edges further reduced the
size of the module thus improving on the number of modules
identified. For signaling and co-expression network we know
that genes interacting with more number of other genes are
biologically more active (Vidal et al., 2011) and this could be seen
in the results – method min outgoing edges which gives more
importance to nodes with higher degree showed a remarkable
improvement overmodularity maximizationmethod. It was hard
to achieve good performance for cancer network as despite
using known disease nodes in Table 3, module identification
gave very poor number of disease enriched modules. For
the homology network, ensemble with min outgoing edges
was useful. Overall, the number of disease-enriched modules
identified by core module-based methods was higher than
those identified by the baseline approaches. The reason for
performance improvement on applying the proposed heuristics
is due to the identification of core modules, which are smaller
and structurally more informative.

Second, we investigated the clusterability properties of
disease modules and illustrated that there do exist well-
defined communities, but a overlapping clustering approach
was important to capture them, particularly in face of the
fact that most proteins have multiple functionalities or cause
different diseases. Owing to the lack of ground truth disease
module, the enriched modules identified after exploiting domain
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knowledge—the “gold standard modules”—have better cluster
quality than their non-enriched counterparts. This indicates that
disease modules, when carefully identified with the help of some
known disease nodes, possess good clusterability.

Third, we showed that information on “seed nodes”
underlying these modules can substantially improve the
identification of disease-relevant modules. As the fraction of
disease seed node increases number of identified disease enriched
modules increases (Table 4). Interestingly when disease nodes
are not known identifying seed nodes using spread-hubs and
doing seed expansion on it perform equally well especially for
lower fraction of seed nodes as can be seen in Table S4. Thus
further supporting the fact, overlapping community detection
is a better way to identify disease modules. Also, the overlaps
between gold standard module identification are also useful
for identifying co-occurring diseases, such that occurrence of
one disease results is a signal that the other one can also occur.
We also show that localizing community discovery around a
network-centric, biologically relevant node (seed node) offers a
clear advantage for disease module identification in comparison
with a completely unsupervised approach. Domain guidance is
essential and should be leveraged upon whenever possible. We
observe this when one compares the performance of quality
function based methods with the seed expansion strategy than
extant approaches as in Table 5.

Our study underlines the need to develop biologically
motivated clustering algorithms that are able to better capture
“disease community structure” and notably, emphasizes
the importance of overlapping clustering approaches to
reliably identify disease-relevant modules and comorbidity
networks from diverse biological datasets. Notably, our results
underline the importance of overlapping community detection
and makes the case for further investigation into such methods,
rather than non-overlapping community identification, in the
case of biological networks.
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Phylogenetic networks are used to estimate evolutionary relationships among biological 
entities or taxa involving reticulate events such as horizontal gene transfer, hybridization, 
recombination, and reassortment. In the past decade, many phylogenetic tree and 
network reconstruction methods have been proposed. Despite that they are highly 
accurate in reconstructing simple to moderate complex reticulate events, the performance 
decreases when several reticulate events are present simultaneously. In this paper, we 
proposed QS-Net, a phylogenetic network reconstruction method taking advantage of 
information on the relationship among six taxa. To evaluate the performance of QS-Net, we 
conducted experiments on three artificial sequence data simulated from an evolutionary 
tree, an evolutionary network involving three reticulate events, and a complex evolutionary 
network involving five reticulate events. Comparison with popular phylogenetic methods 
including Neighbor-Joining, Split-Decomposition, Neighbor-Net, and Quartet-Net suggests 
that QS-Net is comparable with other methods in reconstructing tree-like evolutionary 
histories, while it outperforms them in reconstructing reticulate events. In addition, we 
also applied QS-Net in real data including a bacterial taxonomy data consisting of 36 
bacterial species and the whole genome sequences of 22 H7N9 influenza A viruses. The 
results indicate that QS-Net is capable of inferring commonly believed bacterial taxonomy 
and influenza evolution as well as identifying novel reticulate events. The software QS-Net 
is publically available at https://github.com/Tmyiri/QS-Net.

Keywords: phylogenetic network, reticulate evolution, sextet, bacterial taxonomy, influenza reassortment

INTRODUCTION

Phylogenetic tree is usually utilized to show the evolutionary history of a set of biological entities 
or taxa. However, the tree-like topology cannot represent reticulate evolutionary events, such 
as horizontal gene transfer (HGT), hybridization, recombination, or reassortment, which have 
been shown to be critical in genotypic diversity, related phenotypes, estimations of evolutionary 
history, and virus emergence and immune evasion (Fenderson and Bruce, 2008; Vijaykrishna 
et al., 2015; Bastide et al., 2018). For example, HGT, also known as lateral gene transfer (LGT), 
promotes the diversification of microorganisms on the evolutionary time scale. This mechanism 
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can change the types and characteristics of bacteria and plays a 
major role in the genetic diversity of bacteria (Ochman et al., 
2000). In the long run, it may be the dominant force affecting 
genes in most prokaryotes. Recombination is a major source of 
genotypic diversity and a core force for the formation of genome 
and related phenotypes (Leducq et al., 2017). Reassortment 
is responsible for most antigenic shifts of influenza virus 
(Nelson et al., 2008). Hybridization has been shown to be the 
main evolutionary mechanism for plants and some animals 
(Rieseberg et al., 2000; Yu et al., 2011).

A phylogenetic network can serve as an alternative to 
phylogenetic tree. When the evolutionary history of a sequence 
set contains reticulate events (Huson et al., 2010), generally 
speaking, phylogenetic networks can be divided into explicit and 
implicit networks. The implicit phylogenetic networks, such as 
split network, are often adopted to illustrate incompatible data 
and capture conflicting signals in a data set. With the increasing 
sequencing data, phylogenetic networks have become more and 
more important in molecular evolution.

Over the past decades, many methods have been proposed 
for reconstructing phylogenetic trees or networks. The most 
common type of method reconstructs a network directly from 
the original character data, usually through a parsimony or 
maximum-likelihood criterion. Methods in this category include 
Spectronet (Huber et al., 2002), maximum pseudo-likelihood 
estimation (Yu and Nakhleh, 2015), HGT maximum parsimony 
(Park et al., 2010), PhyloNetwork (Solís-Lemus et al., 2017), 
inferring phylogenetic networks using PhyloNet (Wen et al., 
2018), and SNaQ (Claudia and Cécile, 2016). However, these 
methods are inefficient computationally and tend to overestimate 
the actual number of reticulate events in the evolutionary history 
(Huelsenbeck, 1995; Park et al., 2010). The second widely used 
method is the distance-based method, which first builds a 
genetic distance matrix for a taxa set and then reconstructs 
the phylogenetic network from the distance matrix. Methods 
in this category include Neighbor-Net (Bryant and Moulton, 
2004), Split-Decomposition (Bandelt and Dress, 1992), FastME 
(Lefort et al., 2015), ASTRID (Vachaspati and Warnow, 2015), 
tree-average distances method (Willson, 2013), and large-scale 
Neighbor-Joining with NINJA (Wheeler, 2009). The distance-
based methods are very fast compared with character-based 
methods, but they have a disadvantage in terms of reconstruction 
accuracy. The third kind of methods reconstructs phylogenetic 
networks from weighted triplets and quartets because they can 
retain more information than distances. Methods in this category 
include local maximum likelihood using triplets (Ranwez 
and Gascuel, 2002), Quartet-Net (Yang et al., 2013), tree with 
strong combinatorial evidence (Berry and Gascuel, 2000), QNet 
(Grünewald et al., 2007), SuperQ (Grunewald et al., 2013), 
DistiQue (Sayyari and Mirarab, 2016), level 1 network from a 
dense quartet (Keijsper and Pendavingh, 2014), and weighted 
QMC (Avni et al., 2015). In addition, there are other methods 
using statistical models such as stochastic local search method 
(Tria et al., 2010), clusters (Van Iersel et al., 2010), Bayesian 
inference (Zhang et al., 2017), statistical model (Pickrell and 
Pritchard, 2012), and Monte Carlo method (Eslahchi et al., 2010).

Quartet-Net (Yang et al., 2013) is a method for reconstructing 
phylogenetic networks from a set of weighted triplets and 
quartets, which uses parsimony information sites to calculate 
triplet and quartet weights directly from multiple sequence 
alignment (MSA). Based on the calculated triplet and quartet 
weights, Quartet-Net then performs a split expanding process 
to obtain all full splits and their weights, which will transform to 
an evolutionary tree or network. The method is a generalization 
of Split-Decomposition (Bandelt and Dress, 1992). In this 
paper, we further generalize Quartet-Net and propose a novel 
method called QS-Net to reconstruct evolutionary networks 
based on weighted quartets and sextets. The analysis of artificial 
and real data sets shows that this method can reconstruct a 
more accurate phylogeny when the sequence data are generated 
from complicated evolutionary scenarios involving many 
reticulate events and identifies novel reticulate evolution and 
reassortment events.

MATERIALS AND METHODS

Background: Split and Split Weight
For a taxa set S = {S1, S2,…,Sn} of size n, a split consisting of two 
disjoint non-empty subsets of S is denoted by A | B that is, A and B. 
If A and B contain all the taxa in S, then A | B is called a full split; 
otherwise, it is called a partial split. In a phylogenetic tree, each 
edge is a full split that divides the tree into two parts, while in a 
phylogenetic network, a group of parallel edges with equal length 
represents a full split. If |A| = 1 or|B| = 1, the split A|B is called 
a trivial split. For example, the phylogenetic tree in Figure 1A 
contains five trivial full splits, such as a|bcdef, and three non-
trivial full splits de|abcf, bc|adef, and ade|bcf. In general, a split 
A|B with |A| = m and |B| = n is called an m|n split. In addition, 
W(A|B) represents the evolutionary distance between taxa 
groups A and B. If A or B contains more than two taxa, then 
W(A|B) calculates the distance between the common ancestor of 
A and B. For example, W(a|de) = 2, W(d|ae) = 1 in Figure 1A, 
W(a|d) represents the evolutionary distance between taxa a and d, 
and therefore, through Figure 1A and these definitions, we can 
get this equation W(a|d) = W(a|de) + W(ae|d).

For an MSA, a simple parsimony-based method is used to 
estimate the weights of quartets and sextets. For example, if the 
character in a site is the same for taxa a, b, and c and for taxa 
d, e, and f, but different for a and d, then the site is defined to 
support the split abc | def. For any sextet abc | def, its weight 
W(abc|def) is defined to be the proportion of total number of 
sites supporting it in the MSA. The weight of a quartet say ab|cd 
is calculated in a similar way. After all the quartet and sextet 
weights are obtained, an ever-expanding process is performed 
based on these weights to all full splits and their weights. As 
shown in previous literatures (Bandelt and Dress, 1992; Yang 
et al., 2013), reconstructing a phylogenetic tree or network is 
equivalent to calculating all the full splits and their weights. 
Thus, we have obtained the reconstructed tree or network by this 
process, which could be shown by a software SplitsTree4 (Huson 
and Bryant, 2006).
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Ever-Expanding Process Based on Quartet 
and Sextet Weights
As represented by equation W(a|d) = W(a|de) + W(ae|d), there is 
such an equation W(abc|def) = W(abc|defg) + W(abcg|def), which 
can be seen as adding a new taxon g to either side of a split abc|def. 
If W(abc|def) = 0, then W(abc|defg) = 0 and W(abcg|def) = 0. If 
taxa group A1 ⊆ A and B1 ⊆ B, or A1 ⊆ B and B1 ⊆ A, we call the 
split A|B displays A1|B1. It is proven in Bandelt and Dress (1992) 
that W(A|B) ≤ W(A1|B1). Therefore, a split with zero weight cannot 
be further expanded to larger splits with positive weights.

For a taxa set S with size n, there are 10 6( )n  sextets. We first 
calculate the weights of all quartets and sextets from the MSA, and 
then we expand them to get all full split weights using an ever-
expanding process. Suppose there is a septet of abc|defg type, we 
have W(abc|defg) = W(abc|def) − W(abcg|def), and there is a 
similar equation for W(abcg|def), so the weight of W(abc|defg) 
can be obtained by similar continuous calculations, as follows.

 

W(abc|defg) W(abc|def) W(abcdg|def)
W(abcg|def)

= −
= WW(abg|def) W(abg|cdef)

W(abg|cdef) W(abg|cde) W
−

= − ((abfg|cde)
W(abfg|cde) W(afg|cde) W(afg|bcde)
W(

= −
aafg|bcde) W(afg|bcd) W(aefg|bcd)

W(aefg|bcd) W(
= −
= eefg|bcd) W(efg|abcd)

W(efg|abcd) W(efg|abc) W(d
−

= − eefg|abc)


















Combining the above equations, we have

 W
cde

(abc | defg) {W(abc | def) W(abg | def)
W(abg | )

= − +1
2

−− + −
+

W W(afg | cde) (afg | bcd)
W(efg | bcd) W(efg | abc)}

 (1)

For |B| ≥ 4, taking minimum over all possible cases, we have

 W |B | |
defg B

(abc ) max min {W(abc def) W(abg def)= − +{ ∈
1
2

WW(abg ) (afg cde)

(afg )

|cde W |

W |bcd W(efg|bcd) W(

− +

− + eefg|abc)},0}
 (2)

When |A|=4 and |B|=4, the weight of the 4|4 split

 W A|B A |B A |B
a A

a B

( ) min min{W( ) W( )},

min{

= − − − +{ ∈

∈

a a a

WW(A|B e) W(A+e|B e)}− − −
 (3)

where A−A′ for two sets A and A′ denotes set difference 
(subtraction).

For example A={a, b, c, d}, B={e, f, g, h}, there are eight 
equations for W(abcd|efgh),

W(abcd|efgh)

W(abc|efgh) W(abc|defgh)
W(abd|efgh

=

−
)) W(abd|cefgh)

W(acd|efgh) W(acd|befgh)
W(bcd|ef

−
−

ggh) W(bcd|aefgh)
W(abcd|efg) W(abcdh|efg)
W(abcd

−
−

||efh) W(abcdg|efh)
W(abcd|egh) W(abcdf|egh)
W(ab

−
−

ccd|fgh) W(abcd|fgh)−




















For any split A|B with |A| ≥ 4 and |B| ≥ 4, we traverse the 
elements in A and B and take out four taxa for each calculation. 
Suppose a, b, c, d ∈ A and e, f, g, h ∈ B, and we have

 W(A|B)
abcd A; efgh B

=
∈ ∈
min {W(abcd | efgh)}  (4)

For any 2|n split of ab|B type with c, d, e ∈ B, we calculate their 
weight by formula (5) referred in Quartet-Net (Yang et al., 2013),

FIGURE 1 | Phylogenetic tree: a phylogenetic tree for illustration and a phylogenetic tree with 12 leaves. (A) A phylogenetic tree for illustration with the branch length 
indicating evolutionary distance. (B) A phylogenetic tree with 12 leaves used to generate the first simulation data.
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W(ab|B) |cd W(ae|cd)

W(ae
cde B

= − +{ ∈
max min{W(ab )1

2

||bc) W(bc|de)+W(ab|de)− }},0
 (5)

Finally, for any trivial split of a|S − a type with b, c ∈ S−a in a taxa 
set S, we calculate the weight as follows (see also Yang et al., 2013):

 W(a|S a) W(a|bc) A|B
bc S a a A; bc B

− = −{ }∈ − ∈ ∈∑min  (6)

Formulas (1) – (6) are used to calculate all full splits by 
decomposing sextet weights iteratively.

The QS-Net Method
QS-Net takes an MSA as input. Suppose that there are n taxa in 
the taxa set S, which are arranged in the order of 1, 2, 3, …, n. In 
the initialization step, all triplet, quartet, and sextet weights are 
calculated directly from the MSAs. We calculate the weights of 
full splits in the following ways.

• Full split of type A|S − A with |A| ≥ 3 and |S−A| ≥ 3: for the 
first six taxa—1, 2, 3, 4, 5, and 6—there are 10 sextets. We 
store these sextets together with their weights in a set X1. 
QS-Net then iteratively adds i=7, 8…, n to the left and right 
parts of the splits stored in X1 and use equations (2)–(4) to 
calculate the weights of newly generated splits. Noticing that 
the only splits that cannot be generated in this way are of 
type i j k|S1 − {i, j, k} with j = i − 1, i – 2, …, 2 and k = j – 1, 
j − 2, …, 1, we calculate their weights using equation (2) 
and add them to X1. At the end of each iteration, the splits 
with a weight of zero are removed because they cannot be 
further expanded to have a positive weight. After the last 
iteration, all full splits of type |A| ≥ 3 and |S − A| ≥ 3 have 
been calculated.

• 2|n – 2 full splits: These splits can be calculated using equation 
(5). In practice, we use Quartet-Net to calculate their split 
weights.

• Trivial (1|n − 1) full splits: These splits can be calculated by 
equation (6).

By the above procedures, we calculate the weights of all 
full splits. Similar to Yang et al. (2013), it is usually advisable 
to filter the non-trivial full splits with very low split weights, 
which tend to be false positives. In practice, we remove splits 
with weight less than c% of the average weight, where c is 
a user-defined threshold setting to be 1 in this study. The 
output file containing all non-zero full splits and their weights 
is stored in.NEXU file format, which can be visualized using 
SplitsTree4 (Huson and Bryant, 2006). The time complexity of 
QS-Net is O(n10).

RESULTS AND DISCUSSIONS

To demonstrate QS-Net, we analyzed three artificial data sets 
and two real data sets. The artificial data sets were generated 

from a simple tree phylogeny, a phylogenetic scenario with 
three reticulate events, and a more complicated phylogenetic 
scenario with five reticulate events. The purpose is to show 
that the QS-Net method can accurately reconstruct all kinds 
of evolutionary histories from simple to complicated ones. 
The real data include a bacterial taxonomy data consisting 
of  36 bacterial species and the whole genome sequences 
of 22  H7N9 influenza A viruses downloaded from NCBI 
influenza database.

The software Dawg (Cartwright, 2005) with model 
GTR  + Gamma + I was used to generate three artificial 
data sets.  The  substitution rate is 0.01; the sequence length 
of the tree is 10,000 bp; the sequence length of the network 
containing three evolutionary events is 80,000 bp, while the 
sequence length of the network containing five evolutionary 
events is 320,000 bp because they are a concatenation of eight 
and 32 feasible trees. To avoid randomness, we performed 
100 Dawg runs on each of the three artificial data sets and 
applied the 100 MSAs of each data set to QS-Net together 
with other four popular methods: Quartet-Net (Yang et al., 
2013), Neighbor-Net (Bryant and Moulton, 2004), Split-
Decomposition (Bandelt and Dress, 1992), and Neighbor-
Joining (Saitou and Nei, 1987).

Analysis on the Tree Data
The tree data were generated from Figure 1B with 12 leaves. 
For brevity, we only listed reconstructed taxa set in the left or 
right block containing fewer number of taxa (Supplementary 
Material: Table S1). For example, split bd|acefghijkl was 
listed as bd. We then normalized each split by the weight of 
a split successfully constructed by all methods. All trivial 
full splits were not listed because they can be successfully 
reconstructed by all five methods. As shown in Table 1, all 
five methods can successfully reconstruct all full splits in 
the 100 runs of the tree data; the accuracy is equal to the 
experimental bootstrap value divided by the real bootstrap 
value. The true-positive split result represents all splits in 
the real phylogenetic history of the simulated data sets. We 
listed the number of true-positive splits obtained by the five 
methods on all simulated data sets in Table 2. If a method 
can reconstruct the true-positive split once in 100 runs, 
we determined that the true-positive split can be obtained 
by this method. In addition to true-positive results, other 
split results reconstructed by the method are false-positive 
splits, which typically have very few weight values. Except 
for Neighbor-Joining, the other four methods reconstructed 
some false-positive splits (here we only list false-positive 
splits with a bootstrap value ≥10). For example, Quartet-Net 
and QS-Net reconstruct two additional split al and ae with 
bootstrap values of 10 and 26, respectively (see Table 3). 
This is because QS-Net and Quartet-Net methods use the 
same calculation formula for split of 2|n type. Neighbor-Net 
identifies 35 false-positive splits with bootstrap value ranging 
from 10 to 40. These false-positive splits may be caused by 
some random mutations in the tree data set.
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Analysis on the Network Data with Three 
Reticulate Events
The network data were generated from Figure 2A containing 
three reticulate events A, B, and C, which can be decomposed into 
eight feasible underlying trees. A feasible tree can be obtained by 
cutting off one branch respectively at A, B, and C. For example, 
we can get an underlying tree by cutting off the three edges qA, 
mB, and oC in the three reticulate events. The sequence data of a 
taxon m were generated by concatenating partial sequence data 
from q and partial sequence data from r. All true splits and splits 
reconstructed by the five methods are listed in Supplementary 
Material: Table S2. The weight of the true split is the sum of the 

split weights in eight feasible trees. Similarly, we normalized each 
split with the weight of split ab and multiplied it by 4. As can 
be seen from the Table 1, QS-Net and Quartet-Net accurately 
reconstructed all true splits in all 100 runs, while Neighbor-Net, 
Split-Decomposition, and Neighbor-Joining failed to reconstruct 
a large number of true splits. For example, Neighbor-Net failed to 
reconstruct split gh, fgi, and fgh in more than 90 runs, and Split-
Decomposition was unable to reconstruct split bce and bcde in 
all 100 runs (Supplementary Material: Table S2). Neighbor-
Joining obtained even worse result with 16 true splits missing, 
which is reasonable because Neighbor-Joining only reconstructs 
trees and retains the strongest compatible splits.

TABLE 1 | Comparison of accuracy (the total bootstrap value obtained from the experimental results is divided by the bootstrap BV value) between QS-Net and four 
other methods.

Data set QS-Net Quartet-Net Neighbor-Net Split-Decomposition Neighbor-Joining

Tree 100% 100% 100% 100% 100%
Network (3) 100% 100% 70.16% 67.24% 36%
Network (5) 100% 94.74% 58.89% 46.76% 23.68%

Network (3) is the phylogenetic network with three reticulate events, while Network (5) is the phylogenetic network with five reticulate events.

TABLE 2 | The number of true-positive results can be obtained by five methods.

Data set True QS-Net Quartet-Net Neighbor-Net Split-Decomposition Neighbor-Joining

Tree 9 9 9 9 9 9
Network (3) 25 25 25 21 23 9
Network (5) 38 38 36 30 22 11

The “True” column represents the real number of true-positive splits of the simulated data.

TABLE 3 | The number of false-positive results obtained by five methods.

Data set QS-Net Quartet-Net Neighbor-Net Split-Decomposition Neighbor-Joining

Tree 2 2 35 4 0
Network (3) 4 4 16 1 0
Network (5) 4 4 4 1 0

FIGURE 2 | Phylogenetic network with 3/5 reticulate events. (A) A phylogenetic network with three reticulate events A, B, and C. (B) A phylogenetic network with 
five reticulate events A, B, C, D, and E.
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Analysis on the Network Data with Five 
Reticulate Events
Supplementary Material Table S3 lists all true splits and splits 
reconstructed from the five methods from the network data. 
The data set was generated from Figure 2B with a complicated 
phylogenetic scenario containing five reticulate events. Similarly, 
the weight of the true split is the sum of the weights of the 
splits in 32 feasible trees. We normalized each split with the 
weight of split ce. As can be seen from the Table 1, only QS-Net 
method obtains 100% accuracy in all 100 runs, while the other 
four methods fail to reconstruct some splits in most runs. For 
example, Quartet-Net failed in reconstructing split fgi and afg 
in all 100 runs. In addition to the two splits, Neighbor-Net also 
cannot reconstruct split hj, bcd, and bcde in more than 90 runs 
(Supplementary Material: Table S3), which happens because 
Neighbor-Net reduces splits to make the split system planar. Split-
Decomposition and Neighbor-Joining still performed poorly. In 
addition, all methods except for Neighbor-Joining reconstructed 
some false-positive splits.

Analysis on the Bacterial Data
The bacterial data set was used in Takahashi and Kryukov 
(2009) for the analysis of phylogenetic relationships among 
bacterial species. This data set consists of 36 bacterial 
genomes containing concatenated sequence of seven genes 
(16S rRNA, 23S rRNA, gyrB, pyrH, recA, rpoA, and rpoD). 
The 36 species were divided into three different groups based 
on different GC content (32–38%, 50–53%, and 64–69%), 
containing 14, 11, and 11 species, respectively. We took the 
GC-rich data consisting of 11 bacterial species and a data of 
25 species containing both GC-poor and GC-rich bacteria. 
The MSAs of both data were generated by ClustalW (Larkin 
et al., 2007) and further fed into to QS-Net, Quartet-Net (Yang 
et al., 2013), Neighbor-Net (Bryant and Moulton, 2004), Split-
Decomposition (Bandelt and Dress, 1992), and Neighbor-
Joining (Saitou and Nei, 1987). We ran the program on an 
MSI laptop with 2.8-GHz processor and 8-GB memory. A 
comparison of runtime between QS-Net and Quartet-Net 
on all data sets is shown in Table 4; the time statistics for 
three artificial data sets are the average of all 100 runtimes. 
The Neighbor-Joining method has the least runtime, and 
all other three methods can produce results in less than 2 s 
on all data sets. The reconstructed results were then viewed 
by SplitsTree4 (Huson and Bryant, 2006). Only three split 
networks reconstructed by QS-Net and Quartet-Net method 
on bacterial data set are shown in Figures 3 and 4.

Figure 3 shows the phylogenetic network of 11 GC-rich 
bacterial sequence data set by using QS-Net, which is basically 

consistent with the experimental results in Takahashi and Kryukov 
(2009). The reconstructed networks of 25 GC-poor or GC-rich 
(32–38% and 64–69%) sequence data set reconstructed by 
QS-Net and Quartet-Net are shown in Figures 4A, B, respectively. 
As can be seen from the figures, the differences between QS-Net 
and Quartet-Net are quite obvious. There are two distinct 
parallelograms that represent the reticulate evolution event in 
the reconstructed network in Figure 4A but not in Figure 4B, 
which might be neglected by Quartet-Net due to its inability to 
identify complicated reticulate events. The numbers of full splits 
reconstructed by the five methods on bacterial data set and the 
influenza data set are also listed in Table 5. QS-Net constructs a 
moderate total number of splits among all comparison methods, 
probably because the full resolution of taxa is not achieved. In 
the GC-rich data set, Neighbor-Net constructs three more splits 
than does QS-Net, while in the GC-poor and GC-rich data set, 
Neighbor-Net constructs 29 more splits than does QS-Net. In 
addition, by comparing Figures 3 and 4A, it can be found that 
GC content may have an important influence on the evolutionary 
history of bacteria.

