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Editorial on the Research Topic

Modelling, Simulating and Forecasting Regional Climate andWeather

Originally, climatology was a regional science (von Storch, 1999)—and the global climate merely
something put together from the real and challenging findings—the regional climate analyses.
Also, weather forecasting was mostly considered a process, which was made possible by regional
information, and was of interest only for a regional audience. This has massively changed since,
say, the 1960s, when systems for assembling observations from all corners of the globe were set
up, and when global atmospheric models appeared as the dynamically right way to describe the
circulation of the atmosphere. Thus, the global view became the dominant one in climatology, and
in forecasting.

However, a niche remains for the regional set-up. First, the regional model can provide
much more spatial detail than a global model, given the same computer power. Historically,
this was in particular of importance, when the issue was the regional manifestation, say in
terms of precipitation, of a given circulation—in the spirit of Starr’s (1942) two-step concept of
forecasting—first the large scale-circulation, then the regional or local manifestation.

Initially the regional set-up was challenged by the fact that the boundary-initial value problem
for the equations of motion for limited areas is not well posed—among others, there may be
several solutions satisfying the boundary values. Also, the propagation of disturbances on the finite
grid may be different from the observed propagation; when data from a coarser resolution global
model is used, the same problem emerges. This was solved by a rather practical way with the
“sponge-zone,” suggested by Davies (1976).

For a long time, regional climate models were something like all-purpose tools, and little
attention was paid to the question, what specific added value its usage would provide, apart from
a general “greater spatial detail”-claim. This greater spatial detail was in particular useful for
hydrological applications, and early efforts dealt with coupling of these components. At the same
time, global modeling focused on coupling with the oceanic dynamics, and the sea ice dynamics.
Obviously, these two components are also crucial for the skill of regional climate change. However,
the efforts to extend atmospheric limited area models in this way, commenced seriously only in
the last 10, or so, years (e.g., Ham et al., 2016). What was also overseen in the climate applications
was the presence of unprovoked variability, sometimes named noise, which lead to intermittent
divergence in phase space (Weisse et al., 2000), and whichmade a statistical evaluation of numerical
experiments with regional models necessary, as was recognized by global modelers already in the
1970s. This need is still not recognized generally.
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This was the background of the editors for suggesting
a volume of Modeling, Simulating and Forecasting Regional
Climate and Weather. We wanted to push for further advanced
but critical efforts on the different usages of limited area
models—and we made some progress, albeit more work needs to
be done.

The skill of regional climate models in providing useful

atmospheric states for studying climate impacts is one aspect
of our collection of papers:

• One case (Feng T. et al.) deals with extreme dry spells in
Southwest China. A series of regional climate models was
found capturing the intensity and duration of such events
reasonably well. Also, the statistics of the maximum dry
spell length would be reproduced properly. The authors
concluded “This information is useful for model evaluation
and improvement, future climate projections, and water
resource risk management.”

• Prein et al. look at the ability of regional models to
simulate 12 hydrologically important weather types (WTs) in
the contiguous United States. When interested in localized
hydrological processes, it is important to get these weather
types right, which the authors enforced by constraining the
regional model to stay close to the large-scale state of the
driving global analysis (“spectral nudging”). In this set-up they
found that the choice of parametrizations and grid resolution
had little effect—given the constraining. Instead they found
it crucial to select global simulations with realistic synoptic-
scale variability.

• The biophysical effect of de- and afforestation in Europe,
conditional upon different parameterizations of albedo is
examined. Afforestation was found to be a warming in winter
(Tölle et al.). However, the net effect in summer was small
because of canceling albedo and evapotranspiration effects.
The summer temperature change is strongly sensitive to the
albedo parameterization, which needs to account for different
vegetation types.

• Bit outside of the scope of collection of papers is the article
by Rath and Costa-Cabral, who constructed an advanced,
cointegration-based forecast scheme for snowpack for the
Eastern Sierra Nevada.

Regional models are often used for constructing high-resolution
scenarios of climate change conditional upon a global climate
change projection.

• Matte et al. analyzed “European seasonal temperature and
precipitation climate change projections using pan-European
regional climate model projections for the twenty-first

century.” They find that “[e]mploying a simple scaling
with the global mean temperature change enables the
identification of emerging robust signals of seasonal changes.”
Additionally, they study the climate change signals from
transient experiments at the time of an emerging global
temperature exceedance of e.g., 1, 2, or 3◦C.

• Feng J. et al. deal with the issue of localized changes in the
expected storm surge heights at 15 Chinese sites by combining
local observed statistics and scenarios of mean sea level rise
provided by global climate change scenarios.

Another class of applications dealt with using regional models in
process studies, mostly hydrological process studies:

• Eghdami and Barros study Cold Air Intrusions (CAIs)
along the eastern flanks of the tropical Andes. They found
“significant precipitation enhancement from intense shallow
convection at the CAI frontal boundary amplified by
orographic lifting as it propagates northward latched to the
slopes of Andes.”

• Wang et al. have looked at the significance of initial soil
moisture (ISM) conditions on the simulation of three severe
heat wave events in eastern China. They found a positive
feedback between atmospheric circulation, surface warming,
and soil dryness, when the ISM is reduced—it “locally
strengthens the surface warming and the further drying of
the soil. . . . . The reduced ISM forces positive anomalies
of geopotential height at mid-troposphere and negative
anomalies at lower levels, leading to an enhanced thickness of
the atmosphere.”

• The question how an extreme precipitation event at Hiroshima
in 2014 would unfold under climate change conditions was
studied by Hibino et al. using a 500m-grid resolution model.
The main result is that the “effect of the water vapor increase
on extreme precipitation is canceled out by the suppression of
convection due to the thermal stability enhancement” so that
the expected change is small.

A conceptual look at the downscaling paradigm, and its
roots—synoptic dynamics and spatial interpolation—was
done by von Storch and Zorita. Even if here the concept
and history of the empirical variant of downscaling was
discussed, these deliberations apply to the dynamical variant
as well.
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An extreme precipitation event happened at Hiroshima in 2014. Over 200 mm of total

rainfall was observed on the night of August 19th, which caused floods and many

landslides. The rainfall event was estimated to be a rare event happening once in

approximately 30 years. The physical response of this event to the change of the

future atmospheric condition, which includes a temperature increase on average and

convective stability change, is investigated in the present study using a 27-member

ensemble experiment and pseudo global warming downscaling method. The experiment

is integrated using the Japan Meteorological Research Institute non-hydrostatic regional

climate model. A very high-resolution horizontal grid, 500 m, is used to reproduce dense

cumulonimbus cloud formation causing heavy rainfall in the model. The future climate

condition determined by a higher greenhouse gas concentration is prescribed to the

model, in which the surface air temperature globally averaged is 4 K warmer than that in

the preindustrial era. The total amounts of precipitation around the Hiroshima area in the

future experiments are closer to or slightly lower than in the current experiments in spite

of the increase in water vapor due to the atmospheric warming. The effect of the water

vapor increase on extreme precipitation is found to be canceled out by the suppression

of convection due to the thermal stability enhancement. The fact that future extreme

precipitation like the Hiroshima event is not intensified is in contrast to the well-known

result that extreme rainfall tends to be intensified in the future. The results in the present

study imply that the response of extreme precipitation to global warming differs for each

rainfall phenomenon.

Keywords: extreme precipitation, future change, ensemble experiment, pseudo global-warming downscaling

method, convective instability, modified relative humidity, temperature lapse rate

1. INTRODUCTION

In August 2014, a heavy rainfall event happened around Hiroshima city (34.39◦N, 132.46◦E),
Japan. The total amount of precipitation was observed to be over 200 mm in the northern part
of Hiroshima city, and floods and landslides happened due to the intense precipitation, and 75
people were killed by these disasters (Hirota et al., 2016). Although such heavy rainfall events
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do not happen frequently, they can cause severe disasters.
How extreme precipitation changes in the future, particularly
influenced by the anthropogenic global warming due to an
increase in the concentration of greenhouse gases (GHGs), is of
great concern for society.

As the IPCC AR5 (Stocker et al., 2013) reported that the
extreme precipitation has intensified in many regions in the
world, the assessment of its future change has become more
important. There are two types of studies concerning the future
change in extreme precipitation: one focusing on statistical
or climatological change and one dealing with changes in
individual meteorological phenomena, i.e., case studies, which
should be distinguished. The latter type of studies is superior
to the former type in that it enables us to analyze the actual
mechanism with which meteorological phenomena respond to
global warming, but is inferior in that any changes of case studies
do not necessarily imply the climatological change in similar
precipitation events, e.g., no information concerning a change
in the frequency of extreme precipitation. The two types of
researches should be integrated to overcome the weaknesses of
each individual type.

Many studies have been done focusing mainly on the
general and statistical characteristics (first type) of future
change in extreme precipitation (e.g., Kharin et al., 2013;
Ban et al., 2015; Mizuta et al., 2016). Almost all of them
concluded that the amount of extreme precipitation has
increased, which is consistent with the deduction that more
moisture is converted into precipitation in a warmer atmosphere
according to the Clausisus Clapeion (C-C) relationship: an
increase of approximately 7 % per degree of warming. However,
the precipitation amount does not necessarily follow the
C-C relation completely (e.g., Prein et al., 2017) since it is
affected by other factors, such as circulation pattern changes
or moisture availability. In addition, when considering heavy
rainfall phenomena in small spatial scales, the poor resolution of
current climate models deteriorates the ability to reproduce them
and evaluate their strength with high reliability (Wehner et al.,
2010; Volosciuk et al., 2015).

There are also various studies focusing on a particular
meteorological phenomenon relating heavy rainfall and
investigating the effect of future climate change on it (e.g., Pall
et al., 2017). Takayabu et al. (2015) examined typhoon Haiyan
and showed that its expected strength has been intensified by
global warming from pre-industrial period until the current day.
A similar approach was applied to heat wave events to elucidate
the effect of anthropogenic global warming (e.g., Shiogama et al.,
2014).

To investigate the future change of a specified meteorological
phenomenon, environmental condition involving the
meteorological phenomenon needs to be changed as what is
expected in the future. One of the methods is the pseudo global-
warming downscaling (PGWD) method (Kimura and Kitoh,
2007; Takayabu et al., 2015), in which the climatological change
of temperature is superimposed to the current atmospheric
or ocean conditions. The global warming level is usually
obtained from general circulation models, e.g., Coupled Model
Intercomparison Project Phase 5 (CMIP5) (Stocker et al., 2014),

or prescribed with an arbitrary level e.g., 4.0 degree warming
from the pre-industrial level (Mizuta et al., 2016).

Atmosphere warming accompanies an increase in the air
moisture level providing that the other atmospheric conditions,
such as circulation and stratification, are the same as before.
The moisture increase does not only increase the total amount
of precipitation linearly but also can change the flow field
of particular meteorological phenomena, e.g., intensification
of tropical cyclones (Takayabu et al., 2015), which suggests
the possibility that more moisture from the surrounding areas
is provided and converted to rainfall (Kanada et al., 2017).
Therefore, in the case of tropical cyclones, the associated
precipitation amount is expected to increase over the C-C
relation. However, there is a possibility that extreme precipitation
derived from other types of meteorological phenomena does
not increase so much, i.e., under the C-C relation, or even
decreases due to the different physical response to the future
atmospheric warming from that of tropical cyclones. Although
Utsumi et al. (2016) examined the future changes in three types
of meteorological phenomena (tropical cyclones, extratropical
cyclones including fronts, and others), their analyses were
performed from the global point of view, and thus the rainfall
events that are smaller-scale but intense enough to cause disasters
have not been fully investigated.

Therefore, the target meteorological event in the present study
is the Hiroshima heavy rainfall event explained before. In section
2, a detailed explanation of our ensemble simulation is given. The
results of the simulations are shown in section 3. A discussion
regarding the effect of future atmospheric environment change
(temperature and moisture) on extreme precipitation and the
conclusion of the present study are given in section 4.

2. METHODOLOGY

First, the extreme precipitation in Hiroshima is simulated in
the current climate condition; this experiment is referred to
as the current experiment. After checking the performance of
the experiments to reproduce the precipitation amount and its
spatial pattern, future experiments with warmer environmental
conditions are performed using the PGWD method. The precise
simulation of the precipitation event is vital for its comparison in
the current and future environments.

The numerical model in the present study is the
Meteorological Research Institute non-hydrostatic regional
climate model (MRI-NHRCM) (Sasaki et al., 2008) in the Japan
Meteorological Agency (JMA), and the computational domain
is shown in Figure 1. The horizontal grid resolution is 500 m,
and there are 50 vertical grids with irregular intervals starting
from the surface to 21,801 m. Because of the high resolution,
no convection scheme is necessary, and precipitation output is
determined through the cloud microphysics scheme by Ikawa
et al. (1991), in which mixing ratios of water vapor, cloud water,
cloud ice, snow, rain, and graupel are calculated. The simulation
period is 15 h: from 1800 Japan Standard Time (JST) on August
19th to 0900 JST on August 20th, 2014, which includes the
heaviest rainfall period in the current experiments. The initial
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FIGURE 1 | Spatial distribution of altitude in the simulation domain.

and boundary conditions of the model are obtained from the
JMA meso-scale analysis data of every 3 h with 5 km horizontal
resolution.

The heavy rainfall in the Hiroshima event was caused by a
back-building type rain-band (Bluestein and Jain, 1985), which
involves consecutively formed cumulonimbus on the windward
side. Because the terrain of mountainous region to the north
of Hiroshima at which heavy rainfall was observed is complex
(Figure 1), small perturbations in terms of environmental
conditions can cause large differences in the precipitation
amount. In addition, the generation of cumulonimbus is sensitive
to the small initial perturbations due to its chaotic nature.
Therefore, ensemble simulation is performed to cover such
uncertainties and to find robust characteristics regarding the
future change in the Hiroshima event.

For the ensemble members for the experiment, we use
the ensemble meteorological data in the One-week Ensemble
Prediction System (hereinafter called “weekly ensemble”),
which is distributed operationally by JMA (Sakai, 2009). The
perturbation of the weekly ensemble is calculated based on the
singular vector method (Buizza and Palmer, 1995), which has
a maximum growth rate for a prescribed optimization time: 48
h for the Northern hemisphere and 24 h for the tropics. We
select the weekly ensemble generated at the time 0900 JST on
August 19th and used its growing perturbation at the simulation
starting time, i.e., 1800 JST of the same day, to construct the
initial condition of the simulations. The variables from the
weekly ensemble dataset are wind, temperature, pressure, and
specific humidity. Because the horizontal resolution of the weekly
ensemble is approximately 40 km and much coarser than that of
the model in the present study (500 m), only the perturbations of
weekly ensemble members, the number of which is 26, are used
and superimposed to the initial condition derived form the JMA
meso-scale analysis with a higher resolution. The experiment
free from the weekly ensemble perturbations is referred to as
the control experiment, and thus the total number of ensemble
experiment members in the present study is 27.

For the three variables except specific humidity: wind,
temperature, and pressure, weekly ensemble perturbation is
added to each variable. If specific humidity perturbation is
added similarly, the relative humidity exceeds 100% and artificial
saturation and cloud formation can happen. To avoid this
problem and to reproduce the heavy rainfall event with a small
lead time, atmospheric humidity is converted to the modified
relative humidity (MRH) (Wakazuki, 2013). The values of
humidity in the control experiment and the weekly ensemble
perturbations are both converted to MRH and summed, which
is re-converted afterward to the specific humidity used in the
simulations. Finally, 27 ensemble experiment members with
different initial and boundary conditions are performed.

The PGWD method to change the environmental condition
in the Hiroshima event to a future one is adopted with
the temperature vertical profile change δT. Although there
are various types in the PGWD method, horizontally-uniform
temperature increase i.e., δT(z) is used to avoid changing the
wind patterns according to the thermal wind relation. This
PGWD method helps maintain the environment condition in
which heavy rainfall tends to occur, and the direct effect of
the environmental warming can be analyzed. The value of δT
is obtained from huge climate dataset d4PDF (Mizuta et al.,
2016), which has order thousands of samples. The d4PDF
dataset is constructed by the ensemble experiments of past
periods (1951–2011) based on observation and future periods
whose climate condition determined by a higher greenhouse gas
concentration is prescribed to the model, in which the surface
air temperature globally averaged is 4 K warmer than that in
the preindustrial time. The difference between future and past
experiments averaged in August and over the computational
region in the present study is extracted as the future change δT
and averaged over the whole d4PDF simulation years and over all
d4PDF ensemble members. The red line in Figure 2A shows the
vertical profile of δT and is added to the current temperature on
whole model grids to change the current environment to a future
one. In addition, the future change in the sea surface temperature
and land surface temperature is homogeneous horizontally, the
value of which is adopted from the lowest layer of δT(z) i.e., 4 K to
avoid the temperature discontinuity between sea or land surface
and atmosphere in the future experiments.

The relative humidity in the future is the same as the
current conditions to simulate the future moisture increase in the
atmosphere according to the degree of the warming. Figure 2B
shows the vertical profiles of specific humidity in the (blue)
current and (red) future experiments, which are an averaged
over the whole computational domain, simulation period, and
ensemble members in our experiments. Future environment
humidity is largely increased due to the atmospheric warming,
although the humidity is concentrated in the troposphere, i.e.,
below 10,000 m.

The total precipitation accumulated in 6 h from 0000 JST to
0600 JST on August 20th and is area-averaged indicated by the
red box in Figure 3B is calculated as an indicator to represent
the rainfall intensity of the Hiroshima event. Hereafter, the total
precipitation, analysis period, and analysis domain are referred
to as AP6h, the target period, and the target domain, respectively.
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FIGURE 2 | (A) Future change (red line) of temperature vertical profile δT (K) obtained from d4PDF dataset, and temperature profile for the neutral experiments (green

dashed line). (B) Vertical profiles of specific humidity (g/kg) in current (blue), future (red), and neutral (green) experiments, which are obtained by averaging the specific

humidity over the whole computation domain, simulation periods, and ensemble experiment members.

FIGURE 3 | Geographical distribution of the total precipitation (mm) from 0000 JST to 0006 JST on August 20th obtained from (A) the Radar-AMeDAS observation

data and (B) the current control experiment. This figure domain is identical to the simulation domain, and the red square region is the target domain to calculate the

value of AP6h.

The target period includes the most intense precipitation timing
(Figure 4), and the domain covers almost all fluctuations of
heavy rainfall location in all ensemble experiment members
(Figures S1–S3). The change in AP6h between current and future
climates is also examined.

3. RESULTS

In the observed precipitation event in Hiroshima, total
precipitation over 200 mm through this event was observed
in the northern part of the city. Figure 3A shows the spatial
pattern of Radar-AMeDAS precipitation, which is a combined
observation product based on the Automated Meteorological
Data Acquisition Systems (AMeDAS) rain gauge data and radar
precipitation (Makihara et al., 1996). This intense precipitation
is reproduced in the current control experiment, as shown in
Figure 3B; the results except for the control case are provided

in Figure S1 for current experiments and Figure S2 for future
experiments. Comparing the observation and model results,
the high reproducibility of our model is revealed; their spatial
patterns and the intensity of precipitation are quite similar,
although the peak of precipitation in the model is located in a
slightly north-eastward position.

Next, we examined the moisture inflow into the heavy rainfall
region around Hiroshima. According to the report by MRI in
Japan (MRI, 2014), one of the significant factors causing this
heavy rainfall was the large southerly moisture inflow near the
ground to the region around Hiroshima. The large amount of
moisture over the ocean was transported to the mountainous
region to the north of Hiroshima and lifted to form the
cumulonimbus clouds and the rain-band. This moisture inflow
is also represented in the current control experiment as shown
by the moisture flux intensity at 975 hPa in the beginning of
the target period, i.e., 0000 JST on 20th (Figure 5A). Leaving the
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FIGURE 4 | Time series of the precipitation amount averaged in the target domain. The values are hourly cumulative precipitation until that time. Each line represents

the result of each ensemble member in (A) the current experiments, (B) the future experiments, and (C) the neutral experiments. The simulation period is 15 h from

1800 Japan Standard Time (JST) on August 19th to 0900 JST on August 20th.

vicinity of the ground, south-easterly wind blows at the lower
troposphere, the height of 850 hPa, (Figure 5B), and the rain-
band formed is extended in the north-eastward direction along
the wind at this level, which is consistent with the explanation by
MRI (2014).

With these comparisons between the current control
experiment and observation in terms of total precipitation
amount, spatial pattern of heavy rainfall, and moisture inflow,
we can conclude that the heavy precipitation event at Hiroshima
was reproduced realistically by the model. Because similar results
are obtained for the other ensemble members (Figures S1, S4,
and S5), the mechanism causing the heavy rainfall can be suitable
for most of the ensemble members, but the small environmental
differences among the members determine rainfall severity.
Note that the Hiroshima event has an aspect of orographic
precipitation since moist air over the ocean is transported onto
land and the mountainous region around Hiroshima, generating
heavy rainfall.

From now on in this paper, we show the values of AP6h
to investigate the intensity of extreme precipitation in the
Hiroshima event (Figure 6). The values of AP6h in current
and future experiments are closely correlated to each other

ranging from very small precipitation (nearly 0 mm/6 h) to
large precipitation (approximately 20 mm/6 h). The intensity of
the heavy rainfall events is found to be mainly determined by
the difference of ensemble members or large-scale flow pattern
prescribed by the weekly ensemble perturbation and to have
large prediction uncertainty or spread. The value of the Radar-
AMeDAS observation is 12.68, as shown in Figure 6, which is
included in the uncertainty of the current climate experiments.

Comparing the current and future values of AP6h in Figure 6,
most of the ensemble member results lie on the diagonal line
showing AP6h(future) = AP6h(current), which implies that the
future rainfall of the Hiroshima event is not intensified. This
result looks contradictory to the fact that humidity in the
future atmosphere has increased, as shown in Figure 2B. If
the whole atmospheric motion including both horizontal and
vertical velocities is identical between the current and future
experiments, the resulting precipitation should be larger in the
future model by the amount of additional water vapor due to
the atmospheric warming. Seeing the time series of spatially-
averaged precipitation in the target domain (Figure 4), clear
intensification of precipitation in the future is not obtained,
although the time variations are somewhat different between the
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FIGURE 5 | Geographical distribution of the moisture flux intensity (shaded) and wind field (arrows) (A) near the ground (975 hPa) and (B) at the lower troposphere

(850 hPa) obtained from the current control experiment.

current and future experiments; rainfall in the future experiments
(Figure 4B) initiates earlier, and shows no clear peak time around
t = 8, unlike the current experiments (Figure 4A).

To investigate the reason that the future precipitation in the
Hiroshima event does not increase in a moister atmosphere,
we examine the stabilizing effect of future temperature change
profile δT in the troposphere (see Figure 2A). The value of
δT increases with height corresponding to the decrease in
the temperature lapse rate (Tett et al., 1996), which is based
on the fact that the moist adiabatic lapse rate decreases
with atmosphere warming. The characteristic regarding vertical
temperature structure was found to reduce the non-extreme
precipitation in mid-latitudes (Kröner et al., 2016). To evaluate
the depression effect on extreme precipitation like the Hiroshima
event, we performed additional ensemble experiments that we
call “neutral experiments.” In the neutral experiments, the profile
of future temperature increase δT is changed from the actual
future one; the new profile is shown by the green dashed line
in Figure 2A as well as the profile of the specific humidity
by the green line in Figure 2B. The temperature change over
a height of approximately 14,000 m and the other model
settings are the same as those of future experiments. Because
the profile of the neutral experiments has a neutral effect on
the convective instability of the troposphere, the comparison
between the results of future and neutral experiments is expected
to evaluate the stabilizing effect of δT in the future. We
perform 9 member experiments due to the computational
limit, which covers as much uncertainty as possible in terms
of the rainfall intensity AP6h, shown by the blue points in
Figure 6.

All of the values of AP6h in the neutral experiments are
increased from those of the current and future experiments
when comparing them in terms of each ensemble member;
the intensification of rainfall in the neutral experiments is also
revealed with its time series result (Figure 4C). Because the
difference in the environmental conditions between the future
and neutral experiments is only the temperature warming profile,

the large decrease in precipitation in the future experiments
compared with the neutral experiments is caused by the effect of
thermal stability enhancement.

To analyze the future and neutral experiments’ differences in
greater detail, the strength of vertical or convective motion in the
heavy rainfall region is examined. Figure 7 is a scatter diagram of
the maximum vertical velocity at 500 hPa plains (x-axis) of the
target domain and the target period relating to the values of AP6h
(y-axis). Before extracting the maximum value, a running mean
over 9 x 9 grids of vertical velocity is performed to smooth out
the very small-scale noisy pattern. Suchmaximum velocity values
precisely represent the convection strength, as its correlation to
precipitation intensity AP6h is actually higher than that without
the smoothing operation; the correlation coefficient is 0.742 in
Figure 7.

At the middle troposphere heights of 500 hPa, current and
future results are scattered in close proximity, while the results
of neutral experiments are separated from those of the current
and future experiments. The statistical significance of the results
is verified by the Mann–Whitney U-test (Wilks, 2011): 1%
level significance between the results of the current and neutral
experiments, but the significance even for the level of 10 %
cannot be obtained between the results of current and future
experiments. Thus, the convection in the current and future
experiments has approximately the same strength and yields
a closer amount of precipitation as a result. On the other
hand, the neutral experiments show strong convection and
large precipitation, which implies that the vertical motion is
accelerated due to the condensation heating of the increased
moisture in the atmosphere.

In the future experiments, the convective clouds in their early
stage of growing yield the larger precipitation compared with
the current experiments due to the large amount of moisture
in the atmosphere, which is shown by an earlier increase in the
AP6h values (Figure 4B) and spatial distribution of precipitation
in the early period, e.g., t = 4 (Figures S6, S7). However,
the vertical acceleration associated with the condensation
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FIGURE 6 | Scatter diagram of the values of AP6h showing the relation

between the current experiments (x-axis) and future (y-axis; red points) and

neutral (y-axis; blue points) experiments. The results from the control

experiments are shown as stars. The black inclined dashed line is a line of

y = x, the points on which show that the future or neutral experiments yield

the same amount of precipitation intensity as that of current experiments. The

value of AP6h of Radar-AMeDAS precipitation is 12.68 and shown by a black

vertical line.

heating is suppressed by the stabilizing effect of the change
in the temperature profile in the troposphere. As a result, the
convection and precipitation in the future experiments are not
intensified and are thus closer to the current experiments.

4. DISCUSSION AND CONCLUSION

In this study, we examined the future change in the heavy
rainfall event happened at Hiroshima by performing numerical
experiments with the pseudo global warming downscaling
method. There have been no previous studies using the
ensemble experiment with very-high resolution, such as 500m
to investigate the future change in extreme precipitation event.
The very-high resolution simulation in the present study
demonstrates the high reproducibility of the heavy convective
rainfall, and robust results regarding the future change in extreme

FIGURE 7 | Scatter diagram showing the relation between the extreme

precipitation index in the present study, AP6h and the maximum vertical

velocity at a height of 500 hPa, which are obtained for the target domain (red

square region in Figure 3B) and the target period (from 0000 JST to 0600 JST

on August 20th). Blue, red, and green points represent the results of current,

future, and neutral experiments, respectively.

precipitation are obtained thanks to the ensemble experiment.
The main conclusion in the present study is that the extreme
precipitation in the event is not increased even in the 4 K warmer
environmental condition accompanying larger amounts of water
vapor. This result looks contradictory to the many previous
studies showing the intensification of extreme precipitation in the
future (e.g., Kharin et al., 2013; Ban et al., 2015; Mizuta et al.,
2016). Our main conclusion is derived from the cancellation
between the destabilizing effect of a water vapor increase and the
stabilizing effect of a temperature lapse rate decrease in future
environmental conditions.

Kröner et al. (2016) showed that a future decrease in the
temperature lapse rate reduces the non-extreme precipitation
in Europe and Northern Africa. The present study shows that
the similar precipitation suppression is effective for extreme
precipitation to the extent that it can offset the thermodynamic
aspect of a moisture increase. Because the decrease in the
temperature lapse rate or the stabilizing characteristic is
projected to be dominant from tropics to mid-latitudes in the
future (IPCC AR5, Stocker et al., 2013), the suppression of
extreme precipitation we found is expected to prevail in these
regions.

In the Hiroshima event, thunderstorms with continuously
generated cumulonimbus caused the heavy rainfall (MRI, 2014).
The fact that this rainfall system is not intensified is in marked
contrast to the previous studies focusing on the effect of
global warming on tropical cyclones (e.g., Kanada et al., 2017),
which revealed that tropical cyclones and associated rainfall
intensify in the future. This difference strongly suggests that the
physical responses of meteorological phenomena causing heavy
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rainfall to a warmer climatic condition differ depending on their
types and physical mechanisms. One of the hypotheses that
tropical cyclones can be strengthened against the stabilization
effect of temperature profile change but the rainfall of the
Hiroshima event cannot is that tropical cyclones have a strong
non-linear mechanism in which increased water vapor due to
atmosphere warming enables them to gather more water vapor
from the surrounding atmosphere. This characteristic of tropical
cyclones amplifies the effect of a moisture increase in terms of
convective instability and enables them to grow by overcoming
the stabilizing effect of stratification. On the other hand, the
extreme precipitation event at Hiroshima bearing the aspect of
orographic precipitation does not have such a strong nonlinear
effect, in other words, the thunderstorms and cumulonimbus
systems in this event only perturb the flow field and do not
change the environmental condition determining the severity
of rainfall due to their relatively small spatial scale of the
phenomena.

The present study cannot provide any knowledge concerning
the future change in frequency of appearance of thunderstorms
causing extreme precipitation because of the limitation of a case
study. However, the possibility that these thunderstorm events
cannot be intensified even in the warmer and wetter conditions
due to the temperature lapse rate change in the troposphere leads
to the further studies combined with climatological or statistical
studies focusing on the frequency of extreme precipitation.
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A cointegrated relationship has been identified between the January sea level pressure

anomaly at the climatological location of the North Pacific High (NPH) and seasonal

precipitation throughout California (Costa-Cabral et al., 2016). This cointegration can be

used for forecasting precipitation or snowpack indices at California locations. Here we

develop a cointegration model, termed Vector Error Correcting Model (VECM), for issuing

a forecast, in early February, for April 1 snow water content (SWC) at snow stations

in the Eastern Sierra Nevada mountain range of California. We additionally develop a

categorical model for forecasting the April 1 SWC category (dry, normal, or wet) based

on the VECM forecast. Snowmelt from this region flows into the Owens River and serves

as a major source of freshwater for the Los Angeles metropolitan area. The VECM relies

on the cointegration between three variables: the January NPH sea level pressure, the

February 1 SWC, and the April 1 SWC. Forecasts based on this VECMmodel have higher

measures of skill compared to linear correlation methods. The statistical tool presented

can be applied to other California watersheds and may provide reservoir operators the

needed insight for making storage decisions in early February.

Keywords: cointegration, forecasting, North Pacific High, Owens valley, VECM models, categorical models

INTRODUCTION

Precipitation in the Sierra Nevada mountain ranges of California occurs primarily in the winter
months, in the form of snow and rain (Pandey et al., 1999). Meltwaters from accumulated
snow, modulated by surface water reservoirs, serve as a source of water supply over the summer
months. Snow accumulation over the winter months is carefully tracked to provide an estimate of
future snowmelt volumes in the spring and summer months. Typically, reservoirs are operated to
maintain sufficient flood storage capacity for the anticipated snowmelt and rain events later in the
wet season. Excess runoff is released to maintain flood storage capacity. Advance knowledge of total
precipitation during a wet season can allow adjustments in the flood storage capacity to maximize
the water stored in the reservoirs.

Here we develop a model, to be used in early February of each year, for forecasting the snow
water content (SWC) 2 months later, on April 1, at key Eastern Sierra snow stations on Owens
Valley tributary watersheds. Freshwater from this watershed, transported more than 300 miles via
aqueducts, is one of the most important water sources for over 4 million people in the Los Angeles
metropolitan area (Costa-Cabral et al., 2012). Runoff is managed through reservoirs to support Los
Angeles’ water supply as well as in-valley uses.
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The impetus for this work was the finding by Costa-Cabral
et al. (2016) that seasonal precipitation totals in California and
other parts of the southwestern United States have a considerably
strong relationship with the high-pressure center off the coast of
California known as the North Pacific High (NPH). Large-scale
climatic indices have been used as predictors of precipitation
totals and extremes in many studies and are used operationally in
weather forecasts to circumvent the difficulty in obtaining robust
dynamical simulations of precipitation.

Establishing a statistical association between observed large-
scale climate patterns and precipitation to come in the months
ahead is an approach that has been used at many world locations
for forecasting precipitation and anticipating water resources
availability (for example, Fernando et al., 2015). Such statistical
associations have also been used extensively to obtain forecasts
of future precipitation based on simulated forecasts of the large-
scale climate patterns. Future projections of precipitation have
also been obtained on the basis of such statistical associations
with large-scale climate patterns (for example, Kharin et al., 2013;
Costa-Cabral et al., 2016).

The El Niño-Southern Oscillation (ENSO) phenomenon
has been identified as a major driver of climate variability
worldwide, and arises from the coupled ocean-atmosphere
system of the Pacific basin. Several studies have examined
the influence of ENSO on precipitation and temperature over
North America, and have documented associations between the
strength and phase of ENSO and precipitation frequency and
intensity over different regions—particularly the southwestern
United States—due to ENSO’s influence on the East Asian jet
stream position. Thus, California has an increased likelihood of
storms, precipitation extremes, and precipitation totals under El
Niño conditions (see for example, Chikamoto et al., 2015).

Roughly half the time, however, ENSO is in a neutral
phase. Such neutral conditions are not an indication of average
meteorology over California. The recent multi-year drought in
California provides an example of an extreme meteorological
drought occurring at a time when both ENSO and the
Pacific decadal oscillation (PDO; Mantua et al., 1997; Zhang
et al., 1997) are in near-neutral states. In part due to the
oft-neutral state of ENSO, the association of ENSO indices
(including the atmospheric-pressure-based SOI index and sea
surface temperature-based ENSO3.4 and other indices) with
precipitation totals in California is near or below statistical
significance level, as is also the case for the PDO as shown e.g.,
in Costa-Cabral et al. (2016). Rather than ENSO indices, it is the
sea level pressure anomaly at the NPH that better reflects the local
influence of ENSO, as well as additional variability specific to the
North Pacific region.

The strength and position of the NPH, expressed as sea level
pressure anomalies and geopotential height anomalies over the
northeast Pacific region, affect the position of the jet stream and
associated storm tracks. As shown in Costa-Cabral et al. (2016),
the positive mode of the NPH is associated with a strong high-
anomaly sea level pressure region over the northeastern Pacific.
Abnormal northeastern Pacific high pressure ridges that extend
from lower- to upper-atmospheric levels can prevent storm
systems from reaching California. The role of such high-pressure

ridges was discussed during the recent multiyear drought in
California, which exhibited the strongest and longer lasting
ridge ever observed (e.g., Swain et al., 2014; Wang et al., 2014,
2015; Stevenson et al., 2015). Costa-Cabral et al. (2016) showed
that these exceptional high pressure conditions associated with
the recent drought fit into a broader pattern documented in
reanalysis data.

Costa-Cabral et al. (2016) demonstrated that winter
precipitation totals over much of the Southwestern United States
hold a special relationship, known as a “cointegration,” with
the sea level pressure at the normal location of the NPH. A
cointegrated relationship between two stochastic variables
exists when, although they appear to vary independently, the
cumulative departure from the mean of the two variables tends
to remain within a limited distance (Engle and Granger, 1987).

By exploiting the cointegrated relationship between SWC
and the NPH anomaly, two models were developed to estimate
seasonal precipitation for the Owens River watershed, and
provide advance information to support reservoir operations in
the Owens Valley:

• The VECM Model Vector Error Correcting Model (VECM)
is designed to forecast, in early February, the April 1 SWC
value. The VECM model uses the observed annual time series
of three variables: (a) the observed January mean of the NPH
anomaly, (b) the observed February 1 SWC, and (c) the April
1 SWC at each location of interest. The VECMmodel exploits
the cointegrated relationship between these three variables,
and provides a forecast for April 1 SWC based on a linear
function of the values of the cumulative sum over time of
standardized anomalies of all three variables.

• The Categorical Model is designed to determine the
probability, in early February, of the April 1 SWC value
falling into the dry, normal, and wet category. The thresholds
between these categories are defined by a 20% deviation from
the average April 1 SWC value. The Categorical Model uses
the forecast value produced by the VECMmodel.

The mathematical formulation, parameter fitting, validation, and
application of the models are described in sections Methods
and Results and Model Evaluation Based on Hindcasts. The
performance of both models in hindcasts (1951–2016) is also
evaluated in sections Methods and Results and Model Evaluation
Based on Hindcasts. The VECM model hindcasts of April 1
SWC are compared against those obtained by linear regression
from observed February 1 SWC, showing significantly higher
skill.

As a test, the January mean 850 hPa geopotential height over
the NPH region was used in the VECM model instead of the
sea level pressure, achieving comparable results in the hindcasts
(Figures S-2 to S-9). For some of the stations, geopotential
height performed slightly better in hindcasts, while at other
stations (includingMammoth Pass) it performed slightly less well
compared to sea level pressure. Also, the p-value representing the
Phillips-Ouliaris cointegration test (Phillips and Ouliaris, 1990;
Hamilton, 1994) is higher when geopotential height is used (p >

0.01) compared to sea level pressure (0.01 < p < 0.05), which
may indicate that the cointegrated nature of the relationship with
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FIGURE 1 | Cumulative standardized anomaly of April 1 snow water content at Mammoth Pass (orange) and January mean sea level pressure at the North Pacific

High region [NCEP/NCAR grid cell centered at (35◦N, 232.5◦E)] (blue). The blue line refers to the vertical axis on the right, where values are in reverse order to aid

comparison between the two variables, given that they are inversely correlated.

geopotential height is less dependable. For these reasons, sea level
pressure was selected for use.

The hindcasts reveal that the VECM model has considerable
forecast skill. In the case of the Categorical Model, a much larger
sample size would be required for evaluating the probability
values that it provides, but the hindcast for the available sample
size appears consistent with the calculated probabilities.

METHODS

Figure 1 shows the cumulative standardized anomalies of
Mammoth Pass April 1 snow water content (SWC) and the
January mean sea level pressure anomaly at a location near the
NPH (1948–2016) (from the NCEP/NCAR Reanalysis). There is
an apparent tendency for the two lines to remain within a limited
distance of each other. The cumulative standardized anomalies
of the two variables show higher linear correlation (R = 0.88)
than the (non-cumulative) standardized anomalies (R = 0.54)
(Figure S-1).

The Owens Valley snow water content (SWC) on April 1
depends mainly on seasonal precipitation totals but also on
factors that influence snowmelt, including temperature, solar
radiation and wind. Elevation is sufficiently high that nearly all
winter precipitation at the sites of interest is in the form of snow.
Years in which snowmelt occurs early will have diminished SWC
on April 1. The model presented here does not account for these

factors, but relies on the cointegrated relationship between SWC
and NPH anomalies.

The cointegrated relationship between SWC and NPH
anomalies is explored in the VECM model described in section
The VECM Model, for Forecasting the April 1 SWC. The
categorical model is described in section the Categorical Model,
for Estimating Probability of Dry, Normal, or Wet Categories.

The VECM Model, for Forecasting the April
1 SWC
VECM Model Formulation
Vector Autoregression (VAR) is a type of model that represents
multivariate time series using linear relationships between each
variable and p of its own lags and the lags of the other variables.
If the k x 1 vector yt denotes the values of the k variables in the
multivariate time series at time t, then a VAR(p) model is:

yt = a + A1yt−1 + A2yt−2 + · · · + Apyt−p + εt (1)

Here the vector a (intercept term) and the k x k matrices Ai

(coefficients) are estimated model parameters and the vectors εt

are random errors.
The year-specific vector at time t is given by the difference

between the cumulative vectors at times t and t − 1:

1yt = yt − yt−1 (2)
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Combining Equation (1) and (2) and writing Bi = −(Ai+1+· · ·+

Ap) for each i = 1, · · · , p − 1 and 5 = −

(

I − A1 − · · · − Ap

)

gives:

1yt = a+ B11yt−1 + · · · + Bp−11yt−p+1 + 5yt−1 + εt (3)

Cointegration is a property that multivariate time series may
exhibit. If the individual components of yt are non-stationary
(in particular, they have a unit root) while some (non-zero)
linear combination β

′yt is stationary, then yt is said to be
cointegrated. More intuitively, although the components of yt are
non-stationary and vary randomly, the distance between them
tends to stay within a fixed distance. In fact, there may be up to
h < k linearly independent cointegrated relations among the yt .

In Equation (3), if yt is cointegrated then 5 has reduced rank
h < k and can be factored as5 = αβ

′, where α is k × h and β
′ is

h × k, such that β ′yt is a stationary h × 1 vector. Then inference
proceeds by first estimating the cointegrated relations β

′–either
by ordinary least squares (OLS) or maximum likelihood (ML)
methods—and then estimating the remaining parameters a, α

and βi by OLS. This type of VAR with reduced rank restrictions
when yt is cointegrated is known as a Vector Error Correction
Model (VECM). See Hamilton (1994) and Johansen (1995) for
further details.

Data Sets
The observed snowwater content (SWC) on February 1 andApril
1 of each year, starting 1948, at the four Owens Valley snow
stations of interest—Mammoth Pass, Rock Creek #2, Sawmill,
and Cottonwood #1—were provided by LADWP and are used
as predictor variables in the VECMmodel.

Also used as a predictor variable in the VECM model is
the January mean sea level pressure at a location near the
climatological position (i.e., the average position over time) of
the NPH. The monthly mean sea level pressure data from the
National Center for Environmental Prediction, National Center
for Atmospheric Research (NCEP-NCAR) reanalysis dataset
(originally described in Kalnay et al., 1996) were used. The data
were downloaded from the National Oceanic and Atmospheric
Administration’s web site1. This data set was selected for this
study because it goes back in time to 1948, covering the entire
period of LADWP snow records; has a resolution of 2.5◦ of
latitude and longitude, which is sufficiently fine-scale but not so
fine as to have excessive variability over time; and is updated
online by NOAA daily, with only a 2-day delay. The grid cell
centered at {35◦N, 232.5◦E} is used.

Reanalysis datasets, such as the ones used in this work, are
based on simulations by dynamic climate models combined
with observations. Such datasets represent estimates subject
to uncertainty, characterized, for example, in Bosilovich et al.
(2008), Guirguis and Avissar (2008), and Janowiak et al. (1998).

Because the VECM model uses cumulative standardized
anomalies, the raw variables are first transformed into
standardized anomalies, by subtracting the series mean
then dividing by the standard deviation. The mean and standard

1http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surface.

html (file name: slp.mon.mean.nc)

deviation values used are for the entire record period, 1948–2016.
The standardized anomalies are then added successively over
time to obtain the cumulative standardized anomalies.

Parameter Fitting
For fitting, the following steps were followed:

1) Clip the time series to the calibration period.
2) Specify number of lags. This study used p = 3, i.e., the VECM

uses two lag terms (years) and the underlying VAR model is
VAR(3).

3) Estimate β
′ by Full InformationMaximumLikelihood (FIML;

Johansen, 1995).
4) Estimate parameters a, α and βi by OLS. Calculate

parameters Ai from those.

For prediction, the following steps were followed:

5) Convert back to VAR representation ((βi, 5) 7→ Ai).
6) Use Equation (1) to calculate the forecasted cumulative value

ŷt using data from the preceding 3 time periods and with
εt = 0.

7) Use Equation (2) to obtain the desired forecasted value1ŷt =
ŷt − yt−1.

Model verification will be described in section VECMModel.

The Categorical Model, for Estimating
Probability of Dry, Normal, or Wet
Categories
Categorical Model Formulation
The Categorical Model was developed as a complement to
the VECM model. The two models are distinct in intent and
formulation. The purpose of the Categorical Model is to estimate
in early February the probability of the upcoming April 1 SWC
falling into each of the three categories, dry, normal, or wet. These
probabilities can be denoted pd, pn, and pw, respectively.

The only input to the Categorical Model is the April 1 SWC
value forecast by the VECM model. As with any forecast, there
is uncertainty in the value forecast by the VECMmodel, and this
implies that in a general sense no one of the three categories—dry,
normal, or wet—can be ruled out as a possible outcome. Instead,
each category has some non-zero probability of occurring.

Figure 2 shows the forecast for year 2010, as an example. The
forecast is indicated by the red line. The red dashed lines indicate
the 95% confidence interval, assuming the errors are normally
distributed about the forecast value. There is a 5% chance (or 1
in 20 chance) that the observed April 1 SWC will be outside the
95% confidence interval. The blue line is the Gaussian probability
density function (PDF), with mean equal to the forecast value
and standard error estimated from the 1951–2016 forecasts. The
green line is the normal value (the average for 1966–2015), and
the dashed green lines indicate a 20% deviation from the normal
value. The probability of each category is determined by the area
under the Gaussian blue line, lying within the range of values of
that category.

Once the VECM model was fit for each location, the
Categorical Model estimates the probability that the April
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FIGURE 2 | Mammoth Pass April 1 SWC forecasts for year 2010 (red line). The red dashed lines indicate the 95% confidence interval, assuming the errors are

normally distributed about the forecast value. The blue line is the Gaussian probability density function (PDF), with mean equal to the forecast value and standard error

estimated from the 1951–2016 forecasts. The green line is the normal value (the average for 1966–2015), and the dashed green lines indicate the category

boundaries defined by a 20% deviation from the normal value.

1 SWC value would fall into one of a pre-specified set of
water year classes, using the categorical distribution (see for
example Murphy, 2012). If there are K categories, the categorical
distribution is parametrized by a K-vector θ = (θ1, . . . , θK) with
entries summing to 1. θk gives the probability that an observation
y falls into category k.

