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Editorial on the Research Topic

Psychophysiological Contributions to Traffic Safety

Research shows the dominant contribution of human factors to incidents and accidents in air
(Wiegmann and Shappell, 2001), road (Petridou andMoustaki, 2000), rail (Baysari et al., 2009), and
maritime traffic participation (Hetherington et al., 2006), as well as in (air) traffic control (Isaac and
Ruitenberg, 2016). Operator errors are in majority associated with a non-optimal mental state, such
as fatigue, drowsiness, stress, elevated mental workload, distraction from the main task, limited
vigilance, and failing situation awareness (Borghini et al., 2014). In turn, most of these functional
limitations can be expressed as an aberration of arousal (Collet and Musicant; Lohani et al.) and
difficulties maintaining relevant information in working memory (Wu et al., 2017). In an attempt
to further reduce traffic casualties, there is an increasing interest in the potential of monitoring
the mental state of both professionals and non-professional users. The current Research Topic
deals with the question about how mental states can be optimally tracked in simulated as well as
naturalistic contexts; now and when technology progresses further toward autonomous driving.

Assessment of fitness to drive by psychometric tools (e.g., self-report such as NASA-TLX; Hart
and Staveland, 1988) has serious limitations. Construct validity, sensitivity, and reliability are
limited because questionnaires rely on introspection and require a subjective judgment. More
importantly, these techniques are not capable of capturing real-time changes, as they are typically
not administered during action. Limited gain in traffic safety can be expected from identifying risk
only after the fact.

In contrast, dynamicmeasures have great added value inmonitoring the operator’s tendencies in
real-time during simulated or naturalistic traffic participation. Parameters like steering variability
and route compliance (e.g., Getzmann et al.) are directly relevant for operation safety. Similarly,
subtle bodily motions can provide clues about the operator’s behavioral and muscular tendencies as
related to safety. Beggiato et al. showed an increase in backward pressure on the driver’s seat when
autonomous navigation led to the proximity of a truck. Ihme et al. classified video recordings of
facial expressions and were able to identify muscular indicators of frustration, a predictor of less
responsible driving. Previous studies have shown the value of tracking head tilt and yawning as
indices of drowsiness or fatigue (Reyes-Muñoz et al., 2016).

In contrast with yawning or tightening muscles, which can be perceived as byproducts of mental
state, ocular behavior is a functional characteristic that may predict performance. Eye movements
reflect overt attention and as such are an index of task-relevant behavior, as defined by areas
with and without relevant information. Van de Merwe et al. (2012) demonstrated the value of
eye movement parameters such as fixation time, focus and entropy to index situation awareness
in simulated flying. Although eye trackers record more than only gaze, other parameters are
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currently of limited value in naturalistic settings. In well-
controlled laboratory or simulator settings, pupillometry has
merit in detecting fatigue and workload (Wiegand et al., 2008).
However, the pupil’s strong response to variable lighting makes it
virtually impossible to recognize subtle pupil dilation associated
with arousal levels under naturalistic conditions. Eye blink
duration, however, has successfully been linked to workload and
fatigue (Benedetto et al., 2011).

In comparison with behavioral tendencies,
psychophysiological and neuroimaging indicators tap even
more directly into mental states during traffic participation
(Van Erp et al., 2015; Borghini et al., 2017b). They have the
potential to detect adverse changes before a change in the
user functional state is visible in behavior. Near infrared
spectroscopy (NIRS) is successful at recognizing frustration
(Ihme et al.) and elevated workload (Le et al.; Scheunemann
et al.) with accuracy of classification ranging from 78 to 90%.
Electroencephalographic activity (EEG) has traditionally been
used to distinguish spectral contributions associated with
higher cognitive activity (Borghini et al., 2017a; Di Flumeri
et al., 2018) vs. sleep-like activity (Simon et al., 2011; Fonseca
et al., 2018). EEG is superior to blood-oxygenation based
recordings in its temporal resolution, which allows for the
identification of transient stimulus-induced changes using
event-related potentials (Brookhuis and de Waard, 2010; Rupp
et al., 2019) or time-frequency analyses (Gurudath and Riley,
2014).

Mental states are not only reflected in brain activity, but
also in the activity and balance of the autonomic nervous
system. In particular, arousal, vigilance (Schmidt et al., 2009), and
fatigue (Wang et al., 2018) can be tracked with cardiovascular
recording techniques (see Lohani et al. for a review). In addition,
electrodermal activity can index elevated mental workload
(Mehler et al., 2012) and stress (Boucsein, 2012). As more
psychophysiological signals are monitored, the reliability of

estimating the user’s mental state can only improve (Sahayadhas
et al., 2012).

Neuroscientific methods have long suffered from practical
limitations, such as non-portability, intolerance to motion,
invasive or intruding sensors, and computational demands
that prohibited real-time use. With the advance of technology,
however, more and more of these neuroscientific approaches
become accessible for real-time applications, and occasionally
also for improving real-world traffic safety, as in driver assistance
systems. Unfortunately, not all affordable sensors are suited to
monitor performance potential. Cisler et al. showed that high-
tech EEG recordings of midline alpha band could model speed
of responding to faulty behavior of an autonomous car, but that
low-tech indicators of eye gaze and heart-rate variability lacked
predictive power.

The collection of papers in this Research Topic illustrates
current topics in transportation research. Technology is moving
forward. This introduces the challenge to maintain safety in the
context of the increasingly popular, but yet imperfect operator
assistance and automated driving systems. At the same time, new
technology is rapidly providing new hardware, data processing
algorithms and artificial intelligence that may make it more
feasible and acceptable to track the operator’s mental state and
actively support, as needed, situation awareness. We know from
the relative successes in aviation that it is possible to keep pilots
aware and capable of taking over control despite extensive use
of the autopilot mode. An important challenge is now to reach a
similar level of capability in non-professionals, even in adverse
conditions. Psychophysiological techniques can play a critical
role in achieving this goal.
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Healthy aging is associated with a decline in cognitive functions. This may become
an issue when complex tasks have to be performed like driving a car in a demanding
traffic situation. On the other hand, older people are able to compensate for age-related
deficits, e.g., by deploying extra mental effort and other compensatory strategies.
The present study investigated the interplay of age, task workload, and mental effort
using EEG measures and a proactive driving task, in which 16 younger and 16 older
participants had to keep a virtual car on track on a curvy road. Total oscillatory power
and relative power in Theta and Alpha bands were analyzed, as well as event-related
potentials (ERPs) to task-irrelevant regular and irregular sound stimuli. Steering variability
and Theta power increased with increasing task load (i.e., with shaper bends of the road),
while Alpha power decreased. This pattern of workload and mental effort was found
in both age groups. However, only in the older group a relationship between steering
variability and Theta power occurred: better steering performance was associated with
higher Theta power, reflecting higher mental effort. Higher Theta power while driving was
also associated with a stronger increase in reported subjective fatigue in the older group.
In the younger group, lower steering variability came along with lower ERP responses
to deviant sound stimuli, reflecting reduced processing of task-irrelevant environmental
stimuli. In sum, better performance in proactive driving (i.e., more alert steering behavior)
was associated with increased mental effort in the older group, and higher attentional
focus on the task in the younger group, indicating age-specific strategies in the way
younger and older drivers manage demanding (driving) tasks.

Keywords: EEG, aging, proactive driving, mental effort, workload, alpha oscillations, theta oscillations, event-
related potentials

INTRODUCTION

Healthy aging is usually associated with a decline in sensory, cognitive and motor functions
(Park, 2000; Lindenberger and Ghisletta, 2009). All these abilities are required when complex
tasks have to be performed, like driving a car through dense city traffic or on a monotonous
road where attention towards driving-related events has to be kept over a longer period of time.
In fact, car driving can be regarded as a prototypical example of a complex task in which an
adequate interplay of information intake, cognitive processing, and motor responses is necessary.
Each of these instances may be prone to age-related deficits. For example, the sensory intake
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may be reduced due to vision problems or responses to
unexpected critical traffic events may be slowed down due to
motor impairments (Anstey and Wood, 2011; Park et al., 2011).
In addition, driving under challenging conditions may lead to a
greater mental workload for older drivers (Cantin et al., 2009).
Besides these negative consequences of aging, increasing driving
experience and concurrent emergence of enhanced driving
strategies are advantages that can help older drivers to manage
complex traffic situations. Furthermore, it is known that older
drivers are able to compensate for age-related decline, at least
in part. On the one hand, compensation comprises strategies to
adapt driving behavior to individual abilities, for example, by
reducing driving speed and avoiding driving in the rain or for
long periods of time (e.g., Molnar and Eby, 2008;Meng and Siren,
2012). On the other hand, older adults tend to increase their
mental effort in order to counteract age-related neurocognitive
decline (Cabeza et al., 2002). In the driving context, older drivers
can allocate extra mental resources to keep performance high for
adequate responses to a critical traffic situation.While adaptation
of driving behavior is immediately visible, adjustments of mental
effort (as well as a driver’s mental state in general) are not. Also,
increasing mental fatigue or attentional disengagement when
driving on a monotonous road are not directly measurable, but
theymay have negative consequences for traffic safety. Therefore,
monitoring a driver’s mental state during driving can help us
to learn more about age-related differences in traffic-related
performance and hidden processes of compensatory activity (for
review Da Silva, 2014).

A powerful approach to objectively determine mental states
while driving are physiological measures (De Waard, 2002;
Brookhuis and de Waard, 2010; Borghini et al., 2014). Especially
neurophysiological measures like the brain oscillatory activity
derived from the EEG have a long tradition. Here, the
overall oscillatory power as well as the relative power in
specific frequency bands like the Theta band (4–7 Hz) and
Alpha band (8–12 Hz) are of special interest, as these are
assumed to reflect different mental states. Decreased Alpha
power is usually regarded as a marker of allocation of
attention (Herrmann and Knight, 2001) and higher working
memory demands (Klimesch, 2012). In contrast, increased Alpha
power is related to mental fatigue, as well as to attentional
withdrawal and disengagement (Hanslmayr et al., 2012; Wascher
et al., 2014, 2016) as observed during monotonous and
boring tasks (Borghini et al., 2014). Accordingly, increases in
Alpha power during monotonous driving situations and low
perceptual demands may reflect periods of inattention and
mind-wandering (Lin et al., 2016). Activation in the Theta
band, on the other hand, is assumed to reflect aspects of
executive functioning and—more generally—cognitive control
(Cavanagh and Frank, 2014; Cavanagh and Shackman, 2015).
Accordingly, Theta power is usually increased with higher
task demands (Jensen and Tesche, 2002; Onton et al.,
2005) and—when time on task increases—with the effort to
keep performance high (Wascher et al., 2014; Arnau et al.,
2017).

In a recent driving simulator study, we employed oscillatory
EEG measures to investigate underlying cognitive processes that

may explain inter-individual variability in driving performance
(Karthaus et al., 2018). In a lane-keeping scenario, in which
younger and older drivers had to respond to variable levels
of crosswind by compensatory steering movements, both age
groups showed comparable overall performance. However, the
analysis of Alpha and Theta power suggested subtle differences
in driving styles, on the one hand within the older group and,
on the other hand, between the younger and older drivers. In
accordance with previous results (Garcia et al., 2017), these
driving styles could be described as either re-active or pro-
active: while re-active driving was characterized by high driving
lane variability and higher Alpha power, pro-active driving was
indicated by low driving lane variability and lower activity in
Alpha (and Beta) band. The latter has been associated with a
more alert mental state, a better anticipation and active use
of ongoing sensory driving information, and a more proactive
planning of future responses. The re-active driving style, in
contrast, led to situations in which the driver rather re-acts to
environmental information, resulting in delayed compensatory
steering activity (see also Braver, 2012).

Whether a driver uses a more re-active or pro-active driving
style does not only depend on the driver him/herself, but also
on the external conditions, i.e., the degree to which a situation
in principle can be controlled. A highly controllable situation
enables the anticipation and planning of future actions (e.g.,
steering movements when driving on a curvy road under good
visibility conditions), whereas a poorly controllable situation
forces the driver to respond exclusively to unpredictable outer
stimulation (Garcia et al., 2017). Depending on the driving
situation, the drivers’ mental states may vary profoundly: a
recent EEG study, in which pro-active and re-active driving
scenarios were contrasted by employing either a curve-taking or
crosswind-compensation task, it could be demonstrated that the
latter task results much faster in a mental state of attentional
disengagement and withdrawal of attentional resources (as
indicated by an increasing Alpha). Taking bends, in contrast, was
associated with a more focused driving activity, as indicated by a
higher relative Theta power in general, and an additional increase
in Theta power in narrow curves (Wascher et al., 2018). This
higher Theta power can be interpreted as the consequences of
the need for higher cognitive control in more demanding driving
situations (see also Cavanagh and Frank, 2014). In line with this,
higher steering demands in a pro-active driving scenario clearly
resulted in increases in mental effort (Dijksterhuis et al., 2011).

Mental workload, task demands and driving performance are
closely interrelated (Da Silva, 2014). For driving safety, a core
question is therefore to what degree a driver actively uses the
information provided by the environment and whether he or she
adequately and flexibly adapts the processing of this information
to a current driving situation. This critically depends on the
interaction of: (a) the driving situation that might be more or less
controllable; (b) the current workload of a given situation; and (c)
the driver’s individual mental capacities that might be reduced
due to, e.g., temporal states of fatigue or boredom, or long-term
age-related declines in cognitive functioning. The present study
investigated this interplay in a pro-active lane-keeping driving
task, in which younger and older drivers had to keep track
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on a curvy road. The interaction of age, varying degrees of
task workload (operationalized by bends of different radii), and
variations in mental effort over time was tested by analysis
of behavioral, neurophysiological and subjective measures. In
particular, steering variability was analyzed as a measure of
driving effort, with higher variability being associated with higher
effort. By the analysis of oscillatory power in the Alpha and Theta
bands, mental states of attentional withdrawal and effort were
determined.

In addition to brain oscillatory power, event-related brain
responses (ERPs) were analyzed that offer a further approach
to objectively measure mental effort and task load of a primary
task. Therefore, an auditory oddball paradigm has been applied
in which ERPs were measured to a stream of task-irrelevant
tone stimuli consisting of frequently presented standard and rare
deviant stimuli. Two different fronto-central ERP components
were analyzed, the mismatch negativity (MMN) reflecting
the automatic context-dependent pre-attentive information
processing of deviant tone stimuli (irrespective of the subject’s
focus of attention; for review Näätänen et al., 2007), and the
P3a indicating an involuntary shifting of attention towards a
deviant stimulus (e.g., Näätänen, 1992). Results of previous
studies showed that MMN and P3a provide suitable approaches
to mental states, like mental fatigue (Massar et al., 2010;
Yang et al., 2013) or attentional load (Yucel et al., 2005;
Zhang et al., 2006) as well as to task workload and time
on task (Kramer et al., 1995; Wascher et al., 2016). In
particular, in a steering-task paradigm, the P3a elicited by
task-irrelevant auditory probes was reduced with higher steering
difficulty, suggesting the P3a to be an indirect measure for
evaluating mental workload (Brouwer et al., 2012; Scheer
et al., 2016). Thus, in the present study, higher amplitudes
of MMN and P3a would indicate a deeper processing
of the task-irrelevant probes, either at a pre-attentive or
attentional level, potentially impairing performance in the
driving task.

MATERIALS AND METHODS

Participants
Sixteen younger (eight female, mean age 24.1 years, age range
20–30 years) and 16 older (eight female, mean age 63.3 years,
age range 55–69 years) active car drivers (at least two drives
per week during the last 3 years) participated in the study. The
data of one (older) participants were excluded from analysis
due to profound EEG artifacts. As could be expected, the older
drivers hold their driving licenses longer than the younger ones
(young: 6.7 years, SE 0.7 years; older: 43.7 years, SE 1.7 years;
t(29) = 20.66; p < 0.001), but the two groups did not differ in
their mean annual mileage (young: 12207 km, SE 4435 km; older:
12455 km, SE 1609 km; t(24) = 0.05; p > 0.05; reduced number
of participants). All participants had normal or corrected-
to-normal vision, and none of them reported any known
neurological or psychiatric disorder. They received 30 e for
participation in the experiment and provided written informed
consent prior to entering the experiment. This study was carried
out in accordance with the recommendations of Code of Ethics

of the World Medical Association (Declaration of Helsinki). The
protocol was approved by the local Ethical Committee of the
Leibniz Research Centre for Working Environment and Human
Factors, Dortmund, Germany. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

Task and Procedure
The experiment took place in a static driving simulator,
consisting of three 32 inch displays and 200 degrees horizontal
field of view (ST Sim; ST Software B.V. Groningen, Netherlands).
The participants’ task was to keep a car on track on a one-lane
road with curves of varying radii. The driving environment
consisted of monotonous grassland without any additional visual
distraction. The driving speed was held constant at 31 mph to
prevent the participants from compensatory slowing down in
narrow curves. The radii of the curves varied randomly every
2 min between three levels (task load: low, middle, high): At
the low level, there was a straight road without curves. At
the high level, the curves were adjusted to radii that allowed
the participants to keep the car on track for about 95% of
the time (as determined in a pilot study). At the middle
level, the curve radii were distributed in between the low
and high levels. Left and right turns varied randomly within
each curve segment. To smooth the transfer between adjacent
segments and to avoid abrupt changes, 1-s transfer-intervals
were introduced. Three different curve segments were combined
to triplets in randomized order, each lasting for 6 min. The
first triplet was used to familiarize the participants with the
task. This practice triplet was followed by nine experimental
triplets that were separated into three blocks. All in all, the
experimental blocks lasted for 54 min without any break or
interruption.

During the entire experiment a random sequence of short
auditory stimuli was presented via two broad-band loudspeakers
in front of the participants at a sound level of 70 dB (A). The
duration of each stimulus was 100 ms (including 5 ms rise and
fall times) and the interstimulus-onset interval was 1,000 ms. The
majority of the stimuli (80%) were standards intermixed with
10% higher and 10% lower deviants. The standard stimulus was
a harmonic tone composed of three sinusoidal partials of 500,
1,000 and 1,500 Hz, with the intensity of the second and third
partials being lower than that of the first partial by 3 and 6 dB,
respectively. The two deviant stimuli differed from the standard
stimulus in frequency, being either 10% higher (partials: 550,
1,100, 1,650 Hz) or lower (450, 900, 1,350 Hz) than the standard.
The tones represented irrelevant distractor stimuli that should be
ignored by the participants.

In order tomeasure possible changes in subjective fatigue over
the driving session, the participants filled out the German version
of the Stanford Sleepiness Scale (Hoddes et al., 1973) immediately
before and after the driving session.

Data Recording
EEG was recorded by 64 scalp electrodes placed according
to the International 10-10 system (electrode impedance
below 10 kΩ) and a ‘‘BioSemi active 2’’ amplifier (BioSemi,
Netherlands; sampling rate 2,048 Hz, bandwidth DC—140 Hz).
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Six additional electrodes positioned around both eyes were used
for electrooculography to measure horizontal and vertical eye
positions. Two additional electrodes were placed on the left and
right mastoids.

Data Analysis
Behavioral Data
Two different behavioral measures were analyzed, the time off
track and the steering variability. Time off track was defined as
the percentage of time that the car left the track. It was used as
main index for individual driving accuracy. Steering variability
was defined as the steering activity in degrees per second and
was operationalized as an index for workload (Verwey and
Veltman, 1996). Both parameters were entered into mixed-
design ANOVAs with the between-subject factor Age (2; young,
old) and the within-subject factors Task Load (3; low, medium,
high) and Time on Task (3; Blocks 1, 2, 3).

EEG Data
After re-referencing the EEG data to common average reference,
a bandpass filter between 0.1 Hz and 35 Hz was applied. Broken
channels were detected and excluded based on kurtosis and
probability criteria. Afterwards, the filtered data were resampled
to 128 Hz (dataset 1) and epoched into segments ranging from
−600 ms to 1,200 ms with respect to the onset of the sound
stimuli. For the ERP analysis, 1,024 Hz sampled data (dataset
2) were segmented, also ranging from −600 ms to 1,200 ms,
and a baseline ranging from −200 ms to 0 ms was subtracted.
Segments containing artifacts were identified in dataset 1 and
removed from both datasets 1 and 2. An independent component
analysis (ICA) was performed on dataset 1 and ICs reflecting
artifacts were identified using ADJUST (Mognon et al., 2011).
The IC weights were then copied to dataset 2 to again remove
artifactual ICs from both datasets.

The spectral properties of the EEG were obtained by
calculating Fast Fourier Transformations on dataset 1. Due to
substantial differences in the raw spectra between the two age
groups, a two-step analysis was chosen. First, to address the
different levels in general power, total power between 3 Hz and
30 Hz was calculated. Thereafter, the mean power was extracted
for the Theta band (4–7 Hz) and the Alpha band (8–12 Hz) to
subsequently compute relative power values. The proportional
contribution of Theta and Alpha power to total power was
entered into analyses.

Due to relatively liberal criteria of the statistical rejection of
segments, an additional amplitude criterion was applied to the
data (maximum voltage difference of ±50 µV per segment).
To compute the deviance-related MMN and P3a components,
difference waveforms were calculated by subtracting the
standard-tone ERPs from the deviant-tone ERPs. For analysis of
MMN and P3a amplitudes, the fronto-central FCz electrode was
chosen where the most prominent responses are usually obtained
(for reviews see Escera et al., 2000; Näätänen et al., 2007). The
MMN and P3a amplitudes were calculated as a mean voltage
within the 40-ms period centered at the peak latencies in the
grand-average waveforms (MMN: 125 ms; P3a: 230 ms; relative
to tone onsets).

It should be noted that the sequence of the tone stimuli
temporarily overlapped with the driving task, and that the
oscillatory measures were computed in epochs, in which the
cortical processing of the auditory standards and deviants took
place. Alpha and Theta frequency bands represent important
portions of auditory event-related oscillations (e.g., Kolev and
Yordanova, 1997; Yordanova et al., 2000) and possible effects
of these event-related oscillations might be assumed. However,
given that the tone sequence was kept constant throughout the
driving session, and because the analysis was mainly focused
on within-subjects effect of task workload and time on task as
well as the interaction of these factors with age, such effects of
event-related oscillations should not play a significant role for the
analysis of Alpha and Theta power measures.

Total power, percentages of total power in Theta and Alpha
bands (relative power), and MMN and P3a amplitudes were
entered into mixed-design ANOVAs with the between-subject
factor Age (2; young, old) and within-subject factors Task Load
(3; low, medium, high) and Time on Task (3; Blocks 1, 2,
3). The statistical analysis of the spectral power of the EEG
based upon the averaged spectrograms of four anterior channels
(F1, Fz, F2, FCz) and four posterior channels (PO3, POz, Pz,
PO4), respectively. Average measures of electrode patches were
used in order to gain a better stability of these measures by
accounting for minor topographical deviations of spectral power
across subjects. Anterior and posterior electrode patches were
chosen as spectral power modulations at these locations have
been linked to changes in mental states affecting performance.
Theta power, especially at frontal recording sites, was shown to
reflect cognitive effort and the exertion of cognitive control, thus
also reflecting task demands (Jensen and Tesche, 2002; Maurer
et al., 2014). Posterior alpha power, on the other hand, has
been linked to cognitive disengagement and sensory withdrawal
(Hanslmayr et al., 2011). In the context of time on task effects,
recent studies report reliable increases of alpha power at anterior
leads (Barwick et al., 2012; Wascher et al., 2014; Fan et al., 2015).
False discovery rate (FDR) correction was applied to account
for this multiple testing, and only FDR-corrected p-values are
provided. Effect sizes were provided for interpretation of the
practical significance of the results, using the partial eta-squared
coefficient (η2p).

Subjective Data
Sleepiness ratings on the Stanford Sleepiness Scale were entered
into mixed-design ANOVAs with the between-subject factor
Age (2; young, old) and the within-subject factors Time (2;
pre, post). In addition, changes in subjective mental states over
the course of the driving session were computed as relative
differences in sleepiness before and after driving, using the
formula (Post − Pre/Pre ∗ 100%).

RESULTS

Behavioral Data
Time off track was slightly increased with higher Task Load
(F(2,58) = 2.75; p = 0.09; η2p = 0.09) but did not depend on Time
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FIGURE 1 | Behavioral and EEG parameters (mean values and standard errors
of means): steering variability (A), total oscillatory power (B), relative Theta
power (C), relative Alpha power (D) and P3a amplitude (E) as function of Time
on Task and Task Load, shown separately for young and old participants.

on Task or Age. None of the interactions reached significance (all
p> 0.22; all η2p < 0.05).

Steering variability was overall higher with higher Task Load
(F(2,58) = 9.08; p < 0.005; η2p = 0.24) and decreased with Time
on Task (F(2,58) = 7.77; p < 0.005; η2p = 0.21). Also, there was
an interaction of Task Load and Time on Task (F(4,116) = 12.72;
p< 0.001; η2p = 0.31) that was due a decrease of steering variability
with Time on Task for medium and high task load, but rather
an increase for low task load (Figure 1A). There was no main
effect of Age (F(1,29) = 1.47; p = 0.23; η2p = 0.05) and no further
interaction (all p> 0.10; all η2p < 0.09).

EEG Data
Total Power
The total power increased significantly with Time on Task
(frontal: F(2,58) = 11.66; p < 0.005; η2p = 0.29; posterior:
F(2,58) = 8.00; p< 0.005; η2p = 0.22) and decreased with increasing
Task Load (frontal: F(2,58) = 24.64; p< 0.001; η2p = 0.46; posterior:

F(2,58) = 9.85; p < 0.005; η2p = 0.25; Figure 1B). Total power
was stronger in the younger than in the older group (frontal:
F(1,29) = 7.75; p < 0.05; η2p = 0.21; posterior: F(1,29) = 5.24;
p< 0.05; η2p = 0.15).

Relative Theta Power
The relative Theta power decreased with Time on Task (frontal:
F(2,58) = 12.58; p < 0.001; η2p = 0.30; posterior: F(2,58) = 8.28;
p < 0.005; η2p = 0.22) and was increased with increasing Task
Load (frontal: F(2,58) = 22.99; p < 0.001; η2p = 0.44; posterior:
F(2,58) = 18, 10; p < 0.001; η2p = 0.38). The decrease of posterior
relative Theta power with Time on Task was more pronounced
with lower than with higher Task Load (Time on Task by Task
Load interaction: F(4,116) = 4.02; p < 0.01; η2p = 0.12; Figure 1C).
Frontal relative Theta power was slightly stronger in the younger
than in the older group (F(1,29) = 5.58; p = 0.05; η2p = 0.16).

Relative Alpha Power
The posterior relative Alpha power increased with Time on Task
(F(2,58) = 5.11; p < 0.05; η2p = 0.15), and the frontal relative
Alpha power was decreased with higher Task Load (F(2,58) = 9.10;
p < 0.01; η2p = 0.24). The latter effect on frontal relative Alpha
power was more pronounced in the younger than in the older
group (Age by Task Load interaction: F(2,58) = 5.79; p < 0.05;
η2p = 0.17; Figure 1D). Accordingly, separate ANOVAs for the
two groups indicated a significant effect of Task Load for the
younger (F(2,60) = 18.41; p < 0.001; η2p = 0.55), but not the
older group (F(2,56) = 0.18; p = 0.84; η2p = 0.01), indicating
that the increase of relative Alpha with lower Task Load was
confined to the younger drivers. On posterior side, the effect
of Task Load on relative Alpha power was also modulated by
Age (Age by Task Load interaction: F(2,58) = 5.85; p < 0.05;
η2p = 0.17). Here, separate ANOVAs indicated a significant
interaction of Task Load and Time on Task for the younger
group (F(4,60) = 2.74; p < 0.05; η2p = 0.16), demonstrating a more
pronounced increase in relative Alpha power over time with
lower than with higher Task Load. In contrast, the older group
showed an overall decrease in relative Alpha power with lower
Task Load (F(2,56) = 4.46; p< 0.05; η2p = 0.24).

MMN and P3a
The MMN amplitude (mean −0.33 µV, SE 0.05 µV) did not
depend on Time on Task or Task Load and did not differ between
age group (all p > 0.21; all η2p < 0.06). The P3a amplitude
decreased with higher Task Load (F(2,58) = 6.33; p < 0.005;
η2p = 0.18; Figure 1E) and was slightly higher in the younger
group (F(1,29) = 3.48; p = 0.07; η2p = 0.11).

Relationship Between Steering Variability
and EEG
In order to evaluate possible relationships between driving
performance and mental states, steering variability and EEG
measures were averaged across Task Load and Time on Task, and
a correlation was calculated for total power, relative Theta and
Alpha power, and ERPs separately. The Kendall’sTau correlation
coefficient was used as a non-parametric test for the statistical
dependance of behavior and EEG measures.
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Total Power
There were no significant correlations of steering variability and
total power, neither for the younger (frontal: τ = 0.217; posterior:
τ = 0.265), nor for the older group (frontal: τ =−0.067; posterior:
τ = −0.105; all p> 0.14).

Relative Theta Power
A significant negative correlation of steering variability and
relative Theta power occurred in the older group (frontal:
τ = −0.524; p = 0.024; posterior: τ = −0.467; p = 0.030;
FDR-corrected p-values), indicating that higher Theta power was
associated with lower steering variability (Figure 2A). No such
relationship was found in the younger group (frontal: τ =−0.150;
posterior: τ = 0.100; both p> 0.55).

Relative Alpha Power
There was no correlation of steering variability and relative Alpha
power, neither for the younger group (frontal: τ = −0.050;
posterior: τ = 0.133), nor for the older group (frontal: τ =−0.143;
posterior: τ = 0.048; all p> 0.45).

MMN and P3a
There was a significant positive correlation of steering variability
and P3a amplitude in the younger group (τ = 0.550; p = 0.012),
indicating that a more pronounced P3a was associated with
higher steering variability (Figure 2B). In the older group, the
correlation of steering variability and P3a slightly failed to reach
significance (τ = 0. 333; p = 0.083). In addition, there was a
trend to a correlation of steering variability and MMN (younger:
τ = 0.383; p = 0.051; older: τ = 0.410; p = 0.051; FDR-corrected
p-values).

Subjective Data
The analysis of the pre and post ratings of fatigue indicated an
increase in subjective sleepiness over the course of the driving
session (F(1,29) = 42.12; p < 0.001; η2p = 0.59; Figure 3A). In
addition, the younger group scored higher in overall sleepiness
(F(1,29) = 16.46; p < 0.001; η2p = 0.36) than the older group. A
significant interaction of Age and Time on Task on sleepiness

(F(1,29) = 16.46; p< 0.001; η2p = 0.36) was due to a higher increase
in sleepiness in the younger, than older, group.

In order to test whether relative frontal Theta power and P3a
amplitude, which turned out to be related to steering variability
in the older (respective younger) group, were also associated
with the subjective fatigue, the relative changes in sleepiness
over the driving session were computed and correlations were
determined for frontal relative Theta power and P3a amplitude
for both groups separately. In the older group, a significant
correlation was found for frontal relative Theta (τ = 0. 490;
p = 0.036; FDR-corrected p-value; Figure 3B), indicating that
higher relative Theta power during the driving session was
associated with a stronger increase in sleepiness. The relationship
of frontal relative Theta and change in sleepiness in the younger
group did not reach significance (τ = 0.188; p = 0.315). No
significant correlations of P3a and subjective measures were
found, neither for the younger (τ = 0.103), nor for the older
group (τ = 0.000; both p> 0.58).

DISCUSSION

Goal of the present study was to explore the interaction of task
workload, variations in mental effort, and age-related difference
in performance in a simulated (lane-keeping) driving task, using
electrophysiological EEG and ERP measures. Lane keeping in
general was efficient in younger and older drivers. There was
a slight increase in time off track in tighter bends that could
be expected. However, there were no significant changes over
time, neither in the younger, nor in the older group. Steering
variability on curvy road sections was increased relative to
straight sections in both groups but decreased with time on task.
This could be due to learning effects resulting in amore andmore
experienced anticipation of steering behavior in dependance of
the curve radius. In this regard, it should be noted that the
driving scenario allowed for a pro-active driving strategy, in
which the future steering behavior could be dynamically adapted
to the course of the road in an anticipatory manner. This is
in sharp contrast to the cross-wind scenario of our previous

FIGURE 2 | Significant relationships of behavioral and EEG parameters: Individual values of steering variability, frontal and posterior relative Theta (A), and P3a
amplitude (B), averaged across Task Load and Time on Task, shown for young (y) and old (o) participants with regression lines.
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FIGURE 3 | Subjective parameters: reported pre and post driving fatigue ratings (A) and individual changes in fatigue and frontal relative Theta (B) of old (o)
participants (as averaged across Task Load and Time on Task) with regression lines.

study (Karthaus et al., 2018), in which the driver could only
react to the different degrees of crosswind but had no chance
to prepare for an upcoming steering event over a longer time
frame.

The analyses of the EEG oscillatory data indicated an overall
stronger total power in the younger group. Such age-related
differences in oscillatory activity have been reported in a number
of previous studies (e.g., Polich, 1997; for review Klimesch,
1999), but the relationship between EEG measures, cognitive
performance, and age are still poorly understood and obviously
depend on the cognitive functions studied (e.g., Vlahou et al.,
2014; Trammell et al., 2017). Beside this age effect, there
was an increase in total power over time and a decrease
with increasing workload. These effects of time on task and
workload were found for frontal and posterior positions and
appear plausible, given that strong oscillatory activity in lower
bands (in particular the Alpha band) reflects mental states of
boredom and attentional disengagement (e.g., Klimesch, 1999,
2012; Hanslmayr et al., 2012; Wascher et al., 2016) as usually
observed during monotonous and boring tasks (Borghini et al.,
2014). These mental states might be more pronounced on
straight road sections and after the participants had becomemore
familiar with the driving task because of automatization of a
well-learned task.

A quite similar overall pattern was found for the relative
Alpha power. However, there were differences between the
two age groups: stronger frontal relative Alpha power and
increases in posterior relative Alpha power on straight road
sections, relative to curvy sections, were only observed in
the younger group. In contrast, in the older group frontal
relative Alpha power did not differ between task loads, and
posterior relative Alpha power was even smaller on straight road
sections. Thus, the afore-mentioned attentional disengagement
was only found in the younger group, whereas the older
drivers showed less signs of boredom and mental fatigue
even when the task was less demanding. This observation
can be interpreted with regard to the decline-compensation
hypothesis (Cabeza et al., 2002), assuming that older adults
maintain or even increase their mental effort to counteract
possible age-related neurocognitive declines. Accordingly,
neurophysiological studies have frequently demonstrated

greater activation especially in frontal brain areas in older
adults than in younger adults, even when the performance
did not differ (for review Reuter-Lorenz and Cappell,
2008).

In contrast to relative Alpha power, relative Theta power
decreased over time and was stronger with increasing workload.
This observation is well in line with the view that Theta
power reflects mental effort (e.g., Jensen and Tesche, 2002;
Onton et al., 2005; Cavanagh and Frank, 2014; Cavanagh and
Shackman, 2015; Arnau et al., 2017), which should decrease
over time due to learning and automatisms, but which should
increase on demanding road sections. While this interplay
of time on task, workload, and Theta power did not differ
between the two age groups, a significant negative relationship
of relative Theta power and steering variability was found
only in the older group: Older drivers with higher Theta
power showed a lower steering variability. Assuming that
steering variability represents a measure for workload (Verwey
and Veltman, 1996), and frontal Theta power constitutes an
indicator for mental effort, this negative correlation does not
appear plausible at first sight. However, for the interpretation
of the present relationship, it should be considered that in
a pro-active driving task lower steering variability reflects a
more adequate steering behavior that requires (and results
from) a better anticipation of the ongoing and future road
course (Garcia et al., 2017). In other words: to perform the
task successfully, the driver had to perceive the direction
and strength of the curves continuously, respond by steering
movements, monitor the movements of the car relative to the
driving lane, and correct the steering movement if necessary.
Higher steering variability is therefore the consequence of
deficiencies in this ongoing loop of perceiving, responding,
and correction. Lower steering variability, on the other
hand, should be associated with higher mental effort in
the proactive driving task, as indicated by higher frontal
Theta power.

Interestingly, the correlation of steering variability and
relative Theta power was significant only in the older group.
The fact that the relationship of steering performance and
mental effort exclusively occurred in the older group is—on
the one hand—in line with the decline-compensation hypothesis
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(Cabeza et al., 2002). On the other hand, the differences between
the age groups might reflect the higher inter-individual
variability in elderly that is usually found (e.g., Hultsch et al.,
2002). Higher differences in steering variability in the older
group might promote correlations with brain measures on a
between-subject level. In addition to differences between the
older drivers (rather suggesting individual longer-term driving
strategies), the question of whether a similar relationship exists
on a within-subject level would also be of interest, as this
would reflect short-term variability in the interplay of task
workload, mental effort and driving outcome. Here, it would
be expected that current states of higher mental effort should
be accompanied by lower actual steering variability. In order to
address this question, recent research approaches using ongoing
EEG recordings have been proposed for the assessment of mental
workload, fatigue and drowsiness in car drivers (e.g., Borghini
et al., 2014; Charbonnier et al., 2016; Kong et al., 2017).

The assumption that better steering behavior of older drivers
was associated with higher mental effort is further supported
by the significant correlation of relative Theta power and the
increase in the subjective measure of fatigue: Older drivers
showing higher relative Theta power (indicating higher mental
effort while driving) reported a higher pre-/post-increase on
the sleepiness scale. Such an association of mental effort and
relative Theta power has also been reported in previous studies
(Klimesch, 1999; Smith et al., 2001; Smit et al., 2004). Although
a similar relationship could be observed in the younger group
(see Figure 3B), the correlation failed to reach significance. The
younger group also reported an overall higher level of sleepiness
that even increased more than that of the older group. This
suggests a higher tendency of the younger group to respond to
monotonous task with boredom and attentional withdrawal than
the older group, as it was also found in a previous study (Arnau
et al., 2017). This also corresponds nicely to the observation that
an increase in posterior relative Alpha power on straight, less
demanding road sections was only observed in the younger group
(see above).

The analysis of the ERPs to deviance in the acoustic
stimulation indicated an MMN and a P3a to the rare
deviant tones, relative to the regular standard tone. The
MMN is regarded as a correlate of deviance detection at
an early, rather pre-attentive level, while the P3a reflects
the allocation of attentional resources toward a change in
the individual’s environment (Näätänen, 1992; for review
Näätänen et al., 2007). In classical distraction paradigms, in
which participants are instructed to attend to a task-relevant
stimulus feature while ignoring task-irrelevant features, the
P3a is usually assumed to reflect an involuntary shift of
attention toward the distractor, away from the task at hand
(Escera et al., 2000). In the present driving task, MMN
and P3a can be regarded as correlates of detection of and
attention to the deviant tone stimulus. The first process did
not depend on workload and time on task (which could be
expected, given that the MMN in passive auditory oddball
paradigms can be found even in coma patients, e.g., Morlet
and Fischer, 2014). The second one, however, decreased in
amplitude with higher workload. This can be interpreted in

the framework of a resource allocation approach (for review
see Wickens, 2008), in which less allocation of cognitive
resources to a secondary task shows that more resources are
required by a primary task. In line with this hypothesis,
diminished P3 amplitudes to task-irrelevant sounds have been
observed in a primary steering task when steering demands
increased (Scheer et al., 2016). In the present task setting,
keeping track in narrow curves might tie up attentional
resources, which are no longer available for attending to the
changes in the tone stimuli. In this regard, it should be
noted that MMN and P3a are determined as the difference
waveforms of ERPs to deviant and standard tones. Thus, the
workload effect on P3a amplitude does not simply mirror
the pattern of total oscillatory power but reflects genuine
workload-related differences in stimulus deviance processing.
The slightly higher P3a amplitude in younger participants is
in line with the literature (Polich, 1997). More importantly,
the younger group showed a significant correlation of P3a
amplitude and steering variability, suggesting that worse steering
performance of younger drivers came along with a higher
involuntary shift of attention toward the deviant tone stimuli.
Conversely, younger drivers who attended less to changes in
the environment showed a better driving performance. This
relationship clearly stresses the implication of the P3a to
task-irrelevant sound as an indirect measure for evaluating
mental workload, which has also been shown previously
(Scheer et al., 2016). Furthermore, assuming that shifts of
attention toward task-irrelevant stimulation are closely related
to distraction, the present results suggest that the susceptibility
to distraction of younger and older drivers is based on different
cognitive mechanisms.

As a final methodological remark, it should be noted that
the most prominent results of the present study were found in
relative values of Theta and Alpha power, whereas the analysis
of total oscillatory power indicated only basic effects of workload
and time on task. Thus, relative power in EEG bands appears to
be the more fine-grained measure that should be considered in
future studies.

CONCLUSION

In the present pro-active driving scenario, younger and older
drivers did not differ in behavioral measures of performance,
i.e., in time off track and steering variability. However,
electrophysiological measures demonstrated age-related
differences in the way the two groups reached this goal:
high performance was associated with increased mental effort
(and a higher increase in fatigue) in the older group. Yet,
high performance in the younger group was related to higher
attentional focusing on the driving task (respective less attention
to distractors). What do these results mean for traffic safety?
On the one hand, it appears that older drivers invest extra
mental resources to manage demanding (driving) tasks. Thus,
they should always start a longer trip sufficiently rested and
otherwise fit for driving. Also, it is advisable for them to take
breaks regularly. Driver assistance systems detecting drowsiness
can additionally help to avoid driving situations in which
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reduced mental resources might lead to critical driving behavior.
On the other hand, younger drivers showing a tendency to
attend to traffic-irrelevant stimulation should avoid being
distracted by this information, especially in monotonous
driving situations. Here, more initiatives towards younger
drivers addressing the dangers of using mobile phones and
communication devices while driving would be recommended.
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Experiencing frustration while driving can harm cognitive processing, result in aggressive
behavior and hence negatively influence driving performance and traffic safety. Being
able to automatically detect frustration would allow adaptive driver assistance and
automation systems to adequately react to a driver’s frustration and mitigate potential
negative consequences. To identify reliable and valid indicators of driver’s frustration,
we conducted two driving simulator experiments. In the first experiment, we aimed to
reveal facial expressions that indicate frustration in continuous video recordings of the
driver’s face taken while driving highly realistic simulator scenarios in which frustrated
or non-frustrated emotional states were experienced. An automated analysis of facial
expressions combined with multivariate logistic regression classification revealed that
frustrated time intervals can be discriminated from non-frustrated ones with accuracy
of 62.0% (mean over 30 participants). A further analysis of the facial expressions
revealed that frustrated drivers tend to activate muscles in the mouth region (chin
raiser, lip pucker, lip pressor). In the second experiment, we measured cortical activation
with almost whole-head functional near-infrared spectroscopy (fNIRS) while participants
experienced frustrating and non-frustrating driving simulator scenarios. Multivariate
logistic regression applied to the fNIRS measurements allowed us to discriminate
between frustrated and non-frustrated driving intervals with higher accuracy of 78.1%
(mean over 12 participants). Frustrated driving intervals were indicated by increased
activation in the inferior frontal, putative premotor and occipito-temporal cortices.
Our results show that facial and cortical markers of frustration can be informative
for time resolved driver state identification in complex realistic driving situations. The
markers derived here can potentially be used as an input for future adaptive driver
assistance and automation systems that detect driver frustration and adaptively react
to mitigate it.

Keywords: frustration, driver state recognition, facial expressions, functional near-infrared spectroscopy, adaptive
automation
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INTRODUCTION

Imagine driving through a city during rush hour on the way to
an important meeting. You started a little late and realize that
with the dense traffic conditions, it will be hard to arrive at the
meeting in time. You are becoming increasingly annoyed by the
driver in front of you who is driving provocatively slowly and
causes unnecessary extra stops at traffic lights. In addition, the
myriads of construction sites along your way further worsen the
situation. After yet another red light, you are really frustrated
and it appears unbearable to you to wait behind the bus right
after the light turned green. You accelerate to overtake the bus
but fail to see the pedestrian crossing the street and heading
to the bus.

The above story is one example of how frustration can
affect driving in a negative way and most readers have likely
experienced one or the other situation. Frustration can be seen
as an aversive emotional state resulting when goal-directed
behavior is blocked (Lazarus, 1991) that is associated with
negative valence and slightly elevated arousal (Russell, 1980;
Scherer, 2005). As driving is a goal-directed behavior (e.g.,
reaching the destination in time in the above example), blocking
events, as described above, can induce frustration and eventually
lead to aggressive (driving) behavior (Ekman and Friesen, 2003;
Lee, 2010; Jeon, 2015). In addition, frustration can have negative
effects on cognitive processes important for driving such as
attention, judgment and decision making (Jeon, 2015). Jeon
(2012) suggested that negative emotions may have a worse
influence on driving performance than distraction or secondary
tasks, as drivers normally are aware of the secondary task
and can pro-actively compensate for it. Conversely, negative
emotions may degrade driving performance without attempts for
compensation (Jeon, 2012). Taken together, reducing frustration
during driving is an important step towards improving road
safety (e.g., zero-vision of the European Commission, as
expressed in the White Paper on Transportation, European
Commission, 2011).

In order to reduce frustration and its potential negative
consequences in future intelligent driver assistance systems
by means of emotion-aware systems (e.g., Picard and Klein,
2002), it is necessary to automatically assess the drivers’ current
level of frustration. One potential indicator of emotions is the
momentary facial expression. Humans use facial expressions
to communicate their emotions and these facial expressions
appear to be relatively idiosyncratic to specific emotions (Ekman
and Friesen, 2003; Erickson and Schulkin, 2003) and hence
may discriminate between different emotions. Moreover, brain
activations are the physiological basis of emotions, appraisal
processes as well as subjective experiences (Scherer, 2005)
and may allow to objectively discriminate frustrated from
non-frustrated subjective states. Therefore, we will investigate
whether facial expressions and brain activation patterns are
indicative for frustration while driving.

Humans communicate emotions by changing the
configuration of the activation of their facial muscles which
is fundamental to understand each other in social interaction
(Erickson and Schulkin, 2003). Following from this, the idea is

to equip machines like vehicles with the same capability to read
facial expressions in order to gain the ability to interpret the
driver’s current emotional state and eventually become empathic
(e.g., Bruce, 1992; Picard and Klein, 2002). This vision becomes
realistic with the recent progress in the fields of image processing
and machine learning making it possible to automatically track
changes in facial activity from video recordings of the face
(Bartlett et al., 2008; Hamm et al., 2011; Gao et al., 2014). Still, to
the best of our knowledge, so far, only few studies investigated
the facial features accompanying frustration and whether these
can be used to discriminate frustration from other emotional
states. For example, a study by Malta et al. (2011) used facial
features to detect frustration in real world situations but did
not report the discriminative features. Studies from human-
computer interaction (HCI) linked frustration to increased facial
muscle movement in the eye brow and mouth area (D’Mello
et al., 2005; Grafsgaard et al., 2013). In addition, a recent study
investigating facial activity of frustrated drivers found that
muscles in the mouth region (e.g., tightening and pressing of
lips) were more activated when participants were frustrated
compared to a neutral affective state (Ihme et al., in press).
However, the authors employed a manual technique for coding
the facial muscle behavior and did not evaluate the potential of
automatic frustration recognition. Based on these earlier results,
we reasoned that automated recognition of frustration is possible
by combining lip, mouth and eye brow movements.

Still, the goal of this work is not only to evaluate whether
it is possible to discriminate frustrated from non-frustrated
drivers based on video recordings from the face, but also to
describe the patterns of facial muscle configuration related to
frustration. For this, we used a multistep approach. First of
all, we used a tool to extract the activity of facial action units
(AUs) frame by frame from video recordings of the face (we
used a commercial tool based on Bartlett et al., 2008). AUs are
concepts from the Facial Action Coding System (FACS, Ekman
et al., 2002) that can be regarded as the atomic units of facial
behavior related to activation of facial muscles. The frame-wise
activations of the facial AUs were then used as an input for
time-resolved prediction of participants’ frustration using a
machine learning approach which served to evaluate whether an
automated discrimination of frustration is possible. In a second
step, we aimed to identify the AU activations patterns that are
indicative for frustration. For this, we clustered the frame-wise
AU data in order to derive frequently occurring facial muscle
configurations. Because facial expressions are described as
momentary configurations of AU activations (Ekman, 1993), the
resulting cluster centroids can be interpreted as representations
of the frequently occurring facial expressions. The AU activations
in the cluster centroids are then used to describe which AUs
are activated and compared with previous results on facial
expressions of frustration (D’Mello et al., 2005; Grafsgaard et al.,
2013; Ihme et al., in press). In this way, we can determine which
facial expressions are shown by frustrated drivers and whether
these are in line with our expectation that facial expressions of
frustration are related to lip, mouth and eye brow movements.

Only few studies investigated neural correlates of frustration
despite it being a common emotional state. A functional
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magnetic resonance imaging (fMRI) study by Siegrist et al. (2005)
investigated chronic social reward frustration experienced in a
mental calculation task and revealed neural correlates of reward
frustration primarily in the medial prefrontal, anterior cingulate
and the dorsolateral prefrontal cortex (DLPFC). Bierzynska et al.
(2016) induced frustration in a somatosensory discrimination
task. The fMRI results revealed increased activation in the
striatum, cingulate cortex, insula, middle frontal gyrus and
precuneus with increasing frustration. Another fMRI study
from Yu et al. (2014) using speeded reaction times found
that experienced frustration correlated with brain activation in
PFC and in deep brain structures like the amygdala, and the
midbrain periaqueductal gray (PAG). These authors suggested
that experienced frustration can serve as an energizing function
translating unfulfilled motivation into aggressive-like surges
via a cortical, amygdala and PAG network (Yu et al., 2014).
Interestingly, other fMRI studies suggested a role of the anterior
insula in the subjective experience of feeling frustrated (Abler
et al., 2005; Brass and Haggard, 2007). Together, these fMRI
studies provided detailed anatomical information about potential
neural correlates of frustration, but mostly employed relatively
simple experimental paradigms to induce frustration. Thus, in
our study, we considered it desirable to employ a brain imaging
technology that is better compatible with real-world applications
in vehicles.

Functional near-infrared spectroscopy (fNIRS) is a
non-invasive optical imaging technique that uses near-infrared
light (600–900 nm) to measure cerebral blood flow changes
when neural activity is elicited (Jöbsis, 1977; Villringer et al.,
1993) based on neurovascular coupling similar to fMRI. fNIRS
can be used to measure brain activation in realistic driving
simulations and is relatively robust to movement artifacts
(Unni et al., 2017). However, fNIRS measurements focus on
cortical activation and their spatial resolution (around 3 cm)
is lower than fMRI. Perlman et al. (2014) recorded fNIRS data
from prefrontal cortical areas in 3–5-year-old children while
they played a computer game where the expected prize was
sometimes stolen by an animated dog to induce frustration. The
results suggest a role for the lateral PFC in emotion regulation
during frustration. Hirshfield et al. (2014) induced frustration by
slowing down the internet speed while participants performed
the task of shopping online for the least expensive model of
a specified product given limited time constraints. The fNIRS
results indicate increased activation in the DLPFC and the
middle temporal gyrus when frustrated. A more recent study
by Grabell et al. (2018) investigated the association between the
prefrontal activation from fNIRS measurements and irritability
scores in children. These authors reported an inverted U-shaped
function between the children’s self-ratings of emotion during
frustration and lateral prefrontal activation such that children
who reported mild distress showed greater activation than
peers who reported no or high distress highlighting the role of
the lateral prefrontal areas and their involvement in emotion
regulation. In sum, fNIRS and fMRI neuroimaging studies
revealed that activation in prefrontal cortices plus several other
brain areas, potentially specific to the exact task demands,
are modulated by frustration. Based on this, in our study, we

hypothesize that the lateral prefrontal areas might be indicative
of frustration while driving.

To the best of our knowledge, no study exists that investigated
the brain activation of drivers experiencing frustration and
that uses brain activity measured with fNIRS for automated
recognition of frustration. In addition, we are not aware of
any study that aimed at continuous, time resolved prediction
of driver frustration from facial expression or brain activation
measurements. Therefore, the goals of this study were to evaluate
whether it is possible to detect spontaneously experienced
frustration of drivers based on: (1) video recordings of the
face; and (2) brain activation as measured with fNIRS. In
addition, we aimed to reveal facial muscle features and cortical
brain activation patterns linked to frustration. To this end,
we conducted two driving simulator experiments, in which
frustration was induced through a combination of time pressure
and blocking a goal, while videotaping the faces of the
participants (Experiment 1) and recording brain activation
using fNIRS (Experiment 2). We employed a multivariate
data-driven approach to evaluate whether a discrimination of
frustration from a non-frustrated state is possible using the data
at hand. This analysis provided us with an estimate for the
discriminability of the two induced affective states but could not
tell about the underlying patterns of facial and brain activity that
are related to frustration. Therefore, additionally, we investigated
the underlying facial expressions and brain activity patterns in a
second step and report the results thereof.

MATERIALS AND METHODS

Experiment 1
Participants
Thirty-one volunteers participated in Experiment 1. The video
recording of one participant failed due to a technical problem.
Consequently, the data of 30 participants (twelve females, age
mean [M] = 26.2 years, standard deviation [SD] = 3.5 years)
were included in the analysis. All participants held a valid
driver’s license, gave written informed consent prior to the
experiment and received a financial compensation of 21 e
for their participation. The experiments of this study were
carried out in accordance with the recommendations of the
guidelines of the German Aerospace Center and approved by
the ethics committee of the Carl von Ossietzky University,
Oldenburg, Germany. All subjects gave written informed consent
in accordance with the Declaration of Helsinki.

Experimental Set-Up
The study was accomplished in a driving simulator consisting of
a 46-inch screen (NECMultiSync LCD4610) with a resolution of
1366× 768 pixels, a G27 Racing gaming steering wheel (Logitech,
Newark, CA, USA) including throttle and brake pedal and a
gaming racing seat. Via the steering wheel and the pedals, the
participants could control a virtual car in a driving simulation
(Virtual Test Drive, Vires Simulationstechnologie, Bad Aibling,
Germany). Sounds of the driving simulation were presented
via loudspeakers (Logitech Surround Sound Speakers Z506).
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During the experiment, the participant’s face was filmed using a
standard IP-Camera (ABUS,Wetter, Germany) with a resolution
of 1280× 720 pixels at a sampling rate of 10 frames per second.

Experimental Design and Cover Story
Frustration is experienced when goal-directed behavior is
blocked (Lazarus, 1991) and can be intensified by time pressure
(e.g., Rendon-Velez et al., 2016). Therefore, a cover story was
created that told the participants to imagine being a driver at
a parcel delivery service and having to deliver a parcel to a
client (goal-directed behavior) within 6 min (time pressure).
Participants were told that they received 15e reimbursement for
the experiment plus a bonus of 2 e for every parcel delivered
within the given time. The drives took place in a simulated urban
environment with two lanes (one per direction). Participants
were told to stick to the traffic rules and to not exceed the speed
limit of 50 km/h (∼31 mph, which is the standard speed limit in
urban areas in Germany). The experiment started with a short
training with moderate traffic which lasted about 10 min. All
participants drove the drives of all conditions (within-subjects
block design), which are specified in the following sections.

Frust Condition
Three drives were used to induce frustration. In these, the
participants had to deliver the parcel in 6 min, but their driving
flow was blocked by events on the street. It was tried to distribute
the occurrence of the frustrating events roughly equal over time
in the scenario. However, the exact timing differed and also
depended on participants’ speed. In addition, the nature of the
events was varied (e.g., red lights, construction sites, slow lead
cars that could not be overtaken, or a pedestrian crossing the
street slowly) with the goal to create a scenario feeling as natural
as possible to the participant. In two Frust drives, the participants
were told after 6 min that the parcel could not be delivered in
time, they will win no extra money and they should stop the car
(of these two drives, the first drive had six frustrating events and
the second one had eight). In the third drive participants were
told after 5:40 min that they successfully delivered the parcel and
won 2 e extra (this drive had eight frustrating events).

NoFrust Condition
Three further drives served as control condition. The participants
had to deliver the parcel in 6 min with only little or moderate
traffic on the ego lane (i.e., the lane they drove on), so that driving
at the maximally allowed speed was almost always possible. In
two of the drives, the participants were told after a fixed amount
of time below 6 min (5:41 and 5:36 min) that they successfully
delivered the parcel and won 2 e extra. The third non-frustrated
drive ended after 6 min with a message that the time is over and
no extra money was won.

The design of the frustrating drives was similar to the
experimental manipulations of earlier studies on driver
frustration (Lee, 2010; Lee and LaVoie, 2014). The participants
drove the experimental conditions in random order and
were not informed whether the current drive was a Frust
or a NoFrust drive, i.e., they only experienced more or
less frequently blocking events during a given drive. In
order to reduce carry-over effects between the experimental

drives, the participants had to drive for about 2 min
through the same urban setting without any concurrent
traffic between two experimental drives. Between the drives,
there were breaks, in which participants had to fill in the
questionnaires mentioned below and could take some time to
relax.

Subjective Rating
As a manipulation check, the participants rated their subjectively
experienced emotion using the SAM (Bradley and Lang, 1994)
after each drive. In addition, they filled in the NASA-Task Load
Index (NASA-TLX) after each Frust andNoFrust drive (Hart and
Staveland, 1988). Here, we specifically focused on the frustration
scale. One participant did not fill in the NASA-TLX, so only
29 questionnaires could be analyzed for that scale.

Data Analyses
Subjective Rating
The subjective ratings for the three used questionnaire items were
compared to each by means of analysis of variance (ANOVA).
Partial eta-squared (η2p) was calculated for each test as an
indicator for effect size.

Pre-processing of Video Data
The software FACET (Imotions, Copenhagen, Denmark), which
is based on the CERT toolbox (Bartlett et al., 2008), was used
to extract information regarding the frame-wise AU activity.
FACET makes use of the FACS (Ekman et al., 2002) and can
determine the activation of 18 AUs as well as head motion
(pitch, roll and yaw in ◦). An overview of the AUs recorded by
FACET can be found in Table 1. The activation of AUs is coded
as evidence, which indicates the likelihood of activation of the
respective AU. For instance, an evidence value of 0 means that
the software is uncertain about whether or not the respective
AU is activated, a positive evidence value refers to an increase
in certainty and a negative value to decreasing certainty. In
order to reduce inter-individual difference in the evidence value,
we subtracted the mean evidence value of the first minute of
each drive per AU from the remaining values. In addition,
a motion correction was accomplished as FACET operates
optimally if the participants’ face is located frontally to the
camera. Therefore, we analyzed only the frames with a pitch
value between−10◦ to 20◦ as well as roll and yaw values between
−10◦ and +10◦. About 10.6% of the data were removed in this
step.

Multivariate Cross-Validated Prediction of Frust and
NoFrust Drives Based on AU Data
We used a multivariate logistic ridge regression (Hastie et al.,
2009) decodingmodel implemented in the Glmnet toolbox (Qian
et al., 2013) for the prediction of Frust and NoFrust drives
from the z-scored AU activation (i.e., time resolved evidence).
A 10-fold cross-validation approach was used to validate the
model. For this, the time series data were split into 10 intervals.
This approach avoids overfitting of the data to the model and
provides an estimate of how well a decoding approach would
predict new data in an online analysis (Reichert et al., 2014).
In the logistic ridge regression, the λ parameter (also as hyper-
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TABLE 1 | Overview of recorded action units (AUs).

AU Description

1 Inner brow raiser
2 Outer brow raiser
4 Brow lowerer
5 Upper lid raiser
6 Cheek raiser
7 Lid tightener
9 Nose wrinkler
10 Upper lip raiser
12 Lip corner puller
14 Dimpler
15 Lip corner depressor
17 Chin raiser
18 Lip puckerer
20 Lip stretcher
23 Lip tightener
24 Lip pressor
25 Lips part
28 Lip suck

The list and the descriptions of the AUs have been taken from the website of
Imotions (Farnsworth, 2016).

parameter) determines the overall intensity of regularization. We
used a standard nested cross-validation procedure to train the
model and test generalization performance. The λ parameter was
optimized in an inner 10-fold cross-validation loop implemented
in the training. The outer cross-validation loop tested the
generalization of the regression model with the optimized λ on
the held-out test dataset. The input features that went into the
decoding model were the pre-processed AU activations averaged
across 10 data frames (= 1 s, no overlapping windows) to
reduce the amount of data and increase the signal to noise ratio
without increasing the model complexity. The model weights
these input features and provides an output which is between
0 and 1. This output value indicates the likelihood for the test
data classified as either the Frust class or the NoFrust class.
An output ≥0.5 is considered to be classified as Frust drive
whereas an output<0.5 is considered to be classified as a NoFrust
drive.

The accuracy of the classification model of the individual
participants was calculated as follows:

Model Accuracy (%) =

TPRFrust + TPRNoFrust

TPRFrust + TPRNoFrust + FPRFrust + FPRNoFrust
∗ 100 (1)

In Equation 1, the TPR is the true positive rate and FPR is the
false positive rate of the two conditions as denoted by Frust or
noFrust. The model accuracy by itself is not a sufficient measure
for evaluating the robustness of the model. Other performance
measures like recall and precision are important indicators
to evaluate whether the model exploits group information
contained in the data and are insensitive to group size differences
(Rieger et al., 2008). Recall is the proportion of trials which
belong to a particular empirical class (Frust or NoFrust) and
were assigned to the same class by the model. Precision provides
information about how precise the model is in assigning the
respective class (Frust or NoFrust). In this study, we report
the F1-score, which is the harmonic average of precision and

recall. An F1-score of 1 indicates perfect precision and recall
(Shalev-Shwartz and Ben-David, 2016). The F1-score for the
Frust condition was calculated as follows:

F1-score =
2 ∗ TPRFrust

2 ∗ TPRFrust + FPRFrust + FPRNoFrust
(2)

Characterization of Facial Activation Patterns of
Frustration: Clustering
A clustering approach was employed to identify patterns of
co-activated AUs frequently occurring in the Frust and in
the noFrust drives and to compare these between the two
conditions. These patterns of co-activated AUs can be seen
as the most frequently shown facial expressions during the
driving scenarios. For the clustering, we separated the AU data
in two sets: a training data set that contained two randomly
selected drives from the Frust condition per participant and a
test set including the remaining Frust drives and one randomly
selected noFrust drive. For the cluster analysis, we used the
data of all participants to ensure sufficient sample size. A
recent work that simulated the effect of sample size on the
quality of the cluster solution recommends using at least 70
times the number of variables considered (Dolcinar et al.,
2014). The number of sample points in our training data
set was roughly 14 times higher than this recommendation
(30 participants × 2 drives × 5 min × 60 s = 18,000 data
points>70× 18 AUs = 1,260). K-means clustering with k = 5 was
conducted on the training set. A value of k = 5 was chosen after
visually inspecting a random selection of video frames of the
face recordings. It seemed as if five different expressions were
shown predominantly. We applied the resulting cluster centroids
to cluster the data from the test set (i.e., each data point was
assigned to the cluster with the smallest distance to the centroid).
From this, we could determine the percentage of data points per
condition assigned to each of the five clusters (per participant)
and compare the conditions by means of paired Wilcoxon tests.
In addition, we characterized the resulting clusters by their
patterns of activated AUs in the centroids. An AU was assumed
to be activated if the evidence in the centroid was ≥0.25. This
criterion was adopted from Grafsgaard et al. (2013), who used
the same threshold to select activated AUs in their work. We
report the five resulting clusters with the AUs that characterize
these as well as the results of the Wilcoxon test. Moreover, we
investigated the relationship between the subjectively reported
frustration levels (by means of the NASA-TLX frustration item)
and the probability of the clusters in the test set. For this, we
correlated both values with each other using Kendall’s Tau (as
the data were not normally distributed). In order to account
for the variability between subjects, we additionally performed
a linear mixed effects analysis of the relationship between the
probability of Cluster 4 and the subjective frustration rating
using the combined data of training and test set. With this,
we wanted to estimate whether we can predict the probability
of showing Cluster 4 using the subjective frustration rating as
fixed effect. As random effects we had intercepts for participants
and by-participant random slopes for the effect of the subjective
rating. P-values were obtained by likelihood ratio tests (χ2)
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of the full models with the effect in question against the
models without the effect in question (see Winter, 2013). The
models were calculated using the R package lme4 (Bates et al.,
2015).

Experiment 2
Participants
Sixteen male volunteers aged between 19 and 32 (M = 25.3,
SD = 3.5) years participated in Experiment 2. All participants
possessed a valid German driving license and provided written
informed consent to participate prior to the experiment.
They received a financial compensation of 30 e for the
participation in the experiment. The data from one participant
was excluded because the participant suffered from simulation
sickness during the course of the experiment. Data from
three other participants were excluded due to a large number
(>50%) of noisy channels in the fNIRS recordings. The
mean age of the remaining participants was 25.2 (SD = 3.8)
years. This study was carried out in accordance with the
recommendations of the guidelines of the German Aerospace
Center and approved by the ethics committee of the Carl von
Ossietzky University, Oldenburg, Germany. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

Experimental Set-Up
The experiment was accomplished in the virtual reality (VR) lab
with 360◦ full view at the German Aerospace Center (Fischer
et al., 2014). Participants sat in a realistic vehicle mock-up
and controlled the mock-up car in the driving simulation
(Virtual Test Drive, Vires Simulationstechnologie, Bad Aibling,
Germany) via a standard interface with throttle, brake pedal,
steering wheel and indicators.

Experimental Design and Cover Story
The same parcel delivery service cover story as in Experiment 1
was used. The only difference was that the participants received
a slightly higher basic reimbursement of 18 e (instead of
15 e in Experiment 1) due to the longer overall duration
of the experiment. The bonus of 2 e for every parcel
delivered within the given time was the same as in Experiment
1. In the end, all participants were paid 30 e for their
participation, irrespective of their success. The experiment
was structured as a block design and began with a short
training of roughly 10 min with moderate traffic. Thereafter,
we recorded the baseline data for 2 min following which
the participants drove the Frust and noFrust drives (six per
condition) in alternation on the same urban track as in
Experiment 1. The order of each type of drives was randomized.
The experimental conditions are specified in the following
sections.