Analysis on the Influenza Data
The data set consisted of the full genome sequence of 22 H7N9 
influenza A viruses aligned by ClustalW (Larkin et al., 2007). 
These viruses have major relations with the H7N9 virus (Gao 
et  al., 2013) that appeared in China in 2013, which caused 
human mortality. We estimated the phylogenetic relationships 

FIGURE 3 | The reconstructed QS-Net network of 11 GC-rich bacteria.

TABLE 4 | A comparison of runtime between QS-Net and Quartet-Net on all data sets.

Method Tree Network (3) Network (5) GC rich GC poor and rich Influenza

QS-Net 1.25 s 6.02 s 24.39 s 0.92 s 9.49 min 3.22 min
Quartet-Net 0.20 s 1.05 s 4.05 s 0.19 s 10.17 s 4.54 s
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of these 22 influenza A viruses using Quartet-Net and QS-Net. 
The results are shown in Figures 5A, B, respectively. Table 5 
lists the numbers of full splits reconstructed by the five methods 
on bacterial data set and the influenza data set. General split 
networks do not actually represent explicit evolutionary 

events, which makes the interpretation and comparison of 
reconstruction methods on real data set difficult. So we list 
the number of splits built by various methods. As can be seen 
in Table 4, QS-Net reconstructs 47 full splits, while Quartet-
Net reconstructs 45 full splits.

FIGURE 4 | The reconstructed network on 25 GC-poor or GC-rich bacteria. (A) The reconstructed QS-Net network of 25 GC-poor or GC-rich bacteria. (B) The 
reconstructed Quartet-Net network of the 25 bacteria.

TABLE 5 | The number of full splits reconstructed by five methods on bacterial data set and the influenza data set.

Data set QS-Net Quartet-Net Neighbor-Net Split-Decomposition Neighbor-Joining

GC rich 26 22 29 23 19
GC poor and rich 48 45 77 48 47
Influenza 47 45 68 36 41

FIGURE 5 | The reconstructed network on influenza data. (A) The reconstructed Quartet-Net network related to H7N9 influenza A viruses. (B) The reconstructed 
QS-Net network related to H7N9 influenza A viruses.

207

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


QS-NetTan et al.

8 July 2019 | Volume 10 | Article 607Frontiers in Genetics | www.frontiersin.org

The three viruses that caused human death (A/Shanghai/1/2013, 
A/Shanghai/2/2013, and A/Anhui/1/2013) were combined. The 
phylogenetic network indicates that these H7N9 viruses may 
be derived from the reassortment from influenza subtypes, 
including avian-origin H7N9 viruses, H9N2 viruses, and H7N3 
viruses. In Figure 5B (constructed by QS-Net), the internal 
region surrounded by H7N9, H7N7, and H7N3 is more complex 
than Figure 5A (constructed by Quartet-Net), which indicates 
that the true evolutionary history of H7N9 influenza A viruses 
is very complex. Of course, the real evolutionary history is 
unknown, but at least the results constructed by QS-Net are 
consistent with a few previous findings.

CONCLUSIONS

QS-Net is a method generalizing Quartet-Net. Both simulation 
studies and real data analyses show that QS-Net has the potential 
to reconstruct more accurate phylogenetic relationships than 
its competitors like Quartet-Net and Neighbor-Net. However, 
the method runs slower than other algorithms, and the major 
computational difficulty lies in the calculation of 3|4 splits. 
Nevertheless, the difficulty will be partially resolved with the 
development of high-speed computers and parallel algorithms. 
Thus, we believe QS-Net will be useful in identifying more 
complex reticulate events that will be ignored by other network 
reconstruction algorithms.
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Phage Display is a powerful method for the identification of peptide binding to targets
of variable complexities and tissues, from unique molecules to the internal surfaces of
vessels of living organisms. Particularly for in vivo screenings, the resulting repertoires
can be very complex and difficult to study with traditional approaches. Next Generation
Sequencing (NGS) opened the possibility to acquire high resolution overviews of such
repertoires and thus facilitates the identification of binders of interest. Additionally, the
ever-increasing amount of available genome/proteome information became satisfactory
regarding the identification of putative mimicked proteins, due to the large scale on
which partial sequence homology is assessed. However, the subsequent production
of massive data stresses the need for high-performance computational approaches in
order to perform standardized and insightful molecular network analysis. Systems-level
analysis is essential for efficient resolution of the underlying molecular complexity and
the extraction of actionable interpretation, in terms of systemic biological processes
and pathways that are systematically perturbed. In this work we introduce PepSimili,
an integrated workflow tool, which performs mapping of massive peptide repertoires
on whole proteomes and delivers a streamlined, systems-level biological interpretation.
The tool employs modules for modeling and filtering of background noise due to
random mappings and amplifies the biologically meaningful signal through coupling
with BioInfoMiner, a systems interpretation tool that employs graph-theoretic methods
for prioritization of systemic processes and corresponding driver genes. The current
implementation exploits the Galaxy environment and is available online. A case study
using public data is presented, with and without a control selection.

Keywords: phage display, Galaxy platform, enrichment analysis, network analysis, biological interpretation,
Reactome, Gene Ontology

INTRODUCTION

Phage Display has been widely used to select peptides binding to a variety of targets, in vitro
or in vivo, with complexities ranging from a single macromolecule (Rodi and Makowski, 1999;
Bábíčková et al., 2013) to diffuse pathological lesions (Pasqualini and Ruoslahti, 1996). Peptides
identified using this technique have been successfully used for specific site drug delivery and in vivo
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imaging (Deutscher, 2010). The complexity of the selected
repertoires of peptides is a function of the complexity of the
target. Complex selections were poorly analyzed before the
introduction of Next Generation Sequencing (NGS), which
offered a detailed view of the peptide sequences (Dias-Neto
et al., 2009). Software solutions were developed to compare the
contents of several repertoires to identify common or specific
sequences (Kolonin et al., 2006). In parallel, the hypothesis of
mimicked proteins was advanced, based on the assumption that
some peptides share sequence similarity with protein domains,
and thus mimic the physiological interaction of the protein
domain with its targets. In this scope, sequence comparison was
usually performed using available tools, performing probabilistic
(BLAST) (Altschul et al., 1990) or best-match (Needleman–
Wunsch) (Smith and Waterman, 1981) mappings. A tool more
adapted to analysis of phage display data, named PepTeam
was developed by Hume et al. (2013), based on an algorithm
producing all the ungapped matches of the peptides of a
repertoire, compared against a set of proteins. Here we introduce
PepSimili, a new computational tool significantly extending the
capabilities of PepTeam and suitable for large-scale analysis of
phage display data derived from NGS. PepSimili integrates the
mapping function of PepTeam and extends the analysis with
(a) an evaluation and subtraction of the local noise due to
random mappings, (b) the subtraction of the signals produced
by a control repertoire, and (c) filtering of derived proteins using
a mapping score.

Moreover, PepSimili automatically manages a systems-level
biological interpretation, in terms of underlying biological
processes and master regulator genes. Pathway and functional
analysis is performed by coupling the mapping functions of
PepSimili with BioInfoMiner (Pilalis and Chatziioannou, 2013;
Koutsandreas et al., 2016), an algorithm that performs systemic
functional interpretation of the phenotype interrogated through
the phage-display experiment. The interpretation algorithm
performs by projecting the highest ranked proteins onto
ontological and pathway networks with hierarchical structure.
Highest ranked proteins are those presenting statistically
significant accumulation of non-random peptide sequence
matches. Their mapping on ontological and pathway networks
enables the extraction of ranked lists of putative systemic
processes and/or pathways, reflecting the underlying components
involved in the manifestation of the investigated phenotype.
The master regulatory genes and their respective protein
products are ranked according to their contribution to the
systemic processes.

Overall, PepSimili derives a systems-level interpretation
of the mechanisms impacted by the cumulative effect of
multiple mimicking peptides on protein networks. Ultimately,
it manages to shortlist and rank candidate target proteins
deriving from Phage Display experiments, according to their
functional impact. The application is implemented on an
instance of the Galaxy platform (Afgan et al., 2018). Through
its user-friendly visual editor, the execution of the workflow
is easily accessible to the basic user without prior experience
in bioinformatics or in command-line oriented analyses.
Additionally, the Galaxy platform already provides the tools

necessary for the manipulation of the raw fastq files including
quality filtering, trimming of the sequences to isolate the variable
part of the recombinant phages and DNA to protein translation.
PepSimili is the first application for the phage display technology
implemented in Galaxy and which provides efficient mapping of
short peptides on whole proteome databases. The tool is available
online at http://pepsimili.e-nios.com:8080.

MATERIALS AND METHODS

Workflow Implementation
The workflow, outlined in Figure 1, is written in Python
language and implemented as a tool in a Galaxy cloud platform
(Afgan et al., 2018).

Inputs
PepSimili is presented as an integrated tool in Galaxy, accepting
as inputs:

• A Test repertoire, containing the sequences of the peptides,
with a length ranging from 5 to 15 residues, covering all
commercially available phage display libraries (the most
common being of 7–12 residues).
• A Control repertoire, if available. If not available, a file with

a single poly-Tyr of the same length as the peptides (e.g.,
“WWWWWWW,” for n = 7) can be used.
• A table with the distribution of the amino acids

(percentages) in the library used for the selections.
• A fasta file of the proteome, or a subset of

proteins of interest.
• The threshold of similitude, h.
• The minimal z-score to be considered as significant for the

selection of the outliers.
• The p-values and corrected p-values for BioInfoMiner.

Workflow Steps
The main steps of the workflow are the following:

Calculation of the Amino Acid Frequencies of the Test
Repertoire
The respective frequency of each amino acid in the library is
calculated as a percentage.

Building of a Mock Repertoire
A Mock repertoire is built, composed of peptides of the same
length and number (unique) as the peptides of the Test repertoire.
Peptide sequences are quasi random, but respecting the amino
acid frequencies of the phage library, as calculated in step 1. The
Mock repertoire is used for the estimation of the noise produced
by random mappings.

Mapping of Test and Control and Mock Repertoires
on the Proteome
The problem of mapping a set of peptides on a set of proteins,
respecting a threshold of similarity h, was previously addressed in
Hume et al. (2013). Similarity between two peptides is evaluated
using the PAM30 substitution matrix (Jones et al., 1992).

Frontiers in Physiology | www.frontiersin.org 2 September 2019 | Volume 10 | Article 1160211

http://pepsimili.e-nios.com:8080
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01160 September 23, 2019 Time: 16:33 # 3

Vekris et al. NGS-Phage Display Data Analysis

FIGURE 1 | Simplified view of the workflow. (A) Represents the construction
of the Mock repertoire, (B) the mapping and scoring processes, and (C) the
BioInfoMiner analysis of the proteins/genes of interest.

The algorithms, producing all the ungapped matches, of the
peptides of a repertoire, on a set of proteins, were implemented in
C++ and the code of the four modules necessary to produce the

mappings and provide the resulting profiles is available at https:
//github.com/cbib/pepteam.

In total three mappings are performed, respectively for Test
(T), Control (C) and Mock (M) repertoire (built in step 2). In the
resulting files are reported the matching peptides, the similarity
score and the matching position on the corresponding protein.

Signal Extraction
The mappings are used to produce a signal profile of mappings
for each protein and for each of the T, C, and M repertoires.
As signal profile is defined the sum of the hits in each amino
acid position on the protein. The profile of background noise,
as estimated from the Mock repertoire and representing random
mappings, is subtracted from the signal profile of the Test
repertoire, for each protein. If a Control repertoire is available,
corresponding profiles are subtracted too, in order to extract a
final signal profile representing meaningful peptide matches.

Scoring and Ranking of Proteins
After subtraction, the resulting signal profiles are used to generate
a mapping score for each protein, termed m-score, which is the
sum of the mappings from all positions, divided by the portion of
the protein comprising at least one peptide match.

The distribution of the m-scores is calculated and each protein
is annotated as z-score. The z-score cut-off set by the user
(confidence level) is used to extract the list of proteins of interest
for the next step of the analysis, which are thus outliers according
to the calculated m-score distribution.

Systemic Biological Interpretation
Biological interpretation is performed for the set of promoted
proteins from the previous step, using adapted algorithms from
Chatziioannou and Moulos (2011), Moutselos et al. (2011), Pilalis
and Chatziioannou (2013). The algorithm performs statistical
and network analysis on controlled biological hierarchical
vocabularies, here Gene Ontology (GO) (Ashburner et al., 2000)
and Reactome pathways (Croft et al., 2014). This step (see
section “Graph-Based Biological Interpretation,” below) derives
significantly impacted biological processes and the respective
driver genes linking these processes. It should be noted here
that, with minimal programming effort, this algorithmic step
can be adapted to exploit additional biological ontologies for
network analysis.

Outputs
The workflow produces as outputs:

• The signal profiles of the mapping of the peptides of
the Test repertoire, showing the largest cluster of similar
peptides, each peptide belongs to (#5).
• The signal profiles of the mappings of the Test, Mock and

Control repertoires (#6, #7, and #8, respectively).
• The signal profiles of the mappings of the Test repertoire,

minus both the Mock random mappings and the
Control mappings (#9).
• Two files corresponding to the Test and Mock repertoires

(#10 and #11, respectively) reporting all the mappings
on each protein, indicating the position of the mapping,
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the homology of the peptide with the underlying protein
segment, the peptide sequence, and three characteristics of
the peptide: the number of occurrences in the repertoire,
the number of peptides in the biggest cluster of similar
peptides in the Test repertoire and the number of proteins
on which the peptide is mapping.
• The list of proteins of interest, with z-scores above the

chosen threshold (#12).
• The list of genes of interest, encoding the proteins of

interest (#13), used as input for BioInfoMiner.
• The enriched GO terms characterizing the genes of

interest (#14).
• The list of driver genes linking the processes pinpointed by

the GO terms enrichment (#15).
• The list of the Reactome pathways, in which the genes of

interest participate (#16).
• The list of the Reactome gene ranking (#17).

Parameters
PepSimili is an integrated tool performing all steps of the analysis
of the available repertoires in a single run. A group of satellite and
intermediate scripts are also available in the platform, for access
to intermediate steps of the workflow (listed in the tool menu as
“PepSimili tools”).

Size of the Experimental Repertoires
The quality of the experimentally obtained peptide repertoires
determines the mappings and thus the m-scoring. PepSimili
uses the unique peptide sequences present in a repertoire to
produce the mappings and calculate the m-scores. It is necessary
to dispose of repertoires large enough to optimize the density of
the mappings. A minimum of 40000 unique peptide sequences
of 7mers is necessary. Usually NGS provides millions of reads
for each repertoire, corresponding at hundreds of thousands of
unique peptide sequences for targets as simple as cell cultures,
thus covering the requirements of PepSimili.

For a visualization of the distribution of the m-score the script
Sat_distri can be used; it produces a table with the distribution of
the scores from any profile file.

Some experimental conditions may produce Test and Control
repertoires of different sizes. If the Control repertoire does not
fulfill the required equal size, it is advisable to complete by an
equal number of unique sequences randomly chosen from the
Test repertoire.

Amino Acids Distribution and Mock Repertoire
The distribution along the proteins of the mappings is sensitive
to the frequencies of the amino acids of each repertoire (aaf),
depending on local distributions. To generate a Mock repertoire
allowing an adapted evaluation of the local random noise, it
is necessary to apply an amino acid distribution as the one
observed in the library being used for the selections. Most
of the libraries are constructed using NNK codons, and the
distribution of codons and amino acids is further distorted
during the amplification of the library. Usually this information
is available for commercially available libraries. For custom
constructs it is necessary to include a sample of the library in

the NGS experiments and calculate the aaf table. The script
Sat_aaf uses as input a peptides occurrences table and produces
the corresponding amino acids frequencies file. At minimum, if
no experimental information is available, it is advised to use the
theoretical amino acids frequencies.

The influence of the amino acids frequencies on the
mapping’s distribution is shown in Supplementary Figures 1, 2.
PepSimili accepts as input aaf tables with frequencies
expressed as percentages.

Similarity and h Threshold
The degree of similarity of two peptides is calculated using the
PAM30 substitution matrix. Only positive values can be handled
by PepSimili, ranging from 0 to 1. For 7mers we recommend
a threshold h between 0.4 and 0.8, depending on the desirable
degree of similarities. As the evaluation of the random mappings
is made using the same stringency and this background noise is
systematically subtracted from the Test repertoire signals, high
stringencies are not obligatory. On the contrary, when the Test
repertoire contains a low number of unique sequences, it is
advisable to decrease the threshold h, in order to accordingly
increase the density of the mappings and obtain a more suitable
m-score distribution, for the selection of the proteins of interest.
The influence of the choice of the h threshold on the profiles is
shown in Supplementary Figure 3.

Confidence Level Threshold (Z-Score)
The distribution of the m-scores is the function of the number
of peptides in the repertoires and the threshold h chosen for
the analysis. When both the random and the control (non-
specific ones) profiles are subtracted from the test profiles,
theoretically all remaining signal is significant and there is no
need to focus on outliers of the distribution of the m-scores
(Supplementary Figure 4). However, it is advisable to approach
the Y = aah; described system by the selection(s) starting
with proteins presenting the relatively highest m-scores, and
the default z-score threshold of 2.58 usually selects sufficient
numbers of proteins to build a first overview of the system under
study, using BioInfoMiner’s outputs. A threshold as low as 1.5 is
still significant given the distribution of the m-scores.

Limitations
Proteomes and Fasta File Header Format
It is mandatory to use a particular header format for the proteins
fasta file, so the script correctly extract the gene symbols for
biological interpretation: >ENSGXXXXXXXX| ENSTXXXXXX|
Gene Symbol| ENSPXXXXXXXX. Such files can be obtained
from BioMart (Smedley et al., 2015), using a simple query
with, as filters, Gene stable ID, Transcript stable ID, Gene
symbol and Protein stable ID. Two sets of human proteins
are already included, one of general use (proteome 20k) and
one minimal (proteome 10k), more restricted to interaction
molecules, adapted for selections performed in vivo or on cells
accessible via the blood vessels (e.g., endothelial cells such as
HUVEC). These proteins belong in either of the following
three classes: plasma membrane, extracellular matrix, or secreted
proteins, and were selected based on their annotation with
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GO terms Cellular localisation (GO:0051641) and Extracellular
Region Part (GO:0044421), in addition to the proteins of the
human plasma proteome, taken from the Human Plasma Peptide
Atlas (Schwenk et al., 2017). For each protein isoform, the most
complete in terms of exons was included.

However, the user can upload and use any proteome
respecting the above-mentioned header format and perform
manually the biological interpretation, using the BioInfoMiner
module available on the PepSimili server. The functional
analysis currently supports Homo sapiens, Mus Musculus, Rattus
norvegicus, Gallus gallus, Sus scrofa, Danio rerio, Drosophila
melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana.

Test Repertoire Size
We mentioned the necessity of a Test repertoire with more than
40000 unique sequences in order to generate optimal results
from our tool. It is possible to generate partial results for smaller
repertoires, which are often obtained for relatively simple target
systems (assuming fewer binding sites). A satellite script named
Sat_scoring is provided, using as input a profile file, preferably the
T-M-C one, and producing a table of m-scored proteins.

Graph-Based Biological Interpretation
BioInfoMiner algorithm uses protein annotations and ontologies
as a starting point for functional and pathway analysis with
statistical and graph-theoretic methods (Chatziioannou and
Moulos, 2011; Moutselos et al., 2011; Pilalis and Chatziioannou,
2013; Koutsandreas et al., 2016). The algorithm comprises two
main steps:

Ontological Process and Pathway Prioritization
The algorithm employs a combination of a parametric
(Hypergeometric) and a non-parametric statistical test
(bootstrap resampling). Initially the Hypergeometric test is
used to assess the over-representation and initial ranking of
annotation terms in the input gene list. This ranking is corrected
by performing bootstrapping as an alternative to multiple test
correction methods (Bonferroni, FDR), thus avoiding false
assumptions about the distribution of p-values. Instead of
adjusting the p-values, the bootstrapping algorithm reorders the
initial distribution and prioritizes the less frequently observed
enrichments which tend to represent broader pathways or
functions and, thus, are of stronger biological content (Pilalis
and Chatziioannou, 2013; Pilalis et al., 2015).

Gene/Protein Prioritization
Gene prioritization is performed by a graph-theoretical approach
that exploits an ontological direct acyclic graph structure to
detect and rank genes according to their impact as linkers in
the topology of that graph (Moutselos et al., 2011; Koutsandreas
et al., 2016), using semantic measure techniques. As background
graphs, are used variations of the following ontologies and
hierarchical pathways, corrected for inconsistencies (annotation
bias, information content imbalance, gaps): Gene Ontology,
Reactome, MGI Mammalian Phenotype Ontology (annotation of
Human genes) and Human Phenotype Ontology (HPO).

The extracted ranked list of systemic processes and/or
pathways, reflects the underlying components involved in the
manifestation of the investigated phenotype, and provides a
descriptive snapshot that links and integrates the examined
individual genes into broader functional, indispensable modules
that shape the cellular phenotype. The master regulatory genes
and their respective protein products are ranked according to
their contribution to the systemic processes.

RESULTS

Galaxy-Based Tool for Integrated
Analysis of Phage Display Data
The Galaxy instance of PepSimili is available at http://pepsimili.e-
nios.com:8080. The tool is easily accessible in the left-hand menu
(“Tools”), under the section pepSimili. There are two additional
tool sections, PepSimili tools and PepSimili subworkflows,
which comprise the collection of satellite/intermediary scripts
and partial worklows for mapping repertoires and scoring
proteins, respectively.

PepSimili main input and outputs are shown in Figure 2.
The tool accepts a Test and a Control repertoire, the amino-
acid frequencies of the phage display library, the homology and
confidence cut-offs and the p-values for the enrichment analysis
(see section “Materials and Methods”) (Figure 2A). All steps are
executed automatically, including the biological interpretation.

In Figures 2B,C are shown screenshots of, respectively, the
output proteins with their m-scores, and an example of a
file reporting peptide hits, including their headers, total hit
similarity and the list of peptides matching the protein sequence,
including additional details and metrics for each peptide (see
Materials and Methods).

In Figure 2D is shown a heatmap, depicting the mapping
of prioritized genes to systemic processes. The rank of each
gene depends on the number of processes to which a gene
participates. The more processes a gene is mapped to, the higher
its rank is, highlighting its importance as a regulatory hub on the
ontological network.

Figure 3 shows the peptide mappings on a segment of a
protein (WASF1, see Case Study further below), also illustrating
the calculation of the aah-score at each position, which is defined
as the sum of the total peptide matches.

Case Study
We present a case study using published data of phage display
repertoires (Brinton et al., 2016). We used two of the described
repertoires. Both were selected in vitro, on HUVEC cells
that were cultured either in normal medium (Control) or in
tumor conditioned medium (tcm) by tumoral cells (pancreatic
adenocarcinoma, PDAC), which is serving as Test. The two
samples of cultured cells were separately used for the biopanning
with a combinatorial library of cyclic 7mers on phage display. In
these studies, the recombinant portion of the pIII of the phage
was amplified by PCR and used as template for deep sequencing.
The aim of the study was to identify binders specific of the
tcm-treated endothelial cells, expecting that their targets would
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FIGURE 2 | PepSimili main input and outputs. (A) The input form of the PepSimili automated workflow. Confidence level refers to the z-score cut-off, (B) output
proteins, ranked by m-score, (C) output tabular file reporting the hits, (D) a heatmap visualizing the mapping of prioritized genes (x axis) to systemic
processes (y axis).
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FIGURE 3 | Mappings on a small portion of the WASF1 protein. The profile of the mappings of the HUVEC_tcm peptides (HUVEC under tumor conditioned medium)
on the WASF1 protein is shown here, between residues 246 and 266. The x-axis presents the sequence, the y-axis the amino acid hits. Insert (a) shows the position
of this particular stretch on the complete profile of the protein (red peek). Insert (b) shows in the first row the amino acid sequence, in second row the position of the
amino acids and in third row the total aah per residue. Further below are shown the 13 peptides defining this stretch, positioned in frame with their similar sequence
on the protein.

be also expressed in vivo by cells in the microenvironment of
cancerous tumors. Pepsimili extends the scope of the study to
the identification of proteins with subsequences similar to the
selected peptides. The full run is online available at http://pepsee.
e-nios.com:8080/u/avek/h/example-huvectcm-vs-huvec.

Table 1 summarizes the genes prioritized by the BioInfoMiner
algorithm using Gene Ontology and Reactome pathways. The
gene prioritization results are shown in Supplementary Table 1
(GO) and Supplementary Table 2 (Reactome). Interestingly,
the highest ranked genes include known markers of PDAC,
such as WASL (Wiskott-Aldrich syndrome like) (Wei et al.,
2012) and other WAS-associated proteins like WASF1, WASF2,
WAS and WIPF1. Wiskott-Aldrich syndrome (WAS) is a
rare X-linked primary immunodeficiency characterized by
microthrombocytopenia, eczema, recurrent infections, and an
increased incidence of autoimmunity and malignancies (Massaad
et al., 2013). FGF10 induces migration and invasion in pancreatic
cancer cells through interaction with FGFR2, resulting in a
poor prognosis, thus FGF10/FGFR2 signaling is a promising
target for new molecular therapy against pancreatic cancer
(Nomura et al., 2008).

The main biological processes derived by BioInfoMiner
(Supplementary Table 3) include Arp2/3 complex-mediated

actin nucleation and actin polymerization, involved in
multigeneration of dendritic protrusions for 3-dimensional
cancer cell migration (Giri et al., 2013).

Prioritized Reactome pathways are shown in Supplementary
Table 4. The results highlight activation of RHO GTPases,
which results in formation of actin stress fibers, lamellipodia
and filopodia through interaction with members of the Wiskott-
Aldrich Syndrome Protein (WASP) (Vega and Ridley, 2008).
In addition, the results indicate increased FGFR signaling, the
inhibition of which achieved significant anti-cancer effects in
pancreatic cancer (Zhang et al., 2014). Fukushima et al. (2015)
showed that loss of free fatty acid receptor FFAR1 in pancreatic
cancer cells promoted migration.