The Categorical model uses the VECM-forecast April 1 SWC
value, x, as a predictor for θ via the regression

θk = ak + bk · x, for k = 1, . . . ,K (4)

The entries of θ are rescaled to sum to 1 via the softmax function:

θk =

exp θk
∑

i exp θi
(5)

Parameter Fitting
Using Bayesian inference, the model parameters

(

ak, bk
)

are fit
withMarkov ChainMonte Carlo (MCMC) to draw samples from
themodel posterior distribution. All years were used in themodel
fitting. The following prior distributions were used:

{

ak ∼ N (0, 5)
bk ∼ N (0, 1)

(6)

RESULTS AND MODEL EVALUATION
BASED ON HINDCASTS

VECM Model
Model Verification
Parameter fitting was described in methods section Parameter
fitting. For model verification, 10 years (2007–2016) were
excluded from parameter fitting, to be used for model
verification. This 10-year period includes a few wet and some
very dry years, thus offering a range of different conditions
for verification. In Figures S-10, S-12, S-14, and S-16, the
cumulative time series of predictand and predictor variables
are plotted (top panel) and the p-value on the top left corner
tests the rejection of the null hypothesis that no cointegration

is present in the vector time series via the Phillips-Ouliaris-
Hansen test (Phillips and Ouliaris, 1990; Hamilton, 1994). The
p-values are low for all the stations, indicating that the presence
of cointegration cannot be rejected. Figures S-11, S-13, S-
15, and S-17 show the observed (black) and VECM-model
predicted April 1 SWC (green for the calibration period, 1951–
2006, and blue for the verification period, 2007–2016), with the
cumulative values on the top panels, and the regular values on
the bottom panels. Examination of these figures indicates that
the forecasts of the last 10 years have similar deviations from
the observations as do those of the years used in parameter
fitting.

Final Model Parameters
For the final model parameters, we repeated the parameter fitting,
this time including all available years, 1948–2016. The results for
Mammoth Pass are displayed in Figure 3. Results for all snow
stations are shown in Figures S-18 to S-25.

VECM Model Performance Evaluation Using

Hindcasts for 1951–2016
The VECM model is evaluated in this section using hindcasts
for the period from 1951 through 2016. Because each forecast
relies on data from the preceding three years (we have p = 3
in Equation (1) and the record starts in 1948, the first possible
forecast is for 1951.

Observations are plotted against forecasts in Figure 4.
Values of the coefficient of determination, R2, are reported
on each figure panel and in Table 1. Dashed lines have
been added to each panel of Figure 4 to indicate the
95% confidence interval. Confidence intervals were calculated
based on the assumption that the forecasts’ deviations from
the observations are normally distributed, and characterized
by the standard error calculated by comparing forecasted
and observed values for all years (1951–2016) (Table S-
1).

By definition of 95% confidence interval, 5% of the points (i.e.,
1 in 20 points) are expected to fall outside the interval in a large
sample of points. Here, the sample size of 66 years (1951–2016)
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FIGURE 3 | VECM model predictions for Mammoth Pass, using the final parameters. (A) Cumulative April 1 SWC anomalies; (B) Scatter plot of the data in panel A;

(C,D) As in panels (A,B) but for the anomalies (not cumulative). Time series lines in black are observed data. Green lines and points indicate VECM model forecasts

(1951–2016).

is relatively small, so we expect the number of points outside the
95% confidence interval to be in the vicinity of 3.3. The number
of points lying outside the 95% confidence interval bounds in
Figure 4 is indeed in the vicinity of 3.3: 2 points for Mammoth
Pass, 4 points for Rock Creek #2, 3 points for Sawmill, and 6
points for Cottonwood #1.

LADWP defines the normal SWC value at each site as the
average of 50 recent years. The 50-year range is updated every 5

years. At the time of writing this manuscript, the 50-year period
used by LADWP is 1966–2015, and the normal values are the
following:

Normal values :















Mammoth Pass : 42.64 in
Rock Creek #2 : 10.19 in
Sawmill : 19.33 in
Cottonwood #1 : 12.54 in
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FIGURE 4 | Observed April 1 SWC each year in 1951–2016 plotted against the model’s forecast value, for the four Owens Valley sites. Dashed gray lines indicate the

95% confidence interval. Dashed green lines indicate a 20% deviation from the normal value, separating between the categories dry, normal, and wet.

Of special importance to LADWP is an April 1 SWC forecast in
the form of three categories:

April 1

SWC Categories:







Dry : Less than 80% of the normal value

Normal : Within 20% of the normal value

Wet : More than 120% of the normal value

The observed frequency of these categories in the 66 years of
record are: For Mammoth Pass, 24 dry, 22 normal, and 20
wet years; for Rock Creek #2, 32 dry, 13 normal, and 21 wet
years; for Sawmill, 30 dry, 17 normal, and 19 wet years; and for
Cottonwood #1, 33 dry, 13 normal, and 20 wet years.

Figure 4 and Table S-2 compares the forecast and observed
value of April 1 SWC for each year, and also allows comparison
of the forecast category and the observed category (dry, average,
or wet). The number of years, from the total of 66 years, which
were forecast in the wrong category, is given in Table 1. For

Mammoth Pass, which is the most important station for LADWP,
given its much larger snowpack, 50 of the 66 years (or 76%) had
VECM model forecasts in the same category as observed. The
remaining 16 years were misclassified in an adjacent category.
For Mammoth Pass, Sawmill, and Cottonwood #1, there were no
instances where the forecast value was in the category opposite
the observed one, i.e., no dry year was forecast to be wet, and no
wet year was forecast to be dry. For Rock Creek #2, there were
two instances of opposite-category classifications. In both cases,
the forecast was in the dry category, but the observation was in
the wet category.

There is considerable agreement between observed categories
across the four stations, and though there are several instances
where a normal year at one station was dry or wet at another
station, there are no instances where one station was dry and
another wet in the same year, i.e., opposite categories were not
observed across stations. The same is true of the VECM model
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TABLE 1 | Measures of VECM model April 1 SWC forecast performance.

Mammoth pass Rock creek #2 Sawmill Cottonwood #1

R2 in Figure 4 0.751 0.729 0.783 0.696

No. of 10 wettest years misclassified 1c 1c 0 0

No. of 10 driest years misclassified 0 0 0 0

No. of opposite-category classificationsa 0 2 0 0

No. of category misclassificationsb 16 20 18 26

No. years over-predicted / No. under-predicted 34/32 36/30 35/31 35/31

Ave. deviation for over-predictions (in) 7.40 2.64 3.68 3.43

Ave. deviation for under-predictions (in) −7.38 −2.90 −3.91 −3.77

Max. deviation for over-predictions (in) 17.06 7.64 11.09 9.51

Max. deviation for under-predictions (in) −26.95 −10.63 −12.47 −11.42

aAn “opposite-category classification” is a dry year forecast to be wet, or a wet year forecast to be dry.
bA “category misclassification” is a year whose forecast value falls in a different category than observed (including adjacent and opposite categories).
cYear 1986 was forecast to be “normal” but turned out to be one of the 10 wettest years.

predictions: in no year was one station predicted to be wet while
another station was predicted to be dry. This can be seen in
Figure S-26.

Additional measures of the VECM model performance are
listed in Table 1. There is no evidence for model bias toward
either over-predicting or under-predicting. For Mammoth Pass,
the number of over-predicted years, 34, is close to the number
of under-predicted years, 32; the average deviation of forecasts to
observations is ∼ 0 (0.24 in), showing that positive and negative
deviations approximately cancel each other out; and the slope
of the regression line is ∼1.0. For the 34 over-predicted years,
the average difference between forecast and observed values is
7.40 in, while for the 32 under-predicted years it is −7.38 in.
The largest deviation is 17.06 in for the over-predicted years, and
−26.95 in for the under-predicted years.

The year with the largest under-prediction for Mammoth Pass
was 1986, where the forecast was for 45.9 in (108% of normal)
and the observation was 72.9 in (171% of normal). The year with
the largest over-prediction was 2015, where the forecast was for
17.1 in (40% of normal) and the observation was 1.4 in (3% of
normal). This was a year when snowmelt occurred earlier than
usual, depleting the snowpack before April 1.

Comparison Against Hindcasts Based on February 1

SWC Linear Regression
This section compares the VECM model performance in
forecasting April 1 SWC against the results achieved using the
historical linear regression equation relating observed April 1
SWC to February 1 SWC based on 1948–2016 observations for
each station. The February linear regressionmethodwas available
prior to this study, and represents a baseline against which the
VECMmodel forecasting skill can be compared.

Skill forecasting the April 1 SWC value
The VECM model was more successful than the February
linear regression, when comparing between Table 2 and Table 1

(and between Figures S-29 and S-27). For Mammoth Pass, the
coefficient of determination (R2) is 0.751 for the VECM model
and 0.630 for the February linear regression. The forecast errors

of the February linear regression, i.e., the differences between
the forecast value and the observation on the same year, have
higher average values and larger maximum values (positive and
negative), compared to the VECM model. See also Figures S-28
and S-30.

Skill forecasting the April 1 SWC category (dry, normal, or

wet)
The VECM model had no instances (for any station) where
one of the 10 driest years was misclassified, while the February
linear regression had one such instance for each station except
Mammoth Pass (Table 2). The VECM model had one instance
(for Mammoth Pass and Rock Creek #2) where a top 10
wettest year was misclassified (Table 1), while the February
linear regression had one such instance for Mammoth Pass and
Sawmill, two instances for Rock Creek #2 and three instances for
Cottonwood #1 (Table 2). The VECM model had no instances
of a top 10 dry year being misclassified (Table 1), while the
February linear regression had one such instance for Rock Creek
#2, Sawmill and Cottonwood #1 (Table 2).

Evaluation of the Categorical Model
Results Using Hindcasts for 1951–2016
Given the probabilistic nature of the Categorical Model, it is
expected that the observed April 1 SWC will often fall into a
category (dry, normal, or wet) other than the one to which
the model attributed the highest probability of the three. The
observed April 1 SWC is expected to most often fall into the
category assigned the highest probability, but to also often
fall into the category assigned the second-highest probability,
and occasionally to fall into the category assigned the lowest
probability.

A rigorous evaluation of the Categorical Model’s performance
would require a much larger sample than the available 66 years
(1951–2016). The available 66 years however does allow an
approximate evaluation through the qualitative examination of
Figure 5, where the probability assigned to category “wet” (pw) is
plotted against the probability assigned to “dry” (pd). Each point
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TABLE 2 | Performance measures for forecasts based on the February linear regression equations.

Mammoth pass Rock creek #2 Sawmill Cottonwood #1

R2 0.631 0.589 0.675 0.559

No. of 10 wettest years misclassified 1 2 1 3

No. of 10 driest years misclassified 0 1 1 1

No. of opposite-category classificationsa 0 1 1 2

No. of category misclassificationsb 16 23 21 26

No. years over-predicted / No. under-predicted 34/32 38/28 38/28 38/28

Ave. deviation for over-predictions (in) 8.54 3.05 4.09 3.84

Ave. deviation for under-predictions (in) −8.89 −3.87 −5.51 −5.29

Max. deviation for over-predictions (in) 24.93 9.54 11.75 12.10

Max. deviation for under-predictions (in) −32.61 −14.65 −17.29 −16.23

Compare against Table 1, for the VECM model.
aAn “opposite-category classification” is a dry year forecast to be wet, or a wet year forecast to be dry.
bA “category misclassification” is a year whose forecast value falls in a different category than observed (including adjacent and opposite-category classifications).

represents a year between 1951 and 2016. Given pw + pd + pn
=1, rearranging that equation we can write pn = 1–(pw + pd),
which gives the probability assigned to category “normal” (pn)
is a function of the probabilities plotted in Figure 5. The graph
area labeled “most likely wet” corresponds to pw being larger than
either pd or pn; “most likely dry” corresponds to pd > pw, pn; and
“most likely normal” corresponds to pn > pw, pd.

In Figure 5, the actual observed category each year is indicated
by the color of the point, keyed in the figure legend. The
distribution of colors appears consistent with the probabilities,
with most wet years having been attributed a high probability
of being wet, and most dry years having been attributed a high
probability of being dry. Because themodel provides probabilities
rather than predicted values, none of the outcomes represent
model failures.

The Categorical Model is designed specifically for assigning
probabilities to each of the three categories, not to provide a
forecast. If it were used to forecast the category directly, this
model would do somewhat less well than the VECM model,
especially because of a larger number of opposite-category
forecasts (i.e., wet years forecast to be dry, and dry years forecast
to be wet) in the period 1951–2016. Therefore, the VECMmodel
forecast April 1 SWC value should be used to forecast the
category, and the Categorical Model should be used to evaluate
the uncertainty pertaining to the category.

Example: The Probabilities Calculated for 2010
As an example, Figure 6 displays the probabilities determined by
the Categorical Model for 2010. The observed SWC values on
April 1, 2010, fell into the normal category for all four stations.
Even though in the case of Rock Creek #2 and Cottonwood #1 the
normal category did not have the highest of the three probabilities
(the wet category was assigned higher probability), it nevertheless
had considerable probability values: 25.2% for Rock Creek #2,
and 9.6% for Cottonwood #1.

FORECASTS FOR 2017 AND 2018

TheVECMmodel and the Categorical model were parameterized
using observations for 1948-2016 (section Methods). The models

were completed and delivered to LADWP in January of 2017.
Since then, the model has been used to forecast April 1 snow
water content (SWC) in 2017 and 2018. These were actual
forecasts as opposed to hindcasts. The forecast April 1 SWC
is compared against the observed value in Figure 7. The red
dots represent 2017 and the orange dots represent 2018. Gray
dots are hindcasts for 1951–2016 and were previously shown in
Figure 4.

Year 2017 had among the largest snowpack of the period
plotted, especially at the most important station, Mammoth Pass.
On February 1, the observed SWC was already almost double
the normal (i.e., average) value for that date at Mammoth Pass
and Sawmill, and more than triple the normal value at Rock
Creek #2 and Cottonwood #1. By April 1, the observed SWC
was about double the normal value for that date at Mammoth
Pass and Sawmill, and about 2.5 times the normal at Rock Creek
#2 and Cottonwood #1. The VECM model provided April 1
SWC forecasts that were mildly over-estimated for Mammoth
Pass and Sawmill, and slightly under-estimated for Rock Creek
#2 and Cottonwood #1 (Figure 7). The Categorical model
correctly identified “wet” (i.e., more than 20% above the normal
value) as the most likely category for April 1 SWC at all four
stations.

Year 2018 was a more complex year, representing a good
test case. SWC was very low on February 1 but, thanks to
late-season storms in February and March, it reached near-
normal values on April 1. The VECM model correctly forecast
these near-normal values. For example, on February 1, the
SWC at Rock Creek #2 was at 10% of the normal value for
that date; but on April 1 had reached 40% of the normal
value for that date. The VECM model correctly forecast the
substantial SWC increase that occurred in February and March,
producing approximate forecasts for the four stations (Figure 7).
The Categorical model correctly identified “dry” (i.e., more than
20% below the normal value) as the most likely category for
April 1 SWC at all four stations, with “normal” also having
reasonable probability. For example, at Mammoth Pass, the
probability of “dry” was 77.9% and the probability of “normal”
was 21.9%. The observed April 1 SWC was “dry” but near
“normal.”
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FIGURE 5 | Probability assigned to categories “dry” (x axis) and “wet” (y axis) each year in 1951–2016. The actual observed category each year is indicated in color,

according to the legend. The distribution of colors appears consistent with the probabilities.

CONCLUSIONS

The VECM model developed and tested in this study has proven
to have considerable skill forecasting Owens Valley April 1 SWC
in early February. Its performance in hindcasts (1951-2016)
was shown to surpass the skill of the pre-existing alternative,
which consisted of using a linear regression to forecast April
1 SWC based on the observed February 1 SWC. The VECM
model’s performance was clearly superior to the February linear
regression on every measure, including a higher coefficient
of determination (R2), smaller average and maximum errors
(defined as the forecast value minus observed value), fewer
misclassifications of years, defined as a year when the forecast
and observed April 1 SWC are not in the same category (dry,
normal, or wet), and fewer severe misclassifications of years (i.e.,
years forecast to be in the category opposite the observed one,
especially when those were extreme years such as among the 10
wettest or 10 driest).

As a complement to the VECMmodel, the Categorical Model
was developed to express forecast uncertainty by estimating
the probability that April 1 SWC would fall into each of the
three categories—dry, normal, and wet. While the sample size
of the hindcast (66 years: 1951-2016) is too small for rigorous
testing of the Categorical Model, the probabilities it produced for
these hindcast years appear consistent with the observations. The
VECM model forecast April 1 SWC value should be used to also
forecast the category, and the Categorical Model should be used
to evaluate the uncertainty pertaining to the category.

Since the model was completed, using 1948-2016
observations, it model has been used to forecast April 1
snow water content (SWC) in 2017 and 2018. These were
actual forecasts as opposed to hindcasts. The 2017 and 2018
forecasts were compared against the observed April 1 SWC
values, showing to have been successful and having deviated no
more from observations than most years in the hindcast period.
The Categorical model also attributed the highest probability
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FIGURE 6 | Probability of April 1 SWC falling into each of the categories – dry, normal, or wet – issued by the Categorical Model for 2010.

to the category that was observed on April 1. The 2017 was
an exceptionally wet year, and 2018 was overall a dry year but
which received late-season storms in February and March. The
successful forecast in both 2017 and 2018 adds confidence in the
VECMmodel and the Categorical model.

While the VECM model was shown to provide considerable
forecast skill for April 1 SWC, there is significant uncertainty
associated with its forecast in any individual year. This is the
case with any meteorological or hydrological forecast model.
Model uncertainty was clearly characterized in this report using
hindcasts. Future forecasts may incur smaller or larger errors
than those seen in the hindcasts or the two forecast years of
2017 and 2018. Forecast uncertainty must therefore be taken into
account by LADWP in its decision making.

WIDER SIGNIFICANCE OF THIS WORK,
AND FUTURE RESEARCH

Many water supply reservoirs in California capture snowmelt in
spring for supply later in summer. Under current operations,

some reservoir storage is set aside for future floods over the
course of the wet season—the flood control volume varying by
month—and excess runoff is released downstream (e.g., Willis
et al., 2011). The statistical tool presented in this work, relating
NPH anomaly to precipitation or snowpack indices, can be
applied to other California watersheds, where it may allow
reservoir operators additional insight, on a year-to-year basis,
on whether some of the flood storage could be utilized for
water supply storage. This additional insight could be of great
value in coming decades, where operators must make the most
from a potentially more variable precipitation season, as well as
declining snowpack due to higher temperatures and a partial

shift from snowfall to rainfall, and greater peaks in runoff in

wet years (Fissekis, 2008; Brekke et al., 2009; Hanak and Lund,
2012).

The forecasting tool presented in this paper allows issuing

forecasts in early February for the remainder of the wet season,

i.e., through April 1. The tool is based on the sea-level pressure

anomaly at the climatological location of the NPH measured in
mid-January.
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FIGURE 7 | Forecast for years 2017 (red) and 2018 (orange) plotted against the respective observations, for the four Owens Valley sites. The gray points represent

1951–2016 hindcasts, previously shown in Figure 4.

The forecast lead time may potentially be increased if the
mid-January NPH sea level pressure anomaly can be accurately
forecasted, whether by statistical or dynamical models. The
NPH exhibits a closer relationship with precipitation throughout
California compared to the ENSO indices (see Costa-Cabral et al.,
2016). This may be because, in addition to tropical forcing, the
NPH also receives influence from internal midlatitude variability.
However, the question remains whether this internal midlatitude
variability may or may not be forecastable.

This work demonstrates that advancements in forecasts of

NPH are expected to have significant benefits for water resources,

agriculture, energy, insurance, drought preparedness, and flood

risk management in California. We hope that future research will

investigate the present ability of the different models in the North

American Multi-Model Ensemble (NMME; Kirtman et al., 2014)
suite [which includes NOAA’s National Weather Service Climate

Forecast System, version 2 (CFSv2; Saha et al., 2014)] to anticipate
the NPH anomaly in mid-January at different lead times.

This work may also contain important hints for future
research by climate scientists. The cointegrated relationship
identified means that the principal relationship between these
2 variables (NPH anomalies and California precipitation) is
between their integrals. This suggests that the climate processes
involved have characteristics analogous to reservoirs, which are
integrals of stochastic inputs and outputs. This line of thinking,
if further explored, might bear fruit in understanding the low-
frequency variability in climate, such as decadal variability.
Precipitation depends on ocean surface temperatures (SST)
at different locations. Temperature measures heat content, a
reservoir type variable which may be at the origin of cointegrated
relationships between climatic variables.
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Previous studies based on observations and models are uncertain about the biophysical

impact of af- and deforestation in the northern hemisphere mid-latitude summers, and

show either a cooling or warming. The spatial distribution, magnitude and direction

are still uncertain. In this study, the effect of three different albedo parameterizations

in the regional climate model COSMO-CLM (v5.09) is examined performing idealized

experiments at 0.44◦ horizontal resolution across the EURO-CORDEX domain during

1986–2015. De- and af-forestation simulations are compared to a simulation with

no land cover change. Emphasis is put on the impact of changes in radiation and

turbulent fluxes. A clear latitudinal pattern is found, which results partly due to the

strong land cover conversion from forest- to grassland in the high latitudes and open

land to forest conversion in mid-latitudes. Afforestation warms the climate in winter,

and strongest in mid-latitudes. Results are indifferent in summer owing to opposing

albedo and evapotranspiration effects of comparable size but different sign. Thus, the

net effect is small for summer. Depending on the albedo parameterization in the model,

the temperature effect can turn from cooling to warming in mid-latitude summers. The

summer warming due to deforestation to grassland is up to 3◦C higher than due to

afforestation. The cooling by grass or warming by forest is in magnitude comparable and

small in winter. The strength of the described near-surface temperature changes depends

on the magnitude of the individual biophysical changes in the specific background

climate conditions of the region. Thus, the albedo parameterization need to account

for different vegetation types. Furthermore, we found that, depending on the region, the

land cover change effect is more important than the model uncertainty due to albedo

parameterization. This is important information for model development.

Keywords: land cover change, biophysical effect, albedo parameterization, evapotranspiration, regional climate

model, climate, de-/afforestation, surface energy balance
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INTRODUCTION

Future strategies for climate change mitigation envision
extensive afforestation to stabilize temperature rise due to their
role in the global carbon cycle (Popp et al., 2017). A change
in forest cover has widespread consequences to the society,
economy, and ecology influencing climate and air quality. Forest
cover changes exert strong influences on the energy and water
balance by modifying the solar and long wave radiation, and
atmospheric turbulence. This results in alterations in the fluxes
of momentum, heat, water vapor, and CO2 as well as other trace
gases, and both anorganic and biogenic aerosols including dust
between vegetation, soils, and the atmosphere (Pielke et al.,
2011).

In terms of biogeophysical modulations of forest cover
change, a major change occurs to the net radiation due to
albedo alterations. Depending on the physiological control of the
vegetation connected with the environmental conditions in the
atmosphere and soil, this net radiation is partitioned between
the turbulent fluxes (sensible and latent heat). The amount of
energy transferred to the atmosphere depends on the changes in
the aerodynamic roughness of the land surface, and ultimately
influences the atmospheric boundary layer and climate. Forests
have a lower surface albedo, and higher evapotranspiration
compared to open lands (Lee et al., 2011; Swann et al., 2012).
The outcome of the competition between albedo warming and
evapotranspiration cooling, and the specific background climate
exerts the climate of the region (Duveiller et al., 2018). The
strength of both effects, thus the direction of change, depend on
the type of change, and on the interactions with soil conditions
(Pielke et al., 2011). As a result, landscape changes due to forests
affect the regional/local near-surface air temperature patterns
(Tölle et al., 2014), and can be different for mean vs. extreme
quantities (Alkama and Cescatti, 2016).

The consequences due to land use changes between latitudes
and regions are discussed controversial in the literature based
on modeling and observational studies. There are still major
uncertainties regarding climate responses in climate models
to past land cover changes (Pitman et al., 2009). Not only
the magnitude, but also the sign of the land conversion on

temperature varies between models on regional and global scales.
The impact due to forest cover changes may vary regionally
and with latitude based on observation and modeling studies
(Davin and de Noble-Ducoudré, 2010; Lee et al., 2011; Li et al.,
2015). Increases in near-surface temperature were found due
to large-scale deforestation in the tropics (Snyder et al., 2004),
whereas a decrease in temperature in the mid- and high-latitudes
was found (Li et al., 2016a). The warming in the tropics is
explained by reduced evapotranspiration (Tölle et al., 2017).
The albedo is increased in temperate and boreal regions leading
to reduced shortwave radiation absorption in the cleared land,
which explains the cooling there in summer (Cherubini et al.,
2018). In addition, the reduction in the snow-masking effect
enhance the cooling in the regions, where snow occurs in winter
(Bonan et al., 1992). Others based on observational studies
considered the impact of afforestation in the northern temperate

regions as a weak cooling (Li et al., 2016b). In seasonal terms,
Li et al. (2015) found that temperate forests exert a moderate
cooling in summer season, in which vegetation is most active in
terms of evapotranspiration, and moderate warming in winter.
Tang et al. (2018) showed contradictory results based on remote
sensing that afforestation warms northeastern Europe north of
45◦N and leads to a cooling in other European regions. Thus,
there are major uncertainties in mid-latitudes in the spatial
distribution, magnitude and direction of climate response due to
land cover changes (Alkama and Cescatti, 2016; Perugini et al.,
2017).

A robust quantification of biogeophysical impact of land
cover change on local and regional scale is hampered by the
uncertainty of the different regional climate model responses
of such changes. For this, a coordinated effort is formed
by the EURO-CORDEX initiative LUCAS (“Land Use and
Climate Across Scales”) to benchmark the biogeophysical role
of land use changes by various regional climate model and
land surface model combinations using standard configurations.
The effect of land cover change will be examined in detail
with the LUCAS initiative over Europe. Extreme land use
change scenarios help to estimate the maximal impact and
elucidate processes. The work described here is part of
LUCAS.

There is consensus in the scientific community about the
impact of land cover change on climate in winter by the snow-
masking effect in high latitudes (Bonan et al., 1992). Albeit
debated is the spatial distribution, the magnitude and direction
of this biogeophysical effect in summer. High uncertainties occur
in mid and southern Europe, where the forest proportion is
relatively small. Here, afforestation could have a potential high
impact. The climatic extent of afforestation in these areas depends
on the ratio between the increased net shortwave radiation
and the increased aerodynamic roughness/evapotranspiration
of forest. This proportion, however, strongly depends on the
used regional climate model (RCM) and its model uncertainties.
The question, whether these model uncertainties are higher
than the potential impact of land cover change, has not yet
been investigated. Therefore, we compare the regional climate
response due to different albedo parameterizations in the state-
of-the-art regional climate model COSMO-CLM (v5.09) with
the impact of extreme land use change scenarios. The standard
operational albedo configuration is considered in this study,
and two modified versions of it. We quantify and compare
the relative strength of seasonal and latitudinal biophysical
effects from a surface energy balance perspective on the
temperature response. Therefore, extreme (drastic) land use
transitions are performed across the Euro-CORDEX domain
at 0.44◦ horizontal resolution by converting the land cover
to grass- or forestland. The land cover change experiments
are compared to the control run with no land cover change.
Simulations are carried out during 1986-2015, and the model
is forced by ERA-Interim reanalysis data. Results are presented
for the summer and the winter season over Europe in section
3, and the manuscript ends with a discussion and conclusion
section.
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MATERIALS AND METHODS

Model Description
The climate version COSMO-CLM of the state-of-the-art
weather prediction model COSMO in its version 5.09 is used
in this study (Rockel et al., 2008). It is a non-hydrostatic
limited-area atmospheric model designed for applications for
the meso-β to the meso-γ scale (Steppeler et al., 2003). The
model describes compressible flow in a moist atmosphere,
thereby relying on the primitive thermo-dynamical equations.
These equations are solved numerically on a three-dimensional
Arakawa-C grid (Arakawa and Lamb, 1977) based on rotated
geographical coordinates and a generalized, terrain following
height coordinate (Doms and Baldauf, 2015). The model applies
a Runge-Kutta time-stepping scheme (Wicker and Skamarock,
2002). The parameterization of precipitation is based on a four-
category microphysics scheme that includes cloud, rainwater,
snow, and ice (Doms et al., 2011). The physical parameterizations
include a radiative transfer scheme (Ritter and Geleyn, 1992), and
a turbulent kinetic energy-based surface transfer and planetary
boundary layer parameterization.

The lower boundary of COSMO-CLM is the soil-vegetation-
atmosphere model TERRA-ML (Schrodin and Heise, 2002). It
controls the surface energy and water balances at the land surface
and in the ground based on first principles of conserving mass
and energy. With that, it provides the surface temperature and
humidity as lower boundary conditions for computing the energy
and water fluxes between surface and atmosphere (Doms et al.,
2011). Evapotranspiration includes bare soil evaporation, plant
transpiration, evaporation from the interception storage, and
the sublimation of snow. Stomatal conductance is Biosphere-
Atmosphere Transfer Scheme (BATS)-based after Dickinson
(1984). Radiation fluxes are based on grid scale albedo and
temperature. COSMO-CLM requires the leaf area index as
input and the vegetation albedo to compute the fraction of
photosynthetically active radiation absorbed by vegetation to
obtain transpiration. The soil temperature is calculated by the
heat conduction equation. The soil hydrology is described by
the Richards’ equation, which is solved for the multi-layer soil
column. It accounts for surface runoff and subsurface runoff
when the layer is at field capacity. Ten unevenly spaced vertical
soil layers with a total depth of 11.50m are used. The lowest
layer temperature acts as lower boundary condition of the
heat conduction equation and is set to a climatological annual
mean value. Five snow layers are used for snow calculations.
TERRA-ML accounts for partial coverage of snow. Every surface
grid is assigned to one single land cover type. Surface input
data required for each grid cell include soil type and land
cover type. Each vegetation type is assigned a set of time-
invariant parameters: optical properties (albedo), morphological
properties (roughness, leaf area index, plant coverage, root
depth). The leaf area index and root depth follow a seasonal cycle.

Experiment Design
The regional climate model COSMO-CLM runs across the
EURO-CORDEX domain at a resolution of 0.44◦ × 0.44◦ with
40 atmospheric levels for the period 1986 to 2015 with a spin-up

starting at 1979 to achieve balanced soil temperatures and water
contents. Hereby, the ERA-Interim reanalysis from the European
Centre forMediumRangeWeather Forecasts serves as initial and
lateral boundary conditions and as the lower boundary over sea
(Dee et al., 2011). The configuration is adapted from the EURO-
CORDEX initiative (Kotlarski et al., 2014), where the model
was evaluated. The time step is set to 300 s, and the convection
scheme of Tiedtke is applied (Tiedtke, 1989). For all experiments
the same lateral boundary conditions are used. The experiments
impose an idealized change to the distribution of trees and grasses
across the EURO-CORDEX domain, which are compared to the
control run with no land cover change. The control run is called
EVALUATION in subsequent analysis.

In the FOREST experiments, all areas in the map of present
day vegetation between 30◦N and 72◦N are converted to
forestland (i.e., broad-leaf deciduous or needle-leaf evergreen
trees), where trees can grow (Figure 1B). The land transition
experiments extract information from the MODIS present-
day land cover map at 0.5◦ geographical resolution (Lawrence
and Chase, 2007). This map provides a global distribution of
percentages of 17 Plant Functional Types (PFTs). The MODIS
map is modified to account for maximum forest cover in the
following way. The forest PFTs are rescaled such that they
occupy the non-bare soil area (i.e., crop, shrub, or grass) in all
grid cells excluding glaciers. Hereby, the different forest type
proportions and the fraction of bare soil (including desert areas)
are conserved. A zonal average forest composition is chosen if
no trees are initially present in a given grid cell. The total area
consists of all forest classes together with bare soil and sum up
to 100% in all grid cells. The same procedure is applied for the
land conversion to grassland. Here, all forested areas from the
FOREST map are converted to grassland. The GRASS simulation
represents the theoretical maximum grass coverage if grass is
allowed to grow all over the land area.

COSMO-CLM distinguishes between less plant categories
than provided by the MODIS land cover map. Therefore, similar
plant types are further combined into a single category to
match the vegetation classification scheme of COSMO-CLM. For
example, needle-leaf evergreen tree (temperate or boreal) are
combined into a single needle-leaf evergreen tree category. The
plant parameters of the new land cover type are derived from the
global land cover database GLC2000 (Bartholomé and Belward,
2005). The plant parameters are kept constant throughout the
simulation period to maximize model response (Tölle et al.,
2014). Urban land units and lakes are not accounted for in the
simulations.

Three forestland simulations are conducted, which allow three
different types of shortwave albedo parameterizations. Therefore,
the simulations are named FOREST1, FOREST2, and FOREST3,
respectively. FOREST1 considers the standard operational albedo
parameterization, where the albedo α depends on the soil type
and soil moisture, and is further modified by plant and snow
fraction:

α = fs αs + (1 - fs) (fv αv + (1 - fv) αso(st, sm)), (1)
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FIGURE 1 | Forest coverage over the EURO-CORDEX domain for the EVALUATION (A) and FOREST (B) simulations. Evergreen (dark green) and deciduous (light

green) forest is shown for coverage greater than 50% in a grid cell.

where αs, αv, αso are snow, vegetation and soil albedos. A constant
background albedo value of 0.15 is applied for αv with no
distinction between different vegetation types. st is the soil type
and sm is the soil moisture. fs and fv are the area fraction of snow
and vegetation cover. FOREST2 assumes an albedo depending on
soil type and moisture, and modified by snow coverage. Further,
the albedo is modified by individual vegetation albedo values
used for grass, evergreen, and deciduous forest. These categories
depend further on the evergreen and deciduous forest fraction.
Here, the following is assumed for αv:

αv = fve αve + fvd αvd + (1 - fve - fvd) αvg , (2)

where fve and fvd are area fractions of evergreen and deciduous
forest cover respectively. αve = 0.1 is the albedo for evergreen
forest, αvd = 0.15 is the albedo for deciduous forest, and αvg

= 0.2 is the albedo for grass. The difference of FOREST3 to
FOREST2 is that the soil albedo αso for FOREST3 does not
depend on soil moisture sm. Here, the soil albedo varies between
0.2 and 0.3 depending on soil type. The standard operational
albedo parameterization, see equation (1), is assumed for the
EVALUATION and GRASS simulations.

The forest cover maps over the EURO-CORDEX domain
along with the political boundaries are displayed in Figures 1A,B

as used for the EVALUATION and FOREST simulations. If the
coverage of either evergreen or deciduous forest is greater than
50% in a grid cell, the grid cell is marked as dark green or
light green respectively. The grassland simulation considers grass
in all the green grid points of Figure 1B. Obviously different
from the EVALUATION simulation is the fraction of broad-
leaf deciduous forest in the FOREST simulations, which covers
now main open land areas over France, United Kingdom,

Germany, Turkey, Hungary, Romania, Bulgaria, Ukraine, parts of
western Russia, see Figures 1A,B. Spain, Poland, and Belarus are
mainly converted to needle-leaf evergreen forest. Less conversion
to forest is seen for the Scandinavian countries compared to
the EVALUATION simulation since these countries are already
forested. According to Figure 1A main vegetation transitions
for GRASS occur over forested regions such as Scandinavia
and northern Russia as well as parts of the western European
countries.

The relative strength of seasonal and latitudinal biophysical
effects is compared and quantified from a surface energy
balance perspective on the temperature response. Therefore,
anomalies of each energy balance component are calculated as the
difference in climate variable between an experiment (FOREST1,
FOREST2, FOREST3, GRASS) and control simulation without
land cover change (EVALUATION), which is experiment minus
control (1 = experiment – control). The af- and deforestation
experiments are extreme cases. Therefore, they do not represent
a predicted or realistic scenario. It is intended to investigate
how much of climate change is possible due to changes in
European vegetation cover given the current configuration of
continents. The experimental design with its sensitivity study
on albedo gives an opportunity to identify the mechanisms
controlling the interaction between climate and vegetation
in Europe.

We suggest that the different biophysical forcing of conversion
to forest- or grassland may depend on the climate zone.
Therefore, we separately perform analysis for three climate
zones: the boreal (58◦-72◦N) called NORTH, the temperate (43◦-
58◦N) called MIDDLE, and Mediterranean (dry summer, 30◦-
43◦N) region called SOUTH hereafter. Here, the fractional area
with land cover change differs among the northern (1430 grid
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points), middle (2178 grid points), and southern (987 grid points)
regions.

RESULTS

Changes in Near-Surface Temperature
Contrasting effects occur between land conversion, latitudes,
longitudes, and seasons (winter warming/cooling and summer
indifferent/warming for changes to FOREST/GRASS), see
Figures 2A–D. The largest climate impact of land conversion is
depicted for GRASS during summer (Figure 2D, JJA), at a time of
maximum incoming radiation. An overall mean increase in near-
surface air temperature is about 1.6◦C with largest changes up
to 4◦C over Hungary and Ukraine. Conversely, GRASS shows a
cooling by−0.5◦C in winter over regions, which experience snow
coverage. Up to−1.5◦C cooling over northern Russia is depicted.
Contradictory, the western European countries turn warmer by
+0.5◦C in winter.

The largest change toward warmer air temperatures up to
+2.5◦C occurs in winter for all of the FOREST simulations
mainly over the eastern states, west Russia, and Turkey, see
Figures 2A–C, DJF). For Portugal and Spain, half a degree
Celsius cooling is depicted. FOREST3 displays the strongest
warming in winter, followed by FOREST2 and then FOREST1.
The FOREST simulations yield similar patterns of change among
each other in winter.

Most parts of the inner continental area of the mid-latitudes
display minor cooling by half a degree Celsius for FOREST1 in
summer. FOREST2 and FOREST3 display half degree warming
over the same areas, while FOREST2 also shows +1◦C warming
in some coastal areas (Greece, western Turkey) and in the
northern part (eastern Finland and northern Russia).

Seasonal Cycle of Albedo
The seasonality of the albedo is mainly driven by the seasonal
snow coverage, and to a minor extent by the seasonal vegetation
coverage, as the albedo values stay constant throughout the

FIGURE 2 | Spatial distribution of mean seasonal near-surface air temperature changes over the EURO-CORDEX domain for the conversion to forest with three

different albedo parameterizations [FOREST1 (A), FOREST2 (B), FOREST3 (C)], and to grassland [GRASS (D)] for winter (DJF, left) and summer (JJA, right) for

1986–2015. The difference between experiments and the EVALUATION simulation with no land cover change is displayed.
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FIGURE 3 | Domain averaged long-term mean seasonal cycle of the albedo of FOREST1 (red), FOREST2 (rose), FOREST3 (dark red), GRASS (dark green), and

EVALUATION (black) over all land points only for 1986–2015. Albedo values are displayed for the whole of the domain TOTAL (A), and with latitudinal separation in

NORTH (B) for high-latitudes (note the different y-axis scale), MIDDLE (C) for mid-latitudes, SOUTH (D) for the Mediterranean (note the different y-axis scale).

time [see Equations (1) and (2) and Figure 3A]. The albedo
difference between all of the simulations is evident in all
seasons (Figures 3B–D). Although major differences appear in
winter (albedo increase for GRASS and decrease for FOREST
compared to EVALUATION). The seasonal cycle of the albedo
depends further on the latitudinal area (Figures 3B–D). Largest
differences occur between the GRASS and the FOREST runs
for the northern und mid-latitudes in winter, where the snow
masking effect of trees is strongest. In summer, GRASS reflects
the most of the incoming radiation followed by EVALUATION
and FOREST1, FOREST3, and then FOREST2 (Figure 3A).
The soil moisture is not considered in the albedo calculation of
FOREST3. This leads to an overestimation of the albedo for moist
soil. The albedo parameterization of FOREST1 is the operational
one as used for the EVALUATION simulation, and does not
depend on different vegetation types. Therefore, the simulated
albedo of FOREST1 is similar to that of the EVALUATION
simulation in mid-latitudes in summer (Figure 3C). This
means that the observed changes in temperature realtive to the
EVALUATION run are mainly the result of changes in surface
roughness and turbulent flux partitioning. A lower albedo of 1
to 2 percent is depicted for FOREST3 and FOREST2 compared
to EVALUATION in mid-Europe in summer (Figure 3C).
The associated increase in available energy at the surface for
FOREST3 and FOREST2 might contribute to the summer
warming seen in Figures 4B–C for mid-latitudes. Further,
the albedo differences are higher between the diverse albedo

parameterizations than between the different land covers
in southern Europe in summer (see FOREST vs. GRASS
in Figure 3D). The albedo parameterization is here a high
uncertainty factor to estimate the impact of land use/cover
change.

To summarize, main albedo differences occur due to different
vegetation types, and minor albedo differences occur due to
the specified parameterization in the model. An exception is
southern Europe, where the albedo parameterization is a high
uncertainty factor.

Latitudinal and Seasonal Variations in

Near-Surface Temperature
We recognize that there is also a west to east gradient, but do
not account for this gradient in subsequent analysis, where the
latitudinal dependence is discovered. Even though the effect of
forests is expected to have high spatial variability within the same
climate zone, we still see an overall cooling effect in the mid-
latitudes for FOREST1 in summer (Figure 4A, JJA). This cooling
effect turns into a warming for FOREST2 (Figure 4B, JJA), and is
indifferent for FOREST3 (Figure 4C, JJA). The greatest warming
of all regions occurs for FOREST2 in summer, and especially
in high latitudes (+0.3◦C). All of the FOREST runs display a
warming in winter with greatest warming inmid-Europe (+0.7 to
+1.0◦C, Figures 4A–C, DJF). A minor winter cooling is depicted
for FOREST3 in the Mediterranean area.
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FIGURE 4 | Changes in mean near-surface air temperature compared to the EVALUATION simulation with no land cover change over the EURO-CORDEX domain of

three afforestation experiments using a different albedo parameterizations [FOREST1 (A), FOREST2 (B), FOREST3 (C)] and deforestation experiment [GRASS (D)] for

the whole of the domain (TOTAL), and with latitudinal separation in NORTH (58◦-72◦N) for high-latitudes, MIDDLE (43◦-58◦N) for mid-latitudes, SOUTH (30◦-43◦N)

for the Mediterranean for winter (DJF) and summer (JJA) for 1986–2015. The errorbars represent ± two times the standard error around the mean. Plotted are

differences over all land-points only. Note the different y-axis of GRASS in summer.

Grassland has the opposite effect in winter. Here, a cooling
(−0.2 to −0.5◦C) especially in the high-latitudes is seen
(Figure 4D, DJF). No creditable difference is depicted for the
Mediterranean. Major warming occurs in summer (up to 3◦C in
mid–Europe, JJA). The warming is much stronger than that of
afforestation.

Seasonal Cycle of Diurnal Temperature

Range
Change in the diurnal temperature range is greater for FOREST
than for GRASS (Figures A6a–d) owing to the increased
roughness length. During summer months, the diurnal cycle
is increased for GRASS in the northern region (Figure A6b).
Although changes in maximum and minimum temperatures
are different among the three climatic zones and seasons
(Figures 5A–D). In southern Europe, maximum temperature
changes of GRASS is almost the same to that of FOREST.
However, the decrease in minimum temperature of GRASS
compared to EVALUATION is about 1◦C less than that of
FOREST in summer (Figure 5D). Changes in maximum and

minimum temperatures are higher/lower in summer and to
a lesser extent lower/higher in winter for GRASS compared
to FOREST in mid-Europe, which explains the reduced
diurnal cycle for GRASS here (Figure 5C). The maximum
and minimum temperatures are slightly higher for FOREST2
followed by FOREST3 than for FOREST1 for the same region. A
steeper seasonal gradient is found for GRASS in northern Europe.
Here, the diurnal temperature range is greater for GRASS than
for FOREST by half a degree Celsius in summer and to a minor
extent in winter, too (see Figure A6b).

Changes in Turbulent Fluxes
Relative to the EVALUATION run, tree cover increases both
latent and sensible heat fluxes, see Figures 6, 7. Latent heat
fluxes increase at up to +15 W/m2 over the eastern countries in
winter for the forestland simulations owing to the fact of major
afforestation in these areas. All other parts display changes of+10
W/m2. In summer, a mixture of increases over the continental
areas and decreases over the maritime region is seen. Similarly,
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FIGURE 5 | Domain averaged long-term mean seasonal cycle difference of maximum and minimum near-surface temperature of FOREST1 (red), FOREST2 (rose),

FOREST3 (dark red), GRASS (dark green) relative to EVALUATION over all land points only for 1986–2015. Values are displayed for the whole of the domain TOTAL

(A), and with latitudinal separation in NORTH (B) for high-latitudes, MIDDLE (C) for mid-latitudes, SOUTH (D) for the Mediterranean.

sensible heat fluxes are increased over all forestland simulations
by+5 to+15 W/m2.

The land cover change to forest is associated with biophysical
vegetation characteristic changes via increases in the leaf area
index, plant coverage, and roughness length. The actual flux
change depends on the roughness length, which redistributes
the energy through convection and evapotranspiration. Owing
to their high aerodynamic roughness, forests dissipate sensible
heat as efficiently to the atmospheric boundary layer as latent
heat, see Figures 6, 7. Due to the higher leaf area index and plant
coverage, latent heat is increased and removed from the surface
via turbulence, which is released above the atmospheric boundary
layer by cloud condensation (see increase in total cloud coverage
in Figure A5a compared to Figures A5b and A5c).

Major changes in the fluxes are seen for latent and sensible
heat for GRASS in summer (Figures 6D, 7D), where almost
all over the domain a sharp decrease/increase of latent/sensible
heat (up to −40/+20 W/m2) is observed. Decreases of latent
heat occur over the Mediterranean area in summer. In this
case, reductions of surface roughness and leaf area index/plant

coverage reduce the evapotranspirative potential (see reduced
seasonal cycle of latent heat flux in Figure A7d). For GRASS,
the partitioning between sensible and latent heat flux is different
than for forestland (see Figures A1, A7, A8 in the Appendix).

