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The Editorial on the Research Topic

Bridging Gaps Between Sex and Gender in Neurosciences

Individual differences are shaped by a myriad of interrelated factors depending on how the nervous
system develops, adapts, reacts to, and interacts with the world outer settings. Sex-related variables
represent a set of sexually-defining biological characteristics including chromosomes, patterns of
gene expression, hormone levels, and reproductive/sexual anatomy. These variables have been
extensively linked to the development and functioning of the nervous system (Pletzer, 2015; Prager,
2017). The sex of an organism has been associated with a plethora of well-established (Jonasson,
2005; Mogil, 2012; Stevens and Hamann, 2012; Yagi and Galea, 2019) and controversial (Eliot,
2011) nervous system differences. However, sex-related biological variables rarely fully explain
nervous system differences between male and female individuals (Eliot and Richardson, 2016),
particularly in humans (Pavlova, 2017a; Rippon et al., 2017). In concert with biological differences,
women and men differ in their experiences of the social world. Gender-related variables, including
gendered behaviors, relations, expectations, beliefs, and attitudes that are experienced throughout
the lifespan, have also been associated with differences in brain function and behavior across
individuals (Einstein, 2007; Rippon et al., 2014; Jordan-Young et al., 2019). Sex- and gender-related
variables dynamically influence our biology and the environment such that these variables are
continuously shaping and being shaped in a reciprocal relationship with the world. As scientific and
clinical communities recognize the need for neuroscientific inquiry that interrogates the combined
contributions of sex- and gender-related variables, the call to action multiplies (Kimerling et al.,
2018; Nebel et al., 2018; Grissom and Reyes, 2019; Tannenbaum et al., 2019). This special topics
issue of Frontiers assembles a collection of research, reviews and commentaries that propose new
approaches to the integration of sex- and gender-related variables in neuroscience.

The constructs of sex and gender as defined in this text are often not dissociable in the
literature, especially when individuals are categorized as women or men. Categorizing individuals
as “women and men” or “male and female” challenges our capacity to interrogate the relative

5

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00561
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00561&domain=pdf&date_stamp=2020-06-11
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:annie.duchesne@unbc.ca
https://doi.org/10.3389/fnins.2020.00561
https://www.frontiersin.org/articles/10.3389/fnins.2020.00561/full
http://loop.frontiersin.org/people/187460/overview
http://loop.frontiersin.org/people/104177/overview
http://loop.frontiersin.org/people/8175/overview
http://loop.frontiersin.org/people/4174/overview
http://loop.frontiersin.org/people/491576/overview
https://www.frontiersin.org/research-topics/7148/bridging-gaps-between-sex-and-gender-in-neurosciences


Duchesne et al. Gender and Sex in Neurosciences

contributions of gender-related factors to understanding
individual differences. That said, even when using the broad
category of “women and men,” novel analytical approaches
can improve our characterization of where and when sex-
and gender-related differences occur. Four articles within
this Issue reveal how the binary category, “women and men,”
continues to moderate brain and psychological processes. Luo
et al. demonstrate that multivariate classification approaches
with high-dimensional data (e.g., tens of thousands of features
per subject/observation) from cortical brain morphology can
categorize adult individuals as women or men, replicating
previous findings conducted with high-dimensional, large
sample size, and multivariate approaches (Chekroud et al.,
2016; Rosenblatt, 2016; Anderson et al., 2019). In another
study, Stam et al. demonstrate opposing associations between
personality traits and gray matter brain volume in individuals
grouped as women or men. Two articles provide novel insights
into the relevance of the “women and men” as categories for
understanding psychological processes. In a study exploring how
individuals infer social signals from bodies and eyes of others,
Isernia et al. report that categorizing participants as “women
and men” reveals that individuals within each group may
use different sources of information and perceptual strategies
to achieve similar level of performance accuracy in social
cognition tasks. Perchtold et al. first demonstrate that individuals
categorized as women or men are equally able to generate
cognitive reappraisals for anxiety-inducing situations, but that
reappraisal ability is only predictive of reduced depressive
symptoms in those categorized as men. These studies expand the
knowledge foundation upon which elements of sex and gender
can be further interrogated.

Improving our neuroscientific understanding of sex and
gender can be achieved through direct pharmacological
and physiological manipulation. For instance, Derntl et al.
demonstrate that the dissociative experience (e.g., following the
administration of a subclinical dose of ketamine) differs between
individuals categorized as women or men. Similarly, Wang
et al. show that the effects of mPFC transcranial direct current
stimulation (tDCS) on implicit gender stereotype bias differs
between individuals categorized as women or men. Addressing
the larger issue of how the “women andmen” category moderates
the effects of pharmacological and physiological manipulations
enhances the ability to make nuanced behavioral predictions and
provides critical information for future clinical trial design.

Three studies in this Issue investigate the unique and relative
contributions of both sex- and gender-related variables to brain
and psychological processes. Hornung et al. preliminary findings
demonstrate that the recruitment of brain regions during
the processing of gendered self attributes varies according to
circulating levels of sex hormones in individuals categorized as
women or men. Plezter et al. re-examine the previously-reported
finding that the “women andmen” category is a reliable predictor
of spatial ability and reveal that this association disappears
when accounting for the interactive effects of circulating
levels of gonadal hormones and self-reported endorsement
of stereotypical attitudes and activities. Adopting a similar
analytical approach in another study, Plezter interrogates the

interaction between gonadal hormones and gendered attitudes
and activities in predicting grey matter volume (Pletzer). These
studies highlight how important it is to go beyond “women and
men” as categories within the realm of neuroscientific inquiry, as
they may be obscuring relationships that can be better explained
through more nuanced biosocial interactionist approaches.

The prevalence of a number of clinical conditions differs
as a function of the “women and men” categories. While
an increasing number of theoretical models explore these
differences by integrating dimensions of sex- and gender-related
variables (Lai et al., 2015; Becker et al., 2017; Nebel et al.,
2018), most studies tend to restrict causal explanations to
either sex- or gender- related variables (Li and Graham, 2017;
Hillerer et al., 2019; Slavich and Sacher, 2019). Thus, looking at
interaction between sex- and gender-related variables in clinical
conditions may have theoretical and therapeutic benefits. In a
critical review of the literature on fibromyalgia, Meester et al.
propose a model integrating sex- and gender-related variables.
Investigating physiological correlates of consciousness in patients
with traumatic brain injury, Zhong et al. demonstrate that high
circulating levels of testosterone within a week following the
trauma predicted regaining of consciousness only in individuals
identified as men. Recognizing and integrating sex- and gender-
related variables is central for furthering our understanding of
the brain and moving toward the development of personalized
precision medicine.

Measurements, tasks, tests, and experimental manipulations
are developed and validated under a number of assumptions that
often do not account for the possible roles of sex- and gender-
related variables. Re-examining and validating methodologies
across sexes and genders is a crucial step; when validation has not
been conducted with sex- and gender-related differences inmind,
discriminating between true differences and methodological
artifacts is simply impossible (McCarthy et al., 2017; Rich-
Edwards et al., 2018). For instance, in a critical review of
individual differences in placebo/nocebo effects, Enck and
Klosterhalfen report that differences observed between women
and men are more commonly reported in experimental studies
than in randomized clinical trials, suggesting that methodological
bias may contribute to apparent systemic group-level differences.
Building on past stress paradigms, Tops et al. developed and
validated a new neuroimaging virtual social rejection stress
paradigm reproducing peer exclusion commonly experienced
on social media platforms and allowing for a more specific
investigation of possible sex- and gender-related differences in
the neurophysiological processes of peer social rejection. Finally,
Jones et al. reveal independent contributions of combined
estradiol and testosterone to sexual behavior in female rats,
demonstrating the empirical value of examining the role of
multiple sex steroid hormones within all individuals. Revisiting
and developing new methodologies that account for the possible
contributions of sex- and gender-related variables is essential to
provide a valid foundation of neuroscientific inquiry.

Ultimately, the research on sex and gender in neuroscience
is constrained by issues with operationalizing definitions of
sex and gender. Two articles in this Research Topic reconsider
the stability of sex and gender as separate, uniform constructs,
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and how sex and gender relate to one another in the pursuit of
understanding individual rather than category-based differences
in neuroscience. Holmes and Monks argue that the very
categories of sex and gender are problematic in attempting
to bridge these constructs with neuroscientific questions.
Similarly, Cortes et al. propose that, rather than treating sex
and gender as discrete boxes, researchers should focus on
understanding an individual’s experiences of sex and gender as
products of interactive, dynamic and multifaceted epigenetic
processes. By focusing on individual-level variables rather
than broad categories, these new conceptual frameworks
facilitate the understanding of individual differences in
neuroscientific processes.

Challenges remain for the bridging of sex and gender
dimensions in neuroscience, and, in particular, in our
understanding of the social brain (e.g., Pavlova, 2017a,b);
some of these are apparent from the studies in this Issue. For
example, the varied terminology employed in describing the
often category-based sex- and gender-related differences across
the different papers within this special issue highlights the
need for researchers and clinicians to more consistently and
explicitly operationalize their usage of these terms (Clayton
and Tannenbaum, 2016). As well, most of the work this
Issue operationalizes “women and men” as binary categories
(Hyde et al., 2019), which is understandable considering how
individuals are often categorized in research, but may in fact

be of questionable validity considering our current state of
understanding the multi-dimensional nature of sex- and gender-
related variables (Johnson et al., 2009). Ultimately, the field will
benefit most from going beyond the dichotomous categories
of sex and gender and embracing interactionist models, as
underscored by some of the papers in this special issue on Sex
and Gender in Neuroscience.
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Difference exists widely in cognition, behavior and psychopathology between males

and females, while the underlying neurobiology is still unclear. As brain structure is the

fundament of its function, getting insight into structural brain may help us to better

understand the functional mechanism of gender difference. Previous structural studies

of gender difference in Magnetic Resonance Imaging (MRI) usually focused on gray

matter (GM) concentration and structural connectivity (SC), leaving cortical morphology

not characterized properly. In this study a large dataset is used to explore whether cortical

three-dimensional (3-D) morphology can offer enough discriminative morphological

features to effectively identify gender. Data of all available healthy controls (N = 1113)

from the Human Connectome Project (HCP) were utilized. We suggested a multivariate

pattern analysis method called Hierarchical Sparse Representation Classifier (HSRC) and

got an accuracy of 96.77% for gender identification. Permutation tests were used to

testify the reliability of gender discrimination (p < 0.001). Cortical 3-D morphological

features within the frontal lobe were found the most important contributors to gender

difference of human brain morphology. Moreover, we investigated gender discriminative

ability of cortical 3-D morphology in predefined Anatomical Automatic Labeling (AAL)

and Resting-State Networks (RSN) templates, and found the superior frontal gyrus the

most discriminative in AAL and the default mode network the most discriminative in RSN.

Gender difference of surface-based morphology was also discussed. The frontal lobe, as

well as the default mode network, was widely reported of gender difference in previous

structural and functional MRI studies, which suggested that morphology indeed affect

human brain function. Our study indicates that gender can be identified on individual level

by using cortical 3-D morphology and offers a new approach for structural MRI research,

as well as highlights the importance of gender balance in brain imaging studies.

Keywords: cortical three-dimensional morphology, gender difference, hierarchical sparse representation

classifier, Magnetic Resonance Imaging, multivariate pattern analysis

1. INTRODUCTION

Gender difference has been widely reported in psychiatric and neurological diseases (Piccinelli and
Wilkinson, 2000; Baron-Cohen et al., 2005; Shulman, 2007; Eranti et al., 2013; Lai et al., 2015),
cognitive functions (Ren et al., 2009; Ohla and Lundstr, 2013; Yin et al., 2017; Chen et al., 2018)
and behaviors (Christov-Moore et al., 2014), while its neurobiological mechanism is unclear yet
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(Giudice, 2009). As neural function has its structural basis,
studying brain neuroanatomy may provide us new insights and
understandings of gender difference.

Previous reports tend to explain gender difference in the view
of GM concentration, SC and Functional Connectivity (FC).
Wang et al. (2012) applied multivariate pattern analysis on GM
concentration and resting state fMRI from healthy young adults
and got an accuracy of 89%, and they found the occipital lobe
and the cerebellum the most discriminative regions of gender
difference; Yuan et al. (2018a) proposed a three-dimensional
weighted histogram of gradient orientation to describe the
complex spatial structure of human brain image, and they got
an over 90% accuracy of gender classification on 527 healthy
adults from four research sites; Ruigrok et al. (2014) reported
gender difference in the amygdala, hippocampus, and insula after
meta-analysis in human brain structure; Goldstein et al. (2001)
found females had higher percentage of GM than males, while
Gur et al. (1999) got a converse result in white matter; Feis et al.
(2013) used multimodal gender classification of T1-weighted,
T2-weighted and fractional anisotropy images and indicated the
frontal lobe the most discriminative lobe. Gong et al. (2009)
found greater overall cortical connectivity and more efficient
cortical network organizations in women; Ingalhalikar et al.
(2013) reported that males had stronger intra-hemispheric SC
while females had stronger inter-hemispheric SC using diffusion
tensor imaging. Zhang et al. (2018) used 4 fMRI runs of 820
healthy controls from the HCP and got the accuracy of 87%
using FC features for gender prediction, and they suggested
that FC within the default, fronto-parietal and sensorimotor
networks had the greatest gender prediction abilities while the
right fusiform gyrus and the right ventromedial prefrontal cortex
contributed the most in the default mode network.

Recently, gender difference in surface-based morphology
such as cortical thickness, surface area, cortical curvature and
cortical volume has attracted much attention. Im et al. (2006)
indicated that women showed more significant localized cortical
thickening in the frontal, parietal and occipital lobes, which
were also reported of significant gender-related difference by Lv
et al. (2010) using graph theoretical approaches; Sowell et al.
(2007) found women had thicker cortices in posterior temporal
and right inferior parietal regions, while men showed larger
brain in all locations, especially in the frontal and occipital
poles of both hemispheres; Sepehrband et al. (2018) developed
a multivariate statistical learning model to predict gender from
regional neuroanatomical features on different brain atlases,
and they got an 83% cross-validated prediction accuracy and
found the middle occipital lobes and the angular gyri the major
predictors of gender.

Despite studies of gender difference in surface-based
morphology, few paid attention to the original cortical 3-D
morphology, which is defined as the voxel-based morphology
of the cerebral cortex without gray matter concentration
in the standard MNI space. Clearly the original cortical
3-D morphology contains more abundant and complete
morphological information, andmost surface-based morphology
such as cortical thickness and curvature are measured on the
cortical 3-D morphology (cortical volume and surface area are

measured in the subject’s undistorted native volume space).
Moreover, most previous morphology studies focused on finding
gender difference using statistical analysis while few of them
have effectively discriminated males from females with high
classification accuracy using those morphological features to
support their conclusions.

In this study, we aimed to find gender difference of cortical
3-D morphology and focused on two questions: (a) Can gender
be discriminated with a high accuracy using cortical 3-D
morphology? (b) What is the most discriminative region of
gender in cortical 3-D morphology?