These results constitute an accurate and comprehensive
interpretation of the underlying molecular complexity,
describing the landscape of the molecular interactions captured
by the set of mimicked proteins, derived from the Phage Display
experiment. Supplementary Figures 5, 6 show the extracted
networks, through projection on GO Biological Processes and
Reactome Pathway hierarchical structures, respectively. The
prioritized genes (Table 1 and Supplementary Tables 1, 2)
constitute master regulators based on the topology of these
networks, as they have a pivotal role in mediating the cross
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TABLE 1 | Summary of the genes prioritized by BioInfoMiner (GO and Reactome).

Gene
symbol

GO
ranking

Reactome
ranking

Description

WASL 1 6 Wiskott-Aldrich syndrome like

FGF10 2 13 fibroblast growth factor 10

WASF2 4 11 WAS protein family member 2

FGF4 8 9 fibroblast growth factor 4

FFAR2 15 4 free fatty acid receptor 2

NKX6-1 3 19 NK6 homeobox 1

WASF1 12 10 WAS protein family member 1

FFAR1 10 17 free fatty acid receptor 1

CLDN17 1 claudin 17

GRSF1 2 G-rich RNA sequence binding factor 1

RPL4 3 ribosomal protein L4

APLN 5 apelin

CD247 5 CD247 molecule

CCL19 6 C-C motif chemokine ligand 19

FBLIM1 7 filamin binding LIM protein 1

HPN 7 hepsin

RPS16 8 ribosomal protein S16

CEBPB 9 CCAAT/enhancer binding protein beta

FMN1 11 formin 1

CLDN2 12 claudin 2

IST1 13 IST1 ESCRT-III associated factor

RPS4Y1 14 ribosomal protein S4 Y-linked 1

VPS4B 14 vacuolar protein sorting 4 homolog B

RPS4X 15 ribosomal protein S4 X-linked

FGF5 16 fibroblast growth factor 5

SOCS7 16 suppressor of cytokine signaling 7

ACVR2A 17 activin A receptor type 2A

EDN1 18 endothelin 1

WAS 18 Wiskott–Aldrich syndrome

FGB 19 fibrinogen beta chain

ANG 20 angiogenin

PDE4D 20 phosphodiesterase 4D

IRS4 21 insulin receptor substrate 4

ZYX 21 zyxin

HOXB2 22 homeobox B2

KRT14 22 keratin 14

WIPF1 23 WAS/WASL interacting protein family
member 1

In columns 2 and 3 the rank of each gene according to the GO terms and the
Reactome pathways, respectively, is presented and color coded using a gradient
from red to yellow. The table is sorted for increasing sum of the two ranks.
Supplementary Tables 1, 2 correspond to the original outputs of BioInfoMiner.

talking between distinct biological processes. This feature
is illustrated in Supplementary Figure 7, which shows a
more compact view of the projection of mimicked proteins
on the GO corpus. Systemic processes were derived from
semantic clustering of the enriched terms. The prioritized
genes are regulators of distinct key processes underlying the
PDAC pathology, such as Arp2/3 complex-mediated actin
nucleation, Rho protein signal transduction, endothelial cell
proliferation, endosome organization, fatty acid signaling

and lipopolysaccharide signaling, neutrophil chemotaxis and
microtubule polymerization. The oligopeptides mimicking the
prioritized protein products can be easily retrieved through the
Galaxy interface for further evaluation.

Overall, the present study showcases the capability of the
integrative workflow for derivation and selection of biologically
active peptides from complex Phage Display experiments,
through effective filtering and comprehensive mapping of peptide
repertoires on ontological networks and pathways.

DISCUSSION

Phage display coupled with NGS has been introduced almost
10 years ago, thus changing the way of how selected phage
repertoires are perceived and analyzed. Deep sequencing
techniques provide a global characterization of phage display
libraries and selected repertoires, increasing the resolution depth
and the potential of the phage display technology for the
discovery of target molecules, through the identification of
consensus motifs. Today, even the most complex repertoires of
selected peptides, usually obtained by in vivo selections, can be
sampled to obtain a detailed view of their composition and to
monitor the progress of the enrichment of specific sequences
after each selection/amplification cycle. NGS facilities are easily
accessible by the experimentalist and can cover all the steps from
the amplification of the DNA of the phages to the delivery of the
raw reads in fastq format.

However, the development of analytical tools and strategies is
far less advanced. Most software solutions have been in-house
developed and not made widely available, by using standard,
generic sequence comparison techniques, such as BLAST, or they
had a limited scope such as PhastPep (Brinton et al., 2016) taking
into account only identical sequences to compare repertoires.

Computational tools for Phage Display data analysis include
RELIC (Mandava et al., 2004), PEPTIDE (Pizzi et al., 1995),
SiteLight (Halperin et al., 2003), and SLiMFinder (Edwards
et al., 2007), which enable sequence alignment and motif
detection. However, these tools were designed for small-
scale analyses, whereas deeper characterization emerged as a
necessity with the advent of NGS techniques. For this purpose,
newer methodologies have been developed for high throughput
data processing and detection of consensus sequences (Fowler
et al., 2011; Alam et al., 2015; Reich et al., 2015), although
these techniques did not address the issue of selectivity and
comparison among different physiological conditions. This
particular problem was addressed by PHASTpep (Brinton et al.,
2016), a MATLAB-based tool, which enables differential analysis
and selection of peptides that discriminate among different
cellular states. PepSimili combines selectivity and network-
based functional analysis for prioritization of targets and
derivation of biomarkers.

In addition, little has been done to help identifying the
spectrum of proteins that are potentially mimicked by the
plethora of selected peptides, and to aid in the elucidation of
the biological circuits, on which the selection is made. Such
information is particularly interesting for biopanning performed
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in tissues or in vivo, where the complexity of the obtained
repertoires reflects the complexity of the biological process
under investigation.

In this work, we present a novel strategy based on the
identification of proteins containing regions similar to selected
peptides obtained by phage display screening. Through their
binding to their targets, these peptides are supposed to mimic
functional domains of the identified proteins and protein regions.
Indeed, most phage displayed peptide selections are originally
intended to be used to analyze the repertoires resulting from
screenings in complex systems, at least as complex as cell
cultures. The presented strategy integrates furthermore the
analysis of the retained proteins into a biologically meaningful
signal. In contrast to other approaches, PepSimili does not
take into account, in the first steps of analysis, the abundance
of individual peptides in the repertoires. This is due to the
fact that this metric can be greatly affected by the bias of
preferential replication of a phage during amplification and
the abundance of the target in the system under study, both
factors that minimize the interest of its use. However, the
abundance of each peptide is reported for mere convenience, in
the final results.

Computational derivation of a set of proteins, with domains
mimicked by the peptides, can also be helpful for the
identification of the targets against which the peptides were
selected, while studying their natural binders, as described
in interactome databases. In complex systems, for which the
peptides or protein domains were identified by our analysis, with
the intention to be used as targeting tools for the homing of
either therapeutic molecules or imaging agents, it is important
to exclude those reacting with targets on healthy tissues. Usually,
experimental strategies include the selection of peptides in a
system as close as possible to the Test system, to produce a
Control repertoire. In the example presented here, the Test
system being endothelial cells cultured in tumor conditioned
medium, is compared to the Control system being the same cells
cultured in fresh medium. Such experimental design favors the
identification of targeting molecules that would be specific of
the Test system and absent from the Control. Obviously in vivo
selections are preferable, in order to take into account all potential
binding sites of the target molecules, being however far from
trivial to be performed, in many cases.

Any set of random peptides presents similarities with the
peptides of a set of proteins. It is, therefore, important to
be able to evaluate this background noise, which sets an
important informational bias confounding the interpretation,
and subtract it from the signals obtained by a set of selected
peptides, as shown in Supplementary Figure 4. In PepSimili,
this background noise is systematically subtracted from the
signal obtained by the Test repertoire. The approach is
general enough and applicable to other high-throughput systems
that generate massive peptide repertoires and thus necessitate
systematic evaluation and elimination of the background noise.
For instance, recently was reported an integrated bacterial
system for the discovery of chemical rescuers of disease-
associated protein misfolding, which enables massive screening
of cyclic oligopeptides with potential pharmacological action

against neurodegenerative diseases (Matis et al., 2017). In
this system, large combinatorial libraries are biosynthesized in
E. coli cells and simultaneously screened for their ability to
rescue pathogenic protein misfolding and aggregation, using
an ultrahigh-throughput fluorescence-based genetic assay. The
high-throughput assay can generate combinatorial libraries of
up to 108 random peptide sequences. Eventually, coupled with
deep sequencing for acquisition of the expressed sequences
and in vitro validation (Matis et al., 2017), the system derives
repertoires of potentially bioactive peptides orders of magnitude
smaller (102–104). However, further in silico screening of the
oligopeptide repertoires using PepSimili may, on one hand,
dramatically reduce the number of candidate oligopeptides, and
on the other hand provide a rational basis for peptide selection
based on their functional interpretation in terms of impacted
biological mechanisms.

Importantly, our methodology enables a systems-level
interpretation, through streamlined mapping of the selected
mimicked proteins to ontological and pathway networks,
providing actionable insights. The BioInfoMiner module derives
a small set of orthogonal, systemic processes, accompanied by
the respective master regulatory genes linked with a significant
part of them, altogether constituting a biomarker signature
with actionable potential for clinical, therapeutic or diagnostic
processes. Our study demonstrates the efficacy of this integrative
workflow using public Phage Display data. Indeed, the tool
automatically derived and prioritized key regulators and
systemic processes underlying the PDAC pathology. Another
potential application area of our approach is the field of
Metagenomics, where computational platforms are being
constantly developed for analysis, management and annotation
of large-scale sequence data (Kunin et al., 2008; Lugli et al.,
2016; Koutsandreas et al., 2019). Metagenomic analyses generate
massive sequence data, including large amounts of partial or
incomplete peptide sequences, stressing the necessity for more
efficient annotation methodologies. Our approach that combines
massive mapping of peptides to functional networks may enable
a more efficient interpretation of the genomic information in the
metagenomics content.

Finally, PepSimili is presented in a user-friendly environment,
Galaxy, as an integrated tool that performs a complete analysis at
a push of a button. A collection of satellite scripts and workflows
is also provided, to propose tentative discovery paths that can
be followed to complement the actual results, intending to
encourage power users to develop, and share with the community
new tools/scripts, adding to our work. This implementation
facilitates the development of future extensions of the workflow
and, importantly, the adaptation of the methodology to other
high-throughput technologies, as mentioned above.
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Bábíčková, J., Tóthová, Ĺ, Boor, P., and Celec, P. (2013). In vivo phage display —
a discovery tool in molecular biomedicine. Biotechnol. Adv. 31, 1247–1259.
doi: 10.1016/j.biotechadv.2013.04.004

Brinton, L. T., Bauknight, D. K., Dasa, S. S. K., and Kelly, K. A. (2016). PHASTpep:
analysis software for discovery of cell-selective peptides via phage display and
next-generation sequencing. PLoS One 11:e0155244. doi: 10.1371/journal.pone.
0155244

Chatziioannou, A., and Moulos, P. (2011). Exploiting statistical methodologies
and controlled vocabularies for prioritized functional analysis of genomic
experiments: the StRAnGER web application. Front. Neurosci. 5:8. doi: 10.3389/
fnins.2011.00008

Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., et al. (2014).
The Reactome pathway knowledgebase. Nucl. Acids Res. 42, D472–D477. doi:
10.1093/nar/gkt1102

Deutscher, S. L. (2010). Phage display in molecular imaging and diagnosis of
cancer. Chem. Rev. 110, 3196–3211. doi: 10.1021/cr900317f

Dias-Neto, E., Nunes, D. N., Giordano, R. J., Sun, J., Botz, G. H., Yang, K., et al.
(2009). Next-generation phage display: integrating and comparing available
molecular tools to enable cost-effective high-throughput analysis. PLoS One
4:e8338. doi: 10.1371/journal.pone.0008338

Edwards, R. J., Davey, N. E., and Shields, D. C. (2007). SLiMFinder: a
probabilistic method for identifying over-represented, convergently evolved,
short linear motifs in proteins. PLoS One 2:e967. doi: 10.1371/journal.pone.000
0967

Fowler, D. M., Araya, C. L., Gerard, W., and Fields, S. (2011). Enrich: software
for analysis of protein function by enrichment and depletion of variants.
Bioinformatics 27, 3430–3431. doi: 10.1093/bioinformatics/btr577

Fukushima, K., Yamasaki, E., Ishii, S., Tomimatsu, A., Takahashi, K., Hirane,
M., et al. (2015). Different roles of GPR120 and GPR40 in the acquisition
of malignant properties in pancreatic cancer cells. Biochem. Biophys. Res.
Commun. 465, 512–515. doi: 10.1016/j.bbrc.2015.08.050

Giri, A., Bajpai, S., Trenton, N., Jayatilaka, H., Longmore, G. D., and Wirtz, D.
(2013). The Arp2/3 complex mediates multigeneration dendritic protrusions
for efficient 3-dimensional cancer cell migration. FASEB J. 27, 4089–4099. doi:
10.1096/fj.12-224352

Halperin, I., Wolfson, H., and Nussinov, R. (2003). SiteLight: binding-site
prediction using phage display libraries. Protein Sci. 12, 1344–1359. doi: 10.
1110/ps.0237103

Hume, T., Soueidan, H., Wong, J. T., Vekris, A., Petry, K. G., Nikolski, M.,
et al. (2013). Efficient mapping of short peptides on whole proteome database
for biomarker discovery. in Proceedings of the Conference on JOBIM in 2013,
France.

Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992). The rapid generation
of mutation data matrices from protein sequences. Bioinformatics 8, 275–282.
doi: 10.1093/bioinformatics/8.3.275

Kolonin, M. G., Sun, J., Do, K.-A., Vidal, C. I., Ji, Y., Baggerly, K. A., et al. (2006).
Synchronous selection of homing peptides for multiple tissues by in vivo phage
display. FASEB J. 20, 979–981. doi: 10.1096/fj.05-5186fje

Koutsandreas, T., Binenbaum, I., Pilalis, E., Valavanis, I., Papadodima, O., and
Chatziioannou, A. (2016). Analyzing and visualizing genomic complexity for
the derivation of the emergent molecular networks. Int. J. Monitor. Surve.
Technol. Res. 4, 30–49. doi: 10.4018/IJMSTR.2016040103

Koutsandreas, T., Ladoukakis, E., Pilalis, E., Zarafeta, D., Kolisis, F. N., Skretas,
G., et al. (2019). ANASTASIA: an automated metagenomic analysis pipeline
for novel enzyme discovery exploiting next generation sequencing data. Front.
Genet. 10:469. doi: 10.3389/fgene.2019.00469

Kunin, V., Copeland, A., Lapidus, A., Mavromatis, K., and Hugenholtz, P. (2008).
A bioinformatician’s guide to metagenomics. Microbiol. Mol. Biol. Rev. 72,
557–578.

Lugli, G. A., Milani, C., Mancabelli, L., van Sinderen, D., and Ventura, M. (2016).
MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and
annotation. FEMS Microbiol. Lett. 363:fnw049. doi: 10.1093/femsle/fnw049

Mandava, S., Makowski, L., Devarapalli, S., Uzubell, J., and Rodi, D. J. (2004).
RELIC– A bioinformatics server for combinatorial peptide analysis and
identification of protein-ligand interaction sites. Proteomics 4, 1439–1460. doi:
10.1002/pmic.200300680

Massaad, M. J., Ramesh, N., and Geha, R. S. (2013). Wiskott-Aldrich syndrome:
a comprehensive review: wiskott-aldrich syndrome. Ann. N.Y. Acad. Sci. 1285,
26–43. doi: 10.1111/nyas.12049

Matis, I., Delivoria, D. C., Mavroidi, B., Papaevgeniou, N., Panoutsou, S., Bellou,
S., et al. (2017). An integrated bacterial system for the discovery of chemical
rescuers of disease-associated protein misfolding. Nat. Biomed. Eng. 1, 838–852.
doi: 10.1038/s41551-017-0144-143

Moutselos, K., Maglogiannis, I., and Chatziioannou, A. (2011). “GOrevenge: a
novel generic 1reverse engineering method for the identification of critical
molecular players, through the use of ontologies,” in Proceedings of the IEEE
Transactions on Biomedical Engineering, Piscataway, NJ.

Nomura, S., Yoshitomi, H., Takano, S., Shida, T., Kobayashi, S., Ohtsuka, M., et al.
(2008). FGF10/FGFR2 signal induces cell migration and invasion in pancreatic
cancer. Br. J. Cancer 99, 305–313. doi: 10.1038/sj.bjc.6604473

Pasqualini, R., and Ruoslahti, E. (1996). Organ targeting In vivo using phage display
peptide libraries. Nature 380, 364–366. doi: 10.1038/380364a0

Pilalis, E., Koutsandreas, T., Valavanis, I., Athanasiadis, E., Spyrou, G., and
Chatziioannou, A. (2015). KENeV: a web-application for the automated

Frontiers in Physiology | www.frontiersin.org 10 September 2019 | Volume 10 | Article 1160219

https://www.frontiersin.org/articles/10.3389/fphys.2019.01160/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2019.01160/full#supplementary-material
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1038/mtna.2015.4
https://doi.org/10.1038/75556
https://doi.org/10.1016/j.biotechadv.2013.04.004
https://doi.org/10.1371/journal.pone.0155244
https://doi.org/10.1371/journal.pone.0155244
https://doi.org/10.3389/fnins.2011.00008
https://doi.org/10.3389/fnins.2011.00008
https://doi.org/10.1093/nar/gkt1102
https://doi.org/10.1093/nar/gkt1102
https://doi.org/10.1021/cr900317f
https://doi.org/10.1371/journal.pone.0008338
https://doi.org/10.1371/journal.pone.0000967
https://doi.org/10.1371/journal.pone.0000967
https://doi.org/10.1093/bioinformatics/btr577
https://doi.org/10.1016/j.bbrc.2015.08.050
https://doi.org/10.1096/fj.12-224352
https://doi.org/10.1096/fj.12-224352
https://doi.org/10.1110/ps.0237103
https://doi.org/10.1110/ps.0237103
https://doi.org/10.1093/bioinformatics/8.3.275
https://doi.org/10.1096/fj.05-5186fje
https://doi.org/10.4018/IJMSTR.2016040103
https://doi.org/10.3389/fgene.2019.00469
https://doi.org/10.1093/femsle/fnw049
https://doi.org/10.1002/pmic.200300680
https://doi.org/10.1002/pmic.200300680
https://doi.org/10.1111/nyas.12049
https://doi.org/10.1038/s41551-017-0144-143
https://doi.org/10.1038/sj.bjc.6604473
https://doi.org/10.1038/380364a0
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01160 September 23, 2019 Time: 16:33 # 11

Vekris et al. NGS-Phage Display Data Analysis

reconstruction and visualization of the enriched metabolic and signaling super-
pathways deriving from genomic experiments. Comp. Struc. Biotechnol. J. 13,
248–255. doi: 10.1016/j.csbj.2015.03.009

Pilalis, E. D., and Chatziioannou, A. A. (2013). “Prioritized functional analysis of
biological experiments using resampling and noise control methodologies,” in
Proceedings of the 13th IEEE International Conference on BioInformatics and
BioEngineering, (Chania: IEEE).

Pizzi, E., Cortese, R., and Tramontane, A. (1995). Mapping epitopes on protein
surfaces. Biopolymers 36, 675–680. doi: 10.1002/bip.360360513

Reich, L. L., Dutta, S., and Keating, A. E. (2015). SORTCERY–a high–throughput
method to affinity rank peptide ligands. J. Mol. Biol. 427, 2135–2150. doi:
10.1016/j.jmb.2014.09.025

Rodi, D. J., and Makowski, L. (1999). Phage-display technology – finding a needle
in a vast molecular haystack. Curr. Opin. Biotechnol. 10, 87–93. doi: 10.1016/
S0958-1669(99)80016-80010

Schwenk, J. M., Omenn, G. S., Sun, Z., Campbell, D. S., Baker, M. S., Overall,
C. M., et al. (2017). The human plasma proteome draft of 2017: building on
the human plasma peptideatlas from mass spectrometry and complementary
assays. J. Proteome Res. 16, 4299–4310. doi: 10.1021/acs.jproteome.7b0
0467

Smedley, D., Haider, S., Durinck, S., Pandini, L., Provero, P., Allen, J., et al. (2015).
The BioMart community portal: an innovative alternative to large, centralized
data repositories. Nucleic Acids Res. 43, W589–W598. doi: 10.1093/nar/gkv350

Smith, T. F., and Waterman, M. S. (1981). Identification of common molecular
subsequences. J. Mol. Biol. 147, 195–197. doi: 10.1016/0022-2836(81)90087-
90085

Vega, F. M., and Ridley, A. J. (2008). Rho GTPases in cancer cell biology. FEBS Lett.
582, 2093–2101. doi: 10.1016/j.febslet.2008.04.039

Wei, P., Tang, H., and Li, D. (2012). Insights into pancreatic cancer etiology from
pathway analysis of genome-wide association study data. PLoS One 7:e46887.
doi: 10.1371/journal.pone.0046887

Zhang, H., Hylander, B. L., LeVea, C., Repasky, E. A., Straubinger, R. M., Adjei,
A. A., et al. (2014). Enhanced FGFR signalling predisposes pancreatic cancer to
the effect of a potent FGFR inhibitor in preclinical models. Br. J. Cancer 110,
320–329. doi: 10.1038/bjc.2013.754

Conflict of Interest: EP and AC were employed by company eNIOS
Applications P.C.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

The reviewer MV and the handling Editor declared their shared affiliation at the
time of the review.

Copyright © 2019 Vekris, Pilalis, Chatziioannou and Petry. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 11 September 2019 | Volume 10 | Article 1160220

https://doi.org/10.1016/j.csbj.2015.03.009
https://doi.org/10.1002/bip.360360513
https://doi.org/10.1016/j.jmb.2014.09.025
https://doi.org/10.1016/j.jmb.2014.09.025
https://doi.org/10.1016/S0958-1669(99)80016-80010
https://doi.org/10.1016/S0958-1669(99)80016-80010
https://doi.org/10.1021/acs.jproteome.7b00467
https://doi.org/10.1021/acs.jproteome.7b00467
https://doi.org/10.1093/nar/gkv350
https://doi.org/10.1016/0022-2836(81)90087-90085
https://doi.org/10.1016/0022-2836(81)90087-90085
https://doi.org/10.1016/j.febslet.2008.04.039
https://doi.org/10.1371/journal.pone.0046887
https://doi.org/10.1038/bjc.2013.754
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fgene-10-00469 May 23, 2019 Time: 16:45 # 1

TECHNOLOGY REPORT
published: 24 May 2019

doi: 10.3389/fgene.2019.00469

Edited by:
Marco Antoniotti,

University of Milano-Bicocca, Italy

Reviewed by:
Cuncong Zhong,

University of Kansas, United States
Digvijay Verma,

Babasaheb Bhimrao Ambedkar
University, India

*Correspondence:
Aristotelis A. Chatziioannou

achatzi@eie.gr

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology,

a section of the journal
Frontiers in Genetics

Received: 01 November 2018
Accepted: 01 May 2019
Published: 24 May 2019

Citation:
Koutsandreas T, Ladoukakis E,
Pilalis E, Zarafeta D, Kolisis FN,

Skretas G and Chatziioannou AA
(2019) ANASTASIA: An Automated

Metagenomic Analysis Pipeline
for Novel Enzyme Discovery Exploiting

Next Generation Sequencing Data.
Front. Genet. 10:469.

doi: 10.3389/fgene.2019.00469

ANASTASIA: An Automated
Metagenomic Analysis Pipeline for
Novel Enzyme Discovery Exploiting
Next Generation Sequencing Data
Theodoros Koutsandreas1,2†, Efthymios Ladoukakis1,3†, Eleftherios Pilalis1,2,
Dimitra Zarafeta1, Fragiskos N. Kolisis1,3, Georgios Skretas1 and
Aristotelis A. Chatziioannou1,2*

1 Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens,
Greece, 2 e-NIOS Applications PC, Athens, Greece, 3 Laboratory of Biotechnology, School of Chemical Engineering, National
Technical University of Athens, Athens, Greece

Metagenomic analysis of environmental samples provides deep insight into the
enzymatic mixture of the corresponding niches, capable of revealing peptide sequences
with novel functional properties exploiting the high performance of next-generation
sequencing (NGS) technologies. At the same time due to their ever increasing
complexity, there is a compelling need for ever larger computational configurations to
ensure proper bioinformatic analysis, and fine annotation. With the aiming to address
the challenges of such an endeavor, we have developed a novel web-based application
named ANASTASIA (automated nucleotide aminoacid sequences translational plAtform
for systemic interpretation and analysis). ANASTASIA provides a rich environment of
bioinformatic tools, either publicly available or novel, proprietary algorithms, integrated
within numerous automated algorithmic workflows, and which enables versatile data
processing tasks for (meta)genomic sequence datasets. ANASTASIA was initially
developed in the framework of the European FP7 project HotZyme, whose aim was
to perform exhaustive analysis of metagenomes derived from thermal springs around
the globe and to discover new enzymes of industrial interest. ANASTASIA has evolved
to become a stable and extensible environment for diversified, metagenomic, functional
analyses for a range of applications overarching industrial biotechnology to biomedicine,
within the frames of the ELIXIR-GR project. As a showcase, we report the successful
in silico mining of a novel thermostable esterase termed “EstDZ4” from a metagenomic
sample collected from a hot spring located in Krisuvik, Iceland.