Whereas FOREST have comparable latent and sensible heat
fluxes, GRASS shows higher sensible than latent heat fluxes
during the growing period (Figures A7, A8). This difference
in flux portioning is especially apparent in the Mediterranean
region (Figures A7d, A8d) due to the limitation of soil moisture
availability.

To summarize, latent heat fluxes are increased for FOREST
compared to GRASS, but sensible heat fluxes are additionally
increased. Major changes occur over areas with strong
land conversion. Major changes of the different albedo
parameterizations occur during the summer time with
strongest changes seen in FOREST2. Characteristic changes
(decrease/increase of latent/sensible heat fluxes in summer and
of less magnitude in winter) is seen for GRASS.

Changes in Radiation Fluxes
In the FOREST1 run, the net shortwave radiation is decreased
by ∼4W/m2 (Figures 8A–C), and the net longwave radiation
is increased by ∼8W/m2 (Figures 9A–C) in areas showing
summer cooling (see Ukraine, Poland, Belarus, and western
Russia in Figure 2A). Whereas for FOREST2, in Scandinavia
and eastern countries the net shortwave radiation is increased
and net longwave radiation is slightly decreased contributing
to the summer warming in this area. This is for a lesser
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FIGURE 6 | Spatial distribution of mean latent heat flux changes over the EURO-CORDEX domain for the conversion to forest with three different albedo

parameterizations [FOREST1 (A), FOREST2 (B), FOREST3 (C)], and to grassland [GRASS (D)] for winter (DJF, left) and summer (JJA, right) for 1986–2015. The

difference between experiments and the EVALUATION simulation with no land cover change is displayed over land points only.

extent visible for FOREST3. The major warming in winter
in the afforested areas results due to a sharp increase in net
shortwave radiation in that area for all of the FOREST runs
(Figures 8A–C).

Strongest radiation changes occur in the GRASS simulation,
where the net shortwave radiation is decreased by 30 W/m2

over the alpine area and northern high latitudes in winter
(Figure 8D) obviously leading to the cooling seen in this
region (Figure 2D). The replacement of forests with grass
in northern latitudes increases surface albedo and reduces
absorbed radiation (see Figures A2, A3 in the Appendix). Since
the snow-masking effect is less than for FOREST, the winter
snow coverage is more effective in reflecting radiation over
grassland resulting in a cooling effect. Major summer warming
occurs for the conversion to grassland, because of major net
shortwave increases and net longwave decreases. Although
the albedo is higher for GRASS than for the EVALUATION
simulation in summer, the increase in shortwave radiation

can be explained by the decrease in total cloud coverage
(see Figure A5b).

Changes in Ground Heat Fluxes
The relationship between net radiation and turbulent fluxes
between the experiments and the EVALUATION simulation is
displayed in Figure 10 as differences of the ground heat flux.
Here, the ground heat flux is the residuum of the radiation
balance and the turbulent fluxes. If the residual differences
between FOREST/GRASS and EVALUATION are positive, more
radiative energy is absorbed than transferred to turbulent energy
in the experiments relative to EVALUATION and vice versa.
Changes in winter temperature for FOREST result due to changes
in radiation processes, which are higher by 6 to 8W/ m2 than the
turbulent flux changes (Figures 10A–C). Although turbulent flux
changes dominate summer temperature differences. These results
can be explained by the magnitude of the land conversion. The
area, where the land conversion is the greatest (change of open
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FIGURE 7 | Spatial distribution of mean sensible heat flux changes over the EURO-CORDEX domain for the conversion to forest with three different albedo

parameterizations [FOREST1 (A), FOREST2 (B), FOREST3 (C)], and to grassland [GRASS (D)] for winter (DJF, left) and summer (JJA, right) for 1986–2015. The

difference between experiments and the EVALUATION simulation with no land cover change is displayed over land points only.

land to forest in eastern countries), the difference in radiation
dominates (see positive values of the change in the energy balance
in Figures 10A–C) in winter resulting into a warming since
forests have a lower albedo and consequent enhanced absorption
of solar radiation. The turbulent flux changes dominate in
summer. If soil moisture is present in suitable amounts, trees
have a larger latent heat flux. They also dissipate sensible heat
as efficiently to the atmospheric boundary layer as latent heat.
The turbulent flux effect is here stronger for forestland than
for grassland, especially in the higher latitudinal region. We
acknowledge that the difference of the energy balance between
forestland and grassland is positive in winter, meaning a stronger
radiation effect of forest, and negative in summer (see Figure A4
in the Appendix).

In the case of GRASS, turbulent flux differences are higher
in winter and vice versa in summer (Figure 10D). Here, similar
argumentation as before can be applied. That the turbulent
flux differences are higher than the changes in radiation in
winter applies mainly to the northern areas of Scandinavia and

northern Russia, the area with former forest and thus greatest
land conversion and associated changes in the biophysical
characteristics. In summer, the transformation to grassland leads
to an increase in net shortwave radiation, a decrease in net
longwave radiation, a major decrease in latent heat flux and an
increase in sensible heat flux.

DISCUSSION

The previous land cover must be considered in order to interpret
the results. The former land cover determines the strength of the
conversion to either forest or grass and with that the strength of
the biophysical characteristic changes. This is also a function of
the vegetation albedo, roughness length, and evapotranspiration
potential, if different vegetation types are considered. The latitude
is another determinant, which influences the climate change
due to land conversion, because of the background climate and
snow-masking effect.
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FIGURE 8 | Spatial distribution of mean net shortwave flux changes over the EURO-CORDEX domain for the conversion to forest with three different albedo

parameterizations [FOREST1 (A), FOREST2 (B), FOREST3 (C)], and to grassland [GRASS (D)] for winter (DJF, left) and summer (JJA, right) for 1986–2015. The

difference between experiments and the EVALUATION simulation with no land cover change is displayed over land points only.

Therefore, major winter warming (up to 2.5◦C) of the
FOREST simulations occurs over areas, which are extensively
afforested compared to the EVALUATION simulation, which
is true for the eastern countries, west Russia, and Turkey,
see Figures 1A,B. Here, forests have a warming effect when
the former major land cover was open land and not forest.
The conversion to forest leads to a reduction of the albedo
for all FOREST simulations in winter, which increases the
available energy at the surface. The reflectivity is further
reduced due to the snow-masking effect of forest in winter.
This results in a winter warming of the eastern countries
(Bonan et al., 1992; Bonan, 2008; Tang et al., 2018). Those
remaining European regions, which experience snow cover
in winter and where the forest fraction is increased, show
also a warming effect since the radiative warming dominates
the non-radiative cooling (Bright et al., 2017). Only in west-
Europe, a winter cooling by half a degree Celsius is depicted,
since more evapotranspiration of water occurs, and the sensible

heat is decreased. In addition, the net incoming radiation is
decreased due to more cloud coverage (see Figure A5 in the
Appendix) by higher evapotranspiration. Thus, the warmer
regions can suppress the albedo warming effect of forest (Li
et al., 2015). This effect is similar for FOREST1, FOREST2, and
FOREST3.

A conversion to grassland can be regarded as a strong land
cover change effect (deforestation) in the high latitudes. Thus,
grassland has a winter cooling effect if the former land cover
was forested like in the Scandinavian countries and northern
Russia, see Figures 1A,B, and Figure 2D, DJF (Cherubini et al.,
2018). These are regions, which experience snow coverage, and
the decreased snow-masking effect enhance the cooling there
in winter. The western European countries turn warmer in
winter. Although the difference between forest and grass also
implies the same direction (cooling by grass), see Figure A1 in
the Appendix. The regions, which experience snow coverage in
winter, get cooler by half a degree Celsius due to the increase
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FIGURE 9 | Spatial distribution of mean net longwave flux changes over the EURO-CORDEX domain for the conversion to forest with three different albedo

parameterizations [FOREST1 (A), FOREST2 (B), FOREST3 (C)], and to grassland [GRASS (D)] for winter (DJF, left) and summer (JJA, right) for 1986–2015. The

difference between experiments and the EVALUATION simulation with no land cover change is displayed over land points only.

in reflectivity associated with the snow-masking effect. Alkama
and Cescatti (2016) postulated a sharp reduction in high latitude
temperatures due to large-scale deforestation. Although similar
changes of temperatures are also seen over Scandinavia in our
study, they are only moderate in magnitude. Also a surface
cooling by deforestation of the mid and high latitudes of the
northern hemisphere was reported before by Douville and Royer
(1997). The western European areas turn warmer by half a degree
Celsius in winter since the evapotranspiration is reduced and
more sensible heat is produced.

Eastern andmid-Europe turn cooler for FOREST1 in summer.
The operational albedo parameterization is used for FOREST1,
and the summer albedo is similar to the albedo of the
EVALUATION run in mid-latitudes, see Figure 3C. Thus, the
simulated changes in temperature result from increases in surface
roughness and turbulent fluxes. The higher evapotranspiration
increases cloud coverage, strengthens the long-wave downward
radiation, and reduces the direct incoming radiation, see

Figure A10. This results in an additional cooling effect. The
cooling effect due to afforestation in mid-Europe is in line with
remote sensing and in situ observations (Alkama and Cescatti,
2016; Bright et al., 2017). Contradictory, these regions turn
warmer for FOREST2 followed by FOREST3 with a different
albedo parameterization depending on the vegetation type. A
lower albedo is depicted for FOREST2 and FOREST3 compared
to EVALUATION in mid-Europe in summer. The associated
increase in available energy at the surface for FOREST2 and
FOREST3 contributes to the summer warming in mid-latitudes.
The soil moisture is not considered in the albedo calculation of
FOREST3. This leads to an overestimation of the albedo for moist
soil conditions of FOREST3 compared to FOREST2. Further,
climatic changes depend on the strength of daytime warming
and nighttime cooling, and is reflected by the differences in
maximum and minimum temperature (Figure 5D, Cherubini
et al., 2018). Summer warming by afforestation was pointed out
by Bonan et al. (1992). The alternate albedo parameterization
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FIGURE 10 | Spatial distribution of temporal mean energy balance changes over the EURO-CORDEX domain for the conversion to forest with three different albedo

parameterizations [FOREST1 (A), FOREST2 (B), FOREST3 (C)], and to grassland [GRASS (D)] for winter (DJF, left) and summer (JJA, right) for 1986–2015. The

difference between experiments and the EVALUATION simulation with no land cover change is displayed over land points only.

with vegetation albedo depending on vegetation type leads
to a reduction of the albedo compared to FOREST1, and
with that to increased net incoming radiation. It is thus how
the albedo of the vegetation is treated in the model that
determines the response of summer climate to afforestation in
mid-latitudes.

All the forest simulations show a warming in southern Europe
in summer. Despite the higher evapotranspiration potential
due to the higher leaf area index of forest, there is less
evapotranspiration. This may be translated to less soil moisture
available for evaporation, which is also reduced (Swann et al.,
2012). Thus, the Bowen ratio is increased, and more sensible
heat is released to the atmosphere, see Figure A9. Sensible heat
and net short-wave radiation fluxes show the most variability
among the experiments. The results show that the differences in
the various vegetation albedos (as for FOREST2 and FOREST3)
are more important than the consideration of the soil moisture
and type (as for FROEST1 and FOREST2).

For deforestation, the whole of Europe turns warmer by
up to 3◦C in summer since the latent/sensible heat fluxes
are decreased/increased. The total cloud coverage decreases
due to the reduced evapotranspiration (see Figure A5b in
the Appendix), which is also seen in the reduced long-
wave downward radiation. Thereby the net incoming radiation
accelerates, see Figures A9 and A10. Most climate models show
an average regional cooling from deforestation (Perugini et al.,
2017). This is generally confirmed in our study for regions, which
experience snow coverage in winter. Although this winter cooling
is offset by a dramatic warming in summer. Thus, grassland
increases seasonal temperature variation compared to forest.
These results highlight the fact that local biophysical processes
triggered by afforestation can decrease seasonal temperature
variations, further reducing the temperature trends driven by the
increasing greenhouse gas concentrations.

Albedo differences turn out to be higher between the
FOREST simulations due to the albedo parameterizations
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than between the land cover types in southern Europe. The
high temperature discrepancies between GRASS and the three
FOREST simulations in this region thus stem primarily from
differences in evapotranspiration rather than from the albedo
effect. Therefore, the land cover change impact is higher in this
region than the model uncertainty. Thus, an accurate land cover
map with characteristic vegetation types is important to include
for such kind of studies.

CONCLUSIONS

In this study, the effect of three different albedo
parameterizations is examined for afforestation experiments at
0.44◦ horizontal resolution across the EURO-CORDEX domain
during 1986-2015. Idealized de- and af-forestation simulations
are compared to the simulation with no land cover change.
Emphasis is put on the impact of changes in radiation and
turbulent fluxes. A clear latitudinal pattern is found, which
results partly due to the strong land cover conversion from
forest- to grassland in the high latitudes and open land to forest
conversion in mid-latitudes. Afforestation warms the climate
in winter, strongest in mid-latitudes. Results are indifferent
in summer owing to opposing albedo and evapotranspiration
effects of comparable size but different sign. Thus, the net effect
is small for summer. Depending on the albedo parameterization
in the model, the temperature effect can turn from cooling to
warming in mid-latitude summers. The summer warming due
to deforestation is up to 3◦C higher than due to afforestation due
the reduced roughness and leaf area index cooling. The cooling
by grass or warming by forest is in magnitude comparable
and small in winter even though the albedo differences are
high.

The strength of the land conversion and associated vegetation
type with its biophysical characteristics is the major determinant
in changing the climate. Different albedo parameterizations in
the model either enhance or suppress the climate change due
to land cover change. Even though the difference between the
albedo parameterizations is small, they influence the model’s
outcome of summer climate due to afforestation being either a
warming or cooling in the mid-latitudes. Here, we suggest that
temperature changes are mainly influenced by the magnitude
of individual biophysical changes and the specific background

climate conditions, in which the land use change occurs.
Thus, the albedo parameterization need to account for different
vegetation types. Furthermore, the albedo parameterization is a
high uncertainty factor to estimate the impact of land use/cover
change in southern Europe. This is important information for
model development.

Altering the surface boundary conditions resulted in changes
of the total cloud cover amount in this study. Thus, land-
atmosphere interactions affect the hydrological cycle, which
indirectly feed back on the surface energy balance components.
The contribution of horizontal/vertical advections to near-
surface air temperature changes would be an important issue to
look at next with reconsideration of the cumulus scheme in the
model.

AUTHOR CONTRIBUTIONS

MT: conceptualization, methodology, software, formal analysis,
writing-original draft preparation, writing-review & editing,
supervision, project administration, funding acquisition,
visualization; MT, MB: investigation, interpretation; MT, MB,
KR, and H-JP: validation; MT, MB, and KR: data curation.

ACKNOWLEDGMENTS

Computational resources were made available by the German
Climate Computing Center (DKRZ) through support from
the Federal Ministry of Education and Research in Germany
(BMBF). The FOREST and GRASS vegetation maps were created
and provided by Edouard Davin in the context of the LUCAS
initiative. We acknowledge the funding of the German Research
Foundation (DFG) through grant nr. 401857120. Authors
acknowledge the support from BMBF through MiKlip (FKZ:
01LP1518A). We have benefited from the CLM-community
(www.clm-community.eu). We thank two reviewers for their
useful comments to the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fenvs.
2018.00123/full#supplementary-material

REFERENCES

Alkama, R., and Cescatti, A. (2016). Biophysical climate impact of recent changes

in global forest cover. Science 351, 600–604. doi: 10.1126/science.aac8083

Arakawa, A., and Lamb, V. (1977). “Computational design of the basic

dynamical processes in the UCLA general circulation model,” in

Methods in Computational Physics: General Circulation Models of the

Atmosphere, ed J Chang (New York, NY: Academic Press) 17, 173–265.

doi: 10.1016/B978-0-12-460817-7.50009-4

Bartholomé, E., and Belward, A. S. (2005). GLC: a new approach to global land

cover mapping from earth observation data. Int. J. Remote Sens. 26, 1959–1977.

doi: 10.1080/01431160412331291297

Bonan, G. B. (2008). Forests and climate change: forcings, feedbacks,

and the climate benefits of forests. Science 320, 1444–1449.

doi: 10.1126/science.1155121

Bonan, G. B., Pollard, D., and Thompson, S. L. (1992). Effects of boreal forest

vegetation on global climate. Nature 359, 716–718.

Bright, R. M., Davin, E., O’Halloran, T., Pongratz, J., Zhao, K., and Cescatti,

A. (2017). Local temperature response to land cover and management

change driven by non-radiative processes. Nat. Clim. Chang. 7, 296–302.

doi: 10.1038/nclimate3250

Cherubini, F., Huang, B., Hu, X., Tölle, M. H., and Strømman, H. A. (2018).

Quantifying the climate response to extreme land cover changes in Europe

with a regional model. Environ. Res. Lett. 13:074002. doi: 10.1088/1748-9326/

aac794

Davin, E. L., and de Noble-Ducoudré, N. (2010). Climate impact of global-scale

deforestation: radiative versus non-radiative processes. J. Clim. 23, 97–112.

doi: 10.1175/2009JCLI3102.1

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,

et al. (2011). The ERA-Interim reanalysis: configuration and performance of

Frontiers in Environmental Science | www.frontiersin.org 14 November 2018 | Volume 6 | Article 12342

https://www.clm-community.eu
https://www.frontiersin.org/articles/10.3389/fenvs.2018.00123/full#supplementary-material
https://doi.org/10.1126/science.aac8083
https://doi.org/10.1016/B978-0-12-460817-7.50009-4
https://doi.org/10.1080/01431160412331291297
https://doi.org/10.1126/science.1155121
https://doi.org/10.1038/nclimate3250
https://doi.org/10.1088/1748-9326/aac794
https://doi.org/10.1175/2009JCLI3102.1
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Tölle et al. Modeled Temperature Sensitivity to Albedo-Parameterization

the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597. doi: 10.1002/

qj.828

Dickinson, R. E. (1984). “Modeling evapotranspiration for three-dimensional

global climate models,” in Climate Processes and Climate Sensitivity, eds J. E.

Hansen and T. Takahashi (Washington, DC: American Geophysical Union),

58–72.

Doms, G., and Baldauf, M. (2015). A Description of the Non-Hydrostatic Regional

COSMO-Model, Part I: Dynamics and Numerics. Offenbach, Germany: DWD.

Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D., Raschendorfer, M.,

et al. (2011). A Description of the Non-Hydrostatic Regional COSMO-Model,

Part II: Physical Parameterization. Offenbach. Germany: DWD.

Douville, H., and Royer, J. F. (1997). Influence of the temperate and

boreal forests on the Northern Hemisphere climate in the Meteo-

France climate model. Clim. Dyn. 13, 57–74. doi: 10.1007/s0038200

50153

Duveiller, G., Hooker, J., and Cescatti, A. (2018). The mark of vegetation

change on Earth’s surface energy balance. Nat. Commun. 9:679.

doi: 10.1038/s41467-017-02810-8

Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqu,é, M., and Gobiet,

A. (2014). Regional climate modeling on European scales: a joint standard

evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 7,

1297–1333. doi: 10.5194/gmd-7-1297-2014

Lawrence, P. J., and Chase, T. N. (2007). Representing a new MODIS consistent

land surface in the Community Land Model (CLM 3.0). J. Geophys. Res.

112:G01023. doi: 10.1029/2006JG000168

Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer, G., et al.

(2011). Observed increase in local cooling effect of deforestation at higher

latitudes. Nature 479, 384–387. doi: 10.1038/nature10588

Li, Y., de Noblet-Decoudré, N., Davin, E. L., Motesharrei, S., Zeng, N., Li,

S., et al. (2016a). The role of spatial scale and background climate in the

latitudinal temperature response to deforestation. Earth Syst. Dynam. 7,

167–181. doi: 10.5194/esd-7-167-2016

Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., et al.

(2016b). Potential and actual impacts of deforestation and afforestation

on land surface temperature. J. Geophys. Res. Atmos. 121, 14372–14386.

doi: 10.1002/2016JD024969

Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., and Li, S. (2015). Local cooling

and warming effects of forests based on satellite observations. Nat. Commun.

6:6603. doi: 10.1038/ncomms7603

Perugini, L., Caporaso, L., Marconi, S., Cescatti, A., Quesada, B., de Noblet-

Ducoudré, N., et al. (2017). Biophysical effects on temperature and

precipitation due to land cover change. Environ. Res. Lett. 12:053002.

doi: 10.1088/1748-9326/aa6b3f

Pielke, Sr A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F.,

et al. (2011). R Land use/land cover changes and climate: modeling analysis and

observational evidence.WIREs Clim. Change 2, 828–850. doi: 10.1002/wcc.144

Pitman, A. J., de Noblet- Decoudré, N., Cruz, F. T., Davin, E. L., Bonan, G. B.,

Brovkin, V., et al. (2009). Uncertainties in climate response to past land cover

change: First results from the LUCID intercomparison study.Geophys. Res. Lett.

36:L14814. doi: 10.1029/2009GL039076

Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E.,

et al. (2017). Land-use futures in the shared socio-economic pathways. Glob.

Environ. Change 42, 331–345. doi: 10.1016/j.gloenvcha.2016.10.002

Ritter, B., and Geleyn, J. F. (1992). A comprehensive radiation scheme

for numerical weather prediction models with potential applications in

climate simulations. Mon. Weather Rev. 120, 303–325. doi: 10.1175/1520-

0493(1992)120<0303:ACRSFN>2.0.CO;2

Rockel, B., Will, A., and Hense, A. (2008). The regional climate model COSMO-

CLM (CCLM).Meteorolog. Z. 17, 347–348. doi: 10.1127/0941-2948/2008/0309

Schrodin, R., and Heise, E. (2002). TheMulti-Layer Version of the DWD Soil Model

TERRA-LM, COSMO Tech. Rep. 2. Offenbach: Deutscher Wetterdienst.

Snyder, P. K., Foley, J. A., Hitchman, M. H., and Delire, C. (2004). Analyzing

the effects of complete tropical forest removal on the regional climate using a

detailed three-dimensional energy budget: an application to Africa. J. Geophys.

Res. 109:D21102 doi: 10.1029/2003JD004462

Steppeler, J., Doms, G., Schättler, U., Bitzer, H. W., Gassmann, A., Damrath,

U.,et al. (2003). Meso-gamma scale forecasts using the non-hydrostatic model

LM. Meteorol. Atmos. Phys. 82, 75–96. doi: 10.1007/s00703-001-0592-9

Swann, A. L. S., Fung, I. Y., and Chiang, J. C. H. (2012). Mid-latitude afforestation

shifts general circulation and tropical precipitation. PNAS 109, 712–716.

doi: 10.1073/pnas.1116706108

Tang, B., Zhao, X., and Zhao, W. (2018). Local effects of forests on

temperatures across Europe. MDPI Remote Sens. 10:529. doi: 10.3390/rs100

40529

Tiedtke, M. (1989). A comprehensive mass flux scheme for cumulus

parameterization in large-scale models. Mon. Weather Rev. 117, 1779–1800.

doi: 10.1175/1520-0493(1989)117&lt;1779:ACMFSF&gt;2.0.CO;2

Tölle, M. H., Engler, S., and Panitz, H.-J. (2017). Impact of abrupt land cover

changes by tropical deforestation on South-East Asian climate and agriculture.

J. Clim. 30, 2587–2600. doi: 10.1175/JCLI-D-16-0131.1

Tölle, M. H., Gutjahr, O., Thiele, T., and Busch, G. (2014). Increasing

bioenergy production on arable land: does the regional and local climate

respond? Germany as a case study. J. Geophys. Res. Atmos. 119, 2711–2724.

doi: 10.1002/2013JD020877

Wicker, L. J., and Skamarock, W. C. (2002). Time-splitting methods for

elastic models using forward time schemes. Mon. Weather Rev. 130,

2088–2097. doi: 10.1175/1520-0493(2002)130&lt;2088:TSMFEM&gt;2.

0.CO;2

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Tölle, Breil, Radtke and Panitz. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Environmental Science | www.frontiersin.org 15 November 2018 | Volume 6 | Article 12343

https://doi.org/10.1002/qj.828
https://doi.org/10.1007/s003820050153
https://doi.org/10.1038/s41467-017-02810-8
https://doi.org/10.5194/gmd-7-1297-2014
https://doi.org/10.1029/2006JG000168
https://doi.org/10.1038/nature10588
https://doi.org/10.5194/esd-7-167-2016
https://doi.org/10.1002/2016JD024969
https://doi.org/10.1038/ncomms7603
https://doi.org/10.1088/1748-9326/aa6b3f
https://doi.org/10.1002/wcc.144
https://doi.org/10.1029/2009GL039076
https://doi.org/10.1016/j.gloenvcha.2016.10.002
https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2
https://doi.org/10.1127/0941-2948/2008/0309
https://doi.org/10.1029/2003JD004462
https://doi.org/10.1007/s00703-001-0592-9
https://doi.org/10.1073/pnas.1116706108
https://doi.org/10.3390/rs10040529
https://doi.org/10.1175/1520-0493(1989)117&lt;1779:ACMFSF&gt;2.0.CO;2
https://doi.org/10.1175/JCLI-D-16-0131.1
https://doi.org/10.1002/2013JD020877
https://doi.org/10.1175/1520-0493(2002)130&lt;2088:TSMFEM&gt;2.0.CO;2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


CORRECTION
published: 30 January 2019

doi: 10.3389/fenvs.2019.00012

Frontiers in Environmental Science | www.frontiersin.org 1 January 2019 | Volume 7 | Article 12

Approved by:

Frontiers in Environmental Science

Editorial Office,

Frontiers Media SA, Switzerland

*Correspondence:

Merja H. Tölle

merja.toelle@geogr.uni-giessen.de

Specialty section:

This article was submitted to

Atmospheric Science,

a section of the journal

Frontiers in Environmental Science

Received: 15 January 2019

Accepted: 17 January 2019

Published: 30 January 2019

Citation:

Tölle MH, Breil M, Radtke K and

Panitz H-J (2019) Corrigendum:

Sensitivity of European Temperature to

Albedo Parameterization in the

Regional Climate Model COSMO-CLM

Linked to Extreme Land Use Changes.

Front. Environ. Sci. 7:12.

doi: 10.3389/fenvs.2019.00012

Corrigendum: Sensitivity of European
Temperature to Albedo
Parameterization in the Regional
Climate Model COSMO-CLM Linked
to Extreme Land Use Changes

Merja H. Tölle 1*, Marcus Breil 2, Kai Radtke 3 and Hans-Jürgen Panitz 2

1Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University Giessen, Giessen,

Germany, 2 Institute of Meteorology and Climate Research–Troposphere Research, Karlsruhe Institute of Technology,

Eggenstein-Leopoldshafen, Germany, 3Chair of Environmental Meteorology, Brandenburg University of Technology,

Cottbus-Senftenberg, Senftenberg, Germany

Keywords: land cover change, biophysical effect, albedo parameterization, evapotranspiration, regional climate

model, climate, de-/afforestation, surface energy balance

A Corrigendum on

Sensitivity of European Temperature to Albedo Parameterization in the Regional Climate

Model COSMO-CLM Linked to Extreme Land Use Changes

by Tölle, M. H., Breil, M., Radtke, K., and Panitz, H.-J. (2018). Front. Environ. Sci. 6:123.
doi: 10.3389/fenvs.2018.00123

In the original article, we neglected to acknowledge Edouard Davin. A correction has therefore been
made to the Acknowledgements:

“Computational resources were made available by the German Climate Computing Center
(DKRZ) through support from the Federal Ministry of Education and Research in Germany
(BMBF). The FOREST and GRASS vegetation maps were created and provided by Edouard
Davin in the context of the LUCAS initiative. We acknowledge the funding of the German
Research Foundation (DFG) through grant nr. 401857120. Authors acknowledge the support
from BMBF through MiKlip (FKZ: 01LP1518A). We have benefited from the CLM-community
(www.clm-community.eu). We thank two reviewers for their useful comments to the manuscript.”

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or

financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Tölle, Breil, Radtke and Panitz. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with

accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

44

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2019.00012
http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2019.00012&domain=pdf&date_stamp=2019-01-30
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:merja.toelle@geogr.uni-giessen.de
https://doi.org/10.3389/fenvs.2019.00012
https://www.frontiersin.org/articles/10.3389/fenvs.2019.00012/full
http://loop.frontiersin.org/people/572886/overview
http://loop.frontiersin.org/people/583800/overview
http://loop.frontiersin.org/people/583596/overview
https://doi.org/10.3389/fenvs.2018.00123
https://doi.org/10.3389/fenvs.2018.00123
https://www.clm-community.eu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


feart-06-00216 November 24, 2018 Time: 12:24 # 1

ORIGINAL RESEARCH
published: 27 November 2018
doi: 10.3389/feart.2018.00216

Edited by:
Izuru Takayabu,

Meteorological Research Institute
(MRI), Japan

Reviewed by:
Nobuhito Mori,

Kyoto University, Japan
Tomoki Tozuka,

The University of Tokyo, Japan

*Correspondence:
Jianlong Feng

jianlongf@hotmail.com;
fjl181988@126.com

Specialty section:
This article was submitted to

Atmospheric Science,
a section of the journal

Frontiers in Earth Science

Received: 31 July 2018
Accepted: 07 November 2018
Published: 27 November 2018

Citation:
Feng J, Li H, Li D, Liu Q, Wang H

and Liu K (2018) Changes of Extreme
Sea Level in 1.5 and 2.0◦C Warmer

Climate Along the Coast of China.
Front. Earth Sci. 6:216.

doi: 10.3389/feart.2018.00216

Changes of Extreme Sea Level in 1.5
and 2.0◦C Warmer Climate Along the
Coast of China
Jianlong Feng1* , Huan Li1, Delei Li2,3, Qiulin Liu1, Hui Wang1 and Kexiu Liu1

1 National Marine Data and Information Service, Tianjin, China, 2 Key Laboratory of Ocean Circulation and Waves, Institute
of Oceanology, Chinese Academy of Sciences, Qingdao, China, 3 Function Laboratory for Ocean Dynamics and Climate,
Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Using hourly sea level data from 15 tide gauges along the Chinese coast and sea
level data of three simulations of the Coupled Model Intercomparison Project Phase
5 (CMIP5), we assessed the changes and benefits of the extreme sea level of limiting
warming to 1.5◦C instead of 2.0◦C. Observations show that the extreme sea level has
risen with high confidence during the past decades along the coast of China, while the
mean sea level change, especially the long-term change plays important roles in the
changing process of extreme sea levels. Under the 1.5 and 2.0◦C warming scenarios,
the sea level will rise with fluctuations in the future, so will the return levels of the extreme
sea levels. Compared with the 1.5◦C warming condition, the return levels under the
2.0◦C warming condition will rise significantly at all tide gauges along the Chinese coast.
The results indicate that a 0.5◦C warming will bring much difference to the extreme sea
levels along the coast of China. It is of great necessity to limit anthropogenic warming
to 1.5◦C rather than 2.0◦C, as proposed by the Paris Climate Agreement, which will
greatly reduce the potential risks of future flood disasters along the coast of China and
is beneficial for risk response management.

Keywords: extreme sea level, return sea level, sea level rise, projection, strom surge

INTRODUCTION

China has the largest coastal population in the world, with more than 40% people living in the
coastal area, where the extreme sea level disasters occur frequently and have caused serious negative
impacts. According to the China Marine Disaster Bulletin1, the extreme sea level incidents have
caused economic losses of 11.1 billion (RMB) and 49 deaths annually between 2000 and 2017.

Increases in the mean and extreme sea levels are regarded as one of the consequences of climate
change (Church et al., 2013). In recent years, many studies have been done about the changes of
extreme sea levels both regionally and globally (von Storch and Reichardt, 1997; Woodworth and
Blackman, 2004; Méndez et al., 2007; Menéndez and Woodworth, 2010; Feng et al., 2015; Marcos
and Woodworth, 2017). Substantial evidences have revealed the general increase in extreme sea
level in the past decades worldwide. Many researches indicated that the changes of the extreme
sea level, especially the long-term change, are highly correlated with the changes of mean sea
level (Zhang et al., 2000; Woodworth and Blackman, 2004; Marcos et al., 2009; Menéndez and
Woodworth, 2010; Tsimplis and Shaw, 2010). Meanwhile, statistical method and dynamical method

1http://www.soa.gov.cn/zwgk/hygb/
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are utilized to study the future changes in extreme sea level. The
extreme sea levels will increase as mean sea levels rise in the
future according to the future projection (Langenberg et al., 1999;
Busuioc et al., 2006; Woth et al., 2006; Grossmann et al., 2007).

Compared with the mean sea level (Ding et al., 2001; Yu
et al., 2003; Zuo et al., 2007; Wang et al., 2018), fewer studies
have been conducted to analyze the extreme sea levels along
the China coast in the past. Chen and Wang (1993) found that
the extreme sea level at Wusong and Huangpu Park increased
between 1915 and 1985. Feng and Tsimplis (2014) and Feng
et al. (2015) analyzed the changes of extreme sea levels using
tide gauge data and indicated that the extreme sea level increased
in the past decades, while the long-term change of extreme sea
level was mainly affected by the change of mean sea level. Ma
et al. (2016) discovered that the return levels of extreme sea level
during 1980–2012 were higher than those during 1950–1979 at
Tianjin. Due to the uneven distribution of tide gauges and data
limitation, most studies above concentrated on the Yellow Sea,
East China Sea, and the South China Sea. Besides, few work
focuses on analyzing the future changes of extreme sea levels
along the China coast.

The Paris Climate Agreement aims to hold global warming
well below 2.0◦C and to pursue efforts to limit it to 1.5◦C above
preindustrial temperature. Recently, increasing studies have been
performed to investigate the extreme climate events at the 1.5 and
2◦C warming levels and the superiority of limiting warming to
1.5◦C rather than 2.0◦C (Schleussner et al., 2016; Donnelly et al.,
2017; Karmalkar and Bradley, 2017; King and Karoly, 2017; King
et al., 2017; Lehner et al., 2017; Xu et al., 2017; Li et al., 2018).
It is necessary to quantify the extreme sea levels changes under
the 1.5 and 2.0◦C warming scenarios and evaluate the differences
between them.

In this paper, hourly sea level data from 15 tide gauges along
the China coast and sea level data from three simulations of
the Coupled Model Intercomparison Project Phase 5 (CMIP5)
were used to answer the following questions: (1) How did the
extreme sea level change during the past decades? (2) How will
the extreme sea level change in future 1.5 and 2.0◦C warming
scenarios? (3) What will the extreme sea level differences be
between 1.5 and 2.0◦C warming climate?

DATA AND METHODSOLOGY

Data
Observed and numerical sea level data are applied in this study,
including hourly sea level data from 15 tide gauges (Huludao,
Qinhuangdao, Longkou, Yantai, Rizhao, Lusi, Dajishan, Zhenhai,
Kanmen, Shansha, Xiamen, Shanwei, Zhapo, Haikou, and Beihai)
along the China coast, and three CMIP5 simulations results
downloaded from the online CMIP5 datasets (CNRM-CM5,
BCC-CSMI-1, MIROC-ESM-CHEM).

The gauge data were obtained from the marine monitoring
stations in China (Figure 1), dating from January, 1980 to
December, 2016. All these data last for more than 30 years, which
is essential to get the trends accurately (Feng et al., 2015). Careful
quality control had been done to delete the data spikes and

FIGURE 1 | Locations of 15 tide gauges along the coast of China used in this
work: HLD, Huludao; QHD, Qinhuangdao; LK, Longkou; YT, Yantai; RZ,
Rizhao; LS, Lusi; DJS, Dajishan; ZH, Zhenhai; KM, Kanmen; SS, Shansha;
XM, Xiamen; SW, Shanwei; ZP, Zhapo; HK, Haikou; and BH, Beihai.

spurious records (Wang et al., 2013). In addition, data availability
less than 60% were excluded in the analysis.

The sea-level projection in this study is based on CMIP5
numerical simulations. Three models were selected in this work
(Table 1). The sea level data reached the warming limits of 1.5
and 2.0◦C were used. Two oceanic data categories, i.e., “zostoga”
(the global average sea-level change due to thermal expansion)
and “zos” (the local steric and dynamic adjustment of sea-level
change) are used to project the regional sea level change. The data
were modified in each model through the following procedures:
(I) perform a quadratic-fit as a function of time at each grid
point of the piControl experiment; (II) remove the quadratic-
fitted control drift from the corresponding grid point of the
historical and RCPs (Representative Concentration Pathways)
experiments; (III) subtract the global mean of the “zostoga” and
“zos” field at each time step from each grid point (Slangen et al.,
2014). The projected contributions from land ice and land water
storage to local sea-level change are obtained by multiplying the

TABLE 1 | The selected CMIP5 simulations.

Resolution Period Selected period

CNRM-CM5 0.6◦ × 1.0◦ 2006–2100 2006–2060

BCC-CSMI-1 0.8◦◦ × 1.0◦ 2006–2100 2006–2050

MIROC-ESM-CHEM 0.7◦ × 1.2◦ 2006–2100 2006–2042
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global mean estimates from IPCC AR5 by the regional scaling
factors given by Slangen et al. (2014). All glaciers, ice caps and
the ice sheets on Greenland and Antarctica are comprised in the
land ice contribution. In addition, the glacier isostatic adjustment
(GIA) is also included here (Slangen et al., 2014).

Sea level data from tide gauge and satellite located in the Xisha
(111.51◦N, 16.44◦E) were used to validate the sea level data from
three models (Figure 2). Results show that although there are
some differences between the observations and the model results
at the interannual and decadal time scales, all three models are
in good agreement with the observations at the long-term time
scale. These results enhance the confidence in the quality of the
projected data got from the three climate models.

Methodology
The extreme sea levels defined as the maximum level during a
selected period, usually a year, were mainly caused by the storm
surges. It was usually the maximum water level during a storm
surge event. To calculate the precise extreme sea level rise rates
and to identify potential rate changes are of vital importance for
this study. In general, the sea level change trend is estimated
by analyzing its oscillatory behavior, which means extracting
periodic components from original observations successively
until there is no periodic component left (Jevrejeva et al., 2006;
Ezer and Corlett, 2012; Breaker and Ruzmaikin, 2013). Due
to the empirical, intuitive, direct and adaptive characteristics,
the empirical mode decomposition (EMD) method is suitable
for estimating the accurate long-term trend of the sea level
data (Huang et al., 1998, 1999) and has been widely used
to get the long-term change of the mean sea levels recently
(Ezer and Corlett, 2012; Breaker and Ruzmaikin, 2013; Ezer et al.,
2013; Uranchimeg et al., 2013).

The EMD method decomposes an arbitrary time series X(t)
into a finite and often small number of intrinsic mode functions
(IMFs), which are defined as any function with an equal number
of extreme and zero-crossing. Then X(t) can be described as:

X(t) =
n∑

j=1

IMFj + rn

where n is the number of IMFs, and rn is the residual. For more
descriptions of the EMD method, refer to Huang et al. (1998).

Ensemble empirical mode decomposition (EEMD) is the
improved method to obtain IMFs with more direct physical
meaning and greater uniqueness (Wu and Huang, 2009).
EEMD was estimated by averaging numerous EMD runs with
the addition of some white noise. By averaging the different
decompositions, the noise was averaged out and the true
decomposition was calculated with a confidence estimate. The
EEMD method was used to analyze the extreme sea levels in the
study.

The risks associated with extreme sea levels can be assessed
from the estimates of return levels and return periods. The
return period of extreme sea level is defined as the sea
level statistically expected to be equaled or exceeded every
specific year. The Federal Emergency Management Agency
[FEMA] (2004) recommended the frequency analysis metho3d to
obtain the return levels. The traditional probability distribution
methods, including the Gumbel, Weibull, Generalized Pareto
Distribution (GPD), and Generalized Extreme Value (GEV)
distributions, are typically used to analyze annual extreme sea
levels. According to previous studies (Vogel et al., 1993; Huang
et al., 2008; Feng and Jiang, 2015) the GEV distribution was used
in this work to get the return levels of the extreme sea levels. As

FIGURE 2 | The sea level anomaly calculated using the data from the tide gauge, the satellite, CNRM-CM5, BCC-CSMI-l, and MIROC-ESM-CHEM during 1993 and
2016.
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FIGURE 3 | 99.9, 99, and 90% values of the observed sea level at 15 tide gauges.

described in FEMA’S guideline (2014) the GEV distribution can
be described by the probability density function (PDF) listed as
follows:

f (x) =
1
b

{
1+ c

(
x− a

b

)}−[1/c−1
]

e−(1+c(x−a)/b)−1/c

for−∞ < x ≤ a− b
c with c < 0

and a− b
c ≤ x <∞ with c > 0

f (x) =
1
b

exp
{
−

(x− a)

b
− exp

[
−

(x− a)

b

]}
for−∞ ≤ x <∞ with c = 0
where, a, b, and c are the location, scale and shape factors.

RESULTS AND DISCUSSION

Changes of the Extreme Sea Level
Percentile analysis method has been widely used to assess the
extreme sea level changes (Menéndez and Woodworth, 2010;
Feng et al., 2015; Marcos and Woodworth, 2017). 99.9, 99, and
90% levels of the observed sea level have been calculated at all
15 tide gauges (Figure 3). Results show that the three percentile
levels of extreme sea level all rose with fluctuations at nearly all
tide gauges except at QHD, SW, and BH. Also the long-term
trend was not significant at the 95% confidence level at QHD, LK,
SW, KM, and BH. Results also show that the increase rates are
different at different percentile levels. Meanwhile clear decadal
variations and interannual variations exist in the extreme sea
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TABLE 2 | Correlation coefficient between the extreme sea level and mean sea
level at 15 tide gauges (C1) and the correlations after detrending (C2), the P1/P2
are the p-value from t-test (where p < 0.05 means that the correlation was
significant at 95% confidence level).

C1 P1 C2 P2

HLD 0.33 0.04 −0.06 0.73

QHD 0.46 0.01 0.53 0.01

LK 0.28 0.09 0.28 0.09

YT 0.79 < 0.01 0.22 0.19

RZ 0.66 < 0.01 0.21 0.22

LS 0.43 0.01 0.28 0.10

DJS 0.61 < 0.01 0.43 0.01

ZH 0.68 < 0.01 0.39 0.02

KM 0.45 0.01 0.30 0.07

SS 0.66 < 0.01 0.56 < 0.01

XM 0.47 0.01 0.24 0.16

SW 0.41 0.01 0.12 0.47

ZP 0.49 < 0.01 0.19 0.24

HK 0.33 0.05 −0.32 0.05

BH 0.15 0.37 0.12 0.46

levels at all tide gauges. Especially the interannual variation was
quite large at KM, SS, XM, and BH, where the amplitude of
interannual variations were larger than 0.40 m.

Previous researches Feng and Tsimplis (2014) and Feng et al.
(2015) show that the changes of extreme sea levels along the
China coast were highly affected by the sea level change especially
the long-term change. The correlations between the extreme sea
level and mean sea level were calculated and shown in Table 2.
Results show that the extreme sea levels were significantly
correlated with the mean sea levels at most of the 15 tide
gauges. The correlations were larger than 0.5 at YT, RZ, DJS,
ZH, and SW. There are two tide gauges, LK and BH, where the

extreme sea level was not significantly correlated with the mean
sea level. Moreover, the correlation coefficients after detrending
were also calculated. Results show that the correlations decrease
after detrending. The correlation became non-significant at 95%
significant level after detrending at HLD, YT, RZ, LS, XM, SW,
ZP, and HK. Results indicate that the changes of mean sea level
play important roles in the changes of extreme sea level along the
China coast, and mean sea levels mainly affected the long-term
change of the extreme sea levels. This conclusion coincides with
previous studies, which indicated that the long-term trend of the
extreme sea levels was mainly affected by the mean sea levels
(Zhang et al., 2000; Woodworth and Blackman, 2004; Marcos
et al., 2009).

Using the EEMD method the long term trends of the extreme
sea levels along the Chinese coast were estimated in the study.
Figure 4 shows that the extreme sea levels along the Chinese coast
show increase trend in general. Meanwhile the long term trends
show various patterns at different tide gauges. At HLD, LK, KM,
and BH the increase rate accelerates during the past years. At YT,
RZ, DJS, ZH, XM, and SS the increase trends were nearly linear.
At QHD, SW, and ZP the increase trends were not significant at
95% confidence level. At LS the increase rate first slowed down
but after 2000 the increase rate accelerated. At HK the increase
trend slowed down during the past years.

Projections of the Extreme Sea Level
Return Levels
The projected sea levels from three simulations of the CMIP5
were used in the work (section Data). The sea level data
reached the 1.5 and 2.0◦C scenario of three models were
shown in Figure 5. Results show that the sea level of the
three selected models rise with fluctuations. The sea levels
were much higher at the 2.0◦C warming conditions than the
1.5◦C warming conditions at all three models. Among the three

FIGURE 4 | Long term trends of the extreme sea levels at 15 tide gauges along the Chinese coast.
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FIGURE 5 | The sea level rise (compared with the mean sea level from 1985 to 2016) of three models under RCP4.5 scenarios, the sea level rise reached the 2◦C
scenario (whole line), the sea level rise reached the 1.5◦C scenario (2006- red line break).

FIGURE 6 | Return levels of the extreme sea level at present (blue line), return levels of the extreme sea level under the 1.5◦C temperature rise scenarios
[BCC-CSMI-1(black line), CNRM-CM5(red line), MIROC-ESM-CHEM(green line)].

models the sea level of the MIROC-ESM-CHEM increased the
fastest. The increase rate of the CNRM-CM5 and BCC-CSMI-
1 is nearly the same. The CNRM-CM5 reached 1.5◦C warming
conditions in 2038 and reached 2.0◦C warming conditions
in 2060. The BCC-CSMI-1 and MIROC-ESM-CHEM reached
1.5 and 2.0◦C warming conditions earlier than the CNRM-
CM5.

