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Searching Synergistic Dose
Combinations for Anticancer Drugs
Zuojing Yin, Zeliang Deng, Wenyan Zhao and Zhiwei Cao*

Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China

Recent development has enabled synergistic drugs in treating a wide range of
cancers. Being highly context-dependent, however, identification of successful ones
often requires screening of combinational dose on different testing platforms in order to
gain the best anticancer effects. To facilitate the development of effective computational
models, we reviewed the latest strategy in searching optimal dose combination from
three perspectives: (1) mainly experimental-based approach; (2) Computational-guided
experimental approach; and (3) mainly computational-based approach. In addition to the
introduction of each strategy, critical discussion of their advantages and disadvantages
were also included, with a strong focus on the current applications and future
improvements.

Keywords: synergistic combination, optimized dose combination, computational model, feedback system control
scheme, regression model

INTRODUCTION

In current days, combinational drugs have been increasingly used clinically in treating various
cancers. Comparing to the traditional single drug approach, combinational strategy is often found
with enhancing therapeutic effects or delayed drug resistance, among which synergistic drugs
are mostly desired (Chou, 2006). The past few years has witnessed the computational progress
in analyzing and predicting synergistic components qualitatively (Han et al., 2017; Sarah, 2017;
Sheng et al., 2017). However, the optimal dose of each component needs to be identified before the
formula is clinically applied, as different dose combination may lead to different effects even for the
same formula (Tallarida and Raffa, 2010). To avoid potential adverse or antagonistic effects, large-
scale experiments have to be screened in a huge combinational space of drug concentration which
are highly time consuming and laborious. Thus, developing smart methods either experimentally
or theoretically are both in urgent need to facilitate the synergistic drug design.

Until the present time, the general experimental criteria to evaluate drug synergy mainly include
Loewe isobologram (Chevereau and Bollenbach, 2015), CI index from Median Effect Principle
(Chou, 2010), Bliss independence (BI) model (Bansal et al., 2014), Loewe Additivity (LA) model
(Lee et al., 2007), and so on. Under defined criteria, substantial data has been accumulated which
initiated the computational efforts to predict dose effects of drug combination. Despite of a few
algorithm and statistical methods (Calzolari et al., 2008; Deharo and Ginsburg, 2011; Caglar and
Pal, 2014; Weiss et al., 2015a), constructing quantitative model to predict synergistic dose remains
highly challenging for combinational therapy. To promote future improvements in this area, we
reviewed the latest progress in this area covering (1) mainly experimental-based approach; (2)
Computational-guided experimental approach; and (3) mainly computational-based approach.
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Mainly Experimental-Based Approach
Normally the drug efficacy can be roughly tested via cell viability
assay, such as MTT assay and various animal models. But
experimental exploration of drug combinations under all dose
ratio seems to be unrealistic. Any high throughput technology or
heuristic design will significantly save the time and experimental
costs by purposely choosing the potential candidate dose.

High Throughput Experimental Screening
In order to identify effective combinations of therapeutic
compounds, Borisy et al. (2003) developed a high-throughput
screening method to systematically screen of ∼120,000 pairwise
combinations for antifungal effects in 2003. The systematic
testing began by defining the activity of each compound as
a single agent in the assay system. And then, each active
compound against all other compounds was tested in dose
matrices comprising six concentrations based on EC50. Finally,
the possible synergistic dose ratio between the drug pairs
would be detected. In this way, this paper proposed a practical
application to systematic screening of compounds in disease-
relevant phenotypic assays (Borisy et al., 2003). Furthermore,
this method also proposed to detect the synergistic effects
between constituents within the natural products (Isgut et al.,
2017).

Then in 2007, a series of concentration ratios for each drug
pair were tested on 10∼20 tumor cell lines via high-throughput
screening technology (Mayer and Janoff, 2007). After analyzing
the cytotoxicity curves for each, they found that certain dose
ratios of combinational drugs can be synergistic, while other
ratios of the same agents may be antagonistic (Mayer and
Janoff, 2007). Interestingly, high-throughput screening has been
applied to tumor organoids system in recent years (Ivanov and
Grabowska, 2017; Ivanov et al., 2017; Shahi Thakuri and Tavana,
2017). For instance, colon cancer spheroids were applied for drug
synergy between 25 compounds under multiple IC50s, instead of
the traditional cell lines (Shahi Thakuri and Tavana, 2017). And
animal model of zebrafish was also established for this purpose
with the assistance of auto-image analysis technology (Todd et al.,
2017).

Fixed Dose Method
To avoid random high-throughput screening, fix dose/ratio
method may serve as a starting point to explore when prior

information is totally unknown. The dose may be set according
to their maximum tolerated doses (MTD) and partial MTDs
(Cao and Rustum, 2000; Azrak et al., 2004, 2007; Cao et al.,
2005). As early as in 2000, the synergistic effect of Irinotecan
and 5-Fluorouracil was studied in the rat model of colon cancer,
at the dose of MTDs, 12.5% MTDS, 50% MTDS, and 75%
MTDS, respectively (Cao and Rustum, 2000). Another searched
the synergistic effect of 200 pairs of antifungal drugs within
a dose range between 0 to minimal inhibitory concentration
(MIC) in the brewer’s yeast (Cokol et al., 2011). It worth to note
that, besides dose combination, the time interval and sequential
treatment, even the pharmaceutical packaging may influence the
effects of drug combination (Azrak et al., 2007; Mohan et al.,
2014).

Instead of fixed dose, some studies fixed dose ratios based
IC50 when prior information is unknown (Hatakeyama et al.,
2014; Zhang et al., 2014). Occasionally, dose ratio may also start
from 1:1 to explore the synergistic spectrum for different drugs in
different cancer types (Liu et al., 2011).

Computational-Guided Experimental
Approach
To avoid exhaustive searching in dose combinational space,
computer algorithm was often adopted as a feedback control to
suggest next round of experiments design based on preliminary
experimental results. Current algorithms for this purpose mainly
refers to feedback system control scheme (FSC), which help
to converge fast in a huge searching space of multiple drugs
with multiple doses. This scheme has been applied to identify
the best dose combinations of multiple drugs in various
cancer (Liu et al., 2015), and viral infection (Wong et al.,
2008).

The procedure of FSC (Tsutsui et al., 2011; Liu et al., 2015;
Weiss et al., 2015b) usually includes: (1) Input a number of drugs
(usually 5 to 10) with several doses (e.g., 0, IC25, IC50, IC75) for
a specific disease; (2) Combine all drugs and their doses to form
a large searching space; (3) Random select partial combinations
from above space and test experimentally; (4) Update the drug
doses by differential evolution algorithm (DE); (5) Repeat (3) and
compare latest experimental results to the previous ones; and (6)
Choose better experimental results for the next iteration.

Here the detailed heuristic DE algorithm (Tsutsui et al., 2011)
is illustrated in Figure 1: (1) Choose a drug-dose combination

FIGURE 1 | A schematic illustration of differential evolution (DE) algorithm.
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FIGURE 2 | Tree representation of the data. (A) The tree with sequential structure. (B) The tree with trellis-like structure (alternative version of the A). Each circle
stands for single drug-dose or combination. Letter and number indicates drug and dose, respectively. For a tree, level 0 is the control (no drug), level 1 is composed
of individual drug treatment with two doses, and level 2 is composed of drug-dose combinations. The level depends on the size of the combination.

according to a random algorithm: xji; (2) Examine the effect
through experiments: E(xji); (3) Mutate the current selected drug
dose to vji; (4) Crossover the current and mutated drug-dose
combination (xji×vji) to obtain a new drug-dose combination uji;
(5) Examine the effect of the new drug-dose combination: E(uji);
(6) Compare E(uji) with E(xji). The new drug-dose combination
is uji, if E(uji) > E(xji) and will go into the next iteration
cycle.

It can be seen that the features of FSC as several advantages
(Nowak-Sliwinska et al., 2016). Firstly, it is phenotypically
driven, simpler than genotype-driven methods, and does not
require any mechanism information. Secondly it can achieve a
fast convergence by using DE algorithm. Despite of that, the
experimental testing is still substantial because all input drugs
are considered equally in the combination. Thus the improved
version of FSC incorporates a regression model to identify those
potential synergistic drugs out of the input list before searching
optimized dose (Wang et al., 2015; Weiss et al., 2015a).

Recently, FSC was used to screen Nano-diamond modified
drugs out of 57 dose combinations and therapeutic dose window
was proposed which could optimally inhibit cancer cell lines and
protect the normal cell lines (Wang et al., 2015). More application

of FSC could be found in prostate cancer and hepatocellular
carcinomas (Mohd Abdul Rashid et al., 2015; Jia et al., 2017).

Mainly Computational-Based Approach
Apart from the above approaches, a few mathematical models
have been constructed which have been collected as below.

Stochastic searching model
To minimize searching space for optimal dose combination, a
few stochastic search algorithms with heuristic ideas have been
reported recently (Calzolari et al., 2008; Caglar and Pal, 2014).
Figure 2A shows an example of stochastic search algorithms,
with ideas similar to that of the stack sequential algorithm
(Jeline, 1969). An alternative version of the Figure 2A tree
(Figure 2B), eliminates nodes representing redundant drug-
dose combinations. Stochastic search algorithms works as this:
under search tree structure, the biological score was evaluated
at the first level of tree and best single drug Cbest was
extracted (Calzolari et al., 2008). Then, the biological scores
of Cbest combined with all other drugs were measured and
compared with Cbest’s to decide the movements of upward
or downward. The current best combination was chosen for
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FIGURE 3 | The cellular phenotype switching at the intracellular scale. Apoptosis: Under the drug diffusion, the cell will initiate apoptosis if the simulated apoptosis
probability is less than the set threshold. Proliferation: The proliferation will initiate if the cell cycle is on and empty location exist to divide in the mitotic M phase.
Migration: A proliferating cell will migrate in the first three phases of cell cycle (G0/G1, S, and G2) under appropriate location. Quiescence: There are two possibilities
of quiescence: the cell cannot go through the cell cycle, or the cell cannot find a valid place to divide.

further searching of sub-nodes to get the global optimal
combinations. In this way, only one-third of the tests were
actually scanned in the Drosophila model of 4 drugs (Calzolari
et al., 2008).

Meanwhile, a diversified stochastic search algorithm has
been recently proposed to find optimum drug concentrations
efficiently without prior normalization of the searching space
(Caglar and Pal, 2014). This stochastic algorithm was composed
of the initial parallel part and the iteration part. The former was
used to generate a rudimentary knowledge of the searching space,
while the later was mainly used to search the space repeatedly to
update knowledge of new hills that the previous iterations could
not locate. After relatively smaller number of iterative steps, the
optimized dose combination could be detected for anti-bacteria
and anti-cancer effects (Caglar and Pal, 2014).

Statistical model
In addition to stochastic searching, statistical models were also
applied to screen the optimal drug-dose combination based on
cellular responses (Deharo and Ginsburg, 2011; Weiss et al.,
2015a). The logistic regression model showed in equation (1)
(Deharo and Ginsburg, 2011) was proposed to predict the EC50s
of the drug alone and in combination. And the synergistic effects
of six different ergosterol together with the pyrethroid in five
selected dose ratios were detected (Deharo and Ginsburg, 2011).

f (x, (b, c, d, e)) = c+
d − c

1+ (x/e)e (1)

f (x): drug effects; x: dose of drug; b: a measure of the steepness
of the curve for the dose equal to the ED50 value; c, d: denote the
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lower and upper asymptotes of the s-shaped curve; e: corresponds
to ED50 value.

Different from the logistic regression model, the second-
order linear regression model screened out the optimal drug-
dose combination by firstly refine drugs which might produce
synergistic effect (Chen et al., 2010; Xu et al., 2014; Weiss
et al., 2015a; Silva et al., 2016). This model mainly contained
the following steps: (1) Establish a stepwise linear regression
model describing the relationship between drug doses and effects;
(2) Select the drugs most likely to produce synergistic effects
according to the model coefficients; (3) Continue to do regression
analysis of the drugs selected in (2); (4) Detect final optimal drug
combination and dose ratio. Through several cycles, an optimal
drug combination toward viability inhibition of renal carcinoma
cells from initial 10-drug pool with 4 doses each was detected
(Weiss et al., 2015a).

The second-order linear regression model (Weiss et al., 2015a)
is showed in equation (2)

y = β0 +

k∑
i=1

βixi +

k∑
i=1

βiix2
i +

k∑
i=1

k∑
j=i+1

βijxixj + ε (2)

y: the response variable (i.e., cell viability as percent of control);
βi, βii, βij: represent the intercept and the coefficients of linear,
quadratic, and bilinear terms, respectively; xi, xj : independent
variables (i.e., drug combination at designed doses); ε: an error
term.

Multi-Scale Agent-Based Model
In recently years, the multi-scale agent-based model has been
established to evaluate synergistic dose ratios by controlling
the fate of cells under different drug combinations (Wang
et al., 2013; Qiao et al., 2015). The model simulated the
growth process of tumor cells including apoptosis, proliferation,
migration, etc. based on some specialized biological regulations
to screen the optimal dose combinations with maximal
lethality in different dose combinations. Furthermore, the model
could not only describe multicellular interaction system and
microenvironment in cancer, but also detect synergistic dose with
limited experimental data. Usually, the model was established
according to discrete dose combination effects to simulate
continuous effects under wide range of dose combinations. And
the fate of cells was usually described from the intracellular,
intercellular, and tissue scales to illustrate the ‘phenotypic’
switches showed in Figure 3 (Qiao et al., 2015), cell–cell and cell–
microenvironment interaction, respectively (Wang et al., 2013;
Qiao et al., 2015).

In 2015, this model was firstly used to choose optimal
combinations restoring the balance between osteoclast cells and
osteoblast cells as well as killed cancer cells in multiple myeloma
Cancer (Qiao et al., 2015). According to the pathogenesis, the
behaviors of myeloma cells and two normal cells under the action
of multiple cytokines and drug combinations were simulated.
Ultimately, the optimal dose ratio of the combination was
screened out according to the simulation result.

Besides, artificial intelligence (AI) has had an impact in
drug synergy area. Recently, Preuer et al. (2017) developed

a novel deep learning method, termed DeepSynergy, to
model drug synergy qualitatively using chemical and genomic
information, which is based on Neural Networks. This
mechanism-free and data-driven method outperformed
those previously methods of deep learning within the space
of 38 drugs on 39 cell lines. But DeepSynergy didn’t make
comparison with the other models previously reported, such
as RACS (Sun et al., 2015) and other methods in DREAM
Challenge (Bansal et al., 2014). RACS, which is semi-supervised,
mechanism-guided, and context-dependent combining both
genomic and network characteristics, showed a probability
concordance of 0.78 compared with 0.61 obtained with the
best algorithm reported in DREAM Challenge within the space
of 14 compounds on the cell line OCI-Ly3. Furthermore,
more computational approaches in qualitatively identifying
synergistic drug combinations are summarized by Sheng et al.
(2017). Yet AI methods have not been seen in quantitatively
screening synergistic dose combinations, which worth further
exploration.

PERSPECTIVE

We have summarized the latest development in the area of
synergistic dose combinations for Anticancer Drugs. Above
accumulated work has paved the way to comprehensive
predictive model of optimal dose combination. It should
be aware of that, the current searching methods are still
limited to local optimization, while more experimental
results are needed to validate the computational models.
Although challenging, considering below factors may
contribute to more effective algorithms. For instance, cancer
heterogeneity should be seriously considered in order to
achieve better results. Meanwhile, considering the drug
response of multiple cells/tissues may minimize the potential
side effects of combined drugs to normal tissues. This is
particularly important when the drugs are administrated
with different time and different order. Coupled with the
future development of AI and hardware development,
more concrete models are expected to potentially assist the
clinical decision of combinational drug dosage to cancer
patients.
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In this paper, we propose DeCoST (Drug Repurposing from Control System Theory)

framework to apply control system paradigm for drug repurposing purpose. Drug

repurposing has become one of the most active areas in pharmacology since the last

decade. Compared to traditional drug development, drug repurposing may provide more

systematic and significantly less expensive approaches in discovering new treatments

for complex diseases. Although drug repurposing techniques rapidly evolve from

“one: disease-gene-drug” to “multi: gene, dru” and from “lazy guilt-by-association” to

“systematic model-based patternmatching,” mathematical system and control paradigm

has not been widely applied to model the system biology connectivity among drugs,

genes, and diseases. In this paradigm, our DeCoST framework, which is among

the earliest approaches in drug repurposing with control theory paradigm, applies

biological and pharmaceutical knowledge to quantify rich connective data sources

among drugs, genes, and diseases to construct disease-specific mathematical model.

We use linear–quadratic regulator control technique to assess the therapeutic effect

of a drug in disease-specific treatment. DeCoST framework could classify between

FDA-approved drugs and rejected/withdrawn drug, which is the foundation to apply

DeCoST in recommending potentially new treatment. Applying DeCoST in Breast Cancer

and Bladder Cancer, we reprofiled 8 promising candidate drugs for Breast Cancer ER+

(Erbitux, Flutamide, etc.), 2 drugs for Breast Cancer ER- (Daunorubicin and Donepezil)

and 10 drugs for Bladder Cancer repurposing (Zafirlukast, Tenofovir, etc.).

Keywords: drug repurposing, system control, breast cancer, bladder cancer, pathway, expression profile

INTRODUCTION

Drug repurposing (also called drug repositioning) has become one of the most active areas in
pharmacology since last decade (Oprea et al., 2011) because this approach could significantly reduce
the cost and time to invent a new treatment. Before drug repurposing research became active,
it was expected to take about 15 years and $0.8–$1 billion to bring a new drug into the market
(Dimasi, 2001) due to many tests and clinical trials in order to be commercially approved by Food
and Drug Administration (FDA) (USFDA, 2016). It is expected that the failure probability during
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clinical trials is about 91.4% (Thomas et al., 2016). One of the
key reasons for low productivity in traditional drug development
is the lack of systematic evaluation of additional indications
(Dudley et al., 2011), which may lead to unexpected side
effects and low efficacy. Briefly, drug repurposing finds new
indications for known drugs and compounds (Gupta et al., 2013)
to reduce the risk of failure and shorten time of discovery.
Drug repurposing applies modern computational techniques to
digitalize genomic (Power et al., 2014), bioinformatics, chemical
informatics (Bisson, 2012) and patients’ individual health records
(Xu et al., 2014) to offer more systematic evaluation of the
chemical compound before entering the laboratory testing and
clinical trial steps. In addition, drug repurposing could explore
the large set of chemical compounds, which is estimated to
be more than 90 million by PubChem statistics (Wang et al.,
2014), to reduce the cost of synthesizing new compounds.
Prominent successful examples for drug repurposing include
Viagra, Avastin, and Rituxan (Dudley et al., 2011).

System biology (Pujol et al., 2010) plays an important role
to in the evolvement of drug repurposing evolved from “one:
disease-gene-drug” (Durrant et al., 2010) to “multi: gene, drug”
(Chou, 2010; Medina-Franco et al., 2013) and from “lazy guilt-
by-association” (Campillos et al., 2008; Keiser et al., 2009; Iorio
et al., 2010; Gottlieb et al., 2011) to “systematic model-based
pattern matching,” such as the Broad Institute’s Connectivity
Maps (CMAP), C2MAP, etc. (Lamb et al., 2006; Hu and Agarwal,
2009; Huang et al., 2012; Jensen et al., 2012; Li and Lu, 2013;
Subramanian et al., 2017). System biology reveals connectivity
among drug, gene, and diseases (Figure 1). In this Figure, the
green connectivity shows the types of connectivity for which
drug repurposing could utilize to answer the key question:
could drug A be re-indicated to treat disease B. The literature
and public data sources for these types of connectivity have
been thoroughly developed in the recent two decades, such as
DrugBank (Law et al., 2013) and SFINX (Andersson et al., 2015)
for drug-drug interaction; DrugBank (Law et al., 2013) and
STITCH (Kuhn et al., 2012) for drug-gene/protein interaction;
BioGRID (Chatr-Aryamontri et al., 2013), STRING (Szklarczyk
et al., 2015), HAPPI (Chen et al., 2017), KEGG (Kanehisa et al.,

FIGURE 1 | Connectivity among drugs, genes, and diseases. The red line and text show the key connectivity in drug repurposing.

2017) and Reactome (Croft et al., 2011) for protein-protein
interaction and human pathway; OMIM (Baxevanis, 2012) and
GEO (Barrett et al., 2013) for disease-specific gene curation
and analysis; the human disease network (Goh et al., 2007) for
disease-disease connectivity; and SIDER for diseases’ drug-side-
effect (Kuhn et al., 2016). The integration of rich data sources
enable mathematical system modeling and analysis in system
biology to deepen our understanding and predictive capability
for biological processes, disease ontology (Hannon and Ruth,
2014; Goel and Richter-Dyn, 2016; Woodhead et al., 2016) and
personalized medicine (Weston and Hood, 2004).

From the mathematical system-model-control-based point of
view, there exist a mechanism regulating the gene expression
profile. In the healthy condition, the gene expression stays in
the stable equilibrium region such that x(t) = f (x(t−1)) ≈

x(t−1), where f indicates the expression-regulating mechanism
computed from data integration, x stands for expression and t
stands for time. In the disease state, the critical gene expression
strays outside the stable region. In this case, without a control
(treatment), the expression will be unbounded. The system
control algorithms aim to find the sequence of control-treatment
that optimally stabilize the expression back to the original
equilibrium point, such as linear control (Willems, 1971; Chen
et al., 2016), nonlinear control (Bardi and Capuzzo-Dolcetta,
2008; Falcone and Ferretti, 2013), adaptive neural network
(Rovithakis and Christodoulou, 1994; Tong et al., 2014). By
comparing the real drug treatments with the optimal control-
treatment (also called hypo-treatment), we can evaluate the
potential efficacy of the drug before being repurposed.

However, applying mathematical system modeling and
control in drug repurposing is still in very early steps. There
are three key challenges in applying system control approach.
First, it is difficult to quantify the gene expression and real
drug treatment, as there is very little literature discussing the
“normal range” of each gene’s expression. Second, constructing
a comprehensive and accurate mathematical model to simulate
the gene expression change is complicated due to the diversity
of gene-gene interaction mechanisms, mutation, and under-
discovered data. Third, the biological systems are known for

Frontiers in Pharmacology | www.frontiersin.org 2 June 2018 | Volume 9 | Article 58312

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Nguyen et al. DeCoST: Drug Repurposing Control System

large scale for system control: there may be from hundreds to
thousands of genes of interest in a specific disease or biological
process.

In this paper, we propose DeCoST (Drug Repurposing from
Control System Theory) to apply control system paradigm
for drug repurposing purpose, with source code available at
https://github.com/thamnguy/DeCoST. The DeCoST framework
tackles these challenges above as follow. First, although we
could not completely solve the “normal range” challenge, we
discretized the gene expression and the connectivity data so
that the control-system algorithm could be executed logically
without the “normal range” impact. Second, to overcome
the comprehensiveness challenge, we utilized the biological
and pharmaceutical knowledge and public data sources to
quantify the drug-protein interaction and disease-specific gene
expression profile. We used the comprehensive public protein-
protein databases to setup the mathematical model for the
repurposing problem. Third, to reduce the complexity and
high-dimensionality of the repurposing problem, we applied
the linear-quadratic-regulator method, which is practical in
large-scale system control, to compute the hypo-treatment and
evaluate the drug therapy. We apply DeCoST in Breast Cancer
and Bladder Cancer case studies. Among cancer diseases, Breast
Cancer causes the most number of mortality women (Centers for
Disease Control Prevention, 2013). Breast Cancer is also the most
comprehensively studied disease among cancers, with nearly 20
approved drugs by Food and Drug Administration (FDA). In

addition, Breast Cancer has many subtypes, which is ideal for
personalized drug repurposing. In contrast, FDA only approves
4 drugs for Bladder Cancer treatment although Bladder Cancer is
the fourth most commonly diagnosed cancer in the United States
(American Cancer Society, 2017). Therefore, drug development
in Bladder Cancer is still an opened and attractive research area.
From good performance when classifying between approved
drugs and withdrawn drugs, we find 7 compounds that may be
promising in Breast Cancer ER-positive subtype, 3 compounds in
Breast Cancer ER-negative subtype and 10 compounds in Bladder
Cancer for further drug repurposing in-vivo study.

METHODS

We developed our drug repurposing framework from the
system modeling and control points (Figure 2). The framework
integrates three types of data. First, from the Disease-specific
expression profile, we quantified the expression as the system
initial condition vector, where each vector elements specified
whether the corresponding gene was overexpressed (red),
underexpressed (green) or normally expressed (white). Second,
from the protein-protein interaction database, we built the
mathematical system model in order to apply the system-control
algorithm. The red arrows implies activative; and the green arrow
implies inhibitive interactions. Third, from the chemical-protein
interaction data, we quantified the treatment vector for each

FIGURE 2 | Overview of our drug repurposing framework and mathematical representation of drug, protein and interactome data. Red squares: overexpressed

genes/drug’s activation. Green squares: under expressed genes/drug’s inhibition. Red arrow: activated protein-protein interaction. Green arrows: inhibited

protein-protein interaction.
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drug for later ranking. Using the initial condition vector and the
mathematical model, we computed the optimal hypo-treatment.
By mapping the pattern of the optimal hypo-treatment and the
drugs’ treatment vectors, we could rank the drugs and suggest
repurposed drugs.

Retrieve the Expression Profile as the
Initial Condition Vector
We used GEO2R service (https://www.ncbi.nlm.nih.gov/geo/
geo2r/) to analyze GEO dataset for the initial condition vector.
The GEO2R service runs on R 3.2.3 platform and utilizes the
well-known bioinformatics packages Biobase 2.30.0 (Huber et al.,
2015), GEOquery 2.40.0 (Davis and Meltzer, 2007), and limma
3.26.8 (Ritchie et al., 2015). In GEO2R’s result, we filtered out
genes whose adjusted p-values exceed 0.05. The filtered-out genes
were marked with 0 in the initial condition vector. For genes,
whose adjusted p-values are less than 0.05, we used the sign of
base-10 logarithm fold-change (logFC) in the initial condition
vector. In the other words, genes with logFC > 0, which implied
that the genes were overexpressed in the disease condition, were
marked by 1. Genes with logFC < 0, which implied that the gene
were under expressed in the disease condition, were marked by
−1.

We chose GSE10886 dataset for expression profile in Breast
Cancer case study. GSE10886 is among the largest and most
comprehensive Breast Cancer microarray in GEO at the tissue
level. After the latest update in January 2013, GSE10886 has 226
samples and including 97 ER-positive-subtype samples, 69 ER-
negative-subtype samples, and 32 control samples. We chose
GSE31189 dataset for Bladder Cancer expression profile. This
dataset contains 52 cancer samples and 40 control samples.

Build Disease-Specific Mathematical
System Model From Interactome Data
Due to the availability of public data sources for disease-specific
pathway models, we built the disease-specific system model for
Breast and Bladder Cancer differently. To avoid potential false-
positive, which is a well-known issue in predictive data source, we
preferred using the pathway data to construct the mathematical
model. For Breast Cancer, we conducted literature search on
public curated pathway databases Reactome (Croft et al., 2011)
andWikipathway (Pico et al., 2008) for human disease pathways.
In these databases, we only select pathways where the disease
name appears in the pathways’ titles or description. As the
result, we found the Integrated Breast Cancer Pathway (Ibrahim
et al., 2015) on Wikipathway. This pathway is among the most
comprehensive Breast Cancer human pathway in the literature,
which covers 239 genes and 467 interactions. The pathway
also integrates 24 Breast Cancer-related pathways, including
several signaling network. The entire detail about this pathway
could be found in Supplemental Table 2. However, we could
not find any pathways having more than 50 genes for Bladder
Cancer, which implied low coverage. Therefore, for the Bladder
Cancer model, we queried Bladder-Cancer-associated genes from
PubMed Gene (https://www.ncbi.nlm.nih.gov/gene), one of the
most comprehensive literature collection in biomedical and life

sciences. To filter the possible noise during the retrieval process,
we used specific query in format:<Disease Name>AND “Homo
sapiens”[porgn: __txid9606]. After retrieving the Bladder-
Cancer-associated genes, we converted the gene identification
to UniProt Knowledge Base Reviewed identification (UniProt,
2013) to filter possible alias. We queried the STRING database
v10 (Szklarczyk et al., 2015), one of the most comprehensive
interactome databases to retrieve the interactions information
among the candidate disease-specific proteins, especially the
directionality and mechanism of interactions. To filter out
possible noisy information, we limited the search results only
on interaction with minimum of 500 confidence score. STRING
database covers 7 types of mechanism: activation, expression,
inhibition, catalysis, ptmod, binding, reaction.

After retrieving the disease-associated genes and interactions
from these models above, we quantified the interactome to
finalize the mathematical systems for these diseases. Among the
interactions, activation and inhibitions are the mechanisms with
the clearest and the most unambiguous impact/directionality.
Thus, we quantified the activation mechanisms by +1 and the
inhibition mechanisms by −1. For the other mechanisms, we
quantified them by the default value of 0. The results of this
step could be represented by adjacency matrices, as showed in
Supplemental Figure 1.

Retrieve Chemical-Protein Interaction for
Treatment Vector
For each disease, we curated literature for two set of drugs.
The positive set, denoted by D1, includes all drugs which
are approved for treatment by Food and Drug Administration
(FDA). The negative set, denoted by D2, includes drugs which
are withdrawn from disease treatment, or withdrawn/terminated
from disease-specific clinical trials due to toxic or inefficient
issues. We query https://clinicaltrials.gov/ for clinical trials
information. To avoid the complexity of multi-drug and multi-
disease treatment, we ignored literature mentioning more than
one drug/disease during curation. We also ignored the biotech
drugs since this type of drug does not target the molecular
level, therefore it is difficult to setup the treatment vector for
biotech drugs. Table 1 summarizes the list of D1 and D2 drugs
we curated for Breast Cancer and Bladder Cancer. For Breast
Cancer, we found 16 D1 drugs and 7 D2 drugs. In addition,
to examine the possible newly therapeutic drugs for Breast
Cancer, we referred to 24 drug proposed by Huang et al. (2011)
as D3, in which these drugs have been approved for some
other diseases by never in trial for Breast Cancer. For Bladder
Cancer, we found 3 D1 drugs and 2 D2 drugs. Since we could
not find any repurposed drug list for Bladder Cancer in the
literature, we selected all of the 421 FDA-approved drugs for
non-Bladder-Cancer diseases, which have at least one drug-
gene interaction with genes in Bladder Cancer model, as D3
for Bladder Cancer. The entire D3 drug lists for both Breast
Cancer and Bladder Cancer could be found in Supplemental
Table 1.

We queried the DrugBank (Law et al., 2013) and DMAP
(Huang et al., 2015) database for the list of drug-protein
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TABLE 1 | Drug lists (D1 and D2) curated for Breast and Bladder cancer.

Disease Drugs Drug sets Disease Drugs Drug sets

Breast cancer Anastrozole D1 Breast cancer Trastuzumab D1

Breast cancer Cycloheximide D1 Breast cancer Vinblastine D1

Breast cancer Exemestane D1 Breast cancer Diethylstilbestrol D2

Breast cancer Fluorouracil D1 Breast cancer Dromostanolone D2

Breast cancer Fluoxymesterone D1 Breast cancer Formestane D2

Breast cancer Fulvestrant D1 Breast cancer Ixabepilone D2

Breast cancer Lapatinib D1 Breast cancer Avastin D2

Breast cancer Letrozole D1 Breast cancer Ethyl Carbamate D2

Breast cancer Miltefosine D1 Breast cancer Imetelstat D2

Breast cancer Paclitaxel D1 Breast cancer Tivozanib D2

Breast cancer Pamidronate D1 Bladder cancer Cisplatin D1

Breast cancer Raloxifene D1 Bladder cancer Doxorubicin HCl D1

Breast cancer Tamoxifen D1 Bladder cancer Thiotepa D1

Breast cancer Thiotepa D1 Bladder cancer Mitomycin C D2

Bladder cancer Gemcitabine D2

D1, FDA-approved drugs (positive/good drug set); D2, FDA-rejected/withdrawn drugs (negative/bad drug set).

interaction mechanism. DMAP and DrugBank covers 38
mechanisms of drug action. InDMAP, we filtered out interactions
with confidence score less than 800 (over 1,000) to avoid noisy
information. From biological knowledge, we quantified these
mechanisms as showed in Table 2. Similar to quantification of
protein-protein mechanism of action, an inhibited or similar
action is map to −1; and an activated or similar action is map
to+1.

Construct Disease-Specific Drugs’
Therapeutic Scoring for Drug Repurposing
Purpose
The key principle in applying system control to evaluate drugs’
therapy relies in the following assumption: in disease condition,
the gene expressions are derived away from the balanced level
of 0. Therefore, a good treatment should reverse the gene
expressions in disease condition and stabilize the expressions to
the balance level. In Figure 2, we illustrate this principle and
explain several mathematical notation in a toy example. Based
on system biology literature (Alberghina, 2007), we assume that
there exists a model governing the gene expressions, which allows
us to model the expression using time-series perspective

x(t) = f (x(t − 1), u(t − 1)) (1)

where x ǫ ℜN stands for the quantified gene expression of N
genes, u ǫ ℜN stands for the quantified treatment and t is the
iteration and f is the arbitrary function controlling the expression
change. The initial x(0) is the quantified gene expression in
disease condition. In this paper, we choose a linear model for f.

x(t) = Ax(t − 1)+ u(t − 1) (2)

We chose the linear model because not only it is simple but also
it has equilibrium point at the origin: if x(t−1) = u(t−1) = 0

TABLE 2 | Quantification of drug-protein mechanism of action in drug-protein

interaction databases.

Mechanism of

action

Quantification Mechanism of

action

Quantification

Activator 1 Ligand 0

Adduct 0.5 Metabolizer 0

Agonist 1 Modulator 0

Allosteric modulator 0 Multitarget 0

Antagonist −1 Negative

modulator

−1

Antibody 0 Neutralizer 0

Binder 0 Other 0

Chaperone 1 Other/unknown 0

Chelator 0 Partial agonist 1

Cleavage −1 Partial antagonist −1

Cofactor 1 Positive allosteric

modulator

1

Component of 0 Potentiator 1

Cross-linking/alkylation 0 Product of 0

Incorporation into and

destabilization

−1 Reducer −1

Inducer 1 Stimulator 1

Inhibitor −1 Suppressor −1

Inhibitor, competitive −1 Unknown 0

Inhibitory allosteric

modulator

−1 Other terms 0

Intercalation 0 – –

The Mechanism of Action terminologies are retrieved from drug-target annotation in

DrugBank database. Quantification stands for the numerical representation of the

Mechanism of Action in the modeling and computing steps.

then x(t) = 0. This fact implies that when the gene expressions
are already at the balance level, treatment is no longer needed.
In addition, it is easier to setup a linear system with stability
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(Chui and Chen, 2012)

If ||x(0)|| < ε and u = 0 then || x(t) || < ε∀t (3)

where ||x|| stands for the second norm of x and ε is an arbitrary
small number. This fact implies the self-adjustment of the
gene expression at the control level. We setup matrix A from
quantification of protein-protein mechanism of interactions
(section Methods). With temporal matrix A∗ as the result of
section Methods

A∗(i, j) =







−1 if protein i inhibits protein j
1 if protein i activates protein j

0 otherwise
(4)

Let λ be the eigenvalue of A∗ with the largest magnitude. By
setting up A as

A = (1/λ) A∗ (5)

We can guarantee the stability of system (2) (Chui and Chen,
2012).

The objective of the linear control is to find a sequence of u(t)
such that

x(t) → 0 as t → ∞ (6)

Optimal control considers not only how to stabilize x quickly but
also consider the cost-effective of the treatment u. Regarding this
point, the optimal linear control aims to minimize

J(x (0)) =
∑∞

t = 0

(

x (t)Tx (t) + u(t)Tu (t)
)

(7)

To solve the optimization problem (2–7) we solved the
corresponding Riccati equation (Arnold and Laub, 1984)

ATPA− P− ATP (P+ I)−1 PA+ I = 0 (8)

using DARE algorithm (Arnold and Laub, 1984) in Matlab
(https://www.mathworks.com/help/control/ref/dare.html). In
(8), P is just an intermediate result containing no biological
representation. We compute the treatment vector u(t) as follow

u (t) = − (I+ P)−1 PAx(t) (9)

In system control practice, since u(t) often converges to 0
quickly (Bemporad et al., 2002), the first treatment vector
u(0)=− (I+ P)−1 PAx(0) often plays themost important role in
optimally stabilizing the system (2). Therefore, we can consider
u(0) as the optimal hypo-treatment. We compare the similarity
between the real drug treatment (ud) and the hypo-treatment as
the therapeutic score T(d) for each drug d as follow

Td = |uTd sign(u (0))|/|abs(ud)
Tabs(sign(u (0)))| (10)

where abs stand for the absolute value function. Here, Td ranges
between−1 and 1. The numerator

∣

∣uT
d
sign(u (0))

∣

∣ is thematching
function between drug d and the optimal hypo-treatment, which
is incremented when ud(i) and u(0)(i) are non-zero analog, and
decremented when ud(i) and u(0)(i) are opposite. We measured
the impact of Td score by the receiver operating characteristic
when we use Td to classify D1 drugs vs. D2 drugs.

RESULTS

Therapeutic Scores for Breast Cancer
Drugs
From the Integrated Breast Cancer Pathway (Ibrahim et al.,
2015) on Wikipathway (section Methods) and the Breast Cancer
drug list in Supplemental Table 3, we queried 222 drug-protein
interactions for the drugs’ treatment vectors (Supplemental Table
4). Supplemental Table 5 contains the initial condition vector
from GEO2R expression analysis.

Figure 3 shows that the Td score is able to give appropriate
ranking for most of the well-known therapeutic drugs and
suggest candidate drugs for repurposing in Breast Cancer ER-
positive case. Td score reflexes the difference between the D1
and D2 drugs with receiver operator characteristic (Hanley
and McNeil, 1982) area under the curve (AUC) of 0.76.
This result is comparable to the overall result queried from
Broad Institute CMAP (Subramanian et al., 2017) on MCF-
7, the Breast Cancer ER+ cell line, using the Touchstone tool
(https://clue.io/touchstone). Especially on the drugs covered in
CMAP, DeCoST achieves AUC of 0.91, which is much higher
than the AUC achieved by CMAP (0.79), as showed in the
Supplemental Text 1. We did not setup training set and test
set for classification because the model construction and Td

calculation does not need the drug categories. The Td scores for
D1 drugs in Breast Cancer ER-negative case are relatively lower
than the scores for ER-positive case (Figure 4). Comparison
detail has been shown in Supplemental Table 5. Using Td

for classifying D1 and D2 drugs yields AUC of 0.68. In fact,
clinical trials and literature have showed several drugs which
are effective in ER-positive treatment but show little or no
impact in ER-negative treatment. For example, Tamoxifen (Td

ER-positive: 0.294, Td ER-negative: 0.176), which is a selective
estrogen receptor modulator, does not prevent ER-negative
Breast Cancer, when the estrogen receptor genes do not express
(Fabian, 2007; Uray and Brown, 2011).

Therapeutic Scores for Bladder Cancer
Drugs
Since we could not find any human pathway with sufficient
coverage for Bladder Cancer, our Bladder Cancer system model
retrieved the Bladder-Cancer-specific genes from PubMed Gene
server. The model contains 738 proteins and 1,241 protein-
protein interactions. From 6 drugs in the Bladder Cancer case-
study, we retrieved 48 drug-protein interactions for drugs’
treatment vector. From GSE31189 gene expression dataset, we
found 221 genes whose expression differs from the balance level.
Details about the Bladder Cancer system could be found in
Supplemental Tables 6–8.

We observed AUC of 1.0 (Figure 5) when we used Td score to
classify between D1 and D2 drugs in Bladder Cancer. Here, all of
the D1 drugs receive non-negative Td scores: Cisplatin receives
the score of 0.2, Doxorubicin Hydrochloride receives the score of
0.0 and Thiotepa receives the score of 1.0. All of the D2 drugs
receive negative Td scores: Mitomycin C receives the score of
−0.2 and Gemcitabine receives the score of−0.09.
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FIGURE 3 | Left: Td score in Breast Cancer, ER-positive subtype; the horizontal bars in each group stand for median value of Td . Right: ROC of Td in classifying

between D1 drugs and D2 drugs.

FIGURE 4 | Left: Td score in Breast Cancer, ER-negative subtype; the horizontal bars in each group stand for median value of Td. Right: ROC of Td in classifying

between D1 drugs and D2 drugs.

FIGURE 5 | Left: Td score in Bladder Cancer; the horizontal bars in each group stand for median value of Td . Right: ROC of Td in classifying between D1 drugs and

D2 drugs.
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Potential Drugs for Breast Cancer Studies
and Biological Insights
From the Td scores for D3 drugs, our framework suggests
8 drugs (Erbitux, Flutamide, Medrysone, Methylprednisolone,
Norethindrone, Prednisolone, Prednisonea, and Vandetanib)
with high potential efficacy in Breast Cancer ER+ drug
repurposing. Significantly, these drugs do not directly target
Estrogen receptor, which is the most well-known approach in
Breast Cancer ER+ drug design. Tamoxifen is a typical example
of Breast Cancer drugs which slows cancer process by blocking
estrogen hormone receptors, preventing hormones from binding
to them. About 80% of all breast cancers are ER+: the cancer
cells grow in response to the hormone estrogen (Bulut and
Altundag, 2015). About 65% of the ER+ cases grow in response
to another hormone, progesterone (Hefti et al., 2013). Tumors
in ER/PR-positive cases are much more likely to respond to
hormone therapy than tumors that are ER/PR-negative. ER+
breast cancer entirely depends on the estrogen for growth and
propagation involving genomic and non-genomic pathways.
Epidermal growth factor receptor (EGFR) is a receptor found
on both normal and tumor cells that is important for cell
growth (Herbst, 2004; Khoo et al., 2015). ER-positive (ER+)
drugs recommended for repurposing in this framework block the
activities and growth of EGFR (Figure 6A). These drugs show
different mechanism of action with the common objective of
the inhibition of the growth of cancerous cells. By adjusting and
modifying the known biases of the interactomic networks, our
procedure would help to reveal the therapeutic effect of drugs
along with effective treatments.

For Breast Cancer ER- case, our framework suggests
Daunorubicin and Donepezil as the repurposing candidates.
These drugs are independent of estrogen and usually inhibit the

cell growth by either interacting with DNA or inhibiting
Cholinesterases. Daunorubicin interacts with DNA by
intercalation and inhibition of macromolecular biosynthesis
(Momparler et al., 1976). This inhibits the progression of the
enzyme topoisomerase II, and thereby stopping the process of
replication. Donepezil is in a class of cholinesterase inhibitor
that improves mental function and fatigue in cancer. The current
research focused on recent large-scale efforts to systematically
find repositioning candidates and elucidate individual disease
mechanisms in cancer (Bruera et al., 2007). Personalized
medicine and repositioning both aim to improve the productivity
of current drug discovery pipelines. Standard drug discovery
strategies can also lead to repositioning opportunities. D1, D2,
and D3 drugs (Table 1) found to potently modulate the desired
activity are repositioning candidates.

Potential Drugs for Bladder Cancer Studies
and Biological Insights
From the list of 143 FDA-approved drug with high Td score, we
found 10 candidates drugs (with Td = 1) whose mechanisms
are promising for Bladder Cancer repurposing. The Td scores
for all Bladder Cancer drugs could be found in Supplemental
Table 9. The prevalence of drug-repositioning studies has resulted
in a variety of innovative computational methods for the
identification of new opportunities for the use of old drugs.
We sorted the potential list of drugs against bladder cancer.
The reprofiling of these drugs followed the same biological
mechanisms. For example, Zafirlukast antagonizes ATP-binding
cassette and may improve the efficacy of anticancer effects
(Sun et al., 2012). Similarly, Tenofovir may reduce the risk of
bladder or others cancers while dopamine receptor antagonist
Thioridazine inhibits tumor growth (Yin et al., 2015). Losartan

FIGURE 6 | Illustration of biological mechanism of few FDA approved drugs (A) for breast cancer (B) for bladder cancer.
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is an angiotensin II receptor (AT-II-R) blocker that is widely
used by human for blood pressure regulation but it also
shows antitumor property (Barreras and Gurk-Turner, 2003).
Ciclopirox was first marketed in 1982 as an antifungal agent
found in several topical drug products. However, further research
demonstrated that it was able to kill bladder cancer cells
(Weir et al., 2011). The Atezolizumab, Cisplatin, Doxorubicin,
Nivolumab, Opdivo, Thiotepa, and others (Figure 6B) are FDA
approved drugs which are recommended for bladder cancer.

DISCUSSION

The applications of drug-repositioning studies have brought
a variety of new in silico approaches in drug designing and
development. In most of the studies, the anticancer effect of
newly designed drugs usually has been presented in vitro as
clinical trials are very expensive and time consuming, but remain
the only way to validate drug efficiency in vivo. Therefore, to
establish accurate and effective drug-repositioning framework
needs development of new computational techniques. In this
work, we discuss and demonstrate the application of control
system theory as a computational method to evaluate drug
efficacy and repurposing from integrated system biology data.
The capability in classification between approved and withdrawn
drugs is the fundamental foundation for our framework in drug
repurposing. It is important to note that although our AUC
of 0.76 and 0.68 in Breast Cancer is inferior compared to the
state-of-the-art methods (Cheng et al., 2012; Zheng et al., 2015),
our validation is conducted from the pharmaceutical knowledge
of drug’s efficacy on treatment at the system-pathway level;
meanwhile, the other methods often validate at the targeted
molecular level. In addition, we set strict criteria in choosing
the negative set by only choosing drugs that are rejected or
withdrawn from disease-specific clinical trials and treatments.
The state-of-the-art methods tend to be more relaxed on the
negative set by choosing drug not being used in disease-specific
drugs, which may have limitation on repurposing options.
In addition, the appropriate assessment of tamoxifen efficacy
between Breast Cancer ER+ and Breast Cancer ER- highlights
the potential advantages of our framework in personalized drug
repurposing. Compare to the approved drugs, the candidate
drugs suggested in this work show different promising drug
mechanisms which may be useful in future drug design.