Keywords: metagenomics, bioinformatics, next generation sequencing, automated pipelines, systemic biology,
novel enzymes

INTRODUCTION

DNA sequencing techniques have advanced at a prodigious rate during the last decade, attaining
higher yields in conjunction with minimizing costs per sequencing run (Stein, 2010). This
culminates with the advent of next-generation sequencing (NGS) comprising rapid, high-
throughput protocols that generate large amounts of high quality data of deep coverage for only

Frontiers in Genetics | www.frontiersin.org 1 May 2019 | Volume 10 | Article 469221

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00469
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2019.00469
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00469&domain=pdf&date_stamp=2019-05-24
https://www.frontiersin.org/articles/10.3389/fgene.2019.00469/full
http://loop.frontiersin.org/people/637468/overview
http://loop.frontiersin.org/people/181577/overview
http://loop.frontiersin.org/people/26671/overview
http://loop.frontiersin.org/people/363815/overview
http://loop.frontiersin.org/people/375685/overview
http://loop.frontiersin.org/people/8542/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00469 May 23, 2019 Time: 16:45 # 2

Koutsandreas et al. ANASTASIA Framework

a small fraction of the cost of traditional sequencing technologies
(i.e., Sanger). The continuous advancement of NGS techniques
has resulted in a subsequent rapid progress in the field
of metagenomics, revolutionizing the methodologies for in-
depth exploration of the genomic and subsequent enzymatic
content of microbial communities without the need of prior
culturing. This development, however, is bringing up numerous
challenges in the processing of the resulting raw data, thus
rendering the bioinformatic analysis a major bottleneck, in
any metagenomics project (Scholz et al., 2012). The arising
bioinformatic challenges originate from the massive amount
of raw data that NGS techniques generate, but also from
the vast diversity of bioinformatic tools essential for all
gene detection, and annotation tasks that constitute a full
metagenomic analysis pipeline (Kunin et al., 2008). In addition,
the immense demand on computational and storage resources
for such an analysis practically imposes the use of cloud
computing methodologies, so as to ensure its feasibility in
real world datasets (Wilkening et al., 2009). To address
these issues we have developed ANASTASIA (automated
nucleotide aminoacid sequences translational plAtform for
systemic interpretation and analysis), a user-friendly, web-
based, computational infrastructure, which comprises numerous
bioinformatic tools, integrated as modular components of
automated workflows, and which has been explicitly designed to
handle a wide range of metagenomic analyses. This framework is
an extended instance of the Galaxy platform (Goecks et al., 2010),
customized specifically for metagenomics-related bioinformatic
analyses and is linked to a MariaDB database (The MariaDB
Foundation, 2009) server via a Web2py (Pierro, 2010) web
interface, in order to facilitate the efficient management of the
resulting data files. This framework retains all the features of
a classic Galaxy instance thus offering the option of being
a portable solution while enabling its further customization
by integrating additional tools and workflows. ANASTASIA
has been tested extensively in diverse metagenomics datasets,
as it was initially developed to be the core bioinformatics
tool of the EU FP7 project HotZyme1, which targeted to
the exhaustive analysis of metagenomes from thermal springs
(Wohlgemuth et al., 2018), with the scope of evolving into
a stable environment for powerful, and bionformatic analyses
that may support a broad range of metagenomics analysis
tasks. ANASTASIA is certainly the first of its kind platform,
with this level of operational maturity and tested stability, to
provide all-inclusive workflows, handling each part of the long,
and diverse list of steps comprising an exhaustive analysis of
metagenomic data, being at the same time, fully customizable by
its users. In contrast to the limited analytic options and limited
automation offered by other pipelines with the same broader
scope, ANASTASIA’s automated pipelines are able to process
various computational steps, from handling raw sequencing data
to assigning putative function predictions for gene encoding
sequences, or providing powerful functional characterization of
the underlying emerging molecular networks. Based on all the
aforementioned, it is capable of addressing different problems,

1hotzyme.com

like the screening of thermophiles or the systematic screening
of the human microbiome in various infections, as part of the
Hellenic Bioinformatic computational Infrastructure ELIXIR-
GR, which represents the Hellenic node of ELIXIR.

MATERIALS AND METHODS

Design and Implementation
The backbone of the ANASTASIA platform was assigned to
a server by the name “Motherbox” owned by the National
Technical University of Athens (NTUA) that hosted a local
instance of the Galaxy platform. The Motherbox server is
equipped with 64 CPU cores, 512 GB RAM and a total of
7.2 TB disk capacity. The Galaxy installation was performed
by downloading the latest version of the source code from
the Mercurial (Mercurial, 2005) depository2 and running its
startup script (run.sh) in order to automatically download all
dependent Python (The Python Programming Language, 2001)
modules (“eggs”) that are essential. As part of the installation
process, the local MariaDB database server was exploited and
installed on Motherbox and linked to the Galaxy server through
integration of the appropriate custom initialization arguments in
the system configuration file (galaxy.ini) of the platform. The web
accessibility of Galaxy was secured by configuring Motherbox’s
Apache web server (The Apache, 1995) to proxy any requests
to the virtual host motherbox.chemeng.ntua.gr/anastasia_dev/ to
a dedicated port on the server, thus broadcasting the platform
to all external users via the aforementioned web address.
Extra customization to the configuration files of the Galaxy
instantiation to include and specify the bioinformatic tools
and algorithms available after integration in order to become
embedded in ANASTASIA’s front-end list of tools.

Front-End Customization
The ANASTASIA front-end was developed by altering the
graphical user interface (GUI) of the Galaxy platform into a
more intuitive and user-friendly layout. The new GUI, was
based on scripts written in JavaScript (Javascript, 2016) that
modify the typical settings of the homepage layout of the
Galaxy platform and that add several different menu and
submenu buttons, which correspond to distinct categories of
the integrated bioinformatic tools and available workflows. Most
of the tools that were incorporated into the original Galaxy
instance were removed and have been replaced by appropriately
curated and tested tools designed for metagenomic analytical
tasks, such as de novo sequence assembly, open reading frame
(ORF) detection, homology based protein prediction, machine-
learning-based protein prediction, etc. This was accomplished
by developing tuned parser algorithm scripts in Perl (The Perl
Programming Language, 2002) and Python language, as well
as by preparing appropriate configuration files in Extensible
Markup Language (XML) (Extensible Markup Language, 2013)
for each individual tool. In that way, the integration of each tool
was managed by means of a Galaxy-generated GUI (written in

2https://bitbucket.org/galaxy/galaxy-dist/
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XML) that links the necessary input parameters into the parser
script which, in turn, invokes the corresponding executable. The
choice of tools that were installed on the server and integrated
into ANASTASIA was based mainly on three criteria: (1) their
overall performance vs. their computational cost plus resource
demands, (2) their compatibility with the Galaxy platform,
and (3) their user-friendliness (i.e., advanced visualization
functionality, interactive data management in local computers,
such as MEGAN). While the first criterion is important
for tasks, such as contig assembly and sequence similarity
searches, which constitute the computational bottlenecks of
every bioinformatic analysis of sequencing data, the latter
two were the main consideration for less costly parts of the
analysis, but of great importance regarding the quality of the
interpretation. In addition to already established bioinformatic
tools, the novel interface of ANASTASIA was enriched with
in-house algorithms that enable numerous data processing
tasks such as functional analysis and data management among
others (see below).

Data Acquisition
A tool for direct file uploading to the platform was included in the
original Galaxy instance and was kept available as it enables both
access to local data from a user’s personal computer, as well as
data available online via URL. In addition, numerous sequencing
raw data files were linked to ANASTASIA via their directory path
in the Motherbox server e.g., large sequencing datasets from the
HotZyme project. This enables their direct utilization by each
user precluding the creation of additional copies for each analysis.
This became feasible by altering Galaxy’s system configuration
files and may be used for any dataset import on the server,
provided the availability of its directory path.

Sequencing Quality Control
Sequencing quality is expressed based on Phred base calling
algorithm (Ewing et al., 1998), which assigns a quality score
Q to each base, proportional to its error probability P. Each
score is calculated using the formula: Q = −10log10P. The
data from any sequencing experiment generate a second file
containing the scores matching the sequencing reads from the
first one or, more commonly, combine the two in the same
file, i.e., FASTQ format. Any sequencing quality control analysis
requires a tool to parse through the sequencing data files and
according to the user’s specifications either trim or exclude highly
problematic reads. For such a task there are various bioinformatic
solutions (Davis et al., 1998; FastQC, 2010; Fastx Toolkit, 2009;
Pandey et al., 2016), all of which manage to handle the issue
quite rapidly, and memory efficiently (Davis et al., 1998). In
order to enable sequencing quality control in ANASTASIA and
considering the somewhat similar performance of all the above-
mentioned tools, the FASTX toolkit (Fastx Toolkit, 2009) and
FastQC (FastQC, 2010) were chosen for integration as they were
already included in the original Galaxy instance. These tools
were installed on Motherbox server and their corresponding
Galaxy parsers and XML configuration files were preserved in
the final platform.

Taxonomic Analysis
There are two major identification schemes for microbial
species in a metagenomic sample, the first being based on
amplicon sequencing (e.g., 16S rRNA), while the latter on
whole metagenome sequencing (Garrity, 2016). Since this first
version of ANASTASIA is currently dedicated to analyzing
whole metagenome sequencing datasets and as this approach
for taxonomic classification has been proven more efficient
than amplicon sequencing (Escobar-Zepeda et al., 2018), the
appropriate tools had to be considered for integration. The
MEGAN (Huson et al., 2007) software was chosen, due to
its advanced operational features, including both Linux and
Windows support, providing an interactive GUI for further result
visualization and interactive data management on a personal
computer, as well as its potential to be used as a metabolic
pathway analysis tool, exploiting reference databases such as
KEGG (Kanehisa et al., 2017), SEED (Overbeek et al., 2005), and
COG (Tatusov et al., 2000). The tool operates by receiving the
resulting dataset from a sequence similarity search analysis such
BLAST as input, in order to calculate the percentage of each
species present in the sample while yielding summarized results
as visual representations (e.g., bar charts).

De novo Sequence Assembly
One of the major bottlenecks, in terms of execution times and
computational demands, is the assembly of reads into contiguous
sequences (contigs), mostly due to the ever higher throughputs
of NGS technologies, of small read lengths. Consequently, the
sequence assembly methodologies transition from the overlap-
layout-consensus (OLC) algorithms toward De-Bruijn-graph
based paradigms (Li et al., 2012). The choice of the proper
assembler relies on two equally important points: (1) the quality
of the produced assembly and (2) the required computational
resources. Numerous studies have managed to extensively
compare various assemblers either for metagenomic data (van
der Walt et al., 2017; Vollmers et al., 2017) or for single organism
genomic data (Earl et al., 2011; Bradnam et al., 2013) and while
there seems to be a slight advantage of metaSPAdes (Nurk et al.,
2017), in terms of length of the produced contigs, the final choice
for ANASTASIA was Megahit (Li et al., 2015) as it attained
a comparable performance with much smaller computational
resources than the typical configuration of metaSPAdes. The
Velvet (Zerbino and Birney, 2008) assembler was also included
in the final instance because of its popularity, as it provides
visualization options for its assembly via the generation of
afg files and is already included in the repository for Galaxy
tool integration Galaxy Tool Shed3. Both tools were installed
on the Motherbox server and later linked to the platform
via the appropriate changes in Galaxy’s tool configuration file
(tool_conf.xml). Megahit was configured manually via an in-
house XML script integrating it to ANASTASIA.

ORF/Gene Detection
De novo gene detection, while not being significantly challenging
in terms of computational cost, is the most crucial part

3http://toolshed.g2.bx.psu.edu/
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in any analysis oriented toward unearthing novel enzymes
from metagenomic samples. From an algorithmic perspective,
detecting a gene in a large contiguous sequence could
theoretically require only the extraction of the appropriate ORF
as performed by the Getorf tool of the EMBOSS suite (Rice et al.,
2000). Nevertheless the existence of an ORF cannot guarantee
that the specific genomic region is translated as is. For example,
spurious ORFs (Veloso et al., 2005), especially in high GC content
genomes, can often lead to the detection of numerous false
potential gene sequences within the same region. Moreover,
sequence assembly can sometimes be omitted entirely or,
depending on parameter settings, read coverage and abundance
of species, result in shorter contigs that correspond to incomplete
genomes thus rendering potential ORFs undetectable. Various
algorithms (Noguchi et al., 2006, 2008; Rho et al., 2010; Zhu
et al., 2010) have emerged that are dedicated to working with
short sequences (either shorter contigs or even reads) but
as an extensive third-party benchmarking study is yet to be
published, FragGeneScan tool was the choice for integration with
ANASTASIA as it seems to outperform all its predecessors (Rho
et al., 2010). This tool was installed on the Motherbox server
but its wrapper script (run_FragGeneScan.pl) had to be edited,
in the way it produced the output files, in order to be more
compatible with a Galaxy instance that would host numerous
users simultaneously. The approriate XML configuration files for
integration with ANASTASIA were imported by Galaxy Tool
Shed and edited appropriately in order to comply with the
abovementioned changes in the wrapper script.

Protein Function Prediction
In order to predict the putative function of the sequences
retrieved from the ORF/gene detection analysis of the BLAST
suite (Altschul et al., 1990) alignment tools and the HMMER
(Finn et al., 2011) software were installed on the server and
integrated on ANASTASIA by using the publicly available XML
configuration files found in Galaxy’s Tool Shed (Galaxy Tool
Shed, 2005). For the BLASTn and BLASTp tools, which have
been designed to handle nucleotide and amino-acid sequences
respectively, the NCBI-nt, NCBI-nr and UniProt databases were
downloaded on the server and were parsed with the appropriate
BLAST commands (makeblastdb) for immediate use. Moreover,
for the purposes of HotZyme project, code was written in Perl
that enabled the creation and formatting of a BLAST-oriented,
customizable database, which contained all of the annotated
sequences with hydrolytic activities derived from the SwissProt
(Apweiler et al., 2004) database. For the HMMER tool, the
Pfam (Sonnhammer et al., 1997) database was downloaded and
formatted for use with the appropriate commands (hmmpress).
To enrich ANASTASIA’s protein prediction capabilities, we
applied machine-learning based methodologies that enable us
to translate the genomic content of any environmental sample.
These include the installation and integration into ANASTASIA
of the EFICAz (Kumar and Skolnick, 2012) software and of
the PROKKA (Seemann, 2014) pipeline, which, in spite of the
numerous programs, it calls upon to perform a complete analysis,
is introduced to the user as a single tool.

Data Management/ANASTASIA
Knowledgebase Design
To avoid transactional locks generated with the increase of the
platform’s users and to improve overall efficiency, ANASTASIA
was linked to a local MariaDB database on Motherbox by
editing the Galaxy setup configuration file (galaxy.ini). In order
to facilitate the parsing of resulting data (e.g., contig assembly
or BLAST result files), in-house algorithms written in Python
were integrated as tools in the platform. Each Python parser
imports the corresponding data into the MariaDB database on
the Motherbox server and returns it as a dump file allowing the
user to download it and re-import it into their local MariaDB
or MySQL (MySQL, 1995) database server. Additionally, the
parsers designed to handle BLAST results, return FASTA files
with all the sequences from the original dataset that do not return
any alignment hit above the predetermined statistical thresholds.
For the purposes of online inspection and user interaction
with the scope of filtering analysis results, the ANASTASIA
Knowledgebase was developed, a MariaDB database system
that allows users to import their results (as MariaDB/MySQL
dump files) and access them via a Web2py interface. This was
implemented through an in-house tool developed in Python and
integrated into ANASTASIA. This tool creates a new database
schema, where it imports the data and appends the new schema
information in Web2py’s “controller” Python scripts. In this way
the schema is afforded via a user interface, which also contains
all MariaDB query search capabilities for quick and efficient data
manipulation, filtering, and retrieval. The created web interface
is secured via an access control system, which the user has to
apply for in order to get the necessary username and password
credentials from an administrator. The tool generates a unique
id for each database entry, available only to the user, with which
the data can be retrieved at any later time. Each user can access
the knowledgebase either directly from ANASTASIA’s front end
or from the link generated from the tool that includes also the
unique id for their datasets.

Supplementary Tools
Additional tools, based on both published and in-house scripts,
have also been integrated in the platform and perform various
non-trivial tasks such as sequence clustering (Li and Godzik,
2006), sequence translation (Fastx Toolkit, 2009), and data
format management, etc. These tasks have also been incorporated
in the subsequent workflows (see Metagenomic workflows) in
order to format datasets accordingly for optimal utilization in
each different part of the analysis by the respective tool(s).

Metagenomic Workflows
The aforementioned tools have been assembled together as
modules of automated workflows in ANASTASIA that can
handle any type of metagenomic dataset and analysis. These
workflows enable their comprised tools to exchange input
and output data with each other, in order for each one of
them to execute the specific analytical task, automatically,
without any user interference e.g., the gene detection tool
will automatically use the output data from the assembly tool
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and will in turn provide its output data to the BLAST tool
for further annotation. This was made possible by exploiting
Galaxy’s Workflow Canvas, in order to design the sequel of
the various analytical processes, or by simply extracting the
history of each of our past analysis in the HotZyme project
as a complete, and ready to use workflow. These capabilities
of the Galaxy application were retained in ANASTASIA so as
to inherit the users with the capability to create their own
customized workflows on top of the default ones we include.
ANASTASIA comes with default automated workflows that allow
a complete analysis depending on the input data and are named
accordingly. In addition, these workflows might also be fully
customizable if imported to a user’s account, something which
may prove extremely useful and extend their functionality. This
can be exploited for instances on machines with limited resources
where handling computationally intensive parts of the analysis,
e.g., similarity searches via BLAST is essential. The “Starting
From FASTQ Reads” workflow is designed for raw sequencing
reads in FASTQ format as input and includes the following
tasks: (i) quality control by FASTX toolkit; (ii) assembly into
contigs by Megahit; (iii) gene identification by FragGeneScan;
(iv) gene annotation using a combination of BLAST, PROKKA,
HMMER and EFICAZ; (v) visualization of results using in-
house parser scripts that import the annotation results into
the server’s MariaDB database and visualize it via Web2py.
The “Starting From FASTA Reads” workflow has the same
functionality as the one mentioned above but is designed for
FASTA formatted datasets hence omitting the quality control
steps. The “After Assembly” workflow follows all the previous
annotation steps but starting with contig FASTA files as input
i.e., the results of the assembly process. The “Taxonomic and
functional analysis” workflow is designed for detecting the
different microbial populations in a metagenomic sample and
requires as input a FASTA file of raw sequencing reads that
subjects to the following analysis: (i) homology analysis using
BLAST tool against NCBI-nr database, (ii) taxonomic analysis
using MEGAN software. Every workflow consists of tools and
algorithms integrated in ANASTASIA with each and every one
of them being available as a standalone tool for the user to exploit
in customized analyses.

Biotranslator Workflow
Functional enrichment analysis constitutes the foremost
approach to interpret the impact of a set of genes (or gene
products) to the cellular physiology, namely the co-regulation
of distinct cellular mechanisms that gives rise to diverse
phenotypes. Conceptually, it is based on the association of
genes with semantic terms, which refer to molecular pathways,
cellular components, biological mechanisms, or phenotypic
traits. Those terms are predominantly organized in logical
structures, which describe the knowledge of a specific biological
domain (Gross et al., 2016). In order to aid the elucidation of
the biological underpinnings of an unknown gene set, each
term needs to be annotated with genes, and based on prior
inferences of scientific studies. Gene Ontology (Ashburner et al.,
2000), KEGG (Kanehisa et al., 2017), and reactome pathways
(Fabregat et al., 2018) are well-established omnibuses, which

correlate systematically their descriptive terms with genes
by following a hierarchical structure of deductive steps and
constructing the appropriate framework for the functional
enrichment analysis. However, as the scientific community is
mainly focused on organisms of traditional biomedical interest,
they produce electronically, and manually curated annotations
only for a limited organismal spectrum, including human,
mouse, other model organisms and some specific bacteria, which
are a negligible ratio of the whole prokaryotes’ kingdom.

Nowadays, various tools and software are used for the
functional enrichment analysis of significant gene lists, derived
from -omics experiments. Their core computational process
consists of over representation of statistical tests and p-value
correction approaches, in order to minimize the amount of
false positives. The StRAnGER algorithm (Chatziioannou and
Moulos, 2011) applies a non-parametric procedure, targeting
to mitigate experimental and annotation noise by filtering out
any trivial and non-informative term and reveal system-level
terms, which reflect the underlying components of the examined
phenotype. As a result, it translates the individual genes, through
the aforementioned vocabularies, to a restricted list of prioritized
terms, which could be depicted as a broad network of functional
of phenotypic entities.

This network represents a descriptive snapshot of the
biological problem under investigation, incapable to condense
the interpretation to few precise markers. GOrevenge (Moutselos
et al., 2011) has been developed to surpass that limitation of
functional enrichment analysis, aiming to propose potential
regulatory hub genes or gene products, or even further putative
marker signatures, related to the ranked set of over-represented
terms. It uses graph-theoretical methods, exploiting the graphical
structure of the controlled databases, such as the direct acyclic
graph of GO, to detect cross-linked entities, which take part
in many topologically distinct nodes of the graph. In this way,
the output of an omic experiment may result to a compact
list of prioritized genes or proteins, without the use of prior
knowledge, or human supervision (i.e., phenotype related seed
sets or keywords), reducing problem dimensionality to a succinct
set of features.

As our motivation here was to provide automated solutions
for the functional description of microbial communities, the
aforementioned approaches sought adaptive adjustments.
A common processing of metagenomic raw data correlates the
detected ORFs with known sequences or protein domains, based
on sequence alignment algorithms. The functional interpretation
could rely on those sequence similarity predictions. Besides the
debatable assumption that sequence similarity implies or not
functional relevance (Gerlt and Babbitt, 2000), the overriding
problem is that the existed functional enrichment analysis tools
use organism-specific data, in contrast to the fundamental
concept of metagenomics studies. Metagenomics explore
the microbial communities as a unified entity, endeavoring
to detect and decipher the synergistic mechanisms that
cause community homeostasis or other biotechnologically
interesting features (such as thermostability and resilience to
acid environments). As a result, an appropriate functional
enrichment analysis tool needs to take into account all the
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available functional annotation of the prokaryotic world,
combined in a unified database.

UniProt-SwissProt knowledgebase (Apweiler et al., 2004)
includes manually curated descriptions of more than 350k known
proteins from the prokaryotic world. To overcome the existence
of organism-specific databases, such as Escherichia coli or Bacillus
subtilis, we exploited the whole mapping of UniProt-SwissProt
knowledgebase. We combined data from different organisms
(bacteria and archaea), related to gene products and GO terms
associations and producing a unified schema for GO. All amino
acid sequences, which originated from the same gene in different
organisms, were conceptually clustered together, combining their
functional annotations to produce a unified gene – GO terms
mapping. In order to eliminate the annotation bias of extensively
studied prokaryotes, infrequent associations were filtered out.
The relative frequency of each gene – GO term pair was calculated
as the ratio of organisms which include that pair in their mapping
to all the organisms, which contain that gene in their DNA. Gene-
specific distributions of relative frequencies were constructed so
that every pair with value lower than the respective distribution
median was excluded from the final annotation schema. The
output graphs of GO constitute a global description of biological
processes, cellular components and molecular functions that exist
in the prokaryotic kingdom and are correlated with at least one
gene, independently of taxonomic details. Such an ensemble of
annotations could be used for the biological interpretation of
microbial communities, regardless their population distribution,
and taxonomic profile.

Summarizing, in the framework of the ANASTASIA platform,
a new workflow was developed, named BioTranslator, for
the functional interpretation of metagenomic data, which
encompasses sequential computational steps, and adapted to the
particularities of input data. In order to analyze a metagenomic
sample, the user is able to import either a BLASTp output
(specific tabular format and executed on the SwissProt database)
or a list of gene symbols, derived from previous analytical
tasks. Targeting the detection of the most trustworthy BLAST
hits, BioTranslator adopts strict alignment criteria, filtering out
matches with query coverage lower than 90% or subject coverage
lower than 50% while taking into consideration a user-defined
threshold about the hits’ e-value. The best hit of each query is
kept and UniProt IDs are translated into the respective gene
symbols. Regardless of the initial input, StRAnGER performs
the functional enrichment analysis of genes list and derives a
set of statistically significant terms, as they are described in the
three GO domains. The user defines the domain which will be
used for the prioritization of genes. Hence, GOrevenge uses the
enriched part of that domain in order to exploit its topological
characteristics and disclose the most critical genes that could be
assumed as the master regulators, bearing a part of causality of
community features.

Application of ANASTASIA
Automated nucleotide aminoacid sequences translational
plAtform for systemic interpretation and analysis was
exhaustively tested in various aspects, during the HotZyme
project where it was mainly used to store, manage and annotate

metagenomic sequencing data, taken from eight remote hot
springs around the world (Menzel et al., 2015), in order to
detect novel thermostable enzymes of industrial interest.
The first beta version of the platform was installed on a
server of the University of Copenhagen named “Helios” and
provided access both to the data and to the annotation tools
in order to predict sequences that correspond to thermostable
enzymes of potential hydrolytic activity which could be
verified in the lab at a later point. In this first version, during
the development of its various automated workflows and
corresponding modules, we exploited each integrated algorithm
to run our first analyses of the samples, which, in turn, resulted
in the detection of various novel enzymes exhibiting enhanced
thermostability (Zarafeta et al., 2016a,b). The final version
of ANASTASIA was fed again with pre-existing data for
another iteration of the analysis but this time via its automated
workflows of fined-tuned algorithms (supplied with default
parameters for optimal performance) and resulted in the
detection of an additional novel enzyme, termed EstDZ4, as
described below.

Identification of the estDZ4 Gene
The raw sequencing data from each sample of the HotZyme
project were imported in the server Helios of the University of
Copenhagen and were linked to ANASTASIA, thus making it
directly available both for download and analysis via its integrated
tools and workflows. Sequencing assembly was performed
(Menzel et al., 2015) from University of Copenhagen and
resulting contig datasets were also imported in ANASTASIA
for further analysis. The selection of the sequence of estDZ4 as
a candidate gene encoding a protein with putative esterolytic
activity occurred through the application of the “After assembly”
workflow on the assembly data of the sample Is3-13 originating
from a high temperature pool (90◦C/pH 3.5–4.0) in Krisuvik,
Iceland (Menzel et al., 2015). The assembly dataset of the
Is3-13 sample was 29.8MB in size and consisted of 34.651
contigs originating from 10,050,000 raw reads. Running time
on the Motherbox server (512GB RAM, 64CPUs) for the same
workflow, using the above-mentioned dataset, lasted 24 h,
54 min, and 20 s with the major bottlenecks being, as expected,
the similarity searches to the locally downloaded databases of
NCBI-nr (15 h, 27 min, and 50 s) and Pfam-A (7 h, 27 min,
and 34 s). The results were downloaded as sqldump files and
examined on MySQL workbench where the sequence for EstDZ4
was chosen for further curation. EstDZ4 was chosen because
it exhibited 99% identity (query coverage 98%) to a putative
esterase/lipase from Thiomonas sp.CB3 [GenBank: CQR41430.1]
in NCBI-nr but only 23% identity (query coverage 84%) to a
previously characterized GDSL esterase/lipase from Arabidopsis
thaliana [UniProtKB/Swiss-Prot: Q9FIA1.1]. Futhermore, it was
predicted to contain a GDSL-like Lipase/Acylhydrolase catalytic
domain from Pfam-A database.