2. MATERIALS AND METHODS

2.1. Data Acquisition and Preprocessing
Structural MRI was acquired from the HCP S1200 release, and
details about the HCP can be seen in Essen et al. (2012).
Subjects were scanned on a customized 3T Siemens scanner
(Connectome Skyra) with a standard 32-channel head coil and
a body transmission coil and scan parameters were as follows:
TR = 2400 ms, TE = 2.14 ms, Voxel Size = 0.7 mm isotropic.
All 1113 available subjects (age: 22–37 years, gender: 507
males and 606 females) were selected for our gender difference
study.

Data were initially preprocessed by the HCP structural
pipelines in this study, and a highlight of the HCP pipelines is
that it uses T2-weighted structural images for registration so
as to get more precise registration and segmentation results.
The main preprocessing steps include gradient distortion
correction, brain extracting, readout distortion correction,
boundarybased cross-modal registration, bias field correction,
recon-all pipeline in FreeSurfer, and native to MNI nonlinear
volume transformation, and detailed preprocessing steps
can be seen in Glasser et al. (2013). One of the outputs, the
wmparc, is an accurate subject-specific human brain mask
of the gray matter and white matter in the MNI space. In
the file “MNINonLinear/wmparc.nii” of each subject of the
HCP, the scattered integers between 251 and 2035 stand
for different subregions of the cerebral cortex, and when
they were defined as 1 and others as 0, the original 3-D
morphology of the cerebral cortex were obtained (Figure 1A).
We also attempted to analyse the discriminative abilities of
both anatomical and functional subregions, so atlas-based
morphology analysis (Meyer et al., 2017) was conducted with
two predefined atlas: the AAL template (Tzourio-Mazoyer et al.,
2002) was used as structural atlas and the 7 RSN template
(Thomas Yeo et al., 2011) was used as functional atlas (https://
surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_
Yeo2011, “Yeo2011_7Networks_MNI152_FreeSurfer-
Conformed1mm_LiberalMask.nii,” downsampled to 1.4 mm
isotropic). All the MRI files and templates were in the standard
MNI space for comparisons across subjects.

As surface-based morphology was discussed in this study,
we obtained 4 surface-based morphological features (thickness,
curvature, sulc and myelinmap) in the HCP for gender difference
analysis. They were all spatially downsampled to a∼32k mesh of
each hemisphere (average vertex spacing of∼2 mm).
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FIGURE 1 | Framework of gender identification of cortical 3-D morphology via HSRC. (A) Process of cortical 3-D morphology extraction. For each subject, T1w and

T2w were used in the HCP structural pipelines to generate a normalized volume parcellation—the wmparc, which is an accurate subject-specific human brain mask of

the gray matter and white matter in the MNI space. We defined the value of the gray matter voxels as 1 and others as 0, and got the original cortical 3-D morphology.

(B) Gender classification with cortical 3-D morphology using HSRC. The original cortical 3-D morphology (0.7 mm) of each subject was first downsampled into 1.4

and 2.8 mm, then gender classification was conducted on the 2.8 mm 3-D morphology with 10-fold cross validation, RFS was used on the training data to select

voxels in each fold. We set the overall classification accuracy as a function of the number of selected voxels in each fold, and selected the union of the selected voxels

in each fold corresponding to the highest accuracy as discriminative voxels, the corresponding voxels in 1.4 mm morphology were selected as the initial input for the

next 10-fold across validation. The same operation was conducted in 0.7 mm data.

2.2. Hierarchical Sparsity Feature Selection
Considering the scale of the dataset in this study, a 10-
fold cross validation was conducted for gender classification,
and in consideration of numerous features of MRI data
(dimensionality=1,113 × 4,352,560 after abandon all-0 and all-
1 columns for 0.7 mm data matrix), dimensionality reduction is

essential to alleviate or avoid the curse of dimensionality (Liu and
Motoda, 1998).

Feature extraction algorithms like Principal Component
Analysis (PCA) combine all features to create new dimensionality
reduced features in a new feature space, and general statistical
tests like t-test are unsuitable to filter 0-1 distributed features.
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Comparatively, sparse representations select typical features
from the original feature space directly, so that we can maintain
the original physical meanings of the cortical morphological
features and have a better explanation.

Since sparse representation is not good at dealing with
data with too large dimensionality (Su et al., 2012), we
proposed a Hierarchical Sparse Representation Classifier (HSRC)
algorithm for informative feature selection and classification
(Figure 1B). MRI data were downsampled to voxel size=1.4 mm
isotropic (feature dimensionality=544,069 after abandon all-0
and all-1 columns) and voxel size=2.8 mm isotropic (feature
dimensionality=67,994 after abandon all-0 and all-1 columns).
The 10-fold cross-validation classification was first conducted in
2.8 mm data. In each fold, we aligned all the 67,994 features
of the training set using sparse representation and empirically
select the first 10,000 features in 200 intervals, and thus we had
50 (10,000/200) classification results in each fold. The overall
classification accuracy was the average accuracy of classification
with the same number of training data features across folds,
and when the highest overall classification accuracy was got, the
union of the selected features in each fold were regarded as the
most discriminative features of 2.8 mm data. The corresponding
1.4 mm features of all the selected features in 2.8 mm data were
defined as the original features (8 times the dimensionality of
the selected 2.8 mm features) for the next sparse representation
operation. The same operation was conducted in 1.4–0.7 mm
data.

Given training data X = [x1, x2, · · · , xn] ∈ R
d×n and

the associated class labels y ∈ R
n, the sparse representation

algorithm can be modeled as follows:

y = XTw, (1)

where w ∈ R
d is the weight vector to be solved and it should

be as sparse as possible. It can be described as the following
optimization problem:

min ‖w‖0

s.t. XTw = y,
(2)

it is a ℓ0-norm problem which is difficult to get the solution
although the solution is the most desirable to Equation 1.

Under practical conditions, the ℓ0-norm problem is
equivalent or approximately equivalent to the ℓ1-norm problem.
It is convex and thus can be easily optimized. Besides, the utility
of ℓ1-normmakes w less sensitive to noise. Consequently, we can
get w by solving the following problem:

min ‖w‖1

s.t. XTw = y,
(3)

considering that the constraint condition XTw = y makes w

sensitive to outliers of X, we suggested a new equation:

min
w

f (w) =
∥

∥

∥
XTw − y

∥

∥

∥

1
+ γ ‖w‖1, (4)

thus we can get the approximate solution of Equation 1, andmake
sparse representation more robust.

We find Equation 4 is a specific form of the Robust
Feature Selection (RFS) algorithm proposed by Nie et al.
(2010). The RFS is based on regression and ℓ2,1-norm sparsity
regularization. Unlike the traditional least square regression
which uses the squared ℓ2-norm loss, RFS emphasizes joint ℓ2,1-
norm minimization on both loss function and regularization.
Before introducing RFS method, we first present the definition
of the ℓ2,1-norm of a matrix.

For the matrixM ∈ Rn×m, its ℓ2,1-norm is defined as:

‖M‖2,1 =

n
∑

i=1

√

√

√

√

m
∑

j=1

m2
ij =

n
∑

i=1

∥

∥mi
∥

∥

2
, (5)

wheremi is the i-th row ofM.
Given training data {x1, x2, · · · , xn} ∈ R

d, the RFS algorithm
employs the one-vs-rest binary coding scheme to encode the class
labels. Denote the total number of classes as c. The label vector of
training data xi is represented by yi ∈ {0, 1}c×1, such that yi(j) =
1 if xi belongs to the j-th category and yi(j) = 0 otherwise. The
associated class labels of all data points are {y1, y2, · · · , yn} ∈ R

c.
RFS optimizes the following robust loss function:

min
W

n
∑

i=1

∥

∥

∥
WTxi + b− yi

∥

∥

∥

2
, (6)

where W ∈ R
d×c is the projection matrix and b ∈ R

c is the bias
vector.

For simplicity, the bias b can be absorbed into W when the
constant value 1 is added as an additional dimension for each data
xi(1 ≤ i ≤ n) . Thus, the problem becomes:

min
W

n
∑

i=1

∥

∥

∥
WTxi − yi

∥

∥

∥

2
. (7)

For the sake of feature selection, we will add a sparse
regularizer. Essentially, the i-row vector ofW corresponds to the
transformation vector of the i-th feature in regression. It can also
be regarded as a vector that measures the importance of the i-th
feature. Considering the task of feature selection, we expect that
the transformation matrix holds the sparsity property for feature
selection. More concretely, we expect that only a small number
of row vectors ofW are non-zeros. As a result, the corresponding
features are selected since these features are enough to regress
the original data xi to its label vector yi. When we employ the ℓ2-
norm of each row vector as a metrix to measure its contribution
in this regression, the sparsity property, i.e., a small number
of row vectors that are non-zeros, indicates the following RFS
objective function:

min
W

n
∑

i=1

∥

∥

∥
WTxi − yi

∥

∥

∥

2
+ γ

n
∑

i=1

∥

∥wi
∥

∥

2
, (8)

where wi denotes the i-th row of W. The parameter γ is to
balance the regression loss and the influence of sparse regularizer,
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and it was set to be the default value 0.01 suggested by Nie et al.
(2010) through a series of empirical studies.

Denote data matrix X = [x1, x2, · · · , xn] ∈ R
d×n and label

matrix Y = [y1, y2, · · · , yn]
T ∈ R

n×c, the objective function
becomes:

min
W

J(W) =

n
∑

i=1

∥

∥

∥
WTxi − yi

∥

∥

∥

2
+ γ

n
∑

i=1

∥

∥wi
∥

∥

2

=

∥

∥

∥
XTW − Y

∥

∥

∥

2,1
+ γ ‖W‖2,1.

(9)

The ℓ2,1-norm based loss function makes RFS robust to outliers
in data points and the ℓ2,1-norm regularization enables RFS
to select features across all data points with joint sparsity.
Though both terms of the objective function are non-smooth, the
problem can be solved efficiently with the reweighted method,
which has been proved to be convergent. More details about the
RFS algorithm can be seen in Nie et al. (2010).

After obtaining the solution of W, features are ranked
according to the value of

∥

∥wi
∥

∥

2
. In other words, the larger value

of
∥

∥wi
∥

∥

2
denotes that the i-th feature are more important. The

features with less importance are then discarded.

2.3. Classification and Cross Validation
In each of the 10-fold cross validation, 90% samples were
regarded as the training set and the remaining 10% samples were
served as the testing set. The classifier used in this study was linear
support vector machine (SVM), whose goal is to find a decision
function:

y = h′x+ b, (10)

by solving the following optimization problem:

min
h,ε

1

2
h2 + C

N
∑

i=1

ξi

s.t. yi
(

h′xi + b
)

≥ 1− ξi,

(11)

where h denotes the normal of the hyperplane, xi denotes
the i-th training vector and yi is its corresponding lebel, ξi
is the misclassification errors of non-separable cases, and C is
the empirical risk and model complexity which was set to be
1 in this study. Females were labeled as -1 and males were
labeled as 1, and thus the classification threshold was 0. The
classification accuracy and the area under curve (AUC) of the
receiver operating characteristic (ROC) curve were used as the
classification performance index, and 1,000 times of permutation
tests and 1,000 times of bootstrap tests were conducted to access
the overall statistical significance of the classification results. In
the permutation test of each fold, gender labels were randomly
permuted when gender features kept stable, and 1,000 AUC
values were used to construct a null distribution and compare
with AUC value of using true gender labels. In each bootstrap test,
90% of the training set were randomly chosen as new training set,
and inspired by the back projection stage of Wang et al. (2012),

TABLE 1 | AUC and accuracy for gender classification.

0.7 mm 1.4 mm 2.8 mm

HSRC AUC 0.9925 0.9868 0.9821

Accuracy (%) 96.77 95.69 94.49

Direct sparsity AUC 0.9829 0.9831 0.9821

Accuracy (%) 94.34 94.70 94.49

PCA AUC 0.9874 0.9870 0.9844

Accuracy (%) 94.43 94.52 94.07

the weight of voxels was defined as the absolute of h, and detailed
equation was as follows:

g = abs h = abs

N
∑

i=1

αiyixi, (12)

where g denotes the weight vector of voxels, αi is the i-th value
of alpha coefficient vector α in SVM, and N is the number of
subjects in the training set. The mean of g in 1,000 times of
bootstrap tests was the final weight vector g.

3. RESULTS

3.1. Gender Classification Results: AUC
and Accuracy
Results of gender classification using HSRC of three resolutions
are provided in the top two rows of Table 1. The highest AUC
and accuracy, both of which are got from 0.7 mm data, are
0.9925 and 96.77%, respectively. The relationship of classification
accuracy and the number of selected features in each fold are
provided in Figure 2B, which indicates that the classification
accuracy of all the three resolutions improves rapidly up to 0.9
with a few voxels and with the same number of voxels, the higher
resolution data always have higher classification accuracies with
much less computation time (platform: Linux server with 2
Inter(R) Xeon(R) CUP@ 2.10 GHz, 28 kernels, 260 GiBMemory.
CentOS 6.7, MATLAB R2015b, 1 fold RFS: 151.3 (0.7 mm)
+158.8 (1.4 mm) +64.3 (2.8 mm) = 374.4 s for HSRC; 5682.6 s
(0.7 mm) for direct sparsity) and storage demanded, but when
direct sparsity is conducted in different resolution data, we do
not see improvement of overall classification performance in
higher resolution data, which proves that our HSRC algorithm
indeed plays a part. The outcomes of conducting direct sparsity
in different resolution data are in the median two rows of Table 1
and Figure 2A.

Gender classification using PCA was also conducted for
comparing, and results are provided in the bottom two rows
of Table 1, the classification performance of using PCA is
comparable with using direct sparsity, but poor than usingHSRC.

We conducted 1,000 times of permutation tests to testify
the statistical significance of overall gender classification
performance, and detailed results for all three resolution data
are in Figure 3. Concurring with expectations, null distributions
of the AUCs scattered around 0.5, which implied that the
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FIGURE 2 | Classification results of the sparse representation, and the classification was a function of the number of voxels selected in each fold. In HSRC, the higher

resolution data always have the higher classification accuracy, while in direct sparsity the classification accuracys of three resolution data are roughly the same. The

highest accuracy is 96.77% which is got from 0.7 mm data using HSRC.

FIGURE 3 | Permutation tests of AUC index for gender classification. (A) 0.7 mm; (B) 1.4 mm; (C) 2.8 mm. The light blue histograms indicates the null distributions of

AUC for randomly permuted gender labels and the solid red line show the AUC when gender labels were true.

FIGURE 4 | Surface rendering of discriminative regions of gender difference derived from normalized mean bootstrap result [visualized by BrainNet Viewer Xia et al.,

2013]. The main morphology difference for gender exists mainly in the Frontal Lobe and the Limbic Lobe, others scattered in the Parietal Lobe, the Temporal Lobe, the

Corpus Callosum, and the Precuneus.
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TABLE 2 | The main locations of the voxels that were selected by HSRC in 0.7

mm.