Frust Condition
In the Frust drives, the participants had to deliver the parcels
within a maximum time of 6 min, but their driving was
blocked by events on the street (similar to Experiment 1,
but with a bit less complexity, e.g., no pedestrians involved).

The blocking events had an average time distance of 20 s
(i.e., after 20 s of driving, an obstacle occurred). There were
seven blocking events per drive. However, if the participant
drove very slowly, it could be that less blocking events were
passed. In case they reached the goal within 6 min, a message
was presented telling them that they received 2 e. If they did
not reach the goal after 6 min, they were informed that they
did not succeed this time. Both messages ended the drives
accordingly.

NoFrust Condition
The noFrust drives served as control condition. Participants were
told that they had to pick up the parcels from headquarters.
There was moderate traffic on the ego lane, so that driving at
the maximally allowed speed was almost always possible. The
drives took 5min. Between the drives, there were breaks, in which
participants had to fill in the questionnaires mentioned below
and could take some time to relax.

Subjective Rating
As a manipulation check, the participants rated their subjectively
experienced emotion using the SAM (Bradley and Lang, 1994)
after each drive.

fNIRS Set-Up
Functional near infrared spectroscopy is a non-invasive optical
imaging technique that uses near-infrared light (600–900 nm)
to measure hemodynamic responses in the brain (Jöbsis,
1977; Villringer et al., 1993). This is done by measuring the
absorption changes in the near-infrared light that reflects the
local concentration changes of oxy-hemoglobin (HbO) and
deoxy-hemoglobin (HbR) in the sub-cortical brain areas as
correlates of functional brain activity. We recorded fNIRS data
from the frontal, parietal and temporo-occipital cortices using
two NIRScout systems (NIRx Medical Technologies GmbH,
Berlin, Germany) in tandem mode resulting in 32 detectors
and emitters at two wavelengths (850 and 760 nm). In total,
we had 80 channels (combinations of sources and detectors)
each for HbO and HbR as shown in Figure 1. The distances
for the channels ranged between 2 cm and 4 cm (M = 3.25,
SD = 0.45). The shortest channels were the source-detector
combinations S5-D11 and S9-D16 in the bilateral prefrontal
areas whereas the longest channels were S25-D19 in the parietal
midline and S28-D29 and S30-D30 in the bilateral occipital areas
(see Figure 1). To ensure that the fNIRS cap was placed in a
reliable way across all participants, we checked if the position of
the optode holder on the fNIRS cap for the anatomical location
Cz on the midline sagittal plane of the skull is equidistant
to the nasion and the inion and equidistant to the ears. The
sampling frequency of the NIRS tandem system was almost
2 Hz.

Data Analyses
Subjective Rating
The subjective ratings for the two questionnaire items were
compared to each by means of ANOVA. Partial eta-squared
effect sizes (η2p) were calculated for each test.
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FIGURE 1 | Probe placement of functional near-infrared spectroscopy (fNIRS)
channels. Topologic layout of emitters (red), detectors (green) and fNIRS
channels (purple) with coverage over the frontal, parietal and
temporo-occipital cortices superimposed on a standard 10-20 EEG layout.
The anatomical markers are highlighted by red, green, yellow and black
circles. The blue circle marks the frontal central midline (FCz) sagittal plane.
Figure reproduced from NIRStar software with permission from NIRx Medical
Technologies, LLC, Minneapolis, MN, USA.

fNIRS Data Pre-processing
The raw data from fNIRS measurements record the influence
of not only cortical brain activity but also other systemic
physiological artifacts (cardiac artifacts, respiration rate, Mayer
waves) and movement artifacts causing the signal to be noisy.
To reduce the influence of these artifacts, the raw data was
pre-processed using the nirsLAB analysis package (Xu et al.,
2014). We first computed the coefficient of variation (CV)
which is a measure for the signal-to-noise ratio (SNR) from
the unfiltered raw data using the mean and the standard
deviation of each NIRS channel over the entire duration
of the experiment (Schmitz et al., 2005; Schneider et al.,
2011). All channels with a CV greater than 20% were
excluded from further analysis. Additionally, we performed a
visual inspection and deleted channels which were excessively
noisy with various spikes. On average, 64 channels each for
HbO and HbR per participant and were included in the
analysis (SD = 7.46). We then applied the modified Beer-
Lambert’s law to convert the data from voltage (µV) to
relative concentration change (mmol/l; Sassaroli and Fantini,
2004).

To reduce effects of movement artifacts and systemic
physiology, we used an autoregressive model of order n (AR(n);
nmax = 30) based on autoregressive iteratively reweighted least
squares developed by Barker et al. (2013) implemented as a

function in the nirsLAB 2017.6 Toolbox1. The algorithm fit the
residuals of each individual channel to an AR(n) model, where n
is the order that minimized the Bayesian information criterion.
With the resulting autoregressive coefficients, a pre-whitening
filter was generated that was applied to the fNIRS data. The
reason for that is the fact that fNIRS time series data are
typically characterized by large outliers caused by movement
artifacts and serially correlated noise from the physiological
artifacts and the temporal correlation of the time samples.
This generally leads to incorrect estimation of regressor weights
when performing univariate regression analyses and results
in overestimation while computing corresponding statistical
values, causing an increase in false positives and false negatives
(Tachtsidis and Scholkmann, 2016). Pre-whitening can handle
such noise correlated time series data where an autoregressive
model takes into account the correlation between the current
time sample and its neighboring samples and models the
temporal correlations.

Multivariate Cross-Validated Prediction of Frust and
NoFrust Drives From fNIRS Data
In line with Experiment 1, we used the multivariate logistic ridge
regression (Hastie et al., 2009) decoding model implemented
in the Glmnet toolbox (Qian et al., 2013) for the prediction of
Frust and NoFrust drives from sample-by-sample fNIRS brain
activation data. The input features that went into the decoding
model were the pre-processed HbO and HbR values which were
z-scored for the particular segments of Frust and noFrust drives.
Both HbO and HbR features were used simultaneously. The
model weighted these input features and provided an output
between 0 and 1. This output value indicates the likelihood for
the test data classified as either the Frust class or the NoFrust
class. Like in Experiment 1, accuracy and F1 score are reported
to estimate the model prediction.

Characterization of Brain Areas Predictive to Frustration:
Univariate Regression Analysis
In order to characterize the pattern of brain areas involved
during frustrating drives, we performed univariate regression
analyses on a single-subject level separately for each fNIRS
channel using the generalized linear model (GLM) analysis
module implemented in the nirsLAB Toolbox. Our design
matrix consisted of two regressors that corresponded to the
entire blocks of Frust and noFrust drives. The autoregressive
model AR(n) from Barker et al. (2013) that generated the
pre-whitening filter and was applied to the fNIRS time-series
data was also applied to the design matrix. Regression
co-efficients were estimated by convolving a boxcar function
weighted corresponding to the entire blocks of Frust and
noFrust drives with a canonical hemodynamic response function
(HRF) implemented in the nirsLAB toolbox (Xu et al., 2014)
which composed of one gamma function for HbO. The time
parameters at which the response reached the peak and
undershoot were 6 s and 16 s, respectively. The canonical
HRF was reversed for HbR in order to match the effect-
sizes for HbO and HbR brain maps for a particular contrast

1https://www.nitrc.org/projects/fnirs_downstate
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in the same direction since the HbO and HbR signals are
correlated negatively. This setting is applied by default in
nirsLAB while estimating the GLM co-efficients for HbR.
Channel-wise beta values were used to compute t-statistic for
each channel separately for the contrast (difference: Frust-
noFrust). Finally, we performed a group level analysis for
generalization of the brain areas predictive to frustration while
driving. The beta values computed from GLM for each channel
and each participant in the individual analysis was used for the
group-level analyses. The group-level analyses represented the
standard deviation for the beta values for each channel across
participants.

RESULTS

Experiment 1
Subjective Rating
The participants rated the drives from the Frust condition as
significantly more arousing, more negative and more frustrating
than the drives from the NoFrust condition. The results of
the subjective rating are presented in Table 2. The frustration
rating showed a strong negative correlation with the valence
rating (r = -0.61, p < 0.001) and a marginal significant positive
correlation with the arousal rating (r = 0.24, p = 0.06). Valence
and arousal were negatively correlated (r =−0.46, p< 0.001).

Multivariate Prediction of Frust and NoFrust Drives
Based on AU Data
The average classification accuracy for the Frust vs. the noFrust
condition using the multivariate approach based on the AU
activations was 62.0% (SD = 9.6%) and the mean F1 score
was 0.617 (SD = 0.097). The individual classification results for
each participant from the 10-fold cross-validation are presented
in Table 3. Figure 2 depicts the results from the multivariate
logistic ridge regression model from the participant with the
highest classification accuracy of 77.8% (participant 11). The
results presented in this figure show the model output for all
test data. In Figure 2, each orange sample point is the output
of the decoding model for the AU test data seen from the Frust
drives. Similarly, each green sample point is the output of the
model for the AU test data as seen from the noFrust drives.
We present our results in the form of TPR (i.e., data from
a particular drive is classified as the correct drive) and FPR
(i.e., data from a particular drive is classified as the opposite
drive). Here, one can see that a TPR of 78.5% and 77.2% and a

FPR of 21.5% and 22.8% were achieved for the Frust and NoFrust
drives respectively. For the example participant, an F1-score of
0.78 was achieved.

Characterization of Facial Activation Patterns of
Frustration: Clustering Approach
The resulting cluster centroids from the k-means clustering,
which can be seen as the most frequently shown facial
expressions during the drives, are presented in Figure 3.
When applying the cluster centroids to the (unseen) test set,
Cluster 4 and Cluster 5 displayed a significantly different
relative frequency of occurrence (i.e., percentage of video frames
attributed to this cluster centroid) between the two conditions.
Specifically, Cluster 4 was found more often in the Frust
condition (M = 27.3%, SD = 14.18%) compared to the noFrust
condition (M = 10.9%, SD = 12.1%, Z = 3.95, p < 0.001) and
Cluster 5 more often in the noFrust (M = 33.7%, SD = 19.9%)
than the Frust condition (M = 22.7%, SD = 10.9%, Z = −1.87,
p < 0.05). No significant differences were observed for the
three other clusters (see Table 4). Cluster 4 is characterized
by above threshold activity (i.e., evidence >0.25) in AU9 (nose
wrinkler), AU17 (chin raiser), AU18 (lip pucker) and AU24 (lip
pressor). In comparison, Cluster 5 accounts for no AU with
above threshold evidence. The other clusters are described by
different patterns of AU activity: Cluster 1 shows little activity
in all AUs (only AU12 [lip corner puller] has evidence >0.25),
Cluster 2 the highest activation in AU6 (cheek raiser), AU9 (nose
wrinkler), AU10 (upper lip raiser) as well as AU12 (lip corner
puller) and Cluster 3 mostly in AU4 (brow lowerer), AU9 (nose
wrinkler) and AU28 (lip suck; see Table 5 for an overview and
a possible interpretation). Interestingly, the correlation analysis
revealed that the frequency of occurrence of the cluster that
was shown more often in the Frust condition (Cluster 4)
also positively correlated with the subjective frustration rating
(τ = 0.27, p < 0.05, see Figure 4). No other cluster showed
a significant relationship with the subjectively experienced
frustration (Cluster 1: τ = 0.13, p = 0.15, χ2

(1) = 3.57, p = 0.06;
Cluster 2: τ = 0.02, p = 0.85, χ2

(1) = 0.75, p = 0.38; Cluster 3:
τ = −0.03, p = 0.75, χ2

(1) = 0.03, p = 0.86; Cluster 5: τ = 0,
p = 0.98, χ2

(1) = 0.03, p = 0.87). The positive relationship
between the frustration rating and probability of Cluster 4 was
confirmed by results of the linear mixed effects analysis including
intercepts for participants and by-participant random slopes as
random effects, which revealed a significant relationship between
the subjective frustration rating and Cluster 4 probability
(χ2
(1) = 6.74, p < 0.01). The analysis of the fixed effect rating

TABLE 2 | Means (M), standard deviations (SD) and results of the analysis of variance (ANOVA) for the subjective ratings (self-assessment manikin [SAM] valence, SAM
arousal and NASA Task Load Index [NASA-TLX] frustration score).

Frust noFrust ANOVA

M SD M SD F df p η2
p

SAM arousal 4.9 1.6 3.9 1.6 14.67 (1, 29) <0.01∗ 0.34
SAM valence 0.0 1.3 1.8 1.2 73.06 (1, 29) <0.001∗ 0.72
NASA-TLX frustration 6.3 2.2 4.4 2.0 33.70 (1, 28) <0.001∗ 0.55

Note that one participant failed to fill in the NASA-TLX which explains the reduced number of degrees of freedom (df) for that item. Higher values indicate higher arousal
(1–9), higher valence (−4 to +4) and higher frustration (1–9). Significant results are marked with a “∗”.
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TABLE 3 | Ten-fold cross-validated predictions of Frust and NoFrust drives from AU data using multivariate logistic ridge regression analysis for all participants.

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Mean accuracy (%) 63 59 58 55 49 54 78 78 56 60 78 70 70 56 58
F1-score 0.61 0.58 0.58 0.54 0.49 0.54 0.78 0.78 0.56 0.60 0.78 0.70 0.70 0.56 0.58

Participant P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

Mean accuracy (%) 49 70 73 60 64 53 64 73 60 55 64 51 71 41 71
F1-score 0.49 0.70 0.72 0.60 0.65 0.53 0.63 0.73 0.59 0.53 0.64 0.51 0.72 0.40 0.70

FIGURE 2 | Ten-fold cross-validated prediction of frustrating and
non-frustrating drives from action unit (AU) activations using multivariate
logistic ridge regression analysis for an example participant (P11). The data of
this participant allowed the classification with the highest accuracy.

revealed that each increase of the subjective frustration rating by
1 on the scale increased the probability of showing Cluster 4 by
1.5% (standard error: 0.5%). Comparing themodel with a simpler
model without inclusion of random effects revealed that the
Akaike information criterion (AIC, Akaike, 1998) was lower for
the model with random effects (AIC = −110.2) compared to
the one without the random effects (−95.5). This suggests that
the model better explains the data if the random effects are
included.

Experiment 2
Subjective Ratings
In concordance with the results of Experiment 1, the participants
rated the Frust drives as more arousing (SAM arousal, Frust:
M = 4.7, SD = 1.4; noFrust: M = 3.5, SD = 1.1, F(1,11) = 26.87,
p < 0.01, η2p = 0.71) and more negative (SAM valence, Frust:
M = 0.75, SD = 1.2; noFrust: M = 1.5, SD = 1.0, F(1,11) = 15.67,
p< 0.01, η2p = 0.59) than the noFrust drives. Valence and arousal
were negatively correlated (r = 0.55, p< 0.01).

Multivariate Prediction of Frust and NoFrust Drives
From fNIRS Data
The mean frustration prediction accuracy and F1-score obtained
with fNIRS brain activation recordings across all participants
were 78.1% (SD = 11.2%) and 0.776 (SD = 0.115), respectively.
Table 6 lists the individual results for all participants.

Figure 5 shows the distributions of single time interval
predictions of the multivariate logistic ridge regression model for
the participant with the highest classification accuracy of almost
95% for HbR and HbO data. In this participant, a TPR of 96.5%

FIGURE 3 | Radar plots showing the results of the k-means clustering. Each
plot shows the centroids of one Cluster with each axis of the radar plot
referring to the evidence of one AU. The dots mark the evidence for the
respective AU, i.e., the further outside they are, the higher the evidence is (the
axis for evidence ranges from −1.5 to +1.5 with each gray line indicating a
step of 0.5). AUs that are considered as activated (i.e., with an evidence
≥0.25, indicated by blue circle line) are printed in black, the others in gray.

and 93.3% and a FPR of 3.5% and 6.7% were achieved for the
Frust and NoFrust drives, respectively.

Characterization of Brain Areas Predictive to
Frustration
We performed univariate GLM analyses separately for each
channel in order to determine the localization of brain areas most
predictive to frustration while driving. The univariate approach
was chosen because the model weights of the multivariate fNIRS
regression model are hard to interpret for various reasons
(Reichert et al., 2014; Weichwald et al., 2015; Holdgraf et al.,
2017).

Figures 6A,B show the results presented as unthresholded
t-value maps (difference: Frust-noFrust) from the channel-wise
linear regression of HbR and HbO data for the group level
analysis. The t-value maps indicate the local effect sizes, in
essence they are Cohen’s d scaled by the square root of
the number of samples included in their calculation. The
t-values provide a univariate measure to estimate the importance
of a feature for multivariate classification. The Bonferroni-
corrected t-maps for the group-level analysis are included in
the Supplementary Figures S1A,B. In Figures 6A,B, both
HbR and HbO t-value maps show significant convergence in
brain activation patterns bilaterally in the inferior frontal areas
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TABLE 4 | Relative frequency of attribution of data points from the test set to the cluster centroids extracted from the test set for the two conditions Frust and noFrust.

Frust noFrust Wilcoxon test

M SD M SD Z p

Cluster 1 20.6 13.4 22.6 16.9 −0.32 0.63
Cluster 2 10.3 16.9 10.1 11.0 1.40 0.08
Cluster 3 19.2 14.8 22.8 12.1 0.03 0.49
Cluster 4 27.3 14.8 10.9 12.1 3.95 < 0.001∗

Cluster 5 22.7 10.9 33.7 19.9 −1.87 < 0.05∗

Means (M), standard deviations (SD) and results of Wilcoxon test are presented. Significant differences are marked with an asterisk.

TABLE 5 | Description of the five clusters including the involved AUs and a
potential interpretation of the meaning.

Cluster Involved action units Potential interpretation

1 AU12 neutral to slight smile
2 AU6, AU9, AU10, AU12 smiling
3 AU4, AU9, AU28 frowning
4 AU9, AU17, AU18, AU24 frustrated
5 No above threshold AU neutral

(putative BA45) and the ventral motor cortex (putative BA6).
Additional informative channels can be seen in the right inferior
parietal areas (putative BA22) only for the HbR maps but not
for the HbO maps. This could be due to the averaging effects
of the brain activation on a channel-level across participants
who showed inter-individual variabilities. In both HbR and HbO
maps, some channels in the left temporo-occipital areas (putative
BA21) were found to be predictive to frustrated driving although
the trend is not as strong there as it is in the frontal areas.
Figures 6C,D show t-value maps for the same contrast from the
channel-wise linear regression of HbR and HbO data for the
participant with the highest prediction accuracies. These single
participant brain activation patterns closely resemble the pattern
of the group level map. However, the t-values are much higher
in the single participant than in the group averaged map. Both,
HbR and HbO signals indicate enhanced activation bilaterally
in the inferior frontal and ventral motor areas (t > 10) during
Frust drives in the single participant t-maps whereas the group
averaged t-values rarely exceed t = 4. The reduced t-values
in the averaged maps are due to variability of the predictive
brain activation patterns with respect to both, spatial distribution
and local effects sizes. This can be seen, for example, in the
HbO t-statistic value maps which show predictive activation
in the left inferior parietal and the left temporo-occipital areas
in the single participant maps but less so in the group level
analysis.

We visualized the averaged brain map on the MNI
152 brain in Neurosynth2 and used MRIcron3 to determine
MNI co-ordinates and the corresponding Brodmann areas for
the brain areas with increased activation differences between
Frust and NoFrust drives. Table 7 lists the brain areas, the
MNI-coordinates of the difference maxima and t-values as
indicators of the effect sizes.

2http://neurosynth.org
3https://www.nitrc.org/projects/mricron

DISCUSSION

The goals of this study were to investigate discriminative
properties of facial muscle activity extracted from video
recordings and brain activation patterns using fNIRS for the
automated detection of driver frustration. Therefore, two driving
simulator experiments were conducted in which frustration
was induced through a combination of time pressure and goal
blocking. In Experiment 1, we videotaped the faces of the
participants during the drives and extracted the activity of the
facial muscles using automated video processing. We could
show that the facial expression data can be used to classify
frustration from a neutral state with an average classification
accuracy of almost 62%. Frustration could be discriminated
from a neutral state with above chance accuracy in most
participants, with maximum accuracy up to 78% for the best
participants. In addition, a detailed analysis comparing the
muscle activation in both conditions revealed that the muscles
nose wrinkler, chin raiser, lip pucker and lip pressor are activated
in synchrony more often in the frustrating condition than in
the neutral condition. The approach was then extended to
fNIRS brain activationmeasurements in Experiment 2, where the
discrimination of frustration from the neutral state improved to
average classification accuracy of almost 78% and up to 95% for
the best two participants. An additional univariate GLM analysis
indicated that frustration during driving was reflected in reliable
brain activation modulation bilaterally in ventrolateral inferior
frontal areas in the group-level analysis. Our results demonstrate
that frustration during driving could be detected time resolved
from video recordings of the face and fNIRS recordings of the
brain.

In both experiments, frustration was induced using a
combination of events blocking goal-directed behavior and time
pressure during simulated drives. According to research on
frustration as well as previous studies on frustrated driving,
this combination generally leads to a state of experienced
frustration for the participants (Lazarus, 1991; Lee, 2010;
Rendon-Velez et al., 2016). The accomplished manipulation
checks showed that the participants rated the frustrating drives
as more negative and more arousing than the non-frustrating
drives in both experiments, which is in line with the
classification of frustration in the valence-arousal space of
emotions (Russell, 1980). Additionally, the participants assigned
a higher score in the NASA-TLX frustration scale to the
frustrating drives in Experiment 1. Therefore, we could
conclude that the experimental manipulation indeed induced
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FIGURE 4 | Scatterplot showing the correlation between the probability
(relative frequency) of Cluster 4 and the subjective frustration rating. The plot
contains data from the Frust (red) and noFrust (turquoise) condition. The
regression line is plotted in dark red.

frustration and was suitable to study the proposed research
questions.

Our approach of using multivariate logistic ridge regression
in combination with cross-validation enabled us to explore the
feasibility of using facial muscle activity extracted from video
recordings of the face and almost whole-head fNIRS as an
estimate for cortical activity for time-resolved characterization
of driver frustration. The multivariate modeling allowed us
to predict frustrated drives from the non-frustrated drives in
a continuous manner with relatively high accuracy. For the
facial muscle activation, the decoding model made predictions
from the evidence values of 18 AU input features which
were pre-selected with the used software. For the fNIRS brain
activation, the input features to the decoding model were
the sample-by-sample pre-processed fNIRS data from all the
selected channels for each participant. On average, we had about
128 input features (SD = 14.9) across all participants. Our
decoding models were able to discriminate driver frustration
from non-frustration with a mean accuracy of 62% for facial
muscle activation and almost 80% for cortical activation.
The cross-validation approach allowed us to estimate the
generalization of our decoding model to new data which our
model had never seen before (i.e., the test dataset) indicating

FIGURE 5 | Ten-fold cross-validated prediction of Frust and NoFrust drives
from deoxy-hemoglobin (HbR) and oxy-hemogflobin (HbO) fNIRS
measurements using multivariate logistic ridge regression analysis for an
example participant (P8).

the true predictive power of our model necessary for online
tracking of user states (Reichert et al., 2014; Holdgraf et al., 2017).
The classification accuracy derived from the facial expression
data is higher than chance level, but likely not high enough
for robust usage in human-machine systems with adaptive
automation. One reason for that may be the fact that humans
do not show the same facial expression constantly over a
period of several minutes, even though they report to be
frustrated in that drive. Moreover, it is conceivable that the
level of frustration also varied during the drives leading to fact
that facial expression indicating other emotions or a neutral
state may have been shown by participants. Together, this
may have biased the training and test set as these not only
included facial expressions of frustration, but also other facial
expressions. This in turn could lead to the lower classification
accuracy for facial expression data in comparison to the brain
activation. Still, we can confirm our initial hypothesis that it
is possible to discriminate driver frustration from a neutral
affective state using facial muscle activity and cortical activation
with above chance accuracy with cortical activation providing
better classification results. It remains to be shown that the
classification accuracy is high enough to ensure user acceptance
in adaptive automation.

Since the supervised classification gives us only an estimate
of how well we would be able to recognize frustration using the
respective data frames, we also conducted a detailed analysis of
the facial muscle and brain activation data to understand which
features are indicative for frustration. For this, a clustering of
the facial muscle activity was conducted in order to identify
patterns of co-activated facial muscles that occur with increased
likelihood if a driver is frustrated. The clustering approach
revealed five different clusters of AU activity, which can be
seen as the facial expressions that were shown (most frequently)
during the drives. Cluster 4 was shown significantly more often

TABLE 6 | Ten-fold cross-validated predictions of Frust and NoFrust drives from fNIRS measurements using multivariate logistic ridge regression analysis for all
participants.

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Mean accuracy (%) 76 75 73 88 65 95 78 95 64 76 88 64
F1-score 0.76 0.74 0.73 0.88 0.64 0.95 0.77 0.95 0.63 0.76 0.87 0.63
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FIGURE 6 | t-value maps obtained from channel-wise linear regression of (A)
HbR and (B) HbO fNIRS data for the group-level analyses and channel-wise
linear regression of (C) HbR and (D) HbO fNIRS data for single participant (P8,
same participant as in Figure 5) for the (Frust- noFrust) condition using
Generalized Linear Model (GLM). High positive t-values are indicated by red
color, high negative values by blue color. Note that the activation of HbO and
HbR maps are in the same direction in spite of the signals being negatively
correlated, because the hemeodynamic response function was reversed for
estimating the GLM co-efficients for HbR.

in the Frust than in the noFrust condition and its probability
additionally correlated with the subjective frustration rating.
Therefore, this pattern subsuming activity from muscles from
the mouth region (chin raiser, lip pucker and lip pressor) and

TABLE 7 | Brain areas showing increased activation in the Frust compared to the
noFrust condition.

Brain areas Putative
Brodmann
Area (BA)

X Y Z t-value

For HbR
Right inferior frontal 45 46 48 24 2.0
Left inferior frontal 45 −49 41 24 3.6∗

Right ventral motor 6 62 7 36 3.5∗

Left ventral motor 6 −58 9 37 3.6∗

Right inferior parietal 22 63 −46 11 4.2∗

Left temporo-occipital 21 −63 −51 1 3.4
For HbO
Right inferior frontal 45 51 31 16 2.2
Left inferior frontal 45 −53 35 20 4.1∗

Right ventral motor 6 61 10 29 3.0
Left ventral motor 6 −59 10 36 3.4
Left temporo-occipital 21 −66 −47 7 2.3

The MNI coordinates of activation and their t-values are shown. ∗ Indicates
statistically significant differences which survived the Bonferroni-corrected
thresholding of p < 0.05.

traces from the nose wrinkle can likely be seen as comprising
the frustrated facial expression. Interestingly, similar patterns of
AU activation have been associated to frustration in previous
research (D’Mello et al., 2005; Grafsgaard et al., 2013; Ihme
et al., in press). In contrast, the Cluster 5 was activated
more often in the non-frustrating drives by the participants.
Because it also has no activated AUs involved, we consider
it as referring to a neutral facial expression. None of the
remaining clusters differed in frequency of occurrence between
the two conditions. Presumably, Cluster 1 can also be seen as
neutral, because it included only little facial muscle activity.
With highest activation in cheek raiser and lip corner puller
(and some activation in the nose wrinkler and the upper
lip raiser), Cluster 2 likely represents a smiling face (Ekman
and Friesen, 2003; Ekman, 2004; Hoque et al., 2012). Finally,
Cluster 3 showed a pattern with high activity in action units
around the eyes (brow lowerer and nose wrinkler), which could
be a frowning as a sign of anger or concentration (Ekman
and Friesen, 2003). One interesting issue is that the nose
wrinkler (AU 9) occurred frequently and, according to our
analysis, is part of Cluster 2 (smiling), 3 (frowning) and 4
(frustration), although most previous research has associated it
predominantly with disgust (e.g., Ekman et al., 1980; Lucey et al.,
2010), which was likely not induced through our experimental
paradigm and set-up. We speculate that two aspects may
explain this frequent occurrence of AU9. First, it could be
that the software which we used misclassified movements of
the eyebrows and attributed these to the nose wrinkler. This
is possible and poses a disadvantage of automated techniques
to extract facial muscle activity compared to manual coding
approaches. Second, it could be that the nose wrinkler is not
a particular sign of disgust, but rather a sign of one factor
of a dimensional model of emotions. For example, Boukricha
et al. (2009) have shown a correlation between AU9 and
low pleasure as well as high dominance. We would like
to stress here that although the frustrated facial expression
(Cluster 4) occurred most often in the frustrated drives, the
results indicate that it was not the only facial expression that has
been shown by the participants (as already speculated above).
Therefore, the approach to cluster time-resolved AU activations
into patterns of co-activation in order to gain information
about the shown facial expressions appears promising to better
understand which facial expressions are shown by the drivers
when they experience frustration or other emotions. Future
studies should evaluate whether the results from the clustering
can be utilized to generate labels that not only indicate the
emotion induction phase from which a sample stems, but the
facial expression that was actually shown by the participant.
This could improve the training data set for the classification
as well as classification accuracy. To sum up, the detailed
cluster analysis revealed that the facial expression of frustration
is mainly linked to the facial muscle activity in the mouth
region.

To investigate the frustration predictive features from the
fNIRS brain recordings, we performed univariate regression
analyses separately for each channel using GLM to determine
the localization of brain areas most predictive to frustration
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while driving. Our group level results indicate that fNIRS brain
activation patterns of frustrated drivers were clearly discernible
from non-frustrated drivers. Frustration during driving was
reflected with stronger HbR and HbO activation bilaterally in
the inferior frontal areas (putative BA 45) and the ventral
motor cortex (putative BA 6) in the group level analysis. The
fNIRS channels close to the right inferior parietal areas (putative
BA 22) also show increased activation to frustrated driving in
the HbR t-value maps. Additionally, both HbR and HbO t-value
maps show some channels in the left temporo-occipital areas
(putative BA 21) to be predictive for frustrated driving although
the average linear trend is not as strong there as it is in the
frontal areas. Overall, fNIRS revealed brain areas displaying
higher activity in the frustrating drives which are in line with
the literature on frustration-related neuroimaging lab studies.
These areas have been reported to be related with cognitive
appraisal, impulse control and emotion regulation processes.
Previous research has shown the lateral frontal cortices as a
neural correlate for frustration (Siegrist et al., 2005; Hirshfield
et al., 2014; Perlman et al., 2014; Yu et al., 2014; Bierzynska et al.,
2016). BA 45 and BA 6 are thought to play an important role
in modulating emotional response (Olejarczyk, 2007), regulation
of negative affect (Ochsner and Gross, 2005; Phillips et al.,
2008; Erk et al., 2010), processing emotions (Deppe et al., 2005)
and inhibition control (Rubia et al., 2003). BA 22 has been
shown to play a crucial role in attributing intention to others
(Brunet et al., 2000), and in social perception e.g., processing
of non-verbal cues to assess mental states of others (Jou et al.,
2010).

The current study has a few limitations that need to be
mentioned. First of all, for obtaining themultivariate predictions,
the entire Frust condition had been labeled as ‘‘frustrated,’’
while the complete noFrust condition had been labeled as
‘‘non-frustrated.’’ However, it is very likely that the subjectively
experienced level of frustration was not constant across the
entire drives, because blocking events can temporally increase
the level of frustration that also could build up over time (for
instance with increasing number of blocking events). We have
not considered these factors for our analysis in order to reduce
the complexity. In future studies, a more fine-grained analysis
of the current frustration level and its development over time
could improve the ground truth where the decoding model
could discriminate the different levels of frustration (similar to
what Unni et al., 2017 achieved for working memory load).
Second, stressful cognitive tasks as in the case of frustrated
driving may elicit task-related changes in the physiological
parameters such as heart rate, respiration rate, blood pressure etc.
(Tachtsidis and Scholkmann, 2016). These global components
represent a source of noise in the fNIRS data. There are
different approaches to monitor these parameters and use them
as additional regressors in the GLM e.g., using short-separation
fNIRS channels to capture the effects of these physiological
signals (Saager and Berger, 2005) or using principle component
spatial filtering to separate the global and local components
in fNIRS (Zhang et al., 2016). These approaches have been
reviewed by Scholkmann et al. (2014). In our study, for the
fNIRS analysis, we did not separate the influence of these

global components from the intracerebral neural components.
However, the localized predictive activation we find renders it
unlikely that global physiological effects contribute significantly
to our results.

Third, due to the study design with two different participant
cohorts, we could not combine the decoding models from the
two experiments into one single prediction model. We separated
the two experiments because we wanted to have a free view on
participants’ face, which is not covered (partly) by the fNIRS
cap. Since the results revealed that facial expression of frustration
primarily includes activity in the mouth region, we assume that
a combination of both measures is feasible, so that future studies
should investigate the potential for frustration detection using a
combination of facial expressions and brain activity.

Another minor limitation is that we did not use the same
subjective questionnaires in the two experiments, so we did
not explicitly ask the participants to report the frustration level
in the second experiment. Still, the valence and frustration
ratings in the first experiment were highly correlated. Moreover,
the valence and arousal ratings in were comparable in both
experiments and in line with the classification of frustration
according to dimensional theories of emotion (Russell, 1980), so
that a successful induction of frustration in both experiments is
likely.

CONCLUSION AND OUTLOOK

This study demonstrated the potential of video recordings from
the face and whole head fNIRS brain activation measurements
for the automated recognition of driver frustration. Although
the results of this study are relatively promising, future research
is needed to further validate the revealed facial muscle and
brain activation patterns. In addition, a combination of both
measures (potentially even together with further informative
parameters such as peripheral physiology) appears auspicious for
improving our models of driver frustration thereby boosting the
classification accuracy. The availability of wireless and portable
fNIRS devices could make it possible to assess driver frustration
in situ in real driving in the future. Overall, our results pave
the way for an automated recognition of driver frustration
for usage in adaptive systems for increasing traffic safety and
comfort.
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As technological advances lead to rapid progress in driving automation, human-
machine interaction (HMI) issues such as comfort in automated driving gain increasing
attention. The research project KomfoPilot at Chemnitz University of Technology
aims to assess discomfort in automated driving using physiological parameters from
commercially available smartbands, pupillometry and body motion. Detected discomfort
should subsequently be used to adapt driving parameters as well as information
presentation and prevent potentially safety-critical take-over situations. In an empirical
driving simulator study, 40 participants from 25 years to 84 years old experienced
two highly automated drives with three potentially critical and discomfort-inducing
approaching situations in each trip. The ego car drove in a highly automated mode
at 100 km/h and approached a truck driving ahead with a constant speed of 80 km/h.
Automated braking started very late at a distance of 9 m, reaching a minimum of 4.2 m.
Perceived discomfort was assessed continuously using a handset control. Physiological
parameters were measured by the smartband Microsoft Band 2 and included heart
rate (HR), heart rate variability (HRV) and skin conductance level (SCL). Eye tracking
glasses recorded pupil diameter and eye blink frequency; body motion was captured
by a motion tracking system and a seat pressure mat. Trends of all parameters were
analyzed 10 s before, during and 10 s after reported discomfort to check for overall
parameter relevance, direction and strength of effects; timings of increase/decrease;
variability as well as filtering, standardization and artifact removal strategies to increase
the signal-to-noise ratio. Results showed a reduced eye blink rate during discomfort
as well as pupil dilation, also after correcting for ambient light influence. Contrary
to expectations, HR decreased significantly during discomfort periods, whereas HRV
diminished as expected. No effects could be observed for SCL. Body motion showed
the expected pushback movement during the close approach situation. Overall, besides
SCL, all other parameters showed changes associated with discomfort indicated by the
handset control. The results serve as a basis for designing and configuring a real-time
discomfort detection algorithm that will be implemented in the driving simulator and
validated in subsequent studies.
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INTRODUCTION

Automated driving is expected to bring several mobility benefits
such as improved traffic safety, reduced congestions and
emissions, social inclusion, accessibility and more comfort
(ERTRAC, 2017). As technological advances have enabled
the rapid progression in driving automation, human-machine
interaction (HMI) issues gain more attention and are considered
a key question for broad public acceptance (Banks and Stanton,
2016; Riener et al., 2016; ERTRAC, 2017). One central HMI issue
involves the question of how comfortable automated driving
can be implemented to ensure a positive driving experience
(Elbanhawi et al., 2015; ERTRAC, 2017; Bellem et al., 2018).
Having a positive driving experience is a main factor for deciding
to purchase and use a vehicle or in-vehicle system (Engelbrecht,
2013). In automated driving, discomfort could additionally
lead to potential safety-critical situations, for example, due
to (non-necessary) takeover with all associated risks such as
reduced situation awareness (Hergeth et al., 2017). As the
human role in automated driving changes from active driver to
passenger, new and additional determinants of driving comfort
are discussed, such as motion sickness, apparent safety, trust in
the system, feelings of control, familiarity of driving maneuvers,
and information about system states and actions (Beggiato et al.,
2015; Elbanhawi et al., 2015; Bellem et al., 2016). There is no
agreed-upon definition for comfort in the scientific community
(Hartwich et al., 2018); however, existing comfort definitions
share some central assumptions: comfort (a) is a subjective
construct and, therefore, differs between individuals; (b) is
affected by physical, physiological, and psychological factors; and
(c) results from interaction with the environment (de Looze
et al., 2003). Thus, comfort is hereby understood as a subjective,
pleasant state of relaxation expressed through confidence and
apparently safe vehicle operation (Constantin et al., 2014),
‘‘which is achieved by the removal or absence of uneasiness and
distress’’ (Bellem et al., 2016, p. 45).

The research project KomfoPilot at Chemnitz University of
Technology aims to investigate factors that influence comfort
in automated driving. One objective is to find parameters that
affect comfort on a general level, for example, situations and
driving parameters such as speed, longitudinal/lateral distance,
driving style familiarity, or personal characteristics (Hartwich
et al., 2015, 2018). A second objective is the development
of an algorithm for real-time discomfort detection to adapt
driving style and information presentation at each moment
once discomfort begins. The underlying idea is the metaphor
of a vehicle–driver–team that knows each other’s strengths,
limitations, and current states, and is able to react accordingly
(Klein et al., 2004). The algorithm will be developed by project
partners who specialize in data fusion (FusionSystems GmbH
and Communication Engineering Department at Chemnitz
University of Technology) and should combine data from
different sensors such as in-car sensors (2D and 3D cameras,
motion tracking), physiological sensors (smartband Microsoft
Band 2, eye tracking), vehicle data and environment sensors.
As a basis for developing the algorithm, the present article
reports the results of the psychophysiological parameters

pupil diameter, eye blink frequency, heart rate (HR), heart
rate variability (HRV), electrodermal activity (EDA) and
body motion with regard to discomfort during automated
driving in a driving simulator. Driving simulators offer an
optimal environment for creating standardized situations under
experimental control and applying sensors for measuring
physiological parameters (Brookhuis and de Waard, 2011),
although with limited external validity. The presented analyses
aim to provide information about the potential of each parameter
for detecting discomfort in an approaching automated situation,
such as overall relevance, variability, direction and strength
of effects, timing such as increase and decrease before and
after discomfort as well as filtering and artifact removal
strategies.

The use of these physiological parameters to infer mental
states has a long research tradition. Despite results that are
often contradictory, the main findings for these parameters are
summarized subsequently and hypotheses regarding discomfort
are derived. Pupil diameter has been studied largely as an
indicator for mental effort, cognitive workload, stress, fatigue,
information processing, affective processing and attention
(Andreassi, 2000; Cowley et al., 2016). One of the major
challenges in interpreting pupil size changes out of controlled
lab studies is the heavy dependance on ambient light (Palinko
and Kun, 2012). Despite these problems in separating the effects
of ambient factors and mental states, a central finding is that
pupil diameter increases with task difficulty, mental workload,
emotionality of stimuli, and information-processing demands
(Andreassi, 2000; Backs and Boucsein, 2000; Cowley et al.,
2016). Thus, an increase in pupil diameter is expected during
uncomfortable situations. Eye blink rate is considered a sensitive
indicator for mental workload, mood states, fatigue and task
demands (Andreassi, 2000; Cowley et al., 2016). A decrease in
blink rate in complex situations requiring visual attention has
been found for car driving in complex situations as well as for
fighter pilots (Backs and Boucsein, 2000). Thus, a decrease in eye
blink rate is expected during discomfort situations in automated
driving, which are visually monitored by the driver.

The cardiovascular parameters HR and HRV are often used
in driving simulation and on-road driving studies as indicators
of mental effort, stress, workload, and task demands (see the
overview of studies in Backs and Boucsein, 2000; Mulder
et al., 2005; Brookhuis and de Waard, 2011; Mehler et al.,
2012; Ahonen et al., 2016; Schmidt et al., 2016). A common
finding is that with higher invested effort and stress, HR
increases and HRV decreases. The discomfort-inducing close
approach situation investigated in this study could be seen
as analogous to stress situations, including the uncertainty
about the capability of a system to successfully complete a
task. Thus, an increase in HR and a decrease in HRV during
uncomfortable situations are expected. Similar to HR and HRV,
EDA has a long tradition in psychophysiological research.
Common findings include an increase of skin conductance level
(SCL) with higher arousal, alertness, mental effort, workload,
emotional load, stress, and task difficulty (Dawson et al., 2017).
However, as EDA is sensitive to a wide variety of stimuli,
it is not a clearly interpretable measure of any particular
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psychological process and must be interpreted by including
the stimulus conditions (Cowley et al., 2016; Dawson et al.,
2017). For discomfort, an increase in SCL is expected due
to a prediction of higher alertness and arousal. The HR,
HRV, and EDA were measured using the smartband Microsoft
(MS) Band 2. The use of a commercially available smartband
was an explicit project goal to estimate the potential and
problems of such a psychophysiological sensor. On the one
hand, the market for smartbands is growing (Wade, 2017);
thus, smartbands connected to vehicles could be an option for
assessing psychophysiological parameters inside cars. On the
other hand, the MS Band 2 has already been used in research
for assessing mental workload in different environments (Binsch
et al., 2016; Cropley et al., 2017; Reinerman-Jones et al., 2017;
Schmalfuß et al., 2018), activity recognition in a home setting
(Filippoupolitis et al., 2016), and for predicting and regulating
personal thermal comfort in buildings (Laftchiev and Nikovski,
2016; Li et al., 2017).

Body motion during driving has mainly been investigated
with regard to head movements for predicting driver intentions
(Pech et al., 2014), hand movements for estimating driver
distraction (Tran and Trivedi, 2009), trapezius muscle tension
as an indicator for stress (Morris et al., 2017), or facial features
for monitoring driver states (Baker et al., 2004). Moreover, the
whole 3D driver posture is considered potentially useful for
extracting information related to intentions, affective states, and
distraction (Tran and Trivedi, 2010). However, posture dynamics
are strongly related to situations and should, therefore, be
combined with other contextual information (Tran and Trivedi,
2010). In the specific approach situation with the danger of a
potential rear-end collision, a pushback movement is expected
that should be reflected in motion tracking and seat pressure mat
data. Table 1 provides a summary of the expected effects during
discomfort periods for all parameters.

MATERIALS AND METHODS

Study Design and Route
The driving simulator study was composed of two separate
driving sessions with an approximate 2-month delay in between.
Every driving session was composed of a 3-min highly automated
trip on a straight, single carriageway, rural road. The trip was
prerecorded and was exactly the same for all participants; there
was no possibility to intervene by pedals or steering wheel.
In every session, participants experienced three identical and
potentially discomfort-inducing approach situations with the

danger of a potential rear-end collision (Figure 1). A white
truck drove in front of the ego car with a constant speed of
80 km/h, whereas the ego car approached in a fully automated
mode at 100 km/h. Automated braking was initialized very late
at a distance of 9 m, which resulted in a minimum distance of
4.2 m and minimum time to contact of 1.1 s. After the approach,
the ego car fell back at a distance of 100 m, and the approach
started again. Participants were not informed about the situation
and were instructed to press the lever of the handset control
(Figure 2A) according to the extent of perceived discomfort.
Thus, every participant experienced six approach situations in
total, which resulted in 240 situations for all 40 participants and
both sessions. The main reasons for inviting the participants
twice were to: (a) obtain a higher overall number of discomfort
situations per person; and (b) assess habituation effects within
subjects over short and longer time periods (3 min vs. 2 months).
Evaluation of habituation effects resulted in small to almost no
effects, both for short- and long-term periods. Thus, all situations
were included in the subsequent analyses.

Participants
A total of 40 participants (15 females, 25 males) took part in both
sessions of the study. Ages ranged from 25 years to 84 years with
two distinct age groups, one from 25 years to 45 years (younger
group,N = 21,M = 30 years, SD = 4.3) and the other over 65 years
(older group, N = 19, M = 72 years, SD = 6.0). All subjects
were required to currently hold a valid driver’s license, and
none of them had had previous experience of highly automated
driving in the driving simulator. Participants were compensated
with 20 euros for participation. This study was carried out in
accordance with the recommendations, regulations and consent
templates of the TU Chemnitz ethics commission. The protocol
was approved by the TU Chemnitz ethics commission. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Material and Sensors
The study took place in a fixed-base driving simulator (SILAB
5.1 Software) with a fully equipped interior, a rear-view
mirror, two side mirrors and a 180◦ horizontal field of view.
Fully automated trips were prerecorded and replayed, while
the participants sat in the driver’s seat. Pedals and steering
wheel were inoperative during these trips. Perceived discomfort
was assessed during the whole trip by a handset control
integrated into the driving simulator (Hartwich et al., 2015,
2018; Figure 2A). Participants could press the lever gradually
in accordance with the extent of perceived discomfort. The

TABLE 1 | Overview of expected effects of different sensor parameters during discomfort.

Sensor Parameter Expected trend during discomfort

Eye tracking Pupil diameter Dilation (increase of diameter during mental effort/stress/attention/task difficulty)
Blink rate Decrease (attention/arousal/alertness)

MS Band 2 Heart rate Increase (mental workload/stress)
Heart rate variability Decrease (mental workload/stress)
Skin conductance level Increase (mental workload/arousal/alertness/emotional response/stress)

Motion tracking Shoulder/head movements Push-back/lean-back (decrease on z-axis)
Pressure mat Pressure Push-back/lean-back (pressure increase at back position sensor)
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FIGURE 1 | Setup of the driving simulator study during one approach situation to the truck driving ahead. Left side: motion capture markers at head, right shoulder,
and hands; handset control for reporting discomfort held in the right hand. Right side: driver camera view (top); front scenery camera view recorded from the roof of
the mock-up (middle); reported discomfort as well as driving parameters at that particular moment such as TTC, ego speed/truck speed/speed difference and
distance to the truck (bottom). Written informed consent was obtained from the individual for the publication of this image.

smartband Microsoft Band 2 (Figure 2B) was used to record
the physiological parameters of HR, HRV and SCL via a
Bluetooth connection. Accelerometer and gyroscope data were
recorded as well from the band sensors to identify and correct
for hand movements. The MS Band 2 was provided with a
Software Development Kit that allowed for programming a
dedicated logging application. Eye tracking data were recorded
by SMI Eye Tracking Glasses 2 (SMI ETG 2, Figure 2C)
and included pupil diameter, fixations, saccades and blinks.
Participants already wearing eyeglasses (N = 10) could not
wear the SMI ETG 2, which resulted in less eye tracking data.
In addition, the SMI ETG 2 were not applied in the whole
second driving session because of testing camera-based, facial-
feature recognition algorithms. Body motion was simultaneously
captured by two sensor systems. The first device was a marker-
based motion tracking system from OptiTrack composed of four
Flex 13 infrared cameras recording with 120 fps (Figure 2D).
A total of four distinct rigid bodies were tracked (left and right
hand, right shoulder and head; see Figures 1, 2D). Rigid bodies
are a collection of three or more markers on an undeformable
object. These rigid bodies can be attached to tracked objects
(e.g., clothes, gloves, headbands) and allow for recording position
and orientation in six degrees of freedom. Participants with
eyeglasses wore a headband with the rigid body attached (as in
Figure 1), whereas the SMI ETG 2 allowed for directly attaching
rigid bodies (Figure 2C). The second sensor system for body

motion was a seat pressure mat developed by the project partner
FusionSystems GmbH (Figure 2E). The mat can easily be placed
on top of the seat and includes eight pressure sensors at different
positions.

Data Recording and Sequence Extraction
Data were recorded by several independent data loggers for
each sensor with different recording frequencies. System time
for all recording devices was continuously synchronized with
a software tool based on the network time protocol (Meinberg
NTP Software). Recording frequencies were 60 Hz for the
driving simulator data, including handset control, 10 Hz for
the MS Band 2, 60 Hz for the SMI ETG 2 eye tracking data,
120 Hz for motion tracking, and 10 Hz for the seat pressure
mat. Raw data for each recorder were imported into a storage
and analysis framework based on the relational open-source
database management system PostgreSQL (Beggiato, 2015). The
synchronization procedure was based on the timestamps of
the driving simulator data (60 Hz) by adding the current
value of all other sensor systems at this specific moment. To
analyze changes in the sensor data with regard to perceived
discomfort, data during reported discomfort by the handset
control were compared with 10-s time intervals prior and after
(Figure 3).

Discomfort intervals were extracted from the start of pressing
the handset control lever until releasing, independent of the
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FIGURE 2 | Sensors: (A) Handset control for reporting discomfort; (B) smartband Microsoft Band 2; (C) SMI Eye Tracking Glasses 2; (D) camera and rigid body for
motion tracking; (E) schematic layout and placement of seat pressure mat.

magnitude. However, the handset control was only pressed
in 208 of the 240 approach situations. The distribution and
descriptive statistics of the 208 extracted discomfort intervals
are presented in Figure 4. In addition, single sensor channels
were not recorded in some situations (e.g., no SMI ETG 2 for
subjects already wearing eyeglasses or technical problems). Thus,
all charts in the results section contain the respective number and
mean duration of discomfort intervals that were included in the
analysis. For the subsequent results section, the term ‘‘sequence’’
refers to the whole time period including the discomfort interval
as well as the 10 s beforehand and afterwards.

Data Preparation
Common X-Axis
To show the development of all assessed parameters before,
during, and after the discomfort interval, a common time axis

was created for the charts in the results section (Figure 5).
As the discomfort intervals varied in duration (Figure 4), a
percent scale from 0% to 300% over the whole sequence was
used to allow for displaying all values in the same scale. Periods
before and after the discomfort interval were always 10 s long;
thus, 1% corresponds to 0.1 s. Each discomfort interval was
divided into percent slices, and the mean of each parameter
was calculated for the specific time period of the respective
percent slice. Finally, each percentage section before, during,
and after reported discomfort was combined into one chart to
show the progress of values over time. As not every sensor
was active during the trips, each chart contains the number
of sequences with mean duration and standard deviation of
the included discomfort intervals in the caption. The main
reason for using the percentage scale was to strictly respect
the subjective aspect of discomfort mentioned in the definition.
Thus, the different durations of reported discomfort intervals

FIGURE 3 | Example of synchronized sensor data during one trip, handset values in the first sensor channel and three extracted discomfort intervals (disc) with 10 s
before (pre) and 10 s after (post).
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FIGURE 4 | Distribution and descriptive statistics of the 208 extracted discomfort intervals.

should enter with the same weight in all analyses, which can be
obtained by the percentage scale. In addition, the analysis method
should also be applicable in less standardized situations, which
requires a reliance on the reported handset values. However,
using the percentage scale also has some drawbacks. It is
not possible to give precise time-related indications, as it is not
time, but the subjectively reported intervals that represent the
unit of measurement. However, descriptive statistics about the
intervals presented in Figure 4 provide an indication of temporal
dimensions. A second drawback is in regard to short sequences
of a few seconds, in which some physiological processes such
as changes in HR and SCL could hardly take effect. Similar
concerns could be raised regarding longer sequences in terms
of outliers, such as the six sequences over 20 s (Figure 4).
However, as the percentage scale assigns the same weight to all
sequences, excluding these six sequences does not change the
results (tested for all analyses). Thus, despite these mentioned
potential drawbacks, all sequences were included to present the
overall picture.

Z-Standardization and 95% Confidence Intervals
An important issue in processing psychophysiological data is
distinguishing the signal of interest from noise (Gratton and
Fabiani, 2017). Most of the physiological parameters such as
HR or EDA have a strong individual component, which means
that absolute values can hardly be compared between subjects.
Thus, relative changes within one person provide better signal-
to-noise ratio, for example, comparing changes of HR or
EDA before, during and after discomfort intervals. However,
these changes need to be transformed into a common scale
to be compared between subjects. One of the common and
best-performing transformations is the z-score, which expresses
all values as the distance to the mean in units of standard
deviations with a total mean of zero and a standard deviation
of one (Jennings and Allen, 2017). Z-transformation was applied
for each sequence, resulting in the relative changes over time in
units of standard deviations. Resulting z-values were averaged

over all sequences at each single percent level from 0% to 300%
and displayed as a blue line in the results charts (Figure 5).
Beside these general transformations, some parameter-specific
data correction methods and transformations were applied and
are described for each parameter in the subsequent results
sections. To obtain a quick estimation about the statistical
significance of changes over time, the 95% confidence interval
(CI) of each of these means was calculated pointwise and
plotted as a light red area around the blue means. If the 95%
CI does not overlap between two points in time, these two
means differ in a statistically significant manner at p < 0.01
(Field, 2013). The pointwise CI does not include multiplicity
correction as would be the case for simultaneous confidence
bands. Simultaneous CI bands control for the familywise error
in autocorrelated time series by estimating the simultaneous
coverage probability of the whole curve (Korpela et al., 2014;
Francisco-Fernández and Quintela-del-Río, 2016; Ahonen et al.,
2018). As the aim of the present analyses is not to fit a
curve, but allow for visual comparison of single points in time,
pointwise CIs were used. Pointwise CIs are narrower than
a simultaneous CI band would be, and pointwise CIs allow
only for comparing single points (as an ANOVA would do),
but do not appropriately reflect the CI for the curve as a
whole.

RESULTS

Pupil Diameter and Eye Blinks
Raw pupil diameters for the left and right eye (mm) from
the SMI ETG 2 were averaged to get a single diameter from
both eyes. To correct for signal fluctuations (especially close
to blinks), a moving average over ±300 ms was calculated,
and a z-transformation of these values was applied for each
sequence. As pupil diameter is not only dependent on mental
states, but primarily on ambient light (Watson and Yellott, 2012),
the metric could potentially be confounded during the white
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FIGURE 5 | (A) Mean luminance-adjusted z-score of pupil diameter before, during and after discomfort intervals (N = 65 intervals, M = 7.65 s, SD = 4.74 s).
(B) Mean z-score of interblink interval time before, during and after discomfort intervals (N = 67 intervals, M = 7.73 s, SD = 4.70 s). (C) Mean z-score of HR before,
during and after discomfort intervals (N = 206 intervals, M = 8.10 s, SD = 5.52 s). (D) Mean z-score of detrended SCL before, during and after discomfort intervals
(N = 203 intervals, M = 8.16 s, SD = 5.51 s). (E) Mean z-score of right shoulder movements on the z-axis before, during and after discomfort intervals
(N = 114 intervals, M = 7.85 s, SD = 4.79 s). (F) Mean z-score of pressure mat sensor at the back position before, during and after discomfort intervals
(N = 202 intervals, M = 8.04 s, SD = 5.41 s). The bold blue line shows the mean values, and the light red area shows the 95% pointwise confidence interval (CI) in all
charts.

truck approach situation. Thus, the mean luminance value of all
pixels (HSL color model) was calculated for each video frame
of the SMI ETG 2 front camera video. A z-transformation of
this mean luminance was applied for the whole trip in order
to subtract these luminance z-scores from the z-scores of pupil
diameter. The resulting luminance-adjusted z-values of pupil
diameter are shown in Figure 5A. In line with the hypotheses,
pupil diameter increased significantly during the discomfort
interval and decreased steadily after reported discomfort. About
5 s after the end of the discomfort interval (approx. 250%),
the 95% CI does not overlap anymore with the 95% CI
during the discomfort interval (side note: without correcting
for ambient luminance, the effects are the same but more
pronounced).

Eye blink rate recorded by the SMI ETG 2 was computed
in two different ways: first, blinks per second were calculated
for each whole interval before, during, and after reported
discomfort. Figure 6A shows the expected decrease in blink rate
from 0.25 blinks per second before discomfort to 0.17 blinks
per second during discomfort and the increase afterwards
to 0.37 blinks per second (F(1.37,118.57) = 26.37, p < 0.001,

η2p = 0.285). However, this representation of blink rate does
not allow for judging timings of increase/decrease as well
as significance levels over time. Thus, it does not provide
information for parameterizing an online detection algorithm.
Therefore, a second way of obtaining a continuous blink rate
was applied by calculating a running ‘‘interblink interval time.’’
This timer is set to zero every time a new blink is detected
by the eye tracker and increases until the subsequent eye blink
start is detected. Blink duration is not excluded and enters the
running time. Z-values of this running interblink interval time
were calculated for each sequence and averaged for each percent
of time. Figure 5B shows the progress of interblink interval time
z-scores with a noticeable increase during discomfort intervals
(meaning less blinks) and the return to the prior level after the
discomfort interval.

Heart Rate and Heart Rate Variability
Raw HR values in beats per minute recorded by the MS Band
2 were transformed into z-values for each of the 206 sequences.
Figure 5C shows the mean z-scores for HR over time. In contrast
to the hypothesis, HR decreased steadily at the beginning of the
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discomfort interval. The bottomHR plateau was reached at about
the middle of the discomfort interval (150%) and kept until about
5 s after reported discomfort (250%). Afterward, HR rapidly rose
up to approximately the prior level.

The HRV was computed using the interbeat interval times
(IBI) in s from the MS Band 2. The HR and IBI are not
exact reciprocal values in the case of the MS Band 2, but
IBI is recommended for HRV calculations (Cropley et al.,
2017). The time-domain metric root mean square successive
difference (RMSSD) was calculated for each interval and
averaged over all 202 sequences. The RMSSD is recommended
for measuring high-frequency HRV and when time intervals
to compare are not equally long (Berntson et al., 2017).
Frequency domain and nonlinear HRV measures were not
applied due to the relatively short time periods investigated.
In line with the hypothesis, Figure 6B shows the expected
u-shaped pattern with a decrease of HRV during reported
discomfort (χ2

(2) = 40.05, p < 0.001; nonparametric Friedman’s
ANOVA).

Skin Conductance Level
Two electrodes on the opposite side of the MS Band 2 display
(Figure 2B) measured skin resistance level in kilo ohm. These
values were inverted and multiplied by 1,000 to obtain the
SCL in micro Siemens. The SCL values were very sensitive
to changes in the hand/arm position such as placing a hand
on the knees. Thus, SCL values were excluded (missing data)
during high-movement episodes on the basis of the MS Band
2 accelerometer and gyroscope data. The remaining values were

z-standardized for each sequence. Results showed a continuous
linear increase of SCL over time, independent of the situation.
As this linear growing trend was probably related to the fact that
subjects simply got warm during driving, a detrending algorithm
was applied. Thus, a linear regression was calculated for each
sequence. The SCL z-scores were subtracted from the regression
values in order to obtain detrended z-scores, which are shown
in Figure 5D. Detrended SCL showed almost no changes during
the discomfort interval compared with the interval before and
after.

Body Movements
To assess body movements, data from the marker-based motion
tracking system as well as the seat pressure mat were evaluated.
The position of the right shoulder (mm) was captured by the
motion tracking system. As the absolute marker position in
the 3D space differed for each individual subject and each
drive, differences on the z-axis position were computed for each
sequence starting with zero at the beginning of the sequence.
These value changes were transformed into z-scores. Figure 5E
shows the mean z-scores of shoulder movement on the z-axis.
As expected, the pushback of the body was represented by
the u-shaped decrease of the shoulder z-position during the
discomfort interval. Shoulder movements on the x- and y-axis
showed similar but weaker effects; the main movement was
backwards.

The pushback movement should also be represented in the
data of the seat pressure mat, which would potentially allow
for an easier movement measurement than motion tracking. To

FIGURE 6 | (A) Mean eye blink rate before, during and after discomfort intervals (N = 67 intervals, M = 7.73 s, SD = 4.70 s). (B) Mean HRV (RMSSD) before, during
and after discomfort intervals (N = 202 intervals, M = 8.10 s, SD = 5.53 s). The bold blue dots show the mean values, and the light red bars show the
95% pointwise CI.
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analyze the seat pressure mat data, the sensor at the back position
was taken into account. Pressure values were z-transformed for
each sequence. The z-scores of the pressure sensor (Figure 5F)
showed the corresponding pattern to the motion-tracking results
with an increase of pressure during the discomfort interval
(pushback movement).

DISCUSSION

The present study aimed at detecting discomfort in automated
driving by physiological parameters from smartbands,
pupillometry and body motion. Discomfort is considered an
important issue for broad public acceptance of automated
vehicles as well as for safety issues such as critical and
not-necessary take-over situations. Considering the metaphor of
a vehicle-driver-team that knows each other, automated systems
could react to detected discomfort by changing driving style
parameters and information presentation. An important basis
for a real-time discomfort detection algorithm is information
about physiological sensor parameters associated with reported
discomfort, such as overall relevance, direction and strength
of effects, timings, variability as well as filtering and artifact
removal strategies.

Overall, besides SCL, all other assessed parameters like pupil
diameter, eye blink rate, HR, HRV and body motion showed
changes associated with discomfort indicated by the handset
control. However, filtering and standardization procedures are
required to increase the signal-to-noise ratio and remove
bias caused by individual differences. In addition, every
parameter has its own specificities, which are subsequently
discussed.

Pupil diameter showed the expected inverse u-shaped pattern
with a dilation during discomfort and recovery afterward,
analogous to results regarding workload (Andreassi, 2000;
Cowley et al., 2016). However, pupil diameter is not only
dependent on mental states, but also primarily on ambient light
conditions. Despite the fact that light conditions in the driving
simulator do not change as much as on-road, a correction
algorithm was applied by subtracting the z-standardized mean
pixel luminance from the z-values of pupil diameter at every
front camera video frame. Even with this adjustment, the effects
are still observable. However, this quite simple adjustment
procedure has some limitations. First, the exact association
between ambient light and pupil diameter is muchmore complex
than a simple linear relationship (Watson and Yellott, 2012).
Second, cameras themselves adapt to ambient light, which does
not allow to exactly measure luminance out of a video image.
Third, eye tracking with the front camera can be used for
lab experiments; in automated vehicles, luminance must be
measured by other sensors. Despite these limitations, the applied
adjustment procedure is real-time capable and will again be
tested in subsequent studies within the project.

Eye blink rate showed the expected u-shaped pattern with
fewer blinks during the discomfort interval (i.e., participants
kept their eyes open in this situation). However, as the
baseline blink rate is about one blink every 4 s, eye
blinks are a ‘‘rare event’’ in relation to the duration of

discomfort intervals. Thus, the low frequency of eye blinks
lowers the potential to serve as real-time predictor for
discomfort.

Contrary to the expected trend, HR decreased during
discomfort periods and returned to the prior level approximately
5 s after reported discomfort. A possible explanation for the
unexpected decrease could be the effect of ‘‘preparation for
action,’’ which means an anticipatory deceleration of HR prior
to planned actions (Schandry, 1998; Cooke et al., 2014). The
effect was reported for sport actions such as golf putting, but also
for simpler reaction time (RT) paradigms: ‘‘It is well established
that HR deceleration occurs during the fixed foreperiod of an
RT task’’ (Andreassi, 2000, p. 270). The HRV measured by the
RMSSD showed the expected u-shaped pattern with a decrease
during the discomfort intervals.

The SCL showed a linear increasing trend over time, which
could probably be explained by the effect that participants
got warm during driving. After correcting for this linear
trend using a regression approach, SCL showed almost
no situation-related changes during discomfort intervals.
The missing effects could be related to measurement
procedures associated with the smartband. First, absolute
SCL values were highly dependent on how tightly the
band was closed. These differences could be corrected by
the z-transformation; however, some bias could remain
(e.g., when the band was worn very loosely). Second, SCL
measures were taken from the outer side of the wrist, which
is considered a much less sensitive place for SCL-changes
compared with the fingers (Andreassi, 2000). Third, hand
movements partly caused strong offsets in EDA values. The
simple correction method of excluding these parts from the
analysis could potentially be improved by more sophisticated
algorithms.

The mentioned problems such as limited control on how
tight the band is closed are to some extent related to the
use of smartbands instead of more sophisticated measurement
devices for physiological parameters. However, the aim of
the KomfoPilot project was and is to estimate the potential
of existing wearable devices with all the real-world usage
challenges. Even with these problems, effects associated with
discomfort could be identified in the data. One of the major
challenges for using these devices will be the use of adequate
signal analysis methods for gaining maximum signal-to-noise
ratio.