The representative (non redundant) putative gene sequences
detected from the initial steps [FragGeneScan and CD-HIT (Li
and Godzik, 2006)] of the above mentioned pipeline were used
as input in the BioTranslator workflow, producing the pathway
analysis results in a total of 36 min and 5 s. Once again, the
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similarity search analysis (BLASTp against a customized database
containing only the prokaryote entries from SwissProt) was the
major bottleneck requiring a total 31 min and 37 s.

Cloning, Purification, and Biochemical
Characterization of EstDZ4
Construction of the pASK-EstDZ4 plasmid was carried out
by amplifying estDZ4 from the isolated metagenomic DNA by
polymerase chain reaction (PCR) using primers containing an
XbaI site (5′- AAAAATCTAGAAGGAGGAAACGATGTCCGT
GGCGAGTGTGAATTCGGCC-3′) and an XhoI site along
with octahistidine tag (5′- AAAAAACTCGAGTTAGTGGTGGT
GGTGGTGGTGGTGGTGTTGCGAAATCCAGCCAAAACCC-
3′) (restriction sites underlined, octahistidine tag doubly
underlined). The forward primer was designed so as not to
include amino acids 1–38, which were predicted to correspond
to a signal sequence according to HMMER analysis. The PCR
product was cloned into the expression vector pASK75 (Skerra,
1994). E. coli Origami 2 (DE3) (Novagen) cells were transformed
with pASK-EstDZ4, grown in 5 ml of Luria-Bertani (LB) medium
containing 100 µg/ml ampicillin at 37◦C with shaking until the
culture reached an optical density at 600 nm (OD600) of 0.5, at
which point 0.2 µg/mL anhydrotetracycline (aTc) were added
to induce estDZ4 overexpression. The cells were collected, lysed
by brief sonication and the clarified lysates were used to run a
zymogram as described before (Zarafeta et al., 2016b). Briefly, the
gel was rinsed in distilled water and incubated for 30 min at 37◦C
in 0.1% Fast Red TR-salt (4-chloro-2-methylbenzenediazonium
salt) in 0.1 M Tris–HCl buffer (pH 7.0) containing 2% of a
1% (v/v) 1-naphthyl acetate solution in acetone. Esterolytic
activity was visualized by the appearance of a band of
red-brown color.

For EstDZ4 purification, Origami 2 (DE3) cells carrying the
pASK-EstDZ4 plasmid were grown as described above, and the
induction of estDZ4 overexpression was performed by overnight
incubation at 25◦C with shaking. The cells from a 500 mL
culture grown in a 2 L shake flask were harvested, washed,
re-suspended in 10 mL equilibration buffer enhanced with 1%
Triton X-100 (v/v) and lysed by brief sonication steps on ice.
The cell extract was clarified by centrifugation at 10,000 × g
for 15 min at 4◦C and the supernatant was collected and mixed
with 0.5 mL Ni-NTA agarose beads (Qiagen – Hilden, Germany)
and agitated mildly for 1 h at 4◦C. The mixture was then loaded
onto a 5 mL polypropylene column (Thermo Fisher Scientific –
Waltham, United States), the flow-through was discarded, and
the column was washed with 10 mL of NPI20/ Triton wash
buffer followed by a second wash with non-Triton-enriched
NPI20. EstDZ4 was eluted using 1 mL of NPI200 elution buffer.
All buffers used for purification were prepared according to
the manufacturer’s protocol (Qiagen – Hilden, Germany) unless
stated otherwise. EstDZ4 was further purified by size-exclusion
chromatography (SEC) using a Superdex75 10/300GL column
(GE Healthcare, United States).

Protein concentration was estimated according to the assay
described by Bradford (Bradford, 1976) using bovine serum
albumin as a standard. The purified protein was visualized

by SDS-PAGE analysis and staining with Coomassie blue
or western blotting using an anti-polyhistidine monoclonal
antibody conjugated with horseradish peroxidase (Sigma –
St. Louis, MO, United States).

The catalytic activity of EstDZ4 was determined by
quantification of the amount of p-nitrophenol (pNP) released
from pNP ester substrates by photometric measurement at
410 nm. Unless stated otherwise, the 100 µL standard reaction
mixture consisted of 25 mM phosphate buffer pH 6.5 enriched
with 0.05% Triton X-100 (v/v), 2 mM pNP-octanoate and
1 µg/mL of pure enzyme, and was carried out for 5 min at 75◦C
on a MJ Research thermal cycler, with a pre-incubation setting
of the buffer to the target temperature, before the enzyme was
added. Enzymic activity was recorded using a Safire II-Basic
plate reader (Tecan, Austria) by measuring the absorbance of
the released pNP at 410 nm, immediately after the reaction
was completed. For the substrate specificity experiments, a
range of different pNP-fatty acyl esters, such as acetate (C2),
butyrate (C4), octanoate (C8), decanoate (C10), laurate (C12),
and palmitate (C16) were used in the standard reaction. For
the determination of the enzyme’s optimal pH, reactions were
carried out at 40◦C in 25 mM acetate, phosphate, Tris–HCl and
glycine-NaOH buffers for pH values 4–6, 6–7, 7–9, and 9–10,
respectively. Activity was measured by recording absorbance
at 348 nm, the isosbestic point of pNP, so as to exclude the pH
effect on the readings. Temperature profiling of EstDZ4 was
performed by incubating the standard reaction at temperatures
ranging from 25 to 70◦C. Thermostability experiments were
conducted by incubating the enzyme at high temperatures for
prolonged time periods and subsequently measuring its activity
in the standard reaction.

RESULTS AND DISCUSSION

Development of ANASTASIA and
Stand-Alone Portability
Automated nucleotide aminoacid sequences translational
plAtform for systemic interpretation and analysis was developed
as a user-friendly, web-based, computational pipeline, aiming
to address numerous and diversified series of metagenomic
analysis tasks for the massive characterization of a broad
constellation of bacterial metagenomes. For this scope it
integrates numerous bioinformatic tools (Figures 1, 2), as
components of automated workflows (Figure 3) designed to
handle a wide range of processing tasks. In contrast to the limited
versatility and automation capacity of other metagenomic
pipelines, ANASTASIA’s automated workflows are tackling
various processing steps, from the handling of raw sequencing
data to the putative function predictions for gene encoding
sequences and the powerful functional characterization of
the underlying emerging molecular networks (Figure 4).
ANASTASIA can address different scenarios, from the screening
of thermophiles to the systematic screening of the human
microbiome in various infections, as part of the Hellenic
Bioinformatic computational Infrastructure ELIXIR-GR, which
represents the Hellenic node of ELIXIR. Below, as a showcase of
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FIGURE 1 | The original Galaxy front end.

FIGURE 2 | The customized front page of ANASTASIA framework with (1) the main menu buttons and (2) the submenu of “Assembly” suite of tools. The submenu
consists of 4 tools that handle NGS assembly from reads to contigs and a tool that imports the output assembly data into a MariaDB database.

the practical utility of ANASTASIA as an efficient platform for
data-driven discovery, we report the successful in silico mining of
a novel thermostable esterase, termed EstDZ4, as a result of the
exhaustive analysis of a metagenomic sample taken from a hot
spring located in Krisuvik, Iceland.

Access to ANASTASIA and its tools is possible either via
the publicly available server4 or as a local bundle installation

4http://motherbox.chemeng.ntua.gr/anastasia_dev/

after download by executing a Bash script5. The script,
which works in any Linux platform, performs the following
actions: (i) automatically downloads the most recent (without
compatibility issues) Galaxy instance; (ii) assigns a MariaDB
database for this instance; (iii) builds the ANASTASIA interface
and configures the web server for online viewing of the platform;
(iv) downloads the customized tools and integrates them in

5https://bitbucket.org/TYRANISTAR/anastasia/
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FIGURE 3 | Galaxy’s Workflow Canvas.

ANASTASIA; (v) downloads any essential databases needed for
the tools (NCBI-nr, nt, UniProt, etc.) to operate and formats
them accordingly to be usable (e.g., makeblastdb tool for creating
BLAST-able databases) and (vi) runs the Galaxy startup script (sh
run.sh) in order for ANASTASIA to activate.

Discovery and Biochemical
Characterization of EstDZ4
Automated nucleotide aminoacid sequences translational
plAtform for systemic interpretation and analysis was used to
analyze the metagenomic DNA of the Is3-13 sample originating
from a high temperature pool (90◦C, pH 3.5–4.0) in Krisuvik,
Iceland (Menzel et al., 2015) described above. From this analysis,
a specific sequence was selected for further investigation as
a proof of concept for the ability of the platform to identify
new enzymes. The selected sequence, named EstDZ4, was
predicted to encode a 454-amino acid protein with a predicted
molecular mass of 46.3 kDa. According to a BLAST analysis
against the SwissProt/Uniprot database containing characterized
proteins, EstDZ4 presented 23% identity (query coverage
84%) to a previously characterized GDSL esterase/lipase
from A. thaliana [UniProtKB/Swiss-Prot: Q9FIA1.1] (Cheng
et al., 2017) and a 99% identity (query coverage 98%) to a
putative lipase/esterase from Thiomonas sp.CB3 [GenBank:
CQR41430.1]. The same analysis assigned the protein to the
Triacylglycerol lipase-like subfamily of the SGNH hydrolases
[NCBI Conserved Domains Datatabase accession number:
cl01053 (Marchler-Bauer et al., 2017)], which is a diverse family
of lipases and esterases. Sequence analysis against the Pfam-A
database using HMMER predicted that the sequence contains
a GDSL-like Lipase/Acylhydrolase catalytic domain spanning

amino acids 61-442, as well as a signal peptide (amino acids
1-38). Further examination with EFICAz assigned a putative
esterolytic activity to the sequence, according to its EC number
prediction (3.1.1.).

The estDZ4 gene was amplified by PCR from the Is3-
13metagenomic DNA sample and was cloned (after excluding
the predicted signal peptide) into the plasmid pASK75 (Skerra,
1994) to form the vector pASK-EstDZ4. E. coli Origami 2 (DE3)
cells were transformed with pASK-EstDZ4 and the recombinant
protein was produced as described in the Section “Materials
and Methods.” To examine the putative esterolytic activity of
EstDZ4, a zymogram analysis was performed using clarified
lysates of cells producing the recombinant protein and cells
carrying an empty vector. Following the separation of the
proteins contained in the clarified cell lysates by native PAGE,
the gel was exposed to 1-naphtyl acetate as a potential substrate
for ester hydrolysis and stained with Fast Red. Immediately
upon staining, a band of red-brown color appeared only for
the EstDZ4-producing sample (Figure 5A), thus indicating that
EstDZ4 is an esterolytic enzyme.

EstDZ4 was then purified in soluble form by immobilized
metal affinity chromatography (IMAC) followed by SEC (data not
shown) and pure protein was used for all subsequent biochemical
characterization experiments. Substrate specificity of the new
esterase was evaluated by performing enzymic reactions using
pNP esters of fatty acids of various lengths as substrates in
the standard reaction. As shown in Figure 5B, EstDZ4 exhibits
esterolytic activity against small and medium chain lengths (C2–
C12), with an apparent preference for pNP-octanoate.

Assaying the esterolytic activity of EstDZ4 within the pH
range of 4–10 at 40◦C using pNP-octanoate as the substrate,
revealed that the optimal pH for the new enzyme is pH 6.5
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FIGURE 4 | BioTranslator workflow. (1) User could start the analysis with a pre-defined gene list, or sequence similarities derived from Blastp analysis. (2) Blastp
results are filtered if the initial input is the respective tabular file. (3) Pathway analysis and master regulators detection are based on BioTranslator core algorithms.
(4) Final outputs of BioTranslator analysis.

(Figure 6A). Measurements of its relative catalytic activity at
different temperatures, on the other hand, showed that EstDZ4
has a broad temperature range of action as it retains high levels
of esterolytic activity at temperatures between 40 and 85◦C,
with an optimal temperature of action at 75◦C (Figure 6B).
In order to evaluate the thermostability of EstDZ4, the enzyme
was incubated for prolonged time periods in high temperatures
and its residual activity was measured. As shown in Figure 6C,
EstDZ4 exhibited a half-life of ∼5 h when exposed to 80◦C, and
even after 24 h of incubation at 70 and 75◦C, the enzyme retained
more than 40% of its initial activity, demonstrating that EstDZ4
is a highly thermostable esterase.

Novelty of EstDZ4
The characterization of EstDZ4 as a novel enzyme does not
imply the discovery of a new biological catalytic reaction or
a new microbial species (although it might very well have
originated from one) but derives from the fact that an enzyme
that had not been described before (only 23% similar to its closest
characterized entry in UniProt/Swissprot database) was isolated
from a vast gene pool of numerous different microbial species
originating from the same environmental sample. Bioinformatic-
based predictions concerning enzymatic function are based
either on the entirety of the sequence or on smaller conserved
motifs (e.g., protein domains) of already known enzymes so
the discovery of a totally novel enzymatic activity is a rather
unachievable task if tackled solely by in silico approaches.
However, these approaches remain the cornerstone of such
an endeavor as their lists of potential enzymes provide the

starting point for further curation via wet lab protocols. Such a
curation aims not only to confirm each gene product’s predicted
enzymatic function and to pinpoint its optimum conditions
(temperature, pH, etc.) but also to search for new additional
putative target substrates, potentially uncovering novel enzymatic
activities. Similarly, a novel species cannot be determined with
100% certainty only by the bioinformatic paradigm, although
several strategies have emerged (Droge and McHardy, 2012). In
order to discover and properly characterize a new species, prior
culturing is needed but this is not usually possible for most of
the microbial species in an environmental niche. Nevertheless,
this is exactly the type of issue that ANASTASIA’s pipelines
aim to bypass. Detecting novel gene products, such as EstDZ4,
from metagenomic samples whose species cannot be cultured
and assigning functional properties to these sequences is one
of the many different objectives of this platform. The choice of
metagenomic sample to mine for enzymes of potential interest is
equally important. One of the key features of EstDZ4 that makes
it highly interesting is its thermostability which can be attributed
to the physical properties of the site where the metagenomic
material was sampled from.

Comparison of ANASTASIA With Other
Metagenomic Solutions
The idea of building automated workflows for metagenomic
analysis is not a new one and there is a number of older
(Ladoukakis et al., 2014) and newer solutions available (Kultima
et al., 2016; Lugli et al., 2016). Most of these solutions, however,
represent mostly academic compilations, requesting from their
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FIGURE 5 | Confirmation of EstDZ4 esterolytic activity. (A) Detection of EstDZ4 esterolytic activity via native PAGE analysis and Fast Red staining using 1-naphthyl
acetate as a substrate. L1, clarified lysate of cells overexpressing estDZ4; L2, clarified lysate of cells carrying an empty vector. (B) Substrate profiling of the esterolytic
activity of EstDZ4, using purified enzyme. The relative enzymic activity was measured as released pNP at 410 nm (pH 7, 40◦C). The reported values correspond to
the mean value of three independent experiments performed in triplicate and the error bars to one standard deviation from the mean value. Assaying the esterolytic
activity of EstDZ4 within the pH range of 4–10 at 40◦C using pNP-octanoate as the substrate, revealed that the optimal pH for the new enzyme is pH 6.5
(Figure 6A). Measurements of its relative catalytic activity at different temperatures, on the other hand, showed that EstDZ4 has a broad temperature range of action
as it retains high levels of esterolytic activity at temperatures between 40–85◦C, with its optimal temperature of action being at 75◦C (Figure 6B). In order to evaluate
the thermostability of EstDZ4, the enzyme was incubated for prolonged time periods in high temperatures and its residual activity was measured. As shown in
Figure 6C, EstDZ4 exhibited a half-life of ∼5 h when exposed to 80◦C, and even after 24 h of incubation at 70 and 75◦C, the enzyme retained more than 40% of its
initial activity, demonstrating that EstDZ4 is a highly thermostable esterase.

FIGURE 6 | Biochemical properties of EstDZ4. (A) Effect of pH on EstDZ4 activity. Enzymic activity was measured in the standard reaction, at pH values ranging
from 4 to 10, using the indicated buffers. (B) Effect of temperature on EstDZ4 activity. Enzymic activity was measured at temperatures ranging from 40 to 95◦C in the
standard reaction. (C) Thermostability of EstDZ4 was evaluated by measurements of its esterolytic activity in the standard reaction after exposure to 75, 75, 80, and
85◦C for up to 24 h. The reported values correspond to the mean value from three independent experiments performed in triplicate and the error bars to one
standard deviation from the mean value.
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users a varying degree of familiarity with (bio)informatics
programming/scripting, in order to be able to install, execute,
and properly parse their resulting datasets since they operate
only via Linux command line (Li, 2009; Treangen et al., 2013;
Kultima et al., 2016), and some of them even comprise tools or
workflows that focus only on specific parts of the metagenomic
analysis (see Table 1). A very recent example is another galaxy-
based platform: ASAIM (Batut et al., 2018), which includes
integrated tools for every part of a complete metagenomic
analysis from sequence assembly to sequence annotation but
its automated workflows don’t include most of them as they
mainly focus on taxonomic and functional analysis, leaving the
task of novel enzyme mining up to the user’s experience in
dealing with the rest of stand-alone tools. Even the Galaxy
platform, which ANASTASIA has based its development on, has

a limited arsenal of integrated tools for metagenomic analysis
on its official public server6 and it requires an experienced user
to download and install the platform in order to customize
it accordingly for a complete analysis. On the other hand
ANASTASIA offers an all-inclusive set of tools and automated
workflows (Figure 7) tuned to be used to tackle each separate task
of a metagenomic study, from assembling raw sequencing reads
to fully annotating and predicting the function of the gene coding
sequences derived from each sample. In addition our platform
can be easily used even by the most inexperienced researcher, as
it is available on a public server (motherbox.chemeng.ntua.gr)
via an intuitive graphic user interface and offers built-in
ready-to-use automated workflows with default parameters that

6https://usegalaxy.org/

TABLE 1 | Comparison of current bioinformatic pipelines for metagenomic data analysis with ANASTASIA.

PPPPPPTasks
Pipeline

Quality
control

Assembly Gene
detection

Functional
annotation

Taxonomic
analysis

Data management
system

Graphical
user interface

Customizable

CloVR-metagenomics x x X X X X X x

Galaxy platform X x x x X x X x

IMG/M x x X X X X X x

MetAMOS X X X X X x x x

MG-RAST X x X X X X X x

RAMMCAP x x X X X x x x

SmashCommunity X X X X X X x x

MOCAT2 X X X X X x x x

MEGAnnotator X X X X x x x x

ASAIM X X X X X x X X

ANASTASIA X X X X X X X X

FIGURE 7 | Summary of ANASTASIA’s workflows.
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can handle most type of datasets. This setup also includes
the online data management system mentioned before,
that allows the user to manually access and curate the
otherwise hard-to-handle resulting datasets from an analysis.
In accordance with most command-line pipelines and
its Galaxy predecessor, ANASTASIA can also be locally
downloaded, installed in any Linux system and even be
further customized by highly proficient, bioinformatic,
power users providing the same graphic user interface and
data management system as on the public server. Table 1
demonstrates the strengths of the platform in comparison
with the most common open-source metagenomic pipelines
already available.

CONCLUSION

Sequencing technologies have emerged to become an
indispensable tool for metagenomics revolutionizing the ways,
through which we can probe an environmental niche and
extract more inclusive information about its genomic content
for an ever decreasing cost. This evolution however, is followed
by the immense increase of the generated amount of data
and the need for numerous different bioinformatic tasks,
which are essential for its complete annotation. Here, we
present a powerful solution to these issues, the ANASTASIA
platform. ANASTASIA is a portable web repository for large
metagenomic datasets, providing automatic, bioinformatic
workflows for data handling, and major annotation tasks via a
friendly GUI. ANASTASIA functions as an intuitive and easily
accessible tool, both for biologists and other users needing
to store, manage and fully annotate very large metagenomic
datasets, as those generated and compiled during the HotZyme
project, where it was utilized for the exhaustive analysis
of sequencing data from various metagenomic samplings
around the world. ANASTASIA, as an automated analytical
platform, represents a stable and well tested environment
for the future integration of families of newer and faster
algorithms, addressing diverse bioinformatic tasks emerging as
pressing needs in current, ever-increasing in complexity, and
metagenomic studies.
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Although massive amounts of condition-specific molecular profiles are being

accumulated in public repositories every day, meaningful interpretation of these data

remains a major challenge. In an effort to identify the biomarkers that describe the key

biological phenomena for a given condition, several approaches have been developed

over the past few years. However, the majority of these approaches either (i) do not

consider the known intermolecular interactions, or (ii) do not integrate molecular data

of multiple types (e.g., genomics, transcriptomics, proteomics, epigenomics, etc.), and

thus potentially fail to capture the true biological changes responsible for complex

diseases (e.g., cancer). In addition, these approaches often ignore the heterogeneity

and study bias present in independent molecular cohorts. In this manuscript, we

propose a novel multi-cohort and multi-omics meta-analysis framework that overcomes

all three limitations mentioned above in order to identify robust molecular subnetworks

that capture the key dynamic nature of a given biological condition. Our framework

integrates multiple independent gene expression studies, unmatched DNA methylation

studies, and protein-protein interactions to identify methylation-driven subnetworks.

We demonstrate the proposed framework by constructing subnetworks related to

two complex diseases: glioblastoma and low-grade gliomas. We validate the identified

subnetworks by showing their ability to predict patients’ clinical outcome on multiple

independent validation cohorts.

Keywords: multi-cohort, multi-omics, meta-analysis, subnetwork identification, GBM, LGG

1. INTRODUCTION

Due to the rapid advances in high-throughput technologies, massive amounts of biological data are
currently available in public repositories for many diseases. These biological data include various
omics profiles such as genomic, transcriptomic, metabolomic, and proteomic data, each of which
describes different aspects of cellular mechanisms. Understanding the mechanism of action for a
given disease from these vast resources and subsequently identifying reliable biomarkers that can
predict the patients’ clinical outcome has become a major challenge.

Over the last decade, the number of disease-specific biomarkers reported by different research
groups has increased exponentially. However, biomarkers obtained from different studies of the
same condition often show very poor agreement with each other (Ein-Dor et al., 2006). As a result,
only a few of the proposed biomarkers are currently in clinical use (Burke, 2016). One of the
primary reasons for this reproducibility crisis is that many of the conventional biomarker discovery
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methods simply rely on selecting a list of candidate genes based
on their differential expression across the given phenotypes
(disease vs. normal, treated vs. non-treated, subtype A vs.
subtype B, etc). Better results can be obtained by utilizing gene
interaction data that became available with the introduction
of publicly available sources such as pathway knowledge
databases [e.g., KEGG (Ogata et al., 1999; Kanehisa and
Goto, 2000), Reactome (Matthews et al., 2009)] or protein-
protein interaction databases [e.g., HPRD (Peri et al., 2003),
STRING (Szklarczyk et al., 2016)].

Numerous computational methods have been proposed
that aim to address the above-mentioned challenge by
integrating known interactions between the genes and
subsequently identifying network-based markers using different
strategies. For instance, PinnacleZ (Chuang et al., 2007) and
DIAMOnD (Ghiassian et al., 2015) use greedy algorithm-
based techniques; jActiveModules (Ideker et al., 2002) and
COSINE (Ma et al., 2011) utilize evolutionary algorithms;
HotNet (Vandin et al., 2011) and ResponseNet (Lan et al., 2011)
use diffusion-flow based techniques; EnrichNet (Glaab et al.,
2012) employs random walk algorithms; etc. These network-
based approaches have been reviewed elsewhere (Mitra et al.,
2013; Nguyen T. et al., 2018). It has been demonstrated in
various disease conditions [e.g., breast cancer (Chuang et al.,
2007), colorectal cancer (Shi et al., 2012; Shafi et al., 2015), and
ovarian cancer (Jin et al., 2015)] that network-based markers
are more reproducible and reliable for predicting patients’
clinical outcome than individual gene biomarkers. Although
somewhat useful, the majority of these methods construct their
networks using only one transcriptomic experiment. Therefore,
they are unable to account for the heterogeneity that may
arise due to the biological and technical variabilities present in
independent studies of a given disease (Drăghici et al., 2006;
MAQC Consortium, 2006).

In order to account for the data heterogeneity present in
the individual studies, several meta-analysis approaches have
been proposed over the past years. These can be divided into
two main categories. The approaches in the first category
use multiple sample-unmatched studies of the same data type
(e.g., mRNA) and aim to identify robust gene signatures
that can distinguish disease-affected individuals from the
healthy ones. These approaches include classical p-value-based
approaches (Fisher, 1925; Stouffer et al., 1949; Nguyen et al.,
2016c), modern effect-size-based approaches (Haynes et al.,
2017) and rank aggregation-based approaches (Pihur et al., 2009).
However, these approaches may not be suitable for revealing
the mechanism of action for a given disease since they do not
account for the heterogeneity that is present across multiple data
types (mRNA, miRNA, DNA methylation, etc.). The approaches
in the second category combine sample-matched studies from
multiple data types and provide biomarkers that can capture
data heterogeneity present across the omic layers. Integrating
such information from multiple data types is essential for
obtaining a comprehensive overview of the given biological
system and thought to provide better prognostic markers (Berger
et al., 2013; Kristensen et al., 2014; Nguyen et al., 2016b).
For instance, it has been shown that integrating miRNA and

mRNA expression profiles results in greater statistical power
and better understanding of the underlying disease phenomena,
both in the context of biomarker discovery (Volinia and Croce,
2013; Wotschofsky et al., 2016) and pathway analysis (Calura
et al., 2014; Vlachos et al., 2015; Alaimo et al., 2016; Diaz
et al., 2016). More recently, it has been demonstrated that the
integration of long non-coding RNA (lncRNA) and mRNA plays
an important role in revealing pathogenetic mechanisms of a
given condition (Lin et al., 2014; Liu et al., 2018). However,
these approaches require the same group of individuals to be
present for each of the experiments coming from different omic
layers. Thus, they fail to utilize the information from dozens
of independent studies containing thousands of samples for a
given disease that is currently available in public repositories
such as Gene Expression Omnibus (GEO) (Barrett et al.,
2005), TCGA [http://cancergenome.nih.gov] or ArrayExpress
(Rustici et al., 2013).

DNAmethylation has been recognized to play a crucial role in
cancer progression (Esteller, 2008; Parrella, 2010). An increasing
number of computational approaches have been published
in recent years for the identification of methylation-based
biomarkers (Gevaert et al., 2015; Hao et al., 2017; Hong et al.,
2017; Shafi et al., 2018). However, to the best of our knowledge,
none of the current approaches is able to identify network-based
gene signatures considering the data heterogeneity among the
independent DNA methylation and gene expression studies. The
approach presented in this manuscript bridges this gap.

