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Toxicogenomics was established as a merger of toxicology with genomics approaches 
and methodologies more than 15 years ago, and considered of major value for 
studying toxic mechanisms-of-action in greater depth and for classification of 
toxic agents for predicting adverse human health risks. While the original focus 
was on technological validation of in particular microarray-based whole genome 
expression analysis (transcriptomics), mainly through cross-comparing different 
platforms for data generation (MAQC-I), it was soon appreciated that actually the 
wide variety of data analysis approaches represents the major source of inter-study 
variation. This led to early attempts towards harmonizing data analysis protocols 
focusing on microarray-based models for predicting toxicological and clinical 
end-points and on different methods for GWAS data (MAQC-II). Simultaneously, 
further technological developments, geared by increasing insights into the complexity 
of cellular regulation, enabled analyzing molecular perturbations across multiple 
genomics scales (epigenomics and microRNAs, metabolomics). While these were 
initially still based on microarray technology, this is currently being phased out 
and replaced by a variety of next generation sequencing-based methods enabling 
exploration of genomic responses to toxicants at even greater depth (SEQC-I). This 
raises the demand for reliable and robust data analysis approaches, ranging from 
harmonized bioinformatics concepts for preprocessing raw data to non-supervised 
and supervised methods for capturing and integrating the dynamic perturbations of 
cell function across dose and time, and thus retrieving mechanistic insights across 
multiple regulation scales.

Traditional toxicology focused on dose-dependently determining apical endpoints 
of toxicity. With the advent of toxicogenomics, efforts towards better understanding 
underlying molecular mechanisms has led to the development of the concept of 
Adverse Outcome Pathways, which are basically presented as a structural network 
of linearly related gene-gene interactions regulating key events for inducing apical 
toxic endpoints of interest. Impulse challenges from exposure of biological systems to 
toxic agents will however induce a cascade-type of events, presenting both adverse 
and adaptive processes, thus requiring bioinformatics approaches and methods 
for complex dynamic data, generated not only across dose, but clearly also across 
time. Currently, time-resolved toxicogenomics data sets are increasingly being 
assembled in the course of large-scaled research projects, for instance devoted 
towards developing toxicogenomics-based predictive assays for evaluating chemical 
safety which are no longer animal-based. 
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Alejandro Aguayo-Orozco1* , Frederic Yves Bois2, Søren Brunak1 and
Olivier Taboureau1,3*
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Non-alcoholic fatty liver disease (NAFLD) represents a wide spectrum of disease,
ranging from simple fatty liver through steatosis with inflammation and necrosis to
cirrhosis. One of the most challenging problems in biomedical research and within the
chemical industry is to understand the underlying mechanisms of complex disease, and
complex adverse outcome pathways (AOPs). Based on a set of 28 steatotic chemicals
with gene expression data measured on primary hepatocytes at three times (2, 8, and
24 h) and three doses (low, medium, and high), we identified genes and pathways,
defined as molecular initiating events (MIEs) and key events (KEs) of steatosis using
a combination of a time series and pathway analyses. Among the genes deregulated
by these compounds, the study highlighted OSBPL9, ALDH7A1, MYADM, SLC51B,
PRDX6, GPAT3, TMEM135, DLGDA5, BCO2, APO10LA, TSPAN6, NEURL1B, and
DUSP1. Furthermore, pathway analysis indicated deregulation of pathways related to
lipid accumulation, such as fat digestion and absorption, linoleic and linolenic acid
metabolism, calcium signaling pathway, fatty acid metabolism, peroxisome, retinol
metabolism, and steroid metabolic pathways in a time dependent manner. Such
transcription profile analysis can help in the understanding of the steatosis evolution
over time generated by chemical exposure.

Keywords: hepatic steatosis, gene expression, transcriptomics, time-series analysis, pathways analysis, drug
induced liver injury, DILI

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is diagnosed increasingly worldwide and is considered
to be the most common liver disorder in the West (Rector et al., 2008). NAFLD refers to a spectrum
of hepatic disorders, ranging from simple hepatic steatosis with no apparent specific symptoms
to hepatocellular carcinoma (Jozefczuk et al., 2012). Hepatic steatosis is caused by abnormal
accumulation of triglycerides (TG) in the liver due to chemical exposures other than excessive
alcohol consumption. This accumulation of TG in vesicles impairs hepatic function and makes
the liver highly susceptible to other injuries related to metabolic syndrome and systemic energy
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metabolism (Marchesini et al., 2003). Simultaneously, it affects
the local immune system and that may lead to more severe
autoimmune diseases (Antherieu et al., 2011). From a metabolic
point of view, steatosis occurs when the fatty acids (FAs) influx
or synthesis in the liver exceeds the capacity to clear them.
The metabolic pathways leading to the development of hepatic
steatosis are multiple, including enhanced non-esterified FA
release from adipose tissue (lipolysis), increased de novo FAs
(lipogenesis) and decreased β-oxidation (Fuchs et al., 2014).

Some toxicogenomics studies have been reported on drug-
induced steatosis (DIS) or steatohepatitis (DISH) (Lake et al.,
2011; Starmann et al., 2012; Hebels et al., 2014; Rabinowich
and Shibolet, 2015), however, the mechanisms of action
leading to steatosis are not fully understood. To support
toxicity evidence with mechanistic pathways and mode of
action for drug safety and risk assessment, the OECD has
recently developed the adverse outcome pathway (AOP) concept.
The AOP concept involves all the essential steps that take
place in the toxicity pathways, from the molecular initiating
event (MIE) at the protein or gene level, passing through
organelle effect, cellular, tissue, organ and finally population
effect. One key principle is that AOPs are chemical agnostic
pathways (Vinken, 2013). Steatosis is one of the AOPs highly
investigated and although AOPs are chemical agnostic pathways,
the activation of some specific molecules, which lead to the
over or under regulation of key events (KEs) with steatosis
as a final outcome has been reported on the OECD AOP
website1.

In this study, we decided to analyze transcriptomic data
on a set of 28 drugs tested in primary human hepatocytes
and suspected to cause steatosis. In order to obtain an overall
understanding of the disease, steatosis-producing chemicals were
compiled and analyzed together. An interesting feature is that
compounds have been studied at different times and doses,
so we were able to perform a time-series analysis at the gene
level but also at the pathway level. The distinction between
time points and concentrations can explain how the different
KEs affect one another, which will help in explaining complex
hepatotoxicity. The results of our analysis support previously
reported finding and provide new hypotheses that could be
investigated further.

MATERIALS AND METHODS

Chemicals
For the current analysis, 28 compounds were selected according
to their ability to induce steatosis in primary human hepatocytes
(PHH) and the availability of gene expression data in the TG-
GATEs (Toxicogenomics Project–Genomics-Assisted Toxicity
Evaluation System) database (Igarashi et al., 2015). Furthermore,
seven non-steatotic compounds available in TG-GATEs were also
included according to the study carried out by Sahini and Borlak
(2014) and Sahini et al. (2014) as negative controls. The negative
controls have been associated with other histopathological

1https://aopwiki.org/

observations in rat in vivo such as necrosis, cellular infiltration,
fibrosis and granuloma (Supplementary Table S1). The TG-
GATEs database contains data from PHH exposed to those
compounds and collected using Affymetrix HG U133 Plus
2.0 gene expression microarrays. Two replicates were tested
at three dose levels (low, medium, and high) and at three
time points (2, 8, and 24 h after initial dosing). For each
experiment, corresponding untreated controls are also tested.
The 35 chemicals used in the study are summarized in Table 1.
The specific dose and times can be found in Supplementary
Table S2.

Microarray Data Analysis
All data were analyzed using the robust multi-array average
(RMA) methodology in the Bioconductor R package for
background-adjusted, normalized, and log-transformed perfect
matched values of individual probes from the Affymetrix Human
Genome U133 Plus 2.0 array (Irizarry et al., 2003). 54,675 probes
corresponding to 19,945 uniquely annotated Gene Symbol IDs
define each microarray. There is a total of 225 experiments
according to concentration, time of exposure and compound
used for the treatment. These experiments where analyzed
in four steps: (1) all the experiments have been normalized
concertedly. Such global normalization highlights the most
important genes, which are those affected by the toxicity of
more than one compound, and most likely in more than one
time point and/or concentration (Krug et al., 2013). When
dealing with gene expression microarray data, results can be
affected by small differences in any number of non-biological
variables, i.e., reagents or different technicians. (2) The two
replicates per compound and condition were averaged. (3)
Batch effect was accounted in the design matrix, reducing the
bias effect on further steps of the analysis similarly to what
has been performed by Grimberg et al. (2014). Concretely,
for each gene a linear model following Eq. 1 (corresponding
to a t-test comparison between two groups) was performed
(Ritchie et al., 2015). (4) Subsequently, differentially expressed
genes (DEGs) were calculated by dividing the average signal
obtained from the chemical exposed group by the average
signal from control receiving the vehicle only. The Student
t-test was used to calculate the p value which was corrected
by Bonferroni multiple testing. Finally, DEGs were selected by
considering the p values less than 0.05 and fold-changes higher
than 1.5. Genes that met these criteria also in the negative
control set were removed from the deregulated gene’s list for
steatosis, assuming that these genes were not related to steatosis.

Yij = αj + xiβj + εij (1)

Time-Series Analysis
To characterize the deregulation of genes related to steatosis
over time, after drug administration, a time-series analysis was
performed on the 28 compounds using the package MasigPro
in R (Nueda et al., 2014). This analysis was performed for each
compound individually. With MasigPro, genes with significant
temporal expression changes were selected and their variance
at the different concentration (low, medium, and high) were
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TABLE 1 | Compounds used in the analysis.

Compound name Abbreviation Cas No. Sample Reference

Allyl Alcohol AA 107-18-6 Steatosis (Waterfield et al., 1993)

Amiodarone AM 1951-25-3 Steatosis (Antherieu et al., 2011)

Acetaminophen APAP 103-90-2 Steatosis (Fontana, 2008)

Acetamide AAA 60-35-5 Steatosis (Zhang et al., 2017)

Amitriptyline AMT 50-48-6 Steatosis (Xia et al., 2000)

Aspirin ASA 50-78-2 Steatosis (Shen et al., 2014)

Coumarin CMA 91-64-5 Steatosis (Sahini et al., 2014)

Colchicine COL 64-86-8 Steatosis (Seiliez et al., 2016)

Clomipramine CPM 303-49-1 Steatosis (Xia et al., 2000)

Cyclosporin A CSA 59865-13-3 Steatosis (Lopez-Riera et al., 2017)

Clozapine CZP 5786-21-0 Steatosis (Zhang et al., 2007)

Diltiazem DIL 42399-41-7 Steatosis (Dowman et al., 2010)

Disulfiram DSF 97-77-8 Steatosis (Balakirev and Zimmer, 2001)

Ethanol ETN 64-17-5 Steatosis (Donohue, 2007)

Ethinylestradiol EE 57-63-6 Steatosis (Morii et al., 2014)

Ethionamide ETH 536-33-4 Steatosis (Zhang et al., 2017)

Hydroxyzine HYZ 68-88-2 Steatosis (Sahini et al., 2014)

Imipramine IMI 50-49-7 Steatosis (Xia et al., 2000)

Lomustine LS 13010-47-4 Steatosis (King and Perry, 2001)

Methapyrilene MP 91-80-5 Steatosis (Craig et al., 2006)

Methyltestosterone MTS 58-18-4 Steatosis (Schoonen et al., 2007)

Phenylbutazone PhB 50-33-9 Steatosis (Bessone, 2010)

Rifampicin RIF 13292-46-1 Steatosis (Tostmann et al., 2008)

Terbinafine TBF 91161-71-6 Steatosis (Choudhary et al., 2014)

Tetracycline TC 60-54-8 Steatosis (Antherieu et al., 2011)

Vitamin A VA 68-26-8 Steatosis (Liu et al., 2016)

Valproic acid VPA 99-66-1 Steatosis (Vitins et al., 2014)

Pirinixic acid WY 50892-23-4 Steatosis (Cannon and Eacho, 1991)

Carbamazepine CBZ 298-46-4 Negative Control (Bessone, 2010)

Diclofenac DFNa 15307-86-5 Negative Control (Bessone, 2010)

Indomethacin IM 53-86-1 Negative Control (Dehpour et al., 1999)

Naproxen NP 22204-53-1 Negative Control (Bessone, 2010)

Nifedipine NIF 21829-25-4 Negative Control (Basile and Mascia, 1999)

Nimesulide NIM 51803-78-2 Negative Control (Bessone, 2010)

Sulindac SUL 103-90-2 Negative Control (Bessone, 2010)

The reference corresponds to the publication in which drug-induced hepatic steatosis or negative control has been reported.

analyzed. As a first step, a regression on time for each gene
taking all the variables present in the model, hence using all
the genes, was performed. A false discovery rate (FDR) method
was used to select genes with a value less than 0.05. Moreover,
for each gene the best regression model was selected using
stepwise regression. A backward method was used; therefore
all genes were used as variables to initialize the modeling (p-
value <0.05 were considered). In a final step, the R-squared
of the regression model was used as cut-off value in order to
reduce the amount of false positive findings (genes). R-squared
was set to 0.6 to allow flexibility to the regression model,
since we are working with all the compounds associated with
steatosis, as suggested by MasigPro. Overall, MasigPro provides
information on genes that change over time and in respect to the
control. Such analysis can be visualized, plotting DEG of every
single gene for each compound studied according to time and
dose.

Gene Set and Pathway Analysis
In addition to the DEG and the time-series analysis, a pathway
analysis was performed based on our gene expression analysis
for the 28 compounds. Compared with the individual
gene/molecule-based approach, pathway analysis is more
sensitive, consistent and informative on the outcomes studied
(Luo et al., 2009). In our study, the parametric statistical
analysis model (PAGE) was used (Kim and Volsky, 2005).
The method is based on a modified Gene Set Enrichment
Analysis (GSEA). A gene randomization test was applied to the
gene expression data, in which the significance of gene sets is
identified for pathways (computing permutations of gene labels
or a parametric distribution over genes). The database used
for the study of the pathways was KEGG, which is a database
resource that integrates genomic, chemical and systemic
functional information for a large set of pathways (Kanehisa
et al., 2012). In order to obtain a quantitative result of the
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compound’s effect over the pathways, a Gene Fold Enrichment
(GFE) score was calculated. This score divided the number of
genes deregulated by the total number of genes of the pathway
being analyzed and then multiply by the statistical mean for
the same pathway. Pathview, a tool set for pathway-based
data integration and visualization, was used within the GAGE
package in R for visualization of the genes deregulated in the
KEGG pathway (Luo and Brouwer, 2013). In our context, no
specific pathway has been developed for steatosis in KEGG or
other pathway databases. So, we have considered the NAFLD
pathway, which is the closest pathway to steatosis for the
visualization.

Clustering
Previous studies have shown that the use of gene expression
clustering can group samples in clusters that may lead to a good
prediction of the gene-outcome relationship (Alizadeh et al.,
2000; Handen and Ganapathiraju, 2015). Therefore, a pathway
analysis was also performed on the set of compounds after
clustering. Clustering was based on the logarithm base 2 of the
fold change of the gene expression at the different conditions. The
Euclidian distance implemented in Ward.D2 in R method was
used. The clustering method was performed in all compounds
containing information for at least 2 timepoints, hence excluding
clozapine (CZP) from the analysis, which has been studied only
for 1 timepoint. The clustering has been performed separately
for the different time points. The clustering shown in Figure 5
was performed on the compounds at 24 h. The determination of
the number of clusters was done by the elbow method. A range
of k values from 1 to 10, k value being the number of chemical
belonging to a cluster, were considered in our analysis. For each
k value the sum of squared errors (SERs) was calculated and the
selection of the number of cluster was based on a compromise
between the number of clusters and low SER. K = 4 was selected
as it showed a close to maximum separation of the samples and
low SER.

RESULTS

DEG Analysis
Firstly, we analyzed DEGs under all different conditions versus
control for the 28 compounds with a global normalization of
the 255 experiments (all together analysis). 742 genes are highly
deregulated in at least one condition, i.e., one compound at a
specific time and concentration (logFC ≥ 1.5 and with a FDR
Bonferroni-corrected value ≤0.05).

For the pathway analysis, we looked specifically at the NAFLD
pathway, a general pathway related to fatty liver, and for which
steatosis might be related for some genes. Through the pathway
enrichment analysis, many genes involved in the NAFLD are
deregulated (Figure 1). Mapping the genes deregulated by the set
of 28 compounds on the NAFLD pathway led to the observation
that some genes are up regulated, in red (INSR, adipR, or
PPARα), by a large set of compounds (AAA, PhB, CPM, and
HYZ), whereas another set of genes is more often down regulated,
in green (LXR, PI3K, FAS, CASP8, IKKB, and BAX) by others

compounds (VA, ASA, and APAP). There are several compounds
that show opposite effects by up/down-regulating the same genes.
This is the case of CYP2E, AMPK and other mitochondrial genes.
This supposes that there are different mechanisms of action that
can trigger steatosis.

Gene Ontology pathway enrichment was also performed with
the 742 genes in order to get an impression of the biological
processes that were affected (Figure 2). The enrichment in terms
of pathways based on GO terms was used in this study. At the
first level of the pathway hierarchy, the deregulated genes are
related to several pathways, including cellular process, metabolic
process, localization, developmental process and immune system
process. The two most significant are the cellular processes
and metabolic processes. Within metabolic processes, primary
metabolic processes are the most significant pathways targeted by
the deregulated genes. In primary metabolic processes, the two
most targeted pathways are nucleobase-containing compound
metabolic processes and lipid metabolic processes. The latest
contains steroid metabolic process, phospholipids metabolic
process and FA metabolic process. Looking into the specific
pathways, the most represented in the GO analysis are FA
β-oxidation and acetyl-CoA metabolic process. So, we can note
that many genes deregulated by the set of compounds affect lipids
and FAs and play a role in steatosis.

Time-Series Analysis
In the previous analysis, the outcomes were analyzed
independently of time and dose. To investigate the evolution
of the expression over time, a time-series analysis was carried
out using the R package MasigPro. After removing the genes
involved in cell cycle according to GO biological processes (see
Supplementary Table S3) (Barron and Li, 2016), MasigPro
detected 48 genes with significant temporal expression changes
(Table 2). These genes are mainly involved in metabolic and
immune system pathways. Among them, some genes have
previously been reported to play a hepatotoxic role such as
MYADM (Megger et al., 2014), SLC51B (Arab et al., 2017),
PRDX6 ((Newton et al., 2009; Pacifici et al., 2014), OSBPL9
(Hong and Tontonoz, 2014), GPAT3 (Khatun et al., 2016),
TMEM135 (Exil et al., 2010), DLGDA5 (Liao et al., 2013), BCO2
(Ip et al., 2015), IDH3G (Pan et al., 2014), NEURL1B (Lawan
et al., 2015), and TSPAN6 (Wang et al., 2012). An extensive work
done in rodents related to steatosis adverse outcome described
how OSBPL proteins promote the development of NAFLD in
mice (Stein et al., 2017). Finally, the role of GPTA proteins
has been reported to play a role in the development of hepatic
steatosis (Yu et al., 2018).

Our results confirm previous transcriptomics analysis in
rodents with deregulation of genes such as GPAT, KIF, CXCL, and
SLC family genes (Sahini et al., 2014) and OSBP family that alters
the lipid metabolism in mice (Béaslas et al., 2013).

An example of the visualization of the time-series analysis is
shown in Figure 3 for neutralized E3 ubiquitin protein ligase
1B (NEURL1B) after exposure to the 28 compounds. We can
observe that NEURL1B is regulated in positive direction over
time for many compounds. Other examples are presented in
supplementary information (Supplementary Figure S1).
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FIGURE 1 | Non-alcoholic fatty liver disease (NAFLD) pathway view. After a GAGE analysis of the gene expression data amongst the highest scored pathways
(p < 0.05). All the compounds suspected to produce steatosis at middle concentration and time 8 h are plotted. All the gene expressions have been normalized from
–1 to 1, centered at 0. Green boxes correspond to a down regulation of the genes by a chemical and red box an up-regulation of the genes.

From the gene list, other genes might play a role in steatosis
and could be investigated further. For example, ALDH7A1
is highly deregulated in a time/dose-dependent manner.
This gene is involved in oxidoreductase mechanisms and in
protection of cell against oxidative stress by metabolizing a
number of lipid peroxidation-derived aldehydes and could
lead to steatosis. For some compounds, i.e., AM, APAP, LS,
and MP, the de-regulation of ALDH7A1 is also dependent
on the treatment concentration. The deregulation of these
proteins will lead to a higher production of lipids, which
together with a reduction of beta-oxidation of lipids could
promote their accumulation in cells. Finally, a set of compounds
deregulated some genes differently, suggesting that they
trigger steatosis through another mechanism. This is the
case for example for DSF and EE, which showed a weak
deregulation of OSBL9 and a higher deregulation of the
ALDH7A1.

Some genes known to be commonly associated to steatosis
in human are not in this top list. This is the case for example

of PNPLA3, which does not appear as one of the highest
deregulated genes in our study. The genetic variation in PNPLA3
has been previously shown to play a role in the increase of FA
accumulation in liver leading to steatosis (Romeo et al., 2008).
So, the lack of the specific polymorphism related to susceptibility
to steatosis in the cells used could explain the non-deregulation
of this gene in our study.

Overall, this list of genes provides an insight into the
mechanistic pathways already related to steatosis, as well as
new hypotheses that can be analyzed further. Interestingly, the
expression for many genes vary a little from control as a function
of dose and the difference in the pattern of expression between
control and treatment is relatively low. This confirmed a previous
analysis showing that the doses differences between treatments
in rat primary hepatocytes explain less than 0.1% of variation
in all cases (Sutherland et al., 2016). One possible explanation
is primary hepatocytes rapidly dedifferentiate (Lauschke et al.,
2016) which could generate a gradual down regulation of
hepatocyte function over time in culture.
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FIGURE 2 | Gene Ontology pathway enrichment for in vitro human hepatocytes. (A) The two main blocks of pathways that are deregulated according to the genes
that have a log2FC above absolute value 1.5 and a q-value ≤0.05, are affecting the metabolic pathways as well as the cellular processes in general. (B) The
pathways affected within the metabolic pathways are shown here, and they affect mainly the primary metabolic process. (C) Pathways represented within primary
metabolic process.
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TABLE 2 | Deregulated genes over time and dose.

Entrez-ID Gene
symbol

Gene full name

91663 MYADM Myeloid associated differentiation marker

27286 SRPX2 Sushi repeat containing protein, X-linked 2

10491 CRTAP Cartilage associated protein

84803 GPAT3 Glycerol-3-phosphate acyltransferase 3

9787 DLGAP5 DLG associated protein 5

83875 BCO2 Beta-carotene oxygenase 2

3161 HMMR Hyaluronan mediated motility receptor

3421 IDH3G Isocitrate dehydrogenase 3 (NAD(+))
gamma

6790 AURKA Aurora kinase A

28998 MRPL13 Mitochondrial ribosomal protein L13

54492 NEURL1B Neuralized E3 Ubiquitin Protein Ligase 1B

2633 GBP1 Guanylate binding protein 1

10112 KIF20A Kinesin family member 20A

80114 BICC1 BicC family RNA binding protein 1

65084 TMEM135 Transmembrane protein 135

7105 TSPAN6 Tetraspanin 6

9615 GDA Guanine deaminase

9488 PIGB Phosphatidylinositol glycan anchor
biosynthesis class B

55771 PRR11 Proline rich 11

11167 FSTL1 Follistatin like 1

2519 FUCA2 Fucosidase, alpha-L-2, plasma

9588 PRDX6 Peroxiredoxin 6

79594 MUL1 Mitochondrial E3 ubiquitin protein ligase 1

51292 GMPR2 Guanosine monophosphate reductase 2

81610 FAM83D Family with sequence similarity 83 member
D

55872 PBK PDZ binding kinase

59 ACTA2 Actin, alpha 2, smooth muscle, aorta

7802 DNALI1 Dynein axonemal light intermediate chain 1

5445 PON2 Paraoxonase 2

3242 HPD 4-hydroxyphenylpyruvate dioxygenase

28998 MRPL13 Mitochondrial ribosomal protein L13

11004 KIF2C Kinesin family member 2C

1606 DGKA Diacylglycerol kinase alpha

10158 PDZK1IP1 PDZK1 interacting protein 1

9122 SLC16A4 Solute carrier family 16 member 4

23082 PPRC1 Peroxisome proliferator-activated receptor
gamma, coactivator-related 1

123264 SLC51B Solute carrier family 51 beta subunit

6372 CXCL6 C-X-C motif chemokine ligand 6

79053 ALG8 ALG8, alpha-1,3-glucosyltransferase

9928 KIF14 Kinesin family member 14

788 SLC25A20 Solute carrier family 25 member 20

114883 OSBPL9 Oxysterol binding protein like 9

55526 DHTKD1 Dehydrogenase E1 and transketolase
domain containing 1

56922 MCCC1 Methylcrotonyl-CoA carboxylase 1

10351 ABCA8 ATP binding cassette subfamily A member 8

501 ALDH7A1 Aldehyde dehydrogenase 7 family member
A1

516 ATP5G ATP Synthase Membrane Subunit C Locus 1

9488 PIGB Phosphatidylinositol glycan anchor
biosynthesis class B

Pathway Time-Series Analysis
Due to the broad pharmacological and physicochemical
characteristics of the compounds used for this study, we
developed a new type of time-series analysis at the pathway level.
For this purpose, all the compounds were analyzed to obtain
the most significantly deregulated pathways including their
corresponding GFE score (Figure 4).

At low concentration, pathways such as FA degradation and
oxidative phosphorylation start to get down regulated. The
deregulation of the oxidative phosphorylation is prominently
affecting the mitochondria, therefore reducing the activity within
this organelle, such as β-oxidation, which is the catabolic
process through which FAs are broken down. The PIK3-Akt
signaling pathway gets up regulated through the activation of
the AMPK signaling pathway or downstream, Mtor signaling
pathway, affecting the metabolism of the cell (Li et al., 2010).
At higher concentrations, other important pathways are affected.
The steroid biosynthesis is up-regulate at middle and high dose.
FA biosynthesis and FA elongation are also among the up
regulated pathways. Hence more FAs and lipids are produced.
In contrast, the protein processing in ER, known to be related
to lipid homeostasis, is down regulated. Interestingly, several
studies have previously shown the existence of comorbidities
between liver diseases and cardiovascular (CDV) diseases (Anstee
et al., 2018). The deregulation of the renin-angiotensin system
could explain part of the relation between steatosis and any
possible CDV disease. Vitamin digestion and absorption is
down regulated, which also points toward de-regulation in the
FA β-oxidation. Also tyrosine metabolism, which is related
to liver damage displays down-regulation. When the liver is
damaged, phenylalanine cannot be converted to tyrosine. At this
highest concentration, the adipocytokine signaling pathway and
TNFα signaling pathway are deregulated, which indicates an
activation of the cellular immune system. This immune system
de-regulation may contribute the steatotic condition to move
forward to other more severe drug-induced liver damages. Note
that at high dose, cells often develop non-specific toxicity and the
pathways altered may be not related solely to steatosis but also
to other toxicity endpoints. The pathway analysis confirmed the
little contribution of doses over time at the gene level observed
previously, as the majority of the pathways deregulated in middle
dose are also present in high dose.

Finally, to obtain a more characteristic view on the specific
action points of the different compounds, we performed a
similar analysis after clustering the compounds through the gene’s
signature similarity. Using the Euclidean distance based on the
log2FC of the gene expression, all compounds were clustered in
four sets (Figure 5).

VPA was clustered separately. MP and AA formed a
different cluster as well as APAP and COL. A final cluster
contained the remaining compounds. This last cluster contains
essentially drugs used to treat a variety of conditions, acting
as immunosuppressant’s, antineoplastic agents, antibiotics,
biguanides and butylpyrazolidines.

After clustering, the pathway time-series analysis was
performed on each of the four clusters (Figure 6). For the
compounds of the larger cluster, cluster 1 (TBF, AMT, DIL,
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FIGURE 3 | De-regulation over time of the 28 steatotic chemicals for the selected protein, NEURL1B, from the time-series analysis. The y-axis indicates the
normalized expression value of the gene at every time-point, 2, 8 and 24 h (x-axis), where the different colors indicate the dosages (red indicates control, blue low
dose, purple middle dose, and green high dose). It shows a time dependency of the protein expression and compound specific dose effect. However, it does not
show a systematic change on the gene expression due to dose. For some compounds only two time-point samples were taken.

PhB, HYZ, CSA, WY, RIF, ASA, AM, AAA, EE, VA, TC, MTS,
IMI, CPM, DSF, CMA, ETH, LS, ETN), at low concentrations
of treatment metabolic pathways such as fat digestion and
absorption, linoleic and linolenic acid metabolism, calcium
signaling pathway and others are up regulated over time.
Other pathways, such as FA metabolism, peroxisome, retinol
metabolism, and some steroid metabolic pathways are down
regulated. At higher concentrations from time 2 to 24 h, the
FA metabolism, calcium signaling pathway and steroid hormone
biosynthesis increase over time, showing a de-regulation of
these pathways promoted by the treatment. The FA degradation
pathway is down regulated. It means that the FAs inside the
cell are increasing and there are no pathways to deplete them.
The oxidative phosphorylation becomes down regulated over
time. So, the oxidative conditions in the mitochondria are
starting to be reduced at this concentration. Finally, at the
highest concentration tested, many signaling pathways known
to be steatosis-producing related are targeted. FoxO, MAPK,
PPAR signaling pathways, are highly up regulated. Steroid
hormone biosynthesis, FA biosynthesis, glycerophospholipid
metabolism, glycosphyngolipid biosynthesis and other lipid
metabolic pathways are also up regulated. Moreover, SNARE

interactions in vesicular transport are also up regulated over
time, which could indicate the internalization of the FAs into
vesicles, and so accumulation inside the cells. In contrast,
pathways, such as oxidative phosphorylation, vitamin digestions
and absorption and FA degradation are down regulated over
time.

For cluster 2 (AA, MP) (Figure 6) at low concentrations
the most highly up regulated pathways are the PI3K-Akt
signaling pathway, the Mtor signaling pathway and the
adipocytokine signaling pathway. Some metabolic pathways
like FA degradation, peroxisome and retinol metabolism
are down regulated. With the increasing concentration,
steroid biosynthesis starts to be up regulated. At the highest
concentration, glycolysis/gluconeogenesis, FA degradation,
TNFα signaling pathway, tyrosine metabolism, peroxisome,
PPAR signaling pathway and retinol metabolism become down-
regulated over the time and FA metabolism, adipocytokine
signaling pathway, MAPK signaling pathway, among others,
become up-regulated. This could be explained by a lesser
effect of these compounds. Therefore higher concentrations
are needed in order to deregulate the cell to a steatotic
pattern.
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FIGURE 4 | Time-series pathway analysis based on GFE and depending on the concentration. The y-axis displays the overall Gene Fold Enrichment.

In the case of cluster 3 (APAP, COL) (Figure 6), at
low concentrations, oxidative phosphorylation is highly
down regulated, together with retinol metabolism and
some lipid metabolism such as ether lipid metabolism and
glycolysis/gluconeogenesis. On the other hand, FA elongation,
TNFα signaling pathway, PI3K-Akt signaling pathway and
sphingolipid signaling pathway and sphingolipid metabolism are
highly up regulated. At higher concentrations, retinol metabolism
continues to be down-regulated, glycolysis/gluconeogenesis, FA
elongation are down-regulated and protein processing in the ER,
steroid biosynthesis, SNARE interactions in vesicular transport
among others are up regulated. These deregulations could
affect the export of FAs to the exterior of the cell and their
accumulation within organelles.

For the last cluster, containing only VPA (Figure 6) at low,
middle and high doses, FA degradation, PPAR signaling pathway
and retinol metabolism, all of them involved in the elimination of
FAs are up regulated. This compound produces a strong effect on
the metabolism of FAs and lipids and therefore the cells react with
increasing the pathway activities associated with FA degradation.

So, it is interesting to see that, each of the cluster shows some
pathway deregulation related lipid metabolism, FA degradation,
glycolysis or PPAR signaling pathway, all related to steatosis.

DISCUSSION

The conventional assumption that a drug acts selectively
on a single target is shifting toward “drug-holistic” systems

based approaches. Similarly, a disease or a toxicity endpoint
reflects not only the impairment of a unique gene. In fact,
the disruption of many genes and pathways can lead to
a disease or a specific toxicity. In the case of steatosis,
we have focused the study on trying to understand the
underlying mechanisms for steatosis using a set of diverse
compounds. Considering the MIEs and KEs known to lead to
the AOP steatosis (based on AOP-Wiki), our study confirms
the deregulation of these biomarkers and highlighted new
genes that produce steatosis. With the development of a
time-series analysis combined with pathway analysis, it is
possible to follow the evolution of the pathways over time
and how they are connected to the different stages of
steatosis.

Interestingly, the integration of a large and diverse set
of compounds in the analysis pinpoints their specificity in
leading to steatosis. However, our results show that the time
seems to have a higher impact in the DEGs and pathways
analysis than the concentration. The early dedifferentiation
of PHH in 2D cultures might explain this observation.
It is also possible that the global normalization reduces
the specific signal of some genes. Additionally, for more
than half of the compounds studied, only two times points
have been tested experimentally, which might influence the
results.

In our study, the compounds have been tested in PHH and
the translation to human liver tissue would be of great interest
to validate these outcomes. Some rats in vivo data beyond the
24 h time point are available in TG-GATEs and could be analyzed
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FIGURE 5 | Clustering by Euclidean distance of the different compounds based on the logarithm in base 2 Fold Change of the gene expression for the different
conditions. Each color represents a cluster. The y-axis is a measure of closeness of either cluster or individual data points.

similarly in order to evaluate the overlap between in vitro and
in vivo data. Finally, it has been reported that 3D cell cultures
could be a more suitable system to mimic human organs that 2D
cultures (Fey and Wrzesinski, 2012) and it would be interesting
to assess the steatogenic effect of these compounds in this 3D
spheroid system.

To summarize, most of the genes that are associated with
a steatosis AOP, described in AOP wiki, have been found
in our study. The integration of the previously published
information on steatosis with the newly found genes and
pathways from our analysis can enrich the knowledge of
developed AOPs on steatosis. The Figure 7A represents an
AOP network, i.e., the result of an accumulation of a number
of individual AOPs listed on the AOP Wiki website. The
list of AOPs used for the completion of the full steatosis
pathway is: 34 (LXR activation leading to hepatic steatosis),
36 (Peroxisomal Fatty Acid Beta-Oxidation Inhibition Leading
to Steatosis), 57 (AhR activation leading to hepatic steatosis),
58 (NR1I3 (CAR) suppression leading to hepatic steatosis),
60 (NR1I2 (Pregnane X Receptor, PXR) activation leading
to hepatic steatosis), 61 (NFE2L2/FXR activation leading to
hepatic steatosis). Besides, the capture of coenzyme A by VPA

was added to the mechanistic pathway (Schumacher and Guo,
2015), as well as oxidative stress (Spahis et al., 2017). In this
figure, we can see direct (and indirect) interaction between
genes suggested by the analysis and known genes. For example,
TSPAN6 deregulates oxidative phosphorylation, which acts on
the mitochondrial β-oxidation. The deregulation of ALDH7A1
will lead to a higher production of lipids and impact the
oxidative stress with a reduction of β-oxidation. In contrast,
PON2 impacts the immune system. We looked also at the
cellular compartmental level and how the genes deregulation
can perturb the interaction with each other and lead to steatosis
(Figure 7B). We can see that all the cell compartments can
be involved in steatosis, many of which undertake functions
within the mitochondria and the nucleus. More specifically,
perturbation in endoplasmic reticulum and vesicles through the
genes MUL1, TMEM135, OSBPL9, SCD1, SREBP-1C, GPAT3 can
lead to steatosis.

Other studies have reported computational approaches
to leverage large-scale toxicogenomic information, biological
pathways and high throughput data for the identification of
toxicity pathways. For example, Bell et al. (2016) described a
computational approach in which curated biological pathways
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FIGURE 6 | Time-series pathway analysis based on GFE and depending on the concentration for the four clustered of compounds. The y-axis displays the overall
Gene Fold Enrichment.
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FIGURE 7 | (A) Adverse Outcome Pathway related to steatosis network, which summarizes a collection of information across several AOPs. The yellow boxes
represent known genes and key events associated to steatosis. The blue color shows the newly suggested genes and pathways involved in the AOPs. Only
compounds to which there is a higher likelihood to affect the MIE or KE than other compounds have been introduced in the AOP. In (B) the different cell
compartments and how the interact with each other in the pathways that lead to steatosis.
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and high-throughput toxicity data are used to identify toxicity
pathways. This computational method uses a data-driven
approach to assemble an AOP, which allows for the integration of
biological information into pathway-based networks and can be
updated with new information. Coupling both approaches could
be interesting in the enrichment of the steatosis AOPs.

Overall, our findings illustrate how an integrative
computational chemical system biology approach can be used
to study steatosis and obtain new metabolic pathways that
are deregulated during the process of liver injury by chemical
exposure. Obviously, these findings need to be further validated
with additional experimental studies. These associations are
potentially not causative but more reflect biomarkers along the
pathway to develop steatosis. In many case, changes in gene
expression are a response to a stressor and it is only when
these adaptive changes are overwhelmed that the adverse effect
occurs.

AUTHOR CONTRIBUTIONS

AA-O performed the experiments. AA-O and OT analyzed the
results and wrote the paper. FB and SB contributed in the writing
of the final manuscript.

FUNDING

This work was part of the EU-ToxRisk project, which was
supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 681002. This
work was also supported by the Novo Nordisk Foundation grant
No. NNF14CC0001.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2018.00396/full#supplementary-material

FIGURE S1 | Time-series analysis for a set gene involved in steatosis.
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Understanding the mechanisms underlying drug therapeutic action and toxicity is crucial
for the prevention and management of drug adverse reactions, and paves the way
for a more efficient and rational drug design. The characterization of drug targets,
drug metabolism proteins, and proteins associated to side effects according to their
expression patterns, their tolerance to genomic variation and their role in cellular
networks, is a necessary step in this direction. In this contribution, we hypothesize
that different classes of proteins involved in the therapeutic effect of drugs and in their
adverse effects have distinctive transcriptomics, genomics and network features. We
explored the properties of these proteins within global and organ-specific interactomes,
using multi-scale network features, evaluated their gene expression profiles in different
organs and tissues, and assessed their tolerance to loss-of-function variants leveraging
data from 60K subjects. We found that drug targets that mediate side effects are more
central in cellular networks, more intolerant to loss-of-function variation, and show a
wider breadth of tissue expression than targets not mediating side effects. In contrast,
drug metabolizing enzymes and transporters are less central in the interactome, more
tolerant to deleterious variants, and are more constrained in their tissue expression
pattern. Our findings highlight distinctive features of proteins related to drug action,
which could be applied to prioritize drugs with fewer probabilities of causing side effects.

Keywords: drug response, pharmacogenomics, adverse drug reaction, genomics, network biology, gene
expression

INTRODUCTION

Drugs exert their effect acting at different scales of biological organization. At the cellular level,
the effect of a drug is the result of its interaction with the target(s), which in time may lead to a
variety of cellular responses, such as the alteration of the expression of a set of genes, changes in
intracellular signaling pathways, or changes in the localization of proteins, that result in specific

Abbreviations: LoF, loss-of-function variants, including variants affecting splice sites, or stop codons; METAB, proteins
that are involved in the drug metabolism, absorption, distribution, metabolism, and excretion; OT, drug targets that do not
mediate side effects; OTP, proteins associated to side effects that are not drug targets; TARGET, drug targets; TOXPROT,
proteins associated to side effects; TT, drug targets that mediate side effects.
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cell phenotypic responses. At the organism level, drug absorption,
distribution, metabolism, and excretion (ADME) also contribute
to modulate the response to the drug. Nevertheless, our
understanding of the molecular events elicited by drugs, which
result on their therapeutic effects or adverse reactions, is still very
limited.

The response to drug treatment is also influenced by
the genetic background of an individual (Madian et al.,
2012). Nowadays, for some drugs, the impact of genetic
variability is well established. More than 200 FDA approved
drugs include pharmacogenomic labeling (US Food and Drug
Administration1), and pharmacogenomic screenings for known
biomarkers are routinely carried out in large hospitals (Roden
et al., 2011; van der Wouden et al., 2017; Weinshilboum and
Wang, 2017). In particular, the genomic variation of genes
involved in drug metabolism and its impact on drug response
has been extensively studied (Shenfield, 2004; Pinto and Dolan,
2011; Kozyra et al., 2017) (for recent reviews see Ahmed et al.,
2016; Lauschke et al., 2018), Nevertheless, only few studies have
probed the role of the genomic variability of drug targets. The
results of these studies imply that there is a high frequency of
variants impacting protein function in drug targets (Schärfe et al.,
2017), pharmacogenes (Wright et al., 2018) and GPCRs (Hauser
et al., 2018) in the population. In spite of these studies, we still
lack a detailed characterization of the genomic variation of the
full spectrum of genes relevant for drug response, including drug
targets, ADME genes and genes associated to the side effects of
drugs, and their impact on drug response phenotypes.

In the field of systems pharmacology, the study of the
perturbations elicited by drugs within the context of cellular
networks has provided insight into the molecular mechanisms
leading to drug action, including their adverse reactions (Berger
and Iyengar, 2011). Network analysis of omics data has been used
to identify modules associated with drug response and toxicity
(Berger et al., 2010; Bauer-Mehren et al., 2012), to characterize the
therapeutic (Yildirim et al., 2007; Guney et al., 2016) and adverse
effect of drugs (Guney, 2017), and to explain the similarity of side
effects of different drugs (Brouwers et al., 2011).

A key goal of network analysis is to connect network structure
to function. For example, multi-scale network analysis allowed
distinction of different classes of disease genes based on their
connectivity patterns in the human protein-protein interaction
network, or interactome (Berenstein et al., 2015; Piñero et al.,
2016a). The multi-scale network analysis involves the exploration
of the network properties of the proteins at local, meso and
global scales. Local properties of a protein in a network pertain
to its direct interactions with other nodes (Figure 1). Examples
of local properties are the degree of a node (the number of
direct neighbors), or the clustering coefficient (the density of
links in the node’s immediate neighborhood). Global properties
consider the links across the whole network. An example is the
betweenness centrality (the proportion of shortest paths passing
through a node in a network). Finally, the meso-scale network
properties are related to the organization of the network into
clusters or modules, that represent functional units in the cell

1https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm

(Hartwell et al., 1999). Exploring the connectivity of proteins at
the meso-scale level can shed light on the modular organization
of the interactome, potentially revealing the regulation of cellular
processes.

Here we provide a comprehensive characterization of
genomic, transcriptomic and network topological features
of genes relevant to drug response. We carefully selected
three sets of proteins relevant to pharmacokinetics and
pharmacodynamics: drug targets, proteins associated to
phenotypes of drug toxicity, and proteins involved in the
transport and metabolism of drugs. By leveraging on data
from large scale genomic and transcriptomic initiatives and
the reconstructions of the human protein interactome, we
characterized the tolerance to deleterious genomic variability
across human populations, the multi-scale network properties,
and the expression across human tissues of proteins involved in
the therapeutic and toxic response to drugs.

MATERIALS AND METHODS

The Data
Drug Targets (TARGET)
We compiled a comprehensive set of drug target proteins
(referred as TARGET hereafter) that mediates the therapeutic
effects of the drugs by integrating data from several repositories:
DrugBank, version 5.0.7 (Wishart et al., 2018), DrugCentral,
data downloaded on September, 2017 (Ursu et al., 2017),
DGIdb, version 3.0 (Cotto et al., 2017), and ChEMBL, version
23 (Bento et al., 2014). We then mapped all the drugs to
DrugBank identifiers, and all proteins to NCBI Gene identifiers.
From DrugBank, we included only targets for approved or
investigational drugs. From DrugCentral, we kept only targets
in the Tclin category. From DGIdb we considered drug-target
associations from “ChEMBL,” “GuideToPharmacology,” “Tdg
Clinical Trial,” “FDA,” “TEND,” and “TTD.” From ChEMBL,
we kept the drug-target relationships for which we could find
a corresponding DrugBank identifier. Finally, we removed any
protein present in the METAB set (see below). The TARGET set
was composed of 1,934 proteins, targeting 2,829 drugs (Figure 2).

Drug Carriers, Transporters and Metabolism Enzymes
(METAB)
We retrieved the proteins that act as drug transporters, drug
carriers, and enzymes involved in drug absorption, distribution,
and metabolism from DrugBank. We mapped all proteins
to NCBI Gene identifiers. We thus obtained the METAB
set, composed of 470 proteins involved in the transport and
metabolism of 1,519 drugs (Figure 2).

Proteins Associated to Drug Toxicity (TOXPROT)
We assembled a set of proteins associated to the side effects or
toxicity phenotypes of the drugs included in this study. To do
this, we first collected drug side effects, and drug therapeutic
indications. The therapeutic indications were obtained from
SIDER, version 4.1 (Kuhn et al., 2016), AEOLUS (Shah, 2016),
CTD, revision 15142 (Davis et al., 2017), repoDB, version 1.2
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FIGURE 1 | Multi-scale network properties and cartographic roles. The multi-scale network analysis involves exploring the network properties of the proteins at
different scales, namely local, meso-scale, and global. The degree of a node is a local network property, since it considers the first direct neighbors of a node, while
the shortest path is a global network property, since we need to count paths between pairs of nodes across the whole network. Finally, the meso-scale network
properties represent the organization of the network into clusters or modules. The meso-scale connectivity features of each protein can be characterized with the
cartographic role classification scheme proposed by Guimerà and Amaral, 2005, namely ultra-peripheral, peripheral, non-hub connector, non-hub kinless, provincial
hubs, connector hubs and kinless hubs (see Supplementary Figure S1 for more information). Thus, focusing on how individual nodes are positioned in the modular
(meso-scale) structure of the network, we can identify proteins that play different functions, such as mainly connected to other proteins within their modules (e.g.,
provincial hub), and those proteins that serve as bridges between modules (e.g., kinless hub).

(Brown and Patel, 2017), and ChEMBL, version 23. We mapped
drugs to DrugBank identifiers, and disease identifiers to the
Unified Medical Language System (UMLS, version 2016AB)
Concept Unique Identifiers (CUIs) (Bodenreider, 2004). We
only kept therapeutic indications reported by more than one
source. The data of Adverse Drug Reaction (ADRs) was retrieved
from 3 sources: Offsides (Tatonetti et al., 2012), AEOLUS, and
ORGANDB (Mannil et al., 2015) (all files were downloaded on
September, 2017). As we did with drug therapeutic indication
data, we used UMLS CUIs to harmonize phenotypes and
DrugBank identifiers to represent drugs.

Next, we filtered out phenotypes annotated to the UMLS
semantic types “Patient or Disabled Group,” “Professional or
Occupational Group,” “Therapeutic or Preventive Procedure,”
“Medical Device.” To produce a high confidence dataset, we
only kept associations reported by the three sources (Offsides,
AEOLUS, and ORGANDB). From this set of drug-ADRs we
removed the phenotypes/diseases that overlapped with the
therapeutic indications of drugs. This produced a list of 12,213
drug-side effects pairs involving 593 drugs and 718 side effects.
Finally, we used DisGeNET Curated (version 5.0) (Piñero et al.,
2016b) to obtain a list of 4,160 genes associated to 452 ADRs,
which we refer as TOXPROT throughout the text (Figure 2).

Due to the overlap between the TARGET and TOXPROT sets
of proteins (see Figure 3) we separately assessed the properties
of the overlapping subset of genes (TT), the genes annotated
uniquely as drug targets (OT), and those annotated only as
associated to drugs toxicity (OTP).

TARGET, TOXPROT, and METAB Protein Classes
We used data from Pharos, version 4.6.2 (Nguyen et al.,
2017) to classify the drug targets in seven categories: GPCR,
Transcription Factor, Enzyme, Kinase, Transporter, Ion Channel,
and Nuclear Receptor (NHR). We extended this classification to
the TOXPROT using the equivalent terms from the classification
from Panther database, version 13.0 (Mi et al., 2017) in the file2.
For METAB, we used the classification provided by DrugBank:
transporters, carriers, enzymes.

The Network Analysis
Protein Interaction Data
We built two high-confidence protein-protein interaction
networks (PIN) using data from INBIOMAP (Li et al., 2017)
and from HIPPIE (Alanis-Lobato et al., 2017), two resources that

2ftp://ftp.pantherdb.org/sequence_classifications/current_release/PANTHER_
Sequence_Classification_files/PTHR13.1_human
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FIGURE 2 | The assembly of the three sets of proteins relevant for drug
response: the drug target set (TARGET), the proteins involved in drug
transport and metabolism (METAB), and the proteins associated to side
effects (TOXPROT).

integrate information from several other sources, and provide
a reliability score that allows to filter the interactions. To build
the INBIOMAP network, we downloaded the file3 (version
2016_05_31). We removed predicted interactions, and kept only
interactions with score greater than 0.15. In the case of the
HIPPIE-based network, we downloaded the file4 (version 2.1).
To produce a high confidence network, we filtered out all
interactions with score smaller than or equal to 0.7 (keeping
∼25% of HIPPIE). From both PINs, to obtain a biologically
meaningful modular representation of the network, we removed
genes with degree higher than 300, such as chaperones and
ubiquitins.

We also compiled 4 organ-specific interactomes using GTEx
data (version 7.0) for brain, liver, kidney and heart. Briefly,
we first mapped the ENSEMBL gene identifiers in the GTEx
expression matrix to NCBI Gene identifiers. In the cases of brain,
and heart, we merged the gene expression of different zones, and
computed the median value of expression for each gene (Melé
et al., 2015). Then, we removed from the PINs all interactions
involving at least one gene with TPM < 1 in the corresponding
tissue.

Network Cartographic Roles
To assign cartographic roles in the PINs to each protein, we
computed the z (within-module degree) and P (participation
coefficient) of each gene following the protocol described
in Piñero et al. (2016a). Briefly, we clustered the PINs
using the Infomap algorithm (Rosvall and Bergstrom, 2008)

3https://www.intomics.com/inbio/map/#downloads
4http://cbdm-01.zdv.uni-mainz.de/∼mschaefer/hippie/hippie_current.txt

and calculated z and P using equations (1) and (2),
respectively.

Zi =
ki −

−

kci

σ
−

kci

(1)

where ki is the number of links of node i to other nodes in its

module,
−

kci is the mean degree of all nodes in cluster ci, and σ
−

kci is
the standard deviation of the degree of the nodes in the cluster ci

Pi = 1−
M∑

c=1

[
kic

ki

]2

where kic the number of links of node i to nodes in the cluster c, ki
is the total degree of node I, and M is the total number of modules
in the network.

According to Guimerà and Amaral (2005) the genes were
assigned to one of the following roles: ultra-peripheral nodes,
peripheral, non-hub connector, non-hub kinless, provincial
hubs, connector hubs, kinless hubs. These seven different
roles are heuristically defined, using their localization in the
different regions of the z–P parameter space (see Supplementary
Figure S1). Nodes with z > 2.5 are classified as module
hubs and nodes with z < 2.5 as non-hubs. Both hub and
non-hub nodes are then further characterized by using their
participation coefficient. Non-hub nodes can be divided into
four different roles: ultra-peripheral nodes; that is, nodes with
all their links within their module (P ≤ 0.05); peripheral
nodes; that is, nodes with most links within their module
(0.05 < P ≤ 0.62); non-hub connector nodes; that is, nodes
with many links to other modules (0.62 < P ≤ 0.80); and
non-hub kinless nodes; that is, nodes with links homogeneously
distributed among all modules (P > 0.80). Similarly, hub
nodes are assigned to: provincial hubs; that is, hub nodes with
the vast majority of links within their module (P ≤ 0.30);
connector hubs; that is, hubs with many links to most of the
other modules (0.30 < P ≤ 0.75); and kinless hubs; that is,
hubs with links homogeneously distributed among all modules
(P > 0.75).

The Analysis of Genomic Features
We used the data on germline variants detected across 60,706
exomes from the Exome Aggregation Consortium, version
0.3.1(Lek et al., 2016). To evaluate the tolerance of different sets
of genes to variants in the human germline, we downloaded the
data of Functional Gene Constraint5.

Specifically, for each human protein coding gene, we obtained
the pLI (defined as the probability of being loss-of-function
intolerant, including both heterozygous and homozygous LoF
variants), and the pNull (defined as the probability of
being tolerant to both heterozygous and homozygous LoF
variants).

5ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_
constraint/README_fordist_cleaned_exac_r03_z_data_pLI_2016_01_13.txt
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FIGURE 3 | We present the main sets of proteins under study, and their overlaps. The horizontal bars on the left correspond to the three larger categories: the
METAB set, constituted of 470 proteins that are involved in drug absorption, distribution, metabolism, and excretion; the drug target set (TARGET), composed of
1,930 proteins; and the set of 4,160 proteins associated to side effects (TOXPROT); the intersections among these categories are represented with the filled dots in
the matrix. The TARGET set shares 1,021 proteins with the TOXPROT set and we refer to those drug targets associated toxicity as the TT set. The OT (only targets)
set are the TARGET proteins that are not included in the TOXPROT set (913 proteins). The only TOXPROT proteins (OTP) set is composed by 3,139 TOXPROT
proteins that are not in the TARGET set. In the figure, it corresponds to the two bars marked as OTP.

Gene Expression Data in Healthy
Tissues/Organs Across Individuals
We used gene expression data from GTEX (version 7.0) to
analyze the pattern of expression of the different sets of genes.
For GTEX tissues, we mapped the ENSEMBL gene identifiers to
NCBI Gene identifiers, and kept the genes with TPM > = 1. We
used the information for 53 tissues in GTEX, which represent all
tissues covered except Cells.EBV.transformed.lymphocytes and
Cells.Transformed.fibroblasts.

Statistical Analysis
To compute the deviation of the value of each network feature
for each set of genes, we randomly sampled 10,000 sets of
genes from the network of the same size of the set under
analysis in each case. Then, we computed the mean value of
each sampled feature (degree, betweenness, clustering coefficient,
participation coefficient, and within-module degree) for each of
the 10,000 randomly sampled gene sets. From this distribution
of means a z-score was estimated for every gene set for every
feature. The same was done to compute the deviation of
the value of the genomic features and of the expression of
each gene set from their expected distribution, but genes were
sampled from the entire list of human protein coding genes
in this case. The statistical analysis were carried out using R,
version 3.4.0 (R Core Team, 2017) and the network analysis
were performed using the iGraph Library, version igraph_1.1.2

(Csardi and Nepusz, 2006). Additionally, the following packages
were employed: UpSetR_1.3.3 (Conway et al., 2017), to produce
Figure 3, showing the intersects between the different protein
sets evaluated in the paper, and clusterProfiler_3.6.0 (Yu et al.,
2012) to compare the pathways in which are involved the
proteins in the class “enzyme” in the TARGET set and in the
METAB set.

RESULTS

More Than Half of the Proteins That Are
Targets of Drugs, or Involved in Drug
Metabolism Are Associated to Side
Effects
We compiled three sets of drug-associated proteins as detailed
in Methods (Figure 2). The first comprised 1,934 proteins
that are well-established drug targets (TARGET set); the
second comprised 470 proteins involved in drug transport
and metabolism (METAB set); the third was composed of
4,160 proteins associated to Adverse Drug Reactions, or ADRs
(TOXPROT set). Twenty-five percent of the proteins in the
TOXPROT set are also targets of drugs (TOXPROT-TARGET,
TT set). More than half of drug target proteins and of proteins
involved in drug metabolism are associated to side effects
(Figure 3).
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The Distribution of Cartographic Roles Is
Preserved Across Organ-Specific
Interactomes
For this study, we assembled two different global human
interactomes and several organ-specific interactomes from two
different resources, INBIOMAP (Li et al., 2017) and HIPPIE
(Alanis-Lobato et al., 2017). We focused on brain, heart, kidney,
and liver due to the relevance of these organs in drug toxicity.
Throughout the paper, we illustrate the results obtained with the
INBIOMAP interactomes, but all analyses were replicated in the
HIPPIE-based interactomes.

The INBIOMAP global interactome is composed of
12,967 nodes and 107,787 edges. The number of proteins
in organ-specific interactomes varies between 8,800 and
9,800 nodes, and the final networks contain around 80% of
the interactions of the global interactome (Supplementary
Table S1).

To uncover the modular organization of the global human
interactome and the organ-specific interactomes, we employed
the Infomap procedure (Rosvall and Bergstrom, 2008), one of the
best performing network community recognition methodologies,
which has produced biologically relevant partitions of the human
interactome (Berenstein et al., 2015). After partitioning the
interactome into modules, we characterized the meso-scale
connectivity features for each protein in the network using
the within-module degree (z) and the participation coefficient
(P) parameters (Guimerà and Amaral, 2005). The z parameter
standardizes the degree of a node in relation with the degree
of nodes that belong to the same cluster, and the P parameter
quantifies the fraction of links that a given node projects to other
clusters. We further categorized each network node according
to the universal cartographic role classification scheme proposed
by Guimerà and Amaral (2005): ultra-peripheral, peripheral,
non-hub connector, non-hub kinless, provincial hubs, connector
hubs and kinless hubs (Supplementary Figure S2). Thus,
focusing on how individual nodes are positioned in the modular
(meso-scale) structure of the network, we can identify proteins
that play different functions, such as those only connected to
proteins within their modules, and those proteins that serve as
bridges between different modules.