Cluster Voxels Hemisphere MNI Coordinate

x y z

Uncus 120 L –25.5 2.1 –21.6

Uncus 143 R 20 4.2 –25.8

Superior Temporal Gyrus 103 L –48.6 –23.8 2.9

Superior Frontal Gyrus 271 R 14.4 69.3 14.1

Corpus Callosum 141 R 2.5 –35 7.1

Superior Frontal Gyrus 139 L –8.7 67.2 20.4

Middle Frontal Gyrus 117 L –25.5 21.7 42.8

Precuneus 101 L –9.4 –75.6 55.4

performance of the classifier for the randomly permuted data sets
whose subjects were randomly labeled was just no better than the
probability of getting positive side in random coin tossing. All of
the AUC values for permuted labels fell behind the AUCs of real
labels, which demonstrated high statistical significance of gender
classification (p < 0.001) for all three resolutions.

3.2. Important 3-D Morphological Features
in Gender Discrimination
As the best classification performance was obtained from 0.7 mm
data, and other resolution data were downsampled from them,
we conducted 1,000 times of bootstrap tests in 0.7 mm data, and
the outcome is shown in Figure 4 and detailed information of the
main clusters is in Table 2.

The main morphology difference for gender exists mainly
in the frontal lobe and the limbic lobe, others scattered in
the parietal lobe, the temporal lobe, the corpus callosum and
the precuneus. Considering the high relevance of cortical 3-
D morphology and GM, we compared our study and previous
studies of gender difference with GM concentration, and found
that our study had high accordance with the study of gender
difference using T1w, T2w, and FA (Feis et al., 2013) and using
GM concentration and fMRI (Wang et al., 2012), and also those
using cortical thickness (Im et al., 2006; Sowell et al., 2007; Lv
et al., 2010) in reporting the main gender difference in the frontal
lobe, the limbic lobe, the parietal lobe and the temporal lobe.
Moreover, there are reports of gender difference in the precuneus
(Kaiser et al., 2008; Taki et al., 2011; Semrud-Clikeman et al.,
2012) and the corpus callosum (Witelson, 1989; Allen et al., 1991;
Bishop and Wahlsten, 1997).

3.3. Discriminative Ability of Brain
Subregions
The accuracy of each brain subregion in AAL for gender
classification is in Figure 5, and the top and bottom 5
discriminative subregions and their classification accuracy are
in Table 3. The most discriminative regions of gender exist
in the front of the brain and the least discriminative regions
are the temporal gyrus. It can be seen from Figure 5 that the
accuracy distribution of two hemi-spheres is roughly bilateral

symmetrical, which means that the corresponding brain areas
of two hemi-spheres have approximately equal discriminative
abilities in gender difference.

An interesting phenomenon which should be paid attention
to is that the brain subregions’ discriminative ability for
gender arises from posterior to anterior in the brain, and this
phenomenon has high accordance with the evolution regular of
human brain: these brain areas located in the anterior of the
brain evolved first, while these posterior brain areas evolved
later (Buckner and Krienen, 2013). A possible explanation is
that these brain areas evolving advanced and better in human
evolution history have more abundant and complex function, so
they should develop first in individual brain to ensure the basic
function, and with evolution the functional difference of gender
grows thus the structural difference grows, too. And those brain
areas evolving not so full have less functions and those functions
are common among human beings.

The accuracies and AUCs of 7 RSN for gender classification
are in Table 4. Considering the dimensionality of data, the
classification of 7 RSN was conducted in 1.4 mm data. The most
discriminative brain areas of gender difference mainly distribute
in the default mode network, which is also indicated in Zhang
et al. (2018). While a majority of the least discriminative regions
belong to the visual network and dorsal attention network.
The outcome offers a new evidence of the accordance between
structural and functional brain.

Surface-based gender difference is in Figure 6 which shows
that gender difference is most obvious in myelinmap of all the
4 surface-based morphology. The average gender classification
accuracy in 10 times of 10-fold cross-validation of thickness,
curvature, sulc and myelinmap are 0.8740, 0.8022, 0.8431, and
0.8820, respectively. The details of the most discriminative
areas are as follows: isthmuscingulate, left superiortemporal,
and right insula for cortical thickness; posteriorcingulate and
insula for sulc; inferiorparietal, isthmuscingulate and left
posteriorcingulate for curvtura; precuneus, rostralmiddlefrontal
and superiorfrontal for myelinmap. Interestingly, myelinmap
showed greater gender difference and those discriminative areas
of myelinmap have high accordance with those areas we find
in cortical 3-D morphology, especially in the frontal lobe and
the precuneus; those discriminative areas in the other 3 surface-
based morphology are mainly in the insula, which is also found
in cortical 3-D morphology.

4. DISCUSSION

In this study, we investigated gender difference of cortical 3-
D morphology by proposing an HSRC approach, and got an
accuracy of 96.77% in a 10-fold cross-validation. The robustness
of classification was testified by permutation tests, and the
frontal lobe was found the most discriminative region of gender
difference in cortical 3-D morphology selected by HSRC. The
superior frontal gyrus in AAL and the default mode network in
RSN got the highest accuracy in template based classification.
Moreover, the advantages of our proposed HSRC method were
mentioned. Discussions are in the following.
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FIGURE 5 | Surface rendering of gender classification accuracy of brain region in AAL. The discriminative ability of brain area improves roughly from behind to front,

and the accuracy distribution of two hemi-spheres is roughly bilateral symmetrical.

TABLE 3 | The top and bottom 5 discriminative regions of AAL template and

accuracy for gender classification, the highest gender classification accuracy

distributed in the Frontal Lobe while the bottommost gender classification

accuracy distributed in the Temporal Lobe.

Top 5 discriminative regions

[acc (%)]

Bottom 5 discriminative

regions [acc (%)]

Frontal_Sup_Medial_R (87.87) Temporal_Inf_R (62.89)

Frontal_Sup_Medial_L (87.78) Temporal_Pole_Mid_R (63.07)

Frontal_Sup_R (87.78) Temporal_Inf_L (63.34)

Supp_Motor_Area_R (87.42) Temporal_Pole_Mid_L (63.61)

Frontal_Sup_L (87.42) Temporal_Mid_R (64.06)

TABLE 4 | AUC and accuracy for gender classification of 7 RSN Networks.

RSN network 1 2 3 4 5 6 7

AUC 0.8782 0.9257 0.8849 0.9359 93.68 0.9285 0.9568

Accuracy (%) 80.05 86.16 81.22 86.25 86.88 85.44 90.21

(1) Visual network; (2) Somatomotor network; (3) Dorsal attention network; (4) Ventral

network; (5) Limbic network; (6) Frontoparietal contral network; (7) Default mode network.

There are reports of gender difference in cortical morphology
(Im et al., 2006; Sowell et al., 2007; Lv et al., 2010; Sepehrband
et al., 2018) and brain morphology changes in aging (Resnick
et al., 2000; Bigler et al., 2002; Rusinek et al., 2003; Fjell et al.,
2009) and multiple inherent brain disorders (Lieberman et al.,
2001; Ashburner et al., 2003; Thompson et al., 2004; Jouvent et al.,
2008; Aylward et al., 2010), and our proposed method may have
the potential in auxiliary diagnosis of those disorders combined
with other modalities. Theoretically brain morphology is less
sensitive to the scan variables than GM concentration, whichmay
help the fusion of sMRI data from different datasets, and thus our

discovery may also offer a new thinking in dealing with multi-
site MRI data (Ma et al., 2018; Yuan et al., 2018b; Zeng et al.,
2018).

As far as we know, this work is the first to classify gender
with original cortical 3-D morphology and to get an accuracy of
over 95% in gender classification using morphological features.
It encouraged us to draw a conclusion that genders can be
distinguished on individual level by cortical 3-D morphology
features, and supported those opinions in the aspect of
brain morphology that males and females can be effectively
classified (Chekroud et al., 2016; Rosenblatt, 2016; Anderson
et al., 2018), as well as challenged these suggestions that
brains are essentially indistinguishable in gender (Joel et al.,
2015).

The result of bootstrap tests showed that those discriminative
regions of gender difference found by cortical 3-D morphology
had high accordance with those found by GM concentration and
surface-based morphology in previous studies, especially in the
frontal lobe, the limbic lobe and the partial lobe. We suggested a
hypothesis that those gender difference of GM concentration, to
some extent, may be the result of morphology difference.

Atlas-based morphology analysis indicated different
discriminative abilities among brain areas, that is to say,
some brain areas contributed much to the gender difference,
while some areas exert a smaller influence, and even some
areas had no contribution for gender difference, which may
be referred to as so-called mosaic areas (Rippon et al., 2014;
Joel et al., 2015). According to the brain areas classification
results, those brain areas with complex functions and
functions related to gender reap high accuracy in gender
classification. The bootstrap results also show that the high
difference voxels are located in the high difference brain
areas, which is comprehensible and consistent with the
classification results. Moreover, we found good symmetry in
AAL-based morphology analysis which is rarely mentioned in
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FIGURE 6 | Gender difference of surface-based morphology denoted by absolute value of the t-value of two sample t-test (p < 0.01, visualized by workbench of the

HCP).

previous studies of gender difference; RSN-based morphology

analysis suggested that the default mode network is the most
discriminative network, and the same result was also reported
in the studies of gender difference using fMRI Zhang et al.
(2018).

Considering that sample size was emphasized in recent
studies (Ritchie et al., 2018), we particularly compared our
findings with those using more than 1,000 samples (Chekroud
et al., 2016; Gur and Gur, 2016; Anderson et al., 2018; Ritchie
et al., 2018), and we found considerable accordance. First,
the reported classification accuracies were more than 90% to
support the opinions of sexual dimorphism with different MRI
modalities. Second, the most discriminative areas/networks of
gender difference were found to be the frontal lobe (Gur
and Gur, 2016; Anderson et al., 2018; Ritchie et al., 2018)
and the default mode network (Gur and Gur, 2016; Ritchie
et al., 2018), further indicating high relevance of cortical
morphology, GM concentration and fMRI based on large
sample size.

The proposed HSRC algorithm was testified to be helpful in
improving classification accuracy while reducing computation
and storage resource for high-dimensional MRI data. It also
selected features directly, making discriminative voxels more
explainable in MRI data and may help to accurately locate lesion
of diseased brain (Antel et al., 2003; Lladó et al., 2012).

We noticed several possible limitations in this work. Firstly,
there are papers suggesting that important gender difference
also exists in subcortical structures like cerebellum, amygdala
and hippocampus (Giedd et al., 2012; Ruigrok et al., 2014).
As cortical thickness of these subcortical structures is much
less than that of the cerebral cortex, it cannot be automatically
segmented by the pipelines offered by the HCP at present
(Glasser et al., 2013). Since morphology data provided by the

HCP did not include these subcortical structures so far, the

influence of subcortical morphology to gender difference was
not studied. Secondly, the effect of aging on brain morphology
was not discussed because of narrow age range of adults (22–
37 years old) in our study. Thirdly, because of the lack of
T2w images, we have not conducted multi-site experiment to
test the robustness of brain morphology by now. Moreover,
although we have conducted dimension reduction, linear SVM
and cross-validation to alleviate the risk of overfitting in the
classification methodology as far as possible, an independent
dataset is still required to validate the generalizability of our
proposed model, which should be done once possible in
the future.
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While general self-referential processes and their neural underpinnings have been
extensively investigated with neuroimaging tools, limited data is available on sex
differences regarding self- and other-referential processing. To fill this gap, we measured
17 healthy women and men who performed a self- vs. other-appraisal task during
functional magnetic resonance imaging (fMRI) using gender-stereotypical adjectives.
During the self-appraisal task, typical male (e.g., “dominant,” “competitive”) and
female adjectives (e.g., “communicative,” “sensitive”) were presented and participants
were asked whether these adjectives applied to themselves. During the other-
appraisal task, a prototypical male (Brad Pitt) and female actor (Julia Roberts) was
presented and participants were asked again to judge whether typical male and
female adjectives applied to these actors. Regarding self-referential processes, women
ascribed significantly more female compared to male traits to themselves. At the same
time both women and men indicated a stronger desire to exhibit male over female
traits. While fMRI did not detect general sex differences in the self- and other-conditions,
some subtle differences were revealed between the sexes: both in right putamen and
bilateral amygdala stronger gender-congruent activation was found which was however
not associated with behavioral measures like the number of self-ascribed female or
male attributes. Furthermore, sex hormone levels showed some associations with brain
activation pointing to a different pattern in women and men. Finally, the self- vs. other-
condition in general led to stronger activation of the anterior cingulate cortex while the
other- vs. self-condition activated the right precuneus more strongly which is in line with
previous findings. To conclude, our data lend support for subtle sex differences during
processing of stereotypical gender attributes. However, it remains unclear whether such
differences have a behavioral relevance. We also point to several limitations of this study
including the small sample size and the lack of control for potentially different hormonal
states in women.
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INTRODUCTION

Gender Stereotyes
Human beings have self-concepts, i.e., ideas about who they
are and expectations about how they should behave in a given
situation. These self-concepts also encompass gender stereotypes
which are common societal expectations of qualities a woman
or man should possess (Cattaneo et al., 2011). The kind of
such stereotypes is manifold. Some stereotypes relate to general
cognitive skills. For example, the belief that man possess superior
mathematical skills seems to exist from early school education
onward (Cvencek et al., 2011). The mere existence of such a belief
creates a situation of stereotype threat. This term refers the threat
of confirming mostly negative stereotypes that exist toward a
certain group of individuals and that may impair the functioning
of these individuals in a way that confirms the stereotype (Steele
and Aronson, 1995).

For example, women show worse mathematical performance
when being told that men are superior in a mathemical (Cadinu
et al., 2005; Dar-Nimrod and Heine, 2006; Good et al., 2008) or a
mental rotation task (Moè and Pazzaglia, 2006; Wraga et al., 2007;
Sanchis-Segura et al., 2018). Another kind of stereotype refers
to more general psychological qualities. In this regard, women
are e.g., more easily associated with low-authority whereas
the opposite is true for men (Rudman and Kilianski, 2000;
Schmid Mast, 2004). Furthermore, women who do not meet such
expectations and appear more agentic, i.e., more independent
and competitive, are discriminated against (Rudman and Glick,
2001) and judged as less feminine (Rudman and Glick, 1999).
Thus, the existence of such gender stereotypes is likely to have an
impact on developmental trajectories of women and men biasing
their behavior and attitudes and leading to different educational
(Nosek et al., 2009) and occupational outcome (Moss-Racusin
et al., 2012). Within the larger framework of gender stereotyping,
the present study aimed at exploring how gender stereotypes
are represented at the level of brain activation both concerning
reflection about oneself and a prototypical woman and man.

