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Editorial on the Research Topic

Integrative Brain Function Down Under

Despite decades of research, how the brain interacts with the world is still one of the greatest
challenges of the twenty-first century. To address this challenge, Australia’s leading brain
researchers are investigating brain structure and function at multiple scales, from single cells and
synapses, to circuits and networks, to whole brain systems.

In this Research Topic, we are pleased to present a collection of articles and reviews from
Australian neuroscientists, engineers, and computer scientists, covering a multitude of topics
ranging from ion channel function in single neurons to sensory information processing within
neural networks. The aim of this research is to increase our understanding of how the brain
integrates information across multiple levels. Key to this process is the development of new
experimental instruments and computational tools. Hopefully, the new insights obtained will also
aid development of approaches to repair and restore function to the damaged brain.

In order to understand integrative brain function, it is critical to understand how the brain
processes information. Information processing in the brain relies on spiking activity in single
neurons, which requires the movement of charged ions through ion channels in neuronal
membranes. Autuori et al. investigate ion flow through small conductance calcium-activated
potassium channels (so-called SK channels), which contribute to the after hyperpolarization that
follows spike activity in many neuronal cell types. The team identified that the rSK1 protein acts as
a chaperone for rSK2 channels, indicating that expression of the rSK1 gene may control the level of
functional SK current in neurons. To further gain insight into information processing in the brain,
an understanding of how populations of neurons encode information in their patterns of spiking
activity is essential. Triplett and Goodhill review recent methods for extracting variables that
quantitatively describe how sensory information is encoded. In particular, they discuss methods for
estimating receptive fields, modeling neural population dynamics and inferring low dimensional
latent structure from neuronal populations. In a related study, Zavitz et al. present an overview
of some of the most promising analytical approaches for making inferences from population
recordings in multiple brain areas, such as dimensionality reduction and changes in correlated
variability. Hadjidimitrakis et al. review the evidence related to functional communication between
subregions of the posterior parietal cortex and how recordings in this region can be used to decode
movement goals. These data suggest that the posterior parietal cortex works as a dynamic network
of sensorimotor loci that combine multiple signals which work in concert to guide motor behavior,
and raises the possibility of using parietal neuron activity to better drive neuroprosthetic devices
for motor control.
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The brain integrates and processes a massive amount of
sensory information to guide behavior crucial for survival.
Oestreich et al. investigate the connections between brain regions
activated by speech. They identified that structurally connected
brain regions are also functionally engaged by externally-
generated and temporally-predictable speech patterns. The
research provides evidence that the brain continually predicts
incoming sensory events based on past experience in order to
respond to unexpected events in a fast and efficient manner.
Work by Lian et al. explores how the visual system codes visual
stimuli. Using a biologically plausible model they show how
complex experimental phenomena, such as the shape of receptive
fields and contrast invariance of orientation tuning, can be
implemented in primary visual cortex by sparse coding. In a
related article, Chaplin et al. compare the representations of space
and motion in the visual and auditory cortex, and examine how
single neurons in these two areas encode the direction of motion.
They discuss how humans integrate audio and visual motion
cues, and the regions of the cortex that may mediate this process.

Several articles in this collection are dedicated to developing
new approaches and building better models of integrative brain
function. For example, Vidyasagar et al. propose a model of
how the claustrum orchestrates and integrates activity across
different cortical areas by boosting synchronized oscillations
between these areas. Gollo et al. present a non-linear hierarchical
model that provides unique insights into the brain architecture
underlying the representation and appraisal of perceptual belief
and precision in the prefrontal cortex. Jacques et al. describe a
novel approach to precisely map molecular markers in neuronal
networks through quantitative topographic measurement. This
approach can be used to gain a greater understanding of
functional encoding within sub-nuclei duringmemory formation
and may prove advantageous for studying the cellular basis
of addiction as well as pathological memory models. Finally,
Arnatkevičiute et al. review studies investigating gene expression

patterns associated with hub connectivity in neural networks
and present evidence that some of these expression patterns
are conserved across species and scales. Together, these
studies provide new models of brain networks which aid our
understanding of how the brain integrates information across
multiple brain regions.

The articles in this Research Topic study the relationship
between brain activity and behavior at multiple spatial and
temporal scales—from single cell electrical and biochemical
activity to patterns of activity in large scale circuits and
networks. In doing so they help to build an integrated model
of how the brain processes information and thereby contribute
to a deeper understanding of how the brain interacts with
the world.
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Predictive coding postulates that the brain continually predicts forthcoming sensory
events based on past experiences in order to process sensory information and respond
to unexpected events in a fast and efficient manner. Predictive coding models in
the context of overt speech are believed to operate along auditory white matter
pathways such as the arcuate fasciculus and the frontal aslant. The aim of this
study was to investigate whether brain regions that are structurally connected via
these white matter pathways are also effectively engaged when listening to externally-
generated, temporally-predicable speech sounds. Using Electroencephalography (EEG)
and Dynamic Causal Modeling (DCM) we investigated network models that are
structurally connected via the arcuate fasciculus from primary auditory cortex to
Wernicke’s and via Geschwind’s territory to Broca’s area. Connections between Broca’s
and supplementary motor area, which are structurally connected by the frontal aslant,
were also included. The results revealed that bilateral areas interconnected by indirect
and direct pathways of the arcuate fasciculus, in addition to regions interconnected by
the frontal aslant best explain the EEG responses to speech that is externally-generated
but temporally predictable. These findings indicate that structurally connected brain
regions involved in the production and processing of auditory stimuli are also effectively
connected.

Keywords: predictive coding, electroencephalography (EEG), dynamic causal modeling (DCM), effective
connectivity, structural connectivity

INTRODUCTION

The ability to predict imminent sensations from past experiences such as hearing a familiar
song, is crucial to efficiently process the abundance of sensory stimulation we experience at any
moment. Moreover, it enables rapid detection of unexpected events and facilitates adaption to
novel contingencies in our environment (Mumford, 1991, 1992). The predictive coding framework
posits that in an effort to optimize sensory processing, the brain continuously generates models of
the environment that are based on memories specific to a given context (Friston, 2005; Garrido
et al., 2007). According to this theory, predictions are generated in higher cortical areas and
communicated to lower sensory areas via backward (top-down) connections. The sensory areas
then compare actual sensory input with the predicted sensation and its difference, i.e., mismatch
or prediction error, is conveyed upstream via forward (bottom-up) connections (Rao and Ballard,
1999). This prediction error signal facilitates continuous updating of the internal predictive model.
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The functional anatomy underlying auditory prediction is yet
to be conclusively determined. One of the primary ways that
humans produce sounds is by vocalizing (e.g., speaking). It is
plausible that the neural architecture involved in producing and
perceiving willed speech overlaps with the neural architecture
involved in predicting sounds more generally (Gagnepain et al.,
2012). The arcuate and aslant fasciculi are two white matter
fiber bundles that are potentially involved in predictive coding
in the context of willed speech. The arcuate fasciculus provides
a direct connection between speech production (Broca’s) and
speech perception (Wernicke’s) areas. In addition to direct,
long segment fibers connecting Broca’s and Wernicke’s area,
the arcuate fasciculus also has shorter, indirect connections
consisting of an anterior pathway which connects Broca’s area to
Geschwind’s territory, and a posterior pathway which connects
Geschwind’s territory and Wernicke’s area (Catani et al.,
2005). These long and short distance pathways of the arcuate
fasciculus possess different functional roles: whereby the direct
pathway is thought to be involved in phonological functions,
the indirect pathways are associated with semantic functions
(Catani and ffytche, 2005). Specifically, the posterior indirect
pathway is thought to be involved in auditory comprehension
and the anterior indirect pathway in the vocalization of semantic
information (Catani et al., 2005). Evidence for a role of
the arcuate fasciculus in predictive coding in the context of
willed speech comes from studies with schizophrenia patients
(Whitford et al., 2017), which showed that the structural
integrity of the arcuate fasciculus is associated with predictive
coding deficits, as quantified by the level of electrophysiological
suppression to willed speech. The frontal aslant, which directly
connects Broca’s area with the supplementary motor area (SMA;
Catani et al., 2012) may also play a role in predictive coding in
the context of speech production, as it is known to be involved
in verbal fluency (Catani et al., 2013) and speech initiation (Fujii
et al., 2016).

According to the ‘‘forward model’’ of speech production,
the sensory consequences of self-generated speech are predicted
through a copy of the motor command, which is sent via
top-down projections from the motor cortex to the sensory
system (Houde and Jordan, 1998). If the mechanisms involved
in predictive coding of external, predictable sounds operate via
similar neural pathways as those involved in predictive coding
of willed speech, then the former may rely on the functional
engagement of the arcuate fasciculus and the frontal aslant.

In this study, we formulated a set of dynamic causal
models (DCMs) to investigate the functional underpinnings
of auditory prediction of external, predictable speech sounds.
These DCMs included brain regions interconnected via the
arcuate fasciculus and the frontal aslant. It was hypothesized
that models with both forward (bottom-up) and backward (top-
down) connections, which convey sensory input and prediction,
respectively, would perform better than models with forward
(bottom-up) connections alone. Furthermore, we explored
whether auditory prediction was better explained by alternative
models that included or excluded the above mentioned regions
along the arcuate fasciculus (Geschwind’s territory) and the
frontal aslant (SMA).

MATERIALS AND METHODS

Participants
Seventy-five healthy participants (38% males, aged 18–44 years,
95% right-handed) were recruited through the online
recruitment systems SONA-1 and SONA-P at the University
of New South Wales (UNSW), Australia. Participants were
either monetarily reimbursed for their time or received course
credit. One participant was excluded from the analyses due
to a self-reported diagnosis of an Axis I disorder (American
Psychiatric Association, 2000). Event-related potential (ERP)
analyses and a detailed description of the demographic data have
been reported previously elsewhere (Oestreich et al., 2015). All
participants gave written informed consent in accordance with
the Declaration of Helsinki. This study was approved by the
UNSW Human Research Ethics Advisory Panel (Psychology)
and the University of Queensland Research Ethics Committee.

Procedure
Participants completed a number of questionnaires about their
demographics, alcohol, nicotine, caffeine and recreational drug
use, as well as history of Axis I disorders. Participants then
underwent electroencephalographic (EEG) recordings while
performing an experimental task in a quiet, dimly lit room.
The experiment consisted of three conditions, namely the Talk,
Passive Listen and Cued Listen conditions (Ford et al., 2007;
Oestreich et al., 2015). Before the experiment, an instruction
video was played, which demonstrated how to vocalize the
syllable ‘‘ah’’ in a clear manner while maintaining the gaze on
a fixation cross. Following the instruction video, participants
were trained to vocalize the syllable ‘‘ah’’ with a duration
of less than 300 ms and an intensity between 75 dB and
85 dB. During the Talk condition, participants vocalized a
series of ‘‘ah’’s in a desk-mounted microphone, every one to
three seconds until 3 min had elapsed, producing between
75 and 125 ‘‘ahs.’’ In the Cued Listen condition, participants
were instructed to listen to a recording of their own willed
vocalizations whilst watching a video of the vocalization
waveforms. Participants were therefore able to make exact
temporal predictions about the onset of a speech sound. Lastly,
during the Passive Listen condition, participants listened to their
own willed vocalizations played back without a cue. During the
Passive Listen condition, participants were therefore unable to
make temporal predictions about the onset of the next speech
sound.

Of the three conditions, the Talk condition is distinct from
the other two in that it alone involves an overt motor action.
As we were interested in the functional connectivity changes
associated with auditory prediction per se, the Talk condition was
removed from the analysis, described below, in order to avoid
the complications associated with comparing motor-active and
motor-passive conditions.

Data Acquisition and Preprocessing
EEG was recorded with a 64-channel BioSemi ActiView system
at a sampling rate of 2048 Hz, 18 dB/octave roll-off and
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417 Hz bandwidth (3 dB). External electrodes were placed
on the mastoids, the outer canthi of both eyes and below
the left eye. EEG data were referenced to the average of the
mastoid electrodes. Preprocessing was performed using SPM12
(Wellcome Trust Centre for Neuroimaging, London1) with
MATLAB (MathWorks). Triggers were inserted at the onset of
each ‘‘ah’’ and the EEG data were then segmented into 500 ms
intervals with 100 ms pre- and 400 ms post-stimulus onset.
Eye blinks and movements were corrected with a regression
based algorithm using vertical and horizontal electrooculogram
(VEOG, HEOG; Gratton et al., 1983). The low and high
frequency components of the EEG signal were attenuated using
a 0.5–30 Hz bandpass filter and trials containing artifacts
exceeding ±50 µV were rejected. The remaining artifact free
trials were averaged per condition for each participant in order
to obtain event-related potentials (ERPs). ERPs were baseline
corrected using the –100 to 0 ms pre-stimulus interval. The
N1 component of each ERP was defined as the most negative
peak between 50ms and 150ms after the onset of a speech sound.
In order to investigate the effect of condition on N1 amplitude
at electrode Cz, a paired-samples t-test with the within-subjects
factor condition (Passive Listen/Cued Listen) was conducted.

Dynamic Causal Modeling (DCM)
Dynamic causal modeling (DCM) relies on a generative
spatiotemporal model for EEG responses evoked by experimental
stimuli (Kiebel et al., 2008). It uses neural mass models (David
and Friston, 2003) to infer source activity of dynamically
interacting excitatory and inhibitory neuronal subpopulations
(Jansen and Rit, 1995), and the connectivity established amongst
different brain regions. DCM sources are interconnected via
forward, backward and lateral connections (Felleman and Van
Essen, 1991), and are arranged in a hierarchical manner (David
et al., 2005; Kiebel et al., 2007). DCM is designed to test specific
connectional hypotheses that are motivated by alternative
theories (Garrido et al., 2008). Every connectivity model defines
a network that attempts to predict (i.e., generate) the ERP signal.
Differences in the ERPs to different experimental stimuli are
modeled in terms of synaptic connectivity changes within and
between cortical sources (Garrido et al., 2008). Several plausible
cortical network connections are compared by estimating the
probability of the data given a particular model within the space
of models compared, using Bayesian Model Selection (BMS;
Penny et al., 2004). BMS provides estimates of the posterior
probability of the DCM parameters given the data, as well as
the posterior probability of each model (Penny et al., 2004). The
winning model is the model, which maximizes the fit to the data
while simultaneously minimizing the complexity of the model.

The posterior probability of each model was computed over
all participants using a random effects approach (RFX; Stephan
et al., 2009). The conventional fixed effects approach for model
comparison is limited by the assumption that all participants’
data are generated by the same model and is not very robust
to outliers. The RFX approach used in the current study on the
other hand, is able to quantify the probability that a specific

1http://www.fil.ion.ucl.ac.uk/spm/

model generated the data for any randomly chosen participant
relative to other models. Moreover, RFX is robust to outliers
(Stephan et al., 2009). We report the expected probability, that
is, the probability that a particular model generated the data
of a randomly chosen subject and the exceedance probability,
which is the probability that one model is more likely than any
other model, given the group data (Stephan et al., 2010). The
main conclusions are based on inferences at the family level
with a RFX exceedance probability of 0.95 on average (ranging
from 0.85 to 1). In addition to RFX, we also report the Bayesian
omnibus risk (BOR), which quantifies the risk incurred when
performing Bayesian model selection, by directly measuring
the probability that all model frequencies are equal (Rigoux
et al., 2014). The BOR is bounded between 0 and 1, whereby a
value close to 1 indicates that the models are indistinguishable,
whereas a value close to 0 indicates that the models are well
distinguishable from one another.

Model Specification
Themodels compared in this study include up to 10 brain regions
hierarchically organized in one to five levels. These alternative
models were motivated by speech-related brain regions that are
interconnected via the auditory white matter pathways of the
arcuate fasciculus and the frontal aslant. Furthermore, these
brain regions have previously been reported to be activated
during auditory prediction tasks similar to the paradigm used
in the present study. Specifically, a study using concurrent EEG
and fMRI found the superior temporal gyrus (STG), which
includes Wernicke’s area (W) and the primary auditory cortex
(A1; Ford et al., 2016) to be activated, and a study using EEG
with anatomical MRI reported activity in the STG, sensorimotor
area and inferior frontal gyrus, which includes Broca’s area
(B; Wang et al., 2014). Since the primary auditory cortex
is essential for processing auditory information, the bilateral
primary auditory cortices (A1) were defined as the cortical
input nodes. The arcuate fasciculus consists of a direct pathway
between Wernicke’s area (W) and Broca’s area (B) as well as
two indirect pathways, namely the posterior pathway connecting
W and the Geschwind’s territory (G), and the anterior pathway
connecting G and B. To account for these direct and indirect
connections of the arcuate fasciculus, we included models with
and without G. Given the role of the frontal aslant in verbal
fluency (Catani et al., 2013) and speech initiation (Fujii et al.,
2016), models along the frontal aslant, which connects B with
the SMA, were also included. The coordinates were chosen based
on the mean Montreal Neurological Institute (MNI) coordinates
for left A1 (−52, −19, 7), right A1 (50, −21, 7), left W
(−57, −20, 1), right W (54, −19, 1), left G (−53, −32, 33),
right G (51, −33, 34), left B (−48, 13, 17), right B (49, 12,
17), left SMA (−28, −2, 52) and right SMA (28, −1, 51; see
Figure 1).

Since the effective connectivity associated with the
prediction of external speech sounds has not been studied
before, we considered a comprehensive model space
including a total of 96 models comprising symmetric and
non-symmetric hierarchical models, with forward (bottom-
up) connections only and combined forward (bottom-up)
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FIGURE 1 | Mean locations for the dynamic causal modeling (DCM) nodes
and model space. The montreal neurological institute (MNI) coordinates
include: left A1 (−52, −19, 7), right A1 (50, −21, 7), left W (−57, −20, 1), right
W (54, −19, 1), left G (−53, −32, 33), right G (51, −33, 34), left B (−48, 13,
17), right B (49, 12, 17), left supplementary motor area (SMA; −28, −2, 52),
SMA (28, −1, 51). The 48 represented models were included twice, once with
forward connections only and once with forward and backward connections.
These 96 models were chosen to test different hypotheses about the
functional anatomy of predictability to temporally cued speech. The models
were combined into five families including a Null family, the Arcuate direct
pathway family, the Arcuate direct and indirect pathways family, the
Arcuate-Aslant direct pathways family and the Arcuate-Aslant direct and
indirect pathways family.

and backward (top-down) connections, with and without
indirect connections between W and B via G, as well as
models with and without connections along the frontal aslant,
which connects B to SMA (for a full description of the
model space see Figure 1). All models allowed for changes of
intrinsic connectivity at the level of A1 and were estimated
and individually compared to each other using BMS. The
96 models were then partitioned into a number of different
families.

We investigated whether the prediction of external,
predictable sounds is driven by feedback loops, through both
forward and backward connections, or by bottom-up inputs
alone, via forward connections between brain regions along the
arcuate fasciculus, and possibly also through the frontal aslant.
Models with feedback loops would support the predictive coding
framework whereby internal predictive models are constantly
updated by prediction errors resulting from the mismatch
between predicted and actual auditory sensations. To this end,
a family consisting of all 48 models with forward connections
(i.e., Forward family) only was compared to a family consisting
of all 48 models with forward and backward connections (i.e.,
Forward and Backward family).

Models were then grouped into families that included specific
regions defined along auditory white matter tracts as follows:
(1) the Null family consisted of eight models that included
A1 only and models connecting A1 to W; (2) the Arcuate direct
pathway family included 10 models, with connections between
A1 and W as well as W and B; (3) the Arcuate direct and indirect
pathways family consisted of 28 models including connections
between A1 andW,W and G, G and B, as well asW and B; (4) the
Arcuate-Aslant direct pathways family included 14 models with
connections between A1 andW, W and B, as well as B and SMA;
and (5) the Arcuate-Aslant direct and indirect pathways family
comprising 18 models, including connections between A1 and
W, W and G, G and B, W and B as well as B and SMA (see
Figures 1, 2).

To follow up whether models with or without the frontal
aslant (i.e., connections to SMA) better explained speech sound
prediction, we first combined the Arcuate direct pathway family
(10 models with connections linking A1, W and B directly;
see Figures 1, 2) and the Arcuate direct and indirect pathways
family (28 models linking A1, W, G and B) into one single
family—the Arcuate family. We then compared this to the
Arcuate-Aslant family, which resulted from combining the
Arcuate-Aslant direct pathways family (14 models) and the
Arcuate-Aslant direct and indirect pathways families (36 models)
consisting of all the 50 models with connections to SMA (see
Figures 1, 2).

Lastly, to investigate whether Geschwind’s territory is part of
the circuit engaged in speech sound prediction, we compared
families of models with and without connections to Geschwind’s
territory. To this end, we combined all models excluding
Geschwind into one family—no Geschwind family—by grouping
the Arcuate direct pathway family (10 models) and the Arcuate-
Aslant direct pathways family (14 models; see Figures 1, 2). We
compared then the no Geschwind family to theGeschwind family,
which included a combination of the Arcuate direct and indirect
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FIGURE 2 | Schematic representation of family definitions and anatomical white matter pathways. Primary auditory cortex (A1), Wernicke’s area (W), Geschwind’s
territory (G) and Broca’s area (B) are interconnected via the arcuate fasciculus (green). B and SMA are interconnected by the frontal aslant (blue).

pathways family (28 models) and the Arcuate-Aslant direct and
indirect pathways family, that is, all the models that included
Geschwind’s territory (36 models). Each of the 96 models was
fitted to each individual participant’s mean response for the
contrast between the Passive Listen and Cued Listen conditions,
whereby the Passive Listen condition was used as the baseline
condition.

RESULTS

Scalp Analysis
A paired-samples t-test revealed a significant difference
between the Passive Listen and Cued Listen conditions on the
N1-amplitude at electrode Cz (t(72) = 2.460, p = 0.016, Cohen’s
d = 0.288; see Figure 3).

DCM Analyses
In a first step all 96 models with forward (bottom-up)
connections only as well as forward (bottom-up) and backward
(top-down) connections were individually compared to each
other. Results indicated that the best model included recurrent
connections linking A1, W, G and B, as well as direct connection
between W and B in both the left and right hemispheres
(exceedance probability = 0.32; BOR < 0.01; see Figure 4). The
second-best model, which was also relatively probable, was equal
to the winning model except that it did include connections
to SMA via the aslant in the left hemisphere (exceedance
probability = 0.17; see Figure 4).

When comparing a family with modulations of forward
(bottom-up) connections only (i.e., Forward family) to a
family of both forward (bottom-up) and backward (top-down)

Frontiers in Neural Circuits | www.frontiersin.org 5 May 2018 | Volume 12 | Article 4310

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Oestreich et al. Functional Anatomy of Speech Sound Prediction

FIGURE 3 | Event-related potentials (ERPs) from electrode Cz in response to
willed vocalization in the Cued Listen (magenta) and Passive Listen (cyan)
conditions.

connections (i.e., Forward and Backward family), we found
that the family consisting of a combination of Forward and
Backward connections (expected probability = 0.56, exceedance
probability = 0.85) better explained speech sound prediction than
the families including Forward connections only.

To test specific hypotheses as to which brain regions
that are interconnected by the arcuate fasciculus and the

FIGURE 4 | Model exceedance probability for attenuation of predictable
speech. Bayesian model selection (random effects) over the whole model
space indicated speech sound prediction was best explained by a model with
recurrent (i.e., forward and backward) connections between bilateral primary
auditory cortex (A1), Wernicke’s area (W), Geschwind’s territory (G) and
Broca’s area (B), as well as direct bilateral connections between W and B. This
model was followed by a model, which was in all equal to the winning model
except that it included a connection from B to SMA in the left hemisphere.

frontal aslant were engaged during the prediction of external,
temporally-predictable speech sounds, five families of models
were compared as described in the methods section (see
Figures 1, 2). BMS of these families indicated that the Arcuate-
Aslant direct and indirect pathways familywas the winning family
(expected probability = 0.54, exceedance probability = 0.98; see
Figure 5).

When comparing families with the arcuate fasciculus alone
(i.e., Arcuate family) to families including both the arcuate
fasciculus and the frontal aslant (i.e., Arcuate-Aslant family),
BMS revealed that the winning, Arcuate-Aslant family was much
more likely than the Arcuate family (expected probability = 0.60,
exceedance probability = 0.95; see Figure 5).

Lastly, we investigated families of models with and
without Geschwind’s territory, which enquired as to whether
Geschwind’s territory plays a role in the functional circuit
engaged in speech sound prediction (Geschwind family vs.
no Geschwind family). Results indicated that the family
of models including connections to Geschwind’s territory
outperformed the family of models without Geschwind’s
territory (expected probability = 0.88, exceedance probability = 1;
see Figure 5).

DISCUSSION

This study investigated the functional anatomy underlying
temporally predictable speech sounds using DCM. Model
comparison revealed that modulations with both forward
(bottom-up) and backward (top-down) connections better
explained speech sound prediction than forward (bottom-
up) connections alone. Connectivity models linking primary
auditory cortex, Wernicke’s area, Geschwind’s territory and
Broca’s area via the arcuate fasciculus and the SMA, through the
frontal aslant tract, outperformedmodels without connections to
the SMA and Geschwind’s territory. These findings indicate that
the circuitry underlying the prediction of temporally predictable,
external sounds may involve brain regions involved in the
prediction of willed speech, and may include both, the arcuate
fasciculus and the frontal aslant.

The finding that a combination of forward (bottom-up)
and backward (top-down) connections better explained the
results than forward (bottom-up) connections alone is in line
with the predictive coding account, whereby a prediction is
conveyed through backward (top-down) connections. Forward
connections can be conceptualized as bottom-up processes
(Friston, 2005; Chen et al., 2009), which convey environmental
sensory information from the primary auditory cortex to
higher cortical levels. On the contrary, backward connections
represent top-down (Chen et al., 2009), predictive processes
based on self-monitoring or past experiences. In this study,
we used a Passive Listen condition whereby participants
were passively listening to a series of previously recorded
vocalizations. We used this condition as a baseline and compared
it to a Cued Listen condition, whereby participants were
cued to the exact onset of each speech sound. Therefore,
participants were able to make temporal predictions about
the exact onset of each speech sound, which may have
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FIGURE 5 | Family-level inference for attenuation of predictable speech
sounds—exceedance probabilities for the family comparisons. (A)
Comparison of the Forward family (48 models) to the Forward and Backward
family (48 models). (B) Comparison of five families including a Null family (eight
models), the Arcuate direct pathway family (10 models), the Arcuate direct
and indirect pathways family (28 models), the Arcuate-Aslant direct pathways
family (14 models), and the Arcuate-Aslant direct and indirect pathways family
(18 models). (C) Comparison of the Arcuate family (38 models) and the
Arcuate-Aslant family (50 models). (D) Comparison of no Geschwind family
(24 models) to Geschwind family (64 models).

been transmitted through top-down, or backward connections
along the arcuate fasciculus. On the contrary, during the
Passive Listen condition, participants were unable to make

temporal predictions about to the onset of the external
sounds.

In line with these findings, Hickok (2013) proposed that
the rapidity of production and comprehension of human
dialog is only possible through predictive mechanisms, whereby
listeners covertly imitate speakers based on their own internal
representation of an utterance via top-down connections. This
enables the listener to predict what the speaker is likely to say
next. This theory is supported by the findings from this study
whereby changes in effective connectivity from the Passive Listen
condition to the Cued Listen condition are best explained by
a feedback loop comprising conjoint forward (bottom-up) and
backward (top-down) connections.

Another key finding of this study is that a family
of models including brain areas and connections along
the arcuate fasciculus (linking primary auditory cortex to
Wernicke’s area and Broca’s area directly, and indirectly
via Geschwind’s territory) and the frontal aslant (connecting
Broca’s area directly to the SMA) best explained the prediction
of temporally predictable, externally-presented speech sounds.
When comparing all individual models, the winning model
included connections along the arcuate fasciculus bilaterally. The
second most probable model included additional connections to
the frontal aslant in the left hemisphere, but only connections
along the arcuate fasciculus in the right hemisphere. In order
to determine whether the frontal aslant adds to the functional
anatomy of speech sound prediction or whether connections
along the arcuate fasciculus alone are sufficient, we compared
families of all models with and without connections along the
frontal aslant (while keeping the arcuate fasciculus pathways
intact). The findings indicated that models with connections
along the arcuate fasciculus and the frontal aslant better
explained speech sound prediction than models including the
arcuate fasciculus only. It may appear surprising that the family
of models including the frontal aslant best explained sound
prediction as the frontal aslant is thought to transmit the motor
act of speech production and the Cued Listen condition did not
involve a motor act. A possible explanation for the involvement
of connections to the SMA and therefore the frontal aslant is a
proposal put forward by Jackson (1958): since internal models
of auditory predictions work reliably during processes of sensory
motor control, the same internal models of auditory predictions,
developed later in evolution, might also be utilized during higher
cognitive processes such as thought or inner speech, which can
be seen as the most complex motor act without actions. In
the context of the present study, while participants were not
actively generating the vocalization, watching the waveforms of
the speech sounds might lead them to internally simulate the
next vocalization, which might explain the activation of the
SMA without a motor act. However, we acknowledge that this
explanation is highly speculative, and should be treated with
caution until supporting evidence is provided.

The arcuate fasciculus consists of long distance fibers which
connect Broca’s and Wernicke’s area as well as short distance
fibers which connect Broca’s and Geschwind’s territory via an
anterior pathway, and Geschwind’s territory andWernicke’s area
via a posterior pathway (Catani et al., 2005). The results of
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the present study indicate that models including long distance
connections in addition to short distance connections, via
Geschwind’s territory, better explained sound prediction than
models including long distance connections only. The direct,
long distance pathway is thought to be involved in phonological
repetitions (Catani and ffytche, 2005) and therefore represents
a plausible connection to be utilized during this experimental
tasks, whereby the same sound (i.e., a speech fragment) was
played repetitively. The indirect, short distance pathways of
the arcuate fasciculus are thought to be involved in semantic
functions (Catani and ffytche, 2005). The engagement of these
connections during the prediction of externally-presented speech
sounds might be explained by the nature of the speech sounds
used in the present study. Since phonemes are the building blocks
of language which are used to distinguish one word from another,
it is possible that participants assigned semantic meaning to these
sounds, which would likely not occur if the sounds were simple
tones.

The involvement of brain areas interconnected via the
arcuate fasciculus during the prediction of externally-presented
speech sounds is in line with findings from studies of speech
sound prediction in schizophrenia. There is substantial evidence
that patients with schizophrenia possess disrupted predictive
coding mechanisms to self-generated speech (Ford et al., 2001,
2007; Ford and Mathalon, 2004), button-press elicited sounds
(Whitford et al., 2011; Ford et al., 2014), and temporally cued
sounds (Ford et al., 2007). Individuals at high-risk for developing
a psychotic disorder show auditory predictive coding that is
intermediate between healthy participants and patients with
schizophrenia (Perez et al., 2012) and healthy individuals with
psychotic-like experiences show reduced auditory predictive
coding mechanisms compared to healthy individuals without
psychotic-like experiences (Oestreich et al., 2015, 2016).

The mechanisms underlying these speech sound prediction
deficits in schizophrenia and psychosis are still unclear.
However, several studies have reported changes to the white
matter structure, and specifically to the myelin sheath, of
the axons constituting the arcuate fasciculus in patients with
schizophrenia (Kubicki et al., 2005; Uranova et al., 2007).
This is important insofar as it indicates that connectivity
along the arcuate fasciculus during speech sound prediction
should be delayed due to a loss of conduction velocity induced
by demyelination. Support for this contention comes from a
study by Whitford et al. (2011), which reported that auditory
prediction abnormalities typically exhibited by patients with
schizophrenia could be completely eliminated by imposing a
50 ms delay between a self-generated button press and the
delivery of a sound. This was interpreted to indicate that
the predictions of sensory consequences resulting from the
motor command, travelling along the arcuate fasciculus during
auditory prediction, were delayed by 50 ms in the group
of schizophrenia patients. Furthermore, the study reported
that the degree to which auditory prediction improved as a
result of the delay between button press and tone delivery
was linearly correlated with white matter abnormalities in
the arcuate fasciculus. Furthermore, a recent study reported
that predictive coding mechanisms were also disrupted in

early illness schizophrenia and clinical high-risk for psychosis
individuals and that the level of predictive coding abnormalities
was linearly related to the microstructure of the arcuate
fasciculus (Whitford et al., 2017). The findings from the
present study add further support for the role of the arcuate
fasciculus during auditory predictions—in this case, in the
prediction of temporally predicable, but externally-generated
sounds—by showing that the brain regions that are structurally
interconnected by the arcuate fasciculus are also effectively
connected.

DCM presents some limitations, most notably, the number
of alternative models likely to explain a dataset can be very
large and as a consequence, the best model might be missed if
the model space is not comprehensive enough (Lohmann et al.,
2012). While this is true indeed for any modeling approach that
performs exhaustive searches, the objective of DCM is to perform
comparisons on theoretically motivatedmechanistic accounts for
a given brain process. The output of DCM is the computation of
an estimate for the relative evidence of different models as well
as estimates about model features (i.e., connectivity parameters),
rather than the specification of the single best model, which
would generally have a rather small relative evidence in a large
model space (Friston et al., 2013). However, to date, DCM is
the only approach that integrates biophysical models of dynamic
neural networks into statistical tools to investigate neuroscientific
questions.

In this article we have inverted a large number of
models that provided alternative mechanistic explanation
for our data. Friston et al. (2016) recently introduced a
new method for the analysis of group level DCM studies,
which enables model selection while eschewing the need to
invert all models explicitly. This approach uses parametric
empirical Bayes (PEB) and Bayesian Model Reduction
(BMR) to compute the posterior densities over all model
parameters, under new prior densities without inverting
the model again. Friston et al. (2016) demonstrated that
PEB may improve the accuracy of the parameter estimates.
We suggest that the use of PEB as an alternative analysis
approach and a replication of this study with alternative
methods to infer functional connectivity from multichannel
neural EEG signals, such as phase synchronization analyses
(Junfeng et al., 2012) represent fruitful avenues for future
research.

In summary, the present study showed that auditory
prediction to externally generated speech sounds involve brain
regions such as Wernicke’s area, Broca’s area and Geschwind’s
territory, interconnected through the arcuate fasciculus via both
short- and long-distance fibers, as well as the SMA, which
is linked to Broca’s area via the frontal aslant. Critically, we
found that the prediction of externally-generated speech sounds
engaged feedback loops with conjoint forward (bottom-up)
and backward (top-down) connections. This result is consistent
with a predictive coding framework, in which predictions
are generated in higher cortical areas and communicated to
lower sensory areas via backward, or top-down connections.
These results also suggest that passively listening to temporally-
predictable speech sounds may lead to the production of inner
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speech and may engage predictions such as those believed to be
involved in the production of overt speech.
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In order to understand the relationship between neuronal organization and behavior,
precise methods that identify and quantify functional cellular ensembles are required.
This is especially true in the quest to understand the mechanisms of memory.
Brain structures involved in memory formation and storage, as well as the molecular
determinates of memory are well-known, however, the microanatomy of functional
neuronal networks remain largely unidentified. We developed a novel approach
to statistically map molecular markers in neuronal networks through quantitative
topographic measurement. Brain nuclei and their subdivisions are well-defined – our
approach allows for the identification of new functional micro-regions within established
subdivisions. A set of analytic methods relevant for measurement of discrete neuronal
data across a diverse range of brain subdivisions are presented. We provide a
methodology for the measurement and quantitative comparison of functional micro-
neural network activity based on immunohistochemical markers matched across
individual brains using micro-binning and heat mapping within brain sub-nuclei. These
techniques were applied to the measurement of different memory traces, allowing for
greater understanding of the functional encoding within sub-nuclei and its behavior
mediated change. These approaches can be used to understand other functional and
behavioral questions, including sub-circuit organization, normal memory function and
the complexities of pathology. Precise micro-mapping of functional neuronal topography
provides essential data to decode network activity underlying behavior.
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INTRODUCTION

Following Cajal’s identification of the neuron as the fundamental
functional unit of the nervous system (López-Muñoz et al., 2006),
the field of neuroscience has endeavored to understand how
neurons operates in local groups (ensembles) and distributed
networks to bring about behavior. Cajal (1894) proposed a theory
that memory storage requires the formation of new connections
between neurons in the brain. How neurons and their 1000s of
synaptic connections act together to encode a memory was first
conceptualized by Hebb (1949) as neuronal ensembles that both
spatially and temporally act together to encode a component of
the memory. Since these foundational anatomical and theoretical
works, newer studies involving fluorescent imaging and electron
microscopy have since provided growing evidence for the
modification of neuronal synapses as a result of information
storage, now known as synaptic plasticity (Kandel, 2001; Korb
and Finkbeiner, 2011). Thus, at the sub-cellular level knowledge
of mechanisms of memory encoding is more established, in
contrast at the neuronal ensemble level memory encoding
mechanisms are not yet understood. Some functional evidence
for Hebbian reverberatory networks connecting ensembles of
neurons (Hebb, 1949) has been identified in memory circuits
(Johnson et al., 2008, 2009; Josselyn et al., 2017). However,
key challenges in neuroscience remain around how neurons
collectively undergo plasticity in ensembles to encode memories
and behaviors. Aspects of neural ensemble activity has been
demonstrated in Hippocampus (Nakamura et al., 2010) and
Caudate (Barbera et al., 2016) and in Amygdala (Johnson et al.,
2008, 2009; Rogerson et al., 2014; Davis and Reijmers, 2017;
Josselyn et al., 2017; Josselyn and Frankland, 2018). A key
challenge in the neuroscience of memory is in identifying which
neurons have been allocated to the memory trace and which
have not, while some progress has been made (Bergstrom et al.,
2008, 2011, 2013a,b; Bergstrom and Johnson, 2014; Mayford,
2014; Rogerson et al., 2014; Frankland and Josselyn, 2015;
Bergstrom, 2016; Josselyn and Frankland, 2018), new techniques
and approaches for understanding microanatomy are needed.
This aim can be aided by the development of methods and
approaches to help reliably identify and quantify systematic
topographies of neurons allocated to specific memory traces.

Here, we developed a method for topographical analysis and
measurement of neurons allocated to memory traces. We have
applied this method to study aspects of the neurobiological
encoding of fear memory. We termed this method “neuronal
topographic density mapping” and have devised it to identify
and map the degree of stability within a micro-topography
of neurons encoding Pavlovian fear memory across different
animals undergoing fear memory acquisition or extinction. The
methods, described in detail below, were developed over multiple
studies, investigating the location and distribution of neurons
activated in fear memory in amygdala (LeDoux et al., 2006;
Haranhalli et al., 2007; Bergstrom et al., 2011, 2013a,b; Johnson
et al., 2012). For illustrative purposes and to expand on the scope
of these techniques, we employed a small data set drawn from the
study of activity-regulated cytoskeleton-associated protein (Arc)
expression in prefrontal cortex.

In our studies to date, we have investigated the micro-
topography of memory using Pavlovian fear conditioning. In
Pavlovian or classical fear conditioning a mild foot shock
[unconditioned stimulus (US)] is temporally paired with an
auditory tone or comparable visual stimuli [conditioned stimulus
(CS)] (Johnson et al., 2012; Bergstrom et al., 2013a; Bergstrom
and Johnson, 2014). The animal learns to associate the US
with the CS and exhibits typical behaviors including freezing,
typical of fear/threat behavior [described extensively by other
authors (LeDoux, 2000; Fanselow and Gale, 2003; Johnson
et al., 2012; Josselyn and Frankland, 2018)]. We measured
neurons expressing plasticity associated proteins identified by
immunocytochemistry. Other functional protein and RNA
expression in neurons and glia can also be used with this
approach. Differences were tested in the localization of neurons
among the conditioned memory groups. We have provided
a methodological approach to produce topographic neuron
data from brain within precisely aligned anatomical regions.
This approach enables investigation of the topographic patterns
of neurons expressing plasticity associated proteins in the
associative fear memory formation and its extinction. We
propose that this method can also be used in the reproduction
of neuronal density maps with regard to many forms of
neuroscience data for example, drug treatments, stress and
addiction or neurodegenerative disorders.

Our methodological approach to neuron topography,
described here, provides useful advantages for localizing function
across behavioral conditions. Other analysis methods to measure
topography also provide useful topographic data. For example,
Nakamura et al. (2010) identified that memory activated neurons
formed small anatomical clusters in hippocampus during place
preference formation, which was identified using a cluster
analysis approach. Recent studies by Barbera et al. (2016) used
measures of neuronal clustering of medium spiny neurons to
predict locomotive states of behavior in mice. They reported that
behavioral decoding accuracy improved using spatially distinct
neural clusters over single neurons (Barbera et al., 2016).

Recent advances using in vivo optical methods including
calcium imaging have provided a rich source of complex micro
anatomical and dynamic neuronal data, including in awake
behaving subjects (Ohki and Reid, 2014; Romano et al., 2017;
Castanares et al., 2019). Recent analysis approaches for these
data include the method developed by Romano and associates,
to analyze neuronal population dynamics (Romano et al., 2017).
Additional recent whole brain imaging and analysis techniques
by Kim et al. (2015, 2017), who developed a spatial IEG-based
mapping technique as a method to view whole-brain activity.
Furthermore, whole brain mapping methods have also been
developed by Vousden et al. (2015) and Renier et al. (2016).
Each of these methods provide the advantage of visualizing
patterns of neural activity across distributed brain networks. The
creation of neuronal quantitative topographic density maps, as
described here, can be used for a variety of studies to pinpoint
functional microcircuits in the brain.

Using our approach to mapping and measuring topography
we have characterized the microanatomy and topography of
neurons involved in different phases of memory, consolidation,
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reconsolidation, and extinction (LeDoux et al., 2006; Haranhalli
et al., 2007; Bergstrom et al., 2008, 2011, Bergstrom et al., 2013a,b;
Bergstrom and Johnson, 2014). These data have the potential
to pinpoint neuronal topography patterns underlying memory
encoding in the mammalian brain in normal and pathological
situations (Johnson et al., 2012) and thereby facilitate current
treatments for pathological memory disorders (Johnson et al.,
2012). The generation of neuronal topographic density maps can
be used to define and measure memory allocation within the
brain.

Throughout this methodological report we provide details
of the rationale, procedures and equipment needed to produce
and analyze topographic neuronal data. In addition, within each
methodological section we provide ‘examples’ from our own
data in order to illustrate how the methods can be applied and
used. The methodological approaches we describe here have
wide applications for understanding and measuring neuronal
topography. Applications include measuring the topography of
neurons encoding different types of memory, different sensory
stimuli, and motor behaviors.

METHODS

Data Collection: Behavioral, Tissue, and
Neuron Analysis in Preparation for
Topographic Investigation
Run Behavioral Models
In order to produce and analyze functional neuronal topography
data linked to behavior, an appropriate behavioral model is
needed. Behavioral model can include a variety of learning and
memory models, addiction models, social interaction models,
and other behaviors of interest. In our case we have investigated
in detail Pavlovian fear conditioning.

Pavlovian fear conditioning leads to the formation of
associative memories. Synaptic plasticity, dependent upon
phosphorylation of extracellular signal-regulated kinase
(pMAPK) has been identified as critical in the formation
of these memories in the lateral amygdala (LA) and medial
prefrontal cortex (mPFC) (LeDoux, 2000; Fanselow and
Gale, 2003; Johnson et al., 2012; Josselyn and Frankland,
2018).

Example: The sample data set consisted of fear conditioned
adult male Sprague-Dawley rats (RRID:RGD_5508397) (n = 40)
that underwent behavioral procedures in standard Pavlovian
fear conditioning chambers (Coulbourn Instruments, Allentown,
PA, United States) (see Figure 1A). The US, a 0.6 mA foot
shock with duration of 500 ms, was paired with the CS, a
tone of 5 kHz and 75 dB (Digitech Professional Sound Level
Meter1, 20 s in duration, to produce an associative memory.
Three pairings were presented with an average 180 s inter-
trial interval with total time in box of 10 min. Standard
conditioning and behavioral testing procedures were followed
(LeDoux et al., 2006; Haranhalli et al., 2007; Bergstrom et al.,

1https://www.jaycar.com.au/pro-sound-level-meter-with-calibrator/p/QM1592

2008, 2011, 2013a,b; Bergstrom and Johnson, 2014). The
experimenter was blind to the experimental conditions when
scoring freezing behavior, which was defined as a lack of
movement except that required for respiration (LeDoux et al.,
1988). Next, brains were prepared for histological analysis and
measurement.

Perform Immunohistochemistry
Rats were transcardially perfused and brains were post-fixed in
4% PFA overnight then stored in 0.1 M phosphate buffered
saline. Free-floating serial coronal sections (40 µm) of the
mPFC and amygdala were prepared using a vibratome (M11000;
Pelco easiSlicer, Ted Pella, Inc., Redding, CA, United States).
Sections from the LA and prefrontal cortex were labeled
for pMAPK and Arc activation using the avidin–biotin
peroxidase method. Detailed immunocytochemical methods
can be obtained from our previous reports (see Bergstrom
et al., 2011, 2013a). Slides were scanned with an Olympus
VS120 slide scanner and cropped at 2x magnification (see
Figure 1B).

Choose Anatomical Anchor/Marker
Establishing anatomical alignment between regions of interest
(ROI) is necessary for visual comparison of neuron density
in neural images, for sectioning the ROI into micro regions
for analysis, and for both quantitative and visual analysis
of the data. Therefore, choosing an appropriate anatomical
anchor is a key step. The anchor point should: (1) be a
readily visible anatomical feature that is close in proximity
to the ROI, (2) be stable across subjects and conditions,
and (3) change shape rapidly and distinctly as the viewing
plane changes, so that different planes of view can be
discriminated clearly. These characteristics are identifiable
microscopically and importantly can also be quantified (see
Figure 1C).

Example: The amygdala and mPFC have been implicated in
Pavlovian fear conditioning (Fanselow and Gale, 2003; Johnson
et al., 2012; Lee et al., 2015). In a series of studies, we have
focused on the amygdala and have used the opening of the
Lateral Vertical (LV) as an anatomical anchor (LeDoux et al.,
2006; Haranhalli et al., 2007; Bergstrom et al., 2008, 2011,
Bergstrom et al., 2013a,b; Bergstrom and Johnson, 2014). The
LV has proved a useful structure for the purpose because it
meets the criteria outlined above: (1) the LV is close in proximity
to the amygdala, (2) the LV changes rapidly in size along the
longitudinal plane, (3) the LV is a stable anatomical feature,
and (4) LV changes can be seen clearly, and measured, through
the sequence of planes on which the brains were sectioned,
enabling quantitative analysis of the changes section by section.
In order to further demonstrate and measure the properties
of the LV for landmark suitability, in addition to histological
measurements, we made measurements of the LV with MRI.
Here, the morphological properties of the LV, including its
increase in diameter along the rostral-caudal axis, were confirmed
in vivo, using three-dimensional T2-weighted MRI to quantify
its area (Bergstrom et al., 2013a). This rapid change from rostral
to caudal allows for precise quantitative section alignment from
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FIGURE 1 | Steps for tissue sampling and measurement from behavioral data. (A) Run behavioral models. Any expression of a chosen behavior can be used as a
model. In our example we have used Auditory Pavlovian fear conditioning. Behavioral testing was conducted with adult male Sprague-Dawley rats in acoustic
classical fear conditioning chambers. A 0.6 mA foot shock with duration of 500 ms was paired with a tone of 5 kHz and 75 dB, 20 s in duration to produce an
associative fear memory. (B) Perform immunocytochemistry. Avidin–biotin peroxidase complex method is demonstrated here. Sections from the lateral amygdala
(LA) were labeled for Arc, scanned using a slide scanner and cropped at 2x magnification. Enlarged inset square shows Arc+ neurons in the dorsolateral portion of
the LA at 20x magnification. Inverted gray scale images of fluorescent immunocytochemistry would also be suitable. (C) Choose suitable anatomical marker to be
used as an anchor. The caudate putamen and lateral ventricle are two examples of anatomical landmarks, that we have used previously, and can be differentiated in
serial sections for section alignment by Feret length within the ventile or between anatomical landmarks. Photomicrographs show three consecutive 60 µm sections
across the rostrocaudal axis of the rat brain, depicting 2.76, 2.70, and 2.64 mm anterior to Bregma in the medial prefrontal cortex (mPFC). Feret diameter is shown –
red arrow. Brain sections at Bregma coordinates –3.32, –3.36, and –3.40 mm posterior from Bregma were used to align the LA (Source: see Bergstrom et al., 2011).
The maximum Feret length of the caudate putamen in the prefrontal cortex was shown to be statistically different across Bregma coordinates, animals and
conditions. (D) Establish section alignment. The Rat Brain Atlas (Paxinos and Watson, 2007) is an important tool to assist alignment of sections. Schematic diagrams
are shown depicting the regions of interest. The dorsolateral portion of the lateral amygdala (LAd), the ventromedial portion of the lateral amygdala (LAvm) and the
ventrolateral portion of the amygdala (LAvl) are shown in three serial sections caudal from bregma –3.36 mm. The prelimbic (PL) and infralimbic (IL) cortex are
represented by three serial sections caudal from bregma 2.52 mm. Brain Atlas diagrams are adapted from Paxinos and Watson (2007).
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plane to plane. In our histological studies the morphology
of the LV was reconstructed from five consecutive planes
(Bregma −3.36 to −3.48). The coronal plane with the least
variance between conditions was found at Bregma −3.36 in
the rat (Paxinos and Watson, 2007), the entrance of the LV,
so this was chosen as the most suitable anatomical anchor,
in addition, it could be readily visualized and measured. At
−3.36 mm Bregma, in addition to the LV it is also possible
to identify the major anatomical structures of the ROI (the
subnuclei of the LA). The choice of the LV as an anatomical
anchor was therefore suitable because it is amygdala-centric,
changes shape rapidly and clearly, and is stable across subjects
(LeDoux et al., 2006; Haranhalli et al., 2007; Bergstrom et al.,
2008, 2011, Bergstrom et al., 2013a,b; Bergstrom and Johnson,
2014).