The cartographic analysis of the global human interactome
and four organ-specific interactomes (brain, heart, kidney and
liver) is shown in Supplementary Figures S1, S2, respectively,

and summarized in Table 1 and Supplementary Table S2.
Most of the proteins in the global network have roles with
within-module degree smaller than 2.5, that is kinless (14.7%),
connector (28.4%), peripheral (27.5%) and ultra-peripheral
(26.6%). Nodes with hub roles account for 2.8% of the network.
The nodes with the higher z, also have high P, resulting in
their classification as connector hub or kinless hub nodes. This
distribution of genes across cartographic roles is preserved in the
organ-specific networks (Table 1). In other words, the proportion
of nodes with different roles in the network does not change
substantially when we take into account only the genes expressed
in each tissue to construct the networks, although there is a small
decrease in the percentage of nodes in the ultra-peripheral role
in organ-specific networks. A similar behavior is observed for the
HIPPIE global interactome, and its organ-specific interactomes
(Supplementary Table S2). Taken together, these findings point
to a conserved network structure and connectivity patterns at the
meso-scale level in the interactome across tissues.

Targets That Mediate Side Effects and
Side Effect Proteins Are Important for
Connecting Different Modules in the
Network
Next, we studied the multi-scale network properties of the sets
of genes relevant for drug response within the context of the
global and the organ-specific interactomes. The coverage for
the different gene sets in the interactomes varies between 70
and 90% in the INBIOMAP global interactome (Supplementary
Table S3). Eighty percent of the TARGET and TOXPROT sets
are present in the global networks, while METAB proteins
coverage is the lowest (around 70%). The coverage in the
organ-specific networks ranges between 50 and 60% depending
on the protein set and the tissue. Similar coverage is observed for
the HIPPIE-based interactomes (Supplementary Table S3).

The analysis of the proteins belonging to each set according
to their cartographic role showed that TARGET proteins are
significantly enriched for nodes that play kinless and kinless hub
roles in the network (Table 2). The enrichment of TOXPROT
proteins is more apparent for nodes of the network that play
kinless, kinless hub and marginally connector roles. As a matter
of fact, the overrepresentation of targets in the kinless and
kinless hub nodes is almost completely explained by the subset
of TT amongst them (targets that are associated to side effects).

TABLE 1 | Cartographic partition of the nodes in the INBIOMAP interactomes (the global interactome, and the four organ-specific PINs).

Cartographic role Global Brain Heart Kidney Liver

Provincial hub 9 (0.07%) 5 (0.05%) 6 (0.06%) 8 (0.08%) 6 (0.07%)

Connector hub 119 (0.92%) 68 (0.69%) 72 (0.78%) 67 (0.69%) 73 (0.82%)

Kinless hub 236 (1.82%) 216 (2.2%) 196 (2.12%) 202 (2.07%) 187 (2.1%)

Kinless 1903 (14.68%) 1718 (17.52%) 1560 (16.88%) 1603 (16.43%) 1524 (17.13%)

Connector 3686 (28.43%) 2891 (29.48%) 2808 (30.38%) 2911 (29.84%) 2692 (30.26%)

Peripheral 3570 (27.53%) 2604 (26.56%) 2528 (27.35%) 2660 (27.27%) 2403 (27.01%)

Ultra-peripheral 3444 (26.56%) 2303 (23.49%) 2074 (22.44%) 2303 (23.61%) 2011 (22.61%)

The number of nodes in each cartographic role for each network is shown, with its percentage between parentheses.
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TABLE 2 | Enrichment analysis of the cartographic roles of each set of genes in the INBIOMAP global interactome.

Cartographic role TARGET TT OT METAB TOXPROT OTP

Kinless hub 3.4 (1.2e− 14) 4.2 (8.7e− 15) 1.7 (0.09) 0.66 (1.0) 2.6 (1.1e− 11) 1.3 (1.1e− 01)

Connector hub 1.4 (2.2e− 01) 2.2 (1.9e− 02) 0.46 (1.0) 0.32 (1.0) 1.4 (1.0e− 01) 1 (7.8e− 01)

Provincial hub 3.5 (2.0e− 01) 1.6 (7.9e− 01) 5.1 (0.19) 0 (1.0) 1.4 (7.8e− 01) 1.2 (8.5e− 01)

Kinless 1.7 (1.5e− 13) 1.9 (1.7e− 12) 1.3 (0.02) 1 (0.78) 2 (3.5e− 40) 1.8 (3.8e− 23)

Connector 1.1 (1.0e− 01) 1.1 (1.1e− 01) 1.1 (0.54) 0.86 (1.0) 1.2 (1.7e− 03) 1.1 (1.6e− 02)

Peripheral 0.85 (1.0) 0.74 (1.0) 1 (0.6736) 0.93 (1.0) 0.8 (1.0) 0.86 (1.0)

Ultra-peripheral 0.55 (1.0) 0.49 (1.0) 0.69 (1.0) 1.3 (0.06) 0.55 (1.0) 0.62 (1.0)

The fold enrichment of the Fisher’s exact test is shown with the corresponding p-value corrected by the Benjamini and Hochberg method between parentheses. The
cartographic partition of the different gene sets in the INBIOMAP and HIPPIE interactomes is provided in Supplementary Table S3.

METAB proteins are not particularly enriched in any role in the
network. The results are similar in organ-specific interactomes
(Supplementary Figure S3) and for networks derived from
HIPPIE, except for the case of METAB proteins, which play
peripheral roles in the global and the liver HIPPIE PINs
(Supplementary Figure S3). The distribution of the gene sets
across the seven cartographic roles is shown in Supplementary
Table S4.

A more detailed analysis of other network properties of the
sets of genes shows that TARGET, TOXPROT, and TT sets tend
to have a significantly higher degree, participation coefficient,
within-module degree, and betweenness than the other genes
in the network (Figure 4). They also have a lower clustering
coefficient. We note, however, that most of the effect observed
for the TARGET and TOXPROT sets is explained by their shared
TT subset. On the other hand, METAB proteins have significantly
lower degree, and within module degree than expected and
significantly lower participation coefficient in most organ-specific
interactomes (Figure 4). METAB proteins are more specialized,
thus it would make sense that they play less central roles in the
network, with less interaction partners in the interactome. Similar
results are obtained for HIPPIE interactomes (Supplementary
Figure S4).

Drug Targets, and Toxicity Proteins Are
Highly Sensitive to Loss of Function
Mutations, While Proteins Involved in
Drug Metabolism Are Tolerant
Next, we analyzed the tolerance of drug related proteins to
LoF variants using exome sequence data from 60K “healthy”
subjects provided by the ExAC consortium (Lek et al., 2016).
We employed two gene constraint metrics developed by the
ExAC team: pLI and pNull. pLI is the probability of a
gene to be intolerant to heterozygous LoF mutations (LoF
variants are nonsense and essential splice site variants). It
separates genes into LoF intolerant (pLI ≥ 0.9) or LoF tolerant
(pLI ≤ 0.1). On the other hand, pNull is the probability of a
gene to be tolerant to both heterozigous and homozigous LoF
variation.

We found that METAB genes have significantly lower pLI than
the other genes in the genome (Table 3). In other words, METAB
genes are more tolerant to LoF variation than the average human
genes. On the other hand, TARGET and TOXPROT genes have

significantly greater pLI value than average human genes. Since
genes intolerant to LoF variation are likely to be dosage sensitive
(Lek et al., 2016), TARGET and TOXPROT sets might contain
haploinsufficient genes. The results for the pNull are consistent
with those of the pLI, but with the opposite meaning: genes with
high pNull are tolerant to LoF variation.

In order to explore in more detail the features of different
classes of TARGET proteins, we classified them using categories
from the drug target ontology (Lin et al., 2017) (Figure 5). We
used similar categories to classify the TOXPROT set (for more
details see Methods section), and we classified METAB genes
into carriers, enzymes, and transporters using the information
from DrugBank. We found that among METAB genes, enzymes
display the lowest pLI and highest pNull, while carriers and
transporters are not significantly different than expected in terms
of pLI (Figure 5). In the TARGET set, kinases are the most
intolerant subset to LoF variation, with a mean value more than
12 SD greater than the expected mean pLI value, followed by
transcription factors (z-score = 9.04) and TARGET enzymes (z-
score = 7.51). It is worth noting that the enzymes within the
TARGET set are related to signaling pathways, and core cellular
metabolic processes, while the enzymes in the METAB set are
proteins mainly participating in the metabolism of xenobiotics
(Supplementary Figure S5). The remaining groups of TARGET
genes are also intolerant to LoF but to a lesser extent, with the
exception of GPCRs, that are more tolerant to LoF variation
than expected (Figure 5). Again, the results for pNull are
consistent with those of pLI, except for the case of ion channels,
which are marginally intolerant to LoF variation, but do not
show differences with the rest of the genes with respect to
pNull.

Within the TOXPROT set, transcription factors exhibited
the highest intolerance to LoF variants, followed by kinases.
Nevertheless, the enzymes were not different than the rest of the
genes, but they do show a lower pNull, indicating that they are
less tolerant to LoF than the background.

Proteins Associated to Side Effects Are
Highly Expressed Across Tissues
Next, we characterized the expression patterns of each gene
set across normal human tissues, using GTEx data (Figure 6).
TOXPROT genes are more expressed than other genes in the
genome across all tissues, with the exception of some areas of the
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FIGURE 4 | Multi-scale network features of the gene sets (INBIOMAP interactomes). We plot the z-score of the network features (degree, P: participation coefficient,
Z: within-module degree, BET: betweenness, CC: clustering coefficient) resulting from 10,000 randomizations. The asterisks indicate that the z-score is statically
significant (p-value < 0.05). TARGET: drug targets, METAB: proteins that are involved in the drug metabolism, absorption, distribution, metabolism, and excretion.
TOXPROT: proteins associated to side effects. TT: genes in common between drug targets and toxicity genes. OT: only TARGET proteins. OTP: only TOXPROT
proteins.

TABLE 3 | Genomic features of the sets of genes.

Gene set pLI pNull

pLI z-score p-value pNull z-score p-value

TARGET 0.380 8.87 7.31E-19 0.167 −5.829 5.58E-09

TOXPROT 0.365 10.9 1.15E-27 0.146 −13.604 3.79E-42

METAB 0.214 −4.92 8.65E-07 0.260 3.843 1.22E-04

TT 0.399 7.84 4.51E-15 0.153 −5.607 2.06E-08

OT 0.358 4.15 3.32E-05 0.183 −2.239 0.0251559

OTP 0.354 7.45 9.33E-14 0.143 −12.108 9.58E-34

We show the value of the feature, the z-score resulting from 10,000 randomizations, and its associated two-sided p-value.

FIGURE 5 | Genomic features of the sets of genes, and of the protein classes. We plot the z-score resulting from 10,000 randomizations. The asterisks indicate that
the z-score is statically significant (p-value < 0.05). TARGET: drug targets, METAB: proteins that are involved in the drug metabolism, absorption, distribution,
metabolism, and excretion. TOXPROT: proteins associated to side effects. TT: genes in common between drug targets and toxicity genes. OT: only TARGET
proteins. OTP: only TOXPROT proteins. See Figure 1 for more details. It is worth noting that while 90% genes from the total of 1,934 TARGET genes are classified in
the 7 target classes, 40% of the TOXPROT set belongs to other protein classes (Unclassified set).

brain (that do not show statistically significant differences with
the other genes), and the testis (where they show a lower level
of expression than other genes of the genome). TARGETs also
tend to be more highly expressed than other genes of the genome
across most tissues. The tissues with the most significantly higher
expression are blood, lung, spleen, liver, adipose tissue, and heart.
Drug targets are not significantly over or under expressed in
any brain area. A closer look at this set shows that TT tend to
behave like the TARGET set, with the exception of few brain
areas, such as cerebellum and cerebellar hemisphere. On the other
hand, OTs are not expressed at higher levels than other genes of
the genome, with very few exceptions, which exhibit marginal

significance. Probably, drug targets that are expressed in more
tissues throughout the body, at higher levels than the rest of
the proteins are more likely to elicit side effects. The broader
the expression of the target, the higher is the risk of adverse
reactions when the drug is administered systemically (Gashaw
et al., 2011).

As expected, metabolic enzymes exhibited most significantly
higher expression in liver, and to some extent in kidney, but
they tend to show significantly lower expression in most tissues.
Interestingly, the levels of expression of all sets of proteins (except
OTP) in testis are significantly lower than the other genes in the
genome.
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FIGURE 6 | Characterization of the expression level by tissue of the sets of genes. We plot the z-score resulting from 10,000 randomizations. The asterisks indicate
that the z-score is statically significant (p-value < 0.05). TARGET: drug targets, METAB: proteins that are involved in the drug metabolism, absorption, distribution,
metabolism, and excretion. TOXPROT: proteins associated to side effects. TT: genes in common between drug targets and toxicity genes. OT: only TARGET
proteins. OTP: only TOXPROT proteins.

DISCUSSION

There is a pressing need to identify “good” targets for safer
drug development, patient treatment, and better management of
drug toxicity. In this contribution, we propose that leveraging
large scale genomic, transcriptomic, and interactomic data can
support this goal. We show that drug targets, targets associated
to side effects, and proteins associated to side effect display
higher level of centrality measures (degree, betweenness, z, P and
lower clustering coefficient) in the protein interaction network,
indicating that they occupy central positions in the network.
This centrality is evidenced not only at the local network level
(evidenced by the degree and clustering coefficient), but more
importantly, they are key nodes for connecting different modules
in the network. On the other side, proteins participating in drug
metabolism are characterized by lower degree and within-module
degree, and their role is confined to their own modules in the
network.

We then assessed how the observed differences in these
network properties are related to the tolerance of each set of
genes to LoF variation. We observed that genes which play more
central roles in the network exhibit significantly lower tolerance

to LoF variants, indicating that they are under stronger purifying
selection. These results are in agreement with observations across
genes related to different disease classes (Piñero et al., 2016a).
On detail, we found that disease genes that play central roles
in the network, such as cancer genes and genes associated
to autosomal dominant diseases show less tolerance to likely
deleterious variants than genes associated to autosomal recessive
diseases, which play peripheral roles in the network (Piñero et al.,
2016a). Figure 7 shows the separation between METAB genes,
and TARGET and TOXPROT in terms of the gene constraint
metrics (pLI and pNull) and the multi-scale network features.

We found that TT genes are more central in the network,
(indicated by their higher z, degree and P, and lower clustering
coefficient), than OT genes. In particular, the observed higher P
indicates that these proteins play an important role in connecting
different modules within the network, suggesting that they are
pleiotropic and participate in diverse biological processes, which
could explain why they are mediators of both, therapeutic and
side effects of drugs. These results are in line with those of Perez-
Lopez et al. (2015) who showed that drug targets that mediate side
effects are better spreaders of perturbations in a human global
interactome, than targets of drugs having no reported side effects,
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FIGURE 7 | Relationship between the network features (degree, betweenness, clustering coefficient, participation coefficient, and within-module degree) and the
tolerance to LoF variation (pLI and pNull) of the gene sets in the INBIOMAP global interactome. We plot the z-scores of the genomic and the network features
resulting from 10,000 randomizations. TARGET: drug targets, METAB: proteins that are involved in the drug metabolism, absorption, distribution, metabolism, and
excretion. TOXPROT: proteins associated to side effects. TT: genes in common between drug targets and toxicity genes. OT: only TARGET proteins. OTP: only
TOXPROT proteins.

and non-target proteins. Our results also support those of Kotlyar
et al. (2012) who showed that drug targets and drug-regulated
genes have higher degree and betweenness, and lower clustering
coefficients.

Drug targets and drug targets that cause side effects are
significantly LoF intolerant, while METAB proteins are relatively
tolerant to LoF variants and to homozygous LoF variants
(Figure 7). These results agree with those of a recent study
(Wright et al., 2018) that found high-confidence LoF variants
in more than half of the pharmacogenes under analysis. The
relatively high tolerance of METAB proteins may be at least
partially explained by their degree of paralogy (Pan et al., 2016),
and overlapping substrate specificity across these enzymes (Zhou,
2008). In detail, there are 32 cytochromes in the METAB dataset,
and their drug specificity ranges from 1 to over 600 drugs.
They are all characterized by their relatively high tolerance to
LoF mutations (e.g., low pLI values and high pNull values). An
example of redundancy in these enzymes is CYP3A5 (pLI = 5.2
e-11). It has been reported that CYP3A5 deficiency occurs
in approximately 75% of white persons and 50% of African
descent populations because of a single nucleotide polymorphism
(CYP3A5∗3, 6986A > G) within intron 3 that introduces a
premature stop codon and truncation of the protein (Kuehl et al.,
2001). Because many drugs metabolized by CYP3A5 are also
substrates of CYP3A4, truncating mutations in either of these
proteins might produce no visible phenotype.

The intolerance to LoF variation observed in the TARGET set
is mainly driven by TT genes, as shown by the smaller z-scores of
pLI, and pNull of OT genes (Figure 7). GPCRs behave differently

than the other TARGET classes. They possess lower pLI and
higher pNull values than the rest of the genes. A closer look at this
set of proteins shows that GPCRs that do not directly mediate side
effects (OT set, 89 genes with ExAC data) are responsible for this
trend, since GPCRs in the TT set (123 genes with ExAC data) have
no significantly different pLI values than the rest of the genes.
GPCRs do not seem to play central roles in the network at the
global and meso-scale level (although they display low clustering
coefficient, see Supplementary Figure S6), which suggests that
they are not under strong negative selection and therefore would
be more tolerant to functional variants. A recent study of the
pharmacogenomics of 108 GPCRs targeted by FDA approved
drugs (Hauser et al., 2018) showed that GPCRs have, on average,
LoF mutations in 9 different positions per receptor, and at least
1 LoF variant has been observed in each of the GPCRs under
study. The mechanisms that might explain the compatibility
of these drastic genomic alterations with normal phenotypes
could be heterozygosity, epistasis, and allele-specific expression.
Nevertheless, it is also possible that some of the receptors with
low pLI have functional redundancy.

The fact that drug targets that mediate side effects tend to be
more intolerant to LoF variation is in line with the finding that
the inter individual genomic variability of drug targets is a strong
predictor of the withdrawal of drugs (Lee et al., 2016). This study,
using several metrics to estimate the deleteriousness of variants
in 2,504 publicly available genomes from the 1000 Genomes
Project, found a high person-to-person variability of deleterious
variants among drug-related genes. They also designed a genomic
deleteriousness score that they found to be significantly lower for
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withdrawn drugs, and US FDA pharmacogenomic biomarkers
than for other drug-related proteins.

Finally, we have characterized the expression of drug related
genes across healthy human tissue, showing differences in the
pattern of expression among the different gene sets. To the best
of our knowledge, this is the first study that performs such
analysis.

Our results show that there is a relationship between the
role in the cellular network of genes involved in different
drug effects and their tolerance to LoF variation. We have
uncovered a scenario in which proteins that mediate side effects
are more central, tend to be more intolerant to LoF mutations,
and are highly expressed in most of the human tissues. The
subset of drug targets that mediate drug adverse reactions
occupy more central positions in the network –not only because
they have a high degree, but because they connect different
network modules–, and they also exhibit higher sensitivity to
LoF variants. In contrast, drug targets that do not mediate
side effects do not exhibit any significant pattern of network
centrality, and appear to be under weaker negative selection.
The case of ADME proteins is particular, because they are less
central, tolerate LoF mutations, and show a very specific tissue
expression pattern. The integrated analysis of different omics
data reveals distinct features of proteins associated to drug
response, which is relevant in the context of drug development
and pharmacogenomics.
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Toxicological responses to chemical insult are largely regulated by transcriptionally

activated pathways that may be independent, correlated and partially or fully overlapping.

Investigating the dynamics of the interactions between stress responsive transcription

factors from toxicogenomic data and defining the signature of each of them is an

additional step toward a system level understanding of perturbation driven mechanisms.

To this end, we investigated the segregation of the genes belonging to the three following

transcriptionally regulated pathways: the AhR pathway, the Nrf2 pathway and the ATF4

pathway. Toxicogenomic datasets from three projects (carcinoGENOMICS, Predict-IV

and TG-GATEs) obtained in various experimental conditions (in human and rat in vitro

liver and kidney models and rat in vivo, with bolus administration and with repeated

doses) were combined and consolidated where overlaps between datasets existed.

A bioinformatic analysis was performed to refine pathways’ signatures and to create

chemical activation capacity scores to classify chemicals by their potency and selectivity

of activation of each pathway. With some refinement such an approach may improve

chemical safety classification and allow biological read across on a pathway level.

Keywords: transcriptomics, Nrf2, AhR, ATF4, toxicity pathways, toxicogenomic, oxidative stress

INTRODUCTION

Many transcriptionally activated pathways are intimately involved in responses to chemical induced
perturbations and toxicological outcomes (Jennings et al., 2013). Here we focus on three such
pathways. (1) The Nrf2 pathway (Nuclear Factor (Erythroid-derived 2)-Like 2 NFE2L2) which
regulates the response to oxidative stress, (2) the ATF4 (Activating Transcription Factor 4) branch
of the unfolded protein response and (3) the dioxin response or AhR pathway (Aryl Hydrocarbon
Receptor). While these pathways have specific non-overlapping activation mechanisms and
specific non-overlapping DNA binding elements reviewed in (Jennings et al., 2013), they also
have overlapping downstream target genes. Adding to this complexity, converging toxicological
mechanisms may lead to co-activation.

Oxidative stress is a major cause of chemical-induced injury and associated chronic diseases
(e.g., cancer or Parkinson’s disease) (Taguchi et al., 2011; Kong et al., 2014). The Nrf2 pathway the
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main adaptive response to oxidative stress. The Nrf2 protein
exists in an inactive, cytoplasm-localized state, that is bound
to the cytoskeleton-associated KEAP1 which facilitates Nrf2
ubiquitination and degradation. Upon oxidative stress, a
conformational change in KEAP1 makes its binding to Nrf2
less favorable. Nrf2 stabilizes and translocates to the nucleus
where it binds the antioxidant response element and drives the
transcription of a genes involved in glutathione synthesis and
recycling, xenobiotic metabolism and transport, and antioxidant
genes (Jennings et al., 2013). ATF4 is a major branch of
the unfolded protein response and is activated in response
to endoplasmic reticulum (ER) disturbances or proteotoxicity
where unfolded proteins accumulate in the ER and compete
with PERK for the inhibitory protein BiP (Leonard et al.,
2014). Activated PERK phosphorylates eIF2a which inhibits
general protein translation while inducing AT4 translation. ATF4
in turn binds to the CARE consensus sequence and drives
transcription of genes involved in amino acid synthesis, amino
acid transport and aminoacyl-tRNA synthesis (Leonard et al.,
2014). Xenobiotics can also activate specific genes through
the AhR pathway. Upon ligand (xenobiotic) binding, the AhR
transcription factor (TF) shuttles into the nucleus where it
dimerizes with the “AhR nuclear translocator” and binds to
so-called xenobiotic-responsive elements (XRE), aka dioxin
response element (DRE), in the promoter region down stream
targets including cytochrome P1-450 A1 (CYP1A1) (Haarmann-
Stemmann et al., 2012).

Measuring the activation of transcriptionally regulated
pathways such Nrf2, AhR, and ATF4 using transcriptomic
approaches has great potential in increasing mechanistic
understanding of chemical perturbations and to develop better
prediction tools (Aschauer et al., 2015; Limonciel et al., 2015).
Also, such an approach could be used for biological read across.
However, there is still a knowledge gap pertaining to the interplay
between the Nrf2, AhR, and ATF4 pathways. It is known that
several of their downstream targets have promotor sequences
for more than one of these TFs. For example, NQO1 is driven
by both AhR and Nrf2. Also, it is likely that the pathways
may cooperate in redressing certain hoemeostatic perturbations.
For example, we have shown that Nrf2 and ATF4 cooperate
on the level of glutathione, where ATF4 promotes the uptake
of glutathione amino acid building blocks including glutamine
and cysteine and promotes glutamate production via induction
of asparagine synthetase. Nrf2 in turn through induction of
glutamate cysteine ligase and glutathione synthase produce new
glutathione (Wilmes et al., 2013). Very little is known about
species differences, tissue specificity, chemical specificity, or other
subtleties in the activation of these pathways.

To investigate this further, we performed a transcriptomic
analysis of large and medium size toxicogenomic datasets from
the EU 6th and 7th framework projects carcinoGENOMICS and

Abbreviations:AhR, Aryl Hydrocarbon Receptor; ATF4, Activating Transcription

Factor 4; CAC, Chemical Activation Capacity; ChIP-seq, Chromatin

Immunoprecipitation followed by DNA sequencing; CYP1A1, Cytochrome

P1-450 A1; FC, Fold Change; Nrf2, Nuclear Factor (Erythroid-derived 2)-Like 2

(NFE2L2); TF, Transcription Factors.

Predict-IV, as well as from TG-GATEs. Within these studies we
also identified some potentially useful specific activators of the
pathways investigated. Potassium bromate and phorone have
been used to experimentally activate Nrf2. Potassium bromate
is an oxidizing agent causing ROS injury and oxidative stress-
induced DNA damage (Ballmaier and Epe, 1995; Limonciel
et al., 2012). In a recent study we showed that potassium
bromate activated the Nrf2 and p53 response without activation
of the ATF4 response (Limonciel et al., 2018). Phorone can
similarly activate Nrf2 due to glutathione depletion (Younes
et al., 1986; Iannone et al., 1990; Oguro et al., 1996). Tunicamycin
is a prototypical activator of the unfolded protein response
(including the ATF4 branch) by causing an accumulation of
misfolded glycoproteins in the ER (Oslowski and Urano, 2011).
More specifically, tunicamycin inhibits the N-glycosylation of
newly formed proteins by DPAGT1, leading to an interruption
in glycoprotein production (Bassik and Kampmann, 2011).
Benzo(a)pyrene and omeprazole have been used to activate AhR.
Benzo(a)pyrene is a polycyclic aromatic hydrocarbon and a
prototypical AhR agonist (Nebert et al., 2004). Omeprazole, a
proton pump inhibitor (Howden, 1991, 199) is also an AhR
activator (Jin et al., 2012, 2014).

The aim of the investigation was to investigate potential co-
dependences of ATF4, Nrf2 and/or AhR, to develop a signature
panel for each pathway and to develop a chemical activity scoring
system, for chemical grouping.

MATERIALS AND METHODS

Generation of Target Gene Lists
For each of the three TF of interest (AhR, Nrf2, and ATF4), the
following three search strategies, from the works of (Limonciel
et al., 2015), were applied in PubMed to retrieve TF target genes:
(i) search for TF name and ChIP-sequencing or ChIP-microarray
studies, (ii) search for TF name and TF-specific response element
and “Electrophilic Mobility Shift Assay” or ChIP studies, and
(iii) search for TF name and TF-specific DNA response element
and name of a target gene known. In the first tier of this
strategy, high-throughput sequencing datasets were retrieved,
which provided extensive lists of genes shown to have the TF bind
in their promoter region. In the second tier, lower throughput
investigations were included, providing target genes that were
more deeply investigated in the article with proven TF binding of
the promoter region. These first two tiers provided an unbiased
source of target genes that was completed in the third tier with
manually added target genes for which at least one study showed
binding of the TF in their promoter region.

PubMed searches were performed on 24.11.2014 for
Nrf2 and 17.12.2014 for ATF4 and AhR. Gene lists are
reported in Supplementary Table 1 and illustrated on
Supplementary Figure 1.

Construction of a Chemical-Effects
Transcriptomics Database
The database of chemical-induced transcriptomic changes comes
from three projects: carcinoGENOMICS (Vinken et al., 2008),
Predict-IV (Mueller et al., 2015) and TG-GATEs (Igarashi et al.,
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TABLE 1 | Number of chemicals used in each experimental category.

Project Species Tissue Setting Mode Time-points Number of chemicals Notes

All dataset [211]* (1–2)

Carcino-GENOMICS [31] Human Kidney in vitro Bolus 6h, 24h, 72h 30 (3–4)

Rat Kidney in vitro Bolus 6h, 24h, 72h 15

PREDICT-IV [22] Human Kidney in vitro Repeated doses 1d, 3d, 14d 12 (5–6)

Human and Rat Liver in vitro Repeated doses 1d, 3d, 14d 11 (7)

TG-GATEs [171] Human Liver in vitro Bolus 2h, 8h, 24h 160 (8)

Rat Liver in vitro Bolus 2h, 8h, 24h 145 (9)

Liver in vivo Bolus 3h, 6h, 9h, 24h 158 (10–11)

Liver in vivo Repeated doses 4d, 8d, 15d, 29d 143 –

Kidney in vivo Bolus 3h, 6h, 9h, 24h 41

41

(12)

Kidney in vivo Repeated doses 4d, 8d, 15d, 29d

(1) Number of chemicals assayed in at least one of the three source projects.

(2) Cyclosporine A is the only chemical that was used in the three projects. Cyclosporine A appears in every single experimental category and sub-category (except

carcinoGENOMICS’s Rat tests).

(3) In carcinoGENOMICS, all 15 chemicals tested on rat cells, except one (Dimethylnitrosamine), were also tested on human cells.

(4) Beside Cyclosporine A, and five of the chemicals that appear in TG-GATEs as well, all chemicals are specific to carcinoGENOMICS [2-Nitrofluorene and N-nitrosomorpholine

(TG-GATEs “Human liver in vitro bolus” and “Rat liver in vivo bolus”); and Diclofenac, Nifedipine and Tolbutamide (all liver categories of TG-GATEs)].

(5) The 12 chemicals tested on kidney cells and the 11 tested on liver cells in PREDICT-IV are distinct; Only Cyclosporine A is presented in these two categories.

(6) Among the chemicals tested on kidney cells in PREDICT-IV, only Cisplatin appears elsewhere (in TG-GATEs rat tests).

(7) Among the chemicals tested on liver cells in PREDICT-IV, onlyAcetaminophen and Valproic acid appear in all TG-GATEs categories; Amiodarone,Chlorpromazine, Fenofibrate,

Ibuprofen and Metformin were tested on liver cells of TG-GATEs, and Rosiglitazone as well (except in “Rat liver in vitro bolus”).

(8) In TG-GATEs, five chemicals were tested on human cells only (HGF, IL1beta, IL6, INFalpha, Nefazodone, and TGFbeta1) and six others on animal categories only (Carboplatin,

Cephalotin, Cisplatin, Gentamicin, TNFalpha, and Trimethadione).

(9) Five chemicals appear in liver in vitro bolus categories only (human and rat): Alpidem, Buspirone, Clozapine, Nefazodone and Venlafaxine.

(10) 3-Methylcholantrene, Bortezomib, Gefitinib, Imatinib, and Puromycin appear in the “Rat liver in vivo bolus” category exclusively.

(11) 2-Nitrofluorene, Aflatoxin B1, Dexamethasone, N-methyl-N-nitrosourea and TNF are common to TG-GATEs’ “Human” and “Rat liver in vivo bolus” categories and were not

tested in other conditions.

(12) The 41 chemicals that are used for TG-GATEs kidney in vivo testing are the same for both modes (bolus and repeated doses) and are common for all other categories (exceptions:

Gentamicin, Carboplatin, Cephalotin, Cisplatin, Desmopressin acetate, Amphotricine B, and Acetamide).

*The number between brackets refers to the number of chemicals per project.

TABLE 2 | Chosen pathway specific chemical through the dataset.

Pathway Species Kidney Liver

in vitro in vivo in vitro in vivo

AhR Human Benzo(a)pyrene Omeprazole

Rat

Nrf2 Human Potassium Bromate Phorone

Rat

ATF4 Human Tunicamycin

Rat

2015). In carcinoGENOMICS, human and rat kidney cells were
exposed to bolus concentrations of up to 31 chemicals in
in vitro settings for up to 72 h. In Predict-IV, human kidney
cells and liver cells from human and rat were exposed daily
in vitro for up to 14 days to up to 22 chemicals. Up to
171 chemicals from TG-GATEs were tested in various rat
in vivo and in vitro systems, with various treating regimes.
Table 1 summarizes this and shows the 211 chemicals tested and
dispatched in different categories of one or more of the three
projects. Supplementary Table 2 presents the exhaustive lists of
chemicals by category.

TABLE 3 | Number of conditions (chemicals, concentrations, time-points) tested

per category.

Pathway Species Kidney Liver TOTAL

in vitro in vivo in vitro in vivo

Human 85 0 963 0 1048

Rat 30 487 1282 1838 3637

Total 602 4083 4685

Data Sources
The carcinoGENOMICs and Predict-IV data are publicly
accessible on the diXa database hosted by The European
Bioinformatics Institute1. In carcinoGENOMICS, in vitro renal
cell experiments were performed using the human cell lines
RPTEC/TERT1 (human, telomerase transfected) and NRK-52E
(rat). The study no. is DIXA-003. Differentiated cell cultures
were exposed to a single bolus of non or low cytotoxic
(<IC10) concentration of chemical for 6, 24, or 72 h before
lysis in TRIZOL, RNA purification and transcriptomic analysis

1http://wwwdev.ebi.ac.uk/fg/dixa/
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FIGURE 1 | Methods summarizing workflow.

on Affymetrix microarrays as described (Limonciel et al.,
2012). Affymetrix Human Genome U133 Plus 2.0 GeneChIP
arrays were used for human samples and Rat Genome 230
2.0 GeneChIP for rat samples. Normalization quality controls,
including scaling factors, average intensities, present calls,
background intensities, noise and raw Q-values were within
acceptable limits for all chips. Hybridization controls were
identified on all chips and yielded the expected increases in
intensities. All subsequent analyses were based on normalized
expression values generated using the MAS5 normalization
algorithm. It is noted that RMA or GCRMA normalization
would have been preferred. Normalized data was imported into
GeneSpring (Agilent) to identify log2 fold change values for
selected genes.

Within PREDICT-IV, in vitro testing of nephrotoxic and
hepatotoxic compounds were performed on RPTEC/TERT1 cells
(renal model), primary human hepatocytes, and rat hepatocytes
(PHH and PRH, respectively). The study no. on the diXa
database is DIXA-095. Differentiated cell cultures were exposed

daily to a high (≤10% cell death) or low concentration of
chemical for 1, 3 or 14 days, as described (Wilmes et al.,
2013, 2014; Aschauer et al., 2015; Crean et al., 2015; Limonciel
et al., 2015). Transcriptomic analysis was carried out on
Illumina R© HT 12 v4 BeadChip arrays for kidney and PHH
human samples, except RPTEC/TERT1 exposed to CsA (HT
12 v3 chips). PRH samples were analyzed with Illumina R©

RatRef-12 v1 BeadChIP arrays. Results were normalized by
quantile normalization and expressed as log2 fold over time-
matched control. Where several probes existed for a given gene,
the probe with the highest variation across the dataset was
selected.

The TG-GATEs datasets comprised in vivo rat data from
liver and kidney tissue, as well as data from in vitro
primary rat and human hepatocyte cultures, after a single
administration of chemical and repeat dosing (see Table 1)2.
CEL files were downloaded from the Open TG-GATEs

2https://dbarchive.biosciencedbc.jp/en/open-tggates/desc.html
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FIGURE 2 | Geometric representation of chemical specificity and potency for

the Nrf2 and AhR pathways. K represents a chemical and its coordinates are

(CACAhR, K, CACNrf2, K ). K also defines the vector
−→
OK linking the origin O (0,

0) to point K. The absolute value of the cosine of the angle α between
−→
OK and

a pathway’s axis can be used to measure the specificity of a chemical for the

given pathway (the smaller α, the more specific the chemical). On the other

hand, the overall activation potency of a chemical increases proportionally with

the length of
−→
OK. Points A, B, and C represent three other chemicals with

different specificities and potencies for pathways’ activation (see text).

database of the Toxicogenomics Project and Toxicogenomics
Informatics Project under CC Attribution-Share Alike 2.1
Japan. Probe annotation for the primary human hepatocyte
data was performed using the hthgu133pluspmhsentrezg.db
package version 17.1.0 and probe mapping was performed
with hthgu133pluspmhsentrezgcdf downloaded from NuGO3.
Probe annotation for the rat data was performed using the
rat2302rnentrezg.db package version 19.0.0 and probe mapping
was performed with the rat2302rnentrezgcdf package version
19.0.0 downloaded from NuGO. These mappings summarize the
corresponding probes to a single probe set per gene. Probe-wise
background correction (Robust Multi-Array Average expression
measure), between-array normalization within each treatment
group (quantile normalization) and probe set summaries
(median polish algorithm) were calculated with the RMA
function of the Affy package (Affy package, version 1.38.1)
(Irizarry et al., 2003). The normalized data were statistically
analyzed for differential gene expression using a linear model
with coefficients for each experimental group within a treatment
group (Wolfinger et al., 2001). A contrast analysis was applied to
compare each exposure with the corresponding vehicle control.
For hypothesis testing the moderated t-statistics by empirical
Bayes moderation was used followed by an implementation
of the multiple testing correction of Benjamini and Hochberg
(Hochberg and Benjamini, 1990) using the LIMMA package
(Smyth et al., 2005).

All interspecies gene conversions where done using the
provided human gene symbols which were converted to human
or rat gene identifiers using the online conversion tool of
bioDBnet4.

3http://nmg-r.bioinformatics.nl/NuGO_R.html
4https://biodbnet-abcc.ncifcrf.gov/

Altogether, the collected data concern 804 genes from the
857 genes identified in PubMed as targets of AhR, Nrf2 and
ATF4. The 53 target genes that are not covered with data
from any of the three projects were excluded from this study.
These genes are listed in the last row of Supplementary

Table 1.

Bioinformatics Methods
Data Selection
The heterogeneity of the sources of information of our
database widens its coverage and strengthens its capacity to
represent multiple conditions. However, this richness makes
the database’s structure complex. To simplify the analysis
without losing potentially important information, we focused
on conditions providing the best background to study the
three pathways individually. The effects observed following
exposure to a chemical could vary greatly depending on
exposure duration. Exposures lasting more than 24 h tend to
cause mixed stress responses that make it difficult to delineate
the activation of specific molecular pathways and the initial
mechanisms of toxicity of chemicals. These conditions could
be a potential source of noise for the analysis and were
thus excluded. Excluding all data obtained after 24 h reduced
the dataset from 7,042 to 4,685 testing conditions. We chose
not to eliminate the early kidney in vivo time points (at
3 and 6 h), even though they may be more reflective of
background levels in case of slow absorption of the chemical
administered.

Pathway Specific Chemicals
In order to distribute the genes to pathways and pathway
overlapping zones, log2 genes fold changes (FC) were ranked in
decreasing order and examined on reduced datasets containing
conditions relative to pathway specific activators. We define a
pathway specific activator as a chemical where the mode of
action is known, that the mode of action activates the specific
pathways and that this mode of action is not expected to activate
the other pathways under investigation. Thus, at relatively short
exposures, to relatively low concentrations these chemicals will
only act on their specific target. It is however possible at higher
concentrations or longer time exposure, other targets will be
affected due to increasing toxicity. As shown in Table 1, some
chemicals were not tested in all categories and tissue types. Thus,
it was not possible to find pathway specific activators able to
cover the entire database. Table 2 shows the coverage of the
datasets by the pathway specific activators selected as reference
for analysis. Although none of the toxicogenomic databases
analyzed here were designed to specifically address any of our
three pathways of interest, most datasets included at least one
chemical that could be considered as a specific pathway activator.
Two specific chemicals were selected for AhR (Benzo(a)pyrene
and Omeprazole) and Nrf2 (Potassium Bromate and Phorone)
and one for ATF4 (Tunicamycin). However, within “Rat Kidney
in vivo” category, no Nrf2 specific chemicals were found, and
for all kidney data no ATF4 specific chemical were found
either.
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TABLE 4 | Pathways’ global signatures for AhR, Nrf2 and ATF4 pathways and the signatures of their overlapping zones (AhR-Nrf2, Nrf2-ATF4, AhR-ATF4, and

AhR-Nrf2-ATF4) for all available data.

Activated

genes

AhR Signature Nrf2 Signature ATF4 Signature

Genes log2 (FC)

averages

A priori

pathway

Genes log2 (FC)

averages

A priori

pathway

Genes log2 (FC)

averages

A priori

pathway

CYP1A1 4.35 AhR HMOX1 1.12 Nrf2 DDIT3 1.59 ATF4

DLL1 1.36 AhR SRXN1 0.97 ATF4 Nrf2 TSLP 1.51 ATF4

RUNX2 1.03 AhR MAFF 0.78 AhR Nrf2 AKNA 1.30 ATF4

SLC16A9 0.92 Nrf2 OSGIN1 0.67 Nrf2 HERPUD1 1.23 ATF4

FAM65C 0.79 AhR DUSP5 0.66 ATF4 SLC1A4 1.15 ATF4

FLRT1 0.78 ATF4 TXNRD1 0.63 ATF4 IL23A 1.05 ATF4

FIBIN 0.77 ATF4 GCLC 0.60 ATF4 CHAC1 0.99 ATF4

TIPARP 0.73 AhR PPP1R15A 0.57 ATF4 FGF21 0.95 ATF4

CYP1A2 0.69 AhR GCLM 0.57 Nrf2 HSPA5 0.94 ATF4

ASB3 0.67 Nrf2 HSPA1B 0.56 Nrf2 NUPR1 0.94 ATF4

PDE1A 0.66 ATF4 FBXO30 0.55 ATF4 GTPBP2 0.91 ATF4

PBX1 0.64 Nrf2 GSTP1 0.53 Nrf2 PDIA4 0.87 Nrf2

PHGDH 0.46 Nrf2 FAM129A 0.87 ATF4

TMEFF2 0.46 ATF4 LONP1 0.80 ATF4

RUNX3 0.46 Nrf2 VNN3 0.78 ATF4

SESN2 0.75 ATF4

MTHFD2 0.73 ATF4

PYCR1 0.72 ATF4

BACH1 0.68 Nrf2

Inhibited

genes

SLC1A7 −1.57 ATF4 TMEM189 −1.48 ATF4 COCH −1.25 Nrf2

PSG5 − 1.43 AhR NREP −0.99 ATF4 SNAI2 − 1.20 ATF4

PRKAR2B −1.23 Nrf2 KIFC1 −0.79 ATF4 INSIG1 −1.02 Nrf2

SOAT2 −0.80 ATF4 DLX2 − 0.78 Nrf2 AKR1B10 −0.96 Nrf2

DAAM2 −0.78 Nrf2 BMF −0.73 ATF4 PMAIP1 −0.88 Nrf2

WDR63 − 0.70 AhR TGFB2 −0.72 ATF4 ANGPTL4 − 0.87 ATF4

FAM69A −0.68 Nrf2 DDC − 0.71 Nrf2 SNRNP35 − 0.77 ATF4

CDH11 −0.67 Nrf2 GLI2 −0.71 ATF4 SERPINE1 −0.68 Nrf2

LCN2 −0.66 ATF4 AURKB −0.69 ATF4 PRC1 −0.65 Nrf2

PLA2G4A −0.66 Nrf2 NEDD9 −0.67 ATF4 LMCD1 −0.64 AhR

CXCL5 −0.64 Nrf2 TFPI −0.65 ATF4 LBH −0.61 Nrf2

WISP1 −0.62 ATF4 OSMR − 0.59 Nrf2

Activated or

Inhibited genes

AhR-Nrf2 Overlapping signature Nrf2-ATF4 Overlapping signature

Genes AhR log2(FC)

averages

Nrf2 log2(FC)

averages

Genes Nrf2 log2(FC)

averages

ATF4 Log2 FC

average

NQO1 0.7 0.83 ATF3 0.73 0.90

DLGAP5 −0.64 −0.56 SLC7A11 0.70 0.69

CFTR −0.69 −0.73 TRIB3 0.70 1.02

RAB39B −0.92 −0.52 CABC1 0.56 2.90

GSTA1 −1.43 −0.83 GDF15 0.48 0.80

CCL2 −0.61 −1.28

KCNT2 −0.9 0.76

Activated or

Inhibited genes

AhR-ATF4 Overlapping signature AhR-Nrf2-ATF4 Overlapping signature

Genes AhR

log2(FC)

averages

ATF4

log2(FC)

averages

Genes AhR

Log2 FC

average

Nrf2

log2(FC)

averages

ATF4

log2(FC)

averages

CYP1B1 3.56 −0.63 TPX2 −0.75 −0.8 −2.38

Gray background indicates genes that appear in the signature of the pathway from previous studies (Supplementary Table 1) and confirmed here. Non-grayed out values are novel

allocations from this analysis.
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FIGURE 3 | Venn diagram of the number of genes per pathway’s global

signatures and names of genes of overlapping zones.

Construction of Pathway Signatures
For each of the pathway specific chemicals, all testing conditions
were selected. For every gene, the mean of log2(FC) throughout
all those conditions was calculated, to form the average activation
value of each gene by each of the pathway specific activator.
For AhR and Nrf2, the two average activation values obtained
(one for each of the pathway specific activator) were themselves
averaged. Genes were then sorted in decreasing order of average
activation values per pathway. It is important to note that, since
the expression of some genes can be inhibited (down regulated)
by some chemicals or in certain conditions, some of the average
activation values were negative. In order to select the most
sensitive genes for each pathway, we computed the mean (µ)
and the standard deviation (σ) of the genes’ average activation
values in each list. A pathways signature was formed by the
genes whose average activation values were greater than µ +
2σ or smaller than µ – 2σ for this pathway. Genes appearing
in the signature of more than one pathway were set apart in
“overlapping signatures.”

Furthermore, we stratified signatures by original databases’
categories (“Rat liver cells in vitro,” “Rat liver cells in vivo,”
“Human liver cells in vitro” etc.) (which correspond to primary
cells), to check if there would be any species-specific or
in vitro/in vivo differences among signatures. We chose to work
only with liver data since more data were available for liver
(602 conditions in kidney vs. 4,083 tested in liver, see Table 3).
Following the same procedure as above, we constructed pathway
signatures for AhR, Nrf2, and ATF4 in each of the following liver
categories: (a) Rat liver cells in vitro, (b) Rat liver cells in vivo, and
(c) Human liver cells in vitro.

In all cases, general or stratified, some genes were excluded for
having no data on effect of the chosen pathway specific chemicals.
A list of those genes appears in Supplementary Table 3.

A summary of the above-described protocols and the
following procedures of Methods are presented in the workflow
of Figure 1.

Pathway’s Signature-Based Prioritization of

Chemicals
Among the three liver categories where signatures were stratified,
we chose to focus on the “Human liver cells in vitro” sub-category
exclusively since the ultimate goal of our toxicity pathways’
analyses and models is risk assessment of human cells’ exposure
to xenobiotics. We considered only the genes belonging to the
signature of each of the three pathways, but not their overlapping
zones. This selection of experimental category and genes reduces
the number of studied chemicals from 211 to 160 for the lack of
data on the rest of chemicals in this section. Then, for each of the
160 chemicals investigated, we averaged log2(FC) of the pathway
signature genes over experimental conditions. Therefore, for
each of the three pathways, we obtained a “chemical activation
capacity” (CAC) value per chemical. This value reflects how
strongly a chemical can activate a given toxicity pathway. Those
CACs can be negative for chemicals inhibiting the majority of
the genes of a pathway. We used CACs to estimate the pathway’s
selectivity of chemicals as well as the importance of their impact.

Each chemical can be considered as a point having three CACs
as coordinates in a 3-dimensional space which axes correspond
to a given pathway. Let us consider a chemical K that has a point
in a bi-dimensional graph where the X-axis corresponds to AhR
and the Y-axis to Nrf2. In this graph, K’s coordinates would be:
(CACAhR, K, CACNrf2, K), see Figure 2. K also defines the vector
−→
OK linking the origin O (0, 0) to the point K.

The specificity of a chemical for a given pathway can be
measured by the proximity of its point K to the axis representing
that pathway. Proximity can be mathematically evaluated by the
absolute value of the cosine of the angle (α) between the pathway’s

axis and
−→
OK . The more K is specific to AhR, the closer it is

to the AhR’s axis, the smaller α is, and the bigger cos (α). In
theory, in a 3-dimensional space, a point is closer to an axis
than to the two others when its cos (α) with this axis is greater
than 1√

3
. Thus, the value of 0.57735 ( 1√

3
) was chosen as a cut-

off point for cos (α). On the other hand, the activation potency
of a chemical proportionally increases with the module of the

vector
−→
OK vector noted

∥

∥

∥

−→
OK

∥

∥

∥

(the distance between the origin

and the chemical’s point). The value of 0.5 was chosen as a cut-off

point for
∥

∥

∥

−→
OK

∥

∥

∥

. For instance, chemicals A and B in Figure 2 are

both quite specific of Nrf2, but A’s activation potency is relatively

limited compared to B’s (
∥

∥

∥

−→
OA

∥

∥

∥

<

∥

∥

∥

−→
OB

∥

∥

∥

).

Similarly, even though C seems to have a greater activation
potency than A and B (greater module), it is equidistant to both
axes and therefore is not specific of any of the two pathways. The
same logic applies for a 3-dimensional space, adding one extra
axis for the ATF4 pathway.

In our signature-based classification of chemicals, for each
pathway, after applying the chosen cut-off points, we sorted

chemicals by the result of the product cos(α)×
∥

∥

∥

−→
OK

∥

∥

∥

. Thus,
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FIGURE 4 | Network representation of AhR, Nrf2 and ATF4 pathway signatures and their overlapping zones.

chemicals which are both pathway specific (high cos (α)) and

potent (high
∥

∥

∥

−→
OK

∥

∥

∥

) show up first in our lists.

RESULTS

A visual depiction of the workflow is provided in Figure 1.

Pathways’ Global Signatures
Pathway’s signatures defined on the basis of the whole data set are
listed in Table 4. Each signature has two parts: “Activated genes”
(those having positive log2(FC) averages and are greater than
µ + 2σ) and “Inhibited genes” (those having negative log2(FC)
averages and are smaller than µ – 2σ); The two parts are merged
in one in the overlapping signatures. In all lists, genes are sorted
by the decreasing absolute value of the genes’ log2(FC) averages.

The number of genes in the obtained pathway’s signature was
24 for AhR, 27 for Nrf2 and 30 for ATF4. In each pathway,
at least half (12 for AhR, 15 for Nrf2 and 19 for ATF4) were
“Activated genes.” The a priori pathway is the one for which
the gene has come up in PubMed searches; Table 4 shows that
most of activated genes were a priori suspected to belong to
the target pathway (for example: CYP1A1, RUNX2, and CYP1A2
were known to be activated by AhR,HMOX1 and SRXN1 by Nrf2
and DDIT3 and HERPUD1 by ATF4; those genes are highlighted
in gray) while this wasn’t the case of the “Inhibited genes” part
of the lists. Figure 3 shows the overlapping zones. Among the
five genes that are in the AhR-Nrf2 overlapping zone (NQO1,
DLGAP5, CFTR, RAB39B and GSTA1), only NQO1 is a mainly
activated gene while this was the case of most seven genes of the
Nrf2-ATF4 overlapping zone (ATF3, SLC7A11, TRIB3, CABC1,
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TABLE 5 | AhR, Nrf2 and ATF4 pathways’ signatures stratified in liver data and by all liver data sub-categories (“Rat Liver in vitro” data, “Rat Liver in vivo” data and

“Human Liver in vitro” data).

All liver data Rat liver in vitro Rat liver in vivo Human liver in vitro

Genes Log2(FC)

averages

Genes Log2(FC)

averages

Genes Log2(FC)

averages

Genes Log2(FC)

averages

AhR SIGNATURES

Activated genes CYP1A1 4.55 CYP1A1 1.30 CYP1A1 6.86 CYP1A1 4.72

CYP1A2 1.47 CYP1A2 1.71 CYP1A2 2.44

TIPARP 0.64 TIPARP 0.40 TIPARP 1.21

ABCC4 0.25 ABCC4 0.97

IL1R1 0.24 HTATIP2 1.19 CYP1B1 3.49

TAF15 0.22 SLC20A1 0.78

Inhibited genes PRKAR2B −0.20 KCNT2 −0.60

ANXA1 −0.18

ANGPTL4 −0.17

Nrf2 SIGNATURES

Activated genes MAFF 1.42 MAFF 0.67 MAFF 2.37

FBXO30 0.92 FBXO30 0.35

HSPA1B 0.82 HSPA1B 0.37 HSPA1B 0.63

PPP1R15A 0.77 PPP1R15A 1.16

GSTP1 0.67 GSTP1 1.24

GCLC 0.66 GCLC 0.35

PSAT1 0.64 PSAT1 1.54

DUSP5 0.62 DUSP5 0.64

SLC3A2 0.60 SLC3A2 1.09 SLC3A2 0.40

OSGIN1 0.58 OSGIN1 0.91 OSGIN1 0.42

SLC6A9 0.57 SLC6A9 1.06

SLC20A1 0.52 SLC20A1 0.41

ABCC3 0.52 ABCC3 1.00

YPEL5 0.47 YPEL5 0.37

CPT1A 0.38 CPT1A 0.36

ASNS 0.75 SRXN1 0.66 HMOX1 2.03 ATF5 0.37

PHGDH 0.55 PHLDA1 0.53 SLC7A11 1.74 AP5Z1 0.35

PLA2G12A 0.50 TXNRD1 0.41 GDF15 1.30

SLC7A1 0.48 ABCC2 0.39 BTG2 0.89

PIR 0.34

FLVCR2 0.33

GSR 0.33

GABARAPL1 0.33

AGPAT9 0.57

TBCEL 0.48

MMD 0.33

Inhibited genes MMD −0.4

LCN2 −0.45 LCN2 −0.97

TGFB2 −0.34 TGFB2 −0.44

MID1IP1 −0.48 TNFAIP2 −0.44 BMF −0.88 ALDH1A1 −0.61

IL33 −0.46 VASN −0.39 DHRS7 −0.69 DDC −0.42

NREP −0.45 AURKB −0.38 DUT −0.35

SERPINB9 −0.42 RAB32 −0.36 IFIT3 −0.33

CD36 −0.36 UGT1A6 −0.32

DCN −0.34

CTSC −0.34

(Continued)
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TABLE 5 | Continued

All liver data Rat liver in vitro Rat liver in vivo Human liver in vitro

Genes Log2(FC)

averages

Genes Log2(FC)

averages

Genes Log2(FC)

averages

Genes Log2(FC)

averages

LBH −0.32

CXCL3 −0.32

ATF4 SIGNATURES

Activated genes TSLP 1.51 TSLP 1.51

AKNA 1.30 AKNA 1.30

HERPUD1 1.23 HERPUD1 1.28 HERPUD1 0.61 HERPUD1 2.39

IL23A 1.05 IL23A 1.69 IL23A 1.86

HSPA5 0.94 HSPA5 3.28

GTPBP2 0.91 GTPBP2 1.12 GTPBP2 1.89

PDIA4 0.87 PDIA4 0.92 PDIA4 2.18

FAM129A 0.87 FAM129A 2.92

PYCR1 0.72 PYCR1 0.91

CHAC1 1.40 CHAC1 0.50

KLF15 0.81 KLF15 0.43

SLC1A4 1.15 TRIB3 1.12 HES1 0.57 FIBIN 2.72

NUPR1 0.94 BCAT2 0.97 USP2 0.55 LCN2 1.91

LONP1 0.80 ARHGEF2 0.93 ENC1 0.48 CTH 1.62

VNN3 0.78 CASP4 0.84 TSC22D3 0.44 NFE2L1 1.2

SESN2 0.75 KLF4 0.82 DDIT4 0.39

BACH1 0.68 BET1 0.82 SLC38A2 0.38

WARS 0.80 IP6K2 0.62

PCK2 0.73

SLC25A33 0.71

SLC7A5 0.71

ACOT2 0.83

MANEA 0.75

Inhibited genes PRC1 −0.65 PRC1 −0.61

LMCD1 −0.64 LMCD1 −0.80 LMCD1 −1.73

LBH −0.61 LBH −2.56

SNAI2 −1.20 DPYSL2 −0.98 FOXA2 −0.61 FRMD6 −1.52

AKR1B10 −0.96 DUSP6 −0.97 ABCG2 −0.49 SLC39A10 −1.35

PMAIP1 −0.88 IFIT3 −0.72 NEDD9 −0.43 GPNMB −1.26

SNRNP35 −0.77 EMILIN1 −0.69 TMEM159 −0.37 ANKRD1 −1.16

SERPINE1 −0.68 FCER1G −0.65 PHLDA1 −1.16

SQRDL −0.61

IFI44 −0.61

Genes that appear in more than one column are highlighted in gray.

GDF15) with two exceptions (CCL2 has negative averages for
both pathways and KCNT2 for Nrf2). CYP1B1 is the only mutual
gene for AhR (strong activation) and ATF4 (inhibition) and
TPX2 is the only mutual gene for all three pathways (inhibition).
Figure 4 shows a network representation of the three signatures
and their overlapping zones.

Pathways’ Stratified Signatures in Liver
The Three Main Pathways’ Stratified Signatures in

Liver
Table 5 shows the stratified signatures in liver of each pathway
in four columns (categories): each containing the genes’ names

and their log2(FC) averages. Genes that appear in more than one
column are highlighted in gray and empty lines were left in order
to display those genes on the same line in all the categories where
they appear. Genes of the first column, sorted by the decreasing
absolute values of their log2(FC) averages, appear first, followed
by genes appearing in more than one category but not the first
column and then the rest of the genes sorted by the decreasing
absolute values of their log2(FC) averages as well.

AhR stratified signatures
Table 5 shows that CYP1A1 is clearly, by far the most activated
gene in this pathway. Three other genes appear in the AhR
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signature in more than one column: CYP1A2 everywhere except
“Rat liver in vitro,” TIPARP everywhere except “Rat liver in vivo”
and ABCC4 shows up in these two categories only. “Rat liver
in vitro” AhR signature is completed by five additional genes,
“Rat liver in vivo” by one more and “Human liver in vitro” by
three.