Body movements captured by the pressure seat mat
and the motion tracking of the right shoulder showed
the expected pushback during the close approach to the
truck. As posture dynamics are strongly related to specific
situations (Tran and Trivedi, 2010), these movement patterns
cannot automatically be generalized across different discomfort
situations. However, discomfort associated with gaps that are
too close or potential rear-end collisions could be detected
involving body motion. A potential approach for data fusion
algorithms could be the inclusion of environment sensor
information such as time headway (Leonhardt et al., 2017)
and to consider the pushback motion pattern only in these
situations.
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To sum up, the predicted mechanism of the monitored
physiological signals for designing and configuring the real-time
detection algorithm includes the following aspects. Most relevant
parameters with the highest discomfort-specific changes resulted
in ambient light-corrected pupil diameter, HR and the pushback
movement. Interblink interval time and HRV measures showed
changes, but could be unstable due to the short time intervals.
The SCL from the MS Band 2 did not show specific changes and
is, therefore, not recommended for inclusion in the algorithm.
Regarding variability and filtering, relative changes within one
person need to be assessed due to the strong individual
component of all parameters. This could be achieved in real-time
by e.g., performing individual z-standardization in sliding time
windows and comparing the current signal value with these
scores. This comparison could include several time windows
of different lengths and different onsets, e.g., with 10 s and
5 s duration and an onset 3 s and 5 s before the current
moment. This procedure would allow one to keep trace of the
individual parameter variability by offering, at the same time,
the application of standardized thresholds (such as a decrease in
HR by 0.3 SD-units compared to the sliding window). Threshold
values as well as timings can be obtained from the results in
Figure 5 and can be adjusted to configure the sensitivity of
the detection algorithm. To combine these predictions of each
single parameter into one discomfort-score, probabilistic data
fusion methods such as Bayesian Networks could be used. The
nodes of such a network allow for integration of environment
information (such as presence of a vehicle driving ahead) as well
as for ‘‘inverting’’ the algorithm, once discomfort was detected,
in order to return to the baseline. This method has already
been applied by the Communication Engineering Department
at Chemnitz University of Technology for real-time prediction
of lane change maneuvers, combining parameters from the
driver, the vehicle and the environment (Leonhardt et al.,
2017).

In conclusion, the assessed parameters from smartbands,
eye tracking and motion tracking showed potential for
detecting discomfort in this approach situation. Despite
commercially available smartbands providing less precise
measures as dedicated lab devices, effects associated with
discomfort could be identified. However, wearable devices also
pose new challenges such as less control on how users apply

them. A limitation of this study is of course that only this
specific truck approach situation has been investigated. The
findings must be validated in other potentially discomfort-
inducing situations, which are the next steps in the project.
However, the use of this highly standardized approach situation
also provides some advantages: (a) a distance that is experienced
as too close is one of the most mentioned issues for discomfort as
a codriver (dpa, 2013); (b) comfortable adjustment of headway
distance and approach situations are not only relevant in
conditional and high automation (SAE Levels 3 and above),
but also for driver assistance systems such as adaptive cruise
control and partial automation (SAE levels 1 and 2); and (c) the
high standardization of the situation allowed for estimating the
potential of different sensors as well as testing data filtering and
artifact-removal strategies. Thus, the results serve as a basis for
designing and configuring the real-time detection algorithm that
is in development by the project partners who specialize in data
fusion (FusionSystems GmbH and Communication Engineering
Department at Chemnitz University of Technology). The
algorithmwill be implemented in the driving simulation software
and tested in subsequent studies.
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Driver cognitive distraction is a critical factor in road safety, and its evaluation, especially

under real conditions, presents challenges to researchers and engineers. In this study,

we considered mental workload from a secondary task as a potential source of cognitive

distraction and aimed to estimate the increased cognitive load on the driver with a

four-channel near-infrared spectroscopy (NIRS) device by introducing amachine-learning

method for hemodynamic data. To produce added cognitive workload in a driver beyond

just driving, two levels of an auditory presentation n-back task were used. A total of 60

experimental data sets from the NIRS device during two driving tasks were obtained and

analyzed by machine-learning algorithms. We used two techniques to prevent overfitting

of the classification models: (1) k-fold cross-validation and principal-component analysis,

and (2) retaining 25% of the data (testing data) for testing of the model after classification.

Six types of classifier were trained and tested: decision tree, discriminant analysis, logistic

regression, the support vector machine, the nearest neighbor classifier, and the ensemble

classifier. Cognitive workload levels were well classified from the NIRS data in the cases

of subject-dependent classification (the accuracy of classification increased from 81.30

to 95.40%, and the accuracy of prediction of the testing data was 82.18 to 96.08%),

subject 26 independent classification (the accuracy of classification increased from 84.90

to 89.50%, and the accuracy of prediction of the testing data increased from 84.08

to 89.91%), and channel-independent classification (classification 82.90%, prediction

82.74%). NIRS data in conjunction with an artificial intelligence method can therefore be

used to classify mental workload as a source of potential cognitive distraction in real time

under naturalistic conditions; this information may be utilized in driver assistance systems

to prevent road accidents.

Keywords: near-infrared spectroscopy, cognitive distraction, classification, driver attention, mental workload,

artificial intelligence
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INTRODUCTION

Driver distraction is a major cause of traffic accidents
(NHTSA, 2015). An analysis by the US Highway Traffic Safety
Administration (NHTSA) showed that driver distraction can
be categorized into three types: visual distraction, manual
distraction, and cognitive distraction (NHTSA, 2012). Among
these, cognitive distraction is the most difficult type to address,
because it occurs within the driver’s brain (Rizzo and Hurtig,
1987; Engström et al., 2005; Angell et al., 2006). Cognitive
distraction is defined as the mental workload associated with a
task that involves thinking about something other than driving.
The detection of cognitive distraction imposed by a secondary
task while driving might play an important role in creating a
new driver-assistance system to reduce the incidence of traffic
accidents.

Dong et al. (2011) categorized techniques for measuring
mental workload while driving into five groups: (1) subjective
metrics, (2) biological metrics, (3) physical metrics, (4)
performance metrics, and (5) combinations of these metrics.
Because the central goal of our research was to identify and
improve a metric that might permit the detection of mental
workload in real time and which could operate under real
conditions in the presence of, for example, vibration from the
vehicle, we examined only physical metrics in the present study.

One potential physical metric involves the use of eye-
movement information. Many researchers have previously
attempted to identify a relationship between mental workload
and various items of information on the eye, such as blink
(Tsai et al., 2007; Benedetto et al., 2011), pupil diameter (Backs
and Walratht, 1992; Klingner et al., 2008; Schwalm et al.,
2008; Klingner, 2010), saccades (Tsai et al., 2007; Pierce, 2009;
Tokuda et al., 2009), gaze concentration (Wang et al., 2014),
or eye fixation (Klingner, 2010). Each of these methods has its
advantages and disadvantages. For example, pupil diameter has
a strong relationship to the level of cognitive load but it is also
highly sensitive to the frequent changes in light that occur while
driving (Palinko and Kun, 2012). Another potential method is
to use the involuntary eye movements based on the vestibulo-
ocular reflex model that are simulated by head movements or by
vibrations from the moving vehicle. In this method, differences
between predicted and actual eye simulation are assessed as a
measure of mental workload (Obinata et al., 2008, 2009, 2010;
Aoki et al., 2015; Anh Son et al., 2016, 2017a,b,c,d,e, 2018; Le and
Aoki, 2018; Son and Hirofumi, 2018; Son et al., 2018) However,
the use of eye information to measure mental workload still has
some limitations, such as oversensitivity to light, vibration, noise,
and visual information.

In terms of a physical metric, monitoring of brain activity
by electroencephalography or the use of the heart rate as an
indicator of mental workload have been confirmed to be effective
(Meshkati, 1988; Lee and Park, 1990; Jorna, 1992; Porges and
Byrne, 1992; Veltman and Gaillard, 1996; Ryu and Myung, 2005;
Henelius et al., 2009; Mehler et al., 2012; Cinaz et al., 2013; Angell
and Perez, 2015). However, these techniques require physical
attachment of the monitoring equipment and are highly sensitive
to the driver age, body position, and muscle activity.

One method with a high potential for application is the
use of information from near-infrared spectroscopy (NIRS) to
classify mental workload (Kopton and Kenning, 2014). NIRS
has been used in various fields; for example, in agriculture
to check the quality of crops and in medicine to assess
oxygenation and microvascular function. In terms of classifying
mental workload, a relationship between mental workload and
activity of the central nervous system has been confirmed
by McBride and Schmorrow (2005). Since their work, other
researchers have attempted to classify levels of mental workload
by applying artificial-intelligence analyses (Tsunashima and
Yanagisawa, 2009; Herff et al., 2014; Ichikawa et al., 2014;
Aghajani et al., 2017). All of these researchers showed that NIRS
has considerable potential in quantifying mental workload while
driving, especially in naturalistic cases (Kopton and Kenning,
2014; Liu et al., 2016).

Furthermore, Toshinori Kato and his group have done various
investigations on NIRS data, especially how to filter the signals
and map it (Kohri et al., 2002; Yoshino et al., 2013, 2015;
Orino et al., 2015). In actual driving, his group pointed out
that there was a relationship of the brain activity with the
vehicle speed. Their research also confirmed that fNIRS data is
one of a good solution for monitoring the driver status while
driving especially in actual condition. Further, Liu et al. (2017)
confirmed that the cognitive workload has a relationship with
the hemodynamic activity level (Liu et al., 2017). His team also
mentioned that the effective association can be weak in case
of driving with subtasks. However, none of them investigated
in applying machine learning with raw data to detect mental
workload by secondary task while driving.

The central goal of our study was to examine whether or not it
is possible to classify driver mental workload by using supervised
learning with NIRS data obtained in a real vehicle. In this report,
we initially point out the importance of detecting cognitive load
while driving. We then review and summarize methods for
evaluating cognitive workload that have been reported in the
literature. We also discuss the differences in mental workload
between doing one task and driving with secondary task. We
then review the use of NIRS information to classify cognitive
load, and we describe our experimental design and methods for
analyzing NIRS data. The result of the classification are reported
and, finally, we discuss our conclusions and any challenges that
remain.

MATERIALS AND METHODS

Experimental Design
One female and four male subjects, who each held a
driver’s license (mean age: 38 ± 10; two professional drivers,
and three newly qualified drivers), were recruited for this
test. A total of 60 experiments were performed involving
navigating a defined course alone (autocross) or following
another vehicle (car-following) on a test course (Figure 1). The
experiments were approved by the Ethical Review Board of
Nagoya University’s Institute of Innovation for Future Society.
All subjects were provided with explanations regarding the
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experimental procedure, and all gave their written informed
consent.

The experiment procedure is shown in Figure 2. The subjects
performed a series of tests involving a driving task (autocross or
car following) during which drivers were asked to drive around
40 km/h. For portions of these drives, additionalmental workload
was introduced by asking subjects to engage in two levels of an
n-back auditory digit recall task in which a number was verbally
presented to the subject every 2 s. In the 1-back test, the subject
was asked to press the “Yes” button when the number heard
was the same as the previous one or the “No” button when it
was different. In the 2-back task, the subject similarly had to
remember the number preceding the previous one. The “Yes” and

“No” buttons were installed on the driving wheel so they could be
easily pressed.

As our main aim is to create an algorithm for an advanced
driver-assistance system to help prevent traffic accidents by
identifying driver cognitive distraction, the classification needed
to be reliable, quick, and easy. To achieve this, we used a
commercial four-channel NIRS system (Astem Corp., Fukuoka,
Japan) which was placed on the forehead of the subject, where the
signals from the four channels are almost the same (Figure 3).
This device can measure blood oxyhemoglobin (oxy-Hb) and
deoxyhemoglobin (deoxy-Hb) levels at wavelengths of 770 nm
(probe distance 35mm) and 830 nm (probe distance is 40mm),
and oxygen saturation at 35mm.

FIGURE 1 | Test course.

FIGURE 2 | Experiment procedure and hypothetical image of MWL.
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FIGURE 3 | ASTEM’s NIRS device.

Furthermore, to keep the class-balance data set for machine
learning, the subjects were asked to drive around the course for
each task (driving task only, driving plus 1-back task, and driving
plus 2-back task), and repeat it twice (average time for each trial
was 1min 54 ± 16 s depending upon the speed actually driven).
Therefore, the sample data input to machine learning step was
class-balance.

Data Processing
Figure 4 provides an overview of the method we used to
preprocess the NIRS data. Because of noise arising from
movement artifacts (Cooper et al., 2012; Kirlilna et al., 2013),
the raw NIRS data from each channel were preprocessed by
using a modified form of the Beer–Lambert Law (Huppert et al.,
2016) with removal of lost data (time shift) (Kirlilna et al.,
2013), bandpass filtration (0.02–1Hz) (Ichikawa et al., 2014), and
Kalman filtration (Abdelnour and Huppert, 2009), before finally
being transformed into features.

In our experiment, the raw data of each channel
includes (Figure 5): oxyhemoglobin at 35mm (OxHb35),
deoxyhemoglobin at 35mm (DoxHb35), total oxyhemoglobin
(ToxHb35), absolute tissue saturation (StO2), oxyhemoglobin at
40mm (OxHb40), deoxyhemoglobin at 40mm (DoxHb40). After
filtering, all of the information from NIRS will be transform to 6
features namely OxHb35, DoxHb35, ToxHb35, StO2, OxyHb40,
and DoxHb40 for preparing to input for machine learning step.

These features were then processed to create training data
and testing data for subject-dependent, subject-independent,
channel-independent, and subject-independent plus channel-
independent cases. After taking all of the data, they were divided
into 75% (training data) and 25% (testing data, which is not used
to improve the model, but to measure its predictive performance;
Figure 6). Because we used four channels for the forehead,
the data combinations were obtained merely by combining the
data together. To prevent overfitting during machine learning,
a fivefold cross-validation and a principal-component analysis
were applied before the data were used to train the system. The
fivefold cross-validation was conducted in the following three

steps. First, the training data (75% of all data) was split into
5-fold. Second, a model for each fold using all the data outside
the fold (75% of the training data) was trained and validated.
After that, the features were transformed with PCA to reduce
the dimensionality of the predictor space (we applied 5 principal
components).

Definition:

- Subject-dependent (Subject-dependent+ channel-dependent;
Figure 7): data of each channel for each subject in all task was
combined as the input of the machine learning step. Total 20
datasets were prepared for running machine learning.

- Subject-independent (Subject-independent + channel-
dependent; Figure 8): data of each channel for all subjects in
all task was combined as the input of the machine learning
step. Total 4 datasets were prepared for running machine
learning.

- Channel-independent (Channel-independent + Subject-
dependent; Figure 7): data of all channel for each subject in
all task were combined as the input of machine learning step.
Total 5 datasets were prepared for running machine learning.

- Subject-independent+Channel-independent (Figure 8): data
of all channel for all subject in all task were combined as the
input ofmachine learning step. Only one data set was prepared
for running machine learning.

The Classification Method
Previous studies on the classification of mental workload from
NIRS data have used an SVM (Devos et al., 2009; Ichikawa
et al., 2014; Aghajani et al., 2017), linear discriminant analysis
(Luu and Chau, 2009), the hidden Markov model (Sitaram et al.,
2007; Zimmermann et al., 2013), or artificial neural networks
(Chan et al., 2012; Thanh Hai et al., 2013). However, most of
these studies involved complicated multichannel NIRS systems.
In our study, because of the large number of samples and the low
number of channels, we applied supervised learning in MATLAB
2017b (MathWorks Inc., Natick, MA, United States) (Figure 5).
We used the 75% of the data to train several well-known
models, including the decision-tree model, the discriminant-
analysis model, the logistic-regression model, SVMs, nearest-
neighbor classifiers, and ensemble classifiers. The performance of
these classifiers was determined from the accuracy, as calculated
by using the equation shown below:

Accuracy (Acc) =
(TP + TN)

(TP + FP + TN + FN)

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the
number of false negatives.

In addition, in case of applying SVMs to perform
multiclass classification (just driving vs. 1-back vs. 2-back),
the transformation technique was applied to reduce the
multiclass classification problem to a set of binary classification
subproblems, with one SVM learner for each subproblem. One-
vs.-All trains one learner for each class. It learns to distinguish
one class from all others will be applied in our case.
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FIGURE 4 | Pre-processing data.

FIGURE 5 | (A–C) data collection in one trail for subject 1 (D). Example of filtering data for subject 2.
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FIGURE 6 | Combining channels.

FIGURE 7 | Example for data processing 1.
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FIGURE 8 | Example for data processing 2.

The most accurate model for classification was selected and
used in the prediction step with the testing data. All parameters
of any model were kept the same in both classification and
prediction step.
Definition (Figure 9):

- Classification accuracy: the accuracy of the classification using
75% of the data for train step. The model of highest accuracy
was selected to use in the prediction step.

- Accuracy on the testing data: the accuracy of prediction using
25% of the data for the prediction step. In this step, the
prediction model was exported from the selected model in the
classification step and apply it for the new data (25% testing
data).

RESULTS

Subject-Dependent Classification Analysis
Data for each channel for each subject were separated for the
purposes of training and prediction. The classification between
driving only, driving with a 1-back task, and driving with a
2-back task showed a good performance and a high accuracy (the
classification accuracy increased from 81.30 to 95.40%, and the
accuracy for the testing data increased from 82.18 to 96.08%)
(Video 1). Details of the accuracy are shown in Table 1.

Subject-Independent Classification

Analysis
With the main arm of comparing the effects of individual
characteristics on the accuracy of classification, we also
performed a classification with the data for each channel for
all subjects. The results are shown in Figure 10. The accuracies

in classifying the driver’s mental workload from each channel
were found to be in the range 84.9 to 89.5%, and the accuracy
in predicting testing data increased from 84.08 to 89.91%.
These results indicated that individual characteristics affected the
accuracy of classification of the mental workload.

Channel-Independent Classification

Analysis
Before combining the data from all channels from the NIRS
together, we performed a multiple comparison of oxy-HB and
deoxy-HB levels for all the channel data from each subject in
the same task by means of a Bonferroni test. The results showed
that there was no significant difference between the data from
the various channels in the same task (the p-value in all cases
was >0.05). According to the result, we decided to combine the
data from all the channels together when checking the accuracy
of classification.

First, the data from the four channels for each subject
were combined to test the accuracy of classification. The
results of this classification are shown in Figure 11. The
accuracy of classification increased from 80.8 to 88.6%, and
the accuracy on the testing data increased from 83.4 to 88.2%.
This shows that acceptably accurate results of classification can
be obtained simply by combining the data for the various
channels.

Subject-Independent +

Channel-Independent Classification

Analysis
Finally, to examine the potential for creating a system real-time
classification of driver cognitive load to prevent accidents, we
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FIGURE 9 | Classification accuracy and prediction accuracy.

TABLE 1 | The classification accuracy (the accuracy on the testing data) (%).

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Channel 1 94.0 (93.3) 95.4 (96.1) 91.4 (91.3) 92.1 (91.3) 89.7 (91.1)

Channel 2 88.9 (87.9) 92.1 (88.3) 89.7 (89.9) 92.6 (92.3) 87.3 (91.0)

Channel 3 92.9 (90.4) 89.8 (90.6) 91.9 (88.7) 85.2 (82.3) 83.0 (86.4)

Channel 4 94.4 (92.5) 89.9 (90.0) 87.8 (89.5) 85.7 (85.4) 81.3 (82.2)

combined the data from all the channels and all the subjects
and we used the combined date to train the classification. We
then examined the effect of this combination on the accuracy
of classification and on the accuracy of prediction. As expected,
the accuracy of classification was 82.9% and the accuracy of
prediction was 82.71%, which were similar values to those
previously obtained. This showed that that the position of the
channel on the forehead did not have a significant effect on
the accuracy, and it confirmed that a compact NIRS device
can capture the cognitive distraction of a driver, even under
naturalistic conditions.

Compare with the result done by Naseer and Hong (2015)
and Hong et al. (2015), which was used fNIRS signal, and
then show the possibility of the hybrid feature extraction to
classification with motor imagery tasks. The highest classification
accuracy was around 77.5% with multi-class LDA. Furthermore,
the classification of the right—and left—wrist motor imageries
also done by Naseer and Hong (2013) using fNIRS information.
By reducing the time span within the task period to 2–7 s, the
accuracy for classification was increased to 77.56 and 87.28%.
Here, we performed the classification with a machine learning
algorithm and get better results with accuracy around 82.9% (in
the case of subject-independent + channel-independent). The
different of the accuracy may depend on the difference in mental
workload level, different experiment condition, and so on.

DISCUSSION

Model Selection for Classification of NIRS

Data
As we have mentioned above, most previous researchers have
used an SVM (Devos et al., 2009; Ichikawa et al., 2014; Aghajani
et al., 2017), linear discriminant analysis (Luu and Chau, 2009),
the hidden Markov model (Sitaram et al., 2007; Zimmermann
et al., 2013), or artificial neural networks (Chan et al., 2012;
Thanh Hai et al., 2013) to classify mental workload. In this
study, we trained the data with some new models, such as the
k-nearest neighbors model (k-NN) and the bagged tree (random
forests) model, depending on the number of samples. Our results
showed that the random forests model provided the highest
accuracy, even with large numbers of samples, whereas the cubic
SVM showed the worst performance (The average accuracies of
each model in all previous analyses are shown in Figure 12). In
addition, the k-NN model is also suitable for classifying mental

workloads by using NIRS data because of its ability to maintain

similar levels of accuracy even when the sample size changes

markedly.
The SVM, a well-known method that has been previously

applied in various classifications of NIRS data, showed very good

performance with small numbers of samples. However, when

there were large numbers of samples, the SVM was very slow

and its accuracy was low compared with other methods. For

example, in the case of a channel-independent test for Subject

1, where the sample size was over 15,000 samples, the accuracy

of the SVM was 68.2%, compared with 87.3% for the random

forests method and 88.6% for the k-NN classifier. In addition,
the SVM took 1,341 s to perform the classification, whereas the k-
NN classifier required only 88.6 s. Similar effects were observed in
subject-dependent and subject-independent classifications. The
sudden reduction in the accuracy of the SVM might arise from
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FIGURE 10 | Subject-independent classification accuracy.

FIGURE 11 | Channel-independent classification accuracy.

differences in the data after data combination, as well as from
effects of individual characteristics.

On the other hand, the way to select testing sample also plays a
very importance role in the classification. In our case, we selected
the testing sample following X→ X→ X→ Y→ X→ X→ X→
Y→ X . . . , where X is a sample taken for the 75% and Y is a
testing sample. It may make the nearest neighbor classifier that
will perform very well, probably because the variation from Y to
its neighbors in time (the X before and after Y) will be very low.

We also believe that for higher numbers of subjects, a
lower accuracy is attained for subject-independent classification.

Consequently, for large numbers of subjects, the machine-
learning algorithm should be changed to a deep learning or
convolution neural-network algorithm, which can still show
good performance with large quantities of data.

The Potential For Using NIRS Data to

Evaluate Levels of Driver Mental Workload
This study is one example of the application of machine learning
in classifying driver mental workload from data obtained with
a simple commercial NIRS device, which has a high potential
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FIGURE 12 | Model performance in Subject-dependent test.

for routine use with drivers because of its acceptable price.
However, we believe that the use of a combination of channels
for NISR is necessary because signal losses tended to occur often
under naturalistic conditions. In some cases, however, one or two
channels provided sufficient signals due to the activities of the
driver.

The ability to unobtrusively detect changes in mental
workload is relevant since high levels of cognitive load can
reduce a driver’s ability to anticipate and respond to emergent
dangers in the driving environment. Broadly considered, these
findings suggest various lines of potential research related to
the development of advanced driver assistance systems (e.g., a
new method to prevent accidents by detecting levels of mental
workload that may lead to cognitive distraction), basic human
factors insight (exploring the relationship between individual
characteristics and objective indicators of mental workload), and
mathematical modeling (combining channel, improve accuracy
by applying different technical).

In conclusion, as previously suggested (Kopton and Kenning,
2014; Unni et al., 2017), simple NIRS has considerable
potential for capturing driver mental workload, especially under
naturalistic conditions.

LIMITATIONS

The relatively small sample size used in this study (a total
of 5 subjects including one female and four males) could be
considered a limitation. While we believe that the NIRS signals
were found to be predictive for this small sample under our
specific set of conditions, it would be worthwhile to repeat the
experiment with a larger sample and a wider range of conditions
(e.g., driving track, time of day, gender balance, driver skill level,
age, etc.).

CONCLUSIONS

Our study suggested that it is possible to use NIRS data to classify
levels of driver mental workload, even in a naturalistic situation.
Furthermore, a simple combination of forehead channels was
shown to provide acceptably high accuracies of classification.
While the fNIRS sensors employed in this study required
contact with the participants’ skin, the lightweight ball cap
configuration was much less intrusive than more traditional
electrophysiological measures used in related work. We also
confirmed the potential of using machine learning (channel-
and subject-independent) to predict possible driver cognitive
distraction, a critical factor in road safety.
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The analysis of neurophysiological changes during driving can clarify the mechanisms

of fatigue, considered an important cause of vehicle accidents. The fluctuations in

alertness can be investigated as changes in the brain network connections, reflected in

the direction and magnitude of the information transferred. Those changes are induced

not only by the time on task but also by the quality of sleep. In an unprecedented

5-month longitudinal study, daily sampling actigraphy and EEG data were collected

during a sustained-attention driving task within a near-real-world environment. Using a

performance index associated with the subjects’ reaction times and a predictive score

related to the sleep quality, we identify fatigue levels in drivers and investigate the shifts

in their effective connectivity in different frequency bands, through the analysis of the

dynamical coupling between brain areas. Study results support the hypothesis that

combining EEG, behavioral and actigraphy data can reveal new features of the decline

in alertness. In addition, the use of directed measures such as the Convergent Cross

Mapping can contribute to the development of fatigue countermeasure devices.

Keywords: drivers, fatigue, sleep, actigraphy, EEG, effective connectivity, Convergent Cross Mapping

1. INTRODUCTION

Fatigue is a complex, dynamic, multidimensional construct involving subjective, behavioral, neural,
and physiological processes that interact over varying timescales across a milieu of tasks and
environmental contexts, making it difficult to operationally define and measure in a consistent
or unitary way for scientific investigation. This study considers two different sources of fatigue
operating on different timescales that interact in complex ways and vary both across individuals
and within individuals over time. The first source of fatigue (or sleepiness) is related to circadian
rhythms or sleep-wake cycles (sleep-related, e.g., acute or chronic sleep deprivation leading to
sleep pressure) and the second source is related to the nature, complexity, and duration of the
current task one is performing (task-related, e.g., task difficulty or demand, time-on-task which
may lead to ones disinclination to continue performing a particular task). The importance of
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distinguishing between sleep- and task-related fatigue is that
they reflect two conceptually distinct and separable sources
of potential variations in performance and underlying brain
mechanisms and require different mitigation strategies (May and
Baldwin, 2009; Balkin and Wesensten, 2011). However, these
underlying processes may interact in complex ways. Fatigue
may lead to the decline of cognitive functioning and lapses in
attention. It has cumulative and persistent effects in daytime
performance (Belenky et al., 2003) and is considered a major
factor in traffic accidents caused by human errors (Inoue and
Komada, 2014).

Fatigue diminishes road safety, accounting for approximately
25% of car accidents (Brown, 1994) and 57% of commercial truck
accidents (Bonnet and Arand, 1995). Young people around 20
years old are particularly vulnerable to fatigue-related accidents
(Pack et al., 1995). Generally speaking, fatigue is also associated
with increased stress and impaired cognitive performance at
work (Härmä et al., 2006). The effects of fatigue can vary
over various timescales depending on task and context, but
are generally classified as acute (sudden onset, relieved by rest)
or chronic (persistent, lasting from days to years) which vary
from poor accomplishments to health and security problems
(Spurgeon et al., 1997).

Understanding antecedents and consequences of fatigue
and having a capability to predict fatigue-related performance
decrements is a matter of public safety and wellness. When
there is a risk of error or accident, the individual alertness and
cognitive performance can be measured and the attention lapses
can be putative. Specifically about drivers, biomathematical
models have been developed to associate fatigue levels with
working patterns. For instance, the circadian information, which
is linked to task performance (Harrison et al., 2007), can be
recorded from activity and rest periods and then processed
by those models to estimate sleep quality and to infer sleep-
related fatigue. From several biomathematical approaches we
choose the Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE)
(Hursh et al., 2004), which records data of circadian rhythm,
homeostatic drive, and sleep inertia, to characterize the sleep-
awake history of drivers. The results of SAFTE has been validated
as a neurobehavioral performance predictor in laboratorial and
real-world environments (Dawson et al., 2011).

Another important resource to investigate and predict drivers’
fatigue is the qualitative and quantitative EEG analysis, which
has been used to unveil the relation between brain activity or
brain network changes and the decline in alertness (Huang
et al., 2015, 2016; Lin et al., 2016). The findings link behavioral
performance with changes in EEG power spectrum and in the
default mode network, suggesting that significant neural circuits
must be activated to sustain performance and prevent attentional
lapses. The investigation of those correlates is based on the
brain connectivity theory and considering the alert-drowsiness
transitions as an emergent effect of a complex system.

To analyze the underlying brain circuitry in the fatigue
phenomenon, concepts of functional and effective connectivity
can be applied. The first one refers to the statistical dependence
in the neuronal activity and the second quantifies the influence
that one brain area exerts over another (see Friston, 2011 and

Goldenberg and Galvn, 2015 for definitions and techniques).
Those concepts allow different interpretations and can be
complimentary (Friston et al., 2013).

Functional connectivity can be undirected as in correlation
and coherence measures, or directed as in Granger Causality
(GC) (Granger, 1969) and transfer entropy (Schreiber, 2000).
Multivariate extensions of GC such as directed transfer
function (Kaminski and Blinowska, 1991) and partial directed
coherence (Baccalá and Sameshima, 2001) allow time-varying
and frequency-selective analysis (see Barnett and Seth, 2014
for theoretical basis and numerical simulation of several brain
connectivity estimators based on GC). Effective connectivity
measures consider the directed integration in neuronal
macrocircuits as in the dynamic causal modeling (Friston et al.,
2003). The methodology choice relies on the assumptions of the
underlying mechanism.

In our analysis, we considered dynamic emergent effects
from coupling variables and the effective connectivity approach
was selected. The study was performed using the Convergent
Cross Mapping (CCM) (Sugihara et al., 2012). CCM quantifies
the directed interactions considering non-linear and linear
components, stationary and non-stationaty features in bivariate
or multivariate systems (McCracken and Weigel, 2014; Hirata
et al., 2016; Jiang et al., 2016). CCM detects the causal relation
strength and information exchanged between signals, assessing
the synchronization features through the correspondence of
the reconstructed phase-spaces, obtained from time-delay
embedding coordinates. CCM has provided new insights into
physiological states by considering the brain as a complex
network system (McBride et al., 2015; Schiecke et al., 2017).

This work analyzed the brain network changes of drivers by
the shifts in the effective connectivity expressed in the CCM
oscillations. Moreover, this work investigated the modulation of
the power spectra by those shifts. To assess possible CCM-power
correlations, we first decomposed the EEG signals into different
frequency bands prior to evaluating causal relations, providing
information about effective connectivity changes for each neural
rhythm. Using this procedure and the properties of dynamical
coupling, it is plausible to assume that the CCM from the source
signal to the target signal can modify dynamically phase and
amplitude of the target observation. This principle is supported
by fMRI studies such as Baechinger et al. (2017).

This methodology aims to detect changes in brain dynamics
associated with the task-positive network of drivers to
characterize alert and fatigue states during the simulated
driving task. We combine EEG and non-EEG (subjective and
behavioral data) recordings in the context of non-stationary
data. For EEG signals, we choose to explore causal features in
the reconstructed phase space considering the sources near the
Frontal Midline and Parietal Midline brain areas. Our approach
was based on the importance of dominating brain regions during
driving to detect fluctuations in attention (Lin et al., 2016) and on
the evidence of specific connectivity patterns in cortical regions
related to behavioral microsleeps, a inherently non-stationary
phenomena (Toppi et al., 2016).

The present study begins with a description of the subjects,
the actigraphy data used to define levels of sleep-related fatigue
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and of the realistic sustained-attention experiment, detailing
the EEG data, and Reaction Time (RT) acquisitions. The
information of those sources was combined to test the hypothesis
that driving performance impairment in fatigued drivers is
associated with effective connectivity shifts. Second, we define
a Driver Performance (DP) index, explained the phase-space
reconstruction procedure (needed for the CCM evaluation) and
presented a simulation study to test CCM efficiency in a brain
connectivity model. Next, we describe the statically analysis of
DP, CCM, and power values over the sleep-related fatigue levels.
Finally, we show the results and conclude our work with a
discussion of the different brain network patterns detected in the
sleep-related normal and fatigued levels.

2. MATERIALS AND METHODS

2.1. Subjects
Seventeen healthy university students, 13 males and 4 females,
with normal or corrected to normal eyesight, no neurological,
or psychiatric disorders, aged 22.4 ± 1.5 years, all right-
handed, from National Chiao Tung University (NCTU) in
Taiwan participated in this study. The experimental protocol of
the sustained-attention task was approved by the Institutional
Review Board and written informed consent was obtained from
each participant after a full explanation of the study.

2.2. Actigraphy Data Acquisition and
Fatigue Level
As a part of a Daily Sampling System (DSS), the subjects used a
wrist-worn device (Fatigue Science ReadibandTM), which records
circadian, homeostatic and sleep inertia processes on a minute
basis. This device incorporates the information collected in the
last 3 days and, applying the biomathematical model SAFTE,
provides a putative performance level called Effectiveness Score
(ES), which can be easily read from the device. Based on this
score, we classified the subjects into three levels of sleep-related
fatigue, Normal (NO) for ES greater than 90%, Reduced Risk
(RR) for ES between 70 and 90%, and High Risk (HR) for ES
smaller than 70%. TheHR level of sleep-related fatigue represents
a putative performance comparable to subjects with 0.08 blood
alcohol level or awake for 21 h. For more information about
the SAFTE model and ES use/validation see Hursh et al. (2004),
Hursh et al. (2006), and Russell et al. (2006).

2.3. Experimental Paradigm and Sessions
In this sustained-attention experiment we adapted the Lane
Keeping Task (LKT) as the driving paradigm (Huang et al., 2016),
where subjects must maintain the cruising position on the central
lane and compensate randomly induced vehicle deviations by
turning the steering wheel (see Figure 1). The experiment was
conducted at the Brain research Center at NCTU using a realistic
driving simulator (Chuang et al., 2012). The ES of the subjects
(reflecting the sleep quality of previous nights) were tracked
and reported automatically. They were asked to come to the
lab when a desirable score is detected, respecting a balance
among the sleep-related fatigue levels NO, RR, and HR. Each
LKT session lasted 30 min. Before it, they were instrumented

with the EEG and asked to sit and stay quiet for 2 min. The
experimental paradigm simulated a night-view cruising and
the lane departures were equally distributed between left and
right deviations. Perturbations were presented at intervals of
approximately 1 every 7 − 12 s jittered to prevent anticipatory
reactions of the drivers (resulting in approximately 180 events
per session). If there is no response to the deviation, the simulated
vehicle hits the curb and keeps its movement with no feedback to
the subject.

During a longitudinal study spanning a 5-month period of
daily sampling, 12 subjects were able to complete 3 sessions
within each of the three levels of the ES. The rest of the
participants completed at least 2 sessions within two classification
levels. The subjects attended the sessions within 1 − 3 week
intervals and the total number of completed EEG sessions was
141.

2.4. EEG Data Acquisition and
Preprocessing
A 64-channel EEG system (Neuroscan Inc.) was used to collect
EEG data during the driving task, with channel locations
measured by a 3D digitizer following the international 10-20
system. The sampling rate was 1,000 Hz and the impedance was
kept below 5K� for all electrodes. The ocular and muscular
artifacts were identified in epochs with an amplitude exceeding±
70µV (see Figure S1 in Supplementary Material for an example)
and removed by visual inspection (Tatum et al., 2007; Tandle
et al., 2016). The signals were band-pass filtered between 0.5
and 50 Hz and then downsampled to 500 Hz. For our analysis,
we selected brain areas and respective channels described in the
Table 1, based on Lainscek’s study (Lainscsek et al., 2013). Our
analyses focused on the EEG signals 1 s (or 500 points) before
each lane-departure event. This choice aims to capture the tonic
modulations of attention and engagement during a sustained
performance in simulated driving tasks and it was based on the
studies of Huang et al. (2007), Chuang et al. (2014), and Lin et al.
(2016).

2.5. Hypotheses
We hypothesize that the lack of attention in drivers emerges
from the interaction of neurobiological mechanisms associated
with sleep- and task-related fatigue processes. More specifically,
the performance decrements in fatigued drivers are accompanied
by effective connectivity changes in several brain areas tied
to different spectral behaviors associated with the real-world
distractors, resulting in different patterns of the neural rhythms
augmentation or suppression.

2.6. Reaction Time and Drive Performance
Defined as the elapsed time between the lane departure onset
and the response onset, the Reaction Time (RT) has been used by
several studies to detect subjects’ fluctuations of performance in
the simulated driving tasks (Huang et al., 2016; Lin et al., 2016).
Short RTs are expected from alert drivers who respond quickly
to cruising perturbations whereas drowsy drivers tend to react
slower and produce longer RTs. To alleviate inter- and intra-
subject variability, we define a Normalized Reaction Time (NRT)
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FIGURE 1 | Lane Keeping task experiment. Subjects have to steer the wheel, when the realistic simulated vehicle is drifting away from the original cruising lane, to

compensate the perturbation. There are no acceleration and brake controls; simulated cruising speed was kept constant at 45 mph.

TABLE 1 | Brain areas and the respective selected channels for the effective

connectivity analysis.

Areas Channels

Left anterior F1 F3 F5

Right anterior F2 F4 F6

Left motor FC1 FC3 FC5 C1 C3 C5

Right motor FC2 FC4 FC6 C2 C4 C6

Frontal midline FCz Cz

Left parietal CP3 CP5 TP7 P3 P5 P7

Right parietal CP6 CP4 TP8 P4 P6 P8

Parietal midline CPz Pz

Left occipital PO3 PO7 O1

Right occipital PO4 PO8 O2

For each session, the measures applied in this work were derived from single trials,

normalized to the baseline information and then averaged over channels.

dividing the RTs by the average of the 10% shortest values within
each session (sorted in ascending order). For our analyses, we
consider a RT lower bound 1 s and upper bound 4 s to analyze
transitions from alert to drowsy states. Subjects with NRT out
of this interval are considered in very high or very low vigilance
states. In the literature, significant changes in power spectra and
in directedmeasures were empirically observed between 2 and 3 s
(Chuang et al., 2012; Huang et al., 2015, 2016; Lin et al., 2016).We
used a logistic transformation to rescale the NRT to those limits,
defining a Driving Performance (DP) index (Huang et al., 2015):

DP(NRT) =
2+ 2e−0.5

(1+ e−0.5NRT)(1− e−0.5)
−

1+ e−0.5

1− e−0.5
.

Notice that DP(1) = 1, DP tends to approximately 4.08 as NRT
tends to infinity and it exhibits a close linear relation for NRT
between 1 and 4. After the transformation, we set DP = 1 for
DP < 1 and DP = 4 for DP > 4. Therefore, DP maps the
unbounded NRT to the interval [1, 4].

2.7. Phase-Space Reconstruction
Given an EEG signal, X = {x1, ..., xn}, the spatial and time-
delayed embedding coordinates are defined as Xvec = {

−→xi =

(xi, xi+τ ,, ..., xi+(m−1)τ ); i = 1, ...,N} where N = n − (m −

1)τ . The embedding parameters m and τ can be determined
independently using the non-parametric Kozachenko-Leonenko
estimator (Kozachenko and Leonenko, 1987), as done by
Gautama, Mandic and Hulle (GMH) (Gautama et al., 2003). This
procedure avoids oversampled trajectories and autocorrelated
data effects (Kennel and Abarbanel, 2002). Using the GMH
approach for the EEG signals from all subjects and sessions (more
details and applications in Baggio and Fonseca, 2011; Fonseca
et al., 2015), we obtained m = 4 and τ = 1, respectively the
maximum embedding dimension and minimum time lag found
(see section 3.4 in SupplementaryMaterial for the reconstruction
Matlab script).

2.8. CCM
Given two EEG signals X, Y with length n, we calculate the
phase space reconstruction coordinates Xvec with embedding
parametersm and τ . For i = 1, . . . ,N where N = n− (m− 1)τ ,
we consider each vector −→xi (representing the system dynamical
evolution) and obtain:

1 - the distances from −→xi to all other states in Xvec:
Di = {d(−→xi ,

−→xj ) , i 6= j}, where d represents the euclidean
distance between vectors.

2 - the distance-related weights: ui = e
−d(−→xi ,

−→xj )

min , where min is
the minimum distance found in Di calculations.

3 - the normalized weights: wi =
ui

N−1∑

j=1

uj

.

4 - the scalar y-value estimated by Xvec: ŷi =

N−1∑

j=1

wjyj.

We define the CCM from the source signal X to the target
signal Y , as the correlation between Ŷ = {ŷ1, ..., ŷN} and
Y = {yn−N+1, ..., yn} where N = n− (m− 1)τ .

Notice that steps 1 to 3 are about X information and, in step
4, we use the temporal correspondence between Xvec and Yvec

to predict Y information, where the weights defined in step 3
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are the highest for the closest neighbors. By definition, CCM is
asymmetric and lies in the interval [−1, 1] (see section 3.5 in
Supplementary Material for the CCMmain Matlab script).

To test the efficiency of CCM, following the ideas reported
in Ball et al. (2016), we designed a brain connectivity model
with eight coupled damped oscillators sources (see Figure 2,
left panel) defined by Autoregressive Processes (AR) of order 5.
Sources 1 to 4 are coupled and located in the Anterior Cingulate
Cortex (ACC) with respective rhythms 8, 10, 11, and 12 Hz,
defining an alpha cluster. Sources 5 to 8 are coupled and lie in the
Posterior Cingulate Cortex (PCC) with respective frequencies 20,
22, 25, and 30 Hz, configuring a beta cluster. The simulation was
performed in three stages of 5 s each. ACC and PCC clusters are
disconnected in stages 1 and 3 and coupled during stage 2. Intra-
and inter-cluster couplings were defined by Gaussian mixture AR
models.

Aiming the analysis of the changes at the causal relationship
between the ACC and PCC clusters in the channel level, we
used a Boundary Element Method (BEM) from the SIFT toolbox
(Mullen, 2012) to generate 64-channel EEG signals. This realistic
forward head model projects the source activations to the scalp
using the “colin27” brain atlas as the reference (Holmes et al.,
1998). Varying the white-noise variances in the AR processes
from 0.1 to 1 s (step 0.1 s), we simulated ten 64-channel EEG
signals with the sampling frequency of 200Hz (see sections 3.1
to 3.3 in Supplementary Material for the SIFT settings).

We decomposed the signals into the alpha and beta bands and
calculated CCM in windows of 0.25 s (20 points per stage) from
the channels in the Left and Right Anterior areas to the ones in
the Left and Right Posterior areas (see Table 1). The averaged
CCM over channels (see Figure S2 in Supplementary Material
for the flowchart of simulation study). is plotted for each noise
level in Figure 1, right panel. The observed changes in the causal
outflow from anterior to posterior channels are consistent with
the brain connectivity model defined at the source level. CCM is
robust to noise and insensitive to linear mixtures.

2.9. Statistical Analysis
Considering 141 sessions and an average number of 143 events
per session (total of 20, 182 events), we checked the statistical

significance of CCM from source to target areas selected in this
work. We performed a bootstrapping approach using surrogate
data with the same power spectrum of the original signals (Baggio
and Fonseca, 2011). A Wilcoxon rank sum test was used with 1%
significance level to verify the null hypothesis that the original
data, epochs of 1 s before the events for each subject and session,
and its surrogates have the same distribution of the CCM values.
The null hypothesis was rejected for all sessions indicating that
the causal relations are a genuine non-linear feature of the data.

For each session and event, the signals were decomposed into
the bands θ : [4.5 , 7.5] Hz; α : [7.5 , 12.5] Hz; β : [12.5 , 20]
Hz and γ : [25 , 40] Hz, using a FFT procedure. For each
band, CCM from source to target channels were calculated in
the sessions. Considering in each session the baseline set as
the CCM values corresponding to the 10% shortest DPs (in
ascending order), CCM were normalized by subtracting the
median and dividing by the quartile dispersion of the baseline
set. Then, the normalized CCM values were averaged over
channel pairs belonging to source and target areas (see Table 1

for the channel sets definition), defining a baseline relative
causal relation between areas. See Figure 3 for the event signal
processing pipeline. The same pipeline was applied to the spectral
analysis calculations considering only the target channels Y . The
spectral analysis was performed using the FFT procedure in
Matlab (2012b). The results presented in this work will be always
relative to the baseline set within sessions and averaged over
channels.

The normalized CCM and spectral values from all subjects
and sessions were aggregated, sorted by DP, and then separated
in the three levels of sleep-related fatigue NO, RR, and HR with
respective sample sizes of 6811, 7136, and 6235.

The significant statistical difference for the normalized CCM
values between categories was analyzed by two criteria: the
distribution difference was validated by the Wilcoxon rank sum
test with 1% significance level, and the slope difference was
checked by the F-test with 1% significance level as well.

CCM-DP, power-DP, and CCM-power statistical relations
were investigated by the Pearson’s correlation (see Figure S3 in
Supplementary Material for a flowchart of the overall process).

FIGURE 2 | Illustration of the simulated eight dynamically coupled sources (Left) from the brain connectivity model performed in three stages of 5 s each. On stages

1 and 3 the alpha cluster in ACC and beta cluster in PCC are only intra-coupled. On stage 2, the clusters are intra- and inter-coupled. The source activations were

projected to the scalp using a BEM forward head model. The 64-channel EEG signals were simulated for 10 different levels of noise and then decomposed into the

alpha and beta bands. Averaged CCM values from anterior to posterior channels (Right) were consistent with the changes in the inter-cluster coupling during the

stages.
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FIGURE 3 | Event signal processing pipeline for the CCM values from source channels X to target channels Y . The power analysis for the target channels was

conducted using the same steps.

3. RESULTS

3.1. NRT and DP Distributions
The RTs were extracted from lane departure events for the 17

subjects and under three different sleep-related fatigue levels

(defined by the quality of sleep). For each session, the NRTs were

derived and then the DP indexes were obtained. Table 2 shows
the descriptive statistics across NO, RR, and HR conditions
defined by the ES. The NRT and DP distributions are skewed

to the right due to slow reactions of fatigued drivers and
the experimental paradigm (no feedback for hitting the curb).

Their distributions are super-Gaussians (Lee et al., 1999) with
one and two peaks, respectively, as shown in Figure 4. The
logistic transformation in the DP calculation was able to decrease

the normalized reaction time variance and keep the quartile
dispersion in the same order of magnitude than NRTs, i.e.,
a non-linear transformation with close to linear effects. The
conversion from NRT to DP is a useful procedure for correcting
experimental distortions and rescaling an unbounded measure to
a more practical behavioral performance index.

Also shown in Figure 4, the NRT-DP transformation keeps
the ascending order among the sleep-related fatigue levels, for the
NRTs- and DPs- distribution means and the peaks (lower values
for HR, middle for NO and higher for RR). In the DP domain, it
is clearly seen a higher probability of 4 (drowsy state) in the HR
level of sleep-related fatigue, not noticed in the NRT domain. The
DPs fit the interval [1, 4] (by definition) and reveal new features
in the changes of alertness levels.
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TABLE 2 | Descriptive Statistics of NRT and DP across the sleep-related fatigue

levels NO, RR, and HR.

Normal Reduced risk High risk

Number of events 6811 7136 6235

NRT

Mean 1.9172 2.0589 2.8199

Standard deviation 1.6897 3.2471 9.2638

Quartile dispersion 0.2331 0.2581 0.2935

DP

Mean 1.6873 1.7046 1.8858

Standard deviation 0.5986 0.6274 0.7987

Quartile dispersion 0.22097 0.2315 0.2579

The transformation NRT to DP provides distributions with lower variability, but with similar

quartiles dispersion structure.

3.2. CCM Oscillations Indexed by DP
We first analyzed the relation between the normalized CCM
and DP values. For different target areas and bands, the CCM
values exhibit a strong oscillatory behavior in DP between 1 and
2. For DP between 2 and 4, a nearly monotonic behavior was
noticed and the Pearson’s correlation was evaluated. Considering
the two categories of sleep-related fatigue NO and HR, for more
than 90% of the 144 cases (2 source areas × 9 target areas × 4
frequency bands × 2 categories), the causal relations exhibited
a strong positive or negative correlation (absolute value greater
than 0.7) with the performance index DP. The strong correlation
for the RR level of fatigue was not observed in this case. In the
Figure 5, the top panel shows the normalized CCM values from
the source, Frontal Midline, to the target, Parietal Midline areas,
sorted by DPs, for the four frequency bands and three levels of
sleep-related fatigue NO (blue), RR (green), and HR (red). In
short DP’s, between 1 and 2, related to alert states, it’s possible
to observe a mirror pattern between NO and HR levels. In the
longer DP’s, related to drowsy states, we observe different trends
in the nearly monotonic behavior between the same two levels.

Table 3 shows the significant changes in the normalized CCM
values of sleep-related fatigue levels NO vs. HR, for DPs between
2 and 4, where a nearly monotonic behavior was observed.
The source of the dynamical coupling was the Frontal Midline
area and the targets were the other selected areas represented
in different rows. For several targets and bands, the HR- and
NO-normalized CCM values have different distributions and
slopes. Gray background cells in Table 3 indicate simultaneous
significantly statistical differences in distributions and slopes
(considering the significance level of 1%) between the two levels
of sleep-related fatigue, i.e., it points out the targets and bands
where the causal relations have different trends (positive and
negative slopes) with different probability of occurrences.

We also investigated the effective connectivity from the
source, Parietal Midline, to the other selected targets. Although
CCM is not symmetric by definition, the causal relations from
the Parietal Midline to Frontal Midline are similar to its opposite
direction values, indicating a bi-directional causation between
those two areas. Table 4 shows the statistical analyses of the

normalized CCM values from the Parietal Midline area between
levels NO and HR, to different targets at different frequency
bands, as shown in Table 3.

3.3. Spectral Power Indexed by DP
The relation between normalized EEG power and DPwas studied
for all ten areas defined in Table 1, for the bands δ,α,β , γ , and
for the two categories of sleep-related fatigue NO and HR. In
Figure 5, for instance, the bottom panel shows the fluctuations of
the normalized power in different bands, for the Parietal Midline
area.

As for the normalized CCM values, the normalized power in
the targets exhibits an oscillatory behavior for DP less than 2. For
the DP higher than 2, we observed a nearly linear behavior. In
this domain, between 2 and 4, the Pearson’s correlation between
power and DP were calculated and the results exhibited a strong
positive or negative correlation (absolute value greater than 0.75)
between spectral activity and the performance index for more
than 90% of the 80 cases analyzed.

3.4. CCM-Power Correlation
After exploring the CCM-DP and power-DP relations, the
next question is how CCM and spectral power interacted
considering the same target area. The procedure of evaluating
the causal relation to a specific target in different frequency
bands allows a natural connection with spectral power in
the same target. Considering the source of CCM as the
Frontal Midline and Parietal Midline areas, we restricted our
study to the cases where the distributions and slopes were
significantly different between the levels of sleep-related fatigue
NO and HR, marked as gray in Table 3. Table 5 lists the
correlations between normalized CCM values (considering
both sources) and normalized spectral power sorted by
DPs.

4. DISCUSSION

This study observed a group of young university students in
their natural environment during a 20-week semester.We believe
our subjects are a representative sample of healthy young adults
in real-world environments, with expected high levels of stress
and irregular sleep (Lund et al., 2010). With the sustained-
attention experiment, we aim to understand the connections
between those subjective parameters and the performance
decrements in sleep-related fatigue, characterizing its variability
and instability (Chua et al., 2014). To achieve this goal,
the starting point was the signal-reconstruction process. The
embedding coordinates revealed different recurrence structures
linked to the three levels of sleep-related fatigue defined by
the ES. We consider that this representation was sensible to
the different quality and quantity of sleep across subjects,
quantifying behavioral and physiologic information from the
different fatigue states determined by the Readiband using the
SAFTE model.

The choice of the performance index to sort the normalized
CCM and power spectrum values was crucial. The NRTs exhibit
high variance and positive-skew distributions, an expected
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FIGURE 4 | PDFs of NRT (Left) and DP (Right) for the sleep-related fatigue levels NO (blue), RR (green), and HR (red). All distributions are super-Gaussian like. The

DP distributions exhibit a second peak, which is the highest for the HR level of sleep-related fatigue. The density was estimated at every 100 points.

FIGURE 5 | On the top are the normalized CCM values from the source area Frontal Midline to the target area Parietal Midline, sorted by DP . The bottom panels are

the normalized power for the target area, sorted by the same index. The EEGs considered were 1 s (or 500 data points) before lane-departure events and

decomposed into four brain rhythms. The subjects were classified by their ES into three sleep-related fatigue levels: NO (blue), RR (green), and HR (red). Possible

correlations between normalized CCM and spectral values in the same band were investigated in this work. The measures were averaged across each 100 events,

with standard deviation less than 10% of the mean value, and a moving-average filter with a window size of 0.5 s and a step size of 0.1 s was applied.

outcome since fatigued drivers can exhibit low performance,
failures (Huang et al., 2009; Liu et al., 2010), and even fall
asleep. As the subjects have no feedback from the driving
simulator when the vehicle hits the curb and maintains a
continuous cruising, the NRTs can deviate significantly from
the baseline. The transformation from NRTs to the DPs,

considering the interval [1, 4] to analyze the EEG correlates
of alertness-drowsiness transitions, alleviates this issue. As a
consequence of its nearly linear behavior we obtain lower
standard deviations, but with no robust changes in the data
structure observed in the quartile dispersion (see Table 2). The
DPs-distributions have two peaks, the second peak can be
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TABLE 3 | Statistical analysis of normalized CCM values in different bands (columns), considering the Frontal Midline area as the source and the other areas (rows) as

targets.

Source: Frontal Midline

Targets θ α β γ

NO HR p NO HR p NO HR p NO HR p

Left anterior −0.4455, 0.5050 (<10−4) 0.1723, 0.6949 (<10−4) −0.6168, 0.8107 (<10−4) −1.7217, 0.5473 (<10−4)

−0.0363, 0.7376 (<10−4) −0.1934, 0.3099 (<10−4) −0.1934, 0.3099 (<10−4) −1.863, 0.2306 (<10−4)

Right anterior −0.6473, −0.2415 (<10−4) 0.2379, 0.3733, (0.0040) −0.0364, 0.5440, (<10−4) −0.6130, 0.8925, (<10−4)

−0.1636, −0.0306 (0.0139) −0.1444, −0.01206 (0.0190) −0.1172, 0.2219, (<10−4) −0.0956, 0.71532 (<10−4)

Left motor −0.3352, −0.2282 (0.3771) 0.5908, 0.7794 (0.4944) −0.5266, 0.2940 (<10−4) −0.8709, 0.2390, (<10−4)

−0.0032, 0.4066 (<10−4) −0.1753, 0.6630 (<10−4) −0.2516, −0.2072 (0.2020) −0.5131, −0.2163 (<10−4)

Right motor −0.7234, 0.2485 (<10−4) −0.1045, 0.37740 (0.0015) −0.1504, −0.0984 (0.0343) −1.2960, 0.7357 (<10−4)

−0.1144, 0.9210 (<10−4) 0.3059, 0.6328 (<10−4) −0.1367, −0.0882 (0.0717) −0.6241, 0.2950 (<10−4)

Left parietal −0.4649, −0.5567 (0.582) 0.4727, 0.6611 (0.4533) −0.6212, 0.1600 (<10−4) −0.4561, 0.2505 (<10−4)

−0.3071, 0.1694 (<10−4) −0.2654, 0.7004 (<10−4) −0.2999, −0.0092 (<10−4) −0.1184, −0.1096 (0.8348)

Parietal midline −0.5704, −0.0533 (<10−4) −0.6464, 0.5359 (<10−4) 0.0687, −0.3857 (0.0001) −0.5312, −0.1902 (0.0026)

−0.2611, 0.1842 (<10−4) −0.1209, 0.0839 (<10−4) −0.2252, −0.6031 (0.0002) −0.3546, −0.4453 (0.2083)

Right parietal −0.7648, −0.4996 (0.0029) −0.8135, 0.4037 (<10−4) −0.06380, −0.4208 (<10−4) −0.9670, 1.1025 (<10−4)

0.1465, 0.3360 (<10−4) 0.2103, 0.2148 (0.9183) 0.2122, −0.2697 (<10−4) −0.4766, 0.3390 (<10−4)

For the sleep-related fatigue levels NO and HR, the distributions and slopes were analyzed for DP in the interval [2, 4]. In each cell, on the top, are the CCM means, respectively of

NO and HR categories, and the p-value for the Wilcoxon rank test inside brackets, with the null hypothesis that the two levels of sleep-related fatigue have CCM values with the same

distributions. On the bottom, are the slopes respectively of NO and HR values and the p-value for the F-test inside brackets, with the null hypothesis that those two levels have CCM

values with identical slopes in their linear regressions. Simultaneous significant probabilities shift and trend changes between NO and HR levels are indicated by the gray background.

See Figure 5 (top) to visualize plots of CCM from Frontal Midline to Parietal Midline areas.

TABLE 4 | Statistical analysis for normalized CCM values between NO and HR levels of sleep-related fatigue in different bands (columns), considering the Parietal Midline

area as the source.

Source: Parietal Midline

Targets θ α β γ

NO HR p NO HR p NO HR p NO HR p

Left motor −0.3324, −0.6485 (<10−4) −0.1870, 0.8239 (<10−4) −0.0292, −0.5834 (0.0003) −0.3783, 0.16174, (<10−4)

−0.1417, 0.1447 (<10−4) −0.5294, 0.0463 (<10−4) −0.2978, −0.7328 (0.0003) −0.5198, −0.2839 (0.0038)

Right motor −0.2939, −0.5015, (0.0002) −0.5207, 0.6376, (<10−4) −0.2758, −0.3164, (0.6054) −0.8973, 0.6191 (<10−4)

0.2246, 0.1532 (0.0126) −0.2958, −0.0573 (<10−4) −0.1883, −0.1997 (0.8385) −0.4069, 0.2053 (<10−4)

Left parietal −0.2060, −0.6120 (0.0002) 0.0133, 0.8920 (<10−4) 0.1918, 0.9166 (<10−4) −0.8330, −0.0814 (<10−4)

−0.0516, 0.4103 (<10−4) −0.1737, 0.1325 (0.0072) −0.1124, 0.4233 (<10−4) −1.1663, −0.1527 (<10−4)

Right parietal −0.9579, −0.2734 (<10−4) −0.3390, −0.0357 (<10−4) −0.3526, 0.0388 (0.0023) −0.4815, 0.9359 (<10−4)

0.4247, 0.1958 (<10−4) −0.1048, −0.1430 (0.1833) 0.3601, −0.4709 (<10−4) −0.1518, 0.2458 (<10−4)

Left occipital 0.9939, −0.7421 (<10−4) −0.8257, 0.5110 (<10−4) −0.3524, 0.3047 (<10−4) −0.4807, −0.4323 (0.4944)

0.9123, −0.1092 (<10−4) −0.4302, 0.1268 (<10−4) −0.2363, −0.2011 (0.3262) −0.6942, −0.2405 (<10−4)

Right occipital −1.0210, −0.0349 (<10−4) −0.7530, −0.4193 (<10−4) −0.9199, −1.4260 (0.6054) −1.2437, −0.1614 (<10−4)

0.0993, 0.0103 (<10−4) −0.1763, −0.1638 (0.7843) −0.2920, −2.0188 (<10−4) −0.9254, −0.4901 (<10−4)

The parameters and p-values are the same defined in Table 3. As done before, simultaneous significant probabilities shift and trend changes are indicated by the gray background.

attributed to the drowsiness state. For the HR level of sleep-
related fatigue, the second peak is the highest, which is consistent
with the putative fatigue level derived from the actigraphy data
(ES).

Both normalized CCM and spectral values were strongly
correlated (positively or negatively) with DPs between 2
and 4 in the levels NO and HR of sleep-related fatigue, as
illustrated in Figure 5. For the shorter DPs (lying in the

interval [1, 2]) when subjects were in the alert state under
the sleep levels NO and HR, different oscillations in several
sources and targets were observed, a mirror behavior,
indicating opposite shifts in the effective connectivity.
As for longer DPs (lying in the interval [2, 4]), where
subjects were drowsy, different trends and distributions
for the CCM values were found between the NO and HR
sleep levels, revealing again different shifts of the effective
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TABLE 5 | Pearson’s correlations for the normalized CCM-spectral values

considering the same target areas in different frequency bands for the

sleep-related fatigue levels NO and HR.

Targets NO HR

SOURCE: FRONTAL MIDLINE

Left anterior θ : 0.5622 0.9867

α : 0.9974 0.0684

β : 0.9773 −0.9129

γ : 0.9617 −0.9387

Right anterior β : 0.7320 −0.8859

γ : 0.0815 −0.9877

Right motor θ : 0.8766 0.9491

γ : 0.9920 −0.9716

Parietal midline θ : 0.7685 0.9666

α : 0.5330 0.9933

Right parietal β : −0.9527 0.9676

γ : 0.9938 −0.7273

SOURCE: PARIETAL MIDLINE

Left motor θ : 0.9319 0.9399

α : 0.9861 0.9038

Right motor γ : 0.9788 −0.8707

Left parietal θ : 0.6080 0.9916

α : 0.9180 0.1632

β : 0.6131 −0.9460

Right parietal β : −0.9363 0.9834

γ : 0.9389 −0.9494

Left occipital θ : −0.8264 −0.6177

α : 0.9674 0.6303

On the left, the source of CCM is the Frontal Midline Area. On the right, the source is

the Parietal Midline Area. The first column of each Table specifies the target areas. The

choice was based on the simultaneous significant differences in distributions and slopes

between those two levels (marked as gray in Tables 3, 4). Both measures were sorted

by DPs within the interval [2, 4]. See Figure 5 for the plots of the case from the Frontal

Midline source to the Parietal Midline target.

connectivity. Those results demonstrate that DP is an
efficient index to understand alertness-drowsiness transitions
(Huang et al., 2015).

The information transferred from the source areas Frontal
Midline and Parietal Midline to their neighboring areas during
the 1 s pre-stimulus period have different rates between
subjects in the NO and HR levels of sleep-related fatigue.
This difference can be attributed to specific patterns in the
effective connectivity related to behavioral microsleeps, reported
in Toppi et al. (2016). In both Frontal Midline and Parietal
Midline sources of connectivity, for almost all analyzed targets
(with the exception from the Parietal Midline area to the
Right Occipital area) the normalized CCM values, in some
frequency, have significantly different distributions, a negative
slope in the NO condition and a positive slope for the HR
of fatigue, indicating the ES classification (related to sleep
quality) can distinguish new features in the fatigued drivers
(with DPs between 2 and 4). In the HR fatigue level, for
the bands indicated in the gray background cells in Tables 3,
4, the normalized CCM values increase with the increments

in DP (with 3 exceptions), suggesting enhanced coupling
among the studied areas in the fatigued drivers with low sleep
quality.

The correlations between the normalized CCM and spectral
values are detailed in Table 5 and represent a novel application
to analyze the shifts in the effective connectivity in brain areas
during the sustained-attention tasks, allowing us to explore its
correlates with the subject fatigue level. We considered only
the couplings and bands where study results showed significant
differences in distributions and slopes of the causal relations
between the sleep-related fatigue categories. Strong positive and
negative values were derived.

The normalized CCM values sorted by DP with an increasing
magnitude indicates tonic changes of brain dynamics associated
with a decline in alertness (DP variation from 2 to 4 is associated
with sub-optimal and poor performances; Huang et al., 2015).
We focused our attention on those cases, where the CCM
values either increased with DP (a positive slope) or decreased
with DP (a negative slope). The effective connectivity measure
applied in this work is based on the dynamical coupling of
brain areas and can modulate the power spectra as reported in
Soldatenko and Chichkine (2014) and Lacot et al. (2016), where
new power peaks and the enhancement of the original harmonics
are associated with the increasing of coupling strength. In
brain networks, this modulation was noticed in the BOLD
signal analysis, where fMRI-based connectivity and frequency-
specific EEG power are related (Conner et al., 2011; Scheeringa
et al., 2012). So, it is reasonable to claim that strong CCM-
power correlations represent augmentation or suppression for a
specific oscillatory activity in the target areas. Taking this into
consideration, we combined the information from Tables 3–
5 and illustrated the brain network changes for the NO and
HR levels of sleep-related fatigue in Figure 6. In the figure,
the sources are indicated by the filled red circles and the
augmentation or suppression are represented, respectively, by
up and down arrows. The targets with significant differences
between levels (augmentation to suppression or vice-versa) are
indicated by red circles.

The γ band relates to the higher-order cognitive
activities for internal modeling of motor control to form a
representation shaping internal models to improve motor
performance, the suppression of this oscillation observed
in different areas for subjects in the NO and HR levels of
sleep-related fatigue could indicate the weakening in such
ability during fatigue. The γ rhythm suppression could also
suggest a weakening in the complex cognitive functions
related to attention and memory (Jensen et al., 2007)
expressed, for instance, in a difficult of maintaining visual
shapes in short-term memory (Tallon-Baudry et al., 1998),
reasonable for fatigued subjects (DP is higher than 2 in both
levels).

The θ frequency is related to cognitive control. The increase
of θ power is to coordinate activities of various brain regions
to update the motor plan in response to somatosensory inputs.
There is a suppression of this oscillation for subjects in the
NO level and augmentation for the HR level. This could
show the increase of the drowsy drivers’ efforts to maintain
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FIGURE 6 | Brain network changes for fatigued drivers (grand averages for DPs between 2 and 4) in the sleep-related fatigue levels NO (good quality sleep) and HR

(poor quality sleep). The Frontal Midline and Parietal Midline areas were considered sources (red filled circles) of the effective connectivity and the CCM-power

correlations were analyzed. Augmentation and suppression in the neural rhythms are indicated respectively by up and down arrows. The red circles indicate target

areas with different spectral activity (augmentation-suppression) between levels.

the similar driving performance. This significant increase
in the θ activity was also observed in drivers during the
transitional phase from alertness to fatigue (Lal and Craig,
2002), in the frontal area was associated with mental fatigue
(Wascher et al., 2014) and in the occipital-parietal areas was
related to working-memory processing (Raghavachari et al.,
2006).