Using the method described in section Methodology the
return levels of the extreme sea level under the 1.5 and 2.0◦C
warming conditions were calculated. Figures 6, 7 show that the

return levels of the extreme sea level changed under the 1.5
and 2.0◦C warming conditions. And the differences between
the 1.5 and 2.0◦C scenarios were quite large. Under the 1.5◦C
warming condition the changes of the return levels were small.
At some tide gauges there are nearly no changes in the return
levels. Under 2.0◦C warming condition the return levels of the
extreme sea level of three models significant increased. In order
to show the changes of the return levels more clearly, the 100-year
return levels under three scenarios were calculated and shown in
Table 3.
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FIGURE 7 | Return levels of the extreme sea level at present (blue line), return levels of the extreme sea level under the 2.0◦C temperature rise scenarios
[BCC-CSMI-1(black line), CNRM-CM5(red line), MIROC-ESM-CHEM(green line)].

Compared with the present scenario, the 100-year return
levels under the 1.5◦C warming condition changed little at most
tide gauges in BCC-CSMI-1 and CNRM-CM5. The 100-year
return level changes ranged from -3 to 5 cm in BCC-CSMI-1.
And in CRRM-CM5 the 100-year return level changes ranged
from -4 to 4 cm. The changes of 100-year return levels in
MIROC-ESM-CHEM ranged from -3 to 6 cm, and the 100-year
return levels were larger than in the other two models at most tide
gauges.

Under the 2.0◦C warming condition, the changes of 100
year return levels were much larger than those under the 1.5◦C
warming condition in all three models. In BCC-CSMI-1 the
100-return level changes ranged from 8 to 20 cm, and the

100-year return levels correspond to the water levels of 140∼562
year return period under the present condition. Comparing to
the 1.5◦C warming condition the 100-year return levels increased
about 4∼18 cm. In CNRM-CM5 the 100-return level changes
ranged from 6 to 17 cm, and the 100 year return levels under
the 2.0◦C warming condition correspond to the water levels of
127∼394 return period under the present condition. Comparing
to the 1.5◦C warming condition the 100 year return levels
increased about 8∼14 cm. In MIROC-ESM-CHEM the 100
return level changes ranged from 13 to 27 cm, and the 100 year
return levels under the 2.0◦C warming condition correspond
to the water levels of 165∼998 year return period under the
present condition. Comparing to the 1.5◦C warming condition

TABLE 3 | Hundred-year return levels of the extreme sea level in present (unit is meter), under the 1.5 and 2◦C scenario (from climate model) at 15 tide gauges, the
return period (year) of the water levels in present scenario were listed in the bracket.

(m) OBS BCC-CSMI-1 CNRM-CM5 MIROC-ESM-CHEM

1.5◦C 2.0◦C 1.5◦C 2.0◦C 1.5◦C 2.0◦C

HLD 2.85 2.86 (102) 3.02 (460) 2.86 (102) 2.98 (327) 2.89 (134) 3.08 (777)

QHD 1.65 1.67 (117) 1.79 (322) 1.66 (105) 1.75 (244) 1.68 (131) 1.83 (467)

LK 2.22 2.26 (121) 2.33 (184) 2.24 (109) 2.31 (163) 2.25 (116) 2.35 (207)

YT 2.37 2.34 (85) 2.51 (255) 2.33 (80) 2.47 (201) 2.37 (100) 2.58 (415)

RZ 3.14 3.14 (100) 3.27 (255) 3.11 (95) 3.24 (212) 3.14 (100) 3.33 (445)

LS 4.65 4.64 (96) 4.73 (140) 4.62 (90) 4.71 (127) 4.62 (90) 4.78 (166)

DJS 3.34 3.35 (111) 3.47 (256) 3.34 (100) 3.44 (207) 3.35 (111) 3.52 (364)

ZH 3.28 3.27 (95) 3.42 (174) 3.27 (95) 3.39 (148) 3.30 (106) 3.49 (218)

KM 4.65 4.66 (103) 4.76 (148) 4.66 (103) 4.74 (135) 4.66 (103) 4.80 (165)

SS 4.24 4.26 (112) 4.41 (228) 4.26 (112) 4.37 (191) 4.28 (117) 4.46 (296)

XM 4.15 4.16 (105) 4.33 (269) 4.16 (105) 4.30 (227) 4.18 (119) 4.39 (377)

SW 1.92 1.94 (121) 2.12 (491) 1.95 (124) 2.08 (355) 1.96 (143) 2.19 (822)

ZP 2.48 2.49 (108) 2.67 (562) 2.49 (108) 2.63 (394) 2.52 (145) 2.74 (998)

HK 2.18 2.17 (97) 2.31 (207) 2.19 (108) 2.28 (174) 2.20 (110) 2.35 (263)

BH 3.37 3.42 (136) 3.57 (411) 3.41 (132) 3.54 (325) 3.43 (153) 3.64 (643)
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the 100-year return levels increased about 10∼23 cm. Results
indicated that a 0.5◦C warming will make much difference in the
extreme sea levels along the Chinese coast in all three models.

CONCLUSION

The growing concerns about climate change have motivated
numerous researchers to study the effects of climate change
in coastal areas. As one of the most important marine factors
in coastal areas, extreme sea level has drawn more and more
attentions in recent years. In this paper, we used hourly sea level
data from 15 tide gauges along the China coast and numerical sea
level data from three simulations of the CMIP5, to analyze the
changes of extreme sea level in the past and under the 1.5 and
2◦C warmer future scenarios.

The extreme sea levels rise with fluctuations at most tide
gauges along the China coast, and the long term trends show
various patterns. Quasi-linear trends are found at YT, RZ, DJS,
ZH, XM, and SS, while no significant trends exists at QHD, SW,
and ZP. The extreme sea level starts to rise since 2000 at LS, and
the rise decelerates at HK during the past years. The mean sea
level changes play important roles in the changes of extreme sea
levels along the China coast, especially for the long-term change.

Under the 1.5 and 2.0◦C warming scenarios, the sea level rise
with fluctuations according to the simulation results by three
selected models, and the sea levels are much higher under the
2.0◦C warming scenarios. The return levels of the extreme sea
level vary significantly under different warming scenarios, and
there is considerable increase of the return levels at all tide gauges
along the China coast under 2.0◦C warming scenario compared
with that under 1.5◦C warming scenario. The results indicated

that a 0.5◦C warming will bring about major difference for the
extreme sea levels along the China coast. It is reasonable to limit
the anthropogenic warming to 1.5◦C rather than 2.0◦C based on
this study, as proposed by the Paris Climate Agreement, and it
is necessary and practical for future flood risk management and
response along the coast of China.

There are also some caveats in this study. In order to meet the
warming condition of 1.5 and 2.0◦C, the data lengths of the three
model here are different. And only three models are analyzed
in this study and there may be some uncertainty in the results
presented in this manuscript. Besides, only the results of the
RCP4.5 scenario were applied in this work.
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Climate change projections for Europe consistently indicate a future decrease in

summer precipitation over southern Europe and an increase over northern Europe.

However, individual models substantially modulate these overarching precipitation

change signals. Despite considerable model improvements as well as increasingly higher

model resolutions in regional downscaling efforts, these apparent inconsistencies so

far seem unresolved. In the present study, we analyze European seasonal temperature

and precipitation climate change projections using all readily available pan-European

regional climate model projections for the twenty-first century with model resolution

increasing from ≈50 to ≈12 km grid distances from the CORDEX modeling project. This

allows for an in-depth analysis of what may be the most robust projection of the future

climate. Employing a simple scaling with the global mean temperature change enables

the identification of emerging robust signals of seasonal changes in temperature and

precipitation. Likewise, the “what-if” approach, i.e., analyzing the climate change signal

from transient experiments at the time of an emerging global temperature exceedance

of e.g., 1, 2, or 3 degrees offers a policy relevant approach to providing more accurate

projections. A comparison of the projections from these two approaches has never before

been done in a comprehensive manner and is the subject of the present paper.

Keywords: pattern scaling, climate change, EURO-CORDEX, robust information, regional climate model

1. INTRODUCTION

In the IPCC Special Report on Global Warming of 1.5◦C (IPCC, 2018), a global warming of 1.5◦C
above pre-industrial levels is used as a target to understand how this warming will impact society
and how drastic climate change mitigation actions are needed. At the current rate of change, this
target is expected to be reached somewhere between 2030 and 2052. The geographical patterns
of the ongoing change are indicators of what the near future may bring and how the longer-time
average changes may manifest themselves. If no changes are made to moderate a business-as-usual
societal development, it is very likely that a higher warming level will be reached increasing the
risks for negative societal impacts.

To better understand the near-to-long-term climate change information, climate models are
commonly used. Often, a “what-if ” approach is used, analyzing climate simulations around the
point in time where a target is crossed. For example, Vautard et al. (2014) used an ensemble of
30-year time slices around the point in time where the projected average global temperatures
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reach 2◦C. They pointed out that Europe will generally
experience a higher warming than 2◦C, even if mitigation keeps
the global average change lower than 2◦C. The Copenhagen
Accord (UNFCCC, 2009) agreeing on a global 2◦C warming
target as compared to the pre-industrial value. This agreement
has been found to be increasingly challenging to fulfill (Peters
et al., 2012; Stocker, 2013; Knutti et al., 2016) and it is likely that
a warming of 3 or 4◦C will be reached by the end of the century
with profound consequences (New et al., 2011). Sanderson et al.
(2011) used the A2 scenario from the IPCC Fourth Assessment
Report (IPCC, 2007) to study high-end (>4◦C) and more
moderate (<4◦C) projections for the twenty-first century. For
the European area, they show little difference between the two
classes of global model sensitivity, other than a larger warming
in Southern Europe during the summer per degree of global
warming for the high-end projections.

Climate models continue to exhibit large inter-model
differences due to, among other things, differences in cloud
parameterization schemes (Van Weverberg et al., 2013),
resolution (Evans and McCabe, 2013), physics (Schwartz et al.,
2010), land-surface, water cycle representation (Larsen et al.,
2016), and sea ice treatment (Rae et al., 2012). Furthermore,
climate models have systematic biases, which further complicates
the extraction of useful climate change information. To provide
such information, Santer et al. (1990) proposed using a pattern
scaling approach. This approach implies a linear relationship
between patterns of regional climate change and the average
global temperature change. The approach has the considerable
advantage of providing climate change information for time
periods or emission scenarios for which no simulation is
available (Lustenberger et al., 2014). Since Santer et al. (1990),
pattern scaling has been widely used (Huntingford and Cox,
2000; Mitchell, 2003; Sanderson et al., 2011; Lustenberger et al.,
2014; Tebaldi and Arblaster, 2014; Christensen et al., 2015,
2019). It is worth noting that one of the major conclusions
of Mitchell (2003) is the necessity to use a large ensemble to
achieve a sufficiently large change signal when compared with
the inter-model spread [also called the signal-to-noise ratio
(S/N)] to identify a robust signal.

Many coordinated experiments such as CMIP3 (Meehl et al.,
2007), CMIP5 (Taylor et al., 2012), PRUDENCE (Christensen
et al., 2002; Christensen and Christensen, 2007), ENSEMBLES
(Van der Linden and Mitchell, 2009; Christensen et al., 2010),
and CORDEX (Giorgi and Gutowski, 2015; Gutowski et al., 2016)
have offered the opportunity to deepen our understanding of
pattern scaling by using model ensembles (Lustenberger et al.,
2014; Tebaldi and Arblaster, 2014; Christensen et al., 2015, 2019).
For the particular case of temperature and precipitation, Tebaldi
and Arblaster (2014) analyzed the robustness of pattern scaling
across time, Representative Concentration Pathways (RCP), and
models using the third and fifth phases of the Coupled Model
Intercomparison Project (CMIP3 and CMIP5). They concluded
that the RCP2.6 scenario is not well suited for pattern scaling due
to a weak signal. They also pointed out that pattern variability
is explained by the inter-member variability rather than the
RCP variability. Their results showed that the pattern scaling
is insensitive to the choice of emission scenarios (RCP4.5 or

RCP8.5). Overall, only small differences were noted, suggesting
that pattern scaling might provide a robust type of information
across RCPs. They have also shown a greater variability of
the signal for precipitation compared to temperature, which
is likely due to differences in parameterization of cumulus
convection together with cloud formation (Santer et al., 1990). To
better understand high-end scenarios, Christensen et al. (2015)
investigated the European response to a global mean warming of
6◦C. They showed that a such response was largely linear in global
temperature change, comparing to the scaled patterns produced
from previous experiments (ENSEMBLES and PRUDENCE),
with extreme precipitation as a notable exception (extremes are
outside the scope of this study).

Recently, Christensen et al. (2019) applied and compared
pattern scaling from several coordinated experiment
(PRUDENCE, ENSEMBLES and CORDEX). Their results
show comparable patterns and ranges between these projects,
suggesting that pattern scaling is robust across modeling
initiatives over time. They also compared the scaled patterns
of an observational dataset, here using CRU (Harris et al.,
2014), and also here show a high correspondence with scaled
patterns originating from the coordinated experiments. This
result strongly supports that the linearity of pattern scaling is
also observed and can be extended to, at least, the end of the
twenty-first century. However, models tend to need time to
stabilize, so scaled patterns might not emerge until a period
of years or even decades. Some studies have analyzed the time
dependence of pattern scaling using time-slice experiments
(Mitchell, 2003; Lustenberger et al., 2014; Tebaldi and Arblaster,
2014), but the question has not previously been properly studied
using a continuous timeline.

In general, the information provided by scaled patterns should
be addressed with special attention to the robustness of the
signal. It is commonly agreed that the climate change signal
must exceed the inter-model spread to reflect proper robustness
(Mitchell, 2003; McSweeney and Jones, 2013). In this paper, we
wish to address this aspect on a pan-European scale as well as
on smaller sub-regions, previously addressed in projects such as
ENSEMBLES. The first part of this study shows scaled patterns of
the EURO-CORDEX simulations (Jacob et al., 2014) and analyses
their levels of robustness. In the second part of the study, the
emergence of a significant signal in the scaled patterns is studied
to enable a subsequent analysis comparing the what-if approach
and the pattern scaling approach. The analysis on the emergence
of robust change signals is necessary to enable the detection of
patterns extracted from different time windows using the what-if
approach. The final focus of the study is to address the robustness
of emerging scaled patterns for precipitation and temperature
using different metrics on signal, noise and variability. The
methodology is explained in section 2 followed by the results in
section 3 and finally a brief conclusions is given.

2. MATERIALS AND METHODS

2.1. Data and Sub-domains
The temperature and precipitation fields from the EURO-
CORDEX experiment (Giorgi and Gutowski, 2015) at 0.11◦
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(EUR-11) and 0.44◦ (EUR-44) are used (see Figure 1) for RCP
4.5 and 8.5.

Figure 2 shows the EURO-CORDEX domain and the sub-
domains used in this study, with subdomain 6 slightly modified
compared to Christensen and Christensen (2007). The analysis
on sub-domains is performed to enhance the understanding
of regional-to-local signals. Only aggregated results combining
RCP4.5 and RCP8.5 are shown; however, analyses suggest (not
shown) that no significant differences exist between RCP4.5 and
RCP8.5 after scaling, as also shown globally by Tebaldi and
Arblaster (2014) and regionally for Europe, as in the present
study, in Christensen et al. (2019).

2.2. Methods
2.2.1. The Pattern Scaling Approach
The pattern scaling is defined as the climate change of a 20-
year mean (relative to 1985–2004) of the temperature and
precipitation fields scaled by the global mean temperature change
of the relevant GCM. In this study, the end-century scaled pattern
is defined as the one calculated from 2080 to 2099, the latest
period available for all models, divided by the time averaged
global mean temperature change for the period.

2.2.2. The What-If Approach
The procedure used in the what-if approach is straightforward,
as it extracts the year where the GCM in question, for all

FIGURE 1 | GCM/RCM matrix for the EURO-CORDEX experiments used in

this paper.

GCM-RCM combinations, crosses the selected climate change
thresholds of 1, 2, and 3◦C, respectively, at the first occurrence.
We have not observed any multiple crossings, so this definition is
unique here. Around the extracted years, a 20-year time average
was then calculated from each model member combination
followed by averaging all the members. Note that the scale of
all patterns extracted by the what-if approach is adjusted to 1◦C
value (for example, the resulting 3◦C pattern was divided by
three).

2.2.3. Signal-To-Noise Ratio
As presented in Christensen et al. (2019), the S/N is produced for
each scaled pattern output combination and on the results from
the what-if approach. The S/N is defined as:

S/N =

< SP >

σSP
, (1)

where <SP> is the scaled patterns average of all the members
and σSP is the inter-member (32 members for EUR-11 and 35
members for EUR-44; see Figure 1) standard deviation of the
scaled patterns from the net model results (i.e., there is no
inter-annual variability component in this noise). The S/N is
considered a good proxy of the robustness of the signal. When
S/N > 1, the level of change is identified as significant change. It
is worth noting that precipitation results are shown for relative
changes (in %) unless stated otherwise.

3. RESULTS

3.1. Scaled Pattern at the End of the
Century
The end-of-century scaled patterns for temperature in DJF (first
two rows of Figure 3) are showing strong warming in the north-
east of the domain with a smaller value over the Atlantic Ocean
as also observed by other studies (Christensen et al., 2015, 2019).
However, although some larger differences can be observed in the
S/N, the percentage of grid points where S/N < 1 (shown in the
upper-left corner of each figure) is quite small if not zero. Only
the area over the Atlantic Ocean is affected by S/N < 1 due to
a moderate climate change signal. Note that EUR-44 is slightly
warmer than the EUR-11. This is caused by the slightly different
model ensembles available. Employing only models and hence
identical model ensembles for the two resolutions, the scaled
patterns between EUR-11 and EUR-44 do not show differences
in temperature (not shown).

The scaled patterns of the precipitation fields for DJF (last two
rows of Figure 3) are showing, overall, a future with a wetter
climate over northern Europe and drier conditions over the
southern and north-western parts of the domain; the S/N ratio
is quite similar. However, the percentage of grid points with
S/N < 1 is considerably higher for precipitation (53, 63% for
EUR-11 and EUR-44, respectively) indicating a higher disparity
between ensemble members. In general, Northern European land
areas have S/N larger than one. This is consistent with the global
tendency of increased intensity of the hydrological cycle with
global warming. The results show relatively low-level noise over

Frontiers in Environmental Science | www.frontiersin.org 3 January 2019 | Volume 6 | Article 16356

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Matte et al. Robustness and Scalability of RCM

FIGURE 2 | Cordex domain for 1x= 0.44◦ and 1x= 0.11◦ and the associated sub-domains.

the European region and a larger signal over the Scandinavian
and Russian area. The low-level noise over the European
continent is likely due to the large-scale circulation constraint
dominating this mid-latitude region in this season (stratiform
precipitation from large low-pressure systems) (Sørland et al.,
2018).

The scaled patterns of JJA temperature (Figure 4) is showing
a more homogeneous warming over the domain than DJF with
the highest warming rates in the southern and northeastern parts
of the domain as also observed in Christensen et al. (2019). In
general, the JJA scaled precipitation patterns have a smaller S/N
than those for DJF. Due to large inter-member disparities as seen
here for JJA, as likely affected by the reproduction of convective
precipitation, the percentage of grid points with S/N< 1 is higher
(78, 83% for EUR-11 and EUR-44, respectively) than for DJF.
The area where S/N > 1 over the Iberian Peninsula it is due to
a stronger signal. It is expected that noise levels are higher in
summer than in winter, as weather is more locally generated,
which also means that the role of the regional model for noise
is higher than in winter; this was originally described by Déqué
et al. (2007). Further discussions on the robustness in relation to
S/N is seen in section 3.4. The large levels of noise for JJA and

DJF in the southern parts of the domain are related to the use of
relative rather than absolute changes. This is supported by both
a small absolute signal and a small absolute noise for this region
(see Figure 12).

The results presented in this section are similar to those
presented in previous studies (Tebaldi and Arblaster, 2014;
Christensen et al., 2015, 2019). In order to study the what-if
approach, a deeper investigation of the evolution of the emerging
scaled patterns is needed.

3.2. Emergence of the End-Of-Century
Scaled Pattern
This section is focusing on the emergence of the scaled patterns.
To depict the emergence of the scaled patterns, movies are
available in the Supplementary Material showing the temporal
evolution of the temperature and the scaled precipitation patterns
for JJA andDJF (see Supplementary Videos S1, S2, respectively).
Figure 5 shows the main statistics of the annual evolution of
the scaled patterns from 2005 to 2090 (i.e., the 2005 level is
calculated from the 1995–2014 period and so forth). The main
purpose is to show at which time the scaled patterns shown
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FIGURE 3 | Scaled 2080–2099 DJF patterns for combinations of temperature (A–D)/precipitation (E–H) and EUR-11 (A,B,E,F)/EUR-44 (C,D,G,H). The left column

shows the inter-member noise and the right column shows the 2080–2099 scaled patterns. The contour lines shown in the right column show the S/N ratio and the

gray shading depicts areas of S/N < 1. The numbers in the upper left corner of the right column shows the percentage of grid points where S/N < 1. Note that both

columns have the same unit.
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FIGURE 4 | As for Figure 3 but for JJA.
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FIGURE 5 | Correlation between a running mean of 20-years scaled patterns from 2005 to 2090 (central year shown) against corresponding end-period levels

(2080–2099) (A,B). Percentage of grid points where S/N < 1 (C,D). Spatial average of the S/N levels (using the absolute signal) of the scaled patterns (E,F). Spatial

average of inter-member standard deviation of the scaled patterns (G,H). Spatial standard deviation of scaled patterns normalized by that of 2080–2099 (I,J). The

results are shown for both variables (temperature and absolute precipitation, left and right respectively), and across resolutions and seasons as well as annually.

in section 3.1 emerge at various geographical locations and
scales.

The first row of Figure 5 shows the spatial correlation between
the scaled patterns calculated each year against the 2080–2099

scaled patterns (as shown in Figures 3, 4). The spatial correlation
for temperature (Figure 5A) reaches the asymptotic unit value
for all seasons and for both resolutions early in the century
(around 2035). The latest alignment to the asymptotic value is
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FIGURE 6 | Percentage of inland grid points where S/N<1 for absolute precipitation for each subdomain (A–H) and for land (I) and ocean (J) grid points in the full

domain.

seen for the JJA season, which again is likely due to smaller-scale
convective weather systems. For absolute precipitation change,
the evolution of correlations (Figure 5B) is more divergent than
for temperature, reaching unity at a later stage (around 2080).
However, the correlation levels seem to stabilize around 2050. For
precipitation, DJF is the last season to reach its asymptotic value.

The second and the third rows of Figure 5 show the
percentage of grid points where S/N < 1 and the value of the
spatial average of S/N, respectively. For temperature (Figure 5C),
the percentage of grid points where S/N < 1 is relatively low
early in the period. For EUR-11, a level of 0% is reached
around 2040 whereas EUR-44 decreases to around 2% at the

end of the century. The scaled precipitation patterns differ
substantially from those of temperature (Figure 5D), starting at
approximately 100% for all seasons and resolutions, decreasing
steadily to levels between 50 and 85% at the end of the century.
Accordingly, the spatial average of S/N is increasing for both
variables (Figures 5E,F). At the start of the period, spatially
averaged temperature S/N levels are already >1 reaching values
between 4 and 6.4 at the end of the century (across seasons
and resolutions) for temperature. However, although S/N levels
also increase in precipitation, the spatial average is comparatively
lower and shows a slower increase toward the end of the
century, suggesting a much noisier field for precipitation. Note
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that the absolute signal has been used in order to avoid too
large disparities due to use of relative value. The fourth row of
Figure 5 depicts the spatial mean of the inter-member standard
deviation of the scaled patterns. It is seen that regardless of
variable, season and resolution, the inter-member disparity of
the scaled patterns is larger in the beginning of the period and
converges at the end of the century, which is in agreement
with the results of the first rows of Figure 5. The last row of
Figure 5 shows the spatial standard deviation of the ensemble
mean scaled patterns normalized by the level at the end of the
century. The results suggest that the spread between variables,
seasons, and resolutions is higher early in the period, due to the
large noise here, becoming increasingly similar toward the end of
the century. The scaled precipitation patterns seem to converge to
unity more rapidly than the temperature. This may be explained
by the fact that warming over land is generally faster than the
global average; therefore the mid-century is scaled by a smaller
warming amplitude than the probably more relevant regional
warming. As the sea catches up with the land during the century,
this effect is diminished. Furthermore, the curves group together
more rapidly than in the case of precipitation. In general, EUR-44
seems to differ somewhat from EUR-11 which is likely due to the
slightly different sets of members between the EUR-11/EUR-44
model groups (not shown).

Although Figure 5 gives a general idea of the robustness of the
signal in scaled patterns, Figure 6 shows that there are important
local differences between the subregions. Figures 6A–H is
showing the same as Figure 5D, but for land grid points of
individual subregions (as shown in Figure 2), for all inland
grid points (Figure 6I) and all water grid points (Figure 6J).
Overall, all subdomains have more or less the same behavior;
(1) levels of 100% is generally seen at the beginning decreasing
toward the end of the century; (2) some large differences in
seasons are seen with JJA showing the slowest decline; (3)
DJF reaches the lowest levels (except for the Iberian Peninsula;
Figure 6C).

The high value shown for the Alps (Figure 6D) and the
Mediterranean (Figure 6F) area is due to a persistently stronger
noise (not shown) likely to be produced by the complex
topography of the Alps and land/sea effects from the vast
coastlines of the Mediterranean. Despite some variations in the
evolution of the statistics and relatively low S/N, the movies
(Supplementary Video S1) suggest that the underlying emerging
patterns are already recognizable from around 2020.

3.3. Comparison Between the Pattern
Scaling and the What-If Worlds
The main purpose of this section is to analyze the robustness and
persistence of the scaled patterns by comparison to the patterns
resulting from the what-if approach.

Figure 7 shows the global average of the ensemble mean of
the 2 m temperature from the CMIP5 datasets used to drive the
RCMs of this study. The years shown in the legend represent
the year where the selected threshold is crossed by the global
average of the ensemble mean. The 1◦C threshold is crossed
in 2031 and 2026, the 2◦C is crossed in 2070 and 2050 for
RCP4.5 and RCP8.5, respectively, and the 3◦C is crossed in 2068
(RCP8.5 only). Overall, we have shown in section 3.2 that the

FIGURE 7 | Global average of the ensemble mean of the 2-m temperature

from the CMIP5 model used as driving data for this study. The black, blue, and

red lines are the historical, RCP4.5 and RCP8.5, respectively. The shadow

represents the standard deviation of the model ensemble. The years in the

legend represent the year where the i◦C was crossed by the global ensemble

mean.

signal increasingly emerges from the noise as we go through the
century, which should be considered when comparing the scaled
patterns from the patterns resulting from the what-if approach.

The mean what-if result at 1◦C warming for JJA temperature
(second column of Figure 8) shows a good correspondence
(correlation of 0.93 and 0.97) with the scaled patterns for both
resolutions (for Figures 8B,F, respectively), which was expected
since the scaled temperature patterns converge rapidly (see
Figure 5A). The results from the other two thresholds are also
similar (showing pattern correlations of 0.98 [0.99] and 0.99
[0.99], respectively, for the 2 and 3◦C thresholds for EUR-
11 [EUR-44]; Figures 8C,D [Figures 8G,H], respectively). The
main difference is seen in the percentage of grid points where
S/N < 1 since EUR-11 (Figures 8A–D) shows levels of 0–1%
for all temperature thresholds whereas EUR-44 (Figures 8E–H)
shows a decrease from 7 to 0% with the increasing threshold
from 1 to 3◦C as also expected from Figure 5C. This is
mostly due to a combination of low change signal and a large
noise (Figures 4C,D). However, it is worth noting that the
number of available members (lower-left corner) decreases as
the threshold increases, since some simulations never reach the
higher thresholds.

For JJA precipitation (Figure 9), S/N is below 1 in 99%
of the domain for the 1◦C patterns making this scenario
unusable (Figures 9B–F) for both resolutions. Also, the overall
signal of the 1◦C patterns differ from the scaled patterns
[with correlations of 0.63 and 0.69 for EUR-11 and EUR-44,
respectively (Figures 9B–F)] with the most notable differences
south of the Baltic Sea, in the Mediterranean and in the
southern parts of the domain. In contrast, the 2 and the 3◦C
patterns (third and fourth column of Figure 9) are showing a
higher correlation than the 1◦C pattern. However, in terms of
correlation, little improvement is noted going from the 2◦C to
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FIGURE 8 | JJA temperature. 2080–2099 scaled fields (A,E), fields from the what-if approach for the 1◦C (B,F), 2◦C (C,G), and 3◦C (D,H) for the EUR-11 domain

and EUR-44 domain (A–D and E–H, respectively). The metrics shown in the corners of the figures include the percentage of grid points where S/N<1 (upper left), the

number of model members (lower left) and the correlation between the scaled pattern and the what-if approach (upper right for the what-if subplots). It is worth noting

that the scale of the what-if patterns have to be multiplied by their threshold values to obtain actual warming.

the 3◦C level although some areas do improve such as the Baltic
Sea and the Mediterranean area. The percentage of the S/N also
decreases from 1, 2 to 3◦C (99% [99%], 85% [86%], and 77%
[76%], respectively for EUR-11 [EUR-44]) reflecting increasing
confidence for a larger proportion of the domain. In summary,
the 1◦C patterns are likely unusable to reflect climate change
patterns, leading to the conclusion that an analysis on 1◦C should
instead employ higher thresholds which are then subsequently
adjusted to 1◦C.

For DJF temperature (Figure 10), as in JJA, the what-if
pattern is similar to the scaled pattern (both resolutions) with a
decrease in the percentage of grid points where S/N < 1 as the
threshold increases. The S/N levels below 1 in the North Atlantic
region is due to a small signal and a medium-to-large noise
(not shown).

The 1◦C patterns for DJF precipitation (second column
of Figure 11) shows that the correlation is already high for
1◦C and increases very little over the highest thresholds (both
resolutions). Yet, the min/max values are distinct and become
even more comparable when increasing the thresholds. Unlike
the JJA 1◦C precipitation pattern of EUR-11 (Figure 9B), DJF is
showing a relatively large region where S/N > 1 over Germany,
North Atlantic, the Norwegian Sea and North Algeria. The 2◦C
precipitation patterns have a relatively large area where S/N >

1 increasing to levels similar to the scaled patterns for the 3◦C
threshold for both resolutions.

In summary, the results suggest that patterns extracted from
1◦C threshold should not be used whereas the scaled patterns
shows a much more robust signal, which is similar to the 2 and
3◦C patterns.

3.4. The Trustworthy Change Signal
In this study, we have defined the trustworthy information as
the one where the main signal is detectable from the inter-
model spread (S/N > 1). This is quite straightforward with
temperature since S/N is almost always >1, except occasionally
for the North Atlantic area. However, the quantity of information
judged untrustworthy for the precipitation patterns is larger. The
S/N metric might be misleading since negligible or small change
signals are more likely to be judged as untrustworthy although
usable information can in fact be extracted.McSweeney and Jones
(2013) discuss this issue by using the interannual variability as
noise and claim that a clear distinction should be made between
“no signal” and a signal overwhelmed by noise. In this section, we
wish to present some additional thoughts on this issue.

To deepen our understanding, several other metrics were
selected and applied on the absolute field of precipitation. The
first column of Figure 12 shows the inter-member noise of the
scaled patterns. A bootstrap analysis with replacement using
1,000 samples was used to create 1,000 estimates of the noise. The
resulting bootstrap average shows a similar, but weaker, pattern
compared to those shown in Figures 3, 4. Furthermore, the 25th–
75th range is quite narrow. The results together suggest that a
few outlier members have a considerable impact on the noise,
especially in the Alps and Mediterranean areas (confirmed by a
qualitative visual evaluation).

As stated, it is expected that areas with high noise relative
to the change signal should be judged untrustworthy; in that
sense the S/N metric (second column of Figure 12—as also
shown in Figures 9, 11) is suitable. But, using this metric, some
regions are judged untrustworthy because of a combination of a
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FIGURE 9 | JJA precipitation. Specifications and conventions as in Figure 8.

FIGURE 10 | DJF temperature. Specifications and conventions as in Figure 8.

weak signal and a weak noise (for example the Eastern part of
the Mediterranean; subdomain 7 in Figure 2). Such weak noise
should be considered when trying to extract a valuable signal.
For the rest of the Mediterranean area the noise is large and
the change signal weak, making it difficult to extract trustworthy
information from this region.

The second metric used to judge the trustworthy information
is to apply a quantitative threshold on the noise as shown
here using 0.1 mm/day (third column of Figure 12), which

in essence is a small change over a three month period
(≈10 mm). By applying this threshold, numerous grid points
become trustworthy in comparison with the conventional S/N
approach (as shown by the decrease in the percentage of the
untrustworthy grid points in the upper left of each figure)
albeit still keeping all areas with high noise levels out of
the trustworthy signal. The subjective selection of threshold
level, however, might be disputable and it may also be
region-specific.
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FIGURE 11 | DJF precipitation. Specifications and conventions as in Figure 8.

The third metric is based on the Variability of the Scaled
Patterns (VSP). The VSP is calculated by splitting the last 50
years of the scaled patterns evolution (from 2041 to 2090) into
five decades (i.e., 2041–2050 and so forth). Using these five
times slices an inter-decadal variability was calculated and then
temporally averaged. The five decades are basically treated in the
same way as would have been done with perturbed members for
an internal variability study (see Lucas-Picher et al., 2008, for
example). We interpret the VSP as the “natural” variability of
the scaled patterns. So, all noise smaller than the VSP should
not be considered. In Figure 12, the fourth column shows the
available signal when not considering noise <VSP. This method
has the advantage to produce trustworthy information using grid
points with a low signal. Such an approach could be further
complemented with the conventional S/N > 1 metric, which as
shown in the fifth column of Figure 12. One can see that the
resulting percentage of the available signal is higher than using
the S/N metric, but less than using the 0.1 mm/day threshold.
It is worth noting that a better description of VSP is needed to
understand uncertainties related to scaled patterns.

4. CONCLUDING REMARKS

In this study, the robustness and scalability of regional climate
projections over Europe have been studied using the EURO-
CORDEX dataset. In the first section, the 2080–2099 scaled
patterns of temperature and precipitation for DJF and JJA have
been shown. In winter, the land is warmer than the ocean
with a south-to-north warming gradient. During summer, the
land is overall still warmer than the ocean and the warming
is more homogeneous than in winter. The noise is smaller for

temperature than precipitation for both seasons. In general,
the noise is higher in the North Atlantic for all seasons in
combination with a weak change signal resulting in areas where
S/N < 1. The noise in precipitation is larger for the Alps and the
Mediterranean, but weaker for the North Atlantic Ocean.

The second section analyzes the emergence of the
scaled patterns, as also visualized in an animation
(Supplementary Information). It has been shown that the scaled
temperature patterns emerge faster than the corresponding
patterns for precipitation. For temperature, the areas of trust
(grid points where S/N > 1) increase to 100% toward the end
of the century whereas a stabilization of 50–60% is seen for
precipitation around 2050. The large noise throughout the
century related to the scaled precipitation pattern suggests
that the precipitation pattern is not as linear as is the case
with temperature. However, although the signal drowns in the
inter-member noise (the ratio of which decreases through the
century), the consistency in the scaled precipitation patterns
from 2020 suggests that the precipitation field is actually scalable
at longer timescales.

The third section of the results shows a comparison between
the scaled patterns and the pattern extracted from a what-if
approach, where thresholds of 1, 2, and 3◦C were employed.
It has been shown that the patterns from the 2 and 3◦C of
the what-if approach results were highly similar to the end of
century scaled patterns of temperature and also largely to the
scaled precipitation pattern. The 1◦C what-if patterns differed
due to a lack of signal as elaborated below. It could also be
seen (for both variables/seasons/resolutions) that the percentage
of trustworthy grid points was increasing from the 1 to 2◦C
results and that no major differences were seen between 2 and
3◦C and the scaled pattern. This latter result corresponds to the
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FIGURE 12 | Inter-member noise (A,F,K,P) of the 2080–2099 scaled precipitation patterns where different thresholds have been used: (1) S/N > 1 (B,G,L,Q),

(2) considering only grid points with Noise >0.1mm/day (C,H,M,R), considering only grid points with Noise < VSP (D,I,N,S) and (4) considering only grid points with

S/N > 1 together with Noise < VSP (E,J,O,T). The results are shown for JJA and DJF (A–J and K–T, respectively) and both resolutions for absolute precipitation. The

contour lines show the S/N ratio and the gray shading depicts “low-trust” areas defined by the metric selected. In the upper left corner of each figure, the percentage

of shaded grid points is shown.

finding that patterns were stabilized around 2050. Nonetheless,
patterns are already recognizable as early as 2020. The major
difference was noted while comparing the 1◦C precipitation
patterns with the scaled ones. The percentage of trustworthy
information is almost 0 for the 1◦C results and the patterns
were poorly represented. This suggests that patterns extracted
from analyses with a 1◦C threshold should not be used, whereas
scaled patterns provide a more robust signal, as do 2 and 3◦C
patterns. It is worth noting that, although the pattern scaling
approach provided important and robust information about
the future climate change, this approach does not take into
account any non-linear feedback from global warming. Those
feedbacks might have a non-negligible impact on pattern scaling
whereas processes with longer time scales (e.g., soil processes
and permafrost in particular; Christensen 1999; Stendel and
Christensen 2002) might be a reason for caution for longer

projections and scales of the presented results. In Christensen
et al. (2015), the scalability of regional climate signals with global
temperature change was studied, and only extreme precipitation
showed any strong deviation from linearity in this connection.
In taking a pattern scaling approach, as many simulated climate
change signals as possible are included, which is a direct way
to improve the signal-to-noise ratio suppressing low-frequency
variability.

Finally, the last results section is an attempt to raise the
challenging issue of the “level of trust” in using a multi-model
ensemble climate change signal. At first, the conventional metric
S/N was used. It has, however, been suggested that this latter
metric might misjudge information where a low-level change
signal is located. Therefore, to deepen our understanding, an
arbitrary threshold was applied to the noise resulting in increased
levels, or areas, of trustworthy information. Only high noise
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regions, such as the Alps and the Mediterranean, remained
below the trust level threshold. To overcome arbitrariness in
the selection of this threshold, the variability of scaled patterns
was calculated and used as a new threshold for the noise. It
has been shown that when this threshold is combined with the
conventional S/N, low-level signals, which were otherwise judged
as unusable, become available as trustworthy change information.
This study shows that pattern scaling can be used to analyze low-
to high-level climate change signals with sufficient robustness for
climate adaptation and mitigation for the likely climate evolution
through the century.
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Using Weather Research and Forecasting model (WRF) simulations with different initial

soil moisture (ISM) conditions, we investigate the sensitivity to ISM for the three severe

heat wave events that dominated eastern China in 2003, 2007, and 2013. The control

simulations are able to reproduce the spatial distributions and the daily evolutions for each

of the three heat waves but apparently underestimate their amplitudes, intensities, and

spatial extensions. The decreased ISM could cause an enhancement on heat waves with

increased amplitudes, extents and intensities, while it has insignificant influence on the

spatial distributions and temporal variations. The responses of heat waves are generally

decreasing with the increasing ISM, controlled by different regimes in the surface soil

moisture-temperature relationship. Through enhanced sensible flux as well as reduced

latent cooling, the initial soil dryness locally strengthens the surface warming and the

further drying of the soil. The three heat waves were all dominated by high-pressure

systems in the mid-troposphere. The reduced ISM forces positive anomalies of

geopotential height at mid-troposphere and negative anomalies at lower levels, leading to

an enhanced thickness of the atmosphere. Such a thickened atmosphere can strengthen

the anomalous high-pressure systems, favoring the maintenance of severe heat waves.

This acts as a positive feedback between atmospheric circulation, surface warming, and

soil dryness.

Keywords: initial soil moisture, heat waves, WRF, soil moisture-temperature relationship,

land-atmosphere interaction

INTRODUCTION

Characterized by a period of consecutive days with abnormally high temperatures, heat waves
have been known as one of the typical extreme weather events across the world (Perkins,
2015). The severe 1995 Chicago heat wave, the 2003 European heat wave, and the 2010
Russian heat wave caused disastrous impacts on humans, socio-economic development and the
ecological environment (Whitman et al., 1997; Conti et al., 2005; Dole et al., 2011). For example,
the severe European heat wave in 2003 killed more than 25,000 people and caused enormous
economic losses (García-Herrera et al., 2010; Alexander, 2011). With continuing global warming,
such extreme heat wave events are expected to be more frequent and severe in the coming decades
(Meehl and Tebaldi, 2004).
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Great efforts have been made in understanding the underlying
mechanisms of heat waves, which is instrumental for the short-
term prediction of heat waves. It is widely accepted that
heat waves are generally dominated by persistent high-pressure
systems (e.g., Huth, 2000; Black et al., 2004; Tomczyk and Ewa,
2015). Under the control of blocking highs, warm air over mid-
high latitudes cannot mix with cold air and warm air builds up,
eventually causing the extreme warmth, such as the great heat
wave in Russia in 2010 (Matsueda, 2011). Besides the typical
blocking highs, anomalous high-pressure systems associated with
Rossby wave propagations are also favorable for sustaining a heat
wave (Pezza et al., 2012;Wang et al., 2017a). Although anomalous
high-pressure systems are a fundamental ingredient for a heat
wave to occur, the coupling with the land surface also plays
a crucial role (Fischer et al., 2007a,b; Teuling et al., 2010). In
general, soil moisture is mostly considered when investigating
the impacts of land surface processes (Fischer et al., 2007b;
Seneviratne et al., 2010). The impacts of soil moisture on surface
air temperature are mostly expected to be induced by its role
for evapotranspiration in soil moisture-limited regimes, depicted
in the relationship between soil moisture and evaporative
fraction (EF), the ratio of latent heat flux to the total available
energy (Seneviratne et al., 2010; Berg et al., 2014). In general,
characterized by EF, two evapotranspiration regimes exist. A soil
moisture-limited regime in which the available surface energy
is relatively abundant for evaporation or transpiration while
the content of soil moisture is limited (θ < θCRIT , see the
conceptual framework of Figure 5 in Seneviratne et al., 2010).
In this case, EF increases when the content of soil moisture
increases, and an energy-limited regime is one in which the soil
moisture is abundant (θ > θCRIT) and EF is independent of
the increasing soil moisture. Accordingly, three regimes of the
soil moisture-temperature relationship are obtained based on
the evapotranspiration regimes: the wet regime, the transitional
regime and the dry regime. In the wet regime (θ > θCRIT),
EF is independent of soil moisture. In the transitional regime
( θWILT ≤ θ ≤ θCRIT), EF reacts effectively to the changes
of soil moisture. In this case, the dryness of the soil results in
very low EF, with the constrained total energy used by the latent
heat flux and more energy available for sensible heating. Thus,
the near-surface air temperature would increase (Lorenz et al.,
2010; Seneviratne et al., 2010; Alexander, 2011). However, in
the dry regime (θ < θWILT), neither evapotranspiration will
take place nor will any feedback. On the other hand, in the soil
moisture-limited regime, the near-surface warming will amplify
decreases in soil moisture, which induces a positive feedback
cycle between atmospheric heating and further drying of soil
conditions (Fischer et al., 2007b; Alexander, 2011). Moreover,
the dry soil also favors the maintenance of upper-air anticyclonic
circulations (Fischer et al., 2007b; Zampieri et al., 2009). Dry soil
conditions along with persistent high-pressure systems would
amplify the soil moisture-temperature feedback and enhance
surface warming (Rohini et al., 2016).

The anomalies of soil moisture can last for weeks or even
months (Koster and Suarez, 2001; Hu and Feng, 2004). Such
long memory of the soil moisture and the resulting climate
persistence are important for the prediction of extreme climate

events like droughts and heat waves (Kim and Wang, 2007;
Lorenz et al., 2010). Various studies investigated the impacts
of soil moisture on temperatures through model simulations
(e.g., Hirschi, 2011; Zeng et al., 2014; Vogel et al., 2017). It
was reported that the model differences induced by initial soil
moisture were far more important than those induced by various
land surface physical parameterizations and the evolution of soil
moisture itself (Trier et al., 2008). The intrinsic impacts of initial
soil moisture on extreme temperatures have been revealed in
previous studies. Through a northward propagation, drought in
late spring from the Mediterranean regions can cause a further
increase of high temperatures during summer in continental
Europe (Zampieri et al., 2009). By perturbing the spring soil
moisture, Fischer et al. (2007b) showed that the loss of soil
moisture induced by precipitation deficit in preceding months
contributed to the exceptionally high temperature anomalies in
the European summer of 2003. Through numerical simulations,
Ferranti and Viterbo (2006) demonstrated that the atmospheric
response during the 2003 European summer to the initial soil
water conditions extended up to 2 months, greatly exceeding the
impact of the ocean boundary forcing.

Previous studies mostly concentrated on high temperatures
from the whole summer (June, July, and August), whereas
heat waves are usually defined as several consecutive days
with abnormally high temperatures, dominating a large area,
and characterized by different durations, impacted areas and
intensities (e.g., Ren et al., 2012; Wang et al., 2017b). The
impacts of initial soil moisture on the formation/occurrence
and development of heat wave events, specifically on their
characteristics including duration, impacted area and intensity,
have received limited attention. Therefore, in this study, we
focus on three extreme heat wave events in 2003, 2007, and
2013 in Eastern China, which are featured by different durations,
spatial extents, and intensities, and all caused serious damage
to the social economy (e.g., Tan et al., 2007; Sun X. et al.,
2014; Xia et al., 2016). We investigate the impacts of initial
soil moisture (hereafter ISM) on the heat wave characteristics
through sensitivity experiments using the Weather Research and
Forecast (WRF) model. In this study, heat waves are identified
based on the definition in Wang et al. (2017b). The detailed
information for the three heat waves will be given in section
Methods and Data. Section Methods and Data introduces the
methodology, data, and experimental design. Section Results
documents the results and analyses. The last section presents the
summary and conclusions of this research.