Nrf2 stratified signatures
Nrf2 signatures are bigger: 22 genes in the all liver data signature,
28 for “Rat Liver in vitro” and 15 for each of “Rat Liver in vivo”
and “Human Liver in vitro”. Around two third of those genes are
“Activated genes” and the rest have negative log2(FC) averages.
MAFF, SLC3A2, OSGIN2 are among the “Activated genes” that
appear in three out of the four categories we are studying. Other
important genes show up in two columns (HSPA1B, PPP1R15A,
and GCLC) and some, in only one (SRXN1 in “Rat Liver in vitro”
and HMOX1 in “Rat Liver in vivo”). The values of the “Rat liver
in vivo” are also higher than the “Rat liver in vitro” and “Human
liver in vitro” categories.

ATF4 stratified signatures
ATF4 signatures size is similar to Nrf2’s signatures with a
comparable proportion of activated genes: 23 genes in the all liver
data signature, 28 for “Rat liver in vitro” and 14 for each of “Rat
liver in vivo” and 19 for “Human liver in vitro.” HERPUD1 is
an important gene in this pathway; it is part of the signature of
every single category we are examining and exhibits values as
high as 2.39 in “Human Liver in vitro” (among the highest in
ATF4 signatures). Other genes also are present in the majority of
the categories: IL23A, GTPBP2, and PDIA4. It is noteworthy that
the ATF4 signature of “Rat Liver in vivo” results don’t have a lot in
commonwith the other three categories and its log2(FC) averages
are lower than the rest (the highest value is 0.61 for HERPUD1).

The Overlapping Zones Stratified Signatures
Figure 5 shows that the AhR-ATF4 overlapping zone is the least
populated (four genes maximum in all liver data, no genes for
“Rat Liver in vivo” and two genes in the two other categories).
The number of genes in the AhR-Nrf2 overlapping signatures
ranges from four to eight, with many typical key Nrf2 genes

FIGURE 5 | Venn diagram of the number of genes per pathway’s stratified signatures and names of genes of overlapping zones. Categories: (A) All liver data, (B) Rat

Liver in vitro data, (C) Rat Liver in vivo data, (D) Human Liver in vitro data. *Refers to genes that were known to be part of the same overlapping zone according to

Supplement Table 1 lists. White is the color of gene names that appear in an overlapping zone of only one of the four categories studied, and black is the color of

gene names that appear in more than one category (two, three or four).
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(NQO1, SRXN1, HMOX1, TXNRD1, and GCLM) appearing in
more than one category. The Nrf2-ATF4 overlapping signatures
contain six to eleven genes (DDIT3, ATF3, and CHAC1 are
among the repetitive genes). Finally, TRIB3, FGF21, GDF15,
SLC7A11, and TPX2 are in the signature of the zone mutual
to all three pathways for at least two of the four categories
studied.

Pathways’ Stratified Signatures in Liver
Figures 6, 7, 8 plot the 160 chemicals’ vector modules vs. the
absolute value of cos (α), which represents the pathway activation

scores of chemicals that activate each pathway both selectively
and strongly. Chemicals are represented by a number that
corresponds to their rank in the alphabetically ordered list. The
blue dashed lines mark the vertical (cos(α)= 1√

3
) and horizontal

(
∥

∥

∥

−→
OK

∥

∥

∥

=0.5) limits we set. The number chemicals that are off

these limits is 34 for AhR, one for Nrf2 and four for ATF4; these
chemicals are in red and their names are listed in the legend on
the right by the order of the decreased values of the product result

cos(α)×
∥

∥

∥

−→
OK

∥

∥

∥

. As we can see in these figures’ legends, “pathway

specific activators” show up first in the lists of AhR (Omeprazole)

FIGURE 6 | Distribution of chemicals by potency (Y-axis: module
∥

∥

∥

−→
OK

∥

∥

∥

of the vector linking the origin O(0,0) to the chemical’s point in a 3D space) and specificity to

the AhR pathway (X-axis: the absolute value of the |cos(α)| of the angle between
−→
OK and the AhR axis in a 3D space). Chemicals are represented by their rank in the

alphabetically ordered list. Chemicals that are both strong (horizontal blue dashed line:
∥

∥

∥

−→
OK

∥

∥

∥

>0.5) and AhR specific (vertical blue dashed line: cos(α) = 1√
3
) are in

red and their names are listed in the legend on the right.
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FIGURE 7 | Distribution of chemicals by potency (Y-axis: module
∥

∥

∥

−→
OK

∥

∥

∥

of the vector linking the origin O(0,0) to the chemical’s point in a 3D space) and specificity to

the Nrf2 pathway (X-axis: the absolute value of the |cos(α)| of the angle between
−→
OK and the AhR axis in a 3D space). Chemicals are represented by their rank in the

alphabetically ordered list. The only chemical that is both strong (horizontal blue dashed line:
∥

∥

∥

−→
OK

∥

∥

∥

>0.5) and AhR specific (vertical blue dashed line: cos(α) = 1√
3
)

Sulindac, is in red and it is listed in the legend on the right.

and ATF4 (Tunicamycin), but do not appear at all in the list of
Nrf2 (Phorone).

DISCUSSION

Nrf2, ATF4, and AhR are important TFs in toxicological
contexts and have well described downstream gene targets
(Jennings et al., 2013). Each of these TFs have distinct
unrelated upstream activation points, unique gene targets,
but also have direct (i.e., via multiple upstream promoter
regions) and likely indirect overlaps on some specific gene

targets. The AhR protein is a cytosolic protein receptor,
where activation via chemical ligand binding causes nuclear
translocation, DNA binding to it consensus sequence and RNA
transcription. Several toxic compounds including dioxin-like
compounds activate AhR. The TF Nrf2 is liberated from its
cytosolic inhibitor KEAP1, where the latter is sensitive to
electrophiles and ROS. The TF ATF4 is activated via PERK,
where PERK is activated when its inhibitor BiP, dissociates
from PERK to bind unfolded proteins. All sorts of Endoplasmic
Reticulum disturbances can cause an increase in unfolded
proteins.
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FIGURE 8 | Distribution of chemicals by potency (Y-axis: module
∥

∥

∥

−→
OK

∥

∥

∥

of the vector linking the origin O(0,0) to the chemical’s point in a 3D space) and specificity to

the ATF4 pathway (X-axis: the absolute value of the |cos(α)| of the angle between
−→
OK and the AhR axis in a 3D space). Chemicals are represented by their rank in the

alphabetically ordered list. Chemicals that are both strong (horizontal blue dashed line:
∥

∥

∥

−→
OK

∥

∥

∥

>0.5) and AhR specific (vertical blue dashed line: cos(α) = 1√
3
) are in

red and their names are listed in the legend on the right.

Using multiple toxicogenomic databases we investigated the
most appropriate activators of these three pathways, where it
is expected that the chemical does not directly activate the
other two pathways. These compounds were, Benzo(a)pyrene
and Omeprazole for AhR, Potassium Bromate and Phorone for
Nrf2 and Tunicamycin A for ATF4. All conditions up to and
including 24 h were pooled to generate a list of genes allocated
to the three pathways (Table 4). This list confirmed the majority
of a priori literature based information of “Activated genes”
(i.e., upregulated). Although some genes were now reallocated
to different pathways. The overlap with “Inhibited genes” (i.e.,
down regulated), was much poorer. This is too be expected as
TF activated gene down regulation is much more complex and is

often due to competition for auxiliary transcription facilitating
proteins. Cytochrome P450 1A was the central element of the
AhR pathway: CYP1A1 is the most prominent gene of this
pathway, regardless of the experimental category, followed by
CYP1A2. These findings are similar to previous investigations
and have been implemented in a systems biology model (Hamon
et al., 2014). For the Nrf2 pathway, the prototypical Nrf2 genes
(HMOX1, SRXN1, and GCLM) appear in the Nrf2 signature of
all datasets, but also in the AhR-Nrf2 overlapping signature for
most liver categories. This may reflect the fact that several AhR
agonists are themselves metabolized to reactive chemicals via
AhR dependent CYP expression. For example benzo(a)pyrene is
a substrate of the CYP1 sub family of cytochrome P450 enzymes,
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and it promotes its own metabolism to reactive epoxide and
quinone products (Gelboin, 1980). These metabolic products can
lead to oxidative stress and to an activation of the Nrf2 pathway
as part of a second line of responses (Burchiel and Luster, 2001).
The only activated gene that appears in the ATF4 signature of
each of the three studied categories is HERPUD1. In most cases,
HERPUD1 also had the highest log2(FC) averages. Overlapping
zones show an interaction between AhR and Nrf2, between Nrf2
and ATF4, but a very limited or non-existent interaction between
AhR and ATF4 pathways.

We have used the exclusive pathway genes to create pathway
chemical activation capacity (CAC) scores. The CAC reflects
both specificity for the pathway (cos (α)) and the activation

potency
∥

∥

∥

−→
OK

∥

∥

∥

. CAC scores were generated for 160 chemicals

using the TG-GATEs liver data. For ATF4, tunicamycin,
methylene dianiline, diclofenac, and butylated hydroxyanisole
were ranked highest, in that order. Tunicamycin was used
as a specific ATF4 specific activator. Both diclofenac and
butylated hydroxyanisole have previously been demonstrated
to positive modulate the ATF4 pathway (Afonyushkin et al.,
2010; Fredriksson et al., 2014). The molecular mechanism for
methylene dianiline has not been fully elucidated and this
evidence would suggest an ER disturbance and/or proteotoxic
mechanism. For AhR, 34 chemicals were considered positive
by CAC scores. Omeprazole was ranked highest, followed
by acetamidofluorene, 2-Nitrofluorene, mexiletine, flutamide,
isoniazid, and hexachlorobenzene. Many of the 34 chemicals
have not been previously linked with AhR, but several are.
These include, hexachlorobenzene (Randi et al., 2008; de Tomaso
Portaz et al., 2015), ketoconazole (Novotna et al., 2014), clozapine
(Donohoe et al., 2008), and doxorubicin (Volkova et al., 2011).
Fluphenazine has not been established as a ligand for the AhR, its
structure—a halogenated aromatic ring system—closely matches
the motif involved in binding to this receptor (Donohoe et al.,
2008). In a recent study we have demonstrated that isoniazid
induced CYP1A1 in HepaRG cells, which is a potential indicator
of AhR activation (Limonciel et al., 2018). Only Sulindac from the
160 was ranked as active using the CAC selection criteria, which
may seem surprising given the frequency of oxidative injury in
liver toxicities. Although butylated hydroxyanisole was marginal.
The reason for a lack of Nrf2 activation prediction might be
simply due to the fact that none of the 160 compounds, including
the positive compound phorone cause an Nrf2 response in the
liver within the first 24 h. Another possibility is that removing
the overlapping genes has weakened the ability to pick up this
pathway. Indeed, this is a weakness in the overall strategy as it is
difficult to determine in such data sets if the pathways themselves
are co-regulated since there are several gene overlaps amongst the
pathways.

SUMMARY AND CONCLUSION

The size of the data set, its multiple sources, abundancy of
compounds, concentrations and time of exposures, in vitro and
in vivo, different organs are both a blessing and a curse. On
the one hand, it is generally an advantage to have as broad as

data set as possible, but the different sizes and focuses of the
individual data sets/studies meant we needed to reduce the data
to the lowest denomination. Another major issue was the low
abundance of well described pathway activators. Despite these
issues we have made some interesting observations and have
developed a method to quantify a chemical’s capacity to activate
one three pathways.

We uncovered variations in AhR, ATF4 and Nrf2 signatures
across tissues, compounds, species and in vivo vs. in vitro. Some
of these alterations are likely to be linked to pharmacokinetics,
including distribution and metabolism, others may be linked to
tissue specific regulation of these pathways. While some genes
were very variable across experimental conditions, some were
extremely robust, for example CYP1A1 in the AhR pathway and
HERPUD1 in the ATF4 pathway. Some genes swing between a
pathway’s specific signature and overlapping zones for example
GCLC between Nrf2 and AhR-Nrf2. Others are regularly on
overlapping signatures for example TPX2 and TRIB3. However,
it is not possible with this type of analysis to delineate whether
these overlaps are solely on a gene level or also on the pathway
level.

The CAC score system developed, based on cos(α) ×
∥

∥

∥

−→
OK

∥

∥

∥

,

can be used to quantify a chemical’s specificity and potency to
selectively activate one of these pathways. However, future work
will be required to validate and optimize the gene signatures
utilized.
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Toxicogenomics is the study of the molecular effects of chemical, biological and
physical agents in biological systems, with the aim of elucidating toxicological
mechanisms, building predictive models and improving diagnostics. The vast majority
of toxicogenomics data has been generated at the transcriptome level, including RNA-
seq and microarrays, and large quantities of drug-treatment data have been made
publicly available through databases and repositories. Besides the identification of
differentially expressed genes (DEGs) from case-control studies or drug treatment time
series studies, bioinformatics methods have emerged that infer gene expression data at
the molecular network and pathway level in order to reveal mechanistic information. In
this work we describe different resources and tools that have been developed by us and
others that relate gene expression measurements with known pathway information such
as over-representation and gene set enrichment analyses. Furthermore, we highlight
approaches that integrate gene expression data with molecular interaction networks
in order to derive network modules related to drug toxicity. We describe the two
main parts of the approach, i.e., the construction of a suitable molecular interaction
network as well as the conduction of network propagation of the experimental data
through the interaction network. In all cases we apply methods and tools to publicly
available rat in vivo data on anthracyclines, an important class of anti-cancer drugs
that are known to induce severe cardiotoxicity in patients. We report the results
and functional implications achieved for four anthracyclines (doxorubicin, epirubicin,
idarubicin, and daunorubicin) and compare the information content inherent in the
different computational approaches.

Keywords: network analysis, protein–protein interaction network, pathways, drug toxicity, toxicogenomics,
transcriptomics, anthracyclines

INTRODUCTION

To thoroughly study the mechanisms behind drug induced toxicity a robust analysis by means of
computational methods is crucial (Liebler and Guengerich, 2005). Understanding the influence
of the compounds on different biological processes is complex and requires sophisticated
interpretations of the data. In the field of toxicogenomics transcriptome data, that were collected
upon drug treatment and that reflect gene expression levels in response to it, is in the focus of the
analysis. Various studies, both in vitro and in vivo, focusing on different compounds and organs,
have been already carried out (Hartung, 2009). Most of the studies were based on microarray
technology (Mei et al., 2010), even though newer technologies, such as high-throughput sequencing
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(RNA-seq), are already in use in other research areas. Such
transcriptomic profiles have previously been used for predicting
toxic drug effects (Gusenleitner et al., 2014; Kohonen and
Parkkinen, 2017; Nystrom-Persson et al., 2017; Rueda-Zarate
et al., 2017), but further analysis for identifying the functional
and molecular mechanisms behind the toxic effects is still much
needed.

Here, we describe different approaches for the analysis of
toxicogenomics data at the molecular network and pathway
levels. We use publicly available data from microarray
experiments and perform a differential expression analysis
in order to identify the genes that are up- or down-regulated
due to the administration of the drug (DEGs: differentially
expressed genes). Suggested methods and tools include (i)
over-representation analysis, (ii) gene set enrichment (pathway)
analysis, and (iii) network propagation. All methods are
complementary and deliver different and complementary
mechanistic views on drug action and drug effects derived
from the underlying gene expression data. Over-representation
analysis provides a first impression on which pathways and
biological functions are involved in the cell’s response to the
drug. This kind of analysis is typically done with statistical tests
that evaluate the list of DEGs interrogating pre-defined gene
sets that represent pathways or Gene Ontology (GO) functions.
Gene set enrichment (pathway) analysis is a complementary
approach in the sense that not only DEGs are investigated but
rather the entire gene expression response. This ensures that
not only those pathways appear interesting that agglomerate
many DEGs but also those that agglomerate subtle but
consistent transcriptome changes of many of their members
(not necessarily DEGs). A third, more unsupervised approach
is network propagation, a mathematical concept that traces
the effects of perturbations (e.g., gene expression changes)
simultaneously across a molecular network according to a
specified rule. It assumes that a perturbation in a certain gene
is not only affecting that particular gene but rather its entire
network neighborhood. The signal induced by a perturbation
is then propagated to the neighbors and the neighbors of the
neighbors until a steady-state (or convergence state) is achieved.
The result of the network propagation is a final state in which
each node is assigned a final weight which can be used to identify
highly affected nodes as well as specific interconnected parts of
the network (network modules) that are mostly affected by the
induced perturbations.

A previous effort to infer functional effects of drug treatments
from gene expression data was done on a pathway level in the
work of Hardt et al. (2016). They assembled the ToxDb database,
which contains gene expression data for more than 400 drugs
and 2000 pathway concepts. This includes the association of
drugs with specific molecular pathways, which can indicate to
which mechanisms of action lead to toxicity. Here, we make
use of this resource and the proposed implementation to extract
pathways that are relevant for the toxic effect of different drugs.
Additionally, we apply the same scoring scheme for measuring
gene and pathway responses from gene expression data and enact
a network analysis in order to identify functional modules that
can also be associated with the toxic effect (see Methods).

Biological interactions are often described using molecular
interaction networks (Barabasi and Oltvai, 2004), where each
node represents a biological player, i.e., gene or protein, and each
edge describes an interaction between a pair of nodes. Analyzing
these networks can help to better elucidate the functional
mechanisms that are being studied (McGillivray et al., 2018).
There are numerous types of biological interaction networks
(Vidal et al., 2011), as they can be based on different types
of interactions and represent various biological actions. They
vary between depicting gene regulatory interactions, viral-host
interactions, metabolic reactions, protein–protein interactions,
and more. Many of these interactions have already been
made publically available through various specific databases,
such as Reactome (Matthews et al., 2009), PID (Schaefer
et al., 2009), KEGG (Kanehisa et al., 2012), and many others.
Furthermore, there have been several attempts to combine
and integrate different resources into one meta-resource, such
as the work by Martha et al. (2011), IntNetDB (Xia et al.,
2006), and ConsensusPathDB. In this work we make use of
ConsensusPathDB (Kamburov et al., 2009), which currently
integrates more than 600,000 interactions of different types
which are collected from 32 public resources (Kamburov et al.,
2013). Furthermore, we restrict our analysis to protein–protein
interactions which are generally based on various experimental
technologies (Walhout and Vidal, 2001).

One possible use of biological networks is for the identification
of smaller subnetworks (subgraphs within the network), also
referred to as modules, which depict an area that is more
relevant for a specific biological function (Gustafsson et al., 2014).
By integrating experimental data with interaction networks we
can compute subnetworks that better represent the biological
mechanisms which lead to a specific phenotype. There are several
existing algorithms for module detection in biological networks.
For a comprehensive overview of the different methods, see the
recent review by Cowen et al. (2017). Many of these algorithms
are based on a random walk process, where the weights of the
nodes are propagated through the network, until a steady state is
reached. The weighing of the nodes is dependent on the specific
context and can be extracted for example from gene expression
values or genetic mutation data. In this work we make use of
the HotNet2 algorithm (Leiserson et al., 2015) that was originally
developed for identifying subnetworks that result from somatic
mutations. We apply the algorithm to toxicogenomics data and
identify the most significant subnetworks for a drug treatment
based on the gene expression response scoring.

We exemplify our approach on anthracycline drugs.
Anthracyclines are a family of drugs that induce cardiotoxicity
upon cancer treatment, and their use can result in
cardiomyopathy and heart failure in many cases after a long
period of time after treatment (Geisberg and Sawyer, 2010). These
compounds are vastly used as chemotherapy agents, and have
been shown to be extremely effective, but also to cause a major
morbidity in cancer patients due to their toxic effects (Lenneman
and Sawyer, 2016). Every exposure to anthracyclines carries
some risk of resulting in cardiac dysfunction. The symptoms
could present early on as well as at later times, in up to 23% of
the patients (Steinherz et al., 1991). Although it is known that
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anthracyclines disrupt the synthesis of DNA and RNA, mainly
by inhibiting topoisomerase II (Geisberg and Sawyer, 2010) and
that they lead to mitochondrial dysfunction (McGowan et al.,
2017), the mechanisms that cause the cardiotoxic effects still
remain largely unclear (Truong et al., 2014). Previous studies
have tried to elucidate this problem, however, there is still need
for further investigation so that detection and prevention could
be improved (Raschi et al., 2010). We focus our analysis on the
four most widely used compounds: daunorubicin, doxorubicin,
epirubicin, and idarubicin. In addition, we compare the results to
other chemotherapy agents from different drug families, which
are also known to cause cardiotoxic effects.

MATERIALS

DrugMatrix
The toxicogenomics DrugMatrix (Ganter et al., 2005) database
includes gene expression experiments from different rat tissue
types at different time points and drug dosages. Data were
downloaded via the diXa data collection (Hendrickx et al., 2015)
that is available at http://wwwdev.ebi.ac.uk/fg/dixa/index.html.
This data collection includes toxicogenomics profiles for 372
different compounds that were collected using the Affymetrix
whole genome 230 2.0 rat GeneChip array. Data are available for
heart, kidney, liver and muscle tissues, as well as for hepatocytes.
The experiments were conducted for up to five times (after 0.25,
1, 3, 5 and 7 days) with only one dose concentration. In some
cases, more than one dose was tested, and in others only one or
two time points were measured.

Anthracycline Expression Data
The analysis was focused on four different anthracyclines
compounds: daunorubicin (CHEMBL178), doxorubicin
(CHEMBL53463), idarubicin (CHEMBL1117), and 4-
epidoxorubicin (CHEMBL1237042). We downloaded the
CEL files from the DrugMatrix database via the diXa data
collection for these compounds in heart tissue. A full description
of the treatments is given by Table 1. Daunorubicin is the only
compound for which data are available at two doses, a higher
“toxic” dose and a lower “pharmacological” dose (Ganter et al.,
2005). Thus, for the analysis of daunorubicin we used only the
higher dose.

Expression Data From Other Cardiotoxic
Drugs
In order to evaluate the molecular effects that were identified in
this work for the anthracyclines we also applied our workflow

TABLE 1 | Anthracyclines drug treatment experiments from the DrugMatrix
database.

Drug Time points (days) Dosage (mg/kg)

Daunorubicin 1, 3, and 5 2/3.25

Doxorubicin 1, 3, and 5 3

Idarubicin 1, 3, and 5 0.625

4-Epidoxorubicin 1, 3, and 5 2.7

to three other chemotherapy agents that are known to induce
cardiotoxicities (Truong et al., 2014). Out of 41 drugs that are
mentioned in the review by Truong et al., only these three had
data available in the DrugMatrix database. Cyclophosphamide
(CHEMBL88) and ifosfamide (CHEMBL1024) are both
alkylating agents, and imatinib (CHEMBL941) is from a family
of small-molecule targeted therapy drugs. We downloaded the
CEL files from the DrugMatrix database for these compounds
in heart tissue. A full description of the treatments is given
by Table 2. Data for imatinib were available in two different
doses, and so we applied our analysis for the higher dose
only.

ConsensusPathDB – A Molecular
Interaction Network Resource
ConsensusPathDB (Kamburov et al., 2009) is a meta-database
for molecular interactions and pathways that currently integrates
32 public resources (Kamburov et al., 2013) and is composed
of more than 600,000 unique interactions of different types and
holds more than 5,000 human pathway concepts. The database is
available through a web server1 where queries of genes, proteins,
drugs and other types of biomolecules can be made, along with
gene and metabolites analysis, such as enrichment and over-
representation analysis (Herwig et al., 2016).

ConsensusPathDB holds an integrated network which is
comprised of more than 300,000 binary protein–protein
interactions (PPIs) representing a comprehensive model of
the human interactome. These interactions were scored with
a mixture of topology-based and annotation-based measures,
such as the ones described in Goldberg and Roth (2003),
Kuchaiev et al. (2009), Yu et al. (2010), and Kamburov et al.
(2012a). These measures were aggregated into a meta-score
using the IntScore (Kamburov et al., 2012b) approach, which
combines the individual confidence scores, and provides a final
score that better indicates how plausible the interaction is.
The PPI network, along with the quality assessment scores,
can be downloaded via http://cpdb.molgen.mpg.de/download/
ConsensusPathDB_human_PPI.gz.

ToxDB
ToxDB (Hardt et al., 2016) integrates toxicogenomics data from
two large-scale studies, Open TG-GATEs (Uehara et al., 2010)
and DrugMatrix (Ganter et al., 2005), with pathway concepts
from ConsensusPathDB (Kamburov et al., 2009). It contains a
total of 7,464 different treatment data sets, covering 437 drugs,
and 2,694 molecular pathway concepts with response scores.
Its web interface is available at http://toxdb.molgen.mpg.de/and

1http://consensuspathdb.org

TABLE 2 | Other chemotherapy drugs and their experiments information from the
DrugMatrix database.

Drug Time points (days) Dosage (mg/kg)

Cyclophosphamide 3 and 5 25

Ifosfamide 3 and 5 143

Imatinib 1, 3, and 5 15/150
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allows browsing for the effect of a drug treatment on cellular
pathway response. The user can also browse for a specific
pathway and retrieve the treatments that affect it the most.

METHODS

Microarray Data Processing
We processed the microarray data sets of the heart tissues that
were treated with anthracyclines. The oligonucleotide sequences
(oligoprobes) that were downloaded from DrugMatrix were
mapped to the rat genome-build and probe sets were redefined
using the resource at http://brainarray.mbni.med.umich.edu/
CustomCDF such that each probe is assigned to a unique gene,
and each gene is associated with a varying number of probes. It
has been shown that re-mapping of oligoprobes unambiguously
to the latest genome-build increases performance of Affymetrix
Gene Chip transcriptomics platforms (Dai et al., 2005). The
replicates of the different drug treatments were grouped together,
according to their corresponding dosage and time point. The raw
data were normalized using the GC Robust Multi-Array method
in the R package gcrma (Gentry, 2017).

Orthology Mapping
Rat genes had to be mapped to human genes by orthology,
in order to use the human pathway concepts and PPIs from
ConsensusPathDB. This was done via the orthology mapping of
the Ensembl BioMart repository (Yates and Akanni, 2016). We
used only “One2one” and “One2many” homology relationships:
if the rat gene has exactly one orthologous human gene, the
corresponding rat microarray value is assigned to that human
gene. Otherwise, if the rat gene has multiple orthologs in
the human genome, the corresponding rat microarray value is
assigned to all human paralogs.

Differential Gene Expression Analysis
The normalized microarray data were analyzed with the R
package limma (Ritchie et al., 2015) in order to calculate
differentially expressed genes (DEGs), i.e., genes that are up-
or downregulated significantly when comparing compound
treatment against control experiments. It estimates fold-changes
and standard errors by fitting a linear model to each gene profile
and uses an empirical Bayesian approach to smoothen these
errors.

We applied limma for every pair of case-control normalized
microarray values. Therefore, for every gene, given any drug,
dosage and time point combination, we can calculate its fold
change value and a corresponding P-value. Fold change is
computed as the ratio of the mean expression values of treatment
and control. P-value is the significance of the fold change given
the null hypothesis that there is no change in expression between
treatment and control.

Gene Scoring
In order to measure the response of a gene to a drug treatment
experiment we use the following scoring scheme:

for every gene i, every drug j and every time-dosage
treatment k:

Sijk =
∣∣log2 rijk

∣∣ ∣∣log10 Pijk
∣∣ (1)

Here rijk is the fold change between the treatment and the
control experiments, and Pijk is the P-value from the differential
expression analysis. This score describes a weighted fold change
of the gene, such that the more significant the change is, the
higher the weight is. Using this scoring scheme allows us taking
into consideration the rather low sample size of the experiments,
as well as to avoid a pre-selection of the genes based on their
P-values only. The score serves as a measure of how much the
gene was affected by the treatment, regardless of the change
in expression (higher or lower expressed in comparison to the
control).

Pathway Scoring
In previous works (Yildirimman et al., 2011; Hardt et al., 2016)
we have also defined a pathway scoring scheme, which is based on
the scoring of the genes that the pathway is comprised of. Here,
we take all available human pathways from ConsensusPathDB,
and their associated genes. We compute for each pathway a
relative pathway response (RPR) score which serves as a measure
for the response of the pathway to the drug, given gene expression
data. The higher the RPR score is, the more significant is the
response of the pathway to the treatment. A pathway Ml is
defined as a set of m genes: Ml={g1,...,gm}. Given a treatment of
drug j at a time point and dosage k, we can calculate the pathway
score:

Ml,j,k =
1
m

∑
gi∈M

Sijk (2)

Where Sijk is the gene score of gene i, as defined in Equation 1.
The RPR score of the pathway Ml with respect to the drug j
and the time-dosage k is calculated by dividing the pathway
score by Mj,k the median of all pathway scores, given drug j and
time-dosage k:

RPRl,j,k = log2

(
Ml,j,k

Mj,k

)
(3)

In addition, we computed RPR scores for all pathways in all
the different experimental conditions and derived a background
distribution. This background distribution is used to judge the
significance of a given RPR score and reflects the response of the
pathway to the experimental condition.

Network Module Analysis
A network module analysis was carried out by applying the
HotNet2 (Leiserson et al., 2015) algorithm, which was originally
developed to identify significantly mutated subnetworks in
cancer in PPI networks based on somatic mutations data. The
algorithm takes as input a score vector S =(S1,...,Sn), where n is
the number of genes, and a graph G=(V, E). The gene scores
are computed context dependent (see below), and the graph
represents a PPI network, where each node corresponds to a
protein coding gene, and each edge to an interaction between
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their respective proteins. HotNet2 then applies an insulated heat
diffusion process that includes the following steps:

1. Heat diffusion – at each time step heat is diffused from every
node i to every one of its neighbors j. The amount of heat that will
be placed on node j given the initial heat on node i is given by the
entry (i,j) of the diffusion matrix F, which is defined by:

F = β (I− (1− β)W)−1 (4)

Wi,j =
1

deg(j)
if (i,j) are neighbors, otherwise 0.

The parameter β is an insulating parameter and W is the
normalized adjacency matrix of the input graph G such that
deg(j) is the degree (number of neighbors) of node j. I is the
identity matrix.

2. Exchanged heat − the amount of heat that diffuses from
node j to node i when heat Sj is placed on node j is given by the
exchanged heat matrix E which is defined by:

E = FDs (5)

Where Ds is a diagonal matrix with the entries of S.
3. Identification of subnetworks − a new weighted directed

graph H is created using the nodes V. Node i will be connected
to node j in this graph if E(i,j) > δ, where δ is a minimum edge
weight parameter, and their respective edge will have a weight
equal to E(i,j). Then, the strongly connected components of H
are identified and are selected to be the final subnetworks.

4. Statistical test for the subnetworks – a two-stage statistical
test, that is described in the original HotNet algorithm (Vandin
et al., 2011, 2012), is applied to determine the significance of the
number and the sizes of the subnetworks.

To identify functional modules that are associated with
the different drug treatments we used the HotNet2 algorithm
(Leiserson et al., 2015) that is available at http://compbio.cs.
brown.edu/projects/hotnet2/. Since the first step of the algorithm
depends only on the graph G and the chosen parameter β ,
we calculated the diffusion matrix F for the high-confidence
ConsensusPathDB PPI network, while choosing β = 0.5. For the
scoring of the genes, we used our own data-derived scores: for
each drug and treatment, we used as input their gene scores, as
described in Equation 1. The output of the HotNet2 algorithm
depends largely on δ, the minimum edge weight parameter. The
lower its value, the larger are the subnetworks. HotNet2 outputs
four different results, for four different δ values, which are chosen
based on a permutation test in their algorithm [for further details
see (Leiserson et al., 2015)]. In this work we chose for further
analysis the subnetworks which are resulted when taking the
smallest δ parameter from the output of the HotNet2 algorithm.

Over-Representation Analysis (ORA)
ConsensusPathDB allows performing over-representation
analysis (ORA) with different functionally relevant gene sets
(Herwig et al., 2016). Given a set of genes, proteins or metabolites
over-represented sets are searched among three pre-defined
categories: (1) network neighborhood-based sets, (2) pathway-
based sets, and (3) Gene Ontology (GO)-based sets. According
to the hypergeometric test, a P-value is calculated based on the
number of identifiers that are present in the given set and in the

pre-defined sets. As background, the user can choose another
set of identifiers, for example all genes that were measured in
the experiment, or simply use all entities that are annotated in
ConsensusPathDB. In our work, ORA was used to identify only
the pathway based enriched sets, choosing all possible pathways
from ConsensusPathDB and applying a P-value cutoff of 0.01. As
background, we used the full list of genes that were measured in
the corresponding experiment.

RESULTS

Workflow for Analyzing Toxicogenomics
Data in the Context of Networks and
Pathways
We established a computational workflow for analyzing
toxicogenomics data by incorporating pathway and network
information using different complementary approaches in
order to gain functional information from gene expression data
(Figure 1). We exemplify the results on the four anthracyclines
drugs: daunorubicin (DAU), doxorubicin (DOX), idarubicin
(IDA), 4-epidoxorubicin (EPI). We also applied our analysis
to three other anti-cancer drugs that are known to cause
cardiotoxicity: cyclophosphamide (CYC), ifosfamide (IFO), and
imatinib (IMA). We compare our results for the anthracyclines
with our results for these drugs in order to identify differences
and commonalities and distinguish the effects that are explicit
to anthracyclines. The workflow is based on the results of a
differential expression analysis, and combines pathway and
network information from both ConsensusPathDB and ToxDB.
It begins with an over-representation analysis for the DEGs,
using pathway concepts that are collected in ConsensusPathDB,
in order to assign a biological function to the most significantly
changed genes. Next, it continues with a pathway analysis using
ToxDB, extrapolating from DEGs to the entire gene expression
response and from gene lists to pathway concepts. Using
molecular interaction information from ConsensusPathDB,
the workflow also includes a PPI network construction and an
analysis that applies a network propagation algorithm which
combines the DEGs with the PPI network. Finally, it is able to
identify subnetworks that we define as drug toxicity modules.

Assigning Biological Function to Gene
Lists With Over-Representation Analysis
A first step in functional interpretation of toxicogenomics results
is to interrogate the lists of DEGs (see Methods) for known
annotation sets such as pathways or GO terms using Fisher’s
test or similar statistics (see Methods). Summarizing the different
experiments (time points and dosages) for the four anthracyclines
(DOX, DAU, EPI and IDA) results in 1,883 DEGs for EPI, 1,555
for DOX and 1,062 for DAU whereas IDA shows a much weaker
response with 388 genes (Figure 2A). In all cases, human genes
were inferred based on homology mapping of the corresponding
rat microarray probes. All anthracyclines were administered
at maximum tolerated doses (MTDs) and, thus should be of
comparable toxicity (DOX 3 mg/kg; DAU 3.25 mg/kg; EPI
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FIGURE 1 | Workflow for analyzing toxicogenomics data at the network and pathway level. Gene expression data, following a drug perturbation, is collected and
analyzed to identify differentially expressed genes. Pathway concepts and interaction network are extracted from ConsensusPathDB. Identification of relevant
pathways is done via ToxDB, while functional modules are detected by applying a network propagation algorithm that combines both the gene expression data and
the PPI network. The workflow allows us to identify: (i) differentially expressed genes that could be candidates for further experiments, (ii) relevant pathways that are
disrupted in response to the treatment, and (iii) network toxicity modules that hold functional information about the mechanisms of action.
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FIGURE 2 | Anthracycline over-representation analysis. (A) Summary of the number of DEGs from the different experimental conditions: DOX (3 mg/kg at 1, 3, and
5 days), DAU (3.25 and 2 mg/kg at 1, 3, and 5 days), EPI (2.7 mg/kg at 1, 3, and 5 days), and IDA (0.625 mg/kg at 1, 3, and 5 days). (B) VENN diagram of DEGs
with respect to the four compound treatments. (C) 27 KEGG pathways that were found significantly over-represented with respect to the 1555 DEGs after DOX
treatment using the Fisher test statistic with the ConsensusPathDB. Y-axis = –log10(P-value). (D) Interdependency of significant pathways from (C) (blue label) and
GO categories (magenta label) computed with ConsensusPathDB. Size of balls indicates pathway size, shade of balls indicate overlap with DEG list. (E) “Adrenergic
signaling in cardiomyocytes” pathway found significantly over-represented (P = 3.49E−07) and expression data of 32 DEGs overlaid with the pathway. Mapping of
gene expression fold-changes to pathway has been done with Pathview (Luo et al., 2017).

2.7 mg/kg and IDA 0.625 mg/kg). Also, it has been shown that
gene expression signatures are predictive of toxicity and that
number of DEGs is indicative of phenotypically observed injury
of the organ (Paules, 2003; Andersen et al., 2008; Holmgren
et al., 2015) which has given rise to the concept of phenotypic
anchoring, i.e., the association of gene expression signatures to
toxic phenotypes. The difference in DEGs between DOX and IDA

is in line with previous findings: For example, Platel et al. (1999)
showed that in rat the MTDs for DOX and IDA were 3 mg/kg and
0.75 mg/kg, i.e., comparable to the levels used in the DrugMatrix
screen, and that at these MTDs IDA showed significantly lower
cardiotoxicity than DOX. Anthracyclines show highly specific
response at the gene expression level (Figure 2B) with 40–50% of
all DEGs specific for a certain compound. The strongest relative
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agreement in gene expression response was observed between
DOX and EPI (45%), whereas the relative agreement between
IDA and the other three compounds is much lower (12–15%).
DOX response can be characterized at the pathway level using
ORA analysis (see Methods). Figure 2C exemplifies the results for
DOX using gene sets that represent KEGG (Kanehisa et al., 2012)
pathways and that might reflect the cell’s response to the drug
treatment. In total, 27 KEGG pathways are significantly over-
represented (Q-value < 0.05 and at least 10 DEGs overlapping
with the pathway gene set). A number of disease gene sets
have been identified such as “Hypertrophic cardiomyopathy”
(Q = 0.0115), “Dilated cardiomyopathy“(Q = 0.0158) or “Cardiac
muscle contraction” (Q = 0.0032). Interestingly, these pathways
were also found in a recent study investigating cardio-toxicity
in human pluripotent stem cell derived-cardiomyocytes (Maillet
et al., 2016) and thus seem to extrapolate from rat in vivo
to human in vitro studies. The top-enriched pathway in our
setting is “Adrenergic signaling in cardiomyocytes” (Q = 4.54E-
05). 32 genes of that pathway are differentially expressed
including troponins (TNNC1 and TNNI3), tropomyosins (TPM1
and TPM2), and other well-known toxicity-associated genes
such as RYR2 (ryanodine receptor 2). Figure 2D displays the
interdependencies of these and other disease-related gene sets.

An important feature in the analysis is the visualization of the
gene expression changes in the pathway map. Pathway maps can
be retrieved by pathway resources such as KEGG. There are many
tools that allow visualizing gene expression fold-changes on these
pathways which is exemplified in Figure 2E with the “Adrenergic
signaling in cardiomyocytes” and the expression fold changes of
the DOX treatment.

From Genes to Pathways – Pathway
Analysis Using the ToxDB
The next level of analysis is to extrapolate the gene expression
values from single genes to entire pathways. We have built
a tool, ToxDB that combines gene expression data and
pathway concepts. ToxDB builds on three components: (i) a
comprehensive collection of pathway concepts along with drug
treatment microarray data, (ii) a numerical method to compute
pathway responses from genome-scale expression data, and (iii)
a web interface that allows user interaction. By this procedure
each pathway is assigned a numerical value that reflects its
response to the treatment (see Methods). ToxDB contains pre-
calculated pathway scores for ca. 2,700 different pathways and
ca. 7,500 experimental conditions mainly extracted from two
large toxicogenomics studies, TG-GATES and DrugMatrix (see
Methods). A background distribution of pathway scores is
used to infer statistical significance. ToxDB can be used in
different views. The drug view allows drug centric analysis:
by selecting a compound, for example DOX, and a specific
experiment all responding pathways can be viewed (Figure 3A).
By further clicking on a specific response pathway [here
“Hypertrophic cardiomyopathy (HCM)”] the expression results
of all genes can be inspected that are associated with this pathway
(Figure 3B). DEGs of this pathway are known cardiac-relevant
genes such as MYH7 (myosin, heavy chain 7, cardiac muscle,

FIGURE 3 | Pathway analysis using the ToxDB. (A) Drug view contains links
to chemical information (top left), specification of the experimental data (top
right) and the display of the response pathways for that experiment in form of
an interactive bar plot. Bars indicate the strength of the response, with mouse
over the user can display further information of the pathway. The background
distribution of the response scores is displayed as density plot next to the
plot. (B) Gene view. Once a pathway is selected, user can inspect the
experimental results of the genes. In this case the log2 fold-changes of the
genes associated with the pathway “Hypertrophic cardiomyopathy (HCM)”
from the KEGG database are shown. Stars indicate differentially expressed
genes (DEGs). (C) Pathway view. Users can infer specific pathways (here
“Cardiac muscle contraction”). The interactive bar plots represents the
response of that pathway in different experiments (e.g., DOX and EPI at 3 and
5 days experiments).

beta; log2−FC = 3.65, P = 9.05E−06), DES (desmin; log2-
FC = 0.264, P = 7.55E−02), TPM4 (tropomyosin 4; log2-FC = -
1.07, P = 9.14E−04), or RYR2 (ryanodine receptor 2; log2-
FC = −1.98, P = 5.43E−07). A second view is the pathway
view: the user can select a single pathway (here “Cardiac muscle
contraction”) and as a result all experiments are shown in which
this pathway responded significantly (Figure 3C). Pathways
can be selected from ten different resources which comprise
most widely used pathway resources such as KEGG, Reactome
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or BioCarta. It can be seen from the view that anthracycline
experiments (DOX and EPI at different time points) are among
the compounds that induce the most significant responses of
cardiac muscle contraction.

Protein–Protein Interaction Network
Construction
Protein–protein interaction networks are typically used as
scaffolds for drawing network propagation of gene expression
data on. The underlying argument is “guilt-by-association,” i.e.,
the assumption that genes/proteins that interact with each other
usually share function and, thus, that network modules computed
from these PPI networks amplify functional information. Thus,
the PPI network needs to be properly selected in the sense that it
should be sufficiently comprehensive and that the false-positive
rate of interactions should be low.

In this work we make use of the PPI network from
ConsensusPathDB (release 32) and reduce it to a high-confidence
network by taking only the interactions with a confidence score
of 0.95 or higher (Figure 4C). This network is comprised of
10,707 proteins and 114,516 unique interactions (Figure 4A).
Biological networks are normally characterized with a power
law distribution of the node degree (Barabasi and Oltvai, 2004).
This means that most of the nodes in the network are only
connected to a few other nodes, while a small majority is very
highly connected, with more than 400 neighbors (Figure 4B).
We make use of this high-confidence interaction network in our
workflow in order to identify subnetworks that are highly relevant
to the drug treatments.

Toxicity Network Modules Are Identified
by Applying Network Propagation
Toxicity modules were calculated using the HotNet2 algorithm
for each drug and time point independently. A detailed list
of all the toxicity modules is provided in Supplementary
Table 1. Here we discuss the results when using the gene
expression values for DOX only. The modules for the other
anthracyclines are provided in Supplementary Figures 1–3.
Since the drug treatments of DOX were measured three times
over the course of 5 days, we derived one module for each
one of the time points (Figure 5A). Looking at each one of
the modules, and at all of them together, allows us to analyze
the changes over time. We identified that the effect becomes
stronger after 3 days, as the size of the module grows, but
also that it is again much lower after 5 days. This could be
due to the toxic effect of the drugs on the cells, i.e., the
cells might already be dying. We confirmed this by looking at
the over-represented pathways for the genes in the “5 days”
module (Figure 5B). We observed two pathways that indicate
cell death: “Apoptosis” and “Apoptotic Signaling Pathway.” In
addition, we identified another pathway that might be involved
in cardiotoxicity: “Cardiac Progenitor Differentiation” (from the
WikiPathways database). This pathway includes several factors
that are involved in cardiac differentiation, such as TNNI3 that
we also detected as differentially expressed, and is based on two
recent reviews (Burridge et al., 2012; Stillitano et al., 2012). The

module also includes the genes IGF1 and IGF2 that are involved
in the differentiation of immature cardiomyocytes and have been
associated with cardiac hypertrophy (Wang et al., 2012). Other
genes that might be involved in cardiotoxicity and are present in
the “1 day” and “3 days” modules are APOA1, that have been
previously associated with hereditary amyloid cardiomyopathy
(Hamidi Asl et al., 1999), and ELN that has been involved in both
progressive aortic valve malformation and latent valve disease in
mice (Hinton et al., 2010).

Network Modules Amplify Functional
Information
We compared the over-represented pathways when using only
the high scoring genes (genes with a score above the 99th quantile
of the background distribution of all scores), and when using the
genes from the network modules (Figure 6). In 8 out of 12 drug-
treatment conditions the enrichment scores when using the genes
from the network modules, were higher than the scores when
using the high scoring genes only. Furthermore, when comparing
the significance of the enrichment, by looking at the means of
the Q-values (FDR corrected P-values), in all but one case we
observed a higher enrichment when using the genes from the
modules. This suggests that the network modules are enriched
in more functional information, and therefore they serve as a
powerful mean for studying systemic processes, such as drug
induced toxicity.

Differences and Commonalities Between
Anthracyclines and Other
Chemotherapeutic Drugs
To assess the specificity of our results for anthracycline-induced
cardiotoxicity, we applied the same workflow (Figure 1)
to three other anti-cancer drugs which are known to cause
cardiotoxic phenotypes: cyclophosphamide, ifosfamide
and imatinib (see Materials). Looking only at the high
scoring genes (genes with a score above the 99th quantile),
with gene scores computed according to section 3.4, we
observe hardly any common genes between the three drugs
(Figure 7A). Interestingly the 17 genes that are common
between these three drugs are also common with all the other
anthracyclines drugs. However, when we compare the genes
that are present in the toxicity modules of these drugs and
the toxicity modules of all anthracyclines (Figure 7B) we
detect 214 common genes. This highlights the fact that the
network propagation approach amplifies gene expression
responses toward relevant cardiotoxic mechanisms and
phenotypes that are shared by the different drugs so that
different gene expression responses can result in similar
pathway responses. Evidently the number of genes in the
anthracyclines modules is much higher as they are derived from
more drugs and experiments, but nonetheless the percentage
of number of genes that are shared is much higher. This
could again indicate to the functional information that is
inherent within the toxicity modules, which might suggest
to the mechanisms that are involved in causing the toxic
effect.
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FIGURE 4 | PPI Network construction from ConsensusPathDB. (A) High-confidence PPI network extracted from the ConsensusPathDB database with 10,707
nodes and 114,516 undirected edges. (B) Node degree distribution of the PPI network. (C) Distribution of all IntScore confidence scores from all ConsensusPathDB
unique interactions. In blue are the confidence scores below 0.95 and in red are those above it. The high-confidence network includes only the red interactions.

In order to identify biological functions that are specific
for anthracyclines we performed enrichment analysis with
the set of 330 genes that are solely part of the anthracycline
toxicity modules (Figure 7C). We observe enrichment
of cardiac disease pathways such as “Viral myocarditis,”
“Hypertrophic cardiomyopathy,” and “Dilated cardiomyopathy,”
mainly through the inclusion of ITGB and TGFB gene family
members and RYR2. Another strong signal is the presence of
immune response pathways. It is well-known that anthracycline
treatment can induce systemic inflammation mediated through
interleukins (Mills et al., 2008; Sauter et al., 2011). Interestingly,
many inflammatory and immune response pathways are
enriched with the anthracycline toxicity modules, in particular
through interleukins (IL1A, IL12A, IL12B, IL23A, IL33, and
IL27RA) that are not included in the modules of the other
drugs.

DISCUSSION

Combining the information from ConsensusPathDB and ToxDB,
including pathway concepts and a PPI network, together with

experimental data, allows for a more comprehensive view of the
effects of the drug treatments. Firstly, by using ToxDB we are
able to identify pathway concepts and by that suggest specific
mechanisms that may be either the cause or the consequences of
the toxic effects. In addition, by using the information from the
PPI network and a propagation algorithm, we can also identify
specific interactions that could be highly relevant for further
experiments. These network modules carry out more functional
information, since their genes and interactions represent parts
of different pathways, and thus they are enriched in more
information about specific biological mechanisms. Indeed, by
propagating perturbation data across a network it is possible
to gain information not only for the genes that were actually
measured by the experiment but in addition also for the
genes that haven’t been measured experimentally but that are
connected with many measured neighbors in the network.

When looking only at DEGs, it is very difficult to describe the
toxic effects of a drug given a specific treatment. Usually, this
list of genes is comprised of hundreds of possible candidates,
and it can be very challenging to distinguish which ones are
involved in causing toxicity. Other works have tried to reduce
the number of genes by looking at a smaller toxicogenomics
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FIGURE 5 | Toxicity Modules. (A) Toxicity modules were identified using the HotNet2 propagation algorithm for DOX drug treatments after 1, 3, and 5 days. Each
node corresponds to a protein coding gene (the nodes are named using their HGNC symbol) and each edge is an interaction as defined by the PPI network of
ConsensusPathDB (see Methods). The colors of the nodes indicate the time point. Nodes that are colored in green only are present in the “1 day” module only. In the
same way for orange and purple. Nodes that are colored in two colors are present in the two corresponding modules. Nodes that are colored in three colors are
present in all modules. (B) The top 20 over-represented pathways for the “5 days” module, based on the ORA of the genes in the module with ConsensusPathDB
(see Methods). The purple color represents the overlap of genes from the pathway and the module. The green are the rest of the genes from the pathway (that are
not in the module). The number next to each bar displays the significance of the over-representation [–log10(Q-value) of the corresponding pathway].

space (Kohonen and Parkkinen, 2017). By defining a more
complex gene score, we were able to reduce the number
of genes such that it becomes easier to extract plausible
candidates for further studies. Furthermore, by applying a
network propagation scheme to the gene scores and the high-
confidence PPI network, we were able to both reduce the
list even further, and also identify functional modules within
PPI networks. These functional modules can better reflect the
mechanisms that lead to toxicity, as they contain not only the
obvious candidate genes based on the differential expression
analysis, but also other genes that might be associated with the
toxic effect, and are also connected to the more significantly
changed genes.

ConsensusPathDB is a meta-database that agglomerates
information from multiple resources and therefore includes
different kinds of interactions: protein–protein, genetic,
metabolic, signaling, gene regulatory and drug-target. In

addition, it also holds information about biochemical molecules
and pathways. The high confidence PPI network that we have
constructed is comprised solely of highly scored protein–
protein interactions that are extracted from several resources,
such as BIND, INTACT, HPRD. However, the ORA that
is provided within ConsensusPathDB, searches for over
representation of genes within cellular pathways. These
pathways are derived from other resources, such as KEGG,
Reactome, WikiPathways, etc. The different resources are
completely independent data sets and the ConsensusPathDB
simply serves as a common analysis platform. Therefore,
when we apply the ORA to the extracted network modules,
we can identify how enriched they are not only with protein–
protein interactions, but also with pathway information. As
we have illustrated in Figure 6, network modules contain
not only protein–protein interaction information (that
is inherent within its structure) but also are enriched in
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FIGURE 6 | Network modules amplify functional information. We compared the scores of the over-represented pathways when using the highly scoring genes (score
>99th quantile) (in red) and when using the genes from the HotNet2 modules (in blue), for all four anthracyclines and in the three time points of the experiments. The
scores of the pathways are the –log10(Q-value) of the Q-values from the ORA that was done via ConsensusPathDB (Q-values are the FDR corrected P-values from
the hypergeometric test). Below the boxplots, the numbers indicate the number of the significantly (P-value < 0.01) over-represented pathways, for each one of the
conditions.

other functional information that is represented in various
pathways.

It should be noted that besides the described publicly
available tools for pathway annotation and analysis, there are
commercially available tools that hold functionality for pathway
and network analysis such as IPA (Ingenuity/Qiagen), TransPath
(geneXplain), or MetaCore (Thomson Reuters). These and
other commercial and publicly available tools can be used to
construct suitable molecular networks and perform enrichment
analysis and module computation. A survey of databases and
resources is given by Pathguide (Bader et al., 2006), a recent
review and comparison of pathway tools has been published
for example for metabolomics data (Marco-Ramell et al.,
2018).

Toxicology studies often explore the effects of compounds
over time and varying dosages (Hartung, 2009). Here, we
analyzed gene expression levels for three different time points:
after 1, 3, and 5 days. Every time point experiment was
independently compared to the control experiment, such that
a network module was constructed for every time point. To
discern the effect over time, we compared between the modules,
and determined the possible changes due to time. We were
able to identify the toxic effect over time by looking at the
different modules and also the genes within the module that
could implicate the pathways that are leading to toxicity. In
the future, one could try to first integrate the experimental
data from the different time points, such that the change in
expression levels over time is taken under consideration. For
example by applying a mathematical model to detect differential

expression over time, like the one suggested by Conesa et al.
(2006). We could further use the results of such model and
incorporate them into the network propagation algorithm in
order to identify a module that encompasses data from all the
time points together.

The approach we applied in this work consists of three
main components: gene expression analysis, a PPI network and
a network propagation algorithm. All of these have several
alternatives, and could be further incorporated in future analysis.
Firstly, the PPI network can be replaced with other genetic
interaction networks, for example a gene regulatory network that
is derived from experimental data (Zheng and Huang, 2018).
Secondly, different types of experimental data can be used for
ranking the genes and using their ranks as scores for the chosen
propagation algorithm. Gene expression values from RNA-seq
experiments could easily be investigated in the same manner,
along with protein abundance data, mutation data or epigenetic
data. Finally, there already exist different approaches for applying
propagation algorithms to detect network modules. Here we have
chosen to use the HotNet2 algorithm, but several others, like
the ones in the review by Cowen et al. (2017), might also be
considered.

In our work we focus on anthracyclines, a group of
commonly used chemotherapy drugs. We used the data
that are available in the DrugMatrix (Ganter et al., 2005)
database and applied our workflow (Figure 1). This workflow
could easily be applied to other data resources as well as
other groups of drugs. Some previous works have already
been developed to analyze toxicogenomics data from
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FIGURE 7 | Cardiotoxic effects of anthracyclines in comparison to other drugs. (A) VENN diagram of high-scoring genes (genes with a score above the 99th
percentile) with respect to the three other compounds (CYC, IFO, and IMA) and all anthracyclines together (ANTH). (B) VENN diagram of genes in the toxicity
modules, with respect to all anthracyclines (ANTH) together and all other drugs together (OTHER). (C) Significantly enriched KEGG pathways (P < 0.01) with the 330
genes that are contained in the computed anthracycline toxicity modules and not contained in the toxicity modules of the other cardiotoxic drugs. Bars indicate an
enrichment score computed as –log10(Q-value), where Q-value is the FRD-corrected P-value of the enrichment.

DrugMatrix and were applied for identifying different types
of drug induced toxicities. For example, Tawa et al. (2014)
characterized liver induced drug toxicity by identifying
gene co-expression modules that are associated with a
toxic response. They defined these gene modules using
six different methods, including Pearson correlations and
PPI information. A similar approach was also applied to
identify gene co-expression modules for kidney induced
drug toxicity (AbdulHameed et al., 2016). In another
work, AbdulHameed et al. (2014) also tried to identify
liver induced drug toxicity by integrating toxicogenomics

data with pathway and PPI network information. They
performed a differential expression analysis and identified
relevant gene modules by applying the KeyPathwayMiner
(Alcaraz et al., 2012) algorithm. Other network based
approaches have also been suggested for the analysis of
toxicogenomics data from the DrugMatrix database. For
instance, Sutherland et al. (2017) have constructed gene co-
expression networks using WGCNA (Zhang and Horvath,
2005) and associated modules with different drug toxicity
phenotypes. Mulas et al. (2017) compiled a pipeline for
network comparison and used it to identify drugs with similar
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toxicity profiles. In our workflow, we chose to apply a network
propagation algorithm that is based on a random walk model.
We showed that this approach allows for the identification of
drug toxicity modules that are highly enriched in functional
information and provide new insights into the toxic causing
mechanisms.

Gene expression signatures have been associated with toxicity
phenotypes with the concept of phenotypic anchoring (Paules,
2003). Here, the idea is that specific signatures emerge over time
and dose that can be related to distinguishable phenotypes. We
have observed that, for example the number of DEGs in DOX
and IDA at MTDs reflect previously observed differences in
the toxicity of both compounds. Additionally, when comparing
enrichment scores in heart-related diseases pathways, DOX
appears as the most toxic compound followed by EPI, while
IDA and DAU show basically no enrichment in these pathways
(Supplementary Figure 4).

Associating genotype with phenotype, and specifically
predicting a toxic phenotype that rises due to drug treatment,
still remains an intricate challenge. Integrating experimental
data with prior knowledge in the form of biological networks,
as suggested in our work, is a suitable step when trying to
describe the molecular effects of drug treatments. However,
there is still much to be improved. The PPI networks still hold
a high bias in interactions due to annotation (Schramm et al.,
2013; Luecken et al., 2018) and will keep getting refined as
our understanding of the biological systems increases. Better
experimental techniques become more and more available, and
data from those will need to be integrated for an even more
comprehensive analysis (Hasin et al., 2017; Yan et al., 2017;

Karczewski and Snyder, 2018). And finally, better computational
approaches for differentiating between cases and controls, as
well as for analyzing big networks such as PPIs, are still to be
developed.
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The TempO-SeqTM platform allows for targeted transcriptomic analysis and is currently

used by many groups to perform high-throughput gene expression analysis. Herein

we performed a comparison of gene expression characteristics measured using 45

purified RNA samples from the livers of rats exposed to chemicals that fall into one

of five modes of action (MOAs). These samples have been previously evaluated using

AffymetrixTM rat genome 230 2.0 microarrays and Illumina® whole transcriptome RNA-

Seq. Comparison of these data with TempO-Seq analysis using the rat S1500+ beta

gene set identified clear differences in the platforms related to signal to noise, root mean

squared error, and/or sources of variability. Microarray and TempO-Seq captured the

most variability in terms of MOA and chemical treatment whereas RNA-Seq had higher

noise and larger differences between samples within a MOA. However, analysis of the

data by hierarchical clustering, gene subnetwork connectivity and biological process

representation of MOA-varying genes revealed that the samples clearly grouped by

treatment as opposed to gene expression platform. Overall these findings demonstrate

that the results from the TempO-Seq platform are consistent with findings on other more

established approaches for measuring the genome-wide transcriptome.