In our work, although the number of target may be among
the key difference between the D1 drugs and the D2 drugs,
our analysis shows that the number of drugs’ targeted genes
and the targeted genes are not the only factors affecting the
clinical outcome and predictive results in drug repurposing.
As showed in Suppemental Table 3, D1 drugs, on the average,
has more targets than D2 drugs. However, D1 drugs for Breast
Cancer (average number of targets: 4.8) include both single-
target (such as Anastrozole, Exemestane, and Fluorouracil) and
multi-target (such as Tamoxifen, Paclitaxel, and Cycloheximide)
ones. D2 (average number of targets: 3.3) drugs also contains
the single-target (such as Ixabepilone and Avastin) and the
multi-target (such as Imetelstat and Diethylstilbestrol). In the
result section, DeCoST’s evaluation for these drugs showed above
is appropriate for their clinical outcome. In addition, drugs

targeting the same marker genes do not necessary have the same
outcome. For example, both Tamoxifen and Diethylstilbestrol
target the estrogen receptors ESR1 and ESR2, which are the
marker in Breast Cancer ER+ (Yip and Rhodes, 2014). However,
their clinical outcomes and DeCoST’s evaluation are opposite,
primarily because they have opposite mechanisms on the same
targets of estrogen receptors: Tamoxifen is the estrogen inhibitor
while Diethylstilbestrol is the estrogen activator. Since Breast
Cancer ER+ is strongly associated with the overexpression of
estrogen receptors (Yip and Rhodes, 2014), Tamoxifen could have
therapeutic outcome because it reverses the disease signature.
Meanwhile, Diethylstilbestrol should have poor outcome because
it shows the analog to the disease signature.

In this work, we have showed the results between DeCoST and
the Broad Institute CMAP, which is among the most well-known
and comprehensive platforms for drug repurposing. In addition,
our strategy of repurposing is similar to CMAP. Although
Supplemental Text 1 shows that our DeCoST has higher AUC
than CMAP does, it is inappropriate to conclude that DeCoST
is better than the CMAP. There are fundamental differences
in conducting experiment making comparison not totally solid.
First, the expression profiles acquired by CMAP are at the cell line
level; meanwhile, in this work DeCoST acquires the expression
profile at the tissue level, which is closer to in-vivo studies.
Second, due to several factors in experimental design, CMAP
does not contains cell line for Breast Cancer ER- and Bladder
Cancer. CMAP also covered less number of drugs, compared to
the drug list evaluated in this work. Therefore, the key point in
comparative evaluation should be on the repurposing hypotheses
suggested by these platforms in future in-vivo studies and the
biological insights of these hypotheses. In our results, we have
offered several biological explanations why drugs recommended
by DeCoST could be repurposed. Unfortunately, we could not
compare between CMAP and DeCoST at this point. DeCoST
focuses primarily on recommending drugs that have never been
in disease-specific clinical trials; meanwhile, CMAP (https://clue.
io/repurposing-app) primarily reports on drugs that has been
under early phases of clinical trials. Therefore, we believe that
DeCoST could provide complimentary advantages, in addition
to CMAP.

The advantages of our framework are established not only
by advanced computational method but also by two layers of
personalized system (Li and Jones, 2012). In the first layer, the
disease-specific gene expression could differ among different
patients and subtypes, which results in different initial state
condition. In the second layer, different types of disturbance
among molecular-molecular interactions could be discovered
and represented differently in the system modeling step. In our
results, we show that Tamoxifen, which is approved to treat
Breast Cancer, may not be effective in treating Breast Cancer
ER-. The strong support from literature to this evaluation is
a good example of the personalized medicine characteristics.
In addition, our framework could easily integrate the results
from many other state-of-the-art repurposing approaches such
as molecular docking and gene-set enrichment analysis to refine
the efficacy prediction. The main idea in this framework, which
is based on control system theory, could be applied in many
other bioinformatics problem, such as target prioritization and
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discovering new combination of treatments. In addition, our
framework could easily be extended to evaluate combination of
treatment, with careful preprocessing the drug-drug interaction
data (Ayvaz et al., 2015; Wang et al., 2017).

In addition, our framework shows repurposing capacity at
both target level and pathway level. At the target level, we
show typical examples for EGFR-targeted and ACHE-targeted
drugs. Patients being considered for anti-epidermal EGFR
therapy are often screened for mutations in the oncogene
KRAS (Hoorens et al., 2010) because a constitutively active
KRAS gene downstream of EGFR would not be affected by
EGFR inhibition. Many diseases have approved combination
regimens, such as metastatic colorectal and bladder cancer and
its four-drug FOLFIRI (folinic acid, 5-fluorouracil, irinotecan)
with cetuximab regimen (Raoul et al., 2009). Losartan is an
angiotensin II receptor (AT-II-R) blocker and this angiotensin-
converting enzyme inhibitors (ACE) may have a protective role
in bladder and other cancers (Yazdannejat et al., 2016). In the
other hand, a typical example at the pathway level is Thioridazine.
Thioridazine-induced effects are associated with inhibition of the
canonical NFκB pathway.

The limitations in this work are the method to quantify the
categorical data from public genomic/proteomic databases and
the simplicity of linear system control. First, all of the data are
discretized into only three values: −1, 0, and 1, which could
lower the resolution of the final drug therapeutic score. Second,
the linear system control approach needs to assume that the
gene expression transition could be approximate closely by a
linear equation, which is still unverified due to the scarcity of
time-series gene expression data. Therefore, when applying into
another repurposing problem, biologists and pharmacologists
should apply deeper domain knowledge to increase the resolution
of discrete quantification. Furthermore, mathematical nonlinear
system identification and reinforcement learning, which are
popular approach in unknown system control, could be used to
increase the accuracy of system modeling and make the system
more personalized. Integration of other resources, such as drugs,
genes, and systems associated with side-effects (Kuhn et al., 2016;
Maier et al., 2018) and high-throughput screening (Deftereos
et al., 2011; Macarron et al., 2011) would also be valuable
expansions of this work in the future. Also, the computational
complexity of DeCoST is generally high (expected O(n8), where
n is the number of genes in the model). This complexity is
manageable with most of the existing biological pathway model
(expect about 400 genes). However, this could be a bottleneck if
the number of genes raises to several thousands.

In addition, the advantages of our framework in personalized
medicine may associate with the reproducibility issues (Draghici
et al., 2006; Frye et al., 2015). As mentioned, the disease-
specific gene expression could differ among different patients

and subtypes. Therefore, we could not completely guarantee
that applying our framework on different gene expression data
and on different interactome data sources (Chatr-Aryamontri
et al., 2013; Szklarczyk et al., 2015) would return the same result.
Therefore, by reproducibility, we can only guarantee that given a
specific gene expression profile and an interactome data source,
we can always produce the same result. In this work, we have
tried to tackle the reproducibility issue by using tight criteria to
select the positive/negative drug set, bymaintaining the relevance
and coverage of the disease-specific model, and by choosing the
expression data set with high number of samples.

CONCLUSION

In this work, we have developed DeCoST, one of the
first techniques from system control paradigm, to tackle
the drug repurposing challenges. We showed that DeCoST
could appropriately retrieve the clinical outcomes of drugs
treating personalized Breast Cancer and Bladder Cancer. From
the good retrieval result, DeCoST suggests repurposing 8-
candidate drugs for Breast and 10 drugs for Bladder Cancer
with biological insights. This framework would be promising
to discover new therapeutic strategies to treat other cancer
diseases.
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Sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-
MS) has emerged as one of the most popular techniques for label-free proteome
quantification in current pharmacoproteomic research. It provides more comprehensive
detection and more accurate quantitation of proteins comparing with the traditional
techniques. The performance of SWATH-MS is highly susceptible to the selection
of processing method. Till now, ≥27 methods (transformation, normalization, and
missing-value imputation) are sequentially applied to construct numerous analysis
chains for SWATH-MS, but it is still not clear which analysis chain gives the optimal
quantification performance. Herein, the performances of 560 analysis chains for
quantifying pharmacoproteomic data were comprehensively assessed. Firstly, the most
complete set of the publicly available SWATH-MS based pharmacoproteomic data were
collected by comprehensive literature review. Secondly, substantial variations among
the performances of various analysis chains were observed, and the consistently well-
performed analysis chains (CWPACs) across various datasets were for the first time
generalized. Finally, the log and power transformations sequentially followed by the
total ion current normalization were discovered as one of the best performed analysis
chains for the quantification of SWATH-MS based pharmacoproteomic data. In sum, the
CWPACs identified here provided important guidance to the quantification of proteomic
data and could therefore facilitate the cutting-edge research in any pharmacoproteomic
studies requiring SWATH-MS technique.

Keywords: pharmacoproteomics, SWATH-MS, processing method, transformation, normalization

INTRODUCTION

The pharmacoproteomics has been widely applied to various aspects of current pharmaceutical
researches by discovering disease-related genes (Mrozek et al., 2013; Quiros et al., 2017; Zeng et al.,
2017) or new drug targets (Li et al., 2018; Saei et al., 2018), constructing pharmacology screening
model (Hauser et al., 2005), and revealing the drug mechanism of action (Yue et al., 2016; Zhu
et al., 2018), resistance (Paul et al., 2016), and toxicity (Tan et al., 2017; Wang et al., 2017b).
Recent findings uncover its potentials to fulfill the promise that the pharmacogenomics has not
accomplished yet (D’Alessandro and Zolla, 2010; Chambliss and Chan, 2016; Yang et al., 2016).
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As a newly emerging technique (Anjo et al., 2017), the
sequential windowed acquisition of all theoretical fragment ion
mass spectra (SWATH-MS) has been reported to provide
much more comprehensive detection and accurate quantitation
of proteins compared to the traditional techniques used in
pharmacoproteomic analyses (Zhu et al., 2008b; Tao et al.,
2015; Aebersold and Mann, 2016; Li et al., 2016a; Anjo et al.,
2017), and it thus becomes one of the most popular techniques
for target discovery (Li et al., 2016b; Xu et al., 2016; Anjo
et al., 2017), drug/lead quantification (Roemmelt et al., 2015)
and identification (Scheidweiler et al., 2015; Wang et al., 2015;
Aratyn-Schaus and Ramanathan, 2016; Li B. et al., 2017),
construction of assay library for targeted proteomic analysis
(Schubert et al., 2015), and quantitative protein profiling (Krasny
et al., 2018) for recognizing drug-induced alterations (Roemmelt
et al., 2015; Xue et al., 2016).

However, due to the interdependent nature among multiple
acquisition parameters (dwell time, duty cycle, precursor
isolation window width, and mass range), the protein
quantification based on SWATH-MS is reported to be limited in
dynamic range (Anjo et al., 2017) and in turn low in accuracy
(Gillet et al., 2012; Huang et al., 2015; Shi et al., 2016; Yang et al.,
2017; Xue et al., 2018b). The problems above can be even worse
considering the innate complexity of clinical samples (Jamwal
et al., 2017), small amount of proteins (Sajic et al., 2015), and low
abundance of drug-metabolizing enzymes (Jamwal et al., 2017).
To cope with these problems, a variety of popular quantification
tools, including DIA-Umpire (Sajic et al., 2015), OpenSWATH
(Rost et al., 2014), Skyline (MacLean et al., 2010), Spectronaut
(Bruderer et al., 2015), and SWATH2.0 (Li S. et al., 2017), and
dozens of subsequent processing methods (transformation,
normalization, and missing-value imputation) are developed
to enhance the accuracy of SWATH-MS (Navarro et al., 2016).
Recent reports further reveal that SWATH-MS’ accuracies
depend heavily on the specific quantification tool/processing
method used in a particular study (Navarro et al., 2016),
and the protein quantification can significantly benefit from
comparative benchmarking of the performance of these tools
and methods (Gatto et al., 2016; Zheng et al., 2016). Therefore, it
is urgently needed to assess the performances of tools/methods
for discovering the optimal one(s) for SWATH-MS based
pharmacoproteomic studies.

The performance of various quantification tools has already
been systematically evaluated by benchmark SWATH-MS data
(Navarro et al., 2016). Among those tools, only 2 (OpenSWATH
and Skyline) are non-commercial ones, and the OpenSWATH
(Rost et al., 2014) is of the most popular one used to quantify
SWATH-MS based pharmacoproteomic data (Rost et al., 2014;
Parker et al., 2015; Weisser and Choudhary, 2017). So far,
≥4 transformation, ≥15 normalization, and ≥6 missing-value
imputation algorithms (Guo et al., 2015; Li et al., 2016c; Ori
et al., 2016; Wu et al., 2016; Tan et al., 2017; Wang et al., 2017a)
have been sequentially applied to process pharmacoproteomic
data. Among these algorithms, four for normalizing label-free
proteomic data have been assessed to identify the best performed
one (Callister et al., 2006) and six for missing-value imputation
have been evaluated to discover the one enhancing proteomic

quantifications in the differential expression analysis (Valikangas
et al., 2017). Appropriate integrations of the processing methods
into a sequential analysis chain are reported to improve the
quantification accuracies (Karpievitch et al., 2012; Chawade et al.,
2015; Valikangas et al., 2017) with some chains identified as
highly accurate in particular pharmacoproteomic studies (Guo
et al., 2015; Ori et al., 2016; Tan et al., 2017; Zheng et al., 2017). For
example, log transformation followed by median normalization
performs well in identifying the therapeutic target/pathway
for Down syndrome (Sullivan et al., 2017), endogenous toxins
inducing the haploinsufficiency of tumor suppressor (Tan et al.,
2017) and biological mechanism underlying the role of proteins
played in Alzheimer’s disease (Khoonsari et al., 2016). Since the
processing methods are sequentially used to form the integrated
analysis chain (Guo et al., 2015; Ori et al., 2016; Tan et al., 2017),
any performance assessment aiming solely at transformation,
normalization, or imputation may not be able to reflect the overall
performance of the whole analysis chain. Considering the huge
amount of possible analysis chains [560 in total, taking non-
transformation, non-normalization, and non-imputation into
account adopted by previous studies (Guo et al., 2015; Liu et al.,
2015; Wu et al., 2016)] by randomly integrating those processing
methods, it is therefore essential to comprehensively evaluate the
performance of all analysis chains to identify the optimal one for
specific pharmacoproteomic dataset. However, no such analysis
has been conducted yet.

In this study, the performances of all possible analysis chains
integrating 4 transformation, 15 normalization, and 6 imputation
algorithms were comprehensively assessed by their precisions
based on the proteomes among replicates (Kuharev et al., 2015;
Navarro et al., 2016; Chignell et al., 2018; Muller et al., 2018).
Systematic literature review on the popular quantification tool
OpenSWATH firstly yielded seven SWATH-MS based benchmark
pharmacoproteomic datasets of varied sample sizes (from 6 to
116). To the best of our knowledge, these seven provided the most
complete set of the publicly available pharmacoproteomic data
based on the SWATH-MS technique. Secondly, the performance
of analysis chains was assessed by each dataset. Thirdly, the
analysis chains consistently performed well across all datasets
were identified for the first time and compared with those
popular chains frequently applied in current pharmacoproteomic
studies. Finally, the consistently well-performed analysis chains
were further discussed based on their performances. The analysis
chains identified in and the corresponding findings of this study
provided important guidance to current pharmacoproteomic
studies.

MATERIALS AND METHODS

Collection of SWATH-MS Based
Benchmark Pharmacoproteomic
Datasets
A systematic literature review on the popular quantification
tool OpenSWATH and the analysis on the datasets
provided in the PRIDE database (Navarro et al., 2016) were
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collectively conducted to find SWATH-MS based benchmark
pharmacoproteomic datasets. Firstly, PRIDE database was
searched against by keyword “SWATH-MS.” Together with
the literature review on the resulting projects, 85 projects were
identified as based on SWATH-MS, among which 76 and 9
projects were acquired by TripleTOF instruments 5600 and 6600,
respectively. Secondly, several criteria were used to guarantee
the availability and processability of the raw proteomic data,
which included (1) complete set of raw data files, (2) well-
defined parameters (isolation scheme, range of retention time,
and transition settings), (3) availability of spectral library and
protein database to search against, and (4) clear description on
sample groups. The application of these criteria on the resulting
PRIDE projects yielded seven SWATH-MS based benchmark
pharmacoproteomic datasets of varied sample sizes (Table 1),
which covered both TripleTOF instruments (5600 and 6600) of
all 85 projects. Therefore, these datasets can be recognized as
representatives of SWATH-MS based pharmacoproteomic data.
To the best of our knowledge, these datasets provided the most
complete set of SWATH-MS based pharmacoproteomic data.

Processing Methods for Data
Transformation, Normalization, and
Imputation
So far, ≥4 transformation, ≥15 normalization, and ≥6 missing-
value imputation algorithms (Guo et al., 2015; Li et al., 2016c; Ori
et al., 2016; Wu et al., 2016; Tan et al., 2017; Wang et al., 2017a)
have been reported to be sequentially and frequently used to
process pharmacoproteomic data. Based on our comprehensive
literature review, their corresponding applications to current
proteomic research were discussed in Supplementary Method
S1. These 25 methods include 4 transformation: Box-cox (Sakia,
1992), Cube Root (Wen et al., 2017), Log (De Livera et al.,
2012), and Power (Zhang, 2014), 15 normalization: Auto Scaling
(Kohl et al., 2012), Cyclic Loess (Zhu et al., 2012b), EigenMS

(Zhu et al., 2009), Locally Weighted Scatterplot Smoothing
(Wilson et al., 2003), Mean (Andjelkovic and Thompson, 2006),
Median (Bolstad et al., 2003), Median Absolute Deviation (Matzke
et al., 2011), Pareto (Zhu et al., 2010), Probabilistic Quotient
(Dieterle et al., 2006), Quantile (Callister et al., 2006), Robust
Linear Regression (Hong et al., 2016), Total Ion Current (Gaspari
et al., 2016), Trimmed Mean of M Values (Lin et al., 2016), VSN
(Huber et al., 2002), and Z-score (Cheadle et al., 2003), and 6
imputation: Background (Chai et al., 2014), Bayesian Principal
(Chai et al., 2014), Censored (Valikangas et al., 2017), K-nearest
Neighbor (Zhu et al., 2008a), Singular Value Decomposition (Alter
et al., 2000), and Zero Imputation (Gan et al., 2006). As shown in
the Supplementary Method S1, due to their popularity in current
pharmacoproteomic studies, these 25 methods were included,
sequentially applied, and analyzed in this study. Each method
was abbreviated by a three-letter code which was demonstrated
in Supplementary Table S1.

Assessing Analysis Chain Using the
Precision Based on Proteomes Among
Replicates
Diverse methods for proteomic data processing (transformation,
normalization, and imputation) profoundly affected the precision
of protein quantification which was frequently assessed using the
value of pooled intragroup median absolute deviation (PMAD)
of reported protein intensity among replicates (Chawade et al.,
2014; Kuharev et al., 2015; Valikangas et al., 2018; Yu et al.,
2018). Particularly, the PMAD was designed to demonstrate the
capacity of each analysis chain to reduce the variation among
replicates, and therefore to enhance the technical reproducibility
(Chawade et al., 2014). The lower value of PMAD denoted the
more thorough removal of the experimentally induced noise and
indicated better precision of the corresponding analysis chain
(Valikangas et al., 2018). So far, PMAD value within the range
of ≤0.3, >0.3 & ≤0.7, and >0.7 was generally accepted as with

TABLE 1 | Seven SWATH-MS based benchmark pharmacoproteomic datasets collected for the analysis of this study.

Datasets PRIDE ID Sample size and Dataset description Analysis Chain Instrument

Nat. Biotechnol. PXD002952 3 samples of 65% human, 30% yeast, and 5% E. coli proteins LOG-MED-??? TripleTOF 6600

34:1130-6, 2016 3 samples of 65% human, 15% yeast, and 20% E. coli proteins

Cell Rep. PXD003278 6 siRNA-treated Cal51 cell samples LOG-QUA-NON TripleTOF 5600

20:1229-41, 2017 6 PRPF8-depleted Cal51 cell samples

Cell. PXD006106 10 formaldehyde treated HeLa Kyoto cell samples LOG-MED-NON TripleTOF 5600

169:1105-18, 2017 10 formaldehyde untreated HeLa Kyoto cell samples

Nat Med. PXD000672 18 tumorous kidney tissue biopsies LOG-QUA-NON TripleTOF 5600

21:407-13, 2015 18 non-tumorous kidney tissue biopsies

Sci Rep. PXD004880 18 plasma samples from individuals with Down syndrome LOG-MED-NON TripleTOF 5600

7:14818, 2017 18 plasma samples from healthy controls

Cell Rep. PXD003972 20 wild type mouse samples LOG-???-??? TripleTOF 5600

18:3219-26, 2017 20 knock-in mouse samples expressing endogenous GRB2

Mol Syst. Biol. PXD001064 72 blood samples of monozygotic twins ???-RLR-BAK TripleTOF 5600

11:786, 2015 44 blood samples of dizygotic twins

All datasets were from PRIDE database (Navarro et al., 2016). Each method in the analysis chain was abbreviated by a three-letter code as demonstrated in Supplementary
Table S1, and ??? indicated that the corresponding method was not specified in the corresponding study of the dataset.
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superior, good, and poor precision, respectively (Chawade et al.,
2014; Valikangas et al., 2018), which had gradually become a
popular metric for assessing the precision of processing methods
in OMICs (Chawade et al., 2014; Valikangas et al., 2018).

Performance Assessment Among
Various Analysis Chains by Hierarchical
Clustering
Pooled intragroup median absolute deviation values of 560
possible analysis chains across the seven benchmark datasets
were firstly calculated. Fifty-one out of these 560 analysis chains
reported error for processing at least one of the benchmark
datasets. Therefore, the hierarchical clustering of the remaining
509 analysis chains with calculatable results of all seven
PMADs was conducted to identify the relationship among the
performances of various analysis chains. Particularly, PMAD
values of a specific analysis chain among 7 datasets were used
to form a 7-dimensional vector. Then, hierarchical clustering
was applied to investigate the relationship among those 509
vectors, and therefore among the corresponding analysis chains.
To measure the distance between any 2 vectors, the Euclidean
distance was adopted, which could be demonstrated as below:

Euclidean distance (a, b) =
√∑n

i=1

(
ai − bi

)2

where i denoted each dimension of the analysis chain a and b. The
clustering algorithm applied here was Ward’s minimum variance
algorithm (Barer and Harwood, 1999), which was designed to
minimize the total within-cluster variance. Ward’s minimum
variance module in R package (Tippmann, 2015) was used. To
visualize the hierarchical tree graph among those 509 analysis
chains, the tree generator iTOL was used to generate and display
the hierarchical tree structure (Letunic and Bork, 2016).

RESULTS AND DISCUSSION

Ranking the Analysis Chains Based on
Their Performances on Each Benchmark
The performances of each analysis chain on the seven SWATH-
MS based benchmark datasets (Table 1) were assessed by
measuring the corresponding PMAD values. As shown in
Figure 1, the performances of 509 analysis chains (log10 PMAD,
Y-axis) with calculatable PMAD values were measured and
ranked (X-axis). Because some analysis chains may not be
able to result in a PMAD value, there were slight variations
among the number of analysis chains for different benchmark
datasets (from 530 to 560). Taking the dataset shown in the
center of Figure 1 as an example (Nat Med. 21:407-13, 2015),
a total of 558 analysis chains were assessed and ranked, and
the performance of different analysis chains varied significantly
(PMAD from 1.8 × 10−15 to 2.0 × 105). With reference to the
frequently adopted cutoff (PMAD = 0.7) for differentiating the
analysis chains of good and poor precision (Chawade et al., 2014;
Valikangas et al., 2018), 203 (36.4%) out of these 558 analysis
chains were ranked as well-performed. Similar to this dataset

(Nat Med. 21:407-13, 2015), the performance of different analysis
chains for the other datasets also differentiated substantially
(PMAD from 1.7 × 10−16 to 3.4 × 105) with 38.8%∼49.7% of
the analysis chains ranked as well-performed.

The specific analysis chains for each benchmark dataset
adopted in the corresponding original studies were identified
by literature review (Table 1). Particularly, 4 out of these
datasets were with the clearly defined analysis chain (LOG-
QUA-NON, LOG-MED-NON, LOG-QUA-NON, and LOG-
MED-NON for PXD003278, PXD006106, PXD000672, and
PXD004880, respectively), while the remaining 3 datasets were
with incomplete information of the adopted analysis chain (LOG-
MED-???, LOG-???-???, and ???-RLR-BAK for the datasets of
PXD002952, PXD003972, and PXD001064, respectively). Taking
the same dataset in the middle of Figure 1 as an example (Nat
Med. 21:407-13, 2015), the red dot indicated the PMAD of
the analysis chain adopted by this study and its corresponding
ranking among all 558 analysis chains. As shown, the adopted
chain (LOG-QUA-NON) in this study was ranked to be the 156th
well-performed one (PMAD = 0.598) showing its capacity to
reduce variations among replicates and thus enhance technical
reproducibility (Chawade et al., 2014). However, there were
155 chains performed better than the adopted one (PMAD
from 1.8 × 10−15 to 0.595) with POW-TMM-ZER chain
performed the best. Similar to this example dataset, the analysis
chains adopted by the corresponding studies of PXD003278,
PXD006106, and PXD004880 were ranked 162nd, 154th, and
164th well-performed ones, which demonstrated appropriate
selection of analysis chain in previous studies. However, there
were still more than a hundred chains performed better than
the adopted ones, which may further enhance the accuracy
of SWATH-MS based protein quantification. For the studies
with incomplete information of the adopted chain (PXD002952,
PXD003972, and PXD001064), the possible integrations based on
the known information were highlighted by multiple red dots.
1 (20%) out of 5, 28 (25%) out of 112, and 7 (100%) out of
7 integrations were within the ranges of well-performance for
PXD002952, PXD003972, and PXD001064, respectively.

Analysis Chains Consistently
Well-Preformed Across All Benchmark
Datasets
The performances of 20 representative analysis chains across
different datasets were illustrated in Figure 2. PMAD within the
ranges of ≤0.3, >0.3 & ≤0.7, and >0.7 was generally accepted
as with superior, good, and poor performance, respectively
(Chawade et al., 2014; Valikangas et al., 2018), which was
illustrated by a circle of various diameters (the smaller diameter
denoted the lower PMAD value). As shown, the performances
of specific chain among various datasets varied significantly.
Particularly, the LOG-PQN-BPC performed superior, good,
and poor in 3, 3, and 1 datasets, respectively, and POW-
ZSC-ZER performed superior, good, and poor in 1, 5, and
1 datasets, respectively. These results demonstrated a certain
level of variations among the seven datasets for each analysis
chain. However, as shown in Figure 2, there were some chains
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FIGURE 1 | The performances of each analysis chain on those seven SWATH-MS based benchmark datasets assessed by measuring the corresponding PMAD
values [>500 analysis chains (log10 PMAD, Y-axis) were measured and ranked (X-axis)]. Since some analysis chains may not be able to result in a specific PMAD
value, there were slight variations among the number of analysis chains for different benchmark datasets (from 530 to 560). Detail information on these seven
datasets were provided in Table 1.

performed consistently across different benchmark datasets.
For instance, CUB-TIC-BAK and CUB-VSN-CEN performed
superior in all datasets, while 2 other chains (NON-CYC-ZER
and NON-MEA-SVD) performed poor in all seven benchmarks.
It was of great interests to explore dataset-independent properties
underlying the consistency across datasets, which thus inspired
us to further investigate the similarity among performances of
different analysis chains.

Since the type of instrument (TripleTOF 5600 and 6600)
covered by seven benchmark datasets were the same as that
of 85 SWATH-MS based projects, those datasets could be
recognized as representative datasets of SWATH-MS based
pharmacoproteomic data. Thus, the discovery of analysis chain
performed consistently well across the various datasets might
give great insights into the selection of the most appropriate
analysis chain in SWATH-MS based proteomic study. To

identify such chains performed consistently well across datasets,
the hierarchical clustering with the ward algorithm (Barer
and Harwood, 1999; Zhu et al., 2011; Fu et al., 2018;
Xue et al., 2018a) was used to identify the “consistently
well-performed” analysis chains (CWPACs) based on their
PMAD values across different datasets. Theoretically, there
were 560 possible analysis chains by randomly integrating 5
transformation, 16 normalization, and 7 imputation algorithms
(including non-transformation, non-normalization, and non-
imputation). 51 (9.1%) out of these 560 were with at least
one PMAD value of the seven datasets unavailable due to the
calculation error. Then, the PMAD values of the remaining
509 analysis chains were applied for clustering analysis. As
illustrated in Figure 3, six partitions of the analysis chains
(A1, A2, A3, B, C, and D) were identified. The PMADs
meeting the “well-performed” criterion (≤0.7) were displayed
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FIGURE 2 | Performances of 20 representative analysis chains across different datasets measured by PMAD values. The PMAD values within the ranges of ≤0.3,
>0.3 & ≤0.7, and >0.7 was generally accepted as with superior, good, and poor performance, respectively (Chawade et al., 2014; Valikangas et al., 2018), which
was illustrated by the circles of different diameters (the smaller circle diameter indicated the lower PMAD value).

by blue color, with the log10 PMAD ≤ −5 set as exact blue
and the larger log10 PMAD gradually fading toward white
(PMAD = 0.7). Meanwhile, those “poor-performed” PMADs
(>0.7) were colored by orange, with log10 PMAD ≥ 5 set as exact
orange and the smaller PMAD gradually fading toward white
(PMAD = 0.7).

The analysis chains in the partition A1, A2, and A3 were
“consistently well-performed” across all datasets (Figure 3). For
partition A1, 320 (99.4%) out of 322 PMAD values were ≤0.1,
and the remaining PMADs were ≤0.7 (Supplementary Figure
S1). For partition A2, 288 (52.7%), 209 (38.3%), and 40 (7.3%)
out of those 546 PMAD values were ≤0.1, ≤0.3, and ≤0.7,
respectively (Supplementary Figure S2). In partition A3, 187
(46.1%) and 183 (45.1%) out of 406 PMADs were ≤0.3 and
≤0.7, respectively (Supplementary Figure S3). In summary, 608
(47.7%), 396 (31.1%), and 225 (17.7%) out of all 1,274 PMADs
in the partition combined by A1, A2, and A3 were ≤0.1, ≤0.3,
and ≤0.7, respectively, indicating an extremely high percentage
(96.5%) of the PMAD values meeting the widely adopted cutoff
(PMAD = 0.7) for differentiating the chain of good and poor
performances (Chawade et al., 2014; Valikangas et al., 2018).
Comprehensive literature review on the 85 SWATH-MS based
proteomic projects further identified the analysis chains adopted
by their corresponding studies (Supplementary Table S2). In total,
there were 55 analysis chains previously applied in proteomic
studies, which were mapped to and labeled on Figure 3 (pink
triangles). As illustrated, 7 (12.7%), 9 (16.4%), and 21 (38.2%)
out of the 55 analysis chains previously adopted were within the
partition A1, A2, and A3, respectively, which indicated that the
majority (67.3%) of these analysis chains were the CWPACs.

As shown in Supplementary Figure S4, the percentage of
each processing method adopted by the previous proteomic
studies were analyzed. Log Transformation was the only
transformation method used in SWATH-MS based proteomic
studies, and was widely recognized as powerful in quantifying
thousands of proteins (Rao et al., 2011; De Livera et al., 2012;

Wisniewski et al., 2012; Zhu et al., 2012a; Feng et al., 2014).
For normalizations, Median Normalization, Total Ion Current,
and Quantile Normalization were the top-3 ranked methods in
their popularity. The Median and Quantile Normalization were
frequently adopted in MS-based label-free proteomic analyses
(Callister et al., 2006), while the Total Ion Current was reported
to be preferably used in the proteomic profiling based on
MALDI- and SELDI-TOF mass spectra (Borgaonkar et al., 2010).
For imputation, K-nearest Neighbor and Background Imputation
accounted for >80% of the SWATH-MS based proteomic
studies adopting imputation methods. Among those methods
used in proteomic studies (4 transformation, 15 normalization,
and 6 missing-value imputation), Supplementary Figure
S4 showed that some methods were adopted seldomly
in SWATH-MS based proteomic studies (such as Box-
Cox Transformation, Pareto Scaling, and Singular Value
Decomposition). Therefore, it is of great interests to discover
whether there are other methods suitable or demonstrating
enhanced performance in SWATH-MS based proteomic
analysis.

Fifty-three analysis chains consistently performed poor
among datasets were also discovered by Figure 3 (partition
D), all of which did not adopt any transformation method
in their analysis. In total, 101 out of the 509 analysis chains
(Figure 3) adopted non-transformation, and 53 (52.5%), 10
(9.9%), 11 (10.9%), 14 (13.9%), 6 (5.9%), and 7 (6.9%) out of
these 101 chains were within the partition D, C, B, A3, A2,
and A1, respectively. These results demonstrated the important
roles played by transformation methods in the quantification
performance of analysis chains.

Contribution of Each Processing Method
to the Performance of Analysis Chain
With the discovery of a variety of CWPACs based on those
independent benchmark datasets, it was interesting to go back
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FIGURE 3 | Six partitions of analysis chains (A1, A2, A3, B, C, and D) were identified based on their PMAD values. PMAD values meeting the “well-performed”
criterion (≤0.7) were displayed in blue color, with the log10 PMAD ≤ −5 set as exact blue and the larger PMADs gradually fading toward white (PMAD = 0.7).
Meanwhile, the “poor-performed” PMAD values (>0.7) were all colored in orange, with log10 PMAD ≥ 5 set as exact orange and the smaller PMAD gradually fading
toward white. The pink triangles indicated the analysis chains adopted by previous published SWATH-MS based proteomic studies.

to each processing method used to integrate these CWPACs,
which might be able to discover processing methods with
significant contributions to the performance of CWPACs.
Therefore, all CWPACs listed in Supplementary Figures S1–S3
were investigated by analyzing their corresponding processing
methods. As shown in Figure 4, the percentage of each method
appeared in 3 different partitions (A1 & A2 & A3, A1 & A2,

and A1) were analyzed. For transformation, the percentage
of Power Transformation significantly increased from 7% to
10% to 29% with the gradual narrow down of partitions
(from A1 & A2 & A3 to A1 & A2 to A1), which showed
significantly enhanced role played by this transformation to
achieve good performance in protein quantifications. However,
Log Transformation decreased greatly from 41% to 25% to
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FIGURE 4 | Percentages of each processing method (transformation, normalization, and imputation) appeared in three different partitions (A1 & A2 & A3, A1 & A2,
and A1) shown in Figure 3. Each processing method was abbreviated by a three-letter code as demonstrated in Supplementary Table S1.

26%. This indicated that Log Transformation contributed
most to the CWPACs compared to other transformations.
But when it came to the superior performance (partition
A1 with PMAD ≤ 0.1), its contribution decreased and
ranked as the second. For normalization, the Total Ion Current
method stood out among all methods as the one with the
highest contribution to CWPAC. With gradual narrow down
of partitions (from A1 & A2 & A3 to A1 & A2 to A1),
the importance of Total Ion Current method was enhanced
significantly from 19% to 27% to 74%. For imputation,
methods were almost evenly distributed with no clear change
among different partitions. This indicated that each imputation
method contributed equally to CWPACs, and the selection of
any of those methods could not make statistical difference
in protein quantification. Due to the equal contribution of
imputation methods, it was essential to focus on selecting the
appropriate combinations of transformation and normalization
methods to achieve the optimal performance of analysis
chains, which included POW-TMM, LOG-TIC, BOX-TIC, CUB-
TIC, NON-TIC, POW-TIC, and LOG-VSN (Supplementary
Figure S1).

CONCLUSION

Based on the most complete set of the publicly available
pharmacoproteomic data generated by SWATH-MS
technique, this study revealed a substantial variation among

the performances of various analysis chains applied for
pharmacoproteomic quantification, and the analysis chains
performed consistently well across a diverse set of publicly
available pharmacoproteomic data were discovered. As a
result, log and power transformations sequentially followed by
total ion current normalization were discovered as one of the
best performed analysis chains applied for the SWATH-MS
based pharmacoproteomic quantification. In summary, the
identified analysis chains provided important guidance to
current proteomic research and could thus facilitate the cutting-
edge research in any proteomic studies requiring SWATH-MS
technique.
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Lung cancer is one of the major cause of cancer-related deaths worldwide. The poor
prognosis and resistance to both radiation and chemotherapy urged the development of
potential targets for lung cancer treatment. In this study, using a network-based cellular
signature bioinformatics approach, we repurposed a clinically approved mTOR inhibitor
for renal cell carcinomans, temsirolimus, as the potential therapeutic candidate for lung
adenocarcinoma. The PI3K-AKT-mTOR pathway is known as one of the most frequently
dysregulated pathway in cancers, including non-small-cell lung cancer. By using a
well-documented lung adenocarcinoma mouse model of human pathophysiology, we
examined the effect of temsirolimus on the growth of lung adenocarcinoma in vitro
and in vivo. In addition, temsirolimus combined with reduced doses of cisplatin and
gemcitabine significantly inhibited the lung tumor growth in the lung adenocarcinoma
mouse model compared with the temsirolimus alone or the conventional cisplatin–
gemcitabine combination. Functional imaging techniques and microscopic analyses
were used to reveal the response mechanisms. Extensive immunohistochemical
analyses were used to demonstrate the apparent effects of combined treatments
on tumor architecture, vasculature, apoptosis, and the mTOR-pathway. The present
findings urge the further exploration of temsirolimus in combination with chemotherapy
for treating lung adenocarcinoma.

Keywords: mTOR inhibitor, drug repositioning, temsirolimus, lung adenocarcinoma, chemotherapy

INTRODUCTION

Lung cancer is one of the most common forms of cancer and remains the number one cause of
cancer-related deaths worldwide among men and women. Based on histological differentiation,
there are two major types of lung cancers: small-cell lung cancer (SCLC) and non-small-cell lung
cancer (NSCLC). NSCLCs are further divided into squamous cell carcinomas (SCCs), pulmonary
adenocarcinomas (ADC), and large-cell carcinomas. Among them, lung ADC is the most prevalent
form of NSCLC (Teng, 2005; Chang et al., 2017). Lung cancer has a dismal prognosis of 15%,
mainly attributed to ineffective early detection and lack of therapeutic options for metastatic
disease (Molina et al., 2008). This has spurred efforts for the development of molecularly targeted
therapies.
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The definition of drug repositioning is to identify new
indications from existing drugs or compounds to treat a different
disease. In addition to being time- and cost-efficient, drug
repositioning offers a more favorable risk-versus-reward trade-
off of the available drug development strategies. Because the
existing drugs have already been tested in terms of safety,
dosage, and toxicity, they can often enter clinical trials much
more rapidly than newly developed drugs (Ashburn and Thor,
2004). Computational drug repositioning is deemed as an
alternative and effective way to identifying novel connections
between diseases and existing drugs (Hurle et al., 2013). The
increase in drug-target information and advances in systems
pharmacology approaches have led to an increase in the
success of in silico drug repositioning. In particular, large-scale
genomics databases, such as the Connectivity Map, provide
abundant information on the modes of action of drugs, which
are reflected in the transcriptomic responses to chemical
perturbation (Vempati et al., 2014). Recently, a similar but highly
expanded version of a chemical genomics dataset was publicly
released by the National Institutes of Health Library of Integrated
Network-Based Cellular Signatures (NIH LINCS) program.
This dataset includes gene expression signatures and protein
binding, cellular phenotypic, and phosphoproteomics profiles
resulted from chemical or genetic perturbation. Specifically, it
presents the gene expression profiles of approximately 1000
landmark genes (L1000) in response to more than 20,000
chemical perturbations across many cell lines. Additionally,
transcriptome-level expression profiles of approximately 20,000
genes have been computationally inferred using 1000 landmark
genes (Vempati et al., 2014).

In this study, we compared the transcriptome profiles
obtained from a well-documented mouse lung cancer model
(Chang et al., 2017) and used the LINCS L1000 cellular
signature bioinformatics approach to identify clinically approved
candidate drugs to treat ADC. By using this strategy, we
identified temsirolimus, a mTOR inhibitor approved for renal
cell carcinoma, as a potential therapeutic agent for the treatment
of lung tumor. In a study using mouse model xenografted with
human NSCLC cells (A549, H1299, and H358), it was found
that temsirolimus could inhibit the growth of subcutaneous
tumors, as well as to prolong the survival of mice having pleural
dissemination of cancer cells due to its anti-proliferative effect
(Ohara et al., 2011). Temsirolimus also has been used on a case
report (Vichai and Kirtikara, 2006) with lung adenocarcinoma
harboring specific gene mutation; it was also noted to restore
radio-sensitivity in lung adenocarcinoma cell lines (Ushijima
et al., 2015). Two updated phase two clinical trials of temsirolimus
(Study 1: Neratinib with and without temsirolimus for patients
with HER2 activating mutations in non-small cell lung cancer.
Study 2: Temsirolimus and pemetrexed for recurrent or
refractory non-small cell lung cancer.) were found from webpage
searching1, either as monotherapy or combined therapy with
another drug. Although there are more than 40 inhibitors of
the PI3K-AKT-mTOR signaling pathway have reached different
stages of clinical development, only a few have been approved for

1https://clinicaltrials.gov/beta/

clinical use (Skehan et al., 1990). However, an in vivo systemic
evaluation of the lung tumor inhibitory effect of temsirolimus was
lack. Here we assessed the combination of the mTOR inhibitor
temsirolimus with the first-line chemotherapy for advanced
NSCLC, cisplatin, and gemcitabine, to reduce cytotoxicity and
enhance the therapeutic response.

MATERIALS AND METHODS

Microarray Analysis
Total RNA was extracted from tissue samples or cells by using
TRIzol R© Reagent (Sigma, St. Louis, MO, United States) by
following the manufacturer’s instructions. Total RNA (0.2 µg)
was amplified as previously mentioned (Chang et al., 2017)
for microarray analysis by using a microarray scanner (Agilent
Technologies, Santa Clara, CA, United States). A total of 155
differentially expressed genes were identified in the Tg-3m mice,
of which 126 genes were upregulated (a log2 fold change of≥0.6)
and 29 genes were downregulated (a log2 fold change of≤−0.6).
A total of 123 differentially expressed genes were identified in the
Tg-6m mice, of which 105 genes were upregulated (a log2 fold
change of ≥0.6) and 18 genes were downregulated (a log2 fold
change of ≤−0.6).

LINCS Perturbagen Signature
Comparisons
The LINCS L1000 is one of the complete drug treatment
expression profile databases and currently contains more than a
million gene expression profiles of chemically perturbed human
cell lines (Blois et al., 2011; Li et al., 2014). First, for comparing
the gene expression signatures in transgenic mice with LINCS
data sets, the gene expression data were ranked according to the
log2 fold changes. We retrieved the top 100 and bottom 100 most
differentially expressed genes as gene expression signatures in
both Tg-3m and Tg-6m mice. Then, we transferred the mouse
gene symbols to homologous human gene symbols by using the
HomoloGene database (Gabriel et al., 2016). Next, we queried
the homologous human genes against the LINCS database by
using sig_query and sig_summly in the LINCS C3 server. Finally,
we annotated the returned results by combining the DrugBank
(Vichai and Kirtikara, 2006) and PubChem (Ushijima et al., 2015)
results to provide detailed perturbagen information.

Functional Annotation of Differentially
Expressed Genes
To discuss the gene ontology and Kyoto Encyclopedia of Genes
and Genomes pathways involved in transgenic mice, we analyzed
the differentially expressed genes by using the Database for
Annotation, Visualization and Integrated Discovery (DAVID,
version 6.72) (Huang da et al., 2009) application programming
interfaces (APIs). A p-value of 0.05 was set as the threshold, which
was calculated using Fisher’s exact test.

2david.ncifcrf.gov
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Animals and Ethics Statement
Murine lung adenocarcinoma models were maintained as
previously mentioned (Chang et al., 2017) in a specific pathogen-
free environment at the animal facility of Taipei Medical
University. Experimental uses of mice were approved by
the Institutional Animal Care and Use Committee of Taipei
Medical University (Approved Proposal No. LAC-2014-0217).
All experiments were conducted in accordance with relevant
guidelines and regulations. The mice were monitored daily
for physiological conditions. Tumor growths were monitored
using micro-CT on a weekly basis. Mice were anesthetized by
administering 5% isoflurane followed by 2% isoflurane through
the inhalation route for maintenance during the imaging process.
Total lung volumes were measured and analyzed using CTAn
software (v.1.15), and mice were euthanized when the total
lung volumes were less than 120 mm3. At the endpoint of the
experiment (the 16th week), the tested mice were euthanized by
administering 100% CO2 through inhalation to minimize their
suffering.

Cell Cycle and Apoptosis Assays
The effects of temsirolimus and chemotherapy on the cell cycle
and apoptosis were evaluated by seeding tumor cells into 6-
well plates at a density of 5 × 104 per well. The cells were
treated accordingly and incubated for 24 h followed by a
phosphate-buffered saline (PBS) wash. The cell cycle phases
were determined using a Muse cell analyzer (Merck Millipore,
Darmstadt, Germany) and a Muse Cell Cycle Assay Kit (Merck
Millipore, Darmstadt, Germany) according to the manufacturer’s
instructions. Cell apoptosis was analyzed using Annexin V Dead
cell reagent (Merck Millipore, Darmstadt, Germany) according
to the manufacturer’s instructions. An average of at least 10,000
cells was analyzed for each condition. Triplicate independent
experiments were conducted.

Protein Preparation and Western Blotting
Protein extraction and Western blotting analysis were performed
as previously mentioned (Chang et al., 2017). The blots were
immunostained with 1:1000 of anti-p-mTOR (Ser2448) antibody
(2971, Cell Signaling, Danvers, MA, United States). After
incubation with horseradish peroxidase-conjugated secondary
antibody (1:4000 of goat antirabbit IgG, GTX213110-01,
GeneTex, Irvine, CA, United States), protein bands were
visualized with an enhanced chemiluminescent reagent.