METHODS AND DATA

Study Area and the Three Heat Wave

Events
Under the control of a subtropical high in summer, eastern China
is vulnerable to frequent extreme high temperatures (Ding et al.,
2010; Sun Y. et al., 2014; Wang et al., 2017a). Moreover, the
heavy populations and the large urban areas in eastern China
exacerbate the impacts of heat waves on society and human
health (Freychet et al., 2017). More importantly, abundant
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observational meteorological data are accessible in eastern China.
Hence, this study aims to provide an insight into the effects of
ISM on temperature responses in eastern China and as well as a
broader region.

Extreme hot temperatures struck eastern China in the
summers of 2003, 2007, and 2013, and caused severe
consequences for society. The three high temperature events are
identified according to the heat wave definition fromWang et al.
(2017b), consisting of an absolute temperature metric of 35◦C,
a temporal duration of at least 3 days and a demanded spatial
extension with more than 20 neighbored stations, any two of
which are within a distance of 250 km. The three heat waves
began on July 2, July 3, and August 4 and lasted for 41, 40, and
15 days, respectively. The maximum daily surface temperatures
during the three heat wave processes were all beyond 40◦C. Their
detailed information is listed in Table 1.

Model and Experimental Design
In this study, the WRF model version 3.8 (Skamarock et al.,
2008) was utilized for the numerical simulations. The following
parameterizations were used: the two-stream correlated-k
distribution Rapid Radiative Transfer Model (RRTMG; Iacono
et al., 2008) for the radiation schemes, the Yonsei University
(YSU) boundary layer parameterization scheme (Hong et al.,
2006), the revised Monin–Obukhov surface layer (Jiménez et al.,
2012), the cloud microphysics of WRF Single-Moment 5-class
scheme (WSM5; Hong et al., 2004), the unified Noah land-
surface model (Chen and Dudhia, 2001) and the cumulus
parameterization based on the Kain–Fritsch scheme (Kain and
Fritsch, 1990). The simulation domain is shown in Figure 1 and
includes 300 × 300 grid points with a horizontal resolution of
9 km. The vertical resolution is 34 non-uniform layers with 50
hPa at the top of the atmospheric columns.

Following Vivoni et al. (2009), to vary the initial soil moisture
in WRF, we multiplied the initial soil moisture field by a factor
(α) ranging from 0.25 to 1.25 (i.e., 0.25, 0.50, 0.75, 1.00, and 1.25;
five sensitivity cases, from dry to wet condition). Compared to the
control run (CTL, and α = 1), simulations with α < 1 represent
dryer conditions while simulations with α > 1 represent wetter
conditions. For each of the heat wave events, five sensitivity
experiments were conducted with the modified ISM (in total 15
simulations). There are four soil layers (0–5, 5–25, 25–70, and 70–
150 cm thickness). The α factor is applied to the total volumetric
soil moisture content at each grid point for each soil layer. For
themodel’s spin up, five sensitivity simulations with different ISM

TABLE 1 | Information of the three heat wave events in 2003, 2007, and 2013.

Year Date The Maximum

daily

Tmax (◦C)

Duration

(days)

Location

2003 July 2 to August 11 43.2 41 Southeast China

2007 July 3 to August 11 41.4 40 Southeast China

2013 August 4 to August 18 42.7 15 Middle to lower

reaches of

Yangtze River

conditions were set up about 10 days before the beginning date of
each heat wave process (Table 1). Specifically, for the three heat
waves, the initial dates were June 21 in 2003, June 23 in 2007, and
July 12 in 2013.

The Data
The WRF simulations are driven by the National Centers for
Environmental Prediction (NCEP) Final (FNL) Operational
Global Analysis data (1◦ by 1◦ resolution) at 3 h intervals (00:00,
03:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 UTC) for
the initial and lateral meteorological boundary conditions. The
initial soil moisture data are derived from the Global Land
Data Assimilation System (GLDAS), which constrains multiple
land surface models with ground and satellite observation-based
datasets, with the goal of accurate simulation of water and energy
cycle states and fluxes (e.g., Syed et al., 2008).

According to Wang et al. (2017b), heat waves are defined
based on the maximum of daily surface air temperature (Tmax).
The daily observed Tmax from meteorological sites are used to
validate the WRF simulations. The dataset is provided by the
China Meteorological Administration (CMA). The locations of
observational stations are shown in Figure 1 (black dots). For
the simulations, we focus on the daily maximum of 2m surface
air temperature (T2m), which usually occurs at ∼14:00 or 17:00
Beijing Time (i.e., 06:00 and 09:00 UTC). To investigate the
anomalies of upper-level atmospheric circulations during heat
waves, a geopotential height of 500 hPa (H500) is used, derived
from the new Japanese 55-year Reanalysis (JRA-55) at 1.25◦ ×

1.25◦ resolution (Ebita et al., 2011).

RESULTS

Model Validation
In this section, we first evaluate the ability of the WRF model to
simulate the observed heat wave events, and then investigate the
impacts of changing ISM on the characteristics of the three heat
waves. Figure 2 shows the spatial distributions of the averaged
Tmax during the three heat wave periods in the observation and
in the five sensitivity simulations with different ISM conditions.
The model temperatures are interpolated into the observation
sites using the bilinear interpolation method. Heat waves in 2003
and 2007 dominated southeastern China (Figures 2A,G) and the
2013 heat wave was centered over the middle to lower reaches of
Yangtze River, with an averaged Tmax above 35◦C (Figure 2M).
For each of the three events (Figures 2B-F,H-L,N-R), the spatial
patterns of the simulated heat waves do not vary significantly to
different ISM conditions, whereas the magnitude of the averaged
Tmax and the spatial extension of high temperatures increase
gradually with decreasing ISM. In addition, it is noted that for the
three observed heat waves, the CTL simulations can reasonably
capture their spatial distributions but generally underestimate the
amplitudes of averaged Tmax (Figures 2E,K,Q).

The spatial correlations, biases in the number of high-
temperature stations with averaged Tmax higher than 35◦C
(simulations minus the observations), and the root mean
square errors (RMSEs) between the observed and the simulated
averaged Tmax in five sensitivity experiments for the three
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FIGURE 1 | Simulation domain and the observation sites (Black dots).

FIGURE 2 | The average daily Tmax (unit: ◦C) during the three heat waves in the observation (A,G,M), and in five sensitivity simulations initialized with different initial

soil moisture (B–F, H–L, N–R). The green box indicates the region (18◦–38◦N, 105◦–123◦E).

heat waves are given in Table 2. All the statistical values
herein and the following area-averaged results (e.g., in Figure 5)
are derived from the bounded region (105◦-125◦E, 18◦-38◦N)
in Figure 2 (green box), which apparently covers the major
regions of the three heat waves. For each of the three heat

waves, the spatial correlations between the averaged Tmax in
the observation and that in the sensitivity simulations with
different ISM conditions are of similar values, which are all
above 0.70 and significant at the 95% confidence level. The
results indicate that all the five sensitivity simulations are able
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TABLE 2 | The spatial correlations, the biases in the number of stations with

averaged Tmax higher than 35◦C (simulated results minus the observations) and

the RMSEs between the observed and the simulated averaged Tmax in five

sensitivity experiments for the three heat waves.

ISM(α)

Heat Waves
2003 2007 2013

Spatial Correlations 0.25 0.79 0.71 0.74

0.50 0.79 0.74 0.77

0.75 0.79 0.77 0.78

CTL 0.78 0.77 0.78

1.25 0.79 0.76 0.78

Biases in the number of

high temperatures

0.25 −17 5 21

0.50 −39 −30 1

0.75 −58 −53 −29

CTL −67 −55 −63

1.25 −68 −55 −86

RMSEs 0.25 2.15 2.44 2.76

0.50 2.20 2.18 2.34

0.75 2.44 2.29 2.34

1.00 2.68 2.50 2.80

1.25 2.82 2.65 3.20

to reproduce the spatial pattern of the observed heat waves.
However, biases are seen in the magnitudes and extensions
of heat waves between the observation and the simulations.
We can see that all three CTL simulations underestimate the
number of high temperatures (average exceeding 35◦C); in
other words, the extension of high temperatures for the three
observed heat waves are underestimated in the CTL simulations.
This potentially indicates a certain overestimation of surface
soil moisture with the GLDAS data, as Vivoni et al. (2009)
suggested that the soil moisture initializations toward the dryer
end (α < 1.0) are considered more realistic with respect to field
observations. For the three heat waves, the simulated number
of high temperatures decreases gradually with increasing ISM.
In addition, for the 2003 heat wave, the underestimation of
the number of high temperatures is found in all five sensitivity
simulations, indicating an overestimation of realistic surface
soil moisture existing in all five sensitivity simulations. For the
2007 heat wave, the underestimation of the number of high
temperatures is found in the four simulations with α from 1.25 to
0.50, but becomes negligible in the driest simulation (α = 0.25). A
similar phenomenon is found for the 2013 heat wave, whereby the
underestimation of high temperatures is seen for the simulations
with α from 1.25 to 0.75, whereas it becomes negligible in the
simulation with α = 0. 50 and turns into overestimation in the
simulation with α = 0.25. Such results indicate a transition from
overestimation to underestimation of the surface soil moisture.
For the spatial distributions of averaged Tmax for the three heat
waves in 2003, 2007, and 2013, the most realistic simulation
among the five sensitivity experiments with the highest spatial
correlation and the lowest RMSE is the simulation of α = 0.25,
0.50, and 0.50, respectively.

Figure 3 shows the scatterplot and linear trend of the averaged
Tmax and the surface soil moisture (0–5 cm) at the observational

sites in the bounded region (105◦-125◦E, 18◦-38◦N) during the
three heat waves. It is obvious that, overall, there is a decreasing
trend in the averaged Tmax, with the increasing surface soil
moisture for the three heat wave events (negative R-value in
Figures 3A–C). In addition, the decreasing trends of the averaged
Tmax decline gradually with increasing ISM in the 2003 and
2007 heat waves, implying a transition from the transitional
regime to the wet regime in the soil moisture-temperature
relationship (Figures 3A,B), whereas the decreasing rates of
high temperature in the 2013 heat wave are very significant in
all five simulations with different ISM conditions (Figure 3C).
Furthermore, the linear trends of the averaged Tmax in the five
sensitivity simulations for the 2013 heat wave are approximately
twice those for the 2003 and 2007 heat waves. Therefore, it can
be inferred that, with increasing ISM, the land surface in the 2003
and 2007 heat waves is more easily able to enter the wet regime
than that in the 2013 heat wave. The surface soil moisture in the
CTL simulations for the three heat waves is shown in Figure 4.
The averaged surface soil moisture from the CTL simulation for
the 2013 heat wave (Figure 4C) is apparently lower than that
from the CTL simulations of the 2003 and 2007 heat waves over
most of eastern China (Figures 4A,B), which strongly supports
our above supposition. Therefore, the impacts of soil moisture on
high temperatures on the CTL and wet simulations in the 2003
and 2007 heat waves should be obviously weaker compared to
those from the 2013 heat wave and will be discussed in detail in
the next.

To quantitatively characterize the daily variations of heat
waves, we define three heat wave indices: heat wave mean
temperature (HWMT), heat wave number (HWN) and heat wave
accumulated intensity (HWI). For a specific date during a heat
wave process, the HWMT means the area-averaged Tmax. The
HWN means the number of stations with Tmax higher than
35◦C. The HWI means the sum of deviations between Tmax and
the 35◦C threshold at all stations with Tmax higher than 35◦C.
The three indices are all calculated over the region (105◦-125◦E,
18◦-38◦N). Figure 5 exhibits the daily HWMT, HWN HWN,
and HWI in the observation and the five sensitivity simulations
with different ISM conditions, respectively. For the daily HWMT
in the 2003 heat wave (Figure 5A), the four simulations with
α ranging from 0.50 to 1.25 underestimate the daily HWMT
throughout the whole heat wave period, consistent with the
underestimation of the number of high temperatures in Table 2,
while the driest simulation with α = 0.25 overestimates the
daily HWMT during a short period of the heat wave. The
magnitude of daily HWMT generally decreases during the heat
wave period, with an increasing ISM of α ranging gradually from
0.25 to 1.25. On the other hand, all five sensitivity experiments
show high capacity to capture the temporal variability of the
daily HWMT, with temporal correlations higher than 0.85
(shown in Table 3). The results are similar for the daily HWN
and HWMI in the 2003 heat wave (Figures 5B,C). The five
sensitivity simulations with different ISM conditions show an
ability to characterize the daily evolutions of HWN and HWI,
with significant temporal correlations around 0.80 (Table 3).
However, the underestimations of HWN and HWI during
the heat wave period are also remarkable in the sensitivity
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FIGURE 3 | The scatterplot and linear trend between the average daily Tmax and the average daily mean surface soil moisture (0–5 cm) at the observational sites over

the region (18◦-38◦N, 105◦-123◦E) in the five sensitivity simulations with different ISM. (A–C) Represent the three heat wave events. The R values (unit: ◦C) in each

panel represent the overall linear trend (black font) and the individual linear trend (colored fonts) in each sensitivity simulation, respectively.

FIGURE 4 | The average surface soil moisture (0–5 cm, unit: m3m−3) at the CTL simulation during the three heat waves (A–C).

experiments, and the underestimations increase gradually along
with increasing ISM. The results indicate that the initial soil
moisture shows insignificant effects on the temporal variability
of heat waves, but pronouncedly affects their amplitudes, spatial
extensions and intensities.

For the 2007 heat wave, the CTL simulation shows an
underestimation for the daily HWMT throughout the heat wave
period, indicating an overestimation of the surface soil moisture.
Moreover, the three other simulations with α = 0.50, 0.75,
and 1.25 also demonstrate obvious underestimations of HWMT
throughout the whole heat wave period, whereas the driest
simulation with α = 0.25 overestimates the daily HWMT during
most of the heat wave period. Additionally, the magnitude of
daily HWMT in five sensitivity experiments decreases gradually,
with α ranging from 0.25 to 1.25. Particularly, all five simulations
with different ISM conditions can reasonably simulate the
temporal variability of daily HWMT for the 2007 heat wave, with

significant correlations above 0.75 (Table 3). Similar results are
found for the daily HWN and HWI during the 2007 heat wave
(Figures 5E,F). All five sensitivity experiments with different ISM
conditions can reasonably characterize the daily variations of
HWN and HWI, with significant temporal correlations mainly
above 0.6 and 0.4, respectively. Moreover, the CTL run and
the simulations of α = 0.50, 0.75 and 1.25 show apparent
underestimations of the HWN and HWI. The underestimations
are the worst in the CTL and the wet simulation with α =

1.25, which fails to reproduce the existence of high temperatures
above 35◦C at several dates of the heat wave period. The driest
simulation with α = 0.25 overestimates the daily HWN and HWI
during most of the heat wave period.

For the 2013 heat wave, the CTL simulation shows
obvious underestimations of the HWMT, HWN, and HWI
(Figures 5G–I). The wet simulation with α = 1.25 and the dry
simulation with α = 0.75 also underestimate the magnitude of
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FIGURE 5 | The daily variations of area-averaged HWMT(A,D,G), HWN (B,E,H), and HWI (C,F,I) over the region (18◦-38◦N, 105◦-123◦E) in the observation and in

the five sensitivity simulations during the three heat waves.

TABLE 3 | The temporal correlations between the observed and the simulated daily heat wave indices initialized with different soil moisture (α).

ISM(α)

Heat Waves 2003 2007 2013

HWMT HWN HWI HWMT HWN HWI HWMT HWN HWI

0.25 0.85 0.83 0.85 0.78 0.57 0.38 0.71 0.74 0.67

0.50 0.91 0.87 0.88 0.81 0.67 0.41 0.64 0.72 0.71

0.75 0.91 0.82 0.83 0.87 0.72 0.47 0.65 0.77 0.75

CTL 0.93 0.79 0.79 0.90 0.70 0.45 0.69 0.90 0.76

1.25 0.94 0.77 0.78 0.92 0.66 0.48 0.68 0.62 0.57

HWMT, HWM and HWI, whereas the dry simulation with α =

0.50 shows both underestimations and overestimations for the
three heat wave indices during the heat wave period, and the
driest simulation with α = 0.25 tends to overestimate these
heat wave characteristics during most of the heat wave period.
Moreover, the temporal correlations between the simulated and
observed daily HWMT, HWN and HWI are mainly above 0.60 in
the five sensitivity experiments for the 2013 heat wave, significant
at the 95% confidence level.

Sensitivity of Heat Waves to Soil Moisture

Initialization
It was shown above that the CTL simulation is able to
capture the spatial distributions and daily evolutions for each
of the three heat waves but apparently underestimates their
amplitudes, intensities and spatial extensions. Different ISM
conditions show insignificant effects on the spatial distributions

and temporal variations of heat waves, but they pronouncedly
affect the magnitudes of high temperatures, spatial extensions
and intensities. In this section, we will discuss the response of
high temperatures to the different ISM conditions in detail.

Figure 6 illustrates the changes of averaged Tmax during the
three heat waves caused by a decrease in the initial soil moisture
between the two contiguous simulations, represented by 0.25–
0.50 (α), 0.50–0.75 (α), 0.75–1.00 (α), 1.00–1.25 (α). During
the three heat wave processes (three rows), prominent increases
in Tmax with reduced initial soil moisture are mainly located
within the heat wave territories. It is worth mentioning that
the increases in Tmax imply an increase in both the amplitude
and the extent of a heat wave, as shown in Figure 2. Moreover,
for the three heat waves, the magnitudes and spatial extents of
the temperature increases induced by reduced ISM are generally
higher in 0.25–0.50 (α) and 0.50–0.75 (α) than those in 0.75–
1.00 (α) and 1.00–1.25 (α), with the exception of the 2013
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FIGURE 6 | The spatial distributions of changes in average daily Tmax for the three heat waves, with decreased initial soil moisture in two contiguous simulations

(A–D for the 2003 heat wave, E–H for the 2007 heat wave and I–L for the 2013 heat wave).

heat wave, where the spatial extent of temperature changes
in 0.75–1.00 (α) is comparable or slightly larger than that of
temperature changes in the 0.25–0.50 (α). The root mean square
deviations (RMSDs) for the averaged Tmax differences between
two contiguous simulations over the region (18◦-38◦N, 105◦-
123◦E) are shown in Table 4. Consistent with those depicted
in Figure 6, the RMSDs in 0.25–0.50 (α) and 0.50–0.75 (α) are
higher than those in 0.75–1.00 (α) and 1.00–1.25 (α) in the 2003
and 2007 heat waves, with the exception that the RMSD in 0.75–
1.00 (α) is slightly higher than that in 0.25–0.50 (α) in the 2013
heat wave. As mentioned above, with increasing soil moisture,
the soil moisture-temperature relationship during the three heat
waves experiences a transition from the transitional regime to
the wet regime, in which EF and surface temperature become
less sensitive to the change of soil moisture content. Therefore,
the changes in the averaged Tmax caused by reduced initial soil
moisture generally decrease from dryer to wetter simulations.
Additionally, as addressed above, the CTL and wet simulations
for the 2003 and 2007 heat waves are more likely to enter the wet
regime than those for the 2013 heat wave. Thus, the responses of
high temperatures to the ISM conditions decreases in the 0.75–
1.00 (α) and 1.00–1.25 (α) in the 2003 and 2007 heat waves
are much weaker or negligible (Figures 6C,D,G,H) compared to
those in the 2013 heat wave (Figures 6K,L).

TABLE 4 | The RMSD for the averaged Tmax between two contiguous sensitivity

simulations with different ISM (α) over the region (18◦-38◦N, 105◦-123◦E).

ISM(α)

Heat Waves
2003 2007 2013

0.25–0.50 0.70 1.10 1.04

0.50–0.75 0.76 0.76 1.40

0.75–1.00 0.47 0.51 1.07

1.00–1.25 0.31 0.27 0.64

Figure 7 demonstrates the daily variations of the changes in
HWMT, HWN, and HWI caused by ISM decreases between two
consecutive simulations. Consistent with the results in Figure 6,
for the three heat waves, the daily HWMT, HWN, and HWI
changes caused by the ISM reductions are mostly higher in 0.25–
0.50 (α) and 0.50–0.75 (α) than those in 0.75–1.00 (α) and 1.00–
1.25 (α), with the exception that the changes of HWMT and
HWN in 0.75–1.00 (α) are relatively higher than those in 0.25–
0.50 (α) at several dates during the 2013 heat wave. In particular,
the changes of HWMT, HWN, and HWI in the 2003 and 2007
heat waves (Figures 7A–F), and the changes of HWMT in the
2013 heat wave (Figure 7G) are negligible (close to zero) in the
pairs of simulations [1.00–1.25 (α)]. Therefore, for the 2003 and
2007 heat waves, the correlations of all three heat wave indices
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FIGURE 7 | The daily variations of the changes in area-averaged HWMT (A,D,G), HWN (B,E,H) and HWI (C,F,I) over the region (18◦-38◦N, 105◦-123◦E) caused by

initial soil moisture decreases in two contiguous simulations.

with the observations are of similar values in the CTL simulation
and the wetter simulation, with α = 1.25 (Table 3). The same
happens for the HWMT for the 2013 heat waves (Table 3).
However, the changes in heat wave indices induced by decreased
ISM cannot be ignored in the dryer simulations (Figure 7), which
are very likely to influence the temporal variations of heat wave
indices. It’s noted that compared with the CTL simulations,
the correlations of HWMT in the 2003 heat wave and almost
all the three heat wave indices from the 2007 and 2013 heat
waves become lower in the dryer simulations with the decreasing
ISM (Table 3).

In short, the above results demonstrate that different
ISM conditions can significantly influence the amplitudes,
spatial extensions, and intensities of heat wave events,
whereas they show relatively fewer impacts on their spatial
distributions and temporal variations. The response of
heat waves to changing ISM is dominated by the different
regimes in the soil moisture-temperature relationship,
characterized by the varying behaviors of the evaporative
fraction (Seneviratne et al., 2010).

It is increasingly argued that the internal variability (IV)
of a regional model should be considered in the assessment
of a climate change signal (Giorgi and Bi, 2000; Christensen
et al., 2001). Here, to ascertain whether the IV has impacts
on the high temperature changes induced by different ISM
conditions, we designed a set of sensitivity experiments with
a perturbation in their initial dates. That is, for each heat
wave event, nine simulations with the more realistic surface soil

moisture condition (α = 0.5) were conducted with a varying
initial date, i.e., a lead time of 8 to 0 days to the CTL simulation.
For example, for the 2003 heat wave, with α fixed at 0.5, the
nine sensitivity experiments were initialized from 13 to 21 June
2003, respectively. Comparative analyses on the nine simulations
enable us to assess the impacts of IV. Taking the heat wave
in 2003 for example, Figure S1 exhibits the averaged (a-i) and
maximum daily Tmax (j) during the heat wave period (Table 1)
in the nine simulations with different initial dates. It was found
that IV has insignificant effects on the spatial and temporal
variations of high temperatures, as the spatial pattern and
daily evolution of maximum Tmax show negligible differences
among the nine simulations. Thus, it can be concluded that
the results of the impacts of ISM on the three heat waves
are robust.

Explanations for the Sensitivity
The above results provide robust evidence for the impacts
of initial soil moisture on the three observed heat waves
with different durations, extensions and intensities. In the
following part, systematical analyses are made to discuss the
related mechanisms.

Soil Moisture Changes
Figure 8 shows the spatial patterns for the decreases in averaged
daily surface soil moisture (0–5cm) between two contiguous
simulations [i.e., 0.25–0.50(α), 0.50–0.75 (α), 0.75–1.00 (α),
1.00–1.25 (α)] during the three heat wave events.We focus on the
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surface soil moisture (first 5 cm), as it is more strongly correlated
to heat fluxes than the total column moisture (Berg et al., 2014).
The soil moisture changes in the other soil layers (i.e., at 5–25 cm,
25–70 cm, and 70–150 cm thickness) show similar patterns to
the surface layer but with higher magnitudes (Figures S2–S4).
For the three heat waves (three rows in Figure 8), the spatial
distributions of the decreases in soil moisture coincide with
those of the increases in Tmax (Figure 6), consistent with
the soil moisture-temperature feedback loop whereby higher
temperatures tend to cause more evaporation demand, and thus
lead to further drying of the soil (Seneviratne et al., 2010;
Alexander, 2011). Additionally, due to the coupling with the
upper-level high-pressure system, the positive feedback between
surface soil moisture loss, evapotranspiration decrease, and
temperature increase can be amplified (Fischer et al., 2007a).
Figures 9A–C show the anomalies of averaged H500 during
the three heat waves (removing the summer climatology during
1971–2000) with JRA-55 reanalysis. It is clear that in the mid-
troposphere, the three heat waves are dominated by positive
H500 anomalies, which may strengthen the subtropical high.
The anomalous upper-level circulations favor the maintenance
of heat wave events and enhance the positive feedback
between surface soil moisture loss and temperature increases
(Fischer et al., 2007a; Pezza et al., 2012).

The corresponding daily variations of the regional averaged
surface soil moisture differences between the two contiguous
simulations during the three heat waves are shown in Figure 10.
It is found that the surface soil moisture differences in the pair
of simulations 1.00–1.25 (α) are clearly lower than the other
pairs of simulations for the three heat waves, especially for the
2003 and 2007 heat waves (Figures 10A,B). Because of the wetter
land surface in the 2003 and 2007 heat waves compared to the
2013 heat wave (Figure 4), the wet experiments for the 2003
and 2007 heat waves are more likely to reach the water-holding
capacity. In this case, the soil moisture would be instantaneously
removed from the grid box through runoff. Besides, the surface
soil moisture differences in the pair of simulations 0.25–0.50 (α)
are generally lower than those in the pair of simulations 0.50–
0.75 (α) and 0.75–1.00 (α) for the three heat waves, even lower
than the 1.25–1.00 (α) in the 2013 heat wave. This is possibly
due to the precipitation during the three heat waves, captured
in the model (Figure S5). Previous studies have suggested that
the sensitivity of runoff with respect to soil moisture decreases
with lower soil moisture content (i.e., Seneviratne et al., 2006).
Accordingly, the precipitation-induced soil moisture anomalies
increase with lower soil moisture content, which weakens the soil
moisture differences caused by imposed perturbation in dryer
simulations [i.e., 0.25–0.50 (α)]. Such a phenomenon is also seen
in Figure 8.

Heat Flux Response
Most of the inferred impacts of soil moisture for the climate
system are induced by its role for evapotranspiration E (or latent
heat flux λE, where λ is the latent heat of vaporization) in soil
moisture-limited regimes (e.g., Seneviratne and Stöckli, 2008;
Seneviratne et al., 2010). The decreased evaporation with reduced
soil moisture would lead to increased air temperature through

affecting the land surface energy. According to Seneviratne et al.
(2010), the land surface energy balance can be expressed as:

Rn = λE+ SH + G (1)

where Rn is the net radiation, λE is the latent heat flux, SH is the
sensible heat flux, and G is the ground heat flux at the surface.
The net radiation Rn is defined as follows:

Rn = SWin − SWout + LWin − LWout (2)

where the SWin represents the incoming shortwave radiation,
SWout is the outgoing shortwave radiation (equals to
SWin ∗ λ, where λ is the albedo), the LWin is the incoming
longwave radiation, and LWoutis the outgoing longwave
radiation. LWout from the surface is εσT4

− (1− ε) LWin, sum
of the surface emission and reflected down-welling long wave
radiation incident on the surface. ε is the emissivity of the land
surface. σ and T refer to the Stefan-Boltzmann constant (5.67
× 10−8Wm−2K−4) and land surface temperature, respectively.
Therefore, the land surface energy balance can be rewritten as:

ǫσT4
= (1− λ)SWin + εLWin − λE− SH − G (3)

Equation (3) demonstrates that soil moisture plays a key role for
the land surface energy balance and thus for the changes of land
surface temperature through its impacts on the energy partioning
at the surface. Therefore, the relative contribution of each item
in the right hand of Equation (3) for the changes of surface air
temperature can be obtained through analyzing their response to
soil moisture.

Taking the 2013 heat wave as an example, Figure 11 shows
the changes of each energy component in Equation (3) caused
by decreases in soil moisture between two dry simulations [0.25–
0.50(α)]. The LH and G are multiplied by−1 for the convenience
of comparison. It is demonstrated that the SWin shows few
changes over the heat wave territory but a negative tendency
south of the heat wave territory (Figure 11A). The LWin shows
positive changes over the heat wave territory (Figure 11B) while
its magnitude is much less than the LH changes (Figure 11C).
The deficit of LH over heat wave territory can be largely
compensated by increased SH (Figure 11D). Compared with the
other energy components, the G shows insignificant changes over
the research domain when soil moisture decreases (Figure 11E).
Therefore, the results show that the impacts of soil moisture
on the land surface energy balance are effectuated mainly by
affecting the partioning of LH and SH. The soil moisture loss can
limit the total energy used by the latent heat flux, andmore energy
is available for sensible heating. The increased SH enables the
warming of the near-surface atmosphere (shown in Figure 6I),
accompanied by increased LWout over the heat wave territory
(Figure 11F). It should be noted that the results are similar for
the heat waves in 2003 and 2007. This suggests that the changes
in Tmax (Figure 6) can be reasonably well-explained by the
changes in land surface energy balance, induced by initial soil
moisture decreases.

Furthermore, we investigate the temporal variations of
regionally averaged LH and SH changes caused by the ISM
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FIGURE 8 | Same as in Figure 6 but for the average daily mean surface soil moisture (0–5cm: unit: m3m−3) during the three heat waves (A–D for the 2003 heat

wave, E–H for the 2007 heat wave, and I–L for the 2013 heat wave).

FIGURE 9 | The anomalies (units: m, shading) and the average of H500 (units: m, contour) during the three heat waves (A–C) in JRA-55 reanalysis (removing the

summer climatology during 1971–2000).
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FIGURE 10 | Same as in Figure 7, but for daily mean surface soil moisture (0–5cm, unit: m3m−3). (A–C) Represent the three heat wave events.

decreases between two contiguous simulations during the three
heat waves (Figure 12). The LH changes are multiplied by −1
for the convenience of comparison. For the three heat waves,
the changes in LH and SH are higher in 0.25–0.50 (α) and
0.50–0.75(α), followed by the changes in 0.75–1.00(α), and the
changes in 1.00–1.25(α) are the least, indicating the transition
from a transitional regime to the wet regime in the land surface.
Additionally, the spatial correlations between the changes of
daily LH/SH and the changes of daily Tmax induced by reduced
ISM are mainly significant and of higher values in the pairs
of simulations 0.25–0.50 (α) and 0.50–0.75(α) than those in

0.75–1.00(α) and 1.00–1.25(α) during the three heat waves (not
shown). The results indicate that the imposed impacts of ISM
on high temperatures through affecting the land surface energy
balance are weakened over wetter land surfaces.

Atmospheric Circulation Response
It has been demonstrated that high-pressure systems dominated
eastern China during the three heat waves (Figure 9). Moreover,
soil conditions are able to influence the continental-scale
atmosphere circulation, leading to the domination of extreme
high temperature events (Ferranti and Viterbo, 2006; Fischer
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FIGURE 11 | Changes in average SWin (A), LWin (B), LH (C), SH (D), G (E), and LWout (F) during the 2013 heat wave caused by soil moisture reduction

[0.25–0.50(α)].

FIGURE 12 | Same as in Figure 7, but for the daily mean LH (A,C,E) and SH (B,D,F).

et al., 2007b). Here, to broadly represent the response of
atmospheric circulation to the initial soil moisture, Figure 13
shows the 925 hPa (H925) and H500 anomalies caused by
initial soil moisture reduction between the very dry and
wet simulations [0.25–1.25 (α)]. It is shown that the soil
moisture affects geopotential height from the surface to the
mid-troposphere. With reduced ISM, the H925 is substantially
reduced during each of the three heat waves, with varying
magnitudes. The shape and location of the anomaly corresponds
well to the changes in temperature shown in Figure 4,
implying the existence of a surface heat low caused by strong
surface heating (Ferranti and Viterbo, 2006; Fischer et al.,

2007b). The expanded air induced by surface heating lifts
the pressure levels in the middle and upper troposphere
(Zeng et al., 2014). As shown in Figures 13A–C, H500 is
generally enhanced by reduced initial soil moisture, with positive
anomalies above the location of the surface heat low for
the three heat waves. In turn, the enhanced thickness of
the atmosphere from the surface to upper levels associated
with soil dryness may strengthen the anomalous circulation
pattern (Figure 9), and favor local warming (Figure 6) and
the further drying of the soil, implying a positive feedback
mechanism between soil moisture, upper-level circulation and
surface temperatures (Fischer et al., 2007a).
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FIGURE 13 | The differences of average daily H500 and H925 (units: m) between the driest and wettest simulations [0.25–1.25 (α)] during the three heat waves (A–C).

SUMMARY AND CONCLUSIONS

In this study, we investigated the impacts of initial soil moisture
on the three severe observed heat wave events in 2003, 2007,
and 2013 through WRF simulations. The observed heat waves in
2003 and 2007 dominated over southeastern China and the 2013
heat wave was centered over the middle and lower reaches of the
Yangtze River. Results show that the CTL simulation is able to
reproduce the spatial distributions and the daily evolutions for
each of the three heat waves but apparently underestimates their
amplitudes, intensities, and spatial extensions. Different ISM
contents show insignificant impacts on the spatial distributions
and temporal variations of heat waves but pronouncedly affect
their magnitudes, spatial extensions, and intensities. Specifically,
the average daily Tmax in the three heat waves increases
gradually with alongside decreasing ISM. During the heat wave
periods, the daily HWMT, HWN, and HWI show apparent
increases with the decreased initial soil moisture. In addition,
the responses of heat waves are decline gradually with increasing
soil moisture, implying a transition from the transitional regime
to the wet regime in the soil moisture-temperature relationship.
The internal variability in the regional climate model shows
insignificant effects on the spatial and temporal variations of
high temperatures. Thus, it is concluded that the analyses of the
impacts of ISM on the three heat waves are robust.

To explain the sensitivity of the three heat waves to ISM,
we investigated the responses of land surface energy and
atmospheric circulations to the different ISM contents. Results
show that the surface energy balance, especially the partitioning
of LH and SH flux, is changed by different ISM contents. With

decreased ISM, LH is reduced, and the decrease of energy is
compensated by the increased SH, which leads to near-surface
warming and further dryness of land. However, such impacts are
weakened over the wetter land surface.

The three heat waves were all dominated by anomalous high-
pressure systems. The decreased soil moisture may enhance a
positive anomaly of geopotential height at the upper levels and
thus make the anomalous pattern more persistent. However, a
negative anomaly is usually forced over the lower levels due to
the strong surface heating. Thus, the thickness of the associated
atmosphere is increased from the surface to upper levels. Such a
thickened atmosphere associated with soil moisture dryness will
further strengthen the local warming and drying.
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The history of ideas, which lead to the now matured concept of empirical downscaling,

with various technical procedures, is rooted in two concepts, that of synoptic climatology

and that of spatial interpolation in a phase space. In the former case, the basic idea is to

estimate from a synoptic weather map the regional details, and to assemble these details

into a regional climatology. In the other approach, a shortcut is made, in that samples of

(monthly, seasonal, or annual) large-scale dynamical statistics (i.e., climate) are linked to

a sample of local statistics of some variables of interest.

Keywords: downscaling, spatial interpolation, synoptic dynamics, history of ideas, empirical downscaling

ROOTS

When talking about “downscaling,” a reference is made to the observation that it is possible to
estimate small-scale states from the large-scale state. This expectation is included in all dynamical
models, which describe the dynamics of the atmosphere and the ocean. The unavoidable truncation
of the description, be it a grid point space or in a Galerkin (spectral) formulation, leads to
disregarding the dynamics of unresolved scales. The concept, expressed in scales, is demonstrated
in Figure 1. However, those unresolved scales, such as the boundary layer turbulence, are essential
for the correct formation of the large scales. This seeming paradox is, however, routinely overcome
by the use of “parametrizations,” which is an empirically informed (and possibly dynamically
motivated) shortcut to condition the expected influence of the small scales on the large scales, by
the state of the large-scales themselves. Thus, the large-scale somehow “knows” with which small
scales it is associated.

This observation was the key for modern weather forecasting, as was expressed by Starr (1942):

“The General Nature of Weather Forecasting. The general problem of forecasting weather Conditions

may be subdivided conveniently into two parts. In the first place, it is necessary to predict the state of

motion of the atmosphere in the future; and, secondly, it is necessary to interpret this expected state

of motion in terms of the actual weather which it will produce at various localities. The first of these

problems is essentially of a dynamic nature, inasmuch as it concerns itself with the mechanics of the

motion of a fluid. The second problem involves a large number of details because, under exactly similar

conditions of motion, different weather types may occur, depending upon the temperature of the air

involved, the moisture content of the, air, and a host of, local influences’.”

First ideas along the lines of this article were presented in a conference proceeding by Von Storch
(1999).

It may be useful to define, what we mean with the word “downscaling,” and the “attributes”
empirical” and “dynamical.” The basic idea of downscaling is the observation that in amny case,
the statistics of variables of interest at smaller scales may be skillfully estimated by relating it to
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the state of larger scales. Thus, the state of large sclaes becomes
the “predictor,” or maybe better: the “conditioner” of the smaller
scale statistics. The downscaling is empirical, when the link is
empirically determined, in particular by fitting statistical models;
it is dynamical, when the link is established by process-based
models, in particular limited area models of the hydro- and
thermodynamics of the atmosphere or the ocean. The main focus
of our article is on the empirical part, but the dynamical one is
also dealt with.

The purpose of this article is to present the roots of ideas,
which were used to build the concept of downscaling, namely
synoptic climatology and spatial interpolation. As such, the
article dos not present new ideas of how to do downscaling,
nor an improved systematic of the various avenues available to
do downscaling. Instead it is an account of the history of ideas
behind something like an “industry” in climate sciences, which
began with first publications in the early 1990s, but exploited
earlier work, such as that of the above-mentioned Victor Starr.

The technical aspects of implementing downscaling is subject
to books and articles in encyclopedias, as will is listed below.

Empirical Procedures
The term “downscaling” was introduced by von Storch et al.
(1991)—it refers to a statistical approach that relates statistics of
large scales to statistics of small scales, or impacts

SCt = F(LCt ,η
s
t) (1)

with small scale climate states SCt , large-sale climate states LCt ,
and small-scale physiographic details η

S
t , which are external

to the dynamics. The superscript C refers to “climate,” and F
represents a statistical model. This model, possibly based on a
phenomenological motivation, is fitted to recorded samples of
the statistics of the large scales and the small scales (or impacts).
F can take various forms, but it is always a kind of interpolated
map, with LCt as coordinates (more on this later). The time t
is no longer a time instance, but represents monthly or annual
means. For early reviews, refer to von Storch et al. (2000a) or
Zorita and von Storch (1997).

The link (2) is not a direct dynamical link, i.e., it may be
that the large-scale “predictor,” say the monthly mean intensity of
westerly, has nothing directly to do with the forming of the state
of the predictand, such as the height of storm surges at a certain
location. Instead the link exploits the empirically derived fact that
in months with on average stronger westerly winds, higher storm
surges are observed in Cuxhaven (by referring to a later example).
The main wind does nothing with the water, but embedded in an
intensified westerly wind, more and heavier storms travel. And
these, the embedded storms, cause the accumulation of coastal
waters (von Storch and Reichardt, 1997).

This indirect statistical link can be more explicitly resolved
by including in SCt not only the expected mean of the small-
scale variables (conditioned on the large-scale flow), but instead
parameters that describe a full probability distribution or a
stochastic process. These parameters are the ones that are
conditioned on the large-scale dynamics (Wilby et al., 1999, 2002;
Busuioc and von Storch, 2003).

In the following sections The Interpolation Problem and
Example: Fitting surfaces, we address and illustrate the concept
of extending a cloud of data into a mapping, in case of a 2-
dimensional problem a surface, by interpolation. Before doing so
we discuss the closely related concept of dynamical downscaling.

Dynamical Procedures
Empirical downscaling is related to dynamical downscaling,
which grew from limited area modeling. However, in the
conventional set-up this latter procedure is nor really
“downscaling,” i.e., deriving estimates of smaller-scale states
from larger-sale states, but all scales along a lateral boundary
zone. The introduction of large-scale constraints overcame this
limitation, and allowed eventually global dynamical downscaling.

This principle describes downscaling “weather.” In a formal
nutshell, it may be expressed as

Swt = M(Lwt ,η
s
t) (2)

With the large-scale weather state Lwt , the small-scale weather
state Swt, and some physiographic details η

s
t at small scales, which

are external to the dynamics.M represents a dynamical model.
A “climate” downscaling may be obtained by applying the

model (2) repeatedly to a sufficiently large number of large-
scale states, which sample the “climate” (the statistics of weather)
sufficiently completely.

In a pure form, this concept was implemented by the
stochastic-dynamic method [SDM; e.g., (Frey-Buness et al.,
1995)], which ran a limited area model covering, for instance, the
Alps with a set of characteristic weather variables, such as wind
direction or vertical stability. This approach was computationally
efficient, as a large number of (short term) simulations were
feasible, even if a very high resolution was as implemented.

Later this concept was replaced by running regular “limited
area models” (LAM, Dickinson et al., 1989), originally derived
from regional atmospheric forecast models. These models, forced
along the lateral boundaries with time-variable atmospheric
states (and lower boundary values), were run for sufficiently long
time, so that statistics could be derived from the small-scales
simulated by the LAM. The LAMs replaced the SDM method
after more and more computing time became available, and
the heavy computational costs needed for running LAMs for
extended times became affordable.

Dynamical downscaling has been studied and extensively
pursued in big internationally coordinated projects, such as the
the European projects PRUDENCE (Christensen et al., 2002)
and ENSEMBLES (Christensen et al., 2007) or the international
CORDEX (Giorgi and Gutowski, 2015; Souverijns et al., 2019).

In the beginning the LAM method was not labeled as
“downscaling,” and indeed it does not represent a downscaling
in a strict sense—the model does not process given large-scale
states, but all scales along a narrow boundary (“sponge”) zone.
A consequence is that the state in the interior is not uniquely
determined by the boundary values—a mathematical fact long
known. If the area is relatively small, and the region is well-
flushed (i.e., disturbances travel quickly through the region, as
is the case with most mid-latitude regions), multiple solutions
rarely emerge. However, if the region is large, say covering the
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FIGURE 1 | Distribution of atmospheric dynamical processes in the weather system, sorted according to spatial and temporal scales. The stippled part, with small

scale processes, is usually not explicitly described in models of the system, but “parametrized.” von Storch and Zwiers (1999); ©Cambridge University Press.

entire contiguous US, then the steering of the interior state by
the boundaries becomes weak (Castro and Pielke, 2004) and the
model shows often tendencies of “divergence in phase space.”

Much later, a truly downscaling methodology was developed
by introducing a large-scale constraint (e.g., scale-dependent
spectral nudging; Waldron et al., 1996; von Storch et al., 2000b)
into the LAMs; with this modification, the model was no longer
used to solve a boundary value problem but as a data assimilation
scheme, which blended dynamical knowledge (the equations of
motions etc.) with empirical knowledge (the large-scale state).
The success of doing so was illustrated by the case of the
contiguous US (Rockel et al., 2008).

Even later, the obvious extension of using the large-scale
constraint in a global model (Yoshimura and Kananitsu, 2008;
Schubert-Frisius et al., 2017; von Storch et al., 2017) was
implemented, which then generates details in all regional states,
consistently with the large-scale (global) state. This cannot be
done with regular unconstrained global models (GCMs), because
there is no way of enforcing a particular large-scale state.
This illustrates that conventional unconstrained LAMs are not
really “downscaling.”

State of the Art
Downscaling has become a household term and hardly needs
an explanation when used in scientific papers and reports.
Encyclopedias, as well as similar collections of articles, feature
accounts of the concept and issues (Rummukainen, 2009,
2015; Wilks, 2010; Ekström et al., 2015; Benestad, 2016), and

books have been published (Benestad et al., 2008; Maraun and
Widmann, 2018).

While (2) describes “weather downscaling,” in most cases
by exploiting dynamical models, the relationship (1) represents
“climate downscaling,” which by using empirical links relates a
predictand to a predictor. The advantage of methods based on (2)
is that they may be better for studying so far unobserved states,
assuming that the considered processes describe the dynamics
of the unobserved states well, while (1) allows building links
between variables which can hardly be linked dynamically, such
as winter mean temperatures and the timing of flowering of a
plant (Maak and von Storch, 1997).

THE INTERPOLATION PROBLEM

Today, we are used to present spatial distributions as
geographical maps, implicitly assuming that we would have
data at all locations—but we have only data at some locations;
the rest is achieved by spatial interpolation. It was Alexander von
Humboldt, who pioneered this practice in 1817 (e.g., Knobloch,
2018). Humboldt himself saw the introduction of the concept
as one of his major achievements (details: Knobloch, p. 21). He
explained in a 1853 book: “Kann man verwickelte Erscheinungen
nicht auf eine allgemeine Theorie zurückführen, so ist es schon
ein Gewinn, wenn man das erreicht, die Zahlen-Verhältnisse
zu bestimmen, durch welche eine große Anzahl zerstreuter
Beobachtungen miteinander verknüpft werden können, und
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den Einfluß lokaler Ursachen der Störung rein empirischen
Gesetzen zu unterwerfen.“ 1 (Humboldt 1853, S. 207; quoted after
Knobloch, 2018).

Humboldt named these lines “isotherms.” Von Storch
(1999) noted: “These contour lines chiefly served the purpose of
visualizing the quantitative data. Inside the 20 degree isotherm all
stations report temperature larger than 20 degrees, whereas outside
the area enclosed by this isoline the temperature at all stations
would be less than 20 degrees. The isotherm itself is imaginary;
in principle there is such a line, but it can be determined only
approximately; it is the art of spatial interpolation to describe this
unknown unobservable line.”