Keywords: TempO-Seq, S1500+, microarray, RNA-Seq, mode of action, chemicals, toxicants, toxicogenomics

INTRODUCTION

High-throughput transcriptomics (HTT) is increasingly being adopted for screening in chemical
and toxicological genomics in part due to advances in technological (i.e., direct from lysate
transcriptomics) and greater efficiency (e.g., target screening using sentinel genes; Subramanian
et al., 2017). The National Toxicology Program has pursued the development of the S1500+ gene
set (Mav et al., 2018) screening platform utilizing the TempO-SeqTM technology from BioSpyderTM

(Yeakley et al., 2017). Before there is widespread adoption of a new transcriptomic technology such
as the TempO-Seq S1500+ platform, it will be important to establish its performance and degree
of reproducibility compared to other more established techniques for gene expression assessment
including microarray and whole transcriptome RNA-Seq. In addition to baseline performance
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issues such as signal to noise and identification of appropriate
normalization procedures (Su et al., 2014), it is also critical to
determine reproducibility of findings from established legacy
platforms particularly in the case where large compendium
data such as the Connectivity Map (Lamb et al., 2006) or the
Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
System (Igarashi et al., 2015) have been generated and serve as
means to interpret new findings derived from newer technologies
such as TempO-Seq. In addition, it is important for biologists
that stand-alone assessments of gene set enrichment yield valid
findings consistent with established modes or mechanisms of
action and scalability of machine learning classifiers established
using older technology (Waters et al., 2010).

To address the absolute and relative performance metrics
of the rat S1500+ beta gene set TempO-Seq platform we
have measured the transcriptome of identical liver RNA
samples from the DrugMatrix database that were used to
evaluate the performance of whole transcriptome RNA-
Seq compared to microarray toward the SEquence Quality
Control (SEQC)/MicroArray Quality Control III (MAQC3)
toxicogenomics study in which the transcripts from the latter two
platforms were matched for a fair comparison (Gong et al., 2014).
The training data set consists of 63 samples measured using
TempO-Seq S1500+, Illumina R© whole transcriptome RNA-Seq,
and AffymetrixTM Rat 230 2.0 microarrays. From the exposures
of the rats to the chemicals, five different modes of action
(MOAs) in the liver are represented in the samples including
orphan nuclear hormone receptors (CAR/PXR) activation, aryl
hydrocarbon receptor (AhR) activation, peroxisome proliferator-
activated receptor alpha (PPARA) activation, cytotoxicity, and
DNA Damage (Table 1). The treatments used vary considerably
in their elicited transcriptomic signal (i.e., number of MOA-
varying genes) and reveal degrees of distinctiveness in the
altered gene sets which is ideal for establishing the level of
granularity/resolution by which the technologies produce
similarity in their resultant findings. Using the DrugMatrix
samples we provide here a systematic comparison of the TempO-
Seq technology relative to microarray and whole transcriptome
RNA-Seq.

MATERIALS AND METHODS

Samples and Exposures
Mode of action (MOA) samples, preparation of them, RNA
extraction and microarray and RNA-Seq analyses are as
previously described (Wang et al., 2014). Briefly, male Sprague-
Dawley rats (aged 6–8 weeks and weighing 200–260 g) were
dosed once daily in triplicate for 3, 5, or 7 days, depending on
the test chemical, and livers were harvested 24 h after the last
dose. Animals were handled in accordance with the United States
Department of Agriculture and Code of Federal Regulations
Animal Welfare Act (9 CFR Parts 1, 2, and 3). Details on the
design and in life portion of these studies can be found elsewhere.
For each of the five MOAs there were three test chemicals
(Table 1). RNAs from the treated rats were extracted and stored
in the National Toxicology Program (NTP) DrugMatrix Frozen
Tissue Library.

Microarray Analysis
cRNA was labeled and hybridized to the Affymetrix (Santa Clara,
CA, United States) whole genome GeneChip R© Rat Genome
230 2.0 Array as previously described (Wang et al., 2014).
The arrays were scanned using the GeneChip Scanner 3000
7G and CEL files generated using the GeneChip Operating
Software (GCOS). The data was then log2 transformed and
normalized using the robust multichip average (RMA) algorithm
(Irizarry et al., 2003a,b). The transformed/normalized data
is available at the DrugMatrix ftp site (ftp://anonftp.niehs.
nih.gov/drugmatrix/Affymetrix_data/Normalized_data_by_
organ/). Raw data files and processed data in various file
formats are available in the Gene Expression Omnibus (GEO)
(Edgar et al., 2002; Barrett et al., 2013) under accession number
GSE47875.

RNA-Seq Analysis
Poly-A RNA was extracted from each RNA sample, fragmented,
adapter ligated and enriched by 15 polymerase chain reaction
(PCR) cycles for library generation. The library size distribution
was validated on the Agilent Bioanalyzer (Santa Clara, CA,
United States) using a DNA 1000 kit. The final library
was generated from a band between 200 and 500 bp with
a peak at ∼260 bp. Using Illumina TruSeq RNA Sample
Preparation Kit and SBS Kit v3 (San Diego, CA, United States),
samples were prepared for sequencing. Paired-end RNA-Seq
cluster generation and sequencing by synthesis was performed
using Illumina HiScan or HiSeq 2000 sequencers according
to the manufacture’s protocol. Depths of 30–130 million
of paired 100 bp reads were generated for each sample.
Details of the methods are as previously described (Wang
et al., 2014). The raw data fastq files are available in the
National Center for Biotechnology Information Sequence Read
Archive (SRA; Leinonen et al., 2011) under accession number
SRP039021.

Preprocessing of RNA-Seq Data
Alignment, quantification and normalization of the RNA-Seq
data are as previously described (Wang et al., 2014). Briefly, RNA-
Seq reads in fastq files were mapped using the Magic aligner
(ftp://ftp.ncbi.nlm.nih.gov/repository/acedb/Software/Magic) to
the following references:

• The Rattus norvegicus genome build RGSC v3.4
• The RefSeq and AceView 2008 (Thierry-Mieg and Thierry-

Mieg, 2006) gene and transcript models, respectively
• Mitochondrial genes
• rRNA genes (manually constructed from multiple GenBank

accessions, in the absence of RefSeq)
• External RNA Control Consortium (ERCC) RNA spike

in control sequences (National Institute of Standards and
Technology, Gaithersburg, MD, United States)

• A control genome constructed by complementing the
R. norvegicus genome bases (i.e., exchange A:T and G:C), but
not reversing the order. As such, the control genome has
exactly the same composition as the reference genome but
alignments to it are false positives and removed
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TABLE 1 | Chemicals, modes of action, and exposures.

MOA Chemical Dose (mg/kg body

weight)

Duration

(days)

Agent type

Aryl hydrocarbon receptor (AhR) 3-Methylcholanthrene (3ME) 300 5 Carcinogen

Leflunomide (LEF) 60 5 Antirheumatic drug

beta-Naphthoflavone (NAP) 1,500 5 Putative chemopreventive agent

Orphan nuclear hormone receptors (CAR/PXR) Phenobarbital (PHE) 54 5 Barbiturate drug

Methimazole (MET) 100 3 Antithyroid drug

Econazole (ECO) 334 5 Antifungal medication

Cytotoxicity (Cytotox) Chloroform (CHO) 600 5 Organic compound

Thioacetamide (THI) 200 5 Carcinogen

Carbon tetrachloride (CAR) 1,175 7 Solvent for cleaning products, refrigerant

DNA Damage (DNA_Damage) Aflatoxin B1 (AFL) 0.3 5 Mycotoxin

Ifosfamide (IFO) 143 3 Chemotherapy drug

N-Nitrosodimethylamine (NIT) 10 5 Organic compound

Peroxisome proliferator-activated receptor alpha

(PPARA)

Pirinixic acid (PIR) 364 5 Hypolipidemic drug

Bezafibrate (BEZ) 617 7 Hypolipidemic drug

Nafenopin (NAF) 338 5 Hypolipidemic drug

No mismatch is reported closer than 8 bases to the edge of the
aligned segment. Reads mapping to several alternative transcripts
of the same gene are retained but counted only once. The
read count for each transcript per sample was transformed and
normalized as follows:

Index = log2

(

Z +
√

(4+ Z2)
)

− 1

Where Z = 1012( n
NL ), n is the read count of the transcript,

N is the read depth for the sample and L is the length of the
transcript. For transcripts that are not highly expressed (<3
read counts) the Index was imputed with 5.0. The preprocessed
data (not imputed) is available in GEO under accession number
GSE55347.

To match AceView transcripts from the RNA-Seq platform
to probe sets on the Affymetrix microarray, each transcript
sequence was mapped against the Affymetrix probes from each
probe set using the Magic Aligner and allowing for a single-
mismatch. Transcripts (n = 28, 975) mapping to at least 8
probes within a probe set unambiguously (meaning not mapping
to any other probes from other probe sets) are considered a
one-to-one match in terms of them being representative of
the same transcript probe set. These were then mapped to
UniGene (Pontius et al., 2002) cluster IDs (March 30, 2016)
for Gene Ontology (GO) biological process (BP) enrichment
analysis.

TempO-Seq Analysis
The sequencing library for the rat liver RNA samples (identical
samples employed for RNA-Seq in the previously published
SEQC toxicogenomics study Wang et al., 2014) was prepared
by BioSpyder Technologies, Inc. (Carlsbad, CA, United States)
according to their protocol guidelines. One microliter of each
RNA sample (500–660 ng/uL) was hybridized with the S1500+
beta detector oligo pool mix (2 µl per sample) using the

following thermocycler settings: 10min at 70◦C, followed by
gradual decrease to 45◦C over 49min, and ending with 45◦C
for 1min. Hybridization was followed by nuclease digestion
(24 µl nuclease mix addition followed by 90min at 37◦C),
ligation (24 µl ligation mix addition followed by 60min at
37◦C), then heat denaturation (at 80◦C for 30min). Ten
microliters of each ligation product were then transferred to
a 96-well PCR amplification microplate that also contained
10 µl of PCR mix per well. Through amplification well-
specific, “barcoded” primer pairs were introduced to templates.
Five microliters of the PCR amplification products from each
well were then pooled into a single sequencing library. The
TempO-Seq library was then processed with a PCR clean-
up kit (Machery-Nagel, Mountain View, CA, United States)
prior to sequencing. Sequencing was performed using a 50
cycle single-end read flow cell on a NextSeq 550 Sequencing
System (Illumina, San Diego, CA, United States). Processing of
sequencing data was conducted using Illumina’s BCL2FASTQ
software employing default parameter settings. Sequencing data
were demultiplexed to generate fastq files and passed through
internal quality controls. fastq files were analyzed using the
TempO-SeqR software package (BioSpyder Technologies, Inc.,
Carlsbad, CA, United States). The raw data fastq files are
available in the SRA under accession number SRP158667. The
TempO-SeqR package maps reads from the fastq file using the
Bowtie2-2.1.0 algorithm (Langmead et al., 2009) to a subset of
the rat transcriptome (Refseq release 70 downloaded July 23rd
2015) reflecting the 50 nt sequences targeted by the detector
oligos. Indels were not allowed, up to 2 base pair mismatches
were allowed and multimapping of sequence reads was not
allowed. The output of the TempO-SeqR package was a table
of counts with each column representing a sample and each
row representing a gene generated using the QuasR v1.8.4
Bioconductor package (Gaidatzis et al., 2015). The count data
matrix is available in GEO under accession number GSE118956.
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Gene symbols were mapped to UniGene cluster IDs (June 6,
2015).

Preprocessing of TempO-Seq Data
Of the 2,284 genes targeted in the rat S1500+ beta gene set (NTP
Tox21 S1500 Webpage: https://ntp.niehs.nih.gov/results/tox21/
researchphases/index.html), those with a total read count ≤214
across all the samples were removed leaving 2,055 genes. The
counts per gene were normalized to counts per million (CPM)
by dividing it by the total read count per sample and multiply by
106. The CPM normalized data was then transformed with log2
using an offset of 1.

Log2 Ratio Values Generation
For each gene/transcript in a data set, the average of the log2
normalized data for the control samples were subtracted from
the log2 normalized data of each gene/transcript within a sample
matched according to nutritional status of the vehicle (i.e., corn
oil vs. other non-nutritive vehicles).

Principal Variance Component Analysis
Principal Variance Components Analysis (PVCA; Li et al., 2009)
combines the use of principal component analysis (PCA) with
variance components analysis (VCA) through mixed linear
modeling of gene expression data with random effect terms
that account for variation related to factors in the experimental
design. The variance of each random effect is called a variance
component. Briefly, given a general linear model where y =
Xβ + e and y denotes gene expression observations, X is the
design matrix, β is the known fixed effects parameter vector
and e is the unexplained variation. However, if the experimental
design contains random factor levels, the model becomes a
mixed effect linear model y = Xβ + Zu + e, where in
addition to the terms denoted in a fixed effect model, Z is the
design matrix for random effects, u is the vector of unknown
random-effect parameters, and e is the unobserved vector of
independent and identically distributed (iid) Gaussian random
errors.

Given that the variance of y is V=ZGZ’ + R, V can be
modeled by setting up the random effects design matrix Z and
by specifying the variance-covariance structure for G and R. In

usual variance component models, G is a diagonal matrix with
variance components on the diagonal, each replicated along the
diagonal corresponding to the design matrix Z. R is simply the
residual variance component times the n x n identity matrix.
Thus, the goal becomes finding a reasonable estimate of G and
R. The method of restricted maximum likelihood (REML) is the
standard procedure to accomplish this and was specified in the
lmer function of the lme4 R package (RDevelopment Core Team,
2012) for fitting linear mixed effects models (Bates et al., 2015).

The following steps comprise of PVCA:

• From a PxN (genes by samples) matrix of log2 ratio values,
obtain the NxN correlation matrix

• Perform PCA on the correlation matrix to obtain eigenvalues
• Determine the first K principal components (PCs) to explain

≥58.76% of the variation in the data
• Fit all factors as random effects in a mixed linear model using

the K PCs and REML to obtain unbiased estimates of variance
• Standardize the variance component estimates from themodel
• Compute weighted proportions of the standardized variance

component estimates. Here the weights are the proportions of
variation explained by the PCs

• Compute weighted average proportions of the standardize
variance component estimates by averaging model effects
according to the proportion of total variance across all
estimates including the residual

Root Mean Squared Distance
Root mean squared distance (RMSD) is a measure of the gene
expression distance between pairs of biological replicates (Wang
et al., 2014). The gene expression distance between biological
replicates x and y is

RMSDxy =

√

∑N
i=1

(

Iix − Iiy
)2

N

where I is the log2 gene expression ratio of ith gene/transcript
in the corresponding biological replicate, and N is the number
of genes/transcripts on the gene expression platform. For each
chemical, there are three biological replicates and for each MOA
there are three chemicals. The pairwise RMSD measures (n =

FIGURE 1 | Study design. The study comprised of gene expression data acquired from male Sprague-Dawley rats dosed once daily in triplicate for 3, 5, or 7 days

depending on the test chemical or matched control, and livers were harvested 24 h after the last dose. The abbreviations for the names of the chemicals are listed in

Table 1. There were five modes of action (MOAs) with three chemicals per MOA. The MOAs are PPARA, peroxisome proliferator-activated receptor alpha; CAR/PXR,

orphan nuclear hormone receptors; AhR, aryl hydrocarbon receptor; Cytotoxic, cytotoxicity, and DNA Damage. Comparisons between the data from TempO-Seq to

microarray and RNA-Seq were performed by statistical and bioinformatics methodologies.
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36) between treated rats within a MOA were averaged. This
MOA-RMSD can be interpreted as a measure of the difference
among the chemicals within a MOA. To compare the three
gene expression platforms, the five MOA-RMSD measures were
averaged to give a Platform-RMSD.

Mode of Action ANOVA
To obtain genes from each platform that vary significantly by
MOA, wemodeled the gene expression data with aMOA analysis
of variance (MOA-ANOVA)

Yijkl = µ +Mi + Rj + C(M∗R)ijk + εijkl

where Yijkl represents the lth log2 ratio gene expression
observation on the ith MOA (M), jth route (R) and kth

TABLE 2 | Platforms used for comparison.

Gene

expression

type

Microarray RNA-Seq TempO-Seq

Platform Affymetrix whole

genome GeneChip

Rat Genome 230

2.0

Illumina HiScan &

HiSeq 2000

BioSpyder

S1500+ Beta

Technology In situ

oligonucleotide

array

Next generation

nucleotide chain

termination

sequencing by

synthesis

Templated

oligonucleotide

detection

Gene

content/gene

model

∼31,000 gene

probe sets

∼38,100 AceView

transcripts

∼2,200 Refseq

genes

Normalization RMA Magic normalized

index

TPM

Transformation Log2 Log2 Log2

chemical (C). µ is the grand mean for the whole experiment
and εijkl represents the random error. The errors are assumed
to be normally and independently distributed with mean 0
and standard deviation δ for all measurements. Chemical is a
random effect. Multiple testing correction was controlled at a
false discovery rate (FDR) of 0.05 (Benjamini and Hochberg,
1995).

Gene Expression Profile Signal to Noise
Let us denote each gene expression log2 ratio as gij where i
indicates a MOA inter-group index from 1 to m, j is the MOA
intra-group index from 1 to ni,m is the number of MOAs and ni
is the number of chemicals in ith MOA inter-group. To evaluate
a gene expression profile within a MOA, we calculate each MOA

intra-group average gi and sample variance si
2
. We define a gene

expression profile’s signal as

S =







max
{

ḡi
}

, if min
{

ḡi
}

> 0

−min
{

ḡi
}

, elseif max
{

ḡi
}

< 0

max
{

ḡi
}

−min
{

ḡi
}

otherwise

where 1≤ i ≤m.
We then define a gene expression profile’s noise as the square-root
of the pooled variance

N =

√

√

√

√

√

√

√

√

m
∑

i

[

(ni − 1) · s2i
]

m
∑

i
(ni − 1)

m
∑

i

1

ni

FIGURE 2 | Variance components explained. Shown on the y-axis is the weighted average of the proportion of variance explained by platform for each of the mixed

effect linear model terms denoted in the x-axis.
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where the sample variance

s2i =

ni
∑

j
(gij − ḡi)

2

ni − 1
.

From S and N, we define a gene expression profile’s signal-
to-noise ratio as SNR = S/N. We use Extracting Patterns and
Identifying co-Expressed Genes (EPIG; Chou et al., 2007) to
(1) obtain a gene expression profile’s SNR statistics and (2)
cluster gene expression profiles into significant (p < E10−4)
co-expression patterns.

Gene Ontology Subtrees to Tag and
Annotate Genes Within a Set
To compare each platform in terms of enrichment of the genes
that vary by MOA, we used GO subtrees to tag and annotate
genes (goSTAG) within a set (Bennett and Bushel, 2017). Briefly,
for each list of genes that vary by MOA at FDR < 0.01, the gene
symbols were mapped to the GO BPs of the genes they represent
using version 3.4 of the GO database and the rat2302 database.
The 1.01 version of the “goSTAG” Bioconductor package in R
was used to perform enrichment of GO BP terms, clustering and
subtree generation. The union of the enriched GO BP terms from
all of the DEGs lists yielded 203 terms. BP terms which were not
significant had missing p-values and were imputed with 1.0. –
Log10 p-values, a min of 5 genes per GO BP, FDR < 0.05, Pearson

correlation similarity metric and Ward algorithm for clustering,
cluster slicing using correlation (r) of 0.1 and aminimum of 5 GO
BP terms per cluster for subtree generation were used as input
and parameters. Clusters (those with a 1– r≥ 0.9) of GOBP terms
(n ≥ 5) were labeled according to the node having the maximum
number of paths to it within the GO BP subtree directed acyclic
graph derived from the terms in the cluster.

RESULTS

Study Design and Exposures
Gene expression analysis has advanced over the past 20+
years. Two main platforms for surveying genome-wide gene
expression are microarray and RNA-Seq. Each of these platforms
has its advantages and disadvantages (Lowe et al., 2017).
The SEQC/MAQC3 consortium evaluated the concordance
between Affymetrix microarray and Illumina RNA-Seq using

TABLE 3 | Replication agreement and signal to noise within platform.

Measure Microarray RNA-Seq TempO-Seq

Ave. Chemical-RMSD 0.33 0.98 0.71

Platform-RMSD 0.42 1.11 0.93

Average SNR 6.6 6.9 9.14

FIGURE 3 | Gene expression patterns with maximal signal to noise. For each platform, the EPIG pattern with the maximal signal to noise ratio (SNR) is shown. The

y-axis is the log2 ratio of gene expression (treated to the average of the control [matched according to nutritional status of the vehicle]), the x-axis is the samples

grouped by MOA (represented by the colors and symbols in the legend). The table inset displays the magnitude of fold change, the noise and the SNR for each of the

patterns shown.
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toxicogenomics gene expression data (Wang et al., 2014). We
used the SEQC/MAQC3 study design to compare the two
aforementioned platforms (with transcripts matched between the
two) with the TempO-Seq platform targeting the rat S1500+ beta
gene set. As shown in Figure 1, the study design consists of rats
exposed in triplicate to 45 chemical or controls whereby three
of the chemicals share one of five MOAs: PPARA, CAR/PXR,
AhR, cytotoxicity, and DNA damage. The chemicals, the MOA
that each one represents, exposure doses and durations and the
types of agents are listed in Table 1. The doses and durations of
the exposures were selected to ensure a maximal transcriptional
response. Animals were dosed once daily for 3, 5, or 7 days,
depending on the chemical. Livers were harvested 24 h after
the last dose, RNA samples extracted and then prepared for
gene expression analysis. We used three statistical strategies and
bioinformatics tools to examine GOBPs, metabolic pathways and
BP subnetworks for comparison of the three platforms.

Specifications of the Platforms
Table 2 details some general specifications of the three gene
expression platforms. The Affymetrix rat whole genome
microarray with >31,000 gene probe sets uses in situ
hybridization for interrogation of gene expression. The de
facto normalization procedure is RMA. The Illumina RNA-
Seq next generation HiScan or HiSeq 2000 platforms were

used. They measure gene expression by nucleotide chain
termination sequencing by synthesis. Although at this time
there is no standard approach for bioinformatics analysis
of RNA-Seq data, we used the AceView transcriptome gene
model and Magic normalization index that performed the best
among several bioinformatics pipelines in the SEQC/MAQC3
consortium evaluation (Wang et al., 2014). In addition, 28,
975 transcripts from the two aforementioned platforms were
matched bioinformatically (see the Materials and Methods
section) to assure a one-to-one mapping. Finally, BioSpyder’s
rat S1500+ beta TempO-Seq platform differs from RNA-Seq in
that it uses templated oligonucleotides representative of >2,200
Refseq genes to sequence captured RNA templates. Filtering by
total read counts retained 2,055 genes (see the Materials and
Methods section). We used CPM for normalization. The data
from all three platforms were log2 transformed to make the data
more normally distributed.

Variance Components of the Study Design
Captured by the Platforms
The study design contained factors that represents the chemical
used for exposure, the MOA of the chemical and the route
of the exposure. We performed PVCA on the normalized and
log2 transformed data from each platform to determine which

FIGURE 4 | Principal component analysis of the data. (A) Microarray. (B) RNA-Seq. (C) TempO-Seq. PCA performed using the log2 ratio expression data (treated to

matched control according to nutritional status) of the genes that vary by MOA at FDR < 0.01.
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captured the most variation in gene expression. As shown
in Figure 2, the microarray platform captured slightly more
variance related to the chemical used for treatment (0.449),
but the TempO-Seq platform captured variation related to
the MOA (0.377) slightly more than the other two platforms.
It seems that the RNA-Seq platform had more unexplained
variation captured as residuals. This was not related to the
two different Illumina sequencers used (data not shown). Route
showed no difference in the variation captured by the three
platforms.

Expression Pattern Magnitude of Change
and Signal to Noise Revealed by Each
Platform
One of the more informative ways to compare gene expression
data is to assess the magnitude of change and the SNR
of a response. To compare the gene expression from the
three platforms, we analyzed the data using EPIG which used
magnitude of fold change, correlation and SNR to categorize
gene expression profiles into co-expressed patterns (Chou et al.,
2007). Shown in Figure 3 is the pattern of gene expression
from each platform that had the maximal magnitude of fold
change relative to control. The samples were grouped by MOA.
Although RNA-Seq had the highest magnitude of fold change

(4.47), the noise of the expression profiles that made up the
pattern is higher (0.31) than the other two platforms. When all
the patterns for each platform were taken into consideration,
the average SNR was substantially higher for TempO-Seq than
the other two platforms (Table 3). This may be related to the
EPIG analysis of the TempO-Seq data yielding only four patterns
whereas microarray yielded 17 and RNA-Seq yielded 11 (data not
shown).

Cohesiveness of Replicate Gene
Expression by Platform
A unique design of the study is that there is replication at the
animal level, the chemical level, and the MOA level (Figure 1).
We harnessed this feature to assess how well each platform
captured similar gene expression between replicates. We used
RMSD to assess the gene expression distance between pairs of
biological replicates. A smaller measure means the replicates are
closer to each other in terms of gene expression. The platform-
RMSD is an aggregate (overall average) of the distance between
animals treated with a chemical, the chemicals within a MOA
and the five MOAs. The average chemical-RMSD is the mean
of the RMSDs for each chemical by platform. As shown in
Table 3, the Platform-RMSD and average chemical-RMSD were
more than 2 times lower for microarray than for the other

FIGURE 5 | Clustering of data. (A) Microarray. (B) RNA-Seq. (C) TempO-Seq. Clustering performed using the log2 ratio expression data (treated to matched control

according to nutritional status) of the genes that vary by MOA at FDR < 0.01 with cosine correlation as the similarity metric and the Ward clustering criterion. The data

for clustering was standardized to a mean of 0 and standard deviation of 1. Samples’ MOA colored as in the legend to Figure 4A.
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two platforms. RNA-Seq had the highest RMSD (1.11 at the
platform level and 0.98 at the chemical level) which may be
related to the higher noise level seen in the expression pattern
for this platform (Figure 3). Despite the relatively noisy RNA-Seq
platform, PCA of the gene expression data revealed that RNA-Seq
captured a higher percent of the variability (55.5%) in the data
than the other two platforms and also projected the samples in
3-dimensional space closer to each other in terms of MOA (Data
not shown).

Biological Responsiveness by Platform
Since three chemicals share a MOA, for each platform we
used an ANOVA model with MOA as a main factor to
identify genes that vary significantly at an FDR < 0.01. For
microarray, RNA-Seq and TempO-Seq, 9,499 probe sets, 7,217
transcripts and 1,366 genes were detected as varying, respectively
(Supplemental Table 1). These genes should drive the clustering
of the gene expression data by MOA. As shown in Figures 4,
5, respectively, PCA and 2-dimensional hierarchical clustering

FIGURE 6 | Clustering of the data using a common gene set. (A) Hierarchical clustering performed using the log2 ratio expression data (treated to matched control

according to nutritional status) of the genes that vary by MOA at FDR < 0.01 and map to 731 UniGene cluster IDs that overlap between the three platforms. Genes

that were mapped to the same UniGene cluster ID were averaged. The cosine correlation was used as the similarity metric and the Ward clustering criterion for

merging clusters. Samples’ MOA colored as in the legend to Figure 4A. Platforms are represented by the following colors: pink, Affymetrix; light blue, RNA-Seq;

yellow, TempO-Seq. (B) PCA of the data used in (A). Principal component (PC) #1 = 34%, PC #2 = 16.6 %, and PC #3 = 9.53.
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of the data from each platform by their MOA varying genes
was reasonably good. However, each platform had at least two
MOAs with a chemical that didn’t cluster with its respective
MOA chemicals. For microarray NIT and LEF didn’t cluster
with DNA damage and AhR MOA chemicals, respectively. For
RNA-Seq LEF, ECO and one biological replicate of CAR didn’t
cluster with AhR, CAR/PXR, and cytotoxicity MOA chemicals,
respectively. For TempO-Seq LEF and ECO didn’t cluster with
Ahr, and CAR/PXR MOA chemicals, respectively. In addition,
one biological replicate of MET and CAR and didn’t cluster with
their biological replicates in the CAR/PXR and cytotoxicityMOA
chemicals, respectively.

For better cluster resolution, we mapped the MOA
varying genes from each platform to UniGene cluster
IDs and then compiled the log2 ratio data from all three
platforms using the 731 UniGene cluster IDs that overlapped
(Supplemental Table 2). Genes that were mapped to the same
UniGene cluster ID were averaged. As shown in Figure 6A, the
clustering of the samples was mostly by MOA except for LEF,
AFL and one biological replicate from CAR. PCA of the data
captures ∼60% of the variation in the data and projected the
samples in 3-dimensional space closer to each other in terms of
MOA except for LEF and NIT samples from all three platforms
(Figure 6B).

Enrichment of GO biological processes by the platforms’
varying genes yielded 49 significant categories (FDR < 5%)
that overlapped (Figure 7A). Microarray had the most enriched
categories (n = 173), followed by RNA-Seq (n = 141), and
then TempO-Seq (n = 99). Some of the enriched GO biological
processes that overlapped related to fatty acid metabolism,
apoptosis, liver development, and lipid metabolism (Table 4).
As shown in Figure 7B, the correlation of the 49 GO biological
processes fold enrichment between the three platforms was very
high (r > +0.9).

Comparing and contrasting gene set enrichments can be
challenging when there are many categories to consider. To more
formally compare the three platforms in terms of biology, we
used goSTAG to identify subtrees of enriched GO BPs from
the MOA varying genes and then find the categories that are
shared or differ between platforms. As shown in Figure 8, all
three platforms enriched for subtrees that map to fatty acid
beta-oxidation and glycine metabolic process. However, TempO-
Seq enriched for subtrees that map to negative regulation of
ERK1 and ERK2 cascade. RNA-Seq uniquely enriched subtrees
that map to ATP metabolic process and microarray exclusively
enriched for subtrees that map to positive regulation of glycolytic
process.

DISCUSSION

Over the last two decades gene expression analysis has advanced
to permit genome-wide transcriptomics. Affymetrix microarray
and Illumina RNA-Seq are two platforms that have gained
popularity for gene expression analysis. Each has its own
advantages and disadvantages but currently, the platform of
choice for gene expression analysis seems to be RNA-Seq.

Comparison of the two platforms was performed using liver
RNA samples from rats exposed to chemicals that have particular
modes of action (MOAs;Wang et al., 2014; Figure 1 andTable 1).
We used the microarray and RNA-Seq training data from these
samples to compare with the data generated from the samples
using the TempO-Seq platform. TempO-Seq is unique in that the
platform’s gene content (∼2,200) consists of bioinformatically
curated (Mav et al., 2018) and expert domain-nominated rat
genes that represent the totality of biological perturbation space
(Table 2). This makes the TempO-Seq platform very appealing
for transcriptomics in that (1) sequencing of the RNA is from

FIGURE 7 | Comparison of enriched GO biological processes (BPs). (A) Overlap of enriched GO BPs < FDR 5%. Minimum number of genes = 3 for TempO-Seq and

5 for the other two. (B) Pairwise comparison of GO BPs fold enrichment from the 49 categories in common between the three platforms. Red line is the linear fit

(regression line) with 95% level confidence boundaries.
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TABLE 4 | Enriched GO BPs (FDR < 5%) that overlap between platforms®.

GOID GO BP Term Microarray RNA-seq TempO-seq

Count % Pop Hits FE Count % Pop Hits FE Count % Pop Hits FE

GO:0001666 Response to hypoxia 119 2.11 270 1.55 99 2.18 270 1.59 39 3.32 270 2.28

GO:0001731 Formation of translation

preinitiation complex

17 0.30 24 2.50 18 0.40 24 3.24 9 0.77 24 5.92

GO:0001889 Liver development 85 1.51 145 2.07 81 1.78 145 2.42 32 2.72 145 3.48

GO:0006413 Translational initiation 32 0.57 52 2.17 29 0.64 52 2.41 13 1.11 52 3.95

GO:0006446 Regulation of translational

initiation

19 0.34 31 2.16 17 0.37 31 2.37 12 1.02 31 6.11

GO:0006457 Protein folding 57 1.01 112 1.79 49 1.08 112 1.89 17 1.45 112 2.40

GO:0006629 Lipid metabolic process 44 0.78 89 1.74 42 0.93 89 2.04 17 1.45 89 3.01

GO:0006631 Fatty acid metabolic

process

33 0.58 60 1.94 32 0.71 60 2.31 12 1.02 60 3.16

GO:0006635 Fatty acid beta-oxidation 35 0.62 46 2.68 31 0.68 46 2.92 23 1.96 46 7.89

GO:0006637 Acyl-coa metabolic process 19 0.34 28 2.39 16 0.35 28 2.47 9 0.77 28 5.07

GO:0006695 Cholesterol biosynthetic

process

17 0.30 26 2.30 17 0.37 26 2.83 8 0.68 26 4.86

GO:0006749 Glutathione metabolic

process

31 0.55 52 2.10 28 0.62 52 2.33 11 0.94 52 3.34

GO:0006915 Apoptotic process 157 2.78 366 1.51 120 2.64 366 1.42 41 3.49 366 1.77

GO:0006953 Acute-phase response 25 0.44 38 2.32 19 0.42 38 2.16 9 0.77 38 3.74

GO:0006979 Response to oxidative

stress

76 1.35 146 1.83 61 1.34 146 1.81 22 1.87 146 2.38

GO:0007568 Aging 150 2.66 315 1.68 125 2.75 315 1.72 51 4.34 315 2.56

GO:0007584 Response to nutrient 69 1.22 137 1.77 59 1.30 137 1.86 19 1.62 137 2.19

GO:0007623 Circadian rhythm 52 0.92 121 1.51 46 1.01 121 1.64 18 1.53 121 2.35

GO:0009636 Response to toxic

substance

65 1.15 119 1.92 61 1.34 119 2.22 30 2.55 119 3.98

GO:0009749 Response to glucose 54 0.96 106 1.80 47 1.04 106 1.92 18 1.53 106 2.68

GO:0010033 Response to organic

substance

72 1.28 152 1.67 69 1.52 152 1.96 32 2.72 152 3.32

GO:0010243 Response to

organonitrogen compound

35 0.62 68 1.81 34 0.75 68 2.16 14 1.19 68 3.25

GO:0014070 Response to organic cyclic

compound

138 2.45 272 1.79 128 2.82 272 2.04 50 4.26 272 2.90

GO:0031100 Organ regeneration 45 0.80 91 1.74 39 0.86 91 1.85 22 1.87 91 3.82

GO:0031667 Response to nutrient levels 49 0.87 112 1.54 42 0.93 112 1.62 22 1.87 112 3.10

GO:0032355 Response to estradiol 91 1.61 201 1.60 81 1.78 201 1.74 40 3.40 201 3.14

GO:0032496 Response to

lipopolysaccharide

114 2.02 280 1.43 101 2.23 280 1.56 39 3.32 280 2.20

GO:0032869 Cellular response to insulin

stimulus

66 1.17 123 1.89 56 1.23 123 1.97 26 2.21 123 3.34

GO:0033539 Fatty acid beta-oxidation

using acyl-coa

dehydrogenase

16 0.28 19 2.97 15 0.33 19 3.42 9 0.77 19 7.48

GO:0042493 Response to drug 246 4.36 528 1.64 211 4.65 528 1.73 82 6.98 528 2.45

GO:0042542 Response to hydrogen

peroxide

40 0.71 78 1.81 31 0.68 78 1.72 14 1.19 78 2.83

GO:0043065 Positive regulation of

apoptotic process

133 2.36 338 1.39 115 2.53 338 1.47 53 4.51 338 2.47

GO:0043066 Negative regulation of

apoptotic process

203 3.60 517 1.38 177 3.90 517 1.48 60 5.11 517 1.83

GO:0043434 Response to peptide

hormone

63 1.12 129 1.72 51 1.12 129 1.71 19 1.62 129 2.32

(Continued)
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TABLE 4 | Continued

GOID GO BP Term Microarray RNA-seq TempO-seq

Count % Pop Hits FE Count % Pop Hits FE Count % Pop Hits FE

GO:0045471 Response to ethanol 82 1.45 193 1.50 74 1.63 193 1.66 34 2.89 193 2.78

GO:0046686 Response to cadmium ion 27 0.48 45 2.11 22 0.48 45 2.12 12 1.02 45 4.21

GO:0051289 Protein homotetramerization 37 0.66 76 1.72 34 0.75 76 1.94 20 1.70 76 4.15

GO:0051301 Cell division 83 1.47 179 1.63 63 1.39 179 1.52 27 2.30 179 2.38

GO:0051384 Response to glucocorticoid 69 1.22 133 1.83 56 1.23 133 1.82 23 1.96 133 2.73

GO:0051603 Proteolysis involved in

cellular protein catabolic

process

28 0.50 51 1.93 24 0.53 51 2.04 11 0.94 51 3.40

GO:0055088 Lipid homeostasis 27 0.48 42 2.27 24 0.53 42 2.47 11 0.94 42 4.13

GO:0055114 Oxidation-reduction process 314 5.56 651 1.70 262 5.77 651 1.74 88 7.49 651 2.13

GO:0070542 Response to fatty acid 26 0.46 39 2.35 25 0.55 39 2.77 11 0.94 39 4.45

GO:0071407 Cellular response to organic

cyclic compound

53 0.94 122 1.53 48 1.06 122 1.70 22 1.87 122 2.85

GO:0071456 Cellular response to hypoxia 57 1.01 137 1.47 49 1.08 137 1.55 22 1.87 137 2.53

GO:0097421 Liver regeneration 41 0.73 55 2.63 30 0.66 55 2.36 14 1.19 55 4.02

GO:0098609 Cell-cell adhesion 102 1.81 211 1.70 82 1.81 211 1.68 27 2.30 211 2.02

GO:1904871 Positive regulation of protein

localization to Cajal body

8 0.14 8 3.52 8 0.18 8 4.33 6 0.51 8 11.84

GO:1904874 Positive regulation of

telomerase RNA localization

to Cajal body

13 0.23 15 3.05 12 0.26 15 3.46 8 0.68 15 8.42

®Universe is 17,535. List totals: Microarray: 4,976; RNA-Seq: 4,053; TempO-Seq: 1,111. Enrichment performed using UniGene cluster IDs and the Database for Annotation, Visualization

and Integrated Discovery (DAVID) v6.8.

FIGURE 8 | Clustering of enriched GO BPs. goSTAG clustering of 203 enriched GO BPs using 5 genes per category, BH FDR < 0.05, correlation distance (1-Pearson

correlation) and Ward clustering, dendrogram threshold = 0.9 and minimum number of GO BP terms per cluster = 5. Data is the –log10 p-value. The more red the

intensity, the more significant the enrichment. Gray indicates that the GO BP term was not enriched significant and thus the p-value was imputed with 1.0.
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sample lysates negating the need for library construction which
are large sources of variability in RNA-Seq (Su et al., 2014),
(2) the sequencing cost is much less than RNA-Seq given
the number of targeted templates and pooling of samples in
a multiplexed sequencing run allowing for more resources
to expand experimental designs, and (3) the data storage is
reasonable and the bioinformatics more simplified leading to a
quicker turn-around in results and data analysis manageable by a
wider group of analysts.

An obvious disadvantage to the TempO-Seq platform is that
the gene content is predefined requiring extensive template
fabrication and careful probe sequence curation. Furthermore,
the targeted sequencing design renders TempO-Seq incapable
of discerning novel transcripts. Despite these shortcomings,
TempO-Seq performed similarly to microarray and RNA-
Seq with respect to analysis of the SEQC/MAQC3 MOA
toxicogenomics data. When statistical parameters were used
to evaluate the three platforms, TempO-Seq had comparable
variance structure related to chemical treatment, MOA and
route of administration (Figure 2). Not surprisingly, we
observed that RNA-Seq had higher unexplained variance
(Figure 2), a larger noise component in expression patterns
(Figure 3), and greater error between biological replicates
(Table 3). This might be due to the large variation in lowly
expressed genes that RNA-Seq detects at high sequencing
depths. When the top percentile of expressed genes from
RNA-Seq were used to evaluate expression differences between
biological replicates, the error was much lower than when
additional lower expressed genes were used (Wang et al.,
2014). TempO-Seq variation, noise, and error in gene
expression was moderate, falling between microarray and
RNA-Seq.

Since each transcript profiling platform has different numbers
of gene content and annotation, we explored the ability of
each to cluster the samples by using the set of genes that vary
statistically by MOA. We used an ANOVA model for each
data set with chemical, MOA and route as the main effects.
For microarray, RNA-Seq and TempO-Seq, 9,499 probe sets,
7,217 transcripts, and 1,366 genes were detected as significantly
(FDR < 0.01) varying, respectively (Supplemental Table 1).
These MOA-varying genes and those mapped to 731 UniGene
cluster IDs (Supplemental Table 2) as a common set were
used for cluster analysis. In both cases the clustering of the
samples by MOA for each platform was similar in that at
most two chemicals from two MOAs were not clustered with
their respective MOA chemicals (Figures 5, 6A). In addition,
the clustering of the samples by PCA with platform-specific
MOA-varying genes mapped to the common UniGene set
projected the samples into 3-dimensional space (Figure 6B)
representative of the MOAs similar to the outcome when just
MOA-varying genes from each platform were used (Figure 4).
Hence, it is plausible that the TempO-Seq platform with the
reduced gene content set is sufficient to resolve gene expression
space elicited by a wide variety of chemical stressors with
distinct MOAs. Utilization of the TempO-Seq platform for

evaluation of chemicals using gene expression suggests that
the platform may gain popularity in biomolecular screening
efforts in the near future (Grimm et al., 2016; House et al.,
2017).

It has been proven that reproducibility between gene
expression is higher when the data are compared on the pathway
level than the gene level (Guo et al., 2006; Fan et al., 2010; Wang
et al., 2014). We enriched the MOA-varying UniGenes according
to GO BPs and revealed that the reduced representation of
genes on the TempO-Seq platform had a negligible effect on the
overrepresentation (Figure 7 andTable 4). This is in line with the
bioinformatics process to select the S1500+ sentinel gene content
on the platform using diversity and co-expression importance
scores (Mav et al., 2018). These genes were selected to cover
>90% of the biological pathway space represented by MSigDB
(Subramanian et al., 2005). Yet each platform does appear to
have enrichment of unique BPs as depicted in GO subtrees of
overrepresented biological categories (Figure 8).

Having another tool for biologists to survey genome-wide
gene expression is a luxury for scientific experimentation.
With microarray fully matured and easy to analyze, and RNA-
Seq flexible to interrogate complex transcriptional machinery,
scientists have diverse platforms to investigate biological
consequences that regulate gene expression genome-wide. The
emerging TempO-Seq platform adds to the genomics tool
chest and with comparable performance capabilities to its
predecessors, will undoubtedly play a pivotal role in high-
throughput screening efforts.
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Sciences, University of Rajshahi, Rajshahi, Bangladesh

Detection of biomarker genes and their regulatory doses of chemical compounds (DCCs)

is one of the most important tasks in toxicogenomic studies as well as in drug design and

development. There is an online computational platform “Toxygates” to identify biomarker

genes and their regulatory DCCs by co-clustering approach. Nevertheless, the algorithm

of that platform based on hierarchical clustering (HC) does not share gene-DCC two-way

information simultaneously during co-clustering between genes and DCCs. Also it is

sensitive to outlying observations. Thus, this platform may produce misleading results

in some cases. The probabilistic hidden variable model (PHVM) is a more effective

co-clustering approach that share two-way information simultaneously, but it is also

sensitive to outlying observations. Therefore, in this paper we have proposed logistic

probabilistic hidden variable model (LPHVM) for robust co-clustering between genes

and DCCs, since gene expression data are often contaminated by outlying observations.

We have investigated the performance of the proposed LPHVM co-clustering approach

in a comparison with the conventional PHVM and Toxygates co-clustering approaches

using simulated and real life TGP gene expression datasets, respectively. Simulation

results show that the proposed method improved the performance over the conventional

PHVM in presence of outliers; otherwise, it keeps equal performance. In the case

of real life TGP data analysis, three DCCs (glibenclamide-low, perhexilline-low, and

hexachlorobenzene-medium) for glutathione metabolism pathway dataset as well as

two DCCs (acetaminophen-medium and methapyrilene-low) for PPAR signaling pathway

dataset were incorrectly co-clustered by the Toxygates online platform, while only

one DCC (hexachlorobenzene-low) for glutathione metabolism pathway was incorrectly

co-clustered by the proposed LPHVM approach. Our findings from the real data analysis

are also supported by the other findings in the literature.

Keywords: toxicogenomic biomarker, doses of chemical compounds (DCCs), co-clustering, outlying observations,

logistic transformation, probabilistic hidden variable model (PHVM), logistic probabilistic hidden variable model

(LPHVM)
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INTRODUCTION

Toxicogenomics studies combines toxicology with several omics
technologies (genomics, transcriptomics, proteomics, and

metabolomics) to assess the risk of toxins (small molecules,
peptides, or proteins) and chemical agents (drugs, gasoline,
alcohol, pesticides, fuel oil, and cosmetics) in organism (NRC,
2007; Afshari et al., 2011). Through integration of these
omics technologies with bioinformatics, toxicogenomics can
be used to suggest the molecular mechanism of toxicity.
This can reduce the cost in terms of time, labor, compound
synthesis, and animal use which are main limitations of
traditional toxicology work (Nuwaysir et al., 1999; Chen
et al., 2012). In drug discovery and development, it is
also necessary to assess the doses of chemical compounds
(DCCs) toxicity administering these DCCs on individuals
for measuring drugs’ safety. This assessment can be done
by toxicogenomic biomarkers those are upregulated or
downregulated by the influence of a set of DCCs on individuals.
These toxicogenomic biomarkers can be identified from the
extensive gene-treatment expression dataset of target organs of
individuals (Fielden et al., 2007; Uehara et al., 2008; Igarashi
et al., 2015).

An online toxicogenomic data analysis platform “ToxDB”

increases its predictive power based on the pathway level
gene expression data (Hardt et al., 2016). It calculates the
pathway scores for a chemical compound to identify significant
biomarker genes using t-statistic from different pathways.
Nevertheless, there is no facility in this platform to study another
interesting problem of relationship between gene groups and
DCCs groups asserted by Afshari et al. (2011). To address
this problem another online platform “Toxygates” produces co-
clusters between genes and DCCs using hierarchical clustering
(HC) (Nyström-Persson et al., 2017). But HC does not use two-
way (gene-DCC) information simultaneously for co-clustering
and it is sensitive to outlying observations (García-Escudero
et al., 2010). Probabilistic hidden variable model (PHVM) has
been developed for co-clustering between words and documents
in a text mining problem (Hofmann, 2001). It uses two-way
(row-column) information simultaneously during co-clustering.

It was also successfully used in detecting hidden patters of
biological profiling datasets (Joung et al., 2006; Bicego et al.,
2010). Therefore, PHVM would be more effective approach than
HC for co-clustering between genes and DCCs which is also
supported by Joung et al. (2006). However, the PHVM algorithm
is sensitive to outlying observations of gene expression. These
outlying observations often occur in the gene expression dataset
due to several steps involve in the data generating processes
from hybridization to image analysis including scratches or
dust on the surface, imperfections in the glass or imperfections
in the array production (Gottardo et al., 2006; Upton et al.,
2009). The outliers in the dataset may arise following Tukey–
Huber contamination model (THCM; Agostinelli et al., 2015) or
independent contamination model (ICM; Alqallaf et al., 2009).
To overcome the robustness problems of conventional PHVM

approach an attempt is made to propose logistic PHVMapproach
called as LPHVM for robust co-clustering between genes and

DCCs to discover toxicogenomic biomarkers and their regulatory
DCCs.

METHODS AND MATERIALS

Let us consider a toxicogenomic experimental design as
described in Figure 1 that reflects Japanese Toxicogenomics
Project (TGP) (Uehara, 2010) experiment for a single time point
from which the toxygates (Nyström-Persson et al., 2013) data
were collected. According to this design, gene expression data of
both treatment and control group of animal samples are assumed
to be generated. Then the fold change gene expression data for a
single time point are computed from the treatment and control
group of animals. It can measure the actual treatment (DCCs)
effects on the genes. The fold change gene-expression value of a
gene is defined as follows:

Ytlq = log2

(

xtlq

x′tlq

)

= log2
(

xtlq
)

− log2
(

x′tlq
)

, (1)

where Ytlq is the fold change expression value of a gene for the
qth (q = 1, 2, 3) sample under lth (l = Low, Middle, High) dose
level of the tth (t = 1, 2, · · · ,T) chemical compound, xtlq is
the expression value of that gene of mentioned sample under the
treatment group and xtlq

′ is the expression value of the same gene
of the respective control sample. The effect of compound-dose
combination or treatment/DCCs on the animal can be measured
by Y tl. which is the average fold change value over the samples.
In this paper, our objective is to robust co-clustering between
genes and DCCs to discover toxicogenomic biomarkers and their
regulatory DCCs from the fold change gene expression data using
the proposed LPHVM.

Logistic Transformation of Fold Change
Gene Expression Data
There are two ways to obtain robust estimates in presence
of outlying observations (1) applying the robust methods (2)
applying conventional methods on the modified dataset. The
modification of the outlier contaminated dataset can be done
deleting the outlying observations from the dataset or applying
transformation on the dataset. Nonetheless, application of robust
methods is complicated than using the conventional methods
and deletion of outlying observations loses the information of the
dataset. Hence, transformation is the better option for reducing
outlier effects. Several authors (Box and Cox, 1964; Atkinson,
1982; Carroll, 1982) have been proved that transformation
based robust methods outperform the conventional methods in
reducing outlier effects. Thus, in this paper we consider logistic
transformation for reducing outlier effects from the dataset.
Before application of logistic transformation in the dataset we
have taken average value (Y tl.) of the fold change gene expression
(Ytlq) over the samples.We denote this average value by F

(

Gi,Cj

)

for the convenience of further use. In toxicogenomic data the
expression profile of a subset of genes is highly correlated across
a subset of conditions/treatments (Madeira and Oliveira, 2004;
Bicego et al., 2010; Afshari et al., 2011). Interestingly, in the
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FIGURE 1 | A typical toxicogenomic experimental model for a single time point according to which gene expression data of the animal samples can be collected. In

the figure there is a treatment group of animals and a control group of animals from which the fold change gene expression data can be obtained.

FIGURE 2 | Average gene and doses of chemical compounds co-clustering ER are plotted against the rate of outliers, when each of the data sets are simulated 100

times and outliers in the datasets are introduced using THCM. In the figure (A) for D1 dataset and (B) for D2 dataset.

gene expression or average fold change gene expression data
there is a subset of genes which consists an upregulated and a
downregulated clusters of genes which is highly correlated over a
subset of DCCs. Therefore, we take absolute of the average fold
change expression data to merge upregulated and downregulated
clusters of genes into a single cluster/subset which are regulated
by a subset of DCCs. Thereafter, the subset of genes forms a co-
cluster with its regulatory subset of DCCs. Since in this study, we
consider all the biomarker and non-biomarker genes (genes are
not affected by DCCs) in a pathway, the non-biomarker genes
make another co-cluster together with non-regulatory DCCs
(which do not affect the expression patterns of the genes in a
specific pathway). The term co-cluster refers to the clustering
of correlated row (genes) and column (DCCs) simultaneously.
Now we apply logistic transformation on the (

∣

∣F
(

Gi,Cj

)

∣

∣). If

there are extreme values of
∣

∣F
(

Gi,Cj

)

∣

∣ the logistic transformation
bring them within the range of 0–1. The other transformation
methods like Box-Cox family of power transformation returns
unbounded value for the extreme one. The observed n×m (gene-
DCCs) fold change gene expression data matrix consisting of
G = (G1, G2, . . . , Gn) genes and C = (C1, C2, . . . , Cm) DCCs
is transformed using logistic function

#(Gi,Cj) =

(

1

1+ exp(−
∣

∣F(Gi,Cj)
∣

∣

)

× 100

Similar to other works (Joung et al., 2006; Bicego et al., 2010)
we assume the transformed value #(Gi,Cj) as the count value for
applying PHVM.
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FIGURE 3 | Gene and doses of chemical compounds co-clustered view retrieved from the LPHVM generated gene and DCCs joint probability. (A) Represents

glutathione metabolism pathway dataset at 24 h time point. (B) Represents PPAR signaling pathway dataset at 24 h time point. (C) Represents glutathione

metabolism pathway dataset for all time points of Toxygates data.

Number of Co-clusters (k) Prediction
As we see from the previous section “logistic transformation of
fold change gene expression data” in toxicogenomic dataset there
are hidden patters or co-clusters between genes and DCCs. Thus
the number of clusters in the DCCs is equal to the number of
clusters in the genes. Before applying PHVM it is required to
know the number of co-clusters in the dataset. Therefore, in this
study, we consider gap statistic (Tibshirani et al., 2001) the most
popular and reliable algorithm for predicting the number of co-
clusters in the dataset. We use R function “fviz_nbclust” which
required packages “factoextra” and “NbClust” (Malika et al.,
2014) in order to predict number of co-clusters in the dataset via
gap statistic. The detail algorithm of gap statistic is given in the
Supplementary Material.

Robust Co-clustering Using Logistic
Probabilistic Hidden Variable Model
In order to perform robust co-clustering between genes and
DCCs we propose LPHVM approach. We define LPHVM as
the application of PHVM on the count valued dataset which is
obtained transforming absolute value of the fold change gene
expression data by logistic transformation. For this standpoint,
let us consider n × m gene-DCC count valued fold change gene
expression data matrix consisting of G = (G1, G2, . . . , Gn)
genes and C = (C1, C2, . . . , Cm) DCCs. LPHVM assumes that
there prevail a certain number of unobserved hidden co-clusters
or clusters underlying the gene-DCC count valued data matrix.
We have estimated the number of co-clusters (k) in the dataset
using gap statistic algorithm proposed by Tibshirani et al. (2001).
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Introducing the hidden variable H = (H1, H2, . . . , Hk; r =
1, 2, . . . , k) the model quantifies the relationships Pr (Gi|Hr),
Pr(Cj|Hr), and Pr

(

Gi,Cj

)

. The following are the probability
definition and underlying assumptions of LPHVM accordingly:
(1) Pr(Hr) is the probability of the rth co-cluster/cluster and
∑k

r= 1 Pr(Hr) = 1. (2) Pr (Gi|Hr) is the probability of the
ith gene over the rth co-cluster and ∀Hr;

∑n
i= 1 Pr(Gi|Hr) =

1. (3) Pr(Cj|Hr) is the probability of the jth DCC over the
rth co-cluster and ∀Hr;

∑m
j= 1 Pr(Cj|Hr) = 1. (4) Pr

(

Gi,Cj

)

is the joint probability of the ith gene and the jth DCC
and

∑n
i= 1

∑m
j= 1 Pr

(

Gi,Cj

)

= 1. Based on these definition and

assumptions we obtain the joint probability of the gene-DCC
observed pair (Gi,Cj) considering hidden co-cluster Hr as
follows:

Pr
(

Gi,Cj

)

= Pr
(

Cj

)

Pr(Gi|Cj)

Where,

Pr
(

Gi|Cj

)

=
∑k

r= 1
Pr(Gi|Hr)Pr(Hr|Cj)

Applying Bayes’ rule, the gene-DCC joint probability Pr
(

Gi,Cj

)

can be written as

Pr
(

Gi,Cj

)

=
∑k

r= 1
Pr (Gi|Hr) Pr

(

Cj|Hr

)

Pr(Hr)

So as to estimate the parameters of the model, we need to
maximize the total likelihood of the observations:

L(G,C) =
∑n

i=1

∑m

j= 1
#(Gi,Cj) log Pr(Gi,Cj)

We have applied the widely used Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) for estimating the
maximum likelihood parameters of the proposed model. The EM
algorithm starts with a random set of initial parameter values and
iterates both the expectation (E-step) andmaximization (M-step)
step alternatively until a certain convergence criteria is satisfied.
For this study, we have taken the values of initial parameters
from dirichlet distribution and the stopping condition for EM
estimation was set to <0.00001 (difference between two log
likelihood of successive EM iteration). The E and M-step for the
total likelihood can be given as follows:

E-step:

Pr
(

Hr|Gi,Cj

)

=
Pr (Gi|Hr)Pr

(

Cj|Hr

)

Pr(Hr)
∑k

r′ = 1 Pr
(

Gi|Hr
′
)

Pr
(

Cj|Hr′
)

Pr(Hr′ )

M-step:

Pr (Hr) =
∑n

i= 1

∑m
j= 1 #(Gi,Cj)Pr

(

Hr|Gi,Cj

)

∑n
i= 1

∑m
j= 1

∑k
r′ = 1 #(Gi,Cj)Pr

(

Hr′ |Gi,Cj

)

Pr (Gi|Hr) =
∑m

j= 1 #(Gi,Cj)Pr
(

Hr|Gi,Cj

)

∑n
i′ = 1

∑m
j= 1 #(Gi′ ,Cj)Pr

(

Hr|Gi′ ,Cj

)

Pr
(

Cj|Hr

)

=
∑n

i= 1 #(Gi,Cj)Pr
(

Hr|Gi,Cj

)

∑n
i= 1

∑m
j′ = 1 #(Gi,Cj′ )Pr

(

Hr|Gi,Cj′
)

Once the parameters Pr (Gi|Hr) and Pr(Cj|Hr) have been
estimated the genes and DCCs are clustered independently and
co-clustered simultaneously. The gene (Gi) and DCC (Cj) will
belong to co-cluster r if

Pr (Gi|Hr) = argmaxr′Pr (Gi|Hr′) ; i = 1, 2,

· · · , n; r = 1, 2, . . . , k and

Pr
(

Cj

∣

∣Hr

)

= argmaxr′Pr
(

Cj

∣

∣Hr′
)

; j = 1, 2,

. . . , m; r = 1, 2, . . . , k

At the same time, if the gene (Gi) and the DCC (Cj) is grouped
into a co-cluster (r) and this pair has the highest joint probability
Pr
(

Gi,Cj

)

in that co-cluster (Figure 3).