We used the caudate putamen as an anatomical landmark
to align sections in the prefrontal cortex (described below).
Aspects of the caudate putamen met the criteria we previously
set for landmark identification (see Figure 1D). Histological
images were captured as virtual slide images (OlyVia; format.vsi)
using a slide scanner (Olympus VS120). Capturing images
with a slide scanner (used in this example) is an alternative
approach to live capturing of neuron data with a microscope
connected directly to Neurolucida as used in our previous
published data (LeDoux et al., 2006; Haranhalli et al., 2007;
Bergstrom et al., 2008, 2011, Bergstrom et al., 2013a,b;
Bergstrom and Johnson, 2014). In this example, we used
OlyVIA XV Image Viewer (Olympus Australia Pty Ltd.,
Vic, RRID:SCR_014342) to ascertain and measure images
within a Bregma range that showed an alteration in the size
of the caudate putamen. The caudate putamen becomes
visible 2.7 mm anterior to Bregma, distinctly widens and
lengthens in serial coronal sections across the rostrocaudal
axis. Three consecutive sections (Bregma 2.7–2.58 mm)
were aligned and verified across subjects and conditions by
statistical comparison (ANOVA) of the Feret length (Walton,
1948) (the maximum Feret length or distance between two
perpendicular tangents) was measured with Neurolucida
360 software (Neurolucida, MBF BioScience, Williston,
VT, United States, RRID:SCR_001775) and analyzed with
SPSS (IBM SPSS Statistics 23, WA, SCR_002865). A similar
comparison of sections was calculated using z-scores from
each maximum Feret measurement of the caudate putamen.
No outliers were detected using ±3.0 standard deviation (SD).
This principle includes 99.9% of values coming from the
same normal distribution. Additionally, outliers can also be
checked using online software tools, e.g., GraphPad Prism.
Next, in order to test each Bregma point assignment was
dissimilar and no difference existed between experimental
conditions, paired t-tests were performed on the Feret measures.
Each distance was found to be statistically different (example
2.76 mm Bregma; p = 0.000304). This data was used to help
exclude misaligned sections due to natural or histological
induced variations. This quantitative analysis approach can
thus be used to assign sections to distinct groups maximizing
alignment accuracy for subsequent neuronal topography
measures.

Section Alignment
Quantitative topographical data was produced beginning with
neuron identification and section alignment. While LV and
caudate putamen changes can be observed through a sequence
of many planes, the ROS may be rostral or caudal to this point.
For this reason, the chosen landmark is used only as a point
of reference. Sections are aligned manually using the landmark
and working rostrally or caudally through the sequential Bregma
coordinates using the measurement of width of each section as
a guide. For example, Bregma 2.76 mm is 0.48 mm away from
Bregma 3.24 mm; therefore, there will be 8 µm× 60 µm sections
or 12 µm× 40 µm sections between the two Bregma coordinates.
This highlights the need for precision when slicing and marking
serial sections. Having mounted sections in the correct order on
slides prior to labeling decreases time taken during this stage.

Generate Topography in Preparation for
Analysis
Create Contour
In order to ensure consistency and precision in neuron counting
across all subjects, a contour or tracing of the anatomical
structure being investigated can be prepared in Neurolucida (NL)
360 (Neurolucida, MBF Bioscience, Williston, VT, United States).
Prior to importing an image into NL for tracing, it is necessary
to calibrate the image to approximate the dimensions of a single
brain section bitmap image (cellSens software, Olympus, Notting
Hill, VIC, Australia, RRID:SCR_014551). Within Neurolucida
select > File, > Image open to allow the image to appear and
select x and y calibration pixel size. These measurements are
located in the image properties section in the cellSens program.
Choose > Trace, > Contour Mapping in NL to begin the trace
(see Figure 2A). The image lines may be enlarged using the zoom
tool, to increase accuracy of the trace. Use the curser to trace
around the selected area and > Close Contour when finished each
area. This allows delineation of each section of the contour with
a separate color using ‘User Line.’

Scale Contour
At this point it is essential to align the contour. The size of the
tracing can be adjusted to fit the image using > Tools, > Adjust
Scaling. Contour alignment must be consistent across all groups,
prior to neuron counting. It is advisable to open several images
to scale the contour, due to minor variation in dimensions across
subjects.

Calibrate Contour
Very importantly, the contour is then calibrated to a constant
point (0, 0 on the x, y axis) to preserve consistency of
neuron marker coordinates. The reference point is displayed by
selecting > Options, > Display Preferences, > View. In this
window, the radius of the point can be set to a desired diameter.
Apply the display grid setting and enlarge with the magnification
tools as required. The contour is moved (using move tools) such
that the 0,0 coordinates are placed in the superior left corner of
the contour. Once in position the contour must not move or be
resized for the duration of neuron counting across all groups to
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FIGURE 2 | Steps for producing raw coordinate data from identified neurons. (A) Create, scale, and calibrate contour. Neurolucida 360 (or an equivalent program)
can be used to produce a nucleus or brain region contour from a rat brain atlas diagram. Using the contour mapping tool in Neurolucida 360 contours (in different
colors) can be traced over a figure from an atlas. Lateral amygdala tracing shown was generated from Bregma –3.36 of Rat Atlas (Paxinos and Watson, 2007).
(B) Align section to contour and mark immuno positive neurons. Prefrontal cortex section with contour overlaid. Immuno-positive neurons were marked within the
contour. Saved data files can be opened in Neurolucida Explorer to gain data file information such as contour areas, Feret length measures, and neuron counts.
Prelimbic contour and neurons were marked in aqua, infralimbic contour, and neurons marked in yellow. Once neurons are marked, Neurolucida Explorer (or
equivalent) can import the data file to generate a contour and marker analysis, LA example shown. (C) Export marker coordinates. The x, y coordinates produced for
each marked neuron are exported to an ASCII file which can be opened in graphing software such as Origin Pro (or equivalent). (D) Produce bin matrix. A data
matrix is generated based on the area and density of marked neurons within the contour. Bin size is calculated using twice the area of the contour divided by the
total number of neurons (De Smith et al., 2009). Once the x, y coordinates are highlighted in an Origin Pro (or equivalent) workbook, the 2D binning option under
descriptive statistics is chosen. The bin ends and size can be manually entered into the dialog box once determined using the standard geospatial formula (De Smith
et al., 2009).

ensure the integrity of the quantitative data. Save contour as a
data file.

Align Sections to Contour
Once the tracing has been saved > CTRL + S, a scanned
and cropped image of a single neural section may be opened
(> File, > Image Open, > calibrate pixel size) and the
tracing can be overlaid using the move tools to move only
the image. There may be some minor variation in the size
and properties of each subject, driven by natural variation
or variations introduced during tissue processing – therefore
the contour must be aligned to each section. To align the
section and the contour, select > Image, > Image Processing,
and > Orientation (see Figure 2B). Options are provided for

a mirror image, flip, 90 or 180◦ rotation of the image. Choose
Arbitrary Rotation and use the arrows to alter the Rotation in
Degrees.

Mark Immuno Positive Neurons
Once the section is aligned to the contour (or tracing), begin to
mark neurons by choosing a marker from the marker toolbar
located down the length of the left side of the screen. Right click
the mouse button on the selected marker to rename, recolor or
resize the marker. Elect to use a different color for markers in
separate areas of the contour for ease of analysis at later stages of
the process (see Figure 2B). Markers may be erased at any time
during counting by > CTRL Z, or > Edit, > Undo, to remove
the last placed marker. If mapping to determine the organization
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of synaptic markers within the neuropile, the same procedure
should be followed for marking puncta (Radley et al., 2006).

Note: If mapping neurons using NeuroLucida directly
connected to a microscope for live imaging, then, following
contour tracing and neuron mapping, a final alignment of all data
to be compared must be made before analysis of neuron spatial
distribution. Contours with mapped neurons are rotated for
matched alignment using the Neurolucida Contour Alignment
function.

Example: A digital image of the ROI, the mPFC, was sourced
from the rat brain atlas, 6th Edn, 2007 (Paxinos and Watson, 2007,
RRID:SCR_006369). Three locations, 3.3, 3.24, and 3.18 mm
anterior to Bregma (Paxinos and Watson, 2007) were used
for cell counting. This level was chosen as both the prelimbic
and infralimbic cortices were represented at this point. Specific
markers were recolored and renamed for each subregion to be
mapped (Figure 2B).

Export Neurolucida ASCII File Into OriginPro (or
Alternative)
Once all the neurons in the ROI are counted with the
aligned contours, the marker coordinates (x, y, z), which
Neurolucida has recorded relative to the nominated reference
point, can be exported as an ASCII (plain text) file (see
Figure 2C). To accomplish this, select > File, > Export
Marker Coordinates and save the file. At this point it is also
prudent to save the data file you have placed your makers
on, by choosing > File, > Save Data File As. The Data
file can be opened in Neurolucida Explorer > File, > open
data file, > contour, > analysis, > markers and region
analysis. This program provides a full synopsis of the contour
areas, required for later mapping, perimeters, Feret measures,
and neuron counts for each designated region. Once this
information has been saved the neuron markers can be cleared
in NL 360 using > Edit, > Select Objects. A window will
open to the right of the screen where you can select Any
Object, Only Markers, Select All, then press the Delete key.
Choose > File, > Image Open to import a new section and
begin the entire sequence again. Once two or more images
are open, select > Image, > Image Organizer, to choose
which images you will Show, Hide or Delete. Files can also
be closed by selecting > File, > Close All Images. To analyze
the data obtained the ASCII files can be opened in Microsoft
Excel where the x and y coordinates are quickly accessed
and can be cut and pasted into Origin Pro (see Figure 1C)2

. Alternatively, Origin Pro has the facility to open all files
at once by choosing > File, > Import, > Multiple ASCII,
and following the prompts to choose the files you wish to
include in one density map. It is recommended to import
only files from one behavioral condition at a time to reduce
human error. Once coordinates are listed, select > Descriptive
Statistics, > 2D Frequency Binning, which will require input
of bin sizes (Alternatives to Origin Pro can also be used – see
Discussion below).

2http://www.scientificcomputing.com/product-release/2014/10/origin-and-
originpro-2015-data-analysis-and-graphing-software

Select Binned Data Parameters Within Origin Pro (or
Alternative)
Data binning, also known as discretization, involves grouping
data into bins in order to ascertain a quantitative understanding
of neuronal distribution (Kerber, 1992). Developing an
appropriate data matrix relies on the optimization of the
dimensions of micro regions of data (bins). This part of the
analysis should be well-considered and standardized in order
to closely match the bin number and dimensions with the
central experimental question being investigated and also to
ensure the repeatability across subjects and experiments. The
number of bins can be determined based on experimenter
determined parameters or alternatively a formula can be applied
to standardize the selection on bin numbers and to reduce any
bias in bin number selection. An established formula for this
type of spatial analysis is based on twice the expected frequency
of items identified in a random field (2∗sampling area/n, where
n = mean number of items to be counted, e.g., activated neurons)
(De Smith et al., 2009). This method can be used to ensure an
unbiased estimate of the optimal dimension of bins for sectioning
the ROI into a matrix for data analysis. The neuron counts, and
contour area measurements are obtained from the Neurolucida
Explorer data. Once bin number has been calculated, the
minimum bin beginning and maximum bin end for the x axis
and y axis are adjusted to encompass the smallest and largest
coordinates contained within the ASCII files. In Origin Pro, all
Auto windows must be unchecked to allow manual input of data.
The bin size is measured in micrometers squared (µm2). Once
these measurements have been entered and the number of bins
is calculated by the program, select > OK (see Figure 2D). This
converts the data into an appropriate matrix, based on the area
and density of the marked objects.

Produce Bin Matrix
The next step is to use the data from the calculated matrix of
bins and their corresponding neuron counts for graphing and
statistical analysis. The table of bins and neurons counts derived
from Origin Pro (see Figure 2D) can now be copied into an Excel
spreadsheet (or equivalent program). Repeat this process for each
ASCII file obtained from one section, in one condition across
all animals – this will be based on the section alignment for a
specific “Bregma” coordinate – as described above. For validation
purposes individual density maps can be produced at this point,
for later comparison to the mean map. For an example see a range
of 26 maps produced from raw values for each subject across four
experimental conditions in comparison to mean maps in Figure 2
of Bergstrom et al. (2013a).

Topographic Neuronal Density Maps
(Heat Maps) and Analysis
Create Density Maps
Using Excel, an average across all sheets can then be calculated –
this is used to plot a graph of the mean for an experimental
condition (see Figure 3A). In addition, from these combined
and averaged data a coefficient of variance (CV) and other
measures can be calculated. The mean and CV data can be used
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FIGURE 3 | Steps for producing and analyzing topographical density maps. (A) Create topographic density map. A neuronal topographic density mean map is
produced by transferring binned data from Excel to Sigma Plot (or equivalent software) (X data = x coordinates, Y data = y coordinates). Density maps can be
created for each sub region. A coefficient of variance map can be prepared by dividing the standard deviation by the mean across all samples in one condition.
Difference maps can also be created between conditions. The data matrix from Origin Pro (or equivalent) is transferred to a spreadsheet. This procedure is followed
for each animal from a single condition/group. An average across all sheets produces the data for a mean density map. The standard deviation is calculated and
divided by the mean, producing the data required for the coefficient of variance (CV) map. Example – topographic density (mean and CV) maps shown for Bregma
–3.36, pMAPK+ neurons in the ventrolateral portion of the LA of rats that underwent extinction training (n = 7). (B) Align density map with contour and brain sections.
To enhance visualization of specific neuronal subsets, density maps can be inserted into the contours or superimposed over brain sections. Density maps may be
edited to change the styles, colors, font sizes, labels etc., providing alternatives conducive to individual requirements. Information regarding cell layers can be
determined from visualizing the distribution of activated neurons as shown in the pMAPK labeling of the mPFC of rats that have undergone auditory fear conditioning
(n = 7): mean map generated in Sigma Plot (or equivalent), map placed into contour, map overlaid on rat brain section. (C) Quantitative analysis of variance between
conditions. A variety of statistical analysis can be performed to compare binned data such as Bonferroni correction, principal component analysis (PCA), false
discovery rate (FDR), multiple discriminant analysis and mixed model ANOVA. Example of mean maps for the expression of pMAPK in the LA provides visual
comparison between auditory fear conditioned (n = 6) and naïve (n = 7) rats. pMAPK+ ranks comparing extinction (n = 7) and no extinction (n = 5) groups within the
ventrolateral portion of the LA p = 0.0022 (t-test, Mann–Whitney rank and SEM).

to create separate neuron topographic density ‘heat’ maps using
graphing software SigmaPlot or OriginPro (SigmaPlot v 12.5,
Systat Software, San Jose, CA, United States RRID:SCR_003210)
(or alternatives). For producing a variety of graphs from the now
binned data we have used SigmaPlot, however, other programs
can be used. The data matrix, using individual subject data or
averaged data from Excel, is transferred beginning in the third
column of SigmaPlot. The x and y coordinates from Origin
Pro are copied into columns one and two of Sigma Plot. In
order to produce a colored neuron topographic density ‘heat’
map, select > Create Graph, > Contour Tool (see Figure 3A).
The scale can be adjusted using the graph properties tool. The
production of a neuronal topographic density ‘heat’ map is also
possible using Origin Pro.

Example: We have used bin matrix data from neurons
identified and marked in the prelimbic and infralimbic cortices
and transferred this data to SigmaPlot. This data was used to

produce both prelimbic (PL) and infralimbic (IL) mean neuron
topographic density graph (heat maps). As described above,
during the creation and alignment of the contour the 0, 0
coordinate was aligned to the superior left corner of the contour.
The creation of an overlay was performed by aligning this same
superior left landmark of the contour with the 0,0 coordinates as
displayed on the SigmaPlot contour graph export. This process
allowed aligned or registered heat maps from different animals to
be combined into signed maps of mean data for initial qualitative
analysis of the data sets. In our example we identified neurons
activated during the recall of an extinguished fear memory –
initial qualitative analysis of this data reveals increased neuron
density within the deep layers of the PL and IL.

Align Maps With Contours and Sections
We recommend two methods to enhance visualization of
specific neuronal subsets and gain visual information regarding
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distribution of activated neurons, for example, in relation to
cell layer. The density maps can be inserted into the contours
generated from an atlas, or alternatively superimposed over the
original brain sections (see Figure 3B). To ensure ease of fit it is
prudent to place a marker in the corner of each contour which
can be removed prior to statistical analysis. Density maps may be
edited in Sigma Plot to change the styles, colors, font sizes, labels
etc., as requirements.

Example: Information regarding cell layers can be determined
from visualizing the distribution of activated neurons as shown
in the pMAPK labeling of the mPFC (see Figure 3B) of rats that
have undergone auditory fear conditioning (n = 7): mean map
generated in Sigma Plot (Systat Software). The map was placed
into the prefrontal contour and overlaid onto a rat brain section.

Analysis of Binned Data
Graphing topographic neuron density data is an important step
to provide visual evidence for changes in topography associated
with behavioral and other experimental manipulations, as
described above. However, when further evidence is needed to
support conclusions of changes to neuronal topographic patterns
then statistical analysis of the topographic data is required.
Quantitative analysis can be performed with a variety of methods
(discussed below) to compare topographical differences between
conditions. Most common statistical software packages can be
used for the analysis of topographical data. We have used
GraphPad Prism 7 (GraphPad Software, Co., San Diego, CA,
United States) for each of the below discussed methods, as well
as linear regression and Pearson’s r coefficient which can also be
collected for correlation between groups.

Example: To evaluate the bins in each data matrix, two-
way ANOVA with a false discovery rate (FDR) correction for
multiple comparisons was conducted. The discovered bins were
termed micro-regions of interest (MORIs) and assigned a color
to represent the density of neuronal cell bodies located in
that position (see Figure 3C). Post hoc analysis of MROIs was
conducted using corrected t-tests.

Statistical Analysis of Topographic
Neuron Density Data
In the next section, we describe statistical methods than can be
applied to binned data sets of topographic data combined with
behavioral manipulations to groups of experimental and control
subjects. We also provide examples of application of statistical
analysis from our own behavioral and neuronal topography
data sets. The major challenge with the statistical analysis
of multiple topographical binned data sets, combined with
several experimental groups, is statistical error due to multiple
comparisons. In order to best handle the analysis of topographical
data we have investigated and utilized a variety of statistical
approaches for large multiple comparison data sets – these
include ANOVA and its variants; principal component analysis
(PCA); and FDR correction (see Table 1). A very important
step in performing statistical analysis of topographic data is to
perform the statistical analysis in very close consultation with the
Data produced from the topographic maps as described above.
Through careful observation and consultation of the heat maps,

derived from both individual animals and importantly behavioral
group mean heat maps together with their measures of variance
(CV maps), the most meaningful analyses can be performed and
interpreted.

ANOVA Followed by Bonferroni Corrected t-Tests
A question addressed in topographic data analysis is whether
there is a significant difference in the data (e.g., number of
activated neurons in the ROI) across all experimental conditions
and in all ROI. One way to assess the overall difference
in experimental manipulation is with analysis of variance
(ANOVA), followed by a post hoc t-test with a correction for
multiple comparisons (e.g., Bonferroni), among specific ROI
and experimental groups to determine where the significance
arises. Where multiple comparisons are necessary, a Bonferroni-
type correction may be employed (see use in Bergstrom et al.,
2011), however, it has the risk of being too strict and likely to
sacrifice power in the attempt to exert stringent control over
error. The potential for false negatives (type II errors) can be
controlled effectively, while still retaining sufficient power, with
FDR correction (Benjamini and Hochberg, 1995).

Example: We have analyzed topographic neuron density
data from Pavlovian fear conditioning experiments in order
to determine whether there were significant differences
in topographic neuron density data across conditions by
comparison of activated neuron density in each of the micro
ROIs (46 bins) across all conditions via multiple comparisons
(Bergstrom et al., 2013a). The mean numbers of activated
neurons identified in the ROI from topographic data were
used to conduct ANOVA across all conditions. Where a
significant difference was found, planned contrasts between
experimental and control groups were performed to assess
where the differences lay (Bergstrom et al., 2013b). Multiple
comparison tests involved three contrasts using one-way
ANOVA. The first compared the fear conditioned and CS
reactivated groups to the control groups: in this example,
we compared box alone and CS (memory not reactivated
groups). The second contrast was between the fear conditioned
and CS reactivated groups and the third compared the box
alone to the CS group. Having established a significant
difference across conditions and located the main effect between
experimental and control conditions, the next step was to
locate the region of greatest variance in the ROI, requiring
assessment of the differences in micro ROIs between groups
(Bergstrom et al., 2013a). Furthermore, we also ran correlations
with behavioral data as additional analysis (Bergstrom et al.,
2013a).

False Discovery Rate (FDR)
Where the area under investigation has been sectioned into
topographical units, each having its own data set, multiple
ANOVAs on all topographical units may determine more
precisely any variance between experimental conditions. FDR
controls the expected rate of false rejection of the null hypothesis,
by setting a parameter, the quotient q, as the “tolerable” FDR
(Genovese et al., 2002). The q-value is used as an alternative
to p-value when reporting significance, and while it may be set
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at a conventional level (0.05), a higher level may be reasonable
(Genovese et al., 2002). FDR has been used effectively in
neuroscientific studies (Genovese et al., 2002; Groppe et al., 2011;
Bergstrom et al., 2013a; Bergstrom and Johnson, 2014). Once
the region of greatest variance across all conditions is identified,
follow up tests focus the investigation on the variance between
experimental conditions, in those locations.

Example: We have previously successfully applied FDR for
type II error minimization and identification of significance
in specific topographic ROI in behavioral experiments (see
Bergstrom et al., 2013a; Bergstrom and Johnson, 2014). In
these studies, we conducted mass univariate ANOVAs to assess
differences in neuron activation across all conditions in each of
46 bins. FDR correction was used, with the tolerable limit set
at q = 0.1. Significant differences across conditions were found
in certain micro ROIs (nine of 46 bins), so comparisons were
performed on those particular data to locate (1) the effect of
the experimental versus control groups and (2) the difference
between two experimental groups (Bergstrom et al., 2013a;
Bergstrom and Johnson, 2014). The q-values were mapped onto
the topographical matrix (bins) to reveal the highly localized
topography of neuronal activation. The spatial distribution of
these points of significance was confirmed on visual analysis
of the neuronal topographic density maps compiled from
topographic data, and also reflected earlier findings (Bergstrom
et al., 2011). Subsequent correlational analysis was used to
confirm the relationship between the density of marked neurons
and behavior.

Principal Component Analysis (PCA)
Another approach to topographical data with multiple ROI and
group comparisons is PCA. PCA seeks to identify and rank
combinations of variables that account for variance within the
data set. PCA enables the relationships between these patterns
of variables to be identified, tested and confirmed (Jolliffe, 2002).
PCA has been applied by ourselves and others to address a variety
of anatomical questions, for example in morphological studies of
microglial cells (Soltys et al., 2005); and vagus nerves (Horn and

Friedman, 2003); localization of sensory cells in the thalamus in
facial recognition (Chapin and Nicolelis, 1999); the segregation of
pyramidal neurons into morphological defined cell populations
(Bergstrom et al., 2008); eye-tracking data (Bergstrom et al.,
2016); and extensivley in MRI data (Lin F. et al., 2006).

Example: We have successfully applied PCA for the analysis
of topographic neuronal density data activated in studies of
Pavlovian fear conditioning. Activated neurons were mapped
and the area sectioned into micro ROIs (bins) as described
above, to produce a matrix of memory data (Bergstrom
et al., 2011, 2013a). Ten components (of spatial data) were
revealed, with one of these (SC1) being associated with the
pattern of greatest difference (principal component score) in the
spatial distribution of activated neurons between experimental
conditions. SC1 displayed a unique pattern of activated neurons
in a particular subnucleus of the amygdala (the LAd) across all
brain samples in the experimental group. This was confirmed
by t-test comparisons (Bonferroni corrected) of the bins with
the most prominent loading values, and these also correlated
with the area of highest density in the topographic analysis
outlined above. That is, as described above, the statistical pattern
could be confirmed by visual patterns seen in the neuronal
topographic density maps generated by color-coding neuron
densities. PCA has proved a useful statistical tool to extract
meaningful patterns of variance related to the experimental
manipulation, which could be confirmed by both comparison
with visual representations of the data and Bonferroni corrected
t-tests (Bergstrom et al., 2011, 2013a).

Multiple Discriminant Analysis (MDA)
Multiple discriminant analysis (MDA) is a method of visualizing
patterns within complex data sets (Lin L. et al., 2006). With
complex data, such a topographic data with many anatomical
sub-regions and bins combined with multiple experimental
conditions, where both location and distribution across area,
are under investigation it can be important to identify patterns
within this data set, in order to help understand and interpret
the data. MDA can be used to determine how a set of continuous

TABLE 1 | Approaches for statistical analysis of neuron topographic data.

Method Purpose Advantage

ANOVA followed by Bonferroni corrected t-tests To define where there is a significant difference in the
data across conditions

Stringent control over type II errors

False discovery rate To locate specific topographic regions of greatest
variance across all conditions

Controls the expected rate of false rejection of the
null hypothesis)

Greater power

Can be useful prior to correlational analysis

Principal component analysis Identifies and ranks combinations of variables that
account for variance within the data set

Extract meaningful patterns of neuronal variance
related to the experimental manipulation

Multiple discriminant analysis To visualize patterns within complex data sets Determines how a set of continuous variables can
discriminate groups

Mixed model ANOVA Tests for differences between independent groups while No adjustment for multiple comparisons is required

using repeated measures to analyze topographic data Accounts for random effects

combined with experimental manipulations ∗GEE and ∗∗GAMM can be applied after, to
accommodate non-linear relationships

∗GEEs, generalized estimated equations; ∗∗GAMMs, generalized additive mixed models.

Frontiers in Neural Circuits | www.frontiersin.org 10 October 2018 | Volume 12 | Article 8425

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-12-00084 October 15, 2018 Time: 16:6 # 11

Jacques et al. Neuronal Topography

variables can discriminate groups (Bergstrom et al., 2013b),
for example, how the pattern of neuron density in certain
subnuclei (the independent or predictor variable) can predict
the experimental condition the subject brain best fits into (the
grouping or independent variable). MDA gives loading values
(canonical variate correlation coefficients) that represent the
relative contribution of each variable in a set of variables (a
dimension) that discriminates groups from each other (see Lin
L. et al., 2006; Bergstrom et al., 2013b).

Example: In one topography of Pavlovian fear memory study,
we were interested in the relative contribution of lateral and
basal amygdala (LA) subnuclei to the overall density of activated
(pERK/MAPK expressing) neurons among each experimental
condition (Bergstrom et al., 2013b). First, MANOVA was
performed to examine the relationship among the subnuclei.
Where a significant relationship was found, one-way ANOVA
on each subnucleus tested for significant differences between
conditions. Next, MDA was used to test the relative contribution
of each subnucleus to the overall difference in density of
activated neurons between conditions. The MDA revealed a
single underlying pattern in density of activated neurons across
lateral and basal amygdala subnuclei that discriminated the
experimental and control groups. It also showed the subnucleus
(the LAd) that contributed most to the overall difference between
conditions. Having used MDA to help identify the region with
the most significant contribution to the overall pattern of
variance between conditions, it was possible to go further and
explore more fine-grained details within the data. To confirm
the pattern identified with MDA, post hoc comparisons with
Bonferroni correction were performed, verifying the findings
on the location and experimental condition of the greatest
activation, and reinforcing ours and others previous findings
about the predominance of LAd neural plasticity in fear memory
(Rodrigues et al., 2004; Bergstrom et al., 2011).

Mixed Model ANOVA
The Mixed Model ANOVA also known as a Mixed Design
ANOVA or a Split-Plot ANOVA, allows for testing for differences
between independent groups (in functional topography
experiment these will be the impendent behavioral groups,
i.e., experiment and control groups) while using repeated
measures (bins in topography experiments). Thus, the Mixed
Model ANOVA can be employed for microanatomy data
comprising neuron counts within bins contrasted across
several independent groups. For our studies of functional
neuronal topography, we typically derive 20–80 bins per
animal comprising the within-group dependent variable.
For the independent variable, several independent groups of
animals are used including experiment and control groups.
Mixed Models allow for the analysis of data from all locations
and all animals in one analysis. Thus, Mixed Models a have
strong potential for analysis of topographic data combined
with experimental manipulations – such as behavioral or
pharmacological manipulations. Using a Mixed Model analysis
data between anatomic locations can be compared and no
adjustment for multiple comparisons is required. Mixed Models
can be thought as an advancement of ANOVA and regression

models. One, very important but often overlooked, assumption
of ANOVA/Regression, is that the data are independent
of each other. Thus, the analysis cannot have the same
individual represented twice in the same dataset. For example,
measurements on LA have to be analyzed separately from
infralimbic cortex.

Mixed models ANOVA offers a toolbox to account for the
dependence of measurements taken on the same individual,
by accounting for, so called, random effects. Random effects
are variables for which we are not interested in the actual
levels that we have sampled but on what they represent as
a sample from a population. The most usual random effect
would be the individual animal (for further definitions of
random effects readers are directed to Fitzmaurice et al. (2004)
and Zuur et al. (2007, 2009). Methods related to Mixed
Model ANOVA that could also be applied to topographic data
sets with is the generalized estimated equations (GEEs) and
the generalized additive mixed models (GAMMs) which can
accommodate non-linear relationships (for further information
see, Zuur and Ieno, 2016 for GAMM and Fitzmaurice
et al., 2004 on Mixed Model ANOVA and GEEs and their
differences).

DISCUSSION

Understanding neural network organization and predicting
memory and behavior from neural network functionality is
a critical goal in the field of neuroscience. Although various
imaging techniques are capable of large-scale analysis of
functional brain regions, they are not suitable for imaging
the spatial distribution, connectivity and stability of neurons
at the micro-network level. The ability to accurately map,
measure and compare neural network spatial properties, as
described here, contributes to our fundamental awareness of the
organization and structure of functional neural circuits. Classic
cellular and molecular analysis of neuronal tissue assists in
the identification of molecular machinery underlying behavior
but does not answer questions relative to the fundamental
organizational properties and their functional changes associated
with behavior. We have developed a combined topographic
and statistical approach for producing and analyzing micro-
topographic data. This method provides clear visualization of
the spatial organization and degree of consistent neuronal
patterns across brains from individual subjects and in different
experimental conditions.

Neuronal material used for topographic mapping can
include both exogenously labeled, such as immunocytochemistry
and in situ hybridization, as well as endogenous genetic
labeling with green fluorescent protein (GFP) and other
fluorescent probes. Consistency in labeling is important with
regard to whichever neuron marking system is selected for
topographic mapping. The statistical methods recommended
and applied here allow for natural variation in measured
populations. Nonetheless, reduction of variability will improve
outcome consistency and statistical verifications. Marking
neurons requires consistent labeling and consistent identification
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of neurons. To verify consistency, ideally experimenters blind
to the experimental conditions are employed throughout
or for verification checks of large data sets. The general
principles outlined here for micro-topographic mapping can
be applied to sectioned brain material as well as whole
brain analysis approaches using CLARITY, CUBIC, or iDISCO.
Three-dimensional analysis also requires focus and comparative
measurements on specific anatomic ROS. Both 2D and 3D
analysis ultimately requires localization and correlation of
cellular activity with behavioral function using the approaches
described here.

Topographic Mapping
The first step in the approach to visual and quantitative analysis
of functional neuronal topography between animals is to establish
section alignment. Careful choice of an appropriate and stable
landmark or anchor point associated with the ROS is essential
(LeDoux et al., 2006; Haranhalli et al., 2007; Bergstrom et al.,
2011, 2013a,b; Johnson et al., 2012; Bergstrom and Johnson,
2014). Identification of an anchor point which has rapid and
distinct conformational change through sectional view planes will
ensure success at this level. The second stage involves fitting a
contour to the ROS, which ensures precision of the region in
which the neurons will be counted, as well as consistency in the
area across subjects. A limitation at this stage is small variation
between sections from each subject, which can come from animal
variations and also from histological processing, therefore care
is needed to minimize variation. The contour must be fitted
to each section with a degree of individual judgment. Specific
brain regions, such as the hippocampus, may also significantly
change in shape along the longitudinal axis and therefore a single
contour is not feasible. An alternate approach entails producing a
unique mean contour section for a specific data set. The rat brain
atlas, developed by Paxinos and Watson in the 1980s (Paxinos
and Watson, 2007), is one of the most established and detailed
sources of anatomical coordinates available at this time. Other
brain atlases are available and can also be used. In the Paxinos
and Watson atlases, the depicted brain sections can appear up
to 480 micrometers apart necessitating several brain sections to
be mapped to individual atlas plates. Our method is therefore
limited in part by the standardized atlas information currently
available (Paxinos and Watson, 2007).

Prior to creating a contour an atlas image generally requires
resizing, which can represent an amount of time spent making
adjustments with various software packages. Due to the number
of software packages used to produce the images, it is essential
to note both the accepted file types (as listed in methods
above) for compatibility as images are moved between programs.
Furthermore, it is very important to note the numerical functions
involved in any resizing, so that consistency is maintained.
Computer processing speed and memory requirements must also
be considered when using the large data files produced by slide
scanning.

Free, open source programs are available for some procedures,
making our described method economically viable to all. For
example, Image J and FIJI (National Institutes of Health) can be
substituted for some elements of the topographic mapping, as it is

able to perform cell counts and export x,y coordinate data. Image
J has many plugins available and runs in Java which is editable.
Prior to this the contours must be calibrated to a zero point to
facilitate precise individual comparisons. Once the coordinates
have been exported a data matrix may be developed. Data bins are
created using a geospatial analysis formula to establish unbiased
bin dimensions. Open source programs are also available for this
step requiring some degree of coding for specific features. QtiPlot
(Free Software Foundation) is a free replacement for Origin
and SigmaPlot. It will enable binning of x, y coordinates into a
two-dimensional matrix and has contour generating capabilities
for producing neuronal topographic density maps. Free online
software for FDR analysis, as described above, is also available3.
While we have outlined and described our methodical approach
using a series of standalone commercial software packages for
each of the steps descried, free software is also available making
the methodical approaches described here freely available for all
worldwide.

Analysis of Topographic Data
Although we have presented several arguments for the use of
binned data for micro-topographic analysis, there remains the
opinion that discretization has limitations (MacCallum et al.,
2002; Langseth, 2008). We have used both PCA as well as Mass
Univariate ANOVA with FDR correction as a useful way to locate
areas of most variance in complex data, and to confirm the
qualitative data from our mean heat maps. This method assists
in decreasing the reduction in power generated with Bonferroni
procedures (Verhoeven et al., 2005). While we provide general
guidance for analysis of binned micro-anatomical data sets,
we advise the reader to liaise with statisticians to evaluate the
methodical approaches described here with the chosen data
analysis techniques for the analysis of unique data sets and
research questions.

CONCLUSION

Neuronal micro-topographic density maps can assist in defining
specific brain regions involved in behavior. Statistically verified
microanatomical mapping has the ability to advance our
knowledge of the multi layered, complex organization of
the brain and its cognitive systems. Our approach for the
measurement and contrasting of neuronal topographic data
in behavioral experiments has been successfully applied to
the study of the microanatomy of memory formation. It
has enabled us to visualize the spatial allocation of neurons
activated during the acquisition of fear memories (LeDoux
et al., 2006; Haranhalli et al., 2007; Bergstrom et al., 2011,
2013a,b; Johnson et al., 2012; Bergstrom and Johnson,
2014). We propose this method will prove advantageous to
other forms of neuroscience, including the cellular basis of
addiction; pathological memory models; pharmacological
manipulations, and other forms of functional microanatomy
(Johnson et al., 2012; Holmes and Singewald, 2013).

3sdmproject.com
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Existing nuclei cataloged in brain atlases have been defined
histologically, our approach allows for the identification of
new functional micro-regions within established brain nuclei.
By providing this walk-through tutorial we encourage further
development of these goals.
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The ability of animals to detect motion is critical for survival, and errors or even delays in
motion perception may prove costly. In the natural world, moving objects in the visual field
often produce concurrent sounds. Thus, it can highly advantageous to detect motion
elicited from sensory signals of either modality, and to integrate them to produce more
reliable motion perception. A great deal of progress has been made in understanding
how visual motion perception is governed by the activity of single neurons in the primate
cerebral cortex, but far less progress has been made in understanding both auditory
motion and audiovisual motion integration. Here we, review the key cortical regions for
motion processing, focussing on translational motion. We compare the representations
of space and motion in the visual and auditory systems, and examine how single neurons
in these two sensory systems encode the direction of motion. We also discuss the way
in which humans integrate of audio and visual motion cues, and the regions of the cortex
that may mediate this process.

Keywords: visual motion, auditory motion, audiovisual integration, primates, cerebral cortex

The natural world abounds with motion, making this a highly salient cue to guide animals in
interacting with the environment. It is therefore not surprising that most, if not all brains have
dedicated neural circuits for the perception of motion. In primates, the cerebral cortex contains a
network of regions that are specialized for motion processing, but the systems for processing the
motion of visual features and sounds are mediated by different brain regions, and underpinned
by different physiological mechanisms. In this mini-review article, we will discuss the encoding of
direction of motion in the visual and auditory systems, with emphasis on the cortical systems that
are involved in translational motion, especially in azimuth (leftwards and rightwards motion), as
this is the most common type of motion used in audiovisual integration studies.

ENCODING OF DIRECTION OF MOTION IN THE ACTIVITY OF
CORTICAL NEURONS

Spatial features are represented in fundamentally different ways in the visual and auditory systems.
In the visual system, most neurons have spatially defined receptive fields, which are ultimately
defined by inputs from specific regions of the retina. Therefore, the responses of neurons in the
visual system are inherently capable of coding the spatial location of visual stimuli, and in theory,
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could encode direction of motion by the sequential activation of
populations of neurons with different receptive field locations.
However, the visual system goes one step further, with direction
of motion being explicitly represented at the level of the single
cell. Specifically, the spiking (action potential) responses of
neurons are tuned to the direction of moving stimuli, meaning
that they are more active in response to a specific direction of
motion compared to other directions (Dubner and Zeki, 1971;
Baker et al., 1981; Maunsell and Van Essen, 1983a; Albright,
1984; Desimone and Ungerleider, 1986; Saito et al., 1986; Tanaka
and Saito, 1989; Chaplin et al., 2017). Thus, direction selective
neurons in the visual system can encode the direction of motion
within their receptive fields. For example, Figure 1A shows
the response of a direction tuned neuron: the neuron shows
strong responses to motion towards the upper left quadrant, and
progressively weaker responses for directions further away.

In contrast, most neurons in the auditory system respond
to specific ranges of acoustic frequencies, since they ultimately
receive inputs from defined regions of the cochlea. Thus,
the auditory system needs to exploit other auditory cues to
extract spatial information from the stimulus. The principal

cues for locating sounds in the azimuth are binaural—interaural
time differences (ITDs) and interaural level differences (ILDs;
Middlebrooks and Green, 1991). Several brain regions are
involved in the perception of sound location, and neurons in
these regions can be tuned for ITDs or ILDs (Masterton et al.,
1967; Rajan et al., 1990a,b; Semple and Kitzes, 1993a,b; Irvine
et al., 1996; Tian et al., 2001; Woods et al., 2006; Miller and
Recanzone, 2009; Grothe et al., 2010; Slee and Young, 2010;
Kusmierek and Rauschecker, 2014; Keating and King, 2015; Lui
et al., 2015; Mokri et al., 2015).

The encoding of the direction of auditory motion by
the activity of single cortical neurons has not been studied
extensively in primates—to our knowledge, there is only
published study (Ahissar et al., 1992), in which they recorded
spiking activity in the primary auditory cortex (A1) of monkeys.
They found that while many cells (62%) in A1 code for the spatial
location of stationary sounds, some cells (32%) also showed
a preference for leftwards or rightwards direction of motion.
However, the differences in responses were far less marked than
those observed in direction selective cells in the visual system.
There were only modest differences in firing rates, which were

FIGURE 1 | Encoding of direction of motion in the visual and auditory systems. (A) A typical visual direction tuning curve from a neuron in the marmoset visual cortex
(area MT) in response to a moving dot stimulus (data from Chaplin et al., 2017). The vertical line indicates the preferred direction of motion, and the inset shows the
mean spiking responses (with the spontaneous rate subtracted) in polar plot form, showing clear direction selectivity. (B) The temporal spiking response of a neuron
in the macaque auditory cortex (A1) in response to a moving auditory stimulus. Here, the difference in firing rate between two directions of motion is quite modest,
and is most obvious in the later part of the response. Redrawn with permission from the authors of Ahissar et al. (1992). (C) Inflated model of the macaque cerebral
cortex showing some of the motion processing areas in the primate cerebral cortex (Van Essen, 2002; Van Essen and Dierker, 2007). Light blue areas: visual areas
where a subpopulation of neurons shows direction selectivity, dark blue areas: visual motion processing areas MT, MSTd and MSTl, orange: A1, red: areas of the
caudal auditory belt (CM, CL) which have been implicated in auditory motion processing, purple: areas that show auditory and visual motion responses and may be
involved in integrating the two modalities.
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evident in the late part of the responses (Figure 1B). These results
suggest that the encoding of the direction of motion of auditory
stimuli is likely to be a much more distributed representation
across a neuronal populations, compared to direction of motion
encoding in the visual system (Cohen and Newsome, 2009), or
that explicit encoding of auditory motion relies on other areas
beyond A1.

VISUAL MOTION PROCESSING AREAS

The neural circuits for visual motion processing are among the
best understood aspects of the structure and function of the
primate cerebral cortex (Figure 1C, blue areas). The primary
visual cortex (V1) is the first stage of visual processing in the
cerebral cortex in which direction selectivity first appears, but
only a small proportion of V1 neurons are direction selective
(∼15%, Yu et al., 2010; Yu and Rosa, 2014; Davies et al.,
2016). Direction selective neurons have been observed in several
other visual areas (Orban et al., 1986; Desimone and Schein,
1987; Felleman and Van Essen, 1987; Lui et al., 2005, 2006;
Orban, 2008; Fattori et al., 2009; Li et al., 2013), but it is the
middle temporal (MT) and medial superior temporal (MST)
areas that appear to be most specialized for motion processing.
The vast majority of cells in these regions are direction selective
(MT ∼85%: Allman and Kaas, 1971; Dubner and Zeki, 1971;
Maunsell and Van Essen, 1983b; Albright, 1984; MST ∼90%:
Desimone and Ungerleider, 1986; Saito et al., 1986; Tanaka and
Saito, 1989; Celebrini and Newsome, 1994; Elston and Rosa,
1997). Furthermore, it is known that damage to MT and MST
results in motion perception impairments (Newsome and Paré,
1988; Pasternak and Merigan, 1994; Orban et al., 1995; Schenk
and Zihl, 1997; Rudolph and Pasternak, 1999), and electrical
stimulation of these regions can influence the perception of
motion (Celebrini and Newsome, 1994, 1995; Salzman and
Newsome, 1994; Britten and Van Wezel, 2002; Nichols and
Newsome, 2002; Fetsch et al., 2014). Thus, a causal relationship
has been established between neural activity in MT andMST and
the perception of visual motion.

MST can be divided to two subregions: a lateral part (MSTl)
involved in the perception of moving objects and smooth pursuit
eye movements (Komatsu and Wurtz, 1988a,b; Eifuku and
Wurtz, 1998), and dorsal part (MSTd), which is associated with
the perception of complex motion patterns (Graziano et al.,
1994; Mineault et al., 2012), especially self-motion (Saito et al.,
1986; Komatsu andWurtz, 1988a; Duffy andWurtz, 1991; Duffy,
1998), and has a well described role in the integration of visual
and vestibular motion cues (Gu et al., 2007, 2008). Differences
between MT and MST have been well studied in monkeys, but
in human studies these areas are typically grouped into a single
region called the human MT complex (hMT+, Zeki et al., 1991;
Huk et al., 2002), due to the spatial resolution limits of fMRI.

AUDITORY MOTION PROCESSING AREAS

In comparison to the visual system, the regions and circuitry
of the cortex involved in auditory motion processing are not as
well characterized (Figure 1C). While there is some evidence for

motion sensitivity and direction selectivity in the A1 (Ahissar
et al., 1992; Griffiths et al., 2000; Lewis et al., 2000), many human
imaging studies have identified the planum temporale, a region
of auditory cortex caudal to primary cortex, as being the key site
for auditory motion processing (Baumgart et al., 1999; Pavani
et al., 2002; Warren et al., 2002; Alink et al., 2012b). In agreement
with these findings, a recent imaging study in macaques also
found that the caudal regions of auditory cortex are differentially
activated by auditory motion compared to stationary stimuli
(Poirier et al., 2017). Furthermore, studies of humans with lesions
to caudal auditory cortex have found deficits in auditory motion
processing (Ducommun et al., 2004; Lewald et al., 2009; Thaler
et al., 2016).

It remains controversial whether auditory motion perception
relies on specialized motion detectors, similar to direction
selective cells in the visual cortex (Perrott and Musicant, 1977),
or utilizes ‘‘snapshots’’ of the current sound source location
(Ahissar et al., 1992; Poirier et al., 2017), as several human
imaging studies have reported there is no difference in cortical
activation between stationary and moving stimuli (Smith et al.,
2004, 2007; Krumbholz et al., 2005, 2007). Since neurons in
the auditory system show sensitivity to localization cues (e.g.,
ITDs and ILDs), the perception of motion could be mediated
by the sequential activation of neurons that code for adjacent
spatial locations (Ahissar et al., 1992). In general, in the auditory
system the integration of binaural cues for sound localization
occurs at early subcortical stages of processing, such as the
superior olivary complex, the nuclei of the lateral lemniscus and
the inferior colliculus (Moore, 1991). In monkeys, the caudal
part of auditory cortex encompasses the caudomedial (CM) and
caudolateral (CL) areas of the auditory belt (Hackett et al., 1998;
Kaas et al., 1999), and these are known to play a role in the
localization of auditory stimuli (Recanzone et al., 2000; Tian
et al., 2001; Woods et al., 2006; Miller and Recanzone, 2009;
Kusmierek and Rauschecker, 2014). Therefore, the sensitivity
of neurons in these areas to the location of static stimuli is
a potential confound in auditory motion studies, as it can be
difficult to distinguish true motion sensitivity from sensitivity
to spatial location. For example, it has been suggested that
apparent sensitivities to motion in the inferior colliculus could
be explained by adaptation to stationary stimuli, which would
result in reduced spiking activity for stationary stimuli compared
to moving stimuli (Ahissar et al., 1992; Wilson and O’Neill,
1998; McAlpine et al., 2000; Ingham et al., 2001; Poirier et al.,
2017). However, the recent imaging study by Poirier et al.
(2017) did take steps to control for this effect in their choice of
stimuli and regressions analyses, and still found that the caudal
auditory cortex was differentially activated by auditory motion
compared to static motion. Further electrophysiological studies
in monkeys will be required to address the question of how
auditory motion is encoded by the spiking activity of neurons in
these regions.

The neural representation of auditory motion does not
necessarily have to be located in purely auditory regions. Direct
reciprocal connections between MT/MST and the auditory
cortex have been identified in primates (Palmer and Rosa, 2006),
and two recent electrophysiological studies (Chaplin et al., 2018;
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Kafaligonul et al., 2018) have reported evoked potentials in areas
MT/MST in response to stationary auditory clicks. Two human
imaging studies have reported that the hMT+ complex responds
to auditory motion (Poirier et al., 2005; Strnad et al., 2013),
but it has also been argued that observed auditory responses
in hMT+ could be explained by localization errors (Jiang et al.,
2014), and no study has found any evidence for spiking activity
in response to auditory stimuli (moving or stationary) in the
monkey MT complex. Furthermore, a case study of involving
lesions of hMT+ did not find any impairment in the perception
of auditory motion (Zihl et al., 1983). Thus, current evidence
suggests that MT and MST are not involved in auditory motion
processing.