Neural Underpinnings of Self-Referential
Processing
Self-appraisal processes and their neurobiological underpinnings
have been studied for over a decade. Typically, neuroimaging
studies ask adults to respond whether trait words or phrases
describe themselves and whether these stimuli can also be
attributed to others (for a review see Lieberman, 2007). These
self-related processes are especially associated with stronger
activation in the medial prefrontal cortex (MPFC) when judging
about oneself compared to either close (D’Argembeau et al.,
2007; Jenkins et al., 2008; Modinos et al., 2009; Feyers et al.,
2010) or famous others (D’Argembeau et al., 2005; Jenkins and
Mitchell, 2011). More specifically, studies reported activation
of the ventral (van der Meer et al., 2010), dorsal (Fossati
et al., 2003), and orbital (Pauly et al., 2013) part of the MPFC
depending on the task applied (Northoff et al., 2006). Also,
the parahippocampal gyrus and precuneus (Feyers et al., 2010),
anterior (Modinos et al., 2009), and posterior cingulate cortex

(Johnson et al., 2002) as well as the basal ganglia (Benoit
et al., 2010) have been shown to be involved in self-referential
processes. Furthermore, Veroude et al. (2013) used an appraisal
paradigm, in which participants were instructed to indicate
whether a phrase described themselves (self), a friend from
college (other), or whether the phrases were positive or negative
(control). The authors reported stronger activation in men
compared to women in the medial posterior parietal cortex
(MPPC) and the bilateral temporo-parietal junction (TPJ) across
all appraisal conditions suggesting that sex differences during
appraisal of self and others exist. However, up to now it is
rather unexplored whether men and women recruit similar or
different brain regions during processing of stereotypical female
and male attributes.

Neural Correlates of Other-Referential
Processes and Gender Stereotyping
People commonly not only reflect about themselves but also
about the characteristics other people possess. Especially the
stereotypic gender judgments of others has been shown to
recruitthe ventromedial prefrontal cortex (VMPFC), the middle
temporal gyrus (MTG), the precuneus and the supramarginal
gyrus (Quadflieg et al., 2009). Other studies found an increase
in activation with stronger gender stereotyping in the amygdala
(Knutson et al., 2007) and a part of the right frontal cortex
(Mitchell et al., 2009). However, these studies did not tackle the
question whether women and men recruit the same or different
brain regions when judging other persons or ascribing gender
stereotypical adjectives to them.

Aims and Expectations
In the present study we aimed at investigating the neural
correlates during attribution of gender stereotypes to oneself
or to a prototypical female and male actor. The main question
of interest was whether participant sex had an impact on
stereotype processing while evaluating oneself or a famous other.
Specifically, we aimed to explore whether women and men
recruit similar brain areas during self- and other-reflection.
To our knowledge this question has received almost no attention
Veroude et al. (2013) and we therefore refrain from postulating a
directional hypothesis regarding such differences. Furthermore,
we consider exploratory the impact of female and male sex
hormone levels on brain activation during self- and other-
reflection. This is because to our knowledge no conclusive model
exists regarding the action of sex hormones on human cognition
in general let alone on gender stereotyping (Sundström-Poromaa
and Gingnell, 2014; Toffoletto et al., 2014).

MATERIALS AND METHODS

Participants
Originally, twenty right-handed healthy Caucasian women and
21 right-handed healthy Caucasian men participated in the
study. Participants were recruited via advertisements posted
at the RWTH Aachen University, Germany. This study was
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carried out in accordance with the recommendations of the
local Institutional Review Board (EK 088/09) of the Medical
School RWTH Aachen University with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the local Institutional Review Board (EK 088/09) of
the Medical School RWTH Aachen University. All subjects were
paid for their participation.

The presence of mental disorders was excluded on the basis
of the German version of the Structured Clinical Interview for
DSM-IV (SCID, Wittchen et al., 1997), which was conducted
by experienced psychologists. The usual exclusion criteria for
MRI (e.g., metal implants, claustrophobia, and epilepsy) were
applied. Independent t-tests revealed that women and men
were of comparable age (p = 0.96) and had similar years of
education (p = 0.75). Handedness was assessed by means of the
Edinburgh Handedness Inventory (Oldfield, 1971) showing that
all participants were right-handed apart from one left handed
woman and one man. Crystallized verbal intelligence, as assessed
with the Mehrfachwahl-Wortschatz-Test Version B (MWT-B,
Lehrl, 1996) did not differ between women and men (p = 0.67).
Moreover, all participants completed the Bem Sex-Role Inventory
(Bem, 1981) a standard questionnaire for measuring femininity-
masculinity and gender roles.

On the day of testing, a blood sample was taken to assess
the sex hormones estradiol, progesterone, and testosterone. Two
men did not provide blood samples. Assays were analyzed by
the Central Laboratory of the Medical School, RWTH Aachen
University, using an electrochemiluminescence-immunoassay
(ECLIA, Johnson et al., 1993). The intra-assay accuracy was over
90% (i.e., coefficient of variation was 4–8%) and the sensitivity of
each assay was 10 pg/ml (estradiol), 0.2 ng/l (progesterone), and
0.2 ng/ml (testosterone).

Exclusion of Participants
Two women and three men were excluded due to faulty logfiles
resulting in 18 available behavioral datasets for women and men.
Additionally, for fMRI analysis one further woman and man had
to be excluded due to strong movements inside the MR scanner
(>2 mm in any direction) leading to 17 available datasets for
fMRI analysis.

Regarding analysis of hormone levels, extreme values were
identified as being larger than 2.5 SDs from the mean of each
hormone and separate for each sex. This led to exclusion of
two progesterone values for women. In addition to two missing
blood samples for men, this resulted in 19 and 20 (men and
women) available testosterone values, 19 and 20 (men and
women) estradiol values and 19 and 18 (men and women)
progesterone values.

Demographic, neuropsychological, and hormonal character-
istics of the total sample are shown in Table 1.

Stimuli and Procedure
During the task we presented 240 personality traits, half of which
had been evaluated as being typical male and the other half
as being typical female attributes. The gender typicality of the
stimuli was verified in a pre-study in 30 healthy participants

TABLE 1 | Information on sociodemographic parameters, neuropsychological
performance and hormone concentrations in women and men.

Women n = 17 Men n = 17 t-value p-value

Age (years) 33.71 (13.09) 33.47 (11.29) 0.06 0.96

Education (years) 14.65 (3.39) 14.29 (3.04) 0.32 0.75

Verbal intelligence 112.29 (16.17) 110.18 (12.57) 0.46 0.67

(MWT-B, IQ)

Estradiol (pmol/l) 150.81 (134.97) 89.12 (36.72)∗ 1.71 0.10

Progesterone (nmol/l) 4.75 (8.88) 2.32 (1.09)∗ 1.05 0.30

Testosterone (pmol/l) 3.91 (2.20) 33.79 (14.22)∗ 8.57 < 0.001

Independent t-tests compared women and men. P-values of these tests are
indicated. ∗Values are given for 15 men as two men did not provide blood samples.

(15 women) during which participants rated a total of 240
German adjectives according to whether they were more a
prototypical male or female adjective on a continuous scale from
−2 (=very masculine) to +2 (=very feminine). Adjectives with
an average rating below 0 were labeled as typically masculine
whereas adjectives with an average rating above 0 were labeled
as typically female. Thus, participants did not necessarily have
to agree whether an adjective was more stereotypically female
or male which is reflected by a non-zero standard-deviation
of ratings. On average, male attributes received a rating of
−0.64 (SD = 0.33) whereas female attributes were rated on
average with 0.72 (SD = 0.33). As intended, scores of female
and male attributes differed significantly (p < 0.001) and to
a high degree as indicated by Cohen’s d (d = 4.15). All 240
adjectives were used for the main experiment with sixty of these
adjectives (balanced for femininity/masculinity) were presented
during the self-condition where participants were asked to judge
whether the traits applied to themselves or not via button press
(left = yes; right = no). Another 120 gender adjectives (60 in
each condition) had to be assigned to either a typical male
(Brad Pitt) or typical female (Julia Roberts) celebrity. Both had
been selected to represent a stereotypical known prototype of
a man and a woman. Indeed all participants reported to know
who both actors were. In the other-appraisal task participants
had to indicate whether the female or male attribute fitted
the famous person or not. In a final lexical control condition
further 60 female and male adjectives were presented and
participants were asked whether the displayed words contained
the letter “r” or not. Consequently, the task consisted of 8
experimental conditions in a 2 × 4 event-related design with
the factors Attribute (male, female) and Appraisal Condition
(self, typical other man, typical other woman, and lexical).
This resulted in the following eight conditions (1) self male
attributes, (2) self female attributes, (3) prototypical man male
attributes, (4) prototypical man female attributes, (5) prototypical
woman male attributes, (6) prototypical woman female attributes,
(7) lexical male attributes, (8) lexical female attributes. Each
condition was presented ten times in mini-blocks of three
attributes with the same female and male attributes presented in
each condition across participants. As intended, conditions did
not differ regarding the mean rating for femininity/masculinity
of attributes (p = 0.76). A total of 240 stimuli were presented
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FIGURE 1 | Illustration of the gender stereotyping paradigm. In four conditions typical female or male attributes had to be related to oneself or a typical woman or
man. As control a letter judgment condition was used. Each instruction was displayed for 5000 ms before a block of three adjectives was shown (displayed for
2100 ms each) and separated by a jittered fixed cross between 1100 and 3100 ms.

in a pseudo-randomized order. Stimulus presentation was
accomplished with Presentation software (Version 14.2, http://
www.neurobs.com), whereby each condition was announced by a
brief instruction (5 s). Attributes were presented for 2.1 s followed
by a fixation cross jittered between 1.1 and 3.1 s. Each last word of
a mini-block was followed by a fixation cross jittered between 5.6
and 10.6 s. This resulted in a total task length of about 27 min with
no breaks in between (see Figure 1). The order of conditions was
permutated to achieve that each condition preceded and followed
every other condition approximately equally often to avoid any
systematic effects of the order of presentation.

Analysis of the Behavioral Data
Statistical testing was performed with the Statistical Package
for the Social Sciences (SPSS 24, IBM Corp., Armonk, NY,
United States). For all analyses, the significance level was
set to p = 0.05.

Independent t-tests were used to compare sociodemographic,
hormonal, neuropsychological and questionnaire data between
women and men. For BSRI, masculinity and femininity scores
were calculated. Additionally, as the BSRI also assesses desired
femininity and masculinity, we also compared these scores
between women and men via independent t-tests.

Number of Accepted Female and Male Attributes
Analyses were separated for the self- and other condition. Only
adjectives that were agreed on (“yes“ answers) were included
as due to the dichotomic character of the possible answers,
the additional use of “no” answers would result in no further
information. Then the number of yes-answers was subject to
a 2 × 2 ANOVA with the factor Participant Sex (women,
men) and Attribute (female, male) for the self-condition and
a 2 × 2 × 2 ANOVA with the additional factor Actor Sex

(prototypical male, prototypical female) for the other condition.
Greenhouse-Geisser corrected p-values are reported in cases of
sphericity violation and partial eta squares (η2) are listed as an
indication of effect size.

Behavioral correlation analyses
Behavioral correlation analyses were separately performed for
women and men between sex hormones (estradiol, progesterone,
testosterone) and behavioral performance (number of self-
attributed male, female adjectives).

fMRI Data Acquisition and Pre-processing
Functional imaging data were obtained on a 3 Tesla Siemens MR
Scanner (Siemens Medical Systems, Erlangen, Germany) at the
Department of Psychiatry, Psychotherapy and Psychosomatics
of the RWTH Aachen University. Echo-planar imaging (EPI)
was applied (T2∗, voxel size: 3.1 mm × 3.1 mm × 3.1 mm,
distance factor 15%, GAP 0.5 mm, 64 × 64 matrix, FoV:
200 mm × 200 mm, TR = 2 s, TE = 30 ms, α = 76◦).
Thereby 36 slices in ascending order covering the whole
brain were acquired. Image acquisition was preceded by 5
dummy scans, which were discarded before preprocessing. The
resulting 815 volumes per subject were analyzed using SPM12
(Statistical Parametric Mapping; Wellcome Trust Centre for
Neuroimaging, London, United Kingdom1). For preprocessing,
functional images were first slice-time corrected, realigned to the
first functional image, coregistered with the acquired anatomical
image, spatially normalized to the standard template of the
Montreal Neurological Institute (MNI, Canada) and finally
smoothed with an 8 mm FWHM isotropic Gaussian kernel.
To remove effects of low frequency noise, a 128 s high pass filter
was used.

1http://www.fil.ion.ucl.ac.uk/spm
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Analysis of the fMRI Data
Whole Brain Analyses
On the first level, regressors were modeled for each of the eight
experimental conditions and for each subject and subsequently
entered into a second level analysis. Here, a flexible factorial
design was calculated for the group analyses performing a
generalized linear mixed model (GLM). Movement parameters
were included as nuisance covariates. Based on this model,
(1) main effects of Participant Sex (women, men), Appraisal
Condition (self, prototypical male, prototypical female other,
lexical), Attribute (male, female) and Acceptance (yes, no) were
analyzed. (2) interactions of these factors were also modeled
to investigate especially whether sex differences existed during
the attribution of male and female attributes (interaction
Attribute × Participant Sex) separately in the self- and other
conditions. (3) sex differences in the comparison between
self- and other-conditions were investigated by modeling
the interaction Condition × Participant Sex comparing both
other-conditions separately to the self-condition. To adjust
for the inflation of α-errors, whole brain analyses were
thresholded at p < 0.001 (cluster-forming threshold) and
family-wise-error corrected (FWE) for multiple comparisons
at the cluster level to a threshold of p = 0.05. Thus, only
clusters with a minimal extent of 70 voxels were detected
as significant. The resulting voxel coordinates of significant
activation peaks (in MNI-space) were located anatomically
by help of an anatomy toolbox (Eickhoff et al., 2005)
implemented in SPM12.

Regression Analyses
To detect clusters on the whole brain level that significantly
covaried with (1) sex hormone levels (testosterone, estradiol,
progesterone) and (2) with the ratio of the number of
self-ascribed female to male attributes, separate whole brain
regression analyses were conducted for women and men.
Specifically, the contrast images during the self-condition for
female and male attributes from the first level analysis of
each participant was covaried with sex hormone levels and the
ratio of the number of self-ascribed female to male attributes.
To do so, we divided the number of self-ascribed female by
the number of self-ascribed male attributes, thus indicating a
stronger agreement toward female adjectives with scores larger 1,
stronger agreement toward male adjectives with scores smaller 1
and equal agreement between female and male attributes for a
score of 1. Again, a cluster-forming threshold of p < 0.001 and
a FWE-correction at cluster level to a threshold of p = 0.05 was
performed. Thus, only clusters with a minimal extent of 45 voxels
were detected as significant.

ROI Analyses
Based on previous studies investigating stereotypical or self- vs.
other-processing (Quadflieg et al., 2009; Veroude et al., 2013),
we performed several region of interest analyses. These regions
included the MPFC, precuneus and bilateral amygdala (Quadflieg
et al., 2009) as well as the bilateral TPJ and the MPPC (Veroude
et al., 2013). ROIs were defined as 10 mm spheres around center
coordinates (in MNI space) taken from these two publications.

Only bilateral amygdala was defined anatomically by help of
an anatomy toolbox (Eickhoff et al., 2005) to allow for better
spatial definition of these ROIs. Mean parameter estimates were
extracted and subject to a mixed model 2 × 3 × 2 ANOVA with
the factors Participant Sex (men, women), Appraisal Condition
(self, prototypical male, female), and Attribute (male, female).
Within each ROI, post hoc comparisons were Bonferroni-
corrected for multiple comparisons. See Table 2 for all ROIs and
their spatial extent.