Micro-CT
Mice were anesthetized with an induction flow dose of 3%
isoflurane and oxygen mixture, following a maintaining flow
dose of 1%. The chest area was scanned at one time through
in vivo micro-CT (Bruker SkyScan 1176, Kontich, Belgium).
Image scanning was performed in resolution of 35 µm. The
instrument setting was at a voltage of 50 kVp, a current of 500 µA,
and an exposure time of 50 ms with a 0.5-mm aluminum filter.
To prevent artifacts caused by cardiac and respiratory motion,
images were captured using the synchronization mode. Sections
were reconstructed using a graphics processing unit-based

NRecon software. The tumor volume inside the lung area was
separated and analyzed using CTAn software (Bruker SkyScan,
Kontich, Belgium). The cross-sectional images were obtained
using DataViewer software (Bruker Skyscan, Kontich, Belgium).

Histology and Immunohistochemistry
Mouse lung tumors were removed and prepared for paraffin-
embedded sectioning immunohistochemistry (IHC) staining
was performed as previously mentioned (Chang et al., 2017).
After antigen retrieval, primary antibody dilutions were prepared
in the blocking buffer (10% bovine serum albumin with 0.1%
Triton-100 in PBS) as follows: 1:200 of anti-Ki67 antibody
(ab15580, Abcam, Cambridge, MA, United States), 1:250
of anti-CD34 antibody (ab81289, Abcam, Cambridge, MA,
United States), 1:100 of p-mTOR (ab109268, Abcam, Cambridge,
MA, United States), and 1:400 of p-S6RP antibody (2211, Cell
Signaling, Danvers, MA, United States). Immunochemical
signals were detected using a MultiLink Detection Kit
(BioGenex, Fremont, CA, United States). The peroxidase
reaction was developed with diaminobenzidine, and sections
were counterstained using Mayer’s hematoxylin. The intensity
of positive signal areas was measured using ImageJ software
(IJ 1.46r).

Statistical Analyses
SAS version 9.3 for Windows (SAS Institute, Cary, NC,
United States) was used for data manipulation and visualization.
The means are used to describe the central tendency of
continuous variables while standard deviations are used to depict
the variation. One-way ANOVA and the Bonferroni post hoc
multiple comparison tests were of inhibitory effects among
different treatments. All statistical analyses were two sided, and
p < 0.05 was considered as statistically significant. p-Values were
depicted using asterisks, with ∗p < 0.05, ∗∗p < 0.01.

RESULTS

Data Processing and Drug Repositioning
To compare the gene expression signatures from different stages
of lung tumors, microarray results of Tg-3m and Tg-6m tumors
(Chang et al., 2017) were subjected to the LINCS L1000 data sets,
and the gene expression data were ranked according to the log2
fold changes. The top 100 and bottom 100 most differentially
expressed genes were retrieved as gene expression signatures
in both Tg-3m and Tg-6m mice. The mouse gene symbols
were then converted to homologous human gene symbols by
using the HomoloGene database (Coordinators, 2016). Next,
the homologous human genes were queried against the LINCS
database by using sig_query and sig_summly in the LINCS C3
server. The returned results were annotated by combining the
DrugBank (Wishart et al., 2006) and PubChem (Kim et al.,
2016) results to obtain detailed drug information (Figure 1).
The drugs that negatively (K score = −1) correlated with the
gene expression from both Tg-3m and Tg-6m lung tumor cell
lines were selected for further screening. The data regarding the
drugs were then manually curated from DrugBank and PubMed
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FIGURE 1 | Bioinformatics-based drug-repositioning approach to identify candidate drugs. Schematic representation of the bioinformatics workflow by using the
LINCS L1000 data set for the repositioning approach to identifying potential candidate drugs for the treatment of NSCLC. The microarray results of Tg-3m and
Tg-6m tumors were subjected to the LINCS L1000 data sets to obtain the most differentially expressed genes. The mouse gene symbols were then converted to
human homologous genes and annotated by combining the DrugBank and PubChem results to obtain detailed drug information. The drugs that negatively
(K score = –1) correlated with the gene expression from both Tg-3m and Tg-6m lung tumor cell lines were selected for further screening.

by searching for keywords and abstracts that explicitly described
their association with cancers. The repositioned drug candidates
are listed in Table 1. This list contained a wide range of drugs,
including some antineoplastic agents used for cancers other than
lung cancer, suggesting that the use of these agents in clinics may
affect the gene expression signature of lung cancer (Kerr et al.,
2007; Lin et al., 2007; Gallotta et al., 2010; Wynne and Djakiew,
2010; Endo et al., 2014; Li et al., 2016). We focused on the top-
scoring candidates and clinically approved antineoplastic drugs.
This analysis led to the identification of temsirolimus, a U.S. Food
and Drug Administration (FDA)-approved mTOR inhibitor for
renal cell carcinoma, which was repositioned from both stages
of lung tumor cells and was tested in combination with thoracic
radiation in NSCLC (Waqar et al., 2014).

Temsirolimus Treatment Leads to G0/G1
Cell Cycle Arrest
To understand whether temsirolimus treatment is lethal to
lung tumor cells at both early and late stages, we performed
flow cytometry to analyze the cell cycle distribution in Tg-
3m (Figure 2A) and Tg-6m (Figure 2B) cell lines treated with
temsirolimus at different concentrations (2.5, 5.0, and 10 µM).
Temsirolimus treatment increased the cell population in the
G0/G1 phase in both Tg-3m and Tg-6m cell lines but did not
cause significant cell death (Figure 3). Taken together, these
results suggest that temsirolimus suppressed the proliferation
of Tg-3m and Tg-6m cells through its cytostatic effect and not
through cytotoxicity.

Efficacy of Temsirolimus, Cisplatin, and
Gemcitabine in mTOR Pathway and
Cytotoxicity
The efficacy of temsirolimus, cisplatin, and gemcitabine (each
at 10 µM) alone and in combination was evaluated in Tg-3m
(Figure 3A) and Tg-6m (Figure 3B) cells. To evaluate the effect
of temsirolimus on activation regulation in the mTOR pathway,
we examined the phosphorylation of mTOR (s2448) by using
Western blot analysis. Gemcitabine or cisplatin treatment did
not alter the phosphorylation of mTOR. However, treatment with
temsirolimus alone markedly suppressed the activation of mTOR
in Tg-6m than in Tg-3m cells. When cells were treated with
temsirolimus combined with cisplatin and gemcitabine, the effect
of mTOR suppression was evident. The apoptotic cell death in
H1299 human NSCLC cell line was presented in Supplementary
Figure S3.

To evaluate the cytotoxic effect of temsirolimus, we examined
the total cell apoptotic rate by using annexin V staining. In
human NSCLC cell line H1299 treated with temsirolimus alone
caused about 25% cell death, when combined with cisplatin
and gemcitabine showed enhanced cytotoxicity by approximately
10% in G + C and 15% in G + C + T (p = 0.02 and
0.003, respectively) (Supplementary Figure S4). Treatment with
gemcitabine alone induces higher cytotoxicity in Tg-6m than
in Tg-3m cells; however, treatment with cisplatin alone did not
reveal any substantial difference. Treatment with gemcitabine
plus cisplatin revealed similar apoptotic results in both cell
lines. Although treatment with temsirolimus alone did not cause
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TABLE 1 | List of drug repositioning candidates.

Drug repositioning from Tg-3m tumor cells

Name K score Original
indication

Cancer
indication/clinical
trials+

Mesoridazine −1 Antipsychotic N/A

Dexamethasone −1 Anti-inflammatory;
steroids

Myeloma

Nilotinib −1 Antineoplastic Leukemia

Testosterone −1 Anabolic Prostate cancer

Temsirolimus −0.99 Antineoplastic Renal cell carcinoma

Prazosin −0.98 Adrenergic Prostate cancer

Pipamperone −0.95 Antipsychotic N/A

Rifabutin −0.94 Antibiotic Lung cancer

Omeprazole −0.94 Anti-ulcer Head and neck cancer

Cytarabine −0.94 Antineoplastic Leukemia

Timolol −0.94 Adrenergic N/A

Rofecoxib −0.94 Analgesics Colorectal cancer

Ibuprofen −0.94 Analgesics Lung cancer; prostate
cancer

Ranitidine −0.94 Anti-ulcer Myeloma, renal cell
carcinoma

Drug repositioning from Tg-6m tumor cells

Triamcinolone −1 Anti-inflammatory;
steroids

N/A

Flurbiprofen −0.98 Analgesics Prostate cancer

Rimonabant −0.98 Antiobesity Leukemia

Tamoxifen −0.98 Anti-estrogen;
antineoplastic

Breast cancer

Temsirolimus −0.98 Antineoplastic Renal cell carcinoma

Nicorandil −0.98 Vasodialator N/A

+ Information obtained from DrugBank (https://www.drugbank.ca/).

cytotoxicity, it enhanced the cisplatin and gemcitabine-induced
apoptosis in both cell lines significantly (p < 0.05; Figures 3A,B).

Treatment Effects of Temsirolimus,
Cisplatin, and Gemcitabine on Tumor
Growth
To investigate the effect of temsirolimus, cisplatin, and
gemcitabine on tumor growth, we used a therapeutic approach
with a previously documented NSCLC mouse model (Chang
et al., 2017). The mice were divided into three groups (n = 5):
the control group (no treatment), the group that received a low
dosage of cisplatin and gemcitabine (low-dose C + G), and the
group that received temsirolimus combined with a low dosage
of cisplatin and gemcitabine (mix T + C + G). The mice were
treated at the age of 9 weeks for 8 weeks. Both treatments
were administered weekly through the tail vein, and micro-CT
imaging was performed to follow up tumor growths (Figure 4A).
The imaging on week 15 was postponed because of regular
maintenance of the scanner. On week 16, the mice were sacrificed
and their lungs were removed for histopathological analysis.

The tumor growth rate was calculated by normalizing each
tumor volume to the baseline tumor volume of each mouse

FIGURE 2 | Cytostatic effect caused by temsirolimus at different
concentrations in both Tg-3m (A) and Tg-6m (B) lung tumor cell lines.
Temsirolimus treatment resulted in the cell arrest at the G1 phase in a
concentration-dependent manner. The representative data showed the results
from three independent experiment.

at the beginning of week 9. The tumor growth was slightly
reduced in the low C + G group, whereas it was markedly
inhibited in the mix (T + C + G) group. In addition, the tumor
growth significantly declined after 4 weeks’ treatment in the mix
(T + C + G) group with p ≤ 0.05 (weeks 13–16). Smaller and
reduced lung tumors were also noted in hematoxylin and eosin
(H&E)-stained lung sections (Figures 4B,C). Collectively, the
weekly administration of temsirolimus combined with low doses
of cisplatin and gemcitabine effectively reduced the growth of
lung tumors.

Treatment Effects on General Tumor
Characteristics and the mTOR-Pathway
At the end of the experiment (week 16), all lungs were
dissected and immunohistochemically analyzed to assess and
quantify the microscopic effects of combined therapies with or
without temsirolimus on general tumor characteristics (H&E
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FIGURE 3 | Temsirolimus combined with cisplatin and gemcitabine induced significant apoptotic cell death through the inhibition of p-mTOR in both Tg-3m (A) and
Tg-6m (B) lung tumor cell lines. Although temsirolimus treatment alone did not cause cell apoptosis, when combined with cisplatin and gemcitabine, it significantly
enhanced the cytotoxicity by approximately 10% in Tg-3m and Tg-6m cells (p = 0.02 and 0.01, respectively), which was higher than that caused by the doublet of
cisplatin and gemcitabine. Either gemcitabine or cisplatin alone also showed statistical significance from control. Con: control, Gem: gemcitabine, Cis: cisplatin, Tem:
temsirolimus, G + C: gemcitabine + cisplatin, G + C + T: gemcitabine + cisplatin + temsirolimus.

stain; Ki-67 and CD34) and to identify possible mechanisms
for the observed differences in growth inhibition. H&E staining
revealed viable tumor mass within the lung parenchyma in
untreated tumors, with immune cell infiltration. Residual tumor
mass within the lung parenchyma with congestion, hyaline
deposition, and immune cell infiltration were observed in low-
dose C + G treated tumors. Scattered viable tumor cells with
nuclear pleomorphism within the lung parenchyma revealed
foamy macrophages and giant cells when treated with combined
T + C + G after chemotherapy (magnification: 100×; Figure 5).
Ki-67 staining revealed condensed signals of proliferating tumor
cells in untreated control tumors. Treatment with low-dose
C + G resulted in a lower fraction of proliferating cells,
whereas that with combined T + C + G demonstrated
diffused proliferating signals (magnification: 300×). CD34
staining demonstrated disruptive angiogenetic architectures in
the low-dose and mix groups compared with the untreated
control groups (magnification: 400×). In addition to general
tumor characteristics, we investigated specific treatment effects
on the mTOR pathway by evaluating p-mTOR and pS6RP

in all lung tumors (magnification: 400×; Figure 6). The
quantitative bar charts represent the positively stained areas of
the whole image above, revealed that both treatments inhibited
the tumor proliferation marker of Ki67. The combination
treatment with temsirolimus markedly inhibited angiogenesis
compared with low-dose chemotherapy. Quantitative stained
areas demonstrated reduced p-mTOR signaling in both the
treated groups, whereas the p-S6BP signal was higher. The
statistical analysis of the intensity of positive signals from
three selected views of each IHC-stained section demonstrated
similar results (Supplementary Figure S5). Whether the p-S6BP
signaling resulted from heterogeneous tumor cells remains to be
investigated.

DISCUSSION

Chemotherapy is one of the most important treatment methods
for advanced NSCLC, and cisplatin-based combinations are
usually used as standard regimens. The combination of one
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FIGURE 4 | Treatment sequences of temsirolimus alone (Tem), low-dose chemotherapy (Low C + G) and temsirolimus combined with low-dose chemotherapy (Mix
T + C + G) in the lung tumor mouse model. Mice were treated at the age of 9 weeks for 7 weeks. The lung tumor growths were monitored using micro-CT every
week, except for the 15th week because of regular maintenance of the scanner (gray-dotted arrow). Concurrent and sequential administration of treatments were
depicted (A). Red arrow heads indicate the monitored tumors compared with the corresponding H&E-stained histopathologic sections at the endpoint (B). The
endpoint H&E-stained sectioned sections were also displayed as inset in Figure 5. The tumor growth rate was calculated by normalizing each tumor volume to the
baseline tumor volume of each mouse at the beginning of week 9. The effect of different treatments: Tem, Low C + G and Mix T + C + G in lung tumor growth
inhibition in time periods were displayed (C). The significance of tumor growth inhibition among each treatment was analyzed and it was found significant after week
13 in the Mix (T + C + G) group compared to the control group (∗p ≤ 0.05).
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FIGURE 5 | Histopathologic views of treatment effects. Representative
sections of the lung tissue of mice after various treatments. Viable tumor mass
within the lung parenchyma with immune cell infiltration (control). Residual
tumor mass within the lung parenchyma with congestion, hyaline deposition,
and immune cell infiltration (low-dose C + G). Scattered tumor cells with
nuclear pleomorphism within the lung parenchyma with congestion, foamy
macrophages, and giant cells (mix T + C + G). H&E-stained slides of sections
from mice with lung tumors were assessed by pathologists blinded to the
treatment and outcome. Magnification: 100× and 40× (inset).

or more agents with a platinum compound resulted in high
response rates and prolonged survival (Schiller et al., 2002;
Ruiz-Ceja and Chirino, 2017). Gemcitabine was approved by
FDA in 1996 with DNA synthesis inhibition. Gemcitabine is
indicated in combination with cisplatin as the first-line treatment
of patients with advanced NSCLC (Ruiz-Ceja and Chirino, 2017).
Common cisplatin plus gemcitabine treatment-related adverse
events are hematologic toxicity and gastrointestinal reaction.
Hematologic toxicity mainly included decreased white blood

cells and platelets. Gastrointestinal reactions mainly included
nausea and vomiting (Ai et al., 2016). However, the high toxicity
induced by cisplatin-based doublets urges research on alternative
treatments. In this study, we used the LINCS L1000 database
and a well-characterized lung adenocarcinoma mouse model to
repurpose existing drugs for lung adenocarcinoma. By using this
approach, we identified the mTOR inhibitor, temsirolimus, which
has been approved by the FDA for renal cell carcinoma, as a
potential therapeutic agent. In our results, both temsirolimus-
treated early (Tg-3m) and late-stage (Tg-6m) lung tumor cell
lines demonstrated cell cycle arrest at the G0/G1 phase. The
treatment with temsirolimus alone markedly suppressed mTOR
activation in Tg-6m than in Tg-3m cells. When temsirolimus
was combined with cisplatin and gemcitabine, the effect of
mTOR suppression was evident. Additionally, temsirolimus
combined with gemcitabine and cisplatin not only suppressed
the phosphorylation of mTOR but also significantly improved cell
death in Tg-3m and Tg-6m cell lines compared with gemcitabine
plus cisplatin.

As reported by Khuri colleagues (Li et al., 2014), mTOR
inhibition triggers rapid and sustained activation of the PI3K/Akt
survival pathway in the human lung and other types of cancer
cells; therefore, the combination of mTOR-targeted therapy
with drugs that block PI3K/Akt activation might also be
reasonable. In a reported phase II study, temsirolimus was
administered as a single agent in 52 patients with untreated
NSCLC on a weekly basis. The clinical benefit rate was 35%,
with a confirmed partial response of 8% and stable disease
of 27%. Although these results did not satisfy the protocol-
defined criteria for success, they evidenced the clinical activity
of temsirolimus as a single agent in NSCLC (Reungwetwattana
et al., 2012). In a phase I study, temsirolimus was combined
with weekly thoracic radiation, which proved the tolerance
(Waqar et al., 2014). Because temsirolimus has demonstrated
considerable activity in clinical studies, we hypothesize that it
works synergistically with the first-line NSCLC chemotherapy
cisplatin plus gemcitabine.

In animal studies, optimizing the cytostatic agent
temsirolimus with cycle-active chemotherapy is important
for maximizing the clinical benefit. Therefore, we designed
concurrent and sequential administration of temsirolimus
with either low or high doses of chemotherapy in a mouse
lung adenocarcinoma model. In the concurrent schedule,
administration of low-dose chemotherapy and temsirolimus
(T + C + G) demonstrated greater inhibition of tumor
growth compared with low-dose chemotherapy alone (C + G)
in the mouse model. In the sequential schedule in which
temsirolimus alone was administrated weekly for 3 weeks prior
to the administration of high-dose chemotherapy (3 mg/kg
cisplatin + 30 mg/kg gemcitabine) in the following weeks,
the effect of tumor growth inhibition was less significant
(Supplementary Figures S1, S2). Collectively, our study revealed
that concurrent administration of low-dose chemotherapy and
temsirolimus is more effective in suppressing lung tumor growth,
which may be advantageous to reduce the cytotoxicity caused
by standard chemotherapy. The histopathologic evaluation
of endpoint H&E-stained lung tumor sections revealed that
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FIGURE 6 | Treatment effects on tumor proliferation, angiogenesis, and the mTOR-pathway. Representative images of Ki67, CD34, p-mTOR, and p-S6RP
expression were immunostained using specific antibodies as indicated. Tumor proliferative signal of Ki67 was more condensed in untreated tumors and more diffuse
in low-dose and mixed treatment groups. The angiogenetic architecture was more intact in untreated tumors compared with treated groups, as analyzed using
CD34 staining. The inhibition of p-mTOR expression was higher in the mixed treatment groups. The phosphorylation of S6RP was also examined as a downstream
target of the mTOR-pathway. The p-S6RP expression was reduced after both treatments. Image magnification: 300× in Ki67 and 400× in CD34, p-mTOR, and
p-S6RP. Quantitative analysis of Ki67, CD34, p-mTOR, and p-S6RP expression in IHC-stained section were analyzed and present. The whole positive stained areas
(µm2) of each representative image were measured using ImageJ software and visualized as bar chart below.

the tumors were associated with an extensive response to the
T+ C+ G treatment compared with low-dose C+ G treatment.
Common tumorigenic and angiogenetic markers (Ki67 and
CD34) were apparently inhibited after the T + C + G treatment
compared with low-dose C + G treatment. These results
proved the tumor inhibition efficacy of temsirolimus combined
with low-dose chemotherapy. The mTOR phosphorylation
inhibition was higher in the mixed treatment. Moreover, the
phosphorylation of the ribosomal protein S6 (p-S6RP), one of
the targets downstream of the mTOR pathway, was reduced after
both treatments. The examination of phosphorylated mTOR and
S6RP suggested their sensitivity to temsirolimus.

The clinical benefits of chemotherapy are limited by drug
resistance and systemic toxicity. Temsirolimus was reported to
restore cisplatin sensitivity in lung cancer cell lines by blocking

the translation of proteins that are involved in cisplatin resistance
(Blois et al., 2011). The cytostatic effect of temsirolimus was
also demonstrated by introducing temsirolimus as a molecular-
targeted agent with the potential for inhibiting tumor cell
repopulation (Fung et al., 2009). However, the pulmonary toxicity
was associated with mTOR inhibitors as many other drugs,
including anticancer agents (Blois et al., 2011; Li et al., 2014).
Proper chemotherapeutic strategy management and clinical
pulmonary symptom diagnosis should be taken account when
administration with mTOR inhibitors. Our study demonstrated
that a combination of low-dose chemotherapy and temsirolimus
treatment was more effective in inhibiting tumor growth than
a doublet chemotherapy regimen in the mouse lung tumor
model. In addition, the concurrent administration of the
combined treatment was more efficacious than the sequential
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administration of these agents at a higher dose. Our study
results suggest that the combination of low-dose chemotherapy
and temsirolimus treatment might be beneficial in the
treatment of lung adenocarcinoma, which warrants further
investigation.

AUTHOR CONTRIBUTIONS

H-WC and VC conceived the experiments. M-JW and
Z-ML conducted the experiments. C-YW conducted the
micro-CT imaging. S-YC conducted the tissue embedding
and histopathology. H-WC, H-JC, and VC analyzed
the results. Y-KL assisted on statistical analysis. H-
WC wrote up the manuscript. Y-HC and VC provided
comments on the manuscript. All authors reviewed the
manuscript.

ACKNOWLEDGMENTS

This work was partially supported by the foundation of the Ph.D.
program for Translational Medicine, College of Medical Science
and Technology from Taipei Medical University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphar.
2018.00778/full#supplementary-material

FIGURE S1 | Effects of high-dose chemotherapy and the sequential
administration of temsirolimus followed by high-dose chemotherapy in lung tumor
growth inhibition. The tumor growth inhibition was significant in the first 3 weeks of
treatment with temsirolimus. However, the tumor growth inhibition efficacies
between the two chemotherapy regimens were similar (A). Effect of various
treatments on tumor growth rate (B). The tumor growth inhibition was most
significant after the mixed treatment (T + C + G) with a lower dose of
chemotherapy, which is beneficial in reducing the cytotoxic effect. (∗p ≤ 0.05;
∗∗p ≤ 0.01).

FIGURE S2 | Effect of temsirolimus alone (orange line) compared to different
regimes of chemotherapy in lung tumor growth inhibition. The tumor growth
inhibition of different treatments was depicted with statistical significance. While
the tumor growth was inhibited moderately using temsirolimus alone (orange line),
combined temsirolimus with low-dose chemotherapy (blue line, p-value = 0.019)
inhibited the tumor growth significantly. Combined temsirolimus with low-dose
chemotherapy treatment also showed significance over the treatment using
temsirolimus alone or high-dose chemotherapy (black line), with p-value = 0.037
and 0.032, respectively.

FIGURE S3 | Temsirolimus combined with cisplatin and gemcitabine induced
apoptotic cell death in H1299 human NSCLC cell line. Although temsirolimus
treatment alone caused about 25% cell death, when combined with cisplatin and
gemcitabine, it significantly enhanced the cytotoxicity by approximately 10% in
G + C and 15% in G + C + T (p-value = 0.02 and 0.003, respectively). Con:
control, Gem: gemcitabine, Cis: cisplatin, Tem: temsirolimus, G + C:
gemcitabine+cisplatin, G + C + T: gemcitabine + cisplatin + temsirolimus.

FIGURE S4 | SRB cytotoxicity assay performed in Tg-3m (A) and Tg-6m (B) cell
lines. The results showed either temsirolimus alone or combined with cisplatin and
gemcitabine displayed significant cytotoxic effects in both Tg-3m and Tg-6m cell
lines. The results of SRB assay demonstrated the in vitro correlation of cytotoxicity
and cell death caused by chemotherapeutic agents tested.

FIGURE S5 | Statistical quantification of IHC-stained sections of Ki67, CD37,
p-mTOR, and p-S6RP. The intensity of positive signals from each IHC-stained
section were selected from three different views (red-lined squares) and analyzed
using Image J software with IHC toolbox as plugins.
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Flavonoids are the largest class of plant polyphenols, with common structure of
diphenylpropanes, consisting of two aromatic rings linked through three carbons and
are abundant in both daily diets and medicinal plants. Fueled by the recognition
of consuming flavonoids to get better health, researchers became interested in
deciphering how flavonoids alter the functions of human body. Here, systematic
studies were performed on 679 flavonoid compounds and 481 corresponding targets
through bioinformatics analysis. Multiple human diseases related pathways including
cancers, neuro-disease, diabetes, and infectious diseases were significantly regulated
by flavonoids. Specific functions of each flavonoid subclass were further analyzed in
both target and pathway level. Flavones and isoflavones were significantly enriched in
multi-cancer related pathways, flavan-3-ols were found focusing on cellular processing
and lymphocyte regulation, flavones preferred to act on cardiovascular related activities
and isoflavones were closely related with cell multisystem disorders. Relationship
between chemical constitution fragment and biological effects indicated that different
side chain could significantly affect the biological functions of flavonoids subclasses.
Results will highlight the common and preference functions of flavonoids and their
subclasses, which concerning their pharmacological and biological properties.

Keywords: flavonoids, mechanism of action, pathway analysis, protein–protein interaction network, structure
activity relationship

INTRODUCTION

Flavonoids are a family of phenolic substances sharing the same backbone structure of 2-pheny1-
1,4-benzopyronemay, which are very abundant in nature, being accumulated in regular human
diets including flowers (Zhang and Ma, 2018), fruits (Chang et al., 2018), vegetables, tea, wine
(Matveeva et al., 2018), and so on (Szmitko and Verma, 2005). With the basic core scaffold,
flavonoids have been demonstrated to exhibit relevant biological properties involving strong
activity for anti-oxidant (Pietta, 2000), anti-allergy (Kawai et al., 2007; Castell et al., 2014), anti-
inflammatory (Nijveldt et al., 2001; Serafini et al., 2010; Matias et al., 2014), anti-microbial (Cushnie
and Lamb, 2005), and anti-obesity (Hughes et al., 2008) effects. Also, flavonoids have been reported
to have effect on reducing the risk of cardiovascular disease (Hooper et al., 2008; Mulvihill and Huff,
2010; Feliciano et al., 2015) and cancers (Yao et al., 2011; Batra and Sharma, 2013), ameliorating
cognition (Spencer et al., 2009; Williams and Spencer, 2012) and neuro-protection in Alzheimer’s
disease (Bakhtiari et al., 2017; Mohebali et al., 2018). Moreover, it is also found that flavonoids act as
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agonist or antagonist depending on the estrogen concentrations
to regulate estrogenic-like activity (Breinholt et al., 1999; Hwang
et al., 2006).

On the basis of common core scaffold, various combinations
of substituent chemical groups on different positions may
lead to structure diversity of flavonoids. This diversity can be
further increased with possible variations of different functional
groups, such as hydroxyl, methoxyl, carbonyl, and olefinic
groups (Gontijo et al., 2017). According to the structure
variations, flavonoids can be generally assigned into six main
subclasses: flavones, flavonols, flavanones, flavanols, flavan-
3-ols, and isoflavones (Ross and Kasum, 2002), for which
the chemical properties depend on their structural classes,
degrees of hydroxylation, substitutions, conjugation, and degree
of polymerization (Kumar and Pandey, 2013). However, the
functional similarities and differences, as well as the structure
basis of different functions for flavonoids subclasses are not fully
revealed yet.

In this study, a comprehensive bioinformatics analysis
was performed based on a large-scale dataset including 679
flavonoids and 481 corresponding targets to decipher the
mechanism of action (MOA) of flavonoids with a new
perspective. Results illustrated the structure activity relationship
of different flavonoids subclasses, which hint the protective
roles of flavonoids subclasses in different human diseases. With
the accumulation of flavonoids and corresponding targets, it is
possible to comprehensively investigate the MOA of flavonoids
in a systematic level and interpret the therapeutic mechanism to
guide the drug discovery from natural flavonoid products.

MATERIALS AND METHODS

Dataset
Flavonoids and Corresponding Targets
A total number of 5,006 chemical structures of natural
plant products were derived from Natural Product Activity
and Species Source Database (NPASS) (Zeng et al., 2018).
Among them, main types of flavonoids including flavones,
flavonols, flavanones, flavanonol, isoflavones, and flavan-3-ols
were categorized according to the scaffold structures derived
by cheminformatics software-RDKit (Landrum, 2010), which
were illustrated in Figure 1A. Further, corresponding direct
targets of flavonoids were selected from 5,337 targets of natural
plant products in NPASS. After that, 679 flavonoids and 481
corresponding targets were selected and listed in Supplementary
Table 1. Number of targets for different flavonoid subclasses were
illustrated in Figure 1B.

Enrichment Analysis of Flavonoids’
Targets
Diversity Analysis of Natural Flavonoid Products’
Targets
Targets of natural flavonoid products were mapped into Kyoto
Encyclopedic of Genes and Genomes (KEGGs) (Kanehisa et al.,
2012) and Gene Ontology (GO) (Ashburner et al., 2000) through

Metascape (Tripathi et al., 2015) to analyze their enrichment
pathways. Then, the enrichment pathways were generated for six
flavonoid subclasses.

Specific Pathway Enrichment Analysis of Natural
Flavonoids Products
To distinguish the specific pathway of flavonoids from other
natural plant products, permutation test was implemented 1,000
times to identify the specific pathway of flavonoids’ targets by
setting the 4,327 other natural plant products as background.

Pharmacology Network Analysis
Protein–protein interaction (PPI) networks of flavonoids’ targets
were generated and modularized through Metascape (Tripathi
et al., 2015). Further, the bio-functional similarity and difference
between networks of six subclasses were compared based on
the main functional modules. Then, PPI enrichment analysis
was carried out with the following databases including BioGrid
(Chatr-Aryamontri et al., 2017), InWeb_IM (Li et al., 2017), and
OmniPath (Turei et al., 2016). The densely connected network
components was identified by Molecular Complex Detection
(MCODE) algorithm (Bader and Hogue, 2003) and viewed by
Cytoscape (Shannon et al., 2003).

Structure–Activity Relationship Analysis
In order to analyze the structure–activity relationship,
basic physicochemical properties including molecular mass
(weight), lipid water distribution coefficient (LogP), hydrogen
bond receptor (NumHAcceptors), hydrogen bond donor
(NumHDonors), rotatable bond (NumRotatableBonds),
topological molecular polarity surface area (TPSA) and Lipinski’s
Rule of five were calculated for different natural flavonoid
products through RDKit (Landrum, 2010).

Also, the core scaffold and side chains of each natural
flavonoid products were derived according to their chemical
structures. Since flavones, flavonols, flavanones, flavanonol, and
flavan-3-ols share the same core scaffold, the structure–activity
relationships of above five subclasses were analyzed. Then,
according to GO (Ashburner et al., 2000), the bio-functional
annotation of each structure segment can be obtained. Further, to
identify the association between chemical structure of flavonoid
subclasses and biological function, structure–activity relationship
was further analyzed through Apriori algorithm (Agrawal and
Srikant, 1994). Here, the minimum support parameter was
set as 0.01 and the minimum confidence was set as 0.5 for
calculation.

RESULTS

Pathway Enrichment Analysis of
Flavonoids’ Targets
The biological function of flavonoids’ target was deciphered
through pathway enrichment analysis based on the background
pathway dataset (Figure 2 and Supplementary Table 2). Results
showed that, the targets of flavonoids were enriched in multiple
essential pathways including metabolism, genetic information

Frontiers in Pharmacology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 91846

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00918 August 13, 2018 Time: 18:55 # 3

Qiu et al. Exploring the MOA of Flavonoids

FIGURE 1 | Structures and targets information of flavonoids. (A) Core scaffold structures of six flavonoid subclasses. (B) Target number of different flavonoid
subclasses.

FIGURE 2 | KEGG pathway enrichment analysis of natural flavonoid products’ targets. Here, X-axis represents the enriched pathways (p-value < 0.05), which were
categorized according to KEGG classification. Y-axis represents target proportion of flavonoids in each pathway (number of flavonoids’ target in pathway/total
number of flavonoids’ targets), the size of each nodes represents the significance of enrichment level (–LogP). Flavonoids and all six subclasses were marked in
different colors.
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processing, environmental information processing, cellular
process, organismal systems, and multiple pathways which
were related to human diseases such as infectious diseases and
cancer. For instance, in environmental information processing,
flavonoids were enriched in multiple cell signaling pathways
including MAPK signaling pathway, PI3K-Akt signaling
pathway, FoxO signaling pathway and cAMP signaling pathway.
In cellular processes, flavonoids can significantly regulate
pathways such as apoptosis, focal adhesion, cell cycle, and
autophagy. Further, it can be found that flavonoids’ targets were
significantly enriched in several organismal systems including
immune system, endocrine system and nervous system.
Especially for immune system related pathways, flavonoids
were enriched in Th17 cell differentiations, IL-17 signaling
pathway, Toll-like, and NOD-like signaling pathways. Besides,
multiple flavonoids’ targets can be found in the endocrine system
pathways, such as progesterone-medicated oocyte maturation,
GnRH signaling, oxytocin signaling and thyroid hormone
signaling pathways. Also, nervous system-related pathways such
as serotonergic synapse, and neurotrophin signaling pathways
were enriched by corresponding targets. Moreover, flavonoids’
targets existed in pathways of essential human diseases such
as multi-cancer, insulin resistance and infectious diseases
including HTLV-1 infection, Epstein–Barr virus infection and
Hepatitis B.

Besides the common enrichment pathways, different flavonoid
subclasses illustrated different preference. For instance, targets
of flavanonol and flavan-3-ols were more significantly enriched
in nitrogen metabolism pathways than other subclasses. Targets
of isoflavones, flavanones, and flavonols were enriched in
metabolism pathways such as lipid, retinol, and drug metabolism
pathway. Flavones’ targets were significantly enriched in MAPK
signaling pathway and neurotrophin signaling pathway, which
means natural flavone products may have therapeutic effects
on neurological-related diseases. Pervious researches indicated
that flavones such as apigenin and luteolin could activate Nrf2-
antioxidant response element (ARE)-mediated gene expression
and induce anti-inflammatory activities through the PI3K and
MAPK signaling pathways (Paredes-Gonzalez et al., 2015). Also,
both compounds could significantly increase the endogenous
mRNA and protein level of Nrf2 and Nrf2 targeting genes
with important effects on hemo oxygenase-1 (HO-1) expression,
thus, led to cytoprotective effects and neurite outgrowth (Lin
et al., 2010; Zhao et al., 2013; Zhang et al., 2015). In
addition, corresponding targets of flavan-3-ols and flavanonol
were enriched in cancer-related pathways. Natural flavan-
3-ol products such as (-)-epigallocatechin gallate (EGCG),
(-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC), and
(-)-epicatechin (EC) were discovered flavan-3-ols from green
tea, which could provide possible prevention of cancers
(Henning et al., 2013; Yang C.S. et al., 2014). Although
the flavonoids contain similar biological function based on
the same core scaffold, above results indicated the different
biological functions of flavonoid subclasses with different
chemical structures. Thus, the therapeutic selection and clinical
application for flavonoid subclasses were different from each
other.

Functional Difference Between
Flavonoids and Other Natural Plant
Products
To further discover the functional difference between flavonoids
and other natural plant products, the specific enrichment
pathway of flavonoids’ targets were analyzed by setting other
natural plant products as background. Results showed that,
flavonoids were enriched in cancer-related pathways compared
with other natural products (Figure 3 and Supplementary
Table 3). Among them, isoflavones and flavones were enriched
in multi-cancer related pathways, flavan-3-ols can regulate the
pathway of microRNA in cancer and isoflavones significantly
enriched in the pathway of breast cancer, indicating the
potential anti-cancer preferences of flavonoid subclasses.
It can be noticed that natural flavan-3-ol products such
as EGCG could alter epigenetic processes through DNA
methylation, histone modification and miRNA regulation such
as miR-92, miR-93, miR-106, miR-7-1, miR-34a, and miR-99a
(Chakrabarti et al., 2012), which could provide anti-cancer
and cardiovascular protections (Henning et al., 2013; Yang
C.S. et al., 2014). Also, soy isoflavones, including genistein,
daidzein, and their corresponding glucosides were reported
to reduce the risk of breast cancer through meta-analysis
(Yamamoto et al., 2003; Dong and Qin, 2011). In vitro, these
isoflavones could significantly restrain the growth of human
breast cancer cells (Peterson and Barnes, 1991). In addition
to cancer related pathways, flavonoids were enriched in
metabolic, steroid hormone biosynthesis, replication and repair,
adherence junction, insulin signaling and several diseases
related pathways. Meanwhile, existential discrepancy was found
between different flavonoid subclasses. For example, although
flavonoids showed biological functions on multiple nervous
system diseases, only flavones were significantly enriched
in Alzheimer’ disease related pathways. Previous researches
showed that the derivatives of flavone acting at different target
could elicit varied pharmacological properties with various
substitution patterns, including anti-oxidant, anti-cancer
activity, neuroprotective activity (Singh et al., 2014). Those
derivatives also showed good binding affinity to Aβ aggregates
and high brain penetration, which illustrate potential therapeutic
utilities for Alzheimer’s disease (Ono et al., 2005, 2007). Also,
isoflavones were significantly enriched in Huntington’s diseases
related pathways, which may related with isoflavones-mediated
autophagy (Pierzynowska et al., 2017, 2018). Generally, both
common and discrepancy were found in flavonoid enriched
pathways which represent the specific biological function and
potential therapeutic utility of different flavonoid subclasses.

Network Pharmacology and
Modularization Analysis
To globally view the enrichment pathways of flavonoid, the
network of all enriched targets for six flavonoids’ subclass were
analyzed and decomposed into eight modules. In Figure 4, the
size of each node represents the ratio (=number of target related
compounds/total number of compounds) of targets in here.
Targets mapped in the same modules were marked in the same
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FIGURE 3 | Specific KEGG pathway enrichment analysis of natural flavonoid products’ targets. Here, X-axis represents the enriched pathways (p-value < 0.05),
which were categorized according to KEGG classification. Y-axis represents compound proportion of flavonoids in each pathway (number of target related
compounds/total number of compounds in each class), the size of each nodes represented the significance of enrichment level (–LogP). Flavonoids and all six
subclasses were marked in different colors.

color and network of targets in six major modules were analyzed
through KEGG and GO to discover the function of flavonoid
(Table 1), top 10 enriched pathways and GO terms were list in
Supplementary Table 4. Entrez Gene ID and symbol in each
module were listed in Supplementary Table 5.

Targets in module 1 were mainly enriched on epoxygenase
P450 pathway, VEGF signaling pathway, fluid shear stress and
atherosclerosis pathway, which related with cardiovascular
regulations such as vascular dilatation. Meanwhile, the
enrichment of pathways for FoxO signaling, mitotic cell
cycle regulation, cell cycle arrest, negative regulation of cell
cycle showed that cell cycle related functions can also been
reflected in module 1. For module 2, targets were significantly
enriched on pathways for T-cell receptor signaling, NF-kappa B

signaling, inflammatory mediator regulation of TRP channels,
immune response-regulating cell surface receptor signaling,
immune response activating cell surface receptor signaling
and immune response-activating signal transduction, which
indicated the function of module 2 was related to immune
inflammation. Further, it can be noticed that targets in module
3 were significantly enriched on pathways of insulin resistance,
peptidyl-serine phosphorylation, peptidyl-serine modification,
cellular response to nitrogen compound, cellular response to
organonitrogen compound, positive regulation of kinase activity
and cellular response to hormone stimulus, which illustrated the
function of module 3 were closely related with functions of cell
response to stimulation and hormone regulation. Moreover, the
enrichment in neuroactive ligand-receptor interaction, cAMP
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FIGURE 4 | Protein–protein interaction (PPI) network of natural flavonoid products’ targets. (A) General PPI network of natural flavonoid products’ targets.
(B) Modularized PPI network of natural flavonoid products’ targets. Size of each node represents the ratio (=number of target related compounds/total number of
compounds) of targets. Different modules were marked in different colors.
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TABLE 1 | Main functions of six major modules.

Modules Main function

1 Cardiovascular regulations; cell cycle regulation

2 Immune and inflammation response

3 Cell response to stimulation and hormone regulation

4 Neuromodulation and signal transduction

5 ancer and viral-related diseases

6 Process of glyoxylic acid metabolism

signaling, calcium signaling, serotonergic synapse, cGMP-PKG
signaling and dopaminergic synapse pathways reflected the
targets in module 4 were related to neuromodulation and signal
transduction. In addition, module 5 was found to relate with
human diseases such as cancer and viral-related diseases since
most targets were enriched in viral carcinogenesis pathway,
cancer and infectious disease related pathways. For module 6,
targets were enriched in flavonoids glucuronidation, glucuronate
pathway, ascorbate and aldarate metabolism, pentose and
glucuronate interconversions, which meant functions of module
6 were mainly embodied in the process of glyoxylic acid
metabolism.

Module Mapping of Different Flavonoid
Subclasses
In order to understand the function differences among flavonoid
subclass, targets of six flavonoid subclasses were mapped into
above modules. Major nodes reflected the common targets for
each flavonoid subclass.

Start from flavan-3-ols, the targets were mainly distributed
in module 1, 2, 3, and 5, and generally enriched in pathways of
cancer, fluid shear stress and atherosclerosis, AGE-RAGE
signaling in diabetic complications, which related with
cardiovascular, cell cycle regulation and cancer (Supplementary
Figure 1). For example, MAPK 14 in module 3 was found
to participate in multiple cellular processes including cell
proliferation, differentiation, transcriptional regulation and
development (Young, 2013). Also, it can be noted that MAPK
14 may related with atherosclerosis (Cheng et al., 2017).
Further, BCL2 in module 2 was a therapeutic target for chronic
lymphocytic leukemia since it can regulate lymphocyte in blood
by hindering cell apoptosis (Ruefli-Brasse and Reed, 2017; Tahir
et al., 2017) and PGD in module 5 was related with human
cervical carcinoma (Lee et al., 2014).

Targets of flavanones mainly distributed in module 1, 4, and
5, several scattered in modules 2 and 3, which illustrated the
pharmacological activities of flavanones for anti-cancer and anti-
oxidant (Supplementary Figure 2). For example, nodes such as
CYP1A1, CYP1A2, CYP1B1 in module 1 belonged to cytochrome
P450 (CYPs) family, which could enrich in epoxygenase P450
pathway and relate with cardiovascular-related functions such as
vascular ectasia. APEX1 in module 2 was found affecting cancer
RNA metabolism and triple-negative breast cancer (Antoniali
et al., 2017; Chen et al., 2017).

Targets of flavanonol were relatively less than the others and
separated in different modules, which means the function of

flavanonol are quite scattered (Supplementary Figure 3). Similar
to flavanones, nodes such as CYPs in module 1 and APEX1
in module 2 were also detected in flavanonol, which indicated
the potential function of it on cardiovascular and cancer related
functions. Meanwhile, MAPT in module 2 was found closely
related with neurodegenerative diseases, including Parkinson’s
disease (Beevers et al., 2017).

Target of flavones (Supplementary Figure 4) and flavonols
(Supplementary Figure 5) were distributed in all six major
modules, which indicated the broad function of compounds
from those two subclasses. Besides common nodes such as
CYPs, APEX1, MAPT, which reflect the same function for
cancer, cardiovascular and neurodegenerative as other flavonoid
subclasses flavones contains other nodes such as ALDH1A1
in module 5, which reflect potential associations with cancer
invasion (Yao et al., 2017; Li et al., 2018).

Specifically, isoflavones are a type of naturally occurring
isoflavonoids, which act as phytoestrogens in mammals, their
targets were mainly distributed in module 1, 2, and 5
(Supplementary Figure 6). Previous researches indicated that
BRCA1 in module 1 was associated with risk of estrogen-
receptor-negative breast cancer (Milne et al., 2017), NFE2L2 in
module 3 was related with cell multisystem disorder (Huppke
et al., 2017), and TP53 in module 5 was related with human
immunodeficiency virus-related head and neck squamous cell
carcinoma (Gleber-Netto et al., 2018).

Structure Activity Relationship Analysis
of Flavonoids
In order to explore the cause of the functional similarity
and difference among flavonoids’ subclasses, the structure
activity relationship of different flavonoids were analyzed. By
calculating the structural and physic-chemical properties of
natural flavonoid products, the structure difference of flavonoids’
subclasses can be discovered to conjecture the potential effects
of their biological functions (Supplementary Figure 7). Results
showed that the rotatable bonds (NumRotatableBonds) and
molecular weight (Weight) in different subclasses are quite
similar, however, difference can be detected in H-bond acceptor
(HAcceptor), H-bond donor (HDonor), lipid-water partition
coefficient (LogP), and Topological polarity surface area (TPSA)
for different flavonoid subclasses. LogP and TPSA could affect
the absorption and distribution of drug, which should contain
a certain degree of dissolution and appropriate lipid water
distribution to be effective. Further, to provide nervous system
activity, drug with larger liposolubility may be easier to pass
the blood–brain barrier (BBB) (Yang Y. et al., 2014). The
non-polar structural fragments such as alkyl group, halogen
atom and aliphatic ring in chemical molecules will increase the
liposolubility of molecules. Meanwhile, TPSA has a great impact
on the cell penetration of drug molecules. In that case, the TPSA
should be relatively lower for drugs which needs to across BBB
and act on the receptors of central nervous system (Mehdipour
and Hamidi, 2009). Natural products of flavones, flavanones,
and isoflavones contain larger LogP and lower TPSA than other
flavonoids, which indicated the potential activities to across the
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FIGURE 5 | Distribution of LogP and TPSA in different flavonoids. Different color represents different flavonoid subclasses. X-axis represents the value of LogP, while
Y-axis represents the value of TPSA.