INTEGRATION OF AUDITORY AND VISUAL
MOTION CUES

Given the differences in the neural representation of motion in
the auditory and visual systems, it is interesting to consider how
the information from the two modalities could be combined
to improve motion perception. Psychophysical studies have
investigated audiovisual motion integration in humans using
motion detection tasks, and have provided valuable insights into
how auditory and visual motion can be integrated in the brain.
Some of these studies have reported that humans perform better
in audiovisual motion tasks compared to unimodal tasks, but
there is disagreement as to whether this increase in performance
is ‘‘statistically optimal’’ or the result of ‘‘probability summation.’’
When probability summation occurs, observers perform better
on bimodal trials because they essentially have two chances to
answer correctly—using either the visual or the auditory cue
(Wuerger et al., 2003; Alais and Burr, 2004). When statistically
optimal integration occurs, observers combine the information
obtained by the different senses by weighting according to their
reliability, to make optimal use of the information available
(Meyer and Wuerger, 2001). Therefore, statistically optimal
integration exceeds the performance of probability summation.
Multisensory integration has shown be statistically optimal in
other contexts (Ernst and Banks, 2002; Angelaki et al., 2009;
Fetsch et al., 2009; Drugowitsch et al., 2014; Rohde et al.,
2016).

It has been argued that statistically optimal integration of
multisensory cues relies on neural computations occurring in
early sensory cortex (e.g., MT/MST), rather than in higher-
level areas (Ma et al., 2006; Beck et al., 2008; Bizley et al.,
2016). In contrast, when multisensory integration is the result
of probability summation, it may rely on higher-order areas
(e.g., prefrontal or posterior parietal cortex, Alais and Burr, 2004;
Bizley et al., 2016).

AUDIOVISUAL MOTION INTEGRATION IN
THE PRIMATE CEREBRAL CORTEX

Human imaging studies and monkey electrophysiological/
anatomical studies have suggested several candidate cortical
regions for the integration of audiovisual motion. The human
superior temporal sulcus is typically activated by moving

audiovisual stimuli (Lewis et al., 2000; Baumann and Greenlee,
2007; von Saldern and Noppeney, 2013). This region likely
corresponds to the superior temporal polysensory (STP) area of
macaques (Bruce et al., 1981), and the presence of multisensory
neurons in STP is well known (Bruce et al., 1981; Hikosaka
et al., 1988; Watanabe and Iwai, 1991). STP is typically associated
with processing more complex visual and auditory signals, such
as faces and speech (Beauchamp, 2005) and biological motion
(Oram and Perrett, 1994; Barraclough et al., 2005), especially
in complex tasks (Meyer et al., 2011; Wuerger et al., 2012), but
there is evidence of subregional specializations (Padberg et al.,
2003).

The posterior parietal cortex may also be important for
audiovisual motion integration, as areas in this complex have
found to be active during audiovisual stimulation in humans
(Baumann and Greenlee, 2007; Wuerger et al., 2012), and is
thought play a key role in coordinating multisensory integration
(Brang et al., 2013). Cells in the ventral intraparietal area (VIP)
are known to respond to both visual motion (Cook andMaunsell,
2002; Kaminiarz et al., 2014) and auditory stimuli (Bremmer
et al., 2001; Schlack et al., 2005). The lateral intraparietal area
(LIP) has been demonstrated to be involved in the integration
visual motion signals over time to form perceptual decisions
(Roitman and Shadlen, 2002), and also responds to auditory
stimulation (Grunewald et al., 1999; Linden et al., 1999).
Therefore, it is possible that LIP could integration information
from both senses, by preforming similar computations.

Integration could also occur at the level of the prefrontal
cortex (PFC), as regions in the dorsolateral PFC (areas 8a,
45 and 46) are known to receive inputs from MT and
MST (Lewis and Van Essen, 2000; Reser et al., 2013) as
well as caudal auditory cortex (Romanski et al., 1999a,b).
Furthermore, direction selective responses to visual motion have
been demonstrated in this region (Zaksas and Pasternak, 2006),
and like LIP, PFC neurons show activity that is consistent with
accumulating sensory evidence to form perceptual decisions
(Kim and Shadlen, 1999). Cells in the ventrolateral subdivision
of the PFC, such as area 12, have been shown to integrate
audiovisual cues, but like STP, are generally associated with
higher level sensory processing, responding to individual
faces and calls (Romanski, 2007, 2012). However, human
imaging studies of audiovisual motion have generally not
reported comparable activation in the PFC (Lewis et al., 2000;
Baumann and Greenlee, 2007; von Saldern and Noppeney,
2013), although audiovisual biological motion can modulate
activity in premotor areas (areas 6R and 44) when there is a
mismatch between the auditory and visual cues (Wuerger et al.,
2012).

A number of imaging studies have also found that audiovisual
stimulation produces distinct activation (compared to visual
only stimulation) in hMT+ (Alink et al., 2008; Lewis and
Noppeney, 2010; Strnad et al., 2013; von Saldern and Noppeney,
2013), suggesting that auditory stimuli can modulate visually
evoked responses (although this is not always the case, e.g.,
Wuerger et al., 2012). These regions receive sparse inputs from
auditory cortex (Palmer and Rosa, 2006), and show evoked
potentials in response to auditory stimuli (Chaplin et al., 2018;
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Kafaligonul et al., 2018). Additionally, auditory motion has been
shown to affect various aspects of visual perception, such as
improving visual motion detection (Kim et al., 2012), improve
learning in visual motion tasks (Seitz et al., 2006), and induce
visual illusions (Sekuler et al., 1997; Meyer and Wuerger, 2001;
Kitagawa and Ichihara, 2002; Beer and Röder, 2004; Soto-Faraco
et al., 2005; Freeman and Driver, 2008; Alink et al., 2012a;
Kafaligonul and Stoner, 2012; Kafaligonul and Oluk, 2015).
Altogether, these studies suggest that auditory stimuli, especially
when moving, could modulate responses to visual stimuli in
MT/MST.

To specifically test this hypothesis, we have investigated if
auditory motion cues are integrated with visual motion cues in
MT/MST, by recording spiking activity and characterizing the
ability of neurons to encode the direction of motion, using ideal
observer analysis (Chaplin et al., 2018). We presented random
dot patterns that moved either leftwards or rightwards, and
manipulated the strength of the visual motion signal by reducing
the coherence of the dots (i.e., making some proportion of the
dots move in random directions). Reducing motion coherence
reduces the both the psychophysical performance of observers
(i.e., makes it more difficult to discriminate the directions of
motion) and the neurometric performance of single neurons
(i.e., reduces the neuronal information; Newsome et al., 1989).
We hypothesized that the addition of an auditory stimulus that
moved in the same direction as the visual stimulus would increase
the information carried by single neurons and therefore increase
neurometric performance, just as it can increase psychophysical
performance in humans (Meyer and Wuerger, 2001; Kim et al.,
2012). In particular, we predicted that auditory cues would be
most likely be integrated at low motion coherence levels, in
line with Bayesian models of multisensory integration (Ernst
and Banks, 2002; Ma et al., 2006; Gu et al., 2008). However,
we found no evidence of spike rate modulations (Figure 2A)
or improvements in neurometric performance (Figure 2B) due

FIGURE 2 | (A) Responses of a marmoset MT neuron to visual, auditory and
audiovisual stimuli. The raster plots (black dots) and spike rate functions
(colored lines) show a clear response to visual but not auditory stimuli (blue vs.
green lines). The combination of auditory and visual stimuli (red line) was not
significantly different to the visual only response (blue vs. red lines).
(B) Neurometric performance (measured as the area under the receiver
operating characteristic (ROC) curve, Britten et al., 1992, which corresponds
to the performance of an ideal observer discriminating the direction of motion
using the spiking activity of the neuron) of a marmoset MT neuron when
discriminating leftwards and rightwards motion under visual (blue) and
audiovisual (red) conditions at different levels of motion coherence (strength of
motion signal). The addition of the auditory stimulus did not shift the
neurometric curve to the left as would be expected if the neuron was
integrating the auditory motion cue (adapted from Chaplin et al., 2018).

to the auditory stimulus, in MT or MST. It may be the
case that the audiovisual responses observed in hMT+ are the
result of task related signals (Alink et al., 2012b; Bizley et al.,
2016; Kayser et al., 2017), such as the binding of the two
modalities to form a unified percept (Nahorna et al., 2012,
2015; Bizley and Cohen, 2013), attentional effects (Beer and
Röder, 2004, 2005; Lakatos et al., 2008), or choice-related signals
from the decision making process (Cumming and Nienborg,
2016).

Only one other study has investigated the effects of auditory
stimuli on the responses of MT neurons (Kafaligonul et al.,
2018). This study aimed to test if the activity of MT neurons
mediated the temporal ventriloquist illusion, in which stationary
auditory clicks induce influence the perception of visual speed.
The authors hypothesized that the auditory clicks would alter the
speed tuning and response duration of MT neurons in response
to apparent visual motion. However, the auditory stimuli did
not alter speed tuning or response duration in a way that
would support the perception of the illusion, even though there
was a possible modulation of the temporal spiking response.
Therefore, electrophysiological studies in monkeys so far suggest
that auditory stimuli do not influence visual motion perception
through changes in activity to MT/MST neurons. However, since
the projections from auditory to visual cortex are known to
arrive at the peripheral representation of the visual field (Palmer
and Rosa, 2006; Majka et al., 2018), it possible that their role
of auditory inputs to facilitate the detection and localization of
visual features, especially for orienting (Perrott et al., 1993; Wang
et al., 2008).

CONCLUSION

In conclusion, the processing of auditory and visual motion
in the primate cerebral cortex utilizes different brain areas
and physiological mechanisms. While good progress has been
made in identifying the cortical regions involved in processing
auditory and audiovisual motion, the mechanisms of audiovisual
integration remain unclear. The current evidence from single
neuron studies suggests that the integration of auditory and
visual motion cues is not mediated by the early visual areas MT
and MST, and therefore such integration likely occurs in higher
level cortical areas. Another possibility is that the integration
of audiovisual motion signals is not mediated by a single brain
region, but instead by synchronized network activity (Lewis and
Noppeney, 2010).
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The goal of sensory neuroscience is to understand how the brain creates its myriad
of representations of the world, and uses these representations to produce perception
and behavior. Circuits of neurons in spatially segregated regions of brain tissue have
distinct functional specializations, and these regions are connected to form a functional
processing hierarchy. Advances in technology for recording neuronal activity from
multiple sites in multiple cortical areas mean that we are now able to collect data that
reflects how information is transformed within and between connected members of this
hierarchy. This advance is an important step in understanding the brain because, after
the sensory organs have transduced a physical signal, every processing stage takes the
activity of other neurons as its input, not measurements of the physical world. However,
as we explore the potential of studying how populations of neurons in multiple areas
respond in concert, we must also expand both the analytical tools that we use to make
sense of these data and the scope of the theories that we attempt to define. In this article,
we present an overview of some of the most promising analytical approaches for making
inferences from population recordings in multiple brain areas, such as dimensionality
reduction and measuring changes in correlated variability, and examine how they may
be used to address longstanding questions in sensory neuroscience.

Keywords: neuronal populations, hierarchical processing, neural computation, sensory coding, inter-area
communication

INTRODUCTION

The cortex contains a multitude of representations of sensory information that are anatomically
segregated by sensory modality (e.g., somatosensory vs. auditory), and by specialty within a
modality (e.g., visual motion vs. visual form). Following recent advances in technology, large-scale
recordings of neuronal population activity now extend across the boundaries of cortical areas. This
presents an opportunity to understand the nature of inter-area neural processing. Many inter-
neuronal and inter-area phenomena exist on timescales of milliseconds. In order to characterize
this short-timescale activity requires electrophysiological approaches, which allow action potentials
and local field potentials (LFPs) to be recorded. Although the largest simultaneous recordings
of the functional activity of neuronal ensembles are now conducted with cellular-resolution
imaging, and while cell-type specific genetic promoters promise recordings from neurons with
known classes (Luo et al., 2008), in this article we will focus on experiments involving extracellular
electrophysiological measurements, because these afford the temporal resolution required to
address the analytical questions we pose. We mainly consider cortico-cortical processing in
non-human primates, but these advances are complemented by substantial work in other species,
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and involving sub-cortical areas, which will be necessary to
bridge the gap between understanding circuit architecture and
large-scale network dynamics. Cortico-cortical processing is a
good first frontier in multi-area population analysis as cortical
architecture is well-characterized and similar between brain
areas. Further, we mainly consider questions pertinent to data
sets with population recordings from multiple brain areas
simultaneously, but draw inspiration from analytical methods
applied to either population recordings from one brain area, or
recordings of two units in different areas.

WHY AND HOW SHOULD WE MAKE
SIMULTANEOUS MULTI-AREA
POPULATION RECORDINGS?

The transition from recording from a single site at one time
to recording population activity was a meaningful one for
systems electrophysiology (Brown et al., 2004; Yuste, 2015).
Recording from populations allows us to ‘‘embrace single-
neuron heterogeneity’’ (Cunningham and Yu, 2014), and reveals
structure in the signals across multiple neurons that we would
not be able to recover any other way, such as their correlated
variability (Zavitz et al., 2016; Bondy et al., 2018), and how
population representations change within a subspace over time
or depending on context (Churchland et al., 2012). Recording
simultaneously from two or more neurons has advanced theories
relating to how different types of ‘‘noise,’’ or inter-trial variability,
affect stimulus discrimination (Zohary et al., 1994; Shadlen and
Newsome, 1998; Cohen and Kohn, 2011; Kohn et al., 2016),
and how decisions are generated based on the accumulation of
evidence (Yates et al., 2017).

Recording from multiple areas can reveal temporal
correlations between the two areas (Wong et al., 2016),
giving insight into inter-area connectivity. Beyond this, by

making simultaneous multi-area population recordings,
we are able to make inferences about how population
representations in one area influence the representations in
another on a trial-by-trial basis (Zandvakili and Kohn, 2015),
and how inter-area communication changes depending on
external factors such as attention (Ruff and Cohen, 2016).
Multi-area population recordings are thus able to address
two classes of questions: how representations are changed
between cortical areas, and how communication is facilitated
(Figure 1). Here, representations are defined as the structure
of neuronal activity in an ensemble, and communication as
a recoding process (Pitkow and Angelaki, 2017), in which
the representation of information within the recipient area is
measurably changed. A similar architecture is outlined in Fries
(2015).

Most sensory neuroscience is predicated on developing an
understanding of how a physical stimulus produces an observed
neuronal response. However, beyond the level of our sensory
receptors, neurons do not directly respond to sensory stimuli.
Rather, they change their membrane potential and generate
action potentials in response to precise patterns of inputs,
received from a population of synaptically-connected neurons.
By recording from connected brain areas, we can use the
recordings from the source area to gain a better understanding
of the true inputs to the recipient brain area, and how they are
transformed in the downstream area.

PROMISING ANALYTICAL APPROACHES

There are three major classes of analyses that have allowed
researchers to draw novel conclusions about information
processing between simultaneously recorded areas: lower-
dimensional representations; pairwise correlated variability
(‘‘noise’’ correlations or ‘‘correlation structure’’); and measures

FIGURE 1 | Illustration of the representation-communication framework for neuroscientific questions. (A) A pattern of activity within an area or population of neurons
is captured as firing rates over a specified time window. In this rendering, each circle represents a neuron, and the color represents that neuron’s instantaneous
activity, which continually changes over time. We measure representations not in an instant, but typically in a rate code, by integrating spiking activity over a time
window ranging from tens to hundreds of milliseconds. (B) The rates of n neurons in Area X are collectively a multidimensional “representation” that varies over time.
This representation may be as concrete as the joint firing rates across the population, or may be abstracted through dimensionality reduction. (C) An area X may be
inferred to communicate with area Y if the representation within area X modulates the representation in area Y in a systematic way.
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of spike-timing precision. The most valuable observations we
derive from these analyses are often not their immediate outputs,
but instead how these outputs change depending on other
contextual variables such as the stimulus, behavior, or cognitive
state.

Lower-Dimensional Representations
Across a population of neurons, there is both diversity and
redundancy in neuronal responses, and it can be difficult to gain
any understanding of how sensory information is represented
when the number of dimensions describing the data equals
the observed number of neurons (Figure 2A). Dimensionality
reduction techniques such as principal components analysis
allow covariation between neurons to be collapsed (Figure 2B),
and the resulting visualization can show how population
representations shift as a function of time and stimulus
properties (Figure 2C). By translating data into a reduced
format, we can form intuitions and hypotheses about what
would otherwise be an intractably large data set that may
bear little relationship to stimulus variables at first examination
(Cunningham and Yu, 2014). In this ‘‘state space’’ the
aggregate population activity at any point in time may be
represented by a single point (Figure 2B). This style of

representation permits comparison across stimulus or behavioral
characteristics independently of the often heterogeneous and
complex selectivity of the neurons (as in Churchland et al.,
2012; Mante et al., 2013). Dimensionality reduction can be
achieved in a number of ways (principal components analysis,
factor analysis, Gaussian process factor analysis, among others),
with different methodological advantages but similar outcome: a
reduced space in which to consider the variability of neuronal
responses. Traditionally, the focus is on how this variability
relates to the stimulus or behavior. With multi-area recordings,
it is also appropriate to consider how the variability of neuronal
responses in one area relates to the responses of a connected
population.

In a typical experiment in which multiple factors can vary
(e.g., stimulus value, animal behavioral state, motor outcome),
the variability in neuronal responses across trials of the same
type is the most interesting to the experimenter. Unsupervised
approaches will operate on the data blind to these experimental
manipulations or outcomes, and the components they extract
may not isolate the impact of experimental variables of
interest (Kobak et al., 2016). To address this shortcoming,
a layer of supervision can be added to isolate experimental
variables, e.g., hierarchical decomposition (Repucci et al., 2001;

FIGURE 2 | Procedures for analyzing high-dimensional neural data in a biologically informative way. (A) Illustration of dimensionality in multichannel recordings.
Time-varying data are collected simultaneously from populations of neurons. These are typically spiking rates over some time window. The rates exist in a space that
has the same dimensionality as the number of channels recorded. However, neuronal responses are typically not unique or independent, so it is likely that pairs of
neurons have correlated firing rates (here, channels 1 and 7). This allows for dimensionality techniques (here, principal components analysis) to capture most of the
variability in a reduced number of dimensions. (B) Population response trajectories to different stimulus conditions can be traced through this reduced space over
time. (C) Firing rates of neurons, left, often relate to more than one experimental variable (here, stimulus and behavior, gray bars). The high-dimensional responses of
many neurons may be reduced with supervision so that they are also de-mixed, and the independent stimulus and behavior selective responses are clear.
(D) One-way representations change between brain areas is that they allow different variables to become more easily, or linearly, separable. In this example, one
stimulus attribute is separable in Area X (color), while both shape and color are separable in Area Y, depending on the decision line (dashed).
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Maddess et al., 2006), demixed PCA (Kobak et al., 2016),
and tensor component analysis (Williams et al., 2017). This
means that the recovered components are those that best
explain individual and paired factors of interest (Brendel et al.,
2011; Kobak et al., 2016). We illustrate a simplified account
of mixed ‘‘stimulus’’ and ‘‘behavior’’ signals in a population,
and how these components may appear once demixed in
Figure 2D. Although poorly explored thus far, we anticipate
that this approach will be particularly valuable for analyzing
multi-area data sets, because it will enable quantification of
how the representations change together on a trial-by-trial
basis.

Dimensionality reduction works by collapsing across shared
variability that arises from variations in both the ‘‘signal’’
(i.e., tuning similarities) and the ‘‘noise’’ (i.e., trial-by-trial
variations in responses to the same signal). To learn more
about the nature of population representations and inter-area
communication, we can examine the noise correlations in
isolation.

Noise Correlations
The spiking activity of neurons varies from trial to trial,
even under identical stimulation conditions. In pairs of
simultaneously recorded neurons, this variability tends to be
shared: if one neuron fires at an above-average rate, others
are likely to as well (Zohary et al., 1994). Because this shared
variability is not related to the stimulus or signal, it is termed
‘‘noise’’ or ‘‘spike-count’’ correlations, and is quantified by the
Pearson’s correlation coefficient between the spike counts of the
two cells across repetitions of the same stimulus (Cohen and
Kohn, 2011). The strength of the measured correlation depends
on a number of factors, including the two neurons’ mean firing
rate (de la Rocha et al., 2007), separation in cortical tissue
(Smith and Kohn, 2008; Solomon et al., 2015; Rosenbaum et al.,
2017), and similarity in tuning properties (Kohn and Smith,
2005).

The pattern of spike-count correlations we are able to observe
can reflect global modulations in activity that affect the whole
population (Goris et al., 2014) or synaptic architecture, which
can describe either structural architecture like connectivity
patterns (Hu et al., 2012) or functional architecture like
moment-to-moment connectivity (Haider and McCormick,
2009). Functional architecture, and spike-count correlations, are
changed by recruiting (Snyder et al., 2014) or adapting (Zavitz
et al., 2016) different subpopulations of neurons. The magnitude
and structure of pairwise correlated variability across populations
of neurons relates to behavior (Gutnisky et al., 2017; Ni et al.,
2018), how well stimulus parameters are represented (Moreno-
Bote et al., 2014; Kohn et al., 2016; Zylberberg et al., 2016; Zavitz
et al., 2017), and reflects the task the animal is performing (Bondy
et al., 2018).

To measure spike-count correlations, spikes are typically
counted in bins with sizes ranging from tens of milliseconds
to one or two seconds. However, information is also present
in the precise timing of spikes from a neuron, either relative
to the LFP or the timing of spikes from other neurons. While
longer bins increase the overall spike count and the reliability of

the measure, the behavioral relevance of these timescales is not
clear.

Spike-Timing Precision
The precise timing relationships in the activity of groups of
neurons, measured as synchrony or coherence, can inform us
about coordinated spiking activity and communication (Jia et al.,
2013; Zandvakili and Kohn, 2015). Synchronized firing across a
diverse group of neurons may be an important way to encode
complex stimuli (Singer et al., 1997), and pairs of neurons can
coordinate firing at timescales as short as 1 ms (Palm et al., 1988).
There is evidence that different information is encoded in spikes
aligned with different phases of specific frequencies in the LFP
(Womelsdorf et al., 2012; Wong et al., 2016) and neural activity
with precise delays between populations of neurons and across
cortical layers may even be critical to the process of information
transmission (Bastos et al., 2015).

Spiking synchrony may be measured with a cross-
correlogram—correlations in instantaneous spiking between
neurons at a range of time delays. While spiking activity is
best understood as a point-process in the time domain, the
LFP is a continuous process in the time-frequency domain,
characterized in terms of how the power and phase across
different frequency bands change over time. A common way of
relating these discrete and continuous processes is coherence,
a frequency-dependent measure of signal correlation, that
may be examined between spikes and the LFP recorded on
the same or different electrodes (Jarvis and Mitra, 2001).
These measures have been used to understand how pairs
of neurons communicate within (Dean et al., 2012; Hagan
et al., 2012) and between (Jia et al., 2013; Wong et al., 2016)
cortical areas. Although their use has not yet been expanded
to large-scale recordings, given that spikes are commonly
described as the outputs of a neuron and the LFP represents
the net synaptic input to the region near the electrode, these
approaches correlating spiking and the LFP are some of
the most direct for examining how communication occurs
across area boundaries. There are not any widely adopted
population measures of timing precision, and this presents a
fruitful area for future development. The process of identifying
assemblies of neurons that fire in concert (Singer et al.,
1997) could be expanded to include more detailed temporal
characterization.

VIABLE AVENUES OF INQUIRY

How Do Brain Areas Communicate With
One Another?
Information is flexibly and efficiently routed throughout the
brain. Here, we define communication as signal propagation
that produces a change in the representation by a recipient area.
Part of the challenge for achieving inter-area communication is
related to signal transmission: a signal must be able propagate
reliably throughout the system without excessive attenuation
or amplification (Shadlen and Newsome, 1998; Joglekar et al.,
2018; van Vugt et al., 2018). This relies on inter-area anatomical
connections as well as the network structure within an
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area (Joglekar et al., 2018). However, there is substantial
evidence that successful inter-area communication also requires
physiological coordination on millisecond time-scales (Fries,
2005, 2015).

Inter-area information transmission has been assessed using
coherence measures across the V1-V2 boundary (Jia et al.,
2013), and by the likelihood of spikes in a recipient area
given the state of a source area (Zandvakili and Kohn, 2015).
The quality of signal transmission has been measured by
the number of spikes elicited in the recipient area following
of electrostimulation of the source area (Ruff and Cohen,
2016). These approaches demonstrate an effect of state on a
recipient area, or propagation, but they do not demonstrate
that communication has occurred. This could be achieved with
an additional analysis demonstrating improvement in coding
in the recipient brain area. This may be done directly by
assessing perception in an awake behaving animal or decoding
the spiking activity in the anesthetized preparation; or indirectly
by measuring representations or spike-count correlations. These
early studies had a small number of electrodes in the recipient
area, so such analyses would have been limited, but will be
increasingly possible as recording capabilities improve. Changes
in noise correlations between areas can also be interpreted
as changes in the communication efficacy between areas. If
correlations between areas increase, they share more trial-to-trial
variability, which means signal transmission is enhanced, but it
is unknown whether this also enhances the representation in the
recipient brain area.

Within a single brain area, inferences may be made about
the relationship between cortical state and coding efficacy by
conditioning the data, or sorting population activity into states
based on a variable of interest (e.g., up and down states
based on firing rate; Arandia-Romero et al., 2016; Gutnisky
et al., 2017), or behavioral outcome or strategy (Gilad et al.,
2018). Recent work adapts this approach to two connected
populations of neurons by estimating how the state of one
area impacts coding in a recipient area, demonstrating how we
might test the efficacy of neural communication more directly
(Palmigiano et al., 2017). In simulations, they measured the
relative phase of gamma bursts in two areas, and condition
based on which area is leading. This enabled them to show
that spiking activity in the leading area predicts spiking activity
in the following area, suggesting that gamma bursts produce
states that are conducive to spike transmission. However, the
results of conditioning data should be interpreted with caution,
as the variable chosen for conditioning will have multiple
covariates.

How Are Representations Transformed
Between Areas?
Understanding population responses in terms of a
low-dimensional representation has provided traction especially
in our understanding of how neurons with complex selectivity
represent stimuli and guide behavior. In the context of multi-area
recordings, this approach stands to help us understand how
representations of the same factors shift from one area to
another, and how shifts in the trial-by-trial activity in an

upstream area produce better or worse representations in a
downstream area. It also provides a way to look at how different
areas reshape the same information in order to ‘‘untangle’’
it, or increase the linear separability of a biologically relevant
variable (Figure 2D; DiCarlo and Cox, 2007; DiCarlo et al.,
2012; Pagan et al., 2013). In future work, dimensionality
reduction may be combined with data conditioning in order
to determine how the representation in a recipient area
depends on the state of a simultaneously recorded source
area.

This problem extends to reasoning about how different areas
contribute to different aspects of a complex task. Yates et al.
(2017) combined measurements of behavior and the spike-count
correlations within and between areas MT and LIP, with models
of the two areas. They were able to dissect a perceptual decision-
making task into several components that are partially shared
between MT and LIP, but did not find any evidence of single-
trial coupling between these two areas, which is inconsistent with
theories that LIP integrates the information inMT. Simultaneous
population recordings in multiple areas alone permit this kind
of trial-by-trial assessment of how information is transferred
and transformed, and will be useful for separating hierarchical
computations from computations that are apparent at many
stages of the hierarchy.

How Do Global Factors Modulate
Inter-Area Cortico-Cortical
Communication?
Variability in the responses of neurons, as measured with spike-
count correlations, can be partly explained by modulating factors
such as anesthetic state, attention, and arousal (Goris et al.,
2014; Rabinowitz et al., 2015). It is unclear how these ‘‘global’’
factors interact with local factors (such as adaptation or stimulus
context), and what the scale of the modulations induced by
these global factors truly is. By recording population activity in
multiple areas, we will be able to determine the scope of local and
global factors, for example, to determine how far local network
changes propagate through the cortical hierarchy. Sub-cortical
systems play a significant role in modulating cortical processing
(Sherman, 2016). Expanding simultaneous multi-area cortical
recordings to include related subcortical systems, potentially in
small brains with large, multi-contact probes (Jun et al., 2017),
may be profoundly informative for learning why cortical states
tend to shift, both ‘‘spontaneously’’ and in a task-dependent way
(Ruff and Cohen, 2018).

CONCLUSION

We are able to measure larger populations than ever, but
characterizing many predicted theoretical effects requires
recording from exceedingly large-scale populations (hundreds
or thousands of neurons). While most electrophysiology is
currently constrained to monitoring hundreds of neurons,
imaging approaches are able to monitor thousands but have poor
temporal resolution. Improved temporal resolution of imaging
and higher-yield electrophysiology experiments will move the
field forward substantially.
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Population size aside, dimensionality reduction requires
repeating each trial a large number of times (and indeed, the
number of necessary repetitions increases with the number
of cells simultaneously recorded). The recording stability
required for these measurements can be difficult to obtain in
an anesthetized preparation and the timescale is potentially
impossible in awake animals until recordings can be reconciled
with carefully quantified natural behaviors. In single-area
recordings, the limits of the anesthetized preparation are
reasonably well-understood, but it is not yet clear if inter-area
dynamics are as consistent as basic sensory representations
between the anesthetized and awake states. Modest increases
in population size, along with the technological advances
that permit us to characterize each cell more completely
(e.g., laminar profile, genetic markers, morphology, receptive

field substructures, connectivity) will let us make stronger
inferences about the varied roles different cells play in
shaping population activity, and thus perception, cognition, and
behavior.
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A key problem in systems neuroscience is to characterize how populations of neurons

encode information in their patterns of activity. An understanding of the encoding

process is essential both for gaining insight into the origins of perception and for the

development of brain-computer interfaces. However, this characterization is complicated

by the highly variable nature of neural responses, and thus usually requires probabilistic

methods for analysis. Drawing on techniques from statistical modeling and machine

learning, we review recent methods for extracting important variables that quantitatively

describe how sensory information is encoded in neural activity. In particular, we discuss

methods for estimating receptive fields, modeling neural population dynamics, and

inferring low dimensional latent structure from a population of neurons, in the context

of both electrophysiology and calcium imaging data.

Keywords: neural coding, calcium imaging, population code, brain-computer interfaces, generalized linear model,

Gaussian process, factor analysis

1. INTRODUCTION

An animal’s perceptual capabilities critically depend on the ability of its brain to form appropriate
representations of sensory stimuli. However, the neural activity induced by a specific stimulus
is highly variable, suggesting that neural encoding is a fundamentally probabilistic process.
Characterizing the neural code thus requires statistical methods for relating stimuli to distributions
of evoked patterns of activity. Modern techniques for recording such neural activity include
multi-electrode arrays, which provide access to the behavior of populations of neurons at
millisecond resolution, and optical imaging with genetically encoded calcium (Chen et al., 2013)
and voltage indicators (Abdelfattah et al., 2018), which allow thousands of neurons to be recorded
simultaneously (Ahrens et al., 2013; Chen et al., 2018). However, while improvements in multi-
neuron recording allow us to probe neural circuits in great detail, they are accompanied by a need
for computational techniques that scale to entire neural populations.

A statistical model for neural coding describes how a stimulus is mathematically related
to a pattern of neural activity. By fitting the model one can extract important variables that
quantitatively describe the encoding procedure taking place. For instance, such models enable
the estimation of receptive fields and/or interneuronal coupling strengths. In contrast to other
methods for inferring these variables, an approach based on statistical models situates the task
of estimating salient parameters in a coherent mathematical framework, often with proof of
asymptotic optimality or computational efficiency. By making explicit assumptions about how the
data was generated, statistically principled approaches are often capable of identifying patterns in
neural data which are challenging to find with simpler methods.
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Linear and generalized linear models are among the
most straightforward classes of statistical models for spike
trains and assume that a neuron’s activity is a noisy linear
combination of the stimulus features. These models are
highly effective at explaining the structure of sensory
receptive fields and are computationally tractable, but do
not explicitly model the temporal structure of the recorded
signal and have difficulty accounting for correlations between
neurons in short time windows. An important aspect of
these correlations is their tendency to be modular, with
distinct groups of neurons showing cofluctuating activity.
Latent factor models attempt to uncover the low dimensional
structure that gives rise to this correlated variability, and recent
efforts have focused on extracting low dimensional structure
that evolves smoothly through time using a latent linear
dynamical system or Gaussian process (Cunningham and Byron,
2014).

A further challenge is presented by calcium imaging,
which provides only indirect access to neural activity through
recorded fluorescence levels that reflect the concentration
of calcium within a neuron. Often this data can be more
difficult to interpret than electrophysiological recordings as
there are a number of biophysical stages between stimulus
presentation and fluorescence imaging where noise can enter
and information can be lost. Using a generative model for
calcium imaging data, however, one can explicitly account for
the process through which action potentials are transformed
into fluorescence levels. Fitting the generative model amounts
to deconvolving the fluorescence signal to estimate the
underlying spike train timeseries, and conventional encoding
models can then be applied to deconvolved data. However,
the ability to obtain spike counts from fluorescence data
is highly constrained by experimental conditions, which
motivates the development of encoding models specific to
calcium imaging that do not necessarily involve spike train
deconvolution.

While previous reviews have focused on estimating stimulus-
response functions (Paninski et al., 2007; Pillow, 2007; Meyer
et al., 2017), neural decoding (Paninski et al., 2007; Quiroga
and Panzeri, 2009), and conceptual overviews of models
and data analysis techniques (Cunningham and Byron, 2014;
Paninski and Cunningham, 2018), this review instead discusses
a range of recent exemplary models and their successful
application to experimental data. Our goal is to provide
sufficient mathematical detail to appreciate the respective
strengths and weaknesses of each model, while leaving formal
treatment of their associated fitting algorithms to their original
sources.

2. LINEAR AND GENERALIZED LINEAR
MODELS

We first briefly review now-standard material on models for
single-neuron spike trains, primarily to develop the theory,
terminology, and notation necessary for more recent work
focused on multivariate models.

2.1. The Linear-Gaussian Model
Among the simplest probabilistic models for a neuron’s response
r to a stimulus vector s is the linear-Gaussian model (Figure 1A),
which assumes that a neuron linearly filters the features of s as

r = w⊤s+ ǫ, ǫ ∼ N (0, σ 2) (1)

where the vector w is the stimulus filter, ǫ is an additive noise
variable, andN (0, σ 2) is a Gaussian distribution with mean 0 and
variance σ 2 (see Table 1 for a table of notation). In the case of
visual processing the stimulus s is a vector of pixel intensities for
each point in the visual field, the stimulus filter w corresponds to
the classical visual receptive field, and the response r is either the
spike count or firing rate within some time window following the
stimulus. Assuming stimuli s1, . . . , sK are presented over K trials
yielding responses r1, . . . , rK with independent and identically
distributed noise as in Equation 1, the maximum likelihood
estimate (MLE, see Table 2 for a table of abbreviations) for the
filter w is given by

ŵ = argmax
w

K
∏

k=1

p(rk|sk,w). (2)

Since the noise model is Gaussian, the solution to Equation (2) is
simply the ordinary least squares solution (Bishop, 2006)

ŵ = (S⊤S)−1S⊤r (3)

where S = (s1, . . . , sK)
⊤ is the stimulus design matrix and r =

(r1, . . . , rK)
⊤ is the vector of neuron responses.

A common interpretation of the estimator in Equation (3) is in
terms of the spike-triggered average (STA) of the stimulus, which
is the filter obtained by averaging over the stimuli that elicited a
response,

ŵSTA =
1

N
S⊤r (4)

where N is the total number of spikes. When the stimulus
ensemble follows a multivariate Gaussian with independent
dimensions (and is therefore not biased toward any particular
region of the feature space) the STA is the optimal filter
(Chichilnisky, 2001; Dayan and Abbott, 2001; Simoncelli et al.,
2004) and is proportional to the MLE. In general, the MLE
pre-multiplies the STA by the inverse of the autocorrelation
matrix S⊤S of the stimulus ensemble to correct for bias in the
presented stimuli, and thus corresponds to a whitened STA.
Further discussion of the STA and its connection to the MLE can
be found in Simoncelli et al. (2004) and Meyer et al. (2017).

2.2. The Linear-Nonlinear-Poisson Model
While a linear model can recover basic receptive field structure,
it fails to capture the nonlinear changes in firing rate observed
in electrophysiological recordings in cortex. In addition, the
assumption of Gaussian noise leads to continuous (and possibly
negative) estimates of spike counts. The linear-nonlinear-Poisson
(LNP) model addresses these shortcomings by equipping the
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FIGURE 1 | Generalized linear encoding models. (A) Basic linear-Gaussian model. A neuron’s response is modeled as a linear combination of the stimulus

components with additive Gaussian noise. In this example, the stimulus filter represents a two-dimensional visual receptive field. (B) The LNP model extends the

linear-Gaussian model with a static nonlinearity applied to the filtered stimulus, together with Poisson observations to directly model spike counts. (C) Multi-neuron

GLM encoding model used in Pillow et al. (2008). (D) Center (red) and surround (blue) components of temporal (left) and spatial (right) stimulus filters for the GLM fitted

to an example ON retinal ganglion cell. (E) Same as (D), but for an example OFF cell. In contrast to the ON cell, the OFF cell has an inhibitory effect on spiking. (F)

Schematic of Bayesian decoding process. The encoding model p(r|s) is first fit by maximum likelihood. Then stimuli are decoded as the mean of the posterior stimulus

distribution p(s|r) obtained by Bayes rule. (G) Performance of various decoders. Decoding using a GLM with interneuronal coupling filters (full model) substantially

increases performance over models that do not account for interaction effects (linear, Poisson, and uncoupled models). (C–G) Adapted with permission from Pillow

et al. (2008).

generative model with a static nonlinearity following the linear
filtering, and a Poisson noise model to directly model the number
of spikes generated within a fixed time-window (Figure 1B)
(Chichilnisky, 2001). Let t = 1, . . . ,T index over time bins. The
LNP model assumes spikes follow an inhomogeneous Poisson
process with time-varying firing rate λ(t),

λ(t) = g(w⊤s(t)), r(t) ∼ Pois(λ(t)) (5)

where g is a nonlinear activation function. While this
nonlinearity can be estimated nonparametrically for each neuron
(Simoncelli et al., 2004), it is often chosen to be g(x) = exp(x)
as this ensures a non-negative intensity λ and tractable model
fitting. Note that the specified firing rate λ(t) will depend on the
width 1 of the time bins or imaging rate, but for clarity here and
for the remainder of the paper we omit explicit dependence of
λ(t) on 1.

Assuming g(x) = exp(x) and that the responses r(t) are count
data, the MLE for the LNP model is the solution

ŵ = argmax
w

T
∏

t=1

p(r(t)|s(t),w) = argmax
w

T
∑

t=1

(

r(t) ln λ(t)− λ(t)
)

(6)

where the second equality follows by substituting the Poisson
mass function and taking logarithms. The LNP model can
be fit by standard gradient-based optimization methods since
the intensity function λ(t) is differentiable with respect to the
filter parameters w and the log-likelihood function is concave
(Paninski, 2004).

Regularization is a commonly used technique in machine
learning for preventing a model from overfitting the training
data. When maximizing the log-likelihood function for the LNP
model with regularization, one penalizes the filter components
whenever they deviate from zero

ŵ = argmax
w

T
∑

t=1

(r(t) ln λ(t)− λ(t))− η||w||p (7)

where || · ||p denotes the Lp norm and η > 0 is a penalty
coefficient. Setting p = 1 or p = 2 corresponds, respectively, to
LASSO and ridge regression (Friedman et al., 2001), encouraging
a sparse filter w. Maximizing the penalized log-likelihood is
equivalent to performing posterior inference in a Bayesian
regressionmodel wherew has a Laplacian (for p = 1) or Gaussian
(for p = 2) prior (Wu et al., 2006). In many circumstances,
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TABLE 1 | Table of notation.

Symbol Parameter

r Response

s Stimulus

w Stimulus filter

S Stimulus design matrix

λ Intensity, mean

ǫ, ξ , ξhℓ
Gaussian noise variable

σ , σs, ν Noise standard deviation

µ,µs Baseline activity, mean

h Spike history vector

Jij Spike history coupling filter

x Latent factor

9s Diagonal variance matrix

3, 3s Factor loading matrix

6s Covariance matrix

τ Gaussian process timescale

n Spike count

c Calcium concentration

γ Autoregressive coefficient

α Fluorescence scale

β Baseline fluorescence level

f Fluorescence level

p Spike probability

hℓ Refractory term

kd Dissociation constant

N Gaussian distribution

Pois Poisson distribution

Bern Bernoulli distribution

A subscripted s indicates stimulus-specific parameters.

such as when the data exhibits high noise levels, the ordinary
(unpenalized) MLE cannot recover realistic receptive fields and
needs to be constrained by regularization or priors (Sahani
and Linden, 2003). Such Bayesian methods become highly
effective in regimes of high noise, and a number of Bayesian
extensions of receptive field inference invoke more subtle
machine learning methods. For example, automatic relevance
determination (Sahani and Linden, 2003) places a Gaussian prior
on each element wi of the filter and iteratively updates the prior
variance until the filter components corresponding to irrelevant
stimulus features effectively vanish from the model. Automatic
locality determination, on the other hand, involves constructing
receptive field priors encoding the information that receptive
fields tend to be localized in space, time relative to the stimulus,
and spatiotemporal frequency (Park and Pillow, 2011).

2.3. Extensions of the LNP Model
The LNP model is a special case of a generalized linear model
(GLM): a class of encoding models that generalize the simple
linear-Gaussian model to models that follow linear filtering with
a static nonlinearity and any noise model from the exponential
family. While there is in general no probability mass function
for a multivariate extension of the Poisson distribution, the GLM
framework allows one to incorporate interaction effects between
different neurons, thereby allowing statistical models for single

TABLE 2 | Table of abbreviations.

Abbreviation Meaning

MLE Maximum likelihood estimate

STA Spike-triggered average

LNP Linear-nonlinear-Poisson

GLM Generalized linear model

FA Factor analysis

EM Expectation maximization

GP Gaussian process

GPFA Gaussian process factor analysis

PLDS Poisson linear dynamical system

neurons to be used for entire populations. The LNP model is
extended by the addition of spike-history filters Jij for all pairs
of neurons i and j, intended to capture refractory effects for
individual neurons (i.e., when i = j) and interaction effects
between neurons (i 6= j), giving

λi(t) = exp



w⊤
i s(t)+

N
∑

j=1

J⊤ij hj(t)



 , ri(t) ∼ Pois(λi(t))

(8)

where wi is the stimulus filter for neuron i, hj(t) = (rj(t −

1), . . . , rj(t − τ ))⊤ is a vector of neuron j’s spike history, and τ

determines the length of the spike history window. The addition
of the coupling filters allows the GLM to model the correlation
structure within a population of neurons, as opposed to a model
consisting of independent LNP neurons. Note, however, that the
GLM is only well defined for coupling filters that act on the recent
spike history of other neurons within the population, and cannot
model correlations that arise from coactivity with zero time-lag
(Macke et al., 2011). This motivates the use of latent variable
models (see below), where simultaneous correlations arise among
neurons whose activity is concurrently modulated by a shared
factor.

Nonetheless, the GLM has been successfully applied to many
data sets (Pillow et al., 2005, 2008; Park et al., 2014). Notably,
Pillow et al. (2008) applied the GLM to a population of retinal
ganglion cells from the fly (Figures 1C–E), obtained a complete
characterization of the network’s spatiotemporal correlation
structure, and showed how incorporating these correlations
yields a ∼20% increase in estimated information about the
presented visual scene (Figures 1F,G).

3. LATENT FACTOR MODELS

3.1. Encoding With Factor Analysers
A frequent observation when recording population responses to
the repeated presentation of identical stimuli is that variability
tends to be correlated among groups of neurons. Such correlated
variability (also known as shared variability or noise correlations)
can substantially impact the efficacy of a neural code depending
on the particular correlation structure (Abbott and Dayan, 1999;
Schneidman et al., 2006; Lin et al., 2015), and suggests that there
may be factors present that comodulate the responses of groups
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of neurons. Factor analysis (FA), a probabilistic generalization of
principal components analysis, is a classical model for inferring
the latent group structure that can give rise to correlated
variability.

In a Gaussian coding scheme with independent neurons, a
population response r to a fixed stimulus s has a probability
density given by

p(r|s) = N (r|µs, σ
2
s IN) (9)

where the vector µs is the mean population response, σ 2
s is a

noise variance common to each neuron, and IN is the N × N
identity matrix. While this model is analytically tractable with
closed-form expressions for µs and σs, the diagonal covariance
matrix means it fails to account for the correlation structure that
may be present in the data. As shown in e.g., Pillow et al. (2008),
this additional information can considerably influence decoding
accuracy.

On the other hand, a Gaussian model with an unconstrained
covariance matrix 6s yields a density of the form

p(r|s) = N (r|µs,6s), (10)

which, in principle, could outperform the Gaussian version
that uses an unrealistic assumption of independently acting
neurons (Santhanam et al., 2009). However, the covariance
matrix 6s has (N

2+N)/2 parameters to be learned per stimulus,
requiring an amount of data that is impractically large to obtain
experimentally for large N.

FA is a more moderate approach that attempts to capture
shared variability in population activity by specifying a tractable
parameterization of the covariance matrix. For FA the covariance
matrix is defined as 6s = 3s3

⊤
s + 9s, where 9s ∈ R

N×N is a
diagonal matrix,3s ∈ R

N×q is a factor loadingmatrix (analogous
to the component loading matrix in principal components
analysis), and q < N determines the rank of 3s3

⊤
s . Hence the

population response r is distributed as

p(r|s) = N (r|µs,3s3
⊤
s + 9s). (11)

This decomposes 6s into two matrices that capture separate
aspects of the response variability: 3s3

⊤
s is a low-rank matrix

that captures the variability that is shared across neurons,
whereas the diagonal matrix 9s captures variability private to
each neuron (Churchland et al., 2010). A critical observation is
that the FA covariance matrix only requires (q+ 1)N parameters,
which is less than (N2 + N)/2 whenever q < (N − 1)/2. Since q
is usually chosen to be small, the FA covariance matrix requires
much fewer parameters to be learned from the data.

An equivalent formulation of FA models the population
response to a stimulus s as the projection from a low dimensional
space of latent factors into the N-dimensional population space.
This low dimensionality constraint forces any variability that the
latent factors account for to be shared across groups of neurons,
which leads to a modular correlation structure in the population
recording. The generative model for the population response rs
given a stimulus s is

rs = 3sxs + µs + ǫs (12)

xs ∼ N (0, Iq) (13)

ǫs ∼ N (0,9s), (14)

where xs ∈ R
q denotes the vector of latent factors, which

are assumed to be independent with a Gaussian prior. These
factors are intended to reflect unobserved brain states and could
be physiologically realized as, e.g., shared gain modulation by
downstream circuits. Note that the formulation of FA in Equation
(11) can be recovered from Equations (12–14) by marginalizing
over the latent factors.

Maximum likelihood estimation of the FA parameters θs =

(µs,9s,3s, σs) is complicated by the presence of latent variables
x, as the MLE θ̂s depends on an estimated x̂, and vice versa.
FA thus uses the Expectation Maximization (EM) algorithm, an
iterative procedure for fitting latent variable models (Dempster
et al., 1977; Ghahramani et al., 1996). One must also choose
the dimensionality q of the latent space, typically with a
standard model selection procedure such as a comparison of the
cross-validated log-likelihood or with an information criterion
(Schwarz, 1978).

The FA method was applied to rhesus monkeys with brain-
computer interfaces implanted in area PMd (Santhanam et al.,
2009). Monkeys were trained on reaching tasks and the authors
attempted to infer the intended target from electrophysiological
data using a decoder based on the FA encoding model. By fitting
the factor analyser, the decoder inferred the latent factors that
comodulated neurons’ responses. Incorporating this information
led to substantial improvements in decoding accuracy over
decoders based on independent Gaussian and Poisson encoding
models.

3.2. Gaussian Process Factor Analysis
The peristimulus time histogram averages spike trains over many
trials to robustly estimate the aggregate effect of presenting a
stimulus. Similarly, the FA encoding model is fit by pooling
responses across trials to estimate the parameters θs. While this
across-trial synthesis is necessary for fitting model parameters
accurately, it will fail to reveal possibly important subtleties in
neural activity within individual trials (Churchland et al., 2007,
2010; Afshar et al., 2011).