Extraction of Toxicogenomic Biomarker
Genes and Their Regulatory Doses of
Chemical Compounds
As described in section “logistic transformation of gene
expression data” the biomarker genes form co-clusters with
their respective regulatory DCCs. Additionally, the non-
biomarker genes in a pathway form another co-cluster with
non-regulatory DCCs. The LPHVM grouped the genes and
DCCs simultaneously to their respective co-clusters. Zhu
et al. (2005) has shown that the PHVM generated co-
occurrence probabilities between correlated genes and chemical
compounds which co-occur more frequently are higher than
others. Biological relationship among these correlated genes and
chemical compounds is also stronger. Therefore, we ranked
the co-clusters based on the average LPHVM generated joint
probability

(

Pr
(

Gi,Cj

))

of gene-DCC within the co-clusters.
The co-cluster having largest average joint probability contains
most important biomarker genes and their regulatory DCCs and
so on. The non-biomarker genes and non-regulatory DCCs in
a dataset of a particular pathway are filtered in a co-cluster
by LPHVM which have the smallest average joint probability.
Except this co-cluster (co-cluster having smallest average joint
probability) others are the co-clusters of biomarker genes and
their regulatory DCCs and we define these co-clusters as
biomarker co-clusters. We extract the toxicogenomic biomarker
genes and their regulatory DCCs from these biomarker co-
clusters.

Up/Down-Regulated Biomarker Genes and
Ranking of Doses of Chemical Compounds
The biomarker co-clusters consisting of biomarker genes and
their regulatory DCCs are separated from the whole gene-DCC
fold change data matrix which is discussed in the previous
section. Within this co-clustering matrix a subset of biomarker
genes may be upregulated corresponding to a subset of DCCs
or downregulated corresponding to another subset of DCCs.
These can be observed from the average fold change value
(Y tl.) of the co-clustering matrix. For example, a biomarker
is define as up or down-regulated gene corresponding to the
lth dose level of the tth chemical compounds if Y tl. > 0 or
Y tl. < 0. Then this dose of chemical compound is said to
be a regulatory DCC. Furthermore, for ranking the biomarker
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gene regulatory DCCs and their relationships with biomarker
genes we have separated a sub matrix of biomarker genes and
their regulatory DCCs (biomarker co-clusters) from the LPHVM
generated gene-DCC joint probability Pr

(

Gi,Cj

)

matrix. The
biomarker gene regulatory DCCs are ranked according to their
average joint probability value over all biomarkers. We also rank
the relationships among biomarker genes and their regulatory
DCCs based on their joint probability. The ranking is made
considering the formula:

(

Zj/i,j

max
(

Zj/i,j
)

)

× 100

where Zj is the average joint probability of a DCC over the
biomarkers or Zi,j is the joint probability of gene Gi and DCC
Cj within the biomarker co-clusters.

Robustness of the Proposed Algorithm
We investigate the robustness of the proposed (LPHVM)
algorithm and conventional PHVM using simulated datasets
in absence and presence of outliers in the dataset based
on the co-clustering /clustering error rate (ER). The genes
and DCCs which are considered in one co-cluster/cluster in
the simulated data are incorrectly assigned in another co-
cluster/cluster by the PHVM or LPHVM is considered as
the miss co-clustered/clustered observations. The ER is the
percentage of miss co-clustered/clustered observations which is
calculated as:

(

tolal miss co− clustered/clustered observations

Total observations

)

× 100

Computational Steps of LPHVM at a
Glance
For detecting the toxicogenomic biomarker genes and their
regulatory DCCs from the pathway level toxicogenomic dataset
using LPHVM the following steps are to be considered for desired
outputs:

Step 1: Obtain gene expression data of treatment
and control group of animals from the toxicogenomic
experiment (Figure 1). Thereafter, compute fold change
gene expression data using Equation (1) and then make it
absolute.

Step 2: Apply logistic transformation on the dataset obtain
from step 1 and assume the transformed value as count
value.

Step 3: Estimate the number of co-clusters in the dataset
which is obtained from step 2.

Step 4: Obtain robust co-clusters applying PHVM on the
dataset obtained from step 2 using the number of co-clusters
which we get from step 3.

Step 5: Calculate average joint probability of gene-DCC
within the co-clusters and ranked them.

Step 6: Separate the co-clusters of biomarker genes and their
regulatory DCCs from the co-cluster which have smallest average
joint probability of gene-DCC.

Step 7: The genes and DCCs in the separated co-clusters
which we get from step 6 are the toxicogenomic biomarkers and
their regulatory DCCs.

Step 8: A biomarker gene obtains from step 7 may
be upregulated corresponding to a DCC or downregulated
corresponding to another DCC. A biomarker gene is said to
be a up or down-regulated if its average fold change value
corresponding to the lth dose level of the tth chemical compound
is Y tl. > 0 or Y tl. < 0.

Simulated Datasets
To investigate the performance of the proposed LPHVM
algorithm over the conventional PHVM we have simulated two
sets of pathway level fold change gene expression data D1(n =
50 × m = 30) and D2(n = 50 × m = 60) imitating the
toxicogenomic experiment given in Figure 1. Alongside these a
pathway level dataset considering all time points of toxygates
data are analyzed in the real data section. According to this
experiment the fold change gene expression data (Ytlq) have been
generated using the following model:

DCCs

group-1

DCCs

group-2

DCCs

group-3

Gene

group-11

+F11 0 0

Gene

group-12

–F12 0 0

Ytlq = Gene

group-21

0 +F21 0 +N(0, σ2)

Gene

group-22

0 –F22 0

Gene

group-3

0 0 0 (2)

In the above model, +F11and +F21 represent the fold change
expression values for upregulated genes under the DCCs group
1 and 2, respectively. Similarly, –F12, and –F22 represent the
fold change expression values for the downregulated genes
under the DCCs group 1 and 2, respectively. The 0s represent
there is no compound effects on the respective gene group
and N(0, σ 2) represents the random error term generated from
normal distribution with mean 0 and variance σ

2. Now if we
take absolute value of the fold change gene expression data
generated from the above data generating model (2), the fold
change gene expression data +F11 and –F12 will merge into a
single gene group-1 and make a co-cluster with their correlated
DCCs group-1. Accordingly, +F21 and –F22 will merge into a
single gene group-2 and make a co-cluster with their correlated
DCCs group-2. The rest of the genes which are not regulated
by any DCCs make a gene group-3 and the DCCs that do not
regulate the expression pattern of genes make a DCCs group-
3. The gene group-3 and DCCs group-3 together will make
another co-cluster. These co-clusters can be retrieved by the
LPHVM. In the simulated datasets n represents the number of
genes (Gi; i = 1, 2, . . . , n) andm represents the number of DCCs
(Cj; j = 1, 2, . . . ,m). The data generation procedures for D1 and
D2 datasets are given in the Supplementary Material.
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Real Datasets
Several studies proved that molecular network or pathway based
analysis improved the predictive power of gene expression data
(Yildirimman et al., 2011; Hofree et al., 2013). Hardt et al. (2016)
also analyzed the pathway level data from in vitro and in vivo
experiment of human and rat model. Presently, pathway based
analysis in cancer research has also advanced promptly since
pathway level analysis able to produce more stable biomarkers
(Kim, 2017). Since performance of any method cannot be
measured without known dataset. Besides the simulation study,
to investigate the performance of the proposed method compare
to other existing methods we use two known datasets of
glutathione metabolism and PPAR signaling pathways. The fold
change expression data of the TGP experiment for glutathione
metabolism and PPAR signaling pathway for some selected
DCCs of the respective pathway at 24 h time point have
been downloaded from toxygates (https://toxygates.nibiohn.
go.jp/toxygates/#columns). Because the compounds’ toxicity
at 24 h time point is more visible compare to other time
points (Nyström-Persson et al., 2013). Alongside these a
dataset consisting of glutathione metabolism pathway genes and
glutathione depleting and non-glutathione depleting compounds
(Nyström-Persson et al., 2013) for all time points is also
considered for analysis to know about the toxicity of DCCs in
other time points.

RESULTS

Simulation Study
We investigate the performance of our proposed method
(LPHVM) by comparing it with the conventional PHVM using
simulated datasets D1 and D2 in absence and presence of
outlying observations for robust co-clustering between genes and
DCCs to discover biomarker genes and their regulatory DCCs.
The number of co-clusters/clusters for both of the simulated
datasets is estimated as 3 via gap statistic as per the datasets
are simulated (Figure S1). For calculating average co-clustering
and clustering ER we have simulated each of the datasets 100
times. Every time of data simulation outliers are introduced
in the dataset using the data contamination methods THCM
and ICM at the same time ER are calculated for PHVM
and LPHVM applying these methods on the datasets. The
description of the data contamination by outliers, THCM and
ICM are given in the Supplementary Material. Here it should

be mentioned that in the case of THCM we have contaminated
the simulated datasets by 5–50% rate of outliers. Similarly, in
the case of ICM we have considered the range of probability
of at least one component of the dataset is to be contaminated
is 0.14–0.60 for D1 dataset and 0.165–0.5962 for D2 dataset.
Figure 2 visualizes the average co-clustering ER between genes
and DCCs for datasets D1 and D2 in absence and presence of
outliers when the datasets are contaminated by outliers using
the THCM. The Table 1 shows the average co-clustering ER
between genes and DCCs in absence and presence of outliers
for the simulated datasets D1 and D2 when the datasets are
contaminated by outliers using ICM. Figure S2 and Table S1

in the Supplementary Material show the average clustering ER
for gene and DCCs. It is observed from the mentioned figures
and tables that in absence of outlier both of the proposed
LPHVM and conventional PHVM approaches produce 0 ER.
However, in presence of outlaying observations in the datasets the
proposed approach produce far smaller ER than the conventional
approach for both of the data contamination methods (THCM
and ICM). The simulated data structure, structure of the data
when row (gene) and column (DCCs) entities are randomly
allocated and proposed method recovered structure of the data
are given in the Supplementary Material (Figures S3, S4) for the
datasets D1 and D2. From these figures it is observed that the
proposed algorithm is efficient for co-clustering between genes
and DCCs of the pathway level fold change gene expression
data. Figure S3C represents the dataset D1 where all the genes
and DCCs are grouped into three co-clusters (co-clusters 1,
2, and 3) and within co-cluster average joint probability of
gene-DCC are given in Table 3. From where it is found that
co-cluster-1 produces the smallest average joint probability of
gene-DCC. Therefore, co-cluster 2 and 3 are the co-cluster of
biomarker genes and their regulatory DCCs for the dataset
D1. Similarly, for D2 dataset co-cluster-3 produces the smallest
average joint probability of gene-DCC (Table 3). Thus, co-cluster
1 and 2 are the biomarker co-clusters consisting of biomarker
genes and their regulatory DCCs. The biomarker genes and
their regulatory DCCs that we get from the biomarker co-
clusters of the simulated datasets are given in the Table S9.
Ranking of the biomarker regulatory DCCs are performed
based on the biomarker gene-DCC joint probability matrix of
biomarker co-clusters following the raking method described in
sub section (Up/Down-regulated Biomarker Genes and Ranking
of Doses of Chemical Compounds). The results are given in

TABLE 1 | Average values of the gene and doses of chemical compounds co-clustering ER for the simulated datasets D1 and D2 when each of the datasets are

simulated 100 times and contaminated by outlier using ICM.

Dataset Method Probability of at least one component in the dataset to be contaminated (ε)

0.00 0.14 0.26 0.36 0.45 0.53 0.60

D1 PHVM 0.175 24.675 28.950 32.912 33.500 35.125 38.487

Proposed 0.025 0.387 0.612 0.725 1.0 1.862 2.500

0.00 0.165 0.3031 0.4187 0.5154 0.5962

D2 PHVM 0.00 25.390 26.563 29.554 32.172 39.754

Proposed 0.00 0.163 0.945 1.481 1.600 2.072
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TABLE 2 | Upregulated and downregulated biomarker genes and their regulatory

doses of chemical compounds for real life datasets.

Dataset Biomarker genes Biomarker gene regulatory DCCs

Glutathione

metabolism

pathway

Gsta4, Gstm1, Sms, Rrm1,

Odc1, Gsta2/Gsta5, Gss,

Gstm4,

LOC100912604/Srm, Gclm,

Gclc, Mgst2, Gstp1, Gsr,

Gpx2, G6pd, Gsta5, Hpgds,

Mgst3, Gstm7, Oplah, Ggt5

hexachlorobenzene_Low

acetaminophen_Low

nitrofurazone_Middle

methapyrilene_High

acetaminophen_Middle

nitrofurazone_High

acetaminophen_High

PPAR

signaling

pathway

Dbi, Acsl1, Acadl, Hmgcs2,

Plin2, Slc27a2, Acadm,

Fads2, Fabp3, Me1,

Sorbs1, Acsl3, Cyp4a2,

Aqp7, Cpt1a, Cyp8b1,

OC100365047,

LOC100910385, Angptl4,

Cpt1b, Cpt2, Plin5, Cyp4a3,

Acaa1a, Cyp4a1, Ehhadh,

Pdpk1, Apoa5, Fabp4,

Cyp27a1, Cpt1c, Fabp5

benzbromarone_Middle

gemfibrozil_Middle

gemfibrozil_High aspirin_Low

aspirin_Middle

aspirin_High

WY14643_Low

benzbromarone_High

clofibrate_High

WY14643_Middle

WY14643_High

TABLE 3 | Average values of the Gene and DCCs joint probabilities within the

co-clusters generated by the proposed LPHVM algorithm for the simulated and

real life datasets.

Dataset Co-cluster-1 Co-cluster-2 Cocluster-3

D1 0.0006095721 0.0010120670 0.0010117088

D2 0.0005162618 0.0005163485 0.0003147069

Glutathione metabolism pathway 0.0006196723 0.0005331547

PPAR signaling pathway 0.0004471087 0.0003704091

the Supplementary Material (Table S10) for both D1 and D2

datasets.

Analysis of Glutathione Metabolism
Pathway Data
Reactive oxygen species (ROS) are produced by living organisms
as a normal product as a result of normal cellular metabolism.
However, in presence of environmental pollutants or toxic
chemical the production of ROS increased dramatically. It is
highly reactive molecules and can damage cell structures such as
carbohydrates, nucleic acids, lipids, and proteins and alter their
functions. In the liver, glutathione is an important antioxidant;
a major detoxification player which scavenges ROS. Thus
imbalance in the abundance of ROS and glutathione/antioxidant
in favor of ROS in the liver in presence of toxic chemicals/drugs
causes’ drug induced liver injury. Subsequently, gene expression
changes occur simultaneously in response to the glutathione
depletion or after the glutathione depletion (Gao et al.,
2010; Birben et al., 2012; Nyström-Persson et al., 2013). In
order to identify glutathione depletion related biomarker
genes and their regulatory DCCs as well as to investigate the
performance of the proposed LPHVM approach we use known
fold change gene expression dataset of glutathione metabolism
pathway. The fold change gene expression dataset consists

TABLE 4 | Biomarker genes regulatory doses of chemical compounds ranking for

real datasets (glutathione metabolism and PPAR signaling pathway).

Dataset Doses of chemical

compounds

Percent score

Glutathione metabolism

pathway

acetaminophen_High 100.00

nitrofurazone_High 99.59

acetaminophen_Middle 95.98

methapyrilene_High 88.66

nitrofurazone_Middle 82.24

acetaminophen_Low 77.84

hexachlorobenzene_Low 74.57

PPAR signaling pathway WY14643_High 100.00

WY14643_Middle 97.59

clofibrate_High 93.25

aspirin_High 92.91

benzbromarone_High 92.25

WY14643_Low 91.19

aspirin_Middle 87.93

aspirin_Low 86.41

gemfibrozil_High 85.51

gemfibrozil_Middle 84.52

benzbromarone_Middle 79.07

62 glutathione metabolism pathway genes, three glutathione
depleting compounds (acetaminophen, methapyrilene, and
nitrofurazone) and seven non-glutathione depleting compounds
(erythromycin, hexachlorobenzene, isoniazid, gentamicin,
glibenclamide, penicillamine, and perhexilline) (Nyström-
Persson et al., 2013) along with the dose levels (low, middle,
and high) for 24 h time point. The number of co-clusters
which is required in applying LPHVM for this dataset is
estimated as 2 (Figure S1) via gap statistic. Figure 3A shows
actual co-clusters in the glutathione metabolism pathway
dataset. The genes and DCCs in the co-clusters are given in
the Table S2. The average joint probabilities of gene-DCC
within the co-clusters are 0.0006196723 and 0.0005331547
(Table 3), respectively for co-cluster-1 and co-cluster-2.
Thus, Co-cluster-1 is the co-cluster of biomarker genes and
glutathione depleting DCCs as it produces highest average
joint probability. The biomarker genes and their regulatory
DCCs in co-cluster-1 are given in Table 2. Additionally, the
upregulated and downregulated biomarker genes corresponding
to their regulatory DCCs are presented in the Figure S7A. For
the same dataset the clustering results (heatmap) produced
by toxygates are given in Figure S5 where glibenclamide-low,
perhexilline-low, and hexachlorobenzene-medium dose level
are incorrectly co-clustered whereas only hexachlorobenzene-
low dose is incorrectly co-clustered by the proposed LPHVM
approach according to Nyström-Persson et al. (2013). The
biomarker genes in co-cluster-1 are functionally annotated
by the online database DAVID (Huang da et al., 2009) and
the results are given in the Tables S5, S6. The results show
that the biomarker genes are significant in different biological
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TABLE 5 | Top 20 (ranked) biomarker gene and their regulatory doses of chemical compound relationships for glutathione metabolism pathway and PPAR signaling

pathway datasets.

Glutathione metabolism pathway PPAR signaling pathway

Chemical compound and dose

combination

Biomarker gene Ranking score Chemical compound and dose

combination

Biomarker gene Ranking score

acetaminophen_High Gsta5 100.00 WY14643_High Ehhadh 100.00

nitrofurazone_High Gsta5 96.26 WY14643_High Cyp4a1 97.29

acetaminophen_Middle Gsta5 91.69 WY14643_Middle Ehhadh 95.32

acetaminophen_High G6pd 90.85 WY14643_Middle Cyp4a1 93.17

acetaminophen_High Gpx2 89.67 WY14643_High Acaa1a 92.41

nitrofurazone_High G6pd 89.48 clofibrate_High Ehhadh 88.93

nitrofurazone_High Gpx2 89.29 WY14643_Middle Acaa1a 88.47

acetaminophen_Middle Gpx2 86.05 clofibrate_High Cyp4a1 87.34

acetaminophen_Middle G6pd 85.91 benzbromarone_High Ehhadh 87.04

acetaminophen_High Gsr 85.19 WY14643_High Cyp4a3 86.68

acetaminophen_High Gstp1 83.54 WY14643_Low Ehhadh 86.65

nitrofurazone_High Gsr 83.25 WY14643_High Plin5 85.99

nitrofurazone_High Gstp1 81.53 benzbromarone_High Cyp4a1 85.67

acetaminophen_High Mgst2 80.46 WY14643_Low Cyp4a1 85.17

acetaminophen_High Gclc 80.38 WY14643_High Cpt2 84.46

methapyrilene_High Gsta5 80.23 WY14643_High Cpt1b 84.45

acetaminophen_Middle Gsr 79.71 WY14643_High Angptl4 83.99

acetaminophen_High Gclm 79.56 aspirin_High Ehhadh 83.60

methapyrilene_High Gpx2 79.47 WY14643_Middle Cyp4a3 83.54

nitrofurazone_High Gclc 78.93 aspirin_High Cyp4a1 83.10

functions or processes including glutathione metabolism
pathway. Ranking of biomarker gene regulatory DCCs and top
20 gene-DCCs relationship along with their ranking score for
glutathione metabolism pathway dataset are given in Tables 4,
5. From the tables it is observed that acetaminophen_High,
nitrofurazone_High, and acetaminophen_Middle dose etc. are
the most important glutathione depleting compounds and Gsta5,
G6pd, Gpx2, Gsr, Mgst2, Gstp1, Gclc etc. are the most important
biomarker genes. The detail ranked relationships results are
given in Table S12. Besides this we have analyzed the same
dataset considering all time points (3, 6, 9, and 24 h) by LPHVM
to know about toxicity mechanism of the glutathione depleting
compounds in other time points. The co-clusters produced by
LPHVM are given in Figure 3C. The detail analyzed results of
this dataset are given in Tables S4, S11. The proposed LPHVM
identified 25 genes for the dataset at 24 h time points and 21
genes for the dataset where all time points are considered as
biomarker in the glutathione metabolism pathway among which
18 are common.

Analysis of PPAR Signaling Pathway Data
Peroxisome proliferator-activated receptors (PPARs)
PPAR∝, PPARβ/δ , and PPARγ are transcription factors which
are activated by ligand/drug. They regulate the expression
of target genes in response to endogenous and exogenous
ligands/chemicals. The PPAR ligands may produce toxicity via
receptor-dependent and/or off-target-mediated mechanism(s)

(Peraza et al., 2006). To discover PPARs regulated biomarker
genes and their regulatory DCCs as well as to investigate
the performance of the proposed LPHVM approach we
consider known dataset consisting 88 PPAR signaling pathway
genes and PPARs related gene regulatory compounds (WY-
14643, clofibrate, gemfibrozil, benzbromarone, and aspirin)
(Kiyosawa et al., 2006) and some other randomly selected
compounds (cisplatin, diltiazem, methapyrilene, phenobarbital,
and triazolam) along with their dose levels low, middle and
high. The number of hidden co-clusters for this dataset is 2
estimated via gap statistic (Figure S1). The LPHVM generates
co-clusters of the PPAR signaling pathway dataset which is
shown in Figure 3B. The average joint probabilities of gene-
DCC within co-clusters are 0.0004471087 and 0.0003704091
where co-cluster-1 has the larger value than the co-cluster-
2. Therefore, co-cluster-1 is the biomarker co-cluster of
biomarker genes and their regulatory DCCs. The non-regulated
genes and non-regulatory DCCs consist in co-cluster-2. The
detail co-clustering results are given in the Table S3. The
biomarker genes and their regulatory DCCs in co-cluster-1 are
given in Table 2. Additionally, up/down-regulated biomarker
genes corresponding to their regulatory DCCs are depicted
in the Figure S7B For the same dataset the toxygates co-
clustering result using HC given in Figure S6 which shows that
acetaminophen-middle and methapyrilene-low are incorrectly
co-clustered whereas our proposed method properly co-cluster
the DCCs (Table 2) according to the statement of Kiyosawa
et al. (2006). Biomarker genes in co-cluster-1 are functionally
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annotated via DAVID the results are given in the Tables S7,
S8. WY14643-High, WY14643-Middle and clofibrate-High are
the top most DCCs for regulating PPARs related biomarker
genes for detail see Table 4. Top 20 (ranked) relationships
between biomarker genes and their regulatory DCCs are given
in Table 5 from where it is observed that Ehhadh, Cyp4a1,
Acaa1a, Plin5 etc. are the most important biomarker genes
and WY14643_High, clofibrate_High, benzbromarone_High,
aspirin_High etc. are their important regulatory DCCs in PPAR
signaling pathway. The detail results of these relationships are
given in the Table S13.

DISCUSSION AND CONCLUSIONS

Identification of biomarker genes and their regulatory DCCs is
one of the most important tasks in the toxicogenomics studies
as well as in drug design and development as mentioned before.
In this article, we have proposed a robust co-clustering approach
based on logistic probabilistic hidden variable model (LPHVM)
to detect important biomarker genes and their regulatory DCCs.
The proposed LPHVM approach is robust against outlying gene
expressions and more flexible and effective than the application
of one-way classical clustering approaches (e.g., k-means, fuzzy,
HC, etc.) for co-clustering. The proposed method produces
robust results by using the logistic transformation of fold-change
gene expression data into the conventional PHVMapproach. The
logistic transformation reduces unusual/outlying observations
into the reasonable space without changing the original hidden
patterns of genes and DCCs in the dataset. Thus the proposed
LPHVM approach produces robust results.

We investigated the performance of the proposed LPHVM
method in a comparison with the traditional PHVM and
Toxygates online computational platform using simulated
and real life TGP gene expression data, respectively. The
simulation results showed that the proposed method improves
the performance over the conventional PHVM in presence
of outlying observations; otherwise, they perform equally. We
also demonstrated the performance of the proposed method
in a comparison with the online computational platform
“Toxygates” using the real life pathway based fold change gene

expression datasets collected from the “Toxygates” database. We
observed that three DCCs (glibenclamide-low, perhexilline-low,
and hexachlorobenzene-medium) for glutathione metabolism
pathway dataset as well as two DCCs (acetaminophen-
medium and methapyrilene-low) for PPAR signaling pathway
dataset were incorrectly co-clustered by the Toxygates online
platform, while only one DCC (hexachlorobenzene-low) for
glutathione metabolism pathway was incorrectly co-clustered by
the proposed LPHVM approach. Our findings from the real
life data analysis are also supported by the other findings in
the literature (Kiyosawa et al., 2006; Nyström-Persson et al.,
2013). Thus the proposed LPHVM outperform over the classical
PHVM and “Toxygates” online coputational platform to detect
toxicogenomic biomarkers and their regulatory DCCs.
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Despite Bisphenol-A (BPA) being subject to extensive study, a thorough understanding
of molecular mechanism remains elusive. Here we show that using weighted
gene correlation network analysis (WGCNA), which takes advantage of a graph
theoretical approach to understanding correlations amongst genes and grouping
genes into modules that typically have co-ordinated biological functions and regulatory
mechanisms, that despite some commonality in altered genes, there is minimal overlap
between BPA and estrogen in terms of network topology. We confirmed previous
findings that ZNF217 and TFAP2C are involved in the estrogen pathway, and are
implicated in BPA as well, although for BPA they appear to be active in the absence of
canonical estrogen-receptor driven gene expression. Furthermore, our study suggested
that PADI4 and RACK7/ZMYNDB8 may be involved in the overlap in gene expression
between estradiol and BPA. Lastly, we demonstrated that even at low doses there
are unique transcription factors that appear to be driving the biology of BPA, such as
SREBF1. Overall, our data is consistent with other reports that BPA leads to subtle gene
changes rather than profound aberrations of a conserved estrogen signaling (or other)
pathways.

Keywords: bisphenol A, estrogen, WGCNA, ZNF217, TFAP2C, ZMYND8, PADI4, SREBF1

INTRODUCTION

Bisphenol A (BPA) is an industrial chemical used in the manufacture of polycarbonate plastic
found in a number of consumer products such as thermal paper, canned foods and epoxy resins
(Rubin, 2011) – although many of these uses are being phased out (Zimmerman and Anastas,
2015). Amongst the general population, exposure to BPA is widespread, with very low levels of BPA
present in the majority of urinary samples taken in the general population (Calafat et al., 2008),
although serum levels are estimated to be lower (Teeguarden et al., 2013). Release of BPA to the
environment exceeds one million pounds per year (Rubin, 2011).

Bisphenol-A has been subjected to a high-level of scrutiny – “bisphenol A” returns over 11,500
abstracts in PubMed, with over 700 articles per year being published every year since 2013
(“Pubmed Bisphenol A, n.d.). Within HSDB (the Hazardous Substance Database), there are over 79
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peer-reviewed animal studies (TOXNET, n.d.). The CLARITY
study, a three generation chronic study with low-levels of BPA
used to mimic population exposures, involved 3,500 rats: while
it resulted in no revision of safety standards by the FDA, it still
failed to bring about a consensus as to a safe level (Academics
Urge Caution in Interpreting Clarity-Bpa Results, n.d.). Despite
the overwhelming amount of data, the mechanism(s) by which
BPA may exert adverse effects remains unclear, nor is there a
widely agreed upon endpoint on which to base a safe dose.

Bisphenol-A was presumed to have potentially estrogenic
activity, as well as potential carcinogenicity, based on its
structural similarity to DES (Diethylstilbestrol) and other
synthetic estrogens, as well as appearing to trigger gene
expression similar to estrogen receptor agonists, despite its
relatively low binding affinity for estrogen receptors (LaPensee
et al., 2009). Two different hypotheses have been put forward
to explain this discrepancy: one, BPA may bind to different
domains of ESR1 or ESR2 and recruit different co-regulators
(Safe et al., 2002), or alternatively, BPA may exert its effects
through non-classical estrogen receptors, such as membrane-
bound ER (GPR30) (LaPensee et al., 2009) or ERRγ (ERRG)
(Okada et al., 2008), which is one of several “orphan” receptors
that are classified as estrogen-related receptors (Horard and
Vanacker, 2003). The question of BPA’s ultimate molecular
initiating event is not academic – on the presumption that BPA’s
effects are mediated via estrogen receptors, several alternatives
were proposed, such as Bisphenol F and Bisphenol S, but both
compounds have proven equally problematic (Rochester and
Bolden, 2015).

In our previous work for the Mapping the Human Toxome
project (Kleensang et al., 2014; Bouhifd et al., 2015), we
demonstrated that using non-inferential statistical methods that
did not depend on existing annotations such as IDEA (Pendse
et al., 2017) and WGCNA (Maertens et al., 2015) offered a
powerful method to untangle possible regulatory mechanisms
and providing insight into possible Pathways of Toxicity
compared to either inferential-based methods or approaches
such as pathway enrichment analysis that depend exclusively on
annotations. Building upon our previous work using WGCNA
applied to in vitro transcriptomic data to more fully understand
the transcription factors that are driving the biology of estradiol
(Pendse et al., 2017), we used WGCNA to examine a previously
published transcriptomic dataset (Shioda et al., 2013). Briefly,
Shioda et al. (2013) aimed to study the sensitivities of estrogen
responsive genes to various endocrine disrupting chemicals
(EDCs) based on the transcriptomic profile of MCF-7 cells
exposed to either estrogen or several xenoestrogens (including
BPA) over a dose-response curve ranging from picomolar to
micromolar concentrations for a 48 h time period. Based on their
analysis, they found that a gene signature of “estrogen-responsive
genes” allowed the estrogenic substances to be ranked in terms
of potency. Additionally, the heat map of BPA-inducible genes
demonstrated a weak transcriptional activation at very low BPA
concentration as well as a strong peak at high concentration.
However, BPA has differences as well as similarities to estrogen
in terms of gene signatures: therefore, we sought to explore
specifically the differences between estrogen and BPA as well as

the differences between low-dose BPA and high-dose BPA for
possible regulatory mechanisms.

Our analysis shows that while there is substantial overlap
between genes altered by BPA and estrogen, which might imply
that BPA is indeed “estrogenic,” there are important differences
in network topology as well as biological function, and that the
overlap appears to be driven by transcription factors such as
ZNF217, TFAP2C, PADI4, and RACK7/ZMYND8 rather than
the estrogen receptor per se. Furthermore, BPA (even at the
lower end of the dose response curve - defined here as less than
12.5 µM) has pathways that are likely not mediated by estrogen
receptors, but instead by other transcription factors, such as
SREBF1. Moreover, our data is consistent with other reports that
BPA leads to subtle, diffuse gene changes that are comparatively
difficult to capture with inferential methods, and that low-dose
BPA has distinct effects compared to higher doses.

MATERIALS AND METHODS

Data
Dataset GSE50705, a comprehensive analysis of estrogen and
xenoestrogen dose-response curves on MCF-7 cells after 48 h
of exposure, was downloaded from GEO via GEOQuery (Davis
and Meltzer, 2007) as normalized data and all analyses were
performed with R/Bioconductor (Gentleman et al., 2004).

Weighted Gene Correlation Network
Analysis
A WGCNA network (Langfelder and Horvath, 2007) was
generated for several subsets of the data: Estrogen (n = 36),
BPA (n = 44), and low dose BPA (n = 32), as well as a
consensus network for estrogen and BPA together (n = 80) using
the 10,000 most highly expressed genes for each subset of the
data as determined by rank means expression, the approach
in Maertens et al. (2015); consensus networks and module
statistics followed overall the approach in Langfelder et al.
(2008). Briefly, the network was derived based on a signed
Spearman correlation using a β of 10 as a weight function.
The topological overlap metric (TOM) (Yip and Horvath, 2007)
was derived from the resulting adjacency matrix, and was used
to cluster the modules using the blockwiseModules function
(blockwiseConsensusModules, for the consensus modules) and
the dynamic tree cut algorithm (Langfelder et al., 2008) with a
height of 0.25 and a deep split level of 2, a reassign threshold of
0.2 and a minimum module size of 30 (100 for the consensus
network). The eigenmodules— essentially the first principal
component of the modules, which can be used as a “signature” of
the modules gene expression —were then correlated with dose,
and each module that was correlated with the dose-response
curve with a p-value < 0.01 (p-value < 0.05 for the consensus
network) was considered statistically significant.

Transcription Factor Analysis
All statistically significant modules were analyzed in EnrichR
(Chen et al., 2013) using the CHEA dataset (Lachmann et al.,
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2010) restricted to MCF-7/10 cells –as well as the ARCHS4
TF-Coexpression dataset with an adjusted p-value less than 0.01
based on Fisher’s exact test.

Functional Annotation Analysis
Module “hubs” were defined as having high-ranking kME (which
ranks the connectivity of genes) within the module and predicted
as high-degree within the STRING database (Szklarczyk et al.,
2017) of protein–protein interactions. The three highest ranking
modules were analyzed in STRING for the enrichment of
predicted protein interactions as well as functional annotation
via GO Biological Process and Molecular Function. All analysis
with STRING was done with medium stringency settings,
and included all possible interactions (text-mining, database,
experiments, co-expression, neighborhood, gene fusion, and co-
occurrence).

TCGA Data
Expression and methylation data for FIZ1 was correlated with
clinical attributes (estrogen receptor, progesterone receptor,
and solid tumor vs. normal vs. metastatic tumor) using
MEExpress (Koch et al., 2015) based on the TCGA BRCA
dataset.

RESULTS

Consensus Network Analysis Indicates
Minimal Overlap Between Estrogen and
BPA
We began by analyzing the dose-response curve of the BPA
and estrogen dataset combined using WGCNA (which takes
advantage of correlations amongst genes and groups genes into
modules using network topology) to look for a “consensus
network”-a common pattern of genes that are correlated in all
conditions. The consensus network identified (Figure 1) had
clearly delineated modules, and the modules identified were
significantly correlated with both estrogen (Figure 2) and BPA
(Figure 3). However, estrogen clearly had a stronger signal
in comparison to BPA and quite possibly overwhelmed the
signal from BPA. More strikingly, however, the majority of
modules in the consensus analysis when analyzed for correlation
with both BPA and estrogen showed virtually no similarity –
most modules had opposite directions of correlation, and of
the few modules with similar correlations, the coefficient of
correlation was very weak – only one module (“yellow”) was
significant with a p-value < 0.05 (Table 1), indicating that
while there may be some overlap in genetic signatures, from
a network topology perspective there is minimal conservation.
When analyzed for transcription factors against the CHEA
dataset – a collection of ChIP-chip, ChIP-seq, ChIP-PET, and
DamID studies collected into a database to infer transcriptional
regulation (Lachmann et al., 2010) – the common module was
enriched for E2F1, ZNF217, and RACK7, but not ESR1 or ESR2
(Table 2).

Estrogen and BPA Network Overlap With
Transcription Factors, Including ESR1
and ESR2, but With Different Network
Topologies and Different Biological
Processes
Next, we derived the de novo networks individually for the
entire dose-response curve of estrogen and BPA to examine
the network topology, common hubs, and biological role of the
modules in each network separately. Within the estrogen network
(Supplementary Figure 1A), there was one large module highly
correlated with estrogen dose (“turquoise”) (Table 3), which was
also enriched for ESR1 and ESR2 in addition to E2F1, ZNF217,
TFAP2C amongst others (Table 4); furthermore, ESR1 was a hub
within the module, and the module was predominately enriched
with terms related to cell-cycle as well as poly(A) RNA binding
(Supplementary Table 1).

In comparison, the top module correlated with BPA dose
(“lightcyan1”) (Supplementary Figure 1B) (Table 5), was a
relatively small module not enriched for any transcription factors,
however, SSR1 (Signal Sequence Receptor Subunit 1) was the top
hub; annotation analysis revealed that the module was enriched
for genes in the GO category of “response to endoplasmic
reticulum stress” and “endoplasmic reticulum unfolded protein
response” (p-value of 2.93E-17 and 2.02E-12, respectively)
(Supplementary Table 1). The second module correlated with
dose (“royal blue”) was enriched for ESR1 and ESR2 genes
(Table 6), however, neither ESR1 nor ESR2 was present in the
module (or any module correlated positively or negatively with
dose) and instead the main hub was TOP2A (Topoisomerase
IIA). The module had a weak over-representation of genes
involved in development (p-value 0.00416) and cytoskeleton
organization (p-value 0.0155) (Supplementary Table 1). The
other module enriched for ESR1 and ESR2 genes (“dark gray”)
was also annotated to “response to unfolded protein” (p-value of
9.52E-05) (Supplementary Table 1).

Low-Dose BPA Network Shows No Enrichment of
ESR1 or ESR2 Genes
It has been speculated that BPA at low doses has fundamentally
different effects than at high doses; in the original study of the
dataset, the authors detected a weak, but distinct, transcriptional
activity peak at low doses. Therefore, we restricted the BPA
network to doses below 12.5 µM (leaving a highest dose
of 6.25 µM, and most of the dose-response curve in the
nanomolar/picomolar range) and calculated a network specific
for this lower dose range. Despite the smaller sample size, the
network still produced several modules that were significantly
correlated with dose (Supplementary Figure 1C and Table 7).
This low-dose BPA network shows consistent transcription
factors (ZNF217, TFAP2C, RACK7/ZMYND8, and PADI4) with
the larger BPA network as well as the estrogen network, but
no modules were enriched for genes with ESR1 or ESR2 with a
p-value cut-off of < 0.01 (Table 8).

The module with the highest correlation with dose
(“turquoise”) was comparatively dense for predicted protein-
protein interactions (p-value of < 1.0e-16, average node
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FIGURE 1 | Consensus network from BPA and Estrogen dose-response curve. Gene expression similarity is determined using a pair-wise weighted correlation
metric, and clustered according to a topological overlap metric into modules; assigned modules are colored on bottom, gray genes are unassigned to a module.

degree 10.3) as well as genes related to cellular macromolecule
metabolic process and poly(A) RNA binding (p-value of 1.58E-
16 and 2.17eE-18, respectively) (Supplementary Table 1) in
contradistinction to the estrogen network, where the dominant
module was enriched overwhelmingly with cell-cycle genes.
Moreover, the module included both ZNF217 and TFAP2C, but
neither ESR1 nor ESR2 were in the module, much less hubs. The
second module correlated with dose (“Dark Green”) showed no
enrichment for transcription factors, although it was enriched
for protein–protein interactions and the molecular function
“enzyme binding”; the third module (“dark red”), also strongly
correlated with dose, showed no enrichment for transcription
factors or protein–protein interactions, though it was weakly
enriched for the KEGG pathway Insulin Signaling (p-value
0.0028); this module may simply be an artifact, reflect diffuse
alterations that are difficult to detect, or an unknown regulatory
mechanism. An additional fairly large module correlated with
dose (“brown”) was enriched for both E2F1 and PADI4, strongly
enriched for protein-protein interactions (p-value < 1.0E-16,
average node degree 6.56) and as well as cellular metabolic
process (p-value 1.32E-10) and poly(A) RNA binding (p-value
2.5E-16) (Supplementary Table 1); but, also in contrast to the
estrogen network, was not enriched for cell-cycle genes.

ZNF217 has previously been shown by our work (Pendse et al.,
2017) and others (Frietze et al., 2014) to be a critical component
of estrogen signaling and an important prognostic factor for
breast cancer (Vendrell et al., 2012). Similarly, TFAP2C is known
to modulate ESR1 and GPR30 expression, and attenuate the
expression of several estrogen-targeted genes (Woodfield et al.,
2007). Given the presence of both ZNF217 and TFAP2C in the
network as well as the strong enrichment genes targeted by these

transcription factors, this suggests that these genes are indeed
central to mediating BPAs phenotypic effects; however, our study
shows little evidence that they are in exerting their effect in
tandem with ESR1 or ESR2.

Moreover, both ZNF217 and TFAP2C were shown
independently to be altered by bisphenol A in a rat seminiferous
tubule culture model (Ali et al., 2014). The same study also
showed alterations (albeit subtle) in PADI4 and RACK7 (official
gene symbol: ZYMND8) mRNA as well as RACK7/ZMYND8
methylation; neither of these genes were in our dataset so
their role in observed changes remains speculative. However,
RACK7/ZYMND8 binds a large set of active enhancers, including
almost all “super-enhancers,” and is therefore expected to have
sweeping transcriptional effects (Shen et al., 2016). Although
little is known about its role in breast cancer, it is thought to
inhibit HIF-dependent breast-cancer progression (Chen et al.,
2018). PADI4 is known to be implicated in cancer and is thought
to respond to estrogen-simulation in MCF-7 cells through both
genomic and non-genomic mechanisms (Dong et al., 2007). In
breast cancer specifically, it is implicated in the ELK1/C-Fos
pathway (Zhang et al., 2011). Moreover, BPA was shown to
increase protein levels of PADI4 via a reactive oxygen species
mechanism in neuroblastoma cells (Park et al., 2012).

Low-Dose BPA Network Had Unique
Transcription Factors Not Present in the
Estrogen Dataset
To further delineate possible transcription factors unique to
BPA signaling compared to estrogen, we examined the list of
genes in all modules statistically significantly associated with the
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FIGURE 2 | Consensus network modules correlated with estrogen dose using the eigenmodule (the first principal component of the module). Correlation coefficient
along with p-value in parenthesis underneath; color-coded according to correlation coefficient (legend at right).

low-dose BPA network that were not present in the estrogen
network, a total of 1,901 genes. Analyzed against the CHEA
dataset, the genes were again enriched for RACK7/ZMYND8,
in addition to ELK1 and HIF1A (Supplementary Table 2). In

order to expand our search for transcription factors that may
not have been studied in MCF-7 cells in the CHEA data set,
we also analyzed the list of genes for enrichment against the
ARCHS4 database (Lachmann et al., 2018), which correlates
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FIGURE 3 | Consensus network modules correlated with BPA dose using the eigenmodule (the first principal component of the module). Correlation coefficient
along with p-value in parenthesis underneath; color-coded according to correlation coefficient (legend at right).

TABLE 1 | Consensus network modules associated with BPA and estrogen.

Module Correlation p-value

Red −0.00025 1

Green −0.092 0.4

Purple NA NA

Black NA NA

Brown NA NA

Magenta NA NA

Blue NA NA

Yellow 0.24 0.03

Pink 0.18 0.1

Gray NA NA

Consensus network modules were correlated against both estrogen and BPA;
NA indicates that the modules had different directions of correlation in estrogen
compared to BPA.

TABLE 2 | Enriched transcription factors in conserved module in consensus
network.

Transcription factor Adjusted p-value

E2F1 0.000003501

ZNF217 0.000004066

RACK7/ZMYNDB 0.005142

Transcription factors significantly enriched in the conserved module (“yellow”)
between BPA and estrogen.

transcription factor expression against gene expression in a
combined database of over 20,000 RNASeq samples. Of the top
50 transcription factors identified as significantly correlated with
the gene list, 18 were also present in the low-dose BPA network
(Table 9). The highest-ranking transcription factor, FIZ1, is zinc-
finger protein with a largely unknown biological role (Wolf and

TABLE 3 | Estrogen modules correlated with dose

Module Correlation p-value

Turquoise 0.710543783 1.73E-06

Dark Green 0.667630497 1.18E-05

Dark Red 0.548734271 6.42E-04

Light Yellow 0.470241047 4.36E-03

Brown 0.45994764 5.44E-03

Salmon 0.443256223 7.66E-03

Gray60 −0.47528565 3.91E-03

Blue −0.5389571 8.36E-04

Yellow −0.55352085 5.62E-04

Black −0.63950993 3.54E-05

Midnight Blue −0.73602275 4.69E-07

All modules correlated with estrogen dose-response curve with a p-value less than
0.01.

Rohrschneider, 1999) - it has a relatively poor literature base,
with only 8 citations in PubMed. However, FIZ1 expression in
breast cancer is statistically associated with progesterone receptor
status, estrogen receptor status, and sample subtype, and it
undergoes extensive CpG-island methylation (Supplementary
Figure 2), and it is therefore an intriguing candidate for further
study. The second highest-ranking transcription factor, SREBF1
is comparatively better characterized: it is known to be central
to lipid homeostasis, regulating the LDL receptor gene as well as
related fatty acid and cholesterol synthesis genes. Furthermore,
SREBF1 mRNA was identified as upregulated in adipocytes by
BPA (Boucher et al., 2014). Neither SREBF1 nor FIZ1 were
present in the estrogen dataset, and SREBF1- and FIZ1-correlated
genes were not enriched in the subset of estrogen-only genes.
It is therefore plausible that these two transcription factors are
more central to BPAs effects than estrogen, however, because
enrichment for transcription factors motifs/regulated genes in
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TABLE 4 | Enriched transcription factors in estrogen modules.

Module TF Adjusted p-value

Black RACK7 0.005152

Blue ZNF217 2.79E-14

PADI4 1.10E-08

RACK7 8.23E-07

TFAP2C 0.00001662

GATA3 0.00004515

FOXM1 0.000373

E2F1 0.000674

Turquoise E2F1 1.43E-20

ESR1 7.21E-10

ESR2 2.12E-09

PADI4 1.34E-07

RACK7 7.39E-07

GATA3 0.0000105

RUNX1 0.0003015

ZNF217 0.0006679

TFAP2C 0.0008849

ELK1 0.001171

FOXM1 0.001239

Yellow PADI4 0.001012

RUNX1 0.001601

All statistically significant modules correlated with dose, with enriched transcription
factors. Modules that did not have TFs with an adjusted p-value ≤ 0.01 were
excluded (Dark Red, Dark Green, Salmon, Midnight Blue, Gray60).

TABLE 5 | BPA modules associated with dose.

Module Correlation p-Value

Lightcyan 1 0.725175961 6.17E-15

Royal Blue 0.423995959 5.84E-05

Dark Gray 0.390795349 2.38E-04

Light Yellow 0.383058412 3.23E-04

Ivory −0.372076037 4.92E-04

Light Cyan −0.291083662 7.23E-03

Green −0.280875808 9.65E-03

Gray60 −0.279474408 1.00E-02

All BPA modules correlated with estrogen dose-response curve with a p-value less
than 0.01.

any gene list often produce false-positives, understanding their
role would require further study.

DISCUSSION

Estrogen signaling is unique amongst nuclear receptors in
that substantial number of the genes altered by estrogen do
not have canonical estrogen response elements (Miller et al.,
2017) – estrogen signaling takes place within a transcriptomic
and epigenomic context that markedly influences receptor
activation. Our examination of the estrogen dose response
curve network both confirmed several of the transcription
factors identified previously, such as E2F1, ZNF217 and
TFAP2C, as well as suggested other transcriptional factors such

TABLE 6 | Enriched transcription factors in BPA modules.

Module TF Adjusted p-value

Dark Gray ESR1 1.32E-16

ESR2 2.74E-08

ZNF217 0.000002163

GATA3 0.00001401

Green ZNF217 1.59E-11

RACK7 0.00006931

ESR2 0.0001032

GATA3 0.0002586

TFAP2C 0.00055

ESR1 0.002135

PADI4 0.002604

FOXM1 0.003341

Light Cyan TFAP2C 0.002078

GATA3 0.002583

Royal Blue ZNF217 5.24E-08

ESR2 7.76E-07

ESR1 0.000005588

ARNT 0.00005395

AHR 0.0002705

GATA3 0.002178

All statistically significant modules correlated with dose, with enriched transcription
factors. Modules that did not have TFs with adjusted p-value ≤ 0.01 were excluded
(LightCyan1, Ivory, Light Yellow, Plum, Gray60).

TABLE 7 | Low-dose BPA modules associated with dose.

Module Correlation p-value

Turquoise 0.71054 5.21E-06

Dark Green 0.66763 2.99E-05

Dark Red 0.54873 1.15E-03

Light Yellow 0.47024 6.61E-03

Brown 0.45995 8.08E-03

Salmon 0.44326 1.11E-02

Grey60 −0.4753 5.98E-03

Blue −0.539 1.46E-03

Yellow −0.5535 1.02E-03

Black −0.6395 8.13E-05

Midnight Blue −0.736 1.58E-06

All low-dose BPA modules correlated with estrogen dose-response curve with a
p-value less than 0.01.

as PADI4 and RACK7/ZYMND8 that may impact estrogen
signaling.

Our study is consistent with other findings that the
assumption that BPA works exclusively or even predominantly
on canonical ESR1 or ESR2 gene regulation may be misleading
or an oversimplification (Delfosse et al., 2012; MacKay and
Abizaid, 2018). To be sure, one can find gene patterns similar
to those found in estrogen-induced cells, but the leap from
that observation to the presumption that such changes are
estrogen-mediated may not be warranted. While this study
cannot determine conclusively the ultimate chain of events that
leads from the molecular initiating event to the phenotypic
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TABLE 8 | Enriched transcription factors in low-dose BPA modules.

Module TF Adjusted p-value

Black RACK7 1.78E-07

TFAP2C 0.00001339

RUNX1 0.00004104

Blue ELK1 0.00000437

ZNF217 6.14E-07

PADI4 0.000007639

FOXM1 9.66E-08

HIF1A 0.005915

AHR 0.00208

E2F1 0.002221

ARNT 0.005915

RUNX1 0.008124

GATA3 0.008124

Brown E2F1 0.002459

PADI4 0.006908

Turquoise ZNF217 0.00000179

RACK7 0.00001912

GATA3 0.00002574

PADI4 0.0001018

FOXM1 0.0001703

RUNX1 0.0004958

E2F1 0.001544

Yellow E2F1 6.34E-18

PADI4 0.003362

RACK7 0.00334

FOXM1 0.009047

All statistically significant modules correlated with dose, with enriched transcription
factors. Modules that did not have TFs with adjusted p-value ≤ 0.01 were excluded
(Light Yellow, Salmon, Gray60, Dark Green, Midnight Blue, Dark Red).

consequences, it does suggest some hypotheses that are more
probable. The lack of overlap in the consensus network indicates
that despite similarity of genes, there is minimal conservation
of network topology, and the one conserved module was not
enriched for ESR1 or ESR2 genes. In networks drawn separately
from dose-response curves for estrogen and BPA, the substantial
differences in network topology, the absence of ESR1 as a hub
gene in the BPA network, and the differences in biological
function of the modules suggest that even at high-doses, BPAs
effects are fundamentally different than estradiol. The lack of
estrogen receptor target genes in the low dose BPA network
in the presence of a clear signature of other transcription
factors suggests that at low doses BPA’s effects are driven
by mechanisms other than direct estrogen receptor activation.
Additionally, regardless of molecular initiating event, assessing
BPAs dose-response by looking at estrogen gene-signatures may
miss interesting and important biology, such as the likely role of
SREBF1. Furthermore, our study is consistent with other findings
that BPA’s effects are subtle and phenotypic changes likely reflect
modest effects at multiple different points (Porreca et al., 2016)
and that analyzing the effects of low-dose BPA can reveal effects
that are obscured at higher doses (Shioda et al., 2013). This does
not necessarily lead to a “non-monotonic” dose response curve

TABLE 9 | Transcription factors unique to low-dose BPA network.

Transcription factor Adjusted p-value

HSF1 4.54E-32

MBD3 4.72E-30

ZNF787 4.54E-32

ZNF205 4.76E-29

HMG20B 1.48E-29

REPIN1 4.76E-29

FIZ1 4.76E-29

SLC2A4RG 1.48E-29

SREBF1 2.14E-28

ZNF598 9.61E-28

THAP4 1.75E-26

SNAPC4 4.29E-27

ZNF768 1.75E-26

E4F1 6.78E-26

MRPL28 6.78E-26

TUT1 2.67E-25

ERF 2.67E-25

CENPB 6.78E-26

KLF16 2.67E-25

WIZ 1.98E-23

ANAPC2 1.17E-24

ZFP41 1.98E-23

DVL2 6.94E-23

ZNF512B 1.98E-23

SRF 1.98E-23

ELK1 6.94E-23

ZNF282 6.94E-23

AKAP8L 2.65E-22

ZBTB45 6.94E-23

NCOR2 6.94E-23

CIZ1 2.65E-22

TRMT1 2.65E-22

CIC 6.94E-23

NR2F6 1.01E-21

ZNF687 2.65E-22

MTA1 3.81E-21

RBM10 1.01E-21

GATAD2A 1.01E-21

ZNF653 1.01E-21

ZNF777 3.81E-21

EDF1 3.81E-21

PRR12 3.81E-21

SIX5 5.23E-20

TIGD5 5.23E-20

MTA2 1.43E-20

MAZ 1.43E-20

CCDC71 1.43E-20

MLLT1 1.43E-20

SF3A2 2.04E-19

GMEB2 5.23E-20

Genes unique to low-dose BPA compared to estrogen were analyzed against the
ARCHS4 for potential transcription factor enrichment; all the transcription factors
also present in the dataset were identified in yellow.
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– this could be due to technical reasons, or higher-doses could
cause non-specific changes that are the result of cellular stress,
as evidenced by the identification of modules associated with
unfolded protein response. It does, however, point to a need to
consider the doses chosen for an in vitro study carefully and to
not presume linear effects.

This study is certainly not a definitive study of BPA molecular
mechanisms: our conclusions cannot confidently be extrapolated
to other tissue types, as BPA may have tissue specific effects;
MCF-7 cells are prone to artifacts (Kleensang et al., 2016); and
our study did not focus on epigenetic mechanisms which are
speculated as significantly underpinning much of the observed
adverse events seen with BPA exposure, especially at a low
dose (Singh and Li, 2012). While using the CHEA dataset and
restricting candidate transcription factors to those observed in
MCF-7 cells eliminates many of the false-positives intrinsic to
such approaches, it also limits findings to those transcription
factors that have been studied, and this may miss some important
biology. Extending our analysis with the ARCHS4 database added
interesting candidates, but all correlation-based approaches must
be treated with caution and viewed as “hypothesis-generating,”
and all exploratory data analysis techniques such as WGCNA
require further targeted studies to confirm suggested molecular
networks.

Nonetheless, our study does indicate that transcriptomics,
especially given a high-dimensional dataset and the use
of non-inferential methods, can likely aid toxicologists
in having a better understanding of probable molecular
targets as well as the complexity of perturbed networks -
clearly, understanding BPAs effects will require a systems
level approach (Hartung et al., 2017) as well as better
characterization of genes that are not as yet confidently
mapped as to biological function. More generally speaking, this
points to the pitfall of trying to design “greener” substitutes
(Maertens et al., 2014; Maertens and Hartung, 2018) in the

absence of a clear, comprehensive understanding of molecular
mechanism.

AUTHOR CONTRIBUTIONS

AM: main author of the paper. VT: support programming and
data analysis. AK: planned the work and revised the manuscript.
TH: mentoring, revision of the manuscript, and PI Human
Toxome project laying the conceptual ground.

FUNDING

This work was supported by an NIH Transformational Research
Grant, “Mapping the Human Toxome by Systems Toxicology”
(RO1 ES 020750). VT was supported by NIEHS training grant
(T32 ES007141). This work was also supported by the EU-
ToxRisk project (An Integrated European “Flagship” Program
Driving Mechanism-Based Toxicity Testing and Risk Assessment
for the 21st Century) funded by the European Commission under
the Horizon 2020 program (Grant Agreement No. 681002).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2018.00508/full#supplementary-material

FIGURE S1 | (A) Estrogen and (B) BPA Network dendrogram.

FIGURE S2 | Methylation pattern for FIZ1 in BRCA TCGA data set.

TABLE S1 | Protein-protein interaction and enrichment from STRING database.

TABLE S2 | Transcription factors for genes present only in low-dose BPA network.

REFERENCES
Academics Urge Caution in Interpreting Clarity-Bpa Results (n.d.). Chemical

Watch. Available at: https://chemicalwatch.com/64449/academics-urge-
caution-in-interpreting-clarity-bpa-results [accessed July 13, 2018].