Neural correlation analyses
Neural correlation analyses were separately performed for
women and men between sex hormones (estradiol, progesterone,
testosterone) and the beta estimates during self-processing of
female and male attributes in all ROIs.

RESULTS

Bem Sex-Role Inventory (BSRI)
Comparing masculinity and femininity scores of women and
men via t-tests revealed that men described themselves as more
masculine (p < 0.001) while no significant sex difference emerged
for femininity (p = 0.88). For the desired self, we did not observe
significant sex differences (ts < 0.67, ps > 0.52). Within-group
analyses revealed that both sexes expressed a desire to reveal more
masculine compared to feminine traits (both ps < 0.001). See
Table 3 for statistics.

TABLE 2 | All brain regions selected for ROI analyses.

Region of Volume

interest X Y Z in mm3 ROI-definition

L Amygdala −23 −4 −22 2745 Anatomical

R Amygdala 24 −2 −22 2432 Anatomical

MPFC −4 54 6 4120 10 mm sphere

Precuneus 10 −58 56 4120 10 mm sphere

Left TPJ −46 −60 27 3984 10 mm sphere

Right TPJ 49 −63 27 4416 10 mm sphere

MPPC −4 −56 33 3984 10 mm sphere

R Putamen 27 −18 −7 4792 Derived by functional

activation

Center coordinates reflect MNI-space. MPFC, medial prefrontal cortex; MPPC,
medial posterior parietal cortex, TPJ, temporo-parietal junction.

TABLE 3 | Mean scores for self-attributed and desired masculinity and feminity
according to the BSRI with the standard deviation in brackets.

Women Men t-value p-value

Self male 4.49 (0.49) 5.11 (0.46) 4.02 <0.001

Self female 4.72 (0.62) 4.68 (0.61) 0.14 0.88

Desired male 2.40 (0.22) 2.35 (0.26) 0.67 0.52

Desired female 2.03 (0.19) 2.01 (0.08) 0.46 0.65

T- and p-values refer to sex differences. BSRI, bem sex-role inventory.
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FIGURE 2 | Number of agreed items in the self-condition separated for women and men. Women agreed to significantly more female than male attributes. Error bars
indicate the standard error of the mean (SEM). ∗∗∗p < 0.001.

Behavioral Performance
Self-Condition
Neither the main effect of Participant Sex, F(1,35) = 3.94,
p = 0.06, nor the main effect of Attribute, F(1,35) = 3.55,
p = 0.07, reached significance. Only the interaction Participant
Sex × Attribute was significant, F(1,35) = 23.46, p < 0.001,
η2 = 0.40 indicating that women and men agreed to significantly
more gender-congruent items than gender-incongruent items.
See also Figure 2 and Table 4.

Other Condition
A main effect of Attribute was found, F(1,35) = 7.10, p = 0.01,
η2 = 0.17, showing that overall more male attributes were
accepted. Furthermore, an interaction Participant Sex × Actor

TABLE 4 | Mean number of assigned attributes across the self- and
other-conditions (yes-answers) with the standard deviation in brackets.

Women Men t-value p-value

Self male 8.61 (2.66) 14.63 (3.14) 6.27 <0.001

Self female 14.83 (4.77) 11.89 (3.78) 2.08 0.045

Other prototypcial male
(male attribute)

16.78 (3.84) 18.47 (3.98) 1.32 0.20

Other prototypical male
(female attribute)

14.44 (4.31) 14.68 (4.21) 0.17 0.86

Other prototypical female
(male attribute)

12.78 (3.17) 12.52 (3.53) 0.23 0.82

Other prototypical female
(female attribute)

18.94 (2.82) 17.47 (3.06) 1.52 0.14

T- and p-values refer to sex differences.

Sex, F(1,35) = 6.99, p = 0.01, η2 = 0.11, and an interaction Actor
Sex× Attribute, F(1,35) = 25.07, p < 0.001, η2 = 0.42, was found.
The Participant Sex×Actor Sex interaction indicates that women
accepted overall more adjectives for the prototypical female
compared to male actor (p = 0.02) while this was not the case
for men (p = 0.34). The Actor Sex × Attribute interaction shows
that gender attributes were assigned in an actor-specific manner
with more male compared to female attributes (p = 0.009)
being attributed to the prototypical male actor and more female
compared to male attributes (p < 0.001) being attributed to
the prototypical female actor. No main effect of Actor Sex,
F(1,35) = 3.69, p = 0.06, η2 = 0.10, was detected. See also Figure 3
and Table 4.

fMRI Results
Whole Brain Analyses
Main effects of self- and other-condition
Across all participants, the self-condition (self) compared to
the letter judgment condition (lexical) led to strong activation
in the left superior frontal gyrus and several smaller clusters
including the right temporal gyrus and bilateral cerebellum (see
Table 5). The other-condition (other) compared to lexical also
led to stronger activation in the left superior frontal gyrus and
also involved regions like left inferior frontal gyrus and posterior
cingulate cortex (see Table 5). Directly comparing self and other
showed stronger activation during self including parts of the left
anterior cingulate cortex and supramarginal gyrus. The inverse
contrast (other > self) detected stronger activation in the right
precuneus and bilateral superior temporal gyrus (see Figure 4
and Table 5).
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FIGURE 3 | Number of agreed items in the other conditions separated for women and men. More female compared to male attributes were assigned to the
prototypical female actor (Julia) while more male compared to female attributes were assigned to the prototypical male actor (Brad). Error bars indicate the standard
error of the mean (SEM). ∗∗∗p < 0.001, ∗∗p < 0.01.

Sex differences during the self-condition
The general effect of Participant Sex pertaining to the contrast
women vs. men did not yield any significant clusters. However,
the interaction of Attribute × Participant Sex resulted in one
significant cluster located in the right putamen (k = 137; MNI:
x = 31 y =−6 z =−6). To analyse this interaction in more detail,
we performed an additional region of interest analysis (see “A
Posteriori Region of Interest Analysis”).

Sex differences during the other-condition
Again, no general Sex effect was detected comparing women vs.
men. Also the interaction Attribute× Participant Sex did not lead
to significantly activated clusters. Therefore no further post hoc
t-tests were performed.

Sex differences comparing the self- to the other-conditon
Finally, self- and other-conditions were compared by modeling
the interaction Condition × Sex for both female and male actor
separately. In neither case were significant clusters detected poin-
ting to no differential activation between women and men when
comparing self- to other-processing of a typical woman or man.

Whole Brain Regression
Sex hormones on whole brain activation
Women. During presentation of female adjectives no correlation
with either hormone was detected whereas during presentation
of male adjectives significant correlations were found for
both progesterone and testosterone but not estradiol. For
progesterone, a cluster (k = 90) including left insula and
superior temporal gyrus was positively associated with
hormone values while for testosterone, a cluster (k = 70)
in the left postcentral gyrus extending to the rolandic

operculum was positively associated with hormone values
(see Table 6).

Men. During presentation of female adjectives a cluster (k = 49)
in right angular gyrus was positively associated with estradiol
values. Furthermore, during presentation of male adjectives a
negative association was found with progesterone values in the
superior medial gyrus (k = 47). No further significant correlation
emerged (see Table 6).

Self-ascribed female-to-male-ratio on whole brain activa-
tion. Neither in women nor in men the ratio of the number of
self-ascribed female to male adjectives was significantly related
to whole brain activation.

A Posteriori Region of Interest Analysis
As the whole brain interaction Attribute× Participant Sex during
the self processing yielded one significant cluster in the right
putamen, we extracted mean beta estimates from this cluster
for a more detailed analysis. This analysis revealed that not
only the interaction Attribute × Participant Sex was significant,
F(1,32) = 8.66, p = 0.006, but that this interaction was additionally
dependent on the experimental condition as indicated by
a significant three-way interaction Attribute × Participant
Sex × Condition, F(2,64) = 6.01, p = 0.004, η2 = 16. To
disentangle this three-way interaction, we first computed separate
interactions of Attribute × Sex for each condition showing
that only for the self-condition this interaction was significant,
F(1,32) = 28.89, p < 0.001, η2 = 0.47, but not for the two other
conditions (Fs < 0.17, ps > 0.69). This indicates that during self-
processing women had higher activation in the right putamen
for female compared to male attributes (p = 0.001) whereas
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TABLE 5 | Activated brain regions as revealed by whole brain analyses.

Cluster/macroanatomical structure x y z t-score

Self > Other

Cluster 1 (k = 3468 voxels) L ACC −3 38 5 13.71

Cluster 2 (k = 226 voxels) L Supramarginal
Gyrus

−47 −49 26 5.16

Cluster 3 (k = 134 voxels) R Cerebellum 28 −81 −34 6.09

Cluster 4 (k = 78 voxels) R Middle Temporal
Gyrus

47 −34 1 4.45

Other > Self

Cluster 1 (k = 1660 voxels) R Precuneus 6 −65 37 9.69

Cluster 2 (k = 230 voxels) R Superior
Temporal Gyrus

56 −9 1 5.30

Cluster 3 (k = 188 voxels) L Superior
Temporal Gyrus

−53 −9 5 5.14

Cluster 4 (k = 79 voxels) R Posterior-Medial
Frontal

3 −21 66 3.68

Cluster 5 (k = 70 voxels) L Middle Orbital
Gyrus

−41 51 −2 5.64

Self > Lexical

Cluster 1 (k = 5312 voxels) L Superior Frontal
Gyrus

−10 54 34 17.81

Cluster 2 (k = 224 voxels) R Cerebellum 28 −81 −34 16.48

Cluster 3 (k = 222 voxels) R Middle Temporal
Gyrus

59 −6 −20 9.09

Cluster 4 (k = 71 voxels) L Cerebellum −28 −81 −34 8.57

Lexical > Self

Cluster 1 (k = 10382 voxels) L Inferior Parietal
Lobule

−38 −43 41 15.63

Cluster 2 (k = 345 voxels) L Middle Frontal
Gyrus

−44 38 26 10.09

Cluster 3 (k = 194 voxels) L Cerebellum −10 −74 −38 6.84

Other > Lexical

Cluster 1 (k = 1552 voxels) L Superior Frontal
Gyrus

−10 54 34 16.87

Cluster 2 (k = 716 voxels) L IFG −44 29 −9 14.48

Cluster 3 (k = 551 voxels) L PCC −3 −53 26 15.43

Cluster 4 (k = 277 voxels) L Angular Gyrus −47 −68 30 11.12

Cluster 5 (k = 178 voxels) R Cerebellum 28 −81 −34 13.39

Cluster 6 (k = 105 voxels) L Hippocampus −22 −15 −13 5.31

Cluster 7 (k = 98 voxels) R Angular Gyrus 53 −65 30 8.50

Cluster 8 (k = 91 voxels) R Middle Temporal
Gyrus

59 −6 −16 11.74

Cluster 9 (k = 85 voxels) R Hippocampus 19 −9 −16 4.45

Lexical > Other

Cluster 1 (k = 9444 voxels) L Inferior Parietal
Lobule

−38 −43 44 14.87

Cluster 2 (k = 312 voxels) L Middle Frontal
Gyrus

−41 41 26 9.82

Cluster 3 (k = 241 voxels) L Cerebellum −10 −74 −34 6.52

Comparisons of self, other and lexical condition. Coordinates reflect MNI space.
ACC, anterior cingulate cortex; IFG, inferior frontal gyrus; k, cluster extent; L, left;
PCC, posterior cingulate cortex; R, right.

men showed stronger activation for male compared to female
attributes (p = 0.002). See also Figure 5.

A Priori Region of Interest Analyses
Main effects of participant sex
Only in the MPFC a main effect of Participant Sex was detected
pointing to higher overall activation in men compared to
women (p = 0.05).

Interactions with the factor participant sex
An interaction Attribute × Participant Sex was detected in both
left and right amygdala indicating that across all conditions men
had by trend a lower activation for female compared to male
attributes (left p = 0.06; right p = 0.08) whereas women did not
differ for female and male attributes (left p = 0.35, right p = 0.32).
No further interactions including the factor Participant Sex was
detected (ps > 0.11, Fs < 2.27).

Main effects of condition and attribute
Please refer to the Supplementary Material and Table 7 for
reports of the main effects of the factors Condition and Attribute.

Correlation Analyses
Sex hormones× behavioral data
Sex hormones were correlated separately for women and men
with the number of self-ascribed female / male adjectives
However, neither in women nor in men, significant correlations
were detected data (rs < 0.37, ps > 0.14).

Sex hormones× neural data
For progesterone, in men, a positive association was found
with the right (r = 0.64, p = 0.006) and left (r = 0.49,
p = 0.047) amygdala and left TPJ activation (r = 0.52, p = 0.32)
during presentation of male attributes. All other ROIs were not
significantly linked to progesterone values in men and women
(rs < 0.48; ps > 0.05). For estradiol (rs < 0.33, ps > 0.20) and
testosterone (rs < 0.33, ps > 0.21) no significant correlations
were found in men and women. Of note, significant correlations
are uncorrected for multiple comparisons as the mere number
of comparisons (each hormone was compared separately in
women and men with female and male attributes in eight ROIs
resulting in 16 comparisons for each sex) would have required
almost perfect correlations. We still report these values asking for
caution in interpreting them.

DISCUSSION

The current fMRI study investigated gender-related self- and
other-appraisals in adult women and men. The main focus of this
study was to investigate whether sex differences on a behavioral
and neuronal level exist during such processes.

Notably, women and men self-ascribed more gender-
stereotyped traits, i.e., women agreed to have more stereotypical
female attributes. At the same time both women and men
reported the desire to exhibit more masculine traits. On the
level of brain activation, women and men recruited similar
brain regions during self- and other-appraisal. Only during self-
referential processes one significant cluster in the right putamen
was more strongly active pointing to higher gender-congruent
activation in women and men, respectively. Furthermore specific
region of interest analyses also revealed a similar pattern of
gender-congruent activation in bilateral amygdala showing that
men had stronger activation for male compared to female
attributes – however both during the self- and other-conditions.
All other region of interest analyses did not reveal sex differences.
Finally, whole brain regressions with sex hormone levels were
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FIGURE 4 | Whole Brain activation in the contrast self > other (left side) and other > self (right side). FWE-correction (p < 0.05). AngularG, angular gyrus; Cer,
cerebellum, IFG, inferior frontal gyrus; MFG, middle frontal gyrus; Mid TempG, middle temporal gyrus; RolOp, rolandic operculum; SupramarginalG, supramarginal
gyrus; Sup MedG, superior medial gyrus; Sup TempG, superior temporal gyrus.

conducted separately for women and men for the self-condition.
The outcome of these analyses yielded different brain regions
for women and men including clusters in the left insula
and rolandic operculum, right angular gyrus and superior
medial gyrus.

Self-Appraisal of Gender Stereotypes
In our study, we confronted women and men with traits that had
been rated as typically female or male in a pre-study. As expected,
women and men self-ascribed more gender-congruent attributes.
However, only in women this difference reached significance,
i.e., women agreed more often to female rather than male traits
when referring to themselves. At the same time both women and
men reported the desire to exhibit more masculine attributes.
A tentative explanation for this observed pattern may consider
the occupationaI situation for women who are underrepresented
in academic leadership positions and earn less than men in most

TABLE 6 | Resuls of whole brain regression of sex hormone values on brain
activation.