One way to adapt FA to single-trial analysis is to model the
temporal evolution of the latent factors. A common technique
in machine learning for enforcing temporal structure (or
smoothness more generally) is Gaussian process (GP) regression,
a Bayesian technique for nonparametric statistical modeling
that places a GP prior on the latent variables (Williams and
Rasmussen, 2006). The Gaussian process factor analysis (GPFA,
Figure 2A) model (Yu et al., 2009) defines a GP for each
dimension of the latent state ℓ = 1, . . . , q, which, in the case
of discretely indexed time, reduces to a collection of multivariate
Gaussians

x(ℓ) ∼ N (0,K). (15)

Here each x(ℓ) = (x(ℓ)(1), . . . , x(ℓ)(T))⊤. Elements of the
covariance matrix K are typically determined by the squared
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FIGURE 2 | GPFA model of neural population activity. (A) Schematic of the GPFA model, which adapts FA by including a GP prior on the evolution of the latent

factors. Colored lines above label “Gaussian process dynamics” represent individual latent factors evolving smoothly through time. Each neuron’s firing rate is obtained

by linearly combining the latent factors at each time point. (B) Inferred latent factors from 20 trials of population recordings from anesthetized macaque primary visual

cortex. Each recording (indexed by numbers to the left of each column) was best explained by a single factor (red curves) that evolved independently of the stimulus

(black curves above each column). At high firing rates, this single factor explained as much as 40% of the variance of individual neuron activity. Panel adapted with

permission from Ecker et al. (2014).

exponential kernel for encouraging smoothness

Kt1 ,t2 = σ 2
f exp

(

−
(t1 − t2)

2

2τ 2

)

+ σ 2
n δ(t1, t2) (16)

where δ is the Kronecker delta function and σf and σn are
parameters controlling the variance of the GP. The observed
responses are then modeled as in FA,

r(t) = 3x(t)+ µ + ǫ(t) (17)

ǫ(t) ∼ N (0,9) (18)

where x(t) is the latent state at time t, 3 is the factor loading
matrix, and µ is a baseline activity level. GPFA can be viewed
as a sequence of factor analysers (one for each time point) whose
dimensions are linked together by smooth GPs. Note that while
we have specified a single GP timescale τ , one can also assign
distinct timescales τi to each dimension at the cost of an increase
in computational overhead.

An advantage of GPFA is that the posterior over latent
states x(ℓ) can be written down analytically because both the
prior and likelihood are Gaussian, which form a conjugate pair
(Bishop, 2006). This naturally leads to model fitting with the
EM algorithm, where the updates for the parameter estimates
are analogous to EM for FA (Ghahramani et al., 1996; Yu et al.,
2009). Other examples of GP-based latent factor models are given
in Nam (2015), Zhao and Park (2017), and Wu et al. (2017).

In a study of opioid anesthesia in macaque primary visual
cortex, Ecker et al. (2014) used GPFA to investigate stimulus-
driven patterns of population activity. The fitted model possessed

a single latent dimension that unmasked spontaneous transitions
between periods of inactivity and highly elevated activity
(Figure 2B). This single factor explained the observed increase
in noise correlations and accounted for 40% of the variance
of individual neuron firing rates. The extracted latent factors
spanned a range of timescales, with some data best described by
a latent factor whose strength changed slowly, on the order of
several minutes. Similar up and down states had previously been
seen only with non-opioid anesthetics.

3.3. The Poisson Linear Dynamical System
An alternative approach for latent trajectory modeling is to
estimate the underlying linear dynamics of the latent state
(Macke et al., 2011; Churchland et al., 2012; Pandarinath et al.,
2018a). While the classical Kalman filter is the most thoroughly
developed method for estimating the transition matrix in a
linear dynamical system, a more appropriate generative model
for neurons is the Poisson linear dynamical system (PLDS,
Figure 3A) (Macke et al., 2011), which substitutes Poisson
observations for the Gaussian emissions in the Kalman filter to
directly model observed spike counts. The latent state xk(t) ∈ R

q

on trial k at time bin t follows linear Markovian dynamics

xk(t + 1) = Axk(t)+ b(t)+ ǫk(t + 1) (19)

xk(1) ∼ N (0,Q1) (20)

ǫk(t) ∼ N (0,Q) (21)

where A is the dynamics matrix, Q is the noise covariance for
the latent linear dynamics, and Q1 is the covariance of the initial
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FIGURE 3 | PLDS model of neural population activity. (A) Schematic of the PLDS model. Analogous to GPFA, the PLDS model places a linear dynamical system prior

over the latent factors. The activity of the factors is combined linearly, rectified by a nonlinearity, and determines Poisson spiking intensity for each neuron.

Experimental parameters, spike history, and gain variables are often incorporated as covariates in the linear combination stage. (B) Averaged cross-correlations for

latent dynamical system models with Gaussian observations (GLDS), Poisson observations (PLDS), and Poisson observations with spike history dependence (PLDS

100 ms). Groups of colored lines represent the average cross-correlation for the most correlated group of neurons (top group, brown) to the least correlated group

(bottom group, yellow). Latent dynamical systems models have cross-correlations that align closely with the recorded data. (C) Same as (B), but for GLMs with spike

history filters of varying duration. Misalignment between the cross-correlations obtained from the model and the recorded data indicate that GLMs struggle to account

for correlations at short time lags, in contrast to latent factor models where they arise naturally. (B,C) Adapted from Macke et al. (2011).

state. The latent dynamics are driven by a variable b(t) that
captures stimulus-specific effects. Note that the PLDS model is
formulated with explicit dependence on the trial index k, so
that b(t) accounts for stimulus effects that are trial-independent.
Similar to the LNPmodel, the observed spike responses on trial k
then follow a Poisson distribution with mean λi,k(t) derived from
the latent state. For neuron i this takes the form

λi,k(t) = g(3(i)xk(t)+ µi), ri,k(t) ∼ Pois(λi,k(t)). (22)

Here the latent state influences an individual neuron i according
to a row 3(i) of the factor loading matrix 3, and the
low dimensionality of the latent state leads to the correlated
variability as in the discussion of FA. Common choices for the
nonlinearity include g(x) = exp(x) (Macke et al., 2011) and
g(x) = ln(1+ exp(x)) (Buesing et al., 2017).
This model can be modified in various ways to suit the data.
For example, the stimulus drive term b in Equation (19) can
be moved within the nonlinearity in Equation (22), so that
the latent dynamics are decoupled from the stimulus and only

reflect changes internal to the brain. The intensity can be further
extended by adding terms for, e.g., multiplicative gain (Buesing
et al., 2017) and spike history (Macke et al., 2011) to capture
refractory effects. A major advantage of latent factor models is
their ability to account for correlations within short time intervals
(Figure 3B), which GLMs struggle to match (Figure 3C).

The PLDS model is fit using a modified EM algorithm, which
requires computing the posterior over the latent variables. Due to
the Poisson observation model an analytic form of this posterior
is unavailable. Typically one replaces the exact posterior by
its Laplace approximation, which accelerates model fitting but
violates some assumptions of the EM algorithm, resulting in an
approximate inference framework (Macke et al., 2011).

An application of PLDS to multi-electrode recordings from
songbird auditory cortex by Buesing et al. (2017) revealed that
responses are modulated by shared variability with a single
latent state, a similar result to Ecker et al. (2014). Buesing et al.
histologically traced the locations of the recording sites and
found a spatial gradient in the strength of the latent states.
Shared variability was stronger (i.e., neurons were more strongly

Frontiers in Neural Circuits | www.frontiersin.org 7 January 2019 | Volume 13 | Article 152

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Triplett and Goodhill Probabilistic Neural Encoding Models

coupled to the latent state) in deeper regions of auditory cortex.
Interestingly, this strength was much weaker for certain stimulus
classes than others, suggesting that deeper neurons selectively
decouple from the latent state according to their stimulus
preference. Other examples of dynamical systems-based latent
factor models are given in Paninski et al. (2010), Buesing et al.
(2012), Pfau et al. (2013), Semedo et al. (2014), Buesing et al.
(2014), Archer et al. (2014), Kao et al. (2015), Gao et al. (2016),
and Pandarinath et al. (2018b).

4. GENERATIVE MODELS FOR CALCIUM
IMAGING DATA

4.1. Autoregressive Calcium Dynamics and
Spike Deconvolution
The potential utility of large scale simultaneous neural recordings
is constrained by our ability to make use of sophisticated
techniques (such as latent factor methods) to analyse the data.
While calcium imaging provides access to such large scale
data, the models discussed so far assume that the data being
analyzed is electrophysiological; i.e., that the neurons’ responses
are spike counts (for Poisson noise models) or firing rates
(e.g., for Gaussian noise models). Their application to calcium
imaging thus requires knowledge of how the optically recorded
fluorescence signals are related to the underlying spiking activity.
One approach to solving this problem involves constructing a
generative statistical model where the spike counts are latent
variables that are subsequently inferred from the fluorescence
levels.

The presentation of a stimulus elicits a sequence of spikes
across a population of neurons. For an individual neuron, we
have assumed that the number of spikes within a time bin is
sampled from a Poisson distribution with mean λ according to
its particular receptive field. Each action potential is associated
with a stereotypical rise and decay of the intracellular calcium
concentration c(t), usually modeled by an autoregressive process
of order p (suppressing initial conditions for clarity) (Vogelstein
et al., 2009),

c(t) =

p
∑

i=1

γic(t − i)+ n(t), n(t) ∼ Pois(λ) (23)

where the Poisson-distributed random variable n(t) models the
generation of spikes within a time bin and γ1, . . . , γp are the
autoregressive coefficients that govern the rise and decay of the
fluorescence levels. The observed fluorescence signal f (t) is then
obtained by a linear transformation of the calcium levels with
additive noise,

f (t) = αc(t)+ β + ǫ(t), ǫ(t) ∼ N (0, σ 2) (24)

where α sets the scale of the fluorescence signal and β accounts
for a baseline fluorescence that may be unique to the imaging set-
up or due to specific biophysical properties of individual neurons.
The Gaussian noise model is intended to encompass variability
due to, e.g., light scattering and shot noise (Delaney et al., 2018).

Note that this model does not set parameters for the scale or
baseline of the calcium transient in Equation (23), as they are
absorbed by α and β when the calcium is transformed to obtain
the fluorescence (Vogelstein et al., 2009). An illustration of the
generative model is given in Figures 4A,B.

For imaging systems where the rise time of the indicator
is fast relative to the imaging rate a first-order autoregressive
process is typically used, corresponding to an instantaneous
rise and exponential decay of the calcium concentration. An
autoregressive process of order 2 is used in situations where the
rise time is slow relative to the imaging rate, in which case the
calcium transient appears to approach its maximum amplitude
gradually (Pnevmatikakis et al., 2016).

Models based on Equations (23, 24) have been used for spike
train deconvolution (Vogelstein et al., 2009, 2010; Friedrich and
Paninski, 2016; Pnevmatikakis et al., 2016). Let the vector θ =

(α,β , λ, σ , {γi}
p
i=1) denote the model parameters, and let f =

(f (1), . . . , f (T))⊤ and n = (n(1), . . . , n(T))⊤. Following Bayes’
rule, the maximum a posteriori estimate for the spike train is

n̂ = argmax
n(t)∈N0 ∀t

p(n|f, θ) = argmax
n(t)∈N0 ∀t

p(f|n, θ)p(n|θ) (25)

where N0 is the set of non-negative integers. Given the spike
sequence n, the fluorescence levels f (t) are independent and
depend only on the calcium concentration c(t), hence the
likelihood factorizes as

p(f|n, θ) =

T
∏

t=1

p(f (t)|c(t), θ) =

T
∏

t=1

N (f (t)|αc(t)+ β , σ 2). (26)

Substituting Equation (26) into (25) and taking logarithms, the
optimal sequence of spikes is then

n̂ = argmax
n(t)∈N0 ∀t

T
∑

t=1

{

−
1

2σ 2
(f (t)− αc(t)− β)2 + n(t) ln λ

− ln(n(t)!)
}

.

(27)

This is a difficult optimization problem because it requires
searching through an infinite discrete space of spike trains.
As noted in Vogelstein et al. (2010), even imposing an
upper bound on the number of spikes within a frame
yields an optimization problem with exponential computational
complexity. One approach for overcoming this intractability
involves approximating the Poisson distribution in Equation
(25) by an exponential distribution, which leads to a concave
objective function but with continuous estimates of n̂ (Vogelstein
et al., 2010). This approximation also allows for a time-varying
intensity function λ(t), but does not explicitly model the
transformation from stimulus to spiking intensity.

Runyan et al. (2017) applied a combination of the methods
described in this review to study the timescales of population
codes in cortex. 2-photon calcium imaging of auditory and
posterior parietal cortices was performed while mice completed
a sound localization task. The resulting fluorescence data
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FIGURE 4 | (A) Generative model architecture for fluorescent calcium imaging data. The stimulus sets the spiking intensity according to a neuron’s receptive field. The

resulting number of spikes within the timebin are drawn from a Poisson distribution, lead to rises in the intracellular calcium concentration, and are observed through

noisy fluorescence levels. (B) Example fluorescence trace generated by a time-varying intensity function, first-order autoregressive calcium dynamics, and parameter

values α = 1.25, β = 0.1, γ1 = 0.9, σ = 0.25 with an imaging rate of 8 Hz. The intensity λ(t) was determined by filtering the input stimulus s(t) by a Gaussian tuning

curve centered at 0.25.

was deconvolved according to the exponential-approximation
approach described above to estimate firing rates (Vogelstein
et al., 2010). They then fitted a GLM encoding model to
populations from each cortical area that included coupling
filters and various experimental and behavioral covariates. The
fitted model was used in a decoding analysis that quantified
the contribution of interneuronal coupling in the two cortical
areas, and showed that stronger coupling was associated with
population codes that had longer timescales. This provided
evidence for a coding mechanism where tightly coupled
populations of neurons prolonged the representation of stimuli
through their sequential activation.

4.2. A Generalized Model for Calcium
Dynamics
The calcium kinetics in Equation (23) are deterministic given
the spike counts. In reality the concentration of calcium may
be subject to many sources of variability, and analyses of some
data sets may benefit from explicitly accounting for this noise.
Vogelstein et al. (2009) modeled this by driving the calcium levels
by both Bernoulli-distributed spikes and additive Gaussian noise,

c(t) = γ c(t − 1)+ n(t)+ ξ (t) (28)

n(t) ∼ Bern(p(t)) (29)

ξ (t) ∼ N (0, ν2) (30)

where Bern(p(t)) is the Bernoulli distribution with time-
dependent trial-success probability p(t), γ < 1 is an
autoregressive coefficient, and ν2 is the calcium noise variance.
A simplifying assumption in models based on Equations (23)
and (24) is that spikes are generated independently of their spike
history. However, the spike probability can be more generally
modeled with a GLM (Vogelstein et al., 2009)

p(t) = 1− exp
(

−g
(

w⊤s(t)+ J⊤h(t)
))

(31)

where g is a selected nonlinearity. Unlike the standard GLM
structure of Equation 8, the spike history term here takes the form
h(t) = (h1(t), . . . , hL(t))

⊤, where each hℓ is an exponentially
decaying refractory term that jumps following each spike

hℓ(t) = γhℓ
hℓ(t − 1)+ n(t)+ ξhℓ

(t), ξhℓ
(t) ∼ N (0, ν2hℓ

).

(32)

Finally, rather than a simple linear relationship between f (t) and
c(t), Vogelstein et al. (2009) and Vogelstein et al. (2010) also
consider saturating fluorescence levels using a nonlinear Hill
function with dissociation constant kd

f (t) = α
c(t)

c(t)+ kd
+ β + ǫ(t), ǫ(t) ∼ N (0, σ 2). (33)

Importantly, saturation of the fluorescence signal causes the
spike-triggered fluorescence transients to become progressively

Frontiers in Neural Circuits | www.frontiersin.org 9 January 2019 | Volume 13 | Article 154

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Triplett and Goodhill Probabilistic Neural Encoding Models

smaller during a train of action potentials, and failure to account
for this detail may limit the accuracy of spike deconvolution
algorithms. The model defined by Equations (28–33) is fit
using a sequential Monte Carlo method (Vogelstein et al.,
2009). By including explicit stimulus and spike history filters,
Vogelstein et al. (2009) could accurately infer spike times from
fluorescence data with temporal superresolution; i.e., could
identify when within an imaging frame each spike occurs. Some
other example methods for spike deconvolution are based on
compressed sensing (Pnevmatikakis and Paninski, 2013), fully
Bayesian inference (Pnevmatikakis et al., 2013), and variational
autoencoders (Speiser et al., 2017).

5. DISCUSSION

Probabilistic modeling provides a practical, interpretable, and
theoretically grounded framework for probing how networks
of neurons process information. Many of the statistical models
discussed in this review are abstract mathematical descriptions
of how stimuli are related to patterns of neural activity. Often
the mathematical operations that define the models do not
necessarily attempt to align with real biological functions or
behavior. Rather, such models are intended to serve as tools to
uncover interpretable patterns and relationships that may not
be detectable by other approaches. On the other hand, there
are cases where the goal is to infer biophysical variables, as
in e.g., models for calcium imaging data or for the anatomical
architecture of a neural circuit, and then greater care must be
taken to constrain the model by relevant physiological data
(Paninski et al., 2007; Real et al., 2017; Latimer et al., 2018).

Recent advances in statistical models of spike train data
have focused on incorporating more general nonlinear
transformations of the latent state, including the use of
neural networks (Gao et al., 2016; Pandarinath et al., 2018b)
and GPs (Wu et al., 2017). This is in contrast to e.g., the FA and
GPFA encoding models, where the mean spiking intensity of
a neuron is obtained by a simple linear transformation of the
latent state. Bayesian methods, such as latent factor modeling,
are a powerful way to incorporate prior knowledge when making
inferences about the behavior of a system. While GPFA places a
smoothness prior on the evolution of latent factors to encourage
some degree of temporal structure, other methods place priors
on, e.g., network structure for connectivity inference (Linderman
S. et al., 2016) and the latent states of a hidden Markov model
with Poisson observations (Linderman S. W. et al., 2016).

Although there has been a rapid expansion in the number
of models for extracting receptive fields, interneuronal
coupling strengths, and latent structure from multivariate
electrophysiological recordings, similar models for calcium
imaging data are only beginning to emerge (Aitchison et al.,
2017; Khan et al., 2018). A common approach for analysing
calcium imaging data involves first deconvolving fluorescence
traces and then fitting conventional models, but deconvolution
methods only provide coarse estimates of firing rates. Spike
trains obtained by highly optimized algorithms typically only
agree with ground truth recordings with a correlation coefficient
less than ∼0.75, even with substantial training data, suggesting
that there is an unavoidable loss of information associated with

spike deconvolution (Pnevmatikakis et al., 2016; Berens et al.,
2018). An advantage of GPFA over earlier methods for estimating
trajectories of population activity is that it condenses the two
stages of dimensionality reduction and smoothing into a single
stage of posterior inference. Similarly, probabilistic analysis of
calcium imaging data can have the two stages of deconvolution
and model fitting merged into a single step by marginalizing
over possible spike trains (Ganmor et al., 2016), mitigating
some of the information loss accompanied by deconvolution.
Neural encoding models for calcium imaging data that avoid
an explicit intermediate step of spike inference are likely to be
an important future development in this area (Aitchison et al.,
2017).

Many studies consider the amplitude of an evoked calcium
transient as a measure of a neuron’s response. This has been
widely used in zebrafish larvae, for which there has been
significant interest in recent years. For example, 2-photon
calcium imaging of the zebrafish optic tectum has led to new
insights into the circuit architecture determining selectivity to
size, location, and direction of motion (Del Bene et al., 2010;
Gabriel et al., 2012; Grama and Engert, 2012; Nikolaou et al.,
2012; Lowe et al., 2013; Preuss et al., 2014; Avitan et al., 2016;
Abbas et al., 2017), and light-sheet microscopy has allowed
for the creation of brain-wide functional circuit models for
motor behavior driven by vision (Naumann et al., 2016) and
thermosensation (Haesemeyer et al., 2018). Similar studies in the
future provide further opportunities for model-based analyses.

The techniques described in this review were developed for
spike train or calcium imaging data, but some approaches are
broadly applicable across systems neuroscience. For instance,
suitably adapted latent factor models have been successfully
applied to recordings of the local field potential, where
it was found that the activity of particular latent factors
could discriminate vulnerability to stress-induced behavioral
dysfunction in mouse models of major depressive disorder
(Gallagher et al., 2017; Hultman et al., 2018).

As the scale of multi-neuron data continues to grow, the
creation of new models and their associated fitting algorithms
may be spurred more by efficiency and scalability considerations
than the level of statistical detail they are able to extract from
experimental data (Zoltowski and Pillow, 2018). In some cases
the computational issues associated with neural data analysis
are more profound than simply needing a larger computer
cluster. Neuropixel electrode arrays (Jun et al., 2017), for
example, are capable of recording from hundreds of channels
simultaneously, and may put inference algorithms under strain
if computational efficiency is not sufficiently addressed. When
combined with fluorescent sensors of neural activity, optogenetic
photostimulation grants the ability to manipulate neural circuits
in real time, and models are now beginning to explicitly
integrate the effect of photostimulation on calcium transients
(Aitchison et al., 2017). Moreover, genetically encoded voltage
indicators operate on a timescale of tens of milliseconds (Knöpfel
et al., 2015), overcoming one of the principal drawbacks of
calcium imaging; namely, the slow binding kinetics of the
indicator relative to the timescale of action potential generation.
Combining these emerging technologies with models designed
to capture their associated generative processes thus promises
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to greatly improve our capacity to uncover how patterns of
neural activity represent and process features of the external
world.
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It has been suggested that the function of the claustrum (CL) may be to orchestrate and
integrate the activity of the different cortical areas that are involved in a particular function
by boosting the synchronized oscillations that occur between these areas. We propose
here a model of how this may be done, thanks to the unique synaptic morphology of
the CL and its excitatory and inhibitory connections with most cortical areas. Using serial
visual search as an example, we describe how the functional anatomy of the claustral
connections can potentially execute the sequential activation of the representations of
objects that are being processed serially. We also propose that cross-frequency coupling
(CFC) between low frequency signals from CL and higher frequency oscillations in the
cortical areas will be an efficient means of CL modulating neural activity across multiple
brain regions in synchrony. This model is applicable to the wide range of functions one
performs, from simple object recognition to reading and writing, listening to or performing
music, etc.

Keywords: claustrum, neural synchrony, cross-frequency coupling, visual cortex, visual search, attention

A REGION THAT INTEGRATES BRAIN ACTIVITY

For purposeful and useful interaction with the external world, the brain needs to integrate
information processed in different parts of the nervous system, so that it can efficiently process
sensory inputs, often from more than one modality, stored memories, emotional aspects of the
situation, and executive and motor programmes needed for the chosen response. This requires the
operation of many brain areas communicating with each other. Crick and Koch (2005) published
a stimulating idea that in the claustrum (CL), the brain may have a central integrator essential for
our unified sense of cognition and cohesive behavior. This insight was inspired by the anatomical
connectivity between the CL and other brain regions and the synaptic organization within the
nucleus itself. The CL connects reciprocally with almost every cortical area (Pearson et al., 1982;
Tanné-Gariépy et al., 2002; Druga, 2014; Torgerson et al., 2015; Wang et al., 2017). Furthermore,
CL has been found to be the most densely interconnected structure in the human brain (Torgerson
et al., 2015), and its internal structure can facilitate rapid development of synchronized activity
within adjacent activated regions of the CL (Crick and Koch, 2005; Smythies et al., 2014a; Kim
et al., 2016). Crick and Koch (2005) suggested that the dendro-dendritic synapses in the CL, which
could potentially include gap junctions (Shepherd and Greer, 1998), can rapidly transfer signals
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arriving from different cortical areas. However, in the only study
done in awake behaving macaques specifically aiming to record
from multimodal neurones that would support an integrating
function for single claustral cells, Remedios et al. (2010) found
mainly unimodal sensory cells responding either to visual or
auditory stimuli but not to both. Recent rodent studies of
claustral circuitry have also shown only very weak connections
between principal claustrocortical neurons (Kim et al., 2016).
Smythies et al. (2012, 2014a,b) considering a few different
hypotheses about how the CL may nevertheless be involved in
integrating the activity across many parts of the brain, suggested
that themost likely way the CL could exert its integrative function
may not be by convergence of signals from various cortical areas
on to single claustral cells, but rather by aiding cortical areas
to amplify the synchrony between themselves. Saalmann et al.
(2012) showed that the pulvinar does a comparable function in
the maintenance of a working memory trace in a spatially cued
object identification task. They demonstrated that the memory of
the object location was maintained by a local cluster of pulvinar
cells, as observed in the high degree of local spike-field coherence
in the 8–15 Hz range and leading to almost zero-lag synchrony
between visual areas V4 and TEO. This finding was supported
by Zhou et al. (2016), who found a similar result prior to
the appearance of the stimulus array in their paradigm. These
synchronized oscillations were related to the maintenance of a
memory trace that would be needed in the immediate future.
Could the CL be doing something similar with regard to the
actual processing and integration of sensory information and the
behavioral response?

CLAUSTRUM COULD ENHANCE
SYNCHRONIZED NEURAL OSCILLATIONS
BETWEEN CORTICAL AREAS

A common principle of the mammalian brain that is being
recognized as a fundamental mechanism driving its perception,
cognition and behavior is the existence of periodic oscillations
of neural activity amongst groups of active cells (e.g., Engel
et al., 1991; Buzsáki et al., 2013; Buzsáki and Schomburg, 2015).
Such rhythmic coordination in excitability is ubiquitous in the
brain, but varying in its power, phase and frequency between
brain regions and also between tasks. Almost every cortical
activity involving processing of sensory information, memory,
executive prerogatives and/or behavioral output inevitably
engages multiple cortical areas communicating with each other
and providing feedforward, feedback or modulatory signals.
A plausible mechanism for such inter-areal communication
is ‘‘communication through coherence’’ (Bastos et al., 2015),
where rhythmic synchronization in one group of neurons leads
to modulations in the input gain at synapses that they make
on a second group of neurones. Such communication through
coherence has been well documented by a number of studies
through simultaneous recordings from two different cortical
areas in awake macaques performing visual attention tasks
(Buschman and Miller, 2007, 2009; Saalmann et al., 2007;
Gregoriou et al., 2009).

Smythies et al. (2014a,b) suggested that when two cortical
areas that are mutually connected and in a particular task
begin to synchronize their activities, their connections to the
CL first lead to rapid development of intraclaustral synchrony.
These claustral regions are then believed to cause an increase
in the synchrony between the two cortical regions through
their efferents back to the respective cortical targets. While this
proposition addresses the lack of multimodal neurones in the CL
and yet ascribes to the CL a central integrative function, it opens
up a number of new questions. Most importantly: (1) What is
the relationship between the claustrocortical and cortico-cortical
synchronies, in particular, do they occur at the same frequency?
(2) What is the trigger for getting the CL involved and what
terminates the synchrony generated in the cortex by the CL,
without letting it evolve into a reverberating or even epileptiform
discharge?

OUR HYPOTHESIS OF “PUNCTUATED
NEURAL SYNCHRONY”

In this section, we outline a hypothesis for claustral function and
illustrate it by applying it to ‘‘serial visual search’’. Visual search
is not only a very common function our brains perform, but
is also a widely studied task in both humans and non-human
primates. In most variations of this paradigm, one searches
for a target among a number of items in a visual scene, with
which the target shares one or more features. Early visual
search experiments by Treisman and Gelade (1980) led them to
propose a ‘‘feature integration theory’’ to explain how we detect
objects in a cluttered visual scene and also how we are able
to bind the attributes of each object before identification. This
highly influential model proposes that a ‘‘spotlight of attention’’
selects at a time one particular object in the visual scene to
be processed in detail and then moves on to others until the
target is found. As a neural correlate of the feature integration
model, it has been proposed (Vidyasagar, 1999; Bullier, 2001)
that the dorsal cortical stream and its top-down feedback to the
primary visual cortex (area V1) and to ventral stream structures
serially select, from a priority map in the posterior parietal
cortex, one particular location for a short time (Figure 1A).
This is then processed in detail by the ventral areas that deal
with object recognition. Despite the functional localization in
the primate brain with different areas and neurones being
specialized for different attributes such as color and shape, the
simultaneous processing of the attributes of only one object
at any one time leads to the binding of features of that
object alone. In doing this, serial search proceeds at a rate of
20–45 ms/item, depending upon task demands (Wolfe et al.,
1998; Wolfe and Horowitz, 2004). This translates into largely a
beta and low gamma frequency range (22.2–50 Hz). The main
neurophysiological support for this claim arises from a number
of studies: (1) Buschman and Miller (2009, 2010) show that
covert shifts of attention in a visual search task is correlated
with the cyclical oscillation of top-down prefrontal modulation
of parietal activity occurring in the low gamma range; (2) there
is a wealth of evidence for the role of lateral intraparietal
area (LIP) in directing top-down attention to specific objects
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FIGURE 1 | Model of the information flow during visual search and the role of claustrum (CL) in orchestrating this process. (A) Schematic depiction of the signal
processing occurring in dorsal and ventral visual streams during visual search. Visual stimulus array is shown at the right side of the panel (and in B). Due to
differences in speed of transmission, visual information first reaches areas of the dorsal stream (lateral intraparietal area/middle temporal, LIP/MT) via the faster
magnocellular pathway. Dorsal stream areas provide spatial feedback to primary visual cortex (V1) and ventral stream areas in the form of a spotlight of attention
(represented by bright gray circle). This feedback arrives at V1 by the time the slower parvocellular-mediated information reaches it, and facilitates further processing
of stimulus just for the part of the visual scene where attention is directed to. The process serves to limit information overload in ventral stream areas of the
inferotemporal cortex (ITC) by processing one item at a time, and helps to solve the binding problem as well (for more details see Vidyasagar, 1999). During visual
search, parts of visual space containing salient features are processed sequentially, as represented by stages 1 and 2 corresponding to attentive processing of green
and red figures of the visual array, respectively. (B) Visual search task and putative neuronal activities in key brain areas: lateral geniculate nucleus (LGN), V1, dorsal
stream (LIP) and CL. The same visual stimulus array is presented at the top, spike responses are shown below as the attentional spotlight is focussed first on target 1
(green) and then on target 2 (red). The initial volley of excitatory burst from CL neurons to LIP/MT and to V1 is followed by feedforward inhibition which terminates the
processing of each stimulus. Sustained activity of LGN provides relatively constant input for processing, the dorsal stream organizes attentional spotlights, and CL
determines timing of item-by-item processing during visual search. (C) Claustral connections with V1 and dorsal stream areas (LIP/MT). p refers to excitatory cell in
layer 4 of the cortex and i represents an inhibitory interneuron. The strength of functional connections is shown by the thickness of the arrows.

(Bisley and Goldberg, 2003, 2010; Saalmann et al., 2007; Corbetta
and Shulman, 2011; Meehan et al., 2017); (3) experiments in
behaving macaques have shown that the top-down attentional
feedback modulation of an early visual area, middle temporal
(MT or area V5) by the parietal area, LIP is mediated by
synchronized oscillations from LIP driving MT neurones at
topographically corresponding locations, in the frequency range
25–45 Hz (Saalmann et al., 2007); and (4) though such
cyclical modulation has not been directly demonstrated in the
dorsal stream feedback to area V1, attentional and contextual
modulation of V1 responses to visual inputs has long been
amply demonstrated (Vidyasagar, 1998; Brefczynski and DeYoe,
1999; Ito and Gilbert, 1999; Gandhi et al., 1999; McAdams and
Reid, 2005; Vidyasagar and Pigarev, 2007). Given the extensive
neurophysiological evidence for synchronized neural oscillations
in mediating interareal communication (Buschman and Miller,
2007; Saalmann et al., 2007, 2012; Gregoriou et al., 2009), it is
not too speculative to suggest that the feedback to primary visual
cortex is also likely to be mediated by such oscillations (Graboi
and Lisman, 2003; Vidyasagar, 2013).

Extending the above argument, we propose that the CL’s
comprehensive reciprocal connections with almost all cortical
areas and their unique internal morphology help to magnify
the synchrony between cortical areas and also provide a
behaviorally useful sequence of activation across the surface of
the corresponding cortical areas, such as what is needed in
tasks such as serial visual search. Claustral anatomy and its
connectivity are likely to accomplish the above requirements.
In Figure 1C, we show a simplified canonical circuitry which is
applicable to any two or more cortical areas that are functionally
connected to the CL in any particular situation, but here shown
for a visual task. Taking serial visual search as example, we show
on the right claustral efferents projecting to principal (p) cells in
both V1 and the dorsal stream (here, marked as LIP/MT).

Afferents to input layers in cortical areas not only synapse
on to the excitatory stellate and pyramidal cells, but also to
local inhibitory interneurons. Studied most intensively in the
primary visual cortex (Creutzfeldt and Ito, 1968; Ferster and
Lindström, 1983; LeVay, 1986), such an input leads to a powerful
and long-lasting inhibition. Such strong feed forward inhibition
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(FFI) following on the heels of an excitatory input leads to
aborting the excitatory response of the target cells after the
initial volley (Bruno, 2011). While FFI has been shown to
generate oscillations in a local network (Kremkow et al., 2010),
FFI from one area to another, here from CL to V1, would
serve another additional purpose, namely terminating the initial
excitation.

Figure 1B shows how this may function in the case of serial
visual search. In a typical visual search task, both engagement
and disengagement from the items are essential and furthermore,
they should occur sequentially, shifting from one item to another
until the target is found, and all of this governed by task priorities.
It is now believed (reviewed in Bisley and Goldberg, 2010) that
area LIP has a continuously updated priority map that governs
the allocation of top-down attentional signal. This priority
map itself is updated from a number of inputs—especially
task demands as dictated by prefrontal executive areas and
saliency of the targets themselves (Ipata et al., 2009; Bisley and
Goldberg, 2010). We propose that while the serial engagement
of attention is determined simply by the pecking order in the
priority map, the disengagement comes from the termination of
the synchronized oscillations by the claustrocortical connections
with areas that respond to the attributes of the object at the
prioritized location. We suggest that such termination and
thus the disengagement from the attended item is brought
about by the inhibitory volley of the FFI circuit. Since such
inhibition is long-lasting, it may also be the neural basis of
‘‘inhibition of return’’ (Wang andKlein, 2010), well-known in the
visual search literature. Our proposed role of CL in facilitating
top-down attentional modulation is consistent with results of
recent experiments in rodents (Mathur, 2014; Goll et al., 2015;
Atlan et al., 2018; White et al., 2018). Interestingly, CL not
only receives selective top-down attentional influences from the
cortex, for example from the anterior cingulate cortex (White
et al., 2018), but it also plays a critical role in suppressing auditory
distractors in a visual task (Atlan et al., 2018). Such a function is
probably related to CL’s role in helping to distinguish between
relevant and irrelevant items as in a typical search task.

For attentive serial search to work in the fashion described
above, we expect that any reciprocal connection from V1 to CL is
weak or non-existent. As described earlier, serial search requires
moving the spotlight of attention from one item of the scene to
another until the target is found. Object recognition is known
to occur largely in the ventral stream and it is believed to be
facilitated by top-down modulation of incoming visual signals
by feedback from the dorsal stream (Vidyasagar, 1999; Bullier,
2001). Once visual attention gets focussed on one object by the
spotlight of attention, the CL may play little role in the more
detailed processing by the ventral cortical areas. Finding the
target would abort the FFI from the CL and the activity in V1 and
the corresponding topographic locations in the various cortical
areas would continue under focussed attention. Furthermore, if
activity related to object locations are supposed to be ‘‘serially
highlighted’’ for further processing by extra-striate areas such as
LIP,MT, V4 and TEO for ultimate binding of the attributes of the
object, such a schemewould be defeated if there are strong signals
from every item to the CL, triggering reciprocal synchronizing

volleys. In fact, many studies on the CL, while describing the
widespread afferent connections from the CL to most association
areas and the prefrontal cortex have emphasized the uncertainty
of the projection from the primary sensory areas, including V1 in
the primate (Druga, 2014; reviewed in Smythies et al., 2014a).
There is also a cautionary note about the effectiveness of the
V1 (area 17) to CL projection that has been described in the
cat. LeVay and Sherk (1981), who studied connections between
visual areas and CL in the cat, found that area 17 cells projecting
to CL were just 3.5% of layer 6 cells and these were found
predominantly in the peripheral rather than central visual field
representation, whereas the claustral projections to area 17 were
much heavier. Sherman and Guillery (2011) state that the layer
6 cells that project subcortically are class 2 glutamatergic cells
that do not produce much spiking activity but only modulate
responses mainly through metabotropic postsynaptic receptors.
Thus, the claustral synchrony may get initiated and sustained,
not so much by the sensory input to primary sensory areas, but
rather by activity in higher areas such as LIP. Thereafter, as the
enhanced synchrony between the representations of a particular
object in different cortical areas (in Figure 2, V1 and LIP/MT)
develops and then dies down with its termination by FFI, the
next most salient location in LIP synchronizes with V1 and the
corresponding locations in the CL also get activated and a new
cycle of enhanced synchrony starts, to be in its turn terminated
by the subsequent FFI.

Recent studies of the rodent CL have demonstrated the strong
inhibitory influence that optogenetic stimulation of claustral
outputs could have on cortical areas, namely on unit responses in
the anterior cingulate cortex (White et al., 2018), the prefrontal
cortex (Jackson et al., 2018; Narikiyo et al., 2018) and the
auditory cortex (Atlan et al., 2018). We suggest that these
inhibitory volleys represent the FFI needed to terminate activity
in target areas as described above in our scheme. It is noteworthy
that in all of these studies, the optogenetic excitation was

FIGURE 2 | Cross-frequency coupling (CFC) of local high frequency
activities generated in visual areas (A,B) caused by modulatory influence of
claustral low frequency activity. Resulting amplitude modulation of
synchronized high frequency activities of both areas frames the period during
which signals are processed in synchrony between the topographically
corresponding regions within the cortical areas, before they get aborted by
the feed forward inhibition (FFI).
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effective in causing the inhibition in target cortical areas, but
the initial excitatory response in the target area was rather weak
(Narikiyo et al., 2018). This may be attributed to two factors:
(i) the optogenetic stimulation does not resemble the usual
synchronized oscillatory activity that may be needed to cause
the excitatory oscillations as described above and in the section
below on cross-frequency coupling (CFC) and (ii) the excitatory
response would require temporal simultaneity of oscillatory
inputs from other cortical areas.

Recent rodent studies have also elucidated a claustral circuitry
that could be ideally suited to our proposed function of
the CL (Kim et al., 2016, see their Figure 8), by possibly
enabling another FFI circuit within the CL itself. While
corticoclaustral inputs target individual claustrocortical (ClaC)
cells monosynaptically and there are few direct connections
among these principal, claustrocortical cells, the cortical inputs
to CL provide strong stimulation to the parvalbumin (PV)-
positive inhibitory interneurons, which are themselves strongly
interconnected via both electrical and chemical synapses (Kim
et al., 2016). This leads to a situation where synchronous
activation signals from two different cortical areas to their
reciprocally connected ClaC cells would set off a neural
synchrony between the cortical areas and the CL, soon to be
followed by an inhibitory volley that suppresses the claustral
outputs.

Finally, when the target in a visual search task is found, the
termination of all activity in the CL and the search itself may
be brought about by stimulation of the kappa opioid receptors,
the mRNA for which is particularly plentiful in the CL (Mansour
et al., 1994). The high density of these receptors on claustral cells
is a striking finding that needs particular consideration in any
model of claustral function. The possible role of this receptor
system in the larger integrative functions has been pointed out
(Stiefel et al., 2014), since such receptor stimulation inhibits
the release of GABA (Hjelmstad and Fields, 2003; Li et al.,
2012) which in turn would disrupt the generation of oscillations
within the CL and the claustral amplification of the synchrony
between cortical areas. Activation of the kappa receptors inhibits
both glutamate and GABA transmission (Hjelmstad and Fields,
2003), thus practically stopping excitatory activity as well as
disrupting oscillations. We believe that a match between an
object brought under the roving spotlight of attention and
the representation of the expected object may abort the visual
search through its effect on claustral kappa opioid receptors.
While the kappa opioid system may be generally known for
its dysphoric effects, particularly in producing the aversive and
depressive effects in the case of drug abuse (Lalanne et al.,
2014), the evolutionary reason for the kappa receptors are not
likely to be related to drug addiction. Natural opioids acting on
mu opioid receptor (MOR) and kappa receptors are known to
lead to opposing effects in rats performing a behavioral task,
the former to reinforcement of the related behavior and the
latter to its termination (Shippenberg and Herz, 1986). Though
stimulation of kappa receptors in the ventral tegmental area
may be related to motivational and hedonic aspects (Spanagel
et al., 1992), similar stimulation in other areas may have
effects depending upon the function of those respective areas.

Thus, their primary role may be simply in aborting neural
synchrony in local circuits through their action on GABEergic
transmission, besides the inhibition of the excitatory activity
itself. We propose that until the visual search is completed,
there is little stimulation of the claustral kappa-opioid receptors,
but a specific input to the CL on finding the target, possibly
from the prefrontal regions which are heavily linked to the CL
(Reser et al., 2014), may disrupt neural oscillations in the CL and
consequently its amplification of synchrony in various cortical
regions.

Our model of claustral control of visual search is one
convenient example for what we believe to be a description of
claustral function in general. We believe that the proposed role of
CL in sequencing neuronal activity is not restricted to the visual
modality, but in line with its widespread cortical connections,
CL can potentially modulate activity in all sensory cortices,
association areas and also motor areas. Thus, we hypothesize that
the CL might be instrumental in not only in binding the activity
of different cortical regions by enhancing their synchrony, but
also organizing all cortex-mediated processes in a sequential
manner, as for example in language comprehension, language
production and in organizing complex motor programs.

CLAUSTRAL MODULATION OF OTHER
BRAIN AREAS THROUGH
CROSS-FREQUENCY COUPLING

CFC is being recognized as an efficient means of communication
between two cortical areas and it is likely to play a critical
role in mediating working memory and in enabling learning
(Canolty and Knight, 2010; Lisman and Jensen, 2013; Hyafil
et al., 2015). Blood-oxygen-level dependent (BOLD) connectivity
between areas is best predicted by low frequency oscillations that
determine the amplitude of gamma frequencies (Wang et al.,
2012). Thus, in the above example, in target cortical areas such
as LIP, MT and V1, the amplitudes of a higher, such as high
beta or gamma, frequency rhythm may be modulated by, and
thus nested within, a lower frequency, for instance theta, alpha or
low beta, at which claustral efferents send out their modulating
signals to their targets (Figure 2). We expect that each cycle
of the low frequency signal from CL would allow sufficient
number of high frequency cycles at its target areas to synchronize
before the excitatory volley gets aborted by the FFI. While
electrical stimulation of lateral geniculate nucleus (LGN) leads
to disynaptically mediated inhibitory post-synaptic potentials in
stellate cells in layer 4 of the primary visual cortex within a few
milliseconds (Creutzfeldt and Ito, 1968; Ferster and Lindström,
1983), with visual stimulation the inhibition seen in intracellular
recordings from the cat striate cortex develops gradually over
many tens of milliseconds (Pei et al., 1994; Volgushev et al., 1995:
Ringach et al., 1997). Both with such visual stimulation and with
electrical stimulation (Viswanathan et al., 2011), the inhibition
can however last many hundreds of milliseconds. Strong FFI
caused by CL stimulation and mediated in vivo by relatively
slow neuropeptide Y interneurons was also described in the
prefrontal areas of rodents by Jackson et al. (2018), with the
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excitation/inhibition ratio of cortical pyramidal cells equalling
just 0.25. Though one is yet to see similar studies done in the
case of the primate CL, the window of opportunity for neural
synchrony between relevant cortical regions to be amplified by
claustral output is likely to be defined by the time course of
the FFI circuit. It is possible that this time course may also be
modulated by task demands and the state of vigilance.

The cyclical facilitation of processing of incoming visual
signals in V1 would mean that sensitivity to visual stimuli could
show periodic fluctuation, as indeed they do (Busch et al., 2009;
Mathewson et al., 2009; VanRullen and Dubois, 2011). CFC
with nested frequencies may also be critical for processing of
stimuli at multiple temporal rates, such as graphemes/phonemes,
and syllables and words during reading and speech perception
(Graboi and Lisman, 2003; Vidyasagar, 2013). Through CFC,
claustral output at one low frequency (delta, theta, alpha, or low
beta) can modulate a range of oscillation frequencies (high beta
or gamma) at cortical areas that are connected to each other in
a task such as reading or visual search. Figure 2 is a simplified
diagram of how this might function in the case of CL boosting
synchrony between LIP/MT and V1. At this stage, it is too
premature to speculate at what frequency the claustral assembly
oscillates. It may be either always at the same frequency which
is determined by its own morphology and resonance frequency
or dictated by the area that triggers the synchrony in the first
place or even under an executive command from the prefrontal
cortex.

OUTSTANDING QUESTIONS FOR FUTURE
STUDIES

The model leads to a number of testable predictions. The
following are some of the main questions for study.

1. In tasks such as visual search, the model predicts neural
activity in CL driving synchronized activities in relevant
cortical regions.

2. Claustral influence on cortical regions would exhibit two
stages: an initial excitatory oscillation followed by strong
inhibition.

3. The time course of the FFI from CL on cortical areas needs to
be ascertained to test whether it permits synchrony between
cortical areas.

4. Is the low frequency volley from CLmediating CFC fixed or is
it dynamically modified by task demands?

5. In a visual search task, is there a roving wave of synchrony
across the CL as the animal performs a search task, as
the corresponding topographic locations in the CL serially
facilitate the scan of the spotlight of attention?

6. Is there a rapid termination of intraclaustral synchrony and
stimulation of GABAergic neurons as soon as the target is
found?

Some of these questions need to be addressed in awake
non-human primates. So far, with rare exceptions (Remedios
et al., 2010, 2014) the primate CL has defied functional studies,
due to its shape and anatomical location, but it is possible that
with newer emerging techniques, the experiments are feasible.

CONCLUSION

Our hypothesis suggests the existence of a functional circuit by
which CL could play a vital role in communication between
cortical areas by enhancing both the synchrony between cortical
areas as well the amplitude of oscillations. The scheme has
the advantage that though the connections between cortical
areas themselves may not be structurally and functionally strong
to develop enough synchrony, the boost given by the CL
can help them to attain a degree of synchrony that will be
functionally useful. Critical to this function is the unique claustral
morphology (Kim et al., 2016) and the FFI circuit both within
the CL and in its cortical targets, which are features considered
to be characteristic of a system designed to amplify correlated
neuronal activity (Bruno, 2011; Hu et al., 2014). The metaphor
that Crick and Koch (2005) thought of, that the CL is like the
conductor of an orchestra, is apt in more ways than one. In short,
the punctuated synchrony we propose is akin to the conductor
of an orchestra co-ordinating and inspiring a harmonious and
smoothly punctuated symphony. In short, it is a conductor of the
synchrony between cortical areas.
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The posterior parietal cortex (PPC) of humans and non-human primates plays a key role
in the sensory and motor transformations required to guide motor actions to objects of
interest in the environment. Despite decades of research, the anatomical and functional
organization of this region is still a matter of contention. It is generally accepted that
specialized parietal subregions and their functional counterparts in the frontal cortex
participate in distinct segregated networks related to eye, arm and hand movements.
However, experimental evidence obtained primarily from single neuron recording studies
in non-human primates has demonstrated a rich mixing of signals processed by parietal
neurons, calling into question ideas for a strict functional specialization. Here, we present
a brief account of this line of research together with the basic trends in the anatomical
connectivity patterns of the parietal subregions. We review, the evidence related to
the functional communication between subregions of the PPC and describe progress
towards using parietal neuron activity in neuroprosthetic applications. Recent literature
suggests a role for the PPC not as a constellation of specialized functional subdomains,
but as a dynamic network of sensorimotor loci that combine multiple signals and work
in concert to guide motor behavior.

Keywords: eye movements, reaching, grasping, PPC, posterior parietal cortex, movement planning

INTRODUCTION

Humans and non-human primates make skillful reaching-to-grasping movements that are tightly
coordinated in space and time (Jeannerod et al., 1995). Moreover, eye movements often accompany
every day actions towards objects, supplying information about object identity and location, and
guiding arm movements (Johansson et al., 2001; Land and Hayhoe, 2001; Hayhoe et al., 2003).
Contemporary research has established that the posterior parietal cortex (PPC) is involved in the
representation of spatial information and goal-directed behavior using different motor effectors
(Husain and Nachev, 2007; Andersen and Cui, 2009). Since the original unified view of PPC as a
‘‘command apparatus for the operation of the limbs, hands and eyes’’ (Mountcastle et al., 1975),
anatomical, neurophysiological and neuroimaging evidence has ascribed the neural encoding of
looking, reaching and grasping actions to distinct PPC sectors (Rizzolatti and Matelli, 2003; Vesia
and Crawford, 2012; Andersen et al., 2014).

At the same time, numerous studies have shown convergence of eye-, arm- and/or hand-related
signals, both within single PPC sectors and at the level of individual cells, although which of these
signals play a casual role in defining functional specificity would require future investigations.
Recent research findings raise several issues regarding the potential substrates of distinct
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movements in parietal cortex and the information flow between
the various PPC sectors. Here, we outline evidence, mainly
from non-human primate anatomical and neurophysiological
studies, for the rich variety of signals carried by PPC neurons
related to movement guidance that suggests a more widespread
representation of movement variables than previously assumed.
From a clinical perspective, the diverse representation of signals
from parietal cortex may prove useful for the design of more
efficient neuroprosthetic devices for patients who cannot reach
and grasp objects either because of loss of arms or lesions of the
motor pathways.