Obviously, the concept can, and was generalized to show
“isolines” of other geophysical quantities, such as frequency of
winds with gale speeds or amounts of rainfall. Prominent names
were Vladimir Köppen and his coworker Rudolf Geiger, who
presented their climate classification maps in this way.

However, whenmore andmore mathematical thinking spread
in the scientific community, the link to geographical maps
weakened, and more general coordinates were introduced. Von
Storch (1999) introduced as an example Osborn’s et al. (1999)
analysis of precipitation in Central England given as a function
of vorticity and flow direction (Figure 2). We use this example
here not because of specific physical interest—this has been dealt
with in the original paper by Osborn et al. (1999)—but because it
allows to transparently and imply illustrate the issues.

Of course, continuously distributed data did not exit for
preparing this map; instead the limited number of scattered data
points were binned into a finite number of boxes, and after
interpolation isolines were plotted. Figure 2 informs that a value
of −2.5 mm/day for flow strength of 20 m/s and a flow direction
of 100◦ is the mean anomaly (difference from long termmean) of
precipitation amounts across all available reports on days with a
flow strength of about 20 m/s and a flow direction of about 100◦.

Figure 2 shows a 2-dimensional representation, as
geographical maps do. But once more general coordinates
were introduced, the generalization to more dimensions became
possible (even though the graphical presentation is lost, when
four and more dimensions are employed).

Von Storch (1999) formalized the concept by asking for
an interpolation of K data points, labeled as Gk at “locations”
xk = (xk1, . . . x

k
n) in an n-dimensional space. The result of the

interpolation is a “surface” I, with values for all points x =

(x1, . . . xn) in the n-dimensional space, with the property
that the difference of this surface at the given data points
is limited by some values, say || I(xk)—Gk || < δ. The
maximum accepted deviation δ is in most cases zero. In case
of kriging, when a “nugget effect” is considered, δ may is non-
zero (Wackernagel, 1995).

Implicitly it is assumed that there is a “true” surface I, with
accurate manifestations Gk

= I(xk) at the locations xk. This is
meaningful in traditional geographical problems, but in some

1“If complex phenomena cannot be explained by a general theory, then a

description is helpful, how a large number of scattered observations are

interrelated, and to explain deviations by local empirically formulated causes.

FIGURE 2 | Mean precipitation anomalies (i.e., deviations from the long term

mean; in mm/day) in Central England given as function of flow direction

(degree) and flow strength (m/s). From Osborn et al., 1999; © Inter-Research

1999.

cases Gk may be considered a random realization of I(xk)—
for instance, when the data are collected during different times,
and the distribution varies in randomly in time. Then I may
represent the localized expectation of G, i.e., I(x) = E(G|x), with
the expectation operator E.

In Figure 2 Middle England precipitation is presented as
being determined by direction and strength, but there are
certainly other factors—thus, precipitation is not determined by
the two considered factors, but conditioned, in a stochastic sense.

Von Storch (1999) notes that “the result of the interpolation
is an approximate or estimated surface IE, which differs to some
extent from the “true” surface of conditional expectations. The
purpose of the spatial interpolation is the determination of the
surface I(x) and not the reproduction of the pointsGk. Therefore,
the success of IE as an estimator of I may be determined only
by comparing the estimates IE(x) with the additionalG(x)-values
at a number of data points x, which have not been used in the
estimation process.”

EXAMPLE: FITTING SURFACES

The question is how such surfaces may be constructed. The
interpolation itself can be done in various ways; they differ with
respect to a-priori assumptions made about the structure of
the surface.

The strongest assumption specifies the global structure. A
frequent case refers to multiple regression, which suggests that
the surface is a (linear) plane. Often the regression is based on
Canonical Correlation Analysis or Redundancy Analysis (cf. von
Storch and Zwiers, 1999).
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FIGURE 3 | Dominant patterns of interannual variability of summer season barotropic stream function in the South China Sea, the coefficients of which are used in the

presentation in Figure 4 and in the mapping efforts shown in Figure 5. Currents follow the gradients of the stream function, clockwise around a center of high (red)

values, and counterclockwise around centers with negative (blue) values. Unit: kg s−1 (kg/s). Courtesy: Zhang Meng.

FIGURE 4 | Seasonsal means of cyclonic eddies’ diameter in the South

China, 1960–2010, given as function of the principal components of the first

two EOFs of the barotropic stream function in the South China Sea as shown

in Figure 3.

If the assumption deals only with local properties, the fitting
process is considerably more flexible. Straight forward linear
interpolation is an example; Brandsma and Buishand (1997) have
used cubic splines for specifying precipitation as a function of
temperature. Osborn’s example (Figure 2) belongs also to this
class of interpolations. Geostatistical interpolation, often simply
called kriging, is a widely used in mathematical geosciences (e.g.,
Harff and Davis, 1990), which has also be used for downscaling
(e.g., Biau et al., 1999). Fashionable approaches such as neural
networks (e.g., Chadwick et al., 2011) and fuzzy logic (e.g.,
Faucher et al., 1999; Bardossy et al., 2005) are also in use.

The analog, or nearest neighbor, (Zorita et al., 1995; Brandsma
and Buishand, 1998; Zorita and von Storch, 1999) represents
the surface as piecewise constant plateaus around the data.
In geostatistical cricles the method is also known as Voronoi
nets (cf. Stoyan et al., 1997).

For illustration, we discuss here three different approaches—
bivariate regression, ordinary kriging, and analog—using an
example of generalized coordinates in a phase space. We have
chosen this example to illustrate that rather abstract problems
may be considered.

When preparing a spatial interpolation, some assumptions
about the data G at locations x need to be made. The major
assumption is that G is representative for a neighborhood
of x, or that I has the same statistical properties in that
neighborhood. A correlation length scale may be representative
for this neighborhood; this is explicitly so in case of kriging.
In that concept, also some spatial discontinuities are permitted
(“Nugget effect”; Wackernagel, 1995).

The example employs the displaying the mean summer
seasonal cyclonic eddy diameters in the South China Sea
(Zhang and von Storch, 2018) as a function of the coefficients
of indices of the regional barotropic stream function (the
stream function of the vertically averaged flow). Both,
the eddy properties as well as the stream function have

been constructed using a dynamical ocean model, which
was forced with variable atmospheric conditions for the
61 summer seasons 1960–2010 (Zhang and von Storch,
2018). Obviously, the case presented here has no specific
significance for the presentation here; it is a mere example,
which demonstrates how different interpolating surfaces
may be constructed.

The dynamical concept is that some statistics of migrating

ocean eddies, in this case the mean seasonal size, may be related

to variations in the current patterns. Of course, not all variations
in eddy size can be traced back to current anomalies but it is
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FIGURE 5 | Interpolation of the data points shown in Figure 4 by means of bivariate regression, by an analog approach, and by ordinary kriging. The coordinates are

the principal components of the first two EOFs of the barotropic stream function, shown in Figure 3.

reasonable to suggest that eddy size may be seens as a random
variable conditioned upon the prevailing currents.

As predictors we use the barotropic stream function In the
South China Sea, which is given at 57,750 locations; such large
dimension cannot be handled, and therefore the dimension of
the problem is reduced in this discussion—to 2. The needed two
indices are chosen to be coefficients of the leading Empirical
Orthogonal Functions (EOFs; for a detailed introduction, refer
to Preisendorfer, 1988; von Storch and Zwiers, 1999) or principal
components of the barotropic stream function field. EOFs are
a system of orthogonal vectors which are adapted to be most
powerful in representing variance of the considered variable,
which is here the barotropic streamfunction of the entire South
China Sea.

The two indices represent 31.5 and 10.5% of the
dominant interannual variations of the barotropic stream
function (Figure 3).

The seasonal mean diameters of cyclonic eddies in the South
China Sea are displayed in Figure 4 as a function of these first
two EOF coefficients; for each summer season (June-August) one
dot is plotted, with the vertical coordinate indicting the diameter

in km. Obviously the eddy diameters do not constitute a smooth
surface; this is meaningful when we consider formation and the
intensification of eddies all as a conditional random variable, and
each observed mean eddy diameter is considered one realization
of a conditional random variable.

We have applied three different interpolation techniques to
the anomalies (i.e., deviations from the long term mean) derived
from the data displayed in Figure 4; the results are shown as
“isolines” in Figure 5 The three techniques are bilinear regression
(top left) and nearest neighbors (analog; top right), and ordinary
kriging (bottom).

Kriging is a methodology which was developed in geology
for mapping structures. At this time, details do not matter so
that it may suffice to mention that “ordinary kriging” was used,
employing a linear Matheron function and allowing for a nugget
effect (cf., Wackernagel, 1995; Maciag, pers. comm.)

The numbers describe the deviation from the overall mean.
The two methods of the bivariate regression and of the nearest
neighbor are at the opposite ends of complexity. The bilinear
regression is smooth, with less variability. The analog, on the
other hand, is very noisy, with rather large abrupt changes,
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but with a variability which reproduces the variability of the
original data, say in terms of variability and skewness, while
the krigged surface contains elements of the two other maps,
but has a richer structure than the bivariate surface, and
is less noisy than the analog-based map. As expected, the
krigged map is between the other two, in terms of smoothness
and noise.

Seemingly there is no way of deciding which of three maps is
“better”; they share a certain basic structure, with high values near
the upper left corner, and lower values in the lower right corner.
Which map will eventually be chosen depends on how the map
will be used. If a general overview is needed, the bivariate may
be best; if it is used for weather generators, the analog may be
the choice. If details matter, the richer but smooth structure of
kriging may be more favorable.

In terms of the link to the barotropic stream function
(Figure 3), we find the size of cyclonic eddies larger, when both
(EOF) patterns prevail in a season, i.e., when there resides an
anomalous large and stationary anticyclone in almost the entire
northern part of the South China Sea (combination of patterns 1
and 2), and an anomalous outward flow through the Luzon strait.
In the same way, smaller eddies are generated on average, when
an anomalous counterclockwise flow streams through the South
China Sea. Pattern 1 alone goes also with these characteristics,
but is associated with a weaker signal, when EOF2, the second
pattern, does not contribute. The same holds for pattern 2 in the
absence of pattern 1, but with an even weaker signal.

DISCUSSION: APPLICATION OF A MAP IN

DOWNSCALING

As mentioned before, the thinking about downscaling is rooted
in two different concepts, one in meteorology named “synoptic
climatology,” the other in “interpolation of data clouds,” which
was inspired by spatial interpolation.

The basic idea, as introduced the first time likely by Kim et al.
(1984), and later by von Storch and Zorita (1990), recognized
the limitation of climate modeling, in particular construction of
climate change scenarios, in representing small scale phenomena,
and many aspects of impacts of climate variability and change.

The aspect of synoptic climatology was employed in the
“statistical dynamical method,” and was based on building causal
(process-based) links between a conditioning large-scale state
and a resulting small-scale response; later this method became
less and less popular when dynamical downscaling matured
and—given the advances of computational power—allowed the
simulation of continuous sequences of large-scale forcing.

The other aspect, however, the “interpolation of data clouds,”
is still in use—it makes use of co-variations, which are not
necessarily based on direct causal links. Instead the links may be
indirect, such as the emergence of extreme values in a season and
themean state during that season—obviously themean state does
not “make” extremes, but the mean state may favor the formation
of synoptic situations which lead to extremes (cf., Branstator,
1995). The example presented in this paper, on the formation
of large vortices in the South China Sea, conditioned by mean
currents, falls into this category.

Such efforts result in tables, or in maps, which suggest a
state of a small-scale or an impact variable, conditional upon
some adopted large-scale indicators.When two such variables are
used, then the result takes the form of a table, and the method
curtails an interpolation, a map-generating effort. The purpose
of interpolation is “to guide people in unknown terrain” (Von
Storch, 1999), i.e., to guess the state of the system at “locations”
not visited no far. Such guesses can be of very different format,
depending on the user’s needs.

In general, at each point, the method would return a
probability interval IE(x) ± 1, with IE(x) representing the
conditional expectation and 1 a level of uncertainty (say,
two standard deviations). In many cases, however, only the
conditional expectation will be provided (in the bilinear
regression case), whereas sampling from the analog-map will
result in random samples including the variability. Thus,
the former will be favorable, when dealing with typical
conditions, whereas the second gives noisy numbers, but with
the right level of variability, as needed in weather generators
(cf. Zorita et al., 1995).
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Regional climate models (RCMs) are able to simulate small-scale processes that are

missing in their coarser resolution driving data and thereby provide valuable climate

information for climate impact assessments. Less attention has been paid to the ability

of RCMs to capture large-scale weather types (WTs). An inaccurate representation of

WTs can result in biases and uncertainties in current and future climate simulations

that cannot be easily detected by standard model evaluation metrics. Here we define

12 hydrologically important WTs in the contiguous United States (CONUS). We test if

RCMs from the North American CORDEX (NA-CORDEX) and the Weather Research and

Forecasting (WRF) model large physics ensembles (WRF36) can capture those WTs in

the current climate and how they simulate changes in the future. Our results show that

the NA-CORDEX RCMs are able to simulate WTs more accurately than members of the

WRF36 ensemble. The much larger WRF36 domain in combination with not constraining

large-scale conditions by spectral nudging results in lower WT skill. The selection of

the driving global climate model (GCM) has a large effect on the skill of NA-CORDEX

simulations but a smaller impact on the WRF36 runs. The formulation of the RCM is of

minor importance except for capturing the variability within WTs. Changing the model

physics or increasing the RCM horizontal grid spacing has little effect. These results

highlight the importance of selecting GCMs with accurate synoptic-scale variability for

downscaling and to find a balance between large domains that can result in biased WT

representations and small domains that inhibit the realistic development of mesoscale

processes. At the end of the century, monsoonal flow conditions increase systematically

by up to 30% and a WT that is a significant source of moisture for the Northern Plains

during the growing seasons decreases systematically up to –30%.

Keywords: regional climate models, uncertainties, weather types, North America, CORDEX, domain size, driving

data, model quality

1. INTRODUCTION

Regional climate models (RCMs) are designed to dynamically downscale larger-scale climate data
over a region of interest to capture regional-scale processes that are not present in the drivingmodel
(Giorgi, 1990; Denis et al., 2002; Rummukainen, 2010). Many studies address the added value of
RCM downscaling, which are mainly found on local to regional-scales (Feser et al., 2011; Di Luca
et al., 2012; Prein et al., 2016a) in regions with complex orography, areas with strong land-surface
heterogeneities, and in atmospheric situations with strong spatial gradients that are often related
to extreme events (Rummukainen, 2016). It is more unclear if RCMs can also add value to
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the large-scale patterns of their driving model by upscale growth
of mesoscale processes. However, there are a few examples in the
published literature such as improvements of rain shadow effects
due to the better representation of orography (Leung et al., 2003),
or downstream effects of mesoscale convective vortices in the US
(Clark et al., 2010).

The evaluation of RCMs is typically performed on a seasonal
basis using standard atmospheric variables such as near-surface
temperature and precipitation (Christensen et al., 2007a; Mearns
et al., 2012; Kotlarski et al., 2014; Prein et al., 2016a). While
this can provide a broad assessment of model skill it typically
does not allow in-depth insights to understand errors in specific
modeled processes. This is partly due to combining local-
and large-scale errors in the analysis. Addor et al. (2016); for
example, showing that a general wet bias of RCM simulated
wintertime precipitation in the European Alps can be related to
an overestimation of westerly flow regimes.

Weather typing (WTing) was initially developed for weather
forecasting (e.g., van Bebber, 1891). In more recent decades,
studies used WTing to downscale large scale circulation patterns
to local scales (Goodess and Palutikof, 1998; Wood et al., 2016),
evaluate global climate model performance (Radić and Clarke,
2011; Gibson et al., 2016), to understand changes in observed
climate trends (Paredes et al., 2006; Prein et al., 2016b), and to
assess future climate projections in terms of changing large-scale
dynamics (Santos et al., 2016).

Here we use hydrologically important WTs to investigate
the ability of two ensembles of RCM simulations to capture
large-scale atmospheric patterns over the contiguous United
States (CONUS). The two ensembles are the North American
contributions to the Coordinated Regional Climate Downscaling
Experiment (NA-CORDEX; Mearns et al., 2017) and the
National Center for Atmospheric Research’s (NCAR’s) 36 km grid
spacingWeather Research and Forecasting (WRF) model physics
ensemble (WRF36; Bruyère et al., 2017).

Using WT for model evaluation has two main advantages:
(1) We focus solely on the RCM’s ability to represent synoptic-
scale patterns, which allows separatingmodel biases in large-scale
dynamics and thermodynamics and mesoscale components, and
(2) RCM errors are typically process-dependent and, therefore,
RCMs have different bias characteristics in different seasons (e.g.,
Mearns et al., 2012; Kotlarski et al., 2014). However, seasons
consist of a mix of various weather regimes and atmospheric
processes. Seasonally based analyses can be viewed as a zero
order approximation of a weather regime-dependent analysis.
Performing model evaluation based on WTs helps to separate
atmospheric processes more accurately and allows insights into
regime-specific model performance.

The goal of this study is 2-fold. (1) We aim to understand
which components of an RCM setup affects its capability to
simulate WTs over the CONUS. The analyzed components are
the driving GCM, the formulation of the RCM, sensitivities to
RCM model physics, RCM horizontal grid spacing, and RCM
domain size. The goal is to provide guidance for future RCM
downscaling studies. (2) We want to understand if there are
systematic changes in future climate WT frequencies. Enhancing
our understanding of climate impacts on large-scale dynamics

FIGURE 1 | Model (colors) and weather typing domains (black rectangle). The

WRF36 domain is shown in red and the NA-CORDEX domains are shown

in blue.

is important since almost all confidence that we have regarding
future climate projections is based on thermodynamic processes
(Shepherd, 2014).

The paper is structured as follows. Section 2 summarizes the
used RCM simulations and the WT method. Section 3 describes
the main characteristics of the derived WTs, presents the results
from the RCM evaluation, an assessment of the sources of
performance variability, and WT changes in climate projections.
Section 4, 5 summarize the findings and conclude the study.

2. DATA AND METHODS

2.1. Regional Climate Models
We use RCM simulations from the NA-CORDEX and the
WRF36 ensemble datasets. RCMs participating in the NA-
CORDEX ensemble downscale ERA-Interim (Dee et al., 2011)
and global climate models (GCMs) from the CMIP5 archive
(Taylor et al., 2012) over a common region that covers most of
North America (see blue domains in Figure 1). The domain sizes
vary slightly between the participating RCMs. The ERA-Interim
driven simulations cover a common period from 1989 to 2010,
while the GCMdriven runs at least cover 1951–2099.Most RCMs
have a horizontal grid spacing of 0.44◦/50 km and the WRF
simulations are also available at 0.22◦/25 km grid spacing. We
only use a subset of the full NA-CORDEX simulations for which
the necessary WTing variables are available. We use simulations
performed with WRF (Skamarock and Klemp, 2008), the Danish
Meteorological Institute’s HIRHAM5 model (Christensen et al.,
2007b), the UK Met Office’s HadRM3P model (Jones et al., 1995;
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TABLE 1 | NA-CORDEX simulations used in this manuscript.

Case GCM RCM Institude Resolution Time Period

Reanalysis ERA-Interim WRF NCAR 0.44◦ 1980–2010

Reanalysis ERA-Interim WRF NCAR 0.22◦ 1980–2010

Reanalysis ERA-Interim HIRHAM5 DMI 0.44◦ 1989–2011

Reanalysis ERA-Interim HadRM3P MOHC 0.44◦ 1990–2011

Reanalysis ERA-Interim CRCM5 UQAM 0.44◦ 1979–2012

Historical GFDL-ESM2M WRF NCAR 0.44◦ 1950–2005

Historical GFDL-ESM2M WRF NCAR 0.22◦ 1950–2005

Historical MPI-ESM-LR WRF NCAR 0.44◦ 1950–2005

Historical MPI-ESM-LR WRF NCAR 0.22◦ 1950–2005

Historical HadGEM2-ES WRF NCAR 0.44◦ 1950–2005

Historical HadGEM2-ES WRF NCAR 0.22◦ 1950–2005

Historical CCCma-CanESM2 CRCM5 UQAM 0.44◦ 1950–2005

Historical MPI-ESM-LR CRCM5 UQAM 0.44◦ 1949–2005

Historical ICHEC-EC-EARTH HIRHAM DMI 0.44◦ 1951–2005

RCP8.5 GFDL-ESM2M WRF NCAR 0.44◦ 2006–2099

RCP8.5 GFDL-ESM2M WRF NCAR 0.22◦ 2006–2099

RCP8.5 MPI-ESM-LR WRF NCAR 0.44◦ 2006–2099

RCP8.5 MPI-ESM-LR WRF NCAR 0.22◦ 2006–2099

RCP8.5 HadGEM2-ES WRF NCAR 0.44◦ 2006–2099

RCP8.5 HadGEM2-ES WRF NCAR 0.22◦ 2006–2099

RCP4.5 CCCma-CanESM2 CRCM5 UQAM 0.44◦ 2006–2100

RCP4.5 MPI-ESM-LR CRCM5 UQAM 0.44◦ 2006–2100

RCP8.5 MPI-ESM-MR CRCM5 UQAM 0.44◦ 2006–2100

RCP4.5 ICHEC-EC-EARTH HIRHAM DMI 0.44◦ 2006–2100

RCP8.5 ICHEC-EC-EARTH HIRHAM DMI 0.44◦ 2006–2100

TABLE 2 | Major characteristics of the NA-CORDEX RCMs.

RCM Cumulus Microphysics Radiation LW–SW Boundary layer Land surface model

WRF Kain-Fritsch (Kain and

Fritsch, 1990)

WSM3 (Hong et al.,

2004)

RRTM Mlawer et al. (1997) -

Goddard

MYJ Janjić (1994) NOAH (Tewari et al.,

2004)

CRCM5 Kain-Fritsch (Kain and

Fritsch, 1990)

Sundqvist (Sundqvist,

1978)

Li and Barker - Li and Barker (Li

and Barker, 2005)

Delage (Delage, 1997) CLASS3.5+ (Verseghy,

1991, 2009)

HIRHAM5 Tiedke (Tiedtke, 1989),

Nordeng (Nordeng, 1994)

Prognostic liquid water

and ice

Morcrette (Morcrette, 1984) -

Fouquart and Bonnel (1980)

ECHAM5 ECHAM5

HadRM3P - - - - MOSES 2 (Essery and

Clark, 2003)

Buonomo et al., 2007), and the Canadian Regional ClimateModel
version 5 (Caya and Laprise, 1999; Zadra et al., 2008; Martynov
et al., 2013; Šeparović et al., 2013, CRCM5; ). These RCMs
downscale five different GCMs with historical and RCP4.5 and
RCP8.5 concentration scenarios (Van Vuuren et al., 2011). The
WRF simulations used spectral nudging to constrain synoptic
scales according to those of the driving model in the domain
interior. This is important since with this setting WTs should not
be able to deviate significantly from those in the driving model.
No spectral nudging was used in the other RCM simulations. A
list of all NA-CORDEX simulations is shown inTable 1 andmore
details on the model setup can be found in Table 2 and online
under https://na-cordex.org/rcm-characteristics.

NCAR’s WRF36 RCM ensemble (Bruyère et al., 2017) is
targeted toward understanding uncertainties frommodel physics
and consists of 24 members of WRF simulations that downscale
ERA-Interim within the period from 1990 to 2000 with 36 km
horizontal grid spacing. The model domain is substantially larger
than the domains used in the NA-CORDEX simulations and
covers most of the North and Central Atlantic, the east Pacific,
most of North America, central America, and northern South
America (Figure 1). The motivation for this large domain was
to decouple the RCM simulations from their lateral boundary
conditions to improve the representation of mesoscale processes.
In theory, such improvements should be possible due to the
better representation of mesoscale forcing such as orography in
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TABLE 3 | The physics combination of the WRF36 ensemble that used

ERA-Interim between 1990–2000 as driving data.

MYJ YSU MYJ YSU

KF WSM6 CK6M CK6Y RK6M RK6Y

Thompson CKTM CKTY RKTM RKTY

NSAS WSM6 CN6M CN6Y RN6M RN6Y

Thompson CNTM CNTY RNTM RNTY

Tiedke WSM6 CT6M CT6Y RT6M RT6Y

Thompson CTTM CTTY RTTM RTTY

The naming convention of individual members follows the rule Radiation—Cumulus—

Microphysics—PBL scheme. For example, RNTY uses RRTMG radiation, NSAS cumulus,

Thompson microphysics, and YSU PBL schemes. The simulations highlighted with bold

font are used for downscaling CESM under current and future conditions. All simulations

were produced by NCAR.

addition to atmospheric processes, e.g., tropical cyclones, and
teleconnections in the higher resolution RCM (e.g., Erfanian and
Wang, 2018).

Table 3 shows the 24 ensemble members that downscale ERA-
Interim by systematically varying four physics parameterizations:
(1) cumulus [KF: (Kain and Fritsch, 1990); NSAS: (Han and
Pan, 2011); and Tiedtke: (Tiedtke, 1989)], (2) radiation [CAM:
(Collins et al., 2006) and RRTMG: (Mlawer et al., 1997)], (3)
microphysics [WSM6: (Han and Lim, 2006) and Thompson:
(Thompson et al., 2004)], and (4) planetary boundary layer [MYJ:
(Janjić, 1994) and YSU: (Hong et al., 2006)]. In this study, we
abbreviate members of this ensemble by four characters. The
first character denotes the radiation scheme, the second the
cumulus scheme, the third the microphysics, and the fourth
the planetary boundary layer parameterization. For example,
the RNTY member uses the RRTMG radiation, NSAS cumulus,
Thompson microphysics, and YSU boundary layer scheme. The
selected physics are well tested and widely used.

After evaluating the 24-member ensemble, three members
were selected to perform additional current and future climate
downscaling experiments. These three members are the RKTM,
RNTY, and RTTY simulations. They downscale a free running
GCM simulation performed by the Community Earth System
Model (CESM; Hurrell et al., 2013), which is part of the
CMIP5 experiments (Taylor et al., 2012). CESM is one of the
best performing models in the CMIP5 ensemble based on its
ability to simulate global temperature and precipitation patterns
(Knutti et al., 2013). This simulation uses the business as
usual RCP8.5 emission scenario for future climate projections
(Van Vuuren et al., 2011). To reduce biases in CESM’s lateral
boundary conditions, a bias correction method described in
Bruyère et al. (2014, 2015) was applied prior to the downscaling.
This method only bias corrected the mean base state, leaving
the synoptic variability, interannual variability, and any climate
trend unchanged. The CESM driven WRF36 simulations cover
the periods 1990 to 2000, 2020 to 2030, 2030 to 2040, 2050
to 2060, and 2080 to 2090. Additional information about the
WRF36 simulations can be found in Bruyère et al. (2017).

The most notable differences between theWRF36 simulations
and WRF experiments from the NA-CORDEX are the

computational domain size and the use of spectral nudging
in the latter (von Storch et al., 2000). The physics in the RK6M
simulation are very similar to those used in NA-CORDEX except
for the microphysics, which are more simplistic in the latter.
The NOAH land surface model (Tewari et al., 2004) is used in
both ensembles.

2.2. Reference Data
The variables used for the WTing are derived from daily ERA-
Interim data at 12 UTC (Dee et al., 2011). ERA-Interim is a third
generation reanalysis, which has very high skill in representing
atmospheric processes compared to other reanalysis products
(e.g., Decker et al., 2012; Lin et al., 2014).

For precipitation analyses we use the Parameter-elevation
Relationships on Independent Slopes Model (PRISM) daily
gridded precipitation data within the period from 1980 to 2014
(Daly et al., 1994). PRISM is based on∼13 000 surface stations for
precipitation including USDANRCS Snow Telemetry (SNOTEL)
and snowcourses data (http://www.wcc.nrcs.usda.gov/snow/) to
capture mountain snow pack.

2.3. Defining Hydrologically Important
Weather Types
The performed WTing is similar to the algorithm used in Prein
et al. (2016b) and (Prein, under review). It is a combination
of two clustering methods: a hierarchical cluster analysis and
a k-means cluster analysis that uses the outcome of the
hierarchical clustering as the starting partition (Romesburg,
2004). This approach showed very high skill in classifying WTs
in a WT method comparison study over the European Alps
(Schiemann and Frei, 2010) and was successfully applied in
many weather typing analyses (e.g., García-Valero et al., 2012;
Lorente-Plazas et al., 2015). Daily ERA-Interim data from 1979–
2014 is used over the CONUS (see black rectangle in Figure 1)
to define representative WTs capturing the main variability of
precipitation in this region. We use a moving average Gaussian
high-pass filter of 31-day length to remove variability longer
than those of typical synoptic-scale patterns, e.g., the seasonal
cycle. This does not affect the spatial patterns of the daily
input variables. Afterward, we normalize each input variable to
generate fields with equal weights as input for the WT analysis.

We used two metrics to test the skill of the derived
WTs. (1) We aim to minimize the intracluster to intercluster
variance (Straus and Molteni, 2004) of the daily CONUS wide
precipitation patterns in eachWT. The goal is to cluster days with
similar precipitation patterns within one WT and to obtain WTs
having different precipitation patterns when compared to each
other. (2) In addition, we want to maximize the average absolute
precipitation anomalies of eachWT centroid. TheWT centroid is
the average over each cluster element, e.g., average precipitation
anomaly of each day within a WT. This metric ensures that
WTs are as different as possible from the climatological average
precipitation in the CONUS.

Figure 2 summarizes the results for the WT skill analysis,
which is dependent on the number of used WTs and
the input variables. We tested a variety of input variable
combinations. Horizontal wind speed at 500 hPa (UV500), sea
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FIGURE 2 | Assessment of the clustering strength of WTs. (A) Inter- vs. intra-cluster variance and (B) absolute precipitation anomalies averaged over all WTs. Different

colors show different WT settings. The tested input variables are sea level pressure (SLP), precipitable water (PW), wind speed at 850 hPa/500 hPa (UV850/UV500),

and 500 hPa geopotential height (ZG500). We also test the impacts of using a principal component analysis (PCA) before the WT clustering and the length of the

clustering period, which is 1979–2014 unless otherwise denoted. The red circle shows the final WT setup using 12 WTs and SLP, PW, and UV500 as input variables.

level pressure (SLP), and precipitable water (PW) are available
on a daily basis for most RCM simulations. These are important
variables for many dynamic and thermodynamic processes
related to precipitation (Doswell III et al., 1996; Lin et al.,
2001). Using 12 WTs with these variables lead to a skillful
representation of hydrologically important weather patterns in
the CONUS. Twelve WTs seem to be sufficient since adding
more WTs only leads to marginal improvements in clustering
skill (Figure 2). These results are similar to work by Prein
et al. (2016b) except that we used 500 hPa instead of 700 hPa
wind speed since the latter was not available for many NA-
CORDEX simulations.

The WTing on ERA-Interim data results in a WT time series
that assigns a WT to each day within the period of 1979–
2014. This time series allows us to calculate WT centroids
(Figure 3), which are used to assign WTs to each day in the
RCM output.

2.4. Assigning Weather Types to Climate
Model Data
To assign WTs to the RCM output we first conservatively remap
daily simulated SLP, UV500, and PW fields to the ERA-Interim
grid. Then we apply a 31-day moving average Gaussian high-pass
filter to the remapped data and normalize the variables similarly
to what we have done to the ERA-Interim data. Thereafter, we
calculate the average Euclidean distances of each input variable
for each day in the RCM simulations to the 12 ERA-Interim WT
centroids that are described above. Each day is assigned to the
centroid with the minimum average Euclidean distance.

3. RESULTS

3.1. Description of Observed WTs
The resulting WTs show distinct differences in SLP anomalies,
500 hPa wind speed and direction, and PW values within the
CONUS (Figure 3). We sorted the WTs from predominantly

winter patterns (WT1–4) to shoulder seasonWTs (WT5–10) and
summer WTs (WT11 and WT12). The different flow regimes
result in distinct precipitation anomaly patterns (Figure 4).
WT1 is most frequent in December and January and it is
characterized by a strong high-pressure anomaly with dry air
advection from the northwest into the central US (Figure 3A).
This results in anomalous dry conditions in most of the US
(Figure 4A). In WT2 the high-pressure anomaly is shifted
toward the Midwest favoring moisture transport to the west
coast (Figure 3B), resulting in wetter than average conditions
in this region (Figure 4B). WT3 has a January maximum
and high/low-pressure anomalies in the western/eastern half
of the CONUS (Figure 3C), which lead to predominantly dry
conditions (Figure 4C). Very wet conditions in the eastern
CONUS occur in WT4 (Figure 4D), which has an early winter
peak. This is due to strong moist air advection from the
Pacific and Gulf of Mexico into the continent (Figure 3D).
Similar precipitation anomalies are caused by WT5 (Figure 4E)
as a result of a strong low-pressure anomaly over the Great
Lakes region. WT6, WT7, and WT8 occur predominantly
in spring and are the main sources of precipitation in the
US Southwest (Figures 4F–H). They are associated with low-
pressure anomalies over the western half of the CONUS and
moist air advection from the Pacific (Figures 3F–H). WT7 results
in anomalously wet conditions in the upper Plains, the Midwest,
and the Deep South due to its strong low-pressure anomaly in
the central US. Weak flows and predominantly dry conditions
are present during the spring WT9 except for parts of Texas and
New Mexico (Figures 3I, 4I). Very wet conditions are present in
the upper Plains during WT10 conditions due to a low-pressure
anomaly and moisture advection into this region (Figures 3J,
4J). WT11 is a typical summer WT with high PW values in the
eastern CONUS and wetter than average conditions in this area
(Figures 3K, 4K). Monsoonal flow conditions are present in the
late summerWT12 with high precipitation anomalies in Arizona
and New Mexico (Figures 3L, 4L).
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FIGURE 3 | Centroids of the 12 ERA-Interim based WTs (A–L) for the period 1979–2014. Filled contours show sea level pressure anomalies, green contour

lines show precipitable water (PW), and arrows show 500hPa wind direction and speed. A histogram of the relative frequency of each WT is shown in the bottom left

and the domain used for the WTing is shown in the gray dashed box.

3.2. RCM Evaluation
The following analysis is based on data that cover the common
evaluation period of 1990–2000. Due to this rather short period,
the results might be affected by internal climate variability.
Therefore, we focus our analysis on systematic differences
between the two ensembles and their members rather than the
performance of individual simulations.

There is a large spread in how well RCMs capture
observed WT frequencies (Figure 5). The frequencies of
WT5 and WT9 are well captured by most simulations
whereas other WTs, such as WT4, show systematic low
biases. It is important to mention that a high-frequency
bias in one WT has to be counteracted in low biases in
other WTs. Simulated WT frequency biases will result
in precipitation biases since the WTs are associated with
pronounced precipitation anomalies. For example, most
simulations have a low-frequency bias for WT4 patterns,
which results in cold season conditions that are too dry in
the Deep South and Appalachian region, since WT4 is one of
the main contributors of precipitation in those regions (see

Figure 4D). Such a bias is frequently found in recent RCM
simulations (Mearns et al., 2012).

A more systematic analysis of WT frequency biases is
shown in Figure 6. The most striking feature is that NA-
CORDEX simulations better capture WT frequencies than
WRF36 simulations. This is likely related to the much larger
domain size and not applying spectral nudging in the WRF36
simulations which allows them to deviate from the large-scale
conditions provided by the driving data.

From the WRF36 simulations, we can see that model physics
settings only have a small impact onWT frequencies. Simulations
that use the NSAS convection scheme and RRTMG radiation
scheme have a slightly better performance than the simulations
using Tiedtke and CAM. The best ERA-Interim driven WRF36
simulation is the RNTM run, which has an average absolute WT
frequency bias of ∼21%. Changing the driving data to CESM
results in a slight skill improvement, which is surprising since
using CESM should introduce biases that are not present in ERA-
Interim. The WRF36 simulations have the largest WT frequency
biases during the cold season. WT1 andWT4 frequencies are too
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FIGURE 4 | Precipitation anomalies for each WT (A–L) based on the PRISM daily gridded observational data between 1981 and 2014 (Daly et al., 1994).

rare, which is counteracted by a too frequent simulation of WT2
and WT3 conditions.

In contrast to the WRF36 simulations, ERA-Interim driven
NA-CORDEX runs have generally higher skill than GCM driven
NA-CORDEX simulations. The NA-CORDEX ERA-Interim
WRF runs have the highest skill of all simulations with average
absolute biases lower than 10%. This has to be expected since
spectral nudging was only used for the WRF simulations but not
for the others. Spectral nudging has been shown to have a positive
effect on simulating precipitation in previous North American
scale RCM simulations (Mearns et al., 2012). Most NA-CORDEX
simulations overestimate the frequency of WT2 and WT3 and
underestimate the frequency of WT4 and WT5.

Another way tomeasure RCMs’ quality is to assess their ability
in capturing observed intra-WT variability, expressed as the
average standard deviation (STDDEV) of normalized SLP, PW,
and UV500 patterns from all days within a WT. Figure 7 shows
normalized (modeled divided by ERA-Interim) STDDEVs. A
perfect model would have a score of zero, i.e., the same STDDEV
as ERA-Interim. Negative values mean that differences between
days within a WT are too small whereas positive values mean
that they are too large. Very large values could indicate that the
RCM simulates WTs that are not observed in ERA-Interim. Such
unobserved WTs are assigned the most similar observed WT,
resulting in large intra-WT STDDEV.

The WRF36 simulations have less skill in simulating intra-
WT STDDEV than the NA-CORDEX runs (Figure 7). However,
in contrast to the WT frequency analysis above, ERA-Interim

driven WRF36 simulations have clearly higher skill than CESM
driven simulations. The sensitivity to the used physics options
is small. The transition season WT5–8 shows significant and
systematically too high STDDEVs whereas too low STDDEVs
seldom occur. The largest biases are found for WT8 with some
simulations overestimating the observed STDDEV by more than
60%. The same WTs also show too high STDDEVs in the NA-
CORDEX simulations, especially for the GCM driven runs, but
the biases are smaller and less systematic than in WRF36. The
best performance is again found for NA-CORDEX ERA-Interim
driven WRF simulations with absolute average biases of <5%.

The third and last skill score that we consider is the WT
centroid correlation coefficient, which allows one to assess how
well the spatial pattern of each WT variable is reproduced by
the RCMs. Values close to one indicate a skillful simulation of
observed WT centroid patterns. Also here, the NA-CORDEX
simulations outperform theWRF36 runs and the selected physics
only have a minor impact on the performance of WRF36
simulations (Figure 8). In the WRF36 simulations, the lowest
skills are found for simulating PW patterns, which becomes
emphasized by changing from ERA-Interim to CESM boundary
conditions. Particularly low PW pattern correlations are seen for
WT3 and WT8. WT10 has very low correlation coefficients for
UV500 when ERA-Interim is downscaled. SLP patterns generally
show the highest correlation coefficients.

This is different in the NA-CORDEX simulations where PW
patterns are simulated best. Again, ERA-Interim downscaled
WRF simulations show the highest skills with average absolute
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FIGURE 5 | Annual cycle of WT frequencies smoothed by a Gaussian low-pass filter with 10-day standard deviation for each of the 12 WTs (A–L). The thick black line

shows ERA-Interim WT frequencies for the period 1990–2000 and the gray contour shows the spread in all possible 11-year contiguous ERA-Interim periods within

1979–2014 as an estimate of climate variability. The blue contour shows the spread in the 24-member WRF36 ensemble that uses ERA-Interim as driving data. The

red contour shows the spread within the 3-member CESM driven WRF36 hindcast simulations. Colored solid/dashed lines show WT frequencies in NA-CORDEX

hindcast/historical simulations. The RCM results are based on the period 1990–2000. Vertical dashed lines show the end of February, May, August, and November

respectively from left to right.

values larger than 0.96. Simulated WT8 patterns have overall
the lowest skill but most correlation coefficients are still
larger than 0.88.

3.3. Sources of Variability
Here we summarize the origin of different performances
in simulating WT characteristics with RCMs. The presented
numbers are first-order estimates since a full variance analysis
would demand many more simulations than are available,
especially for the NA-CORDEX ensemble. Figure 9 shows the
spread in the three assessed skill scores averaged over specific
dimensions of the RCM ensembles.

WT frequencies in WRF36 simulations are fairly similar
for all ensemble members and only weakly depend on the
model physics and driving data (only the RKTM, RNTY,
and RTTY are compared for the latter; Figure 9A). The

NA-CORDEX simulations show higher skill in simulating
WT frequencies. The 0.22 horizontal grid spacing WRF NA-
CORDEX simulations show 1.9% lower absolute average WT
frequency biases compared to their 0.44 counterparts. There is
moderate variability (4.4%) concerning the RCM formulation,
with CRCM5 showing the highest biases and WRF the lowest. A
large variability of 11.1% occurs due to the selected driving data
with ERA-Interim clearly resulting in the lowest biases. WRF36
and WRF-NA-CORDEX simulations show substantial variability
of 12.7%, which is likely caused by differences in domain size and
the application of spectral nudging in the WRF NA-CORDEX,
resulting in a more realistic representation of WTs in the latter.

The WRF36 intra-WT STDDEV shows small sensitivity to
the model physics but large sensitivity (10.1%) to the driving
data with ERA-Interim driven simulations showing clearly
higher skill (Figure 9B). In the NA-CORDEX ensemble, the
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FIGURE 6 | Heatmap showing average WT frequency biases (smaller is better) for simulations (rows) and WTs (columns), and the absolute bias averaged over all WT

biases in the rightmost column (lower color bar). The top block shows biases for WRF36 ERA-Interim simulations that use the same physics parameterization, e.g.,

the biases of all simulations that use the YSU PBL scheme are averaged. The second block from the top shows biases in the WRF36 simulations, and the central

block shows biases in the CESM driven WRF36 hindcast runs. The second lowest block shows biases in ERA-Interim driven NA-CORDEX simulation while the lowest

block shows NA-CORDEX hindcast driven biases for the period 1990–2000. Hatched rectangles show biases that are within the interannual variability of ERA-Interim

WT frequencies.
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FIGURE 7 | Similar to Figure 6 but showing the simulated divided by ERA-Interim intra-WT pattern standard deviations. A perfect score is zero and denotes that the

model has the same variability than ERA-Interim.
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FIGURE 8 | Similar to Figure 6 but showing correlation coefficients between ERA-Interim and simulated centroids (higher is better). Each column consists of three

sub-columns showing correlation coefficients for SLP, PW, and 500 UV from left to right.
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FIGURE 9 | Estimates of WT skill variability for different drivers using three

metrics: (A) absolute WT frequency biases, (B) normalized intra-WT standard

deviations, and (C) mean centroid pattern correlation coefficients. The impact

of model physics and driving data is investigated in the WRF36 simulations

(black symbols). The effect of horizontal grid spacing, RCM, and driving data is

assessed for the NA-CORDEX simulations (red symbols). The impact of the

domain size is estimated comparing WRF simulations in the NA-CORDEX

ensemble with WRF36 runs. The maximum minus minimum spread is shown

on the bottom of each panel.

WRF model resolution has only minor effects on the skill
but the RCM formulation plays a major role (15.9%). The
HIRHAM simulations overestimate the STDDEV substantially
while HadGEM3P and CRCM5 show high skill. Additionally,
the driving GCM has a major impact (15.1%) with ERA-Interim
and HadGEM2, resulting in very small biases and GFDL-ESM2M
driven simulations resulting in large overestimations of intra-
WT STDDEVs. Comparing the WRF simulations from the two
ensembles results in similar skills. However, this is mainly due to
the larger fraction of ERA-Interim drivenmembers in theWRF36
ensemble (24 out of 27 runs) compared to the NA-CORDEX
ensemble (two out of ten).

The average centroid correlation coefficients show very small
sensitivities to the WRF36 model physics and driving data
(Figure 9C). The different sources of variability in the NA-
CORDEX simulations lead to only minor sensitivities, with the
WRF grid spacing having the smallest impact and the driving
GCM having the largest. The major mode of variability in this
metric is the RCM domain size and the application of spectral
nudging as shown by the difference in correlation coefficients
between the WRF36 and WRF-NA-CORDEX simulations.

3.4. Changes in Future WT Frequencies
All GCM driven NA-CORDEX and WRF36 runs also provide
future climate data that we use to assess if WT frequencies are
projected to change due to climate change. The GCM driven
NA-CORDEX simulations are transient climate runs that cover
a common period from 1950 to 2099 (see Table 1) whereas
the GCM driven WRF36 runs are time slice experiments that
cover the periods 1990–2000, 2020–2030, 2030–2040, 2050–2060,
and 2080–2090.

Most NA-CORDEX simulations show systematic increases in
WT7 and WT8 frequencies by mid-century, which, however,
are not statistically significant (Figure 10). WT2 and WT11
predominantly decrease in their frequency. Six out of the eleven
simulations show significant decreases in WT11 frequencies.
Most of the NA-CORDEX models still show increases in WT7
frequencies by the end of the century but more systematic and
significant are the frequency increases in WT12, which were
not obvious at mid-century. WT12 resembles monsoonal flow
patterns and it is projected to increase in frequency in ten of
eleven models. All NA-CORDEX models agree on a decrease
of WT10 patterns by the end of the century, eight of them
show systematic decreases, which would indicate a drying of the
northern Great Plains during summer (Figure 4K). Furthermore,
all models show decreases for WT4 frequencies, which are
smaller in magnitude and only significant in three models. These
systematic changes are likely a result of anthropogenic forcings
such as increasing greenhouse gas emissions and changes in
aerosol loads. Climate natural variability should have a minor
impact because the NA-CORDEX ensemble is forced by various
GCMs that each simulate differing phases of, e.g., ENSO or Pacific
Decadal Oscillation.