We observed a suppression in the θ and α activities in
the occipital area for subjects in the NO level of sleep-
related fatigue. This finding suggests that the driver is more
concentrated on the task than the ones in the HR level, for
instance, processing some visual or auditory information from
the realistic simulated vehicle, as observed in Lin et al. (2010).
For subjects in the HR level, θ and α are activated in the
occipital, motor and parietal areas (by the sources Frontal
Midline and Parietal Midline). In this level of sleep-related
fatigue representing a lack of sleep, the subjects tend more
to mind-wandering under low perceptual demands (Lin et al.,
2016). Similar findings were obtained during simulated driving
in Huang et al. (2009).

The opposite trends in the change of α and β activities in the
parietal area between subjects in those two sleep-related fatigue
levels can be associated with different mechanisms for movement
processing. In this context, subjects in the HR level could bemore
sensitive to movement selection demands where an increasing α

and decreasing β were detected. Those findings are consistent
with the actual and imagined movements reported in Brinkman
et al. (2014).

The identification of distinct sleep-related fatigue levels
was crucial for discriminating the effective connectivity
patterns observed in the task-positive network of drivers.
Their importance is based on the hypothesis that the sleep

loss may affect brain functions locally, in a bottom-up
regulation of temporal changes in neurobehavioral performance
(Van Dongen et al., 2011), suggesting a dependence on
cumulative increase in activation of the neuronal groups.
This summative activation requiring to gather cognitive
resources can explain the neural network changes observed
in different frequencies during the sustained-attention driving
task. Our results from DP, normalized CCM and spectral
values support this bottom-up theory where performance
is readjusted by the circadian rhythm and time-on-task
effects.

5. CONCLUSION

The combination of EEG, behavioral and physiological
information (expressed respectively in the CCM, DP and
ES measures) as well the information about the task and socio-
environmental context in which the driving experiments were
performed, can highlight the real-world fatigue phenomenon.
The spectral changes observed in the alertness oscillations can
be explained by effective connectivity measures. CCM analysis
over specific brain areas brain areas can predict different patterns
of augmentation and suppression in the neural rhythms. CCM
results can improve the development of real time devices for
monitoring driver vigilance.
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Car driving is considered a very complex activity, consisting of different concomitant
tasks and subtasks, thus it is crucial to understand the impact of different factors,
such as road complexity, traffic, dashboard devices, and external events on the driver’s
behavior and performance. For this reason, in particular situations the cognitive demand
experienced by the driver could be very high, inducing an excessive experienced
mental workload and consequently an increasing of error commission probability. In
this regard, it has been demonstrated that human error is the main cause of the
57% of road accidents and a contributing factor in most of them. In this study, 20
young subjects have been involved in a real driving experiment, performed under
different traffic conditions (rush hour and not) and along different road types (main
and secondary streets). Moreover, during the driving tasks different specific events,
in particular a pedestrian crossing the road and a car entering the traffic flow just
ahead of the experimental subject, have been acted. A Workload Index based on the
Electroencephalographic (EEG), i.e., brain activity, of the drivers has been employed to
investigate the impact of the different factors on the driver’s workload. Eye-Tracking
(ET) technology and subjective measures have also been employed in order to have
a comprehensive overview of the driver’s perceived workload and to investigate the
different insights obtainable from the employed methodologies. The employment of
such EEG-based Workload index confirmed the significant impact of both traffic and
road types on the drivers’ behavior (increasing their workload), with the advantage of
being under real settings. Also, it allowed to highlight the increased workload related to
external events while driving, in particular with a significant effect during those situations
when the traffic was low. Finally, the comparison between methodologies revealed the
higher sensitivity of neurophysiological measures with respect to ET and subjective ones.
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In conclusion, such an EEG-based Workload index would allow to assess objectively the
mental workload experienced by the driver, standing out as a powerful tool for research
aimed to investigate drivers’ behavior and providing additional and complementary
insights with respect to traditional methodologies employed within road safety research.

Keywords: electroencephalography, mental workload, human factor, machine-learning, asSWLDA,
neuroergonomics, car driving, road safety

INTRODUCTION

According to the reports of World Health Organization (WHO)
(World Health Organization, 2015), every year traffic accidents
cause the death of 1.3 million people around the world, and
moreover about 50 million people suffer from a disability caused
by accidents related to cars. By 2020, it is estimated that traffic
accidents will be the fifth leading cause of death in the world,
reaching 2.4 million deaths per year (World Health Organization,
2013). Among the principal causes of the car accidents and
related mortality there is the human factor (Hansen, 2007;
Subramanian, 2012). In particular, it has been demonstrated
that human error is the main cause of the 57% of road
accidents and a contributing factor in over 90% of them (Treat
et al., 1979). Driver’s common errors are largely correlated to
overload, distractions, tiredness, or the simultaneous realization
of other activities during driving (Allnutt, 1987; Horowitz
and Dingus, 1992; Summala and Mikkola, 1994; Petridou and
Moustaki, 2000). In fact, the human performance decrease, and
consequently the errors commission, are directly attributable to
aberrant mental states, in particular the mental workload while
degrading in overload, which is considered one of the most
important human factor constructs in influencing performance
(Reason, 2000; Parasuraman et al., 2008; Paxion et al., 2014). The
model theorized by De Waard (1996), widely used in automotive
psychological research, establishes the relation between task
demands and performance depending on the driver workload.
This model describes the driving activity with a hierarchy of tasks
on three levels, the strategical, the tactical and the operational,
each of them divided into different subtasks, describing the
driving as a very complex and often high-demanding activity.
Therefore, the cognitive resources required in very complex
situations can exceed the available resources, leading to an
increase of workload and to performance impairments (Robert,
1997; Paxion et al., 2014).

The aforesaid statistics and findings justify the increasing
attention received by the Human Factor within the road safety
research during the last decades. As well as in other human-
centered domains such as aviation and industry (Vicente, 2013;
Toppi et al., 2016; Vecchiato et al., 2016; Borghini et al., 2017a),
psychological disciplines have been taken on a considerable
scientific importance receiving more and more attention. They
have become a fundamental instrument for understanding and
interpreting the behavior of the driver (Bucchi et al., 2012),
trying to provide cognitive models in order to predict and
avoid unsafe actions as well as to understand the relationship
between such unsafe behaviors and different factors related to
traffic, road complexity, car equipment and external events. The

most frequently adopted techniques in this research field are
those based on questionnaires and interviews after large-scale
experiments in naturalistic (i.e., real driving) and simulated (i.e.,
by using simulator) settings. They make it possible to acquire
useful information for personality tests and profiles, they help
to highlight and correct behavioral difficulties and, therefore,
they shape the driver to have a safe relationship with driving in
different conditions, and in particular in emergency situations, as
well as to improve road and car design and adapt safety education
with respect to the driver background (Cestac et al., 2014; Kaplan
et al., 2015).

In order to increase the strength of such psychological
research applied to road safety, this discipline could now
benefit from recent advancements and outcomes coming
from Neuroscience and Neuroergonomics. The field of the
Neuroergonomics aims to study the relationship between the
human behavior and the brain at work (Parasuraman and Rizzo,
2008). It provides a multidisciplinary translational approach that
merges elements of neuroscience, cognitive psychology, human
factors and ergonomics to study brain structure and function in
everyday environments. Applied to the driving safety domain,
a Neuroergonomic approach should allow to investigate the
relationship between human mental behavior, performance and
road safety, taking advantage from neurophysiological measures
and providing a deeper understanding of human cognition
and its role in decision making and possible error commission
at the wheel (Lees et al., 2010). In fact, it is widely accepted
in scientific literature the limit of using subjective measures
alone, such as questionnaires and interview, because of their
intrinsic subjective nature and the impossibility to catch the
“unconscious” phenomena behind human behaviors (Gopher
and Braune, 1984; Dienes, 2004; Wall et al., 2004; Aricò et al.,
2017b). In this context, technological advancements enable the
use of neurophysiological measures, for example the measure of
brain activity, heart activity, eye movements, to obtain objective
measures of specific mental states with low invasiveness
(Aricò et al., 2017c). Among the several neuroimaging
techniques, such as functional Magnetic Resonance and
Magnetoencephalography, Electroencephalographic technique
(EEG) has been demonstrated to be one of the best techniques
to infer, even in real time, objective assessment of mental states
and in particular the mental workload experienced by the user,
since other than being a direct measure of brain activations, it
is characterized by high temporal resolution, limited cost and
invasiveness (Prinzel et al., 2000; Aricò et al., 2016b). EEG-based
measures of drivers’ mental states have been already investigated
during the recent decades in order to determine brain cues of
incoming risky psychophysical states, e.g., fatigue, drowsiness,
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inattention, overload (Lin et al., 2005; Michail et al., 2008;
Brookhuis and de Waard, 2010; Borghini et al., 2012, 2014;
Maglione et al., 2014; Wang et al., 2015; Zhang et al., 2015; Kong
et al., 2015, 2017), and to develop futuristic Human-Machine
interaction solutions and automation (Kohlmorgen et al.,
2007; Lin et al., 2009; Göhring et al., 2013; Aricò et al., 2015).
Nevertheless, two important gaps are still present in this domain:

(1) the majority of neurophysiological studies about drivers’
behaviors have been conducted in simulated environments
or in poor realistic settings, but it has been proven that
same experimental tasks are perceived differently, in terms
of mental workload, if performed in a simulator or in real
environment (de Winter et al., 2014); also, not only the task
perception but the driver behavior itself related to a specific
condition could change if the same condition is reproduced
in simulators or in a real scenario (Philip et al., 2005);

(2) in scientific literature there is still the lack of a synthetic
EEG-based workload index to adopt in a systematic way
within the road safety research, in order to integrate results
coming from traditional techniques, such as subjective
measures and car parameters analysis, with additional
insights arising directly from drivers’ brain (Paxion
et al., 2014). Several studies about EEG correlates of
driver’s mental workload have been carried on, however
experimental examples in real settings of a multimodal
approach integrating neurophysiological with traditional
measures are still lacking (Xing et al., 2018).

In this study, it has been investigated the possibility to adopt
the approach recently developed and patented by the authors
of this work (Aricò et al., 2016b, 2017a), to evaluate the mental
workload experienced by car drivers by means of their EEG
activity. More specifically, such an approach is based on a
machine-learning method able to assess, even online and in high-
realistic environments, the user’s mental workload through a
synthetic index. The authors successfully employed and validated
such approach in different aviation-related applications, such as
adaptive automation (Aricò et al., 2016a), personnel training
(Borghini et al., 2017c), personnel expertise evaluation (Borghini
et al., 2017b), moreover highlighting the higher sensitivity of such
measures compared with subjective ones (Di Flumeri et al., 2015;
Aricò et al., 2016b). Furthermore, the feasibility of obtaining
EEG-based measures of driver’s workload has already been
validated through a pilot study of the present work conducted
with eight subjects while performing a simplified version of the
real driving task employed within the present work (Di Flumeri
et al., 2018).

For the present work, 20 young subjects have been involved in
a real driving task along urban roads, performed under different
traffic conditions (rush hour and not) and going through different
road types (main and secondary streets). Also, during the driving
tasks specific events, in particular a pedestrian crossing the road
and a car entering the traffic flow just ahead of the experimental
subject, have been acted. During the experiments the drivers’
brain activity, through EEG technique, and eye movements,
through Eye-Tracking (ET) devices, have been collected. In

addition, subjective measures, car parameters (e.g., position,
speed, etc.) and videos around the car have been gathered. Thanks
to this multimodal approach, the present study aimed at:

• Validating the machine-learning approach developed by the
authors also in automotive domain, through an experiment
in high-realistic settings, i.e., real driving;
• Employing the EEG-based Workload index obtained from

the hence validated approach to evaluate the impact of
different factors, specifically the road complexity, the traffic
intensity (depending on the hour of the day), and two
specific events (a pedestrian crossing the road and a
car entering in the traffic flow), on the drivers’ mental
workload;
• Comparing the neurophysiological measures with eye

movements and subjective ones, in order to provide
evidence of the complementarity of the obtained insights.

In conclusion, the present work will explore the potential
of integrating these new methodologies, i.e., neurophysiological
measures, with traditional approaches in order to enhance and
extent research on drivers’ behaviors and road safety.

MATERIALS AND METHODS

The Experimental Protocol
Twenty male students (24.9 ± 1.8 years old, licensed from
5.9 ± 1 years, with a mean annual mileage of 10350 km/year)
from the University of Bologna (Italy) have been recruited and
involved on a voluntary basis in this study. They were selected
in order to have a homogeneous experimental group in terms of
age, sex, and driving expertise. The experiment was conducted
following the principles outlined in the Declaration of Helsinki of
1975, as revised in 2000. Informed consent and authorization to
use the video graphical material were obtained from each subject
on paper, after the explanation of the study.

Two equal cars have been used for the experiments, i.e., Fiat
500L 1.3 Mjt, with diesel engine and manual transmission. The
subjects had to drive the car along a route going through urban
roads at the periphery of Bologna (Italy). In particular, the route
consisted in three laps of a “circuit” about 2500 m long to be
covered with the daylight (Figure 1).

The circuit was designed with the aim to include two segments
of interest, both about 1000 m long but different in term of road
complexity and so supposed different also in terms of cognitive
demand, thus named hereafter “Easy” and “Hard”: (i) Easy was
a secondary road, mainly straight, with an intersection halfway
with the right-of-way, one lane and low traffic capacity, serving a
residential area; (ii) Hard was a main road, mainly straight, with
two roundabouts halfway, three lanes and high traffic capacity,
serving a commercial area. This factor will be hereafter named
“ROAD.” This assumption has been made on the basis of several
evidences coming from scientific literature about road safety and
behavior (Harms, 1991; Verwey, 2000; Paxion et al., 2014).

Furthermore, each subject had to repeat the task two times
within the same day, one time during rush and one during normal
hour: this factor will be hereafter named “HOUR,” while the
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FIGURE 1 | The experimental circuit about 2500 m long along Bologna roads. The blue line indicates the circuit segment labeled as “Hard” in terms of road
complexity, while the yellow one the “Easy” segment. The cyan squares and the red asterisks represent the points were the events, respectively the pedestrian and
the car, have been acted along the 3rd lap of both the task repetitions.

TABLE 1 | Data extracted from the General Plan of Urban Traffic of Bologna (Italy)
referred to the traffic flow intensities in the experimental area during the day.

Transits Total RUSH hour NORMAL

14 h (6 ÷ 20) Morning Afternoon 12 h

(12:30–13:30) (16:30–17:30)

Total 19385 2024 2066 15295

Frequency
(Transits/hour)

– 2024 2066 1274,6

These data have been used to design two experimental conditions different in terms
of traffic: the RUSH hours are characterized by traffic higher than during NORMAL
hours.

two conditions “Rush” and “Normal.” The rush hours of that
specific area have been determined according to the General
Plan of Urban Traffic of Bologna (PGTU, please see Table 1):
the two “Rush hour” time-windows were from 12:30 to 13:30
(lunchtime) and from 16:30 to 17:30 (work closing time), with
the experiments performed from 9.30 to 17.30, in order to ensure
a homogeneous daylight condition.

Finally, during the last lap (i.e., the 3rd one) of each task
repetition (i.e., Rush and Normal hour) two different events
have been simulated, by involving actors, twice (i.e., along the
Hard and the Easy circuit segment) along the route: a pedestrian
crossing the road, and a car entering the traffic flow just
ahead of the experimental subject, hereafter labeled respectively

“Pedestrian” and “Car.” The event types have been selected as
the most probable events coherently with the urban context, as
well as the safest to act, i.e., without introducing any risk for
the actors, for the experimental subjects and for the traffic in
general.

The Figure 1 shows the experimental circuit along Bologna
roads, highlighting the “ROAD complexity” distribution as well
as the occurred events.

To summarize, each subject, after a proper experimental
briefing, performed a driving task of three laps along a circuit
through urban roads two times, during Rush and Normal hours.
The order of Rush and Normal conditions has been randomized
among the subjects, in order to avoid any order effect (Kirk,
2015). Each lap consisted in a Hard and an Easy segment, where
hard and easy are referred to the road complexity and thus task
difficulty. Also, despite the initial briefing, the first lap of both
the tasks has been considered an “adaptation lap,” while the data
recorded during the second and third laps have been taken into
account for the analysis. Finally, during the third lap two equal
events have been simulated both along the Easy and the Hard
segment (i.e., four events in total for each subject for each task,
Rush and Normal).

The Figure 2 shows a graphical representation of the
experimental protocol.

During the whole protocol physiological data, in terms of
brain activity through Electroencephalographic (EEG) technique
and eye gazes through ET devices, and data about driving
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FIGURE 2 | Overview of the experimental protocol, consisting of two main driving tasks different in terms of traffic (normal and rush hour) and performed in a
randomized order. Each task consisted of three laps along the circuit in Figure 1: the first lap aimed to allow the driver to take confidence with the circuit, while the
second and third lap have been used for analysis. In particular, during the third lap four events have been acted as indicated in Figure 1. Before the experiment the
participant received a briefing and was equipped by EEG and Eye Tracking devices, while his car with Video VBOX system. At the end of each task the participant
had to fill a questionnaire (NASA-TLX) about the experienced mental workload.

behavior, through a professional device mounted on the car (i.e., a
VBOX Pro), have been recorded. In addition, subjective measures
of perceived Mental Workload have been collected from the
subjects after both the tasks through the NASA Task Load Index
(NASA-TLX) questionnaire (Hart and Staveland, 1988). It was
possible to use Eye Tracker just with half of the subjects’ sample
(i.e., 10 subjects) because of device availability, so eye tracker–
related data have been analyzed for 10 subjects. The following
paragraphs will describe in detail the collection and processing
of the aforementioned data, while the Figure 3 shows the subject
preparation and the recording setup within the car.

The Data Collection
Electroencephalographic Signal Recording and
Processing
The EEG signals have been recorded using the digital monitoring
BEmicro system (EBNeuro, Italy). Twelve EEG channels (FPz,
AF3, AF4, F3, Fz, F4, P3, P7, Pz, P4, P8, and POz), placed
according to the 10–20 International System, were collected with
a sampling frequency of 256 Hz, all referenced to both the

earlobes, grounded to the Cz site, and with the impedances kept
below 20 k�. During the experiments the EEG data have been
recorded without any signal conditioning, the whole processing
chain has been applied offline. In particular, EEG signal has been
firstly band-pass filtered with a fourth-order Butterworth filter
(high-pass filter cut-off frequency: 1 Hz, low-pass filter cut-off
frequency: 30 Hz). The Fpz channel has been used to remove
eyes-blink contributions from each channel of the EEG signal
by using the REBLINCA algorithm (Di Flumeri et al., 2016).
This step is necessary because the eyes-blink contribution could
affect the frequency bands correlated to the mental workload, in
particular the theta EEG band. This method allows to correct EEG
signal without losing data.

For other sources of artifacts (i.e., environmental noise,
drivers’ movements, etc.), specific procedures of the EEGLAB
toolbox (Delorme and Makeig, 2004) have been employed.
Firstly, the EEG signal is segmented into epochs of 2 s (Epoch
length), through moving windows shifted of 0.125 s (Shift), thus
with an overlap of 0.875 s between two contiguous epochs. This
windowing has been chosen with the compromise to have both
a high number of observations, in comparison with the number

FIGURE 3 | On the left (A), the participant preparation phase. In particular, the EEG signal has been acquired through the EEG amplifier in holter modality: the EEG
signal and the electrodes impedances were checked on a computer before starting the experiments. On the right (B), a picture representing the experimental setup
within the car: in particular, other than the EEG cap, also the Eye Tracking device and its recording laptop are shown. The subject in picture, as all the participants,
gave their signed authorization to use the video graphical material for dissemination purposes.
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of variables, and to respect the condition of stationarity of the
EEG signal (Elul, 1969). In fact, this is a necessary assumption
in order to proceed with the spectral analysis of the signal.
The EEG epochs with the signal amplitude exceeding ±100 µV
(Threshold criterion) are marked as “artifact.” Then, each EEG
epoch has been interpolated in order to check the slope of
the trend within the considered epoch (Trend estimation). If
such a slope is higher than 10 µV/s, the considered epoch
is marked as “artifact.” Finally, the signal sample-to-sample
difference (Sample-to-sample criterion) has been analyzed: if such
a difference, in terms of absolute amplitude, is higher than 25 µV,
i.e., an abrupt variation (no-physiological) happened, the EEG
epoch is marked as “artifact.” At the end, the EEG epochs marked
as “artifact” have been removed from the EEG dataset with the
aim to have a clean EEG signal to perform the analyses.

From the clean EEG dataset, the Power Spectral Density (PSD)
has been calculated for each EEG channel for each epoch using
a Hanning window of the same length of the considered epoch
(2 s length, that means 0.5 Hz of frequency resolution). Then,
the EEG frequency bands of interest has been defined for each
subject by the estimation of the Individual Alpha Frequency (IAF)
value (Klimesch, 1999). In order to have a precise estimation
of the alpha peak and, hence of the IAF, the subjects were
been asked to keep the eyes closed for a minute before starting
the experimental tasks. Finally, a spectral features matrix (EEG
channels × Frequency bins) has been obtained in the frequency
bands directly correlated to the mental workload. In particular,
only the theta band [IAF – 6 ÷ IAF – 2], over the EEG frontal
channels, and the alpha band [IAF – 2÷ IAF+ 2], over the EEG
parietal channels, were considered as variables for the mental
workload evaluation (Gevins and Smith, 2003; Aricò et al., 2016b;
Borghini et al., 2017a).

At this point the automatic-stop-StepWise Linear
Discriminant Analysis (asSWLDA), a specific Machine-Learning
algorithm (basically an upgrade version of the well-known
StepWise Linear Discriminant Analysis) previously developed
(Aricò et al., 2016b), patented (Aricò et al., 2017a) and applied
in different applications (Aricò et al., 2016a; Borghini et al.,
2017b,c) by the authors has been employed. On the basis of
the calibration dataset, the asSWLDA is able to find the most
relevant spectral features to discriminate the Mental Workload
of the subjects during the different experimental conditions
(i.e., EASY = 0 and HARD = 1). Once identified such spectral
features, the asSWLDA assigns to each feature specific weights
(wi train), plus a bias (btrain), such that an eventual discriminant
function computed on the training dataset [ytrain(t)] would take
the value 1 in the hardest condition and 0 in the easiest one.
This step represents the calibration, or “Training phase” of the
classifier. Later on, the weights and the bias determined during
the training phase are used to calculate the Linear Discriminant
function [ytest(t)] over the testing dataset (Testing phase), that
should be comprised between 0 (if the condition is Easy) and
1 (if the condition is Hard). Finally, a moving average of 8 s
(8MA) is applied to the ytest(t) function in order to smooth it
out by reducing the variance of the measure: its output is defined
as the EEG-based Workload index (WLSCORE). For the present
work, the training data consisted in the Easy segment of the

2nd lap during the Normal condition and the Hard segment
of the 2nd lap during the Rush condition (they have been
hypothesized the two conditions characterized by respectively
the lowest and highest mental workload demand), while the
testing data consisted of the data of the 3rd lap of both the
conditions.

Here below the training asSWLDA discriminant function
(Equation 1, where fi train(t) represents the PSD matrix of the
training dataset for the data window of the time sample t, and
of the ith feature), the testing one (Equation 2, where fi test(t) is
as fi train(t) but related to the testing dataset) and the equation of
the EEG-based workload index computed with a time-resolution
of 8 s (WLSCORE, Equation 3), are reported.

ytrain(t) =
∑

i
wi train · fi train(t)+ btrain (1)

ytest(t) =
∑

i
wi train · fi test(t)+ btrain (2)

WLSCORE = 8MA(ytest(t)) (3)

Eye-Tracking Data and Its Processing
Eye movements of the participants have been recorded through
an ASL Mobile Eye-XG device (EST GmbH, Germany), a system
based on lightweight eyeglasses equipped with two digital high-
resolution cameras. One camera recorded the scene image and
the other the participant’s eye, that is monitored through infrared
rays. The data were recorded with a sampling rate of 30 Hz
(i.e., 33 ms time resolution), and a spatial resolution of 0.5
÷ 1◦. ASL software was used to analyze the data, obtaining
information about the drivers’ fixation points frame by frame
(33 ms). A preliminary calibration procedure was carried out
for each subject inside the car before starting driving, asking
them to fix their gaze on thirty fixed visual points spread across
the whole scene, in order to get a good accuracy of the eye-
movement recorder. The gazes recorded during the driving task
were manually analyzed, in order to group them into three
different categories: road infrastructure, traffic vehicles, and
external environment. For each subject, each lap (second and
third), and each condition (Easy and Hard ROAD, Rush and
Normal HOUR) the distribution of eye fixations between the
three categories was calculated in terms of percentage of the total.

Additional Measures
Each car has been equipped with a Video VBOX Pro (Racelogic
Ltd., United Kingdom), a system able to continuously monitor
the cinematic parameters of the car, integrated with GPS data
and videos coming from up to four high-resolution cameras. The
system has been fixed within the car, at the center of the floor of
the back seats, in order to put it as close as possible to the car
barycenter, while two cameras have been fixed over the top of the
car. The system recorded car parameters (e.g., speed, acceleration,
position, etc.) with a sampling rate of 10 Hz. For the purpose
of the present study, the average speed for each task has been
computed. Also, the cameras’ videos have been used to count the
number of vehicles encountered by the driver during each task.
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Also, at the end of each task (thus only the HOUR
condition, i.e., Rush vs. Normal, can be compared) the
subjects had to evaluate the experienced workload by filling
the NASA-TLX questionnaire (Hart and Staveland, 1988).
In particular, the subject had (i) to assess, on a scale from
0 to 100, the impact of six different factors (i.e., Mental
demand, Physical demand, Temporal demand, Performance,
Effort, Frustration), and (ii) to assess the more impacting
factor through 15 comparisons between couple of the previously
evaluated factors. The result of this questionnaire is a score
from 0 to 100 corresponding to the driver’s mental workload
perception.

Performed Analyses
Validation of Experimental Design Assumptions
The first analysis aimed to validate the assumptions in terms of
experimental design, that is:

(i) The subjects drove during two conditions different in terms
of traffic, i.e., Rush and Normal hour;

(ii) The circuit was constituted by two segments different in
terms of road complexity, thus in terms of difficulty, i.e.,
Hard and Easy.

In order to validate the first assumption, the number of
vehicles encountered by the experimental subjects and the
average driving speed during the two conditions have been
computed and statistically compared. It is expected that the
number of vehicles is significantly higher and the average speed
significantly lower during rush hours (Bucchi et al., 2012).

The second assumption has been validated by investigating
the percentage of fixations over the external environment, since
such indicator has been proven to be inversely correlated with
mental workload: the more the experienced workload is, the
less the number of fixations over the external environment is,
since the driver gaze will mostly focus on infrastructure and
vehicles (Costa et al., 2014; de Winter et al., 2014; Lantieri
et al., 2015). Also, we verified the difference in terms of mental
workload from a neurophysiological point of view: we computed
the ratio between Theta rhythms over frontal sites (“ThetaF”)
and Alpha rhythms over parietal sites (“AlphaP”), since it
is considered a well-established metric of mental workload
(Borghini et al., 2014). In particular, The ThetaF/AlphaP has
been proven to increase if the mental workload experienced
by the user is increasing as well (Gevins and Smith, 2003;
Holm et al., 2009; Borghini et al., 2015). The metric has been
computed as the ratio between the averaged PSD values in
theta band over the frontal electrodes (AF3, AF4, F3, Fz, F4)
and the averaged PSD values in alpha band over the parietal
electrodes (P3, P7, Pz, P4, P8, POz). Both the analysis have
been performed comparing the two conditions employed to
train the classifier (please see Electroencephalographic Signal
Recording and Processing), i.e., the Easy segment of the 2nd
lap during the Normal condition and the Hard segment of
the 2nd lap during the Rush condition, assumed as the two
conditions characterized by respectively the lowest and highest
mental workload demand.

All the statistical comparisons have been performed through
two-sided Wilcoxon signed rank tests. In fact, data come from
multiple observations on the same subjects, but it is not possible
to assume or robustly assess (the number of observations is
always equal or less than 16) that the observations distribution is
Gaussian, therefore paired non-parametric tests have been used
(Siegel, 1956).

Classification Performance
Firstly, a synthetic analysis of the brain features selected by the
algorithm has been performed in order to evaluate any eventual
recurrence of a specific feature. The initial features domain for
each subject consisted in a matrix of 187 features (11 EEG
channels ∗ 17 bins of frequency – from IAF-6 Hz to IAF+2 Hz
with a resolution of 0.5 Hz –). Actually, only 99 of these features
can be selected by the algorithm because of the Regions of Interest
defined a priori: 45 features related to frontal Theta and 54 related
to parietal Alpha.

Then, in order to investigate the algorithm (i.e., the
asSWLDA) classification accuracy, the analysis of the Area Under
Curve (AUC) of the Receiver Operator Characteristic (ROC)
curve of the classifier has been performed (Bamber, 1975).
In particular, AUC represents a widely used methodology to
test the performance of a binary classifier: the classification
performance can be considered good with an AUC higher than
at least 0.7 (Fawcett, 2006). In this case there are actually
two classes in terms of mental workload, i.e., Easy and Hard,
related to the two different difficulty levels characterizing the
circuit. As previously described, for each subject the training
dataset consisted in the Easy segment of the 2nd lap during
the Normal condition and the Hard segment of the 2nd lap
during the Rush condition (they have been hypothesized the
two conditions characterized by respectively the lowest and
highest cognitive demand), while the testing dataset consisted
of the data of the 3rd lap of both the conditions (Real data).
Therefore, the classifier has been tested shuffling the testing
dataset related labels (Random), in order to verify that classifier
performance on measured data (Real data) was significantly
higher than that one obtained on random data (Random),
independently from the traffic intensity (i.e., both in Rush and
Normal hour conditions). In both the cases (Real and Random),
the time resolution of WLscores is equal to 8 s, obtained as
the best compromise between a high time resolution and good
classification performance. Three two-sided Wilcoxon signed
rank tests have been performed between Real and Random data,
one for each HOUR condition (i.e., comparison Real vs. Random
in Normal and Rush hour) and one comparing the Normal and
Rush conditions only in terms of real data. The results of these
multiple comparisons have been validated by applying the False
Discovery Rate (FDR) correction (Benjamini and Hochberg,
1995).

Workload Assessment
Once demonstrated the reliability of the classification algorithm
to obtain the EEG-based index of mental workload in the specific
driving scenarios, the workload scores (WL score) have been
used to evaluate the impact of different factors, that is the road
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complexity and the traffic as well as specific events along the
driving experience. Depending on the analysis, the EEG-based
WL scores have been analyzed in relation to ET and subjective
data.

Evaluation of traffic and road complexity impact
The WL indexes obtained with a time resolution of 8 s from the
testing dataset (i.e., the third lap) were averaged for each subject
and for each condition (i.e., HOUR and ROAD). A Friedman test,
the non-parametric version of the repeated measures ANOVA
(Analysis of Variance), has been performed in order to investigate
any possible effect due to traffic and road complexity on the
workload perceived by the subject. Furthermore, since post hoc
tests specifically designed for Friedman test do not exist but
both the factors have been measured on the same subjects, two
Wilcoxon signed rank tests have been performed in order to
investigate potential within effects among the two factors, i.e.,
HOUR and ROAD.

Also, the results in terms of workload indexes have been
compared with those obtained from ET in order to evaluate the
different sensitivity to the phenomenon (i.e., mental workload
variations) of the two technologies. In terms of ET measures,
it has been investigated the percentage of fixations on the road
infrastructure and vehicles, since such indicator has been proven
to be directly correlated with mental workload while driving:
the more the experienced workload is, the more the number of
fixations over the road will be, since the driver gaze will mostly
focus on infrastructure and vehicles (Costa et al., 2014; de Winter
et al., 2014). Multiple two-sided Wilcoxon signed rank tests have
been performed in order to reveal any difference with respect to
the two investigated factors.

Furthermore, a two-sided Wilcoxon signed rank test has been
performed on the NASA-TLX measures. Please note that for the
continuity of the experiment the questionnaires were filled by the
subjects only after the tasks end, therefore only the comparison
between Normal and Rush hour has been possible (please refer to
Section “Additional Measures”).

Evaluation of single events impact
On the basis of the average duration of the events among the
subjects during the driving experience, and to homogenize the
measures with respect of this parameter (i.e., event duration), a
fixed window of 20 s for the car event (from the first fixation
of the car to its overtaking) and of 10 s for the pedestrian
event (from the first fixation of the pedestrian to the acceleration
after its road crossing) has been defined, independently from the
traffic and the road complexity. Remembering that the events
were acted only during the third lap of each task repetition,
similar windows corresponding to the same circuit position were
defined during the second lap in order to compare the event’s
happening vs. no-happening. The WL indexes were averaged
for each subject, for each condition (i.e., HOUR and ROAD)
and for each event. Multiple two-sided Wilcoxon signed rank
tests have been performed in order to reveal any difference (i)
with respect to the events’ happening, and (ii) among the events
types.

RESULTS

The following results are referred to a sample of 16 subjects
(8 with Eye Tracking), since one subject has been discarded
because of technical issues on the EEG data, while three subjects
have been discarded because of no objective difference in terms
of encountered vehicles (measured through the VBOX cameras)
between the two tasks, i.e., during Rush and Normal hours.

Experimental Design Validation
Figure 4 shows the results of the comparisons between (a) the
number of vehicles encountered by the experimental subjects
and (b) the average driving speed during the two different traffic
conditions, i.e., during Normal and Rush hours. The performed
statistical analysis revealed a significant increasing (p = 0.001)
of vehicles encountered by the experimental subjects and a
significant decreasing (p = 0.039) of driving average speed from

FIGURE 4 | On the left (A), a bar graph representing the mean and the standard deviation of vehicles encountered by the participants during the experiments. The
Wilcoxon test showed a significantly higher (p = 0.001) number of vehicles during rush hour. On the right (B), a bar graph representing the mean and the standard
deviation of participants driving speed during the experiments. The Wilcoxon test showed a significantly lower (p = 0.039) speed during rush hour. The statistical
tests showing a significant effect.
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FIGURE 5 | The bar graph represents the mean and the standard deviation of
the percentage of drivers’ eye fixations along the two different segments of the
circuit. The Wilcoxon test showed a significant reduction (p = 0.046) of such
percentage during the circuit segment characterized by hard complexity. The
statistical tests showing a significant effect.

Normal to Rush hours, validating the experimental hypothesis
about the two different conditions of traffic made a priori on the
basis of the General Plan of Urban Traffic of Bologna (see The
Experimental Protocol).

Figure 5 shows the results in terms of percentage of fixations
over the external environment between the Easy and Hard
segments of the circuit, since such indicator has been proven
to be inversely correlated with mental workload. The performed
statistical analysis revealed a significant decreasing (p = 0.046)
of driver gazes over the external environment, validating the
experimental hypothesis about the two different conditions of
difficulty made a priori on the basis of scientific literature (see
The Experimental Protocol).

Figure 6 shows the results in terms of ThetaF/AlphaP value
between the Easy and Hard segments of the circuit, since

FIGURE 6 | The bar graph represents the mean and the standard deviation of
the EEG-based ThetaF/AlphaP indicator along the two different segments of
the circuit. The Wilcoxon test showed a significant increasing (p = 0.009) of
such indicator during the circuit segment characterized by hard complexity.
The statistical tests showing a significant effect.

such ratio has been proven to be a physiological indicator
directly correlated to mental workload. The performed statistical
analysis revealed a significant increasing (p = 0.009) of the
proposed index, validating the assumption about the different
cognitive demand related to the two conditions, made a priori
on the basis of scientific literature (see The experimental
Protocol).

Classification Performance
Figure 7 shows the distribution of the features, and the relative
frequency of selection, chosen by the asSWLDA during the
training phase. The analysis of features selected by the algorithm
revealed that the asSWLDA selected on average 4 features
per subject, coming from 3 of the 11 channels available. The
frequency bins, actually equal to 17 because included between
IAF-6 Hz and IAF+2 Hz with a resolution of 0.5 Hz, have been
grouped into four areas of interest: Lower Theta [IAF – 6÷ IAF –
4], Upper Theta [IAF – 4 ÷ IAF – 2], Lower Alpha [IAF – 2 ÷
IAF] and Upper Alpha [IAF ÷ IAF + 2]. The results show that
Lower Theta over F4 and Upper Alpha over POz have been used
for more than the 50% of subjects.

The AUC analysis (Figure 8) revealed that, by using such
approach, it has been possible to achieve mean AUC values of
0.744 ± 0.13 for the Normal hour and of 0.727 ± 0.06 for the
Rush hour. In particular, the two Wilcoxon tests demonstrated
that the classifier performance on the Real data was significantly
higher than on Random data in both the conditions (respectively
p = 0.01 and p = 0.0005). Also, there were no significant
differences (p = 0.64) in terms of AUC values on Real data
between Normal and Rush hours, in other words the classification
performance was not dependent on the traffic condition. Because
of the three repeated tests, the False Discovery Rate correction
has been performed: with respect to the p-values obtained and
ordered (0.0005, 0.01, and 0.64), the three corrected q-values are
respectively 0.0015, 0.015, and 0.64, thus the first two results are
still significant.

Workload Assessment
Evaluation of Traffic and Road Complexity Impact
Figure 9 shows the results of the non-parametrical statistical
analysis in terms of effects of the two investigated factors, i.e., the
traffic (HOUR) and the road complexity (ROAD), on the mental
workload experienced by the drivers. In particular, the Friedman
test at the top of Figure 9A highlights a significant main effect
(p = 0.00001) among the different factors: the mental workload
significantly increased because of the higher road complexity (i.e.,
from Easy to Hard), and even more because of the higher traffic
intensity (i.e., from Normal to Rush hours). The Wilcoxon tests
performed in order to investigate any within effect showed two
significant main effects in term of workload increasing if both
complexity [bottom left (Figure 9B), ROAD, p = 0.0038] and
traffic [bottom right (Figure 9C), HOUR, p = 0.0032] increase.

Figures 10, 11 show the results of the Wilcoxon tests
comparing the sensitivity of ET measures with respect to EEG-
based ones. For these analyses the EEG-based WL scores of only
the subjects wearing also the Eye Tracker (eight of sixteen) have
been considered, in order to make the results comparable (i.e.,
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FIGURE 7 | The colormap summarizes the frequency of the selection of each feature for the whole subjects’ sample. The initial features domain for each subject
consisted of a matrix of 187 features (11 EEG channels ∗ 17 bins of frequency – from IAF – 6 Hz to IAF+2 Hz with a resolution of 0.5 Hz –). Actually, only 99 of these
features can be selected by the algorithm, because of the Regions of Interest defined a priori: 45 features related to frontal Theta and 54 related to parietal Alpha. For
a synthetic and effective representation, the frequency bins, actually equal to 17 because included between IAF-6 Hz and IAF+2 Hz with a resolution of 0.5 Hz, have
been grouped into four areas of interest: Lower Theta [IAF – 6 ÷ IAF – 4], Upper Theta [IAF – 4 ÷ IAF – 2], Lower Alpha [IAF – 2 ÷ IAF] and Upper Alpha
[IAF ÷ IAF + 2]. The results show that Lower Theta over F4 and Upper Alpha over POz have been used for more than the 50% of subjects.

both the measures have been collected during same experience).
In particular:

• Figure 10: in terms of ROAD complexity, while the EEG-
based measures have been able to significantly discriminate
(p = 0.008) the two conditions at least during Normal
hour, the ET-based ones have not been able to show any
significant difference both during Normal and Rush hours;
• Figure 11: in terms of traffic HOUR, while the EEG-based

measures have been able to significantly discriminate the
two conditions both along Easy (p = 0.019) and Hard
(p = 0.039) segments, the ET-based ones have been able
to significantly discriminate Normal and Rush hours only
along the Hard segment (p = 0.0192).

Finally, Figure 12 shows the results in terms of NASA-TLX
scores, revealing that there is not any significant difference in
terms of workload subjectively assessed between the Normal and
Rush hour conditions.

Evaluation of Single Events Impact
Figure 13 shows the results in terms of EEG-based WL
scores about how the presence of a specific event impacts the
mental workload of the driver, with respect to the different
experimental conditions. In terms of external events (the
condition EVENT is referred to the event actually happened
during the 3rd lap, the condition NO EVENT is referred
to the same circuit portion during the 2nd lap when no
events were acted), the pedestrian crossing the road induced
a significantly higher workload only during the Normal hour
along the Hard circuit segment (Wilcoxon test’s p = 0.037),
while the car induced a significantly higher workload along
both the Easy and Hard circuit segments but only during
Normal hour (respectively Wilcoxon test’s p = 0.007 and
p = 0.008).

Considering only the condition “EVENT,” despite a decreasing
trend from Easy to Hard segments, no significant differences
(p > 0.05) have been found for each event during the same traffic
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FIGURE 8 | The bar graph represents the mean and the standard deviation of AUC values obtained in discriminating the Easy and Hard circuit segments. Both in
Normal and Rush hour conditions, the classification performance obtained by training the classifier with real data (solid color) have been significantly higher
(respectively p = 0.01 and p = 0.0005) than by using random data (lines pattern), achieving mean AUC values of respectively 0.74 and 0.73. The statistical tests
showing a significant effect.

condition (HOUR). However, if considering the same difficulty
level (ROAD), all the events induced a significant workload
increasing during Rush hours, except the pedestrian along the
Easy segment (Pedestrian Hard: p = 0.009; Car Easy: p = 0.023;
Car Hard: p = 0.002).

DISCUSSION

Since the impact of drivers’ errors in terms of human lives and
costs is very high and the next future previsions are even worse
(World Health Organization, 2015), the relationship between
human errors and driving performance impairment due to a high
mental workload has been deeply investigated in the automotive
domain. Recent technological advancements as well as the growth
of disciplines such as Neuroscience and Neuroergonomics now
allow to record human neurophysiological signals, such as in this
study brain activity through Electroencephalographic technique,
in a robust way also outside the laboratory, and to obtain
from them objective neurometrics of human mental states (i.e.,
workload) (Aricò et al., 2017c, 2018). The present work aimed to
validate a machine-learning approach, i.e., the asSWLDA (Aricò
et al., 2016a), for the objective assessment of human mental
workload while driving in real settings, as well as its integration
with traditional tools (e.g., questionnaires, car parameters, eye
tracking) in order to evaluate the impact of different factors (road
complexity, traffic intensity, external events), thus suggesting new
innovative tools for enhancing research in road safety. In order to
achieve these objectives, 20 young subjects have been involved in
a real driving task along urban roads, performed under different
traffic conditions (rush hour and not), driving through different

road types (main and secondary streets) and facing to external
events.

Firstly, the experiments have been designed making two
a priori assumptions:

(1) the experiments have been conducted in two different
conditions of traffic intensity, depending on the hours (i.e.,
normal and rush hour) of the day; the experimental design
initially referred to the General Plan of Urban Traffic of
Bologna;

(2) the circuit consisted of two segments of different difficulty,
i.e., Easy and Hard, because of the related road complexity
(Harms, 1991; Verwey, 2000; Paxion et al., 2014).

The statistical analysis performed on the average speed
of the experimental subjects and the number of vehicles
encountered during the experiments (Figure 4) validated the
Assumption 1: in fact, the subjects encountered a significantly
higher (p = 0.001) number of vehicles and they drove at a
significantly lower (p = 0.039) speed during the rush hours, as
expected from scientific literature (Bucchi et al., 2012). Statistical
analysis of driver’s eye fixations over the external environment
(Figure 5) and physiological brain patterns (Figure 6) validated
the Assumption 2: in fact the drivers’ gazes over the external
environment (such index inversely correlates with mental
workload; de Winter et al., 2014; Lantieri et al., 2015) have been
significantly lower (p = 0.046) along the circuit segment that was
hypothesized as Hard, while the ratio between frontal theta and
parietal alpha rhythms significantly increased (p = 0.009). These
results confirmed the properness of the experimental design.
Nevertheless, the analysis of encountered vehicles, determined
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FIGURE 9 | At the top (A), the Friedman test highlighting a significant main effect (p = 0.00001), in terms of mental workload increasing among the different factors.
At the bottom, on the left (B) the Wilcoxon test on the factor ROAD and on the right (C) the same test on the factor HOUR, showing how both the factors produced
a significant mental workload increasing (respectively p = 0.004 and p = 0.003). The statistical tests showing a significant effect.

FIGURE 10 | The Wilcoxon tests performed to investigate eventual sensitivity differences between Eye-Tracking [left (A)] and EEG [right (B)] measures, considered
on the same subjects, in relation to ROAD complexity showed that EEG-based measures have been able to significantly discriminate (p = 0.008) the two conditions
at least during Normal hour, while the ET-based ones have not been able to show any significant difference both during Normal and Rush hours. The statistical tests
showing a significant effect.
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FIGURE 11 | The Wilcoxon tests performed to investigate eventual sensitivity differences between Eye-Tracking [left (A)] and EEG [right, (B)] measures, considered
on the same subjects, in relation to traffic intensity (i.e., HOUR) showed that, while the EEG-based measures have been able to significantly discriminate the two
conditions both along Easy (p = 0.019) and Hard (p = 0.04) segments, the ET-based ones have been able to significantly discriminate Normal and Rush hours only
along the Hard segment (p = 0.02). The statistical tests showing a significant effect.

FIGURE 12 | The bar graph represents the mean and the standard deviation
of NASA-TLX scores, i.e., the subjective assessment of the mental workload
experienced by the participants of the circuit. The Wilcoxon test does not
reveal any significant difference in terms of workload subjectively assessed by
the subjects between the Normal and Rush hour conditions.

through videos from the VBOX videos, led to discard three
subjects because of no differences between rush and normal
hours (see Results). Therefore, this validation approach should
be taken into account for future works in real driving conditions,
where external conditions and events are less controllable, even
unpredictable, if compared with laboratory experiments.

Once validated the experiment in terms of differences between
the road and traffic conditions, the EEG-based Workload
measures have been validated. In particular, the analysis of
AUC related to the asSWLDA-based classifier demonstrated that
the adopted approach achieves considerable performance, i.e.,
AUCs > 0.7 (Fawcett, 2006). More in detail, the AUC analysis
(Figure 8) revealed that it has been possible to achieve mean
AUC values of 0.74 for the Normal hour and of 0.73 for the
Rush hour, significantly higher than a random classification in
both the conditions (respectively p = 0.01 and p = 0.0005). Also,
there were no significant differences (p = 0.64) in terms of AUC
values on Real data between Normal and Rush hours. All the

previous results have been also confirmed by the correction for
multiple comparisons, in this case the False Discovery Rate. It is
also true that, within the machine-learning theory, AUCs greater
than 0.7 are considered remarkable if compared with a random
distribution that is assumed to produce AUCs equal to 0.5. In the
present study, the performance of the classifier on randomized
data achieved AUCs values of about 0.6. A possible explanation
could be that the random value would be closer and closer to
0.5 only if the number of repetitions tends to infinite, however,
this result undoubtedly encourages research about improving the
proposed method. Of course, classification performance of about
0.75 are anyway remarkable, in particular because of the novelty
of such application (the EEG-based Workload index is provided
with a time resolution equal to 8 s) and the real settings, where
mental states assessment is more prone to misclassification: in
fact, it is plausible to assume that outside the high controlled
laboratory settings, the user experiences more complex mental
states that consist of multiple different components having the
potential to influence neurophysiological signals used to infer a
specific state.

The analysis of the patterns of features selected by the
algorithm during its training phase (Figure 7) provided
interesting insights about its usability: in fact, the asSWLDA
selected on average 4 discriminant features for each subject, and
even more interesting, by involving 3 of the 11 available channels.
It means that, once calibrated the system on a specific user,
it would be able to work online during the driving experience
involving only three EEG channels, in other words reducing
significantly its invasiveness and increasing wearability, two
critical aspects for applications outside the laboratory.

At this point, the asSWLDA output, in terms of EEG-based
Workload index, has been used to evaluate the effects of road
complexity, traffic intensity and external events on drivers’
workload (Figure 9).

The Friedman ANOVA test (please see Figure) shows the
results in terms of effects of the two investigated factors,
i.e., the traffic (HOUR) and the road complexity (ROAD),
on the mental workload experienced by the drivers: both the
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traffic and road complexity contributed to significantly increase
(main effect: p = 0.00001; Wilcoxon tests respectively: HOUR,
p = 0.0032; ROAD: p = 0.0038) the mental workload. In other
words, the drivers’ workload increased if traffic increased as well
independently from the road complexity. At the same time, the
drivers’ workload increased while driving along more complex
roads independently from the traffic intensity. These results have
to be considered with respect to the experimental task: actually,
the Hard segment was a three-lanes main street, that with
respect to a one-lane main street (Easy segment) implies several
additional decisions and actions, such as eventual car overtaking
as well as looking at rear-view mirrors because of possible cars
coming on lateral lanes. Of course, these actions increase with
traffic increasing, because of the higher number of vehicles
along the circuit (as demonstrated by Video analysis, please see
Figure 4). Apparently, the Easy segment should not suffer traffic
increasing, since being a one-lane segment the overtaking are
very limited and drivers have not to frequently check rear-view
mirrors since they cannot change lane. Nevertheless, because of
the higher number of vehicles along the circuit during rush hours,
the drivers had to continuously monitor eventual preceding cars,
adapting safety distance and speed (in fact average speed during
rush hour has been lower and drivers’ gazes on infrastructure
and vehicles higher also along Easy segment). These actions also
induced a no-negligible workload increasing, giving a possible
justification of the high accident rate along rural roads (Shankar
et al., 1995), that are generally considered “Easy to drive” if
compared with urban main roads (Harms, 1991; Paxion et al.,
2014), thus mismatching the driver’s expectations.

Very interestingly but not surprisingly, the neurophysiological
measures showed a significantly higher sensitivity with respect
to the ET ones (Figures 10, 11) in discriminating the different
impact of road complexity and traffic intensity on mental
workload. It is important to consider that ET measures were
available only for a reduced group of the experimental sample
(8 of 16 subjects), therefore it could have affected the performance
of such measures in discriminating the mental workload related
to different factors. However, the paired statistical analysis
highlighted that on the same subjects, EEG-based measures were
more sensitive to workload fluctuations. Their high sensitivity has
been pointed out also with respect to subjective measures (i.e.,
NASA-TLX questionnaires, Figure 12), that on the contrary were
not able to discriminate (p = 0.23) normal from rush hours.

Finally, EEG-based workload measures revealed a significant
workload increasing (p < 0.05) related to both the investigated
events, that is the car and the pedestrian crossing the
road, especially in normal hours independently from the
road complexity. Instead, no significant workload increasing
were associated to the event during rush hours, despite a
significantly higher workload in comparison with the same events
during normal hours (Figure 13). Although for this analysis
neurophysiological measures are not integrated with additional
ones (it was impossible to collect subjective data related to
specific events, while from the ET point of view it was possible
to assess only if the event was been perceived or not), it is
possible to deduce that external events could lead to eventually
risky situations especially with low traffic (normal hours). In fact,
although a lower absolute workload if compared with high traffic

FIGURE 13 | The bar graphs show the mean values and the standard deviation of the EEG-based WL scores related to the different events along the various
experimental conditions. In particular, the results are divided per events category, i.e., Pedestrian on the left (A) and Car on the right (B). In both the cases, the
condition EVENT (solid color) is referred to the event actually happened during the 3rd lap, the condition NO EVENT (lines pattern) is referred to the same circuit
portion during the 2nd lap when no events were acted. The Wilcoxon tests revealed a significant workload increasing (one red asterisk stands for p < 0.05; two red
asterisks stand for p < 0.01) related to both the investigated events, that is the car and the pedestrian crossing the road, especially in normal hours independently
from the road complexity. Instead, no significant workload increasing were associated to the event during rush hours, despite a significantly higher workload in
comparison with the same events during normal hours.
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condition, they are characterized by an immediate cognitive
demand increase, that could become dangerous if not expected
by the driver.

Nevertheless, the main limit that affects the present study
is the algorithm calibration with data coming from the task
itself and recorded in very similar conditions. From one side, it
could be argued that in everyday life context such a calibration
would be unfeasible; from the other side it could be argued that
the proposed algorithm is not classifying the targeted mental
state, i.e., mental workload, but only two conditions that are
very similar. Regarding the calibration, actually it is one of
the main still open issues in transferring machine learning
approaches from research to applied field: several solutions have
been explored, such as cross-task calibration or employment of
unsupervised algorithms, but the problem is still open and needs
further investigation (Aricò et al., 2018). However, the present
work did not aim at addressing such issue, but at investigating
the possibility of applying a machine-learning algorithm for
the mental workload evaluation, already validated in other
domains, also in automotive applications. The highly challenging
conditions of a “real driving experiment” with twenty subjects,
jointly with the employment of high-quality instrumentation,
already make the present work very innovative and of interest.
Secondly, it is true that the algorithm has been calibrated
on two conditions and employed in classifying two similar
conditions, but it is also important to consider that calibration
data for each subject came from two different repetitions (please
refer to Section “Electroencephalographic Signal Recording and
Processing” for more information): in fact data recorded during
the Easy segment of Normal hour (2nd lap) have been used as
EASY CLASS, while data recorded during the Hard segment of
Rush hour (2nd lap) have been used as HARD CLASS. Even if
assuming that Easy segment of Normal hour and Hard segment
of Rush hour of 2nd and 3rd lap were intrinsically similar, no
data from Hard segment of Normal hour and Easy segment of
Rush hour have been used to train the classifier, therefore their
coherent classification (e.g., Hard segment of Normal hour is not
easier than the Easy segment during the same hour) is a mere
and appreciable result of the proposed algorithm. Undoubtedly,
mental workload is a Human Factor concept hard to define and
even worse to measure (Moray, 2013), and confounds arising
from different mental states are probably present, however, the
results of the present study are already remarkable, especially if
considering previous results obtained by the employment of the
same algorithm in different applications (Aricò et al., 2016a,b,
Borghini et al., 2017b,c).

It is important to remark how it is possible to achieve
this kind of results only thanks to the proposed methodology:
in fact, subjective measures cannot be gathered with high
time resolution and without interfering with the main task,
briefing and debriefing sessions can be performed only before
and after the experience, while eye-tracker as well as other
neurophysiological metrics (for example the ThetaF/AlphaP
showed in Figure 6) are able to provide only an overall
evaluation about a “long” condition. On the contrary, the
proposed methodology is able to overcome these limitations,
providing workload assessment with high time resolution (i.e.,

in this case 8 s) and thus allowing to evaluate also specific
events.

In conclusion, the obtained results appear very interesting in
terms of understanding driver’s behaviors and its relationship
with road environment, highlighting the added value of
neurophysiological measures in providing insights about human
mind that are not obtainable, or at least difficult to obtain, with
traditional approaches. Certainly, further analyses are necessary
in order to validate this multimodal approach with a larger
sample of subjects, exploring the impact of other factors, such as
different events, road signage and so on, and involving additional
tools typical of road safety research, as well as exploring the
possibility of calibrating the proposed algorithm without any
task-related data.

CONCLUSION

The present study, through a real driving experiment, aimed
to validate a methodology able to infer driver’s mental
workload on the basis of his/her brain activity through
Electroencephalographic technique. Once validated, such
methodology has been successfully employed to evaluate the
impact of different factors, specifically the road complexity, the
traffic intensity (depending on the hour of the day), and two
specific events (a pedestrian crossing the road and a car entering
in the traffic flow), on the drivers’ experienced mental workload.
The analyses have been supported by information coming from
subjective measures, drivers’ eye movements tracking and car
parameters. The results demonstrated (i) the reliability and
effectiveness of the proposed methodology based on human
EEG signals to objectively measure driver’s mental workload
with respect to different road factors, and (ii) the added value of
neurophysiological measures in providing insights about human
mind while dealing with tasks that are difficult or even impossible
to obtain by using traditional approaches. In conclusion, other
than the specific obtained results, the present work breaks new
ground for the integration of these new methodologies, i.e.,
neurophysiological measures, with traditional approaches in
order to enhance and extend research on drivers’ behaviors and
road safety.
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The number of older drivers is steadily increasing, and advancing age is associated with a

high rate of automobile crashes and fatalities. This can be attributed to a combination of

factors including decline in sensory, motor, and cognitive functions due to natural aging

or neurodegenerative diseases such as HIV-Associated Neurocognitive Disorder (HAND).

Current clinical assessment methods only modestly predict impaired driving. Thus, there

is a need for inexpensive and scalable tools to predict on-road driving performance.

In this study EEG was acquired from 39 HIV+ patients and 63 healthy participants

(HP) during: 3-Choice-Vigilance Task (3CVT), a 30-min driving simulator session, and

a 12-mile on-road driving evaluation. Based on driving performance, a designation of

Good/Poor (simulator) and Safe/Unsafe (on-road drive) was assigned to each participant.

Event-related potentials (ERPs) obtained during 3CVT showed increased amplitude of

the P200 component was associated with bad driving performance both during the

on-road and simulated drive. This P200 effect was consistent across the HP and

HIV+ groups, particularly over the left frontal-central region. Decreased amplitude of the

late positive potential (LPP) during 3CVT, particularly over the left frontal regions, was

associated with bad driving performance in the simulator. These EEG ERP metrics were

shown to be associated with driving performance across participants independent of HIV

status. During the on-road evaluation, Unsafe drivers exhibited higher EEG alpha power

compared to Safe drivers. The results of this study are 2-fold. First, they demonstrate that

high-quality EEG can be inexpensively and easily acquired during simulated and on-road

driving assessments. Secondly, EEG metrics acquired during a sustained attention task

(3CVT) are associated with driving performance, and these metrics could potentially be

used to assess whether an individual has the cognitive skills necessary for safe driving.

Keywords: EEG, event related potentials, sustained attention, driving, HIV, neurodegeneration, driving impairment

test, on-road evaluation

INTRODUCTION

Driving is an essential aspect of maintaining health, independence and quality of life as individuals
age (Ball et al., 1998). Those who voluntarily avoid driving due to perceived age-related sensory
or cognitive deficits often suffer substantial consequences such as decreased mobility, increased
dependency, social isolation, depression, and higher incidence of nursing home placement
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(Marottoli et al., 1997, 2000; Fonda et al., 2001; Ragland et al.,
2005; Freeman et al., 2006; Czigler et al., 2008; Choi et al.,
2013). Driving requires a myriad of cognitive functions including
attention, visuospatial processing, psychomotor integration,
adequate processing speed, and executive function (Kellison,
2009). Normal aging, in the absence of any neurological or
psychiatric disease, can lead to declines in these cognitive abilities
increasing the risk for an automobile collision (Brayne et al.,
2000; Ball, 2009). However, the aging process and its effects
on driving performance vary significantly between individuals
(Ball, 2009). It has been suggested that specific age-related
functional impairments, and not age itself, put one at risk for
impaired driving (Ross et al., 2009). Overall, older drivers as
a group incur the highest number of fatalities per mile driven
compared to other age groups (although the physical frailty
of older individuals contributes significantly to this mortality
rate) (Tefft, 2017). In addition to normal aging, functional
deficits associated with neurodegenerative diseases (NDDs) such
as Alzheimer’s (AD), Mild Cognitive Impairment (MCI), or
HIV-associated neurocognitive disorders (HAND) may affect
driving performance. While NDD patients are more likely to
be at-risk drivers, research suggests that memory deficits alone
may not necessarily lead to unsafe driving (Carr et al., 1998;
Marcotte et al., 1999, 2004; Silverstein et al., 2002; Charlton et al.,
2003; Duchek et al., 2003; Uc et al., 2004, 2005; Man-Son-Hing
et al., 2007; Frittelli et al., 2009; Wadley et al., 2009; Kawano
et al., 2012). Cognitive impairments that affect driving, such as
visuospatial processing deficits often found in patients with MCI
or HAND, may be subclinical and unobserved by the patient
themselves or their friends and family (Cysique et al., 2009; Chiao
et al., 2013). Therefore, driving impairment cannot be established
using only age and/or a NDD diagnosis.

In the United States, legal requirements for elderly drivers
vary greatly from state to state. Some states have no safety-
related policies for older drivers, whereas other states may have
limited requirements for elderly individuals. For example, license
renewal in California for those over the age of 70 may require a
vision and/or written test, and in rare cases an on-road evaluation
is administered (Department of Motor Vehicles, 2018a). Other
states like Connecticut and Delaware have no age-related safety
policies in place. Driver’s licenses in these states need to be
renewed every 6–8 years for all drivers regardless of age, often
with no functional assessment required (Department of Motor
Vehicles, 2018b,c).

Physicians have a responsibility to identify patients of all ages
that might be considered at-risk drivers. However, they are often
reluctant to take action due to privacy concerns and/or the severe
impact their intervention could have on the patient’s quality of
life that results from the loss of a driver’s license. Currently,
there is no definitive diagnostic test for physicians to administer
that identifies at-risk drivers, but individuals deemed potentially
high risk may be referred for neuropsychological testing. The
relationships between on-road driving performance and standard
neuropsychological tests are modest, particularly in patients
with mild to moderate cognitive decline or those recovering
from trauma, surgery or treatments such as chemotherapy
(Withaar et al., 2000; Reger et al., 2004; Leproust et al., 2008;

Classen et al., 2009). The most reliable method of evaluating
driving impairment is an on-road test with a DMV-certified
driving examiner, but annual on-road driving evaluations for all
seniors, or even just those with clinically diagnosed cognitive
impairments, are neither practical nor economical (Schanke and
Sundet, 2000; Kay et al., 2008; Versijpt et al., 2017). Therefore,
there is a need for inexpensive and sensitive tests to predict
on-road driving impairment.

This study investigated the use of simultaneous
electroencephalogram (EEG) and electrocardiogram (ECG)
measurement in a population of healthy participants and HIV+
patients (>55 years old) during a test of sustained attention
and processing speed. The combination of EEG, ECG, and
behavioral performance metrics derived from the 3CVT were
previously proven highly sensitive and specific in quantifying
daytime drowsiness associated either with sleep deprivation in
healthy participants or in sleep disordered patients, predicting
susceptibility to sleep deprivation, and assessing neurocognitive
deficits in patients with Parkinson’s disease (PD), AD, MCI,
and sleep disorders (Westbrook et al., 2002; Berka et al., 2006,
2007, 2009; Pojman et al., 2009a,b; Johnson et al., 2010, 2011;
Waninger et al., 2018). The 3CVT evaluates sustained attention,
visuospatial processing speed, and decision-making. These
cognitive abilities are relevant to driving performance and prior
work suggests that EEG metrics obtained during 3CVT were
sensitive to improvements in cognition as a result of successful
interventions for both sleep deprivation and sleep disorders
(Westbrook et al., 2002; Berka et al., 2006, 2007, 2009; Pojman
et al., 2009a,b; Johnson et al., 2010, 2011; Stoiljkovic et al.,
2018). In addition to 3CVT, EEG and ECG were also acquired
during both a simulated driving scenario and an on-road
driving evaluation to conduct an exploratory analysis to assess
any potential real-time neurophysiological changes associated
with driving performance. Specifically, differences in the early
(P200) and late (LPP) components evoked by the 3CVT have
been associated with differences in cognitive abilities such as
selective attention, memory, and decision-making. Since the
3CVT EEG metrics were previously shown to be associated with
neurocognitive deficits in cognitively impaired populations, the
investigators hypothesized that these metrics could be useful in
distinguishing Safe and Unsafe drivers.

Physiological (heart rate, heart rate variability, skin
conductance, and respiration) and neurophysiological (EEG)
measures have long been used to unobtrusively assess the
psychophysiological correlates of driving performance during
simulated and on-road driving. Characteristic changes in EEG
Power Spectral Densities (PSDs) have been associated with
real-time changes in driving performance, phasic task demands,
multiple domains of workload, and drowsiness (Zwinkels
et al., 1990; de Waard and Brookhuis, 1991; Brookhuis and
de Waard, 1993; Rookhuis et al., 1993; Mitler et al., 1997;
Lei and Roetting, 2011; Dijksterhuis et al., 2013). Similarly,
heart rate and heart rate variability have proven useful in
measuring dynamic changes in cognitive demand during driving
(Brookhuis et al., 1991; Mulder, 2004; Mehler et al., 2009,
2012). Several recent reports suggest the potential utility of
real-time EEG-based algorithms to detect driver drowsiness
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and inattention. Continuous monitoring of EEG and heart rate
data during driving provides excellent temporal resolution and
offers the potential for identifying driver fatigue early enough
to intervene and prevent sleep onset. Several recent reports
suggest the potential utility of real-time EEG-based algorithms to
detect driver drowsiness and inattention (Ajinoroozi et al., 2016;
Perrier et al., 2016; Hajinoroozi et al., 2017). Several challenges
remain for the implementation of integrated driver monitoring
systems including: obtaining high quality EEG and ECG with
unobtrusive sensor systems, validating and implementing
the real-time algorithms to achieve accurate identification of
fatigue or inattention, and determining the optimal approach
to interventions during driving (Dong et al., 2010). Another
important consideration is the generalizability of the algorithms
across all age groups, as the majority of published results use
algorithms that have been designed and tested on college age
research participants. These EEG-based algorithms are used to
monitor real-time changes during driving. To date, EEG metrics
have not been used to predict driving performance in elderly
individuals with or without cognitive impairment.