BBB (Figure 5). For example, apigenin of flavones, quercetin,
and genistein of isoflavones, hesperidin of flavanones and rutin,
quercetin, and kaempferol of flavonols would have the ability to
across the BBB (Figure 5). Among them, genistein and apigenin
could provide stronger ability to across the BBB since their larger
LogP and lower TPSA (Yang Y. et al., 2014), which indicated the
potential ability of other flavonoids meets the appropriate value
of LogP and TPSA.

Further, in order to evaluate the drug-likeness of flavonoids,
Lipinski’s Rule of Five (ROF) of different flavonoid subclasses
were analyzed (Supplementary Figure 8). It can be found that for
flavones, flavonols, flavanones, flavanonol, and isoflavones, near
half of the compound can pass ROF, while for flavan-3-ols the
percentage of ROF-passed compounds is extremely low, which
indicated different drug-likeness of flavonoid subclasses.

By excavating the relationship between chemical constitution
fragment and biological effects through Apriori (Agrawal and
Srikant, 1994), results showed that the core scaffold and side
chain in flavonoids can significantly affect the biological functions
(Figure 6). For example, in rule 01–07, side chain such as
hydroxyl in position 1 on the core scaffold structure of flavanones
may assist the negative regulation of PERK-mediated unfolded
protein response. Also, in rule 09–13, hydroxyl side chain in

position 1, 3, 10, 11, and 12 on the core scaffold structure of
flavonols closely related with error-prone translesion synthesis.
Among them, natural products such as myricetin, robinetin,
tricetin could against hydrogen peroxide-induced DNA damage
and might reduce the risk of multiple cancers (Huang and
Ferraro, 1992; Shelby et al., 1997). Meanwhile, natural products
with core scaffold of flavonols and oxygen methyl on different
positions as side chain illustrated the bio-function of cellular
iron ion homeostasis (rule 14–17) and microtubule-based process
(rule 18–20). Besides above rule of generality, individual rules
can also be found in Figure 6. For example, the core scaffold
of flavones combined with hydroxyl side chain in position 1, 3,
11, and 12 will related with base-excision repair and base-free
sugar-phosphate removal (rule 21). Previous studies indicated
that the number and position of glycoside and hydroxyl groups
in flavonoids would affects the ability of permeation (Yang Y.
et al., 2014). We also found that hydroxyl side chain in position
1 and 3 combined with hydrocarbyl side chain in position
2 which related with neurotransmitter receptor biosynthetic
process (rule 22) will increase the liposolubility and enhance its
transmembrane abilities. It can be noted that, the bio-activity
of molecules which meet rule 22 is enhanced over 14.68 times
than other molecules in flavonoids’ families (Supplementary
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FIGURE 6 | Illustration of relationship between structure patterns and functions according to structure–activity relationship analysis of flavonoids.

Table 6). Analogously, flavonols meet rule 23, which contains
pentose in position 1 and hydroxyl in position 3, 11 will
increase the bioactivity for 32.37 times than others for the
function of DNA topological change. Natural products such as
kaempferol glycoside could targeting the DNA topoisomerase,
which closely related with DNA replication and cell cycle (Vega
et al., 2007; Baikar and Malpathak, 2010). Rule 24 indicate
multiple oxygen methyl in side chain will benefit to the function
of sphingolipid translocation. Moreover, rule 25 and rule 26
illustrate the different side chain components may have potential
affects for regulation of prostaglandin biosynthetic process and
vasoconstriction.

DISCUSSION

In this article, comprehensive analysis was proposed to explore
the MOA of natural flavonoid products and results indicated that
flavonoids could affect essential pathways in several categories
such metabolism, genetic information processing, environmental
information processing, cellular processes, organismal systems,
and human diseases related pathways. Among them, the
enrichment in human diseases-related pathways illustrated the
multifaceted therapeutic applications of flavonoids which could
affect multiple human diseases such as cancers, neuro-disease,
diabetes and infectious diseases. By compared with other natural

plant products, flavonoids could significantly enrich in the
pathways of breast cancer, Huntington’s disease, Alzheimer’s
disease, insulin resistance and drug resistance. Also, after
systemically analysis of targets for different flavonoids subclasses,
it can be found that targets such as MAPT, APEX1, and
ALDH1A1, which were closely related with nervous system
and cancer, were significantly enriched in almost all flavonoid
subclasses. In that case, the multifaceted therapeutic ability
indicates the utility of flavonoids for cancer and nervous system
related drug discoveries.

Besides common biological functions, specific functions of
different flavonoids subclasses were also analyzed and detected
in both target and pathway level. For example, flavones
and isoflavones were significantly enriched in multi-cancer
related pathways than others, which indicate the potential
therapeutic utility in cancer treatment. Also, flavan-3-ols
were found on cellular processing and lymphocyte regulation,
flavones specifically acted on cardiovascular related activities and
isoflavones were closely related with cell multisystem disorders.
Different structural and physic-chemical properties of natural
flavonoid products may relate with the functional differences
and can be detected in physic-chemical properties including
H-bond acceptor, H-bond donor, lipid-water partition coefficient
and topological polarity surface area. It can be noted that LogP
and TPSA are closely related with absorption and distribution
of chemical components in drugs, since appropriate solubility
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and lipid water distribution coefficient play essential roles in
drug efficacy (Avdeef, 2001). For example, drugs which were
activated in central nervous system requires larger liposolubility,
which could be increased by non-polar structural fragments
such as alkyl, halogen atom and aliphatic ring in chemical
molecules. Meanwhile, TPSA can affect the cell penetration
of drug molecules. Previous research indicated that in order
to pass through the BBB and activate on the receptors in
central nervous system, the polar surface areas of drug should
be less than 90 square angstroms (van de Waterbeemd et al.,
1998). Thus, natural products in flavonoids, flavones, flavanones,
and isoflavones, which contains larger LogP and lower TPSA,
have the ability to pass through the BBBs with potential
activities.

Since flavonoids contain the same core scaffold, the functional
difference was mainly related with the substituent groups.
Relationship between chemical constitution fragment and
biological effects indicated that different side chain can
significantly affect the activity of flavonoids on the same target.
Flavonoids with structures meet the corresponding rules will
enhance the bioactivity of molecules for dozens of times. For 26
rules summarized in this article, the bioactivities were increased
over three times at least. Among them, seven rules could enhance
the bioactivities for over 10 times, and two rules (rule 23 and
26) could increase the activities for 30 times (Supplementary
Table 6). Considering the substituent groups and positions of side
chain, the relationship between structure and bioactivity analyzed

in here may help to enhance the understanding of flavonoids and
its potential ability for new drug discovery.
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Individualized therapies ask for the most effective regimen for each patient, while the

patients’ response may differ from each other. However, it is impossible to clinically

evaluate each patient’s response due to the large population. Human cell lines have

harbored most of the same genetic changes found in patients’ tumors, thus are

widely used to help understand initial responses of drugs. Based on the more credible

assumption that similar cell lines and similar drugs exhibit similar responses, we

formulated drug response prediction as a recommender system problem, and then

adopted a hybrid interpolation weighted collaborative filtering (HIWCF) method to predict

anti-cancer drug responses of cell lines by incorporating cell line similarity and drug

similarity shown from gene expression profiles, drug chemical structure as well as

drug response similarity. Specifically, we estimated the baseline based on the available

responses and shrunk the similarity score for each cell line pair as well as each drug

pair. The similarity scores were then shrunk and weighted by the correlation coefficients

drawn from the know response between each pair. Before used to find the K most similar

neighbors for further prediction, they went through the case amplification strategy to

emphasize high similarity and neglect low similarity. In the last step for prediction, cell

line-oriented and drug-oriented collaborative filtering models were carried out, and the

average of predicted values from both models was used as the final predicted sensitivity.

Through 10-fold cross validation, this approach was shown to reach accurate and

reproducible outcome for those missing drug sensitivities. We also found that the drug

response similarity between cell lines or drugs may play important role in the prediction.

Finally, we discussed the biological outcomes based on the newly predicted response

values in GDSC dataset.

Keywords: anti-cancer drug response, drug response prediction, recommender system, collaborative filtering,

interpolation weighted method
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INTRODUCTION

One of the top challenges in individualized therapies is the
choice of the most effective chemotherapeutic regimen for each
patient, while the administration of ineffective chemotherapy
may increase mortality and decrease quality of life in cancer
patients (Chen et al., 2013). Thus, it is urgent to evaluate each
patients’ possible response to each chemotherapeutic regimen to
make sure the regimens applied are most likely to be effective. To
address this problem, extensive patient drug screening projects
need to be carried out so as to unveil significant drug response
patterns. However, the large populations of cancer patients with
numerous drugs has become the bottleneck.

To circumvent this issue in the context of cancer, some large
drug screening projects have been carried out using cancer cell
lines instead of individual cancer patients. These are NCI-60
panel, Genomics of Drug Sensitivity in Cancer (GDSC) and
the Cancer Cell Line Encyclopedia (CCLE) projects (Boyd and
Paull, 1995; Barretina et al., 2012; Yang et al., 2013). The NCI-
60 study was pioneered by the US National Cancer Institute
(NCI) to assemble the NCI60 tumor cell line panel, which has
been assayed for its sensitivity to over 130,000 compounds and
had been extensively profiled at the biological level (Shoemaker,
2006). It has been useful for the development of computational
approaches aiming at linking drug sensitivity with genotype
profiles together (Shoemaker et al., 1988; Weinstein et al., 1997;
Garnett et al., 2012). The GDSC project is, to date, the largest
public resource for information on drug sensitivity in human
cancer cell lines and molecular markers of drug response. It
pioneered the combination of drug and cell line information,
including gene expression, gene copy number variations, and
mutation profiles for drug sensitivity prediction (Garnett et al.,
2012; Yang et al., 2013). It systematically addressed the issue of
predictive biomarker identification by collectively analyzing the
clinically-relevant human cell lines and their pharmacological
profiles for corresponding cancer drugs. The other widely
used database, CCLE (Barretina et al., 2012), collects gene
expression, chromosomal copy number and massively parallel
sequencing data from 947 human cancer cell lines, coupled with
pharmacological profiles for 24 anti-cancer drugs across 479 of
the cell lines. It allows identification of genetic, lineage, and gene
expression-based predictors of drug sensitivity.

Corresponding to the large-scale datasets screened on

cultured human cell line panels, many computational
methods have been developed for the elucidation of the

response mechanism of anti-cancer drugs, most commonly
are multivariate linear regression (LASSO and elastic net

regularizations) and nonlinear regression (e.g., neural networks
and some kernel based methods; Barretina et al., 2012; Garnett
et al., 2012; Heiser et al., 2012; Menden et al., 2013; Yang
et al., 2013; Costello et al., 2014). Deamen et al. used least
squares-support vector machine and random forest to identify
drug response associated molecular features in breast cancer
(Daemen et al., 2013). Based on the NCI-60 panel, a weighted
voting classification model, an ensemble regression model using
Random Forest as well as a simultaneous machine learning
modeling of chemical and cell line information have been

developed to predict anti-cancer drug sensitivity (Staunton
et al., 2001; Riddick et al., 2011; Cortes-Ciriano et al., 2016).
Based on the GDSC dataset, Ammad-uddin et al. developed a
kernelized Bayesian matrix factorization (KBMF) method to
integrate genomic and chemical properties as well as drug target
information for drug sensitivity prediction (Ammad-ud-din
et al., 2014). Sheng et al predicted unseen drug responses by
calculating a weighted average of observed drug responses based
on drug specific cell line similarity and drug structure similarity
(Breese et al., 1998). Liu et al. proposed a dual-layer cell line drug
integrated network (DLN) model, which integrated both cell line
and drug similarity network data, to predict the missing drug
response (Zhang et al., 2015). Wang et al. proposed HNMDRP
method, incorporating gene expression, chemical structure as
well as drug target and protein-protein interaction information
to predict missing values of drug responses in cell lines (Zhang
et al., 2018). Based on the transcriptomic data from both GDSC
and CCLE, Kim et al. developed a network-based classifier for
predicting sensitivity of cell lines to anti-cancer drugs (Kim et al.,
2016). Base on the same whole datasets, Wang et al. proposed
a similarity-regularized matrix factorization (SRMF) method
for drug response prediction, which incorporates similarities
of drugs and of cell lines simultaneously (Wang et al., 2017).
Stanfield et al. proposed a heterogeneous network based method
to predict the interaction between cell line-drug pairs (Stanfield
et al., 2017). They classified the interaction between each cell
line-drug pairs into sensitive and resistant, thus, turned the
prediction problem into classification. Current methods have
taken the similarity of genomic or transcriptomic profiles as well
as drug structure into consideration for similarity definition,
which were often defined by calculating the Pearson correlation
coefficient for genomic profiles, or Jaccard coefficient for drug
chemical fingerprint in present studies and are called as COEF
in the following for short. However, the similarity that exhibited
through drug sensitivity, which can be defined by calculating
the Pearson correlation coefficient based on drug response
sensitivity, has not been considered yet and is called as RPCC
for short in the following. Not to mention the combination of
COEF and RPCC, which is called as MRPCC (Multiplication of
COEF and RPCC) for short throughout the paper. Drug-target
interaction and PPI network have also been considered to
improve the prediction performance (Chen et al., 2012; Stanfield
et al., 2017).

Regarding the relatively more credible assumption that similar
cell lines and similar drugs exhibit similar drug responses (Zhang
et al., 2015), the prediction of missing drug response can be
considered as a typical Recommender System (RS) (Adomavicius
and Tuzhilin, 2005). Typically, in a recommender system, there
is a set of users and a set of items. Each user rates a set of items
by some values. The recommender system attempts to profile
user preferences and tries to model the interaction between
users and items, which is exactly what we want in the issue
of drug response prediction. The cell lines correspond to users
while drugs correspond to items. From the RS perspective, the
similarity shown through drug sensitivity is also very important
formissing value prediction. Thus, we improved an RS technique,
Hybrid InterpolationWeighted Collaborative Filtering (HIWCF)
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(The acronym list defined in this paper is shown in Table 1),
for drug response prediction, which incorporates similarities
of drugs and of cell lines in additional to the known drug
response simultaneously (The key source code and ready to
use CCLE and GDSC datasets are provided at https://github.
com/laureniezhang/HIWCF). To demonstrate its effectiveness,
we compared HIWCF with SRMF and KBMF, which have been
proved to show higher performance than typical similarity-based
methods. The evaluation metrics used were averaged Pearson
correlation coefficient (PCC) and averaged root mean square
error (RMSE) over all drugs. The results on GDSC and CCLE
drug response datasets by 10-fold cross validation showed that
similarity defined based on drug response is more dependable
for unknown response prediction, and the incorporation of gene
expression profile, drug response, and drug structure similarity
help to better improve the prediction performance. Finally,
HIWCF was applied to impute the unknown drug response
values in GDSC dataset for further evaluation.

MATERIALS AND METHODS

Data and Preprocessing
In this paper, two datasets, both consisting of large scale
genomic expression profiles, pharmacologic profiling of drug
compounds, as well as the experimentally determined drug
response measurements IC50 values (the concentration of a drug
compound that reached the absolute inhibition of 50% in vitro,
given as natural log of µM) or experimental activity areas were
used for performance evaluation. Large scale genomic expression
profiles were normalized across cell lines to draw the similarity
matrix of cell lines. The chemical structures of drug compounds
were used to draw the similarity matrix of drugs.

The first dataset is from GDSC project (http://www.
cancerrxgene.org/), consisting of 139 drugs and a panel of 790
cancer cell lines (release 5.0). We selected 652 cell lines for which
both drug response data and gene expression were available, and

TABLE 1 | Acronym list.

Acronym Detailed description

HIWCF Hybrid Interpolation Weighted Collaborative Filtering

COEFc Pearson Correlation Coefficient drawn from cell line gene

expression profile

COEFd Jaccard Correlation Coefficient drawn from drug chemical

fingerprint

RPCCc Pearson Correlation Coefficient between cell lines drawn from

drug response matrix

RPCCd Pearson Correlation Coefficient between drugs drawn from

drug response matrix

RPCC Refers to RPCCc or RPCCd . It depends on the context.

MRPCCc Multiplication of COEFc with RPCCc, used as final similarity

score between cell lines.

MRPCCd Multiplication of COEFd with RPCCd , used as final similarity

score between drugs.

MRPCC Refers to MRPCCc or MRPCCd . It depends on the context.

135 drugs whose SDF format (encoding the chemical structure of
the drugs) were available. The drug response is given with IC50
values (70,676 data points, matrix 80.3% complete).

The second dataset consists of 1,036 human cancer cell
lines and 24 drugs, which is from CCLE project (http://www.
broadinstitute.org/ccle). We also selected 491 cell lines and 23
drugs following the same rule used in GDSC dataset. The drug
response is given with activity areas (10,870 data points, matrix
96.25% complete). Both ready to use datasets are submitted to
Github at https://github.com/laureniezhang/HIWCF.

Problem Formulation
We basically treat anti-cancer drug response prediction as a
RS problem where each cell line-drug pair is the typical user-
item pair. Based on the finding that similar cell lines by gene
expression profiles exhibit similar response to the same drug
(Zhang et al., 2015), we proposed a weighted interpolation
collaborative filtering method to approximate the sensitivity of
cell line u to drug i. For convenience, we reserve special indexing
letters for distinguishing cell lines from items: for cell lines u,
v, and for drugs i, j. We are given cell line drug response about
m cell lines and n drugs, arranged as an m × n matrix R =
{rui}1≤u≤m,1≤i≤n, where higher value of activity area or lower
value of IC50 means a better sensitivity of a cell line to a given
drug.

Baseline Estimate Strategy
Since typical CF data often exhibit large user and item effects,
that means systematic tendencies for some users to give higher
ratings than others, and for some items to receive higher ratings
than others, we first adjusted the rating data by accounting for
these effects, which we include in the baseline estimate strategy.
Let µ denotes the overall average drug response, we denote
the estimated baseline for an unknown rating r̂ui as bui, which
accounts for the above-mentioned user and item effects.

bui = µ+ bu + bi (1)

The parameters bu and bi indicate the observed deviations of cell
line u and drug i, respectively, from the average.

In order to get the baseline formulation, for each drug i, we
set:

bu =

∑

i∈U(u,i) (rui − µ− bi)

λ3 + |U(u, i)|
(2)

Then, for each cell line u, we set:

bi =

∑

u∈U(u,i) (rui − µ)

λ2 + |U(u, i)|
(3)

whereU(u, i) is the set of cell lines who responses to drug i, or the
set of drugs who have responses in cell line u, and |U(u, i)|means
the number of elements in setU(u, i). λ2and λ3 are regularization
parameters that help to shrink the averages bu and bi toward zero.
They are set to 5 and 2, respectively in the following simulation
process.
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TABLE 2 | The comparison results between HIWCF with different similarity definition (MRPCC/RPCC/COEF), SRMF, and KBMF obtained under 10-fold cross validation

on CCLE dataset.

Methods Drug-averaged PCC_S/R Drug-averaged RMSE_S/R Drug-averaged PCC Drug-averaged RMSE

HIWCF MRPCC 0.80(±0.07) 0.66(±0.21) 0.74(±0.08) 0.53(±0.15)

RPCC 0.80(±0.06) 0.67(±0.22) 0.73(±0.08) 0.54(±0.16)

COEF 0.74(±0.06) 0.76(±0.27) 0.66(±0.06) 0.60(±0.20)

SRMF 0.78(±0.07) 0.74(±0.23) 0.71(±0.09) 0.57(±0.18)

KBMF 0.65(±0.10) 0.81(±0.20) 0.71(±0.10) 0.64(±0.17)

TABLE 3 | The comparison results between HIWCF with different similarity definition (MRPCC/RPCC/COEF), SRMF, and KBMF obtained under 10-fold cross validation

on GDSC dataset.

Methods Drug-averaged PCC_S/R Drug-averaged RMSE_S/R Drug-averaged PCC Drug-averaged RMSE

HIWCF MRPCC 0.68(±0.14) 1.88(±0.54) 0.58(±0.15) 1.51(±0.39)

RPCC 0.68(±0.14) 1.87(±0.53) 0.58(±0.15) 1.50(±0.38)

COEF 0.57(±0.15) 2.12(±0.60) 0.46(±0.14) 1.66(±0.43)

SRMF 0.71(±0.15) 1.73(±0.46) 0.62(±0.16) 1.43(±0.36)

KBMF 0.59(±0.14) 2.00(±0.51) 0.49(±0.14) 1.59(±0.42)

FIGURE 1 | The drug similarity RPCC and COEF of 23 drugs in CCLE dataset. (A) The plot shows RPCC similarity for 23 drugs in CCLE dataset. (B) The plot shows

COEF similarity for 23 drugs in CCLE dataset.

FIGURE 2 | The cell line similarity RPCC and COEF of 491 cell lines in CCLE dataset. (A) The plot shows RPCC similarity for 491 cell lines in CCLE dataset. (B) The

plot shows COEF similarity for 491 cell lines in CCLE dataset.
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FIGURE 3 | Similar cell lines are more likely to be clustered into the same group (have similar similarity score) based on MRPCC similarity score. Most cell lines in the

plot were collected from hematopoietic and lymphoid tissues.

Similarity Definition
The similarity matrixes are required for identification of K
nearest neighbors. The original similarity of cell lines was drawn
based on the Pearson correlation coefficient between the gene
expression profiles of cell line u and v, which is indicated as
COEFcuv . The c in the subscript refers to cell line-oriented. The
similarity of drugs was drawn based on the Jaccard coefficient
between the drug chemical structures of drug i and j, which
is indicated as COEFdij . The d in the subscript refers to drug-
oriented.

However, to some extent, the similarity between cell line u

and v can also be shown from their drug response. Thus, in
this paper, we investigated the performance of different similarity
definitions for drug response prediction. To be more specific, the
similarity of cell line u and v, indicated asMRPCCcuv , was defined
as the multiplication of COEFcuvandRPCCcuv , which helps the cell
line pairs with consistent similarity in gene expression and drug
response to get higher rank for unknown response prediction.

MRPCCcuv ← COEFcuv × RPCCcuv (4)

where COEFcuv was defined as the their gene expression profile’s
Pearson correlation, while RPCCcuv was defined as the correlation
between the response IC50 value of cell line u and v.

RPCCcuv =

∑

(Ru• − R̄u•)(Rv• − R̄v•)
√

∑

(Ru• − R̄u•)
2 ∑

(Rv• − R̄v•)
2

(5)

where Ru• represents the response value of the u-th cell line, and
R̄u• represents the mean of the u-th cell line’s response.

In the same way, the similarity between drug i and j, indicated
as MRPCCdij , was defined as the multiplication of COEFdij and
RPCCdij .

MRPCCdij = COEFdij × RPCCdij (6)

where COEFdij was defined as their drug chemical fingerprint’s
Jaccard coefficient, while RPCCdij was defined as the Pearson
correlation coefficient between response IC50 values of drug i and
j.

RPCCdij =

∑

(R•i − R̄•i)(R•j − R̄•j)
√

∑

(R•i − R̄•i)
2 ∑

(R•j − R̄•j)
2

(7)

where R•i represents the response value of the i-th drug, and R̄•i
represents the mean of the i-th drug’s response.

In order to avoid the bias caused by the different level of
support (different number of known responses) for each cell line-
drug pair, we also went through a shrunk procedure for similarity
score, which is denoted by (Koren, 2010):

wi,j ←
|U(i, j)|

|U(i, j)| + λ4
wi,j (8)

where |U(i, j)| is the number of cell lines who have responses to
both drug i and j, or the number of drugs who have responses
from both cell line i and j. wijis the similarityMRPCCc defined in
(4) and MRPCCd in (6). λ4is a constant, which is set as 50 in the
experiments.

In the following, we adopted a case amplification strategy,
which refers to a transform applied to the weights used in the
following collaborative filtering prediction, to reduce the noise in
the data. The transform emphasizes high weights and punishes
low weights by (Breese et al., 1998):

wi,j ← wi,j � |wi,j|
ρ−1 (9)

where ρ is the case amplification power, ρ ≥ 1, and we also
followed the typical choice of ρ as 2.5 (Lemire, 2005).
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FIGURE 4 | Prediction performance of HIWCF with MRPCC similarity and SRMF for all 23 drugs tested in the CCLE dataset. (A) Bar plot shows that the prediction

performance of HIWCF with MRPCC is better than that of SRMF in the perspective of Pearson correlations between the predicted and observed activity areas. (B) Bar

plot shows that the prediction performance of HIWCF with MRPCC is better than that of SRMF in the perspective of Root Mean Square Error between the predicted

and observed activity areas.

Drug Response Prediction Based on
HIWCF Method
After removing the noise by baseline estimate strategy, we need to

predict the unknown sensitivity for cell line u of drug i, which is
r̂ui. Based on the above-mentioned similarity measure w defined
in (9), we first conducted drug-oriented CF, and k drugs, which
are most similar to drug i that had responses in cell line u were
identified. This set of k neighboring drugs is denoted by U(i; u).
Then, based on w, we conducted cell line-oriented CF, and k cell
lines that responded to drug i, which aremost similar to cell line u
were identified. This set of k neighboring cell lines is denoted by
U(u; i). Finally, the predicted value of r̂ui is taken as an average
of the weighted average of the response of neighboring drugs
found in U(i; u) and that of the response of neighboring cell
lines found inU(u; i), while adjusting from user and item effects

through baseline estimates:

r̂ui = bui +
1

2
(

∑

j∈U(i;u) wi,j(ruj − buj)
∑

j∈U(i;u) wi,j

+

∑

v∈U(u;i) wi,j(rvi − bvi)
∑

v∈U(u;i) wi,j
) (10)

RESULTS

Similarity Exhibited in Drug Response
Sensitivity Shows Leading Role in
Prediction
We first conducted 10-fold cross validation to evaluate the
performance of different similarity definition. Incorporated with
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FIGURE 5 | Scatter plots of observed and predicted drug activity area for four drugs in CCLE using HIWCF with MRPCC similarity. (A) Scatter plot of Irinotecan. (B)

Scatter plot of PD-0325901. (C) Scatter plot of Panobinostat. (D) Scatter plot of Erlotinib.

COEF, RPCC as well as MRPCC, drug response prediction
performance of HIWCF is evaluated in both CCLE dataset
and GDSC dataset with activity area or IC50 value as drug
response measurement in comparison with KBMF and SRMF.
The evaluation measures included average PCC, RMSE between
predicted and observed drug responses through all drugs.
Considering the known fact that the sensitive and resistant cell
lines of each drug are more valuable to unveil mechanisms of
drug actions, we also included PCC and RMSE from sensitive and
resistant cell lines for each drug, which were denoted as PCC_S/R
and RMSE_S/R (Wang et al., 2017).

For each dataset, the drug response entries were divided into
10-folds randomly with almost the same size. Each time, one-fold
was used as the test set, while the rest nine-folds were used as the
training set. The prediction was repeated 10 times such that each
fold acted as a test set once. The whole cross-validation was run
for 100 times for each dataset, and the prediction performance
was shown in Tables 2, 3.

As is shown, the prediction performance of HIWCF with
MRPCC/RPCC similarity were far better than that with COEF

similarity, which suggested that the similarity exhibited in drug
response may lead important role than that of gene expression
profiles or drug structures in the scenario of drug response
prediction. Thus, we turned to use the predicted values of
HIWCF with MRPCC similarity measure only in the rest
evaluation of our paper.

In Table 2, we can also see that in CCLE dataset, the
performance of HIWCF with RPCC and MRPCC were better
than that of SRMF, without mentioning KBMF. However, as
shown in Table 3, the performance of HIWCF with either RPCC
or MRPCC were a little bit worse than that of SRMF. That may
be because the similarity score of RPCC/MRPCC is based on the
known drug response for each cell line-drug pair. Since GDSC
dataset is much sparser than that of CCLE, the similarity score of
RPCC/MRPCC of GDSC is less reliable than that of CCLE.

We further investigated the difference between COEF and
RPCC. To be more specific, based CCLE dataset, we calculated
the drug structure fingerprint similarity COEF for hierarchical
clustering analysis. As shown in Figure 1B, it was surprising
that the similarity score for most drug pairs were approaching
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FIGURE 6 | The association of lapatinib sensitivity and cancer gene mutations were consistent for predicted response values. WT refers to the non-mutated (wild

type) cell lines. (A) Box plot for grouped cell line response values for lapatinib based on their EGFR mutation profiles. (B) Box plot for grouped cell line response values

for lapatinib based on their ERBB2 mutation profiles. (C) Box plot for grouped cell line response values for lapatinib based on their ERBB2 mutation profiles.

1, which was undistinguishable for neighbor selection. However,
we can get distinguishable similarity scores from drug response
similarity RPCC, as shown in Figure 1A. If we investigate the
drugs that clustered into the same group, such as “Lapatinib,”
“AZD0530,” “ZD-6474,” and “Erlotinib.” It is well-known that
they are EGFR inhibitors, thus, they are most likely have higher
similarity scores in drug response (Yuan et al., 2016). We also
investigate the gene expression similarity with cell line response
similarity. The cell line response similarity RPCC and cell line
gene expression similarity COEF were calculated for hierarchical
clustering, which were comparable with each other (Figure 2).
The results show that cell lines collected from the same tissue
type may have higher similarity score, which is consistent with
previous studies. For example, most cell lines that clustered
into the same group shown in Figure 3 were collected from
hematopoietic and lymphoid tissues. Hierarchical clustering
was achieved in both row and column direction, with original
similarity score was normalized with 0 mean.

Cross-Validation on CCLE Drug Response
Datasets
We then tested the prediction performance of HIWCF for 23
drugs tested in the CCLE study, which were quantified based
on PPC and RMSE between the predicted and observed activity
areas.

As shown in Figure 4, the overall prediction performance
of HIWCF throughout all the drugs was significantly higher
than that of SRMF for the CCLE dataset. We believe that the
improvement of HIWCF is most likely due to the involvement
of similarity calculated from response matrix. The scatter plots
of observed vs. predicted responses for four demonstrative
drugs, Irinotecan, PD-0325901, Panobinostat, and Erlotinib are
shown in Figure 5, which indicate the good correlations between
existing response and predicted ones.

Response Data Prediction in GDSC Data
Based on the HIWCF method validated, we based on all
known data to predict the unknown ones in the GDSC dataset.

FIGURE 7 | Repositioning of sunitinib. Box plot for grouped cell line response

values for Sunitinib based on their tissue type. NSCLC indicates cell lines

sampled from non-small cell lung cancer tissues.

As in Wang et al. (2017), we also focused on an EGFR
and ERBB2 inhibitor drug lapatinib, where more than half
of response values (342/652) were unknown. Previous studies
had demonstrated that EGFR and ERBB2 amplification was
associated with sensitivity to lapatinib, which has been licensed
for the treatment of HER2+ breast cancer clinically (Petrelli et al.,
2017; Zhao et al., 2017). Thus, we tried to investigate whether
the observed and predicted response of EGFR/ERBB2 mutated
cell lines exhibit the sensitivity to lapatinib. All the 635 cell lines
in GDSC were first grouped into mutated vs. wildtype by the
total copy number variation in the exact gene (Garnett et al.,
2012). Then, we found that not only EGFR mutated but also
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FIGURE 8 | Hierarchical clustering analysis on the gene expression profiles for all the 652 cell lines in GDSC dataset. (A) The bar plot of the IC50 values of each cell

line. (B) The hierarchical clustering plot on the right showed the gene expression pattern for 20% most variant genes in each cell line. Each row in (A) corresponds to

the exact row in the hierarchical clustering plot of gene expression profiles in (B). The genome expression pattern was shown as some genes were up-regulated in

Sunitinib resistant cell lines but down-regulated in Sunitinib sensitive cell lines, while some other genes were up-regulated in Sunitinib sensitive cell lines but

down-regulated in Sunitinib resistant cell lines.

ERBB2 mutated cell lines were both significantly more sensitive
to lapatinib, as shown in Figures 6A,B, which was consistent with
previously mentioned conclusions.

We further investigated whether the newly predicted drug
responses combined with known drug responses were able to
detect novel drug-cancer gene association or not. To be more
specific, the oncogene BRAF has been found to be significantly
associated with enhanced and selective sensitivity to MEK
inhibitor PD-0325901 (Solit et al., 2006) (p= 3.70e-11 for known
drug responses; p= 6.20e-12 for combined response of predicted
ones and known ones; Figure 6C).

The newly predicted drug responses of GDSC dataset may also
aid in drug repositioning. For example, Sunitinib, as a kinase
inhibitor targeting VEGFR2 and PDGFRβ , has been observed
to be sensitive to non-small cell lung cancer (NSCLC) based on
newly predicted drug responses vs. available ones, as shown in
Figure 7.

We further conducted the hierarchical clustering analysis
through genes based on the expression profile of all the 652 cell
lines. Before hierarchical clustering, 80 percent genes that show
less variations over all the genes were filtered out. As shown
in Figure 8, the patterns of gene expression were shown to be
related with the sensitivity of each cell line to Sunitinib. The pink
marked group of genes showed higher expression in cell lines
which were sensitive to Sunitinib, while the blue marked group of
genes showed higher expression in cell lines which were resistant
to Sunitinib.

We further conducted GO enrichment analysis for both
groups of genes. For the genes that up-regulated in Sunitinib
resistant cell lines were found to be related to some repair
pathways, such as regulation of DNA repair (p = 1.1e-3), base-
excision repair (p= 0.032), nucleotide-excision repair (p= 6e-3),

interstrand cross-link repair (p = 0.01), mismatch repair (p =
0.048), etc., which were found to be important factors of drug
resistance. For genes that were up-regulated in Sunitinib sensitive
cell lines were found to be related to mTOR signaling pathway (p
= 1e-2), NF-kappaB signaling (p= 4.1e-10). The inhibition of the
signaling pathways help to increase drug sensitivities (Cai et al.,
2014).

DISCUSSION

In this paper, we used a recommender system-based method
HIWCF to predict anti-cancer drug sensitivity in GDSC and
CCLE datasets respectively. The idea of the method comes from
the fact that similar cell lines exhibit similar responses to the
same drug, which is the exact motivation of a recommender
system. This method first estimated the baseline, which helped
to remove the noise in the original drug sensitivity, then
shrunk the similarity measure by integration of gene expression
profile, drug structure in addition to the correlation between
cell lines and drugs exhibited in the drug response, which
helped to weak the influence of sparseness in response matrix.
Finally, it incorporated the user-orientated and item-orientated
interpolation weighted collaborative filtering method to predict
the unknown drug sensitivity values. Ten-fold cross validation
demonstrated that the similarity drawn based on known drug
response can better improve the prediction performance in
comparison to the similarity drawn based on cell line gene
expression profiles and drug structure only. At least, in the
respective of recommender system method, it is more reliable
to predict the unknown drug sensitivity based on the similarity
exhibited in known drug responses. We also applied HIWCF
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method to predict the missing drug response values in GDSC
dataset. To be more specific, we found the consistent conclusions
of mutated cell lines such as EGFR/ERBB2 are more sensitive to
the drug of lapatinib. We also found that the gene expression
profiles showed exact pattern for Sunitinib sensitive and resistant
cell lines. Genes that up-regulated in Sunitinib sensitive cell
lines were subjected to repair pathways, while genes that down-
regulated in Sunitinib resistant cell lines were subjected to some
drug enhancement related pathways.

In comparison with existing drug response prediction
methods, HIWCF follows a neighbor based collaborative filtering
approach for unknown drug response prediction, which is
theoretically simple and intuitive. Matrix Factorization based
methods, such as SRMF model both cell lines and drugs with
some latent factors for unknown drug response prediction.

However, this method has its own drawbacks. First, since
HIWCF highly depends on the known drug response, the
performance highly depends on the sparseness of the response
matrix. The sparser the matrix is, the worse the performance
it gets. Secondly, the similarity of cell lines is calculated
by combining gene expression correlation coefficient and
Pearson correlation coefficient exhibited in their known drug
response. However, the similarity can also be improved by

integrating the epigenetic, epi-transcriptomic information, etc.

Furthermore, some pathway related information or other
dynamic information may also help to improve the performance.
Therefore, we can further work on some methods that aim
in sparse issue as well as multi-omics integration one in the
future.
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MicroRNAs (miRNAs) have been proved to be targeted by the small molecules recently,
which made using small molecules to target miRNAs become a possible therapy
for human diseases. Therefore, it is very meaningful to investigate the relationships
between small molecules and miRNAs, which is still yet in the newly-developing
stage. In this paper, we presented a prediction model of Graphlet Interaction based
inference for Small Molecule-MiRNA Association prediction (GISMMA) by combining
small molecule similarity network, miRNA similarity network and known small molecule-
miRNA association network. This model described the complex relationship between
two small molecules or between two miRNAs using graphlet interaction which consists
of 28 isomers. The association score between a small molecule and a miRNA was
calculated based on counting the numbers of graphlet interaction throughout the small
molecule similarity network and the miRNA similarity network, respectively. Global and
two types of local leave-one-out cross validation (LOOCV) as well as five-fold cross
validation were implemented in two datasets to evaluate GISMMA. For Dataset 1,
the AUCs are 0.9291 for global LOOCV, 0.9505, and 0.7702 for two local LOOCVs,
0.9263 ± 0.0026 for five-fold cross validation; for Dataset 2, the AUCs are 0.8203,
0.8640, 0.6591, and 0.8554 ± 0.0063, in turn. In case study for small molecules, 5-
Fluorouracil, 17β-Estradiol and 5-Aza-2′-deoxycytidine, the numbers of top 50 miRNAs
predicted by GISMMA and validated to be related to these three small molecules by
experimental literatures are in turn 30, 29, and 25. Based on the results from cross
validations and case studies, it is easy to realize the excellent performance of GISMMA.

Keywords: small molecule, microRNA, association prediction, graphlet interaction, similarity calculation

INTRODUCTION

MicroRNAs (miRNAs) are a family of small non-coding RNAs, having about 22 nucleotides in
length, which regulate gene expression at a post-transcriptional level (Ambros, 2003). The first
miRNA was discovered over 30 years ago in the Caenorhabditis elegans. Subsequently, thousands
of miRNAs have been discovered in many organisms, and there are currently 2588 annotated
miRNAs in the human genome (Kozomara and Griffiths-Jones, 2014). MiRNAs can simultaneously
regulate the expression of hundreds of genes due to the fact that their nucleotide pairing by
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complementarity is imperfect (He and Hannon, 2004). In this
manner, they play a critical role in a variety of crucial processes
such as tissue development, morphogenesis, apoptosis, signal
transduction pathways, etc., (Esquela-Kerscher and Slack, 2006;
Spizzo et al., 2009; Wang and Lee, 2009). This additionally
implicates them in an array of disease associated processes. The
development of large-expression screens has been proven useful
in identifying novel miRNAs involved in diseases, which could
potentially become an attractive therapeutic target (Monroig and
Calin, 2013; Chen et al., 2017a, 2018a,b,c; Matsui and Corey,
2017).

Regulation of miRNAs by small molecules is an efficient
mean to modulate endogenous miRNA function and to treat
miRNA-related diseases (Xia et al., 2015). Small molecules have
been thoroughly used with clinical applications for numerous
diseases (Zhang et al., 2009). However, drug discovery and
development are currently an extremely long process, which takes
approximately 10–15 years (Monroig Pdel et al., 2015). Also, drug
production results in an incredible economic burden and patients
end up having to pay exaggerated prices for their treatments
(Chen et al., 2015; Monroig Pdel et al., 2015). The use of chemical
compounds that are already FDA approved to treat a specific
disease would accelerate the process of completing toxicological
studies and clinical trials in order to apply them to other diseases.
It would shorten both money expenses and time consuming
processes.

As miRNAs have been associated with many diseases (Chen
et al., 2017b), the development of small-molecule drugs targeting
specific miRNAs seems to be a promising approach to meet
the challenge (Monroig Pdel et al., 2015). Small molecule may
modulate the expression of miRNAs by either activating or
repressing their transcription (Xia et al., 2015). Transcriptional
inhibitors were identified by completing a small molecule screen
in which a 3′ UTR complementary to miR-21 was inserted
into a luciferase mRNA reporter (Gumireddy et al., 2008). This
study identified a type of diazobenzene as miR-21 transcriptional
inhibitors (Gumireddy et al., 2008). Small molecules were also
discovered to modulate transcription of miR-122, a highly
expressed and liver-specific miRNA whose aberrant expression is
associated with hepatocellular carcinoma (Thomas and Deiters,
2013). Two small molecules that inhibit transcription and
another small molecule that promotes transcription of pri-
miR-122 were identified using a luciferase reporter system
(Thomas and Deiters, 2013). The examples above show that
miRNA expression can be altered with small molecules, providing
promise to expand miRNAs from diagnostic signatures of disease
to therapeutic targets. Therefore, the prediction of associations
between small molecules and miRNAs could promote the drug
repurposing for miRNA-related diseases. Besides, since the
regulation of miRNA expression can be caused by targeting
miRNAs directly (Zhang et al., 2010) or by targeting the relative
proteins (Lim et al., 2016), identifying the small molecule-miRNA
associations would be conductive to the drug discovery. However,
experimental methods to study the small molecular-miRNA
association are expensive and time-consuming, which makes it
urgent to develop computational approaches to provide reliable
predictions that can give some guidance to experiments.

Recently, several computational models have been proposed
to investigate the relations between small molecules and
miRNAs. For example, Jiang et al. (2012) proposed a high-
throughput method to investigate the biological connections
between small molecules and miRNAs in 23 human cancers
based on transcriptional responses, which was the first model
to systematically study the associations between bioactive small
molecules and miRNAs. They constructed a complex Small
molecule and MiRNA Network (SMirN) for each cancer and
explored the molecular and functional features for small molecule
modules, as well as miRNA modules for each cancer type. Each
module of small molecular was linked to a miRNA, and each
module of miRNA was connected with one small molecular. One
of the advantages of this method is that it does not need to know
the information of small molecule structure or miRNA structure
in advance. However, the reliability of the approach was limited
due to the small data of transcriptional response to genome-
wide miRNA perturbations. Furthermore, Meng et al. (2014)
built a bioactive Small molecule and miRNA association Network
in Alzheimer’s Disease (SmiRN-AD) through comparing the
gene expression profiles after bioactive small molecule treating
with the AD-related miRNA (ADM) regulating expressions,
to get the scores of associations between small molecules
and ADMs. Besides, the positive and negative associations
were identified to investigate the biological insights of the
SimRN-AD. Recently, Wang et al. (2016) developed another
method to identify small molecule-miRNA associations based
on their functional similarity. They searched the functional
link of each small molecule-miRNA pair by calculating Gene
Ontology enrichment after identifying differentially expressed
genes for small molecules and miRNAs. Compared with previous
models based on transcriptional responses, this method is more
repeatable by using functional associations. Additionally, Lv
et al. (2015) presented a novel computational model to predict
potential associations between small molecules and miRNAs.
They implemented the random walk with restart algorithm on
an comprehensive network, which was established by combining
small molecule similarity, miRNA similarity, as well as known
small molecule-miRNA associations. Especially, this model can
predict the novel related miRNAs for small molecules without
any known associated miRNAs. However, it has too many
adjustable parameters that need to be affirmed. Moreover, Li et al.
(2016) developed a network based framework called predictive
Small Molecule-miRNA Network-Based Inference (SMiR-NBI),
to investigate the underlying regulations of anticancer drugs
on miRNAs. This model constructed a heterogeneous network
that was composed of drugs, miRNAs and genes to conduct a
network based algorithm. It is mentionable that the accuracy
of this method is quite high even it only depended on the
network topology information. However, SMiR-NBI could not
be applied to prediction of isolated miRNAs that have no
interlinked small molecules. Besides, it failed to predict potential
miRNAs associated with small molecules that had different dose-
responses, due to lack of known data.

So far, the number of computational models is still not
satisfying for the prediction of novel associations between small
molecules and miRNAs. Moreover, there are still some limitations
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existing in the previous models. In order to predict potential
small molecule-miRNA associations more effectively and reliably,
in this paper, we presented the Graphlet Interaction based
inference for Small Molecule-MiRNA Association prediction
(GISMMA). In this model, the similarity of small molecules
and the similarity of miRNAs were combined with known
associations between small molecules and miRNAs in two
different datasets, which were labeled with Dataset 1 and Dataset
2. In Dataset 1, only a fraction of small molecules and miRNAs
were involved in known small molecule-miRNA associations,
whereas in Dataset 2 all small molecules and miRNAs were
implicated in known small molecule-miRNA associations. Based
on the measuring of graphlet interaction between any two nodes
on the network of small molecules and on the network of
miRNAs, respectively, we can compute the correlation scores
of small molecule-miRNA pairs. We have implemented leave-
one-out cross validation (LOOCV) and five-fold cross validation
to evaluate the performance of GISMMA. The AUCs of global
LOOCV are 0.9291 and 0.8203 for Dataset 1 and Dataset 2,
respectively; the AUCs of local LOOCV by ranking the small
molecules for each fixed miRNA are, respectively 0.9505 and
0.8640 for the two datasets; the AUCs of local LOOCV by ranking
the miRNAs for each fixed small molecule are, respectively
0.7702 and 0.6591 for the two datasets. And the average
AUCs and standard deviations of five-fold cross validations are
0.9263 ± 0.0026 and 0.8088 ± 0.0044 for the two datasets,
respectively. In case study, small molecule was set as a new one by
turning all known related miRNAs into unknown ones. GISMMA
was then applied to predicting latent related miRNAs for each
small molecule based on the Dataset 1. For the small molecules,
5-Fluorouracil, 17β-Estradiol and 5-Aza-2′-deoxycytidine, there
were in turn 30, 29, and 25 out of top 50 predicted miRNAs, which
were validated to be associated with these three small molecules
by experimental literatures, respectively. The results both in cross
validations and case studies have suggested that GISMMA is a
powerful and reliable model to predict novel associations between
small molecules and miRNAs.