Women Men

Estradiol n.s. R angular gyrus; k = 49
(MNI: 54, −52, 30)∗∗

Progesterone L Insula, k = 90 (MNI −35,
−15, 12)∗

R Superior Frontal Gyrus;
k = 46 (MNI: 25, 7, 55)∗

Testosterone L Postcentral gyrus, k = 70
(MNI: −53, −12, 30)∗

n.s.

∗Association with male attributes. ∗∗Association with female attributes.

Western societies (Carnes et al., 2015; Salinas and Bagni, 2017).
Such a discrepancy between the sexes seems to be in part due to
conscious or unconscious discrimination against women already
at the level of applications. For example, data from Moss-Racusin
et al. (2012) demonstrate that for identical applications of a bogus
female and male student for a position as laboratory managers,
men were rated higher on competency and were rather hired
and mentored by female and male faculty members. Similary,
Steinpreis et al. (1999) found that for identical applications of
female and male scientists both female and male reviewers were
more likely to hire the male applicants. Interestingly, not only
women but also men are discriminated against when applying
for jobs that appear not suitable for them (Davison and Burke,
2000) like communal roles including working as a nurse or social
worker (Croft et al., 2015). Also in politics more masculine traits
appear beneficial for election success. For example, studies by
Klofstad et al. (2012) and Anderson and Klofstad (2012) showed
that participants listening to differently pitched female and male
voices, voted more often for persons with deeper more masculine
voices which was true both for female and male candidates. Thus,
at least in the above mentioned domains it can be beneficial
to exhibit masculine attributes to increase success and therefore
the observed desire to exhibit more masculine traits could make
sense. However, we want to point out that this narrative is only
speculative and cannot explain why male attributes should be
preferred in other non-professional contexts. We therefore ask
further studies to conduct more detailed and domain-specific
investigations to back or refute our speculations about the desire
to exhibit more masculine traits which we found for both women
and men.
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FIGURE 5 | Display of the interaction Attribute × Participant Sex during ROI-analysis in the right putamen. Men showed higher activation for male attributes whereas
women had higher activation for female adjectives. ∗p < 0.05.

TABLE 7 | Region of interest analysis with indication of main effects and interactions with the factor participant sex.

ROI Factor condition Factor attribute Factor participant sex Sex interactions

L Amy n.s. n.s. n.s. ∗∗F (1,32) = 4.62, p = 0.039, η2 = 13

R Amy n.s. n.s. n.s. ∗∗F (1,32) = 4.69, p = 0.038, η2 = 13

Precuneus F (2,64) = 5.25, p = 0.008, η2 = 0.14 n.s. n.s. n.s.

L TPJ F (2,64) = 20.26, p < 0.001, η2 = 0.39 F (1,32) = 8.03, p = 0.008, η2 = 0.20 n.s. n.s.

R TPJ F (2,64) = 14.06, p < 0.001, η2 = 0.31 n.s. n.s. n.s.

MPPC F (2,64) = 21.04, p < 0.001, η2 = 0.40 F (1,32) = 8.11, p = 0.008, η2 = 0.20 n.s. n.s.

MPFC F (2,64) = 74.11, p < 0.001, η2 = 0.70 F (1,32) = 5.27, p = 0.028, η2 = 0.14 F (1,32) = 4.15, p = 0.05, η2 = 0.12 n.s.

R Putamen F (2,64) = 3.57, p = 0.034, eta = 0.10 n.s. n.s. ∗F (2,64) = 6.01, p = 0.004, η2 = 16

Amy, amygdala; L, left; MPFC, medial prefrontal cortex; MPPC, medial posterior parietal cortex; R, right; TPJ, tempo-parietal junction. ∗∗Condition × Participant
Sex × Attribute; ∗Attribute × Participant Sex.

Sex Differences in Neural Networks of
Self- and Other-Appraisal
Previous studies have pointed to differences during the appraisal
of self- and other-related attributes with parts of the MPFC being
more active during self-referential processing (D’Argembeau
et al., 2007; Pfeifer et al., 2007; Veroude et al., 2013). In contrast to
this, the precuneus has been most consistently recruited during
the retrieval of other-related information (Pfeifer et al., 2007;
Quadflieg et al., 2009). More tentative had been results about sex
differences during such self- and other-processing. In this regard
Veroude et al. (2013) pointed to higher activation of bilateral TPJ
and MPPC in men compared to women during both self- and
other-processing.

Small Evidence for Sex Differences
Here we showed that women and men had higher gender-
congruent activation in bilateral amygdala across all conditions
and specific to the self-condition in the right putamen. The
putamen forms part of the basal ganglia that is involved in
movement and reward processing by means of dopaminergic
signaling (Schultz, 2016). This finding could point to a greater

reward value of same sex attributes in women and men but
this is limited due to the lack of correlations between neural
activations and behavior that could help to inform the meaning
of brain activation. In a similar vein comes the gender-congruent
activation in bilateral amygdala. The amygdala is known for
its involvement in the processing of emotional information
(Lindquist et al., 2012; Dricu and Frühholz, 2016) and is also
generally considered as a salience detector (Sander et al., 2003).
Thus, another tentative interpretation for our results could be
the increased salience of gender-congruent items in women and
men leading to gender-congruent activation in the amygdala.
Of further note, regressions of sex hormone levels on whole
brain activation revealed stronger activation in left insula and
left postcentral gyrus with rising progesterone and testosterone
levels, respectively in women during self-processing of male
attributes. None of these regions is located in the vicinity of the
anterior cingulate cortex which was identified to be most strongly
active during self compared to other processing in general (see
“General Effects of Self- and Other-Appraisal”). Only the insula
has been repeatedly implicated in self-referential processes (Enzi
et al., 2009; Modinos et al., 2009) which could thus speak for
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a further pronunciation of self-related processes in association
with progesterone levels. However, the separate correlations of
sex hormone levels with the activations in several regions of
interest yielded no conclusive pattern, implicating only higher
bilateral amygdala activation with higher estradiol levels during
presentation of male attributes in men. Human research still lacks
a clear understanding of the cognitive effects of changes in sex
hormone levels which has been most consistently investigated
within women (e.g., Sundström-Poromaa and Gingnell, 2014;
Toffoletto et al., 2014) however with no clear conclusions. In our
experiment a multitude of statistical comparisons was performed
as we analyzed women and men separately for female and male
attributes in several regions. Therefore our data can only be
considered preliminary and need further experimental support to
corroborate and further specify them before strong conclusions
can be derived.

General Effects of Self- and
Other-Appraisal
However, based on our study, we were able to give substantial
evidence for a general neural difference between self- and other
processing which we therefore want to explain in a bit more
detail here.

The Self
Our results show that a cluster in the left anterior cingulate
cortex extending to the insula was more strongly active during
the self- compared to the other-conditions which is in line with
previous reports showing stronger insular activation for self-
processing compared to familiarity judgments (Qin et al., 2012).
Especially the anterior insula has been repeatedly related to the
awareness for internal body states (Craig, 2004, 2009) and was
suggested to code emotional salience (Northoff et al., 2011). Thus,
it does not come as a surprise that self-referential processing
involves the anterior insula (Enzi et al., 2009; Modinos et al.,
2009) suggesting that stronger personal involvement during self-
reflection shares part of the neural substrates important for
coding of emotional salience.

Others
Our results furthermore show that a cluster in the precuneus
was more strongly activated during the other compared to
the self-condition. The precuneus is classically involved in a
variety of cognitive and emotional functions, such as mental
and motor imagery (Cavanna and Trimble, 2006) but also social
cognition, self-agency and self-activation (e.g., Vogeley and Fink,
2003). Interestingly, the precuneus is also an important part
of the default mode network (Utevsky et al., 2014) but its
activation seems to be more relevant for processing of other-
related information. For example, stronger activation of the
precuneus has been reported in participants deciding whether a
sentence applied to another person or not (Veroude et al., 2013).
Also, Qin et al. (2012) report that the precuneus preferentially
responds to stimuli related to (personally) familiar people in
contrast to self-specific stimuli. This fits with our findings as
all participants were familiar with both actors and suggests that
for ascribing the female or male traits to a prototypical woman

(Julia Roberts) or man (Brad Pitt) their choices were based on
classical gender stereotypes.

Limitations
It has been shown that menstrual cycle phase influences
attractiveness self-ratings of the own body (Durante et al.,
2008) which might also translate to self-appraisals. For the
current study we did not assess menstrual cycle phase or oral
contraceptive intake and thus cannot rule out such hormonal
influences played a confounding role (e.g., Pletzer et al., 2015).
Further points of limitation refer to the small number of female
and male participants potentially not allowing to detect more
subtle sex differences. Furthermore, the number of different
female and male items we used made it also impossible to balance
each experimental condition for the same items. However, we
point out that the mean ratings of female and male items did not
differ between conditions and therefore this aspect is an unlikely
confound in our experimental design. Finally, our participants
were mainly students. To the present moment in Germany, there
is still a divide between the number of female and male students
in different fields of academia with 70–90% of male students in
engineering subjects and around 80% of women in educational
science. Both the subject of studies and the gender-ratio has
been shown to impact stereotype processing, e.g., leading to a
stronger stereotype threat when the gender-ratio is off-balanced
(Murphy et al., 2007) or for students facing tasks that are off
their subject of study (Sanchis-Segura et al., 2018). For this
reason our study may not be able to allow general claims both
within our sample of students and beyond academia. Other
factors that may influence gender stereotyping are personality
traits like the big five of personality research: openness to
experience, conscientiousness, extraversion, agreeableness and
neuroticism (Asendorpf, 2005). Unfortunately, we did not collect
such information and await future studies to analyse how they
might affect gender stereotyping.

CONCLUSION

Measuring self- versus other-appraisals to explore behavioral
and neural differences between healthy women and men
revealed that both sexes self-ascribed more gender-congruent
than -incongruent traits while also expressing a higher desire
to exhibit more masculine traits. While fMRI did not detect
general sex differences in the self- and other-conditions, some
subtle differences were revealed between the sexes: both in
right putamen and bilateral amygdala stronger gender-congruent
activation was found which was however not associated with
behavioral measures like the number of self-ascribed female or
male attributes.
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Does Gender Leave an Epigenetic
Imprint on the Brain?
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The words “sex” and “gender” are often used interchangeably in common usage.
In fact, the Merriam-Webster dictionary offers “sex” as the definition of gender. The
authors of this review are neuroscientists, and the words “sex” and “gender” mean very
different things to us: sex is based on biological factors such as sex chromosomes and
gonads, whereas gender has a social component and involves differential expectations
or treatment by conspecifics, based on an individual’s perceived sex. While we are
accustomed to thinking about “sex” and differences between males and females in
epigenetic marks in the brain, we are much less used to thinking about the biological
implications of gender. Nonetheless, careful consideration of the field of epigenetics
leads us to conclude that gender must also leave an epigenetic imprint on the brain.
Indeed, it would be strange if this were not the case, because all environmental
influences of any import can epigenetically change the brain. In the following pages,
we explain why there is now sufficient evidence to suggest that an epigenetic imprint for
gender is a logical conclusion. We define our terms for sex, gender, and epigenetics, and
describe research demonstrating sex differences in epigenetic mechanisms in the brain
which, to date, is mainly based on work in non-human animals. We then give several
examples of how gender, rather than sex, may cause the brain epigenome to differ in
males and females, and finally consider the myriad of ways that sex and gender interact
to shape gene expression in the brain.

Keywords: sex, gender, epigenetics, stress, cosmetics, alcohol

SEX AND GENDER

Most animals on earth come in two sexes. From a biological perspective, sex is defined by gamete
size within a species: animals with large gametes (i.e., eggs) are female and those with small gametes
(i.e., sperm) are male (Maynard Smith, 1978). In mammals, eggs are made in ovaries and sperm in
testes, so gonad type is often used as a shorthand for defining sex. Intersex gonads (part testis-part
ovary) are very rare, so biological sex in mammals is a largely dichotomous variable.

Which gonad develops is determined by chromosomal sex (XX versus XY). If a Y chromosome
is present, a gene cascade is initiated that causes the previously undifferentiated gonads to become
testes; in the absence of a Y chromosome, an alternate cascade leads to the differentiation of ovaries
(Brennan and Capel, 2004; Bowles and Koopman, 2013). The testes produce an androgenic steroid
hormone, testosterone, for a brief perinatal period, and this hormonal exposure is responsible
for masculinization of the external genitalia, internal duct systems, and other somatic differences
(Jost, 1978). Testosterone also enters the developing brain and acts via androgen receptors or,
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after aromatization to an estrogen, via estrogen receptors to cause
many of the known neural sex differences in animals (Morris
et al., 2004; Forger et al., 2016; McCarthy et al., 2017).

Thus, biologists define “sex” based on what gonad is present
and, in most cases, the chromosomal, gonadal, hormonal,
and anatomical sex are all in accord. In individuals with
Differences of Sexual Development, however, this is not the
case, e.g., chromosomal males who have testes, but do not
make the receptors to respond to testosterone, or chromosomal
females exposed to excess androgens early in development
(Lee et al., 2016).

In contrast to the relatively well-accepted delineation of
sex, suggested definitions of “gender” are more varied. The
Canadian Institutes of Health Research defines gender as,
“socially constructed roles, behaviors, expressions and identities of
girls, women, boys, men, and gender-diverse people. It influences
how people perceive themselves and each other, how they act
and interact, and the distribution of power and resources in
society” (CIHR, 2015). Most of the work on epigenetics in
the brain has been performed on experimental animals, which
complicates the job of this essay because it is debatable whether
non-human animals have gender, based on this definition.
If gender requires socially constructed norms, and that an
individual identifies as one sex or the other, it is hard to
demonstrate gender in non-human animals. On the other hand,
to the extent that gender is based on how you are treated by
conspecifics, or to the “power and resources” you are likely to
accrue, there are many examples of gender in the animal world.
The biologist Joan Roughgarden has suggested defining gender
simply as, “the appearance, behavior, and life history of a sexed
body” (Roughgarden, 2009). Most social scientists embrace a
definition of gender as a “system that restricts and encourages
patterned behavior” (Risman and Davis, 2013). In other words,
the emphasis is not on the individual (i.e., gender identity) but on
social interactions that steer the individual’s behavior in different
ways, based on their biological sex.

Given the latter two definitions, it may be argued that animals
have gender, and this is how we define gender for the purposes
of this review. Biological sex and gender often interact in
complicated ways. However, we will refer to something as a “sex
difference” when the difference appears to be due to factors such
as sex chromosomes or gonadal hormones, and as a “gender
difference” when the difference is likely due to social factors, i.e.,
when an individual is treated differently by conspecifics due to
the individual’s perceived sex.

EPIGENETICS

Epigenetic modifications determine what genes are expressed
and represent mechanisms by which the genome can respond
to environmental stimuli. The word “epigenetic” (literally, above
genetics) was coined by C.H. Waddington in the 1950s to explain
how different phenotypes can emerge from the same genotype. In
other words, individuals (or cells) with the same genes may wind
up with very different observable characteristics (phenotypes)
based on environmental interventions at key developmental

stages (Waddington, 1957). What controlled those changes was
mysterious at the time, but many of the molecular mechanisms
underlying the phenomena envisioned by Waddington have now
been identified.