As normal aging is associated with changes in cognitive
abilities related to driving, normal aging also affects EEG signals.
Older individuals show a decrease in power in the alpha
band (8–13Hz) and decreased amplitude of ERP components,
particularly the P300 and Late Positive Potential (LPP) (De
Gennaro et al., 2005; Polich and Corey-Bloom, 2005; Olichney
et al., 2008; Vecchio et al., 2013; López et al., 2014; Ishii et al.,
2017). Older drivers are also more likely to exhibit EEG based
signs of fatigue and distraction that increase risks of driving
errors (Johansson, 1997). In patients diagnosed with Alzheimer’s
disease, the most commonly reported findings for resting-state
EEG are: a shift of the power spectrum to slower frequencies (i.e.,
increased delta and theta specifically over the temporal-parietal
regions; decreased alpha, beta, and gamma) (Bonanni et al.,
2008; Jelic and Kowalski, 2009; Dauwels et al., 2010a,b; Tsolaki
et al., 2014). Patients with AD also display prolonged latencies
and diminished ERP amplitudes and these cognitive-evoked
measures do tend to correlate better with severity of cognitive
impairments (Polich and Corey-Bloom, 2005; Garn et al., 2014).
The EEG power shifts and ERP differences in AD are primarily
associated with memory related functions. Additionally, patients
with HIV (with a subset of those potentially having HAND)
exhibited decreased amplitude and increased latency of the P300
and the Late Positive Potential (LPP) components compared to
healthy controls (Polich et al., 2000; Polich and Basho, 2002;
Chao et al., 2004; Bauer, 2011; Olichney et al., 2011; Papaliagkas
et al., 2011). To date, these studies have not directly examined
the relationship between EEG metrics associated with aging or
cognitive impairment and driving competencies.

This paper contributes to the field by: (1) establishing
the link between neurophysiological measures obtained during
computerized neurocognitive assessments and on-road driving
performance, (2) evaluating older adults (>55 years old)
and individuals with a condition that can lead to cognitive
impairment (HIV+). As such, this research offers the potential
to provide a standardized methodology for predicting driving
impairment due to disease related causes or natural aging.

MATERIALS AND METHODS

Participants
Sixty-three healthy participants (HP) (age 55–87 years,
mean = 65 ± 8.2 years, 49.2% male) and 39 HIV+ patients (age
55–74 years, mean = 61 ± 4.7 years, 87.1% male) were enrolled
in the study. The groups did not differ in years of education
(HIV+: 9–20 years of education, mean = 15.5 ± 2.9; HP: 10–21
years of education, mean = 15.6 ± 2.7). HIV+ patients were
primarily recruited from the University of California, San Diego
HIV Neurobehavioral Research Program (UCSD HNRP) and
healthy participants from the surrounding San Diego community
using flyers and handouts.

Participants were selected after an initial telephone screening
to determine their eligibility including the capability to provide
informed consent to cognitive testing, simulator testing, and an
on-road driving evaluation. Participants were included only if
they possessed a current driver’s license which was confirmed by
the California Department of Motor Vehicles (CA DMV) on the
day of their visit.

Additional exclusion criteria were: a history of loss of
consciousness >30min, current substance dependence,
psychosis, diagnosis of a cardiovascular, sleep, or pulmonary
disorder, and central nervous system opportunistic infections or
neurologic disease other than HIV infection, reported diagnoses
of Attention Deficit Hyperactivity Disorder (ADHD) or anxiety
related disorders. All HIV+ individuals were on anti-retroviral
therapy to control viral load, and healthy participants were
excluded for all medication except for over the counter drugs
and drugs for hypertension, diabetes, arthritis (non-opioid pain
medication), and mild to moderate depression. The HIV+
populations used for this study were taking the following
medications: 15 on antidepressants, eight on benzodiazepines,
two on antipsychotics, three on anxiolytics, three on narcotics,
and one on an anticoagulant. Urine toxicology (7-panel) and
breathalyzer evaluations were also collected from all participants
prior to starting the study visit. If either test was positive or the
participant acted in a manner suggesting intoxication, he/she
was rescheduled, or withdrawn from the study.

Three participants who signed informed consent forms and
began the study protocol were excluded from all analyses due to
a positive urine test for methamphetamine, and one additional
participant was excluded due to being severely cognitively
impaired despite a negative HIV status. Protocols were approved
by both the UCSD IRB and Sharp IRB (IRBANA).

Procedures
All participants completed neuropsychological (NP) testing and
Advanced Brain Monitoring’s (ABM) 3-Choice Vigilance Task
(3CVT) as well as driving simulations (a screening drive, and
subsequent challenge drive). A subset of the participants from
the HIV+ (N=20) and HP (N=30) groups also completed
an on-road driving evaluation (see below). EEG was collected
concurrently using ABM’s STATTM X10 EEG sensor headset
during all three tasks: 3CVT, simulated driving, and the on-road
driving evaluation. The X10 is a battery-powered, lightweight,
easy-to-apply wireless EEG system that acquires 9 channels
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of EEG (Fz, F3, F4, Cz, C3, C4, P3, P4, POz, referenced to
linked mastoids), and ECG. It uses passive, Ag/AgCl electrodes
printed on PET strip flex circuit cables. A piece of single-
use foam filled with conductive cream (Synapse by Kustomer
Kinetics) was attached to the strip over each electrode site
in order to make contact with the scalp. Impedances were
measured and all channels were considered acceptable at or
below 40 kOhms. Amplification and the A/D conversion was
done adjacent to the electrode sites, allowing for high-quality
data to be collected with higher than traditional impedance
cut-offs. Data were sampled at 256Hz with a high band pass
at 0.1Hz and a low band pass, fifth order filter, at 100Hz
obtained digitally with sigma-delta 16-bit A/D converters. Data
were transmitted wirelessly via Bluetooth to a host computer,
where acquisition software then stored the psychophysiological
data.

Cognitive and Medical Assessment
Cognitive status was successfully obtained through NP testing for
85 of the 102 participants (29 HIV+ and 56 HP), determined
using either the HNRP NP assessment battery (56% of cohort)
or the NIH Toolbox Cognition module (44% of cohort) (Berka
and Marcotte, 2017). For this subset of participants, 34% of the
HIV+ group was classified as impaired and 27% of the healthy
participants were classified as impaired based on the NP testing,
meaning there were no group differences in cognitive status due
to HIV status. Impairment was defined for the toolbox as a T
score of <40 on two of the tests, and for the NP assessment as
a global deficit score of <0.5. For all participants, HIV status was
confirmed through a finger stick blood test.

3CVT and EEG Measures
All participants were administered 3CVT, with concurrent
EEG recording to assess neurocognitive functions. The 3CVT
incorporates features of the most commonmeasures of sustained
attention, such as the Continuous Performance Test, Wilkinson
Reaction Time, and the PVT-192 (Riccio et al., 2001; Sateia,
2003). The 3CVT requires subjects to discriminate one primary
Target (triangle shapeN, 70% of trials) fromNon-Target (triangle
shape upside down H, 15% of trials). The remaining 15% of the
trials were used as Distracters (presenting a diamond shape: �)
to increase the task complexity but are not included in the final
Event Related Potential analysis. The test is 20-min long, during
which 376 images are presented for a duration of 0.2 s each. A
training period is provided prior to the start to minimize practice
effects (Levendowski et al., 2000, 2001). The 3CVT challenges the
participant’s ability to sustain attention by increasing the inter-
stimulus interval (ISI) across four, 5-min quartiles. During the
first quartile, the ISI ranges between 1.5 and 3 s, increasing up to
6 s during the second quartile, and up to 10 s during the third and
fourth quartiles.

ERP Measures
For the 3CVT task, raw EEG signals were filtered between 0.1
and 50Hz using a Hamming windowed Sinc FIR filter (0.1Hz
transition band). For each event type, EEG data were epoched
from 1 s before and 2 s after the stimulus onset. The baseline

was adjusted using data from 100ms before the stimulus onset.
Artifacted epochs were detected and excluded using automated
algorithms (EEGLAB software) (Delorme and Makeig, 2004).
Outliers were detected based on kurtosis of signal distribution
(kurtosis >5 standard deviation), joint probability of values in
an epoch given the whole data set (thresholded at 5 standard
deviation), and unusual spectral patterns of epochs (with power
spectrum 35 dB higher or lower than the baseline in the frequency
range of 20–30Hz). To exclude trials contaminated by ocular
artifacts, trials were rejected if the absolute value of the EEG
amplitude in any channel exceeded 100 microvolts during a
window of 50ms pre-stimulus onset to 750ms post-stimulus
onset. A minimum of 15 clean trials for each of the stimulus
subtypes in 3CVT (Target and Non-Target) were required to be
included in the analysis of that subtype. Grand average ERPs in
each condition and trial type were calculated using a weighted
average with the number of ERPs in each condition as the
weights. For each participant, ERPs were measured using the
average of the signal during a window of 180–220ms post-
stimulus onset for the P200 component, and the late positive
potential (LPP) was measured using the average of the signal
during a window 300–700ms post-stimulus onset.

Simulated Driving
Participants completed two simulated driving scenarios: an initial
screening and a challenge. Seventy-eight percent of eligible
participants were able to complete both scenarios. The remaining
22% were unable to complete both scenarios, primarily due to
mild to severe motion sickness. To mitigate motion sickness,
the driving scenario was split into three sessions with breaks in
between. A STISIMM300WS Console driving simulator (System
Technology Inc., Hawthorne, CA, USA) was used for both sets of
driving simulations (Figure 1). The screening drive is a practice
session of approximately 15min given in order to familiarize
participants with the driving simulator. Following the Screening
Drive, participants began the Challenge Drive, which is a longer
(3, 10-min segments, 30min total), more complex drive assessing
a range of abilities. Participants were instructed to complete the
Challenge Drive while following traffic laws. The Challenge Drive
was designed to be a surrogate for measuring on-road driving
performance.

The Challenge Drive consisted of monotonous, uneventful,
and low-load driving scenarios as well as highly demanding
events such as busy intersections, crash avoidance, and
unprotected turns. Busy sections were interspersed throughout
the simulation run and lasted for 4–5min. For example, one
complex segment required the driver to avoid and pass slow
moving cars while driving through dense fog. Once the fog lifted,
the driver entered a city scene where a van was parked in the left
lane and two pedestrians suddenly stepped into the road from in
between two parked cars. Other highly engaging events included
passing through a narrow construction zone with many barriers,
avoiding cars suddenly entering the roadway, making left turns in
front of oncoming traffic, passing slow moving trucks on a two-
lane highway with oncoming traffic, and avoiding pedestrians
stepping into the roadway without warning. The non-challenging
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FIGURE 1 | STISIM M300WS console with participant (written informed

consent obtained).

sections consisted of stretches of highway where no other cars
were present and no challenging events were triggered.

The Challenge Drive also contained a divided attention task
called the Surrogate Reference Task (SuRT), aimed at examining
distracted driving. The SuRT was initiated by an auditory cue
(phone ringing) and required the participant to look down and
to their right, forcing them to take their eyes entirely off the
roadway to perform this secondary task, much like using a GPS
or infotainment system. Participants were required to identify a
circle that was different in size from other circles on the screen
of a tablet (Figure 2). The easy, medium, and hard trials of this
task were differentiated by the difference in size between the
target and distractor circles. The target circle radii remained
20.7mm for all three trials, while the distractor circle radii
increased from 10.4 to 13.8 to 17.4mm. Throughout this task, the
simulation consisted of a two lane freeway without turns, a speed
limit of 65 MPH, and no cars in either direction. Outcomes of
interest included swerving [standard deviation of lateral position
(SDLP)], speed maintenance (including variability) as well as
accuracy and reaction time on the secondary task.

On-Road Driving Evaluation
A subset of 50 participants (age 55–79 years, mean = 62 ±

6.6, 66% male, 40% HIV+) who completed the neurocognitive
testbed and the driving simulator were selected to complete
the on-road drive. Only 50 were selected due to time and
budget restraints; selected participants must have completed the
3CVT and driving simulator scenarios. The on-road driving
route was approximately 12 miles and required, on average,
45min to complete (Supplementary Figure 1). It was conducted
by the Sharp Rehabilitation Services Driving Program using
a standardized approach with excellent inter-rater reliability
(Cohen’s K = 0.86) and established sensitivity to HIV-
related driving changes. A DMV-certified driving examiner was
positioned in the front passenger seat of a dual-brake automobile;
an occupational therapist (OT) and ABM technician (taking

FIGURE 2 | Example of a participant identifying correct, target circle.

detailed notes about the driving safety and performance as well
as monitoring the EEG signals) observed the drive in the rear
seats. Participants were instructed to drive through residential
and commercial areas, across controlled and uncontrolled
intersections, and on freeways (including multiple merges).
The participants followed single and multi-step directions (e.g.,
“Make the next available right turn. . . In three traffic lights, make
a left turn”) throughout the duration of the drive.

Evaluating Driving Performance
In order to evaluate driving performance participants were
divided into groups of “Good” or “Poor” drivers based on
performance in the simulator and “Safe” or “Unsafe” drivers
based on on-road performance. The following sections describe
this group assignment process.

On-Road Performance
Both the driving examiner and OT evaluated the drive in two
ways. First, 186 scoring criteria for correctly performing traffic
checks, maintaining lane position and speed, yielding when
appropriate, etc. were assigned either a zero for pass, or a one
for fail. Second, participants were given an overall score of 1
(excellent) through 5 (recommends they should not be driving)
(Supplementary Table 1).

Each evaluator independently completed the pass/fail scores
during the drive, and assigned an overall score after the
conclusion of the drive. The driving instructor and OT would
then arrive at a consensus evaluation for the overall score as
well as a consensus regarding individual pass/fails. In addition,
the OT documented critical errors in the form of physical
or verbal interventions. Physical interventions included using
the passenger-side brake and grabbing the wheel, while verbal
interventions included any additional instructions or warnings
that were not part of the scripted directions. Each driver was
designated Safe or Unsafe based on the consolidated raters scores,
comments, critiques, observations, and critical errors. Thirty-five
of the 50 drivers were designated Safe (70%) and 15 drivers were
designated Unsafe (30%).
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Driving Simulator Performance
Individual mistakes over the course of the challenge drive were
counted and given weights to generate a weighted score as
follows:

- 3 pts for a collision with another vehicle
- 2 pts for running stop signs or red lights
- 1 pt for speed exceedances and lane marker collisions (e.g., a

traffic cone in a construction zone)
- 0.5 pts for crossing over the center dividing line or crossing

into the right shoulder without causing a collision.

Using these weights, a total weighted score was computed
for each participant who completed the simulated drive. This
weighted score was used to divide drivers into either Good
or Poor groups. Drivers with a weighted score of 35 or more
designated as Poor. This threshold of 35 was chosen to result in
70/30% Good/Poor ratio to match the Safe/Unsafe ratio observed
during the on-road drive (see On-Road Performance). Figure 3
shows the distribution of weighted scores for all participants who
completed the simulated driving scenario.

Predicting Driving Performance
A linear discriminant function (LDF) was designed to
classify Safe vs. Unsafe drivers using EEG ERP measures
(P200 and LPP for both Target and Non-Target trials
across all channels) obtained during the 3CVT test.
The variables used for the LDF were selected through a
step-wise algorithm in a logistic regression analysis. The
classifier was evaluated using a leave-one-out cross validation
method.

RESULTS

EEG and behavioral measures were computed for all three tasks
(3CVT, simulated driving, and on-road evaluation). Performance
in the driving simulator was used to group subjects into either

FIGURE 3 | The distribution of weighted scores (higher scores indicate worse

performance) across all subjects who completed the simulated drive, with the

red line showing the cut-off threshold of 35.

Good or Poor (section Driving Simulator Performance), and on-
road driving performance was used to designate subjects as either
Safe or Unsafe (section On-Road Performance). To investigate
the relationship between each behavioral/EEG measure and
driving performance, these measures were averaged across the
Safe (or Good) groups and were compared to the average of the
Unsafe (or Poor) groups.

To investigate the relationships between HIV seropositivity
and driving performance, chi-square tests of independence were
performed for simulated and on-road driving groups. The
proportion of Good vs. Poor (60.6 vs. 39.4%) drivers in the HIV+
group was not significantly different than that of the HP group
(69.2 vs. 30.8%) [χ2 (1, n = 85) = 0.34, p = 0.56]. Similarly,
the proportion of Safe vs. Unsafe (60.0 vs. 40.0%) drivers in
the HIV+ group was not significantly different than that of the
HP group (76.6 vs. 23.4%) [χ2 (1, n = 50) = 0.89, p = 0.34].
Therefore, driving performance both in the simulator and on-
road was determined to be independent of HIV status in this
population.

Behavioral Measures
Behavioral measures included simulated driving performance,
on-road driving performance, and Reaction Time (RT)/Accuracy
for the 3CVT, as described in sections Driving Simulator
Performance, On-Road Performance, and 3CVT and EEG
Measures, respectively.

3CVT Behavioral Measures as Predictors of Driving

Performance
Behavioral measures during the 3CVT attention task were
computed for each participant including RT, Accuracy (percent
correct), and a combined measure of performance (F-measure,
i.e., a harmonic mean of normalized accuracy and reaction time)
(Stikic et al., 2011). A student’s t-test was used to determine
whether group averages of 3CVT behavioral measures were
different for Safe/Unsafe (on-road drive) andGood/Poor (driving
simulator) drivers. F-measure showed no significant difference
in performance between Safe and Unsafe drivers (p = 0.81,
df = 47) (Figure 4A). However, Good drivers in the simulator
had significantly higher performance compared to Poor drivers
(p < 0.01, df= 77) (Figure 4B).

FIGURE 4 | Comparison of F-measure for (A) Safe vs. Unsafe and (B) Good

vs. Poor.
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Driving Simulator
Throughout the driving simulation, there was high variability
between subjects in speed, speed deviation, SDLP, and time to
collision as individuals navigated the various complex segments
with varying approaches. For example, Supplementary Table 2

shows the high variance of speed between subjects for each
block. Although participants were instructed to follow the rules
of the road, the completion time for each segment of the
driving scenario varied widely between participants. Because
of the high between- and within- subject variability of these
metrics, driving performance in the simulator was quantitatively
computed using the variables described in section Driving
Simulator Performance. To assess the relationship between on-
road driving performance and simulator performance, a chi-
squared test of independence was performed. 72.7% of Safe
drivers were Good in the simulator and 71.4% of Unsafe drivers
were Poor in the simulator [χ2 (1, n= 47)= 6.23, p= 0.01].

SuRT Performance in Driving Simulator to Predict

Simulator/On-Road Driving Performance
The mean Number Correct and mean Reaction Time for each of
the three difficulty levels of the secondary task are illustrated in
Figure 5. Students’ t-tests revealed that no significant difference
in Number Correct from easy to medium was present, but
Number Correct did differ significantly between medium and
hard (t-test, df= 141, p< 0.01), and easy to hard (t-test, df= 141,
p < 0.01). Mean Reaction Time significantly increased from easy
to medium (t-test, df = 143, p < 0.05) and medium to hard
(t-test, df= 141, p < 0.01).

Ideal driving behavior during the SuRT would be
characterized by a low rate of swerving (low SDLP), an
average speed close to the speed limit (65 MPH), and a low rate
of speed deviation. SDLP significantly increased from easy to

hard (t-test, df= 141, p< 0.01) and frommedium to hard (t-test,
df = 141, p < 0.01). Speed deviation significantly increased
from easy to hard (t-test, df = 141, p < 0.05) and medium to
hard (t-test, df = 141, p < 0.01). Average Speed decreased from
medium to hard (df= 141, p < 0.05).

While the SuRT task proved to be useful in measuring the
effect of multitasking on driving behavior, neither SuRT driving
performance nor secondary task performance were significantly
different for Good vs. Poor (simulator) or for Safe vs. Unsafe
(on-road) drivers.

On-Road Drive
The overall Safe and Unsafe driver’s scores were computed as
described in section On-Road Performance and were used for
group comparisons.

Association Between 3CVT EEG ERP
Measures and Driving Performance
EEG measures obtained during 3CVT were compared for each
group in order to discover any potential associations between
3CVT EEG measures and driving performance measures.
Figure 6 shows the grand average ERPs for 3CVT Non-Target
trials (left) and Target trials (right) plotted to compare the Safe
and Unsafe drivers. On average, Unsafe drivers exhibit higher
amplitudes at 200ms post-stimulus onset and lower amplitude
from 300 to 700ms post-stimulus onset.

For each participant, ERPs were measured using the average
of the signal during a window of 180–220ms post-stimulus onset
for the P200 component, and the late positive potential (LPP) was
measured using the average of the signal during a window 300–
700ms post-stimulus onset. Safe drivers exhibited a significantly
smaller P200 over the left central region for Non-Target trials
compared to Unsafe drivers (Figure 7A). HP Safe drivers

FIGURE 5 | Secondary task performance and driving performance during the SuRT Easy, Medium, and Hard task. Participants performed worse, as indicated by all

metrics except average speed, on the most difficult SuRT task.
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FIGURE 6 | Grand Average ERP plots (averaged across participants) for (A) Non-Target and (B) Target trials during 3CVT task plotted for Safe (blue)/Unsafe (red).

FIGURE 7 | Topographical maps of (A) the average P200 component in Non-Target ERP trials (left panel) and (B) average LPP component in Target trials (right panel)

plotted for all subgroups: Safe/HP, Safe/HIV+, Unsafe/HP and Unsafe/HIV+. In each panel, the difference plot between total Safe and Unsafe groups is shown on the

right side. Channels with significant differences between the two groups (t-test, p < 0.05) are marked with a diamond sign.

exhibited a significantly larger LPP over the left frontal region
compared to HP Unsafe drivers for Target trials (Figure 7B).
There was no significant difference between HIV Safe and HIV
Unsafe in terms of LPP amplitude (Figure 7B). Additionally,
there was no significant difference in LPP amplitude when
comparing Safe and Unsafe drivers from both groups. Table 1
summarizes the significant findings. The difference in the P200
and LPP components between Safe and Unsafe drivers are listed
for both trial types (Target and Non-Target) and for all channels
in Supplementary Table 3.

Figure 8 shows the grand average ERPs for 3CVT Non-Target
trials (left) and Target trials (right) plotted to compare the Good

and Poor drivers in the simulator. On average, Poor drivers

exhibit higher amplitudes at 200ms post-stimulus onset, and

lower LPP amplitude from 300 to 700ms post-stimulus onset.
Overall, Poor drivers had a significantly higher P200 over left

frontal-central channels (Figure 9A) and a significantly lower
LPP amplitude over left frontal channels (Figure 9B) compared
to Good drivers. Table 2 summarizes the P200 findings and
Table 3 summarizes the LPP findings for all significant channels.
The difference in the P200 and LPP components between Good

and Poor drivers are listed for both trial types (Target and
Non-Target) and for all channels in Supplementary Table 4.

EEG Measures During the Simulator and
On-Road Drive
EEG was acquired during the simulated driving scenario as
well as the on-road drive in order to identify any possible
real-time neurophysiological differences associated with driving
performance. However, there were no significant findings.

EEG and Behavioral Measures in Relation
to Cognitive Status
Cognitive status (impaired vs. unimpaired, see section Cognitive
and Medical Assessment) was not correlated with any of the
behavioral, EEG, and driving performance measures included in
this study.

Classifier for Predicting On-Road Driving
Performance
At the operating point the true positive rate and false positive rate
of the classifier were 0.85 and 0.23, respectively. The area under
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ROC curve was also used as an overall measure of classification
performance. The results (AUC = 0.88) were compared with
another LDF using only performance measures obtained from
the driving simulator as the predictors (see Driving Simulator

TABLE 1 | Average P200 components for all groups and subgroups based on

on-road driving performance.

P200 avg (NonTarget)

Mean ± SEM (uV)

Condition Group n Cz C3

HP Safe 19 −1.07 ± 0.96 −0.31 ± 0.80

Unsafe 7 2.76 ± 1.36 2.30 ± 0.95

HIV+ Safe 9 1.32 ± 1.89 2.37 ± 1.35

Unsafe 7 3.34 ± 1.94 3.97 ± 1.98

All Safe 28 −0.30 ± 0.90 0.55 ± 0.72

Unsafe 14 3.05 ± 1.14 3.14 ± 1.08

HP 1 = Safe-Unsafe 26 −3.83* −2.62

HIV+ 1 = Safe-Unsafe 16 −2.02 −1.60

All 1 = Safe-Unsafe 42 −3.35* −2.59*

Significant differences (t-test, p < 0.05) are marked with asterisk.

Performance) resulting in AUC = 0.73. The true positive and
false positive rate at the operating point of this second classifier
was 0.64 and 0.21, respectively. Figure 10 shows the ROC curve
for both classifiers. The higher performance of the EEG-based
classifier, as opposed the classifier based on simulator data,
demonstrates the power of EEG measures during an attention
task in predicting on-road driving performance.

DISCUSSION

Evidence from the present study revealed an association between
on-road driving performance and EEG ERP data obtained during
a short neurocognitive test of sustained attention (3CVT). The
3CVT EEG ERP measures were related to driving performance
during a driving simulator task as well as an on-road driving
evaluation. Unsafe on-road drivers and Poor drivers in the
simulator both exhibited significantly larger P200 amplitude over
the left frontal-central region compared to Safe (on-road) and
Good (simulator) drivers, respectively. While this finding was
observed for Target (frequent) and Non-Target (less frequent)
trials, it was largest in response to Non-Target trials during the
3CVT. The P200 component is believed to index automatic,
stimulus-driven allocation of attention to stimuli and may

FIGURE 8 | Grand average ERP plots (averaged across participants) for (A) Non-Target and (B) Target trials during 3CVT task plotted for Good (blue)/Poor (red).

FIGURE 9 | Topographical maps of (A) the average P200 component in Non-Target ERP trials (left panel) and (B) average LPP component in Target trials (right panel)

plotted for all subgroups: Good/HP, Good/HIV+, Poor/HP and Poor/HIV+. In each panel the difference plot between total Good and Poor groups is shown on the

right side. Channels with significant differences between the two groups (t-test, p < 0.05) are marked with a diamond shape.
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TABLE 2 | Average P200 amplitude for all groups and subgroups based on simulator driving performance.

n P200 avg (NonTarget)

Mean ± SEM (uV)

Cz C3 Fz F3

HP Good 30 −0.84 ± 0.73 −0.63 ± 0.58 1.15 ± 0.79 1.19 ± 0.68

Poor 13 2.92 ± 0.90 2.88 ± 0.78 4.70 ± 1.01 5.7 ± 1.06

HIV+ Good 17 2.90 ± 0.89 3.19 ± 0.62 4.48 ± 1.13 5.55 ± 0.99

Poor 10 3.54 ± 1.89 2.91 ± 1.60 5.03 ± 1.66 5.39 ± 1.84

All Good 47 0.51 ± 0.61 0.75 ± 0.51 2.34 ± 0.68 2.77 ± 0.63

Poor 23 3.19 ± 0.92 2.89 ± 0.80 4.84 ± 0.90 5.56 ± 0.97

HP 1 = Good-Poor 43 −3.77** −3.50** −3.57** −4.51**

HIV+ 1 = Good-Poor 27 −0.64 0.28 −0.55 0.16

All 1 = Good-Poor 70 −2.68* −2.14* −2.50* −2.80*

Significant differences (t-test, *p < 0.05, **p < 0.01) are marked with an asterisk.

TABLE 3 | Average LPP amplitude for all groups and subgroups based on

simulator driving performance.

n LPP (Target) Mean ± SEM (uV)

Fz F3

HP Good 32 3.94 ± 0.70 2.89 ± 0.60

Poor 16 0.49 ± 1.58 −0.12 ± 1.34

HIV+ Good 19 2.74 ± 0.78 2.76 ± 0.77

Poor 11 2.56 ± 1.34 2.04 ± 1.61

All Good 51 3.49 ± 0.52 2.84 ± 0.47

Poor 27 1.33 ± 1.08 0.75 ± 1.03

HP 1 = Good-Poor 48 3.45* 3.02*

HIV+ 1 = Good-Poor 30 0.19 0.72

All 1 = Good-Poor 78 2.16* 2.08*

Significant differences (t-test, *p < 0.05, **p < 0.01) are marked with an asterisk.

reflect biases for preferential processing of particular types of
stimuli (Eldar et al., 2010; Gole et al., 2012; McIntosh et al.,
2015). In this study, the association between P200 amplitude
and driving performance may be linked to deficits in selective
attention. Bad drivers exhibit impaired ability to maintain focus,
improper allocation of attention, and are more easily distracted.
In a separate study in which 3CVT EEG ERP biomarkers
were evaluated in patients with a neurodegenerative disease
affecting memory (amnestic MCI), no P200 differences were
observed compared to healthy controls (Waninger et al., 2018).
These amnestic MCI patients did not present with noticeable
attentional deficits.

Additionally, Unsafe on-road drivers and Poor drivers in the
simulator both exhibited a lower LPP amplitude over the frontal
region, particularly for Target trials, compared to Safe (on-road)
and Good (simulator) drivers, respectively. The late positive
potential (LPP) has been shown to reflect feature evaluation,
memory matching, and decision making (Withaar et al., 2000;
Reger et al., 2004; Meghdadi et al., under review). Multiple
reports suggest reduced amplitude of the LPP is associated with

FIGURE 10 | Receiver operating curve (dotted line, simulator; solid line, 3CVT

EEG ERP).

cognitive decline (Schanke and Sundet, 2000; Charlton et al.,
2003; Kay et al., 2008; Cysique et al., 2009; Versijpt et al.,
2017; Department of Motor Vehicles, 2018a,c; Meghdadi et al.,
under review) and normal aging (Polich and Corey-Bloom, 2005;
Babiloni et al., 2006, 2010; Olichney et al., 2008; López et al.,
2014; Ishii et al., 2017). The association of bad driving and
reduced amplitude of the LPP reported in the present study
is consistent with previous studies that reported a correlation
between LPP reduction and severity of cognitive impairment
(Polich and Corey-Bloom, 2005; Garn et al., 2014).

The current study included healthy participants (HP)
as well as HIV+ participants with well-controlled immune
function as a result of antiretroviral therapy. Although current
antiretrovirals are increasing the longevity and overall health
of HIV+ individuals, HAND is still prevalent and may
affect driving performance. The present study included only
participants over the age of 55 due to the high likelihood
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of age-related decline in driving performance. There were
no significant differences observed in driving performance
between the HIV+ and healthy groups. In fact, the proportion
of bad drivers was equivalent for both groups. Bad drivers
(Unsafe or Poor) exhibited an increase in P200 amplitude
independent of HIV status with highest observed P200
amplitude in HIV+ Unsafe (or Poor) drivers and lowest
P200 amplitude in HP Safe (or Good) drivers. Cognitive
status as measured by standard neuropsychological testing (see
Cognitive and Medical Assessment) did not correlate with P200
amplitude.

Additionally, group differences were observed in the LPP
during 3CVT, with the association between bad driving
performance and the reduced amplitude of the LPP only
significant for the HP group. While bad drivers (Unsafe or Poor)
in the HP group show a significant decrease in LPP compared
to HP Safe or Good drivers, this reduction was not observed for
the HIV+ group. This may be because the LPP has already been
significantly reduced as a result of HIV seropositivity (Hillyard
et al., 1973; Polich et al., 2000; Olichney et al., 2011; Papaliagkas
et al., 2011).

The classifier used both P200 and LPP metrics to predict
drivers as either Safe or Unsafe. However, variables selected by
the stepwise feature selection and the results from 3CVT ERP
data of the present study suggest the P200 is a stable and reliable
predictor of driving performance. Preliminary results suggest this
P200 effect is consistently observed across other tests of focused
and divided attention (Meghdadi et al., under review).

While EEG measures acquired during the 3CVT sustained
attention task were highly associated with driving performance,
analysis of the EEG measures acquired in the driving
simulator and on-road drive did not significantly predict
driving performance. The complexity of the driving scenarios
and varying driving strategies employed by participants
did not allow for precise event locked EEG analyses
as was the case for 3CVT. Although participants were
instructed to follow the rules of the road, the completion
time for each segment of the driving scenario and on-
road drive varied widely between participants. The only
highly controlled segment of the either task was the SuRT
task performed during the simulated driving scenario.
SuRT task difficulty was inversely correlated with SuRT
driving and secondary task performance. However, neither
was correlated with overall simulated or on-road driving
performance.

In this study, EEG ERPs observed during attention tasks
and their relation to driving performance provide the basis for
an inexpensive, fast, and reliable screening exam for elderly
drivers using only EEG acquired concurrently during attention
tasks. Performance in the driving simulator alone provided
only a reasonable prediction of on-road driving performance
but was not nearly as accurate as the 3CVT EEG-based
classifier.

Driving is an essential aspect of maintaining independence,
but driving ability can begin to deteriorate as people age.
Through natural aging or disease-related causes, functional
impairments can impede elderly drivers from driving safely.

ERP measures (P200 and LPP) described in this study are
shown to reliably predict driving performance in both healthy
and HIV+ individuals across a broad age spectrum (55–87
years old). A diagnosis of a neurodegenerative disease (MCI,
PDD, HAND, AD, etc.) alone does not necessarily mean an
individual is too impaired to drive safely. In the present study,
standard neuropsychological testing was not predictive of driving
performance. Currently, there is no sensitive test to determine
if an individual is actually impaired except for an on-road
drive with a driving examiner. To address this unmet need, a
portable EEG system could be used to perform a short and
inexpensive neurocognitive test to obtain ERP data for any
patient. This ERP data could in turn be fed into a classifier
to determine whether or not an individual requires an on-
road driving evaluation (classifier responded Unsafe or Safe).
While there is a false positive rate of 23%, this approach offers
a much better alternative than requiring on-road evaluations
for all older or cognitively impaired drivers. Additionally,
the model will be improved and refined by increasing the
size of the dataset with other populations currently being
studied.

Future research is required to fully describe the P200
effect by implementing different types of tasks designed to
activate neural circuitry associated with varying aspects of
attention and cognition. In the field of driving assessment,
further experiments with larger and more diverse populations
(including drivers with a variety of neurodegenerative
diseases) are needed. A more in-depth analysis of driving
performance is also needed to further understand the
specific functional deficits associated with increased P200
amplitude.
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Driving is a complex task concurrently drawing on multiple cognitive resources. Yet,
there is a lack of studies investigating interactions at the brain-level among different
driving subtasks in dual-tasking. This study investigates how visuospatial attentional
demands related to increased driving difficulty interacts with different working memory
load (WML) levels at the brain level. Using multichannel whole-head high density
functional near-infrared spectroscopy (fNIRS) brain activation measurements, we aimed
to predict driving difficulty level, both separate for each WML level and with a combined
model. Participants drove for approximately 60 min on a highway with concurrent
traffic in a virtual reality driving simulator. In half of the time, the course led through a
construction site with reduced lane width, increasing visuospatial attentional demands.
Concurrently, participants performed a modified version of the n-back task with five
different WML levels (from 0-back up to 4-back), forcing them to continuously update,
memorize, and recall the sequence of the previous ‘n’ speed signs and adjust their
speed accordingly. Using multivariate logistic ridge regression, we were able to correctly
predict driving difficulty in 75.0% of the signal samples (1.955 Hz sampling rate) across
15 participants in an out-of-sample cross-validation of classifiers trained on fNIRS data
separately for each WML level. There was a significant effect of the WML level on the
driving difficulty prediction accuracies [range 62.2–87.1%; χ2(4) = 19.9, p < 0.001,
Kruskal–Wallis H test] with highest prediction rates at intermediate WML levels. On the
contrary, training one classifier on fNIRS data across all WML levels severely degraded
prediction performance (mean accuracy of 46.8%). Activation changes in the bilateral
dorsal frontal (putative BA46), bilateral inferior parietal (putative BA39), and left superior
parietal (putative BA7) areas were most predictive to increased driving difficulty. These
discriminative patterns diminished at higher WML levels indicating that visuospatial
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attentional demands and WML involve interacting underlying brain processes. The
changing pattern of driving difficulty related brain areas across WML levels could indicate
potential changes in the multitasking strategy with level of WML demand, in line with the
multiple resource theory.

Keywords: driver state assessment, mental workload, driver workload estimation, visual-motor coordination,
visual attention, brain-level interactions, dual-task, fNIRS

INTRODUCTION

Driving is a complex task, composed of multiple subtasks where
different cognitive demands are concurrently imposed on the
driver. For instance, one needs to be attentive toward unforeseen
events, integrate information from within and outside the vehicle,
and control the vehicle to keep it on the lane. All those tasks
require cognitive resources of limited capacity (Wickens et al.,
2008). Some of these tasks could possibly draw from the same
shared resources, leading to a potential interaction between
different subtasks.

Working memory plays an important role while driving since
the driver has to continuously integrate and dynamically update
information from internal and external traffic environments (De
Waard, 1996; da Silva, 2014). For example, Wood et al. (2016)
have associated increased working memory capacity with better
ability to control visual attention while being less distracted
in different driving tasks. Further, certain driving situations
are associated with increased working memory demands, e.g.,
left turns at intersections (Guerrier et al., 1999) or driving
within a dense city environment (Patten et al., 2006) as they
require integration of more items into trajectory planning. Yet,
working memory is a capacity-limited system (Baddeley, 2003;
Cowan, 2010) and working memory overload deteriorates driving
performance (Lavie, 2010). For example, it has been shown that
increasing working memory load (WML) via a secondary task
decreases driving performance on the lane change task (Ross
et al., 2018). Interestingly, this effect was larger for people with
less working memory capacity.

Besides working memory, driving requires visuospatial
attention and visuomotor control (Vingerhoets and Stroobant,
1999; Lust et al., 2011; Benedetto et al., 2013). Visual attention is
demanded because the driver needs to simultaneously integrate
central and peripheral vision within a rapidly changing moving
environment, while monitoring for unexpected critical events
(Owsley and McGwin, 2010). Under decreased vision, more
resources are allocated to lane keeping (Gao and Zhang,
2016). More specifically, Brooks et al. (2018) could link a
decrement in driving performance in a lane-keeping task to
increased peristimulus alpha activity, an indication for poor
visuospatial attention. Further, when participants drove in a
narrow road condition as compared to the ordinary driving task
with normal lane widths, fNIRS measured increased activation
in the prefrontal areas (Shimizu et al., 2009). This supports
other findings showing that driving in narrowed lanes is more
demanding (De Waard et al., 1995; Liu et al., 2016a) and
associated with performance loss (Rosey and Auberlet, 2012).

Thus, narrowed lanes seem to increase visuospatial attention load
necessary for controlling the vehicle safely.

In driving, different task demands interact with each other
(Borghini et al., 2014; Matthews et al., 2015). On the behavioral
level, there are various studies that have investigated the effect of
cognitive load on driving performance. For example, a majority
of the studies suggest that cognitive load actually improves
driving performance indicated by improved lane keeping (He and
McCarley, 2011; Cooper et al., 2013; for review see Engström
et al., 2017). Yet, for studies in which driving difficulty was
increased by exposing the car to crosswinds, an additional
cognitive load task led to an improvement in lateral control
in one study (He et al., 2014), but a drop in another study
(Medeiros-Ward et al., 2014).

The interaction of workload and driving performance on
the neural level was studied by Wang et al. (2018). In their
driving study, using electroencephalography (EEG), car drifts
were induced requiring the participant to make lane-keeping
adjustments. Additionally, a mathematical calculation task was
presented either right before, right after or simultaneously
to the induced car drifts. Theta and alpha oscillations in
frontal, parietal and occipital areas in the different dual-
task conditions were compared to oscillations in single task
conditions. While over-additive activation in the frontal theta
oscillations were found for the simultaneous condition, all
other location-band combinations revealed either additive or
under-additive activation in dual-tasking. Vossen et al. (2016)
studied the effect of WML on the temporal neural markers
for visuospatial attention. Participants performed worse in a
visuospatial attention task, in which participants had to react
to specific cued visual stimuli in a traffic scenery, when they
had to complete an additional verbal memory rehearsal task
simultaneously. A further analysis of evoked response potentials
(ERPs) from EEG showed that in the high WML conditions,
there was a reduction and delay of neural markers only in
the early stages of the visuospatial task associated with the
initiation of spatial orienting. On the contrary, later stages of
the visuospatial task responsible for retaining attentional focus
and target selection revealed no differences in the high WML
conditions.

The effect of an additional task on the primary driving task
was also studied with functional magnetic resonance imaging
(fMRI). In a driving simulator study, Just et al. (2008) found a
decrease in parietal activation associated with spatial attention
in normal driving when participants performed an additional
listening comprehension task. As spatial attention and listening
comprehension draw resources mostly from non-overlapping

Frontiers in Human Neuroscience | www.frontiersin.org 2 January 2019 | Volume 12 | Article 542102

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00542 January 21, 2019 Time: 17:54 # 3

Scheunemann et al. Demonstrating Brain-Level Interactions in Driving

cortical areas, the authors interpret the “diversion of attention as
reflecting capacity limit on the amount of attention or resources
that can be distributed across the two tasks” (p. 76). Similarly,
in a more recent fMRI-driving simulator study, Choi et al.
(2017) found a decrease in activation in the parietal areas and
an increase in activation in the inferior frontal gyrus and the
superior temporal gyrus associated with an additional listening
comprehension task while driving. These results illustrate the
complex interaction of how an additional task alters the neural
activation associated with the primary driving task.

In a cognitive approach on dual-tasking, Wickens (2008)
defined resources in his multiple resource theory of attention
along four dimensions, namely stages of processing, codes of
processing, modalities, and visual channels. The model assumes
an interference in dual-tasking when tasks compete for the
same resources. For each task, a computational model codes
the amount of resources needed for each dimension. For
any dimension, if all tasks combined require more resources
than what is available, the model predicts interference and
performance loss (Wickens, 2002). In an earlier study, the model
was implemented to predict driving performance along nine
different dual-task combinations consisting of different driving
conditions (e.g., urban vs. rural routes) and additional different
secondary tasks (e.g., visual vs. auditory backward reading of
numbers; Horrey and Wickens, 2003). Performance loss in dual-
tasking was successfully predicted by the model for latency of the
secondary task and response times to critical road hazards.

An important aspect of the multiple resource theory is
executive control, which describes the allocation of resources
between tasks. Especially in situations of high dual-task demands,
resources might be drawn away from a less prioritized task
toward a task with higher priority. Hence, the amount of
resources allocated to a subtask depends on the demands of the
other subtask, in particular when the other subtask is prioritized.
However, how these interactions happen on the brain level in
real world tasks is largely unknown. Therefore, in this study,
we aimed to investigate at the brain level, how different task
demands in one cognitive domain affect the resource allocation
for another cognitive domain, by comparing the specificity of
predictive brain activation patterns across various dual-tasking
scenarios. Specifically, we sought to explore how the assessment
of visuospatial attentional driving demands from functional
near-infrared spectroscopy (fNIRS) measurements depends on
different WML levels.

Functional near-infrared spectroscopy has recently become
popular in driving research as a measure of brain activity
because it provides brain activations measures with reasonable
anatomical and temporal resolution in relatively unconstrained
applied settings (Liu et al., 2016b; Sibi et al., 2016). FNIRS
uses near-infrared light to measure local concentration
changes of deoxygenated hemoglobin (HbR) and oxygenated
hemoglobin (HbO) from cortical brain areas which are seen
as correlates of functional brain activity (Villringer et al.,
1993; Sassaroli and Fantini, 2004). In comparison to HbO,
HbR signals are considered to be less influenced by systemic
physiological artifacts like cardiac pulsation, respiration,
or Mayer wave fluctuations than HbO (Obrig et al., 2000;

Zhang et al., 2005, 2009; Huppert et al., 2009; Suzuki, 2017).
Other studies additionally reported that HbR tends to correlate
stronger with blood oxygenation level dependent (BOLD)
response than HbO (MacIntosh et al., 2003; Huppert et al., 2006;
Schroeter et al., 2006; Foy et al., 2016).

In comparison to fMRI, fNIRS has lower spatial (Cui et al.,
2011; Mehta and Parasuraman, 2013; Pinti et al., 2018), but
better temporal resolution (Huppert et al., 2006). Compared to
EEG, fNIRS has lower temporal (Naseer and Hong, 2015), yet
better spatial resolution (Scholkmann et al., 2014). Due to its
robustness against motion artifacts and external electrical noise,
fNIRS is suitable for applied settings (Masataka et al., 2015;
Balardin et al., 2017) and has been used in actual driving (Yoshino
et al., 2013a,b). FNIRS has shown to be sensitive toward changes
in mental workload in the applied fields of simulated flight
operation (Ayaz et al., 2012; Durantin et al., 2014), simulated
urban rail driving (Li et al., 2018), as well as simulated (Unni
et al., 2017; Xu et al., 2017) and actual car driving (Ahn Son et al.,
2018). Further, fNIRS could detect elevated visual attention in
curve driving, as indicated by increased activity in right premotor
cortex, right frontal eye field, and bilateral prefrontal cortex (Oka
et al., 2015). Thus, fNIRS is applicable in applied driving settings
while providing independent measures of activity in functionally
specific brain areas.

In this study [some data has already been published in Unni
et al. (2017)], we used fNIRS brain activation measurements
obtained during driving to predict two types of cognitive
demands: visuospatial attentional demands and working memory
demands, both modulated simultaneously. To manipulate
visuospatial attentional driving difficulty, participants drove in
a 360◦ Virtual-Reality (VR) driving simulator, half of the time
through a construction site with a reduced lane width. At the
same time, participants had to perform the primary driving
task, which was a working memory speed regulation task (Unni
et al., 2017) with five different WML levels. Recording almost
whole-head fNIRS brain activation measurements, we aimed
at predicting driving difficulty (i.e., driving outside and within
construction sites with narrower lane widths) as a measure for
visuospatial attentional demands. One of our central questions
was whether it is possible to predict driving difficulty or whether
task interactions between visuospatial attentional demands and
WML levels at the brain level render this impossible. More
precisely, we calculated decoding models for the prediction of
driving difficulty from almost whole-head fNIRS for each WML
level separately and a model which combined fNIRS data over all
WML levels. A model with good prediction accuracy for driving
difficulty can be interpreted such that there exist distinct neural
correlates associated with increased driving difficulty. If there
was no interaction between WML and visuospatial attention,
a decoding model which combined fNIRS data over all WML
levels would perform similarly well in predicting driving difficulty
as using a decoding model for each WML level separately.
However, if there was an interaction between visuospatial
attentional demands and working memory demands, activation
patterns associated with increased driving difficulty would differ
over WML levels leading to better prediction accuracy for
the separate models. Hence, the comparison of prediction
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accuracies of the different decoding models characterizes the
interaction between the visuospatial attention with working
memory processing at the brain level. This is relevant for the
development of brain-based driver assistive systems as well as for
understanding the nature of the multitasking interactions at the
brain level.

MATERIALS AND METHODS

The experiment was implemented in a driving simulator where
participants drove on a highway with varying concurrent traffic.
Participants performed a driving task in a two factorial within
participant design with factors driving difficulty manipulated by
visuospatial attentional demands (two levels: non-construction
and construction) and WML (five levels: 0–4 back). The driving
difficulty was manipulated via changes of lane width and for
WML manipulation, participants performed a digit-span n-back
speed regulation task. The details of the tasks are provided
below.

Participants
Nineteen volunteers (17 males) aged 19–32 years
(Mean ± SD = 25.2 ± 3.7) participated in the experiment.
All participants possessed a valid German driving license at the
time of the experiment. Participants gave informed consent prior
to the experiment and received a financial reimbursement of
10 € per hour. The experiment was conducted according to the
guidelines of the German Aerospace Center and was approved
by the Ethics Committee of the Carl von Ossietzky University,
Oldenburg.

Experimental Set-Up
The experiment was set up in a VR-lab at the German Aerospace
Research Center allowing a 360◦ full view (Fischer et al., 2014).
During the experiment, participants were operating a realistic
vehicle mock-up equipped with common throttle, brake pedal,
steering wheel, and indicators. Participants drove on a simulated,
slightly curvy highway (64 km in total; developed on the platform
Virtual Test Drive, Vires Simulationstechnologie, Bad Aibling,
Germany) with varying concurring traffic. There were 15 vehicles
set randomly in an area with a radius of 1000 m around the ego
vehicle. Of those vehicles, 60% followed the direction of the ego
vehicle; 35% were in the front, 35% in the back, 15% to the left and
15% to the right of the ego vehicle; and 45% were trucks, other
55% were cars.

While driving, fNIRS brain activation measurements were
recorded from almost whole-head at a sampling frequency of
1.955 Hertz (Hz) from thirty-two optical emitters and detectors
using two NIRScout systems (NIRx Medical Technologies, LLC,
United States) in tandem mode. The system uses two wavelengths
of 760 and 850 nm to calculate the relative concentration changes
of HbO and HbR. We defined 78 fNIRS channels (emitter-
detector combinations) in total with an average channel distance
of about 3.5 cm. The exact channel locations are provided in Unni
et al. (2017). Along with fNIRS data, steering wheel position and
driving speed was also recorded at a sampling frequency of 50 Hz.

FIGURE 1 | Screenshots from the experimental paradigm. Top: a scene from
the construction condition with two lanes of reduced width. Bottom: a scene
from the non-construction condition with three lanes and normal lane width.

Visuospatial Attention Manipulation
We manipulated the visuospatial attention demands for the
driving task throughout the highway. For about half of the time,
participants were driving within a construction site (labeled as
construction). During the other half of the drive, participants were
driving on a normal road without the construction site (labeled as
non-construction).

The main differences between those two conditions were
the number of available lanes and their widths. In the non-
construction condition, there were three lanes available with a
total width of 10.75 m, consisting of two lanes with a width of
3.5 m (left and center lane) and a slightly wider right lane with
a width of 3.75 m. Driving in the construction site was more
difficult where only two lanes were available. The widths of the
lanes were also reduced along the construction sites with the left
and right lanes having a width of 2.5 and 3.5 m, respectively,
resulting in a total width of 6 m.

Further, the highway resembled the typical design of German
highways. In the non-construction site, there were solid markings
in white on the left and right of the road with dashed lines
between the lanes. As typical for German highways, pylons
marked the beginning and end of the construction sites and
yellow markings highlighted the new lanes. The positions and
design of the speed signs remained the same.

Screenshots from the experimental paradigm for both
conditions can be seen in Figure 1. In both conditions,
participants had to avoid collisions with other vehicles in ongoing
traffic and overtake when it was deemed necessary to drive at the
correct speed. Speed signs and WML levels varied at the same rate
over both levels of driving difficulty.
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FIGURE 2 | Example of the n-back experimental paradigm to manipulate cognitive workload. (A) Consider a scenario where the participant is about to pass the
80 km/h speed sign and the previous four speed signs were as shown in the schematic. (B) For the corresponding n-back task, participants had to memorize the
last n speed signs and drive at the n-th speed sign which occurred previously. For example, at 1-back, the participant’s target speed is the previous sign (140 km/h)
and has to keep the current speed sign in memory (80 km/h). Figure taken from Unni et al., 2017.

Working Memory Load Manipulation
The n-back task is considered to be a benchmark for WML
manipulation in neurocognitive psychology (Kirchner, 1958). In
a classical n-back task, a series of numbers, letters, or other stimuli
are presented. Participants then have to compare the current
stimulus with the stimulus n steps back and give a response
whenever they are the same. We modified the classical n-back
task to be applicable in the driving scenario by using speed signs
as stimuli. Participants had to adjust their speed to the speed sign
they passed n speed signs before. For a successful performance,
it was necessary that participants continuously update, memorize
and recall the previous n speed signs. Our experiment consisted
of five different workload levels from n = 0 (adjusting the speed
to the current speed sign) to n = 4 (adjusting the speed to the 4th
previous speed sign). The task is illustrated in Figure 2. A detailed
explanation of the WML speed regulation task can be found in
Unni et al. (2017).

Participants had a 6 s window (3 s both before and after
passing the sign) to adjust their speed to the target speed.
A deviation up to ±5 km/h from the target speed was judged
as correct. Whenever the deviation was more than ±5 km/h,
a warning message ‘Please pay attention to your speed’ was
displayed on the screen. This was done to motivate the participant
to drive at the correct speed. This message appeared on the screen
until the participant drove within the correct speed range. For
every new n-back task, participants were instructed to stay at the
speed of the first sign until they passed ‘n’ successive speed signs
before they could begin with the n-back task. There were nine

different speed signs (60–140 km/h in steps of 10 km/h) presented
in random order to avoid sequencing effects. At the beginning of
a new n-back condition, participants were informed via a message
displayed for 5 s on the VR-screen about the next n-back level to
be accomplished.

Experimental Procedure
The participants started with a 20 min training session where they
drove each of the five different n-back levels twice. Then, the main
experiment started, which lasted about 60 min with a break in
the middle. In total, the participants performed each 3 min long
n-back level four times, twice in each of the construction and
non-construction conditions. The speed signs were distributed
such that the participants passed a new speed sign roughly
every 20 s with some temporal jitter. The construction and non-
construction sites were alternating with every change in n-back
level. The order of the n-back levels was pseudorandomized in
such a way that the same n-back level was never driven twice
in a row and each n-back level was performed twice in the
construction and the non-construction conditions respectively.
Also, the sequence of n-back levels repeated itself in reversed
order after the break to avoid sequencing effects.

Data Analysis
Driving Behavior
To determine the effect of increasing WML levels, we calculated
error rates in the speed regulation task. As a measure of
performance in the working memory task, we calcultated the
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percentage of time segments in which the participant did not
reach the target speed (<90% driving within the tolerance
interval around the target speed). In line with the analysis for
the fNIRS data described below, we have excluded those time
segments (∼8% of time segments over all participants) from the
other analysis of driving behavior.

In order to check whether driving through the construction
site was associated with changes in driving performance, we
analyzed the steering reversal rate. Steering reversal rate was
defined as the number of times the participant crossed the
centered position of the wheel. Steering reversal rate usually
increases with increased driving difficulty, as more corrections
to the steering wheel position are required (Macdonald and
Hoffmann, 1980). As a measure for increased driving difficulty,
we calculated the difference in steering reversal rate between
driving in the construction and non-construction condition for
each n-back level.

Due to a problem in data recording in one participant, driving
behavior is presented for only 14 participants.

Working Memory Capacity
To ensure that all participants had comparable levels of working
memory capacity, they first performed the memory updating task
from the working memory capacity test battery by Lewandowsky
et al. (2010). In this test, participants had to remember a set
of digits which they had to update continuously through a
series of simple arithmetic operations (single digit addition and
subtraction). For every correct trial, participants received 1 point.
The average total score was 38.4 (SD = 10.7) out of a maximum
possible score of 60. One participant was excluded from the data
analysis, because of a score more than two standard deviations
below the mean.

FNIRS Data Processing
We used the nirsLAB analysis package (Xu et al., 2014) for fNIRS
pre-processing. Physiological artifacts (heartbeat, respiration,
and Mayer waves) were reduced with a low-pass filter (finite
impulse response with least-square error minimization) with a
cut-off frequency of 0.1 Hz. We used the Gratzer Spectrum
to obtain the molar extinction coefficients of HbO and HbR
corresponding to wavelengths of 760 and 850 nm, respectively
(Prahl et al., 1999). The corresponding molar extinction
coefficients are €760 = [1486.59 3843.71] and €850 = [2526.39
1798.64] M−1∗cm−1 (nirsLAB, NIRx Medical Technologies).
The differential path length factor takes into account the
increased distance the light path travels from the emitter to
the detector because of scattering and absorption effects. The
differential path length factors for HbO and HbR were 7.25
and 6.38, respectively (Essenpreis et al., 1993). The relative
concentration changes in hemoglobin (mmol/l) were calculated
via the modified Beer–Lambert’s law (Sassaroli and Fantini,
2004). For the modified Beer–Lambert’s law calculation, the exact
source-detector distance for each NIRS channel was computed
by nirsLAB according to the corresponding distances between
emitter and detector pairs on the NIRS cap.

We computed a channel-wise coefficient of variation (CV)
which is a measure for the signal-to-noise ratio (SNR) from the

unfiltered raw data. CV is calculated as the ratio of the standard
deviation and the mean of each NIRS channel over the entire
duration of the experiment (Schmitz et al., 2005; Schneider et al.,
2011). All channels with a CV greater than 20% were excluded
from further analysis. On average, 64 channels per participant
were included in the analysis (SD = 7). For the following fNIRS
analysis, we have used the HbR signal.

In the fNIRS analysis, we excluded all consecutive time
segments between two successive speed signs (∼20 s) in which the
participant didn’t reach the target speed (∼8% of time segments
over all participants). This was done because we were not sure
whether the participant was continuing to focus on the working
memory task in those time segments or whether he or she had
already given up at an earlier stage due to the inability to focus
on the task due to cognitive overload. This is important, as
disengagement from difficult tasks reduces the actual cognitive
load and affects interpretability of results since workload would
be significantly lower than what would be expected on basis of
objective task requirements (Victor et al., 2005; Mehler et al.,
2012).

A common method to increase the SNR is the application
of a Principal Component Analysis (PCA) on the pre-processed
fNIRS data (Virtanen et al., 2009). In a PCA, the fNIRS
data is transformed to a new set of variables called ‘principal
components’ (PCs) that are linearly uncorrelated and ordered
according to the amount of variance explained in the data.
It is presumed that motion artifacts contribute more to the
variance than the neurophysiological signals and hence the first
PC will mostly explain variance dominated by motion artifacts.
Therefore, in order to remove motion artifacts, we deleted the
first PC, which has shown to be a successful procedure in motion
artifact reduction of fNIRS data (Cooper et al., 2012; Brigadoi
et al., 2014). Besides motion artifacts, fNIRS data contains noise,
for example random instrumental white noise. As we can assume
this noise to have a Gaussian distribution, all PCs will contain
noise of the same Gaussian distribution. As all PCs contain the
same noise variance, first PCs, which explain most of the variance
will have a better SNR than later PCs, which explain little variance
but will be dominated by the same noise variance and therefore
have a worse SNR. That is why we retained only PCs with high
exploratory value before transforming the PCs back into the
time-series fNIRS data. Based on the recommendation by Jolliffe
(1972) on the Kaiser’s rule (Kaiser, 1958), all components with
eigenvalues larger than 0.7 were kept. With the procedure of
deleting the first PC and all other PCs with an eigenvalue smaller
than 0.7, 7.09 PCs (SD = 2.07) were retained on average over
all 15 participants. As detailed in the section below, the PCs are
calculated on training data in a cross-validation scheme. These
retained PCs were then transformed back to the original space
resulting in a less noisy time-series fNIRS data.

Multivariate Cross-Validated Prediction of Driving
Difficulty
Our goal was to predict the driving difficulty, i.e., whether
the participant was in the construction or non-construction
condition. First, we calculated binary multivariate logistic ridge
regression models (Hastie et al., 2009) for the prediction of
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driving difficulty from fNIRS data for each WML level, i.e., we
calculated separate models for each of the five n-back levels for
each participant. Second, we calculated one binary multivariate
logistic ridge regression model to predict driving difficulty from
fNIRS data combined over all WML levels for each participant.
Both models used time-resolved fNIRS HbR pre-processed data
from all the good channels at each timepoint (sampling frequency
1.955 Hz) as one signal sample. From each signal sample, channel-
wise weights were used for the model, which were computed
using the Glmnet toolbox (Qian et al., 2013). The output of the
logistic regression model can be interpreted as a class probability.
Consequently, we computed a model output for each signal
sample. All samples with a model output of p≥ 0.5 were assigned
to the class construction. This allowed us to calculate the rates
at which the model correctly classified different conditions.

In this study, we report model accuracy, which indicates the
proportion of correctly classified samples as either construction
or non-construction. The accuracy was calculated as follows:

Accuracy (%) =
TPc + TPnc

TPc + TPnc + FPc + FPnc
∗ 100

Here, the TP refers to the true positives (number of samples
correctly classified) and FP refers to the false positives (number
of samples incorrectly classified) for the two conditions denoted
by c for construction and nc for non-construction.

While classification accuracy is an intuitive concept to evaluate
the performance of a model, it can be biased, e.g., by uneven
data sets. In contrast, precision and recall are advantageous
performance measures, insensitive to training set size differences
(Rieger et al., 2008). Precision provides information about how
precise the model is in assigning a particular sample to the
respective empirical class (‘construction’ or ‘non-construction’).
On the other hand, recall is the proportion of samples belonging
to a particular class (‘construction’ or ‘non-construction’) which
were also assigned to the same class by the model. Here, we report
the F1-scores which are a harmonic average of the precision and
recall measures. A F1-score of 1 indicates perfect precision and
recall (Shalev-Shwartz and Ben-David, 2014). The F1-score for
the construction condition was calculated as follows:

F1-score =
2∗TPc

2∗TPc + FPc + FPnc

In order to test the generalization of the logistic ridge
regression model to new data and to avoid overfitting, an out-of-
sample nested cross-validation procedure as suggested by Hastie
et al. (2009) was used for model training and testing. The outer
loop implemented a five-fold cross-validation where the pre-
processed fNIRS time-series data was split into five consecutive
blocks. In each fold, a different set of four blocks was used as
training set to train the model while the left-out block was used
to test the generalization of the model. In addition, an inner
five-fold cross-validation loop was implemented on the training
set where we first performed the PCA of the fNIRS time-series
data to reduce noise, after which it was transformed back from
PC-space to the original time-series space. Using the Glmnet
toolbox (Qian et al., 2013), channel-wise weights for the logistic

regression model were found, for which the λ regularization
parameter was optimized internally by Glmnet in the training
phase. The cross-validation procedure avoids overfitting of the
data to the model and provides an estimate of how well a
decoding approach would predict new data in an online analysis
(Reichert et al., 2014).

Univariate Correlation Analysis
Interpreting the channel weights as indicators for brain areas
involved with the experimental condition can be difficult as
they result from a multivariate model and each weight can
only be interpreted in the context of the whole model (Reichert
et al., 2014; Weichwald et al., 2015; Holdgraf et al., 2017). To
achieve better interpretability, we additionally fitted channel-
wise, univariate logistic regression models of the fNIRS HbR data
on the driving difficulty for each participant for the separate
models. The fNIRS data was the same preprocessed data that
was used for the multivariate analysis. To reduce noise and
movement artifacts, we used a PCA the same way as for the
multivariate analysis. We performed a PCA for each condition
and participant, deleted the first and all PCs with an eigenvalue
smaller than 0.7 and then transformed it back from PC-space
to the original time-series space. To determine model fit, we
used the method suggested by Tjur (2009), to calculate R2 as
measure of the predictivity of a channel (R2

uvr). The Tjur R2

varies between 0 (no predictivity) and 1 (perfect predictivity).
We created averaged predictivity maps across all participants

(Tjur R2
avg) for each fNIRS channel, illustrating the differences

in brain activation between construction and non-construction
site driving, separately for each n-back level. Those averages were
calculated by weighting the single-subject’s univariate coefficient
of determination (R2

uvr) with prediction accuracy from the
multivariate regression analysis:

Tjur R2
avg (i) =

i, n∑
i, n=1

R2
uvr (i)∗ Accuracy (n)

n∑
1

Accuracy (n)

RESULTS

Participants
Four participants were excluded from the analysis, three of them
due to a large number (>50%) of noisy fNIRS channels and one
due to low performance in the working memory capacity test.
Thus, data from fifteen participants, all males, aged 19–32 years
(Mean± SD = 25.6± 3.96) are included in the following analysis.

Driving Behavior
Steering Reversal Rate
Across all n-back levels, the steering reversal rate was higher
in the construction condition than in the non-construction
condition, indicating that the construction site increased driving
difficulty (see Table 1). Additionally, this difference increased for
higher n-back levels, with exception of the 3-back, indicating that
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TABLE 1 | Steering Reversal Rate in Hertz.

0-back 1-back 2-back 3-back 4-back Mean

Construction 0.012 0.012 0.017 0.013 0.018 0.014

Non-construction 0.011 0.008 0.012 0.009 0.010 0.010

tconstruction−non-construction t(13) = 2.027 t(13) = 8.123 t(13) = 9.817 t(13) = 15.571 t(13) = 11.445 t(13) = 13.821

Significance test p = 0.064 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Bonferroni corrected p∗-value p∗ = 0.318 p∗ < 0.001 p∗ < 0.001 p∗ < 0.001 p∗ < 0.001 p∗ < 0.001

TABLE 2 | Differences in errors between driving difficulty conditions (construction–non-construction) calculated via paired-sample t-test and the effect size Cohen’s d.

0-back 1-back 2-back 3-back 4-back Mean

Construction 0.01 0.05 0.07 0.21 0.17 0.10

Non-construction 0.01 0.02 0.13 0.05 0.08 0.06

Differences between driving
difficulty condition

t(13) = −0.195
p = 0.849

t(13) = 1.011
p = 0.331

t(13) = −1.158
p = 0.268

t(13) = 3.014
p = 0.010

t(13) = 2.189
p = 0.046

t(13) = 3.198
p = 0.007

Cohen’s d −0.06 0.52 −0.46 1.10 0.76 0.85

Bonferroni corrected p∗-value p∗ = 1.00 p∗ = 1.00 p∗ = 1.00 p∗ = 0.050 p∗ = 0.230 p∗ = 0.035

driving difficulty increased with increasing WML levels (r = 0.65,
p < 0.001). This is also supported by a two-factor analysis of
variance (ANOVA) with the factors driving difficulty and WML
level. For steering reversal rate we observed main effects for both
driving difficulty [F(1,130) = 146.87, p < 0.001] and WML level
[F(4,130) = 19.08, p < 0.001], as well as a significant interaction
effect [F(4,130) = 10.49, p < 0.001]. For additional analysis on
lane deviation (see Supplementary Table S1).

Error Rates in WML Speed Regulation Task
We calculated the error rates (percentage of target speeds the
participants failed to reach) in the WML speed regulation
task in the construction and non-construction condition.
A two-factor ANOVA with the factors driving difficulty and
WML level revealed main effects of error rates for both
driving difficulty [F(1,130) = 5.12, p = 0.03] and WML level
[F(4,130) = 6.16, p < 0.001], as well as a significant interaction
effect [F(4,130) = 3.54, p < 0.01]. Figure 3 shows that for all
n-back levels except for 2-back driving in the construction site
was accompanied by more errors in the working memory speed
regulation task as compared to driving in the non-construction
site. This was especially true for the 3-back and 4-back levels (see
Table 2). The reduced meory performance suggests that increased
recruitment of cognitive resources required to meet increasing
visuospatial attention demands for the lane-keeping task interacts
with cognitive resource recruitment in the working memory task.