Ali, S., Steinmetz, G., Montillet, G., Perrard, M., Loundou, A., Durand, P.,
et al. (2014). Exposure to low-dose bisphenol A impairs meiosis in the rat
seminiferous tubule culture model: a physiotoxicogenomic approach. PLoS One
9:e106245. doi: 10.1371/journal.pone.0106245

Boucher, J. G., Husain, M., Rowan-Carroll, A., Williams, A., Yauk, C. L., and
Atlas, E. (2014). Identification of mechanisms of action of bisphenol a-induced
human preadipocyte differentiation by transcriptional profiling. Obesity 22,
2333–2343. doi: 10.1002/oby.20848

Bouhifd, M., Andersen, M. E., Baghdikian, C., Boekelheide, K., Crofton, K. M.,
Fornace, A. J., et al. (2015). The human toxome project. ALTEX 32:112.
doi: 10.14573/altex.1502091

Calafat, A. M., Ye, X., Wong, L., Reidy, J. A., and Needham, L. L.
(2008). Exposure of the U.S. population to bisphenol A and 4-tertiary-
octylphenol: 2003-2004. Environ. Health Perspect. 116, 39–44. doi: 10.1289/ehp.
10753

Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V.,
et al. (2013). Enrichr: interactive and collaborative HTML5 gene list
enrichment analysis tool. BMC Bioinformatics 14:128. doi: 10.1186/1471-2105-
14-128

Chen, Y., Zhang, B., Bao, L., Jin, L., Yang, M., Peng, Y., et al. (2018). ZMYND8
acetylation mediates HIF-dependent breast cancer progression and metastasis.
J. Clin. Invest. 128, 1937–1955. doi: 10.1172/JCI95089

Davis, S., and Meltzer, P. S. (2007). GEOquery: a bridge between the Gene
Expression Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846–1847.
doi: 10.1093/bioinformatics/btm254

Delfosse, V., Grimaldi, M., Pons, J., Boulahtouf, A., le Maire, A., Cavailles, V.,
et al. (2012). Structural and mechanistic insights into bisphenols action provide
guidelines for risk assessment and discovery of bisphenol A substitutes.
Proc. Natl. Acad. Sci. U.S.A. 109, 14930–14935. doi: 10.1073/pnas.120357
4109

Dong, S., Zhang, Z., and Takahara, H. (2007). Estrogen-Enhanced Peptidylarginine
Deiminase Type IV Gene (PADI4) Expression in MCF-7 Cells Is Mediated
by Estrogen Receptor-$\alpha$-Promoted Transfactors Activator Protein-1.
Nuclear Factor-Y and Sp1. Mol. Endocrinol. 21, 1617–1629. doi: 10.1210/me.
2006-0550

Frietze, S., O’Geen, H., Littlepage, L. E., Simion, C., Sweeney, C. A., Farnham, P. J.,
et al. (2014). Global analysis of ZNF217 chromatin occupancy in the breast
cancer cell genome reveals an association with ERalpha. BMC Genomics 15:520.
doi: 10.1186/1471-2164-15-520

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S.,
et al. (2004). Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol. 5:R80. doi: 10.1186/gb-2004-5-
10-r80

Frontiers in Genetics | www.frontiersin.org 9 November 2018 | Volume 9 | Article 50897

https://www.frontiersin.org/articles/10.3389/fgene.2018.00508/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2018.00508/full#supplementary-material
https://chemicalwatch.com/64449/academics-urge-caution-in-interpreting-clarity-bpa-results
https://chemicalwatch.com/64449/academics-urge-caution-in-interpreting-clarity-bpa-results
https://doi.org/10.1371/journal.pone.0106245
https://doi.org/10.1002/oby.20848
https://doi.org/10.14573/altex.1502091
https://doi.org/10.1289/ehp.10753
https://doi.org/10.1289/ehp.10753
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1172/JCI95089
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1073/pnas.1203574109
https://doi.org/10.1073/pnas.1203574109
https://doi.org/10.1210/me.2006-0550
https://doi.org/10.1210/me.2006-0550
https://doi.org/10.1186/1471-2164-15-520
https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1186/gb-2004-5-10-r80
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00508 November 9, 2018 Time: 17:10 # 10

Maertens et al. WGCNA Analysis of BPA Dose-Response

Hartung, T., FitzGerald, R. E., Jennings, P., Mirams, G. R., Peitsch, M. C., Rostami-
Hodjegan, A., et al. (2017). Systems toxicology: real world applications and
opportunities. Chem. Res. Toxicol. 30, 870–882. doi: 10.1021/acs.chemrestox.
7b00003

Horard, B., and Vanacker, J. (2003). Estrogen receptor-related receptors: orphan
receptors desperately seeking a ligand. J. Mol. Endocrinol. 31, 349–357.
doi: 10.1677/jme.0.0310349

Kleensang, A., Maertens, A., Rosenberg, M., Fitzpatrick, S., Lamb, J., Auerbach, S.,
et al. (2014). t4 workshop report: Pathways of Toxicity. ALTEX 31, 53–61.
doi: 10.14573/altex.1309261

Kleensang, A., Vantangoli, M. M., Odwin-DaCosta, S., Andersen, M. E.,
Boekelheide, K., Bouhifd, M., et al. (2016). Genetic variability in a frozen batch
of MCF-7 cells invisible in routine authentication affecting cell function. Sci.
Rep. 6:28994. doi: 10.1038/srep28994

Koch, A., De Meyer, T., Jeschke, J., and Van Criekinge, W. (2015). MEXPRESS:
visualizing expression, DNA methylation and clinical TCGA data. BMC
Genomics 16:636. doi: 10.1186/s12864-015-1847-z

Lachmann, A., Torre, D., Keenan, A. B., Jagodnik, K. M., Lee, H. J., Wang, L., et al.
(2018). Massive mining of publicly available RNA-seq data from human and
mouse. Nat.Commun. 9, 1366. doi: 10.1038/s41467-018-03751-6

Lachmann, A., Xu, H., Krishnan, J., Berger, S. I., Mazloom, A. R., and Ma’ayan, A.
(2010). ChEA: transcription factor regulation inferred from integrating
genome-wide ChIP-X experiments. Bioinformatics 26, 2438–2444. doi: 10.1093/
bioinformatics/btq466

Langfelder, P., and Horvath, S. (2007). Eigengene networks for studying
the relationships between co-expression modules. BMC Syst. Biol. 1:54.
doi: 10.1186/1752-0509-1-54

Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a
hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics
24, 719–720. doi: 10.1093/bioinformatics/btm563

LaPensee, E. W., Tuttle, T. R., Fox, S. R., and Ben-Jonathan, N. (2009). } %
The entry below contains non-ASCII chars that could not be converted %
to a LaTeX equivalent.). Bisphenol A at Low Nanomolar Doses Confers
Chemoresistance in Estrogen Receptor-$\alpha$–Positive and –Negative Breast
Cancer Cells. Environ. Health Perspect. 117, 175–180. doi: 10.1289/ehp.
11788

MacKay, H., and Abizaid, A. (2018). A plurality of molecular targets: The receptor
ecosystem for bisphenol-A (BPA). Horm. Behav. 101, 59–67. doi: 10.1016/j.
yhbeh.2017.11.001

Maertens, A., Anastas, N., Spencer, P. J., Stephens, M., Goldberg, A., and
Hartung, T. (2014). Green toxicology. ALTEX 31, 243–249. doi: 10.14573/altex.
1406181

Maertens, A., and Hartung, T. (2018). Green Toxicology-know early about and
avoid toxic product liabilities. Toxicol. Sci. 161, 285–289. doi: 10.1093/toxsci/
kfx243

Maertens, A., Luechtefeld, T., Kleensang, A., and Hartung, T. (2015). MPTP’s
pathway of toxicity indicates central role of transcription factor SP1. Arch.
Toxicol. 89, 743–755. doi: 10.1007/s00204-015-1509-6

Miller, M. M., McMullen, P. D., Andersen, M. E., and Clewell, R. A. (2017). Multiple
receptors shape the estrogen response pathway and are critical considerations
for the future of in vitro-based risk assessment efforts. Crit. Rev. Toxicol. 47,
564–580. doi: 10.1080/10408444.2017.1289150

Okada, H., Tokunaga, T., Liu, X., Takayanagi, S., Matsushima, A., and
Shimohigashi, Y. (2008). Direct evidence revealing structural elements essential
for the high binding ability of bisphenol A to human estrogen-related
receptor-gamma. Environ. Health Perspect. 116, 32–38. doi: 10.1289/ehp.
10587

Park, B., Rhee, D., and Pyo, S. (2012). Apoptotic mechanism of bisphenol a in
human neuroblastoma. FASEB J. 26.

Pendse, S. N., Maertens, A., Rosenberg, M., Roy, D., Fasani, R. A., Vantangoli,
M. M., et al. (2017). Information-dependent enrichment analysis reveals
time-dependent transcriptional regulation of the estrogen pathway
of toxicity. Arch. Toxicol. 91, 1749–1762. doi: 10.1007/s00204-016-
1824-6

Porreca, I., Ulloa Severino, L., D’Angelo, F., Cuomo, D., Ceccarelli, M., Altucci, L.,
et al. (2016). “Stockpile” of Slight Transcriptomic Changes Determines

the Indirect Genotoxicity of Low-Dose BPA in Thyroid Cells. PLoS One
11:e0151618. doi: 10.1371/journal.pone.0151618

Pubmed Bisphenol A (n.d.). PubMED. Available at: https://www.ncbi.nlm.nih.gov/
pubmed/?term = Bisphenol+ A [accessed January 7, 2018].

Rochester, J. R., and Bolden, A. L. (2015). Bisphenol and F: a systematic review and
comparison of the hormonal activity of bisphenol a substitutes. Environ. Health
Perspect. 123, 643–650. doi: 10.1289/ehp.1408989

Rubin, B. S. (2011). Bisphenol A: an endocrine disruptor with widespread exposure
and multiple effects. J. Steroid Biochem. Mol. Biol. 127, 27–34. doi: 10.1016/j.
jsbmb.2011.05.002

Safe, S. H., Pallaroni, L., Yoon, K., Gaido, K., Ross, S., and McDonnell, D. (2002).
Problems for risk assessment of endocrine-active estrogenic compounds.
Environ. Health Perspect. 110(Suppl. 6), 925–929. doi: 10.1289/ehp.02110s6925

Shen, H., Xu, W., Guo, R., Rong, B., Gu, L., Wang, Z., et al. (2016). Suppression of
enhancer overactivation by a RACK7-histone demethylase complex. Cell 165,
331–342. doi: 10.1016/j.cell.2016.02.064

Shioda, T., Rosenthal, N. F., Coser, K. R., Suto, M., Phatak, M., Medvedovic, M.,
et al. (2013). Expressomal approach for comprehensive analysis and
visualization of ligand sensitivities of xenoestrogen responsive genes. Proc. Natl.
Acad. Sci. U.S.A. 110, 16508–16513. doi: 10.1073/pnas.1315929110

Singh, S., and Li, S. S. (2012). Epigenetic effects of environmental chemicals
bisphenol A and phthalates. Int. J. Mol. Sci. 13, 10143–10153. doi: 10.3390/
ijms130810143

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M.,
et al. (2017). The STRING database in 2017: quality-controlled protein–
protein association networks, made broadly accessible. Nucleic Acids Res. 45,
D362–D368. doi: 10.1093/nar/gkw937

Teeguarden, J., Hanson-Drury, S., Fisher, J. W., and Doerge, D. R. (2013).
Are typical human serum BPA concentrations measurable and sufficient to
be estrogenic in the general population? Food Chem. Toxicol. 62, 949–963.
doi: 10.1016/j.fct.2013.08.001

TOXNET (n.d.). TOXNET Databases. Available at: https://toxnet.nlm.nih.gov/cgi-
bin/sis/search2/r?dbs + hsdb:@term + @DOCNO + 513[accessed July 11,
2018].

Vendrell, J. A., Thollet, A., Nguyen, N. T., Ghayad, S. E., Vinot, S., Bi\’eche, I.,
et al. (2012). ZNF217 is a marker of poor prognosis in breast cancer that drives
epithelial-mesenchyme transition and invasion. Cancer Res. 72, 3593–3606.
doi: 10.1158/0008-5472.CAN-11-3095

Wolf, I., and Rohrschneider, L. R. (1999). Fiz1, a novel zinc finger protein
interacting with the receptor tyrosine kinase Flt3. J. Biol. Chem. 274,
21478–21484. doi: 10.1074/jbc.274.30.21478

Woodfield, G. W., Horan, A. D., Chen, Y., and Weigel, R. J. (2007). TFAP2C
controls hormone response in breast cancer cells through multiple pathways of
estrogen signaling. Cancer Res. 67, 8439–8443. doi: 10.1158/0008-5472.CAN-
07-2293

Yip, A. M., and Horvath, S. (2007). Gene network interconnectedness and
the generalized topological overlap measure. BMC Bioinformatics 8:22.
doi: 10.1186/1471-2105-8-22

Zhang, X., Gamble, M. J., Stadler, S., Cherrington, B. D., Causey, C. P., Thompson,
P. R., et al. (2011). Genome-wide analysis reveals PADI4 cooperates with Elk-
1 to activate c-Fos expression in breast cancer cells. PLoS Genet. 7:e1002112.
doi: 10.1371/journal.pgen.1002112

Zimmerman, J. B., and Anastas, P. T. (2015). Chemistry. Toward substitution with
no regrets. Science 347, 1198–1199. doi: 10.1126/science.aaa0812

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Maertens, Tran, Kleensang and Hartung. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Genetics | www.frontiersin.org 10 November 2018 | Volume 9 | Article 50898

https://doi.org/10.1021/acs.chemrestox.7b00003
https://doi.org/10.1021/acs.chemrestox.7b00003
https://doi.org/10.1677/jme.0.0310349
https://doi.org/10.14573/altex.1309261
https://doi.org/10.1038/srep28994
https://doi.org/10.1186/s12864-015-1847-z
https://doi.org/10.1038/s41467-018-03751-6
https://doi.org/10.1093/bioinformatics/btq466
https://doi.org/10.1093/bioinformatics/btq466
https://doi.org/10.1186/1752-0509-1-54
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1289/ehp.11788
https://doi.org/10.1289/ehp.11788
https://doi.org/10.1016/j.yhbeh.2017.11.001
https://doi.org/10.1016/j.yhbeh.2017.11.001
https://doi.org/10.14573/altex.1406181
https://doi.org/10.14573/altex.1406181
https://doi.org/10.1093/toxsci/kfx243
https://doi.org/10.1093/toxsci/kfx243
https://doi.org/10.1007/s00204-015-1509-6
https://doi.org/10.1080/10408444.2017.1289150
https://doi.org/10.1289/ehp.10587
https://doi.org/10.1289/ehp.10587
https://doi.org/10.1007/s00204-016-1824-6
https://doi.org/10.1007/s00204-016-1824-6
https://doi.org/10.1371/journal.pone.0151618
https://www.ncbi.nlm.nih.gov/pubmed/?term
https://www.ncbi.nlm.nih.gov/pubmed/?term
https://doi.org/10.1289/ehp.1408989
https://doi.org/10.1016/j.jsbmb.2011.05.002
https://doi.org/10.1016/j.jsbmb.2011.05.002
https://doi.org/10.1289/ehp.02110s6925
https://doi.org/10.1016/j.cell.2016.02.064
https://doi.org/10.1073/pnas.1315929110
https://doi.org/10.3390/ijms130810143
https://doi.org/10.3390/ijms130810143
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1016/j.fct.2013.08.001
https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs
https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs
https://doi.org/10.1158/0008-5472.CAN-11-3095
https://doi.org/10.1074/jbc.274.30.21478
https://doi.org/10.1158/0008-5472.CAN-07-2293
https://doi.org/10.1158/0008-5472.CAN-07-2293
https://doi.org/10.1186/1471-2105-8-22
https://doi.org/10.1371/journal.pgen.1002112
https://doi.org/10.1126/science.aaa0812
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00527 November 19, 2018 Time: 16:49 # 1

ORIGINAL RESEARCH
published: 20 November 2018

doi: 10.3389/fgene.2018.00527

Edited by:
Pierre R. Bushel,

National Institute of Environmental
Health Sciences (NIEHS),

United States

Reviewed by:
Mohamed Diwan M.

AbdulHameed,
Independent Researcher, Frederick,

United States
Terrence Furey,

The University of North Carolina
at Chapel Hill, United States

*Correspondence:
Terezinha Souza

terezinhamsouza@gmail.com

†These authors have contributed
equally to this work

‡‡‡Present address:
Panuwat Trairatphisan and

Julio Saez-Rodriguez,
Institute of Computational

Biomedicine, Faculty of Medicine,
Heidelberg University, Heidelberg,

Germany

Specialty section:
This article was submitted to

Toxicogenomics,
a section of the journal

Frontiers in Genetics

Received: 12 July 2018
Accepted: 19 October 2018

Published: 20 November 2018

Citation:
Souza T, Trairatphisan P, Piñero J,

Furlong LI, Saez-Rodriguez J,
Kleinjans J and Jennen D (2018)

Embracing the Dark Side:
Computational Approaches to Unveil

the Functionality of Genes Lacking
Biological Annotation in Drug-Induced

Liver Injury. Front. Genet. 9:527.
doi: 10.3389/fgene.2018.00527

Embracing the Dark Side:
Computational Approaches to Unveil
the Functionality of Genes Lacking
Biological Annotation in
Drug-Induced Liver Injury
Terezinha Souza1*†, Panuwat Trairatphisan2†‡, Janet Piñero3†, Laura I. Furlong3,
Julio Saez-Rodriguez2,4‡, Jos Kleinjans1 and Danyel Jennen1

1 Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht,
Netherlands, 2 Joint Research Center for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen
University, Aachen, Germany, 3 Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics
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In toxicogenomics, functional annotation is an important step to gain additional
insights into genes with aberrant expression that drive pathophysiological mechanisms.
Nevertheless, there exists a gap on annotation of these genes which often hampers the
interpretation of results and limits their applicability in translational medicine. In this study,
we evaluated the coverage of functional annotations of differentially expressed genes
(DEGs) induced by 10 selected compounds from the TG-GATEs database identified as
high- or no-risk in causing drug-induced liver injury (most-DILI or no-DILI, respectively)
using in vitro human data. Functional roles of DEGs not present in the most common
biological annotation databases – termed “dark genes” – were unveiled via literature
mining and via the identification of shared regulatory transcription factors or signaling
pathways. Our results demonstrated that there were approximately 13% of dark genes
induced by these compounds in vitro and we were able to obtain additional relevant
information for up to 76% of those. Using interactome data from several sources, we
have uncovered genes such as LRBA, and WDR26 as highly connected in the protein
network that play roles in drug response. Genes such as MALAT1, H19, and MIR29C –
whose links to hepatotoxicity have been confirmed – were identified as markers for the
most-DILI group and appeared as top hits across all literature-based mining methods.
Furthermore, we investigated the potential impact of dark genes on liver toxicity by
identifying their rat orthologs in combination with their correlation to drug-induced
liver pathologies observed in vivo following chemical exposure. We identified a set of
important regulatory transcription factors of dark genes for all most-DILI compounds
including E2F1 and JUND with supporting evidences in literature and we found Magee1
correlated with chemically induced bile duct hyperplasia and adverse responses at
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29 days in rats in vivo. In conclusion, in this study we show the potential role of these
poorly annotated genes in mechanisms underlying hepatotoxicity and offer a number of
computational approaches that may help to minimize current gaps in gene annotation
and highlight their values as potential biomarkers in toxicological studies.

Keywords: annotation, DILI, gene ontology, text mining, network biology, translational bioinformatics

INTRODUCTION

In the field of toxicogenomics, various computational approaches
have been developed and upgraded over the years. Nowadays,
the most commonly applied method consists of the use of
differential analysis, i.e., the application of statistical approaches
to identify and biologically annotate differentially expressed
genes (DEGs) upon compounds’ perturbation (Khatri et al., 2012;
Souza et al., 2016). Genome-wide, unsupervised methods such as
gene set enrichment analysis (GSEA), biclustering and weighted
co-expression analysis (WGCNA) can be used to identify gene
sets associated with specific phenotypes (AbdulHameed et al.,
2014; Tawa et al., 2014; Sutherland et al., 2016). Another branch of
methods includes network-based analyses such as the clustering
of gene sets based on their centrality in molecular networks
(Kotlyar et al., 2012), as well as mechanistic modeling in smaller
scales such as Boolean logic modeling (Zhang J.D. et al., 2014) and
ordinary differential equation (ODE)-based models (Hendrickx
et al., 2017)– the latter providing dynamical information of the
systems in a more refined granularity.

An important bottleneck across all methodologies, however,
is the biological annotation of the gene sets. This biological
annotation is provided by collections of pathways or gene
sets stored in popular knowledge-driven resources such as
Reactome (Fabregat et al., 2018) and the Gene Ontology (The
Gene Ontology Consortium, 2017). Despite the ever-increasing
amount of information deposited in pathway knowledge
databases, gaps on functional protein interaction and other types
of biological annotation still exist. In addition, a large number of
non-coding genes, i.e., small- and long- non-coding genes and
pseudogenes, covering around 37,000 molecular entities whose
biological roles elucidation is an ongoing task. The “biological
process” branch of the Gene Ontology (GO BP) is one of
the most commonly used sources of biological annotations.
Nevertheless, GO BP terms only cover 33% (19,691 genes) from
the entire human genome (estimated in approximately 60,200
genes according to NCBI’s gene annotation) (Brown et al.,
2015). On the pathway side, high-confidence databases such as
Reactome comprise only around half of all human protein-coding
genes (10,762 genes) (Fabregat et al., 2018) while low-confidence
high-coverage databases such as Pathway Commons coverage for
coding and non-coding portions of the genome is around 38%
(22,754 genes). Furthermore, most common pathway resources
only cover information regarding protein coding genes, while the
role of non-coding RNAs (ncRNAs) in processes such as disease
or drug response, remains uncovered. We argue here that these
missing entities should not be neglected due to their potential
biological functionality with respect to human health.

Community-based efforts can help to fill this gap. An
example of this is the creation of GeneRIF (Mitchell et al.,
2003), a platform to share short functional descriptions of
genes which are generally observed by experimentalists. Such
a database allows users to rapidly scan through the additional
functional information on genes of interest which are stored
in a standardized format. In parallel, user-friendly text mining
tools that allow automatic retrieval of information about gene
function from the literature have been developed. One such tool
is PubTator (Wei et al., 2013), which supports manual literature
curation besides offering a collection of annotated abstracts,
including relationships among diseases, genes, and drugs. In
addition, even if genes are not annotated for their biological
processes, they can still be linked to verified disease signatures
with, e.g., DisGeNET (Piñero et al., 2017).

Besides text mining, various emerging computational
approaches in Systems Biology have been developed with
high potential to be applied for unveiling the functional roles
of genes. For instance, the inference of transcription factor
(TF) activities based on gene expression data may reflect the
common regulatory patterns of signaling pathways which are
shared among downstream targets with or without functional
annotation (Alvarez et al., 2016; Garcia-Alonso et al., 2018).
In parallel, the activity of regulatory signaling pathways can be
independently predicted by computational approaches based
on the expression of genes that reflect the activities of the
respective pathway upon perturbation, thus highlighting possible
involvement of signaling modulation via unannotated genes
(Tarca et al., 2009; Khatri et al., 2012; Schubert et al., 2018). By
investigating the list of genes with unknown function which were
applied to derive transcription factors’ activities and signaling
pathways’ signatures, one could infer their biological functions
associated to the role of the predicted upstream regulatory
modules.

Recently, Sutherland et al. (2016, 2017) have shown that gene
expression in chemically exposed rats coalesce into groups of
co-expressed genes (i.e., modules) – some of which appear to
be correlated to phenotypes indicative of toxicity or adverse
outcomes. Interestingly, this approach highlighted branches
comprising a number of modules of interest with little or
no biological annotation, some of which containing ncRNAs.
Their roles in cellular functioning and disease are slowly being
elucidated (Luo et al., 2016; Xu et al., 2017), but their modulation
upon drug exposure remains largely uncovered. In spite of that,
toxicologists have pointed that their involvement in apical effects
should be investigated and considered in regulatory frameworks,
i.e., mode-of-action (MoA) and adverse outcome pathway (AOP)
analyses (Aigner et al., 2016). Studies to unveil the functionality
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of these poorly annotated genes are therefore necessary to
generate potentially novel biomarkers to improve risk assessment
during the preclinical phase. In addition, connecting the poorly
annotated genes to the pathological outcomes of rodent studies
will further aid to identify their function. Therefore, the
identification of human orthologs is imperative to allow and
improve translation of the rodent data to the human context.

Therefore, in this work we aim to assess the coverage of the
current functional annotation of genes represented in public
databases using toxicogenomics sets; those not found in these
representative biological annotation databases were coined “dark
genes” in this study. Our second goal is to (a) estimate the
relevance for cellular functions of dark genes involved in drug
response, and (b) assign putative functions to them. For the first
task, we assess the presence of these genes in human interactomes
built from several sources, in literature-based resources and
their association to diseases. For the second, we employed
computational approaches to identify (i) common regulatory
transcription factors and (ii) signaling pathways’ signatures
which are shared between annotated and unannotated genes.
Finally, we examine these chemical-induced changes in the light
of toxicity and as potential markers of drug-induced liver injury
(DILI) given their regulation in human in vitro and associations
to pathological responses in rat in vivo.

MATERIALS AND METHODS

Compound Selection
In order to obtain robust modulation of genes and minimize
noisy expression, we opted for analyzing inducible responses
across multiple compounds. To investigate whether gene
modulation of entities of interest is associated with distinct
toxicities, we created two equally sized groups of chemicals
to avoid sample bias, selected according to their current
classification as agents involved in human DILI. For this,
we used a classification based on weight of evidence of
causality (DILIRank) (Chen et al., 2016), which categorize
compounds in three main classes: most-DILI (drugs withdrawn
or with severe DILI indication), less-DILI (drugs with mild
DILI indication or adverse reactions) and no-DILI. Here, we
selected compounds available on TG-GATEs either classified
as most-DILI (acetaminophen, diclofenac, isoniazid, nimesulide,
and valproic acid) and no-DILI (caffeine, chloramphenicol,
chlorpheniramine, hydroxyzine, and theophylline) to enable an
unambiguous separation of gene modulation responses. Further
information on the compounds and classification proposed by
Chen et al. (2016) can be found in Supplementary Table S1.

Gene Expression Data: Processing and
Differential Gene Expression
Gene expression data were obtained from TG-GATEs1 (Igarashi
et al., 2015). Raw data files generated in vitro from primary
human hepatocytes from each compound selected were
processed (quality control, background correction, RMA

1http://toxico.nibiohn.go.jp/english/datalist.html

normalization) using the R package affy (Gautier et al., 2004).
Genes were annotated with a customCDF (v. 19) with Entrez
gene identifiers for Affymetrix GeneChip Human Genome
U133 Plus 2.0 arrays. Here, we opted for a traditional approach
(i.e., comparison of treated vs. control mean expression) to
obtain DEGs; to obtain maximal transcriptional response, we
selected the highest dose and latest time point (24 h) from each
compound. Differential expression analysis was then performed
on each set using the R package LIMMA and comparing to
time-matched controls from each compound treatment. DEGs
were selected based on their significance after multiple testing
correction (false discovery rate, FDR) and an absolute fold
change of 1.5 (equivalent to log2 fold change of 0.585) with
FDR < 0.05.

Coverage of Biological Annotation
Across Databases
To compute the number of DEGs that were not included in the
most commonly used resources in the field of toxicology and
network biology, we downloaded the files from Gene Ontology2

(The Gene Ontology Consortium, 2017), Reactome3 (Fabregat
et al., 2018), MSigDB (Liberzon et al., 2015) curated pathways4,
Pathway Commons5 (Cerami et al., 2011), and OmniPath6 (Türei
et al., 2016) on May, 2018.

We mapped the gene symbols to Entrez gene identifiers
using the file http://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/
Mammalia/Homo_sapiens.gene_info.gz downloaded on April,
2018. For those genes for which we could not find an
Entrez gene identifier, we used the correspondence between
UniProt identifiers and Entrez gene identifiers from the
file http://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/hgnc_
complete_set.txt downloaded on May, 2018. From the Gene
Ontology file, we only took into account the GO BP branch
as this branch provides a better insight into the biological
mechanisms compared to molecular function (MF) and cellular
component (CC). From Pathway Commons, we removed
interactions without pathway annotations. From OmniPath, we
removed interactions that were supported only by protein-
protein interaction databases (BioGRID, HPRD, and IntAct).
A DEG was tagged as dark gene if it was absent in the pathway
databases and GO BP branch.

Furthermore, to assess the global coverage of the biological
annotations, the same steps were performed to categorize all
genes measured within the Affymetrix array platform.

Protein Interaction Networks
We built four protein interaction networks (PINs) using
data from the most comprehensive, and updated databases:
INBIOMAP (Li et al., 2017), HIPPIE (Alanis-Lobato et al., 2017),

2http://geneontology.org/gene-associations/goa_human.gaf.gz
3https://reactome.org/download/current/NCBI2Reactome_All_Levels.txt
4http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C2
5http://www.pathwaycommons.org/archives/PC2/v10/PathwayCommons10.All.
hgnc.txt.gz
6http://omnipathdb.org/interactions/?fields=sources&fields=references
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BIANA (Garcia-Garcia et al., 2010), and IntAct (Orchard et al.,
2014).

To build a HIPPIE-based network, we downloaded the file
http://cbdm-01.zdv.uni-mainz.de/∼mschaefer/hippie/hippie_
current.txt on January, 2018. In the case of INBIOMAP, we
downloaded the file from https://www.intomics.com/inbio/map/
#downloads. We removed predicted interactions. To build an
interactome from BIANA, we downloaded the Homo sapiens
data from http://sbi.imim.es/web/GUILDify2.php/downloads
on January, 2018. For IntAct, we downloaded the file
http://ftp.ebi.ac.uk/pub/databases/intact/current/all.zip on
October, 2017.

Literature-Based Resources
To provide further insight on the relevance of the role of the dark
genes, we checked if they were involved in human diseases using
DisGeNET data, version 5 (Piñero et al., 2017). Additionally, we
assessed the presence of dark genes in the scientific literature. For
that goal we used GeneRIF (Mitchell et al., 2003), that describe
in a short phrase (less than 25 characters in length) the function
or functions of a gene, and PubTator (Wei et al., 2013), a web
tool that supports manual literature curation using text-mining
techniques.

GeneRIFs were downloaded from http://ftp.ncbi.nih.
gov/gene/GeneRIF/generifs_basic.gz and PubTator data was
downloaded from http://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/
gene2pubtator.gz and http://ftp.ncbi.nlm.nih.gov/pub/lu/Pub
Tator/bioconcepts2pubtator.gz on January 2018.

Identification of Common Regulatory
Transcription Factors and Signaling
Pathways
The list of dark genes was mapped to the list of transcription
factors and their regulated genes (“regulons”) from the tool
DoRothEA (Garcia-Alonso et al., 2018) and to the list of
gene signatures used for the inference of signaling pathways’
activities from the tool PROGENy (Schubert et al., 2018). The
mapping was classified and compared according to the group
of compounds. The shared common transcription factors and
signaling pathways in each group were intersected to derive the
most representative proxies which represent the corresponding
dark genes. Venn diagrams of these results as the ones from
PINs (see section “Protein Interaction Networks”) were generated
with the following web tool: http://bioinformatics.psb.ugent.be/
webtools/Venn.

Comparison to Weighted Gene
Co-expression Network Analysis
(WGCNA) Modules
Co-expression analyses aim to obtain significant relationships
among genes showing similar patterns of expression across
samples. The resulting gene sets (also known as modules) are
useful for reducing dimensionality and correlating molecular
changes to an observed phenotype. Since clusters are generated
in an unbiased manner, it is possible to identify modules

encompassing genes with multiple levels of biological annotation
(e.g., GO terms or pathways).

To investigate the relevance of these dark genes in an animal
model and its implications in adverse outcomes, we identified
rat orthologs of the dark genes present in co-expression modules
detected in Sutherland et al. (2017). The rat orthologs to
human genes were then mapped to modules identified using the
annotation available in the Rat Genome Database (rgd.mcw.edu).
From there, modules associated with pathological outcomes and
underlying GO BPs were further investigated.

RESULTS

Compound-Induced Gene Expression
The number of DEGs modulated by each compound can be
found in Table 1. By merging the DEGs groupwise, a total
of 5,446 and 3,845 genes were found to be induced by most-
DILI and no-DILI groups, respectively, comprising in total 6,918
unique genes. These genes were classified using the Ensembl gene
annotation information, which showed that the majority of all
genes identified were protein coding (95%), followed by non-
coding RNA (ncRNA, 4.2%), pseudogenes, snoRNA and others
(less than 1% each). An overview of the number of DEGs shared
by compounds from the same DILI risk group can be found in
the Supplementary Table S1.

Biological Annotation and Gene
Annotation of Dark Genes
Among the 6,918 genes deemed significantly affected by chemical
exposure, 916 genes (∼13%) were not included in any biological
pathway or process. This number is lower than the number of
genes in the array lacking this type of annotation, identified
as 22% (4,210 out of 19,441 genes). In total, 760 out of 916
entities were categorized into gene types based on Ensembl
annotation; the majority of those is considered protein coding
(Table 2). A detailed description of gene types from the array
and modulated by chemicals can be found in the Supplementary
Table S1. A comparison of database coverage can be found in
Supplementary Date Sheet S1. In addition, a comprehensive
list encompassing gene modulation per compound/DILI risk
group, as well as pathway and GO annotation and results from
the methodologies applied for annotation of the dark genes

TABLE 1 | Number of differentially expressed genes (DEGs, absolute FC > 1.5
and FDR < 0.05) of compounds from most-DILI and no-DILI groups.

Most-DILI Number of
DEGs

No-DILI Number of
DEGs

Acetaminophen 2,280 Caffeine 2,316

Diclofenac 1,888 Chloramphenicol 108

Isoniazid 1,024 Chlorpheniramine 93

Nimesulide 1,697 Hydroxyzine 815

Valproic acid 2,290 Theophylline 2,918

Total unique DEGs 5,446 Total unique
DEGs

3,845
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TABLE 2 | Classification of genes without GO BP annotation and absent on
Reactome, MSigDB, OmniPath, and Pathway Commons databases (dark genes)
modulated by compounds from most-DILI and no-DILI groups.

Gene type Array dark
genes

Most-DILI No-DILI Dark
DEGes

Protein coding 1,756 444 278 567

Antisense RNA 527 69 33 78

lincRNA 722 53 33 63

Processed transcript 113 11 8 15

Pseudogenes1 56 18 14 25

snoRNA 8 4 3 5

Sense intronic 25 3 1 3

Sense overlapping 10 1 1 2

miRNA 3 1 0 1

TEC2 11 1 1 1

Total 3231 605 372 760

1Pseudogenes from the categories “transcribed unprocessed pseudogene,”
“transcribed unitary pseudogene” and “transcribed processed pseudogene.”
2TEC: to be experimentally confirmed.

is available as Supplementary Table S1 while an overview of
gene modulation shared across compounds from each group is
available in Supplementary Data Sheet S1.

Characterization of Dark Genes in the
Human Interactome
Furthermore, we investigated the coverage of the dark genes in
four different sources of human protein–protein interactions. We
found 492, 420, 475, and 285 dark genes included in HIPPIE,
IntAct, Inbiomap and Biana interactomes, respectively. Among
them, 536 dark genes were present in at least one of these
resources, while 268 were included in all four resources. The
overlaps can be found in Supplementary Data Sheet S1.

We further characterized the dark genes present in the
interactomes. Figure 1 shows histograms of the degree
distribution of the dark genes in each interactome. A large
fraction of the dark genes has low connectivity in all four
interactomes, although there are some genes with relatively high
degrees. Some examples of these latter genes, more connected
than the rest of dark genes in the four interactomes, are shown
in Table 3.

Literature Mining: Disease Association,
GeneRIF, and PubTator
We also evaluated other literature-based resources containing
functional information. First, we used DisGeNET v5.0 to
determine whether the dark genes are associated to human
diseases. We found 60 dark genes with disease annotations
reported by curated databases, and 255 dark genes in DisGeNET
ALL dataset, which also includes the results from automatic text
mining in the scientific literature. The top genes with disease
annotations in the curated data in DisGeNET are shown in
Table 4. The diseases in which these genes were more frequently
involved were different types of neoplasms, although they seem to

play a role in a wide variety of diseases, and abnormal phenotypes
(Supplementary Table S1).

We also evaluated the coverage of the dark genes in GeneRIF
which contains users-submitted compact information regarding
the function of the genes. We found 356 dark genes with
GeneRIF annotations. Twenty-three dark genes had 10 or more
GeneRIFs, and among those, several ncRNAs (Table 5). Some
relevant examples of the GeneRIFs for MALAT1 are “MALAT1
level is associated with liver damage, and has clinical utility
for predicting development of hepatocellular carcinoma” or
“observations suggest that MALAT1 promotes hepatic steatosis
and insulin resistance by increasing nuclear SREBP-1c protein
stability.”

A similar exercise was performed using PubTator to obtain
additional information with a unbiased text-mining approach.
We found that 550 dark genes matched the entries in PubTator.
Interestingly, the two genes with the highest number of hits were,
again, two long non-coding RNAs, MALAT1 and H19 (Table 5),
with over 1,000 papers each. In some cases a single entry on
PubTator was a match for multiple hits, as for instance “Central
role of the p53 pathway in the non-coding-RNA response to
oxidative stress,” which related MALAT1, NEAT1, and PVT1 (3
dark ncRNAs) to oxidative stress produced by H2O2 (Fuschi
et al., 2017).

Mapping Functional Information of the
Dark Genes With Common Regulatory
TF and Signaling Pathways
By mapping the DEGs of the selected compounds, we found
that about 16% of dark genes are the targets genes of regulatory
TFs in DoRothEA (Table 6). The intersections of regulatory
TFs between most-DILI and no-DILI compounds are shown in
Figure 2. Here, the most representative TFs for most-DILI group
overlapped across all five compounds (n = 14) were AR, E2F1,
E2F4, ETS1, FOXA1, FOXP3, GATA1, GATA2, GATA3, HNF4A,
JUND, REST, SPI1, and TFAP2C, while the most representative
for non-DILI group shared by all five compounds (n = 1) was
GATA2.

In parallel, we found that about 4% of dark genes can be
grouped together with the gene signatures used for the inference
of signaling pathways’ activities in PROGENy (Table 6). The
most representative signaling pathways overlapped among all
five most-DILI compounds (n = 2) were Hypoxia and PI3K,
whereas TNF-alpha was the most representative one for non-
DILI compounds (excluding chloramphenicol which did not have
an enriched pathway), see Figure 2.

The scripts for all analyses conducted in this study are available
in Supplementary Data Sheets S2, S3.

Rat Orthologs to Human Dark Genes in
Co-expression Modules
Identification of rat orthologs to human dark genes and
comparison to co-expression modules generated from rats
exposed to chemicals showed that 544 human dark genes had
an ortholog in rat and, from these, 241 were included in at least
one WGCNA module. Among these genes, at least 20 comprised
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FIGURE 1 | Degree distribution of the dark genes in human interactome databases Biana, HIPPIE, Inbiomap, and IntAct.

those coding for transmembrane proteins (TMEM family).
These dark genes were found in (1) modules from branches
with global poor GO BP annotation (branches C.I and C.II
indicated by Sutherland et al., 2017) and (2) modules associated
with pathology. Table 7 contains a list of dark gene orthologs
whose modules were associated with specific pathologies and
the underlying GO BP (whenever available). The complete list
of dark genes orthologs mapped to modules can be found in
Supplementary Table S1.

DISCUSSION

Pathway and network analyses are essential steps downstream to
the identification of interesting features (e.g., differential analysis)
in diverse fields of ‘omics research. Despite advances in biological
annotation of the human genome, there is still a considerable
gap in knowledge, owed mainly to experimental evaluation of
already well-studied entities, which hampers biomedical research
(Haynes et al., 2018). In this study, we aimed to investigate these

poorly annotated entities (coined dark genes) in the light of
chemical exposure since many studies in mechanistic toxicology
are heavily attached to biological roles and many genes with
potential mechanistic and predictive roles may remain uncovered
as a result.

From our analysis, we observed that approximately 13% of
DEGs and 22% of all genes in the array were not mapped to
GO BP, OmniPath, MSigDB, Reactome or Pathway Commons.
This finding highlights that the issue with unannotated genes is
generalized and the biological functions of a number of DEGs
identified in gene expression studies remain to be uncovered.
Genes with Ensembl classification were mostly categorized as
protein coding (73%), while 8% of dark genes were classified
as long-intergenic non-coding RNA (lincRNAs), which have
increasing evidences to play a role in drug-induced organ toxicity
(Zhou et al., 2015; Dempsey and Cui, 2017).

It was demonstrated that up to 59% of dark genes are present
in at least one of the human interactome databases. Of these, a
few have higher degree of connectivities to the other genes as
shown in Table 3. In the context of drug development, PINs
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TABLE 3 | Degree of connectivity for top 10 genes in human protein–protein
interaction databases.

Gene
symbol

Description BIANA HIPPIE INBIOMAP IntAct

RBM12 RNA binding motif
protein 12

405 44 17 8

LRBA LPS responsive
beige-like anchor
protein

402 28 16 9

SGTB Small glutamine rich
tetratricopeptide repeat
containing beta

8 87 88 177

TMEM25 Transmembrane protein
25

3 85 77 2

FAM189A2 Family with sequence
similarity 189 member
A2

10 78 75 10

ZCCHC10 Zinc finger CCHC-type
containing 10

51 52 53 59

C1orf109 Chromosome 1 open
reading frame 109

45 51 53 116

TSSC4 Tumor suppressing
subtransferable
candidate 4

13 68 59 17

WDR26 WD repeat domain 26 3 79 51 33

FAM90A1 Family with sequence
similarity 90 member
A1

33 49 50 122

have been employed to understand the perturbations elicited by
drug treatment in cellular processes, and to characterize drug
targets (Yı ldırım et al., 2007) and side effects (Wang et al.,
2013). Recently, Piñero et al. (2018) has shown that within

TABLE 4 | Top 10 genes associated to diseases in DisGeNET (curated data).

Symbol Description Gene type DILI risk
group(s)

Number of
diseases

CLIP2 CAP-Gly domain
containing linker protein
2

Protein-
coding

Most-DILI 141

IPW Imprinted in Prader-Willi
syndrome (non-protein
coding)

ncRNA Most-DILI,
no-DILI

66

TGDS TDP-glucose
4,6-dehydratase

Protein-
coding

Most-DILI 62

LRBA LPS responsive
beige-like anchor
protein

Protein-
coding

Most-DILI 33

AMMECR1 Alport syndrome, mental
retardation, midface
hypoplasia and
elliptocytosis
chromosomal region
gene 1

Protein-
coding

Most-DILI,
no-DILI

27

TMEM98 Transmembrane
protein 98

Protein-
coding

Most-DILI 9

H19 H19, imprinted
maternally expressed
transcript (non-protein
coding)

ncRNA Most-DILI 7

MALAT1 Metastasis associated
lung adenocarcinoma
transcript 1 (non-protein
coding)

ncRNA Most-DILI 7

WDR11 WD repeat domain 11 Protein-
coding

Most-DILI 6

CMYA5 Cardiomyopathy
associated 5

Protein-
coding

no-DILI 3

TABLE 5 | Top 10 dark genes by number of GeneRIFs with their corresponding number of publications indexed on PubTator.

Symbol Description Gene Type DILI risk group(s) GeneRIFs Number of
publications

H19 H19, imprinted maternally
expressed transcript
(non-protein coding)

ncRNA Most-DILI 193 1169

MALAT1 Metastasis associated lung
adenocarcinoma transcript 1
(non-protein coding)

ncRNA Most-DILI 156 1203

MIR29C microRNA 29c ncRNA Most-DILI 77 234

UCA1 Urothelial cancer associated 1
(non-protein coding)

ncRNA Most-DILI, no-DILI 63 152

NEAT1 Nuclear paraspeckle assembly
transcript 1 (non-protein
coding)

ncRNA Most-DILI, no-DILI 56 223

PVT1 Pvt1 oncogene (non-protein
coding)

ncRNA Most-DILI 56 182

TUG1 Taurine up-regulated 1
(non-protein coding)

ncRNA Most-DILI, no-DILI 41 99

MTUS1 Microtubule associated scaffold
protein 1

Protein-coding Most-DILI, no-DILI 26 71

TM4SF5 Transmembrane 4 L six family
member 5

Protein-coding Most-DILI, no-DILI 20 37

FAM167A Family with sequence similarity
167 member A

Protein-coding Most-DILI 19 32
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TABLE 6 | Overview of mapped dark genes based on transcriptional regulation
(DoRothEA) and on signaling pathway signatures (PROGENy).

Compound Dark
genes

Dark
genes in

DoRothEA

Number of
mapped

TFs

Dark
genes in

PROGENy

Number of
mapped
signaling
pathways

Acetaminophen 294 46 24 11 8

Valproic acid 330 51 28 11 6

Isoniazid 152 22 21 8 5

Diclofenac 221 32 26 10 7

Nimesulide 145 34 26 5 4

Total Most-DILI 732 115 40 29 10

Theophylline 326 48 29 16 6

Caffeine 271 47 30 16 7

Hydroxyzine 81 17 19 3 3

Chloramphenicol 6 2 4 0 0

Chlorpheniramine 7 1 1 1 1

Total No-DILI 451 70 36 19 7

the set of drug targets, those that are related to side effects
are more central in the interactome at local, global and meso-
scale level. In the current study, we have used interactome data
to highlight genes with strong molecular data, such as genes
LRBA, which showed over 400 interaction partners in BIANA

database, being associated to several diseases and involved in
the response to DNA damage (Matsuoka et al., 2007). Another
example is WDR26 – with over 70 partners in HIPPIE database
and also disease-associated, that has been found to protect cells
from oxidative stress-induced apoptosis (Zhao et al., 2009).
Furthermore, genes such as MYO15B, BEX5, C12orf75, and
SPATA2L, that appear differentially expressed in at least 4 of
the 5 DILI compounds and not perturbed upon no-DILI drugs,
are also involved in protein-protein interactions according to
most PPI databases, thus making them interesting potential DILI
biomarker candidates to further pursue.

On the other hand, the use of text mining tools allowed to
obtain information about non-coding RNAs – entities which are
not included in PINs. With these methods we identified genes
such as microRNA MIR29C, and non-coding RNAs H19 and
MALAT1, all found exclusively in the most-DILI risk group.
Deregulation of H19 and MALAT1 has been associated with
liver disease (Takahashi et al., 2014). Downregulation of H19,
which was consistently observed in all most-DILI compounds
except nimesulide, has been associated with formation of
Mallory-Denk bodies (MDBs), aggresomes of proteins found in
many types of liver diseases (Oliva et al., 2009). Furthermore,
downregulation of circulating microRNAs from the mir29 family
were shown in liver cirrhosis patients (Loosen et al., 2017) and
MIR29C in particular has been associated to acute and chronic

FIGURE 2 | Venn diagrams showing the intersection of transcription factors (TFs) and signaling pathways regulating at least one dark gene. The number
accompanying each compound refers to the number of transcription factors and signaling pathways enriched by dark genes and the intersected modules by all or
most of the compounds are highlighted in the adjacent boxes. (A,B) Regulatory TFs of hepatotoxic and non-hepatotoxic compounds, respectively. (C,D) Regulatory
signaling pathways of hepatotoxic and non-hepatotoxic compounds, respectively. No enriched signaling pathway was found for Chloramphenicol (absent in D).
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TABLE 7 | Orthologs to human dark genes present in modules associated to
pathologies in rats described by Sutherland et al. (2017).

Module Gene symbol Pathology
association

GO-BP

13m Smim14 Adverse at 29 days,
Hematopoiesis

Complement activation;
Inflammatory response,
Leukocyte chemotaxis

39 Lhfpl6 BDH Extracellular matrix
organization, Collagen
fibril organization

205 Thyn1 BDH, Adverse at
29 days

Cellular response to
DNA damage stimulus,
Signal transduction by
p53 class mediator

293 Magee1 BDH –

55m Abracl Fibrosis, BDH,
Necrosis

Membrane raft
assembly, Regulation of
cytoskeleton
organization

14m Wdr70, Lyrm1,
Tmem209

Hypertrophy Protein folding, tRNA
metabolic process

10 RGD1560010,
Abhd8, Tbc1d31

Increased mitosis Cell cycle, Mitotic cell
cycle

81 Jpt1 Increased mitosis,
BDH

Actin polymerization or
depolymerization

70 Spata2l, Ubald1 Single cell necrosis Cell cycle arrest

309 RGD1359127 Single cell necrosis –

147 Oser1 Single cell necrosis –

27m C2cd2 Vacuolation

BDH, bile duct hyperplasia.

models of hepatotoxicity (Schueller et al., 2018). The relevance
of these genes in diseases, in particular liver diseases, was
demonstrated in the disease association analysis with DisGeNET
(Figure 3). Clear associations to common compound-induced
liver injuries (fatty liver, fibrosis, steatohepatitis, and cirrhosis),
in addition to cancer-related processes, were observed.

Drug-disease relationships are regarded as important ways
to improve toxicity testing and drug safety and discovery;
methods such as Connectivity map have been successfully
applied to datasets, showing that correlation of ‘omics’ profiles
between certain drugs and disease profiles recapitulate drug
disease risks (Lamb et al., 2006; Caiment et al., 2014). Here, we
show the potential of poorly annotated genes to strengthen these
connections, impacting the discovery of potentially novel toxicity
markers.

On another perspective, even though regulatory TF and
pathway enrichment analyses have already been widely applied to
many fields in biomedicine especially in cancer research (Darnell,
2002; Bhagwat and Vakoc, 2015), only a few case studies were
shown in the field of drug safety and toxicity (Souza et al.,
2017). Our unbiased enrichment analysis of regulatory TFs and
pathways is one of the first studies to combine the analysis
of both transcription factors and signaling pathways related to
drug toxicity, especially focusing on poorly annotated entities
regulated by these systems in an effort to propose additional
markers of drug toxicity (Andersen et al., 2013; Jennings et al.,
2013).

In our analyses we show that approximately 16% of the dark
genes were mapped in TF-regulon database DoRothEA (Table 6).
Among the enriched TFs of dark genes in the most-DILI group,
we detected, for instance, E2F1, which has been demonstrated to
be involved in liver fibrosis, a common end-point of compound-
induced liver injury (Zhang Y. et al., 2014), as well as JUND in
the inflammatory process in liver (Seki et al., 2012). Pathways’
signatures, which are largely curated and expected to represent
the activity states of signaling pathways, were also found to
contain approximately 4% of dark genes modulated in this
study. Enriched pathways for these entities included the Hypoxia
pathway, known to play a role in inflammation and fibrosis
(Nath and Szabo, 2012), PI3K pathway, that mediates liver injury
in chronic fluorosis (Fan et al., 2015), as well as that of TNF-
alpha pathway as the mediator of hepatotoxicity and regeneration

FIGURE 3 | Association between H19, MALAT1, and MIR29C and liver -related disease phenotypes.
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(Schwabe and Brenner, 2006), inflammation and homeostasis
(Tacke et al., 2009). These liver-injury mediating TFs E2F1 and
JUND together with the representatives from hepatotoxic-related
pathways such as HIF1A, AKT, and TNF-receptor could be
perceived as potential markers to demonstrate the involvement
of the dark genes in the context of DILI.

By comparing the dark genes identified in human hepatocytes
to corresponding orthologs in vivo in a murine model, we found
a consistency in the expression of these entities across species.
More importantly, we show that these genes are associated with
pathological outcomes (Table 7), highlighting their potential
value in pre-clinical studies. We were not able to assess the
relevance of aforementioned genes linked to DILI (MALAT1,
H19, and MIR29C) since these genes, although possessing rat
orthologs, were not measured in the arrays. However, functional
annotation performed in vitro pointed similarities to most-DILI
risk – demonstrated through genes such as Magee1. Magee1 was
modulated in vitro only by compounds in the most-DILI group,
and associated to “Liver Cirrhosis, Experimental” according to
DisGeNET data; in vivo, it was found in a module associated with
hepatobiliary outcomes (Sutherland et al., 2017). Furthermore,
genes such as Smim14 and Thyn1 were included in modules
with biological processes; these functions may be putatively
associated to these genes, as it has been shown that genes
acting simultaneously often share the same biological process(es),
and therefore gene co-expression networks can be used for the
purpose of functional annotation (van Dam et al., 2017).

By combining the results of all approaches employed in this
study, we were able to find evidence in at least one approach for
701 out of the initial 916 dark genes, i.e., 76% (Supplementary
Table S1). Some genes were consistently found across all
methodologies in addition to rat-human orthologs mapped to co-
expression modules (e.g., ST7, KLHDC2, CCDC28A, TMEM140,
TRIM47), all of which were included in clusters with GO BP
annotation (Supplementary Table S1) (Sutherland et al., 2017).
Genes exclusively modulated by the most-DILI group with (i)
hits across several methods (i.e., sum of evidences equal or
higher to 8, see Supplementary Table S1) (e.g., ST7, LRBA,
TPD52L2, TSSC4, BOLA1, YIPF1, TMEM168, RSRC2, CCDC92,
ITFG1, ZMYND19, TTC14, and TMEM9) and (ii) moderate
amount of evidence (sum equal or higher than 4) and associated
with pathologies (MAGEE1, TBC1D31, SPATA2L, ABHD8, and
LHFPL6) were also identified. Although there are reports on their
involvement in different liver diseases, including non-alcoholic
steatohepatitis and hepatocellular carcinoma (Cai et al., 2018;
Zhu et al., 2018), their roles in drug-induced organ injury has
not yet been investigated. In addition to that, 215 dark genes
modulated by the chemicals investigated here remain obscure –
the majority (174) being classified as ncRNAs – which have been
presented as potential non-invasive disease biomarkers (Teng
and Ghoshal, 2015; de Gonzalo-Calvo et al., 2018). Regardless
the level of findings, our results indicate concordance in silico,
in vitro, and in vivo and potential roles in toxicity that should pave
the way for further investigations aiming at the confirmation and
uncovering of their biological function.

Overall, our study indicated how limitations arising from
the biological annotation of genes can be minimized using a

number of computational approaches, especially in the field
of toxicogenomics in which uncovering and understanding
of drug-gene responses is necessary to obtain novel/robust
markers of toxicity. Although comprehensive databases such as
Harmonizome (Rouillard et al., 2016) exist, they do not offer
advanced mapping into the TF and pathway signatures nor
cross-species concordance as performed in this study. It should
also be noted that this study was based on a predefined set of
approximately 19,000 genes; analyses of data from unconstrained
methods (e.g., RNA-seq) using the methods described here will
likely be able to provide a more accurate picture of the state of
functional annotation of the whole human genome and shed light
onto new, potentially relevant features in toxicological analysis.

CONCLUSION

In summary, this study highlighted a gap in functional gene
annotation in the field of toxicogenomics and presented potential
methods that can generate a pipeline to fill such gap through
mapping using several resources. We showed that text mining
tools and biocuration offer important insights by revealing
potential chemical-disease associations and functional roles.
The presented microRNA, ncRNAs and regulatory transcription
factors in this study may also be further investigated as
potential biomarkers of DILI. Nevertheless, further experimental
validation of their biological roles are still necessary not only
to extend the biological knowledge beyond the scope of well-
annotated entities, but in order to also fully understand their roles
in toxicity and disease development which would help to unlock
their prognostic and translational value.
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TABLE S1 | Comprehensive overview of the dark genes analyzed, including (i)
modulation by individual chemicals and per DILI risk, (ii) current mapping status to
gene ontology (GO) and pathways (several databases), and (iii) results obtained
from different methodologies applied.

DATA SHEET S1 | Supplementary Figures.

DATA SHEETS S2 and S3 | Scripts (.R) used in all analyses conducted in this
study as well as mapping to databases and IDs.
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Alice Limonciel1,2* , Simone G. van Breda3, Xiaoqi Jiang4, Gregory D. Tredwell5,6,
Anja Wilmes1,2, Lydia Aschauer2,7, Alexandros P. Siskos5, Agapios Sachinidis8,
Hector C. Keun5, Annette Kopp-Schneider4, Theo M. de Kok3, Jos C. S. Kleinjans3 and
Paul Jennings1,2*
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7 Brookes Innovation Hub, Orbit Discovery, Oxford, United Kingdom, 8 Institute of Neurophysiology and Center for Molecular
Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany

The discovery of the epigenetic regulation of transcription has provided a new source
of mechanistic understanding to long lasting effects of chemicals. However, this
information is still seldom exploited in a toxicological context and studies of chemical
effect after washout remain rare. Here we studied the effects of two nephrocarcinogens
on the human proximal tubule cell line RPTEC/TERT1 using high-content mRNA
microarrays coupled with miRNA, histone acetylation (HA) and DNA methylation (DM)
arrays and metabolomics during a 5-day repeat-dose exposure and 3 days after
washout. The mycotoxin ochratoxin A (OTA) was chosen as a model compound for
its known impact on HA and DM. The foremost effect observed was the modulation of
thousands of mRNAs and histones by OTA during and after exposure. In comparison,
the oxidant potassium bromate (KBrO3) had a milder impact on gene expression and
epigenetics. However, there was no strong correlation between epigenetic modifications
and mRNA changes with OTA while with KBrO3 the gene expression data correlated
better with HA for both up- and down-regulated genes. Even when focusing on the
genes with persistent epigenetic modifications after washout, only half were coupled
to matching changes in gene expression induced by OTA, suggesting that while OTA
causes a major effect on the two epigenetic mechanisms studied, these alone cannot
explain its impact on gene expression. Mechanistic analysis confirmed the known
activation of Nrf2 and p53 by KBrO3, while OTA inhibited most of the same genes, and
genes involved in the unfolded protein response. A few miRNAs could be linked to these
effects of OTA, albeit without clear contribution of epigenetics to the modulation of the
pathways at large. Metabolomics revealed disturbances in amino acid balance, energy
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catabolism, nucleotide metabolism and polyamine metabolism with both chemicals.
In conclusion, the large impact of OTA on transcription was confirmed at the mRNA
level but also with two high-content epigenomic methodologies. Transcriptomic data
confirmed the previously reported activation (by KBrO3) and inhibition (by OTA) of
protective pathways. However, the integration of omic datasets suggested that HA and
DM were not driving forces in the gene expression changes induced by either chemical.