ANATOMICAL ORGANIZATION OF THE
POSTERIOR PARIETAL CORTEX

The PPC is composed of several areas that vary in histological
features and connections with other parts of the brain.
Definitions of areas have evolved over time from the historical
assignment of posterior parietal fields to areas 5 and 7 of
Brodmann to more refined schemes (e.g., Figure 1) but,
despite general consensus on the number and characteristics of
individual areas, maps produced by different groups vary widely
and functional subdivisions do not always appear to respect
architectonic boundaries (e.g., Savaki et al., 2010; Arcaro et al.,
2011; Seelke et al., 2012). Nonetheless, in non-human primates,
the anatomical organization of PPC is shaped by the relative
influence of sensorimotor input to different areas. Segregated
projections from the motor control centers in the frontal lobe
are distributed along the dorsal-ventral extent of PPC. Primary
motor cortex connects mainly to the parietal convexity (PE) and
rostral parts of the medial bank of the intraparietal sulcus (IPS;
PEip). Caudal superior andmedial parietal areas (V6A,MIP, PEc,
31) connect preferentially with parts of dorsal premotor cortex,
whereas inferior parietal areas (PFG, PF, AIP, VIP) connect with
the ventral premotor cortex (Marconi et al., 2001; Tanné-Gariépy
et al., 2002; Rozzi et al., 2006; Borra et al., 2008; Gamberini
et al., 2009; Bakola et al., 2010, 2017; Passarelli et al., 2011, 2018).
Input to LIP (Blatt et al., 1990; Lewis and Van Essen, 2000) and
PGm (Cavada and Goldman-Rakic, 1989; Passarelli et al., 2018)
originates mainly in the oculomotor-related frontal eye fields
(FEFs). Segregation of motor projections is not in absolute terms,
though, since each parietal area usually receives convergent input
from other structures; e.g., PEip receives additional projections
from ventral premotor cortex (Tanné-Gariépy et al., 2002;
Bakola et al., 2017).

A relative segregation of sensory-specific projections has been
described along the rostral-caudal dimension, with somatic-
related input targeting heavily rostral parietal areas (Rozzi et al.,
2006; Bakola et al., 2013; Padberg et al., 2019). Visual inputs (in
particular representations of peripheral vision) are prominent in
caudal parietal areas, however there is variation in the source
of visual afferents to PPC. For example, numerous afferents to
V6A (Passarelli et al., 2011) and LIP (Lewis and Van Essen, 2000)
originate in area V6, whereas caudal inferior parietal lobe receives
almost exclusively projections from the motion area MST of
the temporal cortex (Rozzi et al., 2006). Several projections
to MIP and PGm arrive also from the putative visual region

FIGURE 1 | Examples of the distribution of multiple movement
preparatory/execution signals related to different effectors in posterior parietal
areas. Only the most frequent movement types are illustrated. Mouth-related
actions refer mainly to biting. Data derived from electrophysiological studies:
Ferraina et al. (1997) (PGm); Battaglia-Mayer et al. (2001) (PEc); Dickinson
et al. (2003) (LIP); Kutz et al. (2003); Fattori et al. (2005, 2010) (V6A); Gardner
et al. (2007) (PEip); Rozzi et al. (2008) (PG, PFG, PF); Archambault et al.
(2009) (PE). Lateral (bottom) and medial (top) views of a macaque brain show
our current knowledge of the anatomical organization of posterior parietal
cortex (PPC). Abbreviations of sulci: cgs, cingulate; cs, central; ips,
intraparietal; lf, lateral fissure; ls, luneate; sts, superior temporal. D, dorsal;
R, rostral.

(Kobayashi and Amaral, 2003), ventral to PGm (Bakola et al.,
2017; Passarelli et al., 2018). In addition to sensorimotor input,
PPC receives segregated input from other systems. For example,
caudal/medial areas receive projections from limbic fields of the
brain (Rozzi et al., 2006; Bakola et al., 2017; Passarelli et al.,
2018). These include projections from the posterior cingulate
and retrosplenial regions and area prostriata (Yu et al., 2012)
and likely represent routes by which information about spatial
orientation and memory reaches parts of PPC (Vann et al., 2009;
Kravitz et al., 2011).

Despite the diversity of extrinsic connections, short-range
intrinsic connections between adjacent parietal areas form a
substantial component of areal connectivity, highlighting the
potentially large influence of local processing in defining the
function of PPC sectors (Caminiti et al., 2017). This organization
may support synergistic actions of different effectors to
produce meaningful movements (Kaas and Stepniewska, 2016;
Catani et al., 2017).

FUNCTIONAL RESPONSE PROPERTIES
IN INDIVIDUAL REGIONS OF THE
POSTERIOR PARIETAL CORTEX

Two exemplar nodes of the functional specialization view on
PPC are areas AIP and LIP that have been associated with
the control of hand-object interactions required for grasping
and for the guidance of eye movements, respectively (Gallese
et al., 1994; Andersen et al., 1998; Murata et al., 2000; Cui and
Andersen, 2007). By comparison, planning and execution of
reaching movements appear to be distributed in several areas of
the superior (V6A, PEc, MIP and PE/PEip) and inferior parietal
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lobe (Snyder et al., 1997; Battaglia-Mayer et al., 2000, 2007;
Fattori et al., 2005; Heider et al., 2010; McGuire and Sabes, 2011;
Hadjidimitrakis et al., 2012, 2015).

Influential models for parallel parietal-frontal networks for
motor actions have dominated parietal research in the past
(Jeannerod et al., 1995; Matelli and Luppino, 2001). Accordingly,
reach-related signals flow from the superior parietal to the
dorsal premotor cortex and grasp-related activity is conveyed
from AIP to ventral premotor cortex; both streams converge
to the primary motor cortex (Burman et al., 2014; Dea et al.,
2016). Re-evaluation of these models became necessary after
studies showing that individual premotor neurons carried both
reaching and grasping information (Raos et al., 2004; Stark
et al., 2007). Along these lines, later work reported grasping
parameters to be coded in the traditionally reaching domains of
the superior parietal cortex (Chen et al., 2009; Fattori et al., 2010).
Furthermore, single AIP neurons encoded both the reaching
direction and grip type (Lehmann and Scherberger, 2013).

Additional evidence for the mixing of neural signals comes
from work on the spatial reference frames used for reaching
movements. Until recently, the dominant view was that neurons
in each parietal area have uniform reference frames. A serial
organization of reach-related responses along the extent of
PPC has been reported, with responses coding target locations
relative to the eyes (eye-centered frame) recorded caudally and
responses coding locations in head-, body- and hand-centered
frame rostrally (Flanders et al., 1992). This view found support
in studies that showed eye-centered reference frames caudally
in the parietal reach region (PRR, Snyder et al., 1997) and
hand-centered representations rostrally in area PE (Lacquaniti
et al., 1995; Batista et al., 1999; Buneo et al., 2002; Marzocchi
et al., 2008). However, later work showed that neurons in single
PPC areas encode reaches relative to the eye, hand, head and
body (Mullette-Gillman et al., 2009; Chang and Snyder, 2010;
McGuire and Sabes, 2011; Hadjidimitrakis et al., 2014b; Bosco
et al., 2016; Piserchia et al., 2017). The presence of mixed, eye-
and limb-centered, reference frames within several PPC areas
challenges the one-to-one association of a particular type of
reference frame with one region and, subsequently, the view of
serial reference frame transformations across the PPC ‘‘reach’’
network (McGuire and Sabes, 2011).

Mixing of signals has also been observed at another level of
movement control. The distance and direction of reach goals,
which were considered to have independent neuronal substrates
(Crawford et al., 2011), were encoded by largely overlapping
neuronal populations in V6A and PEc (Hadjidimitrakis et al.,
2014a, 2015; Filippini et al., 2018). Furthermore, PRR neurons
can simultaneously encode multiple potential movement goals
(Baldauf et al., 2008; Klaes et al., 2011), thus further illustrating
the richness of the selectivity.

In a recent human study, Zhang et al. (2017) reported a
mixture of effector representations in populations of neurons in
the putative homolog of macaque AIP, arguing against a strict
anatomical segregation of body parts. Using fMRI repetition
suppression, Heed et al. (2016) examined activity in the PPC in
humans performing delayed eye, hand and foot movements to
visual targets. They reported a gradient of organization schemes

along the extent of PPC, with a region activated independently
of the effector used among regions showing effector specificity.
Accordingly, the view that emerges is that the primate PPC hosts
multiple representations of motor actions, with individual areas
and networks (e.g., reaching network) showing only a relative
emphasis on a particular effector or movement type.

A POTENTIAL NETWORK FOR EYE-ARM
COORDINATION

The mixed selectivity and overlapping representations for
different movements in PPC make it an ideal site for mediating
complex behaviors like eye-hand coordination. Indeed, growing
evidence suggests that coordinated behaviors, such as eye-hand
movements, rely on parietal circuits. Reaction times for eye and
hand movements are correlated (Dean et al., 2011), suggesting
a common neural mechanism. The mixing of various types of
signals in single PPC neurons and sectors could be interpreted
as a manifestation of coordinated activity. For example, most
LIP neurons fire stronger when a combined reach and saccade
is planned compared to a saccade alone (Hagan et al., 2012).
Neural correlates for single and combined eye- and arm-related
movements were reported in several PPC fields (Battaglia-Mayer
et al., 2001; Calton et al., 2002; Dickinson et al., 2003), with
activity being usually weaker for the non-preferred movement.
Moreover, neural responses are modulated by static eye and
arm position in PEc, V6A and the caudal inferior parietal lobe
(Battaglia-Mayer et al., 2000, 2007; Breveglieri et al., 2012, 2014;
Piserchia et al., 2017).

The mixing of signals within PPC may result from the
short-range intrinsic connections between adjacent parietal areas
(Caminiti et al., 2017). In order to understand the mixed
selectivity and how it relates to complex behaviors, simultaneous
recordings from multiple PPC areas are necessary. However,
very few works have employed this method in PPC (e.g.,
Cui and Andersen, 2007; Dean et al., 2012). By comparison,
increasingly interactions between areas of the frontal and parietal
cortex are being studied. Multi-area recordings in primates
allow for correlations between the activity across areas to be
studied and have complemented non-invasive work using fMRI
and MEG.

In electrophysiological studies, the local field potential (LFP)
has been instrumental in understanding the relationship in
neural activity across brain areas. The LFP is composed of
synaptic and spiking activity in the vicinity of the recording
electrode (Mitzdorf, 1985), and gives an estimate of the
population activity. Like spiking-activity, the LFP power is tuned
to saccade and reach direction in LIP and PRR, respectively
(Pesaran et al., 2002; Scherberger et al., 2005). Synchrony, or
coherence, between the firing rates of individual neurons and
the LFP at different frequencies may reflect the processing of
different types of information (Fries, 2005). During coordinated
eye-hand movements, the beta-band (∼15–30 Hz) LFP activity
decreases around movement initiation in both LIP and PRR,
and correlates with the reaction times for coordinated reach and
saccades (but not for saccades made alone, Dean et al., 2012).
Furthermore, LIP neurons with reduced activity during eye-hand
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movements, compared to saccades, tend to be coherent with
the beta-band LFP (Hagan et al., 2012) and their firing rate
predicts the reaction times of coordinated eye-hand movements.
This suggests that these neurons participate in a neural circuit
that orchestrates coordinated eye-hand movements (Dean et al.,
2012). Coherent activity across areas may also contribute to
the processing of cognitive signals such as decision-making
(Hawellek et al., 2016; Wong et al., 2016) and visual attention
in PPC (Buschman and Miller, 2007; Saalmann et al., 2007;
Gregoriou et al., 2009).

The studies of LFP-firing coherence are limited in their ability
to provide causal evidence of the role of the PPC in eye-hand
coordination. In this regard, a number of inactivation studies
in PPC have provided more direct evidence, with two works
reporting effects on limb (but not eye) movements (Hwang et al.,
2012; Yttri et al., 2014), whereas another one found disrupted
eye-hand correlations after bilateral inactivation (Battaglia-
Mayer et al., 2013). Furthermore, unilateral inactivation of LIP
combined with fMRI resulted in rapid spatial reorganization
in the active hemisphere (Wilke et al., 2012), suggesting
that the functions of PPC are likely spread over a wider
network that extends over both hemispheres. This could
also explain recent evidence showing no effect of unilateral
LIP inactivation on decision-making (Katz et al., 2016).
Similarly, inactivation of VIP had no effect on behavior in a
heading discrimination task (Chen et al., 2016). In humans,
fMRI-guided transcranial magnetic stimulation demonstrated
a causal role of the anterior portion of the IPS to reaching
(Reichenbach et al., 2011). Overall, inactivation evidence should
be treated cautiously. More sensitive activity manipulations
could be useful to determine how PPC nodes contribute
to motor behaviors. The use of sophisticated tools such as
optogenetics in primates (Jazayeri et al., 2012; Watakabe
et al., 2016; El-Shamayleh et al., 2017) could help overcome
current limitations.

IMPLICATIONS OF MIXED SELECTIVITY IN
THE PPC FOR MEDICAL INTERVENTIONS

The diversity of signals within the PPC has sparked great interest
to the neuroprosthetic community. For patients suffering from
loss of function due to paralysis or amputation of a limb, there
can be great difficulty in interacting with people or everyday
objects. Brain machine interfaces (BMIs) offer some hope in
helping remedy these difficulties. A BMI is a device that can
record neural activity from the brain while subjects think about
a certain task, and then via a decoder, extract the subject’s
intentions. These decoded intentions are used to control external
devices that can vary from a cursor on a monitor, to an
anthromorphic robotic arm and hand, to a functional electrical
stimulator to activate paralyzed muscles.

Most commonly, electrodes are implanted in the primary
motor and premotor areas while patients use motor imagery
to provide the necessary input to these BMIs (Markowitz
et al., 2011; Hochberg et al., 2012; Collinger et al., 2013).
Devices implanted in the motor areas typically decode the
trajectory of an effector. Early studies showed that PPC neurons

could be used in conjunction with frontal motor areas to
control closed loop BMIs, however it was unclear to what
extent the PPC neurons contributed to the efficacy of these
devices (Wessberg et al., 2000). In a study that compared
offline decoding of hand position and velocity in non-human
primates, decoding with PPC neurons was inferior to the
decoding performance achieved with primary motor and dorsal
premotor cortex (Carmena et al., 2003), possibly indicating
that the PPC neurons were not contributing much to the
overall control.

However, Musallam et al. (2004) went on to demonstrate that
high level movement goal information as well as expected reward
values of different targets could be decoded from signals in PRR
to control a cursor on the screen during a BMI task. These control
signals could be generated in the absence of an actual movement.
The goal signals allow an abstraction away from the low-level
commands necessary to achieve the wanted action as well as the
device that actually enacts the action. These low-level commands
can be generated through external optimal control algorithms.
Goals for multiple sequential movements are planned in PRR
(Baldauf et al., 2008) but not in the superior parietal convexity
(Li and Cui, 2013) providing a rich mix of signals.

However, soon after this, trajectory information was
successfully decoded from the medial bank of the IPS as well
as the dorsal convexity to allow control of a 2-dimensional
(2D; Mulliken et al., 2008a,b) as well as 3D (Hauschild et al.,
2012) cursor on a screen. Decoding algorithms to incorporate
the cognitive neural signals and the trajectory information
will also provide increased performance compared to each
type of signal alone (Shanechi et al., 2013a,b). These studies
primarily focused on decoding of spiking activity, but similar
information could be extracted from the LFP (Andersen et al.,
2004; Scherberger et al., 2005).

The clinical relevance of the PPC to neural prosthetics was
demonstrated in the first human trial of a BMI that utilized
neural signals from the PPC (Aflalo et al., 2015). In this study,
a tetraplegic patient was implanted with electrode arrays in
putative areas 5d/PE and AIP and could successfully control 2D
and 3D cursors as well as a robotic limb. Therefore, exploiting
the richness of information in the PPC may be an advantageous
strategy for developing more efficient BMIs.

CONCLUDING REMARKS

Despite decades of research, a definitive understanding of
how individual brains areas are defined, perform distinct
computations, and interact with other brain areas remains
elusive. The PPC has proved an ideal test bed for understanding
how the underlying neural architecture supports a range of
sensory, motor and cognitive functions. Anatomy and physiology
provide distinct lines of evidence for characterizing the brain
areas of the PPC less as a cluster of finite regions and more as
a network of integrated areas that may flexibly form the neural
basis for diverse functions. The future of systems neuroscience is
in understanding how these brain areas work in concert with one
another and how the neural dynamics can be used for powering
the next generation of prosthetic devices.
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Increasing evidence supports the hypothesis that the visual system employs a sparse

code to represent visual stimuli, where information is encoded in an efficient way by a

small population of cells that respond to sensory input at a given time. This includes

simple cells in primary visual cortex (V1), which are defined by their linear spatial

integration of visual stimuli. Various models of sparse coding have been proposed to

explain physiological phenomena observed in simple cells. However, these models have

usually made the simplifying assumption that inputs to simple cells already incorporate

linear spatial summation. This overlooks the fact that these inputs are known to have

strong non-linearities such the separation of ON and OFF pathways, or separation of

excitatory and inhibitory neurons. Consequently thesemodels ignore a range of important

experimental phenomena that are related to the emergence of linear spatial summation

from non-linear inputs, such as segregation of ON and OFF sub-regions of simple cell

receptive fields, the push-pull effect of excitation and inhibition, and phase-reversed

cortico-thalamic feedback. Here, we demonstrate that a two-layer model of the visual

pathway from the lateral geniculate nucleus to V1 that incorporates these biological

constraints on the neural circuits and is based on sparse coding can account for the

emergence of these experimental phenomena, diverse shapes of receptive fields and

contrast invariance of orientation tuning of simple cells when the model is trained on

natural images. The model suggests that sparse coding can be implemented by the V1

simple cells using neural circuits with a simple biologically plausible architecture.

Keywords: efficient coding, LGN-V1 pathways, biological plausibility, separated ON and OFF sub-regions,

push-pull effect, phase-reversed feedback, receptive fields, contrast invariance

1. INTRODUCTION

In early experimental studies of cat striate cortex, Hubel and Wiesel found two main types of
cells: simple cells and complex cells (Hubel and Wiesel, 1959, 1962). Simple cells exhibit linear
spatial summation of visual stimuli, while complex cells have significant non-linear behavior. This
difference is reflected in receptive field (RF) structures of the two types of cells. Receptive fields
(RFs) describe spatial patterns of light and dark regions in the visual field that in combination are
effective at driving neural response. They are frequently modeled as linear spatial filters. Simple
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cells have a single RF filter, reflecting the linear spatial summation
properties, while complex cells pool the output for two or more
RF filters in a non-linear fashion.

Over the past decades, some important characteristics of
simple cell RF have been observed experimentally (with emphasis
on cat and primates, but also ferrets). First, simple cells show
a range of selectivity for the orientation of visual stimuli, from
highly oriented RFs, which are selective to an optimal orientation,
to non-oriented RFs, which are insensitive to orientation. Many
RFs of simple cells in V1 are oriented, localized, and bandpass
(Hubel and Wiesel, 1962, 1968), while non-orientated RFs are
seen in all layers of V1 (Hawken et al., 1988; Chapman and
Stryker, 1993). Second, RFs of orientation tuned simple cells can
be well-described by two-dimensional Gabor functions (Jones
and Palmer, 1987a; Ringach, 2002). In addition, both these
studies found some blob-like RFs, which are broadly tuned in
orientation. Third, RFs of simple cells have spatially segregated
ON and OFF sub-regions (Hubel and Wiesel, 1962; Martinez
et al., 2005); i.e., the spatial region that excites the simple cell in
response to bright (ON) stimuli is separated from the region that
excites the cell in response to dark (OFF) stimuli (left column
of Figure 1). Fourth, simple cells show push-pull responses; i.e.,
if one stimulus excites a simple cell, the stimulus with opposite
contrast, but same location, will inhibit the simple cell (Jones
and Palmer, 1987b; Ferster, 1988; Hirsch et al., 1998; Martinez
et al., 2005). One example of the push-pull effect can be seen
on the left of Figure 1 where a simple cell is excited by input
from a cell in the lateral geniculate nucleus (LGN) responding
to dark spots (an OFF LGN cell) but is effectively inhibited
by LGN cells responding a bright spot in the same location
(an ON LGN cell). Fifth, feedback from simple cells to LGN
cells frequently has a phase-reversed influence compared to the
feedforward input (Wang et al., 2006); i.e., where the RF of an
ON (OFF) LGN cell is overlapped with the ON (OFF) sub-region
of the RF of a simple cell, i.e., feedforward excitation, feedback
from the simple cell to the LGN cell is suppressive; where an
ON (OFF) LGN cell coincides with the OFF (ON) sub-region
of a simple cell RF, i.e., effective feedforward suppression, the
feedback is facilitatory. This effect of phase-reversed feedback is
also illustrated in Figure 1, where the influence from a simple cell
to LGN cells is opposite to the influence from LGN cells to the
same simple cell. Lastly, the orientation tuning property of simple
cells are contrast invariant; i.e., the shape andwidth of orientation
tuning curves remain the same for different stimulus contrasts
(Sclar and Freeman, 1982; Skottun et al., 1987; Finn et al., 2007;
Priebe, 2016).

On the other hand, insights from computational modeling of
V1 cells have also been used to explain experimental data. Sparse
coding has been proposed by many researchers as a principle
employed by the brain to process sensory information. Olshausen
and Field reproduced localized, oriented and spatially bandpass
RFs of simple cells based on a sparse coding model that aimed to
reconstruct the input with minimal average activity of neurons
(Olshausen and Field, 1996, 1997). However, the original model
failed to generate non-oriented RFs observed in experiments
(Ringach, 2002). Subsequently, Olshausen and colleagues found
that the sparse coding model can produce RFs that lack strong

FIGURE 1 | Illustration of segregated ON and OFF sub-regions, the push-pull

effect, and phase-reversed feedback. ON and OFF LGN cells are spatially

located in a 2D region. The colors of magenta and green represent excitatory

and inhibitory connections, respectively.

orientation selectivity by having many more model neurons
than the number of input image pixels (Olshausen et al., 2009).
Rehn and Sommer introduced hard sparseness to classical sparse
coding, which minimizes the number of active neurons rather
than the average activity of neurons in the original model,
and demonstrated that the modified sparse coding model can
generate diverse shapes of simple cell RFs (Rehn and Sommer,
2007). Zhu and Rozell showed that many visual non-classical
RF effects of V1 such as end-stopping, contrast invariance of
orientation tuning can emerge from a dynamical system based
on sparse coding (Zhu and Rozell, 2013).

These studies were important in explaining the RF structure,
but made a number of simplifying assumptions that overlooked
many details of biological reality, include some or all of
the following. First, the responses of neurons (e.g., firing
rates) should be non-negative. Second, the learning rule of
synaptic connections should be local where the changes of
synaptic efficacy depend only on pre-synaptic and post-synaptic
responses. Third, the learning rule should not violate Dale’s Law,
namely that neurons release the same type of transmitter at
all their synapses, and consequently, the synapses are either all
excitatory or all inhibitory (Strata and Harvey, 1999). Fourth,
the computation of the response of any neuron should be local,
such that only neurons synaptically connected to this target
neuron can be involved. In addition, a biologically plausible
model should also be consistent with important experimental
evidence. For LGN-V1 visual pathways, experimental evidence
includes the existence of a large amount of cortico-thalamic
feedback (Swadlow, 1983; Sherman and Guillery, 1996), long-
range excitatory but not inhibitory connections between LGN
and V1, and separated ON and OFF channels for LGN input
(Hubel and Wiesel, 1962; Ferster et al., 1996; Jin et al., 2008,
2011). The original sparse coding model neglects many of the
biological constraints described above.

Several recent studies addressed the issue of biological
plausibility by incorporating some of these constraints, while
continuing to neglect others. For example, Zylberberg and
colleagues designed a spiking network (based on sparse coding)
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that can account for diverse shapes of simple cell RFs using
lateral inhibition (Zylberberg et al., 2011). The local learning rule
and the use of spiking neurons bring some degree of biological
plausibility to the model, but the model employs connections
that can change sign during learning, which violates Dale’s law,
and there are not separate channels for ON and OFF LGN
input. Additionally, the effect of sparse coding is achieved by
competition between units via lateral inhibition, but a recent
study suggested that dominant lateral interactions are excitatory
in the mouse cortex (Lee et al., 2016). In another modeling work
of simple cell RFs, Wiltschut and Hamker designed an efficient
coding model with separated ON and OFF LGN cells, and,
feedforward, feedback, and lateral connections that can generate
various types of simple cell RFs (Wiltschut and Hamker, 2009),
but their model does not incorporate Dale’s law.

As with earlier studies (Olshausen and Field, 1996, 1997; Rehn
and Sommer, 2007; Olshausen et al., 2009), these more recent
studies (Wiltschut and Hamker, 2009; Zylberberg et al., 2011),
incorporating biological constraints, have continued to focus on
the RF structure of simple cells, while largely neglecting the
experimental phenomena shown in Figure 1. This is because
they have typically not separated inputs from ON and OFF LGN
cells, which is a key distinction underlying all the phenomena
listed in Figure 1. One important question in this regard is how
these non-linear (half-wave rectified) LGN inputs are combined
to give linear RFs for simple cells and whether this causes the
experimental phenomena listed in Figure 1. To our knowledge,
Jehee and Ballard are the only researchers that have explicitly
explained the effect of phase-reversed feedback using a model
based on predictive coding (Jehee and Ballard, 2009). However,
the RFs generated by their model do not match well with those
observed in experiments and the push-pull effect for simple cells
has not been explained. In addition, the formula for calculating
responses of model neurons (Jehee and Ballard, 2009, Equation
7) is not local and the learning rule neglects Dale’s law.

In this paper, we propose a two-layer model of LGN-V1 visual
pathways that can account for experimental phenomena:

• Segregated ON and OFF sub-regions of simple cells,
• The push-pull effect for simple cells,
• Phase-reversed cortico-thalamic feedback,
• Diverse shapes of RFs (oriented and non-oriented),
• Contrast invariance of orientation tuning.

Our model is biologically plausible by incorporating:

• Separate channels of ON and OFF LGN input,
• Non-negative neural responses,
• Local learning rule,
• Dale’s law,
• Local computation,
• Dynamics of rate-based model neurons,
• Feedback from V1 to LGN.

The first layer consists of ON and OFF LGN cells and the
second layer consists of simple cells. The connections from the
first layer to the second layer (feedforward connections) and
from the second layer to the first layer (feedback connections)
consist of separate excitatory and inhibitory connections. Even

though the inhibitory connections between LGN and V1 should
be implemented via intermediate populations of inhibitory
interneurons, we use neurons that have both excitatory and
inhibitory connections to simplify the circuit. This aspect of
the model is not biologically plausible, but possible biologically
plausible neural circuits for implementing inhibitory connections
are proposed in the Discussion section. Themodel presented here
is relevant to visual cortices both with and without an orientation
columnar organization.

The novelty of themodel proposed here is that it models LGN-
V1 pathways using segregated ON and OFF LGN channels and
separate excitatory and inhibitory connections to investigate the
structure of connections between LGN and simple cells to explain
a wide range of experimental phenomena. In addition, it can
generate a wide variety of experimentally observed RFs of simple
cells. Also, the model is biologically plausible by respecting many
biological constraints and important experimental evidence.
Finally, the experimental phenomena explained in this paper are
all caused by the structure of learned connections between LGN
and V1 after the model is trained on natural image data.

2. MATERIALS AND METHODS

2.1. Sparse Coding
The original sparse coding model (Olshausen and Field, 1996)
proposed that simple cells represent their sensory input in such
a way that their spiking rates in response to natural images tend
to be statistically independent and rarely attain large values (near
the top of the cells’ dynamic range). Mathematically this means
that the joint distribution of spike rates over natural images is
the product of the distributions for individual cells, and that
each of these individual distributions has a long tail (i.e., high
kurtosis). Additionally it was proposed that the representation
should allow the reconstruction of the sensory input through a
simple weighted sum of visual features with minimal error. This
can be formulated as an optimization problem of minimizing the
cost function,

E(A, s) =
1

2
‖x− As‖22 + λ

∑

i

Q(si), (1)

where x represents the input, columns of the matrix A represent
basis vectors that are universal visual features from which any
image can be constructed from a weighted sum, s is the vector
of responses, si, of model units that represent the corresponding
coefficients for all basis vectors,Q(·) represents a penalty function
that favors low activity of model units, and λ is a parameter that
scales the penalty function (Olshausen and Field, 1996, 1997).
The term As in Equation (1) is the reconstruction of the input
from the model, so the first term on the right-hand-side of
Equation (1) represents the sum of squared difference between
the input and model reconstruction. The second term on the
right-hand-side of Equation (1) tends to push s to small values.
Therefore, by solving this minimization problem, the model
finds a sparse representation for the input. By taking the partial
derivatives of Equation (1) in terms of the elements of A and s,
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and applying gradient descent, the dynamic equations and the
learning rule are given by

ṡ = ATr− λQ′(s)

1A ∝ 〈rsT〉,
(2)

where r = x − As, 〈·〉 is the average operation, the dot
notation represents differentiation with regard to time, and Q′(·)
represents the derivative of Q(·).

Based on Equation (2), a network implementation of sparse
coding, shown in Figure 2, was proposed by Olshausen and
Field (1997) who suggested that a feedforward-feedback loop
can implement sparse coding. The input to the model was
natural images that had been whitened using a filter that
resembles the center-surround structure of retinal ganglion RFs.
However, the original sparse coding model was not biologically
plausible in several aspects, such as the possibility of negative
spiking rates and the violation of Dale’s law. In addition,
the input the the model was not split into separate ON and
OFF channels. Finally, this network imposed feedback synaptic
connections that were anti-symmetric to the corresponding
feedforward connections (i.e., equal but opposite in sign) and
it was unclear how such symmetry could be achieved using
biologically plausible mechanisms.

2.2. Structure of Our Model
We propose a two-layer network with rate-based neurons that
models the activities of LGN cells (first layer), and simple cells
(second layer), respectively (Figure 3). The model is based on a
locally competitive algorithm that efficiently implements sparse
coding with neural dynamics with non-negative spiking rates
(Rozell et al., 2008).

FIGURE 2 | The network implementation of sparse coding. Upward and

downward arrows represent feedforward and feedback connections. The

reconstruction As is subtracted via negative feedback. Q′(s) represents

self-inhibition of neurons (Adapted from Figure 5 in Olshausen and Field,

1997).

We first define the parameters of the model that will be used
throughout the paper. A summary of all symbols defined below is
shown in Table 1. There are 2N LGN cells in the first layer, with
N ON LGN cells and N OFF LGN cells, andM simple cells in the
second layer. Denote x = [x1, · · · , x2N]

T as the vector of input
stimuli to the first layer. Denote xON as the input to ON LGN cells
(the firstN elements of x) and xOFF as the input to OFF LGN cells
(the last N elements of x), i.e., x = [xTON, x

T
OFF]

T .
Denote vL and sL as 2N × 1 vectors that represent membrane

potentials and firing rates of LGN cells in the first layer. Denote
vLON, s

L
ON, v

L
OFF, and sLOFF as N × 1 vectors that represent the

membrane potentials and firing rates of ON and OFF LGN cells,

i.e., vL = [vLON
T
, vLOFF

T
]T and sL = [sLON

T
, sLOFF

T
]T . Similarly, vC

and sC areM×1 vectors that represent membrane potentials and
firing rates ofM cortical simple cells in the second layer.

In our model, there are several important connections:
feedforward (up) excitatory and inhibitory connections from
LGN cells to simple cells, feedback (down) excitatory and
inhibitory connections from simple cells to LGN cells, and
self-excitatory connections of simple cells that represent self-
excitation. Definitions of connections are described below. One
aspect of the model that lacks biological plausibility is existence
of inhibitory connections between thalamus and cortex, but we
propose biologically plausible neural circuits of implementing
this aspect of the model in the Discussion section.

Denote Au,+
ON as an N ×M matrix with non-negative elements

that represents the feedforward excitatory connections from
ON LGN cells to simple cells. Each column of Au,+

ON represents
connections from N ON LGN cells to a simple cell. Similarly,
denote Au,+

OFF as an N × M matrix with non-negative elements
that represents the feedforward excitatory connections fromOFF
LGN cells to simple cells. Denote Au,−

ON and Au,−
OFF as N × M

matrices with non-positive elements that represent inhibitory
connections from ON and OFF LGN cells to simple cells,
respectively. Denote Au,+ and Au,− as 2N × M matrices that

FIGURE 3 | Graphical representation of the model. I is the identity matrix that

represents self-excitation. Red and green arrows represent excitatory and

inhibitory connections, respectively. Upward and downward arrows are for

feedforward and feedback pathways. Notation defined in the main text.
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TABLE 1 | Model symbols.

Description Symbol

Input stimuli to LGN cells x

Input stimuli to ON LGN cells xON

Input stimuli to OFF LGN cells xOFF

Membrane time constant of LGN cells (12 ms) τL

Membrane potentials of LGN cells vL

Membrane potentials of ON LGN cells vL
ON

Membrane potentials of OFF LGN cells vL
OFF

Firing rates of LGN cells sL

Firing rates of ON LGN cells sL
ON

Firing rates of OFF LGN cells sL
OFF

Spontaneous firing rate of LGN cells (2 Hz) sb

Membrane time constant of cortical simple cells (12 ms) τC

Membrane potentials of cortical simple cells vC

Leakage voltages of cortical simple cells vCleak

Firing rates of cortical simple cells sC

Excitatory connection: all LGN cells to simple cells Au,+

Excitatory connection: ON LGN cells to simple cells Au,+
ON

Excitatory connection: OFF LGN cells to simple cells Au,+
OFF

Inhibitory connection: all LGN cells to simple cells Au,−

Inhibitory connection: ON LGN cells to simple cells Au,−
ON

Inhibitory connection: OFF LGN cells to simple cells Au,−
OFF

Excitatory connection: simple cells to all LGN cells Ad,+

Excitatory connection: simple cells to ON LGN cells Ad,+
ON

Excitatory connection: simple cells to OFF LGN cells Ad,+
OFF

Inhibitory connection: simple cells to all LGN cells Ad,−

Inhibitory connection: simple cells to ON LGN cells Ad,−
ON

Inhibitory connection: simple cells to OFF LGN cells Ad,−
OFF

Sparsity level (0.6) λ

Learning rate η

represents all excitatory and inhibitory connections from LGN to
V1; then we have Au,+ = [Au,+

ON Au,+
OFF] and Au,− = [Au,−

ON Au,−
OFF].

For the feedback pathway, similar notation is used except
superscript “d” represents feedback connections from simple

cells to LGN cells. Therefore, we have Ad,+ = [Ad,+
ON Ad,+

OFF] and

Ad,− = [Ad,−
ON Ad,−

OFF].
Using the notation defined above, the dynamics of ON and

OFF LGN cells located in the first layer are given by

τLv̇
L
ON = −vLON + xON + Ad,+

ONs
C + Ad,−

ONs
C + sb

sLON = max(vLON, 0)
(3)

and

τLv̇
L
OFF = −vLOFF + xOFF + Ad,+

OFFs
C + Ad,−

OFFs
C + sb,

sLOFF = max(vLOFF, 0),
(4)

where τL is the time constant of the membrane potentials of LGN
cells, sb is a constant that represents the instantaneous firing rate
of the background input (i.e., from neurons outside the network),

and the max operation represents the firing dynamics such that a
cell only fires when the membrane potential is above a threshold.

Therefore, using the combined notation for ON andOFF LGN
cells, the dynamics of LGN cells can be written as

τLv̇
L = −vL + x+ (Ad,+ + Ad,−)sC + sb

sL = max(vL, 0).
(5)

The dynamics of simple cells located in the second layer is
given by

τCv̇
C =− (vC − vCleak)+ Au,+

ON

T
sLON + Au,−

ON

T
sLON

+ Au,+
OFF

T
sLOFF + Au,−

OFF

T
sLOFF + sC,

(6)

which can be reformulated as

τCv̇
C = −vC + vCleak + (Au,+ + Au,−)TsL + sC

sC = max(vC − λ, 0),
, (7)

where τC is the time constant of the membranes of simple cells
and λ is the threshold of the rectifying function of firing rates. In
addition, λ is a positive constant that introduces sparseness into
the model, sC represents the self-excitation of simple cells, which
comes from reformulating the model equations of the locally
competitive algorithm (Rozell et al., 2008), and vC

leak
represents

the change of membrane potential caused by leakage currents.
The leakage currents drive the membrane potentials of simple
cells to their resting potentials when there is no external input,
i.e., vC is zero. Therefore, the steady states of the model dynamics
are vL = sb, s

L = sb, v
C = 0, and sC = 0, which implies that

vC
leak

= −(Au,+ + Au,−)Tsb, where sb is a vector whose elements
are all equal to sb. Equations 5 and 7 are solved simultaneously by
iteration to obtain values of membrane potentials and firing rates.

The codes to run the model are available from ModelDB
(http://modeldb.yale.edu/247970).

2.3. Learning Rule
The learning process of the model is based on a Hebbian or
anti-Hebbian rule, namely that the change of synaptic strength
is related only to local pre-synaptic and post-synaptic activities.

The learning rules are given by

1Au,+ = η〈(sL − sb)s
CT〉

1Au,− = η〈(sL − sb)s
CT〉

1Ad,+ = −η〈(sL − sb)s
CT〉

1Ad,− = −η〈(sL − sb)s
CT〉,

(8)

where η is the learning rate, 〈·〉 is the ensemble average operation
over some samples, sL− sb is the vector such that each element of

vector sL is subtracted by scalar sb, and (s
L − sb)s

CT is the matrix
given by the outer product of vectors sL − sb and sC.

The change of synaptic strength depends only on the pre-
synaptic activity (sL) and post-synaptic activity (sC). Therefore,
this learning rule is local and thus biophysically realistic. In
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obedience to Dale’s law, all the weights of Au,+ and Ad,+ are
kept non-negative and all weights of Au,− and Ad,− are kept
non-positive during learning. If any synaptic weight changes sign
after applying Equation (8), the synaptic weight is set to zero.
In addition, after each learning iteration, synaptic weights are
multiplicatively normalized to ensure that Hebbian learning is
stable. Specifically, each column of Au,+ and Ad,− is normalized
to norm l1 and each column of Au,− and Ad,+ is normalized to
norm l2. The multiplicative normalization of synaptic weights
may be achieved by homeostatic mechanisms (Turrigiano, 2011),
but these are not implemented here as they are not the focus of
this paper.

2.4. Input
The data set used in our simulation consists of 10 pre-whitened
512 × 512 pixel images of natural scenes provided by Olshausen
and Field Olshausen and Field (1996). Some previous studies of
sparse coding (efficient coding) also used this data set (Olshausen
and Field, 1996; Wiltschut and Hamker, 2009; Zylberberg et al.,
2011; Zhu and Rozell, 2013). The input stimuli to the model are
chosen to be 16 × 16 pixel image patches sampled from these 10
pre-whitened 512× 512 pixel images, similar to previous studies
(Zylberberg et al., 2011; Zhu and Rozell, 2013).

The pre-whitening process mimics the spatial filtering of
retinal processing up to a cut-off frequency determined by the
limits of visual acuity (Atick and Redlich, 1992). This process is
realized by passing the original natural images through a zero-
phase whitening filter with root-mean-square power spectrum,

R(f ) = fe−(f /fc)
4
, (9)

where fc = 200 cycles/picture (Olshausen and Field, 1997).
Figure 4 shows the spatial and frequency profiles of the pre-
whitening filter. The spatial profile of the filter (Figure 4C),
obtained by taking the 2D inverse Fourier transform of the filter
in the 2D frequency domain, approximates center-surround RFs
of LGN cells in a pixel image. The pre-whitening filter described
in Equation (9) is widely used in computational studies (Jehee
et al., 2006; Jehee and Ballard, 2009;Wiltschut andHamker, 2009;
Zhu and Rozell, 2013).

The pre-whitened images are then scaled to variance 0.2
similar to Olshausen and Field (1997). Image patches are fed into
the first layer, which consists ofN ON LGN cells andN OFF LGN
cells, i.e., one pixel is fed into oneONLGN cell and oneOFF LGN
cell. If a pixel intensity in a pre-whitened image patch is negative,
we assign the absolute value of the pixel intensity to the input
of the OFF LGN cell and set the input of the corresponding ON
LGN cell to zero; if the pixel intensity is positive, we set the input
of the ON LGN cell to the pixel intensity and set the input to the
OFF LGN cell to zero.

2.5. Training
Since we use 16 × 16 pixel images as the input to our model,
256 ON and 256 OFF LGN cells (N = 256) are required in the
first layer. We use 256 simple cells (M = 256) in the second
layer. The first-order Euler method is implemented to solve the
dynamical system described by Equation 5 and 7. We choose

FIGURE 4 | Pre-whitening filter. (A) The pre-whitening filter described in

Equation (9). (B) The pre-whitening filter in 2D frequency domain. (C) The

spatial profile of the pre-whitening filter. The scale of the spatial filter is

arbitrarily normalized to convert the luminance to the membrane potential

relative to the maximal luminance of the image.

a time scale in which the passive membrane time constant is
τL = τC = 12 ms, within the physiological range (Dayan et al.,
2001), and sparsity level λ = 0.6 similar to Zhu and Rozell (2013).
The spontaneous firing rate, sb, is chosen as sb = 2 Hz, the
median of spontaneous firing rates of the mouse LGN cells in the
experimental study of Tang et al. (2016). There are 30 integration
time steps, with an integration time step of 3ms, for calculating
neuronal responses per stimulus with the assumption that neural
responses will converge after 30 iterations.

Learning rules in Equation (8) are used to update the synaptic
weights. For the normalization step after each learning iteration,
each column of Au,+ and Ad,− is normalized to have norm l1
and each column of Au,− and Ad,+ is normalized to have norm
l2. Elements of Au,+ and Ad,+ are non-negative and initialized
randomly using an exponential distribution with mean 0.5. Au,−

and Ad,− are initialized randomly with non-positive elements
that are sampled from an exponential distribution with mean
−0.5. Then, synaptic weights are normalized before the learning
process starts. Results shown in this paper are from simulations
with l1 = l2 = 1 (unit norm), as used in the previous study
by Rozell et al. (2008). The learning rule based on the average
activities of a mini-batch is applied; i.e., in every epoch, a mini-
batch that consists of 100 randomly selected 16× 16 pixel images
sampled from the data set is used. Before the training process of
natural image patches, the model is pre-trained on white noise
for 10, 000 epochs to mimic the process of pre-development
of the visual system; the learning rate is 0.5 in pre-training.
To ensure that the weights converge after learning on natural
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image patches, we use 30, 000 epochs in the training process,
where the learning rate is 0.5 for the first 10, 000 epochs, 0.2 for
the second 10, 000 epochs and 0.1 for the third 10, 000 epochs.
Learning rates were chosen to ensure stable convergence of the
weights in a reasonable time; but the results are not sensitive to
moderate changes.

2.6. Recovering Receptive Fields of Model
Simple Cells Using White Noise
In order to estimate the RFs of model simple cells in a systematic
way, we use the method of spike-triggered averaging to find the
pattern that each simple cell responds to on average (Schwartz
et al., 2006). Using K 16× 16 white noise stimuli n1, · · · ,nK , we
present pre-processed stimuli to themodel, record the firing rates
of a simple cell, s1, · · · , sK , and then estimate the RF, F, of the
simple cell as the weighted average,

F =
s1n1 + · · · + sKnK

s1 + · · · + sK
. (10)

We used 70, 000 white noise stimuli, i.e., K = 70, 000.
In our simulations, we have two versions of estimated RFs

using the two different methods of pre-processing the white
noise stimuli: the same pre-whitening filter for natural scenes
(Equation 9) and a low-pass filter described by

L(f ) = e−(f /fs)
4
. (11)

2.7. Fitting Receptive Fields to Gabor
Functions
The RFs of visual cortical cells are often modeled using a 2D
Gabor function G(x, y) of the form

G(x, y; x0, y0, σx, σy, fs,β , θ ,φ)

= β cos(2π fsx
′ + φ)e

−( x′√
2σx

)2−(
y′

√
2σy

)2
(12)

with

x′ = (x− x0) cos θ + (y− y0) sin θ

y′ = −(x− x0) sin θ + (y− y0) cos θ ,
(13)

where β is the amplitude, (x0, y0) is the center, σx and σy
are standard deviations of the Gaussian envelope, θ is the
orientation, fs is the spatial frequency, and φ is the phase of the
sinusoid wave (Ringach, 2002). These parameters are fitted using
the built-in MATLAB (version R2016b, MathWorks, MA, USA)
function, lsqcurvefit, that efficiently solves non-linear curve-
fitting problems using a least-squares method. The fitting error
is defined as the square of the ratio between the fitting residual
and RF.

To ensure that results were only reported for RFs that were
well-fitted to Gabor functions, we excluded RFs for which either
(1) the synaptic fields had fitting error larger than 40% or (2) the
center of the fitted Gabor functions lay either outside the block,
or within one standard deviation of the Gaussian envelope of
the block edge (Zylberberg et al., 2011). After applying these two
quality control measures, 140 out of 256 model cells remained for
subsequent analysis.

2.8. Measuring the Overlap Index Between
ON and OFF Sub-regions
To investigate the extent of overlap between ON and OFF sub-
regions, we used an overlap index that was used in experimental
studies (Schiller et al., 1976; Martinez et al., 2005). Similar
to the method used in Martinez et al. (2005), each ON and
OFF excitatory sub-region was fitted by an elliptical Gaussian
function:

h(x, y; x0, y0, a, b, θ , γ ) =
γ

2πab
e
− x′2

2a2
−

y′2

2b2 (14)

where γ is the amplitude, a and b are half axes of the ellipse, and
x′ and y′ are the transformed coordinates given by Equation (13).
If there are more than one ON (or OFF) sub-regions for the
simple cell, only the most significant sub-region was fitted by the
elliptic Gaussian. If either the ON or OFF sub-region of a simple
cell has fitting error larger than 40% or has the half axis, a, larger
than 3 pixels, this simple cell is excluded. 92 simple cells remained
for the analysis of overlap index.

The overlap index, Io, is then defined as

Io =
WON +WOFF − d

WON +WOFF + d
, (−1 < Io ≤ 1) (15)

where WON and WOFF are the half width measured at the point
where the response is 30% of the maximal response, and d is
the distance between the centers of ON and OFF sub-regions.
Smaller values of Io indicate more segregation between ON and
OFF sub-regions.

2.9. Measuring the Push-Pull Index
The push-pull effect of the model was measured by a push-
pull index (Martinez et al., 2005). First, for each simple cell, we
recorded the membrane potential, P, when the preferred input
(the synaptic field) was presented to themodel. Next, we recorded
the membrane potential, N, while presenting the opposite
of preferred input to the model. To make the measurement
independent of the relative strength of different simple cells, P
and N were normalized by

P =
P

max(|P|, |N|)
and N =

N

max(|P|, |N|)
. (16)

The Push-pull index, Ip, is then defined as

Ip = |P + N|, (0 ≤ Ip ≤ 2). (17)

Smaller values of Ip indicate stronger push-pull effect.

2.10. Measuring Contrast Invariance of
Orientation Tuning
The method in (Zhu and Rozell, 2013) was used to investigate
contrast invariance of orientation tuning and the procedure is
as follows. First, an exhaustive search was performed to find the
preferred circular sinusoidal grating in the parameter space of
the following ranges: radius of the grating was between 1 pixel
and 2.5min(σx, σy) (smaller than 8 pixels which is the maximum
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radius for a 16 × 16 image patch) with the stepsize of 1 pixel ;
spatial frequency was between 0.05 and 0.3 cycles/pixel with the
stepsize of 0.05 cycles/pixel; orientation was between 0 and 180
degrees with the stepsize of 5 degrees; phase was between 0 and
360 degrees with the stepsize of 30 degrees. Next, we measured
the mean response to the drifting grating with orientations
between 0 and 180 degrees with the stepsize of 5 degrees while
varying the contrast of the stimuli from 0.2 to 1 in increments of
0.2, where contrast is defined as the amplitude of the sinusoidal
grating. The orientation tuning curve for each contrast level was
then fit to the Gaussian function and the half-height bandwidth
of the Gaussian fit was calculated. The slope of the linear fit to
half-height bandwidth vs. contrast for the cell was used to plot
the population statistics of contrast invariance (Alitto and Usrey,
2004). Here, only 68 model simple cells that have oriented RFs
located well within the 16 × 16 image patch were selected for
the analysis.

3. RESULTS

After learning, synaptic weights between LGN and V1 display
spatial structures similar to those observed in recordings of
neurons in V1, such as oriented Gabor-like filters and non-
oriented blobs. Since both excitatory and inhibitory connections
from ON and OFF LGN cells contribute to the responses of
simple cells, we use the synaptic field (Sf) defined as

Sf = (Au,+
ON + Au,−

ON)− (Au,+
OFF + Au,−

OFF) (18)

to visualize the overall synaptic weights from ON and OFF LGN
cells. The synaptic fields of 140 model simple cells that meet the
two quality control measures (see the Materials and Methods
section) are shown in Figure 5, where each block represents the
overall effect of the feedforward connections from ON and OFF
LGN cells to a simple cell. Note that although Figure 5 displays
spatial patterns that are similar to experimental RFs, strictly
they represent the synaptic weights from LGN cells to simple
cells, which ignores the early visual processing before LGN.
However, the RFs of the model are systematically investigated in
the following sections.