FNIRS Results
Prediction of Driving Difficulty
Our goal was to classify the driving difficulty from multivariate
logistic ridge regression using pre-processed fNIRS signal
samples (sampling frequency 1.955 Hz) in a cross-validation
scheme with five equally sized blocks to avoid class size bias. We
first calculated separate models for each WML level and each
participant. With this procedure, we predicted driving difficulty
correctly in 75.0% of the signal samples on average over WML
levels and participants. The mean F1-score was 0.70. The similar

scores between F1-score and accuracy suggest that the model was
not biased to a single class. There was a significant effect of the
WML level on the prediction of driving difficulty as indicated by
the rank-based non-parametric Kruskal–Wallis H test for both
model accuracy [range: 62.2–87.1%: χ2(4) = 19.91, p < 0.001] and
F1-scores [range: 0.57–0.86; χ2(4) = 15.46, p < 0.01]. Predictions
were better for intermediate WML levels (1-back and 2-back)
as illustrated in Figure 4 for model accuracy and Table 3 for
F1-scores. This pattern of prediction accuracy holds for most
individual participants: In 12 out of 15 participants, best model
performance F1-scores were achieved for either 1-back or 2-
back.

Prediction performance declined, when we used a decoding
model that combined the fNIRS data over WML levels to
classify driving difficulty. With this procedure, prediction was
around chance level with a mean classification accuracy of

TABLE 3 | F1-scores of each classifier for predicting driving difficulty and means
across participants and n-back levels (individual maxima bold).

Participant 0-back 1-back 2-back 3-back 4-back Mean

01 0.23 0.77 0.09 0.32 0.70 0.42

02 0.70 0.80 0.88 0.23 0.72 0.67

03 0.62 0.85 0.98 0.91 0.54 0.78

04 0.89 0.98 0.47 0.90 0.66 0.78

05 0.55 0.93 0.90 1.00 0.21 0.72

06 0.90 0.86 0.88 0.71 0.84 0.84

07 0.44 0.78 0.94 0.48 0.67 0.66

08 0.42 0.99 1.00 0.74 0.31 0.69

09 0.77 0.68 0.89 0.94 0.52 0.76

10 0.67 0.87 1.00 0.23 0.84 0.72

11 0.50 0.82 1.00 0.99 0.33 0.73

12 0.73 0.88 1.00 0.67 0.56 0.77

13 1.00 0.93 0.16 0.94 0.77 0.76

14 0.24 0.91 0.77 0.27 0.44 0.53

15 0.89 0.91 0.57 0.31 0.40 0.61

Mean 0.64 0.86 0.77 0.64 0.57 0.70
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FIGURE 3 | Error rate in the speed regulation task for driving in construction and non-construction condition for each n-back level across all participants. Black lines
indicate the standard error of the mean (n = 15).

FIGURE 4 | Prediction accuracies of driving difficulty for the models separate for each WML level. Individual accuracy score is indicated as dots. Mean accuracy per
WML level and its standard error of the mean are depicted in purple. Dashed line at 50% indicates the theoretical guessing level.

TABLE 4 | Accuracy and F1-score of each classifier across participants for the prediction of driving difficulty across all WML levels.

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Mean

Accuracy(%) 49 54 34 41 61 51 44 41 52 46 42 43 55 42 48 47

F1-score 0.44 0.44 0.40 0.42 0.57 0.50 0.42 0.18 0.44 0.31 0.35 0.55 0.52 0.38 0.37 0.42

46.8% and a mean F1-score of 0.419 over all participants (see
Table 4). Figure 5 depicts example histograms of the classifier
output for two participants. These results show that for seperate
models (Figure 5A), prediction of driving difficulty is clearly
higher than in the combined model (Figure 5A), suggesting
an interaction between brain networks modulated by increasing

driving difficulty and brain networks modulated by WML
variations. Importantly, this interaction appears to be asymmetric
as the reverse was not the case. Unni et al. (2017) demonstrated
that WML level can be predicted from fNIRS measurements
independent of changes in driving difficulty using data from the
same experiment.
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FIGURE 5 | Classifier output predicting driving difficulty for example participants P7 and P14. Colors indicate the actual driving condition and vertical dashed lines
indicate the class limit of the logistic regression output. Values larger than 0.5 were assigned to the construction condition. (A) For the separate prediction models,
most signal samples are predicted correctly at intermediate WML levels (1-back to 3-back level). (B) For the combined model, many signal samples are incorrectly
classified.

TABLE 5 | Comparison of mean accuracy for prediction of driving difficulty between predictions within WML levels and adjacent WML levels.

0c 1c 2c 3c 4c Mean

Discrimination of driving difficulty 0nc 1nc 1nc 2nc 2nc 3nc 3nc 4nc 4nc

Within WML level 0.68 0.87 0.85 0.72 0.62 0.75

Adjacent WML level 0.64 0.63 0.55 0.49 0.58

Comparison t(14) = 0.601
p = 0.558

t(14) = 5.913
p < 0.001

t(14) = 6.311
p < 0.001

t(14) = 2.736
p = 0.016

t(14) = 5.854
p < 0.001

To further test for an interaction between driving difficulty
and WML, we trained classifiers for all possible pairings of
experimental conditions to obtain a dissimilarity matrix. As
there were five WML levels and each WML level consisted of
two different driving difficulty levels, there were ten conditions
in total, resulting in 45 pairings. Figure 6 depicts the mean
dissimilarity matrix over all participants. Higher discrimination
accuracies indicate more reliable changes in brain activations
with increasing driving difficulty. In line with the previous
analysis, the highest discrimination rates were achieved at
intermediate WML levels. This is indicated by accumulation
of pairs with higher discrimination rates (depicted by yellow
color) in the central areas of the matrix. In addition, a closer
analysis of the pattern along the first off-diagonal trace shows an
alternating pattern of high and low discrimination accuracies. For
example, the 2-back construction brain measurements could be
better discriminated from 2-back non-construction than from 3-
back non-construction [t(14) = 6.311, p < 0.001]. This pattern
was consistent across other n-back levels and summarized in
Table 5. The average prediction accuracy of driving difficulty
within the same WML level was 75.0%, whereas the prediction
accuracy of driving difficulty for adjacent WML levels was 57.8%,
with this difference being significant [t(14) = 5.854, p < 0.001].
This shows that the driving difficulty became less discriminable
by fNIRS data once the WML was increased slightly in the
non-construction condition, a pattern that is expected when we

assume interactions of driving difficulty with varying WML at the
brain level.

Localization of Predictive Brain Areas
To gain further insights into the functional anatomy of brain
areas associated with increased driving difficulty and their
modulation by WML level variation, we calculated channel-
wise univariate logistic regressions of HbR levels between
the construction and non-construction conditions for each
participant and each n-back level. Figure 7A shows the group-
level brain maps depicting classification separability, derived as
the weighted averaged channel-wise Tjur R2 coefficients (Tjur
R2

avg) from the univariate logistic ridge regression model. The
maps show that predictivity of fNIRS activation in the lateral
dorsal frontal and parietal areas increases up to the 2-back WML
level, while the predictivity of fNIRS activation decreases at
higher WML levels (i.e., the 3-back and especially the 4-back
levels). This follows the pattern of discriminability variation in
the multivariate analysis. These results indicate that the loci
of interaction between WML and driving difficulty are in the
bilateral dorsal frontal (putative BA 46), bilateral inferior parietal
(putative BA 39), and left superior parietal (putative BA 7) areas.

We compared the brain maps to the results from Unni
et al. (2017) depicted in Figure 7B, where the same fNIRS
data was used to predict WML levels independent of driving
difficulty (average correlation between predicted and induced
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FIGURE 6 | Dissimilarity matrix of predictions of all possible pairings of conditions. c, construction; nc, non-construction; corresponding number indicates WML level.

FIGURE 7 | (A) Weighted mean of channel-wise predictivity (Tjur R2
avg) for driving difficulty at the different WML levels. (B) Weighted averaged group-level univariate

correlation (ravg) HbR brain maps showing brain areas sensitive to changes in WML independent of driving difficulty. White shapes mark WML prediction maxima in
all maps. Data for the two analyses were recorded in the same session with concurrent manipulation of driving difficulty and WML.

WML r = 0.61). The comparison of the anatomical locations of
predictive maxima for WML predictions in Figure 7B (marked
by white shapes) to Figure 7A suggests only partial overlap
between the brain resources predictive to the different task
demands. Variation of WML level was best predicted in bilateral
inferior frontal gyrus (IFG; putative BA 45), an area more
posterior to the lateral dorsal frontal areas (putative BA 46)
predictive for driving difficulty. An occipito-temporal predictive
region (putative BA 21) overlapped between WML and driving

difficulty predictors but appeared more left lateralized in WML
prediction, which has a stronger language component. The
bilateral inferior and left superior parietal areas (putative BA
39 and BA 7, respectively) which showed increased predictivity
to driving difficulty seems to show reduced correlations in the
WML level predictions (see Supplementary Figure S1 for an
annotation of putative Brodmann areas). This suggests that these
areas are unique to the prediction of driving difficulty, likely
involved in visuomotor attention (Jovicich et al., 2001; Caplan
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TABLE 6 | Brain areas showing predictive maxima of the driving difficulty and
WML levels and their corresponding MNI co-ordinates.

Brain areas Putative Brodmann
Area (BA)

X Y Z

For driving difficulty

Right dorsal frontal 46 38 52 30

Left dorsal frontal 46 −38 50 30

Right inferior parietal 39 44 −76 32

Left inferior parietal 39 −52 −66 18

Left superior parietal 7 −18 −64 70

Left occipito-temporal 21 −68 −38 −4

Right occipito-temporal 21 68 38 4

For WML levels

Right inferior frontal gyrus 45 52 36 20

Left inferior frontal gyrus 45 −52 38 20

Left occipito-temporal 21 −68 −38 −4

et al., 2006) such as vigilance and tracking of moving objects
(Culham et al., 1998), but nevertheless their predictivity depends
on WML level.

We visualized the averaged brain map on the MNI 152
brain in the Neurosynth1 and used MRIcron2 to determine
MNI co-ordinates and the corresponding Brodmann areas for
the brain areas depicting increased predictive discriminability
of the driving difficulty. Table 6 lists the brain areas and their
corresponding MNI-co-ordinates of the predictive maxima of the
driving difficulty and the WML levels.

DISCUSSION

In this driving simulator study, we varied visuospatial attention
demands by changing the lane widths, thus manipulating
driving difficulty while participants performed a modified n-back
WML speed regulation task. Using almost whole-head fNIRS
brain activation measurements, we were able to predict the
driving difficulty using a decoding model for each WML
level separately. However, the predictions of driving difficulty
degraded significantly when we tried to predict driving difficulty
using a decoding model which combined fNIRS data over all
WML levels.

In order to investigate possible interactions between
visuospatial attention and WML, there were two experimental
manipulations. To induce different demands in visuospatial
attention, participants drove half of the time through a
construction site with reduced lane-widths, increasing driving
difficulty. At the same time, participants performed a modified
n-back speed regulation task (0-back to 4-back) resulting in
five different levels of WML. Our goal was to predict the
driver’s current driving difficulty from almost whole-head
fNIRS brain activation measurements using a multivariate,
cross-validated logistic ridge regression model. As we were
interested in understanding if there exists an interaction between

1http://neurosynth.org
2https://www.nitrc.org/projects/mricron

visuospatial attention and WML on a brain level, we predicted
driving difficulty with a decoding model which used fNIRS data
separately for each WML level and with the same decoding model
using fNIRS data combined over all WML levels to compare the
decoding accuracies between the models. Our rationale was that
if visuospatial attention and working memory had independent
underlying brain processes, it should be possible to predict
driving difficulty in a combined model across all WML levels.
However, this was not the case. In fact, prediction accuracy
for driving difficulty across all WML levels was at chance level.
Yet, model accuracy improved when the prediction of driving
difficulty was calculated separately for each WML level (mean
accuracy = 75.0% over all WML levels). Further, there was a
significant effect of the WML level on the prediction of driving
difficulty.

Thus, we draw two conclusions. First, as driving difficulty
could be predicted separately for each WML level, changes in
driving difficulty lead to changes in neural correlates detectable
by fNIRS. This means that the separate models were able
to identify neural correlates specific to changes in driving
difficulty for each WML level. Second, the chance level accuracy
achieved while predicting driving difficulty in the combined
model across different WML levels suggests that no neural
correlates measurable with fNIRS changed with driving difficulty
across different WML levels. This means, the changes in
activation patterns due to changes in driving difficulty depended
on the driver’s current WML level. The interaction of the
underlying brain processes is further supported by the additional
comparisons of all possible combinations of predictions of
driving difficulty separately across different WML levels. We
showed that the construction condition could be better predicted
when discriminated against the non-construction condition
at the same WML level than when discriminated against a
non-construction condition at the successive WML level. This
suggests that an increase in WML recruits a neural network
which reduces the discriminability of different levels of driving
difficulty.

As fNIRS has good spatial resolution, it allowed us to
determine brain areas predictive for visuospatial attention and
to study a possible effect of WML on these brain areas. In
order to identify potential brain areas associated with increased
driving difficulty, we calculated group-level brain maps using
univariate channel-wise logistic regression analysis to predict
driving difficulty for each WML level. This analysis revealed the
bilateral dorsal frontal (putative BA 46), bilateral inferior parietal
(putative BA 39), and left superior parietal (putative BA 7) areas
to be most sensitive to changes in driving difficulty. Nevertheless,
these discriminative patterns diminished at higher WML levels
indicating an interaction between visuospatial demands and
WML levels.

The bilateral dorsal frontal areas (putative BA 46) are known
to be involved in executive control of behavior (Kübler et al.,
2006). In contrast, the bilateral inferior parietal (putative BA
39) and left superior parietal (putative BA 7) areas have been
associated with visuomotor integration, spatial perception and
orientation as well as in visual motion analysis (Andersen, 2011)
and visuomotor attention (Jovicich et al., 2001; Caplan et al.,
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2006) such as vigilance and tracking of moving objects (Culham
et al., 1998). These areas play an important role in driving,
especially with increased driving difficulty as in this study while
driving through a construction site with reduced lane widths.

We proceeded to compare the brain areas predictive to driving
difficulty to those areas predictive to WML independent of
driving difficulty, previously shown by Unni et al. (2017) using
the same data. The comparison of the anatomical locations of
predictive maxima for WML predictions revealed only partial
overlap between the brain resources predictive to the different
task demands. Variations in WML levels was best predicted in
bilateral inferior frontal gyrus (IFG, putative BA 45), which was
further posterior to the lateral dorsal frontal areas (putative BA
46) predictive for driving difficulty. An interesting point to note
was that the bilateral inferior and left superior parietal areas
(putative BA 39 and BA 7, respectively), which showed increased
predictivity to driving difficulty, showed negative correlations in
the WML level predictions independent of driving difficulty. This
could indicate that the two tasks interact at a common, task
unspecific cognitive resource at the brain level. The changing
pattern of driving difficulty related brain areas across WML levels
could indicate potential changes in the multitasking strategy with
level of WML demand.

The task interactions at brain level could be explained on
the basis of the Multiple Resource Theory (Wickens, 2002)
where an executive control system adjusts and allocates resources
between the two tasks. The bilateral dorsal frontal areas could
potentially represent the executive control system. From the
predictivity patterns of the brain maps, we observed that these
areas show increased predictivity to driving difficulty up to the
3-back WML level suggesting an increase in the difference in
effort by the participants for driving difficulty. The increased
cognitive resources allocated by the executive control to the
WML task rather than for increased visuospatial attention
may have reduced the predictivity pattern in the parietal areas
representing visuomotor co-ordination. It has been shown in
a driving simulator study that participants can strategically
prioritize among subtasks and adapt effort and driving behavior
accordingly (Cnossen et al., 2000).

In our study, prediction accuracies and F1-scores derived
from fNIRS brain activation measurements decreased for 3-
and 4-back WML levels. Participants might have reached their
maximum capacity at 3-back or 4-back WML levels. According to
multiple theories (Kahneman, 1973; Tombu and Jolicoeur, 2003;
Wickens et al., 2015), once the maximum resource capacity is
reached, limited resources are distributed across subtasks. This
would suggest that there were only limited resources available
for visuospatial attention needed for increased driving difficulty
in the higher WML levels. This can explain the drop in task
performance, the decrease in prediction accuracies and F1-
scores, as well as the decreased predictivity of localized brain
areas associated with increased driving difficulty for high WML
levels.

The notion of a competition of cognitive resources available
for the two tasks was further supported by the analysis of
the behavioral data. Participants made more errors in the
working memory task with increased driving difficulty and

had to make more steering adjustments (indicated by higher
steering reversal rates) with increased WML levels. Hence, an
increase in cognitive demands for one domain led to a decrease
in performance associated with the other cognitive domain.
These results are in line with Salvucci and Beltowska (2008)
who observed that increasing working memory demand of a
concurrent task substantially reduced driving performance with
respect to lateral control and brake response. Further, this task
interference became larger at high WML. Specifically, at high
WML levels (3- and 4-back), increased driving difficulty led to
a much larger drop in performance in the working memory
task, as compared to low and intermediate WML levels (0-back
to 2-back) at which the effect of increased driving difficulty
on the working memory task performance was substantially
smaller.

There are some limitations in this study that need to be
addressed. First, our sample population was low. Second, the
working memory task used is novel and other than traditional
memory span task used in driving research, where digits are
presented auditory (e.g., Mehler et al., 2012), the presentation
of stimuli in this task was visually, at a lower frequency, which
added an additional encoding and retention component to
the task. Future studies using the same paradigm should also
consider that a participant needs to pass n-number of speed
signs to reach the corresponding n-back WML level and might
therefore want to include more speed signs for higher n-back
levels. Third, the construction condition is not well validated.
For example, driving through a construction site is associated
with increased workload (Shakouri et al., 2018), even if the
lane width is not reduced (Vrieling et al., 2014). For example,
the construction condition had different lane markings than
the non-construction condition, which can influence driving
behavior (Davidse et al., 2004; Charlton et al., 2018). Further,
pylons marked the beginning of the construction sites in this
experiment that could possibly affect the preferred driving speed
in construction sites (Blackman et al., 2014; Steinbakk et al.,
2017). In general, rich driving environments increase visual
demands and uncertainty in the driver (Kujala et al., 2016), which
might have made it more difficult for the driver to detect and
encode speed signs in the construction condition necessary for
the WML task. Thus, increased effort in scanning for speed signs
in the construction condition could have altered lane-keeping.
We also have to point out that participants received feedback
for the working memory task only, possibly shifting the focus
toward this task, whereas in real driving, lane keeping would have
been prioritized over speed regulation. To assure participants
had the effective WML level as intended, we have excluded
time segments, in which participants didn’t reach their target
speed.

Our results could potentially have practical implications in the
field of brain-based adaptive driver state assessment. Assessment
of a driver’s cognitive state has the goal to detect when the
driver’s workload is too high to keep up with the demands of
operating a vehicle safely (Aghaei et al., 2016). In such situations,
a driver assistance system could provide feedback to the driver
(Feng and Donmez, 2013). For example, the use of a haptic
steering wheel providing haptic feedback to the driver for ideal
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steering movements helped to decrease driving difficulty (Steele
and Gillespie, 2001). Alternatively, adaptive automation systems
have the goal to detect the driver’s current cognitive demands
and to adjust the level of automation accordingly (Parasuraman
et al., 2000). Our results illustrate the challenge to disentangle
different types of workloads calling for new methods in workload
assessment for an accurate assessment of cognitive demands in
applied multiple task settings.

CONCLUSION

Our study indicates brain level interactions between visuospatial
attentional demands and WML while driving using fNIRS brain
activation measurements. As an explanation for the dependency
of those two different cognitive demands, we proposed that
once maximum capacity is reached, the two tasks must compete
for available resources. Further, there could be an interaction
at a common, task unspecific cognitive resource at the brain
level. The interaction of those different driving relevant tasks
constitutes a challenge in brain-based driver state assessment for
adaptive automation systems. Future studies should investigate
how different subtasks in driving influence each other and how
they could be assessed independently. This could eventually lead
to more specific support for the driver in operating the car safely.
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As driving functions become increasingly automated, motorists run the risk of becoming

cognitively removed from the driving process. Psychophysiological measures may

provide added value not captured through behavioral or self-report measures alone.

This paper provides a selective review of the psychophysiological measures that can be

utilized to assess cognitive states in real-world driving environments. First, the importance

of psychophysiological measures within the context of traffic safety is discussed. Next,

the most commonly used physiology-based indices of cognitive states are considered as

potential candidates relevant for driving research. These include: electroencephalography

and event-related potentials, optical imaging, heart rate and heart rate variability, blood

pressure, skin conductance, electromyography, thermal imaging, and pupillometry. For

each of these measures, an overview is provided, followed by a discussion of the

methods for measuring it in a driving context. Drawing from recent empirical driving and

psychophysiology research, the relative strengths and limitations of each measure are

discussed to highlight each measures’ unique value. Challenges and recommendations

for valid and reliable quantification from lab to (less predictable) real-world driving settings

are considered. Finally, we discuss measures that may be better candidates for a near

real-time assessment of motorists’ cognitive states that can be utilized in applied settings

outside the lab. This review synthesizes the literature on in-vehicle psychophysiological

measures to advance the development of effective human-machine driving interfaces

and driver support systems.

Keywords: psychophysiology, cognition, driving, traffic safety, real-world

THE IMPORTANCE OF PSYCHOPHYSIOLOGICAL MEASURES IN

TRAFFIC SAFETY

Suboptimal level of cognitive functioning (e.g., inattention, drowsiness) is a key cause
of traffic accidents and poor driving performance. According to Traffic Safety Culture
Index, 87.5% of drivers identify distracted driving to be a greater concern today than in
past years and 87.9% perceive drowsiness as a threat to their safety (AAA Foundation
for Traffic Safety, 2018). Traffic safety researchers are constantly working on methods
to improve driving performance by assessing cognitive states, such as drivers’ workload,
inattention, and fatigue. One way to improve the assessment of covert cognitive states
is to adopt a multi-method approach to measure changes in central and peripheral
nervous system functioning in order to sense near-real time information about cognitive
states of motorists. Such assessments of internal states can also promote the development
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of Advanced Driver Assistance Systems (ADAS) that can predict
and augment risky driving behavior.

Why Adopt

Psychophysiological Measures?
Cognitive states can be assessed using subjective, behavioral,
and physiological measures (Mauss and Robinson, 2009; Strayer
et al., 2015; Lohani et al., 2018). Subjective measures can be
limiting if the assessment is disruptive to the real-time task (i.e.,
primary task intrusion, see O’Donnell and Eggemeier, 1986).
More importantly, humansmay not always be accurate inmaking
judgements about their cognitive states (Schmidt et al., 2009).
Motorists can be inaccurate in making judgments about their
internal and cognitive states (such as their attention, workload,
and drowsiness levels). For instance, motorists were inaccurate at
self-assessments of vigilance (Schmidt et al., 2009); even though
objective physiological indicators (e.g., heart rate, EEG, and
ERPs) suggested poor vigilance levels at the end of a 3-h drive,
participants self-reported improved vigilance instead (Schmidt
et al., 2009). Such misjudgments in assessment of cognitive
states suggest that objective measures are required to assess and
augment human behavior in order to reduce risk for traffic safety.
While behavioral measures (such as head movement detection to
assess distraction) are also useful, given the intent of this review,
we will focus on physiological measures. Accuracy in detecting
cognitive workload has been found to significantly increase when
physiological data was utilized (Lenneman and Backs, 2009, 2010;
Solovey et al., 2014; Borghini et al., 2015; Yang et al., 2016).
Some work has also found that physiological measures were
sensitive to variations in cognitive load during secondary tasks
while behavioral driving measures like steering wheel reversals
and velocity (Belyusar et al., 2015) and lane-keeping measures
(Lenneman and Backs, 2009) were not. Unlike behavioral
measures (e.g., verbal and facial behavior), many physiological
measures are not under voluntary control ofmotorists.Moreover,
cognitive states such as mental workload are a multi-faceted
and dynamic concept and self-report alone cannot be used to
operationalize it, but multiple measures (e.g., performance and
physiology) are warranted (de Waard and Lewis-Evans, 2014).
Thus, inclusion of physiological data can complement and extend
behavioral metrics and improve assessments of motorists’ state-
level changes in cognition (Brookhuis and de Waard, 1993;
Mehler et al., 2012).

As automation is likely to become more prevalent over
time, real-time monitoring behaviors required by motorists may
decline as they are less involved in the driving process. This is
a critical reason why non-behavior-based metrics will become
more relevant to incorporate into our understanding of the
motorists’ cognitive states. Moreover, distracted motorists of
a self-driving vehicle compared to manually driving motorists
take longer to gain control of the driving task once automation
deactivates (Vogelpohl et al., 2018). Intelligent driving assistance
systems should be capable of reliably sensing and assessing
distraction and drowsiness levels of motorists to be able to
augment safe-driving conditions. Building reliable systems to be
able to predict decreased levels of vigilance or dangerous levels of

fatigue, drowsiness, or workload could help augment them in a
timely manner (Balters et al., 2018).

Cognition in Dynamic Real-World

Driving Contexts
In general, psychophysiological measures can be used to assess
degree of arousal or activation (Mauss and Robinson, 2009).
Importantly, multiple psychological constructs can influence
variations in psychophysiological measures. For instance, heart
rate, skin conductance, and electrical activity of the brain
are sensitive to many psychological constructs experienced by
motorists, such as workload, drowsiness, stress, etc. In the
past years, important contributions have reviewed the literature
on specific cognitive states, such as workload (Borghini et al.,
2014; Costa et al., 2017), distraction (Matthews et al., 2019),
drowsiness (Sahayadhas et al., 2012; Borghini et al., 2014),
and stress (Rastgoo et al., 2018) in driving research. These
reviews provide an understanding of physiological outcomes
that can explain variations in specific constructs based on
carefully manipulated and well-controlled designs. Unlike highly
controlled lab-based settings, where a single construct (e.g.,
workload) can be successfully manipulated and its effect on
psychophysiological measures examined, real-world settings are
more dynamic and complex.

In a real-world setting, the net resulting cognitive state of a
motorist is a combination of variation among several interrelated
constructs (e.g., attention allocation, stress, workload, fatigue).
Broadly speaking, the net cognitive state of a motorist,
composed of variation among these many dimensions, can
be classified along an arousal-spectrum ranging from lower-
arousal and passive states, to a state of optimal performance,
to a hyper-aroused or over-active state. Indeed, this concept is
not new; Yerkes and Dodson (1908) established strong non-
linear relationships between arousal-level and performance,
and such relationships have since been well-established across
many human performance domains (Hebb, 1955; Broadhurst,
1959; Wekselblatt and Niell, 2015). Although these ideas are
not new, there has been a recent resurgence in a formal
understanding of arousal-performance relationships, including
an expanded understanding of the underlying neuromodulatory
systems involved in regulating task engagement and optimal
performance (e.g., the adaptive-gain control theory, Aston-Jones
and Cohen, 2005). Given the recent increase in understanding
of the mapping between physiological indices of arousal and
human performance in the lab, such models serve as a
clear starting point in delineating the predictive capacity of
psychophysiological measures for understanding cognitive states
and human performance in the vehicle.

For instance, low-arousal states relevant to the driving task can
be driven by a combination of psychological constructs including
low workload, reduced stress, and high drowsiness. On the other
hand, an over-aroused state could be due to a combination of
high workload and high stress in the presence of low drowsiness.
Similarly, other combinations of constructs can also lead to
changes in general arousal states as well. Given the likely dynamic
interplay among these interrelated constructs in applied settings,
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the current review focuses on psychophysiological measures that
can be utilized to capture motorists’ states in real-world driving
settings. Indeed, one major applied goal of this work is to be able
to accurately capture the dynamic and highly variable changes
in arousal that occur in ecologically valid driving settings, a goal
that is critical for building accurate predictive models (Yarkoni
and Westfall, 2017) of individual motorist’s states and future
driving performance.

Specifically, there are two novel contributions of this review.
First, instead of focusing on a selective construct and related
measures of interest, the goal of this current review is to
focus on psychophysiological measures that may have the
potential to be adopted in real-world and applied settings to
measure state level variations in motorists. The paper provides
a broad but selective review of a number of psychophysiological
measures that we believe show the greatest promise in their
utilization to assess low-arousal vs. over-arousal (passive vs.
over-active) states in real-world driving environments. The
most commonly used physiology-based measures of cognitive
states are considered as potential candidates relevant for driving
research. The following physiological measures are reviewed
(see section “Psychophysiological Measures to Assess Cognitive
States” and Tables 1, 2) in assessing arousal state in real-
world driving research: electroencephalography and event-
related potentials, optical imaging, heart rate, and heart rate
variability, blood pressure, skin conductance, electromyography,
thermal imaging, and pupillometry. As reviewed in classical
contributions by Cacioppo et al. (Cacioppo and Tassinary,
1990; Cacioppo et al., 2007), inference of unique psychological
constructs based on physiological indices (one-to-one relation)
is still unresolved and is not the aim of this review (see
further discussion in section “Research Applicability in Real-
World Settings”). However, we discuss how multiple measures
(that are sensitive to several interrelated internal states) may
be combined to delineate net resulting changes across multiple
inter-related cognitive state-level variations. Second, for each
measure, we make the distinction between useful research
measures and practical measures for real-world application
(see section Research Applicability in Real-World Settings and
Table 2). Throughout, we have tried to highlight the practical
relevance of measures in the driving context. Although this
review focuses primarily on on-road and simulated driving
contexts, when relevant, we have also drawn research from
related contexts (traffic operators, pilots, or ship navigators) to
more thoroughly characterize each measure.

PSYCHOPHYSIOLOGICAL MEASURES TO

ASSESS COGNITIVE STATES

Electroencephalogram (EEG) and

Event-Related Potentials (ERP)
EEG Quantification
The EEG is a record of both oscillatory and aperiodic
brain electrical activity. Neural activity (largely post-synaptic
potentials) from multiple simultaneous generators propagate
throughout the brain and skull and summate at a distance,

where voltages can be measured relatively non-invasively via
electrodes placed on the scalp. The dominant sources of scalp-
recorded EEG come from cortical pyramidal cells arranged in
the columnar organization of the cortex (Nunez and Srinivasan,
2006). Pyramidal cells are the most numerous cortical excitatory
cell type and play a critical role in advanced cognitive functions
(Spruston, 2008). The laminar organization of the cortex results
in cortical pyramidal cells following an open-field alignment
with a consistent orientation that is perpendicular to the skull,
such that their post-synaptic potentials can summate at a
distance. Importantly, EEG allows for a high temporal resolution
(millisecond) and direct record of neural activity. This detailed
temporal resolution also allows for a decomposition of the time-
domain EEG signal into spectral information via Fourier analysis,
allowing for an examination of oscillatory activity in canonical
frequency bands (e.g., alpha, ∼8–12Hz; theta, ∼4–7Hz), which
have been related to specific neurocognitive functions. For
instance, mental workload increases theta power and reduce
alpha power activity (Mun et al., 2017), whereas fatigue increases
alpha power (Käthner et al., 2014). Moreover, the development
of novel computational techniques for analyzing spectral activity
has promoted a wide range of new tools for probing ongoing
neural dynamics during human cognition via EEG; such as cross-
frequency coupling, phase coupling (Cohen, 2011), independent
component analysis (Dasari et al., 2017), and neighborhood
component analysis (Lim et al., 2018). In addition, more
traditional analyses of transient neural activity that is tied to
specific perceptual, motor, or cognitive events can be gleaned
from continuous EEG, via the calculation of event-related
brain potentials.

ERP Quantification
ERPs are electrophysiological responses that are consistently
linked in time with specific sensory, cognitive, or motor events.
They are derived from the continuously recorded EEG by time-
aligning epochs of EEG relative to an event of interest, such as
a stimulus onset or a participant’s response and averaging many
of these similar EEG segments to reveal activity that is time and
phase locked to the event. Such discrete events can be added in
the experimental design, e.g., every time a participant responded
to a secondary task while driving. The logic of this approach
is that systematic activity that is locked in time and space to
some specific activity will remain in the averaged ERP waveform,
whereas activity that is not time- and phase-locked will average to
zero with a large enough number of trials (Luck and Kappenman,
2012). The resulting ERPwaveform is plotted as voltage over time
at a given set of electrodes. ERP topography can also be examined,
showing the distribution of activity over the entire space within
a particular time-window. A major benefit of ERPs is that the
waveform has characteristic components, stereotyped features of
the ERP with specific eliciting conditions. ERP components are
defined empirically by a combination of their polarity, timing,
scalp distribution, and sensitivity to task manipulations.

Extensive work has characterized and validated specific ERP
components with respect to their associations with specific
cognitive and neural processes (e.g., Fabiani et al., 2007;
Luck and Kappenman, 2012; Mun et al., 2017). Cognitive
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TABLE 1 | Overview of relationships between arousal state and physiological indices in real-world driving.

Measure Under-arousal state Over-arousal state

Electroencephalogram • Increased alpha due to increase in drowsiness and attentional

withdrawalb

• Changes in theta and delta activity related to transition to fatigue

• Increase in theta activity due to mental workload

• Alpha activity suppression due to workload

Event related potential • Reduced ERP amplitudes with fatigue, time on task, and lower

vigilance over time while driving

• Also, reduced ERP amplitude to driving relevant stimuli under

high workload

Optical imaging for

cerebral flow

• A decrease in cerebral oxygenation with fatigue and drowsiness • An increased concentration of oxygenated hemoglobin and a

decreased concentration of deoxygenation with mental workload

and stress

Heart rate and Heart

rate variabilityb
• Decrease in heart rate with drowsiness, decrease in vigilance, use of

self-driving technology

• Increase in HRV indices (e.g., RMSSD) with drowsiness, fatigue,

and disengagement

• Increase in heart rate with mental workload and stress

• Decrease in HRV with workload, stress, and vigilance

Blood Pressureb • Decrease in blood pressure relative to baseline with fatigue

and drowsiness

• Increase in systolic BP with workload and stress

Electrodermal activity • Lower EDA relative to baseline activity range with drowsiness • EDA increase with workload, stress, lower trust in automation,

and anxiety

Electromyography • Decreases in mean and median power frequency of EMG due to

decline in muscle activities and fatigue a
• High muscle activity relative to baseline with stress

Thermal imaging • Temperature around baseline levels a • Higher task difficulty increases forehead temperature and decreases

nose temperature and thus an increase in the difference between

forehead and nose temperatures

Pupillometry • Decreases in average pupil diameter with drowsiness

• Increases in standard deviation of pupil diameter

• Increases in pupil diameter with cognitive load

• Decreases in standard deviation of pupil diameter

aLimited findings available.
bMixed findings reported.

demands can modulate several ERP components, such as P3
(discussed below; Käthner et al., 2014), mismatch negativity
(MMN is a negative ERP component sensitive to pre-attentive
information processing; Wanyan et al., 2018), and late positive
potentials amplitude (a later ERP component like P6 that is
related to attentional allocation similar to P3; Mun et al.,
2017). The P3 component is associated with attentional and
memory processes required to detect any changes in incoming
stimuli-related information (Polich, 2007). The canonical P3
has two distinct but related components – the P3a and P3b
(see Polich, 2007 for a review). The P3a, with an anterior
distribution, is associated with novel stimulus-driven attentional
processing or orienting responses. The P3b, with a centro-
posterior distribution, is associated with task-relevant stimulus-
driven attentional, decision making, and subsequent memory
processing (Polich, 2007). Both components have been used
in driving research. Recent work has also examined how
neural indices (as measured by both P3 ERP components) are
associated with subjective workload (as measured by NASA-
TLX) and how this covariation is influenced by cognitive effort
(Yakobi, 2018). Novel techniques (such as intra-block averaging
of ERP amplitudes; Horat et al., 2016) can enable robust
electrophysiological measurement of cognitive demands over
time. Thus, ERPs are an attractive measure for studying cognitive
states and performance in driving contexts.

EEG/ERP in Driving Context
EEG and ERPs have a long history in the study of the neural
indices of cognitive effort and attention allocation in both
laboratory and applied settings. EEG is perhaps one of the

most widely used neurophysiological methods to study driving
behavior. Several frequencies (e.g., power in alpha frequency
band) and time (e.g., P3) domain indices can reliably measure
changes in cognitive demands (Käthner et al., 2014). This makes
EEG is viable measure for applied driving settings.

Over-arousal in driving context
Over-aroused states, such as increased workload while driving
can be indexed by decreases in alpha power and increases
in theta power (Borghini et al., 2014; Käthner et al., 2014).
A recent study found alpha band power to be higher during
the relaxed condition compared with the engaged condition
in an autonomous driving setting (Zander et al., 2017). This
highlights the sensitivity of alpha power to internal factors such as
attentional engagement. In addition to internal factors, external
factors (such as task load and time on task) can also influence
alpha and theta power bands in opposite directions (Wascher
et al., 2018). For instance, a decrease in task load and time on task
led to an increase in relative alpha power, but a decrease in theta
power (Getzmann et al., 2018; Wascher et al., 2018). To account
for both power bands, past work has also used a ratio of frontal
theta and parietal alpha power spectral density to operationalize
workload in pilots (Borghini et al., 2015). This ratio approach
may be relevant for driving research as well, however this has
been a point of debate, as discussed shortly.

The application of known ERP indicators of attentional
workload (and their eliciting tasks) can be successfully translated
into the driving domain as well. One of the most commonly
adopted components in driving research is the P3b (Brookhuis
and de Waard, 2010; Solís-Marcos and Kircher, 2018). Mental
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TABLE 2 | Tentative framework for considering the research applicability of these measures in lab and real-world settings.

Measure Lab-setting Real-world Advantages Disadvantages

Electroencephalogram High High to medium • High temporal resolution

• Direct measure of neural activity

• Contact sensors

• Longer setup time

Event related potential High Mediuma • Same benefits as EEG

• Well-characterized components (e.g., P3)

• High temporal resolution

• Same disadvantages as EEG

• Generally needs higher number of trails and

post-processing

• Needs time-locking event

• Interpretation of amplitude is very

context specific

Optical Imaging for Cerebral

Flow

High Low to mediuma • Higher spatial resolution

• Feasible in naturalistic settings with

technical advancements

• Lower temporal resolution (e.g., fNIRS)

• Need systematic investigation/replication

Heart Rate/Heart Rate

Variability

High High • Higher signal-to-noise ratio (SNR)

• Easy to collect

• Very sensitive to artifacts

• Sensitive to variation in respiration

Blood Pressure High Mediuma • Reliable

• Higher SNR

• Limitations of equipment; can disrupt

driving task

Electrodermal activity High High • Sympathetic activity

• Easy to collect

• Lagged response

• Not all individuals show EDA response

Electromyography High Lowa • Reliable

• High temporal resolution

• Slightly longer setup time

• Sensitive to movement

• Lower SNR

Thermal Imaging High Mediuma • Low setup time

• Promising technology

• Non-contact

• Need systematic investigation/replication

Pupillometry High Lowa • Non-contact

• Quick setup time

• Signal strongly sensitive to variable lighting

conditions (pupillary light reflex)

aLimited findings available.

workload can be indexed by increases in P3b latencies (Ying
et al., 2011) and amplitude (Strayer and Drews, 2007). For
example, Strayer and Drews (2007) examined the amplitude of
the P3b time-locked to the onset of a pace break light under
single-task driving conditions or dual-tasking via cell-phone–
induced distraction. Drawing on basic experimental work that
has shown that the P3b is sensitive to the degree of attention
allocated to a task (e.g., Sirevaag et al., 1989), they also showed
that cell-phone induced distraction resulted in reduced P3b
amplitudes to brake lights. Similar effects have been observed in
comparing the workload of “single-task” driving in laboratory
simulator vs. real-life driving contexts, where for example, the
diversion of attention to other concurrent activities in the
vehicle result in additional attentional demands in real-world
driving (Strayer et al., 2015).

A recent study compared mental workload due to increased
information processing demands consumed by in-vehicle
information systems (Solís-Marcos and Kircher, 2018). They
found both P3b and N1 latencies and amplitudes to be
sensitive to cognitive demands of processing additional in-vehicle
information systems. For instance, P3b amplitudes decreased
with additional information processing related tasks (Solís-
Marcos and Kircher, 2018). P3a amplitude was also found to
decrease with additional task-related load (Getzmann et al.,
2018). High mental workload has been associated with increased
latencies in MMN during driving (Ying et al., 2011) and also
increased frontal MMN in flight simulation tasks (Wanyan et al.,
2018), however a recent study did not find workload to influence

MMN amplitudes (Getzmann et al., 2018). Future work will help
clarify sensitivity of MMN in driving research.

Under-arousal in driving context
Extensive work has focused on electrophysiological indicators
of under-arousal via EEG. A substantial number of papers have
implicated changes in alpha amplitude during fatigued driving
(e.g., Schier, 2000; Jensen and Mazaheri, 2010; Simon et al.,
2011; Zhao et al., 2012; Borghini et al., 2014; Jagannath and
Balasubramanian, 2014; Arnau et al., 2017; Brouwer et al., 2017),
such that fatigued driving is associated with increased alpha
activity. However, other work has challenged these alpha power
links with fatigue and claim that alpha power changes may be
due to the decreases in task-demands and visual input during
monotonous driving tasks and not due to decline in cognitive
processing abilities (Wascher et al., 2014). Increases in relative
alpha band power with increased time on task, easier driving
route, and lower control of driving situations, which suggested
that relative alpha power increases imply attentional withdrawal
and not fatigue (Wascher et al., 2014, 2018). Wascher et al. (2014,
2018) have argued that mid-frontal theta activity may be a more
appropriate neural marker of cognitive-control related processes
in driving than occipital alpha activity. Low task load is associated
with relatively reduced theta activity, which suggests that theta
activity is sensitive to declines in cognitive processing ability.
Instead of alpha activity, Wascher et al. (2014, 2018) recommend
that indices of oscillatory synchronization (e.g., inter-trial phase
clustering) and ERPs (such as P3a) are more reliable and valid
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indices of changes in cognitive state associated with mental
fatigue. For instance, time on task (Wascher et al., 2014), fatigue
(Massar et al., 2010), and decreases in vigilance over time
(Schmidt et al., 2009) were found to reduce P3a amplitude
while driving. Similarly, mind-wandering during driving is
associated with a reduction in P3a amplitude (Baldwin et al.,
2017). One other study found both P3a and P3b components’
amplitudes were reduced due to driving-related fatigue (Guoping
and Zhang, 2009). These findings show that ERP components
could be utilized to detect variations in neurophysiological
arousal due to interrelated cognitive constructs in
driving contexts.

Some researchers have argued that LF/HF ratios (e.g., frontal
theta/beta) are potential biomarkers for attentional control, and
have established some evidence that such measures have good
psychometric properties, for e.g., test-retest reliability (Putman
et al., 2014; Angelidis et al., 2016). Decreases in beta power
(e.g., Zhao et al., 2012; Jagannath and Balasubramanian, 2014)
have been found, along with changes in theta and delta activity
as markers related to transition to fatigue. This has led some
researchers to propose spectral ratio indices (e.g., alpha/beta;
Eoh et al., 2005; Wang et al., 2018), as biomarkers of alertness.
However, ratio indices have also been criticized for being an
inadequate method because it combines frequency bands with
distinct topographic specificity that change differently over time
(Wascher et al., 2014). There is existing criticism of this ratio
approach, especially in driving research (Wascher et al., 2018),
and more broadly, researchers in cognitive electrophysiology
have been moving away from such highly constrained “band-
based” approaches given their lack of replicability across studies.
Alternatively, researchers have increasingly endorsed methods
that allow for broad-band assessment of spectral dynamics
(e.g., 1/f scaling, Voytek and Knight, 2015) and methods that
can address narrow-band dynamics without a priori selection
of frequency (e.g., cluster-based permutation testing in time-
frequency data; Maris and Oostenveld, 2007). Other recent work
has used EEG-based detection algorithms to detect fatigue and
drowsiness (Li et al., 2017; Morales et al., 2017; Belakhdar
et al., 2018; Gao et al., 2018; Wei et al., 2018). However,
other work reported no additional benefit of utilizing EEG
measures in drowsiness and fatigue detection in sleep deprivation
contexts (Perrier et al., 2016; Liang et al., 2017). Another
line of work has aimed to apply machine-learning techniques
to brain computing interfaces in order to classify states of
drowsiness and fatigue in real-time (e.g., Lin et al., 2005; Correa
et al., 2014). Recent work has also shown data filtering and
processing techniques such as artifact subspace reconstruction
and independent component analysis could be utilized for
“online” processing of EEG data collected while driving in order
to attenuate movement-and noise-related artifacts (Krol et al.,
2017). Together, these findings suggest that EEG and ERPs can
be utilized as objective techniques to assess state-level variations
in cognitive demands.

Practical Considerations
There are a number of important considerations when applying
EEG indices to real-world driving environments. Typical EEG

artifacts arising from muscle-and-eye movements (de Waard,
1996; Zander et al., 2017), impedance shifts, environmental line
(60Hz) noise, and other complications are potentially amplified
in real-world environments. As such, real-time monitoring
of good quality EEG signals is critical for effective data
collection. The commercial introduction of high-impedance
systems with active electrodes and small electrically shielded
mobile EEG amplifiers has spawned a large increase in real-
world EEG applications. Many of these systems are capable
of high density (<128 channel) recording, but it is critical
for the researcher to decide whether and to what degree an
increase in the number of channels may result in a decrease
in the quality of the recorded EEG (Luck and Kappenman,
2012). Importantly, the well-understood limitations of the spatial
resolution of EEG limit the utility of high-density recording
in ecologically valid environments (e.g., where measurement
of EEG sensors co-localized in 3D space on a single-subject
basis may be unfeasible). Moreover, with increasing channel
density comes increases in the likelihood for poorly recorded
or poorly monitored channels during recording. As such, if
source-localization of underlying EEG/ERP generators is not
a primary aim of the methodology (and we expect, in most
applied cases it would not be), researchers may wish to
record from a smaller density (e.g., 32 channels or fewer), at
the benefit of better monitoring of data quality throughout
the experiment.

On the theoretical side—researchers in human factors
automotive research should carefully consider the linking
hypotheses between specific electrophysiological indicators (e.g.,
P3b ERP amplitude, alpha power increases) and their purported
cognitive interpretations. The ERP literature has a massive
basic literature in which specific components have been very
well-characterized relative to their eliciting conditions and
underlying cognitive interpretations (Luck and Kappenman,
2012). One such example was reviewed earlier on characterizing
the P3b under different states of distraction during driving.
Limited work (e.g., Strayer et al., 2015) has attempted to
examine ERP components in naturalistic settings. In future
work, inventive approaches can be validated to use task-
related responses or behaviors (such as eye-blink potentials or
frequent vs. infrequent vehicle cues) as discrete events that
can be recorded to estimate ERP components in real-world
settings. At the same time, such characterizations in the spectral
domain are not as clearly developed to date. However, this
is changing, as basic research in cognitive electrophysiology
shifts toward a more complete understanding of oscillatory
mechanisms underlying human perception and cognition (e.g.,
Kahana, 2006), involving development in standardized analysis
methods (Cohen, 2011), careful experimental characterization of
specific oscillatory markers (e.g., alpha phase and perception,
Mathewson et al., 2009; midline frontal theta and conflict
resolution; Cavanagh and Frank, 2014), and the development of
neurophysiologically guided models (Jensen andMazaheri, 2010;
Voytek and Knight, 2015). We expect that such development
of basic research findings in cognitive electrophysiology will
be a great asset in future applied research in contexts such
as driving.
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Optical Imaging for Cerebral Blood Flow
Optical Imaging Quantification
Optical imaging methods allow for the visualization of the
interaction of photons with tissues (Villringer et al., 1993).
In recent years, there has been a rapid advancement in the
application of non-invasive optical imaging methods such as
functional near infrared spectroscopy (fNIRS) to study human
brain and cognitive functioning. fNIRS is a neuroimaging
method based on the principles of near-infrared spectroscopy,
which was originally developed in humans for investigating
clinical features of brain functioning (e.g., cerebral oxygenation;
Jobsis, 1977). These principles have been extended to measure
local changes in cerebral hemodynamic activity that can be
used to infer information on the underlying neural activity
due to neurovascular coupling, following similar logic to the
Blood Oxygen Level Dependent (BOLD) signal in functional
magnetic resonance imaging. NIR (700–1,000 nm) light is able
to penetrate several centimeters through the skull and into
brain tissue, allowing for non-invasive measurement of certain
optical properties of cortical tissue. For example, changes in the
concentration of oxy- and deoxy-hemoglobin can be measured
via NIRS because oxy- and deoxy-hemoglobin have distinct
absorption spectra that correspond to the different coloration
of arterial and venous blood (Grinvald et al., 1986). These
absorption characteristics make it possible to use a spectroscopic
approach to measure changes in the concentration of oxy- and
deoxy- hemoglobin as a function of neural activity, for example
during cognitive task performance. In typical optical imaging
systems, optical fibers, called optodes or sources, carry NIR light
to the scalp while other optical fibers, called detectors, collect the
photons as they emerge from the scalp. Each source–detector pair
is a single channel. Multi-channel and wearable fNIRS systems
have become commercially available with diverse montages
capable of measuring brain activity across the entire scalp.

Optical Imaging for Cerebral Blood Flow in

Driving Context
The application of fNIRS in driving research is in its infancy.
Nevertheless, a number of interesting demonstrations of the
utility of fNIRS for studying over-arousal states such as driver
workload have emerged (e.g., Tsunashima and Yanagisawa,
2009; Liu et al., 2012, 2016; Sibi et al., 2016). For example,
increases in oxygenated hemoglobin have been reported during
simulated driving tasks under cognitive load compared to control
conditions (Liu et al., 2012). A recent study (Unni et al., 2017)
utilized fNIRS in a naturalistic driving simulator while doing
a secondary task (modified version of 0–4 back). They found
systematic increases in bilateral inferior frontal and temporo-
occipital brain regions with increments in workload. Another
study reported that fNIRS could be used to differentiate between
low vs. high workload (n-back task) related hemodynamic
activity in the prefrontal cortex while motorists drove in a
realistic driving simulator (Herff et al., 2017). Furthermore,
fNIRS have been used to monitor pilot’s task engagement and
working memory load in real-time (Gateau et al., 2015). On a
related note, fNIRS have been found sensitive to increase in task
difficulty in flight simulators (Causse et al., 2017) as indicated

by an increased concentration of oxygenated hemoglobin and a
decreased deoxygenated hemoglobin.

Other work has investigated effects of under-arousal
related states with fNIRS. Research has related decreases in
hemodynamic measures of cerebral oxygenation with fatigue
in simulated driving (Li et al., 2009), and findings have
been extended into actual highway driving (Yoshino et al.,
2013). An increase in fatigue can be indexed by a decrease in
cerebral oxygenation and mental stress can be indexed by an
increase in cerebral oxygenation. Tsunashima and Yanagisawa
(2009) examined changes in prefrontal activity via multi-channel
frontal fNIRS systems in driving with and without adaptive
cruise control. Their findings revealed substantial decreases
in prefrontal activity when participants drove with adaptive
cruise control relative to without, which was correlated with
perceived workload (via the NASA-TLX). Similar decreases in
activation of prefrontal cortex (lower cognitive load associated
with drowsiness) were reported while participants monitored
a simulated autonomous car driving task relative to higher
prefrontal cortex activation during manual driving task (Sibi
et al., 2016). Such findings indicate that optical imaging for
cerebral blood flow is a valuable tool for assessing performance
and neural efficiency in well-controlled realistic driving contexts.

Practical Considerations
One important limitation of fNIRS is that, because it relies on the
measurement of absorption properties of light as a function of
vascular changes in the brain, its temporal resolution is limited
by the time-course of hemodynamic activity (on the order of
seconds). In contrast, the development of recent ‘fast’ optical
imaging methods, such as the event-related optical signal (EROS;
Gratton and Fabiani, 2001, 2003), which measures scattering
properties of light as a function of changes in neural activity, have
amuch higher temporal resolution (on the order ofmilliseconds).
Although applications of this method in human factors research
is sparse, fast optical imaging methods have growing promise.
While the spatial resolution of optical imaging methods is higher
than EEG, such spatial inference is constrained by the penetration
depth of NIR light, which reaches only a few cm from the
scalp surface. Therefore, imaging of activity from deep cortical
and subcortical sources (beyond the outer cortical mantle) is
limited. Recent work has also employed wearable fNIRS systems
(Piper et al., 2014; McKendrick et al., 2016; Le et al., 2018)
and simultaneous collection of fNIRS and EEG (Kassab et al.,
2018), which can enable real-world monitoring in ecologically
valid settings.

Heart Rate (HR) and Heart Rate

Variability (HRV)
Heart Activity Quantification
Heart rate (in beats per minute or bpm) is the number of
heartbeats in 1min (Jennings et al., 1981). Electrocardiography
(ECG) is a well-established method to record the electrical
activity of the heart. In psychophysiology, a lead II configuration
(i.e., placing the negative electrode in the region of right collar
bone, the ground near the left collar bone, and the positive lead
over the lower left ribcage, or functionally similar variant) is
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commonly used to be able to record electrical activity of the
heart via research grade equipment. A single heart beat wave in
an ECG signal shows changes in electrical potentials (referred
to as the P, Q, R, S, & T components and together they are
referred to as the QRS complex, for review please see Berntson
et al., 2007). The R component (one for each heart beat) is due
to ventricular depolarization and for a lead II configuration, it
has a larger magnitude and a sharper inflection than the rest
of the components making it easily detectable. While heart rate
is a count of beat per minute, heart period (also called inter-
beat-interval) is the time in milliseconds between successive R
spikes (Berntson et al., 2007). Heart rate is generally derived by
converting mean heart period (in milliseconds) to heart rate (in
beats per minute), see Berntson et al. (2007).

Heart data can also be collected via other technique
including photoelectric plethysmography (PPG) and
photoplethysmography imaging (PPGI). PPG technique
includes use of a photocell (such as an infrared light-emitting
diode) placed over an area of tissue with blood capillaries that
is easily accessible (e.g., finger or ear lobe). Energy emitted
from an infrared source passes through the tissue and reflects
off the tissue. Changes in blood volume (due to heart beats) in
an area can thus be assessed by the amount of light that was
reflected back to the photodetector, and thus forms the basis
of estimating heart beats (Berntson et al., 2007; Laborde et al.,
2017). A similar concept is used in “wearables” which have
photo-emitters and detectors placed on a convenient location
(e.g., wrists and earlobes) making them easy to wear and collect
data from them (Byrom et al., 2018; van Gent et al., 2018). This
idea is used in vehicles with photo-emitters and detectors placed
on the steering wheels, which allow collecting heart data (heart
rate, HRV, and blood volume pulse) while driving. Another
advancement in PPG is a contactless measurement technique
called PPGI that detects color changes (e.g., the forehead area) in
a video due to blood perfusions (Blöcher et al., 2017). Instead of
photodiodes used in PPG, PPGI uses detector arrays in cameras
to collect image sequences that contain information about
bio-signals (e.g., blood volume pulse and respiration). Image and
signal processing methods are utilized for beat-to-beat heart rate
estimation (Blöcher et al., 2017; Madan et al., 2018).

On a related note, established guidelines for heart beat
detection processing, with recommended parameters to derive
heart rate and heart rate variability are provided in Jennings et al.
(1981), Berntson et al. (2007), and Shaffer and Ginsberg (2017).
Custom and open-source software has also been developed to
automatically detect R peaks to calculate heart beats. As is true
for most physiological measures, data should be visually checked
to inspect the ECG data for artifacts and irregularities. Artifacts
can be introduced in these data due to numerous reasons
(such as motorists’ excessive motion, sneezing and coughing,
and irregular heartbeats) any of which can disrupt the ECG
measurement or directly impact normal heart-beat patterns.
Visual inspection helps insure that the heart beats are correctly
marked by the detection software and physiologically improbable
values are detected and then corrected.

HRV is variability in the time intervals of adjacent heartbeats
(Berntson et al., 2007; Shaffer and Ginsberg, 2017). HRV can

be derived from ECG data over a period of time ranging from
short intervals (∼1–5min) up to longer intervals (∼24 h). HRV
metrics can be roughly categorized as falling under time-domain,
frequency-domain, or non-linear measures of HRV (for a review
see Shaffer and Ginsberg, 2017). Time domain-based parameters
calculate the variations in heart beat intervals, such as standard
deviation of R-R intervals (SDRR), percentage of successive
R-R intervals that differ by more than 50ms (pNN50), and
root mean square of successive R-R intervals (RMSSD). A few
time-domain parameters also represent geometric shape of R-
R interval distributions, such as the HRV triangular index (i.e.,
plotting the integral of the ratio of RR interval density histogram
by its height) and the baseline width of the RR intervals histogram
(TINN), for details see Shaffer and Ginsberg (2017). Frequency-
domain based measures transform the beat-to-beat variations in
heart beat (R-R intervals) into frequency power bands via Fourier
analysis (Task Force of the European Society of Cardiology,
1996). The most commonly used frequency-domain methods are
low- and high-frequency power. A low-frequency (LF) power
is the energy of heart rate oscillations in a lower-frequency
(0.04–0.15Hz) band. Similarly, high-frequency (HF) power is
the energy of heart rate oscillations in a higher-frequency (0.15–
0.4Hz) band (Task Force of the European Society of Cardiology,
1996; Shaffer and Ginsberg, 2017). A peak in these frequency
bands can also be calculated, which is an estimate of the peak
frequency in the specific frequency band. Non-linear measures
of HRV are useful in capturing the unpredictability and dynamic
nature of heart rate time-series data (Shaffer and Ginsberg, 2017).
Commonmeasures include fitting an elliptical-shape to represent
non-linear HRV and calculating approximate entropy (ApEn)
and sample entropy (SmpEn), which characterize the complex
pattern of time-series heart data (Shaffer and Ginsberg, 2017).
Detailed discussions can be found elsewhere (Task Force of the
European Society of Cardiology, 1996; Berntson et al., 2007;
Laborde et al., 2017; Shaffer and Ginsberg, 2017).

HR/HRV in Driving Context

Over-arousal in driving context
Heart rate is a commonly measured index of physiological
arousal in response to changes in driving demands. One of
the most studied over-aroused cognitive states is workload.
Numerous studies have examined changes in heart rate as a
function of workload (Lenneman and Backs, 2009, 2010; Mehler
et al., 2012; Heine et al., 2017). Heart rate was also found to
increase while performing visual and auditory dual-tasks relative
to single-task of driving in a simulator (Lenneman and Backs,
2009). Similarly, heart rate has been shown to be incrementally
higher for systematically more difficult auditory dual-tasks while
driving in a simulator (Mehler et al., 2009) as well as while driving
on-road (Reimer et al., 2009). These findings of an incremental
change in heart have been replicated in younger-aged (20–29
years old), middle-aged (40–49 years old), and older-aged (60–69
years old) adults (Mehler et al., 2012). Thus, heart rate increases
with workload due to cognitive demand (Lenneman and Backs,
2009; Mehler et al., 2012; Ruscio et al., 2017; Hidalgo-Muñoz
et al., 2018; c.f., Engström et al., 2005). Other efforts have also
been made to utilize rhythmic and morphological parameters
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of a heart activity to explore mental workload. A recent study
examined the influence of mental workload (due to a secondary
task) on morphological parameters from ECG while completing
a lane change task (Heine et al., 2017). They found that a
combination of derived HR and HRV features (such as mean
HR, RMSSD, pNN50, etc.) could be extracted from ECG data
that could distinguish between workload levels and suggest that
a combination of ECG features can be used to detect mental
workload (for details see Heine et al., 2017).

Relative to HR, a fewer number of studies have examined
HRV, especially in a systematic manner. HRV decreases with
increasing task demands (Luque-Casado et al., 2016). HRV has
been found to be sensitive to variations in attention levels
while driving that may not be necessarily evident in driving
performance (Lenneman and Backs, 2009) and thus HRV can
have more sensitivity than behavioral measures. LF- and HF-
HRV power bands are influenced by driving task (Zhao et al.,
2012; Tozman et al., 2015; Wang et al., 2018). A study (Tozman
et al., 2015) compared effect of demand levels (boredom, average
demand, and high demand) on HRV in a driving simulator. Both
LF- and HF-HRV varied for all the three conditions. High task
demands reduced both LF-HRV and HF-HRV (Tozman et al.,
2015). Some work has indicated that stress-inducing real-world
driving tasks lead to increased heart rate and decreased SDNN,
RMSSD, pNN50 (Lee et al., 2007). HRV also varies with workload
experienced by drivers during simulated driving (Zhao et al.,
2012; Heine et al., 2017; Hidalgo-Muñoz et al., 2018) and on-
road driving (Lee et al., 2007). In addition, HRV variations due to
cognitive workload have also been found in city traffic operators
(Fallahi et al., 2016) and unmanned aerial vehicles operators
(Jasper et al., 2016). HRV is sensitive to workload increases due
to vigilance and situational awareness demands of the task (Saus
et al., 2001; Stuiver et al., 2014; Jasper et al., 2016). However, at
least one study (Shakouri et al., 2018) found no variation in heart
rate variability metrics (RMSSD, LF, HF, and LF/HF ratio) as a
function of higher traffic density while driving in a simulator,
even though variations in subjective workload were found.

Under-arousal in driving context
HR and HRV are also sensitive to low-arousal states, such
as vigilance and drowsiness. Decreases in vigilance over the
course of a 3-h continuous driving task were indexed by a
significant drop in heart rate over time (Schmidt et al., 2009).
Drowsiness experienced in car drivers and aircraft pilots can also
be associated with decreases in HR (Borghini et al., 2014). A
recent on-road study (Biondi et al., 2018) found that driving a
Tesla in semi-automated mode (e.g., autopilot) led to a lower
heart rate relative to manual driving on a freeway. Another
study found heart rate was sensitive to activity of the Adaptive
Cruise Control (ACC) technology (Brouwer et al., 2017). Heart
rate increased when ACC decelerated more suddenly compared
to instances when the car decelerated more gradually (Brouwer
et al., 2017). These findings suggest that heart rate is a sensitive
measure that can assess cognitive processing pertaining to
advanced technology in semi-autonomous vehicles.

Other studies have found that LF-HRV and HF-HRV vary
with fatigue (Liang et al., 2009; Sugie et al., 2016). A recent

study (Wang et al., 2018) found that changes in fatigue levels
while driving can be represented by non-linear measures of
HRV (e.g., sample entropy). Variations in drowsiness levels can
also impact HRV (Noda et al., 2015; Piotrowski and Szypulska,
2017). Another recent study found that variations in HRV (TINN
and RMSSD) was higher when participants drove a vehicle in
automated mode relative to the manual mode (Biondi et al.,
2018). Perhaps, drowsiness and a lack of engagement in the
driving task during automated mode may have led to a higher
HRV. HRV and blink rates have also been shown to assess sleep
onset (Noda et al., 2015). HRV-based assessment algorithms can
be used for early detection of fatigue and drowsiness to augment
attention and performance (Patel et al., 2011; Zhao et al., 2012;
Abe et al., 2016; Vicente et al., 2016).

Practical Considerations
Heart rate and its variability are inexpensive and reliable
measures that are relatively easy to record with research-quality
equipment that meets recommended guidelines (Task Force of
the European Society of Cardiology, 1996). It has good signal
to noise ratio as well (R-R peaks can be detected even in very
noisy environments). Consequently, it is also not difficult to
collect in lab as well as in unpredictable field studies, especially
with the availability of mobile data recording systems. However,
these advantages can also lead to misuse of this methodology.
Great attention to the data collection and processing are required
to have meaningful data. Skin preparation (e.g., cleaning with
alcohol wipes) before electrode placement and signal monitoring
to collect good quality data can drastically reduce post-processing
(e.g., Berntson et al., 2007). Participants should be comfortably
positioned to avoid physiologically induced changes in heart rate
such as altered breathing rate due to postural adjustments. Body
movements should be minimized and accounted for as such
movements can add noise and also add movement-related heart
rate changes. Effective data cleaning to remove artifacts and noise
are a must, otherwise heart data will be uninterpretable.

Some recording devices do not utilize the traditional QRS
complex from an ECG to calculate HR and HRV. For example,
PPG uses a photoelectric sensor that estimates changes in
blood volume to calculate HR. There are a few methodological
challenges that should be considered before adopting such PPG-
based systems. PPG records a lagged cardiac response further
away from the heart (e.g., from fingers and earlobes). Unlike ECG
based estimates that have a sharp spike for the R component,
PPG-based methods instead show a less pronounced curved
peak of the blood volume pulse signal, which makes accurate
and automatic detection of heart period relatively more difficult
(Laborde et al., 2017). Moreover, ECG-based estimates of HR
and HRV are recommended for more reliable results because
it allows visual inspection and artifact correction of heart
data. Such methodological differences between PPG and ECG
can explain why PPG and ECG findings are comparable
during rest, but are not comparable during stress, for example
(Schäfer and Vagedes, 2013).

On a related note, commercialized equipment meant for
exercise and fitness tracking fail to meet established guidelines
for heart data collection and processing (e.g., minimum
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sampling rate and access to raw data for necessary artifact
correction methods), which are necessary to make meaningful
interpretations (see Berntson et al., 2007; Quintana et al., 2016;
Shaffer and Ginsberg, 2017). Similarly, smartphone camera-
based assessments have methodological challenges, including
very poor sampling rate, illumination variation (due to
confounds like weather and time of day), poor signal-to-noise
ratio, and motion-related artifacts that can lead to inaccurate
interpretations (Laborde et al., 2017; cf., Nowara et al., 2018;
van Gent et al., 2018). Ensuring the validity and inter-device
variability of wearables (which utilize a PPG-based or camera-
based HR system) with an established ECG-based equipment
is a necessary step to be able to validate data collected from
wearables. However, most commercialized equipment has not
been validated in such a manner (Quintana et al., 2016). Without
this critical validation step, data collected from commercialized
non-research grade equipment does not have convergent validity
and should be discouraged by the scientific community until such
standards aremet.While innovation is critical to be able to collect
psychophysiological data in real-world settings, careful adoption
and cross-checks with existing gold standards are necessary to
make meaningful progress in the adoption of these technologies
in real-world driving research.