Here we propose a multi-cohort and multi-omics meta-
analysis framework that is able to integrate unmatched mRNA
and DNA methylation data obtained from many different
independent studies, and subsequently identify network-based
signatures that can capture putative mechanisms of a given
disease. We apply our proposed framework on nine independent
datasets related to glioblastoma (GBM) containing a total of
622 samples and eight independent studies related to low-grade
glioma (LGG) containing a total of 1,787 samples. The identified
network-based signatures are validated based on their ability to
predict the patients’ clinical outcome for 1,269 samples from
four completely independent validation datasets. This is done by
clustering the patients included in the validation datasets using
perturbation clustering (Nguyen et al., 2017b), which identifies
the correct number of clusters present in the data and groups the
patients accordingly. The signatures extracted from the proposed
framework are then compared with 10 other previously published
gene signature panels related to GBM and LGG. For both
diseases, the network-based signatures identified by our proposed
framework are able to separate patients associated with poor
survival from other individuals with significant Cox p-values
and outperform the other compared signatures. This suggests
that the proposed framework is able to provide better prognostic
biomarkers compared to the existing ones.

2. MATERIALS AND METHODS

The goal of the proposed framework is to identify reliable
network-based gene signatures by integrating independent
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experiments obtained from multiple data types. The framework
takes three types of inputs: (i) mRNA datasets, (ii) DNA
methylation datasets, and (iii) known gene interaction networks.
The mRNA and DNA methylation datasets can be completely
independent, which means that they can be obtained from
different experiments performed in different laboratories and can
include samples from different cohorts of patients. The gene
interaction network is a graph in which the nodes represent
genes and the edges represent interactions between them. This
information can be obtained from any resources that describe
the known gene-gene interactions such as KEGG, Reactome,
STRING, or HPRD.

Each mRNA or methylation dataset is represented by a matrix
in which the rows represent the measured genes and the columns
represent the samples included in the given study. The value in
each cell reflects the measured expression or methylation level
of a gene for a particular sample. Each dataset includes samples
from two given phenotypes such as disease vs. healthy, treated vs.
non-treated, disease subtype A vs. disease subtype B, etc.

The overall workflow of the proposed framework is divided
into four main modules (Figure 1). The first two modules,
described in section 2.1, account for the variability across the
individual datasets coming from the same data type, while the
third and fourth modules, described in section 2.2, account for
the variability across the data types (mRNA and methylation)
and integrate network information into the framework in order
to identify impacted subnetworks. Briefly, the first module takes
the given list of mRNA datasets as input and performs a meta-
analysis to identify the genes that are differentially expressed
across the given phenotypes. Due to the heterogeneity present in
the individual mRNA datasets, the identified list of genes might
be significantly impacted by a single study, and hence might not
represent the true list of genes impacted for the given condition.
Therefore, a leave-one-out (Friedman et al., 2001) meta-analysis
is carried out to make the list of genes more reliable. The
second module takes the given list of methylation datasets as
input and utilizes the same meta-analysis pipeline to identify
the genes that are differentially methylated across the given
phenotypes. The third module combines the results obtained
from the first twomodules and identifies the genes that are driven
by their methylation profiles. This module essentially integrates
information obtained from two omic layers (transcriptomic and
epigenomic) and takes into account the heterogeneity that may
arise across these layers. Finally, the fourth module incorporates
the known interactions among the genes and identifies the
subnetworks that are affected by the methylation-driven genes.

2.1. Multi-Cohort Meta-Analysis
This section describes the first and second modules of the
framework (Figures 1A,B). The meta-analysis pipeline proposed
here utilizes both classical p-value-based and modern effect-
size-based meta-analysis to calculate gene level statistics. The
backbone of this algorithm is an extended version of the meta-
analysis framework proposed in one of our previously published
works (Nguyen et al., 2016a). The overall pipeline consists
of three steps: (i) obtaining p-values from classical hypothesis
testing, (ii) obtaining effect sizes and their p-values and (iii)

combining the two types of p-values to calculate the final gene
level statistics. The first two steps are independent of each other
and can be performed concurrently.

At first, two-tailed p-values are calculated for all genes
across all studies by performing a classical hypothesis testing. A
moderated t-test provided by limma (Smyth, 2005) is utilized for
this purpose. This can also be replaced with other classical tests
such as two sample t-test, paired t-test, etc.

If the input matrix contains discrete values (e.g., data
obtained from RNA-seq experiment or bisulfite sequencing
experiment), regression-based approaches such as Poisson,
quasi-Poisson or negative binomial regression models should
be used instead (Robinson et al., 2010; Anders et al., 2012;
Klein and Hebestreit, 2015; Shafi et al., 2018). The two-tailed p-
values are then converted to one-tailed (left- and right-tailed)
p-values. Gene level p-values generated by the individual studies
are then combined by using addCLT (Nguyen et al., 2017a), an
additive approach (Edgington, 1972) based on the Central Limit
Theorem (Kallenberg, 2002) that is robust against outliers. For
each gene, this p-value represents the chance of observing its
combined differential expression (or methylation) just by chance.

To estimate the effect size, we first calculate the standardized
mean difference (SMD) of each gene across all studies.
Considering SMD instead of the raw mean difference is crucial
since the expression (or methylation) levels within each study
might be scaled differently. In this work, we use Hedge’s
g (Hedges andOlkin, 2014) as the SMD tomeasure expression (or
methylation) changes between the two given phenotypes. Central
tendencies for the effect sizes are calculated using the random-
effect model and the REstricted Maximum Likelihood (REML)
algorithm (Viechtbauer, 2010). Next, we calculate the z-scores
and left- and right-tailed p-values of the z-scores to estimate
the probability of observing such effect sizes just by chance.
This overall estimated effect size represents the expression
(or methylation) change of a gene under the effect of the
given condition.

In the third step, we combine the two types of evidence
(one obtained from classical hypothesis testing, another from
estimating the effect sizes) using a conservativemaxP (Wilkinson,
1951) method. We are using this conservative statistic because
we want a significant p-value only if the gene is significant based
on both classical p-value-based and the more modern effect-
size-based meta-analysis. The p-values are corrected for multiple
comparisons using an FDR approach. Finally, a predefined
threshold is used to select the genes that are differentially
expressed or methylated.

2.2. Multi-Omics Data Integration
This section describes the third and fourth modules of the
framework. The inputs of the third module (Figure 1C) are
two lists of genes obtained from the meta-analysis step
described in section 2.1 above. The first list includes the
differentially expressed genes (DEGs), while the second one
includes the differentially methylated genes (DMGs) across the
given phenotypes. From these two lists of genes, we first select
the genes that are present in both lists, i.e., the genes that are both
differentially expressed and methylated. Next, we filter them by
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FIGURE 1 | Overall workflow of the proposed framework. Module (A) takes multiple independent mRNA datasets and performs a leave-one-out meta-analysis to

identify reliable differentially expressed genes (DEGs). Similarly, module (B) takes multiple independent DNA methylation datasets and identifies differentially

methylated genes (DMGs). DEGs and DMGs are then systematically integrated in module (C) to identify methylation-driven genes (MDGs). Finally in module (D), the

MDGs are used as inputs in a network propagation algorithm to identify the proposed subnetworks.

selecting the genes for which themRNA andmethylation changes
occurred in opposite directions. This is motivated by the fact
that methylation correlates negatively with gene expression (Shafi
et al., 2018). In other words, when a CpG site is methylated in

the promoter regions, it typically represses the transcriptional
activity of that region by restricting the binding of specific
transcription factors (TFs). Alternatively, when a CpG site is
unmethylated in the promoter regions, it allows for the binding
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of those TFs (Jones, 2012). Finally, we identify the methylation-
driven genes (MDGs) by filtering the genes that have unsigned
effect sizes lower than a given threshold. This is an optional
step of the framework. The default threshold is set to zero (no
filtering).

IdentifiedMDGs can be thought of as individual genemarkers
that can distinguish the phenotypes of a given disease, based
on both individual mRNA and methylation data. However, to
better understand the underlying disease mechanisms, and to
better predict patient prognosis, it is important to incorporate
known information about the interactions between the genes
(Mitra et al., 2013).

The fourth module of the framework (Figure 1D) uses the
identified MDGs, DEGs and the given network information
to identify the subnetworks that are perturbed by the signals
propagated through the edges of the MDGs. For each MDG,
we create its own DE neighborhood by selecting the DEGs
that are directly connected with it. All identified subnetworks
are then merged together into a larger network. This concept
of network propagation has been used by several research
groups for active subnetwork identification using transcriptomic
data (Komurov et al., 2012; Ansari et al., 2017) and mutational
hotspot identification in human cancers (Ciriello et al., 2012).
Finally, within this larger network, we select the genes that are
part of the largest cliques as our proposed signature. This idea is
driven by the fact that cliques are fully-connected subnetworks
in which all nodes are connected in a pairwise fashion; and
therefore, genes that are part of a clique are more likely to be
functionally related (Pradhan et al., 2012).

2.3. Perturbation Clustering
In order to evaluate the prognostic value of the proposed
signature, we use the genes present in the signature to identify
disease subtypes from the independent patient cohort. For
clustering, we use PINS (Nguyen et al., 2017b; Nguyen H. et al.,
2018) to perform perturbation clustering that was developed in
our research lab for tumor subtyping. PINS can automatically
determine the number of clusters and then identify subtypes
that are the most stable against noise and data perturbation.
PINS is developed based on the observation that small changes
in any kind of quantitative assay will be inherently present
between individuals, even in a truly homogeneous population in
the absence of any molecular subtypes. Therefore, well-defined
subtypes of a disease have to be stable with respect to small
changes in the measured values. In order to identify robust
subtypes, PINS repeatedly perturbs the data by adding Gaussian
noise and then clusters the patients. PINS yields subtypes and
patient patterns that are least affected by data perturbation. More
details of the algorithm can be found in Nguyen et al. (2017b).

Here, the input of the subtyping algorithm is a matrix in
which the rows represent the patients and the columns represent
the signature genes identified by our framework. Different gene
signatures yield different matrices (same set of patients/rows but
different sets of genes/columns).We expect that a better signature
will provide better subtyping, i.e., subtypes with more significant
survival differences. The number of clusters (k) is automatically

determined by PINS. We simply used the default settings of the
PINS R package (Nguyen H. et al., 2018).

3. RESULTS

We demonstrate the performance of the proposed framework
by constructing network-based signatures for two diseases:
glioblastoma multiforme (GBM) and low-grade glioma (LGG).
In the GBM study, we included only the stage IV glioma tumors,
whereas in the LGG study we included stage II and III glioma
tumors. This is consistent with others such as TCGA (Cancer
Genome Atlas Research Network et al., 2015), Noushmehr et al.
(2010) and Garkavtsev et al. (2004), who also considered stage II
and III glioma tumors as LGG. All staging is based on the World
Health Organization (WHO) standard. All discovery datasets
used in this manuscript were obtained from GEO (Barrett et al.,
2005). Dataset summaries and preprocessing techniques are
described in the Supplementary Materials. We downloaded the
protein-protein interaction (PPI) networks from the STRING
database version 10.5 to obtain information about the gene
interactions. STRING provides a confidence score (ranging from
0 to 1,000) for each interaction in the network. Here we used a
score of 900 to select the high confidence interactions, resulting
in a network of 9,941 genes and 227,186 interactions (top 4.9%
interactions).

One of the most widely accepted techniques to evaluate the
prognostic performance of a gene signature is to test its ability to
predict patients’ survival in independent datasets (Chang et al.,
2005; Shedden et al., 2008; Szász et al., 2016). In order to achieve
this goal, we used PINS (described in section 2.3) on independent
gene expression validation datasets obtained from three different
sources: (i) TCGA, (ii) GEO, and (iii) CGGA (Yan et al., 2012;
Sun et al., 2014). None of these datasets have been used in the
original training datasets. PINS can automatically determine the
number of clusters (denoted by k). We use only the list of genes
present in the proposed subnetwork as features, instead of all
genes present in the datasets. Survival analysis is performed using
Kaplan–Meier survival analysis (Kaplan and Meier, 1958) and
their statistical significance is assessed using a Cox regression
model (Cox, 1972).

3.1. Glioblastoma (GBM) Study
We first identify 2,183 DEGs by performing leave-one-out
meta-analysis (section 2.1) on four mRNA datasets (GSE7696,
GSE4290, GSE90598, and GSE22866). Similarly, we analyze
five methylation datasets (GSE60274, GSE22867, GSE50923,
GSE79122, and GSE36278) and identify 1,205 DMGs. These
nine discovery datasets include a total of 622 samples: 533
samples from GBM patients and 89 from healthy (non-tumor)
individuals. Descriptions of these datasets are provided in
Table S1. We use a stringent threshold of 0.1% for both
differential expression and methylation.

Next, we identify the list of methylation-driven genes (MDGs)
based on the three following criteria: (i) genes present in
the list of DEGs with absolute mRNA effect sizes > 1, (ii)
genes present in the list of DMGs with absolute methylation
effect sizes > 1, and (iii) genes that have opposite mRNA
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and methylation effect sizes (i.e., genes with positive mRNA
effect sizes need to have negative methylation effect sizes, while
genes with negative mRNA effect sizes need to have positive
methylation effect sizes). The identified list contains 45 MDGs.
Each of these identified MDGs are then used as seeds in the
network propagation step to build neighbor networks of DEGs
(section 2.2). These subnetworks are then merged together to
form a larger network, containing a total of 214 candidate genes.
Finally, within the larger network, the largest cliques contain 46
genes which constitute the proposed network-based signature for
this disease (Figure 2).

We demonstrate the utility of the proposed signature on
two independent gene expression datasets; one, downloaded
from the TCGA GBM cancer site (The Cancer Genome Atlas
Research Network, 2013), contains gene expression profiles of
525 individual patients, and the other one, GSE4412 (Freije et al.,
2004), was downloaded from GEO and contains gene expression
profiles of 59 individual patients. For both datasets, our proposed
signature combined with PINS is able to identify two groups
of patients with significantly different survival rates using the
Cox regression model. The Cox p-value for TCGA datasets is
7.38E-04, whereas the Cox p-value for GSE4412 is 9.70E-03.

We compare our signature with the following 7 previously
published GBM gene signature panels: 9 methylation-based gene
signature proposed by Shukla et al. (2013), 13 methylation-
based gene signature proposed by Etcheverry et al. (2010), 14
prognostic gene signature proposed by Arimappamagan et al.
(2013), 35 methylation based gene signature proposed by Smith
et al. (2014), 35 prognostic gene signature proposed by Fatai
and Gamieldien (2018), 36 methylation-based gene signature
proposed by Chiang et al. (2014) and 48 gene signature proposed
by Crisman et al. (2016).

The comparison based on the prognostic performances of
these gene signature panels is shown in Table 1. Related survival
curves are shown in Figure 3. PINS identifies the optimal number
of clusters based on the given input, which is denoted by k in

the table. The cells highlighted in yellow represent the Cox p-
values that are significant (< 0.01). The cells highlighted in green
show the best signature (i.e., lowest Cox p-value) for each dataset.
These results show that in both datasets, the proposed signature
achieves the best results. Furthermore, in the GSE4412 dataset,
only the proposed signature is able to achieve a significant
Cox p-value.

3.2. Low-Grade Glioma (LGG) Study
Similar to the previous study, here we perform leave-one-
out meta-analysis on five mRNA datasets (GSE16011_cohort1,
GSE16011_cohort2, GSE4290, GSE68848, and GSE4271) and
three DNA methylation datasets (GSE90496, GSE109379, and
GSE53227), and identify 1,564 DEGs and 2,721 DMGs

TABLE 1 | Prognostic performance of different gene signature panels related

to GBM.

TCGA GSE4412

(525 patients) (59 patients)

Gene signatures Number of genes k Cox p-value k Cox p-value

Proposed signature 46 2 7.38E-04 2 9.70E-03

Shukla et al. 9 5 3.76E-03 5 1.12E-02

Etcheverry et al. 13 5 3.42E-03 3 7.50E-01

Arimappamagan et al. 14 2 3.14E-03 5 4.67E-01

Smith et al. 35 3 9.26E-03 3 6.07E-01

Fatai et al. 35 3 1.01E-01 3 3.93E-01

Chiang et al. 36 4 8.88E-01 4 9.98E-02

Crisman et al. 48 5 3.61E-02 5 4.17E-01

Clustering is performed by using PINS. The number of clusters identified by the algorithm is
denoted by k. The cells highlighted in yellow represent the Cox p-values that are significant
(<0.01). The cells highlighted in green represent the best signature (i.e., lowest Cox p-
value) for each dataset. These results indicate that the proposed signature is able to
achieve the lowest Cox p-values on both independent datasets.

FIGURE 2 | Proposed network-based signature for GBM, containing a total of 46 genes organized in two different cliques. Each node in this graph represents a gene,

while each edge describes the interaction between a gene pair. The interactions are retrieved from the STRING database. The colors of the nodes represent the effect

sizes obtained from the meta-analysis step described in Figure 1A: red represents genes with a positive effect size while blue represents genes with a negative

effect size.
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FIGURE 3 | Kaplan–Meier survival analysis on GBM studies, using different gene signature panels. (A) TCGA dataset which contains gene expression profiles from

525 individual patients. (B) GSE4211 dataset which contains gene expression profiles from 59 individual patients. The horizontal axes represent the time (in days) from

the start of the study, whereas the vertical axes represent estimated survival percentage. Yellow colors represent the Cox p-values that are significant (<0.01). The

green color indicates the best signature (i.e., lowest Cox p-value) for the given dataset. These results show that the proposed signature yields the best separation

between aggressive and less aggressive disease on both datasets.

respectively. These eight datasets contain a total of 1,787 samples.
Among them, 1,026 samples are from LGG patients while 761
from either GBM patients or healthy (non-tumor) individuals.

Descriptions of these datasets are provided in Table S2. In this
study, we use a threshold of 5% for differential expression
and methylation.
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After integrating DEGs and DMGs in the third module,
we find 52 methylation-driven genes (MDGs). Next, we
perform network propagation to construct the subnetworks that
contain the DEGs directly connecting to MDGs. After merging
these subnetworks, we obtain a list of 110 candidate genes.
Finally, 20 genes are selected based on the maximum clique
present in the network which is the proposed signature for
this study. The identified network-based signature is shown
in Figure 4.

To demonstrate the utility of the proposed signature, we use
two independent gene expression datasets; one from TCGA LGG
cancer site (Cancer Genome Atlas Research Network et al., 2015)
that contains a total of 515 patients, and the other one from
CGGA that contains a total of 170 patients. We use PINS to
perform a perturbation clustering using the genes present in
the proposed network as features. Similar to the GBM study,
for both datasets, the groups of patients identified based on the
given signature have significantly different survival profiles. For
the TCGA dataset, the Cox p-value is 5.48E-09 with 4 clusters
whereas for the CGGA dataset, the Cox p-value is 1.82E-04
with 5 clusters.

We compare our proposed signature with the following 3
published LGG gene signature panels: a set of 6 genes identified
by Olar and Sulman (2015), a meta-signature of 20 genes
proposed by Wang et al. (2017) and a panel of 24 genes
proposed by Liu et al. (2011). The comparison between the
results obtained with these signatures is shown in Table 2. The
related survival curves are shown in Figure 5. In the TCGA
dataset, the proposed signature and the signature proposed by
Liu et al. achieve significant Cox p-values. In CGGA dataset,
significant Cox p-values are achieved by the proposed signature
and the signature proposed by Olar et al. These results show

FIGURE 4 | Proposed network-based signature for LGG, containing a total of

20 genes organized in a clique. Each node in this graph represents a gene,

while each edge describes the interaction between a gene pair. The

interactions are retrieved from the STRING database. The colors of the nodes

represent the effect sizes obtained from the meta-analysis step described in

Figure 1A: red represents genes with a positive effect size while blue

represents genes with a negative effect size.

that in both datasets, the proposed signature achieves the
best results.

3.3. Network-Based Signature vs.
Methylation-Driven Genes (MDGs)
To demonstrate the contribution of the network information in
our framework, we compare the prognostic performance of the
proposed network-based signature with the performance of a
signature derived from methylation-driven genes (MDGs) alone.
Table 3 shows the Cox p-values obtained by using these two
types of signatures on the four independent datasets used in the
above two studies. PINS was used to group the samples. For
GBM, the MDGs and the proposed signature contain 45 and 46
genes respectively, while for LGG, the MDGs and the proposed
signature contain 27 and 20 genes, respectively. Results indicate
that, for both diseases (each disease contains two independent
datasets), network-based signatures outperform the individual
markers (i.e., MDGs) based on their ability to predict the patients’
clinical outcome.

4. DISCUSSION

One widely used technique to combine multiple independent
studies is to perform a horizontal meta-analysis (i.e., combining
sample-unmatched studies of the same data type). This approach
is unable to combine studies coming from multiple data types.
Hence, it is not suitable for the identification of the mechanism
of action of a given disease. Another technique is to perform a
vertical meta-analysis (i.e., combining sample-matched studies
from multiple data type) which accounts for the heterogeneity
that may arise across different omic layers. However, the latter
technique requires each data type to be available for each
individual patient, which is expensive and impractical for the
studies with large sample sizes. To overcome these challenges,
in this manuscript, we propose a multi-cohort and multi-
omics meta-analysis framework that identifies network-based
signatures using independent mRNA and DNA methylation
studies available in the public repositories. The identified
signatures are evaluated based on their ability to distinguish

TABLE 2 | Prognostic performance of different gene signature panels related

to LGG.

TCGA CGGA

(515 patients) (170 patients)

Gene signatures Numer of genes k Cox p-value k Cox p-value

Proposed signature 20 4 5.48E-09 5 1.82E-04

Olar et al. 6 5 6.97E-02 5 5.43E-03

Wang et al. 20 2 1.42E-01 4 8.07E-01

Liu et al. 18 5 3.21E-06 2 1.12E-02

Clustering is performed by using PINS. The number of clusters identified by the algorithm is
denoted by k. The cells highlighted in yellow represent the Cox p-values that are significant
(<0.01). The cells highlighted in green represent the best signature (i.e., lowest Cox p-
value) for each dataset. These results indicate that the proposed signature is able to
achieve the lowest Cox p-values on both independent datasets.
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FIGURE 5 | Kaplan–Meier survival analysis on LGG studies, using different gene signature panels. (A) TCGA dataset which contains gene expression profiles from

515 individual patients. (B) CGGA dataset which contains gene expression profiles from 170 individual patients. The horizontal axes represent the time (in days) from

the start of the study, whereas the vertical axes represent estimated survival percentage. Yellow colors represent the Cox p-values that are significant (<0.01). The

green color indicates the best signature (i.e., lowest Cox p-value) for the given dataset. These results show that the proposed signature yields the best separation

between aggressive and less aggressive disease on both datasets.

TABLE 3 | Prognostic performance of network-based signatures vs. individual markers.

GBM study LGG study

TCGA GBM GSE4412 TCGA LGG CGGA

Gene signatures m k Cox P k Cox P m k Cox P k Cox P

Meth. driven genes (MDGs) 45 4 9.36E-03 3 1.18E-01 27 3 3.22E-06 2 1.43E-03

Network-based signature 46 2 7.38E-04 2 9.70E-03 20 4 5.48E-09 5 1.82E-04

Clustering is performed by using PINS. Number of clusters identified for a given dataset is denoted by k, while the number of genes for a given study is denoted by m. Cells highlighted
in green represent the best signature (i.e., lowest Cox p-value) for each dataset. Results indicate that incorporating network information leads to better prognostic gene markers.

patients with different survival profiles on independent
validation datasets.

One of the inputs required for the proposed framework is
the known interactions between the genes. This information
can come from any protein-protein interaction database for the
given organism and is independent of the specific experiment
or condition. In our case, this type of data came from the
STRING database, which would be suitable for any experiment
involving more than 2,000 organisms. The discovery datasets
used in this manuscript are downloaded from GEO. We have
included all gene expression and methylation studies related to
GBM and LGG that have a total number of samples measuring
20 or more after data preprocessing. Datasets from any other
resources such as TCGA, ArrayExpress (Rustici et al., 2013),

etc., can also be used as long as they contain samples from
two phenotypes (disease vs. normal, treated vs. non-treated,
etc.). The framework is appropriate for the disease conditions
whose mechanisms of actions are known to be triggered by the
change in DNA methylation. Due to the important role of DNA
methylation in glioma (Heyn and Esteller, 2012; Turcan et al.,
2012), we demonstrate our proposed framework on two subtypes
of glioma; the most aggressive one, GBM, and the comparatively
less aggressive LGG. However, this framework can be used to
identify network-based markers for other disease conditions
as well.

We leverage the concept of the network propagation
algorithms mentioned in Mitra et al. (2013) to identify
candidate subnetworks from the methylation-driven genes.
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The final network-based markers are selected based on the
maximum clique. Cliques are complete graphs in which all
nodes are connected in a pairwise fashion, and therefore,
genes that are part of a clique are likely to be functionally
related. In previous years, the utility of using cliques has been
demonstrated in multiple disease conditions such as breast
cancer (Shi et al., 2010), colorectal cancer (Pradhan et al., 2012),
etc. Other subnetwork identification techniques, such as greedy
algorithms (e.g., PinnacleZ, Chuang et al., 2007), clustering-
based methods (e.g., SAMBA, Tanay et al., 2004), scoring based
on centrality measurements (e.g., Wang et al., 2011), etc., can
be utilized as well. A comprehensive review of the currently
available tools for subnetwork identification can be found
in Nguyen et al. (2019).