In the remaining results, we show that the synaptic
weights exhibit several properties that have been observed
experimentally, including segregation of ON and OFF sub-
regions, push-pull effect, phase-reversed feedback, diverse shapes
of simple cell RFs, and contrast invariance of orientation tuning.

3.1. Segregated ON and OFF Sub-regions
Hubel and Wiesel found that simple cells in cat striate cortex
have spatially separated ON and OFF sub-regions (Hubel and
Wiesel, 1962), which was also confirmed by other experimental
studies (Jones and Palmer, 1987b; Hirsch et al., 1998; Martinez
et al., 2005). However, it is impossible for a model that combines
ON and OFF LGN input into a single linear input to explain
this important phenomenon. Our model separates ON and OFF
LGN input and shows that the learned feedforward excitatory
connections from ON and OFF LGN cells to simple cells can

FIGURE 5 | Synaptic fields (defined in Equation 18) for 140 selected simple

cells. Each block is a 16× 16 image that represents the combined effects of

ON and OFF LGN cells for a simple cell in spatial domain. One hundred and

forty cells are located on a 12× 12 grid. Values in each block are normalized

to the range [−1 1] when plotting this figure.

account for the segregation of ON and OFF sub-regions of
simple cells.

ON and OFF excitatory regions of some example simple cells
are displayed in Figure 6A. In our model, there are 256 ON LGN
and 256 OFF LGN cells located evenly on a 16 × 16 image, so
each block in Figure 6A represents 256 excitatory weights from
ON or OFF LGN cells to a simple cell. Figure 6A shows that these
excitatory connections form spatial patterns such as bars and
blobs. Furthermore, a careful examination of the patterns shows
that excitatory connections from ON LGN cells are normally
adjacent to patterns of excitatory connections from OFF LGN
cells, but the two patterns do not overlap, as can be seen when
contour plots for the ON and OFF excitatory regions are overlaid
in Figure 6B.

We quantified the segregation of ON and OFF sub-regions
using the overlap index (defined in the Materials and Methods
section). The histogram of the overlap index for simple cells
in an experimental study (Martinez et al., 2005) is re-plotted
in Figure 6C. Consistent with the experimental data, 88 out of
92 model simple cells had an overlap index smaller than 0.1
(Figure 6D), which indicates that the ON and OFF sub-regions
are well-separated in a large majority of the population. The
synaptic fields of simple cells whose overlap indices are larger
than 0.1 are shown in Figure 6E, revealing thatmost of them have
low spatial frequencies.

3.2. Push-Pull Effect
Simple cells are also found to have push-pull responses; i.e., if
one contrast polarity excites a cell, the opposite contrast polarity
tends to inhibit it (Jones and Palmer, 1987b; Ferster, 1988; Hirsch
et al., 1998;Martinez et al., 2005). Even though this effect has been
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FIGURE 6 | Segregation of ON and OFF sub-regions. (A) Some examples of Au,+
ON

and Au,+
OFF

. Each block is a 16× 16 image that represents 256 excitatory

connections from ON or OFF LGN cells to a simple cell. The color magenta represents excitatory connections. (B) Red and blue contours represent excitatory

connections from ON and OFF LGN cells, respectively. Connections that are smaller than 20% of the maximal connection were removed to only show the substantial

weights. The number in each block indicates the overlap index. (C) Histogram of the overlap index for simple cells in cat V1. Re-plotted from Figure 3C in Martinez

et al. (2005). (D) Histogram of the overlap index for model simple cells. (E) Synaptic fields of the four simple cells with overlap index larger than 0.1.

observed in many experimental studies, to our knowledge there
has not been a learning model proposed that can explain how this
effect emerges. Again, a model that separates ON and OFF LGN
input is necessary to investigate the emergence of the push-pull
effect. In this section, we show that the push-pull effect for simple
cells naturally emerges as a result of neural learning.

Some examples of ON excitatory and OFF inhibitory synaptic
weights (Au,+

ON and Au,−
OFF, respectively) are shown in Figure 7A.

The patterns of Au,+
ON are similar to the ones of Au,−

OFF and
they are located at similar locations, as can be seen from the
highly overlapped contours in Figure 7B. However, the degree of
overlap is different between the examples.

Analogous results to the above also hold for learned
excitatory connections fromOFF LGN cells,Au,+

OFF, and inhibitory

connections from ON LGN cells, Au,−
ON (data not shown).

We then quantified the push-pull effect using push-pull
index (defined in the Materials and Methods section). Both
the histograms of push-pull index for experimental data
(Figure 7C) and model simple cells (Figure 7D) peaked near
zero and showed an decreasing trend. Model simple cells

showed even stronger push-pull index with more simple cells
having push-pull index close to zero. The synaptic fields
of simple cells with push-pull indices larger than 0.2 are
shown in Figure 7E, showing that most of them have low
spatial frequencies.

3.3. Phase-Reversed Feedback
The experimental study of Wang and colleagues suggests that the
synaptic feedback fromV1 to LGN is phase-reversed with respect
to the feedforward connections (Wang et al., 2006). For example,
the connection from a simple cell to an ON-center LGN cell will
be excitatory if the ON-center is aligned in visual space to the
OFF sub-field of simple cell (i.e., phase-reversed). Conversely,
if the ON-center is aligned to the ON sub-field of the simple
cell, the connection will be inhibitory. Our learning model with
separate ON and OFF LGN cells enables us to investigate the
feedback effect from simple cells to LGN cells. In this section,
we show that phase-reversed feedback arises in the structures of
learned connections.
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FIGURE 7 | Push-pull effect. (A) Some examples of Au,+
ON

and Au,−
OFF

. Each block on the left is a 16× 16 image that represents 256 excitatory connections from ON

LGN cells to a simple cell. Each block on the right represents inhibitory connections from OFF LGN cells to a simple cell. The color magenta represents excitatory

connections; the color green represents inhibitory connections. (B) Red and blue contours represent excitatory connections from ON LGN cells (Au,+
ON

) and inhibitory

connections from OFF LGN cells (Au,−
OFF

), respectively. Connections that are smaller than 20% of the maximal connection were removed to only show substantial

weights. The number in each block indicates the push-pull index. (C) Histogram of the push-pull index for simple cells in cat V1. Re-plotted from Figure 4B in Martinez

et al. (2005). (D) Histogram of the push-pull index for model simple cells. (E) Synaptic fields of the six simple cells with push-pull index larger than 0.2.

Feedback from simple cells to LGN cells occurs via both
excitatory connections, Ad,+

x , and inhibitory connections, Ad,−
x ,

with the overall effect characterized by Ad
x = Ad,+

x + Ad,−
x ,

where x = ON or OFF depending on the type of LGN cell.
Therefore, the overall feedback to ON LGN cells, denoted as
Ad
ON, can be represented by Ad

ON = Ad,+
ON + Ad,−

ON . Similarly,

Ad
OFF = Ad,+

OFF + Ad,−
OFF represents the overall feedback to OFF

LGN cells.
The ON and OFF sub-fields of simple cells receptive fields are

characterized by the positive and negative regions of the synaptic
field defined in Equation (18). The scatter plots in Figure 8 show
that relationship expected from phase-reversed feedback. Sf is
highly positively correlated with Ad

OFF (correlation coefficient

r = 0.90), while Sf is highly anti-correlated withA
d
ON (correlation

coefficient r = −0.92). According to the figure, wherever Sf is
positive, indicating the ON sub-field, the feedback to ON LGN
cells, Ad

ON, is very likely to be negative and the feedback to

OFF LGN cells, Ad
OFF, tends to be positive; however, wherever

Sf is negative, indicating the OFF-field, the converse is true: the

feedback to ON LGN cells, Ad
ON, is very likely to be positive and

the feedback to OFF LGN cells, Ad
OFF, tends to be negative. This

corresponds to a phase-reversed feedback from V1 to LGN.
This phase-reversed feedback from V1 to LGN can be

explained by the learning dynamics of LGN and simple cells

described in Equation 8. The learning rule shows that Au,+

and Ad,− are updated with the same magnitude of synaptic
change but opposite in sign (and are normalized with the same
norm l1). Similarly, Au,− and Ad,+ are updated with the same
magnitude of synaptic change but opposite in sign (and are
normalized with the same norm l2). These anti-symmetries
are a consequence of having Hebbian learning for the forward
weights and anti-Hebbian learning for the feedback weights.
In both cases the magnitude of weight change is proportion
to the production of pre- and post-synaptic spike rates, but
the sign of the change is opposite. The anti-symmetry arises
because roles of pre- and post-synaptic rates are interchanged
in forward vs. feedback directions, in combination with the sign
change. Simulation results show that Au,+ converges to −Ad,−
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FIGURE 8 | Synaptic fields, Sf (defined in Equation 18), vs. feedback to ON

and OFF LGN cells, Ad
ON

and Ad
OFF

. Sf is highly positively correlated with Ad
OFF

(correlation coefficient r = 0.90) and Sf is highly anti-correlated with Ad
ON

(correlation coefficient r = −0.92). When Sf is greater than zero, Ad
OFF

tends to

be greater than zero and Ad
ON

tend to be smaller than zero. On the contrary,

Ad
OFF

tends to be smaller than zero and Ad
ON

tends to be greater than zero if

Sf is negative.

FIGURE 9 | ‖Au,+ + Ad,−‖2 and ‖Au,− + Ad,+‖2 during pre-development

when white noise is used as the input. The difference between Au,+ and

−Ad,− (blue line) decreases to zero very quickly during learning. Similarly, the

difference between Au,− and −Ad,+ (red line) reduces to zero quickly,

although somewhat slower than the blue line.

and Au,− converges to −Ad,+ even during pre-development
when white noise is used as the input to the model, as illustrated
in Figure 9.

3.4. The Diversity of Model Receptive
Fields Resembles That Observed
Experimentally for Simple Cells
In this section, we show that the range of spatial structures of RFs
of our model have a close resemblance to experimental data.

RFs were calculated from the model by simulating
experiments in which Gaussian white noise is presented as
a visual stimulus, and the spike triggered average is used to
estimate RFs. As the presentation of white noise may cause
adaptive effects in the early stages visual system relative to
natural images, we considered two versions of the model, one
with the standard pre-whitening filter (Equation 9) modeling
center-surround processing, and a second without pre-whitening
in which the filter is replaced by a low-pass filter (Equation
11) with the same upper cut-off frequency as pre-whitening
filter. We use pre-whitened RFs and low-pass RFs to represent
of simple cell RFs estimated using the pre-whitening filter and
low-pass filter.

Some examples of pre-whitened RFs, low-pass RFs and
synaptic fields are shown in Figure 10, which shows that pre-
whitened RFs and low-pass RFs are similar to synaptic fields.
However, pre-whitened RFs tend to have more and thinner
stripes, which indicates a narrower tuning to a somewhat higher
spatial frequency. For a simple cell tuned to very low spatial
frequencies (bottom right blocks), the RF recovered with pre-
whitening was a poor match to the original synaptic field, but for
RF recovered with low-pass filtering it was fair.

Early studies show that RFs of simple cells can be well-
described by 2D Gabor functions described in Equation (12)
(Jones and Palmer, 1987a; Ringach, 2002). For our model, most
RFs could be well-fitted by Gabor functions with suitable choices
of parameters with small fitting errors, as shown in Figure 11A.
Note that although the fitting error of blob-like RFs might be
low, the parameter choices are not necessarily reasonable, in that
they are poorly constrained and the process of Gabor fitting
imposes an a priori hypothesis that the RF is a 2D-Gabor function
even though it is clearly not Gabor-like. The pre-whitened RFs
with fitting errors larger than 40% (Figure 11B) are cells whose
synaptic fields have low spatial frequencies (Figure 11C), because
pre-whitened RFs of these cells matched poorly to the original
synaptic fields (Figure 10B). Low-pass RFs of all 140 selected
model cells have fitting errors smaller than 40% with 132 of them
having fitting errors smaller than 20% (data not shown).

Using fitted parameters of Gabor functions, Ringach
constructed a scatter plot of nx = σxfs vs. ny = σyfs to
analyze the spatial structures of RFs in V1 over the population
(Ringach, 2002). Such plots have subsequently been used by
many researchers to investigate the distributions of model simple
cell RFs (Rehn and Sommer, 2007; Wiltschut and Hamker, 2009;
Zylberberg et al., 2011). nx and ny are the width and length of the
Gabor function measured in the number of cycles of the spatial
frequency (i.e., across and along the stripes). Ringach noted that
blob-like RFs are mapped to points near the origin, while RFs
with elongated sub-regions are mapped to points away from the
origin (Ringach, 2002). In addition, nx and ny are directly related
with the half-magnitude spatial frequency bandwidth 1f and
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FIGURE 10 | Receptive fields of example model cells. Values of each block are normalized to the range [−1 1] when plotting the figure. (A) Synaptic fields of example

model cells. (B) Pre-whitened RFs of example model cells. The pre-whitening filter described in Equation (9) was used to filter white noise stimuli. (C) Low-pass RFs of

example model cells. The low-pass filter described in Equation (11) was used to filter white noise stimuli.

FIGURE 11 | (A) Histogram of Gabor fitting errors for pre-whitened RFs.

(B) Pre-whitened RFs that has fitting error larger than 40%. (C) Synaptic fields

of the corresponding cells in (B).

orientation bandwidth 1θ of the fitted Gabor function,

1f : = h(nx) = log2





1+
√
2 ln 2
2πnx

1−
√
2 ln 2
2πnx



 in octaves

1θ : = g(ny) = 2 arctan

(√
2 ln 2

2πny

)

in degrees.

(19)

Both h(nx) and g(ny) are monotonically decreasing functions;
i.e., the larger nx and ny, the smaller 1f and 1θ . Note that

h(nx) is not well-defined when nx <
√
2 ln 2/2π (≈ 0.13),

i.e., when the lower half-magnitude frequency do not exist. This
corresponds to the region in which Gabor fitting gives ambiguous
fits for parameters like spatial frequency and orientation, because
oriented RFs with low spatial frequency might lie in this region
as well.

We plot nx vs. ny and 1f vs. 1θ for RFs obtained from
both the model and experimental studies in Figure 12. However,
the different pre-processing filters for white noise stimuli have a
dramatic influence on the distributions of nx vs. ny, shifting the
distribution for low-pass RFs to the left of pre-whitened RFs, in
closer agreement to the experimental data. As mentioned earlier,
pre-whitened RFs tend to have more stripes relative to the low-
pass RFs, so they are mapped to points away from the origin
compared to low-pass RFs. In addition, the distribution of low-
pass RFs is continuous from the origin, while there is a gap
between points near the origin and points away from the origin
for pre-whitened RFs. The inset sub-plots of Figure 12 show that
data points near the origin might be orientated RFs with low
spatial frequencies and blob-like RFs might not be necessarily
mapped to points near the origin.

In general, oriented RFs are well-described by Gabor
functions and low-pass RFs better resemble the distribution of
experimental data compared with pre-whitened RFs.

3.5. Contrast Invariance of Orientation
Tuning
Another important property of simple cells is contrast invariance
of orientation tuning; i.e., the width of the orientation tuning
curve is maintained when the contrast of the stimulus changes, as
demonstrated in Figure 13A. The orientation tuning curves with
various stimulus contrasts for a model simple cell are shown in
Figure 13B, where the bandwidths of each curve remain the same
while the responses become larger when the stimulus contrast
increases. For a study of contrast invariance of V1 population in
ferret, the histogram of the slope of the linear fit of half-width
bandwidth vs. contrast (Figure 13C) showed that most cells were
contrast invariant with the slope close to zero (Alitto and Usrey,

Frontiers in Neural Circuits | www.frontiersin.org 12 March 2019 | Volume 13 | Article 1386

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Lian et al. Biologically Plausible Model of LGN-V1 Pathways

FIGURE 12 | nx vs. ny . Comparison of RFs of the model with experimentally recorded data for cat simple cells and monkey simple cells. Open circles: 25 cat simple

cells from Table 1 in Jones and Palmer (1987a) re-plotted in the (nx , ny ) plane; red stars: 93 monkey simple cells in Ringach (2002); blue dots: pre-whitened RFs using

the pre-whitening filter described in Equation (9); green dots: low-pass RFs using the low-pass filter described in Equation (11). The axes on the top and right

represent frequency and orientation bandwidths of fitted Gabor functions computed using Equation (19). Some examples of RFs are displayed in the inset sub-plots.

Data points of estimated RFs with fitting errors > 40% were excluded, which gave 124 data points for pre-whitened RFs and 140 data points for low-pass RFs.

2004). Figure 13D shows that most model cells have the slope
around zero, which is consistent with experimental data.

4. DISCUSSION

4.1. Relationship With Sparse Coding
Sparse coding has been successful in modeling simple cell
receptive fields (RFs) and has been used by many researchers
over the past years. Our model is based on an algorithm that
efficiently implements sparse coding (Rozell et al., 2008), and is
therefore closely related to the original concept of sparse coding
(Olshausen and Field, 1996).

If we define A as a 2N ×M matrix that represents the overall
effect caused by excitatory and inhibitory connections from 2N
LGN cells to M simple cells, we have A = Au,+ + Au,−.
The dynamics of simple cells described in Equation (7) can be
rewritten as

τCv̇
C = −vC + AT(sL − sb)+ sC. (20)

As illustrated in Figure 9, Au,+ → −Ad,− and Au,− →

−Ad,+ during learning. Therefore, we have Ad,− + Ad,+ =

−Au,+ − Au,− = −A. The dynamics of LGN cells described in
Equation (5) can be rewritten as

τLv̇
L = −vL + x− AsC + sb. (21)

If the columns of A are seen as the basis vectors of a generative
model, AsC can be seen as the linear reconstruction of the

input using learned basis vectors and thus x − AsC represents
the residual error, which is similar to r of the sparse coding
formulation given in Equation (2). Therefore, the residual error
used to update the basis vectors of the original sparse coding
model is represented by the responses of LGN cells in our model.

To incorporate Dale’s law, non-negative connections, Au,+,
and non-positive connections, Au,−, are employed in our model
to represent the positive and negative elements of A. Au,+ and
Au,− are not co-active in general, which suggests that Au,+ ≈

[A]+ and Au,− ≈ [A]−, where [ · ]+ preserves the positive
elements and sets negative elements to zero and [ · ]− preserves
the negative elements and sets positive elements to zero.

In other words, our model is essentially a variant of sparse
coding that employs separate connections to learn the positive
and negative part of the overall connections.

4.2. Relationship With Predictive Coding
Ourmodel is a hierarchical model with feedforward and feedback
connections based on a locally competitive algorithm (Rozell
et al., 2008). The structure of our model is essentially very
similar to that of predictive coding models. To be more specific,
the feedback from the second-layer neurons reconstruct the
input. The residual error is computed at the first layer and then
propagated to the second layer via feedforward connections.

Although our model presented here and the predictive coding
model of Jehee and Ballard (2009) can explain phase-reversed
feedback, the models differ in several respects. First, sparse

Frontiers in Neural Circuits | www.frontiersin.org 13 March 2019 | Volume 13 | Article 1387

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Lian et al. Biologically Plausible Model of LGN-V1 Pathways

FIGURE 13 | Contrast invariance of orientation tuning. (A) Contrast invariant orientation tuning curves of a simple cell in cat V1. Re-plotted from Figure 3A in Skottun

et al. (1987). Different colors represent different contrasts. (B) Contrast invariant orientation tuning curves of a cell in our model. c = 1 and c = 0.2 correspond to the

high and low contrast, respectively. (C) Histogram of the slope of half-height bandwidth vs. contrast for V1 population in ferret. Re-plotted from Figure 3B in Alitto and

Usrey (2004). (D) Histogram of the slope of half-height bandwidth vs. contrast for model simple cells.

coding in our model is simply realized by the threshold of the
rectifying function of firing rates for simple cells and this simple
mechanism leads to simple neural circuits. Second, compared
to the mechanism for determining simple cell responses one
by one in their model, our model computes the responses in
parallel. Third, our model generates diverse types of RFs that
correspond well to experimental data. Finally, the phase-reversed
effect is simply accounted for by the special pattern of learned
connections, which also explains the segregation of ON/OFF
sub-regions and push-pull effect for simple cells.

4.3. The Function of Spontaneous Activity
In the model proposed here, the dynamics of LGN cells
described in Equation (5) has the background firing rate, sb,
as part of the input to LGN cells. This spontaneous firing rate
introduces a shift of the operating point for LGN cells. Given
the responses of simple cells, sC, x − AsC in Equation (21)
represents the reconstruction residual error between the input
and reconstruction. The residual error gives the difference
between the real input and the representation produced by the

model and it can be either positive or negative. To code for
the signed quantities (residual error), Ballard and Jehee carried
out a case-by-case study, leading to very complicated neural
circuits (Ballard and Jehee, 2012). However, our model has
a straightforward method for the implementation of solving
signed quantities. The background firing rate, sb, in Equation
(5) increases the residual errors by sb. Therefore, the membrane
potential of LGN cell, vL, represents the residual error shifted up
by sb. The threshold function in Equation (5) gives the firing rate
of the LGN cell and it preserves the residual error in the interval
of [−sb, ∞], which preserves the information of whether the
model under-estimates or over-estimates the input stimuli and
forces the connections to evolve through learning in the correct
direction. In Equation (7), which describes simple cell dynamics,
the effect of the spontaneous firing rate, sb, is removed by vC

leak
,

a homeostatic mechanism employed by simple cells to maintain
resting membrane potentials when there is no external input.
The local learning rule described by Equation (8) also eliminates
the effect of the spontaneous firing rate by subtracting it. The
use of spontaneous firing rate makes the model much simpler
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and offers a new approach for solving the problem of signed
quantities (residual errors). Experimental evidence shows that
thalamocortical neurons can fire with bursts of action potentials
without any synaptic input (Kandel et al., 2013), which suggests
that the spontaneous firing activities might be used to encode the
difference between input and feedback information.

4.4. Pre-processing of the Early Visual
System
Atick and Redlich suggest that the retinal goal is to whiten the
visual input up to a transition frequency such that input noise can
also be suppressed (Atick and Redlich, 1992). The pre-whitening
filter (Equation 9) approximately whitens the natural scenes up
to the cut-off frequency.

However, for pre-processing white noise stimuli, two
hypotheses are considered here. First, the filtering process of the
early visual system can be described by the pre-whitening filter
(Equation 9) whether or not the visual stimuli are natural scenes.
Second, the early visual system is adaptive such that the visual
stimuli are whitened up to a cut-off frequency. In this case, a
low-pass filter (Equation 9) should be used, because white noise
stimuli are already whitened across all frequencies. Our results
suggest that estimated RFs using low-passed white noise match
the experimental data much better than estimated RFs using pre-
whitened white noise. Further investigation of how visual stimuli
are processed before they are fed to the visual cortex is needed to
better understand the properties of simple cells.

4.5. The Role of l1 and l2
Each column of Au,+ and Ad,− is normalized to norm l1 and
each column of Au,− and Ad,+ is normalized to norm l2. In
other words, l1 represents the overall strength of feedforward
excitatory connections and feedback inhibitory connections
while l2 represents the overall strength of feedforward inhibitory
connections and feedback excitatory connections. The results
shown in this paper are based on l1 = 1 and l2 = 1; i.e.,
the strength of feedforward excitatory connections is equivalent
to feedforward inhibitory connections, which leads to a strong
push-pull effect in Figure 7D. If l2 is smaller than l1, the push-
pull effect will be weaker and the distribution of the push-pull
index will shift to the right. In addition, reducing l2 results in
more blob-like receptive fields (data not shown).

4.6. Neural Circuits
Biologically realistic neural models can provide deeper insights
into how real neural circuits function. The model proposed here
contains a number of features that correspond to those in its
biological counterpart, namely in terms of ON and OFF channels
for LGN cells, positive neuronal responses, local computation,
local learning rule, existence of feedback, and obedience to
Dale’s law.

In addition, our model incorporates inhibitory effects between
LGN cells and cortical simple cells. As pointed out in
the Materials and Methods section, for simplicity, inhibitory
effects are implemented by direct inhibitory connections
between two layers. However, in reality, long-range inhibitory
effects should be implemented via interneurons that have

inhibitory synapses. In this section, we will discuss several
neural circuits of implementing inhibitory connections of
our model.

Possible neural circuits that may be used to implement
long-range inhibition are displayed in Figure 14. Assume that
the overall inhibitory effects from LGN cells (with activity sL)
to cortical simple cells (with activity sC) can be represented
by inhibitory connections, A−, between populations. We also
assume that the learning rule ofA− is local, i.e., that only depends
on the responses of two populations (sL and sC). Long-range
inhibition in our model is implemented via direct inhibitory
connections, which is not biologically realistic (Figure 14A).

The circuit in Figure 14B implements inhibitory connections,
A− (with non-positive weights), via a population of interneurons
that have inhibitory connections, A−, with cortical simple
cells. LGN cells are connected to interneurons via long-range
identical excitatory connections, I; i.e., the interneurons copy the
responses of LGN cells. For this structure, long-range excitatory
connections, I, are fixed while A− are learned using the same
learning rule in Figure 14A. In this case, the learning rule of
A− is still local because the responses of interneurons are just
sL and the model is still biologically plausible in terms of the
local learning rule. Furthermore, the RFs of interneurons in the
same layer as cortical simple cells should be LGN-like. Though
V1 cortical cells with blob-like RFs were found in different species
(Kretz et al., 1986; Jones and Palmer, 1987a; Hawken et al.,
1988; Muly and Fitzpatrick, 1992; Chapman and Stryker, 1993;

FIGURE 14 | Possible neural circuits for implementing long-range inhibition.

Red and green arrows represent excitatory and inhibitory connections. (A)

Direct long-range inhibition. (B) Circuit I. (C) Circuit II.
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Ringach, 2002), we are not sure whether this neural circuit is
the most likely candidate because the fixed identical connection
between LGN cells and the interneurons seems artificial unless
they can be learned.

Figure 14C shows another possible neural circuit for
implementing A−. LGN Cells are connected to interneurons via
long-range excitatory connections, −A−. There is a one-to-one
mapping between interneurons and cortical simple cells. In
this case, the overall effect from LGN cells to simple cells is
equivalent to A−. In addition, the RFs of inhibitory interneurons
should resemble simple cells and show orientation tuning since
the learned A− has spatial structures such as oriented bars,
which is consistent with the smooth simple cells found in cat
V1 of the experimental study (Hirsch et al., 2003). The positive
connections −A− can be learned by Hebbian learning and
the identical connections between interneurons and cortical
simple cells can be learned by anti-Hebbian learning. Therefore,
this neural circuit is more feasible than than the circuit
in Figure 14B.

4.7. Discrepancies Between Model and
Experimental Data
Our model can capture the most significant features of
experimental phenomena such as the segregation of ON and
OFF sub-regions, push-pull effect and contrast invariance
of orientation tuning. However, there are also discrepancies
between the distributions of model and experimental data.
In general, the histograms of experimental data (Figures 6C,
7C, 13C) are wider than model data (Figures 6D, 7D, 13D),
which shows that experimental data is more diverse. One
possible explanation is that model cells in this paper are only a
subset of the rich repository of real cortical cells. Furthermore,
choices of free parameters in the model might also lead to
different results.

5. CONCLUSION

In this paper, we presented a biologically plausiblemodel of LGN-
V1 pathways to account for many experimental phenomena
of V1. We found that the segregation of ON/OFF sub-regions
of simple cells, push-pull effect, and phase-reversed cortico-
thalamic feedback can all be explained by the structure of learning
connections when the model incorporates ON and OFF LGN
cells and is trained using natural images. Furthermore, the model
can produce diverse shapes of receptive fields and contrast
invariance of orientation tuning of simple cells, consistent with
experimental observations.
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In mammalian neurons, small conductance calcium-activated potassium channels (SK
channels) are activated by calcium influx and contribute to the afterhyperpolarization
(AHP) that follows action potentials. Three types of SK channel, SK1, SK2 and
SK3 are recognized and encoded by separate genes that are widely expressed in
overlapping distributions in the mammalian brain. Expression of the rat genes, rSK2 and
rSK3 generates functional ion channels that traffic to the membrane as homomeric
and heteromeric complexes. However, rSK1 is not trafficked to the plasma membrane,
appears not to form functional channels, and the role of rSK1 in neurons is not
clear. Here, we show that rSK1 co-assembles with rSK2. rSK1 is not trafficked to
the membrane but is retained in a cytoplasmic compartment. When rSK2 is present,
heteromeric rSK1-rSK2 channels are also retained in the cytosolic compartment,
reducing the total SK channel content on the plasma membrane. Thus, rSK1 appears
to act as chaperone for rSK2 channels and expression of rSK1 may control the level of
functional SK current in rat neurons.

Keywords: spike frequency adaptation, potassium channel, afterhyperpolarization, excitability, calcium
activated K+ channels (KCa1–KCa5)

INTRODUCTION

Potassium channels are widely expressed in the central nervous system (CNS) where they play an
important role in regulating the intrinsic excitability of neurons. A subset of potassium channels
expressed in central neurons are Ca2+-activated K+ channels that regulate cellular excitability and
spike frequency adaptation (Coetzee et al., 1999; Adelman et al., 2012). These are divided into three
families that comprise the large conductance (BK) channels (KCa1.1), small conductance (SK)
channels KCa2.1, KCa2.2, KCa2.3 (SK1, SK2, and SK3), and the intermediate conductance (IK)
channels KCa3.1 (Vergara et al., 1998). In neurons, these channels are generally driven by calcium
influx during action potentials, and activation of BK currents contributes to spike repolarization,
while SK channel activity is slower, contributing to the afterhyperpolarization (AHP) that follows
(Sah, 1996). These channels can also be activated by calcium release from intracellular stores again
leading to inhibition of neural activity (Fiorillo and Williams, 1998), and are also expressed at
glutamatergic synapses, where they are activated by calcium influx during synaptic activity and
play a role in tuning synaptic plasticity (Faber et al., 2005; Ngo-Anh et al., 2005; Lin et al., 2008).

SK channels are encoded by three genes, SK1, SK2 and SK3 (Köhler et al., 1996; Stocker
and Pedarzani, 2000; Sailer et al., 2002), which are expressed throughout the mammalian
brain in distinct but partially overlapping distributions. In the rodent brain, SK1 and SK2 are
generally co-expressed while SK3 channels are present in a complementary distribution (Stocker
and Pedarzani, 2000). Functional studies in heterologous expression systems have shown that rat
SK2 (rSK2) and SK3 (rSK3), and human SK1 (hSK1) channels form functional homomeric channels

Frontiers in Neural Circuits | www.frontiersin.org 1 April 2019 | Volume 13 | Article 2192

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2019.00021
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2019.00021&domain=pdf&date_stamp=2019-04-03
https://creativecommons.org/licenses/by/4.0/
mailto:pankaj.sah@uq.edu.au
https://doi.org/10.3389/fncir.2019.00021
https://www.frontiersin.org/articles/10.3389/fncir.2019.00021/full
https://www.frontiersin.org/articles/10.3389/fncir.2019.00021/full
https://loop.frontiersin.org/people/1459/overview
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Autuori et al. SK1 Channels

that are voltage-insensitive and gated by the binding of Ca2+

to calmodulin (CaM; Xia et al., 1998; Lee and MacKinnon,
2018), which is covalently linked at their cytosolic, carboxy-
terminal region (Lee and MacKinnon, 2018). In contrast, the rat
SK1 (rSK1), does not generate functional homomeric channels
(Köhler et al., 1996; D’Hoedt et al., 2004), but does appear to
co-assemble with rSK2 (Ishii et al., 1997; Benton et al., 2003;
Church et al., 2015). This difference is due to differences in
the sequence identity of the two channels. Thus, rSK2 and
rSK3 are highly homologous to the human SK2 (97.6%) and
SK3 (94.4%), and have similar pharmacology and functional
profiles (Köhler et al., 1996; Joiner et al., 1997; Desai et al., 2000),
while rSK1 is only 84% homologous to hSK1 (D’Hoedt et al.,
2004). Indeed, replacing the carboxy terminal of rSK1 with that
of rSK2 restores functional expression of rSK1, and swapping
C- and N-termini of hSK1 with those from rSK1 prevents
expression of functional hSK1 channels on the cell membrane of
HEK293T cells (D’Hoedt et al., 2004).

In summary, while rodent rSK1, rSK2 and rSK3 channels are
widely expressed in neurons of the rodent nervous system, rSK1,
unlike rSK2 and rSK3, does not form functional homomeric
channels. Homomers and dimers consisting of SK2 and SK3 form
functional channels and contribute to the AHP and are also
involved in synaptic plasticity (Adelman et al., 2012). It has been
reported (Benton et al., 2003) that co-expression of rSK1 and
rSK2 in HEK293 cells results in larger calcium-activated
currents with altered pharmacology suggesting that rSK1 can
form functional heteromeric assemblies with rSK2, though
biochemical evidence for this co-assembly is lacking. Thus,
while rSK1 is widely co-expressed with rSK2, the functional
role of rodent SK1 remains unclear. In this study, we test
the function of rSK1 channels in a heterologous system and
cultured rat hippocampal pyramidal neurons. Firstly, we tested if
rSK1 and rSK2 could interact in a heterologous system. We then
looked at the effect of either overexpressing or downregulating
rSK1 channels and tested the level of rSK2 channels expressed
on the cells membranes of both a heterologous system and in
hippocampal pyramidal neurons. Finally, we tested if changing
rSK1 levels was related to a change inmediumAHP (mAHP) and
its underlying current (IAHP) in hippocampal pyramidal neurons
that are generated by the activation of SK2 channels (Stocker
et al., 1999, 2004).

MATERIALS AND METHODS

Neuronal Cultures
Primary E18 Wistar rat hippocampal cultures were prepared as
previously described (Delaney et al., 2013). Briefly, hippocampi
were digested for 20 min at 37◦C in papain (12 U/ml,
Worthington, suspension 28.4 U/mg) made up in dissection
medium (1× HBSS, 1% penicillin/streptomycin, 1% pyruvate,
10 mM HEPES, 30 mM glucose) and supplemented with 1%
DNase (Sigma). The digested material was washed three times
in plating medium [Neurobasal medium (Life Technologies)
supplemented with 5% heat-inactivated fetal bovine serum (FBS),
1% penicillin/streptomycin, 1% Glutamax (Life Technologies)
and 2% B27 (Life Technologies)] and the resulting pellet was

triturated in plating medium using a fire-polished glass Pasteur
pipette. Cells were plated at a density of 1 × 105 cells/ml
for immunocytochemistry and the biotinylation assays and at
4 × 104 cells/ml for the electrophysiology experiments, on glass
coverslips precoated with poly-D-lysine in plating medium and
maintained at 37◦C in 5% CO2.

Biotinylation and Western Blot Analysis
Hippocampal neurons were cooled on ice and were then rinsed
three times with phosphate buffered saline (PBS) prior to
exposure with EZ-Link Sulfo-NHS-SS-Biotin (Pierce), dissolved
in PBS to a concentration of 1.22 mg/ml. The biotinylation
reaction was undertaken on ice for 30 min, followed by biotin
removal and washing twice with 100 mM glycine in PBS and
then once with PBS. Cells were lysed in 200 µl lysis buffer
(20 mM sodium phosphate, pH 7.5, 150 mM NaCl, 0.5%
NP40, 0.5% sodium deoxycholate, 0.1% SDS, 1× complete
protease inhibitors, Roche) and left on ice for 30–45 min. The
lysates were then centrifuged at 6,500 g for 5 min. Twenty
microliters of the resulting supernatant was then removed and
this was classified as the total lysate (LYS). Biotinylated proteins
were captured from the supernatant by the addition of 25 µl
Streptavidin Agarose Resin (Pierce) at 4◦C for 30 min. The
beads were then centrifuged at 10,000 g for 1 min and the
resulting supernatant was classified as the cytoplasmic phase
(CYTO). The beads were washed a further three times in
PBS. This was classed as the membrane fraction (MEMB).
All samples were then boiled for 5–10 min in 1× SDS
sample buffer containing 100 mM DTT and then fractionated
on 4%–12% Bis-Tris gradient gels (Life Technologies) and
transferred to polyvinylidene difluoride membrane (Immobilon-
P, Merck Millipore) at 150 V in 1× MOPS transfer buffer (Life
Technologies). Blots were blocked in Tris-buffered saline (TBS)
containing 5% skim milk powder, probed with primary antibody
[mouse αMyc (9B11; 1/5,000, Cell Signalling Technology), rabbit
α HA (1/500, Cell Signalling Technology), mouse α β-actin
(AC-15; 1/20,000, Cell Signalling Technology), rabbit α EGFR
(1/2,000, Cell Signalling Technology), mouse α Na+/K+ ATPase
(alpha 1; clone C464.6; 1/4,000, Merck Millipore), rabbit α SK2
(c-39; 1/2,000, gift of J. Adelman)] followed by incubation with
horseradish peroxidase-conjugated goat anti-rabbit or mouse
IgG (1/20,000, Biorad) and detection by SuperSignal West Pico
or FEMTO chemiluminescent substrate (Pierce). Blots were
scanned using the Odyssey Infrared Imaging System (Li-cor)
and densitometry analysis was carried out using Image Studio
Lite software.

All data are expressed as mean ± standard error of the
mean (SEM). Statistical analysis was performed using GraphPad
Prism (GraphPad Software). All the data were tested for normal
distribution using a normality test. If data were normally
distributed, a Student’s unpaired t-test was used. If the data did
not pass the normality test, the Mann-Whitney test was used.
Significance was determined at p < 0.05.

Co-immunoprecipitation
Supernatants were precleared for 1 h at 4◦C with 75 µl of
50% Sepharose bead slurry (Amersham) and 1.5 µg of species-
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specific IgG (Sigma, 1 mg/ml). Protein G sepharose bead slurry
and mouse IgG were used for the samples immunoprecipitated
with mouse α Myc (9B11; Cell Signalling Technology); protein
A sepharose bead slurry and rabbit IgG for the samples
immunoprecipitated with the rabbit α HA (Cell Signalling
Technology) antibody. Samples were then spun at 13,000 rpm for
5 min and the resulting supernatants were incubated overnight
at 4◦C respectively with mouse α Myc antibody (2 µl/1.5 mg
proteins) or rabbit α HA (1:50) antibodies. The following day,
the α Myc samples were incubated with 75 µl of 50% protein
G sepharose beads and the α HA samples with 75 µl of 50%
protein A sepharose beads for a further 3 h at 4◦C. Samples were
centrifuged at 3,000 rpm for 5 min at 4◦C and the recovered
pellets were washed three times in RIPA buffer [150 mM NaCl,
1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM
Tris pH = 8.0 and protease inhibitors (Roche)]. Samples were
eluted with sample buffer containing DTT and denatured by
boiling for 5 min. Co-immunoprecipitation samples (IP) were
run together with the input (IN) and the supernatant (S)
resulting from the immunoprecipitation, transferred as described
above and blotted with mouse α Myc and rabbit α HA as
described above.

Lentiviral Constructs
Several knock-down hairpin constructs were produced using
annealed phosphorylated oligonucleotides, which were ligated
into the pll3.7 dsRed vector digested with HpaI and XhoI. The
pll3.7 dsRed vector has the EGFP of pll3.7 vector replaced with
dsRed. HEK293T cells were plated at a density of 5× 105 cells per
35 mm well and were transfected 2 h later using Lipofectamine
2,000 (Life Technologies) as per the manufacturer’s instructions
with constructs expressing rat SK1-YFP (gift of G. Moss) and
three different plasmids carrying SK1 knock down hairpins
(rSK1-KD 2.4, 3.6 and 4.5) at a ratio of 1:1. Forty-eight hours
later, the cells were checked for YFP and dsRed expression,
washed with PBS and lysed in 600 µl 1× sample buffer. Thirty
microliters of this was run on an SDS-PAGE gel, transferred
and western blots carried out using rabbit α GFP (1/500,
Merck Millipore) primary antibody as per methods above except
that x-ray film was used for detection. Mouse β-actin (AC-15;
1/20,000, Cell Signalling Technology) was used as a loading
control. Out of the three plasmids, rSK1-KD 3.6 was the most
successful at reducing SK1-YFP expression (Figure 1). The
primers used to produce this knockdown construct are as
follows–

• pLLrSK1_3S: tgtctcatagcccaagccatatttcaagagaatatggcttgggctatg
agacttttttc
• pLLrSK1_3AS: tcgagaaaaaagtctcatagcccaagccatattctcttgaaata

tggcttgggctatgagaca

To enable us to determine the virally infected neurons,
we replaced the CMV promoter (expressing the dsRed) in
pll3.7 dsRed with the hSyn promoter using the Not and Nhe
restriction sites and the following primers–

• Synapsin400-Not-F: aaagcggccgcgtgtctagactgcagagggccct
• Synapsin400-Nhe-R: aaagctagcttctcgactgcgctctcagg

FIGURE 1 | rSK1-KD 3.6 reduces rSK1-YFP expression in HEK293T cells.
Western blot of total cell lysates of HEK293T cells transfected with rSK1-YFP
and co-transfected with pcDNA3 or plldsRed or three different knock-down
hairpin constructs: rSK1-KD 2.4 or rSK1-KD 3.6 or rSK1-KD 4.5. rSK1-KD
3.6 reduced the expression of rSK1-YFP by over 90% and was used in all
further experiments. β-actin was used as a loading control.

A scrambled (SCRAM) control plasmid was also produced
using a random combination of the hairpin sequence of the
successful knockdown construct. The primers used to produce
the SCRAM construct are as follows–

• SCRAM pLLrSK1_3S: tggcactttaacgccaatcactttcaagagaagtgatt
ggcgttaaagtgccttttttc
• SCRAM pLLrSK1_3AS: tcgagaaaaaaggcactttaacgccaatcacttctc

ttgaaagtgattggcgttaaagtgcca

The rat SK2 overexpression plasmid pJPA5.rSK2.Myc3 (gift of
J. Adelman) has a triple Myc tag located extracellularly between
the S3 and S4 domains. The Myc-tagged SK2 was further cloned
into the lentiviral FUGW plasmid (gift of P. Osten) using the
AgeI and EcoRI restriction sites and the following primers–

• F-rSK2: gggaccggtgaaatagccatgagcagctgcaggtacaacggg
• R-rSK2: ggggaattcgctactctcagatgaagttgg

The rat SK1 overexpression plasmid pcDNA3.1-rSK1_HA
(gift of G. Moss) has a HA tag located intracellularly between the
S2 and S3 domains. The HA-tagged SK1 was further cloned into
the lentiviral FUGW plasmid (gift of P. Osten).

For lentivirus production, all plasmids (pMDG, pMDL
g/p RRE, pRSV Rev and the pll3.7 transfer vector) were
prepared using the Qiagen Endofree maxiprep kit and lentivirus
was prepared via calcium phosphate transfection of 80%
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confluent triple T175 flasks of HEK293T cells. Cells were
grown in DMEM (Life Technologies) plus 10% FBS and 1%
penicillin/streptomycin (Life Technologies). Forty microgram of
transfer vector together with 20 µg of the other three plasmids
were transfected per triple T175 flask. Plasmids were diluted
to 0.5 µg/ml in TE buffer and made up to a volume of 3 ml
with sterile distilled water. Three-hundred microliter of 2.5 M
CaCl2 was added together with 3 ml of 2× BBS (50 mM
BES, 280 mM NaCl, 1.5 mM Na2HPO4, pH = 6.95). This was
incubated for 20 min at room temperature before adding the mix
dropwise to the cells. The cells were incubated for 3–4 h at 37◦C
plus 5% CO2 before the removal of the calcium phosphate mix
and addition of new media. Viral supernatants were removed
48 h post-transfection, filtered using a 0.45 µm filter unit and
then centrifuged for 4 h at 20,000 g over a 20% sucrose cushion.
The resulting pellet was resuspended overnight in PBS containing
1% BSA and then ultracentrifuged at 44,000 g for 90 min to
concentrate the virus. The virus pellet was resuspended in PBS
containing 1% BSA.

Neuronal cultures were infected at 4–5 DIV and the
virus was left on for 4–12 h. The virus was then removed
and conditioned media added to the cultures. Biotinylation
experiments and quantitative PCR (qPCR) were undertaken
4–5 days post infection. Knockdown and overexpression
lentiviral constructs were also tested for specificity and
expression using qPCR. Briefly, RNAs were purified using a
RNeasy kit (Qiagen), DNase 1 (Qiagen) treated and reverse
transcribed to produce complementary DNA using random
hexamers and the SuperScript III First Strand Synthesis System
(Life Technologies), as per the manufacturer’s instructions.
Standard qPCR was carried out on a Rotorgene RG-3000
Thermocycler using the Platinum SYBR Green qPCR UDG
SuperMix (Life Technologies) and 0.2 µM of the following
primers:

• rSK1 Fwd—tca tct cca tta cct tcc tg
• rSK1 Rev—agc ctg gtg tgt ttg tag at
• rSK2 Fwd—gtc gct gta ttc ttt agc tct g
• rSK2 Rev—acg ctc ata agt cat ggc
• rGAPDH Fwd—gag tct act ggc gtc ttc ac
• rGAPDH Rev—cca tcc aca gtc ttc tga gt

Reactions were performed in either duplicate or triplicate. The
PCR program was as follows: 50◦C 2 min, 95◦C 10 min, 35 cycles
−95◦C 10 s, 54◦C 15 s, 72◦C 20 s. Relative expression of rSK1 and
rSK2 mRNA was obtained using the comparative Ct method.

Cosm6 Transfections
For the Cosm6 transfections- pJPA5.rSK2.Myc3 and pcDNA3.1-
rSK1_HA along with pcDNA3 for the single construct
transfections were transfected using the same protocol as
described above but using a ratio of 1:2:1.

Immunohistochemistry
Hippocampal cultures were washed in PBS and fixed in 4% PFA
containing 4% sucrose. After three washes in PBS, the cells were
first blocked in a 0.3% BSA/0.1% Triton X-100 solution, then
incubated in primary antibody overnight at 4◦C, washed in PBS

and left in secondary antibody (Life Technologies) for a further
1 h at room temperature. Stained cultures were analyzed on a
confocal fluorescence microscope (Zeiss LSM510).

Electrophysiology
Rat hippocampal neuronal cultures were recorded at least
2 weeks after viral infection (DIV 15–17). Coverslips were
transferred from the incubator to the recording chamber,
located on a stage of a fluorescence microscope (Zeiss 710).
Ringer solution (140 mM NaCl, 5 mM KCl, 2 mM CaCl2,
1 mM MgCl2 10 mM glucose and 10 mM HEPES) was
constantly perfused at 1–1.5 ml/min at room temperature.
Whole-cell recordings were obtained from dsRed-positive
neurons (SCRAM or SK1 KD) or neurons (rSK1-HA and
rSK2-myc) using a K-methyl-sulfate based internal solution
containing (mM): 135 KMeSO4, 5 NaCl, 10 Hepes, 2 Mg2-ATP,
0.3 Na3-GTP, 0.1 spermine and 7 phosphocreatine (pH = 7.3,
∼290 mOsmol).

Tetrodotoxin (TTX, 1 µM, Sigma), D-(−)-2-Amino-5-
phosphonopentanoic acid (D-APV, 20µM, Tocris) and 6-cyano-
7-nitroquinoxaline-2,3-dione disodium salt (CNQX, 20 µM,
Tocris) were added to the ringer solution to reduce spontaneous
activity and isolate mAHP and IAHP. For a recording of mAHP,
cells were injected with a 400 pA/100 ms step either at resting
membrane potential or by clamping the cells at −50 mV. For
recordings of IAHP, cells were held at−50 mV and a depolarizing
step (+60 mV) to +10 mV for 100 ms was used to increase Ca2+

influx through voltage-gated Ca2+channels, which are necessary
to activate IAHP (Stocker et al., 2004).

Data were collected using Axograph X software and a
Multiclamp 700B amplifier (Molecular Devices). Signals were
filtered at 10 kHz and digitized at 50 kHz using an ITC-16 A/D
converter (InstruTech).