MATERIALS AND METHODS

Small Molecule-miRNA Associations
In this paper, we obtained the known small molecule-miRNA
associations from SM2miR (Version 1) (Liu et al., 2013). The
total number of known associations is 664. For comparison of
model performance on different datasets, we have constructed
two datasets. Dataset 1 consists of 831 small molecules extracted
and integrated from SM2miR, DrugBank (Knox et al., 2011)
and PubChem (Wang et al., 2009), and 541 miRNAs that were
collected from SM2miR, HMDD (Lu et al., 2008), miR2Disease
(Jiang et al., 2009) and PhenomiR (Jiang et al., 2009; Ruepp
et al., 2010). In Dataset 1, there are only 39 small molecules and
286 miRNAs implicated in the 664 known associations, while
792 small molecules and 255 miRNAs are completely new ones
without any known associations. Dataset 2 is only composed of
those 39 small molecules and 286 miRNAs, which are involved in
the known associations. Based on the known data, an adjacency

matrixAwas constructed to represent the relations between small
molecules and miRNAs, in which A(i, j) was set to be 1 if there is
an association between small molecule s(i) and miRNA m(j), 0
otherwise.

Small Molecule Similarity
In this paper, according to the method proposed in (Lv et al.,
2015), the small molecule similarity was calculated by integrating
four usual small molecule similarities which were side effect
based similarity that was computed by Jaccard score using small
molecule side effect dataset (Gottlieb et al., 2011), functional
consistency based similarity that was obtained by comparing the
function of small molecule target genes (Lv et al., 2012), chemical
structure based similarity that was calculated with the method of
chemical structure comparison between any two small molecules
(Hattori et al., 2003), and indication phenotype based similarity
that was constructed through identifying phenotype similarity
between small molecule related diseases (Gottlieb et al., 2011).
Therefore, the integrated similarity of small molecules can be
computed with the following formula:

SS =
β1SDS + β2STS + β3SCS + β4SSS∑4

i=1 βi
(1)

where, SDS, STS, SCS, and SSS denote the four different similarity
types, respectively, i.e., indication phenotype based similarity,
functional consistency based similarity, chemical structure based
similarity and side effect based similarity, and βi (i= 1, 2, 3, 4) are
the weighs used to balance the different similarity contributions,
whose default values were all set as 1.

MiRNA Similarity
The miRNA similarity we used in this paper was established
using the method in (Lv et al., 2015), by combining functional
consistency based similarity that was calculated by comparing the
function of miRNA target genes (Lv et al., 2012) and indication
phenotype based similarity that was computed by measuring
phenotype similarity between diseases associated with miRNAs
(Gottlieb et al., 2011). Similarly, to reduce the bias of each
similarity measurement, the integrated similarity of miRNAs was
defined as follows:

SM =
α1SDM + α2STM∑2

j=1 αj
(2)

where, SDM is the indication phenotype based similarity and
STM represents the functional consistency based similarity, and
αj (j= 1, 2) are the weighs of each similarity measurement, which
were both set as 1.

GISMMA
In this study, by integrating small molecule similarity, miRNA
similarity and known associations between small molecules
and miRNAs, we developed a graphlet interaction based
method to predict the potential associations between small
molecules and miRNAs, which is motivated by the study of
Wang et al. (2014). Prediction code of our model is available
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FIGURE 1 | Flowchart of GISMMA model based on graphlet interaction for the prediction of potential small molecule-miRNA associations.

at: https://github.com/AnnaGuan/GISMMA/tree/AnnaGuan-
patch-1. The concept of graphlet interaction is traced to the
definition in (Wang et al., 2014), which describes the relationship
between any two nodes in a graphlet that is a type of subgraph in
a large network. As was done in (Wang et al., 2014), in GISMMA
only those graphlets that have 1 to 4 nodes were used, based on
which 28 graphlet interaction isomers were constructed, denoted
by labels I1 to I28 in Figure 1. The graphlet interaction isomer
depends on the positions of the two involved nodes, which
means that the graphlet interaction between two nodes have two
different set of isomers. Through counting the number of each
isomer, we can represent the graphlet interaction between any

two nodes in a network with a vector that contains 28 numbers
(Przulj, 2007; Wang et al., 2014).

We have created a network NS to represent the small
molecule similarity and a network NM to represent the miRNA
similarity, where each node in the network denotes a small
molecule or a miRNA. The edge with similarity value as
its weight exists to link any two nodes that have similarity.
The associations between small molecules and miRNAs were
investigated in the two similarity networks NS and NM,
respectively.

In the miRNA network NM, the number of isomer Ik for
graphlet interaction from node m(i) to node m(j) can be
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calculated as follows (Wang et al., 2014):

Nij (Ik) =
∑

l∈V(NM)

∑
m∈V(NM)

bijbilbjlbimbjmblm (3)

where V(NM) denotes the node set of all nodes in network NM,
l, and m are two nodes different with node m(i) and m(j), and b is
defined as:

bst =
{

ast s and t has a link in Ik
1− ast s and t has no link in Ik

(4)

where, ast is the edge weight assigned with the similarity value of
m(s) and m(t). Especially, ast is 0 when nodes m(s) and m(t) have
no connection. Then we normalized the graphlet interaction as
follows:

norm
(
Nij (Ik)

)
=

Nij (Ik)∑
m∈M Nim (Ik)

(5)

where M contains all other nodes but m(i). Based on the
normalized form in equation (5), we can compute the association
score of a small molecule-miRNA pair as follows:

Sm
(
i, j
)
=

∑28

k=1
vk
∑
p∈P(i)

norm
(
Npj (Ik)

)
(6)

where i denotes a small molecule s(i) and j denotes a miRNA
m(j), vk is the weight of the kth isomer, P(i) is the set of miRNAs
with known associations with small molecule s(i). By defining the
summation of norm in equation (6) as following:

Xm
(
k, j
)
=

∑
p∈P(i)

norm
(
Npj (Ik)

)
(7)

we can modify equation (6) into the matrix form as following:

Sm = XT
mVm (8)

The weight coefficientsVm can be learnt from known associations
by performing a simple linear regression (Wang et al., 2014),
which is given as following:

Vm =
(
XmXT

m

)−1
XmSm (9)

We computed the number of graphlet interaction isomer between
two small molecules in the similar way as described in equations
(3–5). Then the association score between small molecule s(i) and
miRNA m(j) can be calculated in the small molecule network NS
as follows:

Ss
(
i, j
)
=

∑28

k=1
vk

∑
q∈Q(j)

norm
(
Nqi (Ik)

)
(10)

where Q(j) is the set of small molecules that have known
associations with miRNA m(j). Also, the term of summation of
norm in equation (10) can be defined with the matrix:

Xs
(
k, j
)
=

∑
q∈Q(j)

norm
(
Nqi (Ik)

)
(11)

Thus equation (10) was rewritten as:SS = XT
SVS, and the

undetermined matrix Vs can be obtained by training the model
with known association scores:

Vs =
(
XsXT

s

)−1
XsSs (12)

Finally, we calculated the association score between small
molecule s(i) and miRNA m(j) by combining the scores from NM
and NS in a simple average form as following:

S
(
i, j
)
=

Sm
(
i, j
)
+ Ss

(
i, j
)

2
(13)

RESULTS

Performance Evaluation
In this work, two commonly used methods, LOOCV and
five-fold cross validation, were implemented to evaluate the
performance of GISMMA based on Dataset 1 and Dataset 2,
respectively. The LOOCV has three different types including
global LOOCV, local LOOCV of ranking small molecules for
fixed miRNA and local LOOCV of ranking miRNAs for fixed
small molecule. Each confirmed association we collected was
taken as the test sample one by one and the rest of known
associations were considered as the training samples in LOOCV.
Candidate samples in global LOOCV consist of all the small
molecule-miRNA pairs that have no known associations. In the
case of local, we only consider those small molecules that do
not relate to the fixed miRNA or those miRNAs unconnected
to the fixed small molecule in the test sample as candidates.
The scores as association probabilities were computed using
the GISMMA method for both test sample and all candidate
samples. Then we ranked them for the corresponding type
of LOOCV. The five-fold cross validation was performed in
the following steps. Firstly, all the known small molecule-
miRNA associations were randomly split into five parts with
equal size. Secondly, the five parts take turns to act as the
test sample set one after another and the other four parts
as the training sample sets; similarly, all small molecule-
miRNA pairs that have no known associations play the roles
of candidate samples. Thirdly, the test samples as well as the
candidate samples were endowed with association scores by
GISMMA. Finally, each test sample was picked out in turn
to be compared with candidate samples according to their
scores. The model was considered to be successfully predict
the test sample only when its rank exceeded the given rank
threshold.

Based on the ranking, the receiver operating characteristic
(ROC) curves were used to illustrate the results of the three
types of LOOCV described above, in which the abscissa axis
is true positive rate (TPR, sensitivity) and the ordinate axis
represents false positive rate (FPR, 1-specificity) for different
thresholds given in advance. The sensitivity means the ratio
that the positive samples rank above the given threshold,
while the specificity is defined as the percentage of candidate
samples whose ranks are below the set threshold. The area
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FIGURE 2 | Performance of GISMMA was compared with SMiR-NBI in terms of ROC curve and AUC of global LOOCV for Dataset 1 (left) and Dataset 2 (right). As is
shown, GISMMA achieves AUCs of 0.9291 and 0.8203 for Dataset 1 and Dataset 2, respectively, significantly superior to the previous model SMiR-NBI.

under the ROC curve (AUC) was correspondingly calculated
to estimate the reliability of the GISMMA. When the model
correctly predicts all test samples, AUC = 1; but if the model
has a random prediction, AUC = 0.5. To make comparison
with previous method, we implemented SMiR-NBI (Li et al.,
2016) for global and two types of local LOOCVs, 5-fold cross
validation based on the same datasets. The global AUCs of
GISMMA for Dataset 1 and Dataset 2 are 0.9291 and 0.8203,
respectively, which are shown in Figure 2 in comparison with
previous model SMiR-NBI whose results are 0.8843 and 0.7264,
respectively. In the case of local LOOCV of ranking small
molecules for fixed miRNA, the AUCs of GISMMA for Dataset
1 and Dataset 2 are 0.9505 and 0.8640, respectively, compared
with 0.8837 and 0.7846 of SMiR-NBI, which can be seen in
Figure 3. The results of local LOOCV of ranking miRNAs
for fixed small molecule are shown in Figure 4, from which
we can see that the AUCs of GISMMA and SMiR-NBI are
0.7702, 0.7497 for Dataset 1, and 0.6591, 0.6100 for Dataset 2,
respectively. Besides, in five-fold cross validation, the average
AUCs with standard deviations of GISMMA and SMiR-NBI
are 0.9263 ± 0.0026, 0.8554 ± 0.0063 for Dataset 1, and
0.8088 ± 0.0044, 0.7104 ± 0.0087 for Dataset 2. The Table 1
lists the comparison of GISMMA and SMiR-NBI for all AUC
results of the four types of cross validations on two datasets.
We can make a conclusion from the comparisons that the novel
method proposed in this work is more reliable and more effective
in predicting potential associations between small molecules and
miRNAs.

Case Study
Based on the known database and published references in
PubMed database, we studied three common small molecules to
further evaluate the predictive ability of GISMMA, in which the
small molecule in study was set as a new one by taking away its
known associations. We ulteriorly observed the number of the
experimentally verified miRNAs in the top 50 ones predicted to
be related to the three small molecules, respectively.

The small molecular 5-Fluorouracil (5-FU) is a widely used
chemotherapeutic drug in colorectal cancer (Windle et al.,
1987). For a long time, the 5-FU-induced cytotoxic effects
were thought to result exclusively from its impact on DNA
metabolism (Andreuccetti et al., 1996; Airley, 2009). However,
several evidences indicated that the cytotoxic effect of 5-FU also
results from its capacity to alter RNA metabolism and mRNA
expression (Longley et al., 2003). Exposure to 5-FU promotes a
profound transcriptional reprogramming leading to modification
of mRNA and miRNAs expression profiles that contributes in
modifying cell fate (Hernandez-Vargas et al., 2006; Rossi et al.,
2007; Shah et al., 2011). After implementing GISMMA, we got
the total ranking of potential miRNAs associated with 5-FU.
As the result shown, among the top 10 and 50 potential 5-FU-
related miRNAs, there were 8 and 30 miRNAs confirmed by
experiments, respectively (See Table 2). For instance, miR-21
and miR-23a were predicted as the first and fifth candidates for
5-FU, respectively, which were significantly down regulated in
comparison between 5-FU treated and control samples in miRNA
microarray analysis of 5-FU treated MCF-7 cells (Shah et al.,
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FIGURE 3 | Performance of GISMMA was compared with SMiR-NBI in terms of ROC curve and AUC of local LOOCV of ranking small molecules for fixed miRNA on
Dataset 1 (left) and Dataset 2 (right). As is shown, GISMMA achieves AUCs of 0.9505 and 0.8640 for Dataset 1 and Dataset 2, respectively, significantly superior to
the previous model SMiR-NBI.

FIGURE 4 | Performance of GISMMA was compared with SMiR-NBI in terms of ROC curve and AUC of local LOOCV of ranking miRNAs for fixed small molecule on
Dataset 1 (left) and Dataset 2 (right). As is shown, GISMMA achieves AUCs of 0.7702 and 0.6591 for Dataset 1 and Dataset 2, respectively, significantly superior to
the previous model SMiR-NBI.

2011). Besides, miR-24-1, the third candidate in the ranking list,
showed a significantly down regulation in HCT-8 colon cancer
cell after exposure to 5-FU (Zhou et al., 2010). In addition, MiR-
27b that ranked the fourth in the prediction list of 5-FU was

found to be consistently up regulated in human colon cancer cells
HC.21 following exposure to 5-FU in vitro (Rossi et al., 2007).

The small molecular 17β-Estradiol (E2) is the principal
intracellular human estrogen that exerts important effects on
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TABLE 1 | The comparison results between GISMMA and SMiR-NBI on AUC values of four cross validations based on two datasets.

DATASET MODEL GLOBAL LOOCV LOCAL LOOCV (fix miRNA) LOCAL LOOCV (fix SM) 5-FOLD CV

Dataset 1 GISMMA 0.9291 0.9505 0.7702 0.9263 ± 0.0026

SMiR-NBI 0.8843 0.8837 0.7497 0.8554 ± 0.0063

Dataset 2 GISMMA 0.8203 0.8640 0.6591 0.8088 ± 0.0044

SMiR-NBI 0.7264 0.7846 0.6100 0.7104 ± 0.0087

the reproductive as well as many other organ systems in both
men and women (Simpson and Santen, 2015). The analogs of
estradiol exhibit significant anticancer activity against human
breast cancer cell lines (Sathish Kumar et al., 2014). Estrogens
have associations with cancer in target tissues, which is because
they have a phenolic ring structure in common with the
carcinogenic hydrocarbons (Ryan, 1982). After implementing
GISMMA, we got the total ranking of the E2-associated miRNAs.
As the result shown, among the top 10 and 50 potential E2-related
miRNAs, there were 5 and 29 miRNAs confirmed by experiments,
respectively (See Table 3). For example, miR-21, miR-27b, and
miR-23a dominated in turn the first, fourth, and fifth places of
the ranking list predicted for E2, which were all down regulated
after treatment of MCF-7 cells with E2 (Bhat-Nakshatri et al.,
2009; Tilghman et al., 2012). Besides, E2 showed a capacity to

TABLE 2 | Top 50 miRNAs associated with 5-Fluorouracil were predicted by
GISMMA based on Dataset 1.

miRNA Evidence miRNA Evidence

hsa-mir-21 26198104 hsa-mir-22 25449431

hsa-mir-324 unconfirmed hsa-mir-409 unconfirmed

hsa-mir-24-1 26198104 hsa-mir-337 unconfirmed

hsa-mir-27b 26198104 hsa-let-7a-3 26198104

hsa-mir-23a 26198104 hsa-let-7a-2 26198104

hsa-mir-638 26198104 hsa-mir-155 28347920

hsa-mir-27a 26198104 hsa-mir-181b-2 unconfirmed

hsa-let-7b 25789066 hsa-mir-181b-1 unconfirmed

hsa-mir-181a-1 unconfirmed hsa-mir-15b 26198104

hsa-mir-126 26062749 hsa-let-7i unconfirmed

hsa-mir-125b-2 unconfirmed hsa-mir-320a 26198104

hsa-mir-125b-1 unconfirmed hsa-mir-26a-2 unconfirmed

hsa-mir-124-3 unconfirmed hsa-mir-328 unconfirmed

hsa-mir-124-2 unconfirmed hsa-mir-16-2 26198104

hsa-mir-124-1 unconfirmed hsa-let-7e 26198104

hsa-let-7a-1 26198104 hsa-mir-34b unconfirmed

hsa-mir-181a-2 24462870 hsa-mir-145 24447928

hsa-mir-24-2 26198104 hsa-mir-200b 26198104

hsa-mir-17 26198104 hsa-let-7c 25951903

hsa-mir-26a-1 unconfirmed hsa-mir-874 27221209

hsa-mir-16-1 26198104 hsa-mir-650 unconfirmed

hsa-mir-518c unconfirmed hsa-mir-501 26198104

hsa-mir-99b unconfirmed hsa-mir-500a unconfirmed

hsa-mir-18a 26198104 hsa-mir-1226 26198104

hsa-mir-663a 26198104 hsa-mir-200c 26198104

The top 1-25 miRNAs are shown in the first column while the top 26–50 in the
second. As a result, 8 and 30 out of top 10 and top 50 were confirmed by the
known experimental literatures, respectively.

down regulate the expression level of miR-21 in breast cancer cells
(Selcuklu et al., 2012).

The small molecular 5-Aza-2′-deoxycytidine (5-Aza-CdR) is a
nucleoside analog inhibitor of DNA methyltransferase (DNMT).
It has been used to reverse methylation and reactivate the
expression of silenced genes (Patra and Bettuzzi, 2009). 5-Aza-
CdR is able to suppress the growth of various tumors in vitro,
animal models, and clinical trials including prostate cancer
(Hurtubise and Momparler, 2004; Issa et al., 2004; McCabe et al.,
2006). We performed GISMMA on 5-Aza-CdR, and got the total
ranking of the predicted miRNAs. As the result shown, among
the top 10 and 50 potential 5-Aza-CdR related miRNAs, there
were 7 and 25 miRNA-5-Aza-CdR associations confirmed by
experiments (See Table 4). For example, in the ranking list of
miRNAs predicted for 5-Aza-CdR, miR-21, and miR-27b were

TABLE 3 | Top 50 miRNAs associated with 17β-Estradiol were predicted by
GISMMA based on Dataset 1.

miRNA Evidence miRNA Evidence

hsa-mir-21 26198104 hsa-mir-222 24601884

hsa-mir-324 unconfirmed hsa-mir-31 23143558

hsa-mir-24-1 unconfirmed hsa-mir-125a 21914226

hsa-mir-27b 26198104 hsa-mir-663a 26198104

hsa-mir-23a 26198104 hsa-mir-22 24715036

hsa-mir-638 26198104 hsa-mir-132 26282993

hsa-mir-27a 26198104 hsa-mir-501 unconfirmed

hsa-mir-181a-1 unconfirmed hsa-mir-1226 unconfirmed

hsa-mir-24-2 unconfirmed hsa-mir-328 unconfirmed

hsa-mir-125b-2 unconfirmed hsa-mir-155 23568502

hsa-mir-125b-1 unconfirmed hsa-let-7a-3 26198104

hsa-mir-16-1 unconfirmed hsa-let-7a-2 26198104

hsa-mir-124-3 26198104 hsa-mir-181b-2 unconfirmed

hsa-mir-124-2 26198104 hsa-mir-181b-1 unconfirmed

hsa-mir-124-1 26198104 hsa-mir-26a-2 unconfirmed

hsa-mir-18a 24245576 hsa-mir-15b 26198104

hsa-let-7b 26198104 hsa-mir-20a 21914226

hsa-mir-181a-2 unconfirmed hsa-mir-29a 22334722

hsa-let-7a-1 26198104 hsa-mir-19a unconfirmed

hsa-mir-17 26198104 hsa-mir-200b 26198104

hsa-mir-126 26198104 hsa-mir-221 21057537

hsa-mir-26a-1 unconfirmed hsa-mir-518c 26198104

hsa-mir-320a 27965096 hsa-mir-194-2 unconfirmed

hsa-mir-16-2 unconfirmed hsa-mir-181d unconfirmed

hsa-mir-99b unconfirmed hsa-mir-197 unconfirmed

The top 1–25 miRNAs are shown in the first column while the top 26–50 in the
second. As a result, 5 and 29 out of top 10 and top 50 were confirmed by the
known databases or experimental literatures, respectively.
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TABLE 4 | Top 50 miRNAs associated with 5-Aza-2′-deoxycytidine were
predicted by GISMMA based on Dataset 1.

miRNA Evidence miRNA Evidence

hsa-mir-21 26198104 hsa-mir-518c unconfirmed

hsa-mir-324 unconfirmed hsa-mir-200b 23626803

hsa-mir-23a unconfirmed hsa-let-7d 26802971

hsa-mir-24-1 26198104 hsa-mir-501 unconfirmed

hsa-mir-27b 26198104 hsa-mir-1226 unconfirmed

hsa-mir-27a 26198104 hsa-mir-200c 23626803

hsa-mir-638 26198104 hsa-mir-99b unconfirmed

hsa-let-7a-1 unconfirmed hsa-mir-181a-2 26198104

hsa-mir-124-3 23200812 hsa-let-7e 22053057

hsa-mir-124-2 23200812 hsa-mir-132 unconfirmed

hsa-mir-124-1 unconfirmed hsa-mir-203a 26577858

hsa-let-7b 26708866 hsa-mir-409 unconfirmed

hsa-mir-18a unconfirmed hsa-mir-337 unconfirmed

hsa-mir-24-2 26198104 hsa-mir-1915 unconfirmed

hsa-mir-17 26198104 hsa-mir-128-2 unconfirmed

hsa-mir-181a-1 26198104 hsa-mir-128-1 unconfirmed

hsa-mir-663a unconfirmed hsa-mir-320a 26198104

hsa-let-7a-3 26227220 hsa-mir-181b-2 unconfirmed

hsa-let-7a-2 unconfirmed hsa-mir-181b-1 unconfirmed

hsa-mir-126 26198104 hsa-mir-222 unconfirmed

hsa-mir-26a-1 unconfirmed hsa-mir-26a-2 unconfirmed

hsa-mir-15b unconfirmed hsa-mir-328 unconfirmed

hsa-mir-16-1 26198104 hsa-mir-16-2 26198104

hsa-mir-125b-2 26198104 hsa-mir-29a 26198104

hsa-mir-125b-1 26198104 hsa-let-7c unconfirmed

The top 1–25 miRNAs are shown in the first column while the top 26–50 in the
second. As a result, 7 and 25 out of top 10 and top 50 were confirmed by the
known databases or experimental literatures, respectively.

ranked in the first and fifth position, respectively, both of which
showed significant down regulation after 5-Aza-CdR treatment
in breast cancer cells (Radpour et al., 2011). Moreover, miR-24-1
was the fourth miRNA predicted to be associated with 5-Aza-
CdR. Microarray analysis showed miR-24-1 were up regulated
upon 5-Aza-CdR therapy in pancreatic cancer PANC-1 cells
compared to control cells (Lee et al., 2009).

The whole prediction list of all candidate small molecule-
miRNA pairs in Dataset 1 was provided in Supplementary
Table 1, which was ranked in a descending order according to
the association scores resulted from GISMMA. It is hoped that
the ranked list can be useful in guiding biological experiments,
and can be verified by more experimental results in the future.

DISCUSSION

This paper presented a graphlet interaction based method
GISMMA to infer the potential associations between small
molecules and miRNAs by combining small molecule similarity,
miRNA similarity and known associations between small
molecules and miRNAs. In GISMMA, we used a similarity
network to represent the small molecules and used another
similarity network to represent the miRNAs. An edge with a

weight of the similarity value between two nodes was ploted when
there was similarity between the two nodes, otherwise not. We
utilized graphlet interaction to measure the complex relationship
between two nodes in the network, where the graphlet is defined
as a type of non-isomorphic subgraph (Wang et al., 2014).
Then, we counted each graphlet interaction isomer in a special
pattern from the node having known associations to the node
which does not have known associations. Therefore, we obtained
a vector to describe the graphlet interaction between the two
nodes. The correlation score between a small molecule and
a miRNA can be computed through summing the weighted
graphlet interaction isomers, where the weighs can be learnt
from the known associations. The performance of GISMMA
on predicting novel small molecule-miRNA associations was
evaluated with four validation approaches that were global and
two types of local LOOCV, as well as five-fold cross validation.
The cross validation results were compared between GISMMA
and SMiR-NBI, which showed the superior performance of
GISMMA over SMiR-NBI. Besides, the ROC curves of SMiR-
NBI are some unusual in Figures 2, 3, which may be attribute
to that SMiR-NBI could not predict associated miRNAs (small
molecules) for new small molecules (miRNAs). When ranking
the test small molecule-miRNA pair with those candidate pairs
for SMiR-NBI, we assigned fixed rank to those pairs that contain
new small molecules (miRNAs) with an average number, which
may cause the presence of line segments in the ROC curve. We
have implemented cross validations on two datasets with different
sizes. The results showed that GISMMA performed better on
Dataset 1 than on Dataset 2, which could be resulted from two
factors. The one is the more similarity information in Dataset 1.
The other is that Dataset 1 contains those small molecules and
miRNAs without any known associations, which often get lower
association scores and lower rankings than the test sample. This
could also make the AUCs higher. And we further executed case
study for three small molecules using Dataset 1. The numbers of
miRNAs that were validated to be related to these three small
molecules by experimental literatures are in turn 30, 29 and 25
in top 50 miRNAs predicted by GISMMA. Via cross validations
together with case study, we can see that GISMMA is well-
performed and reliable in predicting new associations between
small molecules and miRNAs. Furthermore, a list of all predicted
small molecule-miRNA associations was provided, which would
be favorable for the development of miRNA-targeted therapy
and drug reposition. In detail, for a specific small molecule,
we focused on the predicted miRNAs that are most possibly
associated with this small molecule. These miRNAs might be
related to some diseases that were not confirmed to be treated by
this small molecule. Through regulating the expressions of these
miRNAs, this small molecule could be used for the treatment of
these diseases. Therefore, we believed that the prediction results
of this work could offer some guidance for the experiment of drug
reposition to some extent.

The outstanding performance of GISMMA can be attributed
to several factors. Firstly, we mapped the similarity between small
molecules and similarity between miRNAs into two networks,
in which the similarity values were fully exploited to investigate
the complex relationship between two nodes by measuring their
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graphlet interaction. Secondly, in GISMMA, not only direct but
also indirect links were considered between the nodes in the
counting of graphlet interaction isomers. Finally, the GISMMA
is a bipartite method which combines miRNA network with
small molecule network. It can be used to predict miRNAs
associated with new small molecules without any known related
miRNAs, as well as to predict small molecules associated with new
miRNAs without any known related small molecules, because
it computes the association score by combining the result
calculated in the small molecule network with that in the miRNA
network.

However, GISMMA still has some limitations. For example,
the lack of the known association data, especially the presence
of many new small molecules or new miRNAs that have
no known associations, affected the performance to a large
extent. It can be expected that the model will obtain better
performance when more experimental datasets are produced in
the future. Besides, the simple algorithm of averaging the scores
from two networks to compute the final association score may
cause bias to those pairs that can be predicted only in one
network. Furthermore, GISMMA considered 4 nodes at most
within a graphlet, which hindered it to contain more similarity
information from more distant nodes. Finally, this model cannot
be applied to the prediction of the association in which the
small molecule and the miRNA are both new. We anticipate that
more network-based methods could be developed to improve
the prediction of novel small molecule-miRNA association. For
example, Petri nets based models have been proved to be a
useful tool for many prediction problems, inspired by the work
in (Russo et al., 2017), we could construct algorithm using

Petri nets for the inference of potential small molecule-miRNA
association.
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One of the most challenging puzzles in drug discovery is the identification and

characterization of candidate drug of well-balanced profile between efficacy and safety.

So far, extensive efforts have been made to evaluate this balance by estimating the

quantitative structure–therapeutic relationship and exploring target profile of adverse

drug reaction. Particularly, the therapeutic index (TI) has emerged as a key indicator

illustrating this delicate balance, and a clinically successful agent requires a sufficient TI

suitable for it corresponding indication. However, the TI information are largely unknown

for most drugs, and the mechanism underlying the drugs with narrow TI (NTI drugs)

is still elusive. In this study, the collective effects of human protein–protein interaction

(PPI) network and biological system profile on the drugs’ efficacy–safety balance were

systematically evaluated. First, a comprehensive literature review of the FDA approved

drugs confirmed their NTI status. Second, a popular feature selection algorithm based

on artificial intelligence (AI) was adopted to identify key factors differencing the target

mechanism between NTI and non-NTI drugs. Finally, this work revealed that the targets of

NTI drugs were highly centralized and connected in human PPI network, and the number

of similarity proteins and affiliated signaling pathways of the corresponding targets was

much higher than those of non-NTI drugs. These findings together with the newly

discovered features or feature groups clarified the key factors indicating drug’s narrow TI,

and could thus provide a novel direction for determining the delicate drug efficacy-safety

balance.

Keywords: drug efficacy-safety balance, therapeutic index, artificial intelligence, protein-protein interaction

network, biological system profile

INTRODUCTION

One of the most challenging puzzles in drug discovery is the identification and characterization
of candidate drugs of well-balanced profile between efficacy and safety (Muller and Milton, 2012;
Li et al., 2018; Xue et al., 2018b). In other words, apart from extensive effort made to optimize
drug affinity and selectivity (Wang et al., 2017a; Zheng et al., 2017), considerable investments
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should be devoted to detect adverse drug reactions (Huang
et al., 2018) and reveal drug likeness (Benet et al., 2016; Yang
et al., 2018). So far, the identification of drug toxicities in
preclinical or clinical developments has been accelerated by a
variety of technological advances (Badders et al., 2018) including
biomarker-guided safety assessment (Muller and Dieterle, 2009;
Rzepecki et al., 2018), OMICs techniques (Iloro et al., 2013;
Fu J. et al., 2018), breakthrough in computing capacity and
bioinformatics method (Zhu et al., 2011; Tao et al., 2015; Chen
et al., 2016), and so on. To measure the level of correlation
between drug maximum efficacy and confined safety in given
disorder, the therapeutic index (TI typically considered as the
ratio of the highest non-toxic drug exposure to the exposure
producing the desired efficacy) has emerged as a key indicator
illustrating that delicate balance (Zaykov et al., 2016). The TI
is essential for life-threatening diseases (such as cardiovascular
and oncological disease) with limited treatment options (Zhu
et al., 2008b; Kimmelman and Federico, 2017). Particularly, tiny
variation in the dosage of drugs with narrow TI (NTI drugs, TI
≤3) may result in therapeutic failure or serious adverse drug
reactions (Tao et al., 2014; Ewer and Ewer, 2015; Zheng et al.,
2016), and is only acceptable for the treatment of life-threatening
diseases (Yu et al., 2015). Therefore, successful therapeutic
agents require sufficient TI (NNTI drugs, TI >3) suitable for it
corresponding indication (Abernethy et al., 2011).

However, TI characterization is too complicated to be
achieved for many drugs (Yu et al., 2015), and TI is highly
susceptible to the subject variations of drug responses (Jiang
et al., 2015; Yang et al., 2017). To enhance the determination
and interpretation of TI, a variety of in-silico studies have
been performed to reveal the mechanism underlying NTI drugs
(Muller and Milton, 2012). In particular, the prediction models
based on quantitative structure–activity (QSAR), structure–
toxicity (QSTR), and structure–index (QSIR) relationship have
been constructed to enable early assessment of TI (Zhu H. et al.,
2008; Rodgers et al., 2010; Zhu et al., 2012a; Chen et al., 2016;
Fu T. et al., 2018). These models are primarily constructed and
exert their prediction capacity based on structures of the studied
drugs, which thus demonstrate great limitations in coping with
TI’s vulnerability to the subject variation of drug responses
(Jiang et al., 2015). Compared with the approaches based on
drug structure, target-based approach turns out to be the one
of enhanced effectiveness for characterizing confined toxicity
behind the drug efficacy (Muller and Milton, 2012; Huang et al.,
2018), since the population variation of drug target is capable of
reflecting, to some extent, the subject variations of drug responses
(Fujimoto et al., 2014; Jiang et al., 2015). But target-basedmethod
is sophisticated due to the involvement of target in complex
protein–protein interaction (PPI) network (Rao et al., 2011; Li
et al., 2016b; Xu et al., 2016; Wang et al., 2017b) and the necessity
of considering target biological system profiles (Zhu F. et al.,
2009; Xue et al., 2016).

So far, the PPI network properties (Ragusa et al., 2010; Guo
et al., 2018) and biological system profiles (Zheng et al., 2006)
have been adopted to analyze the drug likeness of candidate
agents. On one hand, the target–protein interaction network has
been constructed and the corresponding network features can be

calculated for discovering the differential properties indicating
disease status (Ragusa et al., 2010) and identifying candidate drug
targets for a given indication (Guo et al., 2018; Xue et al., 2018a).
On the other hand, the druggability of candidate target is found
significantly determined by a variety of biological system profiles,
which include the number of target affiliated signaling pathways
(Yang et al., 2016), the number of similarity proteins outside
target’s protein family (Zheng et al., 2006), the number of human
tissues distributed by the studied target (Zhu F. et al., 2009),
and the differential level of target expression between patient
and healthy individual (Ernst et al., 2017; Li et al., 2018). Since
the underlying theories of network- and biological system-based
approaches are distinct from each other (Guo et al., 2018; Li et al.,
2018), it is essential to simultaneously consider these two types
of properties for understanding drug likeness. However, these
properties have not yet been collectively considered in TI-related
studies, and the mechanism underlying drugs’ narrow TI is still
elusive.

In this study, a comprehensive analysis on the network
features and biological system profiles of the primary therapeutic
targets of all FDA approved drugs was conducted, and various
features differentiating drugs of narrow TI (NTI drugs) from
those of sufficient TI (NNTI drugs) were identified. First, due
to the limited information of both NTI and NNTI drugs, a
systematic literature review was conducted to collect the TI data
for all approved drugs. Then, the primary therapeutic targets of
these drugs were classified into four groups based on collected TI
data. These four target groups include (a) targets of NTI drugs,
(b) targets of both NTI and NNTI drugs, (c) targets of drugs
without reported TI, and (d) targets of NNTI drugs. Third, a
comparative analysis between target group (a) and (d) identified
several key features able to differentiate two groups, and further
study revealed three feature groups indicating the mechanisms
underlying NTI drugs. In summary, these findings together with
the newly discovered features or feature groups clarified key
factors indicating drug’s narrow TI, which gave a new direction
for determining the delicate balance between drugs’ maximum
efficacy and confined safety.

MATERIALS AND METHODS

Systematic Collection of Drugs and Their
Corresponding Targets and TI Data
The TI data of FDA approved drugs were obtained by four
steps. First, FDA approved drugs were collected from the official
website of FDA (Drugs@FDA), and their corresponding diseases
were carefully confirmed. In total, 1,762 drugs were collected.
Second, the primary therapeutic targets of these drugs were
identified from the TTD database (https://db.idrblab.org/ttd/;
Li et al., 2018), and 418 primary therapeutic targets of these
1,762 drugs were discovered (detail information was provided
in the following paragraphs). Third, TI data of these drugs were
systematically collected by a comprehensive literature review.
Particularly, various keyword combinations were searched in
PubMed and other academic resources, which included “drug
name + therapeutic index,” “drug name + therapeutic window,”

Frontiers in Pharmacology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 124580

https://db.idrblab.org/ttd/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Li et al. Determining the Drug Efficacy-Safety Balance

“drug name + critical dose,” “drug name + therapeutic ranges,”
and “drug name + therapeutic ratio.” As a result, 161 NTI
and 29 NNTI drugs confirmed by the clinical evaluations
or experiments were identified, which aimed at 60 and 28
human targets, respectively. Supplementary Table S1 provided
a full list of 161 NTI and 29 NNTI drugs together with
their approved disease indication and corresponding targets.
To the best of our knowledge, it is the first comprehensive
literature review on the TI data of all drugs approved by
FDA and Supplementary Table S1 provided the most completed
information of the FDA approved drugs with available TI data.
Moreover, the primary therapeutic targets of all FDA approved
drugs were classified into four groups based on their TI: (a)
20 targets of NTI drugs, (b) 40 targets of both NTI and
NNTI drugs, (c) 339 targets of drugs without reported TI,
and (d) 19 targets of NNTI drugs. Moreover, among those
drugs listed in Supplementary Table S1, four multi-target drugs
were found with NTI data available, which included regorafenib
(hepatocellular and colorectal cancer), sorafenib (renal cell and
hepatocellular carcinoma), sunitinib (gastrointestinal cancer),
and vandetanib (medullary thyroid cancer). All these drugs are
multi-kinases inhibitors for the treatment of cancer.

Identification of the Primary Therapeutic
Target(S) of FDA Approved Drugs
The primary therapeutic target of each FDA approved drug
was strictly determined by considering (1) the experimentally
determined potency of drugs against their primary target or
targets (Zhu et al., 2010), (2) the observed potency or effects of
drugs against disease models (cell lines, ex-vivo, in-vivo models)
linking to their primary drug targets (Zhu et al., 2012b), and (3)
the observed effect of target knockout, knockdown, transgenetic,
RNA interference, antibody or antisense-treated in vivo models
(Zhu et al., 2012b). Taking the confirmation of CDK4 as the
primary therapeutic target of FDA approved Palbociclib as an
example, it was determined by considering: (1) experimentally
defined high potency (IC50 = 11 nM) of Palbociclib against
CDK4 (Fry et al., 2004), (2) the clearly observed development
of multiple tumors by a point mutation (R24C) in the first
coding exon of locus encoding CDK4 in the mice models (Sotillo
et al., 2001), and (3) Palbociclib-induced G1-G2 arrest and
apoptosis in breast tumor cell lines (IC50 <400 nM) and tumor
growth reduction in human breast tumor xenograft (Lapenna
and Giordano, 2009). In conclusion, only the targets with
complete target determination data (including all three types
of information above) were defined as the primary therapeutic
targets of the corresponding FDA approved drugs.

Deriving the Human PPI Network
Properties for Each Studied Target
The human protein–protein interaction (PPI) network analyzed
here included 15,554 proteins and 642,304 PPIs, which was
constructed using the data provided in STRING (Szklarczyk et al.,
2015). In order to ensure the reliability of the analyzed data, only
those PPIs with high confidence score (>0.95) were collected for
the subsequent analyses (Ghosh et al., 2015; Wang S. et al., 2015).

As a result, a sub-network with 8,509 proteins and 40,468 PPIs
were generated and adopted for further analyses in this study.
Moreover, the network properties for each studied target were
generated by the PROFEAT (Zhang et al., 2017a) and the tool
NetworkAnalyzer of Cytoscape (Shannon et al., 2003; Thomas
and Bonchev, 2010).

In total, 32 network properties were calculated and adopted in
subsequent analysis. These properties were popular for analyzing
a complex biological network, which included: (1) Average
Closeness Centrality: the average number of steps required to
reach the studied node from any node in a network (Ma et al.,
2016); (2) Average Shortest Path Length: the average length of
shortest paths between the studied node and all other ones
(Zhang et al., 2014); (3) Betweenness Centrality: the number
of times the studied node serving as a linking bridge along
shortest path between any two nodes (Zeidán-Chuliá et al., 2015);
(4) Bridging Centrality: the product of the bridging coefficient
and betweenness centrality (Hwang et al., 2008); (5) Bridging
Coefficient: the extent of the studied node lying between any
other densely connected nodes in the network (Paladugu et al.,
2008); (6) Closeness Centrality Sum: the reciprocal of the sum
of the shortest paths between the studied node and all other
nodes in the network (Costenbader and ValenteFontanesi, 2003);
(7) Clustering Coefficient: the number of the connected pairs
between all neighbors of node (Watts and Strogatz, 1998); (8)
Current Flow Betweenness: a centrality index measuring the level
of information travels along all possible paths within network
(Paladugu et al., 2008); (9) Current Flow Closeness: the variant
of current flow betweenness (Zhang et al., 2017b); (10) Degree:
the number of edges linked to a node (Braeuning, 2013); (11)
Degree Centrality: the number of links incident upon a studied
node (Batool and Niazi, 2014); (12) Deviation: the variation
between sum of node distances and network unipolarity (Zhang
et al., 2017a); (13) Distance Deviation: the absolute difference
between nodes’ distance sum and network’s average distance
(Rogelj et al., 2013); (14) Distance Sum: the sum of all shortest
paths starting from the studied node (Bolser et al., 2003); (15)
Eccentric: the absolute difference between nodes’ eccentricities
and network’s average eccentricity (Zhang et al., 2017a); (16)
Eccentricity: the maximum non-infinite shortest path length
between the studied node and all other nodes in the network
(Bolser et al., 2003); (17) Eccentricity Centrality: the largest
geodesic distance between the node and any other node (Batool
and Niazi, 2014); (18) Eigenvector Centrality: the sum of its
neighbors’ centrality values (Solá et al., 2013); (19) Harmonic
Closeness Centrality: the sum of the reciprocals of the average
shortest path lengths of each node in network (Zhang et al.,
2017b); (20) Interconnectivity: a connectivity index indicating
the quality of the studied nodes being connected together (Emig
et al., 2013); (21) Load Centrality: the fraction of all the shortest
paths that pass through the studied node (Kivimäki et al., 2016);
(22) Neighborhood Connectivity: the average connectivity of all
neighbors (Carson and Lu, 2015); (23) Normalized Betweenness:
the fraction of network shortest paths that a given protein lies on
(Paladugu et al., 2008); (24) Number of Self Loops: the number
of edges starting and ending at the same node (Garlaschelli
and Loffredo, 2004); (25) Number of Triangles: the number of
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triangles that include the studied node as a vertex (Rubinov and
Sporns, 2010); (26) Page Rank Centrality: an adjustment of Katz
by considering the diluted issue (Li et al., 2013); (27) Radiality:
the level of reachability of a studied node via various shortest
paths within the entire network (Koschützki and Schreiber,
2008); (28) Residual Closeness Centrality: the closeness measured
by removing the studied node (Dangalchev, 2006); (29) Scaled
Degree: the degree of a studied node relative to the most
connected node within the same module (Sormani, 2012); (30)
Stress: the number of shortest paths passing through a given node
(Shannon et al., 2003); (31) Topological Coefficient: the extent to
which a node in network shares interaction partners with other
nodes (Zhu M. et al., 2009); (32) Z Score: a connectivity index
based on degree distribution of a network (Rubinov and Sporns,
2010).

Assessing the Biological System Profile for
Each Studied Target
The biological system profile for each studied target included: (1)
the number of target-affiliated and target immediate-downstream
signaling pathways in KEGG database (Kanehisa et al., 2017).
The target-affiliated pathways were determined by considering
that (a) the pathways of the studied target should be life-
essential in both patients and healthy people and (b) the studied
target should be in the pathway upstream with the capacity
of regulating the biological function of the pathways. (2) The
number of human tissues each target distributed in, assessed by
the TissueDistributionDBs (Kogenaru et al., 2010) and Uniprot
(UniProt Consortium, 2018) databases. A target was assumed
to distribute in a given tissue if >5% of the total proteins are
distributed in that tissue or the target concentration is higher
than the average concentration of proteins in that tissue. (3)
The number of human similarity proteins of a target outside
the corresponding target family for probing off-target collateral
effect (Zheng et al., 2006; Zhu F. et al., 2009). This was
determined by BLAST similarity screening of human proteome
in Uniprot database (UniProt Consortium, 2018) with a cutoff
(E-value < 0.005; Song et al., 2006; Singh et al., 2007). (4)
The differential expressions of the studied target in the disease-
specific tissue between patients and healthy individuals (Li
et al., 2018). The relevant data were collected directly from
TTD (Li et al., 2018) and calculated based on the human gene
expression raw data of Affymetrix U133 Plus 2.0 platform in GEO
(Barrett et al., 2013).

Selecting the Differential Features
Indicating NTI Drugs by Artificial
Intelligence
The artificial intelligence (AI) has been recently proposed
as a powerful technique for drug target discovery (Xu and
Wang, 2014; Zhu et al., 2018), protein function prediction (Li
et al., 2016a; Seo et al., 2018; Yu et al., 2018) and biomarker
identification (Li B. et al., 2016; Li et al., 2017) through
mimicking the human thinking procedures, learning processes
and information extractions, which included the machine
learning algorithm (Zhu et al., 2008a; Wang P. et al., 2015), the

deep learningmethod (van der Burgh et al., 2017; Seo et al., 2018),
and the cognitive-computing (Krittanawong et al., 2017). As one
of the most popular machine learning algorithms, the Boruta
algorithm based on wrapper method built around a random
forest classifier (Kursa, 2014) was selected and adopted in this
study. It is an extension to determine the relevance via comparing
the relevance of the real features to that of the random probes
(Pan et al., 2018). Since Boruta was constructed by an AI-based
technique (machine learning), it was considered to be the most
powerful approach with the stability in the variable selection,
especially suitable for the low-dimensional dataset among other
available strategies (Degenhardt et al., 2017). In this study, the
differential features between NTI and NNTI drugs were therefore
identified by R package Boruta (Shang et al., 2017). Particularly,
human PPI network properties and biological system features
of each target were first calculated, and the results of feature
selection were then acquired using R package Boruta by setting
the p-value < 0.05, maxRuns = 100, and doTrace = 2. In the
meantime, the getImpwas set to “getImpRfZ,” and themcAdj and
holdHistory were set to “TRUE.”

RESULTS AND DISCUSSION

Network Properties and Biological System
Profile of NTI and NNTI Drugs
As reported, the human PPI network properties and biological
system profile were key factors determining efficacy-safety
balance (Zheng et al., 2006; Ragusa et al., 2010; Guo et al.,
2018). Network properties were inherent feature of a target
in the human PPI network, while biological system profile
could reflect both the on-target and off-target pharmacology
(Bender et al., 2007; Han et al., 2018; Zhu et al., 2018). Herein,
32 features of human PPI network together with 4 biological
system properties were therefore adopted and calculated for
further analyses. To the best of our knowledge, these were the
most comprehensive sets of features ever applied for TI-related
analysis. Table 1 listed the calculated values of ten properties
based on the connectivity and adjacency in human PPI network.
These connectivity/adjacency-based network properties were
designed to describe the level of connectivity among human
proteins or the neighborhood features of the studied proteins
(Chen et al., 2016). The properties included bridging coefficient,
clustering coefficient, degree, degree centrality, interconnectivity,
neighbor connectivity, number of triangles, scaled degree,
topological coefficient, and Z-score (corresponding definitions
were provided in section Materials and Methods). As shown in
Table 1, 8 (80.0%) out of 10 properties were significantly different
(p-value < 0.05, highlighted by bold font) between the targets of
NTI and NNTI drugs, and half of those 10 properties were with
the most significant differences (p-value < 0.01, highlighted by
bold-underline).