We investigate how the groups of patients identified in the
TCGA GBM dataset, using our proposed signature (Figure 3A),
relate with the available histopathological variables or treatments.
Table S3 shows the confusion matrix of the two groups of
patients associated with the proposed GBM signature and the
five GBM subtypes recognized by the original authors (The
Cancer Genome Atlas Research Network, 2013). Enrichment
analysis using Fisher’s Exact Test (FET) indicates that the
group of patients with lower survival rate is enriched with
Mesenchymal subtype (p = 1.04E-19), whereas the group of
patients with higher survival rate is associated with Proneural
(p = 1.98E-14) subtype and G-CIMP tumors (p = 4.27E-10).
This confirms the fact that G-CIMP tumors belong to the
Proneural subtype (Noushmehr et al., 2010; Verhaak et al.,
2010). In addition, the better survival group is enriched with
IDH1 mutation (p = 1.80E-06) and relatively younger patients
(Wilcoxon rank sum (WRS) test p = 0.01), which is also
acknowledged by others (Noushmehr et al., 2010; The Cancer
Genome Atlas Research Network, 2013). Furthermore, we
investigate patients’ responses to Temozolomide (TMZ), a drug
which is FDA approved for the treatment of GBM. We do this
by calculating the survival Cox p-value for each group (the
better survival group and the lower survival group) based on the

patients treated with and without TMZ (treated with other drugs
or untreated). The results indicate that only one group of patients
(not both) is associated with favorable TMZ drug response, which
is reflected by significantly different survival rates of the drug-
responders and the drug-resistants (Cox p-value = 7.34E-06). Our
finding explains why it has previously been noted that there is a
group of patients who do not respond well to TMZ (Kitange et al.,
2009; Lee, 2016).

Similarly, to investigate the groups of patients identified on
TCGA LGG, we obtained clinical information from TCGA that
includes three subtypes of glioma: IDH wild-type, IDH mutant-
codel, and IDH-mutant-non-codel (Ceccarelli et al., 2016).
Enrichment analysis using FET reveals that the groups of patients
with lower survival rates (cluster “1-2” and “2-1” in Figure 5A)
are enriched with wild-type IDH (p = 2.30E-16 and 1.94E-06)
and MGMT promoter unmethylation (p = 4.99E-06 and 0.001).
These results confirm the findings previously reported by TCGA
and others (Hegi et al., 2005). In addition, we found that the lower
survival rates are associated with a higher tumor purity score
(WRS p-value = 0.007). Previously, it has been shown by others
that a higher tumor purity score is associated with tumor growth,
disease progression and drug resistance (Yoshihara et al., 2013).

We also investigate the novelty of our identified signatures
by checking their overlap with other published signature genes
(Figure 6). For GBM, none of the genes proposed in this
manuscript are present in the other three top (based on the
Cox p-value on TCGA dataset) gene signature panels (i.e.,
panels of gene signatures proposed by Shukla et al., Etcheverry
et al., and Arimappamagan et al.). Similarly for LGG, none
of the genes proposed in this manuscript are present in the
panels of gene signatures proposed by Olar et al., Wang et al.,
and Liu et al.

One of the main reasons for this is that the types of
evidence used by our proposed framework are different from
other relevant studies. Our proposed framework identifies gene
signatures using evidence from three different sources: (i) mRNA
expression, (ii) DNA methylation, and (iii) protein-protein

FIGURE 6 | The overlap between the proposed signatures and other previously published signatures. For GBM, none of the genes proposed in this manuscript are

present in the signatures proposed by Shukla et al., Etcheverry et al., and Arimappamagan et al. Similarly for LGG, none of the genes proposed in this manuscript are

present in the signatures proposed by Olar et al., Wang et al., and Liu et al. (A) GBM signatures. (B) LGG signatures.
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interactions (PPI). In addition, it combines heterogeneous
independent studies within each data type (mRNA and DNA
methylation) using an effect-size-based meta-analysis approach.
In contrast, none of the relevant studies identify their gene
signatures considering all three types of evidence that we used.
They are based on frameworks that either do not integrate
information from multiple data levels or do not combine

multiple studies within one data level, or both. Therefore, a
very small or no overlap between the signatures proposed by
our framework and the signatures proposed by other relevant
studies is to be expected. Furthermore, the existing signatures
have little or no overlap among themselves, even though many
of them are based on the same type of evidence. In spite of
the fact that our proposed genes have not been previously

FIGURE 7 | Interesting putative mechanisms are identified by iPathwayGuide (www.advaitabio.com) on the Glutamatergic synapse and the Chemokine signaling

pathways. The colors of the nodes represent the effect sizes obtained from the meta-analysis step described in Figure 1A of the manuscript: red represents genes

with a positive effect size while blue represents genes with a negative effect size. The edges highlighted in red represent the coherent edges between the genes,

which indicate the edges for which the measured effect changes are consistent with the phenomena described by the pathway.
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reported, they provide the best ability to distinguish between
aggressive and less aggressive disease in all independent datasets
that we used.

Importantly, our proposed GBM signature contains several
genes that play crucial roles in the underlying mechanisms of
GBM. For instance, according to Deng et al. (2016), ADCY2
is known to be involved in the progression of diffuse intrinsic
pontine glioma; ANXA1 has shown to be involved in GBM
apoptosis by Festa et al. (2013); Pan et al. (2017) demonstrated
that CCL5 is responsible for creating an autocrine circuit for
Mesenchymal GBM growth; Xie et al. (2015) investigated the
role of CSC20 and found its crucial role in tumor-initiating
cell (TIC) proliferation in GBM; CXCR4, LPAR1 and TRIM21
play important roles GBM cell proliferation as demonstrated
by Ehtesham et al. (2009), Loskutov et al. (2018), and Lee
et al. (2017), respectively; Kim et al. (2018) demonstrated
the therapeutic role of RNF138 in GBM; Mahajan-Thakur
et al. (2017) reviewed the role of S1PR1 in GBM and found
that its over-expression is associated with improved GBM
prognosis; SOCS1 plays a vital role as a tumor suppressor
in GBM, as investigated by Baker et al. (2009); STUB1 has
shown to be involved in glioma cell proliferation by Syed et al.
(2015); etc. Similarly, our proposed LGG signature contains
genes that are known to be related to glioma. For instance,
according to Shi et al. (2006), EIF3F is downregulated in
most human tumors including glioma; EIF5 and RPS12 are
known to be involved in brain metastasis in primary breast
tumors (Sanz-Pamplona et al., 2011); Shahbazian et al. (2010)
has shown that EIF4B is a potential target for anti-cancer
therapies; etc.

Furthermore, we use iPathwayGuide (Advaita Corporation,
2019) to perform an extensive pathway analysis to identify
the mechanisms captured by the proposed signatures.
iPathwayGuide uses an impact analysis that calculates the
true impact of a pathway by combining two types of evidence.

The first type of evidence is the classical over-representation of
DE genes in each pathway. The second type of evidence captures
several other important biological factors such as the position of
all the genes on each pathway, the magnitude of their expression
change, the direction and type of the signals transmitted between
genes as described by the pathway, etc. The impact analysis has
been shown to be able to identify the significantly impacted
pathways much better than classical over-representation alone
(Drăghici et al., 2007; Tarca et al., 2009).

Among the pathways reported as significant, interesting
putative mechanisms are identified by the impact analysis on
the Glutamatergic synapse pathway and the Chemokine signaling
pathway. These are shown in Figure 7. The colors of the nodes
represent the effect sizes obtained from the meta-analysis step
described in Figure 1A: red represents genes with a positive
effect size while blue represents genes with a negative effect
size. The edges highlighted in red represent coherent edges. A
coherent edge is an edge for which the measured effect changes
are consistent with the phenomena described by the pathway. For
example, if gene A inhibits gene B, and if gene A is upregulated,
gene B is expected to be downregulated. If the measured changes
are consistent with this inhibition, the edge corresponding to
this interaction is referred to as being coherent. Several such
coherent edges form coherent chains of perturbation propagation
which can be thought of as putative mechanisms. Figure 8 shows
a closer look of the coherent edges within the two pathways
mentioned above.

For LGG, two pathways are significantly impacted with
the proposed gene signature after correcting for multiple
comparisons: the Ribosome pathway and the RNA transport
pathway (Figures S1, S2). The reason for having only two
pathways as significantly impacted could be explained by the
fact that LGG is an early stage of glioma and, therefore, the
differences across the given phenotypes are not reflected in the
pathway level.

FIGURE 8 | The mechanisms involving the proposed GBM signature in the Glutamatergic synapse (A) and the Chemokine signaling (B) pathways, as identified

by iPathwayGuide (www.advaitabio.com). The colors of the nodes represent the effect sizes obtained from the meta-analysis step described in Figure 1A. The edges

represent molecular actions between the genes obtained from the STRING database. The edges highlighted in red indicate the coherent edges between the genes.
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5. CONCLUSION

In an effort to identify disease-specific biomarkers that can
explain the underlying biological mechanism and predict
associated patients’ survival, several computational approaches
have been proposed over the past few years. The majority
of the approaches have limited clinical applicability since
they do not fully utilize the crucial information that is
currently available in public repositories. In this manuscript,
we propose an integrative framework that is able to identify
network-based biomarkers for a given disease condition,
utilizing information from three different sources: (i) multiple
independent mRNA studies, (ii) multiple independent DNA
methylation studies and (iii) protein-protein interactions.
We demonstrate the utility of the proposed framework
by constructing subnetworks related to GBM and LGG,
using 17 independent mRNA and DNA methylation studies
containing a total of 2,409 samples. We validate our proposed
signatures on four independent gene expression datasets
containing a total of 1,269 patients. The results indicate that
our proposed network-based signatures are able to better
predict patients’ survival than other published signatures for
these diseases.
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Various patterns of multi-phenotype associations (MPAs) exist in the results of

Genome Wide Association Studies (GWAS) involving different topologies of single

nucleotide polymorphism (SNP)-phenotype associations. These can provide interesting

information about the different impacts of a gene on closely related phenotypes or

disparate phenotypes (pleiotropy). In this work we present MPA Decomposition, a new

network-based approach which decomposes the results of a multi-phenotype GWAS

study into three bipartite networks, which, when used together, unravel the multi-

phenotype signatures of genes on a genome-wide scale. The decomposition involves

the construction of a phenotype powerset space, and subsequent mapping of genes

into this new space. Clustering of genes in this powerset space groups genes based

on their detailed MPA signatures. We show that this method allows us to find multiple

different MPA and pleiotropic signatures within individual genes and to classify and

cluster genes based on these SNP-phenotype association topologies. We demonstrate

the use of this approach on a GWAS analysis of a large population of 882 Populus

trichocarpa genotypes using untargeted metabolomics phenotypes. This method should

prove invaluable in the interpretation of large GWAS datasets and aid in future synthetic

biology efforts designed to optimize phenotypes of interest.

Keywords: multi-phenotype associations, pleiotropy, GWAS, SNP clustering, networks, powerset space,

pleiotropic signature, hypothesis generation

1. INTRODUCTION

Unraveling the complex genetic patterns underlying complex phenotypes has previously been
challenging. While individual Genome-Wide Association Studies (GWAS) can provide insight into
the genetic underpinnings of measured phenotypes, they typically involved associations of genetic
variants with only one or a few phenotypes. The field of phenomics involves the collection of high-
dimensional phenotype data of an organism, with the aim of capturing the overall, comprehensive
phenotype (the “Phenome”) of the organism (Houle et al., 2010). Association studies involving
many measured phenotypes, for example, Phenome-Wide Association Studies (PheWAS) present
many advantages, in that they allow for the complex interconnected networks between phenotypes
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FIGURE 1 | MPA signatures. (A) Type 1 MPA: a gene is associated with more

than one phenotype due to a single variant within the gene associating with

multiple phenotypes. (B) Type 2 MPA: a gene is associated with more than

one phenotype because of alternate SNPs within the gene having different

phenotypic associations (figure created from information presented in Solovieff

et al., 2013). (C) Complex combinations of Type 1 and Type 2 signatures.

and their genetic underpinnings to be elucidated, and also allow
for the detection of pleiotropy (Pendergrass et al., 2011, 2013,
2015; Hall et al., 2014).

Pleiotropy is the phenomenon in which a gene affects
multiple phenotypes (Tyler et al., 2009). One can also have
a locus-centric view of pleiotropy involving a single SNP
affecting multiple phenotypes (Solovieff et al., 2013). While
pleiotropy used to be considered an exception to the rules
of Mendelian genetics, it has since been proposed to be a
common, central property inherent to biological systems (Tyler
et al., 2009). Multi-phenotype associations (MPAs) can be
detected in the results of Genome Wide Association Studies
(GWASs) as Single Nucleotide Polymorphisms (SNPs) within
genes/functional regions having multiple significant phenotype
associations. This can be considered to be a pleiotropic pattern
when the two phenotypes are seemingly unrelated. Two main
MPA patterns exist within GWAS results. Type 1 MPAs occur
when a single SNP within a functional region (such as a gene)
is associated with more than one phenotype, whereas Type 2
MPAs occur when two different SNPs within a single functional
region have different phenotype associations (Solovieff et al.,
2013; Hackinger and Zeggini, 2017) (Figures 1A,B).

Multivariate analysis of the results of GWAS studies
across many phenotypes have allowed for the investigation of
complex relationships between genes and phenotypes, including
pleiotropic relationships and the clustering of variants based on
their phenotype associations.Many of these studies have involved
the analysis of SNP associations with complex human disease
traits. Some studies have considered pleiotropy as genes and
SNPs associated with more than one phenotype, and found that
pleiotropic genes tended to be longer, and that SNPs within
pleiotropic genes were more likely to be exonic (Sivakumaran

et al., 2011). Weighted Gene Co-expression Network Analysis
(WGCNA) has been extended to cluster SNPs based on their
phenotype associations using a matrix of beta coefficients,
followed by hierarchical clustering of the Topological Overlap
Matrix (Levine et al., 2017), and show how the resulting clusters
can be used to produce polygenic scores. Gupta et al. (2011)
introduced a biclustering algorithm, simultaneously clustering
SNPs and phenotypes in a matrix of regression coefficients.
Network-based approaches have been developed which construct
bipartite networks of gene-disease phenotype associations from
GWAS, and constructed network projections of this bipartite
network resulting in disease similarity and gene-similarity
networks (Goh and Choi, 2012). Though these studies provide
a baseline of the use of multivariate and network approaches
for the analysis of GWAS results, there is, to our knowledge, no
method which characterizes detailed MPA signatures of genes
and no method which clusters genes based on these detailed
signatures. Simply clustering genes based on their phenotype
associations will not capture the vast amount of combinatorial
possibilities of type 1 and type 2 signatures any given gene can
harbor (Figure 1C), especially when the multi-phenotype GWAS
study involves millions of variants and hundreds of phenotypes.

Methods for multi-trait GWAS have also been developed,
associating variants to groups of phenotypes (see for example
Stephens, 2013; Furlotte and Eskin, 2015; Cichonska et al., 2016;
Kaakinen et al., 2017a,b; Mägi et al., 2017; Porter and OReilly,
2017; Thoen et al., 2017). Mägi et al. (2017) and Kaakinen
et al. (2017a) present interesting methods for identifying the
association between SNPs/genes and multiple phenotypes by
using the phenotypes as predictors in the modeling of the
genotype. These are valuable methods for determining which
phenotypes/sets of phenotypes a given gene or SNP is associated
with that are more sophisticated than standard univariate GWAS
approaches. These methods however do not focus on the ability
to characterize and cluster genes based on the collection of
topologies of SNP-phenotype associations within the gene.

We present MPA Decomposition and Signature Clustering,
a network-based approach involving a constructed powerset
space, in which clustering distinguishes between genes based
on the detailed topology of their unique MPA signature. MPA
decomposition is a post-GWAS/post-PheWAS approach with is
designed to take the results of a multi-phenotype genome-wide
association-type analysis (such as a standard, univariate GWAS
run on several phenotypes or a multi-phenotype approach such
as SCOPA (Mägi et al., 2017) and provides a framework allowing
the precise mathematical representation of the architecture of
variant-phenotype associations within regions (MPA/pleiotropic
signatures), and thus allows these regions (such as genes) to be
clustered based on these complex signatures.

2. METHODS AND MATERIALS

2.1. Overview
MPA decomposition involves the mathematical characterization
of each gene’s MPA signature in a network-based context.
This process begins in phenotype space. In this multi-
dimensional space, each axis represents a phenotype and
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genes are represented as points, with points close together
representing genes with similar phenotype associations and
points far apart representing genes with very different phenotype
associations. This phenotype space provides no information
on the topology of associations within each gene. MPA
decomposition maps genes to a newly constructed powerset
space, which is constructed through clustering of SNP association
vectors (Figures 2A–E). This clustering produces discrete sets of
SNPs/overlapping sets of phenotypes called association modules
which form the axes of powerset space, which provides the
detailed structure of phenotype associations within a gene.
The second stage—signature clustering—groups genes based
on their detailed MPA signature (Figure 2F). Clustering of
genes in this space results in groups of genes with identical
MPA signatures. These genes grouped by MPA signatures
provide a useful tool for the researcher planning genetic
modification experiments, easily highlighting groups of genes
with favorable signatures for modification to influence a
particular phenotype.

The approach of MPA decomposition and its application
are described below. MPA decomposition is a multi-step
process whose results unify in a simple, matrix decomposition
relationship. The multi-step process allows for the MPA
signatures and signature clusters of genes to be determined from
GWAS summary statistics, and is thus applicable to both newly
generated genotype/phenotype data as well as published GWAS
summary statistics. We apply and demonstrate this method on
GWAS results from a densely genotyped Populus trichocarpa
GWAS population involving approximately 10 million SNPs and
over 400 untargetted metabolomics phenotypes measured across
the population.

2.2. Metabolomics Genome-Wide
Association Studies
Genotyping of 882 P. trichocarpa genotypes and metabolic
profiling of 585 of these genotypes, followed by GWAS
analysis of the 441 resulting metabolite phenotypes provided a
network of associations between SNPs andmetabolic phenotypes.
The process for the construction of the GWAS network is
described below.

2.2.1. Populus trichocarpa SNPs
P. trichocarpa (Tuskan et al., 2006) SNP data (DOI
10.13139/OLCF/1411410) obtained from [https://doi.ccs.
ornl.gov/ui/doi/55] was derived from the whole genome
resequencing of a Genome Wide Association Study (GWAS)
population clonally replicated in common gardens (Tuskan et al.,
2011). This dataset consists of 28,342,758 SNPs called across
882 P. trichocarpa genotypes. Details on the generation of this
SNP dataset can be found in Weighill et al. (2018). VCFtools
(Danecek et al., 2011) was used to extract the most reliable set
of SNPs corresponding to the 90% tranche, resulting in a set of
10,438,861 bi-allelic SNPs.

2.2.2. Metabolomics Phenotypes
Untargetted metabolomics was conducted on P. trichocarpa
genotypes using GC-MS. The metabolite analysis used is

FIGURE 2 | Overview of MPA decomposition and signature clustering. (A) The

GWAS profile matrix M representing SNP-phenotype associations was

constructed, and the Proportional Similarity between all pairs of SNPs (rows of

M) was calculated. (B) Clustering of the SNP association similarity network

results in clusters of SNPs with the same phenotype associations. (C)

Association modules are constructed as elements of the powerset of

phenotypes observed in the SNP clusters. Association modules can thus be

seen as non-overlapping sets of SNPs, or overlapping sets of phenotypes.

These modules form the axes of powerset space. (D) The module-phenotype

network associates the phenotypes present in each element of the powerset

observed in the SNP association clusters. (E) The gene-module network is

constructed by mapping genes to association modules if the module contains

a SNP that resides within that gene. (F) Signature clustering is performed in

GM (powerset) space, grouping genes with the same module associations.

Clustering genes in powerset space results in groups of genes with the same

pattern of MPA signatures with the same set of phenotypes. For example, a

signature cluster could involve G1 and G2 containing SNPs associating with

both phenotypes P1 and P2, as well as a SNP associating with only P3.

described in Tschaplinski et al. (2014). Briefly, samples were
freeze dried for 48 h and then ground with a microWiley
mill with a 20 mesh screen, with samples then twice extracted
in 80% ethanol (aqueous) and the extracts combined before
an aliquot was dried under nitrogen. Dried extracts were
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dissolved in acetonitrile followed by the addition N-methyl-N-
trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane.
Samples were heated for 1 h at 70◦C to generate trimethylsilyl
(TMS) derivatives. Samples were injected in an inert XL gas
chromatograph-mass spectrometer (Agilent Technologies Inc.,
Santa Clara, CA, U.S.A.), fitted with an Rtx-5MS with Integra-
Guard (5% diphenyl/95% dimethyl polysiloxane) capillary
column (30 m by 250 µm by 0.25 µm film thickness) (Restek,
Bellefonte, PA, U.S.A.). A standard quadrupole GC-MS was
operated in the electron impact (70 eV) ionization mode,
targeting 2.5 full-spectrum (50–650 Da) scans per second, as
described previously (Tschaplinski et al., 2012). A large user-
created database (>2,400 spectra) of mass spectral electron
impact ionization fragmentation patterns of TMS-derivatized
compounds, as well as the Wiley Registry 10th Edition with
the NIST 2014 mass spectral database, were used to identify
the metabolites of interest. Metabolites were quantified by
extracting a key, characteristic mass-to-charge (m/z) for each
known and unidentified metabolite using an automated data
extraction program. Preprocessing of the resulting raw GC-MS
data included alignment using XCMS (Smith et al., 2006) and
normalization for amount of leaf sample analyzed, fraction of
extracted sample analyzed, and internal standard recovered.

2.2.3. Outlier Analysis
We performed outlier detection on each of the metabolomic
phenotypes, to account for measurement variability and
technical/experimental error, using R (R Core Team, 2013).
This determines which, if any, metabolite intensities that
are measured over the respective genotypes (individuals), are
very different from the median observed intensities for that
metabolite. We applied a variant of the method discussed in
Leys et al. (2013), using the median absolute deviation (MAD)
from the median. Our approach differs in that it takes into
account the asymmetry of the distribution of intensity values,
as lower intensities are more frequent. We thus calculated
the MAD for the upper and lower tails of the distribution
separately. By investigating the distribution of intensities and
the MAD distance from the median, for a random sample
of metabolites, we determined that a MAD distance of 5
is appropriate for outlier detection, this was done using the
ggplot2 package in R (Wickham, 2009). Any intensity value
of a metabolite for a given genotype that was more than 5
MADs from the median was removed from the analysis. Also,
to mitigate potential biases from under-represented metabolites,
we excluded any metabolite that had less than 100 non-zero,
non-outlier values.

2.2.4. GWAS
The EMMAX software (Kang et al., 2010) was used to
statistically associate measured phenotypes with SNPs in Populus
trichocarpa. Covariates were included to account for population
structure by estimating a kinship matrix using the default
parameters for Balding-Nichols method implemented in the
emmax-kin program (Balding and Nichols, 1995). This was run
in a parallel fashion using a customized Python script which
made use of the NumPy (van der Walt et al., 2011), SciPY

(http://www.scipy.org/) (Jones et al., 2001), pandas (McKinney,
2010) and mpi4py (Dalcín et al., 2005, 2008; Dalcin et al.,
2011) modules. A hierarchical procedure similar to the approach
described in Peterson et al. (2016), consisting of the Benjamini-
Hochberg stepwise procedure (Benjamini and Hochberg, 1995)
with a relaxed threshold of q1=0.1, together with the Gavrilov-
Benjamini-Sarkar adaptive step-down procedure with a q2∼7.9e-
06, was applied to control the false discovery rate (FDR).
Associations passing the respective thresholds were considered
significant associations. A total of 413 phenotypes had at least
one significant SNP association, and 131,282 SNPs had at least
one significant phenotype association.

2.3. MPA Decomposition
The process for MPA decomposition described below is
represented visually in Figure 2.

2.3.1. GWAS Profile Matrix Construction
The GWAS profile matrix is the input to MPA decomposition
(Figure 2). The GWAS profile matrix M was constructed in
which each row represented a SNP that resides within a gene
region, each column represented a phenotype and each entryMij

was defined as:

Mij =

{

1 if SNP i is associated with phenotype j

0 otherwise
(1)

Each row of the matrix M represents the GWAS profile of a
particular SNP. SNPs weremapped to their respective genes using
the P. trichocarpa version 3 genome annotation (Tuskan et al.,
2006) available on Phytozome (Goodstein et al., 2012) through
the genome portal of the Department of Energy Joint Genome
Institute (Grigoriev et al., 2012; Nordberg et al., 2014). A gene was
considered to consist of its coding sequences as well as regulatory
elements such as 5′ and 3′ UTRs.

2.3.2. Module Construction
The procedure for the construction of association modules is
shown in Figure 2, steps A through C. The GWAS profiles of
all pairs of SNPs in the GWAS profile matrix M were compared
by calculating the Proportional Similarity Index between all pairs
of rows of M. The Proportional Similarity Index between two
vectors X and Y is defined as (Bloom, 1981):

PS(X,Y) =
2
∑

imin(xi, yi)
∑

i(xi + yi)
(2)

where X and Y are the GWAS profiles of two SNPs (i.e., two rows
of the matrixM), xi is the ith entry in row X and yi is the ith entry
in row Y . This was performed in parallel using a customized Perl
script which made use of the Parallel::MPI::Simple Perl module,
developed by Alex Gough and available on The Comprehensive
Perl Archive Network (CPAN) at www.cpan.org. This all-vs-all
comparison results in a complete, unpruned SNP association
network in which nodes represent SNPs and edges represent the
similarity between the phenotype associations of SNPs.
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We extracted association modules from the SNP association
network as follows: First we identify SNPs that reside within
genes with multiple phenotype associations (MPA genes). We
extracted SNPs within MPA genes and the edges between these
SNPs, and then pruned the network to only include edges
between SNPs which have identical phenotype associations.
This was achieved by applying a Proportional Similarity
threshold of 1 (Supplementary Texts S1, S2). Nodes of the
resulting subnetwork were then clustered into groups using MCL
(Van Dongen, 2000, 2008) available from http://micans.org/mcl/.
Each resulting cluster represents a group of SNPs with the same
phenotype associations, i.e., a group of SNPs driven together by
a particular set of phenotypes, or, an element of the powerset of
phenotypes. These modules of phenotypes form the axes of the
powerset space.

2.3.3. Module-Phenotype (MP) Matrix Construction
The MP matrix was constructed by mapping modules to
phenotypes which drive the association between SNPs within
the module (Figure 2D). Thus, the MP matrix was constructed
such that each entry ij was defined as 1 if phenotype j had a
significant GWAS association with all SNPs in module i. This
could alternatively be seen as creating a network by connecting
phenotype nodes to module nodes if that phenotype has a GWAS
association with all SNPs in that module.

2.3.4. Gene-Module (GM) Matrix Construction
The GM matrix was constructed by mapping modules to genes
which contained SNPs within that module (Figure 2E). Thus, the
GM matrix was constructed such that each entry ij was defined
as 1 if module j contained a SNP that resides within gene i, and
zero otherwise. This can also be seen as constructing a network
by connecting gene nodes to module nodes which contain SNPs
that reside within that gene region.