Moreover, HF-HRV has been found to be impacted by
parasympathetic nervous system, however, LF-HRV is influenced
by both sympathetic and parasympathetic nervous systems
(Berntson et al., 2007; Laborde et al., 2017). Thus, LF-HRV
should not be described as a metric of sympathetic activity,
but instead be interpreted as a mixture of sympathetic and
parasympathetic influences. On a related note, the LF/HF ratio
has been a controversial metric as it assumes that LF is due
to sympathetic activity while HF is due to parasympathetic
(Billman, 2013). The LF/HF ratio was originally based on 24 h
recordings, while shorter duration recordings (even 5min long)
have also been calculated. The duration of recording (e.g.,
5min vs. 24 h) can also lead to uncorrelated findings and
some metrics are better for short term recordings than others
(Shaffer and Ginsberg, 2017).

Another metric we would like to highlight is heart period.
Heart rate and heart period have been used interchangeably,
however in some instances heart period may be a better choice.
Even though, heart rate is more commonly used metric, use of
heart period instead of heart rate is recommended measure of
autonomic activity because heart period changes more linearly
over time (Quigley and Berntson, 1996; Berntson et al., 2007).
Heart period should specially be used when comparing changes
in heart activity due to experimental manipulation or due
to between group differences for short time periods. Further
information on heart activity related metrics can be found in
detailed reviews (Jennings et al., 1981; Task Force of the European
Society of Cardiology, 1996; Berntson et al., 2007; Laborde et al.,
2017; Shaffer and Ginsberg, 2017).

Not all heart-based metrices may be sensitive to the variations
in cognitive state during driving task. For instance, a study
compared several commonly used metrices for HR and HRV
cognitive workload during highway driving (Mehler et al.,
2011). While HR was robust in differentiating between cognitive

workload in single vs. dual tasks, HRV indices were less robust
(e.g., smaller effect sizes). A few HRV indices varied with
workload (RMSSD, SDSD, and LF power), however others
(SDNN, NN50, pNN50, HF power, and LF/HF) did not
significantly differ with workload (Mehler et al., 2011). These
findings suggest that depending upon the task, certain indices
may be more sensitive to variation in cognitive state than other
indices that may be less robust.

In addition, researchers should consider other contextual
factors that may vary across participants and may confound
study interpretations. A confounding factor that can potentially
bias HF-HRV comparisons between conditions of interest is
differences in respiration (Grossman, 1992; Berntson et al., 2007;
Laborde et al., 2017). Respiration related-parameters should be
accounted for by using them as covariates with such HRV indices
(for a detailed discussion, see Berntson et al., 2007; Laborde et al.,
2017). Similarly, other factors may impact HR/HRV, including
task characteristics and motorists’ state (relaxation, engagement,
and motivation) and activities (smoking and posture). For
instance, HRV may increase over time if the task becomes less
difficult over time, which may put motorists in a more relaxed
state (Jasper et al., 2016). Similarly, HRV may also increase over
time with disengagement or demotivation to perform a difficult
task (Jasper et al., 2016). Careful consideration of contextual
factors will afford accurate and reliable measurement of HR/HRV
indices in applied driving settings.

Blood Pressure (BP)
BP Quantification
BP (in millimeters of mercury, also written as mmHg) is the
force exerted against the walls of the blood vessels (Shapiro
et al., 1996; Berntson et al., 2007). Depending upon the stage
of the dynamic cardiac cycle, BP differs from lowest to highest
levels. During a single cardiac cycle, diastolic BP is the lowest
level of arterial pressure when the heart is filled with blood
and systolic BP is relatively the highest level of arterial pressure
(Shapiro et al., 1996; Berntson et al., 2007). As invasive methods
to record BP require additional safeguards and equipment,
most psychophysiology research studies focus on non-invasive
approaches to record blood pressure. Three relatively non-
invasive methods are auscultatory or oscillometric methods,
arterial tonometry, or the volume-clampmethods (see for details,
Berntson et al., 2007). The most common method is auscultatory
measurement, which records the sounds of blood flow by
placing a cuff on the upper arm and a stethoscope placed
over the brachial artery to identify the systolic and diastolic
blood pressure (Shapiro et al., 1996; Berntson et al., 2007).
Physiological arousal during mentally effortful situations leads to
greater vasoconstriction and cardiovascular reactivity evidenced
by increased heart rate and blood pressure and decreased heart
rate variability (Lundberg et al., 1994; Ottaviani et al., 2016).
BP increases with psychological stress (Ottaviani et al., 2016)
and is correlated with self-reported stress (Lundberg et al.,
1994). However, cognitive workload may not reliably influence
BP (ElKomy et al., 2017).
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BP in Driving Context
Limited research has examined over- and under-arousal via BP in
driving contexts. Systolic BP and BP variability have been found
to increase while driving in simulated high traffic conditions that
had high workload demands (Stuiver et al., 2014). Fatigue was
also associated with a decrease in systolic BP and HR (Liang
et al., 2009). However, other studies have not found a reliable
effect of stress on BP (Simonson et al., 1968; Littler et al., 1973;
Lee et al., 2007). One study found no significant change in
BP from beginning to end of the drive with a short period
of arterial pressure changes during events such as overtaking
that returned to baseline (Littler et al., 1973). BP was also not
found to vary in an on-road stressful driving task speed in
a simulator even though HRV parameters were significantly
impacted (Lee et al., 2007).

Nevertheless, BP is a very useful measure to understand the
factors that impact driving performance. One clear example of
this comes from a simulator-based study investigating aggressive
driving behavior in irregular traffic flow and under time pressure
(Drews et al., 2012). Irregular traffic patterns were not found to
impact BP. However, male drivers who were under time pressure
to drive faster in order to receive a monetary incentive, had
elevated systolic BP compared to females under time pressure
or compared to male drivers who were not under time pressure.
In fact, females did not show any elevated blood pressure
under time pressure (Drews et al., 2012). These findings suggest
that individual difference factors such as sex differences and
motivation to drive aggressively may impact driving behavior
and associated physiological signals. Other studies have shown
that trait-level variation in BP (such as a history of high BP
i.e., hypertension) is an important measure to capture health
and age-related impact on driving performance in vulnerable
older populations (Lyman et al., 2001; Siren et al., 2004). A 5-
year longitudinal study that examined the effect of urban bus
driving on BP found that the number of hours driven per week
predicted higher diastolic BP (Johansson et al., 2012), suggesting
that there are cumulative effects of cognitive demands and stress
of continuous driving.

Practical Considerations
While heart-rate was reported to rapidly change in response to
car racing, BP was “less responsive” (Simonson et al., 1968).
Other studies have found that BP does not change significantly
during on-road driving (Littler et al., 1973; Lee et al., 2007).
A few BP recording-related reasons could play a role. BP can
rapidly change over time so multiple readings are recommended
for a more accurate estimate. However, a limiting factor is
the BP equipment. The pressure from a cuff worn by the
responder can become uncomfortable and disruptive within a
few minutes. Continuous reliable BP measurement (especially
via volume-clamp) is uncomfortable, distracting, and potentially
disruptive to driving. This limits the frequency of samples that
could be collected, which are about 1 reading per minute. Also,
the BP recordings are sensitive to movement so in an on-
road study, it is less feasible to accurately record multiple BP
reading from participants while drivers are actively involved
in the driving process. While some alternative methods to

record blood pressure (e.g., plethysmography) may be available,
methodological issues similar to those discussed in recording
heart activity apply to BP as well and it is crucial to evade
poor quality unreliable equipment. In sum, BP provides valuable
insights about vulnerable states of the drivers, however, in a
real-world driving context, methodological concerns can limit
reliable data collection. Much future work is required to be able
to measure reliable and non-invasive BP activity.

Electrodermal Activity (EDA)
EDA Quantification
EDA, previously known as galvanic skin response, is a change
in electrical potentials of the skin that can be used to make
interpretations about the psychological phenomena of the
responder (Boucsein et al., 2012). EDA can be measured
via exosomatic or endosomatic techniques. Exosomatic
techniques—a more commonly used method used in applied
research—apply a small current through a pair of electrodes
and then measure electrical resistance (or its reciprocal, i.e.,
conductance) from the skin. Because the current is kept constant,
it is possible to measure changes in the voltage between the
electrodes that will vary directly with changes in skin resistance,
following Ohm’s lab (see Dawson et al., 2007 for a technical
review). Endosomatic techniques measure passive changes in
intrinsic electrical activity without application of an external
current. For details on EDA recording techniques, see Fowles
(1986), Dawson et al. (2007), and Boucsein et al. (2012). Higher
EDA is indicative of physiological arousal due to increased
sympathetic autonomic nervous activity (Dawson et al., 2007;
Lohani and Isaacowitz, 2014). EDA is sensitive to physiological
reactivity and many other factors, such as respiration and mental
effort (Dawson et al., 2007). Commonly derived EDA metrics
(Dawson et al., 2007; Boucsein et al., 2012) include slowly varying
tonic level of electrical conductivity (skin conductance level;
SCL) and phasic increase in magnitude electrical conductance in
response to an unexpected or relevant event (skin conductance
response; SCR). Non-linear EDA metrics that can differentiate
between increased cognitive load vs. recovery phases of stressors
have been identified as well (Visnovcova et al., 2016).

EDA in Driving Context
In driving research, systematic variation in several arousal-
related constructs can impact EDA. Most commonly investigated
is cognitive workload. SCL is higher during increased workload
in dual-task relative to single-task driving (Mehler et al., 2012). A
systematic investigation of workload increments in one on-road
driving study (Mehler et al., 2012) found a systematic increase in
SCL as a function of three levels of auditory workload secondary
tasks relative to single driving task for young, middle, and older
age groups. These findings suggest that SCL can be used to
index workload levels in driving context. High SCR has also been
found to increase with workload experienced by motorists while
driving on difficult road types that required avoiding more traffic
and making more decisions (Schneegass et al., 2013). A recent
study reported SCR amplitude increased with cognitive load due
to dual-task driving (Ruscio et al., 2017). Additional workload
experienced due to texting and navigation (Seo et al., 2017) and
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speeding (Kajiwara, 2014) while simulated driving was also found
to increase EDA.

EDA also varies with other physiological arousal-related
constructs. EDA based indices can be used to detect stressful
events during driving (Affanni et al., 2018). A recent study
utilized feature extraction and discrimination processing
techniques to classify EDA data into low, medium, vs. high
stress levels with about 82% recognition rate (Liu and Du, 2018).
Another recent study found higher SCLs when participants drove
a simulated vehicle in autonomous mode compared to manual
mode (Morris et al., 2017). Higher skin conductance levels
could be indicative of lower levels of trust in the autonomous
mode than manual mode. State anxiety during simulated
driving was also found to be associated with SCL (Barnard and
Chapman, 2018). Another recent study found that relative to
sleepiness, higher skin conductance levels are found during
wakefulness, effects which are indicative of comparatively higher
sympathetic activity (Schmidt et al., 2017).

Practical Considerations
In driving contexts, EDA is shown to vary due to many cognitive
states, such as workload, stress, anxiety, sleepiness, all of which
are influenced by sympathetic nervous system activity. This
allows the use of EDA in assessment of various psychological
phenomena (Dawson et al., 2007). Therefore, caution should
be exercised while interpreting changes in EDA in an applied
and less-controlled setting as it is sensitive to not one, but
many psychological variables. In the driving context, careful
choice of filters to remove artifacts (Affanni et al., 2018) and
identification of cognition-related features (Chen et al., 2017; Liu
and Du, 2018) that have been successfully implemented could
be utilized to improve accuracy and detection. One disadvantage
of EDA is that it has a slower response (lag of 1–3 s) after
the stimulus has occurred (Dawson et al., 2007). In instances
when near-real time physiological responses need to be detected,
EDA may be relatively slower (than cardiovascular measures).
Another point to consider is that, similar to other physiological
measures, not all individuals have the expected skin conductance
response (Dawson et al., 2007). This is another reason to avoid
reliance on a single measure, but multiple channels, to capture
the psychological phenomena of interest.

Electromyography (EMG)
EMG Quantification
EMG is used to measure the electrical activity generated by
muscle fibers (Fridlund and Cacioppo, 1986; van Boxtel, 2001).
Surface EMG is captured by placing small surface electrodes
on specific muscles of interest, which is then digitized and
amplified to record muscle activity (Fridlund and Cacioppo,
1986). Numerous features can be extracted from the EMG signals.
Root mean square of the signal (in microvolts) is a recommended
and commonly reported EMG signal amplitude (Fridlund and
Cacioppo, 1986). Other commonly assessed statistical features
are peak spectral density, peak amplitude, and peak frequency.
A specific muscle’s activity can provide insights into the
psychological processes underplay. For instance, the smilemuscle
(or zygomaticus major) and the frown muscle (or corrugator

supercilii) have been used a lot in emotion research to identify
positive and negative behavioral expressions. For example, more
frown muscle activation can be an index of negative behavioral
expressions (Lohani and Isaacowitz, 2014; Lohani et al., 2018).
Psychological processes (e.g., stress) can lead to sympathetic
nervous system activity (Lundberg et al., 1994), which can elicit
muscular tension. Researchers have studied muscular activations
under controlled conditions to indexmental processes (Lundberg
et al., 1994; Wijsman et al., 2013; Luijcks et al., 2014). Applied
driving research has successfully assessed psychological processes
by assessing EMG (Healey et al., 1999; Fu et al., 2016; cf., Morris
et al., 2017; Ma et al., 2018).

EMG in Driving Context
In driving contexts, surface EMG has been utilized to study
psychological and physiological stress (Jonsson and Jonsson,
1975; Wikström, 1993; Balasubramanian and Adalarasu, 2007;
Ahlström et al., 2018). Stress and fatigue have been studied by
recording electrical activity from relevant muscles. For instance,
variations in the trapezius muscle (a major back muscle that
extends from the neck to shoulder blades and lower spine)
and deltoid (triangular muscle located on uppermost part of
an arm and the top of shoulder) are influenced by mental
stress (Wikström, 1993; Balasubramanian and Adalarasu, 2007;
Hirao et al., 2007; Wijsman et al., 2013; Luijcks et al., 2014; cf.,
Morris et al., 2017). A recent study (Lee et al., 2017a) recorded
trapezius muscle activity to detect stress in a driving simulator
under relaxed and stressed conditions. A continuous increase
over time in muscular tension was associated with greater stress
experienced due to driving task (Lee et al., 2017a). Muscular
tension can thus be a useful metric of stress level that can be
utilized in driving research.

It is worth noting that muscular fatigue and discomfort
are not isolated issues (Leinonen et al., 2005) and they cause
psychological distress and disrupt cognitive performance while
driving. Muscle fatigue while driving has been studied by
examining changes in muscular tension in shoulder and neck
muscles (Sheridan et al., 1991;Wikström, 1993; Balasubramanian
and Adalarasu, 2007; Hirao et al., 2007). Compared to the
beginning of the drive, continuous driving can lead to reduced
back muscles (e.g., trapezius and deltoid) activity and fatigue.
Muscular fatigue (measured by EMG of back muscles) is
associated with decreases in power of EMG activity-related
frequency band (Hostens and Ramon, 2005; Balasubramanian
and Adalarasu, 2007; Hirao et al., 2007). Surface EMG is a helpful
way of identifying discomfort in fatigued and weak muscles and
targeting rehabilitation for skeletomuscular problems specially
in professional or long-distance drivers (Balasubramanian and
Adalarasu, 2007). A recent study (Artanto et al., 2017) has also
used a low-cost EMG system to detect drowsiness. An EMG
sensor attached to muscles around eyelid region captured the
duration of eyelid closure as an indicator of drowsiness (Artanto
et al., 2017). Another recent study has proposed a system that
can detect real-time changes in EMG (Mazzetta et al., 2018).
Further research is needed to validate EMG’s applicability in
real-world settings.
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Practical Considerations
EMG measurement enable recording continuous data from the
specific muscle of interest without obstructing the driving task.
Such objective information can be helpful in learning about
muscular activity (and relevant cognitive states) that may not
be necessarily visible to the researchers or under the awareness
of the responder. However, it is essential to pay attention to
any outliers or irrelevant events that may add noise to the
EMG signal and impact signal interpretation. Irrelevant events
can include muscular activity due to driving-unrelated (e.g.,
continuous posture change, scratching skin, or touching the
electrodes) and driving-related (e.g., functional steering activity)
movement and yet unrelated to the cognitive state (e.g., mental
workload) of the driver (Mehler et al., 2009). In real-world
settings, it can be tedious to tease apart muscular activity due
to other confounding reasons from activity relevant to changes
in cognitive states. Furthermore, the task under investigation is
also of importance. For instance, a study that comparedmuscular
tension while driving car autonomously vs. manually found no
differences in EMG signals, but significant differences were found
for SCL (Morris et al., 2017). This suggests that for some tasks
the muscular activity may not significantly differ, but may still be
psychologically different in other modalities. This also highlights
the importance of multiple measures.

Thermal Imaging
Thermal Imaging Quantification
The measurement of changes in skin temperature is a useful
technique to detect and track attributes of a responder, such as
body posture and emotional expression (Gade and Moeslund,
2014; Rai et al., 2017). A special merit of this technology is
that it enables sensing the real-time state of motorists non-
invasively without disrupting driving related tasks. In addition,
unlike RGB cameras, thermal cameras do not depend on an
external illumination (Gade and Moeslund, 2014; Rai et al.,
2017). Objects that emit radiations in themid-to-long wavelength
infrared spectrum (3–14µm), such as the human body (but
not inanimate objects) can be detected via thermal imaging
(Gade and Moeslund, 2014; Rai et al., 2017). Changes in
temperature distribution, as captured by the thermal cameras,
are utilized to make meaningful interpretations. For instance,
facial thermography can be used to capture the heat distribution
in facial locations known to vary with sympathetic activity as a
metric of the varying psychological phenomena. Most commonly
investigated facial locations include the forehead and nasal
temperature changes.

Sympathetic autonomous nervous system activation may lead
to constrictions of blood vessels, thereby decreasing temperature
in extremities, such as the nose (Or and Duffy, 2007; Gade and
Moeslund, 2014). For example, mental workload changes lead to
temperature variations in the forehead, nose, cheeks, and chin
regions (Stemberger et al., 2010; Marinescu et al., 2018). A recent
study examined the validity and sensitivity of thermal imaging in
assessing variation in cognitive load (Abdelrahman et al., 2017).
Increased cognitive task difficulty led to significant increases in
the forehead temperature and decreases in nose temperature
(Abdelrahman et al., 2017). The largest effect sizes were found

when the difference in forehead and nose temperature was
estimated. Higher task difficulty led to an increase in forehead
and nose temperature differences (Abdelrahman et al., 2017).
Additional work has also examined real-time sensitivity of
thermal imaging and found that specialized thermal cameras
can detect changes in cognitive load with a latency of 0.7 s
post eliciting event (Abdelrahman et al., 2017). This finding
suggests that this methodology has a high relevance for real-time
assessments of cognitive load in applied settings like driving.

Thermography in Driving Context
In driving contexts, facial thermography was found to be useful
in assessing over-arousal constructs such as mental workload (Or
and Duffy, 2007; Murai et al., 2008). Performing a secondary
workload task (mental arithmetic) while driving in a simulator
as well as an on-road car led to a decrease in nasal temperature
with stable forehead temperatures (Or and Duffy, 2007). Drop
in nasal temperature also correlated with self-reported workload
(Or and Duffy, 2007). Another study found increases in the
difference between nose and forehead temperature increased
with mental workload (Kajiwara, 2014). Participants’ nasal
temperature varied as a function of mental workload in simulated
driving (Kajiwara, 2014). Workload variation indexed by changes
in nasal temperature were also reported during ship navigation
using a simulator (Murai et al., 2008), highlighting its utility in
applied settings.

Furthermore, facial thermography can be useful to examine
and infer heat distribution in faces during emotional states.
This method could be promising and may provide a non-
invasive approach to capture emotional states because
current methods of emotion recognition using facial features
detection software have limitations. One study used an
infrared thermal camera to non-invasively detect face regions
and recognize emotional states of motorists (Kolli et al.,
2011). This study suggests that thermography can improve
face detection algorithm for in-vehicle settings thereby
facilitating ADAS.

In another line of work (Cheng et al., 2007), a combination of
thermal infrared and color cameras have shown to be effective in
sensing body movements in real-time on-road driving. Similarly,
infrared streaming has been used to develop posture and
occupancy sensory systems (Kato et al., 2004; Trivedi et al., 2004).
Another recent study reported successful use of near-infrared
light and thermal camera sensors to identify aggressive driving
behavior (Lee et al., 2018) and were able to categorize aggressive
driving from relaxed driving. The above studies suggest that
thermography has the potential to be a useful non-invasive
technique that can be validated to capture cognition-relevant
states and improve traffic safety.

Practical Considerations
Thermal cameras are used in numerous industrial, agricultural,
and military settings (Gade and Moeslund, 2014). They
can be extremely useful in vehicular technology because
they are non-contact sensors and can work regardless of
external illumination. Nevertheless, further testing is needed
to better understand how this technology would improve our
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understanding of cognitive states in traffic safety. Further
systematic investigation and replication of thermography as a
function of cognitive workload, stress, and drowsiness after
controlling for confounding factors, such as environmental
factors (e.g., weather conditions and air conditioning), are
needed to be able to make confident assessments of cognitive
states. The results so far look promising.

Pupillometry
Pupil Quantification
Pupillometry is the measurement of pupil size and reactivity.
Modern pupillometry is measured via optical eye-trackers that
use some combination of monitoring infrared light reflections
from the cornea, the back of the lens, and the pupil, as well
as absorption of light by the pupil (e.g., dark-pupil tracking).
Most modern eye-tracking devices can monitor pupil location
(and eye-fixation location) with very high resolution (>1,000Hz)
non-invasively and at a substantial distance from a participant.
Thus, measurement can occur in highly ecologically valid
environments, without participants having to make any overt
responses. Since the 1960’s it has been shown that pupil dilation
changes as a result of mental activity—for example, increases
in arousal and cognitive workload (e.g., Hess and Polt, 1964).
In a classic study demonstrating the sensitivity of pupillometry
to cognitive demands, Kahneman and Beatty (1966) showed
that pupil dilation increases parametrically with an increasing
number of words to recall in a simple word list memory task.
Moreover, they showed that this increase in workload persists
over a maintenance interval, and reduces parametrically as
each word is retrieved (and released) from memory. These
findings, along with a number of other demonstrations of
pupillary sensitivity to cognitive workload, for example in math
problem solving (Sirois and Brisson, 2014), working memory
and individual differences in intelligence (Tsukahara et al., 2016),
aging and verbal memory load (Piquado et al., 2010), has led to
wide interest in this measure as a physiological marker of arousal
and cognitive effort.

Janisse (1977) remarked that the eye is the only “visible part
of the brain.” Indeed, detailed models of the neurophysiology of
pupillomotor functioning are developed and growing, including
an understanding of the innervation of the sphincter and
dilator muscles by the autonomic nervous system (Miller
et al., 2005), as well as the neuromodulatory relationship
between pupil dilation, activity in the locus-coeruleus (LC; a
neuromodulatory nucleus in the dorsal pons of the brainstem
strongly linked to phasic and tonic arousal, cognitive control, and
monitoring functions), and norepinephrine (Gilzenrat, 2006).
For instance, a high correlation (0.6) between spike frequency
and pupil diameter has been found, whereby large pupil diameter
equates to high LC activity (Rajkowski et al., 1994). Demberg
(2013) have also recently reported changes in pupillometry due
to linguistically induced cognitive load (e.g., comprehending
syntactically demanding sentences). Other recent work has also
examined user state related changes in pupil diameter in lab-
settings such as variations in valence and arousal (Kassem et al.,
2017) and interest in real-time (Jacob et al., 2018).

Pupillometry in Driving Context
Eye-tracking has been used extensively in studying visual
perception and attention in driving contexts, however the unique
use of pupillometry as an index of real-time physiological
indicator of cognitive workload is only lately growing in
popularity (Schwalm et al., 2008). For example, Cegovnik et al.
(2018) recently validated a low-cost eye-tracker and showed that
pupil dilation increases with increments in cognitive load due
to a secondary memory task (n-back) (see also Recarte and
Nunes, 2000 for similar results). Pupillometry has also been
adopted in driving research while motorists drove in a simulated
driving context. Pupil diameter was found to reliably increase
with increases in cognitive load (Palinko et al., 2010; Faure et al.,
2016). Other work has use machine learning algorithms to detect
cognitive load while driving from pupillometry data (Yoshida
et al., 2014). A recent study found that during simulated driving,
pupil dilation could detect increases in cognitive load imposed by
a secondary task within a lag of 1 s (Prabhakar et al., 2018). This
suggests that pupillometry could be used as a near-real time index
of cognitive load.

Pupillometry has also been used to differentiate between
alertness and drowsiness (Soares et al., 2013). Alertness is
associated with increased mean pupil diameter and decreases in
standard deviation (i.e., stable), whereas drowsiness is associated
with decreases in diameter, but increases in standard deviation
(i.e., fluctuations) in pupil diameter (Morad et al., 2000; Wilhelm
et al., 2009). Fluctuations in pupil size have been proposed to be
a reliable index of drowsiness-related impairment while driving
(Maccora et al., 2018). Pupil dilation was also found sensitive
to fatigue levels while driving with a decrease in fatigue being
associated with an increase in pupil diameter (Schmidt et al.,
2017). Although early, these findings, along with others (for a
recent review see Marquart et al., 2015; Maccora et al., 2018)
suggest that pupillometry is an efficient, ecologically valid, and
low-cost physiological reporter variable for indexing cognitive
states in driving in highly-controlled environments like realistic
driving simulators.

Practical Considerations
In lab settings, pupil diameter was found to be a reliable, non-
invasive, and real-time measure of workload (Marinescu et al.,
2018). However, in on-road settings, it is quite challenging to
capture interpretable pupil information due to large variations
in luminance that are hard to control across conditions
and participants. Indeed, photopupillary reflex is massive in
magnitude relative to changes in pupil size related to cognitive
and attentional factors. As such, if there are considerable changes
in lighting conditions (e.g., sunny vs. cloudy days), this can
create considerable noise in the pupillary signal. Moreover, if
specific conditions of interest are confounded with respect to
overall luminance (e.g., driving during the day vs. driving at
night), this overall pupillary light reflex-related shift should be
taken into consideration. Furthermore, if investigating event-
related pupillary responses in driving, one should be careful to
determine that differences in pupil dilation are not only due
to differences in visual stimulation (e.g., presenting a luminant
STOP sign). Modeling techniques have also developed methods
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to infer cognitive workload after accounting for some variations
in lighting conditions (Pfleging et al., 2016; Reilly et al., 2018).

Marshall (2002) have developed a signal processing method
for extracting high-frequency changes in pupil dilation that
they argue is uniquely related to cognitive components (Index
of Cognitive Activity or ICA). However, this method is a
commercially available “black box” system, and should be
interpreted with caution given that the exact algorithm used to
calculate ICA from raw pupillometry is not open source. Other
work has estimated an Index of Pupillary Activity (IPA) inspired
by ICA, that uses wavelet-based algorithms to decompose pupil
data (Duchowski et al., 2018). IPA was found to differentiate
between low vs. high mental workload (Duchowski et al., 2018).
Another important feature to consider is that measurement of
pupil dilation is affected by eye-movements and relative gaze
position (e.g., Gagl et al., 2011). When gaze position changes
from central to peripheral locations, the recorded pupil shifts
from a circular to an elliptical shape from the point of view of
fixed camera location. This change in the recorded geometry
of the pupil is accompanied by changes in overall pupil size,
irrespective of actual changes in dilation or constriction. Gagl
et al. (2011) have developed methods for the measurement and
removal of such systematic influences. Nevertheless, researchers
should be careful to measure gaze position and to design studies
such that likely visual target locations are not confounded across
conditions of interest.

CHALLENGES AND RECOMMENDATIONS

Psychophysiological research has made tremendous progress
in developing methods to quantify cognitive processes. Most
of this research has been conducted in carefully controlled
environments to be able to interpret with certainty what
changes in a physiological signal may imply about the
psychological phenomena under investigation. Physiological
signals are valuable to understand how people interact in real-
world contexts. Driving research is an excellent application of
psychophysiological methods to understand and interpret how
people interact with automation in natural settings, which in turn
can inform intelligent systems to improve driving performance
and safety. As evidenced by much of the growing research
base discussed above, psychophysiological measures can be
successfully adopted to meet these goals. At the same time, lack
of adherence to research protocols and guidelines can seriously
jeopardize meaningful use of these methodologies. Here we
highlight a few general challenges and recommendations that cut
across all psychophysiological measures in driving research when
collecting data from real-world driving settings—which are less
predictable than lab settings— to improve data-quality and aid in
effective interpretation.

Valid and Reliable Quantification

of Construct
Depending upon the task and setting (lab-based simulator or
field study), some physiological measures will be more suitable
and feasible than others. For example, in a simulator with very

controlled body movement, continuous blood pressure using
the volume clamp method can be collected. However, while
on-road, this equipment may compromise drivers’ safety and
thus is not feasible. Other measures like ECG and thermal
cameras are highly mobile and feasible. Careful observations
can allow interpretation of cognitive processes while driving.
One important concern is the possibility of misinterpreting
the relationship between physiological signals and cognitive
processes (Cacioppo and Tassinary, 1990; Cacioppo et al., 2007).
Often, physiological measures (such as HR, EDA, EMG) are
impacted by multiple processes, such as drowsiness, stress, and
workload, which can lead to interpretive caveats. Systematic
variations in different experimental conditions can help tease
apart the underlying mechanism causing autonomic activations
to be able to draw clear inferences. However, in an applied
setting like driving a car in unpredictable traffic, control over the
experimental task is largely out of the control of the researcher.
Confirmatory independent measures are important to validate
the construct of interest in the study. Similarly, it is helpful
to ensure that the construct of interest reliably varies across
conditions and that the experimental manipulation was effective.

Individual Differences
A combination of factors may influence physiological signals,
including trait-level variables such as demographic factors
(age, gender), task experience (professional, experienced,
inexperienced), anxiety, and certain health conditions and
medications (e.g., cardiovascular health). State-level variations
such as stress-levels unrelated to task, caffeine intake (which
may change autonomic activity), and engagement/motivation
and frustration during the task can also interact with individual
differences in ways that may not be readily apparent. Combining
data from participants after considering such trait- and state-level
variables can help in proper interpretation of study findings.

On a related note, a critical challenge in multi-modal
recordings is that individuals may be highly reactive as assessed
by one measure but not necessarily, according to another. There
is considerable variability across individuals in how closely
physiological, behavioral, and subjective measures covary over
time with one another (Lohani et al., 2018). Furthermore, it
is possible that only some individuals may be sensitive to the
experimental manipulation (Drews et al., 2012). Such individual
differences may lead to variations in psychophysiological
assessments and may also explain to some extent lack of
significant differences across experimental conditions. Many, if
not all, of these measures are currently utilized within paradigms
where we are studying relative changes in the outcome across
conditions (e.g., P3b amplitude is a difference wave, HRV%
change, %signal change in BOLD response, etc.), for which
these measures do not have currently well-understood absolute
thresholds for making strong absolute judgements. While there
isn’t a fixed threshold for physiological measures that can be used
across individuals to define high and low arousal levels, relative
changes from baseline can be a useful way of assessing variations
in arousal levels from optimal levels for the individual. If the
system can be calibrated on what is a “normal” range for an
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individual, then significant variations from this calibrated range
can be a way to detect sub-optimal arousal levels.

Baseline Assessments
Baseline assessments provide insights about the physiological
state of the responder when the experimental condition was
absent. It also allows to control for physiological activity due
to any prior conditions, so that the change in the experimental
condition of interest is interpreted relative to the state right
before the condition started. A single baseline is generally not
enough, especially when there are multiple conditions. It is a
good practice to capture as many baseline assessments and as
close to the experimental condition as possible. Another alternate
design to consider (for measures with high temporal resolution)
is an event-related design, where activity is time-locked to specific
events of interest. In this design, pre-event activity in the measure
is subtracted from the overall physiological time series, resulting
in a strong baseline control for each trial (e.g., ERPs).

Sampling Rate, Filtering, and Signal Quality
Nearly all physiological signals discussed above are analog
signals, which have to be digitized for further processing.
Choice of optimal sampling rate and filtering helps avoid
signal distortions (Jennings and Allen, 2016), and as such,
knowledge of signal processing characteristics of the target
physiological measures is necessary for researchers to effectively
use these tools. Optimal sampling rate differs by the physiological
signal’s frequency characteristics, and poor sampling rate can
distort waveform characteristics, and induce artificial oscillatory
characteristics that are not part of the true analog signal (i.e.,
aliasing). For example, for HRV analysis, the recommended
sampling rate is at least 250Hz (Task Force of the European
Society of Cardiology, 1996). Some commercial wearables (e.g.,
fitness-related wrist watch sensors) have sampling rate as low
as 60Hz, which will lead to signal aliasing (Jennings and Allen,
2016) and inaccurate and uninterpretable HRV values. The
sampling rate needs to be at least above the Nyquist frequency
(2x the sampling rate of the highest frequency), and current
standards suggest a sample rate 3–4 times the highest frequency
component of physiological signal. Advancements in modern
computing allow for research-grade equipment to sample far
above Nyquist for most of the measures discussed (>2,000Hz)
during data acquisition. Of course, data can always be down-
sampled post data collection. As discussed in sections “Heart
Activity Quantification” and “Practical Considerations” on heart
activity, quantification using wearables can lead to inaccurate
assessments (Laborde et al., 2017) due to poor sampling rates,
lagged responses, and noisier signals to name a few, which would
lead to inaccurate interpretations.

Filters are helpful in getting rid of artifacts and noise
not relevant for the physiological signal being processed. For
instance, muscle and electrical noise (around 60Hz) are not
meaningful while interpreting EEG and ERP data, and thus
data outside the range of interest (typically not higher than
40–50Hz) can be bandpass filtered. However, if EMG activity,
which has a much higher frequency content, is of interest,
then bandpass filtering with allow low-pass cutoff at 500Hz

and high-pass cutoff at 20Hz, is often suitable (van Boxtel,
2001). Visual inspection pre- and post-filtering process can help
determine how filtering is affecting a signal. Note that all filters
distort the waveform and spectral characteristics, so unnecessary
filtering should be avoided and researchers should take care to
understand exactly how filters are impacting their data in time
and frequency domains.

For each psychophysiological measure discussed, researchers
have a growing number of indices that can be examined (for
example, for HRV, time-based, frequency-based, and non-linear
measures can be derived). Choice of metrics should be carefully
evaluated, as somemetrics may bemore suitable tomeet the goals
of the study, while others may not be suitable. For instance, some
metrics require minimum duration of data and falling short of
such requirements will lead to misrepresentative findings (e.g.,
standard deviation of R-R heart beats or SDRR is considered
more accurate when calculated over 24 h vs. 5min or shorter
intervals; Shaffer and Ginsberg, 2017). Such choices should
be made a priori, based on the research question of interest
and links between a measure and its purported psychological
interpretation based on prior research. Such flexibility in multi-
modal recording comes at the cost of an increasing number
of “experimenter degrees of freedom,” that can lead to inflated
Type-I error rates, if a consistent analysis pipeline is not
followed. It is also important to use comparable durations
of physiological signals across conditions and participants for
appropriate interpretation. Finally, great attention to accurate
event markers is critical for valid interpretation within and
across participants in event-related designs. This can be an
issue when using commercial products that are not designed for
research purposes.

Innovation
A limitation of most current psychophysiological research-grade
measures is the need for using contact sensors (placed on
skin). Non-contact sensors are beginning to be tested in applied
settings, which can make physiological data collection even less
invasive. For instance, ECG data can be derived from high-
quality RGB cameras, or sensors could be placed on the steering
wheel and driving seats (but should meet the recommended
requirements). While these can potentially be a great approach
to counter the limitations of contact sensors, caution is advised
while considering them because new limitations or inaccuracies
in assessment are possible and further research and testing
is required to adopt them in research. Commercial products
may not meet the requirements recommended by the scientific
community, which can lead to poor data quality and invalid
interpretations. For example, smartphone camera-based PPG
sensing estimates have poor sampling rate and can lead to
inaccurate assessments (Laborde et al., 2017). It is essential
to ensure that the guidelines for measures are met before
investing time and resources to avoid technical issues in data
collection and interpretation. For instance, as discussed earlier,
it is critical to collect physiological data with recommended
frequency sampling to avoid aliasing (Jennings and Allen, 2016).
Only equipment that have been or can be validated against
research-grade devices should be adopted for research purposes.
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Classification
Reliable and valid assessment of cognitive states is the
groundwork to develop inputs to advance state detection-
workload managers and “aware” systems. For instance, a recent
study reported a reliable method to elicit stress in naturalistic
driving scenarios (Baltodano et al., 2018). Given that onemeasure
may not be enough to reliably measure subtle changes in
cognitive state, a multi-method approach is critical to capture
state-level variations that may not be apparent through a single
measure alone. Research has shown that multi-modal approaches
provide a reliable (Schmidt et al., 2011; Borghini et al., 2014; Chen
et al., 2017) way to sense and assess cognitive states of motorists
in real-world settings. Notably, due to the dynamic nature of
the physiological signals, conventional linear approaches are
not always appropriate in modeling and predicting cognitive
state (Chen et al., 2015). The discussed physiological signals
are often non-stationary overall but for the briefest periods
of time. As such, innovative methods of combining temporal
and spectral resolution (time-frequency analysis) have been
developed in some domains (e.g., EEG), but their application to
other physiological signals is only in its infancy.

Once data have been processed to remove artifacts or
irrelevant noise, machine learning techniques could be trained
on these data to identify “risky” sub-optimal levels of cognitive
states, such as low-arousal states of drowsiness and fatigue
associated with unsafe driving performance. During the training
phase, multimodal features extracted from physiological training
data could be used to train models to classify observations
into high-arousal states (e.g., due to high stress and workload),
optimal-arousal state, vs. low-arousal state (e.g., due to
drowsiness and fatigue). During the test phase, the fully-specified
machine learning algorithm can be tested in terms of its capacity
to accurately classify observations into respective arousal states.
Indeed, cognitive state detection based on multimodal feature
analysis and classifiers have been also used to detect stress (Yang
et al., 2016; Chen et al., 2017; Lee et al., 2017b), alertness and
drowsiness (Forsman et al., 2013; Correa et al., 2014; Chen
et al., 2015; Wang and Chuan, 2016), fatigue (Fu and Wang,
2014; Wang, 2015; Fu et al., 2016; Li et al., 2017; Wang et al.,
2017), and workload (Borghini et al., 2014; Yang et al., 2016)
in real-time. Such studies have integrated data from more than
one measure by conducting multi-modal analysis to extract the
relevant features to capture the psychological phenomena at
hand. A comparison of multiple classifiers to train & optimize
machine learning algorithms can help determine the best fitting
model to represent changes in cognitive states that can explain
driving performance (Nadeau and Bengio, 2000; Fairclough
et al., 2015; Balters and Steinert, 2017; Tran et al., 2017). Thus,
utilizing multi-modal physiological signals, models could be
trained to learn and predict motorists’ sub-optimal cognitive
states associated with unsafe-driving behavior.

The optimized machine learning algorithms could
accordingly inform advanced state detection managers to
trigger warnings or otherwise intervene when sub-optimal
cognitive states associated with risky driving behavior are
detected (Aidman et al., 2015). The ability to predict unsafe

levels of physiological arousal will enable targeted augmentation
to modify motorists’ cognitive state to promote safer driving
behavior (Schmidt and Bullinger, 2017; Schmidt et al., 2017;
Aricò et al., 2018). For instance, countermeasures to augment
cognitive states, such as thermal stimulation (Schmidt and
Bullinger, 2017; Schmidt et al., 2017) and warning signs or verbal
communication (Schmidt et al., 2011; Aidman et al., 2015) can
be used by an automated system to modify drivers’ cognitive
state. This may especially benefit vulnerable groups such as
inexperienced drivers (Noordzij et al., 2017; Yan et al., 2017) and
older (Costa et al., 2017) drivers who may be more susceptible
to cognitive overload. Furthermore, a person-centered approach
can account for individual differences, such as the role of
age, driving profile, trust, and reliance on automation. For
instance, a recent study used discriminant analysis to account
for motorists’ driving-styles and individual difference factors
(e.g., gender, age, anxiety, anger) and also identify motorists’
EEG and EDA response features to classify motorists’ safe vs.
risky driving tendencies (Liang and Lin, 2018). This study
shows that individual differences can explain variations in
driving performance and a customized approach may also
help improve model prediction over time by accounting for
motorists’ characteristics and preferences. For example, the
low, normal, and high physiological arousal ranges will vary
depending on attributes such as anxious, risky, and distress
reduction driving styles of an individual (Liang and Lin, 2018)
and prediction of cognitive state-level variations may be more
accurate when predictions account for such individual-level
variations. Thus, a person-centered approach will improve
reliable predictions of cognitive states in real-world contexts by
intelligent driving systems.

RESEARCH APPLICABILITY IN

REAL-WORLD SETTINGS

As the reviewed literature in section, “Psychophysiological
Measures to Assess Cognitive States” suggests, many interrelated
states could lead to a similar pattern of findings on a physiological
measure (e.g., mental fatigue, drowsiness, lower vigilance, and
mind wandering are all sensitive to similar EEG/ERP indices).
After considering the overlap across findings from interrelated
constructs, in Table 1 we have summarized the expected pattern
that each physiological measure will have during a low vs. high
arousal state in an applied driving context. There are a few
points to consider. First, changes in several related cognitive
states can lead to similar changes in arousal. For example,
increases in driver workload, stress, or vigilance may occur under
different contexts, but may similarly lead to heightened arousal.
Second, even though arousal is continuous, we chose to classify
driver states into categories of low and high arousal because
both extremes are sub-optimal for driving performance. Third,
cognitive states are complex and change across time. For instance,
in the current review, we have placed mind wandering in a low-
arousal state based on similar patterns of findings as drowsiness.
However, mind wandering is a convenient short-hand for a
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more complex constellation of non-externally directed cognitive
states (see Smallwood and Schooler, 2006 for a review) and
depending on the context, such mind-wandering states can yield
states of heightened-arousal as well. Similarly, fatigue can be
categorized as high-arousal due to prolonged cognitive overload
or it can be passive, because of underload due to monotonous
driving conditions, for example (Saxby et al., 2008; Matthews
et al., 2019). With further empirical evidence in naturalistic
environments, a better characterization of complex cognitive
states could be developed.

It is still an open question if interrelated cognitive states
could be successfully differentiated from other similar states
in naturalistic environments (see Cacioppo et al., 2007 for
challenges with psychological inference). However, physiological
measures could be used to assess sub-optimal levels of general
arousal in real-world settings and intelligent systems can use
this information to trigger augmentation strategies even if we
cannot fully differentiate between specific cognitive states besides
along their arousal axis. We have reviewed how physiological
responses across multiple measures can provide a rich array
of response data relevant to domains that are of interest to
driving researchers (e.g., attention, fatigue, workload, etc.). These
measures provide unique information and unique sensitivity to
experimental manipulations beyond behavioral responses alone.
Thus, their current and future utility in real-world driving
research is important. This does not mean that measuring one
or even a large number of these measures alone will provide
us with a direct interpretation of a covert state (e.g., becoming
increasingly frustrated about an aggressive driver behind you).
Before the state of the research matures to be able to address such
a lofty goal as predicting specific cognitive states (Yarkoni and
Westfall, 2017), we first need careful on-road experimental work
to understand the sensitivity and specificity of these measures
to specific changes in driver-relevant states in observational and
experimental research in real-world settings. Thus, the focus of
the current review is not to claim that measurement of multiple
physiological measures in real-world driving could accurately
predict motorists’ specific cognitive state. Rather, our goal is
to summarize the feasibility of each of these measures for
integrating high-quality psychophysiological methodology into
real-world driving research. Table 1 presents the current working
predictions that are expected based on the available literature,
but more work is needed to be able to use physiological signals
to infer psychological processes. The current review represents a
summary of initial steps in that direction.

In Table 2, we have summarized the research applicability of
the reviewed psychophysiological measures. Although all of these
measures can provide valuable insights in the controlled settings
of a lab, some measures are more feasible to use and interpret
than others in real-world driving contexts. A few factors that
may play a role in determining the practical use of physiological
measures in applied settings are: the degree of coupling between
the measure and subtle changes in cognitive states, temporal
resolution, psychometric reliability, ease of data collection (e.g.,
setup time), sensitivity to artifacts, and the degree of invasiveness
and disruption to normal driving. After considering the available
evidence, we have categorized each measure’s real-world research

applicability into low, medium, or high levels. Moreover, certain
measures may be better candidates than others for a near real-
time assessment in applied settings. We review the real-world
applicability and feasibility of each of the measures in Table 2.

Some promising work suggests that cardiovascular measures
may be robust in detecting near real-time changes across multiple
domains. Studies have shown that cardiovascular data can
reliably detect changes in workload (Mehler et al., 2009, 2012;
Lenneman and Backs, 2010; Stuiver et al., 2014), fatigue (Patel
et al., 2011; Matthews et al., 2019), and drowsiness (Vicente
et al., 2016; Kurosawa et al., 2017). Like any physiological
signal, cardiovascular data is susceptible to artifacts that could
otherwise lead to inaccurate estimations. However, recent
analytical advances have led to an improved use in real-world
settings even in the presence of substantial recording artifact.
For instance, an analysis approach using short segments of
cardiovascular data (e.g., a moving window of 30 s; Stuiver et al.,
2012) can be used to detect workload demands during driving
(Stuiver et al., 2014). Use of smaller temporal windows of data
allow for an investigation of the short-term effects of cognitive
state without being overly susceptible to artifacts. Recent work
has shown that frequency analysis techniques on ECG data
can also be utilized to detect early onset of fatigue (Matthews
et al., 2019). While the limitations of PPG discussed earlier still
apply, recent preliminary work using near-infrared illumination
PPG (which overcomes confounds of illumination and motion-
related inaccuracies) while driving seems a promising direction
for future practical applications (Nowara et al., 2018). Another
recent work has developed a noise-resistant algorithm specifically
designed to analyze PPG waveforms (van Gent et al., 2018),
which can provide researchers an open-source and validated
heart rate analysis software to overcome some existing limitations
of PPG data processing, making it more feasible for applied
driving research.

EDA has been found to be a robust measure of sympathetic
arousal in driving contexts in real-world settings (Mehler et al.,
2012; Schneegass et al., 2013; Ruscio et al., 2017). EDA is also
easy to set up and collect from a motorist without obstructing
the driving process. Even though it has a slower response time
and provides only a broad sense of arousal (a combination of
workload, stress, fatigue, etc.), EDA in an applied uncontrolled
environment can estimate relative changes and periods of
stability in sympathetic activity of a motorist with an upper
temporal resolution of approximately 3–5 s. For example, recent
work found EDA to be suitable in capturing stress-level variations
in a real-time unconstrained setting (ElKomy et al., 2017).
Feature extraction and pattern recognition algorithms have
also shown reasonable success recently in detecting changes in
cognitive states (Chen et al., 2017; Liu and Du, 2018). Moreover,
adaptive filters have been successfully used to remove motion-
related artifacts for automatic and accurate detection (up to
95% sensitivity) of state-level variations in cognition (Affanni
et al., 2018). Such recent processing and analytic advances with
EDA data has shown its high relevance in applied intelligent
automation. For example, a development approach proposed for
monitoring driver’s fatigue levels and functional state utilizes
automated analysis of EDA indices in their detection module
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to improve intelligent vehicular systems (Liu and Du, 2018;
Savchenko and Poddubko, 2018).

EEG, a direct measure of brain’s electrical activity, can provide
robust measures of cognitive state variations while driving,
including levels of drowsiness (Liang et al., 2006; Wei et al.,
2018), fatigue (Liu et al., 2015; Fu et al., 2016; Hung et al., 2017),
and workload (Dasari et al., 2017; Zander et al., 2017). EEG
has high temporal resolution and is a direct measure of brain
activity. However, data collection (e.g., longer setup time) and
processing in real-world setting (e.g., movement artifacts) can be
quite challenging to implement into a real-world driving research
protocol (Popescu et al., 2008). At the same time, there have
been innovative technological and analytical developments in
EEG acquisition. For instance, efforts in brain computer interface
applications have utilized a single electrode to classify relaxed
vs. cognitive workload phases (Shirazi et al., 2014) and monitor
fatigue levels (Morales et al., 2017). Recent work extracted
features from a 6-channel EEG dataset to classify mental tasks
with up to 83% accuracy rate (Neshov et al., 2018). Other recent
work has reported detection algorithms that can be used to
accurately classify fatigue (Li et al., 2017; Gao et al., 2018). In
other work, a novel approach to detect drowsiness has been
proposed which reduces calibration time for a new user by
90% using a hierarchical clustering method, which accounts for
inter- and intra-subject variability (Wei et al., 2018). Automatic
drowsiness detection algorithms based on only a single target
channel can allow real-time neural assessments of cognitive states
(Belakhdar et al., 2018). With increasing advancements in sensor
development and data processing, we hold an optimistic view of
adopting EEG-based measures in driving research, albeit after
considerable validation (Kosiachenko and Si, 2017; Krol et al.,
2017; Zander et al., 2017; Byrom et al., 2018). Recent work has
also shown the applicability of specific ERP components (such
as the P300), some of which show good psychometric properties
(e.g., Cassidy et al., 2012), and can be adopted to brain-computer
interfaces (Piña-Ramírez et al., 2018). Future work and reliable
replication of studies are required to ensure EEG and ERPs could
be assimilated in human-machine automation interface.

Traditional fNIRS has lower temporal resolution and may
additionally be difficult to collect in applied settings. However,
recently, mobile-friendly systems have been developed and used
in applied domains (von Lühmann et al., 2015) including exercise
physiology (Byun et al., 2014), clinical monitoring (Kassab
et al., 2018), and infant developmental research (Quaresima
et al., 2012). Importantly, these advancements mean that fNIRS
measurements can be performed in naturalistic environments
without considerable restraint. As the development of ultra-
portable systems grows (e.g., battery powered mobile systems,
McKendrick et al., 2016), fNIRS will likely form a novel
complement to the many other physiological measures discussed
here, in part because of its unique capability to image neural
hemodynamics and reveal changes in brain activity with
improved spatial resolution compared to other portable and
non-invasive neurophysiological methods (e.g., EEG; Ahn and
Jun, 2017). For instance, a recent study adopted a wearable
fNIRS system (with sensors placed on a baseball cap making
it less intrusive) to measure cognitive distraction while driving

(Le et al., 2018). Thus, while these methods are still in their
infancy compared to many of the other methods discussed here,
the ability to reveal neural mechanisms of cognitive states in
real-world domains such as driving is promising.

Similar to fNIRS, thermal imaging also shows some early
promise. It is a non-contact technology that has high relevance
in applied settings, including driving (Lee et al., 2018). For
example, recent work has shown the validity of thermal imaging
in indexing cognitive load. In these studies, changes in nasal
and forehead temperatures were observed as a function of task
difficulty in a non-driving context (Abdelrahman et al., 2017;
Marinescu et al., 2018). However, research in real-world settings
is currently limited. Existing preliminary work has focused
primarily on understanding the sensitivity of this measure in
well-controlled environments. Future work will help qualify the
utility and validity of thermal imaging in real-world conditions.

On the other hand, several measures, despite clear utility
in a lab environment, may be currently of less use in real-
world settings. For example, pupillometry in well-controlled lab
settings can provide helpful information in interpreting user
state (e.g., Pfleging et al., 2016; Cegovnik et al., 2018). Moreover,
with the development of desktop-mounted eye trackers, pupil
dilation and constriction can be measured non-invasively and
remotely with high spatial and temporal resolution. In lab
settings, where features such as luminance can be controlled and
measured, recent work has shown success in using pupillometry
to examine mental workload in an unconstrained setting (e.g.,
Lego construction; Bækgaard et al., 2019). In driving, some
researchers have suggested that pupil-based measurements are
highly relevant for assessment of drowsiness (Maccora et al.,
2018). However, detection of pupil diameter in real-world
settings with rapidly changing and uncontrollable variations
in luminance is a critical confounding factor in the utility of
pupillometry in driving (Kassem et al., 2017).

Similarly, EMG can be utilized in lab settings to understand
psychological processes. For example, EMG in combination
with other psychophysiological measures was recently utilized
in detecting fatigue in drivers (Fu et al., 2016; Ma et al., 2018).
Preliminary research has also proposed the use of EMG to
detect drowsiness (Artanto et al., 2017) and real-time monitoring
of muscle activity (Mazzetta et al., 2018). However, in applied
settings such as driving, EMG may have only low utility, in part
because the necessary motor activity needed to engage in the task
(e.g., turning the steering wheel and actuation of break) can cause
uncontrolled changes in muscle activity that can be confounded
with the psychological variance in EMG, which is an order of
magnitude smaller than these artifacts.

At the same time, ongoing methodological developments are
resulting in more efficient systems, improved signal-to-noise
ratio, and improved signal-processing methods, all of which
culminate in rapidly improving the reliability and validity of
acquisition across these multiple methodologies. Some attempts
to assess cognitive states using multiple methods have been
integrated in non-driving domains (ElKomy et al., 2017; Ko et al.,
2017; Moghaddam and Lowe, 2019) and multi-method work
in real-world driving contexts are already underway (Fu et al.,
2016; Brouwer et al., 2017; Zander et al., 2017; Aricò et al., 2018;
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Belakhdar et al., 2018; Haouij et al., 2018; Paredes et al., 2018;
Rastgoo et al., 2018).

Taken together, we have reviewed a growing body of
empirical evidence suggesting that physiological measures can
be used to sense and assess changes in the cognitive states
of motorists during real-world driving. Through this selective
review, we believe that the strengths and limitations of
adopting physiological measures in driving can clearly extend
to other domains such as the use of aircraft, trains, and ships.
Furthermore, we see growing promise for the application of
covert monitoring methods like those reviewed above with the
increasing rise in semi-automated technology, where motorists
will become less directly involved in the driving process.
As such, the development of intelligent driving assistance
systems will need to utilize non-behavior-based measures to
index covert cognitive states of a motorist in the absence
of any overt behavior. The physiological measures reviewed
above have the potential to detect sub-optimal arousal levels
associated with risky driving behavior and inform state detection-
workload managers and “aware” systems to trigger warnings

or intervene, resulting in a closed-loop system in the absence
of any overt-driving behaviors. Before we reach such a future
however, the field needs to adopt rigorous standards for the
use of psychophysiological measurement in real-world settings.
We hope to see a future of increased collaboration and
integration of basic psychophysiology, human factors, and traffic
safety research. Such integration is necessary to advance the
development of effective human-machine driving interfaces and
driver support systems, with the ultimate goal of improving
traffic safety.
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As semiautonomous driving systems are becoming prevalent in late model vehicles,
it is important to understand how such systems affect driver attention. This
study investigated whether measures from low-cost devices monitoring peripheral
physiological state were comparable to standard EEG in predicting lapses in attention to
system failures. Twenty-five participants were equipped with a low-fidelity eye-tracker
and heart rate monitor and with a high-fidelity NuAmps 32-channel quick-gel EEG
system and asked to detect the presence of potential system failure while engaged
in a fully autonomous lane changing driving task. To encourage participant attention
to the road and to assess engagement in the lane changing task, participants were
required to: (a) answer questions about that task; and (b) keep a running count of
the type and number of billboards presented throughout the driving task. Linear mixed
effects analyses were conducted to model the latency of responses reaction time (RT) to
automation signals using the physiological metrics and time period. Alpha-band activity
at the midline parietal region in conjunction with heart rate variability (HRV) was important
in modeling RT over time. Results suggest that current low-fidelity technologies are not
sensitive enough by themselves to reliably model RT to critical signals. However, that
HRV interacted with EEG to significantly model RT points to the importance of further
developing heart rate metrics for use in environments where it is not practical to use EEG.

Keywords: low-cost technology, attention, alpha-band, semiautonomous vehicles, eye-tracking,
electrocardiography

INTRODUCTION

Semiautonomous driving systems or ‘‘partial driving automation’’ (SAE Level 2; SAE International,
2016) are driver assistance systems that are increasingly available in passenger vehicles, with
conditional driving automation (SAE level 3) still largely under development. As recently pointed
out by Eriksson and Stanton (2017), SAE level 2 is commonly confused with highly automated
driving, when in fact the semiautonomous level requires drivers to monitor the automation. For
both SAE levels 2 and 3, drivers must be prepared to intervene when system limitations and failures
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occur. These systems are intended to be advanced driver
assistance systems (ADASs) and thus are not intended to
supplant the need for drivers to maintain vigilant attention and
intervene when necessary.

ADAS in passenger vehicles are urgently needed. Highway
fatalities in the US declined steadily for five decades but
increased more than 10% in the first 6 months of 2016 with
only a slight decline (0.8%) from that peak in 2017 (NHTSA’s
National Center for Statistics and Analysis, 2017). Overall,
the 2016 and 2017 fatality numbers are a troubling reversal
of decades of improvement in highway fatalities. Importantly,
an estimated 94% of fatal crashes are attributable to driver
error, with 41% of those errors being recognition errors
including inattention, internal and external distractions,
and inadequate surveillance (Singh, 2015). The advent of
semiautonomous systems in vehicles is already reducing crashes
by reducing driver error. Automatic emergency braking reduced
rear-end crashes by about 40% (Cicchino, 2017) and rear
cross-traffic alerts reduced backing crashes by about 32%
(Cicchino, 2018).

Despite the potential benefit for automation to reduce vehicle
crashes, automation can have unpredictable effects on drivers.
Increased vehicle automation changes how drivers pay attention
and tend to decrease situation awareness (Sarter et al., 1997;
Endsley, 2017). People use automation when they should not,
over-rely on automation, over-trust automation, and fail to
monitor automation closely (Parasuraman and Riley, 1997).
In a prior meta-analysis, a greater degree of automation was
found to be associated with reduced ability to recover from a
system failure (Onnasch et al., 2014). Importantly, increased
levels of vehicle automation shift the driver’s role from one
of active control to one of a supervisor of the automation
(van den Beukel et al., 2016). It is imperative to understand
how advanced vehicle automation affects the safety of drivers
and passengers.

Although ADASs do reduce crashes, they also have a
number of known operational limits. Misunderstanding or
over-trust in these systems may result in drivers failing to
monitor the automation and subsequently failing to detect
critical signals related to the system’s functionality (Parasuraman
and Manzey, 2010). There have been recent news reports of
fatal Tesla crashes that occurred when the automation failed
to detect obstacles during a period when the driver was not
monitoring the automation (CNBC, 2018). Current ADASs
are not designed to brake effectively during ‘‘cut-in,’’ ‘‘cut-
out,’’ or crossing-path scenarios. Pedestrian detection systems
do not detect all pedestrians, notably those carrying large
packages. These limits render driver inattention hazardous in
all partially automated SAE 2 vehicles. Now that most new
vehicles are equipped with some automation, it is important to
understand how drivers respond to signals indicating automation
disengagement. Inattentive drivers may require more urgent
warnings—warnings that could annoy or startle the attentive
driver. Therefore, warnings of automation faltering or failing
should be tailored to the driver’s attentional state to be
most effective. Further, there is increasing recognition that
under some conditions, safety considerations may require

automation to shut itself off to protect an inattentive driver.
Such systems would depend on non-invasive sensors able to
reliably detect driver attentional state. A major focus of the
current work is to understand the predictive capabilities of
non-invasive low-cost sensors, compared to well established but
expensive and relatively cumbersome methods such as multi-
channel EEG.

EEG obtained with standard EEG recording equipment has
been shown to be sensitive to attentional state and is often
considered the defacto physiological measure for attention.
Previous EEG studies using high-fidelity EEG systems, have
reported that alpha-band activity increases just before errors in
processing that stimuli (Mazaheri et al., 2009; O’Connell et al.,
2009; Brouwer et al., 2012; Ahn et al., 2016; Aghajani et al.,
2017; Zhang et al., 2017). Increased prestimulus alpha-band
has also been associated with mind wandering during driving
(Baldwin et al., 2017). Although EEG is well-established as
a measure of attention, it may not be practical for use in
vehicles insofar as real-time scalp recording and analysis of
alpha-band power would be needed. Portable EEG systems have
shown promise in their ability to monitor driver engagement
and drowsiness in a simulator study (Johnson et al., 2011).
Even though portable EEG systems may be capable in field
settings, they are expensive compared to other portable
physiological measuring systems, thereby adding to consumer
costs. Lower-cost technology systems exist for monitoring
driver state that are more robust and less cumbersome than
EEG and thus more likely to be adapted and installed into
vehicles. For example, the General Motors Cadillac 2018 and
2019 CT6 models offer a super cruise feature that includes an
infrared eye-tracking system which is used by the automation to
determine driver attention (Clerkin, 2017). Similarly, low-cost,
reliable heart rate monitors with signal quality comparable to
that produced by ZyphrTM and KardiaMobile, could potentially
be integrated into vehicles to record drivers’ heart electrical
activity (ECG). This raises the question of whether sufficient
classification sensitivity to the attentional state can be achieved
with low-fidelity, low-cost sensors such as heart-rate monitors
and eye-trackers?

An existing body of research has investigated the use of
metrics other than EEG to monitor operator state. For example,
metrics of cardiovascular activity have been used to assess
constructs such as mental workload, fatigue, and operator stress.
In general, both heart rate increases and heart rate variability
(HRV) decreases have been associated with increased mental
effort (Mulder, 1992; Wilson, 1992). For example, Stuiver et al.
(2014) found that 40 s periods of HRVwere sensitive to increased
effort expenditure due to driving in fog vs. clear visibility,
with fog-inducing decreased HRV. Mehler et al. (2012) found
that heart rate and skin conductance level increase as cognitive
demand increases. HRV has also been used to classify fatigue
during simulated driving (Patel et al., 2011). Metrics of HRV
have been found to index changes in mental effort over time
as participants adapt to a task and change task strategies and
performance criteria. Short periods of high HRV reflecting
primarily parasympathetic influences may, therefore, serve as
a sensitive index of fluctuations in task effort and temporarily
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lowered levels of effort on a trial by trial basis (Thayer et al.,
2012). HRV as a workload measure is generally most sensitive
in the mid-range, particularly around 0.10 Hz area (Mulder,
1992). The mid-range is most sensitive to the amount of
mental effort invested in the task, not task complexity, per se.
Hogervorst et al. (2014) directly compared three measures of
HRV used to index workload: (a) high-frequency HRVmeasured
in root mean square of successive differences (RMSSDs); (b)
the spectral power in the range 0.15–0.5 Hz of the ECG R
to R intervals; and (c) mid-frequency variability with spectral
power between 0.07 and 0.15 Hz of the ECG R to R intervals.
It should be noted that the third measure would be categorized
as low frequency according to the (Task Force of the European
Society of Cardiology the North American Society of Pacing
Electrophysiology, 1996). Hogervorst et al. (2014), found that,
apart from EEG, only respiration frequency and RMSSD
produced a significant classification of workload.

Metrics of eye movements have also shown promise in
recent years as indices of attention. Metrics obtained from eye
trackers, such as fixations, horizontal spread of fixations, and
gaze concentration have been used successfully to index attention
in several recent driving investigations. For example, Wang
et al. (2014) compared a number of different eye gaze metrics
and found that horizontal gaze concentration derived from the
standard deviation of horizontal gaze position was robust and
sensitive to changes to cognitive demand during driving on actual
roads. Research by Fridman et al. (2018) used in-vehicle video
recordings of eye movements in conjunction with either, Hidden
Markov Models or three-dimensional convolutional neural
network, to classify driver cognitive load during driving on an
actual highway. Likewise, in a simulated vehicle automation
task, Louw and Merat (2017) found horizontal gaze dispersion
to be sensitive to increased task demand stemming from
secondary task engagement. Dehais et al. (2011) and Zeeb et al.
(2015) found that gaze concentration was a sensitive index of
attentional focusing, found to predict the speed of ‘‘take-over’’
from automation.

Combinations of physiological measures have shown
particular promise. For example, combinations of EEG, eye-
tracking, and HRV have been used to: (a) classify operator
states (Hogervorst et al., 2014); (b) determine whether a driver
is on-task or mind wandering (Baldwin et al., 2017); and (c) to
successfully adapt automation to improve driver performance
(Wilson and Russell, 2003a,b). Hogervorst et al. (2014) provided
a partial comparison, reporting that EEG measures obtained
the highest classification accuracy compared to eye, heart,
and respiratory measures. When EEG was combined with eye
measures (pupil size and eyeblinks) there was not a significant
improvement over EEG alone as predictors of workload in an
n-back working memory task.

In light of evidence that RMSSD (Hogervorst et al., 2014) and
eye-gaze (Dehais et al., 2011; Wang et al., 2014) were both found
to be effective in predicting driver attentiveness, we hypothesized
that these twomeasures in combination and when obtained from
low-cost equipment could be as sensitive in predicting driver
performance in a simulator during automated driving as EEG
alpha-band, obtained from high-fidelity EEG equipment.

MATERIALS AND METHODS

Participants
Twenty-five participants were recruited through the George
Mason University undergraduate research pool, in exchange for
course credit. Participant requirements were to be above 18 years
of age, have normal or corrected to normal vision and hearing,
not currently taking psychoactive medications, and have a valid
United States driver’s license. Participants were also asked to not
wear heavy eye makeup the day of their scheduled appointment
or wear braids, wigs, or hair extensions as they affect contact
between EEG electrodes and the scalp. In order to increase
enrollment in the study, in addition to course credit, some
participants were given a $15.00 bonus upon completion of their
scheduled session. Table 1 provides an overview of participant
demographic information.