WT frequency changes in the WRF36 ensemble are often
not systematic and strongly vary from period to period. This
is likely a result of the 11-year long time-slice experiments that
are too short to differentiate between climate internal variability
and forces climate change (Deser et al., 2012). Differences in the
response of the CESM GCM, which is downscaled in the WRF36
ensemble, to the NA-CORDEX GCMs are unlikely but cannot
be excluded.

4. SUMMARY AND DISCUSSION

In this study, we use two sets of RCM ensembles, the North
American CORDEX (NA-CORDEX) ensemble and a perturbed
WRF physics ensemble with 36 km horizontal grid spacing
(WRF36). We use a weather typing (WTing) algorithm to
investigate if RCM simulations are able to capture hydrologically
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FIGURE 10 | Heatmap showing WT frequency changes in future climate projections. The top panels show results from the NA-CORDEX ensemble using 1979–2000

as the baseline period and 2021–2050 (Left panel) and 2071–2100 (Right panel). The lower panels show results from the WRF36 CESM driven simulations with the

baseline period 1990–2000 and the future periods 2020–2030, 2030–2040, 2050–2060, and 2080–2090 from left to right. Hatched boxes show changes that exceed

the interannual variability in ERA-Interim.

important weather pattern characteristics over the CONUS.
We investigate three metrics: (1) the frequency biases of WT
occurrences; (2) the variability of flow patterns within WTs; and
(3) the accurate representation of WT spatial patterns.

The NA-CORDEX ensemble clearly outperforms the WRF36
simulations in all three metrics but particularly in the first and
third ones. The main source for WRF model skill differences
is the size of the RCM domain and the application of spectral
nudging. The WRF36 simulations have a much larger domain
and do not use spectral nudging, which allows them to
significantly deviate from their lateral boundary conditions
on synoptic scales. The much smaller NA-CORDEX domains
constrain synoptic patterns from the GCM in the RCM domain
and result in a more skillful representation of WT characteristics,
particularly when they are driven by reanalysis data. Previous
research showed that the interior large-scale dynamics can
start to depart from the driving data as domain size increases
(Alexandru et al., 2007). The second metric shows a larger
sensitivity to the driving model and the formulation of the
RCM. Also in this metric, however, ERA-Interim driven NA-
CORDEX simulations have clearly higher skill than the ERA-
Interim driven WRF36 runs. WT characteristics have very little
sensitivity to the model physics, which is a robust result from
the WRF36 ensemble evaluation. Model physics are, however,
very important when it comes to the simulation of mesoscale
processes in the RCMs as shown by Mooney et al. (2017) and
Bruyère et al. (2017).

Biases that are present in the simulation of WTs directly
translate into biases in the representation of the hydrology in
RCMs (e.g., Addor et al., 2016). For example, in this study
most RCMs underestimate the frequency of WT4 patterns. Days
within this pattern result in high precipitation rates in the Deep

South and Appalachian region during winter. Too infrequent
WT4 conditions result in cold-season conditions that are too dry
in these regions. Besides the biases in WT characteristics, RCMs
also have biases in the representation of smaller-scale processes
such as microphysics or mesoscale dynamics that affect model
quality. The presented WT analysis can help to distinguish these
two sources of biases, which is not possible when RCMs are
evaluated on, for example, a seasonal basis.

WTing applied to climate change projections allows for
understanding changes in the synoptic-scale conditions
that occur in parallel to thermodynamic changes. A better
understanding of changes in the large-scale dynamics is
important since almost all climate change signals that we have
confidence in originate from thermodynamic changes (Shepherd,
2014). The 11-year-long time slice experiments from the WRF36
ensemble do not allow a robust assessment of climate change
in WT frequencies since they are dominated by climate internal
variability. However, eight of eleven transient NA-CORDEX
simulations show statistically significant increases in North
American Monsoonal circulation (WT12) and a statistically
significant decrease in patterns that transport moisture into the
Northern Plains and Rockies (WT10) during the early warm
season. The increase in monsoonal flow is consistent with other
studies (Bukovsky et al., 2015, 2017; Prein, under review), which
used different types of climate model data and show that the
monsoon high strengthens and sets in earlier in the season. The
decrease in WT10 seems to be physically linked to the increase
in monsoonal flow since southwest monsoon precipitation is
anticorrelated with precipitation in the plains. This is due to the
modulation of the low pressure influence in the plains (WT10)
by the stronger and more persistent monsoon circulation in the
future (WT12).

Frontiers in Environmental Science | www.frontiersin.org 13 April 2019 | Volume 7 | Article 36105

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Prein et al. Weather Types in Regional Climate Models

5. CONCLUSION

This study shows that the RCM domain size and the application
of spectral nudging can have a significant impact on the model’s
ability to capture realistic large-scale dynamics in mid-latitudes.
Previous work showed that at the very least, RCM lateral
boundaries should be sufficiently far removed from the region of
interest to minimize spatial spin-up issues (Leduc and Laprise,
2009; Brisson et al., 2015; Matte et al., 2017). In addition, the
domain should capture any key contributing regional physical
processes missing from the lateral boundary conditions (Giorgi
and Mearns, 1999). For example, a regional study of North
Atlantic tropical cyclones by Done et al. (2015) required a large
domain to capture the development of African easterly waves
within the RCM domain. Erfanian and Wang (2018) came to
a similar conclusion and showed that including teleconnected
oceanic regions in the RCM domain improves its performance.
However, too large domains and/or a lack of spectral nudging can
lead to biased synoptic-scale patterns as shown here. Therefore,
modelers have to find a balance between spinning up mesoscale
processes that are not affected by the lateral boundary conditions
and simulating large-scale dynamics realistically.

The accurate simulation of synoptic-scale variability in the
driving GCM is essential since correcting for such biases in
the RCM is challenging (Diaconescu et al., 2007). In contrast,
correcting thermodynamic biases in the lateral boundary
conditions of the RCM is somewhat easier (Bruyère et al., 2014;
Xu and Yang, 2015), although challenges remain (Rocheta et al.,
2014). Selecting GCMs with well-simulated large-scale dynamics
should be a high priority for RCM downscaling experiments.
WTing algorithms, such as the one used here, can support such a
model selection.

If the large-scale dynamics are accurately captured in the
GCM, spectral nudging can help to constrain synoptic-scale
processes in large-domain RCM simulation (von Storch et al.,
2000). Care has to be taken that the nudging does not disturb
the development of mesoscale structures that are simulated by
the RCM.

Another solution would be to use variable resolution GCMs
such as the ICOsahedral Non-hydrostatic model (ICON; Zängl

et al., 2015) or the Model for Prediction Across Scales (MPAS;
Skamarock et al., 2012) instead of limited area modeling for
downscaling experiments. These models, in theory, should
resolve the domain size dependence of simulating WTs although
they are more expensive since they simulate the entire globe
instead of a limited area.

Generally, RCMs from both ensembles have larger WT
frequency biases for cold season WTs than warm season WTs.
The overestimation of variability within shoulder season WTs is
also systematic. Future studies should focus on understanding the
reason for these systematic biases. Our analyses suggest that these
biases are related to the RCM formulation (e.g., model numerics)
more so than the model physics.

Future work should also investigate the drivers behind the
forced decrease in WT10 and increase in WT12. The consistency
of these changes among model projections is surprising since
climate change impacts on large-scale dynamics are often

uncertain (Shepherd, 2014). Understanding the underlying
processes of these changes is important due to their potential
impacts on the summertime climate of the U.S. Targeted GCM
experiments such as constant soil moisture or constant ice-cover
experiments could help to gain insights on the large-scale drivers
while additional RCM downscaling could help to understand the
regional and local scale impacts.

This study is limited due to the use of existing RCM ensemble
datasets, which were not specifically designed to address the
impacts of domain size or spectral nudging on large scale
circulation patterns. A more systematic analysis that includes the
evaluation of WTs in the driving GCMs, the impact of spectral
nudging on large domains, and a more systematic perturbation
of the RCM domain size would be necessary to fully understand
the sources of differences between the NA-CORDEX andWRF36
ensemble. Such an analysis could also help to understand if RCMs
are able to add value to the driving GCM’s large-scale dynamics
by simulating upscale effects of mesoscale processes, or if their
added value is constrained to regional scales.
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Janjić, Z. I. (1994). The step-mountain eta coordinate model:

further developments of the convection, viscous sublayer, and

turbulence closure schemes. Mon. Weather Rev. 122, 927–945.

doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2

Jones, R., Murphy, J., and Noguer, M. (1995). Simulation of climate change over

Europe using a nested regional-climate model. I: assessment of control climate,

including sensitivity to location of lateral boundaries. Q. J. Royal Meteorol. Soc.

121, 1413–1449.

Frontiers in Environmental Science | www.frontiersin.org 15 April 2019 | Volume 7 | Article 36107

https://doi.org/10.1002/2015JD024040
https://doi.org/10.1175/MWR3456.1
https://doi.org/10.1127/metz/2015/0598
https://doi.org/10.1007/s00382-013-2011-6
https://doi.org/10.5065/D6445JJ7
https://doi.org/10.1175/JCLI-D-14-00695.1
https://doi.org/10.1175/JCLI-D-16-0316.1
https://doi.org/10.1002/qj.13
https://doi.org/10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2
https://doi.org/10.1007/s10584-006-9211-6
https://doi.org/10.1175/2010WAF2222390.1
https://doi.org/10.1175/JCLI3761.1
https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
https://doi.org/10.1175/JCLI-D-11-00004.1
https://doi.org/10.1002/qj.828
https://doi.org/10.1023/A:1000132524077
https://doi.org/10.1007/s00382-001-0201-0
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1007/s00382-011-1068-3
https://doi.org/10.1007/s00382-006-0189-6
https://doi.org/10.1007/s10584-013-0954-6
https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
https://doi.org/10.1029/2018MS001444
https://doi.org/10.1016/S0921-8181(03)00026-2
https://doi.org/10.1175/2011BAMS3061.1
https://doi.org/10.1007/s00704-012-0623-0
https://doi.org/10.1007/s00382-015-2961-y
https://doi.org/10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2
https://doi.org/10.1029/98JD02072
https://doi.org/10.1002/(SICI)1097-0088(199808)18:10<1051::AID-JOC304>3.0.CO;2-1
https://doi.org/10.1175/WAF-D-10-05038.1
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Prein et al. Weather Types in Regional Climate Models

Kain, J. S., and Fritsch, J. M. (1990). A one-dimensional entraining/detraining

plume model and its application in convective parameterization. J. Atmos. Sci.

47, 2784–2802. doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2

Knutti, R., Masson, D., and Gettelman, A. (2013). Climate model genealogy:

generation CMIP5 and how we got there. Geophys. Res. Lett. 40, 1194–1199.

doi: 10.1002/grl.50256

Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A.,

et al. (2014). Regional climate modeling on European scales: a joint standard

evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 7,

1297–1333. doi: 10.5194/gmd-7-1297-2014

Leduc, M., and Laprise, R. (2009). Regional climate model sensitivity to domain

size. Clim. Dyn. 32, 833–854. doi: 10.1007/s00382-008-0400-z

Leung, L. R., Qian, Y., and Bian, X. (2003). Hydroclimate of the western

United States based on observations and regional climate simulation

of 1981–2000. Part I: seasonal statistics. J. Clim. 16, 1892–1911.

doi: 10.1175/1520-0442(2003)016<1892:HOTWUS>2.0.CO;2

Li, J., and Barker, H. (2005). A radiation algorithm with correlated-k

distribution. Part I: local thermal equilibrium. J. Atmos. Sci. 62, 286–309.

doi: 10.1175/JAS-3396.1

Lin, R., Zhou, T., and Qian, Y. (2014). Evaluation of global monsoon

precipitation changes based on five reanalysis datasets. J. Clim. 27, 1271–1289.

doi: 10.1175/JCLI-D-13-00215.1

Lin, Y.-L., Chiao, S., Wang, T.-A., Kaplan, M. L., and Weglarz, R. P. (2001).

Some common ingredients for heavy orographic rainfall.Weather Forecast. 16,

633–660. doi: 10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2

Lorente-Plazas, R., Montávez, J., Jimenez, P., Jerez, S., Gómez-Navarro, J., García-

Valero, J., et al. (2015). Characterization of surface winds over the Iberian

Peninsula. Int. J. Climatol. 35, 1007–1026. doi: 10.1002/joc.4034

Martynov, A., Laprise, R., Sushama, L., Winger, K., Šeparović, L., and
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Long-duration localized heavy rainfall (> 6 h, < 10 km2) was recorded by raingauges

on October 4, 2013 at mid-elevations (∼ 1, 500 m) in the Peruvian Andes, which was

not apparent in infrared or microwave measurements from either geostationary or polar

orbiting satellites. This spring event is investigated here through a numerical modeling

study using the Weather and Research Forecasting (WRF) model, and examined in the

context of the climatology of Cold Air Intrusions (CAIs) along the eastern flanks of the

tropical Andes. The model results suggest significant precipitation enhancement from

intense shallow convection at the CAI frontal boundary amplified by orographic lifting

as it propagates northward latched to the slopes of Andes. Analysis of CAI mesoscale

dynamics was conducted using four decades of European Center Medium-Range

Weather Forecasts (ECMWF) reanalysis, Tropical Rainfall Measurement Mission (TRMM)

data products, and rain-gauge observations with emphasis on characterizing year-round

CAI frequency, CAI interactions with Andes topography, and their impact on orographic

precipitation climatology. The data show a robust enhancement of the diurnal cycle of

precipitation during CAI events in all seasons, and in particular increases in surface rainfall

rate during early morning at intermediate elevations (∼ 1,500m), that is the eastern

Andes orographic maximum. This link between CAI frequency and rainfall suggests that

they play an important role in maintaining the Andes to Amazon year-round terrestrial

connectivity through runoff production and transport by the river networks.

Keywords: orographic rainfall, Andes, cold front, extreme events, water cycle

INTRODUCTION

The Andes mountain range is the most prominent topographic feature of South America and
modulates the weather and climate of the continent (Garreaud, 2000, 2009). Orographic effects on
synoptic and regional-scale weather and climate (Barros and Lettenmaier, 1994; Houze, 2012) can
lead to localized extreme rainfall events causing floods, debris flow, and landslides that reshape the
landscape (e.g., Lowman and Barros, 2014). South American Cold Air Intrusions (CAI) (hereafter
referred to as CAI) are year-round synoptic scale phenomena that tie the mid-latitudes to the
tropics along the eastern slopes of the Andes. The focus of this manuscript is on the role of CAI
in the climatology of extreme orographic precipitation in the eastern Andes.

Synoptic-scale cold intrusions of mid-latitude air to the tropics are common along north-south
oriented mountain ranges (Garreaud, 2001) including the Rockies (e.g., Schultz et al., 1997), the
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Himalayas (e.g., Chen et al., 2002), and the Andes (Garreaud
andWallace, 1998; Garreaud, 1999a,b, 2000; Vera and Vigliarolo,
2000). Garreaud (2000) synthesized the mean synoptic structure
of CAI events in the Andes based on 17-years of National Centers
for Environmental Prediction-National Center for Atmospheric
Research (NCEP-NCAR) reanalysis and satellite measurements
of outgoing longwave radiation (OLR) to show how orographic
blocking forces geostrophic southerly winds to align with the
Andes and transport cold air to the tropics. Earlier studies
linked CAI occurrences in the austral winter to light rainfall
alone, while estimating that CAI produce 25–50% of summer
precipitation over central Amazonia and adjacent plains as
a result of the enhanced convective environment ahead of
the cold surge (Garreaud and Wallace, 1998). Cold season
episodes cause significant temperature drops near the land-
surface resulting in widespread freezing conditions in the
mid-latitudes and subtropical South America that have severe
adverse impacts on agriculture and people. Espinoza et al.
(2013) analyzed winter frost episodes (June-July-August, JJA)
using in situ temperature data from 1975 to 2001, and defined
extreme cold events when minimum daily temperature drops
below the 10th percentile. They reported different duration and
intensities for winter frost events depending on latitude with
60% of the events in the subtropics lasting about 1 day, and
15% of the events in the tropics lasting as long as 3 days.
Boers et al. (2014) reported results similar to Espinoza et al.
(2013) but focused instead on extreme rainfall events in the
Bolivian Andes during the monsoon season (December-January-
February, DJF). Hurley et al. (2015) found that most of the
snow accumulation on the Quelccaya Ice Cap (QIC) in the
Peruvian Andes from ∼ 2003 − 2013 occurred during the
monsoon, with the heaviest events that account for 70% of
total snow accumulation being associated with CAIs’ frontal
band of enhanced convection. Following Siqueira and Machado
(2004), Siqueira et al. (2005) proposed classifying CAIs in
three categories: (1) interaction with tropical convection during
northward propagation, (2) interaction with tropical convection
along a quasi-stationary northeast to southwest convection band,
and (3) no interaction with tropical convection, with the first one
being most relevant for this work. During the monsoon, CAI
events have been linked to emergence of organized mesoscale
convective systems (MCSs) over the southern La Plata Basin
(Anabor et al., 2008; Boers et al., 2015). Anabor et al. (2008) point
out that while the region of convective development typically
propagates north and northwestward ahead of the CAI front
with MCS activity propagating eastward, occasionally there is
upstream southeastward MCS propagation that is tied to the
position of the South Atlantic anticyclone. Boers et al. (2015)
linked southeasterly propagation of convective precipitation
clusters to the Bolivian Andes during the monsoon to pressure
anomalies associated with the westerly Rossby Wave (RW)
propagating over the Andes as it interacts in the leeside with
the northwestern Argentinian low-pressure center (NAL, Seluchi
et al., 2003). Besides the different modes of CAI interaction with
tropical convection, past CAI climatology studies also focused
on trajectory (Lupo et al., 2001) and life-cycle analysis related
to westerly RW interactions between the subtropical and polar

jets (Müller and Berri, 2007). In particular, Müller and Ambrizzi
(2007) linked CAI causing generalized frosts to a double RW
train approaching South America (SA) between the subtropical
and polar jets. The trajectories of these anomalies may or may
not merge as they approach western SA, which subsequently
impacts whether they are in-phase (favorable to strong CAI) or
out-of-phase on the lee side of the Andes.

The linkages between CAI timing and frequency over long
time-scales were investigated by Li and Fu (2006). Specifically,
they showed how CAIs played an important role in priming
the large-scale environment over the Amazon for the monsoon
onset by impacting upper troposphere conditions and low level
moist static energy early in the austral spring. Furthermore, they
attributed monsoon onset delays to decreased CAI frequency
and intensity in the transition season (September, October,
November, SON). This finding was confirmed by Yin et al. (2014)
who pointed out that poleward displacement of the Southern
Hemisphere Subtropical Jets under global warming leads to
weaker CAI activity causing late initiation of the monsoon in
global climate model (GCM) simulations. Nevertheless, Yin et al.
(2013) showed that GCM’s handicaps in predicting fully CAI
space-time features result in significant simulated rainfall bias,
especially in the transition seasons, and more so in the spring
(SON). In the austral winter, that is the dry season (May-
September), GCM CAI climatology also points to decreases in
frequency albeit accompanied by increases in intensity under
global warming (Cavalcanti et al., 2013).

An open question following Li and Fu’s (2006) work concerns
the relative role of local and remote processes. Local processes
such as multiscale land-atmosphere interactions depending
on land cover and soil moisture conditions can strongly
influence the development and organization of the convective
activity ahead of the storm. Moreover, telecoupling to remote
climatological phenomena such El Niño Southern Oscillation
(ENSO) and the Southern Annular Mode (SAM) plays a role
in determining favorable or unfavorable SON environmental
conditions for CAI’s northward propagation (e.g., Siqueira
and Machado, 2004). For instance, Medvigy et al. (2012)
linked CAI frequency and intensity increases in the western
Amazon to deforestation. Likewise, Sun and Barros (2015a)
showed that decreases in evapotranspiration from Andean
forests up to mid-elevations on the eastern slopes weaken
convective activity, modifying the South American Low Level
Jet (LLJ), ultimately reducing upslope moisture convergence
and orographic precipitation. Besides being critical to moisture
recycling in the Amazon proper, evapotranspiration from forests
in the Amazon foreland also plays an important role in the
dynamics of regional-scale circulations that modulate the diurnal
cycle of precipitation in the Andes (Sun and Barros, 2015b).
How these feedbacks may be enhanced or weakened in the future
due to recent evidence of shifts in forest cover along the Andes
foothills is an open question (Aide et al., 2019). Understanding
the interplay of large-scale circulation, regional climate, and
land-use and land-cover (LULC) change from the Andes to
the Amazon, and potential alterations of CAI seasonality and
consequently shifts of the timing of monsoon onset requires
long-term high-resolution integratedmodeling and observations.
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Zipser et al. (2006) investigated global storm activity based
on Tropical Rainfall Measurement Mission (TRMM) satellite
observations: they used the 40-dBZ reflectivity height from
the TRMM Precipitation Radar (PR) measurements as an
indicator of updraft strength, along with theminimumbrightness
temperature of precipitation features at 37 and 85 GHz, and the
collocated lightning flash rates. Their study shows that the most
intense, long lasting, and deepest convection in the world occurs
in subtropical South America, a finding replicated by Boers
et al. (2016). Rasmussen and Houze (2011) classified Andean
convective activity in three types according to their morphology:
deep convective cores, wide convective cores, and storms with
large stratiform regions, with the second type being the most
frequent in the southeastern South America at lower elevations.
Due to the challenges of correcting ground-clutter contamination
and the complexity of low-level stratiform precipitation systems
with embedded convection, the detection and classification of
shallow orographic precipitation in mountainous regions is very
challenging (Prat and Barros, 2010a,b; Duan et al., 2015; Arulraj
and Barros, 2017, 2019) resulting in severe underestimation of
precipitation rates in the eastern Andes (Lowman and Barros,
2014). Ground-based precipitation observations are therefore
key to detect and measure extreme events such as the isolated (<
10 km2) torrential event (∼ 30 mm hr−1 for 6 h) in the Peruvian
Andes on October 4, 2013 that motivated this work (Figure 1).

Previous CAI studies have focused most often on CAI
dynamics and cold season weather such as frost impacts.
In this manuscript, the objective is to investigate the link
between CAI and extreme orographic precipitation in the
eastern Andes. Although a challenging endeavor due to scarce
ground-based observations and remote sensing limitations, the
integration of long-term reanalysis, satellite data, and rain-
gauge observations enables probing the relationship between
orographic precipitation extremes and CAIs in the context
of regional weather and climate. Specifically, ERA-Interim
reanalysis data (39 years) are used to revisit the mean
structure and frequency of CAI events in the Peruvian Andes.
The data and the methodology used for detecting CAI are
presented in section Data and methodology, and the numerical
simulations are described and examined vis-à-vis the CAI
synoptic scale climatology from reanalysis in section Case
study - October 4, 2013. In section Rainfall observations,
long-term statistics of CAI are interpreted in the light of
rainfall data in the foothills and western Amazon basin toward
assessing the role of CAI on orographic precipitation climatology.
Discussion and Conclusions follow in section Conclusions
and Outlook.

DATA AND METHODOLOGY

Rainfall Data
A torrential rainfall event on October 4, 2013 was recorded by
rain-gauges along an altitudinal transect in the Madre de Dios
river basin (Barros, 2013) with up to 200mm of rainfall measured
over ∼6 h at the orographic maximum (∼ 1, 500 m elevation)
in the eastern Andes comparable to precipitation produced by
land-fallen tropical cyclones in the Atlantic Coastal Plain of the

US. Figure 1 shows the geographic setting of all rain-gauges used
in this study (right panel and inset) as well as the cumulative
rainfall curves (CRCs) for the rain-gauges in the Madre de Dios
transect during the event. The rain-gauge locations are provided
in Table 1.

Precipitation Features (PFs, http://atmos.tamucc.edu/
trmm/data/trmm/level_2/rpf/) derived from Tropical Rainfall
Measuring Mission (TRMM) measurements after Nesbitt et al.
(2000) and Liu et al. (2008) are used here to determine the
composite diurnal cycle of rainfall on two altitudinal bands
above and below the orographic maximum (∼ 1,500 m). PFs
were classified into five categories for analysis corresponding
to 20, 30, 40, 50, 100 (mm hr−1) average areal rain rate
(volumetric rain per unit area) and maximum near surface
rain rate from the TRMM 2B31 product (Tropical Rainfall
Measuring Mission, 2011). Terrain elevation at the center
of each of PF determines the altitudinal band to which the
PF belongs for a period of record of more than 16 years
(December, 1997—September, 2014). The analysis is centered in
the Peruvian Andes (9◦−17◦S, 60◦−80◦W) spanning a distance
of about 400 km northward and southward from the Madre de
Dios network, and one of the hot-spots region identified by
Chavez and Takahashi (2017).

CAI Climatology
The CAI climatology was constructed based on 39 years
of European Center for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim reanalysis between 1979 and 2017
(Berrisford et al., 2011; Dee et al., 2011). The data consist of
60 vertical levels from the surface to 0.1 hPa with horizontal
resolution of 0.75◦ × 0.75◦ available daily at 00, 06, 12, and
18 UTC. Mean sea level pressure (MSLP), temperature at 925
hPa (T925), vertically integrated Moisture Convergence (MC)
and horizontal wind and specific humidity at 12 pressure levels
between 100 and 1,000 hPa (100, 200, 300, 400, 500, 600,
700, 800, 850, 900, 950, 1,000) are used in this study for
CAI detection analysis following the methodology described by
Garreaud (2000). First, an initial set of events is chosen based on
the frequency with which the spatial average 24-h MSLP trends
(δMSLP) in the region between 55.5◦ - 60◦W and 22.50◦ - 27.00◦S
exceeds the 10th percentile of its monthly climatology. Next, to
ensure the existence of a high pressure system, and therefore a
cold front in the domain of study, only events for which the
spatial average of MSLP exceeds the 10th percentile of its next-
day monthly regional value are retained. The median of the
time that the conditions for event detection are met is defined
as day-0 and the 24 h before and after that time are defined as
day-1 and day+1, respectively. For the analysis of rainfall data,
the 2 day period between day-1 and day+1 is defined as a CAI
event, and other times are considered as non-CAI days. Further,
when the inter-event time is <2.5 days, only the stronger events
are retained for analysis to ensure event independence. This
methodology yields the detection of 726 events between 1979
and 2017.

Figure 2 shows 3 months of 24-h MSLP and MLSP trends
(δMSLP), and 925 hPa-air temperature (T925) from the
beginning of September until the end of November, 2013.
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FIGURE 1 | (A) Location of the rain-gauges used in this study and Madre de Dios Transect (inset) in the Peruvian Andes. (B) Cumulative rainfall curves (CRCs) from

2013-10-03 12:00 Local Time (LT) to 2013-10-06 00:00 LT for all rain-gauges. The CRC color is the same as the corresponding rain-gauge mark in the inset map.

TABLE 1 | Rain gauge location and time in service.

Gauge Location Latitude Longitude Elevation (m) Period

Upper trocha 13.1062◦S 71.5883◦W 2,690 Nov-2011 to Oct-2017*

Posada san pedro 13.0559◦S 71.5441◦W 1,401 Jun-2011 to Oct-2017

Lower trocha 13.0775◦S 71.5630◦W 2,125 Apr-2012 to Oct-2017

Wayquecha 13.1749◦S 71.5865◦W 2,896 Jun-2011 to Oct-2017

Tres cruces 13.1207◦S 71.6116◦W 3,639 Oct-2011 to Oct 2017

*For Upper Trocha, Posada San Pedro, Lower Trocha, and Tres Cruces, 622, 189, 39, 27 days are missing.

The seven events detected during this period are identified
by vertical lines. CAI intensity expressed in terms of pressure
increase and temperature drop varies significantly from event
to event. In particular, note that the pressure changes for
the extreme event on October 4th, 2013 are not distinct
from all the others. This suggests that beyond synoptic–scale
forcing, there is an important role for regional—(moisture
convergence, atmospheric stability) and local-scale conditions
(orographic forcing) to determine the location and magnitude of
extreme events.

CASE STUDY—OCTOBER 4, 2013

Previously, moist orographic processes over the Andes were
simulated using the Weather and Research Forecasting (WRF,

Skamarock et al., 2008) model by Sun and Barros (2015a,b) and
de la Torre et al. (2015) among others. The WRF simulation
of the October 2013 event presented here relies on these and
other orographic precipitation studies with regard to selection of
model physical parameterizations, numerical grid design, as well
as specification of initial and boundary conditions.

A 3-domain one-way nested grid is set-up (Figure 3) with

18, 6, and 1.2 km grid-spacing following Sun and Barros (2014,

2015a) who successfully investigated interactions between strong

synoptic systems and complex topography. Simulations were

conducted using WRF 3.8.1 to solve the non-hydrostatic and

fully compressible flow equations with a 6-h spin-up time in
the outer domain and one-way coupling between nested grids.

The grid-spacing ratio between the outer (D01, 18 km) and

intermediate (D02, 6 km) domains is 1:3 with 316 × 496 and
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FIGURE 2 | Time series of (top) 24-h Sea Level Pressure tendencies (δMSLP),

(middle) averaged Sea Level Pressure (MSLP) and (bottom) 925-hPa air

temperature averaged in the area between 55.5◦ - 60◦W and 22.50◦-27.00◦S

coordinates, starting from the beginning of Sept. until the end of Nov. 2013.

The vertical lines mark CAI events detected during this period. The horizontal

dashed lines show the monthly 10th percentile of δMSLP and MSLP in the top

and middle panels, respectively.

433 × 547 horizontal grid points, respectively (Figure 3). The
grid-spacing ratio between the intermediate and inner domains
(D03, 1.2 km) with 756×726 horizontal grid points is 1:5. All the
domains have 90 vertical atmospheric layers with top at 50 hPa,
and 4 soil layers. Initial and boundary conditions are extracted
from the National Centers for Environmental Prediction Final
Operational Global Analysis (NCEP-FNL) available at 1◦ ×

1◦ resolution every 6 h (Kalnay et al., 1996) with 26 vertical
layers between 1,000 to 10 hPa in addition to the surface layer
following Sun and Barros (2015a,b).

The selection of physical parameterizations was informed
by recent studies of orographic precipitation (e.g., Wilson
and Barros, 2015, 2017) and includes the Mellor–Yamada–
Nakanishi–Niino (MYNN level 2.5; Nakanishi and Niino, 2006)
planetary boundary layer scheme, the Milbrandt microphysics
scheme (Milbrandt and Yau, 2005a,b), and the Noah land surface

FIGURE 3 | Domain setup for numerical simulations with 3 nested domains

with increasingly higher grid resolution: D01 (18 km), D02 (6 km), and D03 (1.2

km). The small shaded box shows the region where the ECMWF reanalysis

data are used for detecting the events. The black circle marks the region

highlighted in Figure 1 where the rain-gauges are installed.

model (Ek et al., 2003). The Rapid Radiative Transfer Model
(RRTM) (Mlawer et al., 1997) and the Dudhia scheme (Dudhia,
1989) are used to describe longwave and shortwave radiation
at 1-min intervals. The Kain-Fritsch cumulus parameterization
(Kain, 2004) scheme is applied in the outer and intermediate
domains, whereas in the inner domain, convective processes are
explicitly resolved.

Figure 4 shows simulated fields of MSLP, and 850 hPa
winds and geopotential heights every 6 h starting on October
3 at 06Z. Synoptic scale context is provided by movies of the
evolution of 500 and 850 hPa geopotential heights and winds
in Supplemental Informations S1a,b. For reference, composite
MSLP, and 850 hPa level horizontal winds for all CAI events
in the austral spring (September, October, and November,
SON) 1979–2017 are also provided for day-1, day-0, and
day+1 (Supplemental Information S1c). The main driver of
the October 2013 event is the migratory high-pressure system
that moves eastward from the South Pacific associated with
eastward mid-latitude wave propagation along the subtropical
jet consistent with climatology (e.g., Garreaud, 2009). The
large-scale structure shows poleward orientation of mid-latitude
trajectories west of south SA due to orographic blocking by the
Andes (Supplemental Informations S1a,b). The MSLP of the
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FIGURE 4 | WRF simulation (D01, 18 km) of the October 4, 2013 CAI case study. The maps show Mean Sea Level Pressure (MSLP, shaded), 850 hPa level

horizontal winds (arrows), and 850 hPa geopotential heights (green contours, 30m interval) every 6 h starting on October 3 at 06Z. The black contour line shows the

2000 m elevation.

case study is about 5 hPa lower than climatology in the subtropics
both for the day before (day-1) and the day of the event (day-0),
which is favorable to convective activity. More interestingly, early

on in the development of the October 4, 2013 event (day-1), a
strong high-pressure system is present in the South Atlantic (∼
40◦W, 50◦S) that forms a stationary mid-latitude dipole with a
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FIGURE 5 | WRF simulation (D01, 18 km) of the CAI event on October 3–7, 2013. Top row shows the equivalent potential temperature and 925 hPa level horizontal

wind fields. The blue contour line delineates the 1,020 hPa sea level pressure. Areas of high and low pressure are marked with H and L, respectively. Bottom row

shows the Precipitable Water (PW) overlain on the 300 hPa level horizontal wind fields. A movie showing the temporal evolution of PW during the event duration is

available as Supplemental Information S2.

low pressure center to the north (∼40◦S) at the same longitude.
The dipole moves slowly eastward after 18Z on day-1 (October
3) and is out of the domain by day+1 (October 5). As the
westerly migratory high-pressure system moves over the Andes
(∼ 45◦S), atmospheric blocking by the mid-latitude pressure
dipole enhances counterclockwise geostrophic circulation on
the lee-side of the Andes, thus favoring the development of a
mid-latitude anticyclone confined to continental SA (∼60◦W).

Orographic blocking in the lower troposphere (< 700 hPa)
to the west along the eastern slopes of the Andes forces the
development of ageostrophic southerly winds pushing CAI that
are further enhanced by cyclonic circulation over the Rio de
la Plata (∼55◦W, 35◦S) on day-0 and into day+1. Persistent
southerly winds during this period reach the tropics fueling
convective activity along the frontal boundary between the CAI
air mass and warm moist tropical air well into day+2 (October
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FIGURE 6 | WRF simulation (D02, 6 km) of the CAI event on October 3–7, 2013. The first two columns show the integrated moisture convergence (MC) and 850 hPa

level horizontal wind streamlines. The 1500 m orography is shown by southwest-northeast hatching. The second two columns show the 850 hPa level geopotential

heights and horizontal wind streamlines. The white region is the area with pressures lower than 850 hPa.

6, Figure 4). After the high-pressure system passes over the
mountains, regional circulation changes returning to non-CAI
conditions with northerly winds toward the South Atlantic
Convergence Zone (SACZ) by day+3 (October 7, not shown).

Figure 5 shows the simulated synoptic scale evolution of
near the surface equivalent potential temperature (925 hPa)
and Precipitable Water (PW) fields overlain the 300 hPa winds
every 24 h October 3–7, 2013. There is a large contrast between
very high PW (>50mm) over the Amazon due to easterly
advection of warm moist air from the tropical Atlantic and
that piles up against the eastern Andes initially (bottom row,
left panels) and subsequently becomes organized ahead of the

CAI front, and PW (< 20mm) in southern SA associated with
low level cold advection behind the front. Easterly moisture
transport from the Atlantic piles unstable moist air (60mm PW)
against the terrain ahead of the CAI front north of 15◦S as it
can be seen from the co-evolution of PW and 850 hPa winds
(Supplemental Information S2).

The mesoscale evolution of the storm described by the
vertically integrated Moisture Convergence (MC = −∇ ·

1
g

∫

qUdp, where q is specific humidity and U is horizontal

wind, p is pressure and g is the acceleration due to gravity),
geopotential heights and horizontal winds at 850 hPa is presented
in Figure 6. Initially, regional conditions are consistent with the
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FIGURE 7 | (A) Simulated cumulative rainfall from the high resolution domain (D03, 1.2 km) between Oct. 4, 12Z and Oct. 6, 00Z, 2013. The thick and thin black

contour lines show the 1 km and 3.5 km topographic elevations, respectively; the cyan straight horizontal line marks the cross-section used in (B–D). (B) Total

cumulative rainfall in the cross section, purple shading in (B) indicates time of maximum rainfall intensity in model simulations, green shading in (B) indicates time of

maximum rainfall intensity in the Madre de Dios network; (C) longitude-time diagram of meridional wind interpolated to 1 km AMSL; and (D) longitude-time diagram of

vertical wind at 2 km AMSL. Blue line in (D) represents the terrain cross-section, and the black line is marked on the 2 km elevation contour.

typical wind patterns associated with the SACZ with streamlines
in the NE-SE direction (Oct-03, 12Z). The color-scale is chosen
to show the average behavior of MC. However, the maximum
values can locally assume values as high as 30 (g m−2 s−1). Note
evidence of a low-level mesoscale cyclonic vortex centered at

25◦S and 65◦W (consistent with the NAL) and high-pressure to
the right (top row). Blocking of the easterly geostrophic flow as
discussed above in the context of Figure 4 forces the alignment
of northward low level flow along the eastern Andes, and the
development of a cold front (e.g., the CAI front) as southerly air
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FIGURE 8 | Cross section of (A) moisture content and frozen hydrometeors (B) simulated reflectivity and (C) vertical velocities at 2013-10-05 00:00 UTC. The dashed

contour lines in (A) show the 3× 10−3gkg−1 value of frozen phases. The cross section is shown in Figure 7A with cyan line at 13.16◦S.

interacts with tropical moist air. Behind the front, an orographic
blocking high forms in the subtropics that expands northward
and strengthens with time eventually reaching the tropics in day-
0 and into day+1.The cold front propagates northward reaching
the subtropics (Oct-04, 00Z) with a well-defined region of strong
convergence forming ahead of the cold front consistent with the
PW patterns in Figure 5. The leading moist convergence zone
(MCZ) advances with the CAI front along the Andes until it
reaches∼6◦S (Oct-06, 00Z).

Figure 7 shows the spatial distribution of simulated rainfall
(Figures 7A,B) in the inner domain just as the CAI reaches
its northernmost excursion and begins to retreat as per the
meridional wind changes in Figure 7C. The model predicts
localized precipitation accumulations of up to 172mm
(Figure 7B) against the 1,000m elevation contour along a
cross-section (cyan) at the latitude of the raingauge network

in Figure 1. Note the rapid change in rainfall accumulations
in Figure 7B from 50 to 160mm over a period of 6 h as the
CAI front arrives. Figure 7C suggests that low level northerly
meridional winds are blocked by the terrain and by the southerly
cold front over the low topography of the Amazon foreland
basin. This blocking effect and change in wind regime that is
accompanied by moisture convergence ahead of the storm can
also be seen in Figure 6 (starting from Oct-4, 00Z). Convection
initiates where northerly warm moist air piles against the terrain
forcing localized upward motion to develop in the lower 1-2 km
AMSL (2 km AMSL shown in Figure 7D; negligible at 1 km
AMSL, not shown) producing heavy precipitation (purple shade
in Figure 7B). Simulated updrafts can reach 35 m s−1 at higher
altitudes (10 − 15 km). The model captures rainfall initiation
with a 12–24 h delay in peak rainfall intensity relative to the
Madre de Dios network (approximate time difference between
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FIGURE 9 | Top row: Composite vertically integrated Moisture Convergence (MC) patterns overlain on 850 hPa horizontal winds in the austral spring (SON) between

1979 and 2017 from ERA-Interim. The black contour line marks the 2000 m elevation. Bottom row: similar plots for the case-study CAI.

purple and green shades in Figure 7B), but well within the time
of arrival and movement of the CAI front along the Central
Andes hot-spot region. Simulated rainfall intensities (1.2 km
grid-spacing) are 3–4 times lower than rain-gauges (point
scale), with rainfall occurring intermittently throughout the
day in contrast with the observations that exhibit a mid-day
rainfall break. Overall, the simulated rainfall accumulations at
1,500m elevation vary between 131 and 172mm in contrast with
accumulations of 270–280mm measured by the rain-gauges
(Figure 1). Nevertheless, the spatial organization of simulated
precipitation (Figure 7A) is consistent overall with the spatial
distribution of precipitation features from the TRMM satellite
climatology along the eastern slopes of the Andes with negligible

precipitation or very light rainfall at higher elevations above the
tree line (e.g., ∼3,500m) along the headwaters of the Amazon
basin (Lowman and Barros, 2014).

The vertical distribution of moisture content and frozen
hydrometeors (Figure 8A), simulated reflectivity (Figure 8B),

and vertical winds (Figure 8C) are shown in Figure 8 for
the period of maximum simulated rainfall intensity along the
cross-section marked in Figure 7A. The moisture content is
the sum of water vapor, rain water, cloud water, and frozen
phase (ice, snow, graupel, and hail) mixing ratios. The contour
lines highlight the spatial distribution of frozen hydrometeors
as a proxy for convective activity that extends to the higher
levels in the atmosphere. Note the spatial alignment of high
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FIGURE 10 | Seasonal time series of CAI events detected from ERA-Interim data 1979–2017 for the eastern side of the Andes cordillera.

FIGURE 11 | Vertical profile of moisture flux (q×

√

u2 + v2) from ERA-Interim: (A) climatological values at different times of the day (B) during CAI in

September-October-November (SON) at (71.25◦W, 12.75◦S).

reflectivity cores of heavy precipitation (reflectivity up to 60 dBZ
at 5 km AMSL) with the updrafts and downdrafts associated
with localized orographic convection at mid-elevations (< 2 km)
over the eastern slopes of the Andes. Furthermore, the region of

well-developed convection to the east over the low topography
of the Amazon is consistent with the position of the front and
the spatial distribution of precipitable water (PW) west of 60◦W
in Figure 5. Orographic convection initiation takes place at the
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FIGURE 12 | (A) Map of maximum near surface rain rate for the 16-year composite of TRMM Precipitation Features discussed in section Data and methodology

overlaying the topography of the Central Andes and adjacent regions. The white boxes delimit three latitude bands including the Andes hot-spot area (central box,

also the Madre de Dios rain-gauge network Figure 1) used for analysis in Figure 13. (B) The frequency of TRMM PFs binned with maximum near-surface rainfall rates

for each latitude band. (C) Distribution of PF areal extent as a function of average rainfall rate for two elevation bands with and without CAI conditions.

geographic intersection of the cold front with the terrain. This
enhances localized low level stationary blocking by the terrain
inducing a sloshing-like behavior along the front and spatially
and temporally intermittent convective activity (Figure 7B). The
convective cores shown in Figure 8 move zonally up and down
(back-and-forth) along the slopes of the Andes and into the
Amazon foreland throughout the day. The peak of simulated
rainfall is delayed until the CAI frontal boundary pushes
northward beyond the reference cross-section in Figure 7 with
localized rainfall intensification tied to on-and-off convective
activity against the terrain. The development of terrain-following
convective activity along the CAI trajectory against the eastern
slopes of the Peruvian Andes is in keeping with the spatial layout
of precipitation hot-spots mapped by Chavez and Takahashi
(2017) along elevation bands suitable for optimum orographic
enhancement of precipitation (e.g., Sun and Barros, 2015a,b).
Easterlymoisture transport from the Atlantic piles unstablemoist
air (60mm PW) against the terrain ahead of the CAI front north
of 15◦S as it can be seen from the co-evolution of PW and

850 hPa winds (Supplemental Information S2). Consumption
of low level entropy supports upslope flow and enables convective
initiation at elevations 1–2 km at the intersection of the terrain
and the CAI front that results in the highly localized precipitation
features in Figures 7, 8.

Figure 9 contrasts the mean structure of vertically integrated
Moisture Convergence (MC) from reanalysis for austral spring
(SON, top row) CAIs with simulated MC for the October 2013
event (bottom rows, see also Figure 6). Before the event begins
(day-1, Figure 4) the convective area extends to the subtropics
along with northwesterly winds associated to the SACZ. In the
second day (day-0), MC from the Amazon and the tropical
Atlantic is organized ahead of the CAI front with divergence
trailing behind it. This large-scale arrangement maintains the
spatial pattern and magnitude of tropical moisture convergence
against the mountains before it detaches in the eastern Andes
of Bolivia and turns southeastward guided by the CAI front.
During day-0, the MCZ moves with the frontal boundary as it
progresses northward while easterly winds weaken in the western
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FIGURE 13 | Diurnal cycle of (A,B) maximum near surface rain, (C,D) spatially averaged rain, and (E,F) volumetric rain associated with TRMM PFs over the Andes

during ONDJFM between 12◦ and 14◦S latitude (see Figure 12) for two elevation bands 500–1,500m and 1,500–3,500m. Circles show non-CAI climatology.

Squares show the mean values between 1 day before (day-1) and 1 day after (day+1) the detected CAI events according to the methodology described in section

Data and methodology.

Amazon basin. Day+1 circulation features are similar for the
SON composite and the simulated event. Over northern SA,
the wind fields are generally much weaker than climatology,
with weak low level jet (WLLJ) conditions that favor MC and
accumulation of moist unstable warm air ahead of the front, thus
favorable to high precipitation in the Central Andes hot-spot
region (Sun and Barros, 2015a,b; Chavez and Takahashi, 2017).

RAINFALL OBSERVATIONS

In this section long-term statistics of CAI from reanalysis are
interpreted in the context of rainfall measurements in the
foothills and western Amazon basin.

The season time series of detected CAI events using the
pressure data from ERA reanalysis is presented in Figure 10.
The data show high-frequency of CAI in all seasons, albeit with

large inter-annual variability. Interestingly, the range of inter-
annual variability is higher in the austral summer (DJF) and fall
(MAM) seasons compared to winter (JJA) and spring (SON)
with increased summer activity in the last two decades. The
reliability of CAI in the spring (SON) supports the argument for

their important role in providing antecedent precipitation and
atmospheric humidity necessary to condition the atmosphere for

the monsoon season (Li and Fu, 2006; Yin et al., 2013, 2014).
The vertical profile of southerly moisture flux at an ERA-

Interim grid-point in the Peruvian Andes close to the rain-
gauge network used here (71.25◦W, 12.75◦S) is shown in

Figure 11. Note how the average moisture flux significantly

increases on day+1 (Figure 11B) compared to the average
daily values for non-CAI conditions (Figure 11A), especially
between ∼800 and 600 hPa where most precipitation is
produced. The maximum moisture flux is concurrent with
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FIGURE 14 | Diurnal cycle of mean rainfall intensity from five gauges in the Madre de Dios network from April 2012–2017. Mean value calculations do not include

times without rain. Circles show non-CAI climatology and squares show the mean values between 1 day before and after the detected CAI events.

