About this Research Topic
Genetic mutations, environmental stress, pathogens and drugs of abuse are some of the predominant factors that induce and impact changes on chromatin, which directly dictate a diseased phenotype. It is essential to consider the interaction between genetic and epigenetic factors to understand the molecular mechanisms of complex human diseases for safer and efficient drug development. Furthermore, genetic variation in absorption, distribution, metabolism, and excretion (ADME) genes is insufficient to account for interindividual variability of drug response. Therefore, current efforts aim to identify epigenetic components of ADME gene regulation, which include phase-I and phase-II enzymes, uptake transporters, efflux transporters and nuclear receptors involved in regulation of ADME genes. Monitoring circulatory epigenetic biomarkers in liquid biopsies (blood, saliva, urine, cerebrospinal fluid) of disease-associated and drug-associated epigenetic alterations may prove useful for decision support for routine clinical treatment and drug discovery. Hence, recent drug discovery efforts on targeting the epigenome, has emerged an area of interest with several new drugs being developed, tested and some already approved by the US Food and Drug Administration (FDA). These new insights into the complexities of epigenetic regulation are key contributors to our basic understanding of this process in human health and disease, which will provide scope for innovative drug therapies. It is of urgency to aid the present understanding of epigenomics driven diseased outcomes, with the expectation that further studies will identify early markers of disease and targets for therapeutics.
Epigenetic dysregulation in different human diseases conditions
Epigenetic hallmarks of various diseases and their prospect for epigenetic drug development.
Therapeutic potential of current epigenetic drugs for different diseases
Epigenetic mechanism of polygenic clinical drug resistance
Interplay of genetic mutations and epigenetic modifications
Epigenetic regulation of drug metabolism and transport
Epigenetic regulation of drug addiction and toxicoepigenetics
Computational approaches and bioinformatic tools for epigenetic drug discovery
Circulatory epigenetic biomarker development of drug response
Small-molecule based epigenetic modulators (activators and inhibitors) for epigenetic drug development
Epigenetic regulation of the ADME genes (related to absorption, distribution, metabolism, and excretion) of potential drug candidates
Targeting epigenetic networks for epigenetic drug development
Keywords: Epigenome, Diseases epigenome, Histone variants, histone modification, DNA methylation, small molecules, oncology, non-coding RNA, Drug transporters, epigenetic biomarkers, organoids model
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.