The DNA in every cell nucleus is packaged into chromatin
by winding around histone proteins. The two best-understood
types of epigenetic modifications are (1) post-translational
modifications to histones, such as acetylation or methylation,
and (2) covalent modifications to the DNA strand itself, e.g., by
the addition of methyl or hydroxymethyl groups (Stricker et al.,
2017). These epigenetic modifications are controlled by enzymes
(e.g., histone acetyltransferases or DNA methyltransferases)
and, once placed, they influence the likelihood that a given
gene is expressed. For example, DNA methylation is often
associated with gene repression, whereas DNA hydroxy-
methylation may facilitate transcription (Spruijt et al., 2013;
Mendonca et al., 2014).

EPIGENETICS AND SEXUAL
DIFFERENTIATION OF THE BRAIN

A transient perinatal exposure to testosterone or its metabolite,
estradiol, causes many of the best-studied sex differences in
rodent brains, and recent evidence suggests that epigenetic
mechanisms underlie many of these hormonal effects (McCarthy
et al., 2009; McCarthy and Nugent, 2015; Forger, 2016, 2018). For
example, sex differences in the preoptic area of the hypothalamus
are disrupted by injecting a DNA methyltransferase inhibitor
directly into the brains of newborn rats or mice during the
critical period for sexual differentiation (Nugent et al., 2015;
Mosley et al., 2017). Similarly, a neonatal disruption of histone
acetylation (again, by inhibiting the enzymes that place these
marks) prevents the development of sex differences in male rat
copulatory behavior (Matsuda et al., 2011), and in size of the bed
nucleus of the stria terminalis in mice, a brain region linked to
male sexual behavior (Murray et al., 2009). These findings suggest
that sexual differentiation of the brain requires orchestrated
changes in DNA methylation and histone acetylation.

In another approach, epigenetic marks have been compared
between males and females. Based on whole-genome surveys,
both histone methylation and DNA methylation patterns differ
by sex in the mouse preoptic area (Ghahramani et al., 2014; Shen
et al., 2015). Treating newborn female mice with testosterone
partially masculinizes the DNA methylation pattern present in
adulthood (Ghahramani et al., 2014), and sex differences in
the methylation of specific genes also are reversed by neonatal
treatment with gonadal steroids in rats (Schwarz et al., 2010).
Steroid hormones alter the expression or activity of enzymes
that place epigenetic marks (Kolodkin and Auger, 2011; Nugent
et al., 2015; Bramble et al., 2016), which may be the mechanism
whereby hormones affect the epigenome.

One study in rodents hints at a role for gender in brain
epigenetics. Mother rats lick their male neonates more than
females (Moore and Morelli, 1979), and the amount of maternal
care a rat pup receives affects DNA methylation of the estrogen
receptor alpha gene in the brain (Champagne et al., 2006;
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Kurian et al., 2010). Edelmann and Auger (2011) randomly
assigned some newborn females to receive the extra attention
normally given to males by simulating maternal licking using a
paintbrush. This did, in fact, masculinize the DNA methylation
pattern and expression of the estrogen receptor alpha gene in
the amygdala of the treated females (Edelmann and Auger,
2011). Being treated differently by your parents based on your
perceived sex is an aspect of gender. In this case, however, the
differential treatment is based on the odor of the neonate’s urine
(Moore, 1985), which in turn is due to differences in circulating
testosterone (i.e., sex).

Some sex differences in the brain are independent of gonadal
hormones, and are instead due to sex chromosome complement
(Arnold et al., 2003; Cisternas et al., 2018). Similarly, sex
chromosomes influence the expression of epigenetic enzymes
and cause sex differences in the epigenome of rodents and
flies (Xu et al., 2008a,b; Jiang et al., 2010; Lemos et al., 2010;
Arnold, 2012). Thus, based on animal studies, both major
determinants of biological sex (sex chromosomes and gonadal
steroids) contribute to differences in the epigenome.

Information on sex differences in the human brain epigenome
is very limited. During some stages of human fetal development,
the brains of males and females differ in both DNA methylation
and hydroxymethylation (Spiers et al., 2015, 2017). Because these
differences are seen before birth, and presumably prior to social
influences, these are “sex differences.” There are also differences
in epigenetic marks in the prefrontal cortex of men and women
(Lister et al., 2013; Xu et al., 2014; Gross et al., 2015). Adults
have had plenty of gendered experiences, however, so whether
these differences are due to sex or gender is not clear. In the
next section, we will consider how gender could – and probably
does – leave an epigenetic imprint on the brain. We present
three specific gendered experiences/exposures occurring at
different periods of human development, and for which
there are data demonstrating epigenetic effects of those
experiences/exposures in animal or human studies.

GENDERED EXPERIENCES AND
EXPOSURES

Early Life Stress
A growing literature demonstrates that early life stress leaves an
epigenetic signature (Roth et al., 2009; Lutz et al., 2018). For
example, rodents separated from their mothers throughout early
life have reduced DNA methylation and altered gene expression
in adulthood within a stress-regulatory brain region (Murgatroyd
et al., 2009). Early life maltreatment – being stepped on and
ignored by the mother – also alters DNA methylation in genes
associated with learning and cell growth, as well as expression
levels of epigenetic enzymes in the rat prefrontal cortex (Roth
et al., 2009; Blaze and Roth, 2013; Blaze and Roth, 2017).

Similar observations have been made in humans. Compared
to children raised by their biological parents, children raised in
orphanages have higher DNA methylation of genes associated
with immune response, mood, and social behaviors (Naumova
et al., 2012). These findings are based on analyses of blood

lymphocytes, however, which are often used for this kind
of work in humans given the difficulty of obtaining brain
samples. In another approach, DNA methylation was compared
in the brains of adults who died by suicide, with or without a
history of childhood abuse. Those who experienced childhood
abuse had decreased hydroxymethylation and expression of
the kappa opioid receptor gene in the cortex, suggesting
epigenetic programming by a history of early life maltreatment
(Lutz et al., 2018).

This work is relevant to the question of whether gender leaves
an epigenetic imprint on the brain because the sex of a baby may
significantly affect the likelihood that it will face early life stress
(Jeffery et al., 1984; van Balen and Inhorn, 2003; Puri et al., 2011).
In recent history, for example, China’s “one child policy” resulted
in the abandonment of many girls and sharply skewed sex ratios
within orphanages (Johnson et al., 1998; Chen et al., 2015).
Similarly, during the Great Chinese Famine, families preferred
to spend their limited resources on boys, leading to disparities
in disability and illiteracy between men and women a generation
later (Mu and Zhang, 2011). Treating children differently based
on their biological sex is an important part of our definition of
gender. Thus, exposure to early life stress changes the neural
epigenome, and early life stress can be a gendered experience.

Environmental Endocrine Disruptors
It is nearly impossible in industrialized societies to avoid exposure
to environmental endocrine disruptors such as bisphenol A,
phthalates, and parabens. In rodents, developmental exposure to
bisphenol A alters DNA methylation in the brain, and changes the
expression of DNA methyltransferases in a brain region-specific
manner (Yaoi et al., 2008; Kundakovic et al., 2013; Zhou et al.,
2013; Walker and Gore, 2017). Moreover, phthalate exposure
during adolescence reduces levels of the epigenetic regulatory
protein, methyl CpG binding protein 2, and alters social and fear
behaviors in rats (Betz et al., 2013). Environmental endocrine
disruptors therefore are clearly capable of altering the brain’s
epigenome and, to the extent that exposure to these chemicals is
gender-based, epigenetic changes may also be gendered.

Interestingly, bisphenol A, phthalates, and parabens are
commonly found in cosmetics, scented lotions, nail polish, and
feminine care products. There is a vast difference in the use of
personal care products between women and men in many parts
of the world, and women do, in fact, have higher urinary levels of
phthalates and parabens than men (Calafat et al., 2010; Biesterbos
et al., 2013; Saravanabhavan et al., 2013). The application of
lotions and cosmetics acutely increases levels of urinary paraben
concentrations (Meeker et al., 2013), and the difference in urinary
levels between males and females emerges in adolescence – the
age at which many girls start experimenting with cosmetics and
skin care products (Calafat et al., 2010; Dewalque et al., 2014).

The elevated phthalates and parabens in women is likely
related to their greater cosmetic use, but is this due to sex or
gender? We would say “sex” if, for example, sex chromosomes
or gonadal hormones control the desire to use cosmetics, or alter
the metabolism or storage of these chemicals in the body. On
the other hand, gender is at play if the difference is primarily
based on social expectations. Evidence strongly suggests a role
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for gender because societal norms for cosmetic use vary over
time and geography: cosmetics were used by men in ancient
Egypt, at the French court in the 17th and 18th centuries, and
by British military officers (Carter, 1998; Tapsoba et al., 2010;
Ribechini et al., 2011). Very recently, cosmetic use has again
become acceptable among men in Western societies (Souiden and
Diagne, 2009). Thus, societal gender norms influence cosmetic
use. Although no human studies have directly addressed this
question, there may well be epigenetic consequences of gendered
exposure to cosmetics and other environmental chemicals.

Alcohol Consumption
Throughout the world, men are more likely to consume alcohol
than are women (Wilsnack et al., 2009). A recent meta-analysis
found that 39% of men and 25% of women globally are
drinkers; moreover, men are more likely to drink excessively,
and the increase in disease burden due to alcohol consumption
is three times higher in men than in women (GBD 2016
Alcohol Collaborators, 2018). This could reflect sex differences:
rodents and non-human primates show sex differences in
voluntary alcohol consumption, and gonadal hormones influence
preference for an alcohol solution in rodents (Forger and Morin,
1982; Morin and Forger, 1982; Juarez et al., 1993; Ford et al.,
2004). Critically, however, the difference in drinking rate between
men and women varies enormously by location. In Nepal, for
example, men are 14 times as likely as women to be drinkers,
whereas in Sweden, the prevalence of drinking is nearly equal
between men and women (GBD 2016 Alcohol Collaborators,
2018). Societal factors therefore play a large role, and alcohol
consumption can safely be categorized as a gendered behavior in
many human societies.

The link to epigenetic changes in the brain in this case
is relatively strong. Several studies have reported changes in
DNA methylation and histone modifications in the postmortem
human brain in association with chronic alcohol consumption
(Ponomarev, 2013; Tulisiak et al., 2017). As in most human
studies, these are correlations, so it remains possible that alcohol
consumption does not cause epigenetic changes in the human
brain, but that existing epigenetic differences predispose some
people to drink. This is where animal studies are again very
helpful: many rodent studies in which animals are randomly
assigned to ethanol exposure demonstrate a causal relationship
between acute or chronic ethanol consumption and epigenetic
changes in the brain (Pandey et al., 2008; Kyzar et al., 2016).

CONNECTING THE DOTS

The argument we are making is that boys and girls, and
men and women, have different exposures and experiences
based on societal expectations or perceived expectations (i.e.,
gender), and that some of these exposures/experiences are
known to cause epigenetic changes in the brain based on
carefully controlled animal studies. In a few cases, the gendered
exposures/experiences have also been associated with epigenetic
changes in humans, although most studies are correlational.
We have presented just three examples above, but countless
experiences/exposures will differ based on gender over a lifetime,
and they will interact in complex ways with one another and with
the epigenetic consequences of biological sex (Figure 1).

A logical extension of this argument is that variations in
gender within a sex will also affect the epigenome. For example,
cosmetic use among Western women varies from zero to many

FIGURE 1 | Hypothetical depiction of the complex interplay of sex and gender on the brain epigenome throughout the lifespan. Chromosomal sex is determined at
conception and can have effects on the epigenome throughout life (red). The gonads differentiate after the first 10 weeks of fetal life in humans; thereafter, sex
differences in gonadal hormones can have acute or lasting effects on the epigenome (gold). The gendered experiences described in this review start as early as birth
(early life stress based on gender; green) and continue into adolescence and adulthood (cosmetic use, alcohol consumption; light blue, purple). Many other
gendered experiences not explicitly addressed in this review will also impact the neuroepigenome (dark blue). The relative contribution of various factors and how
they may change throughout development are not known, but the effects of biological sex and gender will interact in myriad ways throughout life. In some cases,
gender may amplify epigenetic differences due to sex, whereas in other cases, gendered experiences may counteract differences in the epigenome based on
biological sex. Not shown here is the fact that with our current ability to know the sex of an unborn child, gender can start before birth (Al-Akour, 2008).
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products a day and correlates with gender expression and
sexuality (Loretz et al., 2005; Moore, 2006). If cosmetics cause
epigenetic changes, those changes will vary not just between
sexes, but also within sex, across cultures, and over the lifespan.
Indeed, any differences in the brain between men and women –
including those in the epigenome – must be viewed within a
social, historical, and developmental context (Springer et al.,
2012; Rippon et al., 2014).

Our three examples given above emphasize exposures that
differ by gender, because these are more likely to have been
modeled in animal studies (and therefore to have applicable
epigenetic data). However, gender is multi-dimensional, and
any aspect (gender roles, identities, beliefs, etc. . .) may
affect the epigenome. Epigenetic modifications are a way
for experience to alter gene expression and, taken together,
it seems inescapable that gender will leave an epigenetic imprint
on the brain.

That said, few studies have directly examined differences
in epigenetic marks in the brains of men and women, and
none have attempted to separate the contributions of sex and
gender. Demonstrating a causal relationship between gender
and human brain epigenetics will be very challenging, because
this will require not only an experimental design, but also

brain samples collected at the relevant time point(s). Several
authors have proposed methods or best practices for studying
effects of gender on biological outcomes, and inroads have been
made in separating the effects of sex and gender on disease
risk (e.g., Krieger, 2003; Rippon et al., 2014; Pelletier et al.,
2015). Given our lifetimes of layered gendered experiences, and
their inevitable, iterative interactions with sex, it may never
be possible to completely disentangle the effects of sex and
gender on the human brain epigenome. We can start, however,
by including gender in our thinking any time a difference between
the epigenome of men and women is reported.
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Does Sex/Gender Play a Role in
Placebo and Nocebo Effects?
Conflicting Evidence From Clinical
Trials and Experimental Studies
Paul Enck* and Sibylle Klosterhalfen

Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen,
Germany

Sex has been speculated to be a predictor of the placebo and nocebo effect for many
years, but whether this holds true or not has rarely been investigated. We utilized
a placebo literature database on various aspects of the genuine placebo/nocebo
response. In 2015, we had extracted 75 systematic reviews, meta-analyses, and
meta-regressions performed in major medical areas (neurology, psychiatry, internal
medicine). These meta-analyses were screened for whether sex/gender differences
had been noted to contribute to the placebo/nocebo effect: in only 3 such analyses
female sex was associated with a higher placebo effect, indicating poor evidence
for a contribution of sex to it in RCTs. This was updated with another set of meta-
analyses for the current review, but did not change the overall conclusion. The same
holds true for 18 meta-analyses investigating adverse event (nocebo) reporting in RCT
in the placebo arm of trials. We also screened our database for papers referring to
sex/gender and the placebo effect in experimental studies, and identified 28 papers
reporting 29 experiments. Their results can be summarized as follows: (a) Despite higher
sensitivity of pain in females, placebo analgesia is easier to elicit in males; (b) It appears
that conditioning is effective specifically eliciting nocebo effects; (c) Conditioning works
specifically well to elicit placebo and nocebo effects in females and with nausea;
(d) Verbal suggestions are not sufficient to induce analgesia in women, but work in
men. These results will be discussed with respect to the question why nausea and pain
may be prone to be responsive to sex/gender differences, while other symptoms are
less. Lastly, we will discuss the apparent discrepancy between RCT with low relevance
of sex, and higher relevance of sex in specific experimental settings. We argue that the
placebo response is predominantly the result of a conditioning (learning) response in
females, while in males it predominantly may be generated via (verbal) manipulating of
expectancies. In RCT therefore, the net outcome of the intervention may be the same
despite different mechanisms generating the placebo effect between the sexes, while
in experimental work when both pathways are separated and explicitly explored, such
differences may surface.
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TERMINOLOGY

The terms sex and gender refer to biological and psychosocial,
respectively, origins of differences between women and men.
For the purpose of this review these terms will be used
interchangeable to describe any difference observed between men
and women as it may impact on aspects of experimental medicine
and clinical therapeutics, similar to Franconi et al. (2012).