Similar to the connectivity/adjacency-based network
property, the calculated values of 16 properties based on the
shortest path length in the human PPI network were provided
in Table 2 (corresponding definitions of these properties were
provided in section Materials and Methods). As shown in
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TABLE 1 | The calculated values of 10 properties based on the connectivity and adjacency in the human PPI network.

Connectivity/Adjacency based properties Targets of the NTI drugs Targets of the NNTI drugs p-values

Mean ± SD Median Mean ± SD Median

Bridging coefficient 5.62E−01 ± 1.44E+00 7.10E-02 3.72E+00 ± 9.02E+00 7.47E-01 2.15E-01

Clustering coefficient 1.07E−01 ± 1.67E−01 1.82E-02 4.06E−01 ± 4.06E−01 3.33E-01 1.40E-02

Degree 1.04E+01 ± 4.14E+00 1.10E+01 4.53E+00 ± 3.89E+00 3.00E+00 3.56E-05

Degree centrality 1.09E−03 ± 5.70E−04 1.00E-03 5.71E−04 ± 7.56E−04 0.00E+00 2.90E-02

Interconnectivity 2.59E−01 ± 1.04E−01 1.86E-01 5.89E−01 ± 1.44E−01 6.18E-01 3.21E-07

Neighbor connectivity 3.33E+01 ± 2.50E+01 2.79E+01 1.25E+01 ± 8.45E+00 1.13E+01 1.57E-05

Number of triangles 5.28E+00 ± 8.06E+00 1.00E+00 5.29E+00 ± 7.47E+00 3.00E+00 9.98E-01

Scaled degree 1.41E−02 ± 5.44E−03 1.50E-02 6.36E−03 ± 5.17E−03 4.00E-03 7.01E-05

Topological coefficient 1.67E−01 ± 1.53E−01 1.07E-01 3.41E−01 ± 2.42E−01 3.60E-01 1.76E-02

Z score 1.23E−03 ± 1.27E−02 3.00E-03 −1.63E−02 ± 1.22E−02 −2.20E-02 1.17E-04

The mean values (together with standard deviation) and median values of these properties between the targets of NTI and NNTI drugs were provided, and the statistical difference

(p-value) for each property between targets of NTI and NNTI drugs were also calculated (p-values <0.05 and <0.01 were highlighted by bold and bold-underline, respectively).

TABLE 2 | The calculated values of 16 properties based on the shortest path length in human PPI network.

Shortest path length-based properties Targets of the NTI drugs Targets of the NNTI drugs p-values

Mean ± SD Median Mean ± SD Median

Average shortest path length 4.06E+00 ± 2.90E−01 3.95E+00 4.88E+00 ± 1.08E+00 5.09E+00 1.06E-02

Betweenness centrality 1.26E−03 ± 6.77E−04 1.77E-03 2.54E−04 ± 3.94E−04 1.09E-05 1.59E-08

Average closeness centrality 2.47E−01 ± 1.63E−02 2.53E-01 1.97E−01 ± 2.26E−02 1.92E-01 5.31E-07

Current flow betweenness 3.07E−03 ± 1.35E−03 4.00E-03 8.57E−04 ± 1.17E−03 5.00E-04 3.38E-06

Deviation 1.11E+04 ± 2.31E+03 1.03E+04 1.96E+04 ± 4.39E+03 2.03E+04 4.24E-06

Distance deviation 6.17E+03 ± 2.02E+03 6.93E+03 4.30E+03 ± 2.37E+03 4.16E+03 1.57E-02

Distance sum 3.23E+04 ± 2.31E+03 3.14E+04 4.08E+04 ± 4.39E+03 4.15E+04 4.24E-06

Eccentric 1.11E+00 ± 4.27E−01 1.34E+00 5.97E−01 ± 4.14E−01 3.40E-01 6.09E-04

Eccentricity 1.02E+01 ± 4.27E−01 1.00E+01 1.14E+01 ± 7.45E−01 1.10E+01 6.44E-05

Eccentricity centrality 9.79E−02 ± 3.85E−03 1.00E-01 8.84E−02 ± 5.79E−03 9.10E-02 2.30E-05

Harmonic closeness centrality 2.10E+03 ± 1.53E+02 2.14E+03 1.64E+03 ± 2.03E+04 1.59E+03 3.95E-07

Load centrality 1.35E−03 ± 7.83E−04 2.00E-03 2.86E−04 ± 4.69E−04 0.00E+00 3.75E-07

Normalized betweenness 2.81E−03 ± 1.53E−03 4.00E-03 5.71E−04 ± 8.52E−04 0.00E+00 2.53E-08

Residual closeness centrality 6.00E+02 ± 1.05E+02 6.29E+02 3.07E+ 02 ± 1.23E+02 2.74E+02 1.32E-07

Radiality 8.09E−01 ± 1.81E−02 8.16E-01 7.43E−01 ± 3.33E−02 7.44E-01 1.21E-06

Stress 1.56E+06 ± 9.11E+05 2.24E+06 3.04E+05 ± 4.82E+05 4.69E+03 2.13E-08

Mean values (together with standard deviation) and median values of these properties between the targets of NTI and NNTI drugs were provided, and the statistical difference (p-value)

for each property between targets of NTI and NNTI drugs were also calculated (p-values <0.05 and <0.01 were highlighted by bold and bold-underline, respectively).

Table 2, all properties were found to be significantly different
(p-values < 0.05, in bold font) between the targets of NTI and
NNTI drug, and 14 (87.5%) of the 16 properties were with the
most significant difference (p-value < 0.01, bold-underline).
Moreover, the calculated values of 4 human biological system
properties were shown in Table 3 (definition of these properties
was given in section Materials and Methods). As reported, these
properties were frequently adopted to analyze the druggability of
therapeutic targets for not only approved drugs but also the drugs
in clinical trial development or withdrawn from market (Li et al.,
2018). Herein, two properties were identified as significantly
different (p-value < 0.01, bold-underline) between targets of
NTI and NNTI drugs, which included the number of pathways

affiliated by the targets of the studied drugs and the number of
similarity proteins outside target’s functional family. One thing
needed to be emphasized was that the standard deviation of
many properties was even larger than their mean value (such as
bridging coefficient, clustering coefficient, and Z-score). These
deviations indicated that the corresponding p-value may not be
enough to measure the difference between the targets of NTI
and NNTI drug. Moreover, any of the individual feature (p-value
< 0.05 shown in Tables 1–3) could not be used to satisfactorily
differentiate the targets of NTI drugs from that of the NNTI ones.
Thus, this finding inspired us to discover the differential features
using more advanced computational algorithm and collectively
considering multiple properties.
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TABLE 3 | The calculated values of four human biological system properties.

Human biological system properties Targets of the NTI drugs Targets of the NNTI drugs p-values

Mean ± SD Median Mean ± SD Median

No. of pathways affiliated by the primary therapeutic target 6.10 ± 1.80 7.00 1.14 ± 0.38 1.00 2.50E-15

No. of similarity proteins outside the target family 24.4 ± 15.22 29.00 11.79 ± 6.21 11.00 1.46E-05

Differential expression levels between patients and healthy individuals 0.42 ± 0.35 0.56 0.33 ± 0.32 0.20 3.86E-01

No. of tissues distributed by the primary therapeutic target 3.38 ± 0.81 3.00 3.61 ± 1.82 3.00 6.06E-01

The mean values (together with standard deviation) and median values of these properties between the targets of NTI and NNTI drugs were provided, and the statistical difference

(p-value) for each property between targets of NTI and NNTI drugs were also calculated (p-values <0.05 and <0.01 were highlighted by bold and bold-underline, respectively).

TABLE 4 | 19 substantially overlapped network properties grouped into 5 property groups based on their innate mutual dependence.

Property group Original property Equation of the property Description of the property

Average closeness centrality Average closeness centrality 1/( 1
N

∑N
j=1 Dij ) The average number of steps required to reach the studied node

from any node in the network

Harmonic closeness centrality
∑N

j=1
1
Dij

The sum of the reciprocals of the average shortest path lengths of

each node in the network

Residual closeness centrality
∑N

j=1
1

2
Dij

The closeness measured by removing the studied node

Sum closeness centrality 1/
∑N

j=1 Dij The reciprocal of the sum of the shortest paths between the

studied node and all other nodes in the network

Average shortest path length Average shortest path length 1
N−1

∑N
j=1 Dij The average length of the shortest paths between the studied

node and all other nodes in network

Deviation distSumi − unipolarityi The variation between the total sum of node distances and the

network unipolarity

Distance sum
∑N

j=1 Dij The sum of all shortest paths starting from the studied node

Betweenness centrality Betweenness centrality
∑

s6=i 6=t
σst (i)
σst

The number of times the studied node serving as a linking bridge

along the shortest paths between any two nodes

Current flow betweenness 1
Nb

∑

s,t∈V τst (i) A centrality index measuring the level of information travels along

all possible paths within the network

Current flow closeness
NC

∑

s6=t pst(s)−pst(t)
The variant of current flow betweenness

Load centrality
∑

s6=i 6=t σst (i) The fraction of all the shortest paths that pass through the studied

node

Normalized betweenness centrality
cenBtwi−min(cenBtwG )

max(cenBtwG )−min(cenBtwG )
The fraction of network shortest paths that the studied protein lies

on

Degree Degree Degreei The total number of edges linked to a node

Degree centrality
degi
N−1 The number of links incident upon the studied node

Number of self-loops Selfloopi The number of edges starting and ending at the same node

Scaled degree
degi

max(degG )
The degree of the studied node relative to the most connected

node within the same module

Z score [degi − avg(degG)]/dev(degG) A connectivity index based on the degree distribution of network

Eccentricity Eccentricity max(Dij ) The maximum non-infinite shortest path length between the

studied node and all other nodes in the network

Eccentricity centrality 1/max(Dij ) The largest geodesic distance between the node and any other

nodes

Discovering the Key Features of NTI Drug
Targets by Artificial Intelligence
Based on the in-depth investigation of 36 properties in
Tables 1–3, several properties were found to be not fully
independent or even duplicate in their descriptions (like
degree vs. scaled degree). In this study, all 36 properties were

systematically reviewed, and 19 of these 36 were identified to be
substantially overlapped with some other properties (Table 4).
Since there was significant dependence among the 19 properties,
the use of all 36 properties for statistical feature selection may
introduce strong biases. Thus, the 19 properties were grouped
based on their innate mutual dependence. As shown in Table 4,
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FIGURE 1 | Boxplots of eight key features identified in this study. For each feature, there were four plots colored in red, orange, light blue and green which indicated

the targets of NTI drugs, both NTI and NNTI drugs, drugs with no NTI data reported and NNTI drugs, respectively.

five property groups were generated by considering equation and
description of these 19 properties, and each group was named by
the first property (ordered alphabetically) in the corresponding
group. As a result, these five groups included: the average
closeness centrality, average shortest path length, betweenness
centrality, degree, eccentricity. To minimize the possible bias
induced by the innate mutual dependence among properties,
only these five properties were considered in subsequent feature
selection analysis, instead of investigating all 19 properties.
Taking the remaining 17 relatively independent properties into
consideration, 22 properties in total of each target were selected
for subsequent feature selection.

As one of the most popular feature selection strategies based
on AI, the Boruta algorithm based on a wrapper method built
around a random forest classifier (Kursa, 2014) was adopted in
this study. Boruta was considered the most powerful method
with the stability in variable selection, especially suitable for
the low-dimensional dataset among other reported strategies
(Degenhardt et al., 2017). In this study, the key differential

features were thus selected from 22 properties using R package
Boruta by setting the p-value < 0.05. As a result, eight properties
were selected as able to collectively reflect the target’s mechanism
underlying NTI drugs. As illustrated in Figure 1, the boxplots
colored in red and green referred to the targets of NTI and
NNTI drugs, respectively. Some key features increased from
the targets of NTI drug to that of NNTI one (such as average
shortest path length), while others demonstrated a decrease (such
as average closeness centrality). Based on the comprehensive
literature review, some of those 8 key features had been reported
to be indirectly relevant to drugs’ efficacy-safety balances. For
example, the lower value of average closeness centrality of target
was reported to demonstrate a less lethality risk (Chen et al.,
2011), which was consistent with the findings of this study
(a much higher average closeness centrality of the targets of
NTI drugs was observed compared with that of NNTI ones,
shown in Figure 1). Moreover, the higher level (lower value) of
interconnectivity was frequently observed in lethal diseases such
as cardiovascular disorder and cancer (Muhammd et al., 2018).
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FIGURE 2 | Classification of eight key features identified in this study into three feature groups.

Oncological and cardiovascular disorder had been recognized
as life-threatening diseases, and the majority of their drugs
were reported to be NTI ones (Muller and Milton, 2012; Yu
et al., 2015). Thus, the result of interconnectivity in Figure 1 was
consistent with these previous reports, which further validated
the effectiveness of applied algorithm in identifying key target
features underlying NTI drugs.

Moreover, there were four groups of targets as defined in
section Materials and Methods: (a) targets of NTI drugs, (b)
targets of both NTI and NNTI drugs, (c) targets of drugs without
reported TI, and (d) targets of NNTI drugs. Apart from the
target groups (a) and (d), the remaining groups provided more
complicated and informative data for illustrating the mechanism
underlying NTI drugs. On one hand, the targets in group (b)
were affected by both NTI and NNTI drugs, which might reflect
properties from both sides, butmight also be significantly affected
by the properties of confirmed NTI drugs. On the other hand, no
TI data of the group (c) targets was reported based on literature
review. It was possible that some NTI drugs were not discovered
for those targets. But considering the large number of group (c)
targets (339 in total), it was highly possible that most of those
group (c) targets were only aimed by NNTI drugs, and just a
small fraction of which could find new NTI drug in the future.
The value of 8 properties of those 4 target groups were illustrated
in Figure 1. It was interesting that all properties followed a clear
descending/ascending trend from the targets of group (a) to (d),
which was in accordance with the analyses provided above. Thus,

these findings could be another line of evidence that validated the
effectiveness of the feature identification algorithm applied in this
study.

Target Mechanism Underlying NTI Drugs
Collectively Determined by Multiple
Profiles
By collectively considering Figure 1 and Tables 1–3, seven
out of those eight selected key features showed significant
difference (p-value < 0.05), but it was clear that these significant
differences did not guarantee the corresponding feature as the key
differential one (57.7% of the features with significant difference
(p-value < 0.05) were not selected as key differential ones).
Moreover, significant difference was not observed for the selected
key feature bridging coefficient (p-value = 0.22). This finding
indicated that those eight features collectively determined the
target mechanism of NTI drugs, and the TI-related mechanism
might be the result of the synergistical effects among those
features. Moreover, the majority of these eight key features were
identified for the first time by this study, and this work was also
the first analysis on the collective effects of both PPI network
properties and biological system profile on the drug efficacy-
safety balance.

Further analysis on these eight identified key features
(shown in Figure 1) revealed that these key features were
found to belong to three feature groups. These feature groups
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were connectivity and centrality of targets in human PPI
network together with human biological system features. By
combining the data in Figure 1, the key features within the
same feature group (illustrated in Figure 2) followed the same
ascending/descending trends, which were colored by the same
background. As shown in Figure 2, the targets of NTI drugs
were highly centralized and connected, and the number of
similarity proteins and the number of affiliated pathways
were substantially higher than those of NNTI drug. Since
the number of similarity proteins and affiliated pathways was
reported to be good indicator of target druggability (Zhu F.
et al., 2009; Li et al., 2018), the NTI profile identified in
this study was in accordance with that of reported target
druggability.

CONCLUSION

This work is the first study conducting comprehensive review on
the TI data of all FDA approved drugs (Supplementary Table S1)
and revealing the collective effects of both human PPI network
properties and biological system profiles on drug efficacy-safety
balance. Eight key features were identified here as collectively
differentiating the target mechanisms between NTI and NNTI
drugs. These features revealed that the targets of NTI drugs were
highly centralized and connected in human PPI network, and
the numbers of similarity proteins and target-affiliated pathways
were both much higher than those of NNTI drugs. These

findings together with the newly discovered features/feature
groups clarified the key factors indicating drug’s narrow TI and
could therefore provide a novel direction for determining the
delicate drug efficacy-safety balance.
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Existing treatments against drug addiction are often ineffective due to the complexity

of the networks of protein-drug and protein-protein interactions (PPIs) that mediate

the development of drug addiction and related neurobiological disorders. There is an

urgent need for understanding the molecular mechanisms that underlie drug addiction

toward designing novel preventive or therapeutic strategies. The rapidly accumulating

data on addictive drugs and their targets as well as advances in machine learning

methods and computing technology now present an opportunity to systematically mine

existing data and draw inferences on potential new strategies. To this aim, we carried

out a comprehensive analysis of cellular pathways implicated in a diverse set of 50

drugs of abuse using quantitative systems pharmacology methods. The analysis of the

drug/ligand-target interactions compiled in DrugBank and STITCH databases revealed

142 known and 48 newly predicted targets, which have been further analyzed to identify

the KEGG pathways enriched at different stages of drug addiction cycle, as well as those

implicated in cell signaling and regulation events associated with drug abuse. Apart

from synaptic neurotransmission pathways detected as upstream signaling modules

that “sense” the early effects of drugs of abuse, pathways involved in neuroplasticity

are distinguished as determinants of neuronal morphological changes. Notably, many

signaling pathways converge on important targets such as mTORC1. The latter emerges

as a universal effector of the persistent restructuring of neurons in response to continued

use of drugs of abuse.

Keywords: drug abuse, quantitative systems pharmacology, pleiotropic proteins, mTOR complex 1, drug-target

interactions, neurotransmission, machine learning, cellular pathways

INTRODUCTION

Drug addiction is a chronic relapsing disorder characterized by compulsive, excessive, and
self-damaging use of drugs of abuse. It is a debilitating condition that potentially leads to serious
physiological injury, mental disorder and death, resulting in major health, and social economic
impacts worldwide (Nestler, 2013; Koob and Volkow, 2016). Substances with diverse chemical
structures and mechanisms of action are known to cause addiction. Except for alcohol and
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tobacco, substances of abuse are commonly classified
into six groups based on their primary targets or effects:
cannabinoids (e.g., cannabis), opioids (e.g., morphine,
heroin, fentanyl), central nervous system (CNS) depressants
(e.g., pentobarbital, diazepam), CNS stimulants (e.g.,
cocaine, amphetamine), hallucinogens (e.g., ketamine,
lysergic acid diethylamide), and anabolic steroids (e.g.,
nandrolone, oxymetholone).

The primary actions of drugs of abuse have been well
studied. In spite of the pleiotropy and heterogeneity of drugs
of abuse, they share similar phenotypes: from acute intoxication
to chronic dependence (Taylor et al., 2013), the reinforcement
shift from positive to negative through a three-stage cycle
involving binge/intoxication, withdrawal/negative effect, and
preoccupation/anticipation (Koob and Volkow, 2016). Notably,
virtually all drugs of abuse augment dopaminergic transmission
in the reward system (Wise, 1996). However, the detailed cellular
pathways of addiction processes are still far from known. For
example, cocaine acts primarily as an inhibitor of dopamine
(DA) transporter (DAT) and results in DA accumulation in the
synapses of DA neurons (Shimada et al., 1991; Volkow et al.,
1997). However, it has been shown that DA accumulation per se
is not sufficient to account for the rewarding process associated
with cocaine addiction; serotonin (5-HT) and noradrenaline
(or norepinephrine, NE) also play important roles (Rocha
et al., 1998; Sora et al., 1998). Another example is ketamine,
a non-selective antagonist for N-methyl-d-aspartate (NMDA)
receptor (NMDAR), notably most effective in the amygdala and
hippocampal regions of neurons (Collingridge et al., 1983). In
addition to its primary action, ketamine affects a number of other
neurotransmitter receptors, including sigma-1 (Mendelsohn
et al., 1985), substance P (Okamoto et al., 2003), opioid
(Hustveit et al., 1995), muscarinic acetylcholine (mACh) (Hirota
et al., 2002), nicotinic acetylcholine (nACh) (Coates and Flood,
2001), serotonin (Kapur and Seeman, 2002), and γ-aminobutyric
acid (GABA) receptors (Hevers et al., 2008). The promiscuity
of drugs of abuse brings an additional layer of complexity,
which prevents the development of efficient treatment against
drug addiction.

In recent years, there has been significant progress in the
characterization of drug/target/pathway relations driven by the
accumulation of drug-target interactions and pathways data, as
well as the development of machine learning, in silico genomics,
chemogenomics, and quantitative systems pharmacology (QSP)
tools. Several innovative studies started to provide valuable
information on substance abuse targets and pathways. For
example, Li et al. curated 396 drug abuse related genes
from the literature and identified five common pathways
underlying the reward and addiction actions of cocaine, alcohol,
opioids, and nicotine (Li et al., 2008). Hu et al. analyzed
the genes related to nicotine addiction via a pathway and
network-based approach (Hu et al., 2018). Biernacka et al.
performed genome-wide analysis on 1,165 alcohol-dependence
cases and identified two pathways associated with alcohol
dependence (Biernacka et al., 2013). Xie et al. generated
chemogenomics knowledgebases focused on G-protein coupled
receptors (GPCRs) related to drugs of abuse in general (Xie

et al., 2014), and cannabinoids in particular (Xie et al., 2016).
Notably, these studies have shed light on selected categories or
subgroups of drugs. There is a need to understand the intricate
couplings between multiple pathways implicated in the cellular
response to drugs of abuse, identify mechanisms common to
various categories of drugs while distinguishing those unique to
selected categories.

We undertake here such a systems-level approach using
a dataset composed of six different categories of drugs of
abuse. Following a QSP approach proposed earlier (Stern
et al., 2016), we provide a comprehensive, unbiased glimpse of
the complex mechanisms implicated in addiction. Specifically,
as shown in Figure 1, a set of 50 drugs of abuse with a
diversity of chemical structures (Supplementary Figure 1) and
pharmacological actions were collected as probes, and the known
targets of these drugs as well as the targets predicted using
our probabilistic matrix factorization (PMF)method (Cobanoglu
et al., 2013) were analyzed to infer biological pathways associated
with drug addiction. Our analysis yielded 142 known and 48
predicted targets and 173 pathways permitting us to identify both
generic mechanisms regulating the responses to drug abuse as
well as specific mechanisms associated with selected categories,
which could facilitate the development of auxiliary agents for
treatment of addiction.

A key step in our approach is to identify the targets for
drugs of abuse. There exists various drug-target interaction
databases (DBs), web servers and computational models, as
summarized recently (Chen et al., 2016). The DBs utilized in
this work are the drug-target database DrugBank (Wishart et al.,
2018) and the protein-chemical database STITCH (Szklarczyk
et al., 2016). DrugBank is a bioinformatics and cheminformatics
resource that combines drug data with comprehensive target
information. It is frequently updated, with the current version
containing 10,562 drugs, 4,493 targets and corresponding 16,959
interactions. Since most of drugs of abuse are approved or
withdrawn drugs, DrugBank is a good source for obtaining
information on their interactions. STITCH, on the other hand, is
much more extensive. It integrates chemical-protein interactions
from experiments, other DBs, literature and predictions,
resulting in data on 430,000 chemicals and 9,643,763 proteins
across 2,031 genomes. We have used in the present analysis
the subset of human protein-chemicals data supported by
experimental evidence. The method of approach adopted here
is an important advance over our original PMF-based machine
learning methodology for predicting drug-target interactions
(Cobanoglu et al., 2013). First, the approach originally developed
for mining DrugBank has been extended to analyzing the
STITCH DB, the content of which is 2–3 orders of magnitude
larger than DrugBank (based on the respective numbers of
interactions). Second, the information on predicted drug-target
associations is complemented by pathway data on humans
inferred from the KEGG pathway DB (December 2017 version;
Kanehisa et al., 2017) upon pathway enrichment analysis of
known and predicted targets. Third, the outputs are subjected
to extensive analyses to detect recurrent patterns and formulate
new hypotheses for preventive or therapeutic strategies against
drug abuse.
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FIGURE 1 | Workflow of the quantitative systems pharmacological analysis. (A) 50 drugs of abuse with a diversity of chemical structures and pharmacological actions

were collected as probes. (B) 142 known targets of these drugs were identified through drug-target interaction database DrugBank and chemical-protein interaction

database STITCH. (C) 48 predicted targets were predicted using our probabilistic matrix factorization (PMF) method (Cobanoglu et al., 2013). (D) 173 human

pathways were inferred from the KEGG pathways database by mapping the known and predicted targets. (E,F) The pathways were grouped into 5 clusters. The

functioning of identified targets and pathways and their involvement in drug addiction were comprehensively examined.

MATERIALS AND METHODS

Selection of Drugs of Abuse and Their
Known Targets
We selected as input 50 drugs commonly known as drugs
of abuse using two basic criteria: (i) diversity in terms
of structure and mode of action, and (ii) availability of
information on at least one human target protein in DrugBank
v5 (Wishart et al., 2018) or STITCH v5 (Szklarczyk et al.,
2016). The selected drugs represent six different categories: CNS
stimulants, CNS depressants, opioids, cannabinoids, anabolic
steroids, and hallucinogens (see Supplementary Table 1 and
Supplementary Figure 1).

A dataset of 142 known targets, listed in
Supplementary Table 2, were retrieved from DrugBank
and STITCH DBs for these 50 drugs. The list includes all
targets reported for these drugs in DrugBank, and those
with high confidence score, based on experiments, reported
in STITCH. Each chemical-target interaction is annotated
with five confidence scores in STITCH: experimental,
DB, text-mining, prediction, and a combination score of
the previous four, each ranging from 0 to 1. We selected
the human protein targets with experimental confidence
scores of 0.4 or higher. Supplementary Table 2 summarizes
the 142 targets we identified as well as the associated 445
drug-target interactions.

Structure-based and interaction-pattern-based similarities
between pairs of drugs were evaluated using two different
criteria. The former was based on structure-based distance
calculated as the Tanimoto distance between their 2D structure
fingerprints. Tanimoto distances were evaluated using Python
RDKit suite (RDKit: Open-Source Cheminformatics Software.

https://www.rdkit.org/). Similarities based on their interactions
patterns with known targets were evaluated by evaluating
target-based distances. To this aim, we represented each drug
i by a 142-dimensional “target vector” di, the entries of
which represent the known targets and are assigned values
of 0 or 1, depending on the existence/observation of an
interaction between the corresponding target and drug i.
Interaction-pattern similarities between drug pairs i and j
were evaluated by calculating the correlation cosine cos(di
. dj) = (di . dj)/(|di| |dj|) between these vectors, and the
corresponding cosine distance is [1–cos(di . dj)]. Likewise,
ligand-based distances between target pairs i and j were evaluated
as the cosine distance between the 50-dimensional vectors
ti and tj corresponding to the two targets, the entries of
which are 0 or 1 depending on absence or existence of an
interaction between the target and the corresponding drug
of abuse.

Probabilistic Matrix Factorization (PMF)
Based Drug-Target Interaction Prediction
Novel targets for each drug were predicted using our
probabilistic matrix factorization (PMF) based machine
learning approach (Cobanoglu et al., 2013, 2015). Briefly,
we start with a sparse matrix R representing the known
interactions between N drugs and M targets. Using the PMF
algorithm, we decomposed R into a drug matrix U and a
target matrix V, by learning the optimal D latent variables
to represent each drug and each target. The product of UT

and V assigns values to the unknown (experimentally not
characterized) entries of the reconstructed R, each value
representing the confidence score for a novel drug-target
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interaction prediction

RN×M= UT
N×DVD×M

Using this method, we trained two PMF models, one based
on 11,681 drug-target interactions between 6,640 drugs and
2,255 targets from DrugBank v5, and the other based on
8,579,843 chemical-target interactions for 311,507 chemicals
and 9,457 targets from STITCH v5 human experimentally
confirmed subset, respectively. We evaluated the confidence
scores in the range [0, 1] for each predicted drug-target
interaction, in both cases. We selected the interactions
with confidence scores higher than 0.7 within the top 10
predicted targets for each input drug. This led to 161 novel
interactions identified between 27 out of the 50 input drugs
and 89 targets (composed of 41 known and 48 novel targets;
Supplementary Table 3).

Pathway Enrichment Analysis
We mapped the 50 drugs with 142 known and 48 predicted
targets to the KEGG pathways (version December 2017, homo
sapiens) (Kanehisa et al., 2017). 114 and 173 pathways were
mapped by 142 known targets and all targets (both known and
predicted) respectively (see Supplementary Table 4). In order to
prioritize enriched pathways, we calculated the hypergeometric
p-values based on the targets as the enrichment score as follows.
Given a list of targets, the enrichment p-value for pathway A (PA)
is the probability of randomly drawing k0 or more targets that
belong to pathway A:

PA=
∑

k0≤k≤m

(

K

k

) (

M − K

m− k

)

(

M

m

)

where M is the total number of human proteins in the KEGG
Pathway, m is the total number of proteins/targets we identified,
and K is the number of proteins that belong to pathway A, while
k0 is the number of targets we identified that belong to pathway
A. The obtained p-values are adjusted by a False Discovery
Rate (FDR) correction to account for multiple testing, using
the widely used Benjamini-Hochberg method (Benjamini and
Yekutieli, 2001). The cutoff of the adjusted p-values gives us an
upper bound of the false discovery rate. The false discovery rate
is the fraction of false significant pathways maximally expected
from the significant pathways identified in our case. We sort p-
values from smallest to largest, with m being the total number
of pathways. The adjusted p-value, p∗i , corresponding to the ith
pathway is:

pi
∗ = mink=i...m{min(pkm/i, 1)}

Supplementary Table 4 lists these p-values for pathway
enrichments based on both known and predicted targets.

The source code used for generating the results reported in
this study is available at https://github.com/Fengithub/DA.

RESULTS

Functional Similarity of Drugs of Abuse
Does Not Imply Structural Similarity,
Consistent With the Multiplicity of
Their Actions
Figure 2 presents a quantitative analysis of the functional and
structural diversity of the examined n = 50 drugs of abuse,
and the similarities among the m = 142 known targets of
these addictive drugs. The n × n maps in Figures 2A,B display
the drug-drug pairwise distances/dissimilarities based on their
2D fingerprints (Figure 2A), and their interaction patterns
with their targets. Figures 2C,D display the corresponding
dendrograms. The drugs are indexed and color-coded as
in Supplementary Table 1 and Supplementary Figure 1. As
expected, drugs belonging to the same functional category (same
color) exhibit more similar interaction patterns (Figure 2D).
However, we also note outliers, such as cocaine lying among
opioids, as opposed to its categorization as a CNS stimulant,
or promethazine, a CNS depressant, lying among hallucinogens
(shown by arrows). The peculiar behavior of cocaine is consistent
with its high promiscuity (see Figure 3A for the number of
targets associated with each examined drug). This type of
promiscuity becomes even more apparent when the drugs are
organized based on their structure (or 2D fingerprints; see
section Materials and Methods) as may be seen in Figure 2A.
For example, opioids (cyan labels/arc; clustered together in
Figures 2B,D based on their interactions) are now distributed
in two or more branches of the structure-based dendrogram in
Figure 2C; likewise, CNS depressants (blue) and cannabinoids
(light brown), grouped each as a single cluster in target-based
dendrograms in Figure 2D, are now distributed into two or more
clusters in Figure 2C.

Overall these results suggest that the functional categorization
of the drugs does not necessarily comply with their structural
characteristics. The similar functionality presumably originates
from targeting similar pathways, but the difference in the
structure suggests that either their targets, or the binding
sites on the same target, are different; or the binding is not
selective enough such that multiple drugs can bind the same site.
Consequently, a diversity of pathways or a multiplicity of cellular
responses are triggered by the use and abuse of these drugs.

The Selected Drugs and Identified Targets
Are Highly Diverse and Promiscuous
We evaluated the similarities between proteins targeted by
drugs of abuse, based on their interaction patterns with the
studied drugs of abuse. Figures 2E,F display the respective
target-target distances, and corresponding dendrogram.
Supplementary Table 2 lists the full names of these targets,
organized in the same order as the Figure 2E axes. We discern
several groups of targets clustered together in consistency with
their biological functions. For example, practically all GABA
receptor subtypes (brown) are clustered together. This large
cluster also includes the riboflavin transporter 2A (SLC52A2),
which may be required for GABA release (Tritsch et al., 2012).
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FIGURE 2 | Distribution of the dataset of 50 drugs of abuse based on their structure and interaction (with targets) similarities (A–D), and pairwise similarities and

classification of the corresponding targets based on their interaction patterns with the drugs of abuse. (A–D) Drug-drug distance maps for the studied 50 addictive

drugs based on (A) 2D structure fingerprints and (B) interaction patterns with targets using the correlation cosines between their target vectors (see Materials and

Methods), and corresponding dendrograms (C,D). The indices of drugs of abuse in (A,B) follow the same order as those used in Supplementary Table 1. The drug

labels in (C,D) are color-coded based on their categories: CNS stimulants (green), CNS depressants (blue), opioids (cyan), cannabinoids (light brown), anabolic

steroids (black) and hallucinogens (magenta). Note that the drugs of abuse in the same category do not necessarily show structural similarities nor similar interaction

pattern with targets. (E) Pairwise distance map for the 142 known targets based on their interaction patterns with the 50 drugs. The indices in (E) follows the same

order as those listed clockwise in the dendrogram (F). The tree maps in (C,D,F) are generated based on the respective distances values in the (A,B,E).

On the other hand, the different subtypes of serotonin (or
5-hydroxytryptamine, 5-HT) receptors (5HTRs) participate in
distinct clusters pointing to the specificity of different subtypes
vis-à-vis different drugs of abuse (labeled in Figure 2F).

The large majority of neurotransmitter transporters, such
as Na+/Cl−-dependent GABA transporters (SLC6A1) and
glycine transporter (SLC6A9) are in the same cluster (pink,
labeled). Acetylcholine receptors also lie close to (or are
even interspersed among) Na+/Cl−-dependent neurotransmitter
transporters, presumably due to shared drugs such as cocaine.
However, the three transporters playing a crucial role in
developing drug addiction, DAT, NE transporter (NET) and

serotonin transporter (SERT) (labeled SLC6A2: NET, SLC6A3:
DAT, SLC6A4: SERT) are distinguished by from all other
neurotransmitter transporters as a completely disjoint group.
The corresponding branch of the dendrogram (highlighted by the
yellow circle) also includes vesicular amino acid transporters and
trace amine-associated receptor 1 (TAAR1) known to interact
with these transporters (Miller, 2011). We also note in the
same branch two seemingly unrelated targets: flavin monoamine
oxidase which draws attention to the role of oxidative events;
and α2-adrenergic receptor subtypes A-C, which uses NE as
a chemical messenger for mediating stimulant effects such as
sensitization and reinstatement of drug seeking, and adenylate
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FIGURE 3 | Promiscuity of drugs of abuse and their targets, and major families of proteins targeted by drugs of abuse. Number of known (gray) and predicted (white)

interactions are shown by bars for (A) drugs of abuse and (B) their targets. The examined set consists of 50 drugs of abuse and a total of 142 known and 48

predicted targets, involved in 445 (known) and 161 (predicted) interactions. (A) Displays the number of interactions known or predicted for all 50 drugs. (B) Displays

the results for the targets that interact with at least 4 known drugs (36 targets). The colors used for names of drugs and targets are same as those used in Figure 2.

(C) Displays the distribution of families of proteins targeted by drugs of abuse.
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cyclase as another messenger to regulate cAMP levels (Sofuoglu
and Sewell, 2009).

Supplementary Table 2 summarizes the 445 known
interactions between these 50 drugs and 142 targets. We
observe an average of 8.9 interactions per drug and 3.1
interactions per target. There are 23 promiscuous drugs that
target at least 10 proteins as shown in Figure 3A. Cocaine, the
most promiscuous psychostimulant, interacts with 45 known,
and 3 predicted targets. It is known that cocaine binds DAT to
lock it in the outward-facing state (OFS) and block the reuptake
of DA. It similarly antagonizes SERT and NET (Heikkila et al.,
1975; Sora et al., 1998), and also affects muscarinic acetylcholine
receptors (mAChRs) M1 and M2 (Williams and Adinoff, 2008).
Our PMF model also predicted a potential interaction between
cocaine and M5. While this interaction is not listed in current
DBs, there is experimental evidence suggesting that muscarinic
AChR M5 plays an important role in reinforcing the effects
of cocaine (Fink-Jensen et al., 2003), in support of the PMF
model prediction.

The PMF model enables us to predict novel targets.
For example, anabolic steroid nandrolone has only two
known interactions, and cannabinoid cannabichromene has
one. However, 10 new targets were predicted with high
confidence scores for each of them (Supplementary Table 3 and
Supplementary Figure 2A). This is due to the data available
in STITCH DB, which offers a large training dataset that
enhances the performance of our machine learning approach.
Overall, 89 new interactions were predicted for known targets,
and 42 novel targets were predicted with 72 interactions.
Figure 3C displays the distribution of all targets among different
protein families. As will be further elaborated below, among
the newly identified drug-target pairs, nandrolone-MAPK14
(mitogen-activated protein kinase 14, also known as p38α) and
canabichromene-IKBKB (inhibitor of NFκ-B kinase subunit β)
play a role in regulating mTORC1 signaling, which will be shown
to be a potential effector of drug addiction.

Turning to targets, three opioid receptors (OPRM1,
OPRD1, and OPRL1) exhibit the highest level of promiscuity
(Supplementary Figure 2B). The µ-type opioid receptor
(OPRM1) interacts with 14 known drugs including all
opioids as well as ketamine and dextromethorphan. We
also predicted a novel interaction between OPRM1 and the CNS
stimulant methylphenidate. This is consistent with experimental
observations that methylphenidate upregulates OPRM1’s activity
in the reward circuitry in a mouse model (Zhu et al., 2011).
Furthermore, tissue-based transcriptome analysis (Uhlén et al.,
2015) shows that 69% of our 190 targets are expressed in the
brain, and 49 of them show elevated expression levels in the
brain compared to other tissue types (Supplementary Table 5).
Among all the targets, NMDA receptor 1 (GRIN1) shows the
highest elevated expression. It is also one of the top 5 enriched
genes overall in the brain (Uhlén et al., 2015).

Taken together, the 50 selected drugs of abuse and the 142
known and 48 novel targets we identified cover a diversity of
biological functions, are involved in many cellular pathways,
and are generally promiscuous. In order to reveal the common
mechanisms that underlie the development and escalation of

drug addiction and also distinguish the effects specific to
selected drugs, we proceed now to a detailed pathway analysis,
presented next.

Pathway Enrichment Analysis Reveals the
Major Pathways Implicated in Various
Stages of Addiction Development
Our QSP analysis yielded a total of 173 pathways, including
114 associated with the known targets of the examined dataset
of drugs of abuse, and 59 associated with the predicted
targets. The detailed pathway enrichment results can be found
in Supplementary Table 4. These pathways can be grouped
in five categories (Figure 4; Supplementary Figures 3, 4, and
Supplementary Table 4):

Synaptic Neurotransmission (NT)
Six significantly enriched (with adjusted p-value < 0.05)
pathways are associated with synaptic neurotransmission:
dopaminergic, serotonergic, glutamatergic, synaptic vesicle cycle,
cholinergic, and GABAergic synapses pathways. Sixty-eight
known targets and 7 predicted targets are involved in these
pathways. This is consistent with the fact that neurotransmission
plays a dominant role in the rewarding system and is key to drug
addiction (Volkow and Morales, 2015).

Signal Transduction (SG)
Forty-six intracellular signaling pathways were mapped by 92
targets comprised of 66 known and 25 predicted targets. Notably,
many of these pathways have been reported to play a role in
mediating the effects of drugs of abuse. These include the top five
[calcium signaling (Li et al., 2008), retrograde endocannabinoid
signaling (Mechoulam and Parker, 2013), cGMP-PKG signaling
(Shen et al., 2016), cAMP signaling (Philibin et al., 2011), and
Rap1 signaling (Cahill et al., 2016)] as well as some pathways with
relatively low enrichment score (i.e., 0.2< adjusted p-value), such
as TNF signaling (Zhu et al., 2018), MAPK signaling (Sun et al.,
2016), PI3K-Akt signaling (Neasta et al., 2011), NF-κB signaling
(Nennig and Schank, 2017), and mTOR signaling (Neasta et al.,
2014). We note that many receptors targeted by drugs of abuse
take part in the KEGG neuroactive ligand-receptor interaction
pathway. In the interest of focusing on intracellular signaling
effects, we have not included these in the SG category; they are
listed in the “Other Pathways” in Supplementary Table 4.

Autonomic Nervous System (ANS)-Innervation (ANS)
We also identified 10 pathways regulating ANS-innervated
systems such as endocrine secretion, taste transduction, and
circadian entrainment. Recent evidences suggested drugs of
abuse such as morphine (Al-Hasani and Bruchas, 2011)
and cocaine (Moeller et al., 1997; Prosser et al., 2014)
can influence ANS-innervated systems and may contribute
to the withdrawn symptoms associated with drug addiction.
Thirty-seven known and 9 predicted targets take part in
these pathways.

Neuroplasticity (NP). Eight enriched pathways with potential
to alter the morphology of neurons, were found to be related to
drug addiction. Among them, long-term potentiation (LTP) and
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FIGURE 4 | Results from pathway and target enrichments analysis. Five broad categories of pathways are distinguished among those involving the targets of drug

abuse: NT, synaptic neurotransmission pathways; SG, signal transduction pathways; DS, disease-associated pathways; ANS, autonomic nervous system-innervation

pathways; and NP, neuroplasticity related pathways. (A) Numbers of pathways (red bars) and targets (gray bars) of drug abuse lying in the five categories, based on

data available in DrugBank and STITCH. The pink and white stacked bars are the corresponding numbers for pathways and targets additionally predicted by PMF. (B)

Overlaps between the target content of the five pathway categories. Note that all targets belonging to the NP category pathways are represented in the other four

categories. See the complete list of pathways and targets in Supplementary Table 4.

long-term depression (LTD) are key to reward-related learning
and addiction by modifying the fine tuning of dopaminergic
firing (Jones and Bonci, 2005). Axon guidance pathway regulates
the growth direction of neuron cells (Bahi and Dreyer,
2005). Regulation of actin cytoskeleton plays important role in
morphological development and structural changes of neurons
(Luo, 2002). Gap junctions connect neighboring neurons via
intercellular channels that allow direct electrical communication
(Belousov and Fontes, 2013) and regulate the efficiency of
communication between electrical synapses (Belousov and
Fontes, 2013). Nineteen known targets and 5 predicted targets
are involved in these pathways. Insulin-like growth factor 1
receptor (IGF1R) is predicted as a target of drug triazolam
(Supplementary Table 4). IGF1R is involved in LTP, adherens
junction and focal adhesion pathways. It functions via canonical
signaling pathways noted above in the SG category, such as the
PI3K-Akt-mTOR and Ras-Raf-MAPK pathways (Lee et al., 2016)
and it plays important role in neuroplasticity (Lee et al., 2016).
We note that the NP group involves many pathways directly
relevant to drug addiction (Bahi and Dreyer, 2005; Kalivas and
Volkow, 2011; Moradi et al., 2013; Rothenfluh and Cowan, 2013).
There is no target unique to this particular group of pathways
(Figure 4B). However, the fact that the targets belonging to
the NP group are also shared by other groups consolidates the
significance of these targets.

Disease-Associated Pathways (DS)
Fifty enriched pathways mapped by 51 known and 17 predicted
targets are associated with diverse diseases in different organs
such as brain, liver, and lung. They also cover various drug
addiction mechanisms including: nicotine addiction, morphine
addiction, cocaine addiction, amphetamine addiction, and
alcoholism. Additionally, there are “other pathways” such

as those involved in cell migration, differentiation, immune
responses, and metabolic events, which can be seen in
Supplementary Table 4.

Taken together, the enrichment analysis reveals five major
categories of pathways that regulate the three stages of drug
addiction cycle: (1) binge and intoxication, (2) withdrawal and
negative affect, and (3) preoccupation and anticipation (or
craving) (Koob and Volkow, 2010). Drugs of abuse directly affect
neurotransmission pathways: they increase the accumulation
of DA and other neurotransmitters in the synaptic and
extrasynaptic regions, which in turn results in the hedonic feeling
(stage 1) and triggers the DA reward system. Dysregulation
of ANS-innervation pathways may cause negative effects and
feelings (stage 2) and feedback to the CNS. Addictive drugs
impair executive processes by disrupting the reward system
(neurotransmission pathways) and imparting morphological
changes via neuroplasticity pathways (e.g., LTD and LTP), which
then result in craving (stage 3). Below, we present an in-depth
analysis of the role of these pathways or their shared targets in
drug addiction.

Selected Targets Shared by Dominant
Pathways Emerge as Common Mediators
of Drug Addiction
We next analyzed the overlapping targets between the pathways
in different functional categories.

First, we note that eight pleiotropic proteins are shared
by all five categories (at the intersection of the five Venn
diagrams in Figure 4B): AMPA receptor (subtype GluA2;
GRIA2), NMDA receptors 1 and 2A-D (designated as GRIN1,
GRIN2A, GRIN2B, GRIN2C, and GRIN2D) and voltage-
dependent calcium channel Cav2.1 (or CACNA1A) as well as the
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predicted target phosphatidylinositol 3-kinase class 1A catalytic
subunit α (PIK3CA) (Supplementary Table 4).

Second, 15 proteins are distinguished as targets of four of
these major pathways: Serotonin receptors 5HTR2-A, -B and -
C), GABAA receptors 1-6 (GABRA1- GABRA6), β-1 adrenergic
receptor 1 (ADRB1), Ras-related C3 botulinum toxin substrate
1 (RAC1; member of Rho family of GTPases), mAChR M3

(CHRM3) and DA receptor D2 (DRD2), and two predicted
targets - p38α (MAPK14) and DA receptor D1 (DRD1).