CAI progression northward along the slopes of the eastern
Andes to reach the rain-gauge network latitude in day+1
consistent with the simulation of the October 2013 CAI event
(see Figure 6).

Figure 13 shows the diurnal cycle of rainfall metrics obtained
from TRMM precipitation features below and above 1, 500 m
terrain elevation in the Peruvian Andes hot-spot region [12◦ −

14◦S, Figure 12] for different elevation bands betweenDecember,
1997 and September, 2014 for CAI and non-CAI days, during
the extended spring-summer rainy season (ONDJFM). The
diurnal cycle of CAI maximum rainfall intensity shows increases

up to 100% (Figure 13A) and higher values of volumetric
rainfall (Figure 13E) in the early morning compared to non-
CAI conditions in the orographic envelope between 500
and 1,500m. The early morning peak in the 500–1,500 m
elevation band is consistent with findings by Giovannettone
and Barros (2009) who showed that nighttime and early
morning convection in the central Andes is constrained to low
elevations including inner mountain valleys and the foothills.
This suggests enhancement of interactions among cold air
pooling processes and low-level convergence of warm moist air
at the CAI frontal boundary. Because TRMM products severely
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underestimate orographic precipitation (e.g., Prat and Barros,
2010a,b; Duan et al., 2015), the CAI signal on rainfall is likely
underestimated (Figures 13C,D). The coefficients of variation
(not shown) are similar for CAI and non-CAI conditions
during the TRMM period of record with high values (2–3)
for the near surface maximum rainfall and low (<1) for the
areal average rain rate. Coefficients of variation are very high
for volumetric rainfall as expected because of large event-
to-event variability in convective activity, and thus rainfall
intensity, as well as areal extent, and more so at higher
elevations for non-CAI conditions reflecting the decrease in
rainfall frequency and amount with altitude above the orographic
precipitation maximum.

Likewise, the diurnal cycle of rainfall at the gauges on the
Madre de Dios altitudinal transect corresponding to 100 CAI
events (during the period of record) is presented in Figure 14.
Although each station shows a different diurnal cycle, there is a
systematic increase of the rainfall intensity at all times of the day
in all seasons during CAI events with maximum enhancement
at San Pedro (∼ 1, 500 m). The rainfall enhancement at Tres
Cruces is remarkable given that this gauge is located at very
high elevation above the tree line in the inner region of the
Central Andes, which indicates for the first time that CAI
events may play an important role in the water cycle of puna
ecosystems in the High Andes beyond the negative impacts of
frost reported in the literature. This implies that sustainability
of puna ecosystems may be tied at least in part to the reliability
of CAI activity. Note the significant difference in the spatial
representativeness gap between the rain-gauge data (point scale)
and the TRMM PFs (pixel scale ∼ 25 km2). Consequently, to
enable interpretation and analysis, it is proposed that the diurnal
cycle of orographic rainfall by altitude based on TRMM PFs
captures the most frequent timing of maximum rainfall during
CAI events, whereas the raingauges capture significant localized
enhancement of orographic precipitation by a factor of about 2
during CAI events.

CONCLUSIONS AND OUTLOOK

Cold Air Intrusions are a key synoptic scale feature of South
American climate and weather. In the present study, in situ
rainfall measurements are used for the first time together with
the longest period of available climatology from ECMWF ERA-
Interim reanalysis (1979–2017) to investigate the connection
between the CAI and orographic precipitation on the eastern
flanks of the tropical Andes. An extreme precipitation event
in October 2013 was selected for simulation and analysis. The
simulated synoptic scale structure agrees well with the classic
definition of CAI in previous studies. The model, although
underestimating the rainfall amounts and intensities, produces
the extreme localized rainfall patterns near the orographic
maximum (∼ 1,000–2,000 m) in the Central Andes suggested by
the raingauge measurements for this case study. A careful study
of the vertical structure of atmospheric moisture content and
vertical winds shows strong shallow convection associated with

high values of precipitation at the intersection of the CAI front
with the Andes terrain explaining the localized enhancement of
surface rainfall. The trajectory of shallow convection following
the terrain as the CAI front propagates northward is in agreement
with the orographic precipitation maximum on the Andes
slopes inferred from rain-gauge observations, and the hot-spot
clusters of precipitation features from satellite observations). The
reanalysis climatology reveals that the moisture flux increases
significantly at all heights during CAI events with a maximum
of up to 50% between 800 and 600 hPa. The enhanced moisture
flux is necessary to sustain strong shallow convection that
translates into increased rainfall intensity and accumulations on
the eastern slopes of Andes (∼ 1000 − 2000 km) in TRMM
products and in situ measurements. Specifically, analysis of the
rain-gauge data shows strong precipitation enhancement (up
to 100%) tied to CAI events. This behavior is also evident
in the climatology of TRMM precipitation features that show
enhancement of precipitation up to 100% in the early morning
in the Peruvian Andes tied to enhance convective activity at low
elevations. The multi-decadal record of CAI events derived from
ERA-Interim indicates that CAIs are year-round phenomena,
with frequency, intensity, and latitudinal excursion amplitude
that exhibit variability at both seasonal and inter-annual scales.
Nevertheless, reliability of CAI events in the spring season
supports the notion that CAI precipitation makes an important
contribution to priming the low-level troposphere over the
Amazon basin prior to monsoon onset similar to previous
studies. Localized very high orographic rainfall intensity in the
region of study drives regional landslide activity consistent with
the association of landform, precipitation, and erosion in the
region of study.
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In recent decades, Southwest China (SWC) has experienced a series of severe
and extensive droughts resulting in tremendous socioeconomic losses. The annual
maximum dry spell length (AMDSL), which refers to the number of consecutive days
without rainfall, or days with rainfall below a threshold, plays an important role in
triggering drought. The main objective of this study is to provide a comparison of
the capabilities of current regional climate models (RCMs) in simulating extreme dry
spell characteristics in mountainous SWC. Five available RCM simulations utilized in
the Coordinated Regional Climate Downscaling Experiment (CORDEX)-East Asia project
over 1981–2005 were employed in this study; the RCMs being NIMR-HadGEM3, SNU-
MM5, SNU-WRF, KNU-RegCM4, and YSU-RSM. First, it was found that all of the
RCMs reasonably simulate the main seasonality features of rainfall and dry days in
SWC. Furthermore, four of the RCMs, excepting YSU-RSM, can accurately capture
the spatial pattern of dry-day occurrence based on Taylor diagram diagnosis. Second,
we assessed the performance of the five RCMs to detect and reproduce the climatology
and variability of the AMDSL. In general, the RCMs simulate the spatial pattern of
long-term mean and interannual variability of the AMDSL in SWC well. Based on
Taylor diagram evaluation, NIMR-HadGEM3 was the best among the five in simulating
the AMDSL characteristics. Third, the generalized extreme value (GEV) distribution is
considered the most suitable model for fitting the AMDSL in both observation and
RCM experimental data in comparison to other three-parameter probabilistic models.
Higher value centers of the scale parameter and the location parameter indicate a
wider and amplified distribution of the AMDSL over the low-latitude highlands (LLH)
region against other areas in SWC, which is consistent with the spatial patterns of
climatological AMDSL. In addition, sensitivity analysis of different thresholds for dry days
shows that the 1 mm threshold is suitable for this study and that different threshold
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choices have little effect on simulation ability. Overall, the results show that although
significant differences are found between RCMs, the RCMs excepting YSU-RSM can
reasonably reveal extreme dry spell occurrence and amplitude, along with the spatial
distribution of the AMDSL at a 20-year return period in SWC. This information is useful
for model evaluation and improvement, future climate projections, and water resource
risk management.

Keywords: regional climate models, annual maximum dry spell length, CORDEX East Asia, generalized extreme
value, L-moments

INTRODUCTION

Southwest China (SWC), as shown in Figure 1, covers an
area of approximately 1.23 million km2, or 12.9% of China,
containing four provinces and one municipality. SWC is one
of the most densely populated and highest grain-producing
regions in China and also contains the headwaters of many
important rivers for supplying water to Chinese agriculture and
the Mekong River Basin (MRB). Droughts have had significant
impacts on economic growth, water scarcity, crop failure, and
the daily lives of millions of people in this area (Qin et al., 1997;
Cheng et al., 2009). In recent decades, droughts, as defined by
National Climate Center, have been widespread and frequent
in SWC and have been associated with 60% of the economic
losses from all meteorological disasters (Qin et al., 1997; Cheng
et al., 2009; Wang et al., 2015). Severe droughts were observed
more frequently in the area during the last decade, with the
summer of 2006, the autumn of 2009 to the spring of 2010
(Yang et al., 2011; Barriopedro et al., 2012), and the summer
of 2011 (Sun and Yang, 2012; Wang et al., 2014) being most
notable. Considerable efforts have been expended on surveying
the drought characteristics as well as establishing the possible
physical causes and mechanisms of droughts in SWC, which have
been reviewed by Wang et al. (2015).

To assess drought characteristics and impacts, it is necessary
to study hydro-meteorological variables that affect water
availability, including precipitation frequency and intensity,
evaporation, and dry spells (Vicente-Serrano et al., 2010; Spinoni
et al., 2019). In particular, the number of consecutive dry days
(CDD) without rainfall, or days with rainfall below a specific
threshold, is defined as a dry spell. This variable can show the
effect of long periods of precipitation deficit on soil moisture
conditions, ground water levels, and available water in reservoirs
(Tebaldi et al., 2006; Modarres, 2010; Sushama et al., 2010;
Sarhadi and Heydarizadeh, 2014; Saaroni et al., 2015; Raymond
et al., 2016; Tramblay and Hertig, 2018). Exceptionally long
dry spell periods play an important role in the occurrence and
intensity of drought and have strong environmental and social
impacts. SWC is comprised of complex terrain including the
low-latitude highlands (LLH), Sichuan basin (SB), southeastern
Tibetan Plateau (SETP), and Traverse Mountain Chain (TMC), as
shown in Figure 1C. In addition, SWC is located in the interface
area between the Indian Summer Monsoon (ISM) and the East
Asian Summer Monsoon (EASM). Both the combination of the
two monsoons and the complex terrain make the interannual

variability of the AMDSL stronger and harder to simulate with
state-of-art climate models.

Regional climate models (RCMs) are our primary tool
for understanding how extreme local-scale precipitation
characteristics may change in the future under global warming
scenarios (Wang et al., 2004; Christensen and Christensen,
2007; Giorgi et al., 2009; von Storch and Zorita, 2019). RCMs
have a higher resolution than earth system models (ESMs) but
span a limited area. To improve the confidence of an RCM
on extreme precipitation or extreme dry spell representation,
the added value from downscaled physical processes is the
key challenge in regional climate modeling (Maraun et al.,
2010; Rummukainen, 2015). In general, two factors have the
largest contribution to a model’s ability to simulate extremes:
horizontal grid resolution and physical parameterization schemes
(Christensen and Christensen, 2007; Chan et al., 2013, 2014).
The horizontal grid resolution has been considered the most
important factor in simulating extremes (Pope and Stratton,
2002; Roeckner et al., 2006; Salathé et al., 2008; Shaffrey et al.,
2009; Wehner et al., 2010). With finer-scale physical processes
and better representation of the orographic effect, increasing
the horizontal grid resolution could give better representation
of small-scale processes affecting precipitation extremes and
lead to increasing model ability to simulate extremes like the
AMDSL (Pope and Stratton, 2002; Roeckner et al., 2006; Chan
et al., 2013, 2014). Previous studies have reported an improved
confidence in simulating extreme precipitation and extreme dry
spells over continental Europe and Canada (Boberg et al., 2010;
Rauscher et al., 2010; Sushama et al., 2010; Wehner et al., 2010;
Kopparla et al., 2013).

Recently, an international collaborative program known as
the Coordinated Regional Climate Downscaling Experiment
(CORDEX) project has provided a quality-controlled dataset
of downscaled precipitation for the historical past and future
climate changes as well as a model evaluation framework over
East Asia (Giorgi et al., 2009)1. Several previous studies have
examined the performance of a single RCM or ensemble RCMs in
simulating precipitation climatology and precipitation extremes
over CORDEX-East Asia (CORDEX-EA) (Huang et al., 2015;
Park et al., 2016; Li et al., 2018). Although RCMs have shown
systematic bias in mean and extreme precipitation, those models
have been able to reproduce spatiotemporal characteristics of

1http://www.cordex.org/
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FIGURE 1 | (A) The entire CORDEX East Asia domain (within the outer black line). (B) The analysis sub-region, Southwest China (SWC), with latitudes and
longitudes ranging from 21◦N to 35◦N and 98◦E to 112◦E, respectively. (C) Zoomed view of SWC with administrative divisions (black font) and main terrain elements
(colored font) marked. Shading indicates topography.

TABLE 1 | Detailed information on RCMs used in this study.

SNU-WRF SNU-MM5 YSU-RSM KNU-RegCM4 NIMR-HadGEM3

Horizontal resolution (no.
of grid points lat × lon)

50 km (197 × 233) 50 km (197 × 233) 50 km (198 × 241) 50 km (197 × 243) 0.44◦ (183 × 220)

Vertical levels σ-27 σ-24 σ-22 σ-18 Hybrid-60

Dynamic framework Non-hydrostatic Non-hydrostatic Hydrostatic Hydrostatic Non-hydrostatic

Convection scheme Kain-Fritch II Kain-Fritch II Simplified
Arakawa–Schubert

MIT-Emanuel Revised mass flux scheme

Land surface Unified Noah CLM3 NOAH LSM CLM3 MOSES-II

PBL scheme YSU YSU YSU Holtslag MOSES-II non-local

Spectral nudging Yes Yes Yes Yes No

References Skamarock et al., 2005 Cha and Lee, 2009 Hong et al., 2013 Giorgi et al., 2012 Davies et al., 2005

Initial and boundary
conditions

HadGEM2-AO historical simulation

Simulation period HIST: 1979–2005

The dataset was accessed at https://www.cordex.org/domains/region-7-east-asia/.
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extreme precipitation over China and East Asia (Park et al., 2016;
Li et al., 2018).

Previous studies have already evaluated the capacity of RCMs
to reproduce the spatiotemporal characteristics of dry spells.
For example, Herrera et al. (2010) and Domínguez et al. (2013)
use RCMs from the ENSEMBLES/ESCENA project to assess
the ability of the simulations to reproduce the mean and
maximal annual number of CDDs in Spain. They found that
the models tend to have negative CDD number bias compared
to observations. López-Franca et al. (2015) also used five RCMs
from the ESCENA project to detect the annual average of dry
spells length (AADSL) index in Spain. In their study, they
found that the five RCM simulations reproduced the observed
AADSL pattern in Spain well. Fantini et al. (2016) used nine
RCMs from the Euro-CORDEX and Med-CORDEX experiments
to assess the ability of the RCMs to reproduce the frequency
of dry days or dry spells. They also found those RCMs tend
to underestimate the extreme dry spell frequency over wetter
regions of the Mediterranean Basin. Raymond et al. (2018)
used HyMeX/Med-CORDEX experiments to detect very long

dry spells (VLDS) over the Mediterranean Basin. They found
that at least 51% of the observed VLDS were reproduced
by the RCM simulations and that those RCMs accurately
simulated spatiotemporal characteristics. Nevertheless, studies
on the frequency and intensity of extreme dry spells, especially
the interannual change in extreme dry spells, have rarely been
conducted over complex terrain and different climate type area
like SWC, for which area the ability of RCMs to simulate extreme
dry spells is worth studying. Here we present the evaluation
results of the CORDEX-EA project using an ensemble of five
RCM simulations driven by the HadGEM2-AO global model
(Lee et al., 2014; Oh et al., 2014). The AMDSL distribution
characteristics were analyzed based on GEV theory in both
observation and RCM simulations.

This paper is arranged as follows into five sections.
Observations and model simulations are described in
section “Observations and Model Simulations.” In section
“Methodology,” we present the methodology of distribution
parameter estimation and return value calculation. In section
“Results,” RCM performances are assessed for dry day occurrence,

FIGURE 2 | (A) Annual cycle of area-averaged monthly mean precipitation over SWC. (B) Annual cycle of area-averaged monthly standard deviation of monthly
mean precipitation. (C) Annual cycle of area-averaged monthly mean number of dry days. The different line types represent two observations (CN05 and APHRO)
and five RCM simulations (SNU-WRF, SNU-MM5, YSU-RSM, KNU-RegCM4, and NIMR-HadGEM3), respectively.
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dry spell frequency, AMDSL climatology, and the GEV fitted
AMDSL return value. In section “Discussion and Conclusion,”
we conclude and discuss our results.

OBSERVATIONS AND MODEL
SIMULATIONS

Observational Datasets
Among the sets of high-resolution gridded precipitation data
such as the multi-source weighted ensemble precipitation
product (Beck et al., 2017a,b), Version 1.2 of the Global
Precipitation Climatology Project (GPCP) daily precipitation
estimates (Huffman et al., 2001), the CN05 daily precipitation
data for China (CMA; Wu and Gao, 2013), and the APHRODITE
(APHRO) gridded precipitation data (Yatagai et al., 2012),
we chose the appropriate observation data based on two
principles: one is having finer horizontal resolution than the RCM
simulation data and the other is that the data are widely used
for RCM evaluation over the East Asia domain (Oh et al., 2014;
Huang et al., 2015; Li et al., 2018).

The simulated results for mean AMDSL and extremes for
the historical period (1981–2005) were validated against two
widely used daily high-resolution gridded observational datasets,
namely, the CN05 and APHRO gridded daily precipitation data.
The CN05 product was developed and distributed by the National
Climate Centre of China and contains daily precipitation at
a horizontal resolution of 0.25◦ × 0.25◦. APHRO is also a
high-resolution daily precipitation dataset developed by the
Meteorological Research Institute of the Japan Meteorological
Agency (MRI/JMA). In this study, we used the latest and
improved version of the daily dataset for Monsoon Asia
(APHRO_MA_V1101R1), covering 60.0◦E–150.0◦E, 15.0◦S–
55.0◦N at a high spatial resolution of 0.25◦ × 0.25◦. The dataset
was accessed at the official website of the APHRODITE project:
http://www.chikyu.ac.jp/precip/english/products.html.

RCM Simulations
Five RCMs are utilized in CORDEX-East Asia climate
experiments. RCMs include three nonhydrostatic RCMs
(NIMR-HadGEM3, SNU-MM5, and SNU-WRF) and two
hydrostatic RCMs (KNU-RegCM4 and YSU-RSM). Here,
SNU-WRF and SNU-MM5 stand for simulation data from WRF
(Skamarock et al., 2005) and MM5 (Cha and Lee, 2009) from
Seoul National University, respectively. KNU-RegCM4 stands for
simulation data from RegCM4 (Giorgi et al., 2012) from Kongju
National University. NIMR-HadGEM3 stands for simulation
data from HadGEM3_RA (Davies et al., 2005) from the National
Institute of Meteorological Research in South Korea. YSU-RSM
represents simulation data from RSM (Hong et al., 2013) from
Yonsei University. Following the modeling framework of the
CORDEX project (Giorgi et al., 2009), the simulations are driven
by boundary and initial conditions from the historical simulation
of HadGEM2-AO GCM with 1.875◦ × 1.25◦ longitude–latitude
horizontal resolution, and are integrated from 1981 to 2015
over the East Asia domain, which includes East Asia, India,
the Western Pacific Ocean, and the northern part of Australia,

as shown in Figure 1. All RCM simulations have a spatial
horizontal resolution of 0.44◦ (∼50 km). Different physical
schemes including convection scheme, land surface, and the
planetary boundary layer (PBL) scheme are applied across
RCMs, as summarized in Table 1. The dataset was accessed at
https://www.cordex.org/domains/region-7-east-asia/.

As mentioned above, the two observational datasets have finer
spatial resolution than RCM simulations. In this study, both
observations and RCM simulations were interpolated onto the
standard CORDEX-EA grids (Giorgi et al., 2009) by applying the
nearest-neighbor interpolation method (Kotlarski et al., 2014)

FIGURE 3 | Spatial distributions of dry day occurrence (unit:%) from two
observations, (A) CN05 and (B) APHRO, and five RCM simulations,
(C) SNU-WRF, (D) KNU-RegCM4, (E) SNU-MM5, (F) NIMR-HadGEM3, and
(G) YSM-RSM.

Frontiers in Earth Science | www.frontiersin.org 5 December 2019 | Volume 7 | Article 294132

http://www.chikyu.ac.jp/precip/english/products.html
https://www.cordex.org/domains/region-7-east-asia/
https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00294 December 5, 2019 Time: 11:2 # 6

Feng et al. Simulating AMDSL With CORDEX RCMs

FIGURE 4 | Multivariable Taylor diagram displaying normalized statistical comparisons of SNU-WRF (red), SNU-MM5 (blue), YSU-RSM (purple), KNU-RegCM4
(orange), and NIMR-HadGEM3 (black) simulated climatological dry days ratio (A), mean AMDSL (B), and interannual variability of the AMDSL (C), respectively.
Numbers indicate four different thresholds for dry days.

before conducting comparative analysis. Furthermore, in order
to avoid the influence of the interpolation method on the
analysis results, a bilinear interpolation algorithm was also
applied to the same datasets as a comparative analysis.
The results of analysis with Taylor diagrams show that the
conclusions obtained by the two interpolation methods are
basically consistent.

METHODOLOGY

Threshold for the AMDSL
In this study, following previous studies (Frich et al., 2002;
Sushama et al., 2010; Raymond et al., 2016, 2018; Tramblay and

Hertig, 2018), an annual maximum dry spell length (AMDSL)
is defined as the largest number of consecutive days without
precipitation or with precipitation less than 1 mm/day, a
threshold also adopted to identify CDD by the Expert Team on
Climate Change Detection and Indices (ETCCDI) (Zhang et al.,
2011). The choice of this threshold is subjective and has been
used in most previous studies on CDD or AMDSL on a global
and regional scale (Sushama et al., 2010; Donat et al., 2016;
Raymond et al., 2016; Herold et al., 2017). Thus, the AMDSL is
mostly defined as a punctual measure through a pure statistical
approach rather than a physical approach. To avoid the effect of
threshold selection on the results, a threshold sensitivity analysis
was also applied in this study. Another three thresholds, 0.5, 2,
and 3 mm/d, are considered for comparative analysis.
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FIGURE 5 | (A) Probability distribution functions of dry spell length (days), for rainfall in two observational datasets and five RCM simulations. (B) PDF differences of
five RCMs against CN05 observational data. The different line colors represent two observations (CN05 and APHRO) and five RCM simulations (SNU-WRF,
SNU-MM5, YSU-RSM, KNU-RegCM4, and NIMR-HadGEM3), respectively.

Extreme Value Modeling
An important part of event extreme statistics is to identify
the suitable distribution from which the extremes extracted
from an observed period were drawn. Extreme events are
computed using two different approaches: block maxima (like
the AMDSL) and peaks-over-threshold (POT). Coles et al.
(2001) demonstrated that the distribution of POT asymptotically
converges to generalized Paredo (GPD) (Dominguez-Castro
et al., 2019). Similarly, that of block maxima like the AMDSL
converges to GEV.

The location, scale, and shape parameter of the GEV
distribution can be estimated from a time series of block
maxima (e.g., the AMDSL). Several estimation approaches are
available including the L-moment method (Hosking and Wallis,
2005), probability-weighted moments, and maximum-likelihood
estimator (MLE) (Coles et al., 2001). As linear combinations of
order statistics, L-moments are resistant to the effects of outliers
and thus provide robust estimates of distribution parameters
(Hosking and Wallis, 2005; Sushama et al., 2010). In this
study, we used the L-moment method for estimating GEV
distribution parameters.

To further explore the best fitting model for the AMDSL in
both observation and RCM simulations, the best-fit distribution
is identified following the steps of L-moment theory proposed by
Hosking (1990) (see details in Supplementary Material). Four
commonly used three-parameter distributions are considered
to the AMDSL, which include GEV, three-parameter lognormal
distribution (LN3), Pearson type 3 distribution (PIII), and GPD,
as given in Supplementary Table S1. The theoretical relationship
between the empirical L-skewness (τ3) and L-kurtosis (τ(GEV)

4 ,
τ
(LN3)
4 , τ

(PE3)
4 , and τ

(GPD)
4 for the considered GEV, LN3, PE3,

and GPD models, respectively) are presented in Supplementary
Table S2. After the theoretical τ4 value was calculated for the

considered extreme distributions, the goodness-of-fit measure
of minimum absolute difference (|D|) proposed by Hosking
and Wallis (1993) was used to identify the best-fit distribution
function. The optimum fitted distribution functions can be
chosen by comparing the difference |D| between empirical and
theoretical L-kurtosis based on a given empirical L-skewness
value. The best choice of distribution is the one with minimum
difference |D|.

There are several conventional methods for identifying
the most suitable extreme distribution, including probabilistic-
probabilistic plots, quantile–quantile plots, and L-moment
relationships. This is more easily achieved by using L-moments
than via conventional moments and other goodness-of-test
methods (Kroll and Vogel, 2002; Sushama et al., 2010).

RESULTS

Annual Cycles of Rainfall and Dry Days
Based on the spatial distribution of annual rainfall, SWC has
abundant precipitation of 1200–1800 mm per year on the long-
term average (Wang et al., 2015). Rainfall in the SWC area
also has a distinct seasonal character. The wet season is from
May to September, and the dry season is from October to April
of the following year. Figure 2A illustrates the performance of
the CORDEX RCMs in simulating area-averaged annual rainfall
cycles for the SWC. Grid cells in two sets of gridded observations
and model simulations are averaged for the comparison over
SWC. The two gridded observations have substantially similar
annual cycles of monthly mean precipitation, standard deviation,
and monthly mean dry days. All of the five RCMs capture the
shape of the monthly mean rainfall seasonality well but with a
certain degree of overestimation, 1.5–2.5 mm/day, in the wet
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season. As shown in Figure 2B, all five RCMs also simulate the
standard deviation of the annual cycle of monthly rainfall well,
which indicates that RCMs show relatively good performance
in simulating the interannual variability of rainfall in each
month but with 0.8–1.5 mm/day overestimation of the variability.
Furthermore, the area-averaged climatology of dry days is also
presented in Figure 2C. All of the RCMs can simulate the shape
of the seasonal cycle of dry days for each month well. Three
models, KNU-RegCM4, YSU-RSM, and NIMR-HadGEM3, have
an overall underestimation of the annual cycle of dry days

FIGURE 6 | Spatial distributions of mean annual maximum dry spell length
(AMDSL) (unit: day) from two observations: (A) CN05, (B) APHRO; and five
RCM simulations: (C) SNU-WRF, (D) KNU-RegCM4, (E) SNU-MM5, (F)
NIMR-HadGEM3, and (G) YSM-RSM.

by 2–4 days/month. SNU-MM5 captured dry day seasonality
well but with a relative underestimation by 2.5 days/month
during the dry season. SNU-WRF reproduced the annual cycle
of dry days very well.

Spatial Pattern of Dry Days and Dry Spell
Distribution
Figure 3 shows the spatial pattern of the proportion of dry
days in the two rainfall observation datasets and in the five

FIGURE 7 | Spatial distributions of interannual variability of the annual
maximum dry spell length (AMDSL) (unit: day) from two observations: (A)
CN05, (B) APHRO; and five RCM simulations: (C) SNU-WRF, (D)
KNU-RegCM4, (E) SNU-MM5, (F) NIMR-HadGEM3, and (G) YSM-RSM.
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FIGURE 8 | Statistical mean values of absolute differences (|D|) of fitted L-kurtosis values from different probabilistic models against theoretical L-kurtosis values in
the CN05 observational dataset and five RCM simulations (SNU-WRF, SNU-MM5, YSU-RSM, KNU-RegCM4, and NIMR-HadGEM3). Probabilistic models include the
generalized extreme value (GEV) (purple bar), three-parameter lognormal (LN3) (orange bar), generalized Pareto (GPD) (red bar), and Pearson Type III (PE3) (blue bar).

FIGURE 9 | Probabilistic–probabilistic plots of the annual AMDSL time series for cell grid at 101.75◦E, 23.25◦ from two observations, (A) CN05 and (B) APHRO, and
five RCMs, (C) SNU-WRF, (D) SNU-MM5, (E) YSM-RSM, (F) NIMR-HadGEM3, and (G) KNU-RegCM4.
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RCM simulations. The climatological mean proportion of dry
days tends to be much larger in the northeastern part of
SWC, including CQ and GZ, where the distance of water
vapor transport from the tropical ocean is higher and the
number of precipitation days is lower. A smaller proportion
of dry days is identified in SB and is mainly affected by the
mesoscale geographical convergence induced by the SETP and
the Southwest Low Vortex (SLV). Another low dry ratio area is
the southern part of YN, an area mainly influenced by the tropical
monsoon at ground altitudes. The results of the spatial pattern
regarding the proportion of dry days from the two different
sources were consistent, indicating the reliability of the results.
For RCMs, besides YSU-RSM, the other four RCMs reasonably
reproduced the spatial distribution pattern for the proportion
of dry days. SNU-MM5 had the best correlation in simulating
the spatial pattern of the mean ratio of dry days, with a PCC of
0.81. SNU-WRF reproduced a center with a larger proportion of
dry days in CQ, the northeastern part of SWC. Simultaneously,
SNU-WRF and NIMR-HaDGEM3 simulations showed a negative
bias in the LLH region, with a lower proportion of dry days.
The terrain in the two areas mentioned above is complex due to
influences by the TMC and Wushan Mountain Chain (WMC),
and this has a significant impact on the simulation ability of
RCMs. YSU-RSM exhibited the worst performance in simulating
dry day characteristics.

Using Taylor diagrams (Taylor, 2001, see details in
Supplementary Material), Figure 4A presents a concise
statistical summary of RCM performances in simulating the
dry day ratio over SWC. The pattern correlation, root-mean-
square difference, and amplitude of variation of the dry day
ratio of each RCM are presented. In general, the closer the
colored dots are to the reference point, the better the model’s
utility. Apart from YSU-RSM, the RCMs presented good
spatial correlations with the observations for the proportion
of dry days, ranging from 0.7 to 0.85. SNU-WRF showed a
strong correlation but with larger spatial variance, which led
to decreased model utility compared to the other three RCMs.
Spatial correlations are significant at the 95% confidence level
except for the YSU-RSM simulation. As we expected, for the
four precipitation thresholds, the spread of points is larger for
the lower threshold compared to those for the higher threshold
due to the larger sample size for the latter (Sushama et al.,
2010). However, threshold sensitivity analysis based on the
Taylor diagrams indicates that choosing different thresholds
for dry days does not significantly affect ability to simulate the
dry day ratio pattern. In addition, among all threshold values
used in the sensitivity study, the 1 mm/day threshold used
to identify the AMDSL in this study provided the best model
simulation ability.

Another important characteristic of dry spells is the PDF
of dry spells as a function of different dry spell lengths,
which is shown in Figure 5. The area covered by the curve
is 1. All five RCMs showed similar area-averaged probability
distribution functions of dry spells, including KNU-RegCM4
and YSU-RSM, two models with lower ability to simulate dry
day occurrence. NIMR-HadGEM3 and KNU-RegCM4 agree
well with the observational datasets but tended to overestimate

dry spells of less than 5 days. SNU-WRF and SNU-MM5
underestimate the 2–5-day dry spell frequency but tended to
overestimate the 5–15-day dry spell frequency.

Climatology and Interannual Variability of
AMDSL
The climatological AMDSLs in two observational datasets and
five RCM simulations are shown in Figure 6. Larger mean
AMDSL is identified over the east side of the LLH and the TMC

FIGURE 10 | Spatial distributions of the GEV scale parameter of the AMDSL.
(A) CN05, (B) APHRO, and five RCMs: (C) SNU-WRF, (D) KNU-RegCM4,
(E) SNU-MM5, (F) NIMR-HadGEM3, and (G) YSM-RSM.
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FIGURE 11 | Multivariable Taylor diagram displaying normalized statistical comparisons of the SNU-WRF (red), SNU-MM5 (blue), YSU-RSM (purple), KNU-RegCM4
(orange), and NIMR-HadGEM3 (black) simulated GEV (A) scale parameter, (B) location parameter, and (C) 20-year return value of the AMDSL, respectively. Numbers
indicate four different thresholds for dry days.

despite the lower proportion of dry days in this region compared
to CQ. These results show that dry days in the LLH tended to
appear more concentrated, although the proportion of dry days
is lower than that in CQ, which leads to a higher risk of longer
dry spells or meteorological drought. In contrast, a smaller mean
AMDSL is located on the west side of the TMC, SB, and most of
the CQ and GX regions. For the spatial distribution of the average
intensity of AMDSL, the observation data of the two sets of grid
points are more consistent with a PCC of 0.98. The four RCMs
besides YSU-RSM reasonably reproduced the spatial distribution
pattern of the mean AMDSL except in some areas with large
changes in terrain such as the two sides of the TMC and the edge
of SB. NIMR-HadGEM3 had better ability to simulate the spatial
pattern of the mean AMDSL with a PCC of 0.70. The KNU-
RegCM4 simulation exhibited positive model bias with higher

simulated intensity of the AMDSL in CQ and GX regions but
showed negative model bias with lower intensity of the AMDSL
over the LLH, indicating that KNU-RegCM4 has limited ability to
simulate the climatology of AMDSL over complex terrain areas.

Figure 4B presents a Taylor diagram summary of the RCMs
performances in simulating the mean AMDSL over SWC. Spatial
correlations are significant at the 95% confidence level except
for the YSU-RSM simulation. Although there are four RCMs
that reasonably reproduced the observed AMDSL spatial pattern,
the spatial variability between RCMs is quite different. NIMR-
HadGEM3 had better ability than the other three RCMs in
simulating the mean AMDSL. The correlation coefficients of
SNU-WRF and SNU-MM5 were higher, but the root-mean-
square error was also large. Therefore, these two RCMs are
comparable to KNU-RegCM’s simulation ability. Threshold
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FIGURE 12 | Spatial distributions of the GEV 20-yr return value of the
AMDSL. (A) CN05, (B) APHRO; and five RCMs: (C) SNU-WRF, (D)
KNU-RegCM4, (E) SNU-MM5, (F) NIMR-HadGEM3, and (G) YSM-RSM.

sensitivity analysis indicated that choosing different thresholds
for dry days does not significantly affect the ability to simulate
the AMDSL spatial pattern.

Figure 7 shows the spatial distribution pattern of standard
deviation of the AMDSL. Larger interannual variability is
identified over the east side of the LLH and TMC. These
results show that interannual fluctuation of the AMDSL is very
high and the magnitude of the AMDSL may vary from year
to year in this region, which lead to continuously observed
very long dry periods (10–15 days) and severe meteorological

droughts in the area. This area also corresponds to the
interface area between the ISM and the EASM, where the
combination of the two monsoons makes the interannual
variability of the AMDSL stronger than the northeastern
part of SWC and the west side of the TMC. The four
RCMs excepting YSU-RSM reproduced the spatial distribution
pattern of AMDSL interannual variations relatively well, with
PCCs of 0.5, 0.71, 0.78, and 0.71, respectively. SNU-WRF
reproduced smaller interannual variability in the SETP and
GX areas. For NIMR-HadGEM3, positive discrepancies lie in
the northeastern part of SWC, which corresponds to the area
where NIMR-HadGEM3 simulated a larger proportion of dry
days. KNU-RegCM4 showed less ability to simulate the spatial
variability of AMDSL interannual variations, which is consistent
with the previous results regarding mean AMDSL. Since the
terrain is very complex, the area also has a diverse climate
ranging from tropical to temperate; KNU-RegCM4’s ability
to simulate AMDSL characteristics with complex terrain still
needs improvement.

Figure 4C presents a Taylor diagram summary of RCM
performances in simulating the interannual variability of AMDSL
over SWC. Compared to Figure 4B, there are four RCMs,
excepting YSU-RSM, that have simulation abilities close to the
model abilities to simulate AMDSL.

Identification of Extreme Distribution for
the AMDSL
An important part of extreme event statistics is to identify
a suitable distribution from which the extremes extracted
from an observed period were drawn. In particular, several
conventional methods are used to identify the most suitable
extreme distribution, including probabilistic–probabilistic plots,
quantile–quantile plots, and L-moment relationships.

Figure 8 compares the empirical L-kurtosis with theoretical
L-kurtosis of the GEV, LN3, PE3, and GPD models for a
given empirical L-skewness value of the AMDSL series from
CN05 observations, and corresponding series in the five RCM
simulations. Comparing the yellow column representing the
GEV distribution in Figure 8, the GEV model offers a better
fit compared to the other probability models for the AMDSL
series in the CN05 dataset and three RCM simulations, SNU-
WRF, YSU-RSM, and NIMR-HadGEM3. The LN3 model is the
best-fitted model in SNU-MM5 and KNU-RegCM4 simulations.
Conversely, the GPD model showed a bad fit compared with
other extreme models, with a very large |D| value.

Figure 9 compares the empirical probability with the
theoretical probability of GEV for the AMDSL time series with
a cell grid at 101.75◦E, 23.25◦. The probability–probability plots
indicate that the GEV model offers a relatively good fit to the
AMDSL time series.

Simulated GEV Distribution Parameters
After fitting the GEV model to the AMDSL time series, three
GEV parameters were estimated at each model gird cell for
the five RCM simulations and also for the CN05 dataset. An
explanation of the parameters in the GEV model is given in
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FIGURE 13 | Scatter plots of relative model bias of the 20-year return value of the AMDSL against relative model bias of dry day occurrence. (A) SNU-WRF,
(B) SNU-MM5, (C) KNU-RegCM4, (D) NIMR-HadGEM3, and (E) YSM-RSM.

Supplementary Figure S1. Since both scale parameter α and
location parameter ξ in GEV fitting contribute to the estimation
of the 20-year return value, further analysis of model ability in
simulating individual GEV parameters is needed for assessment
of RCM performance.

The GEV scale parameter α, as characterized by the width of
the probability distribution function, is a general measurement
of the interannual variability of the AMDSL. In general,
higher scale parameter values lead to a wider distribution and
higher variability of the rarely occurring AMDSL. The spatial
distribution pattern of scale parameter α for observed AMDSL
over SWC is shown in Figure 10A. The distribution pattern is
similar to the spatial pattern of the standard deviation of the
AMDSL, which indicates that the scale parameter reasonably
reflects the interannual variability of the AMDSL. The most
dramatic center of AMDSL interannual change was found in
the LLH region, which reflects the interaction of the EASM

and the ISM. The spatial patterns of AMDSL scale parameter
values in the five RCM simulations are also shown in Figure 10.
The SNU-WRF, SNU-MM5, and NIMR-HadGEM3 simulations
captured the large α value center in the LLH region and a
northeast–southwest contrast dipole mode, with PCCs of 0.75,
0.80, and 0.77, respectively. In addition, SNU-WRF and SNU-
MM5 produced positive bias, with overestimated interannual
variation of the AMDSL in the southern part of YN, an area that
is significantly affected by the tropical summer monsoon.

Figure 11A presents a Taylor diagram summary of RCM
performances in simulating the scale parameter over SWC.
Spatial correlations are significant at the 95% confidence level
except for the YSU-RSM simulation. Similar to Figure 4B,
four RCMs, except for YSU-RSM, reasonably reproduce the
interannual variation of the AMDSL, but the spatial variability
between RCMs is still different. Threshold sensitivity analysis
indicated that choosing different thresholds for dry days does not
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significantly affect the ability of RCMs to simulate the AMDSL
spatial pattern.

The GEV location parameter ξ is characterized by the position
of the probability distribution function, which is a measurement
of the averaged amplitude of the AMDSL. The spatial distribution
patterns of the location parameter ξ for observed and simulated
AMDSL over SWC are shown in Supplementary Figure S2. The
distribution pattern is similar to that of the mean AMDSL. Both
a larger location parameter and mean AMDSL are identified over
the east side of the LLH and TMC, indicating a higher amplitude
of the AMDSL and higher risk of drought in this region.

Figure 11B presents a Taylor diagram summary of RCM
performances in simulating the location parameter over SWC.
Spatial correlations are significant at the 95% confidence level
except for the YSU-RSM simulation. Similar to Figure 4C,
four RCMs, excepting YSU-RSM, reasonably reproduce the
interannual variation of the AMDSL, but the spatial variability
between RCMs is still different.

Based on equations in Supplementary Material Part B, the
20-year return values in each model grid were derived by
inverting the GEV cumulative distribution function. In general,
spatial maps of AMDSLs (Figure 12) revealed that the 20-
year return value of the AMDSL increases gradually from the
northeast to the southwest over SWC. The spatial pattern is
similar to both the GEV scale parameter and location parameter.
Higher values of the scale parameter over the LLH indicated
a wider distribution of the AMDSL, and higher values of
the location parameter led to an amplified distribution of the
AMDSL. The interaction of two parameters resulted in an
intensified northeast–southwest spatial contrast dipole mode of
20-year return values of the AMDSL. NIMR-HadGEM3 showed
better simulation ability than the other three models based on
Figure 11C.

Figure 13 presents the linear relationship between relative
model bias of the 20-year return value of the AMDSL and the
dry day occurrence. Obviously, the simulated relative error of
the RCMs for the occurrence of dry days is the main source for
the simulated model bias of the mean AMDSL (Supplementary
Figure S3) and 20-year return values of the AMDSL.

Overall, based on the spatial distribution of the AMDSL in
climatological mean and in distribution return values, higher
values of the AMDSL were more likely to appear in the LLH, an
area affected by both the EASM and the ISM. This region can also
be considered as at higher risk of drought conditions (Wang et al.,
2014). As most of SWC is used for agriculture and is more often
subjected to soil moisture deficits due to longer lasting droughts,
any increase in dry spell duration, particularly during the spring,
can affect the agricultural sector significantly.

DISCUSSION AND CONCLUSION

In this study, we comprehensively evaluated the performance of
five CORDEX-EA RCMs in simulating AMDSL characteristics
in an area of complex terrain. The focus of this paper is not on
unveiling the physical processes of the AMDSL nor on assessing
its robust projection results but on providing a comparison of

the capabilities of five RCMs in simulating the intensity and
interannual variability of the AMDSL in SWC. This evaluation
will provide insight to determine whether the AMDSL can be
reasonably reproduced on a regional scale with RCMs.

The monthly variation in precipitation, interannual variability
of precipitation, and mean dry days was well identified in
both the CN05 and APHRO data. The five RCMs also
reproduced the annual cycle of monthly mean precipitation,
interannual variability, and monthly mean dry days but tended to
overestimate the monthly mean precipitation and underestimate
the monthly mean dry days. In addition, the five RCMs all
simulated the probability distribution of dry spells over SWC
reasonably well.

For the five RCMs used in this study, the four RCMs besides
YSU-RSM reproduced the spatial pattern of the proportion of
dry days and the climatology of the AMDSL over the SWC
region. This is consistent with the previous results of RCM
simulations on different regional scales (Tebaldi et al., 2006;
Sushama et al., 2010; Wehner et al., 2010; Raymond et al., 2016,
2018; Tramblay and Hertig, 2018). It should be noted that large
spatial variability differences are found among different RCM
simulations. This variability can be attributed to the variance
of RCMs in simulating extreme dry spells over complex terrain
areas (Herrera et al., 2010; López-Franca et al., 2015). It is also
worth noting that the RCMs reasonably simulate the spatial
distribution of the interannual variability of AMDSL. Based on
Taylor diagram evaluations, the four RCMs besides YSU-RSM
show comparable ability to simulate the interannual variability
of AMDSL compared to the climatology of AMDSL.

The generalized extreme value (GEV) distribution is
considered the most suitable model for fitting the AMDSL in
both observations and model experiments. The simulation of
GEV scale parameters and location parameters is consistent with
the simulation of the interannual variability and climatology
of AMDSL by the RCMs. This is consistent with the previous
results for RCMs simulating the probability distribution of the
AMDSL (Tebaldi et al., 2006; Sushama et al., 2010; Wehner et al.,
2010; Tramblay and Hertig, 2018).

The limitation of our study is the use of only five RCM
simulations driven by one GCM. This meant that the full range
of variability was not assessed. Additional RCM simulations are
gradually becoming available, and these will be considered in
the future. Furthermore, though dry spells can be indicators
of drought (Tebaldi et al., 2006), other indicators, including
temperature, soil moisture, and evaporation, were not well
addressed in the present study.

Overall, the main findings on the performances of the five
RCM simulations in reproducing various features of the AMDSL
can be summarized as follows:

(a) Though the results show large spatial variability differences
among different RCMs, four RCM simulations among
five reasonably reproduced the AMDSL climatology and
interannual variability. In addition, these four RCMs
showed an ability to simulate the interannual variability of
AMDSL that was comparable to that for simulation of the
climatology of AMDSL. The results may provide references
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for choosing preferential RCMs in studies of the AMDSL
and drought events in areas of complex terrain like SWC.

(b) The GEV distribution of the AMDSL could reveal
the spatial distribution of the intensity and variability
of the AMDSL, which would be helpful for longer-
period return value estimation under present climate
conditions and would be applicable to extreme dry spell
prevention and mitigation.

(c) Probabilistic distribution analysis of the AMDSL over a
range of precipitation thresholds was performed in the
present study, and it is notable that, based on Taylor
diagram summaries, the different threshold values did not
influence the abilities of RCMs.

(d) The performance of RCMs in simulating the intensity
and extreme distribution of the AMDSL is highly
influenced by the ability of the model to simulate the
occurrence of dry days.
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