RESULTS

rSK1 and rSK2 Co-assemble in
Cosm6 Cells
To test expression of SK channels, rSK1 and rSK2 were epitope-
tagged with HA and Myc, respectively (see ‘‘Materials and
Methods’’ section). As shown previously (D’Hoedt et al., 2004;
Church et al., 2015), transfection in Cosm6 cells shows that
rSK2 was expressed throughout the cell, while rSK1-HA was
restricted to the cytosolic somatic compartment (Figure 2), likely
the endoplasmic reticulum and Golgi (Church et al., 2015).
As shown by others (Strassmaier et al., 2005), western blot
analysis using Myc and HA antibodies shows bands of several
sizes that correspond to monomeric protein (∼60 kDa, band
3), dimers (∼120 kDa, band 2) and a large molecular band
(∼200 kDa, band 1), which is likely to be a tetramer (Figure 2B).
Separation of the membrane fraction (MEMB on blots) using
surface biotinylation (see ‘‘Materials and Methods’’ section)
shows that unlike rSK2, rSK1 channels are not detectable on
the plasma membrane. When rSK1 and rSK2 were co-expressed,
again rSK2was detectable in themembrane fraction but rSK1was
not (Figure 2B), but the level of rSK2 protein in the membrane
fraction was reduced (Figures 2B,C). There was a clear reduction
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FIGURE 2 | rSK1 regulates the membrane expression of rSK2 channels. (A) Immunocytochemistry of Cosm6 cells transfected with rSK2-Myc or rSK1-HA.
rSK2-Myc (pink), rSK1-HA (green), DAPI (blue). (B) Immunoblots from Cosm6 cells transfected with rSK1-HA, rSK2-Myc and hSK1 in different combinations. Shown
are the total lysate (LYS) and membrane (MEMB) fraction isolated using surface biotinylation probed with either Myc (rSK2; left) or HA (rSK1; right) antibody. EGFR
was used as the loading control. rSK2 transfection results in three size bands that represent monomeric protein (band 3, ∼60 kDa), dimers (band 2, ∼120 kDa) and
tetramers (band 1, >200 kDa). Co-transfection of rSK2 and rSK1 reduced the amount of rSK2 expressed in the cell membrane. (C) Bar graphs show normalized
relative density of SK2, as described in the “Materials and Methods” section, in the membrane fraction from Cosm6 cells transfected with rSK2 alone or
co-transfected with rSK1 or hSK1. Co-transfection with rSK1-HA significantly reduced the 60 kDa band (p = 0.002). Co-transfection with hSK1 increased expression
of rSK2. (D) Co-immunoprecipitation (co-IP) assay of transfected Cosm6 cells shows co-assembly of rSK1-rSK2. Solubilized protein from Cosm6 cells transfected
with rSK1 and/or rSK2 was immunoprecipitated with Myc (left) or HA (right) and immunoblotted with either Myc or HA as indicated.
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in monomeric rSK2 (n = 3, p = 0.002), but other higher molecular
weight species were also greatly reduced (Figure 2C). In contrast
to rSK1, hSK1 is known to express as functional channels
(D’Hoedt et al., 2004), and forms heteromultimeric channels
(Ishii et al., 1997; Benton et al., 2003; Church et al., 2015). In
agreement, co-expression of hSK1 with the rSK2 increased the
amount of rSK2-Myc on the cell membranes (Figures 2B,C).

What explains the reduction in membrane rSK2 when it
is co-expressed with rSK1? As rSK1 is retained in cytosolic
compartments and not trafficked to the membrane (Benton
et al., 2003; Church et al., 2015), it is possible that rSK2
co-assembles with rSK1 with the resulting heteromultimers
being retained, leading to a reduction of membrane rSK2. We,
therefore, tested for interactions between these two channels
using co-immunoprecipitation (co-IP). rSK1-HA and rSK2-Myc
were expressed in Cosm6 cells, and Myc or HA antibodies used
to isolate rSK2 or rSK1 using sepharose A/G beads followed
by immunoblot analysis of SK protein. IP of Cosm6 cell
homogenates using anti-Myc antibody revealed the presence of
rSK2 in both supernatant, input and co-immunoprecipitated
samples, from single transfected (rSK2-Myc) and co-transfected
cells (rSK2-Myc+rSK1-HA; Figure 2D). Probing with HA
antibody revealed the presence of rSK1-HA in the multimeric
complex (Figure 2D, left). Complimentary experiments using
the anti-HA antibody to precipitate rSK1 protein lysates and
probing with anti-Myc also revealed the presence of rSK2 in
the multimeric high molecular weight band (Figure 2D, right).
It was notable that following IP with myc and probe with HA
or the reverse, while very high molecular weight (>200 kD)
complexes are present, there is a dearth of complexes at∼110 kD
(Figure 2D, upper panels). We interpret this to show the
presence of tetrameric heteromeric protein.

Overexpression of rSK1 in Neurons
Decreases Plasma Membrane rSK2
These results show that when expressed in Cosm6 cells rSK1 and
rSK2 can co-assemble. Moreover, the interaction between
the two channels affects the total rSK2 present in the cell
membrane. Thus, rSK1 channels appear to ‘‘trap’’ rSK2 in the
cytoplasmic compartment, therefore reducing the total amount
of rSK2 trafficked to the cell membrane.

To test if rSK1 acts similarly in neurons, we turned to
cultured rat hippocampal neurons. rSK1-HA and rSK2-Myc were
delivered using lentivirus (see ‘‘Materials and Methods’’ section).
We first tested the effect of overexpression of rSK1 or rSK2 on
mRNA levels, using qPCR. Increasing the volume of rSK1 or
rSK2 expressing virus added to neuronal cultures increased
the relative expression of mRNA of the specific gene delivered
without affecting the other: infection of 1× 105 rat hippocampal
cultures with 0.2 µl and 0.5 µl rSK1-HA lentivirus increased
rSK1 relative expression by 60 and 200-fold, respectively, while
infection with 0.2 µl and 0.5 µl of rSK2-Myc lentivirus increased
rSK2 relative expression by 10 and 40-fold, respectively (data
not shown). Next, expression of SK2 protein was tested using
immunocytochemistry (Figure 3). Transduction of rSK2-Myc
(Figure 3A) or rSK1-HA (Figure 3B) showed clear expression
of Myc and HA in cells positive for the neuronal marker NeuN.

Co-expression of rSK1 and rSK2 show that the two are at least
partially co-localized in neurons (Figure 3C), consistent with
heterodimer formation of rSK1 and rSK2. It can also be seen that
in neurons when rSK1-HA is expressed alone (Figure 3B), its
distribution is not confined to the soma, but spreads throughout
the cell, consistent with the expression of endogenous SK2 in
these neurons (Figure 3D).

To test for the presence of rSK2 in the plasma membrane
we again turned to the surface biotinylation assay to separate
the membrane compartment. rSK1-HA and rSK2-Myc were
transduced using lentivirus. As in Cosm6 cells (Figure 2),
we found that co-expression of rSK2 with rSK1 decreased
the amount of rSK2 detected in the membrane fraction of
infected neurons (Figures 4A,B). This reduction was particularly
significant in the high molecular weight band, again suggesting
delivery of a heteromultimeric protein (n = 3, p = 0.04;
Figure 4B). To account for possible effects of overexpressing
rSK2, we tested the impact of rSK1 expression on endogenous
rSK2 using the specific SK2 antibody (c-39). When rSK1-HA
was transduced in hippocampal neurons, the endogenous levels
of rSK2 protein detected in the cell membrane was reduced
(Figure 4C, upper panel), while the cytoplasmic fraction
increased (Figure 4C, bottom panel). Quantification of the
relative density of endogenous rSK2 (c-39) normalized to
β-actin shows that the density of the high molecular band was
significantly reduced in the membrane fraction in comparison
to uninfected neurons (n = 5, p = 0.001; Figure 4D), but
was increased in the cytosolic fraction (n = 4, p = 0.006;
Figure 4D, bottom panel). This increase in SK2 in the
‘‘cytoplasmic’’ fraction is likely due to the fact that rSK1-rSK2
heteromultimers are not trafficked to the plasma membrane, but
remain trapped in the cytoplasmic compartment, possibly the
endoplasmic reticulum.

rSK1 Modulates Functional SK Channels
In mammalian neurons, SK channels contribute to the medium
duration AHP that follows action potentials (IAHP), and in some
types of neurons they are also present at excitatory synapses
where they modulate synaptic strength (Faber et al., 2005;
Ngo-Anh et al., 2005; Adelman et al., 2012). We have shown
that overexpression of rSK1 seems to reduce the amount of
membrane rSK2 protein. We next tested if altering endogenous
rSK1 levels would have an impact on functional membrane
rSK channels in neurons. To disrupt endogenous rSK1, we
used short hairpin RNA interference (RNAi) constructs to
reduce rSK1 expression in hippocampal neurons using lentivirus
(see ‘‘Materials and Methods’’ section). rSK2 protein levels
in the membrane were assessed using the biotinylation assay
and western blot analysis (Figures 5A,B). Knockdown of rSK1
(rSK1-KD) significantly reduced the amount of rSK2 monomers
(60 kDa) expressed in the cell membrane in comparison to
neurons infected with scrambled virus (n = 4, p = 0.008), but
the total membrane rSK2 tetramers (>200 kDa) appeared to be
higher than the scrambled control (Figure 5A2). In the cytosolic
compartment, high molecular weight (>200 kDa) rSK2 protein
was significantly reduced as compared to scrambled control cells
(n = 4, p = 0.03; Figure 5B2).
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FIGURE 3 | rSK1 and rSK2 expressed in rat hippocampal neuronal cultures. Cultured hippocampal neurons were transduced with rSK2-Myc (A) or rSK1-HA (B) or
both (C) using lentivirus and immunostained for DAPI (blue), the neuronal marker NeuN (red), Myc (purple) or HA (green). (A,B) SK2 (Myc) and SK1 (HA) are
expressed throughout the soma and processes of transduced neurons. DAPI (C) co-expression of rSK2 and rSK1 shows that both proteins are present in the same
compartments. (D) Immunocytochemistry using a specific SK2 antibody (c-39; green) shows that endogenous rSK2 is present in the soma and throughout the
processes of cultured neurons. Hippocampal neurons are marked using CaMKII (purple).

To test for functional expression of rSK channels, whole-cell
recordings were obtained from infected hippocampal neurons
in culture (Figures 5C,D). The passive membrane properties
of neurons in infected with SK2 RNAi hairpins and scrambled
controls were not different, and are given in Supplementary
Table S1. Reducing rSK1 with RNAi increased the amplitude
of IAHP in comparison to that in scrambled infected neurons
(p = 0.03; Figure 5C). As expected, switching to current clamp
also revealed an increase in the amplitude of the medium AHP

(p = 0.03; Figure 5D), and this enhanced IAHP current was
blocked by apamin (Figure 5E). Together, these results support
a role for rSK1 channels in regulating the expression of rSK2 on
the cell membrane.

DISCUSSION

SK1, SK2 and SK3 encode calcium-activated potassium channels
that are widely expressed in the mammalian brain. In
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FIGURE 4 | rSK1 regulates membrane expression of rSK2 channels in cultured neurons. Cultured hippocampal neurons were transduced to express rSK1-HA or
rSK2-Myc or both. Surface protein was biotinylated, and solubilized protein from neurons separated into total lysate (LYS) and membrane fraction (MEMB) as
detailed in the “Materials and Methods” section. Immunoblots were probed using the Myc antibody to test for rSK2 expression. Na/K ATPase or β-actin was used as
loading controls. (A) Co-expression of rSK1 and rSK2 reduces membrane expression of rSK2. (B) Graph shows normalized relative density of SK2, in the membrane
fraction from neurons transduced with rSK2 alone or rSK2 and rSK1. Co-infection significantly reduced the band at 200 kDa (p = 0.04). (C) Expression of rSK1 in
neurons reduced surface expression of endogenous rSK2. Cultured neurons were transduced to express rSK1 using lentivirus. Blots show solubilized protein from
the membrane fraction (upper blots) and cytosolic fraction (lower blots) from control neurons (left) and neurons transduced with rSK1(right). Blots were probed with
anti SK2 antibody (c-39). (D) Quantification of SK2 protein expression in the membrane (upper graph) and cytosolic (lower graph) fraction from control neurons and
neurons transduced with rSK1. Neurons infected with rSK1 had a significantly lower amount of endogenous high molecular weight rSK2 in the membrane fraction
and this was balanced by an increase in the total cytoplasmic fraction.

rodents, rSK1 and rSK2 are expressed in strongly overlapping
distributions. However, while expression of rSK2 channels
produces functional calcium-activated potassium channels,
rSK1 channels are made but not trafficked to the plasma

membrane (D’Hoedt et al., 2004; Church et al., 2015), and the
functional role of these channels is not clear. In this study, we
show that rSK1 channels co-assemble with rSK2, and regulate the
plasma membrane levels of rSK2. Thus, expression of rSK1 in
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FIGURE 5 | Knock down of rSK1 enhances IAHP in hippocampal neurons. Cultured hippocampal neurons were transduced to express a hairpin knockdown vector
for SK1 (rSK1-KD) or a scrambled control vector (SCRAM). Surface protein was biotinylated, and solubilized protein from neurons separated into total lysate (LYS)
and membrane fraction (MEMB) as detailed in the “Materials and Methods” section. Blots were immunoprobed using the rSK2 antibody (c-39). (A1) Knockdown of
SK1 protein results in an overall reduction of total endogenous monomeric SK2 protein, but enhancement of high molecular weight SK channels in the plasma
membrane. Na+/K+ ATPase was sued as the loading control. (A2) Normalized relative density of endogenous rSK2 in the membrane fraction [NORM (MEMB)] from
neurons infected with rSK1-KD. rSK1-KD significantly decreased the amount of endogenous monomeric rSK2, but increased high molecular weight rSK2. Na+/K+

ATPase (∼110 kDa) was used to normalize all the loaded samples for the MEMB fraction. (B1) Knockdown of rSK1 results in a reduction in high molecular weight
SK2 in the cytoplasmic fraction. (B2) Quantification of blot shown in B1. β-actin (∼40 kDa) was used to normalize all the loaded samples for the CYTO fraction. (C)
Knockdown of rSK1 in hippocampal neurons (red traces) increased the amplitude of the IAHP in voltage clamp (left) and the medium AHP in current clamp (right) in
comparison to SCRAM infected neurons (traces in gray). (D) Quantification of the impact of the increase in the IAHP current shown as pA/pF and the medium AHP
following knockdown of rSK1. (E) The enhanced IAHP current following knockdown of rSK1 is apamin (100 nM) sensitive consistent with SK2 channels.
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neurons leads to the formation of heteromultimers containing
rSK2 that are trapped in the cytoplasmic compartment and
a reduction in the total rSK2 in the plasmamembrane. In support
of this, knockdown of endogenous rSK1 in cultured neurons
results in an increase in membrane rSK2. These results suggest
that rSK1 channels, rather than functioning as ion channels, are
involved in regulating the expression of rSK2 channels in the
plasma membrane.

While SK channels were cloned more than 20 years ago,
antibodies for immunoprecipitation and immunohistochemistry
for all three members are not easily available, thus we have
used epitope-tagged channels to study their expression and
trafficking. Here using rSK1 tagged with HA (rSK1-HA) and
rSK2 tagged with Myc (rSK2-Myc), in agreement with previous
studies (D’Hoedt et al., 2004; Church et al., 2015), we show
that when expressed in Cosm6 cells, rSK2 channels are present
in the plasma membrane, rSK1 channels are made but not
trafficked from the cytoplasmic compartment, with little or
no protein detectable in the membrane compartment. When
rSK1 and rSK2 are co-expressed in Cosm6 cells, we show
using co-immunoprecipitation that these channels co-assemble
and there is a significant reduction in the amount of rSK2 in
the plasma membrane. It is well known that hSK1 channels
can form functional channels that are expressed on the
cell surface (D’Hoedt et al., 2004; Church et al., 2015). In
agreement with this, co-expression of rSK2 with hSK1 had
an opposite effect to that of rSK1 with an increase in
membrane rSK2.

These results in Cosm6 cells were confirmed in rat
hippocampal neurons. Co-expression of rSK1-HA and
rSK2-Myc resulted in an overall reduction in the amount
of rSK2-Myc trafficked to the membrane. Importantly,
expression of exogenous rSK1-HA in cultured neurons
also resulted in a reduction in the total endogenous rSK2,
showing that expression of rSK1 can modify the levels of
membrane rSK2 channel. Finally, we show that by reducing
the amount of rSK1 channels using RNAi, increases the
amount of endogenous rSK2 channels expressed in the cell
membrane, and is consistent with the finding that transgenic
mice lacking SK1 show no overall effects on hippocampal
neuronal electrophysiology (Bond et al., 2004). We show that
reducing the rSK1 content of hippocampal neurons reduces the
overall amount of rSK2 monomeric protein in the membrane
but increases the total large molecular weight fraction (Figure 5).
This is perhaps expected as we have not modified the expression
level of rSK2 protein, and as rSK1 levels are lower, more
channels are trafficked to the membrane where they co-assemble
as high molecular weight homomeric multimers. As a result,
total monomeric protein levels are lower. This increase in
membrane rSK2 levels has a functional impact as it also
increases the amplitude of the SK-mediated IAHP in infected
rat neurons. Thus, by increasing or reducing the amount
of rSK1 channels expressed in a heterologous system or rat
neurons, we can decrease or increase rSK2 channels expressed
on the cell membrane.

Previous studies have shown that when expressed in
HEK293 cells, the interaction of rSK1 and rSK2 channels resulted

in an overall larger SK-channels mediated current and a change
in their pharmacology (Benton et al., 2003; Church et al., 2015).
This appears to be in contrast with our results in both Cosm6 cells
and rat neurons where overexpression of rSK1-HA reduced
the amount of rSK2 channels expressed in the cell membrane.
However, it remains possible that these channels assemble as
heteromultimers with the total fraction of SK1-SK2 heteromeric
protein in the membrane being very low.

Our results suggest that in the rodent brain rSK1 channels,
rather than acting as independent membrane ion channels,
are involved in trafficking of rSK2 channels to the plasma
membrane. hSK1, which is ∼84% homologous to the rodent
channels (D’Hoedt et al., 2004), behaves entirely differently,
being translated as a functional ion channel (Church et al.,
2015). The reason for this difference is not clear. It is
possible, that the rSK1-rSK2 interaction and the regulation of
rSK2 channels expressed on the cell membrane is important
during development. rSK1 and rSK2 channel transcripts
within the hippocampus (CA1, CA3 and dentate gyrus)
start being expressed at embryonic day 19 (E19) in rodents
(Gymnopoulos et al., 2014), with their expression patterns being
very similar, showing colocalization (Stocker and Pedarzani,
2000). These similar expression patterns could indicate a
developmental change within the expression of rSK2 channels
on the cell membrane that could affect neuronal physiology.
Interestingly, rSK2 was found to be present mainly in the
ER of CA1 pyramidal neurons at P5. By P30, however,
most rSK2 was present at spines and dendrites changing
the cellular physiology (Ballesteros-Merino et al., 2012). It is,
therefore, possible that rSK1 channels modulate the amount
of rSK2 channels expressed on the cell membrane. While
rSK2 channels are trapped in the ER by rSK1 channels,
neurons can receive more inputs and increased the excitation
in the early developmental stages, which will increase the
memory acquisition. Once later developmental stages are
reached, however, rSK1 channels may have a different role
in regulating the expression of rSK2 channels and the
neuronal physiology.
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Actions are shaped not only by the content of our percepts but also by our confidence in
them. To study the cortical representation of perceptual precision in decision making, we
acquired functional imaging data whilst participants performed two vibrotactile forced-
choice discrimination tasks: a fast-slow judgment, and a same-different judgment. The
first task requires a comparison of the perceived vibrotactile frequencies to decide which
one is faster. However, the second task requires that the estimated difference between
those frequencies is weighed against the precision of each percept—if both stimuli are
very precisely perceived, then any slight difference is more likely to be identified than if
the percepts are uncertain. We additionally presented either pure sinusoidal or temporally
degraded “noisy” stimuli, whose frequency/period differed slightly from cycle to cycle. In
this way, we were able to manipulate the perceptual precision. We report a constellation
of cortical regions in the rostral prefrontal cortex (PFC), dorsolateral PFC (DLPFC) and
superior frontal gyrus (SFG) associated with the perception of stimulus difference, the
presence of stimulus noise and the interaction between these factors. Dynamic causal
modeling (DCM) of these data suggested a nonlinear, hierarchical model, whereby
activity in the rostral PFC (evoked by the presence of stimulus noise) mutually interacts
with activity in the DLPFC (evoked by stimulus differences). This model of effective
connectivity outperformed competing models with serial and parallel interactions, hence
providing a unique insight into the hierarchical architecture underlying the representation
and appraisal of perceptual belief and precision in the PFC.

Keywords: decision making, dynamic causal modeling, fMRI, prefrontal cortex, vibrotactile

INTRODUCTION

Percepts underpin all our interactions with the world. Perceptual precision, the confidence
with which we hold those percepts, informs this interaction, such as when a decision is biased
toward a precisely represented percept (Ernst and Banks, 2002). Although high perceptual
precision may be advantageous in some contexts, such as when driving a car, there exist
other situations where a degree of imprecision is crucial: if percepts were held with infinite
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precision then it would be impossible to recognize any object
encountered for a second time. For example, the texture of
a surface would feel unique and surprising on every touch.
Whereas the neurobiology of perception has been a long-studied
subject, research into the basis of perceptual precision and
its impact on decision making has been more recent (Knill
and Pouget, 2004; Moran et al., 2013; Pouget et al., 2013;
Navajas et al., 2017).

The neural basis of perceptual decision-making has been
extensively studied using two-alternative forced-choice tasks
in the somatosensory (Romo and Salinas, 2003) and visual
domain (Britten et al., 1992). These prototypical experiments
consist in presenting two sequential stimuli that are followed
by a forced response between two choices involving a
comparison between the properties of these two stimuli
(see Figure 1). In the somatosensory modality, a wealth
of neurophysiological research using vibrotactile stimuli has
established the crucial role of the prefrontal cortex (PFC) during
the performance of such tasks (Gold and Shadlen, 2007; Hegner
et al., 2007; Heekeren et al., 2008; Wang, 2012). While the
primary somatosensory cortex is clearly involved in stimulus
representation (Hernández et al., 2000; Harris et al., 2002;
Sörös et al., 2007), the PFC holds the representation of the
first stimulus in working memory for subsequent comparison
against representation of the second stimulus (Preuschhof et al.,
2006; Wang, 2008), as well as the final decision process
(Miller et al., 2003; Pleger et al., 2006; Heekeren et al., 2008;
Wang, 2008; Barak et al., 2010). With very few exceptions
(Engel and Wang, 2011), decisions in these forced-choice
experiments are only dependent on magnitude comparisons of
the perceived frequencies. A sensory percept can be viewed
probabilistically (as a probability distribution) and to first
order can hence be decomposed into its magnitude (here,
the perceived frequency) and its precision (the inverse of the
variance of the probability distribution; see Figure 2). Whilst
perceptual precision—classically captured by the signal-to-noise
ratio—impacts upon the performance accuracy of a faster-
slower comparison, the decision itself does not explicitly require
representing and acting on the precision of those perceptions.
This is because the final decision only rests upon deciding
whether the second stimulus is faster or slower than the first
and does not depend upon the subjective confidence in that
judgment. That is, a faster-slower decision can be made by
a simple subtraction and does not crucially depend upon the
precision of either percept.

The anterior cingulate and ventromedial PFC appear to
play critical roles in assessing the value of current information
in an environment of uncertain outcome and reward (Daw
et al., 2005; Kennerley et al., 2006; Behrens et al., 2007).
These regions also represent changes in this value (that is,
when the link between stimulus, outcome and reward is
volatile; Rushworth and Behrens, 2008). Whilst the value of
the percept to an external reward is uncertain in these studies
(Fiorillo et al., 2003; Yu and Dayan, 2005; Hsu et al., 2005;
Huettel et al., 2006; Behrens et al., 2007; Tobler et al., 2007),
the percept itself is not ambiguous. Hence, it is not clear
from these studies whether these regions are also involved

in representing the intrinsic precision of the percept itself,
or whether other regions are recruited when the stimulus is
noisy but the task contingencies are fixed (Kayser et al., 2010;
Bach and Dolan, 2012).

Here, we sought to disentangle the representation of stimulus
properties from the precision of those representations in the
PFC. Functional neuroimaging data were acquired whilst paired
vibrotactile flutter stimuli (10–50 Hz) were sequentially applied
to the index finger. In separate tasks, participants were requested
to decide if the second stimulus was faster than the first, or if the
second stimulus was different from the first. As rehearsed above,
the ‘‘faster-slower’’ task can be performed by simply encoding
and subtracting an estimate of each stimulus frequency—that
is, decisions only explicitly depend on comparing the likely
value of each of the flutter frequencies. In the ‘‘same-different’’
task, the magnitude of this subtraction must be weighed against
the precision of the perceptual beliefs, such that a difference
that is perceived as small may be inferred as significant if
each percept is held precisely (and conversely for imprecise
representations). The precision of a percept is the composite of
the roughness of the stimulus and the perceptual imprecision due
to stochastic effects in perceptual systems: tomanipulate stimulus
precision, noise was introduced to the vibrotactile oscillatory
frequency as an additional experimental factor (Harris, 2006;
Harris et al., 2006; Karim et al., 2012). Note that we refer to
precision in the statistical sense of the inverse of the noise
variance (Figure 2).

The PFC is known to be underpinned by extensive intrinsic
anatomical connections, forming local circuits that adapt to
contextual demands at hand (Fuster, 2001; Miller and Cohen,
2001; Botvinick, 2008). The hierarchical nature of these circuits
during the representation of perceptual precision is poorly
understood (Nee and D’Esposito, 2016). We first identify
a constellation of regions in the left PFC that respond to
these stimulus and task manipulations. We then study the
prefrontal networks that underpin our data using dynamic
causal modeling (DCM). DCM is a model-based technique to
infer network dynamics (Friston et al., 2003) that has found
explanatory utility in cognitive neuroscience, including language
(Leff et al., 2008; Noppeney et al., 2008), motor processes
(Grefkes et al., 2008), vision (Mechelli et al., 2003; Fairhall
and Ishai, 2007) and memory (Smith et al., 2006). DCM
has been employed to study perceptual decision-making tasks
(Summerfield et al., 2006; Stephan et al., 2007; Summerfield
and Koechlin, 2008) including vibrotactile discrimination tasks,
focussing on the exchange of information from primary to
secondary somatosensory cortex (Kalberlah et al., 2013). Here,
we use DCM to disambiguate between candidate serial, parallel
or hierarchical engagement of the PFC in the representation and
manipulation of perceptual precision.

MATERIALS AND METHODS

Overview
Sixteen healthy young adults participated in our experiment. To
avoid ceiling or floor effects and reduce inter-subject variability
in performance, participants first performed an adaptive staircase

Frontiers in Neural Circuits | www.frontiersin.org 2 April 2019 | Volume 13 | Article 27104

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Gollo et al. Hierarchical and Nonlinear Prefrontal Cortex

FIGURE 1 | Trial structure. Temporal structure of a single trial of the vibrotactile discrimination task. A pair of stimuli (f1, f2), each 512 ms in duration, separated by
an ISI of 600 ms, was presented to the participant’s right index finger. The start of the trial was indicated by a white box, which turned gray when the vibrations were
presented. Upon the onset of the second vibration, a respond screen appeared indicating that the participant could make a button press. Participants had 2 s in
which to respond after the second vibration onset. Trials were presented in four sessions; two sessions of faster-slower and two same-different.

FIGURE 2 | Schema for task rationale. (A) Frequency content of a noise-free stimulus of 30 Hz. (B) Noise imbued vibrotactile stimulus with center frequency of
30 Hz and variance of stimulus noise represented by the green bar. Precision refers to the inverse of the variance of the percept. (C) Perceptual encoding of a
noise-free stimulus can be represented by a unimodal distribution centered at the likely value of the inferred stimuli. Note that due to an inevitable perceptual error
(bias) this inferred stimulus is shifted to the left (or right) of the true stimulus frequency (red bar) and has perceptual noise (purple bar). (D) Perceptual representation of
a noisy stimulus can be conceptualized as the sum of the stimulus (external) noise (green) and the perceptual (internal) noise (purple). It may have a perceptual bias
(red bar) and perceptual noise (purple bar) in addition to stimulus noise (green bar). In separate sessions, participants were either instructed to answer the question
“Is the 2nd vibration faster?” or “Are the vibrations different?” as a yes/no response. (E) The first task can be solved by subtracting the values of the inferred stimulus
and responding on the sign of the answer. (F) The second task requires that the inferred magnitude of this difference be weighted by the precision (inverse variance)
of each percept. Due to the perceptual error, there will exist a difference in the inferred frequency difference even if f1 = f2.
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procedure. Behavioral and functional imaging data were then
acquired while they performed the main vibrotactile experiment.
Analyses of these data then informed the employment of DCM.
Each of these steps is described below. Full details are provided
in the Supplementary Material.

Participants
Sixteen healthy volunteers (10 men; mean age, 28.4 years;
standard deviation, 9.3; age range, 20–61 years) participated
in the study. Participants gave written informed consent and
the study was approved by the University of New South
Wales Human Research Ethics Committee. Participants were
paid for their participation in the study. All participants were
right-handed. Participants disavowed history of a psychiatric
disorder, neurological disorder, or drug or alcohol dependence.
Participants gave written informed consent according to local
institutional human ethics committee approval.

Stimuli and Task
Using an MR-compatible stimulator, mechanical vibrotactile
stimuli were delivered to the right index finger (see
Supplementary Material, SM1.1). Trials consisted of a series of
paired stimuli, each 512 ms in duration, separated by an ISI of
600 ms (Figure 1 and Supplementary Material, SM1.2).

Titration Procedure
To limit individual variability in performance and avoid ceiling
effects in accuracy, we used a titration procedure that matched
average task performance via an adaptive staircase procedure
as described previously (Karim et al., 2012). The participants
responded to the question: ‘‘Is the 2nd vibration faster?’’ For
each trial, one of the vibrations was the base 34 Hz, and
the other a comparison vibration, which varied based on the
participant’s current performance according to an adaptive
staircase procedure. The presentation order of the base and
comparison was pseudorandomly varied from trial to trial.

Two intermixed staircases (easy and hard) selected at random
were used to limit the participant from experiencing a learning
effect from consecutive easy or consecutive hard trials. The
difference in frequency between vibration pairs was initially set
to 5 Hz, then progressively decreased or increased by 10% of
the current frequency difference. For both staircases, a step-up
occurred for each incorrect response. For the easy staircase, a
step-down occurred after six non-consecutive correct responses.
That is, even amongst trials of incorrect responses, a tally was
kept for each correct response made. Once the tally reached
six, a step-down occurred and the tally was reset to zero.
Likewise, for the hard staircase, a step-down occurred after
two non-consecutive correct responses. We sought to have
performance converge at ∼90% and ∼65% proportion correct,
respectively (Zwislocki and Relkin, 2001). A medium value of
difficulty (target accuracy of 75%) was determined by calculating
the geometric mean between the easy and hard frequency
differences (Karim et al., 2012).

Behavioral Task
Following titration, participants completed a parametric
vibrotactile discrimination task with factors of context, noise

and difficulty. ‘‘Context’’ denotes the task instructions—the
faster/slower or the same/different comparison; ‘‘noise’’ refers to
the presence or absence of random fluctuations in the stimuli.
‘‘Difficulty’’ refers to the (titrated) difference between the
stimulus frequencies.

To create the noise factor, the temporal structure of the
two vibrations was degraded by adding independent Gaussian-
distributed values (mean = 0) to the wavelength of each cycle of
the sine wave (Harris et al., 2006). We added 8% noise so that
the standard deviation of the cycle length within the vibration
equalled 0.08 of the base cycle length. For example, a 40 Hz
vibration was comprised of cycles with mean length 25 ms
and standard deviation of 2 ms. We hence refer to all trials as
‘‘regular’’ (noise-free) or ‘‘noisy.’’

The contextual (task) factor was created by asking participants
to perform either a fast-slow or a same-different comparison.
In the fast-slow task, participants were instructed to answer the
question ‘‘Is the 2nd vibration faster?’’ as a yes/no response.
They were informed that there was always a faster vibration
(i.e., no identical trials). In the same-different task, participants
were instructed to answer the question ‘‘Are the vibrations
different?’’ as a yes/no response. They were (correctly) informed
that half of the presented vibration pairs were the same and
half were different. Different trials in the second (same/different)
context were identical to the corresponding trials in the first
(faster/slower) context. For same-noisy trials in the second
context, exactly the same stimulus was presented—that is, both
the center frequency and the exact same pseudorandom sequence
of jittered wavelengths. The rationale for our task design is
illustrated in Figure 2.

For feasibility issues, not all cells in the full factorial design
were performed. For example, in pilot testing, the accuracy of
hard-noisy trials was at chance (50%) and was thus not used. We
refer to the task as a ‘‘partial’’ factorial design in this sense. We do
not report on the effect of task difficulty in this article and hence
collapse all available trials (of equivalent difficulty) across this
factor (for further details, see Supplementary Material, SM1.3
and Supplementary Table S1).

MRI Acquisition and Analysis
Functional imaging data were acquired using a Philips
(Achieva X) 3.0-Tesla scanner (for acquisition details see
Supplementary Material, SM1.4). Stimuli were delivered via the
vibrotactile device to the right index finger. Participants made
button press responses via their left index and middle fingers.
Inter-trial intervals were pseudorandomly jittered between 6 and
12 s to decorrelate the evoked hemeodynamic responses between
trials. The task was conducted over four separate sessions
separated by a short break. Each block consisted of exclusively
same-different or faster-slower trials. Pre-processing of dynamic
images included realignment, normalization, re-sampling and
spatial smoothing using SPM8. Statistical analysis of the time
series of images was conducted using the General Linear Model
(GLM; Friston et al., 1994a) with regressors modeling each of the
factor components. To focus on the decision-making process, we
used a boxcar of width 200 ms immediately prior to the button
press response. The results reported here are robust to changes
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in the width of the regressor. These were convolved with the
canonical hemeodynamic response function.

Group-level, random-effects analyses used a flexible
factorial analysis of variance (ANOVA) including a subject
factor and non-sphericity correction for repeated measures
(i.e., inhomogeneity of variance among conditions was estimated
with ReML). In the second (same-different) task there also exists
an additional stimulus factor, namely ‘‘Different’’ vs. ‘‘Same’’
trials: we hence also investigate this factor within this context.
Statistical inference was performed at the cluster-level using
family-wise error (FWE) correction, p < 0.05 (Friston et al.,
1994b, 1996). Unless otherwise stated, we employed a height
threshold of p < 0.00005 and a spatial extent of 20 voxels. All
p-values reported in the Results are FWE-corrected. Cluster
locations were identified using the SPM Anatomy toolbox
(Eickhoff et al., 2005).

Dynamic Causal Modeling
Model Specification
DCM is a computational approach that allows construction and
comparison of dynamic network models of functional imaging
data (Friston et al., 2003). DCMuses the time series from imaging
data and combines a model of the hidden neuronal dynamics
with a forward model that translates neural states into predicted
measurements (Stephan et al., 2008). Specifying dynamic causal
models requires two steps: first, regions (network ‘‘nodes’’) that
express the specific effects of interest (noise, context, same-
different) are identified using the preceding GLM. These are
described in the ‘‘Results’’ section, following analysis of the main
and the interaction effects in our experiment. The time series data
from each node are then extracted. We used a sphere of 6 mm
radius centered at the voxel showing the group-wise maximum
contrast (see Supplementary Material, SM1.5.1).

The second step in DCM specification involves the
construction of a space of models that embody various
hypotheses about themanner in which these nodes interact—that
is, the (effective) connectivity, or network ‘‘edges,’’ between the
nodes. Restricting the space of models to a relatively small
family that test specific hypotheses is an important way to
constrain the number (and utility) of models to be tested
(Stephan et al., 2010). Since the present objective was to use
DCM to study the network models of perceptual precision
(hence, not focussing on basic vibrotactile processing per se),
we restricted our analyses to a small number of models that
shared a common sensory input base and added candidate
integrative mechanisms on top of this base. The input base
was the sensory area showing the main effect of stimuli, hence
identified using an F-contrast across all trials. We introduced
eight separate models (four bilinear and three nonlinear) on top
of the common base that modeled serial or parallel integrative
mechanisms. Serial, parallel or hierarchical architectures play
varying roles in a diversity of cognitive and even machine
learning systems (Mesulam, 1998; Friston, 2005; Petersen and
Sporns, 2015): their disambiguation here, using DCM, can hence
contribute to this broader literature, whilst also establishing the
relative primacy of perceptual value vs. precision underlying
decision-making in the presence of stimulus noise. These

DCM’s each embody one of these arrangements, differing
within-class according to the presence or absence of symmetrical
relationships (see Figure 5, and results for a representation of
the specified models). Nonlinear models specify hierarchical
relationships between the network nodes—that is, where
the neuronal activity in one region gates the flow of activity
between other regions (Stephan et al., 2010); bilinear models
mirror their more complex nonlinear counterparts, except
they lack hierarchical relationships between regions: this
gating (interaction) function is instead fulfilled by non-specific
modulatory inputs.

Model Selection and Parameter Estimation
Following model specification, DCM employs Bayesian model
selection (BMS) to identify which model is the most likely to
have generated the observed data. The process of adjudicating
between models essentially balances their goodness of fit against
a factor that penalises models for their relative complexity (for
review, see Marreiros et al., 2010). BMS yields the evidence
for each model—the (posterior) probability of the model given
the data—as well as the estimated (posterior) parameter values
that reflect the strength of interactions between regions. Relative
evidence for all models is used to identify the most likely model,
or the best family of models (see Supplementary Material,
SM1.5.2). We performed BMS using random effects analysis
(Stephan et al., 2009).

RESULTS

Behavioral Results
Analysis of the behavioral data revealed significant effects of
both context and noise (Table 1, Figure 2; also Supplementary
Material, SM2.1 and Supplementary Figure S1): consistent with
its lesser computational burden, participants were more accurate
and had faster response times (RTs) for the fast-slow task
compared to the same-different one (see Figure 3A, and for effect
sizes, see Table 1[1a,1b]). Across both contexts, there was also a
significant effect of noise: the presence of aperiodic temporal
noise in the vibrotactile stimuli decreased accuracy[1c] across
both contexts and slowed RT for the same-different context[1d].
There was no significant interaction between context and noise.

The lower accuracy in the same-different compared to the
faster-slower context could in theory be due to a response bias
arising, for example, from a conservative internal standard for
the detection of difference. We estimated d-prime (d’), a measure
of sensitivity that takes response bias into account (MacMillan
and Creelman, 2005). Repeated measures ANOVA re-affirmed
significantly lower accuracy for responses in the same-different
compared to the fast-slow context (d’ for fast-slow = 1.59, d’ for
same-different = 0.72, F(1,15) = 36.497, p < 0.0001). This suggests
that differences in the same-different context were associated
with a loss in sensitivity.

Within the same-different task, participants took longer
to respond to the same compared to the different trials
(Figure 3A)[1e,f] which was associated with a trend-level
increase in accuracy (p = 0.0509). There was an interesting
interaction between noise and difference for accuracy[1g]: for
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TABLE 1 | Behavioral performance statistics for context (Fast-slow, Same-different), noise (Regular, Noisy), and difference (Different, Same).

Contrast Factor Dependent variable F-statistic p-value Partial eta square Text ref.

Noise and context Context PC F(1,15) = 87.039 p < 0.0001∗ 0.853 1a
Noise F(1,15) = 5.352 p = 0.0353∗ 0.263 1c
Noise ∗ Context F(1,15) = 0.672 p = 0.4251 0.043

(Both contexts) Context RT F(1,15) = 28.759 p = 0.0001∗ 0.657 1b
Noise F(1,15) = 3.154 p = 0.0960 0.174
Noise ∗ Context F(1,15) = 0.419 p = 0.5273 0.027

Noise and difference Noise PC F(1,15) = 0.009 p = 0.9256 0.001 1h
Difference F(1,15) = 4.502 p = 0.0509 0.231 1f
Noise ∗ Difference F(1,15) = 17.927 p = 0.0007∗ 0.544 1g

(Same-different context only) Noise RT F(1,15) = 7.240 p = 0.0168∗ 0.326 1d
Difference F(1,15) = 19.225 p = 0.0005∗ 0.562 1e
Noise ∗ Difference F(1,15) = 0.286 p = 0.6008 0.019

Proportion correct (PC) was used to assess accuracy and response time (RT) was used to assess speed. ∗Significant p-values.

FIGURE 3 | Behavioral results for the same-different context and interpretations. (A) Reaction time for Fast-Slow vs. Same-Different comparisons. Note the longer
reaction times for the latter task. (B) Proportion of correct (PC) responses (or accuracy) of regular and noisy response for different and same trials in the
Same-Different task. (C) Stimulus noise increases the variance of the perceptual representation of the two frequencies f1 and f2, increasing the overlap between
them. A larger overlap between perceptual representations decreases the sensitivity of responses to Different trials (left). The yellow bar depicts the difference
between the mean of the two percepts—here the sum of the true stimulus differences and the perceptual error. Conversely, noise increases the accuracy of
responses to Same trials (right): some slight difference in perception occurs even for identical, periodic stimuli (red bars, sum of perceptual errors). However, stimulus
noise degrades the precision of each percept, hence increasing their overlap and masking these small (false) perceptual differences.

same trials, accuracy was greatest when trials were noisy,
whereas for different trials accuracy was higher for regular trials
(Figure 3B, p < 0.0007).

Thus, it appears easier for participants to correctly classify
same trials as ‘‘same’’ when they are imbued with temporal
noise than when they are pure sinusoids. Conversely, different
trials were more likely to be correctly reported when they are
regular. These observations can be interpreted by considering the
influence of stimulus noise on perceptual accuracy (Figure 3): we
return to this issue in the ‘‘Discussion’’ section.

Functional Imaging Contrasts
We observed a strong and significant main effect of ‘‘context’’
in our functional imaging data, with several clusters surviving
FWE-corrected significance (Table 2 and Supplementary
Material, SM2.2.1). All of these effects were in the direction of
the same-different over the fast-slow context, again consistent
with the additional computational load of this task andmirroring
the behavioral results. The strongest effect was expressed
in a large cluster in the left inferior frontal gyrus (BA
45; p < 0.0001, Supplementary Figure S2A), occupying the
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mid-ventrolateral PFC (VLPFC). A second effect was observed
in the right middle temporal gyrus (BA 21; p < 0.0001,
Supplementary Figure S2B). Also in accordance with the
behavioral results, no significant interaction effects between
noise and context were found.

We next focussed on effects present within the same-different
context (Table 3, Supplementary Material, SM2.2.2). The
contrast of different over same trials yielded three distinct
clusters, all of which surpassed FWE-corrected significance
for both cluster and height statistics. The strongest effect was
centered over the left inferior parietal lobule (BA 40; p < 0.0001,
Figure 4A) and included voxels within the supramarginal
and the post-central gyri. Other effects occurred in the PFC,
including a strong effect in the left middle frontal gyrus (the
dorsolateral PFC, DLPFC, BA 44; p < 0.002, Figure 4B).
Inspection of the parameter values for these two regions revealed
quite distinct responses: whereas the large posterior cluster
showed significantly positive values for both different and same
trials (with the different greater than same trials, consistent
with repetition suppression), the DLPFC cluster only showed
non-zero responses to different trials, specific to the ‘‘signal
trials’’ (true positives) in this context. A third cluster was located
in the midline, centered on the supplementary motor area
(BA 6; p < 0.008).

The contrast between regular and noisy trials speaks directly
to the representation of perceptual precision. Interestingly,
despite the absence of a significant effect of stimulus noise on
behavioral accuracy in same-different trials[1h], there existed a
strong and specific effect in the imaging data, with a single cluster
towards the rostral pole of the left PFC, and in the left DLPFC, for
the contrast of regular over noisy trials (BA 10; p < 0.016, FWE-
corrected, Figure 4C). This cluster lies within a sulcus in rostral
PFC (rPFC, BA10), bounded dorsally by the DLPFC. There were
no effects approaching significance for the contrast of noisy over
regular trials.

The significant interaction between regular-noisy trials and
same-different trials present in the behavioral data[1g] motivated
analysis of the corresponding interaction in the functional

imaging data. We observe a single significant cluster, located
within the left superior frontal gyrus (SFG, BA 8, p< 0.010 FWE-
corrected, Figure 4D, Table 3).

We, therefore, observe four distinct clusters in the left PFC
for the main effect of context, the main effect of noise, the
main effect of difference and the interaction between noise and
difference. Whilst nearby, these four clusters nonetheless reside
in distinct sulci. One cluster resides with the VLPFC, and two
within the DLPFC.

Dynamic Causal Modeling
We next employed DCM to model the interactions between the
left inferior parietal lobe (IPL) and the three prefrontal clusters
engaged in the second (faster-slower) context (Figure 4E and
Supplementary Material, SM3.5). We excluded areas outside of
the PFC, such as the supplementary motor area, likely involved
in lower level processing and/or preparation for the motor
response. All specified dynamic causal models of these data
shared a common input base, beginning with stimulus inputs
(i.e., vibrotactile stimuli) directed to the left IPL. The effect of
regular trials expressed in the rPFC was modeled by an effective
connection from IPL to rPFC, modulated by the pure (regular)
trials (Figure 4E). Likewise, a connection from the IPL to the
DLPFC, modulated by stimulus difference, modeled the effect
of difference observed in the DLPFC. Finally, SFG is subjected
to the influence of both modulations as the interaction between
regular-noisy and same-different trials occurs there. Note that a
backward connection was placed here to allow for the diminished
response of different compared to same trials to be modeled by
the feedback influence of the DLPFC on the IPL.

We specified seven separate models (four bilinear:
‘‘Diamond,’’ ‘‘Fork,’’ ‘‘Legs 1,’’ and ‘‘Legs 2’’; and three nonlinear:
‘‘Stork 1,’’ ‘‘Stork 2,’’ and ‘‘Stork 3’’; see Supplementary Material
for additional details) on top of this common base that represent
serial, parallel or hierarchical processes (see ‘‘Materials and
Methods’’ section and Figure 5). As the name suggests, in serial
models (both bilinear and nonlinear), information passes in a
serial manner from the IPL via the rPFC or the DLPFC (or both)

TABLE 2 | Significant clusters for the effect of context (fast-slow vs. same-different).

Contrast Anatomical label R/L MNI coordinates BA T-value Statistics

X Y Z Cluster PFWE-corr Size (voxels)

T: Fast-slow
< Same-different

Inferior Frontal Gyrus pars triangularis L −36 29 16 45 6.43 <0.0001 41

Middle Temporal Gyrus R 51 −25 −14 21 5.59 <0.0001 36

Significant results of “Faster-slower” < “Same-different” are shown. Standard Montreal Neurological Institute (MNI) coordinates correspond to peak maxima. Size indicates the number
of voxels in the cluster. Note that the “Same” trials have been omitted from the same-different contrast as there were no counterpart same trials from the fast-slow contrast.

TABLE 3 | Significant clusters for contrasts within the same-different context.

Contrast Anatomical label anatomy R/L MNI coordinates BA T-stat Statistics

X Y Z Cluster PFWE-corr Extent

Different > Same Inferior Parietal Lobule L −45 −46 43 40 5.81 0.0001 145
Middle Frontal Gyrus (DLPFC) L −39 14 34 44 5.69 0.002 42
Supplementary motor area L 0 23 52 6 4.91 0.008 29

Regular > Noisy Middle Frontal Gyrus (PFC) L −27 44 19 10 4.78 0.016 22
Noise × Difference Superior Frontal Gyrus L −21 23 37 8 4.88 0.010 26
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FIGURE 4 | Prefrontal cortical regions engaged in the same-different vibrotactile trials. (A) Main effect of the “Different > Same” contrast in the left inferior parietal
lobe (IPL). (B) Main effect of the “Different > Same” contrast in the left dorsolateral prefrontal cortex (DLPFC). (C) Main effect of “Noise-free > Noisy” contrast in the
left rostral PFC (rPFC). (D) Interaction of noise and difference in the left superior frontal gyrus (SFG). (E) Relative anatomical location of the corresponding nodes
employed in the dynamic causal modeling (DCM), as labeled and colored in the inset. Thick arrows show effective connectivity common to all DCM models. Thin
yellow links show connections used in some but not all models.

en route to the SFG. In parallel models, there is a direct effective
connection from the IPL to the SFG in parallel to the rPFC
and DLPFC connections. Additional modulatory influences are
introduced on top of these architectures in order to explain the
interaction effect in the SFG. In the nonlinear models (Figure 5,
lower row) the modulation of inputs to SFG is mediated by
modulation of connections from one area by another (namely
DLPFC or rPFC). This activity-dependent modulation can be
considered hierarchical. In contrast, in bilinear models (Figure 5,
top row), this modulation is attributed directly to experimental
inputs (namely, stimulus difference and regularity). In short,
both bilinear and nonlinear models allow for context or state-
dependent changes in afferents to the SFG: however, nonlinear
models consider this state-dependent modulation to be dynamic
and activity-dependent. These seven models encompass all
possible such serial, parallel and hierarchical arrangements

considered separately. Because we sought a parsimonious and
non-redundant model space, we did not consider models that
combine these basic features (for example both serial and
parallel connections).

BMS identified the double nonlinear and hierarchical model
‘‘Stork 3’’ as the model with the highest posterior exceedance
probability of the seven tested (Figure 6). This model was
followed by the other nonlinear models ‘‘Stork 2,’’ and ‘‘Stork 1.’’
The remaining bilinear models embodying serial and parallel
motifs performed poorly as they were associated with a
considerably lower exceedance probability (Figure 6A).