2.3.5. Signature Clustering
Signature clustering (Figure 2F) was performed by calculating
the similarity between all pairs of rows (genes) of the GM matrix
using the proportional similarity metric, applying a threshold
of 1, and clustering the resulting similarity network using MCL
(Van Dongen, 2000, 2008).

2.4. Annotation and Functional Enrichment
P. trichocarpa gene boundaries as defined in the
Ptrichocarpa_210_v3.0.gene.gff3 annotation file obtained
from version 3 genome annotation (Tuskan et al., 2006) available
on Phytozome was used. Functional annotations of P. trichocarpa
genes were obtained from version 3 genome annotation (Tuskan
et al., 2006) available on phytozome (Goodstein et al., 2012)
through the genome portal of the Department of Energy Joint
Genome Institute (Grigoriev et al., 2012; Nordberg et al., 2014).

Mapman annotations of P. trichocarpa were obtained by
splitting the protein translations of P. trichocarpa genes into
three sets and using the Meractor tool (Lohse et al., 2014) to
assign Mapman terms to each gene. The BINGO Cytoscape
plugin Maere et al. (2005) was used to determine enriched Gene
Ontology (GO) terms in the set of type 1 and type 2 MPA genes.

2.5. Co-expression Network
A P. trichocarpa gene co-expression network was constructed
as described in Weighill et al. (2018) making use of the P.
trichocarpa (Nisqually-1) RNA-seq data derived from JGI Plant
Gene Atlas project (Sreedasyam et al., unpublished), consisting of
samples for various tissues (leaf, stem, root and bud tissue) and
libraries generated from nitrogen source study. A list of sample
descriptions was accessed from Phytozome at https://phytozome.
jgi.doe.gov/phytomine/aspect.do?name=Expression.

3. RESULTS AND DISCUSSION

3.1. MPA Decomposition: Construction of a
New Space
MPA decomposition is a multi-step process which involves the
construction of a new space, allowing for the multi-phenotype
signatures of genes to be easily interpreted and clustered. This
method makes use of bipartite networks as data structures.
Bipartite networks represent connections (edges) between two
classes of objects (nodes). The results of a standard GWAS
analysis were represented as a bipartite SNP-phenotype network,
connecting SNP nodes to phenotype nodes between which there
were significant associations. While most SNPs had only a
single phenotype association, there were several SNPs which
had significant associations with multiple metabolite phenotypes
(Figure 3A). Mapping SNPs from the GWAS associations to
the genes in which they reside resulted in gene-phenotype
associations, which can be represented as multiple different
data structures. Firstly, genes can be represented as points in
multi-dimensional phenotype space, indicating their respective
phenotype associations (Figure 4). The closer genes are to
each other in phenotype space, the more shared phenotype
associations they have. Alternatively, these associations can be
represented as a gene-phenotype (GP) bipartite network, linking
a gene gi to phenotype pk if gi contained a SNP significantly
associated with pk (Figure 4). Bipartite networks are useful for
the visualization and investigation of points in high dimensional
space, as well as for the representation of complex relationships
between multiple objects. Thus, bipartite networks were used
throughout MPA decomposition as the mathematical foundation
as well as a visualization tool.

GWAS associations represented as a bipartite network of
SNPs connected to their associated phenotypes (Figure 5A)
do not give any indication of MPA signatures as there is no
obvious information about which SNPs belong to which genes.
Thus, bipartite SNP-phenotype networks give no indication
of how many phenotype associations a given gene has.
GWAS associations represented as a bipartite network of genes
connected to their associated phenotypes (Figure 5B) can give
an indication as to whether or not a gene has multiple phenotype
associations in that it is associated withmore than one phenotype,
but cannot give any indication as to the type of MPA signature
(type 1 or type 2) exhibited by the gene. Mapping the SNPs
in the SNP-phenotype network to the genes in which they are
present results in a gene-SNP-phenotype network (Figure 5C).
From this network, it is possible to deduce the type of MPA
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FIGURE 3 | Distributions. (A) Degree distribution of SNP nodes in the SNP-phenotype GWAS bipartite network. (B) Distribution of the Proportional Similarity edge

weights in the SNP association network.

signature exhibited by a gene through some amount of visual
inspection, for example, looking at the SNPs within a gene and
what their associated phenotypes are. However, the structure of
this network does not allow the MPA signature of a gene to be
readily extracted using simple node properties such as degree. For
example, one cannot simply calculate the connectivity (degree)
of each gene node in Figure 5C in order to determine the type
of MPA signature exhibited, since one can have multiple SNPs
within the same gene associating with the same set of phenotypes.
In addition, it is not easy to determine which genes exhibit the
sameMPA signatures. The process of MPA decomposition allows
one to maintain the topology of SNP associations within a gene
while still being able to determine the type of MPA signature
using simple network measures such as degree.

The first phase of MPA decomposition involved the
construction of module space, a new multi-dimensional space
in which each dimension/axis represented a particular subset
of phenotypes. The powerset of a set is the collection of all
possible subsets of that set. Thus, we can refer to the module
space as “powerset space,” as each axis of the space is defined
by a particular subset of phenotypes which are observed as
co-associating phenotypes in the GWAS results. Modules of
SNPs with the same co-associating phenotypes were identified
using the Proportional Similarity metric. The distribution of
Proportional Similarity values can be seen in Figure 3B. Of the
pairs of SNPs which have non-zero Proportional Similarity values
(i.e., those pairs of SNPs which shared at least one phenotype
association), many had a proportional similarity value of 1.
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This is explained by the degree distributions of the SNPs in
the original SNP-phenotype GWAS network (Figure 3A). The
degree distribution of a network indicates the probability (or,
in this case, frequency) at which a node can be found to have

FIGURE 4 | Representation of matrices as spaces and bipartite networks.

Matrices of GWAS results can easily be represented as points in high

dimensional space, with rows representing points and columns representing

variables/axes. Equivalently, matrices can be represented as bipartite

networks, connecting row objects (genes) with column variables if the

corresponding entry is non-zero. This provides a useful way to visualize high

dimensional spaces as bipartite networks.

a certain number of edges connected to it (Barabási and Oltvai,
2004). Therefore, the distribution in Figure 3A indicates that,
of the SNPs which had significant phenotype associations, most
of them had precisely one phenotype association. This could
skew the Proportional Similarity distribution since any pairs
of these “1-phenotype-hit” SNPs which are associated with the
same phenotype will have a Proportional Similarity index of
1. However, it is important to keep in mind that these “1-
phenotype-hit” SNPs can still contribute to MPA signatures
within genes, as two “1-phenotype-hit” SNPs within the same
gene that have different associations is precisely what we define
as Type 2 MPA signatures.

The modules form the building blocks of MPA signatures,
and also conveniently collapse SNPs that are close together in
genes and associate with the same set of phenotypes, and thus
likely in LD. While representing non-overlapping sets of SNPs,
these modules also represented overlapping sets of phenotypes.
In particular, each module represented the set of phenotypes
which were associated with all SNPs within the module. Thus,
each module also represented an element of the powerset
of phenotypes P(P) observed in the SNP-phenotype GWAS
associations. These observed elements of the powerset were
used to construct the powerset space, with each element/module
representing a different dimension of this space.

These modules allowed for the construction of the gene-
module (GM) and the module-phenotype (MP) matrices, which
are referred to as the decomposition matrices. Represented as
bipartite networks, the MP bipartite network defined the axes
of powerset space, and the GM bipartite network mapped the
genes into powerset space. While phenotype space provided
information as to the individual phenotype associations of
genes, powerset space indicated a gene’s associations with sets
of phenotypes at the SNP level, providing a detailed MPA
signature. The mapping from phenotype space to powerset
space results in a decomposition relationship between the GP,
GM and MP matrices (Figure 6, Supplementary Texts S3–S5,
Supplementary Figure 1). In the GP network (Figure 7), nodes

FIGURE 5 | Example of SNP-phenotype, gene-phenotype networks and gene-SNP-phenotype networks. (A) SNP-phenotype bipartite networks simply connect

SNPs to phenotypes with which they have a significant association, and do not provide information regarding MPA signatures within genes. (B) Gene-phenotype

networks contain connections between genes and phenotypes. An edge will be drawn between a gene and a phenotype if that gene contains a SNP associated with

that phenotype. Gene-phenotype networks do not provide information as to which type of MPA signature is exhibited. (C) Gene-SNP-phenotype networks are

SNP-phenotype networks with the SNPs connected to genes in which they reside. These networks are more complicated, and MPA signatures can be deduced from

their structure through further analysis, however, the network is not in a form in which MPA signatures can be extracted easily using standard network topology

measures such as degree.
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represented either genes or phenotypes, and an edge was defined
between gene Gi and phenotype Pj if gene Gi contained a SNP
which was statistically associated with phenotype Pj in the GWAS

FIGURE 6 | MPA decomposition. The gene-phenotype matrix is decomposed

into two matrices, a gene-module (GM) matrix and a module-phenotype (MP)

matrix (Supplementary Texts S3, S4, Supplementary Figure 1). The GM

matrix represents genes in powerset space. Association modules (elements of

the powerset of phenotypes) form the basic units of MPAs and are considered

latent variables. Signature clustering is performed on genes in module space

(GM matrix).

analysis. Nodes in the GM network (Figure 8) represented either
genes or modules, and an edge was defined between gene Gi

and module Mj if Mj contained a SNP that resided within gene
Gi. Nodes in the MP network (Figure 9) represented either
association modules or phenotypes, and an edge was defined
between module Mi and phenotype Pj if the correlation of SNPs
withinMi is driven by phenotype Pj.

3.2. Powerset Space Unravels
Multi-Phenotype Association Signatures
The GP network (Figure 7) represents genes in phenotype space,
and provides information regarding which genes are associated
with which phenotypes, and can thus indicate which genes have
multiple phenotype associations and are potentially pleiotropic.
Of the 41,335 genes in P. trichocarpa, 2,964 genes had GWAS
hits with more than 1 metabolite phenotype each, and are thus
considered MPA genes with respect to the metabolic phenotypes.

The GM network (Figure 8) represents genes in powerset
space, which in turn is defined by theMP network (Figure 9). The
GM network unravels the MPA signatures of genes, representing
their associations with sets of phenotypes. Genes that are
connected to onemodule exhibit a Type 1MPA signature because
they contain SNPs which are associating with the same set of
phenotypes, whereas genes connected to more than one module
exhibit a Type 2MPA signature because they contain SNPs which
associate with different sets of phenotypes. Mapping of genes to
module space thus reveals the Type 1 and Type 2 MPA patterns,

FIGURE 7 | Gene-phenotype (GP) network. (A) The GP network. Green nodes represent MPA genes, pink diamonds represent metabolites (phenotypes). An edge

connects a gene to a phenotype if that gene contains a SNP associated with that phenotype. (B) Degree distribution of the gene (green) nodes in the GP network. (C)

Degree distribution of the phenotype (pink) nodes in the GP network.
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FIGURE 8 | Gene-module (GM) network. (A) The GM network. Green nodes represent MPA genes and yellow nodes represent association modules. A gene node is

connected to a module node if the module contains a SNP which resides within that gene. (B) Degree distribution of the module (yellow) nodes in the GM network. (C)

Degree distribution of the gene (green) nodes in the GM network.

as well as complex combinations of Type 1/Type 2 patterns
that exist within genes (Figure 10). Phenotype associations of
genes cannot be distinguished as Type 1 or Type 2 in phenotype
space, whereas module space clearly indicates the MPA signature
exhibited by a gene (Figure 10). Module space also goes beyond
classifying genes as exhibiting Type 1 or Type 2 MPA signatures,
but characterizes each unique topology of variant-phenotype
associations within a gene separately. Thus, mapping of genes to
module space gives information on the type of MPA signature
exhibited by a gene, as well as the phenotypes involved in the
signature. The high density of SNPs in this population and
the rapid decay of LD allows for the high resolution of MPA
signatures. Supplementary Figure 2A shows the variation in LD
in the region including 5 kb upstream and downstream of
Potri.001G419800, the type 2 MPA gene in Figure 10F. One
can see that both associating variants in this gene are in a
region of low LD. Supplementary Figure 2B shows a pairwise
LD heatmap of 100 variants in this region including the two
associating variants in Potri.001G419800. One can see that these
two associating variants exist within two separate LD blocks.

The beta value derived from each SNP-phenotype association
gives an indication of the effect that the SNP has on the value
of the phenotype. One can look at the beta values from the
GWAS analysis to see if the minor allele of a given SNP has
statistically a positive or negative affect on the phenotype value.

This will inform the researcher of the potential functional affect
of each SNP. Overall, positive and negative beta values are present
in associations in the set of type 1 MPA genes, type 2 MPA
genes and single phenotype association (SPA) genes, although
negative beta values are far more prevalent across all categories
(Supplementary Figure 3) indicating that most minor alleles
have negative effects on the phenotype (metabolite) values.

Of the 10,566 genes that had at least one phenotype
hit, 2,964 exhibited a MPA signature by associating with
more than one phenotype (Supplementary Figure 4A).
Of those MPA genes, type 2 MPA signatures were far
more abundant, with 2,468 genes exhibiting a type 2 MPA
signature and 496 genes exhibiting a type 1 MPA signature
(Supplementary Table 1, Supplementary Figure 4B). MPA
genes represented a broad range of functions (Figure 11).
No functional enrichment was found in the set of type
1 MPA genes. However, various GO terms were found
to be enriched in the set of type 2 MPA genes, including
developmental functions such as root development, shoot
development, leaf development, fruit development, symbiosis,
encompassing mutualism through parasitism, various regulatory
functions such as RNA gene silencing function and response
to stress and DNA repair (see Supplementary Figures 5–7,
Supplementary Table 2, Supplementary File 1 for complete
enrichment results).
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FIGURE 9 | Module-phenotype (MP) network. (A) The MP network. Yellow nodes represent association modules and pink nodes represent phenotypes. A module

node is connected to a phenotype node if the phenotype is associated with all SNPs within the module and is thus considered a driving phenotype of the module. (B)

Degree distribution of the phenotype (pink) nodes in the MP network. (C) Degree distribution of the module (yellow) nodes in the MP network.

Chaperones are classic examples of pleiotropic genes, assisting
in the folding of various proteins. (Sung and Guy, 2003; Sangster
et al., 2004; Gong and Golic, 2006). Querying the MPA networks
for potential pleiotropic chaperones, we uncovered 14 potential
chaperones based on there best Arabidopsis hit annotation, that
contain MPA signatures (Supplementary Table 3), 12 of which
contain type 2 MPA signatures. It is encouraging to see these
classic pleiotropic genes appearing in the MPA networks, and
interesting that they mostly exhibit type 2 MPA signatures.

3.3. Signature Clustering in Powerset
Space
Clustering of genes in phenotype space produces groups of
genes with the same overall set of phenotype associations.
However, it does not provide any information as to the
topology of Type 1/Type 2 associations of SNPs within the
gene. Powerset space is defined by sets of phenotypes, and
thus, clustering genes in this space groups genes based on the
topology of Type 1/Type 2 associations of SNPs within the
gene. After mapping genes to the newly constructed powerset
space, genes were clustered (Figure 2F, Methods and Materials)
resulting in groups of genes containing the same MPA signature.
Members of a given cluster represented genes harboring
identical MPA signatures. This means that genes within the
same signature cluster have associations with the same modules.
For example, the signature cluster driven by two modules, one

involving associations with cis-3-O-caffeoyl-quinate and the
other involving associations with gentisic acid-2-O-glucoside
contains two genes, Potri.016G125500.v3.0 (homolog of
Arabidopsis thaliana TRICHOME BIREFRINGENCE-LIKE 34)
and Potri.012G132600.v3.0 (homolog of Arabidopsis thaliana
AGAMOUS-like 6). These genes have associations with both
cis-3-O-caffeoyl-quinate and gentisic acid-2-O-glucoside,
however a given SNP within these genes is associated with either
caffeoyl-quinate or gentisic acid-2-O-glucoside, but not both
(Figure 12). This exemplifies what MPA decomposition and
signature clustering accomplishes—the extraction of detailed
multi-phenotype association signatures within genes, and the
grouping of genes based on these detailed MPA signatures.

MPA signature clusters varied in size and complexity,

ranging from large sets of genes having simple MPA signatures

(Supplementary Figures 8A,B; Supplementary Table 4) to

single gene clusters harboring very complex MPA signatures

(Supplementary Figures 8C,D). An inverse relationship

existed between the cluster size, and the number of associated

phenotypes, with a minimum gene cluster size of one and a
maximum gene cluster size of 42 (Figure 13). Complex MPA
signatures are possible in this population partly because of the
rapid rate with which Linkage Disequilibrium (LD) decays,
dropping below 0.2 within 100 bp (Supplementary Figure 9).

These signature clusters are easily combined with
other data types in a “lines of evidence” fashion, as introduced
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FIGURE 10 | Signature decomposition example. Two genes, Potri.013G092400 (A) and Potri.001G419800 (B) have the same surrounding network topology in the

GP network in that they are both connected to two phenotypes. Projecting the genes into powerset space through MPA decomposition of the GP network indicates

that they exhibit different MPA signatures in that Potri.013G092400 exhibits a type 1 MPA signature (C), containing a SNP associating with two phenotypes (E) and

Potri.001G419800 exhibits a type 2 MPA signature. (D) containing two SNPs, each with a different phenotype association (F).

in Weighill et al. (2018). Signature clusters such as those in
Figure 12 can be merged with their neighbors in a co-expression
network, providing additional insights into the functioning of
these genes. Potri.016G125500 (TBL34) and Potri.012G132600
(AGL6) appeared in the same signature cluster, and are
associated with many cell-wall related genes/phenotypes. TBL34
and AGL6 both associated with gentisic acid-2-O-glucoside and
cis-3-O-caffeoyl-quinate, and both co-expressed with the same
two transcription factors (Figure 14). An interesting regulatory
circuit is potentially revealed, in that AGL6 potentially activates
two transcription factors (positive co-expression edges) which,
in turn potentially repress TBL34 (negative co-expression edges).
TBL34 is also positively co-expressed with 12 genes involved
in cell wall and lignin biosynthesis functions (Figure 14). TBL
genes are known to o-acetylate xylose (Gille et al., 2011), a
function which has been found to be essential for resistance
to certain pathogens (Gao et al., 2017). Gentisic acid and its
conjugate is a pathogen-induced signaling molecule (Bellés
et al., 1999) which itself has been found to induce pathogen
resistance in plants (Campos et al., 2014) and induce expression
of pathogenesis-related proteins (Bellés et al., 1999). Various
AGL genes are also cell-wall related in that they impact lignin
content (Ferrándiz et al., 2000; Giménez et al., 2010; Cosio et al.,
2017). This could be a regulatory circuit of biotic-stress-related
cell wall remodeling, in which AGL6 potentially regulates xylose
o-acetylation via TBL34.

3.4. Extensions to Pleiotropy
Several definitions of pleiotropy involve a gene associating with
multiple, apparently disparate, unrelated phenotypes (see for
example Stearns, 2010), and not all MPAs can be interpreted
as pleiotropic signatures. However, if the two phenotypes are
disparate enough, one can begin to hypothesize about potential
pleiotropic functioning of the gene in question. In this particular
study, we demonstrated our method on a collection of molecular
phenotypes of metabolite concentrations. If two metabolites in
a MPA exist within separate pathways, one could consider it a
potentially pleiotropic interaction.

A particular example of this phenomenon found in
our analysis is Potri.002G178400. This gene has a type
2 MPA association with shikimic acid and raffinose
(Supplementary Figure 10). Based on existing knowledge
found in PlantCyc on the Plant Metabolic Network
(PMN) online resource (Schlapfer et al., 2017), these two
metabolites are found in different pathways. Shikimic
acid is involved in reactions in pathways “chlorogenic
acid biosynthesis I,” “chlorogenic acid biosynthesis II,”
“phaselate biosynthesis,” “phenylpropanoid biosynthesis,”
“simple coumarins biosynthesis,” and “chorismate biosynthesis
from 3-dehydroquinate” whereas raffinose is involved in
reactions in pathways “lychnose and isolychnose biosynthesis,”
“stellariose and mediose biosynthesis,” “ajugose biosynthesis
II (galactinol-independent),” “stachyose degradation,” and
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FIGURE 11 | Functional annotations. Number of genes annotated with different high-level MapMan categories for (A) non-MPA genes, (B) all MPA genes, (C) type 1

MPA genes, and (D) type 2 MPA genes.

“stachyose biosynthesis.” Supplementary File 2 contains a high
resolution PDF showing the positions of raffinose (red boxes) and
shikimic acid (blue box) in the P. trichocarpa Cellular Overview
metabolic map generated on the Plant Metabolic Network
online resource. Potri.002G178400 contains two Pfam domains,

namely pfam01565 (FAD binding domain) and pfam04030 (D-
arabinono-1,4-lactone oxidase). This is an interesting example
of a potentially pleiotropic gene, which affects two different
metabolic phenotypes. A possible explanation for the mechanism
of this pleiotropic interaction is through competition for carbon,
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FIGURE 12 | Type 2 signature cluster. (A) Signature cluster defined by a Type

2 association with gentisic acid-2-O-glucoside and cis-3-O-caffeoyl-quinate.

(B) Associating SNP positions within genes in this signature cluster. These

SNP associations have negative effect sizes (beta values) on the phenotype

values. See Table 1 for gene information.

TABLE 1 | IDs, Arabidopsis thaliana best hits and corresponding descriptions of

genes in the gentisic acid/cis-3-caffeoyl-quinate signature cluster (Figure 12).

Gene ID A. thaliana best hit Description

Potri.012G132600 AT2G45650 AGAMOUS-like 6

Potri.016G125500 AT2G38320 TRICHOME BIREFRINGENCE-LIKE 34

with shikimic acid committing carbon to secondary metabolism
and raffinose being the product of storage for primary carbon
metabolism.

It is however important to note that pleiotropic signatures
can be difficult to disentangle true pleiotropic associations from
other multi-phenotype associations, and should be addressed
carefully. Multi-phenotype associations can be interpreted as true
pleiotropy, but could also be various forms of spurious pleiotropy
(see Solovieff et al., 2013 for a useful review).

3.5. Future Prospects and Implications
P. trichocarpa was an ideal species for the demonstration of
the MPA decomposition for several reasons. Firstly, a large
collection of 1,100 P. trichocarpa accessions have been clonally
propagated in common gardens, resequenced and genotyped,
(Tuskan et al., 2006; Slavov et al., 2012; Evans et al., 2014)
providing a dense set of ∼28 million variants which are
publicly available (DOI 10.13139/OLCF/1411410). Secondly,
linkage disequilibrium (LD) decays very rapidly within this
population of P. trichocarpa (Supplementary Figure 9). This,
in combination with the dense SNP genotyping, allowed for
very fine-scale MPA signatures to be resolved. Thirdly, many

FIGURE 13 | Signature clusters in powerset space. (A) Cluster size

distribution for signature clusters containing ≥ 2 genes. (B) Heatmap showing

cluster size (green), average number of modules associated with genes of a

given cluster size (yellow) and average number of phenotypes associated with

genes in clusters of a given size (pink).

other different ’omics datasets exist for P. trichocarpa including
genome scale methylation data across 10 different tissues (Vining
et al., 2012) as well as a gene expression atlas are available
on Phytozome (Goodstein et al., 2012). This provides extra
data layers which can be integrated with the MPA networks
in order to provide further interpretation and context to the
GWAS associations seen in the MPA signatures, in a Lines
of Evidence approach (Weighill et al., 2018). Lastly, Poplar is
an important bioenergy crop (Sannigrahi et al., 2010) and is
the target of extensive research. Thus, this method should be
highly valuable to researchers aiming to attempt to genetically
modify P. trichocarpa in order to impact phenotypes important
to bioenergy.
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FIGURE 14 | Co-expression lines of evidence. Co-expression relationships of the signature cluster consisting of TBL34 and AGL6 from Figure 12.

The ease with which these MPA networks can be integrated
with other network layers such as co-expression, co-methylation
and SNP co-evolution networks provides a powerful strategy
for furthering understanding and knowledge about the
components of the system, which could aid in the annotation of
genes/metabolites of previously unknown function.

Other previously published methods are able to provide
information on multi-phenotype associations. The MARV
(Multi-phenotype Analysis of Rare Variants) method (Kaakinen
et al., 2017a) is a rare variant test that associate a gene with
single or multiple phenotypes, with rare variants collapsed,
so the result is gene-to-phenotype or gene-to-multi-phenotype
association. This is a very valuable method to determine the
potential multi-phenotype associations of a gene harboring rare
variants. This method however results in a score for each
gene indicating its association with a set of phenotypes, and
SNP-phenotype associations within the gene are not reported.
Cichonska et al. (2016) present a method of performing SNP-to-
multi-phenotype and multi-SNP-multi-phenotype associations.
Another method by Mägi et al. (2017) associates SNPs with
multiple phenotypes through a “reverse regression” approach,
using phenotypes as the predictors in the model. Both of these
methods can provide a unified measure of a given variant’s
association with multiple phenotypes, and thus could prove to be
a valuable alternative to standard univariate GWAS approaches
and potentially provide an alternative, useful input set of SNP-
multi-phenotype input associations to be characterized and
clustered using MPA decomposition.

MPA decomposition produces signature clusters from GWAS
results which can easily be merged with other data types for
further interpretation. It is intended that this method will be

a valuable tool in the planning of future genetic modification
experiments. The resolution of the MPA signatures revealed by
this method provides a useful tool to use alongside new CRISPR-
based gene editing technologies to achieve high precision genome
editing. This method thus provides an informed strategy for
increasing the precision of future synthetic biology efforts.
Researchers aiming to modify a specific gene in order to impact
a particular phenotype can select genes from the signature
cluster best suited to the functions they want to modify. The
module decomposition also provides information as to which
variants/parts of genes are associating with one phenotype or
more than one phenotype, and thus can inform the researcher
whether the modification of a particular location within a gene
will affect more than one phenotype.

MPA decomposition will also be particularly useful in the
processing and interpretation of large GWAS datasets such
as eQTN studies, involving associations between millions of
variants and tens of thousands of phenotypes. Future application
of this method to the expanding pool of phenotypic data available
will allow for the generation of comprehensive signature clusters
representing the global pleiotropic potential of a given organism,
and inform the planning and precision of future synthetic biology
efforts to impact a wide variety and scale of phenotypes. As such,
this approach should have broad impacts by developing high
resolution models of MPA/pleiotropy prediction that will form
the foundation of future bioengineering design efforts.
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