AMPA receptor plays a crucial role in LTP and LTD, which
are vital to neuroplasticity, memory and learning (Volkow
et al., 2016). Serotonin receptors, expressed in both the CNS
and the peripheral nervous system (e.g., gastrointestinal tract),
are responsible for anxiety, impulsivity, memory, mood, sleep,
thermoregulation, blood pressure, gastrointestinal motility, and
nausea (Pytliak et al., 2011). They have been proposed to be
therapeutic targets for treating cocaine use disorder (Howell and
Cunningham, 2015). RAC1 is involved in five neuroplasticity
pathways, including axon guidance, adherens junction and tight
junction pathways (Supplementary Table 4), and 13 intracellular
signal transduction pathways. It regulates neuroplasticity, as
well as apoptosis and autophagy (Natsvlishvili et al., 2015). DA
receptor D2 is a target of 28 drugs of abuse (out of 50 examined
here) and is involved in cAMP signaling, and gap junction
pathways, in addition to dopaminergic signaling. It is implicated
in reward mechanisms in the brain (Blum et al., 1996) and
the regulation of drug-seeking behaviors (Edwards et al., 2006).
Finally, PI3K turns out to be the most pleiotropic target among
those targeted by drugs of abuse, being involved in 61 pathways
identified here, including neuroplasticity pathways such as axon
guidance, and several downstream signaling pathways such as
PI3K-Akt, mTOR, Ras and Jak-STAT pathways.

Overall, the above listed 23 proteins shared by at least four
different groups of pathways are distinguished here as highly
pleiotropic proteins involved in the large majority of pathway
categories implicated in drug abuse. Most of them are ligand-
or voltage-gated ion channels or neurotransmitter receptors,
mainly AMPAR, NMDAR, Cav2.1, mAChR, and serotonin and
DA receptors. However, it is interesting to note the targets PI3K
and p38α, not currently reported in DrugBank and STITCH,
emerge as highly pleiotropic targets of the drugs of abuse. These
are suggested by the current analysis to directly or indirectly
affect addiction development and await future experimental
validation. Finally, a number of proteins take part in specific
drug-abuse-related pathways and might serve as targets for
selective treatments. Supplementary Table 6 provides a list of
such targets uniquely implicated in distinctive pathways.

Pathway Enrichment Highlights the
Interference of Drugs of Abuse With
Synaptic Neurotransmission
It is broadly known that neurotransmitters such as DA, 5-
HT, NE, endogenous opioids, ACh, endogenous cannabinoids,
Glu, and GABA are implicated in drug addiction (Tomkins
and Sellers, 2001; Everitt and Robbins, 2005; Parolaro and
Rubino, 2008; Benarroch, 2012). Our analysis also showed

that the serotonergic synapse (adjusted p-value p∗i = 2.01E-
18), GABAergic synapse (p∗i = 1.19E-17), cholinergic synapse
(p∗i = 2.36E-07), dopaminergic synapse (p∗i = 1.66E-06)
and glutamatergic synapse (p∗i = 1.86E-03) pathways were
significantly enriched (Supplementary Table 4). A total number
of 34 drugs (across six different groups) target at least one of
these pathways. However, the identification of a pathway does
not necessarily mean that the drug directly affects that particular
neurotransmitter transport/signaling. There may be indirect
effects due to the crosstalks between synaptic signaling pathways.
For example, the ionotropic glutamate receptors NMDAR and
AMPAR are also the downstream mediators in the dopaminergic
synapse pathway. Likewise, GABARs are downstream mediators
in the serotonergic synapse pathway.

In Figure 5, we highlight five major neurotransmission
events that directly mediate addiction, and illustrate how eight
drugs of abuse interfere with them. Despite the promiscuity
of the drugs of abuse, some selectively map onto a single
synaptic neurotransmission pathway. For example, psilocin [a
hallucinogen whose structure is similar to 5HT (Diaz, 1997)]
interacts with several types of 5HTRs, regulating serotonergic
synapse exclusively (see Figure 5 and Supplementary Table 4).
In contract, loperamide (not shown) affects all neurotransmission
pathways by interacting with the voltage-dependent P/Q-type
calcium channel (VGCC), regulating calcium flux on synapses.
Cocaine targets four of these synaptic neurotransmission
events (serotonergic, GABAergic, cholinergic, and dopaminergic
synapses), through its interactions with 5-HT3R, sodium-
and chloride-dependent GABA transporter (GAT), muscarinic
(M1 and M2) and nicotinic AChRs, and DAT, respectively.
Methadone affects three synaptic neurotransmissions, including
serotonergic synapse, dopaminergic synapse, and glutamatergic
synapse through the interactions with SERT, DAT, and glutamate
receptors (NMDAR), respectively.

It is worth noting that the current analysis helps us generate
new hypotheses, yet to be experimentally validated, on the
ways drugs of abuse affect neurotransmission. In addition to
the new role of the muscarinic AChR M5 suggested by the
current analysis in section the selected drugs and identified
targets are highly diverse and promiscuous, our PMF model
suggested that cannabichromene, a cannabinoid whose primary
target is the transient receptor (TRPA1), could interact with DAT
and thus regulate dopaminergic transmission, which will require
further examination.

The above synaptic neurotransmission events act as upstream
signaling modules that “sense” the early effects of drug abuse. In
the next section, we focus on the downstream signaling events
elicited by drug abuse.

mTORC1 Emerges as a Potential
Downstream-Effector Activated by
Drugs Abuse
The calcium-, cAMP-, Rap1-, Ras-, AMPK-, ErbB-, MAPK-,
and PI3K-Akt-signaling pathways in the SG category
(Supplementary Table 4) crosstalk with each other and
form a unified signaling network. As shown in Figure 6,
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FIGURE 5 | The impact of drugs of abuse on synaptic neurotransmission. Five major neurotransmission events are highlighted, mediated by (counterclockwise,

starting from top): GABA receptors and transporters, ionotropic glutamate receptors (NMDAR and AMPAR) and cation channels, serotonin (5HT) receptors (5-HTR)

and transporters (SERT), muscarinic or nicotinic AChRs, and dopamine (DA) receptors and transporters. Vesicular monoamine transporters (VMAT) that translocate

DA are also shown. Drugs affecting the different pathways are listed, color coded with their categories, as presented in Figure 2. Solid red arrows indicate a known

drug-target interaction, dashed red arrows indicate predicted drug-target interactions. Other molecules shown in the diagram are: KA, kainate receptor; MAO,

monoamine oxidase; HVA, homovanillate; 3-MT, 3-methoxytyramine; MOR, mu-type opioid receptor; AChE, acetylcholinesterase; and 5-H1AA,

5-hydroxyindoleacetate.

ligand-binding to GPCRs modulates the production of cAMP,
which leads to the activation of Rap1. Activated Rap1 modules
the Ca2+ signaling by inducing the production of inositol
triphosphate (IP3) and also activates the PI3K-Akt signaling
cascade. Stimulations of ErbB family of receptor tyrosine
kinases (related to epidermal growth factor receptor EGFR)
as well as insulin-like growth factor receptor IGF1R trigger
both PI3K-Akt and MAPK signaling cascades (proteins colored
blue in Figure 6). Notably all these pathways merge and
regulate a group of downstream proteins (shown in dark
yellow in Figure 6); and at the center of this cluster lies the

mammalian target of rapamycin (mTOR) complex 1 (mTORC1)
which is likely to be synergistically regulated by all these
merging pathways.

mTORC1 is not only a master regulator of autophagy
(Rabanal-Ruiz et al., 2017), but also controls protein synthesis
and transcription (Ma and Blenis, 2009). It has been reported
to promote neuroadaptation following exposure to drugs
of abuse including cocaine, alcohol, morphine and 19-
tetrahydrocannabinol (THC) (Neasta et al., 2014). Our results
lead to the hypothesis that mTORC1 may act as a universal
effector of the cellular response to drug abuse at an advanced
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FIGURE 6 | A unified signaling network mediates the effects of drugs of abuse. Black arrows represent the activation, inhibition, and translocation events during signal

transduction. Solid gray arrows represent the known drug-target interactions. Dashed gray arrows represent predicted drug-target interactions. The diagram illustrates

the targets of several drugs of abuse belonging to different categories: loperamide, fentanyl, heroin, morphine, and methadone from opioids; midomafetamine,

ketamine, dextromethorphan, LSD, and psilocin from hallucinogens; triazolam, diazepam, alprazolam, pentobarbital, eszopiclone, flunitrazepam, and zaleplon from

CNS depressants; cannabichromene, 2-AG, cannabinol, and dronabinol from cannabinoids; methamphetamine, cocaine, AMPH, and phendimetrazine from CNS

stimulants; and nandrolone from anabolic steroids. mTORC1 emerges as a hub where the effects on several targets of addictive drugs appear to be consolidated to

lead to cell death and/or protein synthesis in the CNS, and in particular, to AMPAR/PSD95 synthesis that induces morphological changes in the dendrites.

(preoccupation and anticipation, or craving) stage, controlling
the synthesis of selected proteins and ensuing cell growth, which
may result in persistent alterations in the dendritic morphology
and neuronal circuitry.

In Figure 6, selected interactions between drugs from different
substance groups and their targets are highlighted using gray
arrows. The figure illustrates that not only many known
drug-target interactions, but also predicted ones involved in
the unified signaling network. For example, our PMF model
predicted that diazepam would interact with PI3K to influence
mTORC1 signaling (dashed gray arrows denote predictions). It
has been reported that Ro5-4864, a benzodiazepine derivative of
diazepam suppresses activation of PI3K (Yousefi et al., 2013),
which corroborates our prediction. We further predicted that
cannabichromene may interact with IκB kinase β (IKKβ) to
regulate mTORC1 by inhibiting TSC1/2. Interestingly, another
cannabinoid, arachidonoyl ethanolamine, is known to directly
inhibits IKKβ (Sancho et al., 2003). Taken together, our results

suggest a unified network that underlies the development of
drugs addiction, in which mTORC1 appears to play a key
effector role.

DISCUSSION

In the present study we focused on the targets and pathways
affected by drugs of abuse, toward gaining a systems-level
understanding of key players and dominant interactions that
control the response to drug abuse and the development of drug
addiction. Using machine learning methods, we focused on 50
drugs of abuse that form a chemically and functionally diverse
set, and analyzed their 142 targets as well as the corresponding
cellular pathways and their crosstalk. Our analysis identified:

(i) 48 additional proteins targeted by drugs of abuse, including
PIK3CA, IKBKB, EGFR, and IGF1R, are shown to be key
mediators of downstream effects of drug abuse.
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(ii) 161 new interactions between the drugs of abuse and
the known and predicted targets, including those between
cocaine and M5, methylphenidate and OPRM1, and
diazepam and PI3K, not reported in existing DBs, but
supported by prior experiments, and others (e.g., the
interactions of cannabichromene with IKBKB and DAT)
that await experimental validation.

(iii) A dataset of 70 pathways, composed of 6 neurotransmission
pathways, 46 signal transduction pathways, 8
neuroplasticity pathways and 10 autonomic nervous
system innervation pathways which are proposed to govern
different stages of the molecular, cellular and tissue level
responses to drug abuse and in addiction development.

Overall, our comprehensive analysis led to new hypotheses on
drug-target interactions and signaling and regulation mechanism
elicited by drugs of abuse in general, along with those on selected
targets and pathways for specific drugs. Below we elaborate on
the biological and biomedical implications of these findings.

Persistent Restructuring in Neuronal
Systems as a Feature Underlying
Drug Addiction
Enriched pathways in the neuroplasticity category include gap
junction, LTP, LDP, adherens junction, regulation of actin
cytoskeleton, focal adhesion, axon guidance, and tight junction
(Supplementary Table 4). These are responsible for the changes
in the morphology of dendrites. For instance, DA regulates
excitatory synaptic plasticity by modulating the strength and
size of synapses through LTP and LTD (De Roo et al., 2008;
Volkow andMorales, 2015). The restructuring of dendritic spines
involves the rearrangements of cytoskeleton and actin-myosin
(Volkow andMorales, 2015). The axon guidance molecules guide
the direction of neuronal growth.

Drugs of abuse can induce the changes in CNS through
these pathways. For example, chronic exposure to cocaine
increases dendritic spine density in medium spiny neurons
(Russo et al., 2010). The disruption in axon guidance pathway
and alteration in synaptic geometry can result in drug-
related plasticity (Bahi and Dreyer, 2005). The persistent
restructuring in the CNS caused by drugs of abuse is
responsible for long-term behavioral plasticity driving addiction
(Volkow et al., 2003; Russo et al., 2010; Volkow and
Morales, 2015). As will be further discussed below, mTORC1
plays a central role in the synthesis of new proteins (e.g.,
AMPARs) and thereby neuronal (dendrites) growth, alteration
of the synaptic geometry and therefore rewiring of the
neuronal circuitry.

ANS May Mediate the
Negative-Reinforcement of Drug Addiction
The current study further points to pathways regulating the
ANS-innervated systems. As the NP pathways influence the
neuroplasticity in the ANS, we hypothesize that drugs of abuse
might induce a persistent restructuring in the ANS as well. The
drug-related plasticity in ANS may lead to the dysregulation of
ANS-innervated systems and cause negative effects and feelings

during the second stage of drug addiction. Drug addiction is
well known as a brain disease (Volkow and Morales, 2015).
However, many drugs of abuse can disrupt the activity of
ANS and cause disorders in ANS-innervated systems (Al-Hasani
and Bruchas, 2011; Huang, 2017). For example, opioids (e.g.,
morphine) alter neuronal excitability and neurotransmission in
the ANS (Wood and Galligan, 2004), and induce disorders in
gastrointestinal system, smooth muscle, skin, cardiovascular, and
immune system (Al-Hasani and Bruchas, 2011). Cannabinoids
(e.g., THC) modulate the exocytotic NE release in ANS-
innervated organs through presynaptic cannabinoid receptors
(Ishac et al., 1996).

The pathways we identified in the ANS category regulate
insulin secretion, gastric acid secretion, vascular smooth
muscle contraction, pancreatic secretion, salivary secretion,
and renin secretion (Supplementary Table 4). Their dysfunction
may be associated with the autonomic withdrawal syndrome,
such as thermoregulatory disorder (chills and sweats) and
gastrointestinal upset (abdominal cramps and diarrhea), which
has been observed in drug/substance users (Wise and Koob,
2014). In addition, the stress and depression caused by these
negative effects may be part of the negative reinforcement of
drug addiction (Self and Nestler, 1995; Koob and Le Moal, 2001).
In other words, the drug induced ANS disorders can feedback
to CNS and mediate the negative reinforcement. Compared
to the structural changes in CNS, the disorder and persistent
restructuring in ANS is less studied and it could be a future
direction in the study of development of drug addiction and
related diseases.

mTORC1 Appears as a Key Mediator of
Cellular Morphological Changes Elicited in
Response to Continued Drug Abuse
The functioning and regulation of mTOR signaling has
been elucidated over the past two decades. It became clear
that mTORC1 plays a crucial role in regulating diverse
cellular processes including protein synthesis, autophagy,
lipid metabolism, and mitochondrial biogenesis (Saxton
and Sabatini, 2017). In the brain, mTORC1 coordinates
neural development, circuit formation, synaptic plasticity,
and long-term memory (Lipton and Sahin, 2014). The
dysregulation of mTORC1 pathway is associated with
many neurodevelopmental and neurodegenerative diseases
such as Parkinson’s disease and Alzheimer’s disease.
mTORC1 has been noted to be an important mediator
of the development of drug addiction and relapse
vulnerability (Dayas et al., 2012). Accumulating evidences
show that pharmacological inhibition of mTORC1 (often
through rapamycin treatment) can prevent sensitization of
methamphetamine-induced place preference (Narita et al.,
2005), reduce craving in heroin addicts (Shi et al., 2009),
attenuate the expression of alcohol-induced locomotor
sensitization (Neasta et al., 2010), suppress the expression
of cocaine-induced place preference (Bailey et al., 2012),
protect against the expression of drug-seeking and relapse by
reducing AMPAR (GluA1) and CaMKII levels (James et al.,
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2014), and inhibit reconsolidation of morphine-associated
memories (Lin et al., 2014).

Our unbiased computational analysis based on a diverse
set of 50 drugs of abuse supports the hypothesis that
mTORC1 may act as a universal effector or controller of
neuroadaptations induced by drugs of abuse (Neasta et al.,
2014). The major signal transduction pathways we identified
that involve targets of drugs of abuse interconnect and
converge to the mTORC1 signaling cascade (Figure 6). Most
drugs of abuse in our list target upstream regulators of
mTORC1, including membrane receptors (e.g., GPCRs, RTKs
and NMDAR), kinases (e.g., PI3K, p38α, and IKKβ), and ion
channels (e.g., CaV2.1 and TRPV2). Notably, the impact of some
of these known or predicted targets has been experimentally
confirmed. For example, blockade of the known target NMDAR
using MK801 reduces the amnesic-like effects of cannabinoid
THC (Puighermanal et al., 2009). Likewise, inhibition of PI3K
(a predicted target) by LY294002 suppresses morphine-induced
place preference in rats (Cui et al., 2010) and the expression
of cocaine-sensitization (Izzo et al., 2002). Our results thus
provide a pool of candidate targets implicated in cellular
responses to addictive drugs, which await to be consolidated by
further tests.

The downstream effectors of mTORC1, which specifically
mediate drug behavioral plasticity is far from known. mTORC1
can mediate the activation of S6Ks and 4E-BPs, which leads
to increased production of proteins required for synaptic
plasticity including AMPAR and PSD-95 (Dayas et al., 2012). EM
reconstruction of hippocampal neuropil showed the variability
in the size and shape of dendrites depending on synaptic
activity (Bartol Jr et al., 2015), which in turn correlates
with information storage. Recently studies have revealed that
Atg5- and Atg7-dependent autophagy in dopaminergic neurons
regulates cellular and behavioral responses to morphine (Su
et al., 2017). Cocaine exposure results in ER stress-induced
and mTORC1-dependent autophagy (Guo et al., 2015). Fentanyl
induces autophagy via activation of ROS/MAPK pathway
(Yao et al., 2016). Methamphetamine induces autophagy
through the κ-opioid receptor (Ma et al., 2014). These
observations are consistent with the currently inferred role of
mTORC1 as a downstream effector of cellular responses to
drug addiction.

Drug Repurposing Opportunities for
Combatting Drug Addiction
Autophagy modulating drugs have been shown to have
therapeutic effects against liver and lung diseases. The signaling
network presented in Figure 6 involves many targets of such
drugs. For instance, carbamazepine affects IP3 production
and enhances autophagy via calcium-AMPK-mTORC1 pathway
(Hidvegi et al., 2010). It has been identified as a potential
drug for treating α1-antitrypsin deficiency, hepatic fibrosis, and
lung proteinopathy (Hidvegi et al., 2010, 2015). Rapamycin is a
potential drug for lung disease such as fibrosis (Abdulrahman
et al., 2011; Patel et al., 2012). Other liver and lung drugs
which facilitate the removal of aggregates by promoting

autophagy may also affect drug-related neurodegenerative
disorders. Supplementary Table 7 summarizes 15 autophagy-
modulating drugs for liver and lung diseases. Target identification
and pathway analysis of this subset of drugs using the same
protocol as those adopted for the 50 drugs of abuse indeed
confirmed that drugs of abuse and liver/lung drugs share
many common pathways (Supplementary Figure 5). Notably,
among those pathways, neuroactive ligand-receptor interactions,
calcium signaling, and serotonergic synapse pathways are among
the top 10 enriched pathways of both drugs of abuse and
liver/lung drugs. Amphetamine addiction and alcoholism are
also enriched by targets of liver/lung drugs. Thus, an interesting
future direction is to examine whether autophagy modulating
drugs for liver and lung diseases could be repurposed, if necessary
by suitable refinements to increase their selectivity, for treating
drug addiction.

In summary, our results invite attention to new targets of
addictive drugs and pathways implicated in the development
of addiction, as well as new therapeutic opportunities. Recent
studies support the utility of such computationally-driven
QSP predictions. The validation of these predictions requires
comprehensive wet-lab bioactivity assays (Pahikkala et al., 2015).
In particular, the establishment of the proposed role of mTORC1
would require in vitro and in vivo longitudinal studies given
that our current study points to the involvement of mTORC1 at
later stages of drug addiction. In a recent study, we identified
the role of protein kinase A (PKA) pathway in Huntington’s
disease using a QSP approach and verified experimentally (Pei
et al., 2017). A similar combined computational-experimental
framework could be adopted to extend the current study and
establish new strategies. Though these experiments are beyond
the scope of the current paper, our unbiased computational study
provides insights into the pleiotropy of the targets of addictive
drugs as well as the common signaling platforms that may serve
as mediators of drug addiction.

Knowledge of pathways implicated in drug addiction
may be used, as a next step, to construct kinetic models to
quantitatively assess the orchestration of signals induced
by pathway crosstalks. Our previous studies on Toll-like
receptors (Liu et al., 2016) and cell fate decision processes
(Liu et al., 2014, 2017) have demonstrated the utility
of identifying such crosstalks for detecting synergistic
response mechanisms and designing polypharmacological
strategies. Therefore, the computational data presented
here presents a milestone toward developing new therapies
against drug addiction by identifying new targets beyond
those usually investigated by focused studies. Finally, our
analysis framework is generic and could be adopted for
characterizing the targets and pathways of other complex
disorders by suitable redefinition of the input set of drugs
of interest.
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Background: Formal definitions allow selecting terms (e.g., identifying all terms related to 
“Infectious disease” using the query “has causative agent organism”) and terminological 
reasoning (e.g., “hepatitis B” is a “hepatitis” and is an “infectious disease”). However, 
the standard international terminology Medical Dictionary for Regulatory Activities 
(MedDRA) used for coding adverse drug reactions in pharmacovigilance databases does 
not beneficiate from such formal definitions. Our objective was to evaluate the potential 
of reuse of ontological and non-ontological resources for generating such definitions 
for MedDRA.

Methods: We developed several methods that collectively allow a semiautomatic semantic 
enrichment of MedDRA: 1) using MedDRA-to-SNOMED Clinical Terms (SNOMED CT) 
mappings (available in the Unified Medical Language System metathesaurus or other 
mapping resources, e.g., the MedDRA preferred term “hepatitis B” is associated to the 
SNOMED CT concept “type B viral hepatitis”) to extract term definitions (e.g., “hepatitis B” 
is associated with the following properties: has finding site liver structure, has associated 
morphology inflammation morphology, and has causative agent hepatitis B virus); 2) using 
MedDRA labels and lexical/syntactic methods for automatic decomposition of complex 
MedDRA terms (e.g., the MedDRA systems organ class “blood and lymphatic system 
disorders” is decomposed in blood system disorders and lymphatic system disorders) 
or automatic suggestions of properties (e.g., the string “cyclic” in preferred term “cyclic 
neutropenia” leads to the property has clinical course cyclic).

Results: The Unified Medical Language System metathesaurus was the main ontological 
resource reusable for generating formal definitions for MedDRA terms. The non-ontological 
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resources (another mapping resource provided by Nadkarni and Darer in 2010 and 
MedDRA labels) allowed defining few additional preferred terms. While the Ci4SeR tool 
helped the curator to define 1,935 terms by suggesting potential supplemental relations 
based on the parents’ and siblings’ semantic definition, defining manually all MedDRA 
terms remains expensive in time.

Discussion: Several ontological and non-ontological resources are available for 
associating MedDRA terms to SNOMED CT concepts with semantic properties, but 
providing manual definitions is still necessary. The ontology of adverse events is a 
possible alternative but does not cover all MedDRA terms either. Perspectives are to 
implement more efficient techniques to find more logical relations between SNOMED CT 
and MedDRA in an automated way.

Keywords: adverse drug reaction, Medical Dictionary for Regulatory Activities, SNOMED Clinical Terms, ontology, 
clinical terminology, pharmacovigilance

INTRODUCTION

Formal representation of semantics as provided by computational 
ontologies and associated semantic Web techniques have 
been extensively used in medical data integration systems in 
the last decade (Sheth et al., 2005), and they now tend to be 
acknowledged as a powerful means to improve the quality of the 
processing chain of medical data, process automatic extraction 
of information and knowledge from large databases or ensure 
semantic interoperability between disparate data processing 
systems (Park and Hardiker, 2009; Schriml et al., 2012; Schulz and 
Jansen, 2013).

In the medical domain, classic terminologies are gradually 
giving way to clinical terminologies, in which terms are defined 
using knowledge representation languages (Rossi Mori et al., 
1998). An example is SNOMED Clinical Terms (SNOMED CT), 
a general clinical terminology whose objective is to represent 
all possible terms required for coding the patient record and 
other applications for representation of biomedical information 
(Khorrami et al., 2018). SNOMED CT presents several 
advantages compared with classic terminologies, especially 
the ability to apply techniques of semantic reasoning in order 
to build new groups of terms, whereas classic terminologies 
are limited to default groupings (generally made manually by 
experts) that are already specified as part of the terminology 
(Bousquet et al., 2005).

Medical Dictionary for Regulatory Activities (MedDRA) 
is a classic terminology used by regulatory authorities and 

pharmaceutical companies for coding adverse drug reactions 
(ADR) in pharmacovigilance databases (Brown et al., 1999). 
MedDRA terms are not formally defined and search is therefore 
limited to existing categories (Bousquet et al., 2005). It is 
frequently difficult to identify the exact MedDRA category that 
represents a given medical condition under investigation in a 
sufficiently specific and exhaustive way, for example, during a 
pharmacovigilance database search (Brown, 2003).

Since several years, we have performed studies that showed that 
a knowledge-based approach is efficient for building new groups 
of ADR terms with World Health Organization Adverse Reaction 
Terminology (WHO ART) (Alecu et al., 2006) (Iavindrasana et al., 
2006) and with MedDRA (Henegar et  al., 2006; Declerck et al., 
2012; Asfari et al., 2016; Souvignet et al., 2016a) in an automated 
way. This means that starting from a resource containing formal 
definitions of ADR terms, it is possible to make queries that 
correspond to a case definition in order to retrieve the related set 
of terms. This strategy was applied in Pharmacovigilance Adverse 
Reaction Terminology Server (Alecu et al., 2007) where building a 
knowledge base for all WHO ART terms was a challenge. Indeed, 
all definitions were to be set manually, and we therefore focused 
on automated ways to enrich WHO ART (Iavindrasana et  al., 
2006). We found that mapping of WHO ART with SNOMED 
CT by means of the Unified Medical Language System (UMLS) 
metathesaurus proved to be a very efficient method to build 
formal definitions of WHO ART terms in an automated way 
(Alecu et al., 2008).

Difficulties we encountered for enriching WHO ART now 
appear at a larger scale in MedDRA due to a growing number 
of terms and a more complex organization of MedDRA. Indeed, 
only about 50% of MedDRA terms [excluding lowest level term 
(LLT)] were associated with a SNOMED CT concept in UMLS 
(Bodenreider, 2009). Therefore, the mapping method we applied 
to WHO ART was a fair starting point but proved to be insufficient 
for obtaining an exhaustive enrichment of MedDRA.

Our objective was to evaluate the potential of reuse of 
ontological and non-ontological resources for defining and/or 
enriching definitions of MedDRA terms. We present in this article 

Abbreviations: ADR, Adverse drug reactions; AERS, Adverse Events Reporting 
System; Ci4SeR, Curation Interface for Semantic Resources; HLGT, Higher 
Level Group Term; HLT, High Level Term; ICD-10, International classification of 
diseases, 10th edition; LALR, Lexically assign logically refine; LLT, Lowest Level 
Term; LOINC, Logical Observation Identifiers Names & Codes; MedDRA, Medical 
dictionary for drug regulatory activities; NEC, Not elsewhere classified; NOS, 
Not otherwise specified; OAE, Ontology of Adverse Events; OWL, Web Ontology 
Language; PT, Preferred Term; SMQ, Standardized MedDRA Queries; SNOMED 
CT, SNOMED Clinical Terms; SOC, System Organ Class; UMLS, Unified Medical 
Language System; WHO ART, World Health Organization-Adverse Reaction 
Terminology.
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several complementary methods that may benefit different levels 
of automation and could also be reused in order to semantically 
enrich other terminologies. These include methods such as i) 
extracting SNOMED CT definitions based on MedDRA-to-
SNOMED CT mappings available in the UMLS metathesaurus or 
other mapping resources and ii) developing lexical and syntactic 
methods using MedDRA term label information. The ability to 
reuse the selected ontological and non-ontological resources was 
measured by comparing the number of MedDRA terms associated 
with a formal definition after processing of these resources with the 
number of MedDRA terms to define. Additionally, we manually 
curated some term definitions using expert knowledge that 
allowed us to evaluate the time necessary and validated a sample 
of the formal definitions provided by the previous methods. We 
stored formal definitions of MedDRA terms in a semantic resource 
named OntoADR (Bousquet et al., 2014).

The organization of OntoADR and results of semantic queries 
on OntoADR have been already published (Bousquet et al., 
2014; Souvignet et al., 2016b). This article presents methods 
we implemented for reusing ontological and non-ontological 
resources to enable the formalization of the semantics and results 
obtained with each of these methods, how they automate the 
development of formal representations of MedDRA terms, the 
limits related to these methods, and additional developments 
that would be required for a more complete semantic 
enrichment of MedDRA.

BACKGROUND

Hierarchical Organization of Medical 
Dictionary for Regulatory Activities
The MedDRA hierarchy consists of five levels (from broad to 
narrow), among which four are depicted in Figure 1: System Organ 

Class (SOC), e.g., hepatobiliary disorders; higher level group 
term (HLGT), e.g., hepatic and hepatobiliary disorders; high 
level term (HLT), e.g., hepatic viral infections; preferred term 
(PT), e.g., hepatitis B; and LLT not shown on the figure. The PT 
level is preferred for data analysis and retrieval. MedDRA was 
defined as multi-axial because one PT may be present in one 
primary SOC and also in several secondary SOC. However, one 
PT may exist only within one single HLT within a SOC. As HLT 
within a SOC constitutes disjoint classes, it is seldom reliable to 
consider only one HLT or higher level category when searching 
for MedDRA terms related to a pharmacovigilance safety topic 
(Bousquet et al., 2005; Asfari et al., 2016).

Moreover, it was recognized that HLT are not always 
sufficient to represent clinical conditions involving several organs 
(e.g., anaphylactic shock involving the kidney, liver, cardiovascular, 
and respiratory systems) because they only group together terms 
belonging to the same SOC. When searching for signals associated 
with a drug, MedDRA terms representing the suspected ADR must 
thus be identified prior to the running of signal detection algorithms 
Souvignet et al. (2012). For instance, if one suspects a given drug 
to cause acute renal failure, using the MedDRA term “renal failure 
acute” is generally not sufficient for the algorithms to extract a 
signal because the acute renal failure condition can be coded with 
several related MedDRA terms by health professionals (e.g., “renal 
impairment,” “blood creatinine abnormal,” or “dialysis”). Identifying 
clinically related terms in MedDRA is not an easy task, as those 
terms might exist in different locations of the MedDRA hierarchy.

Since several years, the Maintenance and Support Services 
Organization, which is responsible for MedDRA maintenance 
and diffusion, builds standardized MedDRA queries (SMQ) to 
address these issues (Mozzicato, 2007). SMQs consist of sets of 
PT from different branches of MedDRA that allow describing 
a particular medical condition and are intended to aid in case 
identification. SMQs are a way to describe safety topics relevant 

FIGURE 1 | Example of the formal definition of “hepatitis B” in OntoADR.
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for pharmacovigilance that are not covered by the HLT and HLGT 
present in the MedDRA hierarchy. However, the achievement of 
SMQ raises important difficulties.

SMQs are currently developed manually by experts from the 
Maintenance and Support Services Organization, which is time 
consuming. Furthermore, once defined, they should not be 
modified or customized, and the existing SMQs do not cover all 
issues possible with drugs. Because experts have (even slightly) 
different understandings of the medical condition targeted by an 
SMQ, the kind of terms and the rationale for their selection may 
differ from an SMQ to another. This means that from one group of 
experts to another, for the same safety topic, the list of MedDRA 
terms selected could be different. Because SMQs are manually 
implemented, they could also miss important MedDRA terms. 
For those different reasons, the development of methods for 
automated selection of MedDRA terms on the basis of semantic 
information is desirable. Indeed, an automation of the process of 
PT selection in SMQ, even partial, could increase the quality and 
reproducibility of the SMQ and allow an important saving of time.

Difficulties for Searching Terms in Medical 
Dictionary for Regulatory Activities
The performance of pharmacovigilance systems based on 
spontaneous reporting is dependent on the information systems 
in which case reports are stored. In particular, these systems are 
subordinated to the ability of users to retrieve and exploit case 
reports in order to 1) reinforce existing knowledge on drug 

safety, 2) make assumptions about the existence of a causal 
relationship between a drug and an adverse event, and 3) evaluate 
the available information to implement regulatory measures to 
secure drug therapies. The search for pharmacovigilance case 
reports is difficult because it is necessary to identify the medical 
terms indicating the safety topic that one wishes to evaluate. In 
general, a term is not sufficient to designate this safety topic, and 
it is preferable to look for all case reports in relation to a set of 
terms (Hauben et al., 2006; Hansen et al., 2007). According to the 
MedDRA® Data Retrieval and Presentation: Points To Consider 
(ICH Working Group, 2018), “clinically related PTs might be 
overlooked or not recognized as belonging together because they 
might be in different groupings within a single SOC or they may 
be located in more than one SOC.”

Figure 2 shows the problem of finding terms in MedDRA. Terms 
associated with a green tick are related to valvulopathy, while terms 
marked with a red cross do not correspond to valvulopathy. It is 
observed that the search terms are located in different branches of 
the terminology, which requires the pharmacovigilant specialist 
more time and effort to carry out his query. In addition, several 
HLT or HLGT must be combined to arrive at the final result, and 
irrelevant terms are present in these groups, which means that a 
search based on HLT or HLGT groupings will be associated with 
a large number of irrelevant PT. Another method for searching 
MedDRA terms is the textual query, but the terminology seems 
complex and does not reveal discriminating strings in the search 
for valvulopathies. For example “stenos * aort *” gives as results 
“stenosis of the aortic valve,” “congenital aortic stenosis of the 

FIGURE 2 | Extract of the MedDRA hierarchy showing preferred terms related or non-related to valvulopathies.
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valve,” and “stenosis of the mitral valve and insufficiency of the 
aortic valve,” but it is necessary to perform additional text 
searches corresponding to findings for valvular involvement 
such as calcification or insufficiency.

Interface, Aggregation, and Reference 
Terminologies
Schulz et al. (2017) recently evaluated how interface, aggregation, 
and reference terminologies may interact in the context of the 
new 11th version of the International Classification of Diseases 
and its relations with SNOMED CT. Interface terminology was 
defined by Rosenbloom et al. (2006) as a “systematic collection of 
health care–related phrases (terms) that supports clinicians’ entry 
of patient-related information into computer programs [ … ].” 
According to Spackman (1997), the “main purpose of a reference 
terminology [ … ] is the retrieval and analysis of data.” The term 
“aggregation terminology” was first introduced by Rogers (2005) 
to designate a classification systems in which its main purpose is 
to enable “statistical aggregation,” further defined by Schulz et al. 
(2017) as consisting of single hierarchies and disjoint classes.

We consider that such clarification would be useful in our case 
study, to better explain what we intend to do with MedDRA and 
SNOMED CT. Within our approach, MedDRA is the aggregation 
terminology, and SNOMED CT is the reference terminology. 
As our purpose is to improve retrieval and not coding of MedDRA 
terms, we did not work on building an interface terminology. 
Such interface terminology would be desirable to facilitate 
data entry in pharmacovigilance databases but is outside of our 
scope. In the following paragraph, we show how a graphical user 
interface implementing SNOMED CT as a reference terminology 
could help users’ experience in selecting MedDRA terms and 
potentially improving search in pharmacovigilance databases.

Rationale for Supplementing Medical 
Dictionary for Regulatory Activities With 
Formal Definitions
We consider it is possible to overcome the limitations associated 
with the organization of MedDRA terminology and the difficulty 
to identify related MedDRA terms, by proposing an alternative 
method for the grouping of PTs based on their medical meaning 
rather than their position in the hierarchy. This new method is 
based on PT modeling in a form that allows logical inferences by 
a computer. From a technical point of view, the implementation 
of this method is based on knowledge engineering, a branch of 
artificial intelligence in which it is possible to describe MedDRA 
terms using a formal language (Bousquet et al., 2014). In the 
field of knowledge engineering, we define “ontology” as the set of 
objects of a domain and relations between these objects.

While McKnight (1999) recognized the need for user-directed 
composition of controlled health terminologies, and the required 
improvement of the user interface in the context of data entry, 
we believe that such user interface is also of great importance 
to enable composition for data retrieval. In a previous work, we 
implemented OntoADR query tools, a graphical user interface 
that relies on OntoADR, and compared the performances of 

eight users in selecting MedDRA PTs with the MedDRA web 
browser in a pilot study on five medical conditions (Souvignet 
et al., 2019). Although the number of medical conditions was 
low, we observed a statistically significant improvement by 
using OntoADR query tools compared with the MedDRA web 
browser for selecting MedDRA PTs (+27% precision and +34% 
recall). Similar to Maedche and Staab (2001), we consider that 
the target application may serve as a measure for validating the 
implemented ontology and believe that such criteria is more 
important than criteria relying only on the evaluation of the 
ontology without taking into account the context where it is 
used. This pilot study confirmed the validity of our approach and 
justifies that we continue the implementation of our mappings 
between MedDRA and SNOMED CT.

In order to address a safety issue, it is necessary to identify 
case reports in pharmacovigilance databases relative to this 
issue. A safety issue may concern the causality assessment of 
drug D in the occurrence of medical condition C. Figure 3 
shows the example of three use cases where one is evaluating the 
causal role of suspected drug D in three medical conditions: a) 
upper gastrointestinal hemorrhage, b) medical conditions with 
symptom of erythema, and c) fungal infectious disorders. A single 
MedDRA term is usually not sufficient to characterize a given 
medical condition. OntoADR is intended to support selection 
of MedDRA terms according to different criteria. Figure  4 
depicts the query performed in OntoADR to retrieve MedDRA 
terms associated to these medical conditions, e.g., “finding 
site: upper gastrointestinal tract,” and “associated morphology: 
hemorrhage,” and the 10 first MedDRA terms retrieved by this 
query, e.g., anastomotic ulcer hemorrhage, aorto-esophageal 
fistula, chronic gastrointestinal bleeding, etc.

Table 1 shows parts of formal definitions for 10 MedDRA 
terms associated with upper gastrointestinal hemorrhage 
among  27, in particular, SNOMED CT concepts that are filler 
of relations “finding site” and “associated morphology.” Fillers 
that are not relevant to upper gastrointestinal hemorrhage are 
in italic, e.g., Stenosis for the MedDRA PT “anastomotic ulcer 
hemorrhage.” In case the filler of the “associated morphology” 
relation is “hemorrhage,” the query is immediately satisfied for this 
condition, e.g., three MedDRA terms (aorto-esophageal fistula, 
gastric antral vascular ectasia, and gastric hemorrhage) are defined 
as having “hemorrhage” as their associated morphology. When 
“hemorrhage” is not the filler of the “associated morphology” 
relation, other relevant fillers may be retrieved thanks to the 
subsumption mechanism that establishes hierarchical relations 
between a parent concept and its children concept. For example, 
“hemorrhage” subsumes “acute bleeding ulcer,” ‘bleeding varices,” 
“chronic hemorrhage,” and “hemorrhagic inflammation.” “Upper 
gastro intestinal tract structure” subsumes “duodenal structure,” 
“esophageal structure,” “gastrojejunal junction structure,” “pyloric 
antrum structure,” and “stomach structure.”

Semantic Enrichment
The traditional process of domain ontology construction is based 
on expert intervention (Bedini and Nguyen, 2007). Although 
this manual procedure guarantees a fair quality of the generated 

111

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Collection of Methods for MedDRA Formal SemanticsBousquet et al.

6 September 2019 | Volume 10 | Article 975Frontiers in Pharmacology | www.frontiersin.org

resource, it suffers from several difficulties; among those are 
the cold start problem (starting from scratch) and the lack of 
availability of domain experts (Qawasmeh et al., 2018). In fact, 
the high cost of experts’ interventions is the major bottleneck 
identified early in the state of the art of ontology construction 
(Cullen and Bryman, 1988; Simperl et al., 2006; Balakrishna 

et al., 2010). This bottleneck justifies reusing and linking existing 
resources, when available, to create new ontologies (Alani, 2006). 
Reuse is not always possible because ontologies may not exist in 
the field of interest. For example, Mazo et al. (2017) describe a 
histological ontology of the human cardiovascular system and 
report that they “did not find in the State-of-the-Art an ontology of 

FIGURE 4 | MedDRA terms associated to a formal definition (only the 10 first MedDRA terms retrieved by the query are depicted). (A) MedDRA terms associated to 
upper gastrointestinal hemorrhage, (B) MedDRA terms describing medical conditions associated with erythema, (C) MedDRA terms describing infectious diseases 
induced by fungi.

FIGURE 3 | Three use case where data retrieval in a pharmacovigilance database is necessary.
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histology neither a similar organization of hierarchies of histology 
terms that [they] may be able to reuse.” At the opposite, when all 
the ontologies that are needed are available, it is sufficient to reuse 
and assemble them, such as in the example of the development of 
the orthology ontology (Fernández-Breis et al., 2016).

Ontology enrichment is the task of extending an existing 
ontology with additional concepts and semantic relations and 
placing them at the correct position in the ontology (Petasis 
et al., 2011). Automatic ontological construction is often based 
on learning (Maedche and Staab, 2001; Buitelaar et al., 2005). 
Such approach can be based on unstructured texts (Asim, 2018; 
Cimiano et al., 2006; Emani et al., 2015; Costa et al., 2016; 
Dasgupta et al., 2018), informal ontologies (Astrakhantsev and 
Turdakov, 2013), or linked data (Gavankar et al., 2012; Tiddi 
et al., 2012; Riga et al., 2017). A particular case of unstructured 
data corresponds to the labels of ontology identifiers that may 
be very dense with information. Such information described as 
“hidden semantics” by Third (2012) received little attention, at 
the exception of the gene ontology identifiers (e.g., Quesada-
Martínez et al., 2015). SNOMED CT identifiers may also benefit 
from such approach, but this was limited to taking into account 
the “acute” and “chronic” qualifiers for evolution of diseases 
(Rector and Iannone, 2012) and the occurrence of congenital 
diseases (van Damme et al., 2018). Such “hidden semantics” 
were also detected by Nadkarni and Darer (2010) to build 
correspondences between MedDRA and SNOMED CT, but 
these correspondences were not associated with relations, which 
makes this work interesting for reuse but requires reengineering 
to transform the correspondences into semantic relations.

One of the major difficulties of these approaches is the extraction 
of non-taxonomic relationships (Dahab et al., 2008; Sánchez and 
Moreno, 2008; Villaverde et al., 2009; Petasis et al., 2011; Serra 

et al., 2014). Furthermore, several automatic approaches for 
ontology reusing and engineering still require domain experts and 
knowledge engineers (Bobed et al., 2012). Thus, semiautomatic 
approaches could be a good alternative (Balakrishna et al., 2010).

Semiautomatic approaches employ intelligent methods to 
significantly reduce, without completely replacing, human efforts 
(Huang et al., 2014). In such approaches, the role of experts could 
be limited to validating final automatic learning results (Wächter 
and Schroeder, 2010) or suggesting improvements at the end of 
ontology life cycle (Alobaidi, 2018). Expert intervention can be 
achieved with the help of graphical user interface (Wächter and 
Schroeder, 2010), spreadsheets (Blfgeh et al., 2017; Judkins et al., 
2018), or specified pipelines such as the eXtensible ontology 
development (He et al., 2018).

NeON Methodology
After comparing several methods for ontology development, we 
selected the NeON methodology (Suárez-Figueroa et al., 2012) 
because it was the most appropriate to illustrate the strategy that 
we followed for designing OntoADR. While other methodologies 
may also be considered for knowledge engineering and may be 
more relevant in other contexts, we considered that dimensions 
of reuse were the most important features when selecting NeON.

While other approaches for ontology engineering provide 
methodological guidance, the NeON Methodology does not 
prescribe a rigid workflow. It suggests a variety of pathways 
based on nine flexible scenarios that address common issues, 
such as reusing, reengineering, and merging ontological 
resources. These ontological resources also comprise ontology 
design patterns (Aranguren, 2008; Gangemi, 2005; Blomqvist, 
2008; Presutti and Gangemi, 2008), which are generic templates 
or abstract descriptions proposed to enforce best practices in 
ontology implementation. One particularity of NeON matching 
well with our specific approach is that it also takes into account 
reusing and reengineering of non-ontological resources, which is 
not the case of other methodologies such as METHONTOLOGY 
(Fernández-López et al., 1997) and On-To-Knowledge 
(Sure et al., 2004). These non-ontological resources may consist of 
structured data such as terminologies (Jimeno-Yepes et al., 2009) 
or databases, unstructured data (e.g., articles), or semi-structured 
data (e.g., XML, JSON) (Qawasmeh et al., 2018). In addition to 
these nine scenarios, NeON also integrates support activities such as 
knowledge acquisition, documentation, and evaluation that should 
be carried out during the whole ontology development cycle.

MATERIAL AND METHODS

Summary of the Method
Application of the NeON methodology
We applied the following scenarios of the NeON methodology 
for implementing OntoADR (Figure 5).