Keywords: recovery, persistence, epigenomics, stress responses, ochratoxin A, potassium bromate,
nephrotoxicity, metabolomics

INTRODUCTION

Ochratoxin A (OTA) is a food contaminating mycotoxin,
a nephrotoxin and a suspected renal carcinogen (Limonciel
and Jennings, 2013). In Europe, the average daily intake of
OTA has been estimated at 1 ng.kg−1 b.w. but exposures
up to eight times higher have been reported (Schaaf et al.,
2002; Clark and Snedeker, 2006). Its mechanism of toxicity
remains elusive, with some studies suggesting genotoxicity,
others suggesting epigenetic effects and yet others showing
OTA-induced disturbances in the Nrf2 response to oxidative
stress (Limonciel and Jennings, 2013; Vettorazzi et al., 2013).
One striking effect of OTA is its very large impact on
the transcriptome, affecting the expression of thousands
of genes in both in vitro and in vivo settings (Jennings
et al., 2012). Networks affected include genes involved in
cytoskeleton organization, nucleosome regulation, transcription
and translation, ubiquitination and cell cycle regulation.
However, from the initiation of gene transcription to the
splicing and maturation of mRNAs, a multitude of steps can
alter gene expression and result in a disturbance of cellular
homeostasis. Targeted mechanistic investigations have revealed
that OTA perturbs the acetylation of proteins in general and of
histones in particular. More specifically, OTA inhibited histone
acetyltransferases (HATs) in vitro (Czakai et al., 2011) and
enhanced the activity of histone deacetylases (HDACs) (Marin-
Kuan et al., 2006), suggesting a global deacetylating effect. In
rats, this toxin impacted the maturation of microRNAs (miRNAs)
via a down-regulation of the expression of the genes encoding
Dicer1 and Drosha (Dai et al., 2014). Thus, the large impact
of OTA on gene expression could be due to a combination
of factors including epigenetic modifications and differential
miRNA regulation.

KBrO3 is an oxidiser historically manufactured for primary
use in bread preparations and hair products (International
Agency for Research on Cancer, 2018). While bromate is
not known to form in nature, it has been shown to
occur during drinking water ozonation. Numerous cases of
acute human exposures have been reported, usually following
voluntary ingestions or after accidental contamination of
bread preparations with excessive amounts of KBrO3, causing
nephrotoxicity and ototoxicity in children and adults (Campbell,
2006). The IARC classified KBrO3 as a possible carcinogen to
humans as a consequence of the evidence found in rodents but
in the absence of chronic exposure data in humans. In rodents,
KBrO3 exposure resulted in reactive oxygen species production

and a depletion of glutathione, involved in the protection against
oxidative stress (Sai et al., 1992; Zhang et al., 2010) as well as DNA
damage (Ballmaier and Epe, 2006) involving the formation of 8-
OHdG (Kasai et al., 1987; Cho et al., 1993), micronuclei (Hayashi
et al., 1988) and chromosomal aberrations (Ishidate et al., 1984;
Fujie et al., 1988).

In the current study, we investigated the effects of OTA
and KBrO3 on epigenetic modifications and miRNAs, and
their potential link to the transcriptomic effects caused by
the test chemicals. To this end, the global effects on mRNA
and miRNA expression and epigenetic modifications (DNA
methylation (DM) and histone acetylation (HA)) were integrated
and compared in a human renal proximal tubule cell line
(RPTEC/TERT1) exposed to the chemicals in a repeat-dose
testing regime and after a recovery period of 3 days after
treatment. In addition, we investigated the metabolomic profile
of these cells during and after exposure to identify downstream
dysfunctions in homeostasis regulation. The modulation of stress
response pathways was also addressed within the mechanistic
investigation, with a particular focus to the Nrf2 response to
oxidative/alkylating stress and the activation of p53, another
transcription factor widely known as a tumor suppressor for
its role in the maintenance of DNA integrity in the presence
of carcinogens, for which KBrO3 served as a positive control
(Limonciel et al., 2012).

MATERIALS AND METHODS

Chemicals
The two chemicals in study were purchased from Sigma-Aldrich
(OTA, O1877 and KBrO3 P7332). All chemicals unless otherwise
stated were purchased from Sigma and were of the highest grade
available.

Cell Culture
Under routine conditions, human proximal tubule
RPTEC/TERT1 cells (Wieser et al., 2008) were cultured at
37◦C in a 5% CO2 humidified atmosphere, fed 3 times a week
and sub-cultured by trypsinisation. RPTEC/TERT1 cells were
seeded onto 96-well cell culture plates (655180, Greiner) for
concentration screening, PET 96-well E-plate VIEW cell culture
plates (300600910, ACEA) for impedance measurements, 6-well
cell culture plates (657160, Greiner) for mRNA and miRNA
sample preparation, and on 10-cm cell culture dishes (831802,
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Sarstedt) for all other measurements. Cells were grown in
hormonally defined medium (HDM) as previously described
(Aschauer et al., 2013). Briefly, after confluence was reached,
the cells were allowed to stabilize and form a contact-inhibited
monolayer for ten days with feeding every 2–3 days. HDM
consisted of a 1:1 mixture of Dulbecco’s modified Eagle’s medium
(DMEM, Invitrogen, cat. no. 11966) and Ham’s F-12 nutrient mix
(Invitrogen, cat. no. 21765) supplemented with 2 mM glutamax
(Invitrogen, cat. no. 35050-038), 5 µg/mL insulin, 5 µg/mL
transferrin and 5 ng/mL sodium selenite, 100 U/mL penicillin
and 100 µg/mL streptomycin, 10 ng/mL epithelial growth factor
and 36 ng/mL hydrocortisone.

Stocks of the test chemicals were prepared as follows.
Five milligrams OTA were dissolved in DMEM/F-12 medium
(without additives) to a 2.48 mM stock and further diluted
to a 50× stock (6.5 µM) in DMEM/F-12. KBrO3 was directly
dissolved to a 50X stock (40 mM) in the same aqueous solvent.

Cell Viability and Cell Stress
Test concentrations were 130 nM OTA and 0.8 mM KBrO3 for
all omic experiments. These concentrations were sub-cytotoxic,
but induced cellular stress, as shown in preparatory experiments
(Figure 1A). Impedance was measured in the xCELLigence
device from ACEA. Cells were seeded onto E-plates in 60 µL
medium and differentiated. Impedance reflects the attachment
of the cells to the growth support and can therefore be used
as a cell viability endpoint in contact-inhibited cell monolayers.
Cell index (CI) was measured every 24h and normalized for each
treatment condition to the average T1 value (n = 3). Decreased CI
corresponds to a decrease in cell viability (Limonciel et al., 2018).
Increased CI can be seen as a marker of cellular stress, possibly
linked to the collapse of dome structures on solid plastic support.
Supernatant lactate was quantified using a biochemical assay
(Limonciel et al., 2011). Statistical analysis was performed using
a two-way ANOVA with a Bonferroni multiple comparisons
posttest using GraphPad Prism v6.01 for each dataset (∗p< 0.05).

Cell Treatment
Treatments were applied in a bi-phasic regime where the cells
were exposed to either OTA, KBrO3 or HDM (vehicle control)
for 5 days and allowed a 3-day recovery period post-treatment
where all cells were exposed to HDM. For both the treatment
and recovery phases, cell culture medium was renewed every
24 h. Cell lysates were prepared for omic investigations and OTA
quantification after 1, 3 and 5 days of treatment (T1, T3 and T5,
respectively) and at the end of the recovery period (R3, day 8 of
experiment) (Figure 1B). Supernatant medium was collected for
OTA quantification at the same time points. All omic endpoints
were measured in three biological replicates.

RNA Preparation
At each lysis time point, medium was removed and cells
were harvested in Qiazol (Qiagen). Total RNA was isolated
using a miRNeasy Mini Kit (Qiagen, 217004) according
to the manufacturer’s protocol and followed by DNase I
(Qiagen) treatment. Upon purification, RNA concentrations
were measured with a NanoDrop R© ND-1000 spectrophotometer

(Thermo Scientific) at 260 and 280 nm. RNA quality and integrity
were assessed by automated gel electrophoresis on an Agilent
2100 Bioanalyzer system (Agilent Technologies). Only RNA
samples which showed clear 18S and 28S peaks and with an RNA
integrity number (RIN) higher than 8 were used. Samples were
stored at−80◦C until RNA hybridization.

mRNA Microarrays
The DNA array platform used was the Affymetrix Human
Genome U133 plus 2.0 array. CEL files were loaded into BRB
array1 and normalized using the RMA method. Differences in
gene expression measurements under any condition compared to
time-matched control were summarized for each probe as log2
fold change (LFC) value. The associated p-value was computed
using the moderated (unpaired) t-test (Smyth, 2004) and
was corrected for multiple testing by the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995). Calculations were
performed using the R package “limma” (Smyth, 2005). All
transcriptomic data was deposited at Array Express under the
accession number E-MTAB-7048.

miRNA Microarrays
Profiling of miRNA expression was performed using Agilent
Sureprint G3 Unrestricted Human miRNA V19 8 × 60 K
microarrays. Hybridization was performed following standard
protocols, after which the microarray slides were washed
and scanned using a DNA microarray scanner (Agilent
Technologies). The scanned images were converted into TXT
files using the Feature Extraction Software v10.7.3.1 from
Agilent Technologies, which were imported in R 2.15.32 for
quality control with an in-house developed pipeline (Coonen
et al., 2015). Filtering and normalization was performed
using AgiMicroRna (López-Romero, 2011). Total gene signals
were log2-transformed and quantile-normalized. Differentially
expressed microRNAs with an FDR adjusted p-value < 0.05 were
considered statistically significant.

DNA Methylation
Cells were washed with HBSS, trypsinised and lysed with a
digestion buffer containing 1 mM EDTA, 50 mM Tris–HCl,
5% SDS and 1 mg/mL proteinase K. DNA was extracted and
processed for methylated DNA immunoprecipitation (MeDIP)
before hybridisation onto Human 2.1 M Deluxe Promoter arrays
(Roche NimbleGen, Basel, Switzerland). Detailed procedures are
available in the Supplementary Material.

Signal intensity was extracted from images using NimbleScan
v2.6 and differentially methylated regions (DMRs) compared
to control were identified following analysis with a probe
sliding window ANOVA algorithm (sliding window of 750 bp
comprising 7 probes and a FDR corrected p-value < 0.01).
Detail of the analysis can be found in the Supplementary
Material and (van Breda et al., 2014). Log2 ratios > 0 indicate
hypermethylation and log2 ratios < 0 indicate hypomethylation.

1http://linus.nci.nih.gov/BRB-ArrayTools.html
2http://www.r-project.org
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FIGURE 1 | Experimental design optimisation. (A) Concentration range testing in 96-well plates: Mature RPTEC/TERT1 cells were exposed to up to 25 µM OTA,
4 mM KBrO3 or a vehicle control for 5 days (T5) and fed a further 3 days with medium (R3). Cell viability was assessed by measuring impedance and calculating cell
index (CI) with the xCELLigence device. Cellular stress was assessed by measuring supernatant lactate. Significance of change compared to time-matched control
in a minimum of 3 biological replicates was assessed with a two-way ANOVA followed by a Bonferroni posttest. ∗p ≤ 0.05. T1, T2, T3, T4, T5: days 1, 2, 3, 4, and 5
of treatment, respectively. R1, R2, R3: days 1, 2, and 3 of recovery post-treatment. (B) Experimental design for the omic study. Mature RPTEC/TERT1 cells
monolayers were treated every 24 h for 5 days with 130 nM OTA, 0.8 mM KBrO3 or a vehicle control. The treatment was followed by a 3-day recovery period with
24h-feeding cycles with cell culture medium for all three conditions. Cells were lysed for omic investigations at the 4 indicated time points. Intracellular OTA levels
were measured by UPLC-MS at the 4 time points. Cell viability and cell stress were monitored throughout the experiment by microscopic examination (original
magnification 100×) and lactate measurements in cell culture supernatants. Lactate levels in treated cells were compared to time-matched controls with a two-tailed
unpaired Student’s t-test (∗p ≤ 0.05, n = 3). White asterisks (∗) show domes indicative of vectorial transport.
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Histone Acetylation Analyses Using
Chip-on-Chip
Chromatin immunoprecipitation was performed using the
SimpleChIP R© Enzymatic Chromatin IP Kit (Magnetic Beads)
(Cell Signaling Technology) as detailed in the Supplementary
Material. H3K9 acetylation of human promoters was studied
using the Human 2.1 M Deluxe Promoter Array (Roche
NimbleGen, Basel, Switzerland). Labelling, hybridization and
washing of arrays was performed according to the manufacturer’s
protocol as described in the DNA methylation section. Data
analysis and selection of differentially acetylated genes was
performed with the same workflow as for the MeDiP-chip data.

Stress Response Pathway Analysis
Pathway genes were chosen based on the lists of target genes
previously generated in our group (Limonciel et al., 2015). Genes
were ranked based on their average log2 fold over control (LFC)
across the three time points of treatment with KBrO3, the positive
control for Nrf2 and p53 activation (Limonciel et al., 2012). Genes
showing no significant modulation by KBrO3 were removed from
the original list. The remaining genes are ranked based on the
average LFC during treatment with OTA.

GC-MS Metabolomics
For metabolomics, the cells were lysed in ice-cold methanol
(MeOH). Cell lysate samples were derivatised for GC-MS by
a two-step methoximation/silylation derivatization procedure
(Kind et al., 2009). The following derivatization standards were
added to the samples: 13C-Serine (20 µL, 1 mM), U-13C-Glucose
(20 µL, 1 mM) and myristic acid d27 (10 µL, 1.5 mg/mL).
The dried samples were first methoximated with a solution of
20 mg/mL methoxyamine hydrochloride in anhydrous pyridine
(20 µL) and incubated at 30◦C for 90 min. Samples were then
silylated by adding 80 µL MSTFA (with 1% TMCS) (Thermo)
and incubating at 37◦C for 30 min. Following derivatization, 2-
fluorobiphenyl in anhydrous pyridine (10 µL, 1 mM) was added
as an injection standard and the samples were transferred to
deactivated glass vial inserts. GC-MS analysis was performed on
an Agilent 7890 GC equipped with a 30 m DB-5MS capillary
column with a 10 m Duraguard column connected to an Agilent
5975 MSD operating under electron impact (EI) ionization
(Agilent Technologies UK Ltd.). Samples were injected with an
Agilent 7693 autosampler injector into deactivated splitless liners
according to the method of Fiehn and colleagues (Kind et al.,
2009) using helium as the carrier gas. One sample was used as
a quality control (QC) and injected repeatedly throughout the
run to monitor system performance. Metabolites were assigned
using the Fiehn Library with the deconvolution program AMDIS
(Stein, 1999), and Matlab program GAVIN, developed in-house,
was used to integrate metabolite peak areas for all samples
(Behrends et al., 2011). Data was normalized by the QC-RLSC
method described by Dunn et al. (2011). Statistical significance
of the change induced by OTA or KBrO3 was assessed using a
two-way ANOVA with a Sidak posttest in GraphPad Prism v6.05.
Significant changes (p ≤ 0.05) are indicated in bold in Figure 7.

OTA Quantitation by UPLC-MS
For intracellular extracts, 150 µL aliquots of the MeOH
extracts were dried under reduced pressure in a speedvac,
and resuspended in 1:9 acetonitrile:water (100 µL) using
UPLC grade solvents (Romil LTD, Code H949, Cambridge,
United Kingdom). Sample solutions were then transferred to high
recovery chromatography vials (Waters Corporation, Milford,
MA, United States). For cell culture medium samples, 100 µL
aliquots of the media were added to 300 µL MeOH. Samples
were vortexed and then centrifuged at 16000 g for 5 min.
Supernatants were transferred to high recovery chromatography
vials and concentrated under reduced pressure in a speedvac,
before resuspension in 1:9 acetonitrile:water (100 µL). Standard
solutions of OTA ranging from 100 to 0.001 ng/mL (248 to
0.002 nM) were prepared in 1:9 acetonitrile:water (100 µL) and
transferred to high recovery chromatography vials. Reversed-
phase chromatographic separation of the cell lysates was
conducted using an Acquity UPLC system (Waters Corporation,
Milford, MA, United States) on an Acquity HSS T3 C18
column 10 mm × 2.1 mm, 1.8 um (Waters) and a binary
gradient elution comprising water +0.1% formic acid (Sigma)
and acetonitrile +0.1% formic acid, with an injection volume
of 15 µL. Mass spectrometric analysis of the chromatographic
eluent was performed using a quadrupole time-of-flight (QtoF-
Ultima) spectrometer (Waters) with data collected in centroid
mode in the m/z range 70–1000. Analysis was performed in
positive ion mode electrospray ionization. The elution gradient
was as follows: 99.5% A at 0 min-99.5% at 3 min to 99.5% B
at 19 min- 99.5% B at 23 min, 99.5% A at 23.1 min, 99.5% A
at 27 min. The column was kept at 50◦C and the auto-sampler
at 4◦C. Limit of detection (LOD) was 0.12 nM and limit of
quantitation (LOQ) was 0.32 nM.

Statistical Analysis
For all omics and OTA quantification, three biological
replicates were produced. Statistical analysis is reported in
the respective section for each method. For correlation of
epigenetic modifications with gene expression levels (Figure 3A),
the correlation of differentially expressed genes with epigenetic
modifications was tested with Spearman’s rank correlation
coefficient (ρ) at each time point. Strong correlation of HA or
DM with the direction of gene expression changes renders a
coefficient close to 1, strong anti-correlation is represented by a
coefficient close to -1. A p-value for statistical significance of the
association was also calculated and is reported by asterisks when
significant (∗p < 0.05, ∗∗p < 0.01 and ∗∗∗p < 0.001).

RESULTS

Concentration Range Testing and OTA
Uptake
The concentrations of OTA and KBrO3 used for the omic
investigations were chosen after rigorous concentration range
testing in RPTEC/TERT1 cells to cause a minimal decrease
in cell viability (impedance/CI) and an increase in cellular
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stress (extracellular lactate) (Figure 1A). Based on these results,
three biological replicates of differentiated RPTEC/TERT1 cells
were exposed to 130 nM OTA, 0.8 mM KBrO3 or a vehicle
control in a 5-day repeat-dose exposure regime followed by a
3-day recovery period with compound washout and cell culture
medium renewal every 24 h (Figure 1B). There was no significant
cell death throughout the omic experiment with either chemical.
However, both caused an increase in the stress marker lactate
during treatment. OTA also caused the disappearance of dome
structures indicative of vectorial transport of water and solutes
in proximal tubule cells cultured on solid support (Wilmes
et al., 2014). The cells were lysed for transcriptomic, epigenomic
(histone acetylation and DNA methylation arrays), miRNA and
metabolomic investigations at 4 time points: after 1, 3 and 5 days
of treatment (T1, T3 and T5, respectively) and after 3 days of
recovery post-treatment (R3).

Ochratoxin A itself was quantified in cell lysates at the
4 time points by UPLC-MS, revealing that after 24 h of
exposure, 9.5 ± 1.3 nM OTA were present in the cells
(Figure 1B). Intracellular levels were lower in the following days,
demonstrating a lack of accumulation of the parent compound
in spite of 5 consecutive exposures between T1 and T5. In the
supernatant OTA remained close to 90 nM at all treatment
time points and was below 0.3 nM (LOQ) at R3 (data not
shown). At R3, cellular OTA was negligible (less than 0.12 nM),
demonstrating an effective washout of the chemical. Interestingly,
a product of hydrolysis of OTA, OTAα, was also detected with a
peak at T3. Low intracellular levels of OTAα were still detectable
after recovery. Taken together, these data suggest that the nominal
concentration is close to the actual treatment concentration, that
OTA enters the cell, where it is hydrolysed to OTAα and that a
3-day washout effectively reduces the internal concentration of
OTA and its metabolite.

Quantitative Impact on Gene Expression
and Regulatory Mechanisms
The epigenomic and transcriptomic datasets revealed a very
large impact of OTA on histone acetylation (HA) and mRNA
expression and a milder effect on DNA methylation (DM)
and miRNA expression (Figure 2). At T5, OTA had induced
significant changes compared to time-matched controls on 11047
genes for HA, 5793 genes for mRNA, 639 genes for DM and 10
miRNAs. Interestingly, the largest impact on mRNA expression
occurred after the first 24h of exposure (9102 genes), likely
through a direct impact on transcription or mRNA processing,
while the impact on HA was strongest on the last day of treatment
(T5) and after recovery (R3). In comparison, KBrO3 had a
much smaller quantitative impact on epigenetics and mRNA
expression, but modulated more miRNAs than OTA, especially
at T5 (Figure 2).

A global analysis of the correlation of HA/DM status with
modulated gene expression (GE) at each time point for both
compounds was conducted (Figure 3A). The results show that
the strongest correlation was between HA and GE in KBrO3-
treated cells with a maximum at T1 (correlation coefficient
ρ = 0.75). Although OTA had a dramatically stronger effect on

both HA and GE in terms of number of impacted genes, the
correlation between HA and GE in OTA-treated cells was much
weaker, suggesting a weak contribution of HA to GE modulation
in spite of a very high number of differentially acetylated histones.
For DM, where anti-correlation with GE would be expected,
neither compound showed a strong anti-correlation.

Effects of OTA on HA regulation have already been reported,
notably through inhibition of HATs and activation of HDACs,
which would favor a global decrease in histone and overall
protein acetylation (Marin-Kuan et al., 2006). While in this
study HA was strongly impacted in presence of OTA and
after compound washout, Figure 3B shows that the majority
of epigenetic modifications observed at R3 were new and not
conserved from treatment. The most conserved modifications
were hypoacetylations with 28% of R3 hypoacetylations already
present at T5. However, when cross-analyzing persistent
hypoacetylations with significantly modulated mRNAs in the
OTA dataset (set of 85 genes-Figure 4), 44 genes showed
a directionality of gene expression consistent with histone
modifications, vs. 41 genes with histone modifications that
would favor the opposite effect on gene expression. In the
KBrO3 dataset, 43 genes had persistently differentially acetylated
histones from T5 to R3. Only 3 of those genes were also
differentially expressed at R3 compared to control: CCL2,
TGFB2 and SRRM2. All three genes were down-regulated at
R3, CCL2 and TGFB2 were hypo-acetylated and SRRM2 was
hyper-acetylated. Thus, even with a focus on persisting histone
modifications, there was no global correlation between HA and
GE with either chemical, suggesting a marginal effect of HA
modulation alone on mRNA expression on a global scale.

In the miRNA dataset, while KBrO3 induced the most
deregulations at T5, very few miRNAs overlapped with any other
condition, suggesting a peak of miRNA production that is absent
in the OTA dataset. In contrast, while only a maximum of
10 miRNAs were affected at any time point with OTA, most
of the up-regulated miRNAs were impacted at several time
points, with four of them still up-regulated at R3: miR-3065-
3p, miR-141, miR-542-3p and miR-542-5p. In contrast, miR-450a
and miR-219-5p were up-regulated and miR-1226∗ and miR-
370 were down-regulated in recovery exclusively (Figure 5A).
These last two miRNAs were also down-regulated in the KBrO3
dataset, after recovery only (Figures 5B,C). miR-132 was heavily
induced by OTA treatment only. Figure 5C compares the changes
in miRNAs in both treatments based on log2 fold change
(LFC). Two miRNAs (miR-23b, miR-29b-1) were similarly down-
regulated by both treatments after repeated exposures (T3 and
T5). Five miRNAs were down-regulated by OTA but up-regulated
by KBrO3 treatment at T1 (miR-21-3p, miR-1181, miR-134,
miR-3663-3p and miR-4271). Interestingly, the two chemicals
had opposite effects on miR-542-5p expression, both at T5 and
R3, where its levels were increased by OTA and decreased by
KBrO3.

Impact on Stress Response Pathways
The impact of both chemicals on the expression on Nrf2, p53
and unfolded protein response (UPR) related genes, as well as the
epigenetic modifications identified on the transcription factors
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FIGURE 2 | Quantitative impact on gene expression and epigenetic modifications. The number of hypo- and hyper- acetylated histones/methylated genes was
based on the sign of the difference of the median treatment and the median control values. For mRNA, the probe list was reduced per time point and treatment with
a cut off on p-value of change of 0.001. When several probes for a given gene remained, the probe with the highest variation in the condition was chosen. No cut off
on the intensity of change was applied. For miRNA, the probe list was reduced per time point and treatment with a p-value cut off of 0.05. For each endpoint, the
number of changes is represented on the X axis and the different time points (T1, T3, T5, R3) on the Y axis.

and their target genes are shown in Figure 6. KBrO3 induced
the up-regulation of Nrf2 and p53 target genes, yet with very few
corresponding HA and DM modifications. In contrast, KBrO3
did not alter the expression of the UPR targets studied here.

In OTA-treated cells, several Nrf2 and p53 targets were down-
regulated during treatment. In line with the large impact of
OTA on HA, most of the genes studied in Figure 6 showed HA
modifications at at least one time point, however there was no
sign of a consistent epigenetic modulation with a lasting effect
on gene expression. Only two miRNAs impacted by OTA had
validated targets from this list: miR-1285-3p targeting TP53 and
miR-132-3p targeting CDKN1A (p21). The transcripts of two of
the UPR-driving transcription factors (ATF4 and XBP1) were
down-regulated in OTA-treated cells. Several of their target genes
were also down-regulated, with the notable exception of HSPA5
(up-regulated from T1 to T5), which encodes the protein BiP
responsible for protein misfolding sensing in the ER and the
activation of all three branches of the UPR. Two elongation
factors (EIF2S2 and EIF1), involved in translation, were also
consistently up-regulated during OTA treatment and recovered
after washout.

Altogether, these results suggest an inhibition of the Nrf2,
p53 and unfolded protein responses by OTA at gene expression
level, which does not appear to be driven primarily by epigenetic
mechanisms (HA, DM or miRNA).

Metabolic Impact
Amino Acids
Metabolomic analysis of the intracellular contents of OTA-
treated cells revealed an increase in both essential (histidine,
isoleucine, leucine, valine, threonine, methionine, tryptophan

phenylalanine and lysine) and non-essential (alanine, proline,
glutamine, glutamic acid, serine, tyrosine) amino acids after the
first 24 h of treatment, with the notable exception of the non-
essential amino acids aspartic acid, cysteine and glycine that
are all important in the synthesis of the antioxidant glutathione
(Figure 7). This early response was not sustained at later
treatment time points, where most amino acid deregulations were
toward a depletion, with the most striking effects on aspartic
acid, cysteine and glycine at T3. After OTA washout and recovery
(R3), the depletion of several essential (isoleucine, leucine, valine,
phenylalanine) and non-essential (asparagine, alanine, proline,
glutamine, glutamic acid, serine, tyrosine) amino acids could still
be measured, while aspartic acid levels were increased compared
to time-matched controls.

Upon exposure to KBrO3, the metabolomic profile was very
different, with a mild impact only on non-essential amino acids
at T1, but which was sustained until T5 (increased levels of
alanine, glutamic acid, aspartic acid). In addition, serine and
tyrosine levels were decreased at T3, but returned to control
level at T5, while glutamine was depleted at both time points.
Essential amino acids were depleted at the late treatment time
points only: histidine, methionine, tryptophan, phenylalanine
and lysine at T3; methionine, phenylalanine and lysine at T3 and
T5. After KBrO3 washout and recovery, amino acid levels were
still not back to control levels. In particular, isoleucine, leucine,
methionine and aspartic acid levels were still elevated compared
to time-matched control (Figure 7).

Metabolic Pathways
Ochratoxin A also largely affected metabolites related to cellular
energy production and nucleotide biosynthesis and degradation
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FIGURE 3 | Correlation of epigenetic modifications to mRNA expression changes and persistence after washout and recovery in OTA- and KBrO3-treated cells.
(A) - Correlation between epigenetics and gene expression was tested at each time point with Spearman’s rank correlation coefficient (ρ). Strong correlation between
histone acetylation (HA) or DNA methylation (DM) and mRNA gene expression (GE) renders a coefficient close to 1, strong anti-correlation renders a coefficient close
to -1. A p-value for statistical significance of the correlation was also calculated and is indicated by ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. (B) Persisting epigenetic
modifications after compound washout and recovery period. Here, epigenetic modifications with sustained directionality at T5 and R3 for a given gene were
considered persisting after treatment. Percentage of persistent modifications was calculated as the percentage of modifications in the R3 datasets that were already
present at T5 and modified in the same direction compared to time-matched control; e.g., for OTA, 694 genes corresponding to 13.2% of hyper-acetylated genes at
R3 were already hyper-acetylated at T5.

(Figure 7). Several intermediates of glycolysis and the TCA
cycle were significantly impacted by OTA at T1, with glucose,
glucose-6-phosphate, 3-phosphoglycerate, lactic acid, citric acid,
alpha ketoglutaric acid, fumaric acid and malic acid levels all
increased after 24 h. At later exposure time points, succinic
acid (decreased) was the only modulated metabolite of these
two pathways. After OTA washout and recovery, the first
(glucose-6-phosphate) and last (lactic acid) metabolites of glucose
degradation through glycolysis were decreased, as well as citric
acid. Interestingly, fructose (among the polyols) was consistently
increased throughout OTA exposure (strongest increase in the
metabolomic dataset) but not at R3. KBrO3 did not affect fructose
levels, but consistently caused a depletion in glucose in the
cells, which was recovered at R3. In addition, KBrO3 induced
an increase at T1 in all TCA intermediates measured except
citric acid. These higher levels were sustained until T3 for alpha
ketoglutarate and malic acid and until T5 for succinic acid. At R3,
fumaric and malic acid levels were still above control levels after
KBrO3 washout.

Metabolomics also revealed an impact on the pentose
phosphate pathway (PPP), which can branch from glycolysis
(C6 metabolism) to provide C5 ribose derivatives, notably
for nucleotide biosynthesis. OTA caused an increase in 6-
phosphogluconic acid (T1), D-ribose (T1, T3, and T5) and
ribose-5-phosphate (T3). KBrO3 depleted the levels of glucuronic
acid from T1 to T5 and of ribose-5-phosphate at T1 and T3
only, without a significant impact on ribose itself. Both chemicals
caused an increase at T1 and a decrease at T3 of the intracellular
levels of orotic acid, a downstream metabolite involved in
the early steps of pyrimidine biosynthesis. An increase was
also measured after recovery from KBrO3 but not from OTA.
Cytosine and CMP levels were not impacted by either chemical,
while uracil and UMP levels were affected at the early time
points by OTA only. The degradation product 3-aminoisobutyric
acid was consistently increased by KBrO3 during exposure and
after washout, while OTA’s effects followed the pattern of other
pyrimidine metabolites with an increase at T1 and a decrease at
later treatment time points.
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FIGURE 4 | Modulated genes with persistent histone acetylation (HA) modification after OTA washout. These 85 genes had (1) significantly altered mRNA levels at
R3 (± 0.58 LFC) and (2) persistent HA modifications from T5 to R3. Within this list, 44 genes had HA modification consistent with the direction of GE (correlation:
YES, i.e., up-regulated GE/HA+ or down-regulated GE/HA-) and 41 had inconsistent HA modifications (correlation: NO). Most genes had hypo-acetylated histones.
Red corresponds to up-regulated GE. Green corresponds to down-regulated GE.
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FIGURE 5 | Effects on miRNA expression in RPTEC/TERT1 cells. (A,B): Differentially expressed miRNAs in OTA- (A) and KBrO3- (B) treated cells. Significance of
change compared to time-matched control was set to p ≤ 0.1 based on false discovery rate (fdr) and plotted as log2 fold change (LFC) vs –log10(fdr). There was no
significant change at T1 in KBrO3-treated cells. (C): Relative expression of miRNAs significantly impacted by KBrO3 at T5 and by OTA at the indicated time point,
regardless of the direction. Changes occurring with one chemical only are not represented.

Regarding purine metabolites, OTA caused a depletion
in adenosine (T1, T3), AMP (T3), guanosine (T3) and 5′-
methylthioadenosine (5′-MTA; T1, T3, T5, also in the polyamine
pathway). OTA exposure also resulted in an accumulation of
purine degradation products (hypoxanthine and xanthine) at T5,
while the levels of both were back to control level after washout.
The levels of adenine were not affected by either chemical. KBrO3
decreased the levels of adenosine and guanosine at T3 and caused
a mild increase in AMP and inosine after washout. Contrary
to OTA, KBrO3 caused a decrease in xanthine levels at T3 and
T5.

A set of metabolites involved in the urea cycle was particularly
impacted by OTA treatment, as well as after recovery (Figure 7).
OTA decreased the levels of ornithine, aspartic acid and fumaric
acid without affecting the levels of urea itself. In addition, the
levels of putrescine, a polyamine metabolite, were alternately
increased at T1, strongly decreased at T3 and T5 and again
increased at R3. KBrO3 had a different effect on urea cycle
metabolites, affecting primarily citrulline (decreased at T3 and
T5) and urea itself (increased at T5 and R3). KBrO3 also
impacted the levels of putrescine, although to a lower extent.
The metabolite 5′-MTA, a product of spermidine and spermine
metabolism, was decreased by OTA at all exposure time points
and levels were recovered after OTA washout. KBrO3 did not
impact the levels of 5′-MTA.

DISCUSSION

Renal proximal tubule cells are the primary target of OTA
toxicity, likely due to basolateral organic anion transport at
this site (Tsuda et al., 1999). Previous studies have shown that
OTA induces a severe alteration of gene expression in vitro in
proximal tubule cell models and in vivo in the rat renal cortex
(Jennings et al., 2012). However, despite a strong impact on the
transcriptome, the common toxicologically relevant pathways
were not directly impacted with exception of an unusual
suppression of the Nrf2 pathway (Limonciel and Jennings,

2013). Thus, transcriptomics alone, particularly in single dose
applications, does not reveal a clear mechanism of OTA induced
nephrotoxicity and/or carcinogenicity. Here we investigated
molecular perturbations induced by OTA at the epigenetic
and metabolic levels in repeat dose exposures and in recovery
experiments. The effects of OTA were compared and contrasted
to those induced by KBrO3, a well described nephrotoxin and
renal carcinogen with a firm mechanism of toxicity based on
oxidative stress and genotoxicity (Limonciel et al., 2012).

Ochratoxin A exhibited cytotoxicity in repeat dose exposures
at 5 µM and above at T5 and was even more cytotoxic at these
concentrations after recovery (R3). Cellular stress, as measured
by increased lactate production (Limonciel et al., 2011), occurred
at T3 at the chosen concentration of 130 nM. This concentration,
while non-cytotoxic, also inhibited dome formation, an indicator
of vectorial transport of water and solutes in proximal tubule
cells grown on solid support (Wilmes et al., 2014) by T3.
Transport function fully recovered at R3, as evidenced by the
reappearance of domes. Measurement of OTA concentrations
within the cells, showed a peak of the parent compound at T1,
decreasing at T3 and T5. Approx. 1 % of the T1 peak was
detected at R3. It is likely that OTA is metabolized quickly to
OTAα, which peaked intracellularly at T3 and was only slightly
above the limit of detection after recovery. For comparison, a
0.8 mM non-cytotoxic concentration of KBrO3 was chosen for
the omic studies. This concentration exhibited similar effects
on the cells, including elevated supernatant lactate and mildly
decreased transport capacity at T3, with full apparent recovery
at R3.

Ochratoxin A at 130 nM exhibited a more severe effect
on gene expression, histone acetylation and DNA methylation
than KBrO3. While gene expression somewhat recovered after
removal of OTA, both histone hyper-acetylation and DNA
hyper-methylation peaked. For both compounds, there was a
correlation of histone acetylation to gene expression, however, the
correlation was much weaker for OTA. The strongest correlation
of the data set was KBrO3 at T1, which gradually decreased
with repeated dose and increased again in recovery. The opposite
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FIGURE 6 | Epigenetic and mRNA changes associated with stress response pathways. Three stress response pathways are described: the Nrf2 response to
oxidative and alkylating stress, the p53 response to DNA damage and the unfolded protein response. Gene lists include the governing transcription factors Nrf2
(NFE2L2), p53 (TP53), ATF4, ATF6 and XBP1, followed by some of their target genes. For HA and DM, “+” means hyper- and “–“ means hypo-modifications
compared to time-matched control (in all 3 replicates). Red symbolizes modifications that classically promote gene expression for HA and DM / mRNA up-regulation.
Green symbolizes modifications that classically reduce gene expression for HA and DM / mRNA down-regulation. Heatmap for mRNA expression ranges from 4 to
-2 and is centered to 0 (white). “T average” is the average log2 fold change compared to time-matched control. For each pathway, genes are sorted in descending
order of T average in the OTA dataset.

was true for OTA, with a poor correlation at T1 that increased
at T3 and T5. This analysis suggests that histone acetylation
is not the driving force for OTA-induced gene transcription.
This disassociation of histone acetylation and gene expression
may point to a mechanism of toxicity of OTA. Regarding
DNA methylation, neither compound showed a consistent anti-
correlation with gene expression.

Ochratoxin A exposure exhibited a minor effect on miRNA
expression, affecting 10 miRNAs altogether, whereas KBrO3
exposure resulted in a differential expression of 35 miRNAs at T5.

A possible explanation for OTA’s imbalance in mRNA / miRNA
alterations is an inhibition of the miRNA maturation machinery,
as previously reported (Dai et al., 2014; Zhao et al., 2017).
Previous reports on the effect of OTA on miRNA expression
in HEK293 and HepG2 cells (Zhao et al., 2017) and in GC-
2 cells (Chen et al., 2015) have no overlaps with our study.
However, the study by Hennemeier et al. (2014) demonstrates
the implication of miR-29b (down-regulated by both OTA and
KBrO3 in our study) in collagen formation in HEK293 cells. In
addition, in our study OTA induced the expression of several
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FIGURE 7 | Effects on metabolite levels in RPTEC/TERT1 cell lysates. Intracellular metabolites were measured in methanol lysates by GC-MS at the four indicated
time points. Data is shown as log2 fold over time-matched control (LFC). Metabolites are grouped per pathway and appear multiple times if shared between
pathways. Heatmap ranges from 3.62 (fructose / OTA T1, red) to –2.22 (glucose / KBrO3 T5) and is centered to 0 (white). Bold LFCs indicate LFC significantly
different from control, as determined by 2-way ANOVA with Sidak posttest (p ≤ 0.05).

miRNAs at all treatment time points including miR-3065-5p,
miR-141, miR-542-5p, miR-542-3p and miR-132. miR-132 is of
potential mechanistic interest as it has previously been shown
to be involved in the suppression of Nrf2 genes, with a miR-132
antigomir being capable of preventing OTA-induced Nrf2 mRNA
depletion in LLC-PK1 cells (Stachurska et al., 2013).

Indeed, analysis of the OTA-induced transcriptome alterations
demonstrated that Nrf2 target genes HMOX1, NQO1, GCLM,
TXNRD1 and SRXN1 were severely attenuated whereas all were
robustly induced by the oxidant and Nrf2 activator KBrO3. It
has been well-documented that OTA can induce reactive oxygen
species (ROS) (Schaaf et al., 2002; Costa et al., 2016). Thus,
it is counter-intuitive that the Nrf2 response that protects the
cell against oxidative stress be attenuated by a ROS-inducing
chemical. However, this is a striking finding in this study and
has been reported by us and several other groups (Limonciel and
Jennings, 2013). The mechanism of OTA-induced Nrf2 response
inhibition is not clear and is potentially based on inhibition of
Nrf2 translocation, induction of miR-132, inhibition of protein
acetylation through HDAC activation and HAT inhibition or
combinations of all. In any case, it is plausible that OTA-induced
Nrf2 inhibition renders the cell defenseless to oxidative injury,
potentially leading to increased cell death rates and cancer.

Within the UPR pathway, OTA induced ATF6 and HSPA5
(aka BiP) transcription, but suppressed ATF4 and many of
its target genes, including tRNA synthetases (YARS, AARS,
LARS, SARS, VARS, TARS, EPRS, GARS, CARS, NARS, WARS,
IARS) and amino acid transporters (SLC1A5, SLC1A4, SLC6A9,
SLC7A11). All of these may point to a general increase in protein
turnover. Indeed OTA’s strong affinity for serum albumin is
responsible for its high plasma half-life of up to 35 days (Studer-
Rohr et al., 2000). It is conceivable that OTA also binds to
cytosolic and cytoskeletal proteins with high affinity initiating
proteasomal degradation and autophagy.

We have previously demonstrated an interaction of the Nrf2
and ATF4 pathways in the maintenance of glutathione levels after

oxidative injury (Wilmes et al., 2013). Since Nrf2 also induces
mRNA expression of ATF4, it is possible that inhibition of the
Nrf2 pathway also suppresses the ATF4 branch of the UPR.
In the UPR, ATF4 primarily orchestrates the expression of amino
acid transporters and aminoacyl-tRNA synthetase enzymes that
attach amino acids to their specific tRNAs for inclusion in newly
translated proteins (Jennings et al., 2013). Metabolomic analysis
showed an OTA-induced increase in all essential amino acids at
T1, which could result from an abrupt interruption of translation
at the beginning of exposure or an increase in amino acid
transport from the cell culture medium that was not sustained
at later time points. For non-essential amino acids, however,
while most metabolites were increased at T1, many were strongly
decreased at all the other time points, including R3. In particular
at T3, the glutathione building blocks glycine and cysteine were
decreased, suggesting an impact on the capacity of the cells for de
novo glutathione synthesis.

KBrO3 exhibited a strong induction of genes in the p53
pathway. OTA caused a weaker response although some p53
genes were robustly induced, including CDKN1A (p21) and
GADD45A. The p53 pathway is an important regulator of many
processes including DNA damage and glycolysis. Although both
chemicals increased lactate production, OTA and KBrO3 had
very different impacts on other metabolites involved in glucose
metabolism through glycolysis (of which lactate is the final
metabolite), the tricarboxylic acid (TCA) cycle, the PPP and the
polyol pathway. In the latter, glucose is converted to sorbitol by
aldo keto reductases (AKR1B1, AKR1B10) and then to fructose
by sorbitol dehydrogenase (SORD). In OTA-treated cells, fructose
was consistently increased, suggesting an activation of the polyol
pathway, as fructose is not present in the cell culture medium
used. In addition, SORD, encoding the enzyme that converts
sorbitol to fructose, was amongst the strongest up-regulated
genes in the OTA gene expression dataset. Its log2 FC was 5.0
at T1, 5.3 at T3, 5.0 at T5 and still 1.0 at R3 (2 folds above
time-matched control).
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Another interesting aspect of the metabolomic dataset was
the impact on nucleotide metabolism that could interfere with
the availability of nucleotides for mRNA synthesis or reflect an
attempt at de novo nucleotide biosynthesis, possibly to support
DNA repair mechanisms.

The polyamine metabolism pathway was also particularly
affected by OTA. Putrescine, a metabolite of ornithine, was
impacted by OTA at all time points. However, putrescine is
available from the cell culture medium, thus the increases
measured at T1 and R3 could be the result of increased uptake
by the cells. The decreases in putrescine levels at T3 and T5,
however, suggest an interference with its further degradation to
spermidine, of which the levels were not significantly changed
by OTA. 5′-MTA, a by-product of spermidine and spermine
synthesis, on the other hand was consistently decreased during
OTA exposure. 5′-MTA has many roles such as being an inhibitor
of polyamine synthesis (Evans et al., 2004), as a starting point for
the purine and methionine salvage pathway (Williams-Ashman
et al., 1982) and as a methyl donor for methylation of other
molecules (Avila et al., 2004). This last property is of particular
interest in the context of DNA methylation, as OTA has been
shown to cause a global hypomethylation of DNA in HepG2 cells
(Zheng et al., 2013).

As a food contaminant of great concern, OTA has been at the
center of several studies focusing on the use of metabolomics
to identify new biomarkers of exposure in blood and urine.
Male rats exposed to up to 210 µg OTA/kg bw by gavage for
up to 90 days had elevated glucose, lactate, alanine and glycine
levels in the urine, while citrate and oxoglutarate levels were
decreased compared to control (Sieber et al., 2009). Another
study with similar exposure up to 26 weeks found elevated levels
of alanine and threonine in the rats’ blood associated with low
blood glucose and high lactate (Xia et al., 2014). This study
also found high levels of fumarate, malate (increased at T1 in
our study), ribose (increased throughout treatment), uridine,
sorbitol, fructose (increased at T1), aspartic acid (decreased at
late treatment time points, increased at R3), leucine, serine,
proline (all 3 increased at T1) and ornithine (decreased at late
treatment time points and R3) in the biofluids analyzed. A single
dose of OTA administered to male rats (6.25 mg OTA) was
also shown to cause a modulation in the levels of citrate and
an increase in oxoglutarate, lactate, glucose and succinate levels
in the urine (Mantle et al., 2011). Although these studies focus
on extracellular fluids, our analysis of the intracellular contents
shows an overlap for many of the features identified as potential
biomarkers of OTA exposure in vivo. Metabolomic analysis was
previously performed both in cell lysates and supernatants of
RPTEC/TERT1 exposed to both chemicals for up to 3 days
(1mM KBrO3 / 300 nM OTA) (Ellis et al., 2011). After a bolus
exposure, extracellular lactate and pyruvate levels were increased
(intracellular levels were unchanged), while glucose was depleted
from the medium with both chemicals. Intracellular betaine was
decreased by both chemicals. In addition, KBrO3 caused an
increase in alanine, glycerophosphocholine and total glutathione
within the cells. Thus the features identified in the Ellis et al. study
further support the deep interference with energy metabolism
identified for both chemicals in our study.

Taken together these results support previous reports of
the effect of OTA on metabolic processes related to protein
synthesis (amino acid availability), nucleotide synthesis and
energy metabolism, as well as the effect of both chemicals on
stress responses to oxidative stress and DNA damage (activated
by KBrO3, inhibited by OTA). The exhaustive metabolomic
investigation is concordant with previous reports of the effects
of OTA and brings further insights on the effects of KBrO3
on the metabolome. While the large effect of OTA on gene
expression and epigenomic regulation had been previously
reported, we show here that the effects on histone acetylation
and DNA methylation, do not appear to be a driving force
in the large transcriptional impact of OTA in renal proximal
tubule cells. It is likely that OTA uptake into the cell initiates
several simultaneous perturbations including proteotoxicity,
disturbances of the histone machinery, Nrf2 inhibition, DNA
injury and perturbations of glucose catabolism. Further work will
be needed to delineate these mechanisms and to uncouple which
mechanisms are direct OTA effects and which are compensatory
mechanisms.
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A paradigm shift is taking place in risk assessment to replace animal models,
reduce the number of economic resources, and refine the methodologies to test
the growing number of chemicals and nanomaterials. Therefore, approaches such
as transcriptomics, proteomics, and metabolomics have become valuable tools in
toxicological research, and are finding their way into regulatory toxicity. One promising
framework to bridge the gap between the molecular-level measurements and risk
assessment is the concept of adverse outcome pathways (AOPs). These pathways
comprise mechanistic knowledge and connect biological events from a molecular
level toward an adverse effect outcome after exposure to a chemical. However, the
implementation of omics-based approaches in the AOPs and their acceptance by
the risk assessment community is still a challenge. Because the existing modules in
the main repository for AOPs, the AOP Knowledge Base (AOP-KB), do not currently
allow the integration of omics technologies, additional tools are required for omics-
based data analysis and visualization. Here we show how WikiPathways can serve
as a supportive tool to make omics data interoperable with the AOP-Wiki, part of the
AOP-KB. Manual matching of key events (KEs) indicated that 67% could be linked with
molecular pathways. Automatic connection through linkage of identifiers between the
databases showed that only 30% of AOP-Wiki chemicals were found on WikiPathways.
More loose linkage through gene names in KE and Key Event Relationships descriptions
gave an overlap of 70 and 71%, respectively. This shows many opportunities to create
more direct connections, for example with extended ontology annotations, improving
its interoperability. This interoperability allows the needed integration of omics data
linked to the molecular pathways with AOPs. A new AOP Portal on WikiPathways is
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presented to allow the community of AOP developers to collaborate and populate the
molecular pathways that underlie the KEs of AOP-Wiki. We conclude that the integration
of WikiPathways and AOP-Wiki will improve risk assessment because omics data will
be linked directly to KEs and therefore allow the comprehensive understanding and
description of AOPs. To make this assessment reproducible and valid, major changes
are needed in both WikiPathways and AOP-Wiki.

Keywords: adverse outcome pathways, risk assessment, omics, WikiPathways, interoperability

INTRODUCTION

The last decades have seen many developments in risk assessment
strategies for an ever-growing number of chemicals and
nanomaterials, aiming to reduce the use of animals and cost
of risk assessment and to increase the predictive value. In
parallel to these changes, experimental approaches in regular
toxicology research have also made major steps setting up
novel high-throughput technologies for generating large-scale
(omics) datasets such as transcriptomics, metabolomics, and
proteomics. However, these technologies are not consistently
implemented in regulatory risk assessment and there is a need
for proper integration of knowledge, testing systems, and analysis
tools for these approaches to be of added value over existing
methodologies in risk assessment.

To support the paradigm shift toward animal-free, cheap and
more effective risk assessments of chemicals, the concept of
adverse outcome pathways (AOPs) emerged (Ankley et al., 2010),
which integrate mechanistic knowledge of the toxicological
effects of chemical compounds and nanomaterials and thereby
assist integrated approaches to testing and assessment strategies.
AOPs are structured as logical sequences of causally linked
and measurable biological events [key events (KEs)] that
occur after exposure to a stressor that triggers a biological
perturbation, called the molecular initiating event (MIE). These
KEs are connected by Key Event Relationships (KERs) and
describe the downstream effects on increasing levels of biological
organization, from molecular, cellular, tissue, organ, individual,
and population responses toward an adverse outcome (AO)
(Villeneuve et al., 2014; Leist et al., 2017; Vinken et al., 2017).

The Organisation for Economic Co-operation and
Development (OECD) was the first organization to embrace
AOPs by launching the AOP Development Programme in 2012
for the establishment of AOPs in a qualitative way and provide
guidance material for standardized, structured development
of AOPs (Vinken, 2013; Organisation for Economic Co-
operation and Development [OECD], 2017). With that, the AOP
Knowledge Base (AOP-KB1) emerged in 2014 as a collective
platform of various tools to assist in the development of AOPs.
Its main components are the AOP-Wiki2, Effectopedia3 and the
AOPXplorer Cytoscape application.

The AOP-Wiki is the result of collaboration between the
European Commission’s Joint Research Center (JRC) and the

1https://aopkb.oecd.org/index.html
2https://aopwiki.org/
3https://effectopedia.org

United States Environmental Protection Agency (US EPA).
It is developed to be a central knowledge-sharing platform
which facilitates cooperative development of AOPs and strictly
follows the OECD’s guidance materials for AOP development.
Nowadays, it is the most actively used module of the AOP-KB and
with the recent efforts on annotation with ontology tags, it has
been aiming for semantic interoperability. This started with the
development of the AOP Ontology (Burgoon, 2017) and recently,
the addition of various other ontologies to match the various
domains described in AOPs, from Gene Ontology for biology
annotation toward the Population and Community Ontology for
annotation of events on the population level (Ives et al., 2017).

Effectopedia (Watanabe et al., 2018) is another tool from
AOP-KB, developed by OECD, dedicated to the collaborative
development of quantitative AOPs. The AOP diagram is the focal
point of its user interface providing visual means for adding
new and navigation through existing AOP elements, offering
easy access to their description. In addition to KE and KER,
Effectopedia also has an explicit representation of test methods,
collected data and executable models. The integration of response
data in KER allows the system to predict downstream KEs using
measurements or models for upstream KEs that can be measured
using in chemico, high throughput and or in vitro methods.
The goal of fully quantified AOPs is to allow the prediction of
an adverse outcome in time and magnitude using a minimum
number of experimental measurements for KE responses that
cannot be adequately modeled by other means.

The third is AOPXplorer, a Cytoscape application, meant for
building networks of KEs, forming AOP Networks (AOPNs) and
allow data visualization of various types on top of the AOPNs.
The goal of AOPXplorer is to help investigators and risk assessors
understand how chemical exposures result in information flow
throughout the AOPN, allowing them to make defensible stories
and inferences about potential adverse outcomes.

It has been postulated that omics technologies can be used
for various goals in regulatory toxicology, such as biological
read-across based on molecular events to prioritize chemicals
for testing, cross-species extrapolation to link to evolutionary
biology and the identification of KEs (Hartung, 2016). Although
omics approaches have already been used in toxicology to
define specific modes of action (Edwards and Preston, 2008)
or identifying biomarkers (Grafström et al., 2015), they have
not found their way into regulatory acceptance for assessment
of chemicals and nanomaterials (Buesen et al., 2017; van
Ravenzwaay et al., 2017). There is a need for well-established
experimental protocols for data generation, storage, processing,
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analysis, and interpretation to reach regulatory acceptance.
Besides, an integration framework for data interpretation to
identify relevant molecular changes and pathways is required,
as well as the filling of knowledge gaps that keep risk assessors
from causally linking molecular events to an adverse outcome at
a higher level of biological organization (Brockmeier et al., 2017;
Buesen et al., 2017; Sauer et al., 2017; Vachon et al., 2017; Campos
and Colbourne, 2018). Taken together, the level of uncertainties
and inconsistencies in experimental design should be minimized
to allow omics approaches in risk assessment and AOPs. So
far, various ideas have emerged to introduce omics data to the
concept of the AOPs, such as a pipeline for KE enrichment
(Nymark et al., 2018), workflow for computationally predicted
AOPs from public data (Bell et al., 2016) and the Transcriptomics
Reporting Framework (Gant et al., 2017).

There is a demand for a consistent, well-defined protocol
to analyze and integrate the data in order to describe the
molecular effects downstream of an MIE (Brockmeier et al.,
2017). Molecular pathway databases and tools exist to analyze
omics datasets through pathway analysis, which happens through
probability scoring of pathways containing differently expressed
genes and thereby reducing the number of dimensions of omics
datasets to the number of biological pathways. Various molecular
pathway databases exist which could be viable tools for the
integration of omics approaches in regulatory risk assessment,
such as KEGG (Kanehisa and Goto, 2000), Reactome (Fabregat
et al., 2018) and WikiPathways (Slenter et al., 2018).

In this paper, we describe how WikiPathways4 (Slenter
et al., 2018) an open-science molecular pathway database which
captures mechanistic knowledge in pathway diagrams, can be a
supportive database for AOPs and the analysis and interpretation
of omics datasets through pathway analysis. WikiPathways has
similar levels of coverage of genes and metabolites as Reactome
and KEGG (Kutmon et al., 2016; Slenter et al., 2018) and
performs better in covering signaling pathways (Azad et al.,
2017). This can be done with PathVisio (Kutmon et al.,
2015), a pathway diagram drawing tool that is connected to
WikiPathways, in which omics data can be visualized and
pathway analysis can be performed. Also, WikiPathways exists as
a Cytoscape application, which allows the same pathways to be
used for network analysis (Kutmon et al., 2014).

Thanks to the adaptability and accessibility of WikiPathways,
communities can collaborate on creating, assessing and
improving the understanding of molecular pathways (Pico et al.,
2008). Therefore, WikiPathways could be a valuable tool for the
risk assessment community. It can provide improved molecular
descriptions of early KEs which support biological plausibility.
At the same time, it can serve as empirical support to KERs
and allow the integration of omics technologies in the concept
of AOPs in a systematic manner. As illustrated in Figure 1,
ideally, all KEs in AOP-Wiki are linked by at least one molecular
pathway, which can be highlighted by omics analysis and thereby
revealing KEs. However, WikiPathways needs to be integrated
with the existing modules in the AOP-KB. Here, we focus on the
AOP-Wiki by describing its current implementation of semantic

4http://wikipathways.org

annotations and we will show how we can connect the AOP-Wiki
with WikiPathways through identifiers for genes, proteins and
metabolites, and ontologies (Bard and Rhee, 2004), which are
pre-defined vocabularies used to describe knowledge and assist
in the integration of data sources. Furthermore, we will propose
a strategy for future work on connecting the two databases,
describing the planned work on WikiPathways and suggestions
for improving the AOP-Wiki and its contents to allow linkage of
databases.

MATERIALS AND METHODS

Retrieval of AOP-Wiki Data
The AOP-Wiki allows the use of their data for publication
purposes, by storing permanent quarterly downloads on the
website5. For this paper, we used the AOP-Wiki XML file of April
1st, 2018, containing all AOP-Wiki content.

Parsing the AOP-Wiki XML
The AOP-Wiki XML was parsed with Python 3.5 (Python
Software Foundation, 2010) and the ElementTree XML API
with the “.parse”-function which resulted in an ElementTree
wrapper class that represents an entire element hierarchy.
The information, that was required for the experiments, was
extracted included stressor information, ontology annotations,
and information on KEs and KERs. The source code, as well as
a brief tutorial on the execution of it, are available on GitHub
(Martens, 2018).

BridgeDb Identifier Mapping in R
In order to perform identifier mapping for the chemicals
that are stored on AOP-Wiki with CAS Registration Numbers
(CAS numbers), we used the BridgeDb, an identifier mapping
framework (Van Iersel et al., 2010). The CAS numbers from the
AOP-Wiki were saved as plain text file and imported in RStudio
(version 1.1.447; R version 3.4.4) (R Core Team, 2013; R Studio
Team, 2015), in which the R-package BridgeDbR (Leemans et al.,
2018) was utilized to map the CAS numbers to ChEBI identifiers
with the BridgeDb metabolite identifier mapping dataset (Slenter,
2018). The R code used for the identifier mapping is available
on GitHub along with a tutorial to execute the script (Martens,
2018).