DISCUSSION

While being formed, stimulus representations contend with
noise in the nervous system, placing an upper bound on
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FIGURE 5 | DCM parsimonious and non-redundant model space. Stimulus inputs arrive via the IPL (green arrow) and propagate, via intrinsic connections (black
arrows) to the rPFC and the dorsolateral PFC (DLPFC). Each of these intrinsic connections is perturbed by experimental inputs: different (red) and Regular (blue)
stimulus trials that account for the corresponding effects in the SPM contrasts. From left to right, top motifs are linear serial (Diamond), parallel (Fork), hierarchical
with the regular modulation at the higher level (Legs 1), and a hierarchical with the different modulation at the higher level (Legs 2). Bottom motifs are hierarchical and
nonlinear. From left to right, regular modulation is at the top of the hierarchy (Stork 1), different modulation is at the top of the hierarchy (Stork 2), and the double
non-linear model in which both modulations occupy top and low hierarchy positions at the different interactions (Stork 3). Please refer to the Supplementary
Material for further discussion on the model space.

the precision of the stimulus representation and confounding
any imprecision arising from the properties of the stimulus
(Faisal et al., 2008). The precision of the ensuing percept
is thus a composite of the stimulus noise and stochastic
process in the perceptual system. This is crucial to perceptual
inference: not only do we integrate information across modalities
by weighting according to relative precision (Jacobs, 1999;
Ernst et al., 2000), precision also plays a crucial role in
combining new sensory evidence with prior knowledge to
inform perceptual beliefs (Friston et al., 1996). However,
there must also be a lower bound on precision in many
everyday tasks, such that objects that are re-encountered can be
recognized as familiar and, conversely, salience can be directed
toward novel or surprising parts of the sensorium (Vossel
et al., 2014). The modulation of factors influencing perceptual
precision is thus context-dependent and under executive

control. Using a vibrotactile discrimination task whereby
participants made contextual judgments that either implicitly
required encoding of a precision estimate (same-different) or
not (faster-slower), we identified a constellation of cortical
regions predominantly in the left PFC that are engaged in
computing, representing and deploying perceptual precision
in the service of decision making. By modeling these effects,
we observe that effective connectivity amongst these regions
is subserved by a hierarchical network whereby activity
in left rPFC and DLPFC exert a mutual gating influence
on the SFG.

Accuracy is higher and responses are faster for simple
magnitude comparisons (fast-slow) than during the detection
of difference (same-different). As described by signal detection
theory (MacMillan and Creelman, 2005), these two tasks differ
in the way stimuli and noise are perceptually represented
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FIGURE 6 | Bayesian model selection (BMS). (A) Posterior exceedance probability that any single model is more likely than any other. (B) Posterior parameter
values of the winning model.

in ‘‘decision space’’: although perceptual uncertainty clearly
plays a role in all decisions in our experiment (both faster-
slower and same-different), the former task can be achieved
simply by subtracting the inferred stimulus frequencies. By
contrast, in the latter task, perceptual precision is explicitly
part of the decision process, so that the perceived magnitude
difference is weighed against the precision of each representation
(Figures 2, 3). This additional computational burden is reflected
in slower reaction times (Figure 3A); the corresponding
contextual functional neuroimaging contrast yielded a robust
effect in the left IFG pars triangularis (BA 45), which lies
within the mid VLPFC and has been implicated in the cognitive
control of working memory (Badre and Wagner, 2007), a
necessary component of our task. It has also been argued
that the mid-VLPFC is involved in the ‘‘active retrieval’’ of
information from posterior cortical association areas: active
retrieval is required when stimuli in memory ‘‘do not bear
stable relations to each other and therefore retrieval cannot
be automatically driven by strong, stable, and unambiguous
stimulus or context relations’’ (Petrides, 2002). This argument
recapitulates the notion that additional neuronal resources are
called upon when the ambiguity of perceptual representation
becomes an integral aspect of the task at hand and not a mere
nuisance factor.

To further understand the neural correlates of perceptual
precision, we studied the consequence of degrading the temporal
structure of the stimuli, thereby introducing controlled stimulus

noise. The contrast of regular > noisy trials in the same-different
context showed additional activity in the left rPFC (BA 10,
Figure 4), an apex region of the PFC. The rPFC has been
associated with a broad variety of executive and integrative
functions, including those that pertain to decision making
(Koechlin andHyafil, 2007; Li and Yang, 2012), workingmemory
(Ramnani and Owen, 2004) and context (Simons et al., 2005).
The stronger engagement of this region during the regular
trials may be indicative of a requirement to account for the
relatively high precision of stimulus representations arising from
regular vibrations. This might reflect a fundamental role for
this region in modifying perceptual stability to optimize the
detection of change and surprise (Friston et al., 2012). Greater
activity in regular compared to noisy vibrotactile stimuli has
been previously observed in other regions of PFC during the
explicit detection of stimulus noise (Godde et al., 2010). In
our study, detecting the presence of noise was not explicitly
required (or reported) but rather an implicit component of task
execution. The rPFC may, therefore, encode a generic means
of representing perceptual precision rather than a role linked
specifically to explicit stimulus decoding. We return to this
issue below.

The presence of noisy stimuli in the same-different task was
either a help or a hindrance to task performance, depending
upon the nature of the trial: consistent with our framing of
decision-making in the presence of noise (Figure 2), noise
increased the accuracy for same but not different trials.
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In the case of same trials, stimulus noise may diminish
the significance of the slight perception of difference that
inevitably arises when encoding stimuli, even when such
stimuli are physically identical. The presence of noise thus
decreases the chance that such trials are mistakenly classified
as different. However, the lower precision also increases
the likelihood that the perception of difference associated
with truly different trials is rendered subthreshold, increasing
their misclassification. This behavioral interaction thus speaks
directly to perceptual precision. The corresponding interaction
contrast in our functional magnetic resonance imaging (fMRI)
data yielded a cluster deep in the sulcus of left DLPFC
cortex—the SFG. This finding suggests that in concert with other
prefrontal regions such as the rPFC, the SFG may accumulate
multiple aspects of decision-relevant evidence and integrate these
on the fly.

We employedDCM tomodel dynamic network computations
enacting the interaction of stimulus change and perceptual
noise. The key features of the winning model (Stork 3) are
nonlinear and hierarchical relationships between the DLPFC,
the rPFC and the SFG (Figure 5). The balanced nature of
this motif’s structure mirrors the notion that the assessments
of precision and stimulus difference mandate a mutual,
dynamic exchange during the corresponding same-different
task: high values of perceptual precision up-regulate the
appreciation of stimulus change and likewise, the perception
of change influences the role of precision on decisions.
The nonlinear terms that account for the interaction effect
ostensibly have an underlying biological basis—a ‘‘gating’’
mechanism, whereby the effective influence of activity from
one neural region to another depends on the current activity
in a third region. Candidate neural processes capable of
underlying this effect include priming of voltage-dependent
N-Methyl-D-aspartate (NMDA) channels through partial
depolarization by AMPA-mediated synapses, synaptic
depression/facilitation or early long-term potentiation (for
review, see Stephan et al., 2008). The neural response of the
SFG may thus depend on the immediate history of responses
of the rPFC (facilitated by regular stimuli) and the DLPFC
(facilitated stimulus difference), each influencing the other’s
concurrent influence.

The hierarchical organization of networks and information
flow has been frequently described across prefrontal regions
(Nee and D’Esposito, 2016). The ‘‘action-perception cycle’’
describes the complementary interaction between prefrontal
networks of executive memory with a posterior network
of perceptual memory, exerting reciprocal influences. This
interaction is thought to occur at all levels of the nervous
system, engaging neural networks at every hierarchical level of
the neocortex (Fuster, 2009). All stages of processing generate
internal feedback upon earlier stages, serving to monitor
and modulate incoming signals at every stage (Fuster, 2006).
Here, we have focused only on the interactions among the
constellation of PFC regions identified by the task contrasts.
The PFC is thought to constitute the highest level of the
cortical hierarchy dedicated to the representation and execution
of actions (Fuster, 2001). The analysis of functional and

structural hierarchies in PFC is a very active area of research
(see Gorbach et al., 2011): to the best of our knowledge,
this is the first study of hierarchies of effective connectivity
within the human PFC underlying perceptual precision. The
predominance of left PFC in this study may be partly due
to the fact that all participants in our study were right
handed and all stimuli were presented to the right index
finger. The lateralization may thus be a consequence of the
right-sided stimulus presentation rather than a reflection of
hemispheric specialization. Most of our effects were indeed
bilateral, although often only exceeding threshold in the
left hemisphere (results not shown). Future work could also
incorporate premotor regions involved in the task, likely in
pre-empting the motor response.

It is important to note that the fast-slow < same-different
contrast did not contain the same trials required for
the same-different task. Hence, the full stimulus-set
used by participants to set their decision-criteria in the
same-different context is not present in this contrast. In
addition to a substantially lower sensitivity (Supplementary
Figure S1), participants possibly adopted a response bias
towards responding ‘‘same’’ for the same-different context,
reflected in higher accuracy (using proportion correct)
for same trials than for different trials. Therefore, the
fast-slow < same-different contrast examined in this study,
whilst avoiding any confounds due to stimulus differences,
is an incomplete comparison of stimulus representation
between the two judgments. The neural regions identified
from the contrast (IFG pars triangularis and middle
temporal gyrus, Supplementary Figure S1) necessarily
reflect the perceptual representation of the same-different
judgment, and the computational criteria that underlies
response bias.

We have framed the performance of our perceptual decision-
making task in terms of Bayesian inference, i.e., that decisions
depend uponweighting sensory evidence according to perceptual
precision (Dayan et al., 1995; Karim et al., 2012). While all
percepts accordingly involve both the perceptual value (mean)
and the precision, our findings elucidate the manner in which
this evidence and its precision are represented and integrated
in a hierarchical prefrontal network when required for decision-
making. For example, the representation of perceptual precision
is associated with greater activity in the rPFC which then
gates the effect of other stimulus properties. Our findings
build on prior work regarding gain-mediated precision-weighted
perceptual inference (Moran et al., 2013) and are consistent
with the notion that neuronal activity encodes probability
distributions regarding sensory evidence (Dayan et al., 1995;
Sanger, 1996; Zemel et al., 1998). However, the application of
classic DCM to fMRI data is limited to inferences regarding
changes in local mean firing rates. Probabilistic population
encoding likely also involves other moments of population
activity, such as a direct mapping between the variance
of neuronal states and the uncertainty of the perceptual
representation (Beck et al., 2008; Shi and Griffiths, 2009).
Although there exists a theoretical link between the variance
of local population activity and gain control (Marreiros et al.,
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2010), future work that employs stochastic variants of DCM
(Li et al., 2011) could be used to infer higher order moments
of neuronal activity (Harrison et al., 2005; Breakspear, 2013)
and thus more directly probe the local neural correlates of
perceptual precision.
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Connections in nervous systems are disproportionately concentrated on a small subset of

neural elements that act as network hubs. Hubs have been found across different species

and scales ranging fromC. elegans to mouse, rat, cat, macaque, and human, suggesting

a role for genetic influences. The recent availability of brain-wide gene expression atlases

provides new opportunities for mapping the transcriptional correlates of large-scale

network-level phenotypes. Here we review studies that use these atlases to investigate

gene expression patterns associated with hub connectivity in neural networks and

present evidence that some of these patterns are conserved across species and scales.

Keywords: connectome, hub, rich-club, gene expression, network neuroscience, graph theory, genome

1. INTRODUCTION

The brain is a multiscale network, with neuronal elements exhibiting coordinated patterns of
activity that unfold across several orders of magnitude in time and space (Buzsáki and Draguhn,
2004; Lichtman and Denk, 2011; Fornito et al., 2016). Graph theory provides a useful approach
to represent network organization at each scale by focusing on the essential elements of the
system: processing units and their interactions, represented, respectively, as nodes and edges in the
graph (Bullmore and Sporns, 2009; Fornito et al., 2016). The advantage of using a graph theoretic
approach to understand the organizational properties of the brain is that the same analysis tools can
be applied regardless of the species or scale, ranging from electron micrograph data of neuron-and-
synapse connectivity in the nematode worm Caenorhabditis elegans (White et al., 1986; Varshney
et al., 2011), through tract-tracing data in the mouse (Oh et al., 2014; Gămănuţ et al., 2018)
and macaque (Stephan et al., 2001; Markov et al., 2014), to brain-wide non-invasive structural
and functional imaging in the human (Bassett and Bullmore, 2009; Bullmore and Sporns, 2009;
Fornito et al., 2013).

A growing body of work has demonstrated that the connection topology of neural networks—
that is, the specific arrangement of connections between system elements—shows a number of
non-random properties that are conserved across different scales and in different species (Bullmore
and Sporns, 2009; Sporns, 2011; Fornito et al., 2016; van den Heuvel et al., 2016a; Schröter et al.,
2017). These include (i) a predominance of short-range, locally clustered connections supporting
functional specialization coupled with sparse, long-range projections that may promote global
integration and functional diversity, resulting in an economical small-world organization (Watts
and Strogatz, 1998; Bassett and Bullmore, 2017; Betzel and Bassett, 2017); (ii) the presence
of densely connected sub-networks, termed modules, organized hierarchically across several
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resolution levels so that modules contain nested sub-modules
and so on (Meunier et al., 2009; Bassett et al., 2010); (iii) a fat-
tailed distribution of connectivity across nodes, such that some
nodes possess a relatively large number of connections and act
as network hubs (van den Heuvel and Sporns, 2011; Towlson
et al., 2013; van den Heuvel et al., 2016a); and (iv) a dense inter-
connectivity of hub nodes, leading to the formation of a “rich-
club” (Zamora-López et al., 2010; van den Heuvel and Sporns,
2011; Harriger et al., 2012; Towlson et al., 2013).

The strong conservation of such topological properties across
scales and species implies that particular connectivity patterns are
being evolutionary favored either through common descent or
convergent evolutionary paths. This raises questions concerning
the degree to which genes influence brain network topology.
Twin studies have shown that topological properties of human
brain networks mapped at the macroscale are heritable (Smit
et al., 2008; Fornito et al., 2011; van den Heuvel et al., 2013a;
Bohlken et al., 2014; Sinclair et al., 2015; Zhan et al., 2015;
Colclough et al., 2017), but they do not indicate the specific
genes involved. Studies linking structural variation in the genome
to variability in network-level phenotypes, both at the level of
candidate genes (Liu et al., 2010; Brown et al., 2011; Dennis
et al., 2011; Markett et al., 2017) and in genome-wide scans
(Jahanshad et al., 2013), have started to address this gap.
However, they provide a partial picture, as it is often unclear
how a given DNA variant impacts gene expression to give rise
to phenotypic variability.

In neuroscience, it has been difficult to link direct measures
of gene expression to variation in network phenotypes defined
across large swathes of the brain, as gene expression has
traditionally only been quantifiable though invasive interrogation
of regionally localized tissue samples. The recent availability of
large-scale, brain-wide atlases of gene expression (Lein et al.,
2007; Hawrylycz et al., 2012), has overcome this hurdle and
presented new opportunities to understand the molecular
correlates of network-level phenotypes. Patterns of gene
expression have been used to predict whether two neurons
(or large-scale brain regions) will be structurally connected
(Kaufman et al., 2006; Varadan et al., 2006; Baruch et al., 2008;
French and Pavlidis, 2011; Wolf et al., 2011; Ji et al., 2014;
Fakhry and Ji, 2015), and confirmed that regional variations in
gene expression track specific aspects of structural (Goel et al.,
2014; Forest et al., 2017; Parkes et al., 2017; Romero-Garcia
et al., 2018) and functional (Cioli et al., 2014; Hawrylycz et al.,
2015; Richiardi et al., 2015; Krienen et al., 2016; Anderson
et al., 2018) brain networks. The integration of gene expression
atlases with imaging data is also shedding light on the molecular
correlates of macroscopic brain changes observed in a range of
disorders, such as Huntington’s disease (McColgan et al., 2018),
Parkinson’s disease (Rittman et al., 2016), and schizophrenia
(Romme et al., 2017).

One important aspect of brain network organization
is the distribution of connections across nodes, which is
disproportionately concentrated on a small number of network
hubs (van den Heuvel and Sporns, 2011; Towlson et al., 2013).
Most simply, network hubs are defined as nodes with a relatively
large number of connections, placing them in a topologically

central position within the network (although other definitions
are possible; see Power et al., 2011; Oldham et al., 2018).
Intuitively, the global air transportation network offers insight
into the role of hubs in mediating network traffic flow; certain
airports, such as Dubai International, London Heathrow, and
LAX are linked to the rest of the network by a much larger
number of direct flights than other airports. They are thus
positioned to mediate a large fraction of intercontinental travel.
Similarly, connections are not distributed equally across neurons,
neuronal populations or large brain areas, with specific network
elements possessing the lion’s share of connections (van den
Heuvel and Sporns, 2011; Towlson et al., 2013; de Reus and
van den Heuvel, 2014; van den Heuvel et al., 2016a). These
brain hubs are thought to play a critical role in the functional
integration of anatomically disparate systems (Harriger et al.,
2012; van den Heuvel et al., 2012), and are disproportionately
impacted by a diverse variety of brain diseases (Crossley et al.,
2014; Fornito et al., 2015). Thus, understanding the molecular
basis for hub connectivity may provide insights not only into
integrated cerebral function, but also into the various disease
processes that plague the brain.

In this article, we review how brain-wide gene expression
atlases have been used to link two traditionally disparate scales
of analysis in neuroscience: molecular function (microscale) and
whole-brain network topology (macroscale), by identifying the
transcriptional correlates of brain network hubs. We begin with
a brief overview of the expression atlases that are currently
available and then consider how hubs are defined in brain
networks and what we know about their functional role. We then
examine research indicating that brain network hubs possess a
distinct and conserved transcriptional signature.

2. CHARACTERIZING GENE EXPRESSION
ACROSS THE ENTIRE BRAIN

Gene expression is a process through which genetic information
encoded in sequences of DNA is read and used to synthesize
a particular gene product. The two key steps in this complex
process are transcription, where an unwound segment of
DNA is read to produce messenger (mRNA), and translation,
which occurs when the resulting mRNA is used to synthesize
the gene product, such as a protein. Gene expression is
commonly inferred from mRNA levels, thus serving as an
index of transcriptional activity—an indirect proxy for the
protein abundance. Transcriptional activity can be measured
using several different techniques that either assay bulk tissue
samples [microarray (Schulze and Downward, 2001), RNA-seq
(Mortazavi et al., 2008; Wang et al., 2009)], histological sections
at a cellular resolution [in situ hybridization (ISH) (Schulze and
Downward, 2001)], or single cells [single-cell RNA sequencing
(scRNA-seq) (Tang et al., 2009)]. Different classes of brain cells
show distinctive gene expression patterns (Darmanis et al., 2015;
Poulin et al., 2016; Tasic et al., 2016; Mancarci et al., 2017), and
scRNA-seq is thus regarded as the most promising technology
for accurately resolving cell-type specificity (Yu and Lin, 2016).
However, scRNA-seq is difficult to scale to brain-wide analyses,
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and current brain-wide atlases of gene expression have relied on
microarray or ISH. ISH has high spatial resolution, allowing gene
expression to be measured in a tissue section with relatively high
sensitivity and specificity, but requires a very large number of
samples to quantify expression levels across thousands of genes
(Unger et al., 2010). ISH has therefore only been used to construct
atlases for species with high tissue availability, such as the mouse
(Lein et al., 2007). Microarray, on the other hand, allows the
quantification of expression levels of thousands of genes at once
by measuring the hybridization of cRNA (Cy3-labeled RNA) in
a tissue sample to particular spot (probe) on the microarray
chip. The technique is limited to known gene sequences and is
prone to background noise (Okoniewski and Miller, 2006; Royce
et al., 2007), but provides a cost-effective way to measure gene
transcription in high-throughput manner. It has been used to
produce spatially comprehensive atlases of the human (Kang
et al., 2011; Hawrylycz et al., 2012; Miller et al., 2014) and
non-human primate brain [NIH Blueprint Non-Human Primate
(NHP) Atlas (2009), in conjunction with ISH].

As summarized in Keil et al. (2018), there is a large number
of gene expression atlases. Due to their high spatial coverage,
the two most used brain-wide expression atlases are the Allen
Mouse Brain Atlas (AMBA) (Lein et al., 2007) and the Allen
Human Brain Atlas (AHBA) (Hawrylycz et al., 2012), both made
freely available by the Allen Institute for Brain Science. The
AMBA provides an extensive representation of the expression
patterns of 19 419 genes across the whole mouse brain, using
ISH to quantify brain-wide expression patterns with the cellular
resolution at each tissue slice with slices acquired every 200µm
(the latter resolution depends on the section). Spatially resolved
gene expression data can be further parcellated using anatomical
atlases of the mouse brain (Johnson et al., 2010; Furth et al.,
2018) to acquire averaged expression values through a hierarchy
of brain regions defined at different resolution scales. The AHBA
comprises expression measures for 21, 245 genes (depending on
available annotation data) taken from 3, 702 spatially distinct
post-mortem tissue samples distributed throughout the brains of
six human donors (Hawrylycz et al., 2012, 2015). Both atlases
have been mapped to stereotaxic space, allowing researchers to
link spatial variations in gene expression to the spatial variations
of a given neural phenotype (i.e., any quantifiable, spatially
varying property of the brain, as measured either at the level of
brain regions or pairs of regions) (Fornito et al., 2019). Other
gene expression databases include both spatial (Fertuzinhos et al.,
2014) and spatio-temporal (Ayoub et al., 2011; Belgard et al.,
2011; Colantuoni et al., 2011; Miller et al., 2014) atlases, along
with the Allen Developing Mouse Brain Atlas (2008), however
most of these lack the spatial coverage of the AMBA and AHBA
with only a handful regions being assessed across multiple time
points. Some gene expression atlases have also been published
for the macaque, using ISH and microarray (Bakken et al., 2016),
and C. elegans (Harris et al., 2010). The latter database has been
curated from published reports and contains binary entries on
around 5% of the ∼ 20, 000 genes in the full worm genome,
such that the only information encoded is whether a given gene
is expressed or not in a neuron.

Gene expression measures can be influenced by a number of
technical and biological factors (Fraser et al., 2005; Berchtold

et al., 2008; Kumar et al., 2013; Trabzuni et al., 2013). For
example, the AHBA consists of data from six donor brains,
each varying in characteristics, such as age at death, cause
of death, sex, and ethnicity. Therefore, any analysis pooling
expression measures across brains should ensure that inter-
subject variability has not directly influenced the results. The
analysis of gene expression measures often involves important
additional processing decisions that are not applied consistently
and can impact final results. For example, useful steps in
processing raw AHBA data prior to analysis include (i) verifying
probe-to-gene annotations; (ii) filtering genes that are not
expressed above the background; (iii) selecting a representative
probe when more than one probe has been used to assay
a single gene; (iv) assigning tissue samples to specific brain
regions in the imaging dataset; and (v) normalizing expression
measures to account for inter-individual differences and outlying
values. Each step requires a number of decisions, and best-
practice workflows have not been established yet (Arnatkevic̆iūtė
et al., 2019). Finally, gene expression data often shows a strong
spatial autocorrelation, such that gene expression is more tightly
coupled between regions that are close to each other compared to
those that are spatially distant. This trend has been demonstrated
in the mouse (Fulcher and Fornito, 2016), human (Richiardi
et al., 2015; Krienen et al., 2016; Vértes et al., 2016; Pantazatos
and Li, 2017; Arnatkevic̆iūtė et al., 2019) and head of C.
elegans (Arnatkevic̆iūtė et al., 2018). In order to demonstrate
that a putative association between regional variations in gene
expression and a given neural phenotype is evident beyond
this distance-dependence, potential biases introduced by the
dependence can be addressed using methods ranging from
simple regression (Fulcher and Fornito, 2016), partial Mantel
tests (French and Pavlidis, 2011; Ji et al., 2014; Fakhry et al., 2015)
or spatially constrained randomization procedures (for example,
see Vértes et al., 2016; Burt et al., 2017; Seidlitz et al., 2018;
Arnatkevic̆iūtė et al., 2019).

Brain-wide gene expression measures can be related to a
brain network-level phenotype either at the level of specific brain
regions (Myers et al., 2007; Rittman et al., 2016; Vértes et al.,
2016; Parkes et al., 2017) or using inter-regional transcriptional
coupling (Richiardi et al., 2015; Fulcher and Fornito, 2016;
Arnatkevic̆iūtė et al., 2018; Romero-Garcia et al., 2018). Analyses
of regional gene expression focus on understanding how the
expression of a given gene varies across regions, and whether
this variation tracks spatial variations in some other phenotype
(e.g., regional gray matter volume, or number of connections). In
analyses of inter-regional transcriptional coupling or correlated
gene expression (CGE), each region’s transcriptional profile is
mapped as a vector of expression values across all genes, and these
vectors are correlated between different regions, thus resulting in
a region × region CGE matrix indicating the similarity between
brain regions in terms of their gene expression patterns. Gene-
to-gene co-expression (Eising et al., 2016; Keo et al., 2017;
Negi and Guda, 2017), on the other hand, is estimated at the
levels of genes (rather than regions). Each gene’s expression
profile across regions is summarized as a vector, and these
vectors are correlated between pairs of genes, resulting in a gene
× gene coexpression matrix demonstrating whether regional
expression patterns for gene pairs match. Note that the term gene
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coexpression is sometimes used in reference to CGE. We use the
current nomenclature to avoid confusion between the two.

Once a relationship between gene expression and a given
neural phenotype has been established, functional groups of
genes involved in driving the effect can be identified using
gene set enrichment analyses (GSEA) (Subramanian et al., 2005;
Irizarry et al., 2009). Since such analyses are often performed
across many thousands of genes, GSEA offers a method for
determining whether certain categories of genes—e.g., defined by
gene ontology (GO) (Ashburner et al., 2000) or KEGG ontology
(KO) (Kanehisa and Goto, 2000)—are over-represented in the set
of genes showing the strongest associations. This approach allows
for a functional interpretation of the results, at the expense of
specificity at the level of single genes (i.e., inferences are made
about functional groups of genes).

3. HUBS IN BRAIN NETWORKS

Complex behaviors require the coordination and integration
of information both within and across different, functionally
specialized brain regions. In primate brains, it has long been
assumed that association areas, sitting atop the cortical hierarchy,
and in interaction with subcortical regions, play an important
role in these integrative processes (Felleman and Van Essen,
1991; Mesulam, 1998; Meyer and Damasio, 2009). Structural
connectivity studies have confirmed that association areas, and
regions of basal ganglia and thalamus, have high levels of
connectivity, marking them as network hubs (van den Heuvel
and Sporns, 2011). Artificially lesioning these nodes rapidly
fragments the network, indicating that they play a vital role
in network integration (Albert et al., 2000; van den Heuvel
and Sporns, 2011). Moreover, both simulated node deletion and
in vivo regional inactivation experiments demonstrate a direct
relationship between a brain region’s centrality and its functional
impact on connected networks (Vetere et al., 2017).

Network hubs, the core elements in the network, can be
defined using a range of different measures. These measures
quantify distinct aspects of topological centrality, which can be
defined as the capacity of a node to influence or be influenced
by other nodes by virtue of its connection topology (Fornito
et al., 2016). The simplest such measure is node degree, which is
defined as the number of connections attached to a node. Other
commonly used measures include closeness and betweenness
centrality, which are both built on the premise that information
in the network propagates through the most efficient route
(the shortest path between regions), and thus, the centrality of
any given node can be quantified by its average shortest path
length (closeness), or the number of shortest paths between other
nodes on which it lies (betweenness). These measures are often
positively correlated across most networks, including the brain,
and it is common to find a subset of nodes that score highly
on most centrality measures, representing a topologically central
network core (Oldham et al., 2018).

Another way to define hubs is in relation to the modular
organization of the network. Nodes within a module are densely
interconnected with each other and relatively sparsely connected

to nodes in other modules. Given a partition of a network into
modules (e.g., Blondel et al., 2008), the integrative role of a
node in the network can be characterized using the participation
coefficient: a measure of connection diversity that assigns a
high score to nodes with connections distributed evenly across
modules. Thus, hubs defined based on the degree centrality can
be further classified into “local hubs,” which connect primarily to
nodes in the same module (high degree and low participation),
and “connector hubs,” which connect to nodes from other
modules (Figure 1) (Guimerá et al., 2012).

The interpretation of different measures of network centrality
must be moderated by an appreciation of how the network
has been constructed. If one investigates structural connectivity
(e.g., through electron microscopy, tract tracing, or diffusion
MRI) then network edges represent physical connections
between network elements, and interpretation is straightforward.
If one investigates functional connectivity (e.g., through
electrophysiology, calcium imaging, or functional MRI), which
captures statistical dependencies between physiological signals
recorded at each node (Friston, 1994), the interpretation is less
clear and some measures of dependence, such as the correlation
coefficient, can bias the topology of the network (Power et al.,
2011; Zalesky et al., 2012). Furthermore, different centrality
measures make assumptions about how dynamics unfold on
the network structure. For example, closeness and betweenness
assume information is routed along shortest paths, which may
not be a realistic model of communication in nervous systems
(Goñi et al., 2014; Mišić et al., 2015; Seguin et al., 2018).

Brain network hubs are densely interconnected, forming a
rich-club (Colizza et al., 2006). This property has been observed
in the macroscale human connectome (van den Heuvel and
Sporns, 2011), the mesoscale connectomes of the mouse (Fulcher
and Fornito, 2016), rat (van denHeuvel et al., 2016b), cat (de Reus
and van den Heuvel, 2013) and macaque (Harriger et al., 2012),
and the micro-scale neuronal connectome of the C. elegans
(Towlson et al., 2013) (Figure 2).

Given that hubs are distributed throughout the brain and
involved in diverse functional systems (de Reus and van den
Heuvel, 2013; van den Heuvel and Sporns, 2013; Fulcher
and Fornito, 2016), dense inter-connectivity of hub nodes is
thought to support efficient integration of different functionally
specialized systems (van den Heuvel et al., 2012), and to increase
the diversity of the brain’s functional repertoire (Senden et al.,
2014). This integrative capacity comes at cost, with connections
between hubs extending over longer anatomical distances than
other types of connections (van den Heuvel and Sporns, 2011;
Harriger et al., 2012; Fulcher and Fornito, 2016; Arnatkevic̆iūtė
et al., 2018). Hub regions also have the highest levels of resting
metabolism (Vaishnavi et al., 2010; Tomasi et al., 2013) and blood
flow (Liang et al., 2013). This high metabolic cost is thought
to partly explain why pathology preferentially accumulates in
brain network hubs across a wide range of diverse neurological
diseases (Bullmore and Sporns, 2012; Crossley et al., 2014;
Fornito et al., 2015).

The mechanisms resulting in the emergence of network
hubs are unknown, but geometric constraints and evolutionary
pressures to maximize adaptive function may play a role

Frontiers in Neural Circuits | www.frontiersin.org 4 July 2019 | Volume 13 | Article 47120

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Arnatkevic̆iūtė et al. Transcriptional Correlates of Hub Connectivity

FIGURE 1 | Different concepts of hubness in brain networks. A schematic representation of a modular network where nodes within a module (different background

colors) show a relatively high degree of intra-modular connectivity and a low degree of inter-modular connectivity. High degree nodes can be classified into (i) local

hubs (blue) that have a high degree centrality and low participation coefficient; and (ii) connector hubs (red) that have high degree and connect to nodes in other

modules. Nodes with high betweenness centrality are located on shortest paths between nodes and can play an important role in linking different nodes, even if they

have low degree (e.g., the green node supports communication between the yellow and orange modules).

(Henderson and Robinson, 2014; Roberts et al., 2016; Betzel
and Bassett, 2017). Whereas, generative network models based
on simple geometric rules reproduce a range of statistical
properties of brain networks (Ercsey-Ravasz, 2013; Henderson
and Robinson, 2014; Song et al., 2014), the spatial location of
hub regions cannot be explained by geometry alone (Roberts
et al., 2016), suggesting an additional role for non-geometric
factors in shaping the specific topology and topography of the
connectome. In this context, genes may make an important
contribution to shaping complex properties, such as rich-
club organization. We now turn our attention to recent
studies investigating the transcriptional correlates of hub
connectivity by integrating connectomic data with spatially
comprehensive gene expression databases across different species
and scales.

4. THE MOLECULAR CORRELATES OF
HUB CONNECTIVITY

The first study to link transcriptional measures to the hub
connectivity (Rubinov et al., 2015) combined gene expression
data from the AMBA (Lein et al., 2007) with a mouse
connectome inferred statistically from 461 tract-tracing studies
(Oh et al., 2014). Data from these anterograde tracer injections
into the right hemisphere were aggregated into a directed

and weighted connectivity matrix comprising of 112 bilaterally
symmetrical cortical and subcortical nodes defining edge weights
as normalized connection densities and ranging over four orders
of magnitude, with 53% of all possible pairs of regions showing
some level of non-zero connectivity. The authors identified
a subset of nodes with high degree and a high participation
coefficient, indicating that they were highly connected while
also being connected to nodes in diverse functional systems.
Using partial least squares (PLS) (Hervé, 2010), they were able
to derive a linear combination of genes whose expression levels
explained 48% of the variance in nodal participation coefficient.
The analysis focused on a subset of 3,380 genes form the AMBA
that passed quality control criteria and were assayed in at least
one additional independent experiment allowing the authors to
evaluate gene expression reproducibility. The genes weighting
strongly on the participation-related component were enriched
for GO categories, such as learning, cognition, and memory,
suggesting a link between the expression of genes related to
regional variations in network participation and those implicated
in cognition.

In a subsequent analysis of the Allen Institute mouse
connectome, Fulcher and Fornito (2016) used a parcellation
comprising 213 regions linked by 3, 063 connections (6.9%
of all possible links), focusing on the right hemisphere
only (where complete information on afferent and efferent
connectivity was available), in combination with ISH measures
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FIGURE 2 | Rich club connectivity in different species. Top row: The spatial location of hubs in C. elegans (A), mouse (B), and human (C). (A) Neurons are

represented as nodes with colors corresponding to neuron type: interneurons (red), motor neurons (green), sensory neurons (blue), multimodal neurons (yellow). Hub

neurons (neurons with node degree, denoted k, > 44) are shown as circles outlined in black. Connections between hubs are shown in red; other connections shown

in gray in the upper plots. The upper part represents zoomed-in plots of the head and tail that are shown as dotted rectangles in the lower plot [adapted and

reproduced from (Arnatkevic̆iūtė et al., 2018)]. (B) Meso-scale connectome of the mouse. Hub regions (regions with k > 44) are distributed across the whole brain

and contain areas in isocortex, striatum, hippocampal formation, pallidum, thalamus, hypothalamus, midbrain, pons, and cortical subplate [adapted and reproduced

from (Fulcher and Fornito, 2016)]. (C) Macro-scale connectome of the human brain. Hub regions (regions with k > 30) are shown as big red spheres while other

regions as smaller gray spheres. Connections between hubs are shown in pink. Hubs are bilateral: lingual gyrus, precuneus, superior frontal gyrus, superior parietal

gyrus, insula, thalamus, putamen and hippocampus; right pallidum; left caudate and lateral occipital gyrus. Middle row: Distribution of degree values across nodes. In

each network, the distribution is heavy-tailed, consistent with the presence of highly connected hub nodes. Bottom row: Normalized rich-club coefficient 8norm (red)

and average connection distance of hub-hub links, d (blue), as a function of degree (k) at which hubs are defined. The coefficient 8norm is defined by thresholding the

network at a given level of k, calculating the density of connections between hub nodes (all nodes with degree > k), and normalizing this value by the corresponding

value obtained in an ensemble of appropriately matched surrogate graphs. The normalized coefficient therefore quantifies the degree to which the density of

connections between hubs exceeds chance expectations. Since the threshold to define hubs is arbitrary, the coefficient is evaluated across all possible values of k. A

rise in 8norm at high levels of k is consistent with rich-club organization. Red circles indicate 8norm values that are significantly higher than an ensemble of 10,000 null

networks (permutation test p < 0.05). Blue circles indicate where the mean connection distance between hubs is significantly greater relative to other links in the

network (one-sided Welch’s t-test; p < 0.05).

of expression across 17, 642 genes in the AMBA (Lein et al.,
2007). Their primary aim was to characterize how coupled
patterns of gene expression between regions (i.e., correlated
gene expression or CGE) relate to network topology. After
confirming that the right hemisphere of the mouse connectome
did indeed show evidence of rich-club organization, and that
connections between hubs were both the most costly (measured
by connection distance, reciprocity and weight) and central
(measured using edge betweenness centrality and an alternative
measure called communicability, that does rely on shortest path
communication) connections of the network, they distinguished
between three topological classes of connections following the
work of van den Heuvel et al. (2012): (i) rich links, which connect
two hubs (where hub is defined based on degree); (ii) feeder
links, which connect a hub to non-hub (feed-out) or a non-
hub to a hub (feed-in); and (iii) peripheral links, which connect
two non-hubs (Figure 3A). Across a wide range of thresholds
for defining a hub, CGE was highest for rich links, followed
by feeder, and lowest for peripheral edges, with CGE showing
a sharp rise at a hub threshold range that coincided with a
regime in which a significant topological rich-club was observed
(Figure 3B). This tightly coupled transcriptional activity between
hub nodes defied a general trend in the brain where CGE between
two areas decayed sharply (exponentially) as a function of their

distance. That is, despite connected hubs being separated by
longer anatomical distances than other pairs of regions, they
showed the highest levels of transcriptional coupling (note that
CGE measures were corrected for this dependence). Enrichment
analysis showed that this effect was driven by genes regulating
the oxidative synthesis and metabolism of ATP—the primary
energetic source of neuronal communication. By comparison,
an enrichment analysis comparing connected to unconnected
regions (regardless of whether those connections involved hubs)
found significant involvement of a large number of GO categories
related to synaptic plasticity and communication, axon structure,
andmetabolism. These findings suggest that while genes involved
in forming and maintaining synapses and axons are important
for establishing a connection between two regions, the primary
genomic distinction between different topological classes of
connections (as defined in relation to hubs) is related to the
metabolic requirements of those connections.

More recently, we found a qualitatively similar pattern
of elevated CGE in rich links in the nematode C. elegans
connectome (Arnatkevic̆iūtė et al., 2018). Combining electron
micrograph data defining the electrochemical connectome of
279 neurons (Varshney et al., 2011) with binary gene expression
profiles across 948 genes (Figure 3C) acquired from WormBase
(Harris et al., 2010), we identified the same trend for CGE to be
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FIGURE 3 | Empirical studies investigating the transcriptional properties of hub connectivity in mouse (A,B) and C. elegans (C,D). (A) The schematic representation of

different types of connections in the mouse brain: rich (connecting a hub to a hub)—red, feeder (connecting a hub to a non-hub or a non-hub to a hub)—green,

peripheral (connecting a non-hub to a non-hub)—blue. Links in the connectome were categorized across this scheme. For each region, a vector of gene expression

values was extracted as the corresponding row of the region in the full gene expression matrix comprising the AMBA. The matrix represents the normalized gene

expression of 17,642 genes (columns) across 213 regions (rows). Gene expression profiles for each region were then used to estimate correlated gene expression

(CGE) between region pairs. (B) Mean correlated gene expression for rich, feeder, and peripheral links as a function of node degree (k) where hubs are nodes with

degree > k. The mean CGE of rich links increases at levels of k that coincide with a regime where evidence of topological rich-club organization is found indicating that

CGE is highest for connected pairs of network hubs. The topological rich-club regime (determined from the network topology, see Figure 2A) shaded gray. Circles

indicate a statistically significant increase in correlated gene expression for a given link type relative to the rest of the network (one-sided Welch-s t-test; p < 0.05)

[adapted and reproduced from (Fulcher and Fornito, 2016)]; (C) Neuron-and-synapse connectome of C. elegans, reconstructed for 279 neurons using electron

microscopy. Connections colored according to how they connect hubs (neurons with degree > 44) and non-hubs (neurons with degree ≤ 44): red (rich links

connecting hubs), orange (feed-in links connecting a non-hub to a hub), yellow (feed-out links connecting a hub to a non-hub), blue (peripheral links connecting

non-hubs). Middle: additional data acquired for each neuron, such as its: chemically secreted transmitter, anatomical location, birth time, hub status and neuronal

type. Right binary gene expression profile for each of the 279 neurons (rows) across 948 genes (columns). (D) Median CGE for each connection type (feed-in and

feed-out connections are combined and represented as feeder) as a function of node degree k. The topological rich-club regime (determined from the network

topology, see Figure 2A) shaded gray. Circles indicate a statistically significant increase in CGE in a given link type relative to the rest of the network (one-sided

Wilcoxon rank sum test, p < 0.05) [adapted and reproduced from (Arnatkevic̆iūtė et al., 2018)].

highest for rich links, followed by feeder, and then peripheral
edges (Figure 3D). The involvement of metabolic genes in
rich-club connectivity—as in the mesoscopic mouse connectome
(Fulcher and Fornito, 2016)—could not be confirmed due
to limited gene expression data in the worm, but analysis
of the available data indicated that glutamate signaling and
neuronal communication genes made the strongest contribution
to elevated CGE for hub-hub connections (Arnatkevic̆iūtė et al.,
2018). Leveraging the extensive additional data on neuronal
phenotypes available for the worm, we found that elevated
CGE for connected hubs could not be explained by a range

of other properties, such as neuronal lineage distance (number
of cell divisions separating pairs of neurons from a common
ancestor), differences in birth time, neuronal subtype (sensory,
motor, or interneuron), chemically secreted neurotransmitter,
anatomical separation distance or topological module affiliation.
However, the effect did seem to be driven by the fact that most
hubs in the worm connectome are command interneurons, a
specialized class of neurons that regulates motion. Motion is
one of the more complex behaviors in the worm’s repertoire,
and these findings parallel evidence in primates that network
hubs are primarily located in association cortices, which are
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thought to mediate higher-order cognition (Achard et al., 2006;
Sporns et al., 2007). Thus, despite numerous differences in the
data, including different gene annotation methods (∼ 20 000 ISH
genes in mouse vs.∼ 1, 000 binary literature-curated annotations
in worm), the type of the neural system (spatially continuous
macroscopic mouse brain vs spatially separated C. elegans
nervous system), and the orders ofmagnitude differences in scale,
both studies demonstrated the same general pattern of increased
transcriptional similarity across topologically central hub nodes.

In light of the findings in both mouse and C. elegans,
where several groups of genes implicated in cognition (Rubinov
et al., 2015), oxidative metabolism (Fulcher and Fornito, 2016),
and neuronal communication (Arnatkevic̆iūtė et al., 2018)
have been identified as being related to hub connectivity, one
could wonder whether the same genes are involved in the
hub connectivity of the human brain. The first analysis to
link gene expression and hub connectivity in humans was
performed by Vértes et al. (2016), who combined resting-state
fMRI (rs-fMRI) data with the high coverage genome-wide gene
expression from AHBA (Hawrylycz et al., 2012). Rendering
rs-fMRI data for 285 cortical regions as a binary undirected
network, thresholded to retain 10% of all possible connections,
they measured three different properties of each node: its within-
module connectivity, its participation coefficient (between-
module connectivity), and its average Euclidean distance from
other nodes. PLS identified three components that collectively
accounted for 37% of the total variance in nodal metrics

with the first component exhibiting a positive correlation with
intra-modular degree and a negative correlation with average
nodal distance, corresponding to high degree nodes that mostly
form short-range within-module connections. Genes positively
loading on this component were enriched for GO categories
related to transcriptional regulation. The second component was
positively related to both the participation coefficient and average
nodal distance, thus representing nodes with long connections
that extend between modules, consistent with the integrative
hubs of the network (Figure 4A). As seen in the analysis of
the structural connectivity analysis of the mouse (Fulcher and
Fornito, 2016), genes loading positively on this component were
enriched in GO categories related to oxidative metabolism and
mitochondrial function. These genes also showed significant
over-representation for a set of 19 genes (Krienen et al., 2016)
selectively enriched in the supragranular layers of the human
cortex (HSE-human supragranular enriched genes) with some of
those genes being implicated in the formation of corticocortical
projections emanating from the higher layers of the cortex
(Krienen et al., 2016). Together these findings suggest that hubs
across species demonstrate conserved transcriptional properties
related to their high metabolic demands.

It is well-known that the human brain undergoes an
extended period of development during adolescence that is
critical for brain maturation and coincides with the period
of peak risk for many mental disorders (Paus et al., 2008).
Some of those developmental changes particularly target hub

FIGURE 4 | Empirical studies investigating the transcriptional properties of hub connectivity in human. (A) A schematic representation of the modular organization of

the connectome demonstrating the key properties of inter- and intra- modular hubs based on Vértes et al. (2016). Intra-modular hubs (blue nodes) mostly connect

nodes within the same module and have relatively short connection distances; characterized by the PLS1. Intra-modular hubs (red nodes) have a more diverse

connectivity profile with connections extending long distances and connecting nodes from different modules; characterized by the PLS2. Size and color saturation of

the nodes in the connectome corresponds to the regional scores on PLS1 (Intra-modular hub) and PLS2 (Inter-modular hub) to represent the spatial pattern of

transcriptional profiles [adapted and modified from (Vértes et al., 2016)]. (B) Gene expression and cortical consolidation in adolescence based on Whitaker et al.

(2016), (top) spatial topography of the second component from a PLS analysis corresponding to cortical consolidation during adolescence, defined as cortical

shrinkage/myelination. Genes identified in this profile are related to synaptic transmission and risk to schizophrenia, among others, and are overexpressed in prefrontal

areas of the cortex; (bottom) hubs in the structural covariance network experience faster rates of cortical thinning (CT) and myelination. The PLS2 gene expression

profile is also significantly associated with degree, meaning that hubs are likely to over-express those genes [adapted and modified from (Whitaker et al., 2016)].
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regions (Dennis et al., 2013; Hwang et al., 2013; Baker et al.,
2015; for a review see Cao et al., 2016). Whitaker et al.
(2016) examined a large sample of adolescents (279, aged
14–24 years old) and found that topologically central hubs
of the cortical structural covariance networks undergo an
increased rate of consolidation, defined by increased cortical
thinning and enhanced myelination (Figure 4B). Components of
transcriptional variance that correlated with this consolidation
were extracted using PLS, employing the full set of 20 737 genes
from the AHBA. The first two components explaining 28%
of the variance in MRI measures were related to the baseline
measures of cortical thickness and myelination (PLS1), and
cortical shrinkage and myelination—consolidation over time
(PLS2) (Figure 4B), respectively. The PLS2 component involved
contributions from genes regulating synaptic transmission and
a set of genes linked to risk for schizophrenia, suggesting
that deviation from the normal developmental consolidation of
hub regions might manifest as an intermediate phenotype for
schizophrenia (Whitaker et al., 2016), consistent with evidence
that hubs are disproportionately impacted by the disease (van den
Heuvel et al., 2013b; Crossley et al., 2014; Klauser et al., 2016)
and that regional variations in the expression of schizophrenia
risk genes track the regional variations in the magnitude of
group differences in connectivity between controls and patients
(Romme et al., 2017).

Importantly, this work implies that genes involved in the
development of hubs, which relate to myelination and synaptic
transmission, are distinct from those implicated in cross-
sectional studies of adult hub connectivity, which implicate
metabolic genes. In other words, the genetic mechanisms
underlying the development of hub connectivity may differ from
those involved in sustaining the functional role that hubs play
in a mature neuronal system. The further development of brain-
wide atlases of developmental changes in gene expression will
help shed light on how such differences can be leveraged to gain
insight into the development of different brain disorders.

5. CONCLUSIONS AND FURTHER
DIRECTIONS

Brain-wide gene expression atlases provide exciting
opportunities to link different scales of brain organization. At
the same time, integrating such data with connectomic measures
poses challenges. Given the nascence of this field, no standardized
data processing pipelines have been developed, with widespread
inconsistencies in processing of the same transcriptional data
across studies (Arnatkevic̆iūtė et al., 2019) complicating direct
comparison between findings, even within the same species.

Nonetheless, the available studies—conducted in diverse species
and using different measures of brain connectivity and gene
expression acquired at different resolution scales—point to a
conserved transcriptional signature of hub connectivity related
to genes regulating neuronal communication and metabolism,
consistent with the high centrality and metabolic cost of hub
regions (Bullmore and Sporns, 2009).

One limitation affecting the human data is that the gene
expression measures are derived from bulk tissue samples. The
cellular composition of these samples can influence measured
gene expression patterns, such that two samples can differ in their
transcriptional properties simply due to the differences in the
density of distinct cell types. Single-cell transcriptomics is able
to provide precise gene expression measurements in individual
cells, thus resolving cell-specific transcriptional profiles. While
scRNA-seq is not currently feasible for the whole human
brain, the expression profiles of specific cell groups in the
adult (Johnson et al., 2015; Hu and Wang, 2017; Picardi
et al., 2017) and developing brain (Zhong et al., 2018) are
being characterized.

These limitations notwithstanding, the consistency of results
considered here—often identified through unbiased, data-driven
techniques—demonstrate the potential utility of brain-wide
transcriptomic measures in yielding biologically meaningful
insights to otherwise abstract graph-theoretical structures, such
as hubs and other neural phenotypes. With the availability of new
resources and developments in neuroimaging, the combination
of such data across resolution scales offers a promising way
forward for uncovering the molecular mechanisms that drive the
large-scale organization of the connectome.
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