• Scenario 1. From Specification to Implementation: this includes 
four steps (specification, conceptualization, formalization, and 
implementation). We previously presented these steps in 
previous work [(Bousquet et al., 2014)] and limit here the 

TABLE 1 | Finding site and associated morphology of 10 MedDRA terms 
describing upper gastrointestinal hemorrhage among 27.

hasFindingSite hasAssociatedMorphology

Anastomotic ulcer 
haemorrhage

Gastrojejunal 
junction structure

Acute bleeding ulcer
Stenosis

Aorto-esophageal fistula Aortic structure
Esophageal 
structure

Hemorrhage

Chronic gastrointestinal 
bleeding

Stomach 
structure

Chronic hemorrhage

Duodenal ulcer 
haemorrhage

Duodenal 
structure

Acute bleeding ulcer

Duodenal varices Portal vein 
structure
Duodenal 
structure

Bleeding varices

Duodenitis hemorrhagic Duodenal 
structure

Hemorrhagic inflammation

Erosive duodenitis Duodenal 
structure

Hemorrhagic inflammation

Gastric antral vascular 
ectasia

Pyloric antrum 
structure

Hemorrhage
Angiectasia

Gastric hemorrhage Stomach 
structure

Hemorrhage

Gastric ulcer 
hemorrhage

Stomach 
structure

Acute bleeding ulcer
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scope of this presentation to scenarios that emphasize the 
reuse of ontological and non-ontological resources.

• Scenario 2. Reusing and Re-engineering Non-Ontological 
Resources: We transformed MedDRA into a subsumption 
tree (see [(Bousquet et al., 2014)], and retrieved a non-
ontological resource provided by Nadkarni & Darer (2010). 
We analyzed this non-ontological resource in order to establish 
the correspondence between its content (mappings between 
MedDRA terms and SNOMED CT) and formal definitions that 
benefit from explicit relations derived from the SNOMED CT 
concept model. Then, we generated the formal definitions based 
on this non-ontological resource for inclusion in OntoADR.

• Scenario 6. Reusing, Merging, and Re-engineering Ontological 
Resources: We reused available ontological resources (UMLS, 
SNOMED CT) and merged SNOMED CT with MedDRA using 
mappings available in UMLS. We also reused the SNOMED CT 
concept model and had to reengineer it to keep only classes and 
relations that are relevant to formally define MedDRA terms. 
While the concept model may be considered as a building block 
that enforces best practices for ontological design in SNOMED 
CT, it does not strictly correspond to the description of content 
ontology design patterns, which explains why we did not 
implement Scenario 7: Reusing ontology design patterns (ODPs).

• Scenario 8. Restructuring Ontological Resources: This 
consists in pruning parts of the SNOMED CT that are not 
relevant for the description that was previously described by 
Souvignet et al., (2016b) and enriching the ontology by adding 
supplementary concepts and axioms.

In addition to these different scenarios, we also implemented 
“ontology support activities” for “knowledge acquisition” that 
comprises activities for (1) capturing knowledge from the 
MedDRA labels and work by a domain expert for adding formal 
definition using the Ci4SeR tool [(Souvignet et al., 2014)] and (2) 
“ontology validation” that consists in checking that the meaning 
of the ontology definitions are compliant with the definitions we 
intended the MedDRA terms to convey.

Flow chart of the method
Figure 6 depicts a flow chart representing an overall representation 
of the several steps and tasks proposed in the article to get an 
overview of the algorithm at a glance. While this diagram could 
make readers believe that all these steps were conducted in 
parallel, it is proposed only as a convenient way to apprehend the 
method as a whole. The previous paragraph where we applied the 
NeON methodology shows a different perspective where different 
scenarios were applied at different time. In the flow chart, each 
MedDRA term is considered one after the other and can go through 
several parallel paths according to different conditions.

• If a MedDRA term is associated to a SNOMED CT concept in 
the UMLS metathesaurus, one mapping is manually selected: the 
use of the mapping information is described in the section Using 
MedDRA-to-SNOMED CT Mappings From UMLS Metathesaurus.

• If a MedDRA term is present in another mapping source than 
the UMLS (e.g., the Nadkarni and Darer’s proposal), then this 
mapping is used for the definition in a way that is described 
in the following section: Using Another MedDRA-to-SNOMED 
CT Mapping Resource.

• If a MedDRA term is composed of several distinct terms by a 
conjunction (e.g., “acute and chronic thyroiditis” that consists 
of two medical conditions “acute thyroiditis” and “chronic 
thyroiditis”), then the MedDRA term is decomposed according 
to the algorithm described in the section Using a Syntactic 
Decomposition Algorithm on Complex MedDRA Terms. Then, 
MedDRA subterms are considered as additional MedDRA 
terms that can be used as a new input for the whole algorithm.

• If a MedDRA term contains a substring with associated 
meaning (e.g., medical words ending in -algia that indicate 
pain), this MedDRA term may benefit from a potential syntactic 
enrichment: the generation of a partial definition is described 
in the section Automatic Lexical Enrichment Methods.

Some manual definitions can optionally be added (see the 
section NeON Methodology). All partial definitions acquired with 
the different algorithms are then automatically combined into 
a merged definition of the MedDRA term. We used MedDRA 
version 17 that consists of 26 SOC, 334 HLGT, 1,720 HLT, 20.559 
PT, and 72,637 LLT, SNOMED CT version March 2015 and UMLS 
version 2014AB. SNOMED CT concepts were extracted from the 
Concepts_Core_INT file (Release Format 1) and the hierarchy 
and semantic properties from the Relationships_Core_INT file. 
This version of MedDRA was applied to the following paths: 
“using UMLS metathesaurus mappings,” “automatic enrichment 
methods,” and “manual definition of concepts.” MedDRA 13 that 
consists of 26 SOC, 335 HLGT, 1,709 HLT, 18,786 PT, and 68,258 
LLT was applied to the following paths: “Using other mapping 
resources” and “Using a decomposition algorithm and Metamap 
software to map complex MedDRA terms.”

Problems With Mapping Other Layers Than the 
PT Level
We have tried to map other layers (SOC, HLT, and HLGT). 
For instance, the cardiac disorders SOC concept has for formal 
definition hasFindingSite some “Heart Structure.” While 

FIGURE 5 | Scenarios of the NeON methodology for implementing OntoADR.
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some SOC, HLGT, and HLT were accurately defined, essentially 
thanks to mappings in UMLS, it was decided not to present the 
results in this article. We used formal definitions associated 
with the three MedDRA higher levels only in the Ci4SeR tool 
(Souvignet et al., 2014), where the curator could use them if she 
considered them as relevant. We decided not to map the LLT 
because PT is the preferred level for case report analysis and 
search in pharmacovigilance databases.

We explained in previous work why the MedDRA hierarchy 
cannot be converted into a subsumption tree because this 
sometimes causes semantic inconsistencies (Bousquet et al., 
2014). The reason is that most high level categories in MedDRA 
are intended to reflect the domain actors’ practices (i.e., following 
the different medical specialties) and are not necessarily organized 
according to different semantic criteria as one would expect 
in a well-formed ontology. A  first example concerns groups of 
symptoms (HLGT or HLT) that are placed under the general 
categories of disorders that they are the symptom of (SOC or 
HLGT). Such hierarchical organization would not be authorized 
in an ontology as the relation being-a-symptom-of does not imply 
an is-a relation. For instance, the PT “dyspnoea” and “dizziness 

or syncope” belong to the HLGT “cardiac disorder signs and 
symptoms” that is under the SOC cardiac disorders. While 
dyspnea for instance refers to conditions that may be associated to 
cardiac disorders, such symptom cannot be considered as a cardiac 
disorder. A second example is the MedDRA PT sudden death that 
belongs to the following hierarchies: 1) ventricular arrhythmias and 
cardiac arrest (HLT)/cardiac arrhythmias (HLGT), and 2) death 
and sudden death (HLT)/fatal outcomes (HLGT). While “cardiac 
arrhythmias” is defined in OntoADR with the hasFindingSite 
some “Heart Structure” property, the sudden death PT should 
not inherit from such property because sudden death could be the 
consequence of death that is not of cardiac origin.

Using Medical Dictionary for Regulatory 
Activities-to-SNOMED Clinical Terms 
Mappings From UMLS Metathesaurus
The UMLS may be used as a source of knowledge for adding 
formal definitions to medical terminologies (Schulz and Hahn, 
2001). Based on our initial experience (Alecu et al., 2008), we 
assume that SNOMED CT is currently the best candidate for 

FIGURE 6 | Flow chart representing an overall representation of the several steps and tasks.
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providing formal definitions to MedDRA. SNOMED CT terms 
are defined using description logic (DL) formalism, and a fair 
number of alignments between MedDRA and SNOMED CT 
are present in the UMLS metathesaurus. Therefore, most of the 
formal definitions attributed to MedDRA terms in OntoADR are 
based on semantic information extracted from the SNOMED 
CT clinical terminology. When a MedDRA term is mapped to 
a SNOMED CT concept, we reused the semantic information 
within SNOMED CT in order to build the formal definition of 
the MedDRA term. Identifying reliable MedDRA-to-SNOMED 
CT mappings is thus an essential step in our methodology to 
define MedDRA term semantics.

The UMLS (Lindberg et al., 1993) consists of a semantic 
network and a metathesaurus developed by the US National 
Library of Medicine to link terms from more than a hundred 
controlled vocabularies, including SNOMED CT and MedDRA. 
Terms from the different vocabularies are linked together by 
association to a unique UMLS concept defined by a concept 
unique identifier, e.g., “C0019163” that is mapped to both 
MedDRA term “hepatitis B” and SNOMED CT concept “type B 
viral hepatitis.”

In OntoADR, MedDRA term “hepatitis B” has the formal 
definition: hasFindingSite some “Liver Structure,” 
hasAssociatedMorphology some “Inflammation 
Morphology,” and hasCausativeAgent some “Hepatitis B 
Virus” where has FindingSite, hasAssociatedMorphology, 
and hasCausativeAgent are OntoADR semantic relations 
inspired from SNOMED CT, and “liver structure,” “inflammation 
morphology,” and “hepatitis B virus” are SNOMED CT concepts 
we imported in OntoADR (Figure 1).

In order to map MedDRA and SNOMED CT terms, we 
developed an algorithm following these steps: i) search for the 
MedDRA PT in the UMLS using the MedDRA identifier; ii) for 
MedDRA PT without SNOMED CT mappings in the UMLS, if 
the PT has one or more related LLT considered as synonymous, 
then the LLT identifier is used for a new UMLS search. iii) If 
this second search is unsuccessful, the algorithm performs a 
last UMLS search using PT and LLT labels, seeking to pair these 
labels with SNOMED CT concepts by string matching.

All mapping propositions selected from the UMLS metathesaurus 
were validated, modified, or completed by knowledge engineers 
and pharmacovigilance experts of our team. i) All one-to-one 
mappings we decided to use were first validated by checking 
manually the correspondence between the meanings of terms.

Several SNOMED CT concepts may be proposed as synonyms 
(Fung et al., 2005) of the same MedDRA concept, although they 
have different meanings. Each MedDRA concept in OntoADR 
can have only one equivalent SNOMED CT concept. When 
several SNOMED CT concepts are proposed in UMLS as 
synonym of a MedDRA term, only one was selected by an expert 
for building the formal definition. Such selection should be based 
on synonymy between a SNOMED CT concept and a MedDRA 
term. According to Fung, synonymy between term X and Y may 
be defined according to linguistic criteria (Fung et al., 2005) such 
as enforcing that it is possible to replace X by Y in any sentence 
without modifying the meaning. Examples of such synonyms 
are “celiac disease” and “gluten enteropathy,” or “kidney stone” 

and “renal calculus.” Selection of a SNOMED CT concept was 
performed first by comparing its label with the MedDRA term 
label. In case both were identical, which occurred most of the 
time, it was obvious to select this mapping, but in other cases, 
we took into account the medical relevance of the mapping and 
had to rely on expert evaluation. For example, three SNOMED 
CT concepts are mapped to the MedDRA term “Spondylitis”: 
“inflammatory spondylopathy,” “undifferentiated spondylitis,” 
and “spondylitis,” and the later appears as a perfect match 
according to label comparison.

Such a validation process was necessary because UMLS 
mapping propositions are not always semantically valid. 
MedDRA terms and SNOMED CT concepts mapped together 
in UMLS can refer to different medical entities, even if they 
are homonyms. For instance, the MedDRA term “vascular 
disorders” and its SNOMED CT homonym “vascular disorder” 
are mapped together in UMLS; however, the former refers to 
disorders of blood and lymphatic systems and the later only 
to disorders of blood vessels (lymphatic system disorders 
are caught by the concept “disorder of lymphatic system” in 
SNOMED CT). ii) In case of one-to-n mappings, a  manual 
expert choice was made to select the SNOMED CT concept 
whose definition best fitted the meaning of the correspondent 
MedDRA concept. iii) When no SNOMED CT concept among 
the ones suggested by UMLS was satisfactory, the definition of 
the correspondent MedDRA concept was made manually. iv) 
Mapping a MedDRA term with a SNOMED CT concept does 
not ensure that the former gets a complete (or even a satisfying) 
formal definition of its semantics: the formal definition can 
be incomplete or even be literally absent: it is common to find 
SNOMED CT concepts, for instance psychiatric concepts, that 
have no definitional properties. When necessary, the semantic 
properties from SNOMED CT attributed to MedDRA concepts 
through the mapping procedure were thus completed manually 
by additional assertions.

Using Another Medical Dictionary for 
Regulatory Activities-to-SNOMED Clinical 
Terms Mapping Resources
To complete the mappings selected from UMLS, we also made 
use of Nadkarni and Darer’s propositions of mappings (Nadkarni 
and Darer, 2010). Using one year of data (recorded between 
July 1, 2008 and April 30, 2009) from the US Food and Drug 
Administration Adverse Events Reporting System (AERS) 
pharmacovigilance database, the authors identified 3,705 
MedDRA PT that collectively accounted for 95% of case reports. 
The 3,705 selected MedDRA terms correspond to high-frequency 
terms in the US Food and Drug Administration database and 
potentially have a great added value. After eliminating terms 
already mapped to SNOMED CT concepts in UMLS, they 
attempted to map manually the remaining terms (786 in total) 
with software assistance. Most of those terms (733) could be 
mapped by Nadkarni and Darer with SNOMED CT concepts via 
one-to-one or one-to-n mappings.

Several problems have been encountered when trying 
to reuse Nadkarni and Darer’s propositions of mappings 
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(Nadkarni and Darer, 2010). i) First, in the case of one-to-n 
mappings, the authors broke down a MedDRA term in such 
a way to associate it to several SNOMED CT concepts but did 
not specify which semantic relation was relevant. For example, 
they mapped the MedDRA concept “tongue discoloration” with 
SNOMED CT concepts “abnormal color” and “entire tongue” 
but did not specify which semantic relation interconnected the 
first to the others. Obviously, it cannot be here an equivalence 
or synonymy (Fung et al., 2005) (“same as”) relation as in the 
case of one-to-one mapping. When SNOMED CT concepts 
belong to branches such as body structure or morphologic 
abnormality, the relationship to use is easy to deduce, and 
its creation can be automated: it will be in the first case 
the hasFindingSite relationship and, in the second, the 
hasAssociatedMorphology relationship. However, when 
it comes to SNOMED CT concepts from branches finding, 
qualifier value, or disorder, the relationship to use is not 
obvious, and only a human expert can decide. A major part of 
our recovery work was to specify these relationships by making 
use of the set of relationships available in OntoADR.

ii) We have also occasionally been forced to revise the 
proposed Nadkarni and Darer’s mappings, partly for reasons 
of pure semantic accuracy and partly because of the purpose of 
OntoADR, which we illustrate here using three examples:

• For the MedDRA term “feeding disorder neonatal,” the 
authors propose a mapping with SNOMED CT concepts 
“feeding disorder of infancy OR early childhood” and 
“neonatal.” The second mapping is correct, and we 
have included “neonatal” in OntoADR to define the 
MedDRA concept “feeding disorder neonatal” with the 
hasOccurrence relationship (hasOccurrence some 
Neonatal). We did not, however, reuse the first mapping. 
The concept “feeding disorder of infancy OR early 
childhood” is broader than the MedDRA concept “feeding 
disorder neonatal,” which concerns only the newborn. A 
mapping with SNOMED CT concept “feeding problems in 
newborn” would have been more accurate. To complete the 
formal definition of “feeding disorder neonatal,” we added 
the properties interprets some “Feeding pattern” and 
hasInterpretation some “Abnormal.”

• The MedDRA concept “azotaemia” is mapped by Nadkarni 
and Darer to SNOMED CT concepts “blood urea nitrogen 
measurement” and “increased.” We used the first by giving 
the MedDRA concept “azotaemia” the property interprets 
some Blood urea nitrogen measurement in OntoADR. 
However, the use of the second to describe the relationship 
hasInterpretation appeared problematic. Indeed, azotemia 
is characterized not so much by an increased concentration of 
nitrogen compounds in the blood but as a concentration above 
a certain reference threshold. We thus opted for the creation 
of the property hasInterpretation some Above reference 
range, more accurate in this context.

• For the MedDRA term “anorectal discomfort,” the authors 
propose a mapping with SNOMED CT concepts “discomfort” 
and “anus and rectum (combined site).” However, the problem 
here is that the SNOMED CT concept “anus and rectum 

(combined site)” is set in an isolated portion of the SNOMED 
CT branch “body structure” (branch called “group of anatomical 
entities”). Nothing connects it to the concepts of the digestive 
system structures (e.g.,  no relationship part-of). Due to the 
SEP decomposition (structure, entire, part) of the anatomical 
branch of SNOMED CT, the concept “anal structure” has no 
relation to the concept “anus and rectum.” It would have been 
impossible to use this localization by semantic reasoning, for 
example, to identify concepts located on part of the anorectal 
system (principle of subsumption reasoning: concepts that have 
a relationship of location on parts of the anorectal structure are 
considered by inference as siblings of the concept of diseases 
that are located on the whole anorectal structure). We therefore 
preferred to use the SNOMED CT concept “anorectal structure” 
to define the relationship hasFindingSite of the MedDRA 
concept “anorectal discomfort” in OntoADR. This SNOMED 
CT concept allows the semantic reasoning operation described 
previously. Moreover, we can assume that the MedDRA term 
“anorectal discomfort” is sometimes used to encode ADRs in 
a non-specified way that may be anal or rectal, and not both, 
as is implied by the use of the SNOMED CT concept “anus and 
rectum (combined site).” It is therefore important to locate by 
subsumption concepts that are located within a substructure of 
the whole anorectal structure.

Using a Syntactic Decomposition 
Algorithm on Complex Medical Dictionary 
for Regulatory Activities Terms
Among MedDRA terms that are not mapped with SNOMED CT 
terms in UMLS, there are many complex terms, i.e., corresponding 
to composed expressions. MedDRA complex terms are of several 
kinds: a) expressions composed with an AND logical operator 
or commas (e.g., “acute and chronic thyroiditis” or “pregnancy, 
labour, delivery, and postpartum conditions”); b) expressions 
composed with “NEC” (not elsewhere classified), “unspecified,” 
or with a text between brackets, usually to specify exclusion 
clauses [e.g., “autoimmune disorders NEC,” “laryngeal neoplasms 
malignancy unspecified,” or “ocular neoplasms malignant 
(excl.  melanomas)”]; c) they can also combine these different 
kinds of complexity [e.g., “gastrointestinal and abdominal pains 
(excl. oral and throat)” or “ocular structural change, deposit, 
and degeneration NEC”]. These terms are usually terms of level 
HLT, HLGT, and SOC in the MedDRA hierarchy. However, their 
definitions have a great added value because some terms they 
subsume may inherit their properties. Indeed, defining one high 
level term with a morphology property may amount to defining 
all child terms with this property within the limits of what we have 
indicated in the section Problems With Mapping Other Layers 
Than the PT Level.

The complex MedDRA terms present two kinds of difficulties: 
i) the difficulty of mapping with SNOMED CT that tends to 
favor simple concepts probably because most complex concepts 
correspond to pure classifying artifacts, e.g., “not elsewhere 
classified,” without real counterpart in the phenomena that are part of 
medicine; ii) difficulties for formalization of meaning: representing 
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in OWL (Web Ontology Language) the meaning of a compound 
concept containing exclusions with logical operators is constrained 
by the expressiveness of the DL language used. In OntoADR, it 
is not possible to describe the exact same MedDRA semantics 
due to computability constraints. To date, we have developed a 
technical solution for the first point, but no satisfactory solution of 
conceptualization (especially in terms of human cost modeling) has 
yet been developed to meet the second point. It should be noted that 
this issue is regarding mainly terms of high levels and does not affect 
the progress of definitions for PT terms in OntoADR.

In order to map complex MedDRA terms, we developed 
an algorithm for syntactic decomposition. It consists of three 
routines: 1) a routine for “cleaning” terms; 2) a routine for 
identification of complex expressions; and 3) a routine for 
decomposition of an expression from a set of formal rules. 
Routine 1 begins by suppressing from the MedDRA labels 
unnecessary characters or characters that cannot be supported 
by the decomposition routine [stop words, content between 
brackets, terms as “unspecified,” “NOS” (not otherwise 
specified), etc.]. Routine 2 identifies decomposable expressions: 
it searches for keywords that indicate a probable composition 
of the expression (“AND,” “OR,” “WITH,” “,”, etc.). Finally, 
routine 3 decomposes the complex expression in a set of simpler 
expressions (cf. Table 2), by applying different rules, for example:

( ). . .
.( ) . .
A AND B q A q B q

q A AND B q A q B
→ +
→ +

 

We then used the MetaMap software (Aronson, 2001) 
to map all new decomposed concepts to existing SNOMED 
CT concepts.

Automatic Lexical Enrichment Methods
We have used a rule-based algorithm for automatic suggestion of 
properties from the MedDRA label to enrich the formal definition 
of concepts. Two key procedures have been implemented in 
the algorithm:

1. When the algorithm detects a given string Sx in a MedDRA 
label, it automatically adds a corresponding property Px in 
the OWL concept definition. For example: if the string “pain” 
or “algia” is found in a MedDRA concept’s label, the semantic 
property hasDefinitionalManifestation some Pain is 
automatically added to the concept’s definition. Similarly, 
if the string “perforation” is found, the formal definition 
hasAssociatedMorphology some Perforation is suggested. 
All created properties are then validated by an expert. Illegitimate 
properties are rejected. For example, the algorithm proposed to 
add the formal property hasAssociatedMorphology some 
Hernia to the MedDRA concept “hernia repair,” as the string 
“hernia” was found in the label. Semantically, this assignment 
is obviously illegitimate: the “hernia repair” is not a type of 
hernia and cannot be defined by this morphological property. 
The property has therefore been rejected. The expert, however, 
took advantage of this suggestion to correct it in: OccursAfter 

some Hernia. This validation step is also necessary due to 
the occasionally polysemic expressions used for automatic 
generation of properties. For example, the automatic generation 
of the hasClinicalCourse some Cyclic property, when the 
algorithm detects the “cyclic” string in a MedDRA label is valid 
for concepts such as “cyclic neutropenia” or “cyclic vomiting 
syndrome,” where the term “cyclic” indicates the clinical course 
of the disease. However, it is not valid for the concept “cyclic 
AMP,” which refers to a clinical test (a measure of the presence 
or amount of cyclic adenosine monophosphate, e.g., in urine). 
We could have improved the automatic processing in order to 
detect these problematic cases, but the formalization of these 
exceptions would have taken longer time than using a manual 
approval process.

A restriction is applied to prevent the property Px to be 
duplicated when it already exists in a MedDRA term definition, 
e.g., the detection of the “perforation” string in the label of a 
MedDRA concept CMed only results in the creation of the property 
hasAssociatedMorphology some Perforation if CMed does 
not already own a property hasAssociatedMorphology some 
<Morphology>. If it is the case, we assume that the relation Rx 
(in this case hasAssociatedMorphology) has already been 
filled in correctly.

2. A second procedure is implemented by the algorithm 
to automatically generate properties. Based on the same 
principles, but working with more complex patterns of 
recognition, it was designed to complete definitions of 
MedDRA concepts referring to investigations and their results 
(SOC « Investigations »).

Two relationships are available in SNOMED CT to define 
the examination results (whether clinical observations or 
investigations): interprets, which refers to “the entity being 
evaluated or interpreted, when an evaluation, interpretation, 
or “judgment” is intrinsic to the meaning of a concept”; and 
hasInterpretation, which, grouped with the attribute 
Interprets, “designates the judgment aspect being evaluated 
or interpreted for a concept (e.g., presence, absence, degree, 
normality, abnormality, etc.)” (Rector and Brandt, 2008). It is 
important that these two relationships are filled in OntoADR 
in order to apply semantic reasoning not only to ADR concepts 
as such, but also to concepts referring to abnormal results of 
investigations that are the consequence of an ADR (for instance, 

TABLE 2 | Examples of parsing of complex MedDRA terms using different rules.

Input : MedDRA complex 
term

Selected Rule Output : result of the 
decomposition

“Ear and labyrinth 
disorders”

(A AND B).q “ear disorders”
“labyrinth disorders”

“Manic and bipolar 
mood disorders and 
disturbances”

((A AND B).q).(C 
AND D)

“manic mood disorders”
“bipolar mood disorders”
“manic mood 
disturbances”
“bipolar mood 
disturbances”

“Blood and lymphatic 
system disorders”

(A AND B).q “blood system disorders”
“lymphatic system 
disorders”
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“neutrophil count decreased” for the neutropenia condition), as such 
results are frequently used to describe ADRs in pharmacovigilance 
databases. However, it turned out that very few MedDRA concepts 
located in the investigations branch could be identified through 
the procedures described in the previous sections, in particular the 
mapping from UMLS. A large majority of MedDRA concepts in 
SOC investigations thus remained undefined in OntoADR.

To remedy this situation, we have integrated into the 
algorithm a module supporting the properties interprets 
and hasInterpretation for MedDRA concepts from SOC 
“investigations.” Results of investigations are usually expressed 
in MedDRA using the following adjectives: abnormal, normal, 
absent, present, increased, decreased, positive, and negative. All 
these qualifiers are also used in SNOMED CT to fill the property 
hasInterpretation. The procedure followed by the algorithm 
was therefore as follows:

When the string Sx corresponding to one of these adjectives is 
detected in the label < lab1> of a MedDRA concept CMed1 from 
SOC “Investigations”:

 1. Create in the definition of CMed1 the property 
hasInterpretation some Sx.

 2. Find if it exists in the investigations branch a concept CMed2, 
whose label < lab2> corresponds to (< lab1> minus Sx). 
If CMed2 exists, create in the definition of CMed1 the property 
interprets some CMed2. This second phase of the procedure 
is used to connect via the property interprets the results to 
the related investigations.

In the example of the concept CMed1 « Alpha hydroxybutyrate 
dehydrogenase decreased », this procedure gives the following 
results:

 1. Creation of the property hasInterpretation some 
Decreased in the definition of CMed1

 2. There is a concept CMed2: “alpha hydroxybutyrate 
dehydrogenase”. The property interprets some ‘Alpha 
hydroxybutyrate dehydrogenase’ is thus created in the 
definition of CMed1.

Once again, all of the created properties were reviewed and 
validated by an expert.

Manual Definition
Besides these semiautomatic methods for defining MedDRA 
concepts in OntoADR, we also performed the manual definition of 
about 1,935 concepts (Souvignet et al., 2016b). We had insufficient 
human resources to carry out the manual definition of all MedDRA 
terms that previous methods had failed to define. So, we decided 
to focus on high value-added terms for pharmacovigilance. In the 
EU-ADR project, Trifirò et al. (2009) developed a ranked list of 23 
first importance adverse drug events (e.g., cardiac valve fibrosis) 
based on a review of scientific literature, medical textbooks, and 
websites of regulatory agencies. To identify which MedDRA terms 
are related to those 23 topics, pharmacovigilance experts familiar 
with MedDRA have chosen for each topic an SMQ and/or MedDRA 
hierarchy-based grouping (HLT or HLGT) or a custom set of 

preferred terms (PT) fitting the definition of the targeted topics 
(see Declerck et al., 2012 for details). When no existing MedDRA 
groupings could be identified to fit the safety topic, ad hoc manual 
groupings of MedDRA PT were proposed by the experts. This work 
benefited from using a dedicated tool we implemented, Ci4SeR 
(curation interface for semantic resources) (Souvignet et al., 2014).

RESULTS

Using Other Medical Dictionary for 
Regulatory Activities-to-SNOMED Clinical 
Terms Mapping Resources
“Once the Nadkarni and Darer’s mapping propositions were 
validated, modified or completed, we applied the same procedure 
as described in the section Using MedDRA-to-SNOMED CT 
Mappings From UMLS Metathesaurus to pick up information from 
SNOMED CT and define the MedDRA concepts of OntoADR. 
Using the set of SNOMED CT relations available in OntoADR, 
we also realized manually the definition of those MedDRA terms 
(53 in total) for which no mapping could be found by Nadkarni 
and Darer. The use, after verification and eventually correction 
and complementation, of mappings proposed by Nadkarni and 
Darer, allowed us to complete the definition of 786 supplementary 
MedDRA PTs in OntoADR.

Using a Syntactic Decomposition 
Algorithm on Complex Medical Dictionary 
for Regulatory Activities Terms
Among the 2,070 HLT, HLGT, and SOC in MedDRA 13.0, a total 
of 1,011 terms was decomposed by the algorithm generating 
an average of 2.7 terms by decomposition. The consistency 
of automatic decomposition was checked by an expert. 
The errors were corrected through a progressive adjustment of 
the decomposition algorithm. Only the decomposition of 30 
complex terms that were not supported by the algorithm was 
done manually. Once the decomposition was performed, we used 
the UMLS MetaMap 2010 AB mapping software, which returns 
from a given string (in our case, a part of the decomposition), 
the UMLS concept unique identifier of the nearest syntactically 
SNOMED CT concepts (fuzzy match). With this method, a total 
of 638 MedDRA concepts (9 SOCs, 131 HLGTs, and 498 HLTs) 
could be mapped to the SNOMED CT concepts (mappings one-
to-one or one-to-n).

This additional mapping method has the advantage of enabling 
the definition of high level terms in MedDRA. These definitions 
may then be inherited by subsumed low level terms. However, 
the definitions have also the disadvantage of being broad and 
thus potentially insufficiently precise for specific preferred terms.

Automatic Lexical Enrichment Methods
This procedure was applied to 11 of the 25 SNOMED CT 
properties used in OntoADR, using 82 different matching 
strings. In total, this procedure has led to the creation of 
8,194 properties, among which 7,691 were validated (i.e., 
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93.9%). A sample of the strings detected by the algorithm and 
properties created is shown in Table 3.

Manual Definition of Concepts
Figure 7 depicts as an example the formal definition associated to 
the term “Shwachman-Diamond syndrome,” as it was described in 
OntoADR after application of the different algorithms that precede 
manual refinement. 

The curation, which took approximately 750 h, allowed 
refining the definition of 1,935 MedDRA terms to validate and 
fully define these terms (Souvignet et al., 2016b). Among the 
3,482 properties available in OntoADR for these terms, the 
curator validated 2,636 properties (76%), proposed 350 (10%) 
more precise terms (i.e., narrower terms in the SNOMED CT 
hierarchy), and removed 496 properties (14%). The curator 
also proposed 13,675 additional properties, but these should not 
be considered as errors related to missing properties but rather 

TABLE 3 | Sample of the properties created automatically from the MedDRA label to enrich the formal definitions of MedDRA concepts in OntoADR.

Relation Matching strings Value of the property Nb properties created % properties validated

hasClInICalCOurse acute
cyclic
recurrent

Sudden onSet and/or Short duration

CyCliC

reCurrent

84
10

121

95.1%
20%

100%
hasCausatIveagent bacteria

viral
BaCteria

ViruS

83
157

100%
88.5%

hasassOCIatedMOrphOlOgy abscess
hernia
haemorrhage, haemorrhagic, 
bleeding

aBSCeSS morphology

hernia

hemorrhage

121
70

272

100%
82.9%
86.4%

haspathOlOgICalprOCess infection, infections, infectious, 
infective
parasitic

infeCtiouS proCeSS

paraSitiC proCeSS

726
12

89.4%
91.7%

Interprets motor, movement, kines motor funCtion BehaViour 66 59.1%
DueTo allergic hyperSenSitiVe reaCtion 32 93.8%

FIGURE 7 | Formal definition associated to the preferred term “Shwachman-Diamond syndrome” before manual refinement.
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as the curator’s desire to better document diagnoses with signs 
and symptoms and investigations that may be associated to a 
given disease but are not specific, as they may be absent in some 
occurrences of this disease.

Figure 8 shows how the “Shwachman-Diamond syndrome” 
PT’s formal definition was modified by the curator in the Ci4SeR 
tool. The lowest part of the screenshot contains the properties that 
were automatically proposed considering the parent’s and siblings’ 
formal definitions. Table 4 depicts the results using each method.

DISCUSSION

Summary
We have described in this article several methods that allow 
collectively a better semantic enrichment of MedDRA. Table 4 
shows that using UMLS metathesaurus is the method that was 
the most efficient considering the number of mappings and 
helped to add formal definitions for about half MedDRA terms. 
As other mapping resources than UMLS are rare and concern 

FIGURE 8 | Formal definition associated to the term “Shwachman-Diamond syndrome” after manual refinement.

TABLE 4 | Synthesis of mappings and properties found using all previously described methods.

Source/Method MedDRA version Comparator Number of mappings Number of properties

Using UMLS Metathesaurus 
mappings

v17 20,599 PT 11,281 PT (54.8%) 74,598

Using other mapping resources v13 18,786 PT 455a PT (2.4%) 469a

Using a decomposition algorithm and 
Metamap software to map complex 
MedDRA terms

v13 2,070 HLT, HLGT, and SOC 638a,b HLT, HLGT, and SOC 
(30.8%)

–

Automatic enrichment methods v17 – – 7,691a

Manual definition of concepts v17 20,599 PT 1,935 PT (9.1%) 13,675

aRepresent only the number of mapping/properties that was not found by other methods.
bLimited to SOC, HLGT, and HLT.
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only few MedDRA terms, the Nadkarni and Darer’s resource 
allowed to add properties to 4.2% of MedDRA terms but only to 
2.4% of MedDRA terms that were not associated with mappings 
to SNOMED CT in UMLS.

Our proposal to decompose complex MedDRA terms was 
applied only to SOC, HLGT, and HLT levels and accounted 
for 30.8% of these MedDRA terms above the PT level. Manual 
definitions and refinements of definitions obtained with other 
methods allowed to process 9.1% of MedDRA terms, which 
is more than the proportion of terms that were defined using 
Nadkarni and Darer’s mapping resource. However, it was 
associated with high time-consuming effort by the domain 
expert that confirms previous work, e.g., Giannangelo and Millar 
(2012) who observed that “map specialists on average mapped 
6.5 SNOMED CT concepts an hour.” Table 5 summarizes 
the main characteristics of each method and indicates if the 
proposed method reuses existing knowledge, if it requires 
manual adaptations or may be performed in an automated way.

Related Work in Medical Informatics
He et al. (2014) have introduced the Ontology of Adverse Events 
(OAE). OAE was originally targeted for vaccine adverse events 
(Marcos et al., 2013) and now also includes adverse drug events. 
In practice, using OAE to select case reports in the Vaccine 
Adverse Event Reporting System proved difficult: “AE data 
stored in Vaccine Adverse Event Reporting System are annotated 
using MedDRA” (Marcos et al., 2013). Authors complained that 
“many disadvantages of MedDRA, including the lack of term 
definitions and a well-defined hierarchical and logical structure, 
prevent its effective usage in VAE (vaccine adverse event) term 
classification.” Therefore, for an efficient analysis, they performed 
a mapping between MedDRA and OAE (Sarntivijai et al., 2012).

OAE contains about 2,300 AE entities but only 1,900 MedDRA 
mappings (9% of all MedDRA PT). For example, there is a single 

term for upper gastrointestinal hemorrhage in OAE (He et al., 2014), 
whereas one can cite several in MedDRA (see the section Rationale 
for Supplementing MedDRA With Formal Definitions where we 
identified 27 using OntoADR). Furthermore, OAE formal definitions 
are limited to anatomical and physiopathological descriptions. He 
and colleagues proposed extensions to OAE such as the Ontology of 
Drug Neuropathy Adverse Events (Guo et al., 2016), which suggests 
that providing supplementary MedDRA mappings is possible using 
the same methodology. One advantage of OAE is the possibility to 
use it in open access, which allows wide dissemination to users, while 
legal issues related to ownership of MedDRA and SNOMED CT 
should be solved before we can make OntoADR available.

Adverse Events Reporting Ontology aims to allow 
storing of pharmacovigilance data related to anaphylaxis 
according to guidelines defined by the Brighton collaboration 
(Courtot et al., 2014) but may also be extended to other safety 
topics, e.g., malaria (Courtot et al., 2013). Nevertheless, ADRs 
are not formally defined in Adverse Events Reporting Ontology.

While we did not find any resource available providing 
definitions for every ADR in MedDRA, there are more general 
resources with formal representation of clinical terms. In order 
not to start from scratch the definitions of ADRs, we needed a 
trustworthy formal resource, standardized and reliable. We chose 
SNOMED CT for three main reasons: first, pharmacovigilance 
concepts generally do not differ from those used in other 
medical fields. Second, SNOMED CT is the most complete and 
most detailed terminology of medicine with a formal semantic 
foundation currently available (Elkin et al., 2006) sharing common 
fields with MedDRA (medical pathologies in all medical specialties, 
signs and symptoms, laboratory tests results, some diagnostic and 
therapeutic procedures). Finally, SNOMED CT has the advantage 
of covering to a large extent, if not entirely, other standard medical 
terminologies such as International Classification of Diseases, 
10th edition (ICD-10), and especially more than 50% of MedDRA 
terms (excluding LLT) are associated with a SNOMED CT concept 

TABLE 5 | Summary of inconveniences and advantages of the different methods.

Algorithms What is already 
available?

Characteristics of the algorithm

Using MedDRA-to-
SNOMED CT mappings 
from UMLS Metathesaurus

MedDRA-to-SNOMED 
CT mappings in UMLS 
Metathesaurus

Available mappings are used to retrieve SNOMED CT concepts associated to a MedDRA term. 
Properties are added to the formal definition according to the SNOMED CT concept position in the 
hierarchy. It illustrates Scenario 6. “Reusing, Merging and Re-engineering Ontological Resources” of 
the NeON methodology. The algorithm is automatic, except when several SNOMED CT concepts are 
available which requires expert selection.

Using other MedDRA-to-
SNOMED CT mapping 
resources

Nadkarni and Darer’s 
propositions of mappings

This is an expert-based process entirely manual of validation and refinement that illustrates Scenario 2. 
“Reusing and Re-engineering Non-Ontological Resources” of the NeON methodology but benefits from a 
non-ontological resource that expedites formal definition of MedDRA terms compared with manual definitions.

Using a syntactic 
decomposition algorithm on 
complex MedDRA terms

– This algorithm is automated and developed ad hoc. It illustrates one of the ontology support activities, 
“knowledge acquisition,” and exploits hidden semantics as proposed by Third (2012). It is limited to 
complex MedDRA terms.

Automatic lexical 
enrichment methods

– This algorithm is based on substring search. It necessitates defining beforehand substrings that may be 
associated to a SNOMED CT concept. Review of the algorithm’s proposal is mandatory in order to check 
that substrings allow associating with relevant SNOMED CT concepts. It also illustrates Ontology support 
activity “knowledge acquisition” and exploits hidden semantics.

Manual definition – This process is manual and expert based, but the Ci4SeR tool suggests definitions on the basis of 
definitions already available for siblings and parents of a MedDRA PT. Such approach addresses both 
“knowledge acquisition” and “ontology validation” within the Ontology support activities.
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(Bodenreider, 2009) in UMLS, a degree of coverage that, to our 
knowledge, no other current medical ontology was able to match.

We found in the literature several examples of mappings from 
a terminology to SNOMED CT (Vikström et al., 2007; Merabti 
et  al., 2009; Nyström et al., 2010; Dhombres and Bodenreider, 
2016; Fung et al., 2017). However, the objective was usually 
to integrate a terminology in SNOMED CT or to map this 
terminology to SNOMED CT but not to enrich this terminology 
by the means of formal definitions. The lexically assign logically 
refine method is an example of an automated method in which 
logical observation identifiers names and codes (LOINC) and 
SNOMED terms are first decomposed, then refined by the 
means of knowledge-based methods that allowed to map LOINC 
and SNOMED together (Dolin et al., 1998). In another work, 
Adamusiak and Adamusiak and Bodenreider (2012) developed 
an OWL version of both LOINC and SNOMED CT and made use 
of mappings between SNOMED CT terms to identify redundancy 
and inconsistencies in LOINC multi-axial hierarchy. Roldán-
García et al. (2016) implemented Dione, an OWL representation 
of ICD-10-CM where formal definitions were obtained thanks 
to mappings between ICD-10-CM and SNOMED CT available 
in UMLS and the Bioportal. More recently, Nikiema et al. (2017) 
benefited from SNOMED CT logical definitions to find mappings 
between ICD-10 and ICD-O3 concepts in the domain of cancer 
diagnosis terminologies.

It is usually recommended to build medical terminologies 
following the model of clinical terminologies that obey to 
Cimino’s desiderata (Cimino, 1998; Bales et al., 2006). Such model 
brings several advantages such as improving the maintenance of 
large terminologies (Cimino et al., 1994), and formal definitions 
were implemented in several terminologies such as the NCI-
Thesaurus (Hartel et al., 2005). Our approach is more in line with 
what is recommended by Ingenerf and Giere (1998), that is to say, 
to keep terminologies with disjoint classes required for statistics 
(in a clinical terminology, the same term may be present in several 
separate categories because of multiple inheritance and be counted 
more than once) and instead implement a mapping of terms of 
first-generation system to a formal system. This allows keeping 
the MedDRA terminology in its current format, counting ADRs 
according to predefined categories that are standardized and 
replicable at the international level with MedDRA and building 
new categories on demand by using knowledge engineering 
methods. This is what we have done in our implementation of 
OntoADR (Bousquet et al., 2014) in the form of an OWL-DL file 
and in the form of a database (Souvignet et al., 2016b).

We have no knowledge of other works in which the 
formalization of complex terms involving AND/OR relations 
has been performed in an automated way. We have not proposed 
formal definitions of LLT because this level is reserved for 
the coding of case reports, in order to improve the accuracy 
of coding, but it is not useful for grouping data for analysis 
(which is performed at the PT level). Although the analysis of 
pharmacovigilance databases is performed preferentially at the 
PT level, it could be important to also define the upper levels: 
SOC, HLGT, and HLT. This formalization would bring several 
advantages: i) preferred terms may inherit properties from their 
parents that allows to give them a formal definition in case the 

synonymous SNOMED CT concept has no definition, or there 
is no SNOMED CT concept mapped to this PT in UMLS; ii) 
This would allow to calculate by the means of terminological 
reasoning high level MedDRA categories in which PTs should 
be included and therefore restore multiple inheritance that does 
not exist in MedDRA. However, it is advisable to remain modest 
insofar as the relations between a PT and the higher hierarchical 
levels to which it is attached are not always of a taxonomic nature.

Perspectives
Our perspectives are to add formal definitions to a larger number 
of MedDRA terms. Our approach may be improved using more 
advanced natural language processing techniques (Iavindrasana 
et al., 2006; Deléger et al., 2009; Liu et al., 2011; Dupuch et al., 
2014) compared with the basic semantic enrichment we 
performed considering MedDRA labels. We estimate that the 
methods proposed here can be reused for other first-generation 
terminologies provided that these terminologies have a mapping 
with SNOMED CT with fair coverage and that this mapping is 
available in accessible sources of knowledge such as the UMLS. 
The terminology can also be treated using methods of natural 
language processing as was done for example with LOINC in 
the lexically assign logically refine method (Dolin et al., 1998). 
One can also consider cases in which the terminology would be 
normally defined by mapping to another clinical terminology 
than SNOMED CT. This may be the case in other areas of 
application in which SNOMED CT is not the best choice.

As the manual approach was time consuming and necessitates 
human resources we do not have, we plan to rely on the development 
of complementary automated approaches. First, formal definitions 
could be extracted from textual definitions (Petrova et al., 2015) 
or directly using morphosemantic analysis on the term label, e.g., 
blepharitis where “itis” stands for “inflammation,” and “blephar” 
stands for “eyelid.” Such approach is limited to terms containing 
“compound forms” that have a medical meaning (Deléger et al., 
2009). Second, formal definitions could be based on ontology 
design patterns, such as implemented in tools like Ontorat (Xiang 
et al., 2015) or TermGenie (Dietze et al., 2014), which partially 
automate the process, as they still rely on expert curation. Third, 
additional mappings between MedDRA and other terminologies 
could be obtained via improved mappings in the UMLS 
metathesaurus (Bodenreider et al., 1998; Fung et al., 2007; Diallo, 
2014). Fourth, semantic definitions may be audited by comparing 
definitions associated to terms that present lexical similarities 
(Agrawal and Elhanan, 2014). However, this presents an intrinsic 
limit: terms to compare should consist of at least three words that 
constraints this method mainly to MedDRA procedures.

Fifth, we plan to extract knowledge using additional sources 
than SNOMED CT such as NCI Thesaurus (Sioutos et al., 
2007) that could be useful to build definitions for MedDRA 
terms that describe cancer-related adverse reactions. A recent 
work by Oliveira and Pesquita, (2018) reports that current 
ontology matching techniques and systems are mostly devoted 
to finding links between two equivalent entities from two 
distinct ontologies. However, different domains may be involved 
that requires the implementation of matching techniques that 
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allow linking more than two ontologies through more complex 
relations. An example is “aortic valve stenosis” (from human 
phenotype ontology) that is equivalent to the combination of 
“aortic valve” (from the Foundational Model of Anatomy) and 
“constricted” (from Phenotype And Trait Ontology).

CONCLUSION

The possibility of selecting terms using formal definitions 
and terminological reasoning are major advantages of clinical 
terminologies with formal semantics such as SNOMED CT, which 
present several advantages compared with classic terminologies. 
MedDRA, as a standard international terminology for the coding 
of ADRs in pharmacovigilance databases, could beneficiate from 
these knowledge engineering techniques, but MedDRA terms have 
to be defined using formal languages first. As defining manually 
MedDRA terms takes much time, it is important to reuse as much 
as possible ontological and non-ontological resources available 
to expedite the generation of formal definitions. The collection 
of methods we present can collectively support a semiautomatic 
semantic enrichment of MedDRA. Perspectives are to implement 
more efficient techniques to find more logical relations between 
SNOMED CT and MedDRA in an automated way.
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