Materials
Simulated Drives
Five fully autonomous drives were programmed using a
low-fidelity desktop simulator containing Internet Screen
Assembler pro version 20 and Real Time Technologies Sim
Creator version 3.2 simulator software on aWindows 7 computer
with 64-bit operating system. Each of the drives was displayed on
a Dell Monitor with screen size measuring 52 cm in length and
32.5 cm in height with a screen resolution of 1,920× 1,200 pixels.
Each of the drives was programmed to complete an automated
lane changing task, adapted from Mattes (2003) and lasted
approximately 10 min in duration. The 10-min duration was due
to limitations in the Sim Creator software. During the drives,
participants were instructed to respond with serial button presses
every time the system indicated there was an automation failure.
System functionality was represented by right or left facing
arrows, appearing in the bottom right corner of the monitor that
varied in the gradient of the color red to green and appeared on
average every 13 s, with a jitter±2 s resulting in 4–5 lane changes
per minute. Arrow duration was 150 ms. System reliability was
indicated by the amount of red at the tip of the arrow. Arrows
representing reliable system functionality, Reliable Automation
Arrows (presented on 80% of trials) indicated the system was
operating normally (the base of the arrow was green with a
small amount of red at the tip). After the presentation of
a Reliable Automation Arrow, the vehicle would respond by
changing lanes correctly. Arrows indicating unreliable system
functionality, Unreliable Automation Arrows (presented on 20%
of trials or on 10 trials per drive) indicated that the system had
failed (the arrow tip was completely filled in with red). After the
presentation of the Unreliable Automation Arrow, the vehicle
would respond by making one of three possible lane changes. Of
the ten Unreliable Automation Arrows, on six of them the vehicle
would fail to make a lane change, for two of them the vehicle

TABLE 1 | Participant demographics.

Total participants 25 Female (12)

Age Range: 18–39 Mean: 22.6 (6.01 SD)
Driving experience (in months) Range: 6–270 Mean: 57.13 (60.75 SD)
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would respond by making an incorrect lane change (opposite of
where the Unreliable Automation Arrow was pointing), and for
two the vehicle would make a correct lane change. Participants
were told to respond with a button press if the arrow was an
Unreliable Automation Arrow then make a second button press
to indicate which type of lane change the vehicle made after the
presentation of the Unreliable Automation Arrow. Participants
were exposed to a total of 50 arrows per 10-min drive.

Two secondary tasks were administered to participants in
addition to the lane changing task. The point of these tasks was
to keep participants engaged in the driving task and discourage
participants from focusing their eyes on the icons in the interface.
During each of the time periods, participants were asked to:
(a) keep a running count of the number of Coca-Cola and
Northrop Grumman signs they encountered; and (b) answer
‘‘driver engagement’’ questions regarding the vehicle’s status
such as: speed changes, current lane position, or lane changes. In
each time period, there were 25 total billboards and three ‘‘driver
engagement’’ questions.

Questionnaires
Participants were administered a demographics questionnaire,
the Trust Between People and Automation (Jian et al., 2000),
Merritt (2011) Trust Scale Items, the Merritt (2011) scale based
on Liking Items, and the Propensity to Trust Scale Items
(Merritt et al., 2013).

EEG Recording
Each participant was equipped with a 40-channel NuAmps EEG
cap with silver/silver-chloride electrodes. Data were recorded
from a subset of electrodes: Fz, Cz, Pz, Oz, F1, F2, P1, P2, Ground
(at location AFz), A1 (the left mastoid, serving as the online
reference), and A2 (the right mastoid), as well as EOG electrodes
placed above and below the left eye as well as at the outer canthus
of both eyes. Data were collected at a sampling rate of 500 Hz
with an online high-pass filter of 0.1 Hz and an online low-pass
filter of 70 Hz.

Eye-Tracking
Gaze dispersion was recorded using the Pupil Pro headset
developed by Pupil Labs. This is a low-cost eye-tracker that
monitors the participant’s right pupil with a camera as well as
the environment with a head-mounted camera. The data was
recorded using Pupil Lab recording software. Sensor settings
for the cameras were as follow: the pupil camera was set to
640 × 480 with a frame rate of 120 fps maximum resolution and
the world camera was set 1,920× 1,080 with a frame rate of 30 fps
maximum resolution.

Heart Rate Monitor
A low-cost Zephyr BioPatch heart rate monitor was attached to
the participant using ECG electrodes in order to collect heart rate
activity during each of the time periods.

Lab-Streaming Layer
The lab-streaming layer (LSL) software library1 was used to
synchronize the timestamps through a network connection

1https://github.com/sccn/labstreaminglayer

between the driving simulation, as well as our physiological
devices: the eye-tracker and heart rate monitor.

Procedure
After providing written informed consent of a protocol approved
by George Mason University’s Human Subjects Institutional
Review Board, participants were introduced to the heart rate
monitor, eye-tracker, the EEG cap. Procedures were used to
lower impedance of the scalp EEG electrodes.

ECG Setup
Participants were handed the Zephyr Heart Rate Monitor and
asked to place it so that it was centered with their sternum so
the ECG electrodes could acquire heart rate activity at the fourth
intercostal space located at the left and right sternal border. Next,
the heart rate monitor was synced with the BioHarness software
on a nearby laptop computer.

EEG Setup
Next, participants were fitted with the Neuroscan 40 channel
EEG cap. Impedance was lowered to 5 k� or below by applying
electroconductivity gel between the electrodes and the scalp then
lightly abrading the scalp using a blunt needle (Luck, 2005). Next
participants were shown how excessive movement can introduce
noise into EEG waveforms and asked to remain as still in their
chair as possible for the duration of the experiment.

Eye-Tracking
We used the Pupil Pro headset to monitor eye movements and
gaze patterns for the duration of the drives. After placing the
headset on each participant, the pupil camera was adjusted to
better capture their pupil. Once the camera was able to accurately
track the participant’s pupil, they underwent a calibration process
in order to synchronize the pupil tracking camera with the world
facing camera via Pupil Pro software. This allowed us to track
the location of the display in order to convert the gaze position
to display coordinates. A confidence value is estimated for each
sample of eye data that ranges from 0 to 1 indicating a level of
certainty that the pupil was accurately identified for that sample.
Only samples with confidence at or above 0.8 were used for
further data analyses.

After setting up the participant with the physiological metrics,
participants were seated 75 cm away from the monitor. At
the start of the training drive, each participant was read
the instructions aloud and introduced to the controls on the
gear shift. Participants were instructed to immediately press
the button labeled as U as soon as they saw an Unreliable
Automation Arrow, then make a second button press indicating
the type of error that occurred (N =No lane change, I = Incorrect
lane change, and C = Correct lane change). Participants were
asked to only respond to the Unreliable Automation Arrows.
Participants were also instructed to pay attention to the images
on each of the billboards and count the number of times they
saw logos for Coca-Cola and Northrop Grumman as well as
answer the ‘‘Yes’’ or ‘‘No’’ driver engagement questions (DEQ;
e.g., ‘‘Speed increased after last arrow?,’’ ‘‘I am currently traveling
67mph?,’’ ‘‘I am currently in the far right lane?’’ presented during
each trial. Participants were allowed to complete the practice as
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many times as they needed to feel comfortable responding to the
task. After training, participants were then administered the five
time periods in counterbalanced order. After each time period
participants were asked to report the total number of Coca-Cola
and Northrop Grumman billboards to the experimenter. Upon
completion of the simulated driving session, participants were
administered the questionnaires.

Data Analysis
Heart Rate Variability (HRV)
Data collected from the driving simulator was synced in time
with the data collected from the Zephyr Heart Rate Monitor.
We sampled the heart rate data starting 10 s before the onset
of the Unreliable Automation Arrow until the presentation of
the arrow. As reported in Klinger (1978), shifts in thought
patterns can happen on average every 14 s. A maximum window
of 10 s was chosen for ECG activity as that would allow us
to maximize the number of sampled beats per second without
extending too far back to potentially sample HRV due to
the previous Automation Arrow. Based on previous work by
Hogervorst et al. (2014), HRV was the measure of interest
because it has been shown to be a robust classifier in identifying
low vs. high workload compared to spectrally defined medium
and high HRV. We calculated the ECG R-wave peak to peak
interval for each trial using the MATLAB wavelet toolbox, using
the maximum overlap discrete wavelet transform (MODWT).
The squared absolute value of the signal approximation was
calculated allowing for the use of an algorithm to identify R peaks
for further analysis. Mean R to R was calculated by averaging
the time between R peaks (meanRR). HRV was calculated using
the RMSSDs.

EEG Processing
EEG spectral data were processed using MATLAB with EEGLAB
toolbox version 12.0.2.4b (Delorme and Makeig, 2004). EEG
channels were mapped using the BESA file, a four shell DIPFIT
spherical model of the channel locations. Data were re-referenced
to the average of the two mastoid electrodes. Unreliable
Automation Arrows were labeled within the waveform of the
EEG data. Data were filtered at a high-pass filter of 1 Hz
cutoff and 2 Hz transition bandwidth, and a low-pass filter of
40 Hz and 10 Hz transition bandwidth. Data was decomposed
via independent component analysis (ICA), and components
representing blinks or eye movements were visually identified
and removed. Electrodes exceeding ±2 standard deviations
were identified as artifactual and rejected. Additionally, data
exceeding ±100 µV was rejected from the data to remove
artifacts caused by large movements or other noise. Data from
electrodes rejected due to artifacts that exceeded two standard
deviations were subjected to spherical interpolation. Dummy
markers were placed in the EEG data 1 s before each unreliable
signal event to the presentation of the arrow and the data were
epoched to those markers. The 1-s windowwas chosen to capture
the mental state of participants immediately prior to the onset
of the Unreliable Automation Arrow. Previous research on what
is termed ‘‘prestimulus alpha’’ have shown increases in alpha
spectral power, prior to a failure in detecting a signal, using a

time window of 800 ms to 1,000 ms prior to stimulus onset
(Busch et al., 2009;Mazaheri et al., 2009). Each epoch was linearly
detrended, and a hamming windowed Fourier transform was
used to convert the data from the time-domain to the frequency
domain, as implemented in the MATLAB function pwelch. The
data were then converted into decibel power using 10∗log10
(power) in order to get a better approximation of the normal
distribution. The FFT bin nearest to 10 Hz, here 9.76 Hz, was
used to analyze alpha activity at electrodes Pz, Cz, and Fz.

Eye-Tracking
Gaze dispersion data collected from the eye-tracker was synced
in time with each drive through LSL and sampled 3 s before each
onset of an Unreliable Automation Arrow to the presentation of
the arrow. This time window was selected in order to maximize
the number of sampled eye movements prior to the onset
of the Unreliable Automation Arrow while avoiding potential
contamination from eye movements that occurred due to the
billboard task. Horizontal and vertical gaze dispersion were
calculated by computing the standard deviation of a measure of
pixels over which the eyes moved for the X (horizontal) or Y
(vertical) dimension of the raw data identified with a confidence
value of 0.8 or higher. Horizontal and vertical gaze dispersion was
then transformed using the natural log of their values (lnX and
lnY, respectively) to approximate the normal distribution.

Behavioral Data
Responses to the presentation of the Unreliable Automation
Arrows and responses indicating the type of error (second button
presses) were extracted to assess changes in performance over
a time period during the experimental session. Participants
were instructed to immediately respond as soon as they saw an
Unreliable Automation Arrow. Due to high accuracy shown by
participants in identifying Unreliable Automation Arrows, the
latency of response to Unreliable Automation Arrows was the
measure of interest. We first calculated the grand mean for our
entire data set and standard deviation. We set all response times
higher than 2,600 ms to equal 2,600 ms. In order to get a better
idea of how well participants were able to distinguish between
critical events and reliable events, the A measure of sensitivity
was used. Since the measure of d’ is calculated by taking the
difference of hits and false alarms that have been converted
from probabilities into z-scores, the inclusion of a 1 or a 0 can
lead to a value that does not fall below the ROC curve. Use
of non-parametric sensitivity calculated using the A statistic, as
described in Zhang and Mueller (2005), eliminates the reliance
of converting probabilities to z-scores and obtains the measure
of sensitivity by calculating the average of the minimum-area
and maximum-area proper ROC curves as constrained by false
alarms and hits. Analysis of the accuracy of the second button
press that indicated the type of lane change the vehicle made
(incorrect, correct, or no lane change) were calculated for further
analysis in SPSS.

For the billboard task, the probability of hits and false alarms
was calculated for each 10 min time period of the drive. The
A statistic was calculated for further analysis in SPSS. For
the DEQs, accuracy was calculated by averaging the responses
of the questions for each 10 min episode of the drive. With

Frontiers in Human Neuroscience | www.frontiersin.org 5 March 2019 | Volume 13 | Article 109149

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Cisler et al. Low-Cost Attention Allocation

the trust questionnaire data, statements identified as being
negative were reverse coded allowing us to average the scores for
further analyses.

RESULTS

Data were analyzed using SPSS and the R statistical package (R
Core Team, 2017). To assess how well participants were able
to discriminate between Unreliable Automation and Reliable
Automation Arrows, we calculated the A statistic for each
time period. To assess speed-accuracy tradeoff, a correlation
analysis was conducted comparing A to reaction time (RT) for
the discrimination task. That analysis produced a significant,
2-tailed, negative correlation (R2 = −0.50, p < 0.05), indicating
that participants did not slow their responses in order to achieve
higher accuracy scores. Since accuracy was at the ceiling for
participants, discrimination RT was the behavioral measure
of interest.

In order to model RT to Unreliable Automation Arrow over
the five time periods, linear-mixed effects models were carried
out. These models were constructed using the R package lme4
(Bates et al., 2012). We conducted interactive models of RT
to Unreliable Automation Arrow across the five time periods
for each measure (alpha-band × time period, HRV × time
period, meanRR × time period, lnX × time period). These
were random intercept and slope models. Participant and trial
(10 trials in each time period) were random factors. For each
variable, only time period significantly modeled RT (p < 0.05).
Only alpha-band interacted with the time period inmodeling RT.
A likelihood ratio test (LRT) comparing the interactive model
(alpha-band× time period) to a null additive model (alpha-band
+ time period) produced a significant Chi-square (X2

(1) = 5.251,
p = 0.0219), suggesting that the interaction was important in
modeling RT.

Linear-mixed effects models were also used to model
RT. An interactive model of RT was constructed with
alpha-band, meanRR, HRV, lnX, and time period as fixed
factors (Formula: RT ∼ 1 + (Pz Alpha+meanRR+HRV+
lnX+ TimePeriod)3 + (1|Participant)+ (1|Trial)). Participant
and trial (10) were random factors. That model produced
two significant interactions (AIC = 2727.7, BIC = 2873.3,
p < 0.05), indicating the likelihood of alpha-band × time
period (β = 0.04158) and alpha-band × HRV (β = −0.1588)
in modeling RT. As horizontal gaze dispersion (lnX) did not
contribute significantly to the model, lnX was dropped from
the model and a reduced model was fitted (Bolker et al.,
2009). The reduced LME was conducted to model RT using
alpha-band, meanRR, HRV, and time period as the fixed
factors (Formula: RT ∼1 + (Pz Alpha+meanRR+HRV+
TimePeriod)3 + (1|Participant)+ (1|Trial)). Interactions were
limited to two- and three-way. That model produced a
significant three-way interaction (AIC = 2713.2, BIC = 2803.5,
p < 0.05, marginal R2 = 0.02, conditional R2 = 0.42)
indicating the likelihood of alpha-band, HRV, and time period
(β = 0.03861) in modeling RT. The R2 values, calculated
and reported as described in Nakagawa et al. (2017), indicate
that 2% of the variance was explained by the fixed factors

alone while 42% of the variance was explained by random
effects included in the model. The model also produced a
significant two-way interaction of MeanRR × Time Period
(β = −0.03588, p < 0.05). A LRT comparing the interactive
model (alpha-band × meanRR × HRV × time period) with
an additive null model produced a significant Chi-square
(X2
(10) = 21.092, p = 0.021), indicating the interactions

were important in modeling RT. Since the only significant
three-way interaction involved alpha-band, HRV, and time
period, LRTs were conducted to test the interactions: (a)
alpha-band × HRV; (b) alpha-band × Time Period; and
(c) HRV × Time Period. The three LRT tests showed
that alpha-band × HRV (X2

(9) = 18.649, p = 0.0284) and
HRV × Time Period (X2

(9) = 19.228, p = 0.023) were
significant. The interaction of Alpha-band × Time Period
was not significant (X2

(9) = 15.809, p = 0.071). Considered
together, these results indicate that alpha-band, HRV, and
time period are important factors in modeling RT, with
meanRR a weaker factor. Figure 1 shows the changes for
the physiological measures over each time period. Figure 2
provides a visual comparison of alpha-band power andHRV over
time period.

Response to Lane Change Accuracy
Accuracy scores calculated from the second button presses
which identified the type of lane change made by the vehicle
were submitted to a repeated measures ANOVA to assess
the change in accuracy over time. There was no statistical
significance in the analysis of changes over time in accuracy of
deciding which type of lane change was made by the vehicle
(F(4,92) = 0.404, p = 0.806).

Billboard Task
Preliminary analyses of A sensitivity scores were calculated
looking at the changes in sensitivity to identifying the Northrup
Grumman and Coca Cola billboards over time. The A statistic
was calculated for the billboard task, as shown in Figure 3.
Due to high accuracy for the billboard responses and in the
absence of a hypothesis on an effect of the two billboard
types, A scores were collapsed across Northrup Grumman
and Coca Cola billboards. A repeated measures ANOVA was
conducted in SPSS looking at changes in A sensitivity scores
as a function of time. Statistical significance was not observed
(F(4,92) = 1.495, p = 0.210).

Driver Engagement Questions
Accuracy was calculated for each time period by averaging the
responses for the DEQs. As shown in Figure 4, participants
increased in accuracy in their responses to the questions
before showing a performance decrease at the third time
period and an increase in performance for the fourth and
fifth time period. A repeated measures ANOVA analyzed the
change in accuracy over time. Mauchly’s test of sphericity
indicated that the assumption of sphericity had not been
violated and therefore sphericity was assumed. There
was a marginal effect of time on accuracy of response
(F(4,96) = 2.353, p = 0.059).
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FIGURE 1 | (A) Reaction time (RT). (B) Alpha-band power. (C) Mean RR. (D) Heart rate variability (HRV) plotted over 10 min time periods. Error bars are standard
error of the mean. Alpha-band power, Mean RR, and HRV are important factors in modeling RT over time.

Trust Questionnaires
Five correlation analyses were conducted to assess the
relationship between our questionnaires (Trust Between
People and Automation, Merritt Trust Scale Items, Merritt
scale based on Liking Items, Propensity to Trust Scale Items),
physiological metrics selected based on the LME (alpha-band,
Mean RR, and HRV), and behavioral metrics (RT and A). Of
our five correlation analyses, there was a statistically significant
negative bivariate correlation between alpha-band activity at
midline parietal site Pz and the Merritt et al.’s (2013) Propensity
to Trust Scale Items (r =−0.430, p< 0.05).

DISCUSSION

We obtained partial support for our hypothesis. We found that
HRV interacted with alpha-band activity and time period to
model the speed of processing signals of automation unreliability.
Gaze dispersion did not model the speed of processing signals
of automation unreliability, either alone or in combination
with other measures. Mean RR (heart rate measured in R-R
intervals) did model RT in interaction with time period but not
in interaction with alpha-band or HRV. Our findings confirm

previous evidence that prestimulus alpha-band activity is the
most effective measure of mental processing (Hogervorst et al.,
2014) but extend that work in showing HRV increased the
predictive capability of parietal alpha-band. The readiness of the
brain to process signals of system unreliability was affected by the
combined effects of HRV and alpha-band activity. This evidence
that HRV modulates alpha-band activity with consequences
for automation signal processing argues for the importance of
developing heart rate metrics in operational environments where
EEG is not practical.

Regarding the time course, HRV initially increased over the
session of autonomous vehicle driving, but then decreased near
the end. Based on the existing HRV literature, the effect of
workload on HRV depends in part on the duration of the
workload demand. Mulder (1992) has argued that the cardiac
response to 5–10 min periods of increased workload reflects
preparation for fight-or-flight activation of the sympathetic
nervous system with increased HR and decreased HRV. In
contrast, a short-lasting increase in workload (25–30 s) was
reflected in short-lasting increases in heart rate and blood
pressure in combination with corresponding decreases in HRV
and blood pressure variability (Stuiver et al., 2012). For our task,
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FIGURE 2 | Plotted interaction of Pz Alpha and HRV across time period.
Error bars are standard error of the mean. Alpha power increases and HRV
decreases at Time Period 5.

the workload may have increased when Unreliable Automation
Arrow signals were presented. However, the present study
measured HRV prior to those unpredictable signals indicating
unreliable automation. Therefore we could not determine
whether those signals transiently increased workload. The
slowing of RT linearly over the session and the initial increase in
HRV during autonomous vehicle operation are consistent with
an interpretation that workload increased over the session.

HRV has previously been associated with emotional
regulation (Appelhans and Luecken, 2008). HRV has been
found to be higher in those people who were better able to
regulate their emotions in social interactions (Butler et al., 2006)
and in marital interactions (Smith et al., 2011). Our finding
that high-frequency HRV interacted with alpha-band to model
the speed of responding to unreliable signals points to a role
for individual differences in emotional response regulation
in processing automation signals. Further, in operational
environments, it might be interesting to determine whether very
low and low-frequency HRV also predicts RT of responding to
signals of automation reliability.

RT to the signals of unreliable automation slowed fairly
linearly over the 55-min drive. Use of RT to measure processing
of signals from automation during a simulated drive is very
relevant to the topic of real-world driving of vehicles equipped
with ADASs. In ADAS-equipped vehicles in the real world,
the driver receives frequent signals from various automation
systems [e.g., drowsy driving, lane departure, lane keeping, and
(more rarely) sensor failure warnings]. The slowing of RT to
automation signals over the simulated driving session could
suggest a vigilance decrement. However, the sensitivity index A
from the discrimination task did not change over the driving
session and accuracy of responses to the lane changing task was
high. Moreover, the driving session was interrupted briefly every
10 min or so (due to limitations of the software), which would
not be conducive to the development of a vigilance decrement.
Therefore, we do not interpret our findings of slowed RT as

FIGURE 3 | Changes in A sensitivity scores for the Billboard task across
time period. Error bars are standard error of the mean. Statistical significance
was not observed for A sensitivity scores across time period.

FIGURE 4 | Changes in accuracy scores of Driver Engagement Questions
(DEQ) across time period. Error bars are standard error of the means.
Marginal effect of time on response accuracy.

consistent with a vigilance decrement. Workload is another
possible explanation for slowing RT to signals of automation. The
decrease in accuracy on the DEQs between the second and third
time points, despite the high accuracy of the secondary billboard
task do suggest a slight increase in workload or possible depletion
of cognitive resources, such as that commonly found in vigilance
tasks. However, that result was marginally significant.

Alpha-band showed a more complex pattern than RT over
the session, with an overall increase in power over the driving
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session, interrupted by a temporary drop in power in the
4th time period. Other investigations of alpha-band activity
during vehicle operation have found increases in alpha-band
power over time. Simon et al. (2011) observed an increase in
alpha-band over a driving session between the first 20 min of
driving and the last 20 min. That was measured only in people
who claimed to be very fatigued. Craig et al. (2012) found
increases in alpha-band power at frontal, central, and posterior
regions over time as participants engaged in a monotonous
simulated driving task. A literature review by Lal and Craig
(2001) concluded that alpha band activity changed as drivers
become fatigued. Since we had participants engage in a fully
autonomous drive, it is possible that some became passively
fatigued or drowsy during the session. An attempt by the
participant to maintain engagement despite the passive nature
of monitoring the automation may partially explain the high
accuracy of detection of the Unreliable Automation Arrows.
Further, attention to a spatial location (Worden et al., 2000) and
to features (Snyder and Foxe, 2010) also modulates alpha-band
activity when participants are required to detect changes in the
spatial location or visual features of stimuli when they are actively
suppressing irrelevant stimuli. This has been observed over
dorsal areas when the color was cued but over ventral areas when
motion was cued (Snyder and Foxe, 2010). In the present study in
which participants were required to discriminate stimuli defined
by color, the modulation of alpha-band activity could, therefore,
reflect the anticipated need to discriminate based on color.

We speculate that the interaction between alpha-band, HRV,
and time period that was observed in the LME model may reflect
changed influences of workload and/or attention over time. The
increase in alpha-band activity from time period 4 to time period
5 may reflect lapses of attention to the arrow task during the last
time period. This is similar to previous findings from O’Connell
et al. (2009) in which they report increased alpha-band activity
prior to missing a target. As discussed above, the increase in
HRV may reflect the response to workload demands placed on
participants. This increase in workload in addition to reduced
attention may have affected participants’ response times to the
Unreliable Automation Arrows indicating that the automation
was in an unreliable state.

In contrast to previous work, we did not find that eye gaze
measures predicted RT to signals of an unreliable automation
state. Greater concentration of gaze (lower variance) has been
associated with a higher workload (Victor et al., 2005). He et al.
(2011) found that smaller horizontal gaze dispersion was an
indication of mind wandering. As horizontal gaze dispersion
did not contribute to modeling RT in the present study, we
speculate that the billboard task and DEQs forced participants
to maintain awareness of stimuli in the road environment and
thereby remain attentive to the driving task. Further, the problem
of ‘‘looking but not seeing’’ in driving may limit the usefulness
of gaze concentration as a monitor of driver attentional state in
the real world. In a real-world driving environment, operators
may be less likely to detect a signal if they are not familiar with
the automation. Further, in the current study, the reliability cue
was not continuous. Rather, it appeared and remained on for a
discrete amount of time (150ms). This familiarity and the sudden

onset of the cue likely heightened participants’ awareness of
the Unreliable Automation Arrows and could have contributed
to the high discrimination accuracy since participants were
expecting the arrows to appear. In future studies, it would be
useful to examine detection performance when changes were
more gradual in a continuous display.

The present study has several limitations. First, driving in
a simulator differs in a number of ways from on-road driving
and the present design was an automated lane-changing task
which did not require any active driving. Therefore, during the
simulated drive, participants did not need to respond to sudden
events common in everyday driving such as behavior of other
drivers or pedestrians. Participants only needed to complete the
tasks given to them. Further, the arrow task required participants
to frequently monitor the automation display which changed the
role of the driver from being an active participant to being a
monitor of the automation. Monitoring the automation display,
in conjunction with the secondary tasks, may have introduced
additional noise making horizontal gaze dispersion less sensitive
to operator state. We would note, however, that current SAE
2 vehicles do require the driver to monitor the automation
display frequently. A second limitation was the absence of a
measure of workload which makes it difficult to interpret the
slowing of RT over time periods of the simulated drive. Third,
the interruption of driving every 10 min makes the present study
more relevant to city driving than to highway driving. Fourth,
this study used a low-fidelity desk-top driving simulator. In
future work, a high fidelity motion-based simulator with better
automation capabilities allowing for longer automated drives will
be used. Fifth, it could be argued that the high accuracy of target
discrimination is a limitation. However, making the icons harder
to discriminate would not be consistent with real-world driving
demands which requires signals from an automation interface
to be easily discriminable. Moreover, the speed of responding to
those signals is an appropriate measure for driving performance.
Despite these limitations, the present study provides insight into
the feasibility of using portable, low-cost physiological measures
to assess driver state in operational environments, including
automated driving.

In sum, both EEG alpha-band and the interaction of HRV
with alpha-band successfully modeled drivers’ readiness to
respond to signals of automation unreliability. This suggests
that both those measures reflect the ability to attend to
important events during driving. Our results suggest that
cardiac metrics obtained from low-cost wearable sensors can
be further developed for in-vehicle monitoring of driver state.
Such monitoring could be used to tailor alerts or even turn off
the automation (as in certain General Motors models) if the
operator is judged to not be attending sufficiently to the road or
monitoring the automation.
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In the near future, vehicles will gradually gain more autonomous functionalities. Drivers’
activity will be less about driving than about monitoring intelligent systems to which
driving action will be delegated. Road safety, therefore, remains dependent on the
human factor and we should identify the limits beyond which driver’s functional
state (DFS) may no longer be able to ensure safety. Depending on the level of
automation, estimating the DFS may have different targets, e.g., assessing driver’s
situation awareness in lower levels of automation and his ability to respond to emerging
hazard or assessing driver’s ability to monitor the vehicle performing operational
tasks in higher levels of automation. Unfitted DFS (e.g., drowsiness) may impact the
driver ability respond to taking over abilities. This paper reviews the most appropriate
psychophysiological indices in naturalistic driving while considering the DFS through
exogenous sensors, providing the more efficient trade-off between reliability and
intrusiveness. The DFS also originates from kinematic data of the vehicle, thus providing
information that indirectly relates to drivers behavior. The whole data should be
synchronously processed, providing a diagnosis on the DFS, and bringing it to the
attention of the decision maker in real time. Next, making the information available
can be permanent or intermittent (or even undelivered), and may also depend on the
automation level. Such interface can include recommendations for decision support or
simply give neutral instruction. Mapping of relevant psychophysiological and behavioral
indicators for DFS will enable practitioners and researchers provide reliable estimates,
fitted to the level of automation.

Keywords: driver functional state, automated vehicles, monitoring, drowsiness, level of automation, activation
level, vigilance, road safety

INTRODUCTION: THE PROMISE OF AUTOMATED VEHICLES

Road traffic crashes represent a leading cause of death world-wide, more than 1.35 million lives
each year, 48% of them in four-wheeled vehicles in Europe (World Health Organization, Global
Status Report on Road Safety – Summary, 2018, pp. 2 and 6). Driving is a highly complex activity
requiring considerable perceptual, physical, and cognitive demands on the driver (Sawyer et al.,
2012) despite each of us has learned to drive a car. The human nervous system shows limitations
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in controlling much information in parallel and the human driver
is one of main factors in over 90% of the crashes (Sabey and
Staughton, 1975; Treat, 1977; Hendricks et al., 2001; Otte et al.,
2009; Singh, 2015).

With the aim to increase safety, Advanced Driving Assistance
Systems (ADAS) have progressively been integrated into vehicles
and can either worn the driver or actively intervene in the vehicle
operation. Many systems are now likely to assist the drivers
both in usual driving (e.g., cruise control or electronic stability
program) and in critical situations (e.g., antilock braking system,
collision avoidance system). Merat and Lee (2012) considered
that the automation process is now inevitable, and rapidly
evolving vehicle automation will change vehicles more in the
next 5 years than during the preceding fifty, until the driver may
no longer be needed (Ivanco, 2017). To date, Waldrop (2015)
underlined that automation is one of the main topics that could
yield completely driverless cars within the next decade.

Until driverless cars are available, there is an urgent need
to consider the effect of increasingly automated vehicles on
the ability of drivers to operate the vehicle, monitor both
environment and automation, and efficiently take over driving
responsibility. These tasks require allocating mental resources
to help the process of information from multiple cues (e.g., the
environment, in-cabin signals). Ironically, while automation may
free the driver from some of the traditional driving tasks, new
operations are added (monitoring automation, responding to
“take over” requests) and attention (the main focus of the driver
mental resources) is expected to more frequently be directed
to secondary tasks (Jamson et al., 2013; Llaneras et al., 2013).
Thus, it is likely that automation will have mixed effects on
the amount of mental resources drivers are now required to
allocate. Hockey et al. (2003) refer to the general concept of
“operator functional state” dealing with the operator ability to
allocate the required resources to meet the task demands. The
overall load originating from such demands impacts the operator
functional state. Determining the extent by which the driver
functional state (DFS) is suitable for the current driving challenge
is most imperative.

The recording of physiological indices seems appropriate
while considering the level of automation, but also environmental
conditions (e.g., traffic density, type of roadways or weather
conditions), driver characteristics (e.g., driving experience,
automation intrusiveness, and trust in automation). All the
aforementioned categories are likely to influence the DFS. The
importance of selecting the appropriate physiological indices
determines the reliability of assessing the DFS accurately. Future
vehicles will need to incorporate a DFS estimation system that
can potentially support interventions to maintain safety. Some
examples for such interventions include switching to a more
acceptable level of automation, issuing alerts to the driver or
nearby road users, and applying interventions to increase arousal.

The main objective of this article is to review how associating
vehicles automation with drivers functional state assessment
systems. This literature review will be organized along with the
five following research areas: We will first describe how different
levels of vehicle automation should mediate the allocation of
attentional resources to driving. The next section will detail

the available methods of assessing the DFS. The complexity
of assessing the DFS should point out the need to rely on
different methodological solutions that must be integrated into
a unique system. We will then propose a multimodal dataset
acquisition requiring a close collaboration between the fields
of engineering and behavioral neurophysiology thus leading
to the redefinition of usual theoretical models. The whole of
the preceding analysis will also have to take into account the
singular characteristics of the drivers but also the external driving
conditions. We will conclude by highlighting the contributions
of our study to better understanding the relationships between
vehicles automation and drivers functional state. We will also
underline its limitations by acknowledging the path that remains
to be done before we can propose complete autonomous
driving solutions. This will not be done without the close
collaboration between engineering sciences, neurophysiological
and behavioral sciences.

Levels of Automation and Allocation of
Mental Resources
The Society of Automotive Engineers (SAEs) ranges vehicles
automation capabilities from no automation (level 0) to complete
automation (level 5). Level 0 accounts for most vehicles on
the road today, where all driving tasks are manually handled.
In level 1 (driving assistance), the vehicle has a single aspect of
automation that assists the driver. Such automation level control
either steering, speed (e.g., adaptive cruise control), or braking
(e.g., automated emergency braking), but no more than one of
these. In level 2 (partial automation), the vehicle can control both
the steering and acceleration/deceleration, although the driver
must always remain in complete control of the vehicle. This
includes, among others, helping vehicles to stay in lanes and self-
parking features. In level 3 (conditional automation) vehicles can
make decisions for themselves such as overtaking slower moving
vehicles. However, unlike the higher rated autonomous vehicles,
this requires human override when the vehicle is unable to
execute the task, or when the system fails. In this level, the driver
must monitor automation and allocate attention to the driving as
no information is provided about system failure. Level 4 (high
automation) differs from level 3 in the sense that vehicles can
intervene themselves in case of system failure. Thus, level 4
vehicles do not need human intervention in specific situations
and will inform the driver on the need to take over in other
situation as in occurrences of system breakdown or somehow
underperformed or when in unfamiliar conditions (e.g., off-
road driving, extreme weather). In level 5, complete automation
does not require human interaction. Level 5 vehicles provide a
much more responsive and refined service. These include off-
road driving and other terrains that level 4 vehicles may not
necessarily be able to detect or intelligently comprehend. In
sum, the vehicle ability to monitor and “understand” the vehicle
surroundings determines the level of automation. The main leaps
in automation is between levels 2 and 3 in which the vehicle
is already able to take complex tactical maneuvering decisions
(e.g., changing lanes), and between levels 3 and 4 when human
interaction is, in some circumstances, not required.
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Whether one accepts the SAE scale of automation or proposes
a different one, the discussion on the safety benefits of automation
should consider the level of automation. While there is a broad
agreement on the generally positive effect of automation, not all
agree on the magnitude of this effect. As early as, Young and
Stanton (2002) underlined that vehicle automation systems could
reduce the required mental resources for driving and preserve
safety by allowing the drivers to delegate some of their actions
to the driving automation system. Therefore, drivers’ functions
are shifting from operating their vehicles to supervising their
automation (Shen and Neyens, 2017) and would require a lower
level of general activation in the central nervous system and a
more relaxed functional state. It is thus believed that monitoring
a system cost less than operating it. However, no real comparison
of the involvement of mental resources has been provided by the
scientific literature and workload may be higher since the driver
is now responsible for monitoring not only the environment
but also the way in which the vehicle operates. Monitoring a
highly complex system without a situated mental model or the
requisite diagnostic skills may be proven challenging. Caldwell
et al. (1994) defined ‘vigilance’ as the “sustained readiness to
detect and respond to changes in the environment” (p. 14) and
linked it to general arousal. On the one hand, arousal impacts
vigilance in the sense that we cannot be vigilant if we are not
sufficiently aroused. On the other hand, being activated does
not imply that we adequately orient our attention toward useful
indices, while inhibiting competing indices (distractors). People
who actively generate responses in a system have greater situation
awareness than those who passively monitor the same outputs
performed by an automated agent (Metzger and Parasuraman,
2001). Many studies pointed out the risk for disengagement and
distraction from the road scene and the driving task (Lewis
et al., 2018). Increases in automation reduced driver vigilance
as shown by braking reaction time, emergency steering (Saxby
et al., 2013), and in decreased ability to maintain lane position
(Shen and Neyens, 2017). Young and Stanton (2007) also
observed decrements in attentional resources negatively affecting
driving performance. Another aspect of impaired vigilance is
the possible increasing involvement in secondary tasks (Shen
and Neyens, 2017) that would possibly increase the whole
allocation of mental resources but not due to the requirements
of the main task.

The above review suggests that driver capacities as maneuver-
ing, managing secondary tasks, situational awareness, vigilance
in monitoring automation, and responding to take-over requests
at least partly depend on the DFS. We argue that estimating
the DFS (as we subsequently described in section “Estimating
the DFS”) may have different strategies depending on the
level of automation. To develop this argument, we refer to
Figure 1 presenting three radar subplots, each corresponding to
a different level of automation. Each radar subplot specifies a
list of driving capacities (maneuvering, situational awareness. . .).
Black line indicates the level of capacity that is required in
each of the selected driving aspects. The Figure 1 presents
how, with increased automation, maneuvering (i.e., correctly
perform basic driving actions as braking and accelerating) and
situational awareness capacities are becoming less and less

required. The Figure 1 also presents the capacity of the driver
according to his functional state (in blue).

If the DFS allows greater driving capacity (in blue) than what
is required (in black), the probability of a crash remains low.
However, a sudden increase in required capacity will also increase
the risk of a critical situation. As the DFS can change from time
to time, the reader should view the information suggested by
the figure as an example for an arbitrary driver in an arbitrary
time. To demonstrate that the figure presents plausible scenarios,
we added references (indicated by the brackets []) for studies
indicating when DFS (in blue) did not meet the requirements
(in black). But clearly, more research is needed to accurately
detect the relevant driving aspects, and their required capacities
in the various automation levels. The information in Figure 1,
therefore remains a schematic illustration of a possible future.
Merat and Lee (2012) have also pointed out that little research
has considered the consequences of high level of automation
with most focusing on the effects of specific ADAS as lane-
keeping or speed control (adaptive cruise control). This is an
important concern despite some optimistic viewpoints (Merat
and Lee, 2012; Waldrop, 2015), at this stage of autonomous
vehicles development, automated driving is not yet reliable and
safe (Dixit et al., 2016). Thus, research should study different
levels of automation and accurately evaluate the effects of each on
the DFS and consequently on drivers’ performance. For example,
Eriksson and Stanton (2017b) tried to determine the time drivers
needed to take-over control from a highly automated vehicle
when confronted with non-critical driving scenarios.

As described in Figure 2, the ability to take-over is
not required in automation levels 0 and 4 but may prove
critical in levels 2 to 3. Whether the DFS is well-adapted
when the need to take-over occurs is one of the key-points
determining the “DFS/levels of automation” interrelationships.
Several hypothesizes may be stated:

• The driver’s arousal level decreases under the automated mode
as there is no need for him (her) to be aroused at that time.
Taking-over may thus take more time than when the driver
is less aroused and this is generally observed when taking-
over occurs on urgent scenarios which could not be anticipated
(Eriksson and Stanton, 2017a).

• Conversely, monitoring the automated system working may
be demanding and may require an arousal level higher than
at rest. In this case, the relationships between DFS and
levels of automation are rather complex. When drivers were
under reduced time constraint, Eriksson and Stanton (2017a)
observed that taking over did not affect driving performance,
however, with a large standard deviation thus attesting strong
inter-subjects variations in behavior.

ESTIMATING THE DFS

Estimating the DFS can take several approaches: in low
automation levels, the DFS is visible by monitoring kinematic
indices of driving. Such indices are based on vehicle dynamic, e.g.,
the intensity of braking events, driving speed, lane position and
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FIGURE 1 | Illustration of required capacities (black) and available capacities (blue) by level of automation (subplot). Level 5 is not present in the figure since driver
involvement is not required in complete automation.

distance to the lead vehicle. However, with increasing automation
some of these actions are automated and may not reflect the
DFS. Thus, the automated system operates well while the DFS
is with low levels. Another, and perhaps more direct approach to
estimate the DFS aspects is to tap into driver physiological indices
as heart rate (HR), heart rate variability (HRV), skin conductance,
and electroencephalography (EEG).

There is a large body of research that links driving
performance with physiological arousal which clearly influence
sensorimotor performance (Hockey et al., 2003). We cannot
perform well without being aroused enough because the arousal
level (tonic activity of brain structures associated to adequate
muscles activation) determines the choice of useful information,
its processing, and the motor response to be then implemented

(Näätänen, 1973). Thus, functional state belongs to a conceptual
framework including a quantitative dimension, i.e., energetic
level supposing adequate (optimal) level of arousal which, in turn,
influences a qualitative dimension, i.e., the ability to well process
the information (adequate orientation of the attention, selection
of useful cues, potential processing of concurrent information
and inhibition of competing information). Boucsein and Backs
(2009) elaborated an integrated model of arousal with four
different levels, including sensory arousal, affective and memory
arousal and arousal for action preparation. This is directly
inspired from the earlier model by Näätänen (1973) supposing
that performance directly depended upon both energetic and
directional factors. On the basis of previous studies, general
arousal is believed to impact behavioral efficiency since it involves
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FIGURE 2 | Steps from recording the driver’s functional state through body
sensors until informing the emergency services, the driver himself and the
environment. Adapted from Reyes-Muñoz et al. (2016), with permission of the
editorial board of the journal “Sensors.” ECG, electrocardiography; EDA,
electrodermal activity; EEG, electroencephalography; EMG,
electromyography; EOG, electro-oculography.

the ability to mobilize the energy of the organism to face
task requirement. Thus, DFS may be described through tonic
variations of physiological indices, i.e., quantitative dimension
associated with phasic physiological variations of the same
indices, thus attesting information perception and processing (see
Näätänen, 1973 for historical reference and Caldwell et al., 1994,
for defining the activation/vigilance interrelationships).

In this context, we have the potential to assess the cost
of taking-over from a highly automated vehicle (SAE level 3
and 4), the time needed for this and the quality of taking
the vehicle back in hands (Payre et al., 2016; Eriksson and
Stanton, 2017b). Carsten et al. (2012) studied to which extent
driver attention to the road scene was affected by the level of
automation provided to assist or to take over the basic task of
vehicle control. Autonomous vehicles may thus be viewed with
skepticism in their ability to improve safety when automated
driving fails, or is limited, the autonomous mode disengages
and the drivers are expected to resume manual driving (Dixit
et al., 2016). An accurate and comprehensive approach to these
factors is necessary to assess their effects on DFS. Thus, studying
human-automated system interaction should consider the need
to maintain attention during prolonged periods. In this context,
the ability to detect and respond to rare and unpredictable events
is of highly importance (roadway hazards that automation may
be ill equipped to detect, according to Greenlee et al., 2018).
Recording DFS at the same time would allow to verify whether it
is adapted for safely driving (during both continuous monitoring
and periods where taking-over is necessary). Finally, we should
also include environmental factors in our analysis, e.g., the
impact of traffic density and any additional task which could
be performed simultaneously by the driver in highly automated
driving (Zeeb et al., 2016). Here, we see that DFS determination

depends on variable factors that are relatively difficult to identify.
This tends to complicate the linking of the DFS with the level of
automation of the vehicle.

In the following section, we will consider two main challenges:

(i) Which physiological indices are the best candidates to
determine the DFS under naturalistic conditions?

(ii) How integrate redundant information into the
recording system, redundancy ensuring its reliability?

A related requirement would be to eliminate false positives
and negatives. If not, this will reduce driver’s trust in the
system, or worse, drivers will consider the system unreliable.
In this context, neuroergonomics1 can provide heuristic solutions
since physiological indices can give useful information about
DFS while being easily recordable with low intrusiveness. We
could thus restrict the potential candidates to some central
and peripheral indices (Lee et al., 2007; Clarion et al., 2009;
Fernández et al., 2016).

Physiological Indices From the Brain
At the central level, we should only consider ambulatory methods
and not those from functional neuro-imagery (fMRI, MEG).
Several tools with the ability to be used inside the vehicles are now
available, e.g., electroencephalography (EEG – Lin et al., 2014;
Damian et al., 2015) and functional near infra-red spectroscopy
(fNIRS – Liu et al., 2016; Wang et al., 2016). EEG and fNIRS can
provide information about DFS as they directly record intrinsic
signals from the brain. Functional NIRS measures the cerebral
microcirculation in the capillary networks and describes brain
activations during actual driving sessions in real environments
(Liu et al., 2016). Although it is premature to conclude that
fNIRS will soon be integrated into real-time monitoring of DFS,
several studies reported experimental designs both in simulated
and actual driving (Liu et al., 2016; Wang et al., 2016).

Tonic variations of EEG waves are closely correlated to arousal
states and can detect changes in brain activation. This is a
real challenge to record EEG from inside vehicles (Caldero-
Bardaji et al., 2016). Papadelis et al. (2007) requested sleep-
deprived participants to drive in real field driving conditions and
observed increase in brief paroxysmal bursts of alpha activity
prior to severe driving errors. Anticipated EEG alpha bursts thus
correlated with the risk to be involved in car crash. Damian
et al. (2015) used mobile EEG to estimate the mental effort
during a dual-task paradigm with EEG signal sent from wireless
sensors during driving. Lin et al. (2014) assessed changes in
drivers’ arousal, fatigue, and vigilance with reference to variations
in task performance, by evaluating associated EEG changes.
The same team (Lin et al., 2010) developed a brain-computer
interface integrating a dual module for physiological-acquisition
and signal processing. The embedded modules can monitor
DFS in real time and provide biofeedback to the driver as
early as the drowsy state occurs. Wireless sensors associated
with real-time data acquisition/processing, and with a dedicated

1Mehta and Parasuraman (2013) defined neuroergonomics as an emerging science
studying human brain indices in relation to performance in a workplace and
everyday settings.
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algorithm are the main tools of a system monitoring DFS.
One remaining concern is related to sensors themselves as
conventional physiological measurements techniques required to
have the sensors in close contact with the human body. These
could nevertheless interfere with driving operations as body
segments can come into contact with some elements and as these
are very sensitive to noise and artifacts (mainly caused by head
movements). Sun and Yu (2014) described a non-intrusive driver
assistance system which is likely to detect ECG or EEG signals
through clothes or hair without direct skin-contact. Thus, the
last feature of a brain–computer interface would be to remotely
detect the physiological signals with no physical contact with
human skin. The near future will probably see the development
of such systems. We must acknowledge that asking drivers to
affix sensors on their skin could be perceived as constraining,
by the potential inconvenience to driving, by the time spent
placing sensors, the latter may be made more difficult by the
wearing of certain clothes. Considering that drivers would be
required to wear a recording device on the head, which would
be a prohibitive constraint for many people, data from EEG and
fNIRS have low practical properties at that time. However, they
can be supplemented by information from the peripheral nervous
system, in particular the autonomic and motor nervous systems.

Peripheral Physiological Related to
Driving Performance
Several indices from the autonomic nervous system (ANS) are
sensitive to time-dependent variations in arousal level and to
external stimuli (Clarion et al., 2009; Brookhuis and de Waard,
2010; Johnson et al., 2011; Rigas et al., 2011). As the systems
recording ANS activity are ambulatory and weakly intrusive,
these are good candidate for DFS assessment (Rada et al., 1995;
Axisa et al., 2004; Ramon et al., 2008). HR and electrodermal
activity (EDA, skin conductance) increase with each incremental
increase in cognitive demand (Mehler et al., 2012) and are closely
related to functional state (Hugdahl, 1996). Among others, Porges
(1995) and Hugdahl (1996) early promoted the role of the ANS
in cognition. Porges (1995, for a review) underlined the role of
the parasympathetic branch and particularly the vagus nerve on
attentional processes. Several indices from the peripheral motor
system respect the aforementioned criteria and may be pooled
into three main categories (i) indices from electromyography
(EMG) monitoring, with a special focus on muscles from the
neck and the back of the driver, (ii) indices from the oculomotor
system aimed at giving information on palpebral, dilation of
pupils and eye-gaze related features, and (iii) indices from facial
mimics through emotional face recognition.

Heart rate is a very easily recordable variable even without
bodily placed sensors. Lee et al. (2007) elaborated a non-intrusive
measurement of HR by integrating dry sensors into the steering
wheel with a wireless design for data transmission (the safety
belt can also provide a naturalistic way for recording HR).
No differences from usual HR recordings were found with
the design the authors conceived thus attesting its reliability.
Beside the basal values, HRV has close links with fatigue and
drowsiness detection (Li and Chung, 2013). Yu-Lung et al. (2016)

recorded ECG from wireless thoracic sensors and process the
cardiac signal using HRV. Several parameters (e.g., low-frequency
power spectrum over high-frequency power spectrum or LF/HF
ratio) were closely correlated to several changes in drivers’
behavior, particularly with the frequency of yawning episodes.
By comparison with rest state or high level of arousal, HRV
presents specific alterations during drowsiness episodes (Vicente
et al., 2016). The authors claimed that incorporating drowsiness
assessment on the basis on HRV signal may improve the existing
car safety systems.

Electrodermal activity is closely related with arousal as it is
directly under the control of the sympathetic endings innervating
sweat glands without any influence of the parasympathetic
branch, thus derogating from the well-described principle of
double innervation (Collet et al., 2013). Importantly, EDA is a
witness of sympathetic functioning alone. By confronted drivers
to an unexpected critical crash avoidance situation, Collet et al.
(2005) showed that EDA was a predictive index of drivers’
performance. The recording of EDA basal level along the whole
session evidenced that drivers who avoided the obstacle pulled
onto their traffic lane where those who exhibited the highest
EDA basal values (about 30% above the reference EDA at rest).
Conversely, the drivers who failed to avoid the obstacle showed
a lower EDA level, at about 20% above the reference level at rest.
Thus, drivers who performed well exhibited higher arousal and
were more likely to perform adequately. More generally, when
considering routine driving situations, there is a close positive
relationships between EDA and cognitive demands (Mehler et al.,
2012). Other indices can originate from basal EDA signal, e.g., the
frequency of electrodermal responses was positively associated
with decreased vigilance (Dementienko et al., 2001). When the
drivers exhibited obvious signs of low vigilance, electrodermal
response frequency decreased in parallel. We should nevertheless
indicate that Dorrian et al. (2008) failed to evidence a relationship
between EDA and participants state who were imposed one night
of sustained wakefulness. While they rated increased levels of
sleepiness and fatigue through paper and pencils tests, EDA
did not present any difference between the reference period
and the induced sleepiness and fatigue state. EDA usually
range from 1.5 to 70 µSiemens and data processing should be
done with caution due to the high differences among people.
Preventing metrologic errors due to individual differences may
easily be overcome by normalizing data. Another way to increase
reliability is to simultaneously record other physiological indices.
This is usually done when experiments are designed to study
complex human brain functions, such as DFS. There are thus
many contributions presenting a data set of physiological indices
(Rada et al., 1995; Ramon et al., 2008; Clarion et al., 2009;
Lanatà et al., 2015; Taamneh et al., 2017). Lanatà et al. (2015)
evaluated DFS by analyzing ANS changes through HR, EDA,
and respiratory frequency along with performance indices of
steering wheel angle corrections and response time. This study
was performed under simulated driving conditions, but Healey
and Picard (2005) already provided evidence of physiological
recordings under actual driving conditions. They reported that
EDA and HR were the most closely correlated with driver
strain. Physiological monitoring could thus provide a continuous
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assessment of how different driving contexts but also driver
emotional states affect DFS. These studies clearly show the ability
of peripheral physiological variables to closely correlate with the
DFS. They can be supplemented by behavioral variables.

Behavioral Indices Related to
Driving Performance
Reyes-Muñoz et al. (2016) identified five behavioral indices that
are close correlated to drowsiness, i.e., frequent yawning, frequent
eye-blinking, pupil movement (gaze), head movement and facial
expression. Fernández et al. (2016) also provided a thorough
review focused on the role of computer vision technology applied
to the development of monitoring systems. They considered that
seven factors could evaluate the DFS with highly acceptance:
reliability, real-time performance, low cost, small size, low power
consumption, flexibility, and short time-to-market.

Yu-Lung et al. (2016) elaborated an intelligent driver
assistance system including a camera in front of the driver for
facial monitoring. Frequency of yawning was one of the main
index predicting the occurrence of drowsiness (see also Sigari
et al., 2014). Fernández et al. (2016) considered that the eyes
are the most remarkable information sources in face analysis
as they reflect affective states and focus of attention. There are
nevertheless several methodological obstacles to overcome before
providing a reliable set of information from the visual system
(e.g., keeping the camera closely orienting on the eyes despite
head movements). Song et al. (2013) described the main factors
challenging accurate eyes localization, due to variations in facial
expressions, variations of gaze direction, head/eyes movement
coordination and surrounding lighting. The measures may be
hindered by the wearing of glasses especially sunglasses and
makeup (Fernández et al., 2016). Eye-blink and eyelid closure
are of interest in detecting early signs of drowsiness, as these
may be captured by a set of cameras placed on the dashboard
(Hu and Zheng, 2009) and blinking has been reported to change
during cognitive distraction phases (Fernández et al., 2016).
Data acquisition and processing are provided by the seeing
machines which “continuously measure operator eye and eyelid
behavior to determine the onset of fatigue and micro sleeps
and deliver real-time detection and alerts” (Fernández et al.,
2016, p. 25 of 44).

Recordings of EMG activity have a high potential to bring
information about the DFS. The alteration of muscles function
may be associated with impairment in driving abilities and
fatigue. Surprisingly, there are little scientific contributions from
this field. Fu and Wang (2014) showed that the peak factor
and the maximum of the cross-relation curve, two indices from
surface EMG of the biceps femoris, were related to drivers’
fatigue. EMG recorded from the neck and the back muscles
are likely to provide information about sleepiness and driver
fatigue. However, muscles activity is difficult to capture given
the driver’s sitting position, with the risk of sensors contact
with the seat or headrest, thus affecting data reliability. Finally,
head movements recordings by embedded cameras can provide
similar information to that provided by EMG. Methodological
difficulties may explain the weak number of works involving

EMG in actual driving. Despite behavioral indices of drowsiness
occurrence are promising methods, Sahayadhas et al. (2012)
underlined that the reliability and accuracy of driver drowsiness
detection by a set of physiological indices is higher than that
coming from other methods such as vehicle-based measures and
behavioral measures.

AN OBVIOUS REQUIREMENT: A
MULTIMODAL DATASET ACQUISITION

Beside the methods used in laboratories, the challenge is
to propose pragmatic, integrated systems, including a set of
behavioral and physiological indices, simultaneously recorded
in real time, both from the driver and the environment.
This involves selecting indicators for their reliability and
complementarity. Maglione et al. (2014) simultaneously recorded
high resolution EEG data associated with heart and eye blinks
rates. Then, fusion of data provided a robust method in
studying complex human activities, involving several functions
(Noori and Mikaeili, 2016). Rigas et al. (2011, 2012) described
a set of physiological signals (ECG, EDA, and respiration)
associated with driving history from the GPS and the vehicle’s
controller area network-bus (CAN) data. They incorporated
these data into a Bayesian network (BN) and estimated that
the system could detect stressful events with an accuracy of
82%. The development of an intelligent algorithm capable of
recognizing the drivers’ affective state was proposed by Singh
et al. (2013). It was based on several physiological indices
including EDA and blood flow through photo-plethysmography
during on-road driving. Their neural networks are believed to
predict DFS with a nearly 90% average precision. According
to Reyes-Muñoz et al. (2016), recording physiological variables
for DFS assessment could allow rescuers to make a faster and
more accurate diagnosis in case of an accident, if the data is
transmitted to the rescue services (Figure 2 summarizes the
successive steps from data acquisition/processing until provided
feedback to the driver and eventually to the road control or
emergency services).

DRIVERS’ INDIVIDUAL FEATURES AND
EXTERNAL CONDITIONS

In addition to the variables used to evaluate the DFS, we
must take into account two intrinsic factors, the individual
characteristics of the drivers and the external driving conditions.
One of the main concerns in providing feedback to the drivers
is their high behavioral variability. There is thus considerable
dispersion around the median behavior depending upon driver’s
characteristics in age, gender, driving experience and perhaps
more importantly their psychological particularities or specific
individual traits. Ranney (1994) underlined that the inherent
variability of human behavior may be responsible of errors
associated with an important rate of roadway crash causation.
By comparison, systematic errors attributable to the well-
known limits of the human information-processing system seems
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rarer. In fact, all driving activities are believed to associate
fast sensorimotor and automatic components with slower and
more deliberate controlled cognitive processes. This refers to
intra-individual behavioral variations as a function of time
(according to specific individual differences, mental state and
environmental context). Determining the boundaries around
which the automated system could provide useful information
to the drivers, i.e., with a high probability to take it into
account for its meaning, is a key-component to be resolved in
the next future. Little is known about how personality traits
lead people to consider or ignore a given information. If the
personality traits are stable features, and can be taken into
account, the emotional states are more transient and therefore
more difficult to detect. Yet, we know that they influence driving
(Chan and Singhal, 2013) with a high probability of diverting
the driver from the road scene. Another important concern
is about how old drivers perceived the integration of more
and more automated devices into their vehicles. First, Molnar
and Eby (2017) question their motivation for technology use
and assigned meanings. Second, they wonder whether the in-
vehicle monitoring technology will be used and how transfer of
control between automated and manual driving would occur in
the elderly population. The role of trust in automation and its
interaction with practice of partially or fully automated vehicles
is also a key-variable. Payre et al. (2016) observed that drivers
who had high trust in the automated vehicle exhibited longer
reaction time when they were required to take-over by manual
control recovery. Thus, over-trust may have deleterious effect
on performance, a well-known effect of what high-technology is
believed to bring (Collet et al., 2005). Overconfidence in vehicle
equipment made drivers less efficient and this correlated well
with a weak arousal level. This is well summarized by Endsley
(2017): “more autonomy is added to a system and its reliability
and robustness increase, the lower the situation awareness of the
driver and the less likely that he will be able to take over manual
control if needed.”

These examples clearly advocate for education in the use of
automated systems. Strauch (2017) deplores that drivers have not
gained enough expertise needed to effectively operate automated
systems. Instead, they are forced to obtain the expertise ad hoc
during system operations. We nevertheless suppose that the in-
vehicle intelligent devices should identify the driver (through
face identification), retrieve his previously stored profile from its
data to then intelligently prescribe specific accident prevention
tools and driving environment customizations, as proposed by
Sawyer et al. (2012). At least, we should be informed and
trained about how the automated device works so that we
can improve take over whenever necessary. We should also
change our representation about automated systems, as suggested
by Figure 3 where the interactions with them can include
three modes:

• The first is the adequacy when the driver understands some
features of the system and uses them (in green).

• The second corresponds to the disjunction between the partial
knowledge of system functionalities by the driver and the
representation that s/he has some. In fact, the user does not

FIGURE 3 | Real assistance capacity of an automated system based on the
knowledge of the user.

know some features of the automated system and thus can
obviously not use them (in yellow).

• The third is false representations as the user wrongly thinks
that the automated system can fill certain functions while it
cannot (in blue).

Reducing the discrepancy between drivers’ representation of
the system functioning and its actual abilities and functionalities
(e.g., levels of automation) would probably imply to redefine the
procedures of learning to drive.

CONCEPTUAL CHANGES FOR
CURRENT MODELS OF DRIVING
PERFORMANCE AND LEARNING

Over the years, human factors research proposed several models
for driver performance (Shinar, 1978; Michon, 1985; Endsley,
1995; Fuller, 2005; Wickens et al., 2015). These regard the
driver as an information processing unit. Such information and
attention models describe how the driver obtains data using
his/her sensorial systems (vision, audition, etc.), process them
to gain significant insights, apply a decision-making mechanism
(e.g., slow down), adapt the decision to the actual context
(e.g., adjust the braking intensity) and execute the decision
with success determined by his/her abilities. According to these
models, the driver limited capacity to collect and process
the information from the environment explains driver error
and misjudgment.

Here, we examine a model that was developed almost 40
years ago by Shinar (1978). We show how, in some ways, this
model is still useful, and how it should be updated to incorporate
new abilities to monitor the DFS. We explain how such updates
may have potential safety benefits. In Figure 4A, the black lines
depict the original connections in the model by Shinar (1978).
The red dashed lines depict original connections that now serve
to transfer information and driving decisions about the DFS
as well as information and driving decisions that stem from
knowledge about the environment. The red lines did not appear
in the original model and represent new contributions. The
original model (black lines) describes how the driver sensory
system receives various cues, the information is then processed
according to the driver perceptual and attentional capabilities
to facilitate decision making and response. These cues do not
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FIGURE 4 | (A) A limited-capacity model of driver information processing (adapted from Shinar, 1978) with added paths for DFS. Reproduction with permission of
the author. (B) A hybrid limited-capacity model of driver information processing paths for DFS (adapted from Shinar, 1978 and Sanders et al., 1990). Here, we
integrate all the factors that are supposed to make the DFS varying. The operations of information processing (perception, attention, memory access, decision
making, and motor adjustments) require the mobilization of mental resources (attentional effort) and, thus change the DFS so that the driver is able to drive efficiently
and safely. The DFS can be evaluated by a set of physiological and behavioral indices, and adjust as a function of the level of vehicle automation.

include DFS information. Next, the driver response impacts the
vehicle dynamics. It is interesting that so long-ago, Shinar (1978)
included a path for an autonomous system that can (1) display
feedback to the driver (e.g., as done by level 0 systems as collision
warning systems and navigation systems), and (2) control vehicle
dynamics (e.g., as done by level 1 systems as adaptive cruise
control and automatic emergency braking system). Despite the
time passed since this model formulation, similar modes still

guide research teams in international meetings (Keith et al.,
2005). The red lines represent the transfer of physiological cues
related to the DFS. Determining the DFS can be based on
ECG (HRV), EDA, and EEG. The driver himself may be aware
of his physical and mental states through sensory feedbacks
(e.g., fatigue, or other temporal impairments), and can decide to
take measures to adjust (e.g., stop for a rest) or, in the near future,
to engage an automated driving mode.
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However, with the advances of physiological monitoring
technology, these data can be picked up by electronic sensors
(e.g., sit sensors or wearables). In automation level 0, the system
can display this information back to the driver (e.g., a coffee
icon can suggest that s/he should rest, other displays can warn
about increase in mental effort, decrease in general activation or
any other physiological condition). In levels 1–3, an automatic
action can take two directions: the first is to increase driver
perceptual and attentional capabilities. Numerous interventions
can be suggested here. When mental workload is high, such
intervention can lower the volume of the music, adjust air
condition, shut off infotainment and message. In very low mental
workload, the automated system can propose Trivia Games and
even increase the volume of the music. On the second path, the
autonomous system can control the vehicle dynamics to reduce
demands from the environment. An interesting study by Hajek
et al. (2013) investigated the safety benefit and acceptance of an
adaptive cruise control that selected the optimal safe distance
to the lead vehicle according to the DFS (estimated by the
driver physiological indices). Another example is the ability to
use physiological indices to predict intentions for emergency
braking (Kim et al., 2015), such an ability may be use either
to trigger the automatic emergency braking system (level 1) or
to release a distress signal to the autonomous system (level 5)
which can learn to avoid such stressful conditions for its driver
(supervisor) in the future. In sections two and four, we mapped
several physiological and behavioral indices that can be used to
estimate these closely related aspects of driving. In Figure 4B, we
offer that physiological indices for activation and vigilance also
have a link for the automated sensors.

CONCLUSION

Research into the effects of automation on DFS is expending
due to understanding that in the near future, the human
factor will remain an important component in driving and in
monitoring automation. This manuscript points on: (1) The need
of accurately assessing DFS, (2) Estimating the DFS may have
different strategies given the level of automation, (3) Estimating
the DFS can infer on interventions that are also related to
automation (e.g., switching between levels of automation). Based
on these understandings (points 1–3), we reviewed methods for
estimating the DFS and described the potential characteristics of

an in-vehicle system. With regard to the first point, commuting
executive functions usually performed by the driver to ADAS is
likely to make her/him less concentrated on driving. The driver
can monitor the system working or be engaged in other tasks
with a connection with driving (supervising the route plans
through the GPS) or not (reading or phoning or discussing
with other passengers). Depending on these different activities,
DFS may stay at a level comparable to that required for driving
(parallel activity with the same demand as driving) or can change
drastically and reach a level incompatible with driving (decrease
in arousal level). This seems of particular importance in case
of sudden need of taking-over. With regard to point 2, the
extent by which driver’s DFS remains at an adequate level is
still pending and depends on different but interrelated factors
(level of automation, driving conditions, driver’s personality).
With reference to point 3, an acceptable alternative would be to
propose an intelligent system where we would choose the level of
automation according to the objective of our trip (professional
or leisure trip) of our state of fatigue (strong delegation or
conservation of driving control) or conditions of external driving
(traffic density, weather conditions). For example, traffic density
has been shown as influencing the way in which the take-over is
performed, with higher time to proceed and less accuracy when
traffic is dense (Gold et al., 2016).

An integrated system capable of monitoring DFS in real time,
should be based on several physiological indices recorded inside
the vehicle. This would probably be the best way to ensure
safety provided that it is built on sufficiently powerful algorithms
capable of including all the driving scenarios that can potentially
occur, thus depending on the external conditions (where driving
takes place with traffic and weather conditions). It should also
be able to provide useful feedback, from simple information
about his functional state to even delivering graduated alerts,
depending on their severity and urgency. Finally, we contributed
to show how monitoring DFS can serve to update existing
driving performance models to provide feedback to drivers and
to automatically adjust autonomous behavior.
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