WikiPathways Data
Information from WikiPathways was retrieved using the
WikiPathways SPARQL endpoint6 (Waagmeester et al., 2016),
version 20180610. SPARQL is a query language to select specific
subsets of data from a collection of RDF, a standard framework
for knowledge descriptions. For this manuscript, various queries
were performed to request information about WikiPathways’ use
of ontologies and to retrieve pathways for lists of genes related
to KEs.

5https://aopwiki.org/downloads
6http://sparql.wikipathways.org/
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FIGURE 1 | Illustrative description of the linkage of KEs of an AOP with molecular pathways described in WikiPathways and the practical application of
transcriptomics. Transcriptomics and pathway enrichment analysis are commonly used to elucidate molecular pathways affected after exposure to a chemical or
stress signal. In this illustration, gene expression levels in WP3942 (Adriaens et al., 2018) are significantly changed (red and blue nodes in the pathway diagram, for
up- and downregulation). Because this pathway is linked to the MIE and first KE, these are hypothetically affected by the chemical, highlighted with red borders and
require validation. WP143 (Hanspers and Slenter, 2017) is not affected by the exposure of this chemical at the same time and dose, and the KE that is linked to this
biological pathway is not considered to be affected but could follow later or at a higher dose. AO, adverse outcome; KE, key event; MIE, molecular initiating event;
PW, pathway; WP, WikiPathways.

Textual Identifier Mapping for Genes and
Proteins
In order to perform identifier mapping on the free-text
descriptions of AOP-Wiki, we downloaded a human gene
identifier dataset from the HUGO Gene Nomenclature
Committee (HGNC) (HUGO Gene Nomenclature Committee
[HGNC], 2018) in May 2018 via genenames.org, a curated
online repository for HGNC-approved gene nomenclature,
gene families and associated resources (Yates et al., 2017).
A custom download was performed in which we requested
HGNC IDs, approved symbols, approved names, previous
symbols, synonyms, and Ensembl IDs. These identifiers were
loaded in Python and used to filter the descriptions of KEs for
genes, which are filtered for KEs on the molecular, cellular, tissue,
and organ level of biological organization. Also, the KERs that
connect these KEs were parsed and identifiers were mapped
on their descriptions and texts on biological plausibility and
empirical support.

Manual Matching of AOP-Wiki KEs to
Molecular Pathways on WikiPathways
All AOP-Wiki KE IDs on the molecular, cellular, tissue, and organ
level were extracted and their corresponding web pages were
opened on aopwiki.org. From the KE titles and descriptive text,
pathway names were selected and queried on wikipathways.org
via the search-bar for molecular pathways. If results showed
up for this initial search, the KE was considered present in
WikiPathways. If the KEs did not contain a direct mention

of a pathway, the genes and proteins were noted and were
queried for their presence in pathways via the WikiPathways
SPARQL endpoint. For KEs at the cellular level, at least the
majority of the genes and proteins should be present in at least
one pathway. However, for molecular KEs that describe only
an interaction between two molecules, only the presence of
the target molecule in WikiPathways was necessary to consider
the KE covered by WikiPathways. This method was meant
to give a rough overview of the overlap between the AOP-
Wiki and WikiPathways databases. Because it does not include
synonyms or ontological similarity, this overview is expected to
underestimate the overlap.

RESULTS

For hard linkage of the two databases, meaning explicit identifier
matching, we looked at the usage of ontology annotations
of the AOP-Wiki and WikiPathways. For the AOP-Wiki we
extracted ontology annotations from KEs on the molecular,
cellular, tissue and organ level and identified which ontology
sources were currently in use for biological processes, biological
objects, cell-terms, and organ-terms. As shown in Figure 2,
a large amount of KEs are not yet annotated with ontology
tags. When looking more in detail, one can notice that
biological processes are mostly described with Gene Ontology
(GO) tags, especially at the molecular and cellular KEs
whereas the biological objects are mostly annotated with tags
from ChEBI and Protein Ontology (PR). Although AOP-Wiki
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FIGURE 2 | Ontology usage of AOP-Wiki for KEs on the molecular, cellular, tissue, and organ level of biological organization. GO, gene Ontology; CHEBI, chemical
entities of biological interest; PRO, protein ontology; MI, molecular interactions; CL, cell ontology; UBERON, uber anatomy ontology; FMA, foundational model of
anatomy; VT, vertebrate trait; HP, human phenotype ontology; MP, mammalian phenotype ontology; WIKI, AOP-Wiki; MeSH, medical subject headings.

contains various ontology sources, WikiPathways only uses
three: Pathway Ontology (PW), Cell Ontology (CL), and the
Disease Ontology (DO) (Figure 3). However, apart from the
CL for a contextual description of the process, WikiPathways
and AOP-Wiki do not share ontologies for other biological
elements.

Although no direct mappings through ontologies are possible
at the moment of writing this paper, an alternative approach
for hard linkage is the mapping of chemicals, metabolites, and
genes to WikiPathways. Although we do not expect to find
many of the AOP-Wiki stressor chemicals in WikiPathways, we
wanted to identify the existing overlap of chemicals between
the two databases nevertheless. First, we found all 306 stressors,
describing 207 chemicals, which were annotated with 205 CAS
numbers. We mapped these CAS numbers to ChEBI IDs in R
with BridgeDbR and created a SPARQL query to find all pathways
that have any of the metabolites included. This resulted in a total
194 out of 205 CAS numbers mapped to 298 ChEBI IDs, of which
48 mapped to a total of 133 WikiPathways.

As opposed to the hard linkage of the two databases, we also
investigated a soft linkage, which entails the indirect linking of
these databases through a text-based identifier mapping approach
of human genes and performed a similar SPARQL query as for the
metabolites (Figure 4). After extracting all KE descriptions from
the AOP-Wiki, we mapped gene identifiers, symbols, alternative
names, and previous names from HGNC to each description,

leading to the identification of 523 genes in a total of 234
KE descriptions out of 787 KEs. In total, 70% of these genes
were found in the molecular pathways of WikiPathways. Also,
identifier mapping was performed on all 874 KERs that connect
the KEs on the molecular, cellular, tissue and organ level. This
was done on all texts for KER descriptions, biological plausibility,
and empirical support, when available, and resulted in the
identification of 417 genes, of which 296 are present in pathways
on WikiPathways, which is 71%.

Furthermore, to benchmark the hard and soft connections
between the AOP-Wiki and WikiPathways through ontologies
and identifiers, we performed a full-scale manual check for all
KEs on the molecular, cellular, tissue, and organ level of biological
organization. This showed us that at least 2/3rd of all KEs can be
mapped to molecular pathways on WikiPathways.

DISCUSSION

In this paper we explored possibilities for the integration of
WikiPathways in the AOP-KB through ontologies, identifiers
and manual judgment, to support AOPs and become a valuable
tool in regulatory risk assessment. We looked at hard and soft
linkages between the AOP-Wiki, the most actively used AOP
module of the AOP-KB, and WikiPathways. We did this by
extracting different types of information from the AOP-Wiki,
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FIGURE 3 | WikiPathways statistics. The total number of molecular pathways
in the WikiPathways database, and the level of pathway annotations with
onology tags. PW, pathway ontology; CL, cell ontology; DO, disease ontology.

such as chemical CAS numbers, KE and KER descriptions, and
ontology annotations, and we performed a manual judgment of
the linkage.

We found that the AOP-Wiki uses various ontologies to
describe the different elements of KEs. To link the underlying
molecular pathways to these KEs, we are mainly interested in the
Biological Process that is annotated in the KEs, which describe
the biology of the KEs. However, the ontologies currently used
in the AOP-Wiki do not directly connect with the ontologies that
describe the molecular pathways of WikiPathways. Consequently,
manual effort is currently required to make this mapping, which
negatively impacts the scalability.

Furthermore, we focused on the metabolites and
genes/proteins described on the AOP-Wiki. For the metabolites,
we parsed all CAS numbers, mapped these to ChEBI identifiers,
and found that only 16% of these are found in WikiPathways.
This is not unexpected, because most toxicological effects are
caused by exogenous compounds, whereas WikiPathways mostly
stores biological pathways containing endogenous metabolites.
In fact, most WikiPathways that contain such a stressor do so
because the pathway described the biotransformation of the toxic
compound.

On the other hand, gene/protein identifiers that we obtained
through mapping with an HGNC dataset did show high coverage
by WikiPathways (70%). However, with the gene/protein
identifier mapping, we only focused on human variants, although
KE descriptions on the AOP-Wiki cover a variety of species. The
taxonomic information is absent in most KEs and if it is available,
the taxonomy identifiers are inconsistent, so we were not able to
take this into account in our experiment of identifier mapping.
Although species specification with ontologies does exist on the

FIGURE 4 | AOP-Wiki statistics on KEs and KERs, identifier mapping with HGNC identifiers and links to molecular pathways in WikiPathways. The KEs on the
molecular, cellular, tissue, and organ level of biological organization and the KERs that connect them were parsed for texts of descriptions, on the biological
plausibility and on the empirical support. HGNC Identifier mapping was performed to find all human genes described in the key event descriptions, after which these
genes were queried on WikiPathways to find pathways that contain these genes.
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AOP-Wiki, the number of annotations and the consistency in
reporting should increase for it to become a useful piece of
data.

Apart from the automated linkages, we performed a manual
check, which indicated that the majority of the processes in
the AOP-Wiki KEs are covered by the WikiPathways database,
either completely, as a part of a pathway or, in case of
molecular interactions, the target molecule is part of a molecular
pathway. This indicates us that there is potential in the
interoperability of AOP-Wiki and WikiPathways to describe
KEs. However, there is no one-to-one mapping of biological
pathways possible. For example, molecular-level KEs currently
often describe a single interaction between a list of stressors
and a molecule, which would only be a part of a biological
pathway on WikiPathways, besides the downstream cascade
of molecular effects. Also, KEs on the tissue- and organ-
level of biological organization are often non-specific. This
could lead to the mapping of multiple molecular pathways to
a single AOP-Wiki KE, even with the current WikiPathways
content.

Besides the identification of connections between the AOP-
Wiki and WikiPathways for improved descriptions of KEs, we
aim for the possibility to introduce omics data analysis in
the concept of AOPs. However, one concern mentioned in
literature in the implementation of transcriptomics data in the
concept of AOPs is the difference in the causal and reactive
pathways (Sturla et al., 2014). Transcriptomics studies, for
example, do not differentiate in its measurements between these
two types of pathways, and by focusing on gene expression
fold changes, pathway enrichment may highlight the reactive
pathways. However, KEs may describe a causal event or pathway.
Therefore, AOP-Wiki KE descriptions would not necessarily
overlap with the results from pathway analysis with omics data.
This should be taken into account in the descriptions of the
molecular responses of KEs as this might impact the usability
of omics approaches and their connections to KEs on the AOP-
Wiki.

It is expected that omics approaches have great potential
in the field of regulatory toxicology (Brockmeier et al., 2017;
Buesen et al., 2017). However, there is a demand for well-
described protocols and tools for omics data analysis and
interpretation. The integration of WikiPathways in the AOP-
KB as a data source and as omics data analysis tool allows
more detailed descriptions of KEs and consistency in analysis
and interpretation of omics data in the concept of AOPs. For
that, you would ideally have molecular mechanistic descriptions
for all AOP events in WikiPathways. The current analysis
shows that useful connections already exist. To prepare for
the integration of molecular pathways in the concept of AOPs,
we created an AOP Portal on WikiPathways7, in which all
molecular pathways that are linked to AOP-Wiki KEs will
be gathered and stored. This portal is meant to bridge the
molecular knowledge and expertise of biologists and toxicologists
to the framework of AOPs and allows the whole community
to contribute to the collection of molecular pathways. This

7http://aop.wikipathways.org

collection will be available for pathway analysis and network
analysis with omics data for large-scale hypothesis generation
for AOPs in response to a stressor or for biological read-
across on the AOP level (Brockmeier et al., 2017). That
would allow a more consistent, standardized approach for the
integration of omics approaches in AOPs, and thus for regulatory
use.

A variety of molecular pathway databases could fill this role as
an omics analysis and interpretation tool for toxicological effects,
such as KEGG and Reactome. However, molecular pathways can
vary across pathway databases due to differences in pathway
annotations by focusing on specific cellular contexts, such as
diseases or specific cell types (Herwig et al., 2016). Moreover,
Reactome and KEGG cannot be tailored like WikiPathways
for specific communities or purposes such as described in this
paper (Pico et al., 2008; Hanumappa et al., 2013). Besides, the
accessibility of WikiPathways, being a community-driven, free-
to-use molecular pathway database, fits with the existing AOP-KB
modules and meets the requirements identified by the OECD:
open access, standardized representation of data, and consistency
in reporting (Pilat and Fukasaku, 2007; Ives et al., 2017). Because
the AOP-KB is driven by a scientific community to develop,
share and discuss AOPs, this community can also describe the
molecular processes underlying the AOPs and contribute to
WikiPathways and expand the AOP Portal.

Other work on the linkage of data related to the AOP-Wiki
is the development of the AOP-DataBase (AOP-DB) (Pittman
et al., 2018). This database will soon be publicly available and
will contain various types of information linked to gene IDs
that is useful for AOPs to provide a standardized, systematic
structure for AOP development. Among a large amount of data,
biological pathways from databases such as KEGG, Reactome,
and ConsensusDB are included based on GO annotations of
KEs in AOP-Wiki (Pittman et al., 2018). While the AOP-DB
connects pathway databases based on the ontology annotations
to of existing AOPs and assisting the identification of putative
AOPs, we think that a direct link between KEs and molecular
pathways would be valuable and more reliable.

In order to make a connection between AOP-Wiki and
WikiPathways, we recommend a couple of improvements in
terms of annotations and accessibility of the data. Since January
2018, the AOP-Wiki made available full XML files containing
all data, which are stored as permanent downloads, as well
as nightly exports of the full database. These files need to be
parsed to retrieve the data, as described in this paper. This could
be improved by developing an RDF version of the AOP-Wiki,
allowing federated SPARQL queries to request all data, enable
automatic information sharing, and has the use of ontologies as a
core feature.

Furthermore, the current implementation of annotations
with ontologies could be improved by annotating more specific
elements of the KEs, as the existing KE components describe the
KEs in general. More detailed annotations could be performed for
many elements. For example, key genes, proteins, and metabolites
should be annotated, as well as detection methods and biological
assays, which can be annotated with ontologies such as the
Chemical Methods Ontology or BioAssay Ontology. Also, when
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biological pathways are described in a KE, annotations with
the Pathway Ontology would allow a direct connection to
the WikiPathways database including all genes, proteins,
and metabolites involved, which are annotated with
various databases through BridgeDb in the WikiPathways
diagrams.

Besides the ontology annotations, the only molecules
annotated on the AOP-Wiki are the chemicals related to
stressors, which are identified with CAS numbers. However,
not all of these CAS numbers are linked to open structure
data that is incorporated in the BridgeDb mapping that
we performed. It is essential that these CAS numbers are
included in public databases, such as WikiData (Mietchen
et al., 2015) or that public database identifiers are used, such
as from ChEBI or even Wikidata as an outside database
for chemical information. Besides chemicals, nanomaterials,
which are extensively investigated for toxicity, also require
annotations, for example with the eNanoMapper ontology
(Hastings et al., 2015). Also, the free-text descriptions of KEs that
describe the biological process can also be improved by more
consistent reporting, such as a fixed vocabulary for all genes,
proteins, and metabolites involved in the biological processes.
For example, listing the most important molecules by HGNC
symbols or ChEBI IDs for a KE would improve machine-
readability and the automated discovery of new connections
between KEs.

On the other hand, WikiPathways will also need to
undergo updates to fit the connection as described, with
a specific category of KE-related molecular pathways and
the need for so-called meta-pathways to create an AOP
Network. Also, the AOP Portal will be populated with pathways
in a case-study approach, proving the usefulness of the
database. Other improvements related to toxicity research is the
linkage to kinetics databases, more info on post-translational
modifications of proteins, and improved semantic annotations
of localizations, for example, specific organelles, cells, or
tissues.

Taken together, we claim that a tight integration of
WikiPathways and AOP-KB will improve risk assessment because

we can link omics data directly to KEs and therefore AOPs.
However, to make assessment reproducible and valid, major
changes are needed.
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Quantitative high throughput screening (qHTS) experiments can generate 1000s of
concentration-response profiles to screen compounds for potentially adverse effects.
However, potency estimates for a single compound can vary considerably in study
designs incorporating multiple concentration-response profiles for each compound.
We introduce an automated quality control procedure based on analysis of variance
(ANOVA) to identify and filter out compounds with multiple cluster response patterns and
improve potency estimation in qHTS assays. Our approach, called Cluster Analysis by
Subgroups using ANOVA (CASANOVA), clusters compound-specific response patterns
into statistically supported subgroups. Applying CASANOVA to 43 publicly available
qHTS data sets, we found that only about 20% of compounds with response values
outside of the noise band have single cluster responses. The error rates for incorrectly
separating true clusters and incorrectly clumping disparate clusters were both less than
5% in extensive simulation studies. Simulation studies also showed that the bias and
variance of concentration at half-maximal response (AC50) estimates were usually within
10-fold when using a weighted average approach for potency estimation. In short,
CASANOVA effectively sorts out compounds with “inconsistent” response patterns and
produces trustworthy AC50 values.

Keywords: ANOVA, clustering, concentration-response, potency, quantitative high throughput screening,
toxicological response

INTRODUCTION

In 1978 the National Toxicology Program (NTP) was established to evaluate the toxicity and
carcinogenicity of environmental chemicals. As part of these efforts, the NTP developed a 2-year
rodent cancer bioassay to identify potential human carcinogens. After about 40 years conducting
such studies, the NTP has conducted evaluations for about 600 chemicals. However, over 80,000
compounds are registered for use in the United States, and that number is increasing by an
estimated 2,000 new chemicals each year (U.S. National Toxicology Program [U.S. NTP], 2017).
A large number of these chemicals have unknown effects on human health. Therefore, during
the previous decade the NTP and other agencies, including the U.S. Environmental Protection
Agency (EPA), the National Center for Advancing Translational Sciences (NCATS), and the U.S.
Food and Drug Administration (FDA), established quantitative high throughput screening (qHTS)
assays simultaneously screen 1000s of compounds and prioritize chemicals for further testing
(Tice et al., 2013). The goal of these qHTS assays was not only to achieve the speed of evaluating
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1000s of chemicals in a single experiment, but also to substantially
reduce the costs of toxicity testing and, eventually, to transform
toxicology into a more predictive science (Collins et al., 2008).

Quantitative high throughput screening of 1000s of different
compounds at multiple concentrations represents a marked
technological advancement that minimizes the frequency of false
negative calls compared to single concentration HTS (Inglese
et al., 2006). Data generated from qHTS have a prominent
role in toxicological assessment and drug discovery (Collins
et al., 2008; Roy et al., 2010; Attene-Ramos et al., 2013;
Dahlin et al., 2015). For instance, concentration-response data
is currently being generated and made publicly available for
100s of toxicologically relevant endpoints in phase II of the
Tox21 collaboration among the EPA, NCATS, the FDA and
the NTP (Tice et al., 2013). Outcomes from these qHTS
experiments can be used for numerous applications, including
phenotypic screening (Kleinstreuer et al., 2014), genome-wide
association mapping (Abdo et al., 2015) and prediction modeling
(Eduati et al., 2015).

A qHTS assay produces one or more concentration-response
curves for each tested compound. Here, we refer to a
single concentration-response profile as a “repeat” (see section
“Materials and Methods”). Each curve is typically evaluated
using non-linear regression models. For example, the sigmoidal
Hill model (Hill, 1910) is used to estimate the concentration
at half-maximal response (AC50), a quantitative measure of
chemical potency. Heteroscedastic responses and outliers should
be taken into account using robust statistical modeling, such
as the preliminary test estimation based methodology proposed
by Lim et al. (2013). In addition to other characteristics of the
concentration response curve, potency measures are important to
determine how toxic or active a chemical is in the assay system.
Estimates of compound potency or other response characteristics
are extremely important for assessing toxicity in toxicology
assessment or bioactivity in drug discovery applications.
Recently, there has been considerable controversy in comparing
two large-scale qHTS studies (Barretina et al., 2012; Garnett et al.,
2012). Haibe-Kains et al. (2013) reported that the drug response
data in these two studies were inconsistent with each other
based on poor concordance of IC50 and area under the curve
(AUC) measures. This report and an accompanying commentary
(Weinstein and Lorenzi, 2013) suggested that differences in
laboratory protocols might account for this discordance and
raised important questions about the validity and interpretation
of current and future qHTS efforts. A number of studies have
subsequently investigated the consistency of phamacogenomic
drug response and investigated whether analytical assessments
of consistency should take into account experimental features
such as cell line (Cancer Cell Line Encyclopedia Consortium
and Genomics of Drug Sensitivity in Cancer Consortium, 2015;
Geeleher et al., 2016; Haverty et al., 2016; Safikhani et al., 2016a,d)
and viability (Bouhaddou et al., 2016; Safikhani et al., 2016c), and
suggested standardized assay methods and laboratory conditions
(Mpindi et al., 2016; Safikhani et al., 2016b). Accounting for
experimental factors during statistical analysis may help to
improve the reliability and reproducibility of qHTS results
(Ding et al., 2017). Nevertheless, such modeling approaches may

require a prohibitively large number of repeated profiles for each
chemical, and many experimental factors remain unknown or
confounded in qHTS experiments.

Unfortunately, no systematic quality control (Q/C) procedure
has yet been established for qHTS data. We believe that the lack
of such a Q/C procedure may contribute to the ongoing debate
surrounding the consistency of large-scale in vitro screening
data. In this paper, we take a simple and principled Q/C
approach to sort out chemicals with “inconsistent” response
patterns so that the researcher may identify and avoid computing
AC50 values for potentially troublesome chemicals. Conversely,
data with “consistent” responses across repeated profiles would
produce AC50 values that can be trusted and used for
downstream analyses.

In the Tox21 initiative, multiple concentration-response
curves are obtained for each compound tested in a qHTS
study. However, this may not be the case with other qHTS
studies, where only a single response curve is obtained for each
tested compound. In some cases, the concentration-response
patterns in Tox21 Phase II fall into a single cluster where
response patterns are “similar” across all experimental repeats
(e.g., Figures 1A,B, based on data from an estrogen receptor
agonist assay). Concentration-response curves corresponding to
oxymetholone in Figure 1A appear to be in a single cluster
with all repeats exhibiting monotonic responses except at the
highest concentration tested. Each curve crosses the upper
noise bound (horizontal dashed line), suggesting that this
compound is a candidate hit that may activate the estrogen
receptor. Similarly, concentration-response data corresponding
to hydrochlorothiazide in Figure 1B comprise one cluster pattern
across all repeats since every concentration curve is within the
noise limits, indicating that this chemical may not be active
under the tested conditions. In examples such as Figure 1A,
where all response curves are part of a single cluster, a Hill
model (Hill, 1910; Shockley, 2015) or other appropriate non-
linear model can be fit to the data in order to obtain potency
estimates that summarize each curve. These individual potency
estimates can then be used to obtain an overall potency estimate
for the compound. Since the compound in Figure 1B appears to
be inactive under the tested conditions, no potency estimate is
obtained for this compound.

In the absence of systematic effects and artifacts,
concentration-response curves for each chemical should be
“similar” or within a single cluster across all experimental
repeats of the compound (Hsieh et al., 2015). However, in
Figure 1C the concentration-response patterns for 2,3,5,6-
tetrachloronitrobenzene are split into four different clusters
(indicated by different colors) across the experimental repeats.
The AC50 values for the three clusters with response values
extending outside of the noise band range from 3.93 × 10−10 to
19.57 µM, representing a wide variance in potency associated
with this compound. Unfortunately, the numerous examples
of compounds with multiple response clusters could produce
dramatically different potency estimates for the same compound.
In such cases it can be very difficult to ascertain the correct
concentration-response pattern for the tested compound,
and its corresponding potency estimate, from the data alone.

Frontiers in Genetics | www.frontiersin.org 2 May 2019 | Volume 10 | Article 387136

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00387 May 8, 2019 Time: 14:36 # 3

Shockley et al. Quality Control for qHTS Data

FIGURE 1 | Three separate cases are represented by concentration-response data from the BG1 estrogen receptor agonist assay from phase II of the Tox21
collaboration (tox21-er-luc-bg1-4e2-agonist-p2). Responses are shown as a percentage of the assay positive control values after correction by DMSO negative
controls (Inglese et al., 2006). The assay detection limits are indicated with dashed lines. An AC50 value from the Hill model, calculated using the weighted average
approach, summarizes the potency of each cluster (see section “Materials and Methods”). (A) Case 1 shows 12 similar response profiles from oxymetholone which
extend beyond noise and group together into a single cluster. This case corresponds to two different supplier designations, two library preparation sites and two
purities (A and D, representing “good” and “poor” purity, respectively) generated on six different experimental days. (B) Case 2 shows nine responses from
hydrochlorothiazide which all lie within the noise band and correspond to three supplier sources, three library preparation sites, and a single purity (A) generated in six
different experimental days. (C) Case 3 is represented by 42 response profiles from 2,3,5,6-tetrachloronitrobenzene corresponding to one supplier, three library
preparation sites, one purity designation (A) and seven experimental days. A total of 29 of the 42 repeats lie within the noise band (shown in gray), and other profiles
cluster by our proposed methodology CASANOVA described in this paper into the three disparate groups of 9, 3, and 1 repeats shown in black, green, and red,
respectively. The separation of clusters in Case 3 is not explained by library preparation site or experimental day.

Chemical supplier, institutional site preparing the chemical
library (e.g., NTP, FDA, and EPA), concentration-spacing, purity
of the compound and other factors can systematically influence
response trajectories (Tice et al., 2013). Such experimental factors
are associated with different clusters in some instances. However,

known design characteristics are not always associated with the
observed response groupings.

An important purpose of qHTS assays is to estimate the
potencies of active compounds for downstream analyses. In
many cases, AC50 values and point of departure values estimated
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from qHTS assays are used to discriminate between active
and inactive compounds. Published studies incorporate AC50
potency estimates derived from qHTS assays for predictive
cheminformatics (Jamal et al., 2016), in vivo activity prediction
modeling (Martin et al., 2011; Kleinstreuer et al., 2013; Anthony
Tony Cox et al., 2016), screening for therapeutic leads (Martinez
et al., 2016; Xu et al., 2016; Chen et al., 2017), drug sensitivity
testing (Barretina et al., 2012; Garnett et al., 2012), in vitro-
to-in vivo extrapolation (IVIVE) pharmacokinetic modeling
(Rotroff et al., 2010; Wetmore et al., 2012), computational
modeling of androgen receptor activity (Kleinstreuer et al., 2017),
toxicity testing (Judson et al., 2016; Karmaus et al., 2016) and
prioritization for targeted testing (Judson et al., 2010). It is
crucial to identify and distinguish compounds that have single
cluster response patterns across repeated runs from compounds
with multiple cluster response patterns. Otherwise, the potency
estimates derived from qHTS assays may not be reliable, as
seen for 2,3,5,6-tetrachloronitrobenzene in Figure 1C where
the potency estimates for different clusters are highly variable.
Visual inspection of response profiles and manual curation of
“flagged” compounds (Filer et al., 2017) are based on complex
rule structures and do not address the quality control issue that
is investigated here. Since 1000s of compounds are tested in each
assay, there is a need for an automated quality control process
to separate compounds with single cluster and multiple cluster
response patterns before making activity calls and estimating
the potency of biologically responsive agents. Here, we focus on
the statistical identification of single cluster and multiple cluster
compounds in a data driven framework, and do not address the
separate problem of relating the data to pathways of interest
(Hsieh et al., 2015).

MATERIALS AND METHODS

Development of the CASANOVA
Clustering Algorithm
A typical qHTS assay in Tox21 generates concentration-response
data multiple times for each compound. Rather than referring
to these multiple observations on each compound across
concentrations as “replicates” we refer to them as “repeats.”
In typical experimental designs “replication” refers to repeating
the experiment several times under identical experimental
conditions. This is not the case with qHTS studies. In qHTS,
for a given compound the experiment is often repeated by
varying suppliers, laboratories/agencies (sites) preparing the
library, chemical purity, etc. In each instance a concentration
curve is obtained and these concentrations curves cannot be
viewed as conventional replicates.

We developed an automated clustering algorithm called
CASANOVA to cluster intrachemical responses into single
clusters using classical two-way analysis of variance (ANOVA).
The workflow for CASANOVA is presented in Supplementary
Figure 1. First, concentration-response repeats having all
responses across the concentration range located entirely within
the noise band are removed, where the noise band is defined
as ± 3 standard deviations (σ) of the response at the lowest

concentration tested in the experiment. qHTS studies typically
base the assay detection limit on the variation in the DMSO
negative controls (Hsieh et al., 2015), the DMSO controls and
the lowest concentration (Huang et al., 2011), or the first two
concentrations (Filer et al., 2017). Defining the detection limit
based on just the DMSO negative controls could be problematic
for antagonist assays in which the response at the lowest tested
concentration relies on two different components: the DMSO
controls and the agonist response needed to activate a nuclear
hormone receptor. To be consistent across assay types and other
studies in the literature, we chose to base the assay detection
limit on the first tested concentration. In many, but not all,
assays the variation in the DMSO negative control wells is
very similar to the variation at the lowest tested concentration
(Supplementary Figure 2).

Here, for each compound with at least two repeats extending
beyond the assay detection limit of 3σ (or −3σ), an ANOVA
model is fit to all n intrachemical response profiles. If all
repeats within a compound lie within the noise band, the
compound is designated “Case 2.” A grouping factor to divide the
concentration space is essential to our approach. In this study, we
focus on the 15-point concentration response profiles generated
in phase II of Tox21 and use five “3-concentration” bins to define
a five-level “concentration” grouping factor termed CONC. We
consider each concentration-response profile in the experiment
to be a “repeat,” and REPEAT is used as a second factor in the
model. Response Rijk for concentration bin i (CONCi), repeat
j (REPEATj), and an interaction term (γij) for observation k is
modeled using the compound-specific ANOVA model

Rijk = µ+ CONCi + REPEATj + γij + εij (1)

where µ is the overall mean and εijk represents random error
for concentration bin i, repeat j and observation k. The γ term
is first tested for statistical significance within each compound. If
the interaction term is significant at the user specified level of α

(H0: γ11 = γ12 = . . . = γnn), then the REPEAT term is tested
for significance at the α level (H0: REPEAT1 = . . . = REPEATn).
Unless otherwise noted, we used α = 0.05 for all analyses
presented here. If REPEAT is also significant, then repeats are
ranked by mean response averaged over all levels of the CONC
factor and significant pairwise differences between neighboring
repeats in the ranked list are used to group repeats into
distinct clusters. Subgroup analysis then proceeds by ranking
mean response values within the highest CONC bin. Significant
pairwise differences between neighboring repeats in the ranked
list within this bin are used to further divide these clusters
into new subclusters. The subgroup analysis proceeds for each
CONC bin level (from the highest concentration to lowest
concentration). If γ is significant, but REPEAT is not significant,
only the subgroup analysis is performed. If the γ term is not
significant, but REPEAT is significant, repeats are ranked by
mean response averaged over all levels of the CONC factor and
significant pairwise differences between neighboring repeats in
the ranked list are used to group repeats into distinct clusters.

Once the clusters of similar dose profiles have been
determined, the mean response values lying above (or below)
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the noise band across all concentration bins are compared with
the upper (or lower) detection limit using the one sample
t-test (α = 0.05) in order to distinguish between “conclusive”
clusters that are statistically separated from the noise band and
“inconclusive” clusters that are not statistically different from the
noise band detection limit. “Case 1” compounds are composed
of n single cluster repeats, where n refers to all the tested
repeats within a compound. “Case 3” compounds each contain
multiple cluster response patterns, where one of the clusters
can potentially be repeats with all responses located entirely
within the noise band. Supplementary Figure 3 describes the five
different classes of possible compound classification outcomes.

Description of Tox21 Phase II Data Sets
Publicly available Tox21 Phase II data was obtained from https:
//tripod.nih.gov/tox/. This qHTS data involves approximately
10,000 compounds screened for activity related to stress
response, nuclear hormone receptor activity, or cell viability.
The nuclear receptor hormone assays were performed in
agonist and antagonist (or inhibitor) modes and are used to
investigate activation or inhibition activities of the given assay.
Multiple channel readouts for beta-lactamase gene reporter
assays consisted of ch1, ch2 and ratio (ch2/ch1) data, and in those
cases we used the ratio data to represent the assay signal. A total
of 15 concentrations were evaluated with concentrations typically
ranging from approximately 5× 10−4 µM to about 100 µM (Tice
et al., 2013). As part of phase II of Tox21, the library is screened
three times with compounds located in different well positions
during each experimental run (Tice et al., 2013). The raw plate
reads were normalized using the positive and negative control
wells and subsequently corrected for row, column, and plate
effects using linear interpolation (Inglese et al., 2006). A total of
43 of the 47 publicly available bioassay data sets represented by
72 different readouts from phase II of the Tox21 collaboration
were selected for analysis in this study due to their comparable
experimental design of 15-point concentration response data
generated in triplicate runs. We dropped 4 of the 47 publicly
available data sets from our analysis because their study design
was not directly comparable with the other 43 data sets; 2 of the
assays were conducted as 4- or 8-point concentration-response
study designs and 2 additional assays were unreplicated time
course experiments.

AC50 values, and corresponding standard errors (SE), of
individual concentration-response curves were estimated from
the data using the Hill model after removing outliers as described
previously (Shockley, 2012). The AC50 from each cluster in a
single compound was estimated with a weighted approach using
(1/SE)2 as weights and the weighted.mean() function in R.

Simulation Studies to Evaluate the
CASANOVA Algorithm
The performance of CASANOVA to correctly cluster similar
patterns and separate disjoint patterns, was evaluated in
simulation studies conducted across a range of assay noise
levels chosen to resemble the characteristics found in Tox21
Phase II qHTS data. A total of 2,000 simulated compounds

with at least one response outside of the noise band were
generated from either the Hill model (sigmoidal curves) or
the gain-loss model (“bell-like” curves) (Shockley, 2016; Filer
et al., 2017). The parameters of the simulation study were
based on observed data in the Tox21 Phase II data sets. Of
the 43 publicly available Tox21 data sets (with 72 readouts)
examined here, we chose four assay readouts that span the range
of assay noise based on negative control DMSO plates (see
Supplementary Figure 4) and the lowest tested concentration
levels (Supplementary Figure 5). These selected readouts come
from assays with low noise (data set 1: tox21-elg1-luc-agonist),
moderate-low noise (data set 2: tox21-are-bla-p1), moderate-
high noise (data set 3: tox21-er-luc-bg1-4e2-agonist-p2), and high
noise (data set 4: tox21-fxr-bla-agonist-p2). The proportion of
chemicals with N suppliers (N = 1, 2, 3, 4 in the Tox21 Phase
II experiments) in each of the selected data sets was calculated
(see Supplementary Table 1) and used as input probabilities for
simulating the number of clusters per compound. Similarly, the
proportion of compounds with N repeats per supplier (N = 3,
6, 9, 12, 42, 45, 48, 51, 54) was determined empirically for
the four selected datasets (see Supplementary Table 2) and
used as input probabilities for simulating the number of repeats
per cluster in each compound. An ANOVA model in Eq. (1)
was fit to compounds containing at least two repeats with
detectable responses as described above. For each chemical,
the ANOVA mean squared error (MSE), the range defined by
maximum observed response – minimum observed response
(ResponseRange) and the coefficient of variation (CV) defined by
√
MSE/ResponseRange was calculated. These values, presented

in Supplementary Table 3, were used to similate the data as
described in greater detail below.

Simulated concentration-response curves are randomly
chosen for each cluster based on a three-parameter Hill
equation model or a four-parameter “gain-loss” model. The
three-parameter Hill model is described by:

E(Rij) =
RMAXj

1+ 10{−hj[log10Ci−log10AC50,j]}
(2)

where Rij is a normalized response (% of positive control activity)
for the jth repeat, RMAXj represents maximal response, hj is
the slope parameter, Ci is the compound concentration, and
AC50,j is the concentration for half-maximal activity. Similar to a
previous study (Shockley, 2016), the concentrations are based on
equivalent log10 concentration spacing from 0.0001 to 100 µM in
15-point concentration-response curves. The “gain-loss” model is
given by

E(Rij) = RMAXj

(
1

1+ 10{hj(log10AC50(G),j−log10Ci)}

)
×(

1
1+ 10{hj(log10Ci−log10AC50(L),j)}

)
(3)

where RMAXj is the shared upper asymptote, both bottom
asymptotes are set to zero, hj is the slope parameter, AC50(G),j is
the concentration of half-maximal response in the gain direction
and AC50(L),j is the concentration of half-maximal response in the
loss direction (Filer et al., 2017).
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For each cluster, the mean RMAXj value (µRMAX) is selected
using random deviates from the uniform distribution on (3σ,
ResponseRange) and RMAXj is drawn from N(µRMAX , MSE). The
slope parameter hj is drawn from |N(1,9)|. For each cluster,
mean values (MEAN) of log10AC50,j from the Hill model, or
log10AC50(G),j from the “gain-loss” model, are randomly selected
from (0.0001, 0.001, 0.01, 0.1, 1, 10, 100), or from (0.0001, 0.01,
1, 100) with equal probabilities and without replacement, across
clusters for 10-fold AC50 spacing and 100-fold AC50 spacing,
respectively. Mean values of log10AC50(G),j are randomly selected
from (0.0001, 0.001, 0.01, 0.1, 1, 10, 100) with equal probabilities
where log10AC50(L),j – log10AC50(G),j ≥ 1 for 10-fold AC50
spacing, or from (0.0001, 0.01, 1, 100) with equal probabilities
where log10AC50(L),j – log10AC50(G),j ≥ 2 for 100-fold AC50
spacing. If no log10AC50(L),j values within the selected range
meet this criterion, log10AC50(L),j is set to 1000. The random
realization of the mean log10AC50,j value, or log10AC50(G),j, is
drawn from N(MEAN, σ), where σ = 1/6 is selected so that
∼99.7% of all AC50 values between clusters are separated at least
10- or 100-fold, depending on the simulation scenario. After
determining the parameters for each cluster, response data was
simulated by adding heteroscedastic noise to ideal curves with
N(0, Rij × CV), where Rij is given from Eq. (2) or Eq. (3)
above. Summary statistics for the simulated data are given in
Supplementary Tables 4, 5.

RESULTS

Applying CASANOVA to Tox21
Phase II Data
CASANOVA was applied to publicly available Tox21 Phase
II data related to stress response, nuclear receptor signaling
and cell viability in order to assess the consistency of intra-
chemical response patterns within and between assays. We
selected 43 of the 47 publicly available data sets since these
data sets were generated using a similar experimental design
(i.e., 15-point concentration-response data generated in three
experimental runs). These 43 data sets correspond to 72 different
readouts, where many of the agonist and antagonist assays
monitored cytotoxicity as well as the response in the specified
assay mode. A total of 7,229 chemicals were represented in
all 72 readouts.

The barplot in Figure 2 shows the fraction of these compounds
that were classified as single clusters that are well-separated
from the noise band (Conclusive Case 1), single clusters that
extend outside of the noise band and points outside the noise
threshold are not significantly different from the noise band
(Inconclusive Case 1), non-responsive with all repeats located
within the noise band (Case 2), multiple clusters where at
least one cluster extends outside the noise band and points
outside the noise threshold are not significantly different from
the noise band (Inconclusive Case 3) or multiple clusters for
which at least one cluster extends significantly beyond the noise
band (Conclusive Case 3). Most chemicals do not exhibit any
response in the tested assay conditions (Case 2). The fraction
of single clusters among all 7,229 compounds with at least one

detectable response in an assay ranges from 1.6% (tox21-vdr-
agonist-p1) to 23.8% (tox21-dt40-p1_100) across the 72 readouts.
As shown in the plots for selected compounds in Figure 2, this
multiplicity in response is sometimes associated with one or
more known experimental design factors such as supplier, library
preparation site, compound purity, concentration spacing, or
experimental day (Figure 2). For example, in the top panel of
Figure 2 supplier is confounded with site of library preparation
so that one or both of these two experimental factors can
potentially account for the separation of response patterns into
two different clusters.

The Hill model (Hill, 1910) was used to estimate the
concentration for half maximal activity (AC50) for the 7,229
compounds common to all 43 data sets. Compounds with two
or more clusters outside of the noise band and estimated AC50
values within about 10-fold of the typical concentration range in
the assays (10−5 to 1,000 µM) were evaluated further in order
to discover the variability in AC50 estimates within a multiple
cluster compound. In Figure 3A, the percentage of multi-cluster
compounds with AC50 estimates greater than 10-fold ranged
from 16.7% for the tox21-gh3-tre-agonist-p1 agonist assay to
65.6% for the tox21-er-luc-bg1-4e2-antagonist-p1 viability assay.
The percentage of multi-cluster compounds with AC50 estimate
differences greater than 100-fold ranged between 10.7 and 43.8%
for these two assays, respectively. The fraction of compounds
with multiple cluster responses was not statistically different
between agonist and antagonist/inhibitor assays. However, the
distribution of multiple cluster compounds was greater in
viability assays compared to the agonist and antagonist/inhibitor
assays, when considering 10-fold (Figure 3B) or 100-fold
(Figure 3C) potency differences (p < 0.001 using the two-sided
Kolmogorov–Smirnov test). In Figure 3B, about 38% of the
7,729 tested compounds have at least a 10-fold spread in AC50
estimates in half of the agonist and antagonist/inhibitor assays,
whereas about 54% of the tested compounds have at least a
10-fold spread in AC50 estimates in half of the viability assays.
In Figure 3C, about 18% of the tested compounds have at
least a 100-fold spread in AC50 estimates in half of the agonist
and antagonist/inhibitor assays, while about 32% of the tested
compounds have at least a 100-fold spread in AC50 estimates in
half of the viability assays.

Simulation Studies to Evaluate the
Performance of CASANOVA
Simulation error rates were determined by averaging error rates
from each simulated data set of 2,000 compounds across 100
different simulated runs. Error rates were calculated for each
run based on the proportion of compounds with a given error
type. “Type A” error was assigned to a compound when the
CASANOVA approach incorrectly separated any two repeats
from a true cluster (i.e., when a true single cluster compound was
classified as a Conclusive Case 3). Conversely, a “Type B” error
was assigned to a compound when any two repeats from separate
clusters were falsely combined (i.e., when a true multiple-cluster
compound was classified as a Conclusive Case 1). In both cases,
these error rates are less than 5% with p < 0.05 and p < 0.10 as
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FIGURE 2 | A barplot was used to summarize the response patterns corresponding to 72 assay readouts from 43 different data sets. A total of 7,229 chemicals
were common among all 43 data sets. In the barplot, the gray regions correspond to the fraction of chemicals clustered in the noise band (Case 2), the dark green
regions refer to a single detectable cluster well-separated from the noise band (Conclusive Case 1), the light green regions represent a single cluster with response
points not statistically separable from noise (Inconclusive Case 1), the pink regions correspond to multiple clusters with response points not statistically separable
from the noise band (Inconclusive Case 3) and the red regions refer to multiple clusters well-separated from the noise band (Conclusive Case 3). Agonist assay labels
are shown in dark blue, antagonist/inhibitor assay labels are shown in green and viability assay labels are shown in gray. Selected compound profiles from assays
with multiple clusters (Conclusive Case 3) are shown to the right of the barplot. Known factors associated with different clusters are indicated in the upper left of
each plot. These factors include supplier, library preparation site, concentration spacing, compound purity and experimental day. None of these factors explain the
different patterns observed in the last two plots. Hence, adjusting or normalizing the concentration-response data for these known factors will not necessarily
eliminate multiple cluster response patterns among repeats within a compound in qHTS data.

the selected criterion for identifying and separating clusters for
either 10-fold AC50 spacing or 100-fold AC50 spacing (Table 1).

Simulation Studies to Evaluate AC50
Parameter Estimation
The bias and precision (1/variance) of AC50 estimation was
evaluated in a separate simulation study. This simulation

reflects the situation in which potency is estimated for single
cluster compounds (Case 1). A total of 2,000 chemicals were
simulated in activation mode, with increasing responses for
increasing concentrations across a range of concentrations
between 0.1 nM and 100 µM, where AC50 values were
set to 0.001 µM (upper asymptote only), 0.1 µM (both
asymptotes) or 10 µM (lower asymptote only). RMAX was
considered at three values (25, 50, and 100% of positive
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FIGURE 3 | Complementary empirical cumulative distribution (CCDF) describing the variability in AC50 values. The maximal range of AC50 values (on the log10 scale)
was calculated for each compound in which two or more clusters were identified outside of the noise region for each of the 7,729 compounds investigated in the 43
data sets described in the text. The order of magnitude differences in intrachemical potency estimates shown here represent only those cases in which the
calculated AC50 is between 10−5 and 1000 µM, which covers the typical testing concentration range of ∼10−4 to 100 µM evaluated in these assays. The number
of compounds meeting this criterion ranged from 42 to 774 in the 72 assay types evaluated here, with a median of 255 compounds. (A) The CCDF (or 1-CDF) plots
describing the proportion of compounds (y-axis) for a given spread in AC50 (x-axis) in the tox21-er-luc-bg1-4e2-antagonist-p1 viability assay (blue) and the
tox21-gh3-tre-agonist-p1 agonist assay (red) are displayed. The vertical black lines indicate 10- and 100-fold differences in the calculated range of AC50 values.
(B) The CCDF for the fraction of the 72 assays with greater than 10-fold range in AC50 values (y-axis) for a given spread in AC50 (x-axis) are shown for the agonist
(dark blue), antagonist/inhibitor (dark green) and viability (dark gray) assays. (C) The CCDF for the fraction of the 72 assays with greater than 100-fold range in AC50

are shown for the same agonist, antagonist/inhibitor and viability assays presented in (B).

control). The hill parameter was set to 1 for all curves in this
simulation. Residual errors were modeled as ERROR ∼ N(0, σ2)
with σ = 5% or 10%.

Outliers were removed (Wang et al., 2010), separate curves
were fit to each response curve and the log10AC50 parameter value
was calculated for each profile (Shockley, 2012). We evaluated
n profiles per compound for n = 3, 6, 9, or 12. For each
compound, profile-specific estimates were summarized using the
average, median or weighted average of the estimates, or a single
model fit (Shockley, 2015). As described above, the weighted
average approach uses (1/SE)2 for weights, where SE is the
standard error of the parameter estimate. The bias was less than
0.01 (1.02-fold) and the variance was less than 0.04 (1.1-fold)
when both plateaus/asymptotes were present in the simulated
sigmoidal curve for σ = 5% (Table 2). These errors were larger
for σ = 10% (Supplementary Table 6). The weighted average
approach produced the most repeatable results, where both bias
and variance of the estimated log10AC50 for a compound were
typically within one order of magnitude (10-fold).

DISCUSSION

Millions of dollars are being invested in developing qHTS
assays and there are far reaching economic and public health

implications for these large-scale studies. We believe that there
is a pressing need for a rigorous, yet simple, Q/C process such
as the one we offer in this work. Chemical genomics efforts
inevitably involve multiple sources of variation imposed by
limited resources and the technological constraints of robotic
plate handling (Attene-Ramos et al., 2013). On the one hand, it
can be advantageous to have compound activity data generated
across multiple design factors in order to increase the chances
that an observed response is related to the biological assay
of interest rather than technical error (Ding et al., 2017).
However, differences in chemical supplier, compound purity,
laboratory protocol, or the day of the experiment may produce
systematic errors that vary from chemical to chemical. Assay
interference arising from autofluorescence and compound-
induced cytotoxicity can also cause misleading signals (Tice
et al., 2013; Hsieh et al., 2015). Other influential factors may
be unknown or difficult to take into account (Malo et al.,
2006). The proximity of wells in microtiter test plates may
yield misleading signals due to signal flare or inadvertent
contamination. Well-composition could also change over time
due to evaporation, alterations in dissolvability, volatility, or
chemical reaction. Artifacts can have an unpredictable effect on
the biological response (Hsieh et al., 2015). Unfortunately, these
design restrictions may lead to discordant intrachemical response
patterns even after data normalization.
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TABLE 1 | CASANOVA classification errors for the given p-value threshold.

p-Value threshold

0.00 0.001 0.01 0.05 0.10 0.20 0.50 1.00

10-fold AC50 spacing

Dataset 1a

errorA 0.019 0.019 0.019 0.023 0.031 0.051 0.151 0.585

errorB 0.418 0.102 0.057 0.032 0.022 0.014 0.001 0.000

Dataset 2b

errorA 0.022 0.022 0.023 0.027 0.036 0.058 0.163 0.565

errorB 0.392 0.104 0.059 0.033 0.022 0.014 0.006 0.000

Dataset 3c

errorA 0.017 0.017 0.018 0.022 0.028 0.047 0.141 0.588

errorB 0.423 0.098 0.055 0.030 0.021 0.013 0.005 0.000

Dataset 4d

errorA 0.031 0.031 0.032 0.037 0.047 0.072 0.182 0.416

errorB 0.312 0.109 0.064 0.035 0.024 0.014 0.004 0.000

100-fold AC50 spacing

Dataset 1a

errorA 0.014 0.014 0.015 0.020 0.028 0.050 0.166 0.606

errorB 0.348 0.037 0.014 0.005 0.003 0.001 0.000 0.000

Dataset 2b

errorA 0.017 0.017 0.018 0.024 0.033 0.058 0.178 0.583

errorB 0.331 0.039 0.015 0.005 0.003 0.002 0.001 0.000

Dataset 3c

errorA 0.013 0.013 0.014 0.018 0.025 0.046 0.154 0.609

errorB 0.351 0.034 0.012 0.004 0.002 0.001 0.000 0.000

Dataset 4d

errorA 0.025 0.025 0.026 0.034 0.045 0.074 0.202 0.521

errorB 0.273 0.048 0.019 0.006 0.003 0.001 0.000 0.000

atox21-elg1-luc-agonist, btox21-are-bla-p1, ctox21-er-luc-bg1-4e2-agonist-p2, dtox21-fxr-bla-agonist-p2.

In this article we present a simple methodology to group
intrachemical repeats in an automated manner. In theory,
if a compound is active, then we expect the responses to
be active at the lowest tested concentration (i.e., exceeding
the noise limits), monotonic, or partially ordered (e.g., up-
turn or down-turn responses) with concentrations. Our
data driven approach to cluster compound-specific response
patterns, termed CASANOVA, finds clusters in which repeats
group together across the entire concentration-response
domain as well as clusters which distinguish repeats in
concentration subgroups.

We assessed the consistency of intra-chemical response
patterns within and between Tox21 Phase II assays interrogating
nuclear receptor activity and stress response. While most
chemicals do not exhibit any response in the tested assay
conditions, a fraction of compounds (i.e., 1.6 to 23.8% across
the tested assays) with at least one profile extending outside
of the noise band represent single cluster response patterns
(Figure 2). Multiplicity in response can often be attributed
to one or more known experimental design factors. Still, it
may not be possible to account for all confounding factors
associated with an observed disparity of responses (e.g.,
Figure 1C). The wide range of AC50 estimates obtained for

the same compound in experimental data sets (Figure 3)
underscores the importance of a clustering algorithm such as
CASANOVA to identify compounds with single cluster patterns
of response. Otherwise, compound potency estimates may
not be reliable.

Simulation studies were used to evaluate the ability of
CASANOVA to cluster compound profiles into reliable subgroups
and provide suitable AC50 potency estimates. The overall error
rates for CASANOVA to correctly cluster similar patterns (“Type
A” errors) and separate disjoint patterns (“Type B” errors) was
found to be less than 5% across a range of simulation studies
based on Tox21 Phase II qHTS data using 10- or 100-fold AC50
spacing. We employed a p-value threshold of 0.05 to describe
patterns in the Tox21 Phase II data. However, the results from
our simulation studies reveal that selecting a less stringent p-value
threshold (e.g., p < 0.10) can be used to increase the “Type
A” error and decrease the “Type B” error according to different
research motivations. Assuming that all the profiles belong to
a single cluster, simple averaging of individual AC50 estimates
leads to the greatest bias and least precise estimates. However,
the weighted average approach produces the most repeatable
results, where both bias and variance are generally within one
order of magnitude.
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TABLE 2 | Bias and variance of log10AC50 parameter for Hill model curves (5% error).

True True Bias (and variance) of log10 AC50

AC50 RMAX n Avg Median WT Avg One model

1.00e-03 Upper plateau only 25 3 1.26(4.07) 0.42(2.63) 0.03(0.61) 0.52(4.07)

25 6 1.22(2.13) 0.21(0.61) 0.10(0.07) 0.44(3.16)

25 9 1.19(1.42) 0.20(0.08) 0.11(0.04) 0.46(3.06)

25 12 1.24(1.10) 0.08(0.10) 0.10(0.03) 0.41(2.84)

50 3 0.28(0.52) 0.07(0.19) 0.05(0.10) 0.05(0.11)

50 6 0.27(0.24) 0.03(0.02) 0.08(0.02) 0.04(0.05)

50 9 0.26(0.14) 0.02(0.01) 0.09(0.01) 0.04(0.06)

50 12 0.26(0.11) 0.02(0.01) 0.09(0.01) 0.04(0.06)

100 3 0.02(0.01) 0.01(0.01) 0.03(0.01) 0.01(0.01)

100 6 0.03(∗) 0.01(∗) 0.03(∗) 0.01(0.01)

100 9 0.03(∗) 0.01(∗) 0.04(∗) 0.01(0.01)

100 12 0.03(∗) ∗(∗) 0.04(∗) 0.01(0.01)

0.1 Upper and lower plateaus 25 3 0.13(1.52) 0.01(0.05) ∗(0.04) 0.01(0.03)

25 6 0.08(0.63) 0.01(0.02) ∗(0.02) ∗(0.03)

25 9 0.09(0.45) ∗(0.01) ∗(0.01) ∗(0.03)

25 12 0.07(0.32) 0.01(0.01) ∗(0.01) 0.01(0.03)

50 3 ∗(0.01) ∗(0.01) ∗(0.01) ∗(0.01)

50 6 ∗(∗) ∗(∗) ∗(∗) ∗(0.01)

50 9 ∗(∗) ∗(∗) ∗(∗) ∗(0.01)

50 12 ∗(∗) ∗(∗) ∗(∗) ∗(0.01)

100 3 ∗(∗) ∗(∗) ∗(∗) ∗(∗)

100 6 ∗(∗) ∗(∗) ∗(∗) ∗(∗)

100 9 ∗(∗) ∗(∗) ∗(∗) ∗(∗)

100 12 ∗(∗) ∗(∗) ∗(∗) ∗(∗)

10 Lower plateau only 25 3 1.86(4.78) 1.04(5.08) 0.13(1.65) 0.72(4.72)

25 6 1.91(2.42) 0.72(1.82) 0.06(0.43) 0.73(5.10)

25 9 1.90(1.70) 0.48(1.20) 0.11(0.11) 0.78(5.27)

25 12 1.90(1.21) 0.37(0.56) 0.09(0.10) 0.75(4.93)

50 3 0.74(1.08) 0.30(0.78) 0.03(0.34) 0.09(0.15)

50 6 0.74(0.51) 0.19(0.16) 0.03(0.13) 0.12(0.30)

50 9 0.77(0.36) 0.14(0.06) 0.04(0.07) 0.13(0.27)

50 12 0.75(0.27) 0.12(0.03) 0.07(0.03) 0.12(0.24)

100 3 0.14(0.10) 0.06(0.03) 0.01(0.04) 0.02(0.01)

100 6 0.14(0.06) 0.04(0.01) 0.02(0.02) 0.02(0.01)

100 9 0.14(0.04) 0.03(0.01) 0.03(0.01) 0.02(0.01)

100 12 0.14(0.02) 0.03(∗) 0.03(∗) 0.02(0.01)

Values of bias or variance less than 0.01 are indicated by “∗”. ∗(∗) indicates that both the bias and the variance are less than 0.01.

The CASANOVA approach provides an unsupervised method
to agnostically separate multiple cluster response compounds
from compounds with reasonably concordant concentration-
response repeats. Our approach therefore avoids a complicated
modeling effort to account for all potentially influential variables
in the data, many of which may not be explicit or identifiable
in any given study. Compound potency estimates in qHTS
experiments can vary substantially (well over 100-fold in some
cases) in large scale in vitro bioassay data due to multiple
cluster intrachemical responses. Lim et al. (2013) discussed
possible strategies to derive optimal experimental designs for
qHTS experiments to improve the precision of potency estimates
and statistical inference on these parameters. Nevertheless,
CASANOVA can improve the detection of single cluster

intrachemical repeats and potency estimation for candidate hits
irrespective of the underlying study design. Multiple cluster
compounds identified using CASANOVA can be studied further
to understand the source of the variation which may arise
from technological disturbances such as compound carryover,
interference between signal channels, autofluorescence, or
potential fluctuations in the laboratory environment. However,
by focusing research efforts on compounds with single cluster
response patterns, potency estimation is expected to be more
accurate and precise. We anticipate that CASANOVA can
be applied to other types of sequential data types involving
non-linear responses, including dose-response and longitudinal
genomics studies, where divergent responses in subregions
of the data are important. The R code for CASANOVA is
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available upon request or can be downloaded online from www.
niehs.nih.gov/research/atniehs/labs/bb/staff/shockley/index.cfm.
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