The debate of the terms placebo effect and placebo
response have also filled many pages, but will be ignored
here for matters of simplicity. Both terms describe the
results of a manipulation of treatment by providing an inert
drug (in randomized controlled trials, RCT) or manipulating
an experimental intervention, either for a whole group or
for an individual. It has to be kept in mind, however,
that some of these results of the RCT/experiment may be
due to factors others than the placebo effect, specifically
response biases, the Hawthorn effect, regression to the mean,
spontaneous variation of symptoms, and other influences,
that need to be controlled for, if at all possible (Enck
et al., 2013; Schedlowski et al., 2015). The same ignorance
is applied to the differential use of terms nocebo effects and
nocebo response, for which the same limitations are valid
(Bingel and Placebo Competence Team, 2014).

THE SHORT HISTORY OF
PLACEBO RESEARCH

Historically, the term "placebo" referred only to the use of inert,
pill-like medicines for control of unspecific (not drug-associated)
effects in RCT (Kaptchuk, 1998), and for the – occasional – use
of similar remedies in everyday-medicine (Fassler et al., 2010).
It was later extended to include other and specifically non-
medicinal therapies into the arena of evidence-based medicines.
Placebo-controlled trials in surgery and other "instrumental" and
manual therapies (acupuncture, stimulation techniques such as
TENS, TMS, physical therapies, and alike) (Enck, 2018) often
use the term "sham" instead, to denote that the provision of
placebos in not "inert" any longer: sham surgery for instance can
be associated with significant violating of the body’s integrity.
The application of the concept of placebos for psychotherapy
and therapies alike has received very little and rather late
attention and raises substantial controversy nowadays (Blease,
2018) over the question whether psychotherapy is to a large
extent only placebo therapy (Gaab et al., 2016), or whether the
placebo concept should not be applied at all to psychotherapy
(Kirsch, 2005).

The term "nocebo" has a much younger tradition. It was
initially describing side effects (adverse events, AE) reported in
RCT in the placebo arm of studies, where these AE can only occur
as the consequence of mis-attributing symptoms toward the
ingested (pill) placebo, or as the consequence of having read and
signed AE patient information (Bingel and Placebo Competence
Team, 2014). Nocebo effects follow very much the rules for
placebo effects both in clinical studies and in experimental
settings, as we will describe below, but we will not discuss in more

detail the psychobiological and neurophysiological mechanisms
behind placebo and nocebo effects – these have been extensively
reported by us and others in many reviews in recent years (see
for instance Enck et al., 2008, 2013; Elsenbruch and Enck, 2015;
Schedlowski et al., 2015).

According to Franconi et al. (2012), female patients are
traditionally underrepresented in clinical studies, for different
reasons not to elucidate here (e.g., Pinnow et al., 2009). On the
other hand specifically in the area on pain, sex differences are
well established, both for clinical and for experimental setting
(Paller et al., 2009), but also have been found to be variable with
sexual orientation and identity (Vigil et al., 2014). In the following
sections we will review advances in research over the last decade,
with respect to pain and placebo analgesia.

SEX-EFFECTS ON THE PLACEBO
EFFECT IN RCT

While age has been shown to consistently affect placebo response
rates in a number of clinical conditions investigated during RCT,
sex of the patients has rarely been reported to contribute to
it. Before 2010, there are only a few papers reporting stronger
placebo analgesic responses in male patients (Berkley et al.,
2006; Fillingim et al., 2009). Others failed to find sex difference
in placebo analgesia, e.g., with tooth extraction (Averbuch
and Katzper, 2001), transcutaneous electrical nerve stimulation
(Robinson et al., 1998), and an experimental pain test (Olofsen
et al., 2005) In a benzodiazepine withdrawal study, female
patients had higher placebo responses than males (Saxon et al.,
2001). However, sex differences in individual studies (e.g., Kelley
et al., 2009) for the irritable bowel syndrome), clinical or
experimental, cannot provide sufficient evidence for or reject the
assumption of sex differences existing.

In a 2013 systematic review (Weimer et al., 2015) of meta-
analyses and systematic review of RCT across most medical
subspecialties, based on our JIPS literature database (Enck et al.,
2018), we identified only three out of 75 meta-analyses that
reported higher placebo response rates in female patients than in
males, and in neurological and psychiatric diseases only, namely
restless leg syndrome (Ondo et al., 2013), bipolar mania (Yildiz
et al., 2011), and schizophrenia (Mallinckrodt et al., 2010). This
however, remained not without contradiction by other meta-
analyses of the same clinical conditions (Woods et al., 2005; Fulda
and Wetter, 2008; Chen et al., 2010), and with analyses of similar
size (see Table 1).

This is surprising, given that these 75 analyses – with
more than 1,500 RCT included, in more than 40 different
diseases and with more than 150,000 patients – covered neuro-
logical diseases (Parkinson’s disease, restless leg syndrome,
epilepsy), pain syndromes (migraine, neuropathic pain,
fibromyalgia), psychiatric diseases (depression, schizophrenia,
mania, psychosis, attention-deficit hyperactivity disorder,
addiction), gastrointestinal disorders (visceral pain syndromes,
inflammatory bowel diseases), and other disorders (asthma,
overactive bladder, hypertension, allergy, chronic fatigue,
sleep problems).
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TABLE 1 | Placebo effects in meta-analyses of randomized controlled trials in
selected psychiatric and neurological diseases, with respect to sex influences.

Reference Disease No S Response Sex

Ondo et al., 2013 RLS 32 Pla F > M

Mallinckrodt et al., 2010 Schizophrenia 27 Pla F > M

Yildiz et al., 2011 Bipolar mania 38 Pla F > M

Woods et al., 2005 Schizophrenia 32 Pla F = M

Chen et al., 2010 Schizophrenia 31 Pla F = M

Potkin et al., 2011 Schizophrenia 3∗ Pla F = M

Agid et al., 2013 Psychosis 50 Pla F = M

King et al., 2013 Autism, children 1∗ Pla F = M

Cohen et al., 2010 OCD, anxiety 40 Pla F = M

Newcorn et al., 2009 ADHD children 10 Pla F = M

Waxmonsky et al., 2011 ADHD 2∗ Pla F = M

Buitelaar et al., 2012 ADHD adults 2∗ Pla F = M

Blom et al., 2014 BED 10∗ Pla F = M

Brown et al., 1992 Depression 1∗ Pla F = M

Evans et al., 2004 Depression 4 Pla F = M

Stein et al., 2006 GAD, MDD 12 Pla F = M

Bridge et al., 2009 Depression, children 12 Pla F = M

Brunoni et al., 2009 Depression 41 Pla F = M

Hunter et al., 2010 Depression 1∗ Pla F = M

In further 8 meta-analyses with 287 studies with various gastrointestinal disorders,
no gender differences was found, and neither in 3 other meta-analyses 64 studies in
different with medical conditions (from Weimer et al., 2015; for references not in our
listing, we refer to this paper). No S, Number of RCT included; Response, Placebo
(Pla), nocebo (Noc); Sex, M = Males, F = Females; RSL, Rest leg syndrome;
MDD, Major Depression Disorder; OCD, Obsessive compulsory disease; ADHD,
Attention-deficit hyperactivity disorder; BED, Binge eating disorder; GAD, General
anxiety disorder. ∗ indicates availability of individualized data.

Adding a few more meta-analyses and conditions
published since 2015 (Vase et al., 2015; Ciccozzi et al., 2016;
Chen et al., 2017; Imanaka et al., 2017; Razza et al., 2018; Yeung
et al., 2018) did not reveal additional evidence for higher placebo
response in either sex in any of the diseases. In consequence of
this rather clear result, we are forced to conclude that in RCT in
the direction and size of the placebo response is not related to the
sex of the patients (Weimer et al., 2015).

SEX EFFECTS ON THE NOCEBO
RESPONSE IN RCT

The number of all papers including the term "nocebo" in our
database is 431, of which only 12 (2.7%) refer to sex or gender –
implying that in the discussion of the nocebo effects much less
attention is paid to sex differences. The database contains 18
meta-analyses on nocebo effects in RCT, covering more than 500
RCT with more than 25,000 patients, but excluding meta-analyses
with children and adolescents, papers comparing two or more
treatment modes for one condition, or with one treatment mode
for more than one disease, and all experimental studies. All of
these are in relation to neurological and psychiatric disorders
(see Table 2).

As with the placebo effect, in only three papers an association
of sex and the report AE and study termination due to AE
was noted: in two meta-analysis the nocebo effect was higher

in women (Zis and Mitsikostas, 2015; Meister et al., 2017),
in one it was higher in men (Papadopoulos and Mitsikostas,
2012). This leaves us with a similar conclusion as above, that
in RCT the direction and size of the nocebo response may
not be related to the sex of the patients. It neither seems
to be related to age of the patients, as two analyses showed
higher AE reports in younger patients (Mitsikostas et al.,
2012; Dodd et al., 2018), whereas another two noted higher
responses in the elderly (Papadopoulos and Mitsikostas, 2010;
Zis and Mitsikostas, 2015). Unfortunately however, most studies
neither reported sex nor age as determining factors of the
nocebo effect in RCT, either because it was not possible due to
small numbers for meta-regressions, or it was not of interest
to the authors.

SEX DIFFERENCES IN EXPERIMENTAL
PLACEBO AND NOCEBO STUDIES

The situation is entirely different when placebo experiments are
planned to evaluate the mechanisms behind the placebo/nocebo
effects seen in RCT. Here recruitment of patients or volunteers
can be planned based on a balance sex distribution, and
eventually even matched for other social and biological variables,
e.g., age, BMI, status etc., depending on the underlying
hypotheses. Unfortunately, sex-balanced studies have one
disadvantage that is often either ignored or has led to dismissal
of female test persons altogether, that is the need for assessment
and adjustment of female participants according to their
menstrual cycle, e.g., with pain studies (Iacovides et al., 2015).
In animal work, not only in placebo research, this has vastly
abandoned including female animals at all in many studies
(Couzin-Frankel, 2014). Surprisingly, even in experiments
with patients the sex of patients is sometimes not reported
(e.g., Petersen et al., 2012).

A recent systematic review (Vambheim and Flaten, 2017)
identified 18 experiments in 17 papers (among more than

TABLE 2 | Nocebo effects (adverse events) in meta-analyses of randomized
controlled trials, with respect to sex influences.

Reference Disease No S Response Sex

Meister et al., 2017 Depression 23 Noc F > M

Zis and Mitsikostas, 2015 Alzheimer 20 Noc F > M

Dodd et al., 2018 Bipolar disorder 9 Noc F = M

Hauser et al., 2012 Fibromyalgia 18 Noc F = M

Mitsikostas et al., 2012 Fibromyalgia 16 Noc F = M

Dodd et al., 2015 Major depression 20 Noc F = M

Papadopoulos and
Mitsikostas, 2010

MS: DMT 55 Noc F = M

Papadopoulos and
Mitsikostas, 2010

MS: ST 44 Noc F = M

Papadopoulos and
Mitsikostas, 2012

Neuropathic pain 12 Noc M > F

No S, Number of RCT included; Response, Placebo (Pla), nocebo (Noc);
Sex, M = Males, F = Females; MDD, Major Depression Disorder; CIDP,
Chronic inflammatory demyelinating polyneuropathy; MS, Multiple Sclerosis; ST,
Symptomatic treatment; DMT, Disease modifying treatment.
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500 experiments, according to our JIPS database) reported in
healthy volunteers in which sex as a contributing factor was
either investigated purposely, or occurred incidentally with the
data evaluation. To these 18 experiments we added 9 further
experiments in healthy volunteers and 2 in different patient
groups (Liccardi et al., 2004; Skyt et al., 2018).

EXPERIMENTAL PLACEBO STUDIES

A total of 18 experiments were performed on placebo responses
in healthy volunteers (Table 3), nearly an equal part showed
either stronger responses in males (N = 7) and in females
(N = 6), and 5 showed no sex differences, leaving the
question unanswered. Of the three experimental studies in
patients, two showed stronger placebo responses in females while
one was inconclusive.

It should be noted, however, that 12 of the 18 studies on this
group are from three laboratories only: 4 from the Flaten lab in
Tromsö, Norway, 3 from the Elsenbruch lab in Essen, Germany
and 5 from our Düsseldorf/Tübingen labs, the remaining six
are from six different labs around the world, indicating that
except in these three labs, sex effects were probably accidental
finding but not the focus of research. In the three laboratories
providing more than one study, one group showed a male
predominance, one a female predominance, and one found
consistently no sex differences. It seems from the distribution
in Table 3 that there is a trend for placebo analgesia to be
more effective in males, while with experimentally induced
nausea females report higher placebo responses. Whether this
is due to a laboratory-specific bias or specific to the clinical
condition (pain or visceral pain versus nausea, for instance), or

TABLE 3 | Placebo experiments reporting sex in healthy volunteers either by
verbal induction or conditioning of the response (data in part from Vambheim and
Flaten, 2017, supplemented by further studies).

Inter-

Reference No (Fem) Method Condition vention Sex

Aslaksen and Flaten, 2008 63 (22) Verbal Pain Pla M > F

Flaten et al., 2006 84 (47) Verbal Pain Pla M > F

Aslaksen et al., 2011 33 (17) Verbal Pain Pla M > F

Bjorkedal and Flaten, 2011 23 (7) Verbal Pain Pla M > F

Butcher and Carmody, 2012 20 (10) Verbal Pain Pla M > F

Abrams and Kushner, 2004 41 (25) Verbal Distress Pla M > F

Oken, 2008 40 (20) Verbal Cognition Pla M > F

Kotsis et al., 2012 36 (18) Verbal Visceral pain Pla F = M

Roderigo et al., 2017 60 (30) Verbal Visceral pain Pla F = M

Theysohn et al., 2014 30 (15) Verbal Visceral pain Pla F = M

Weimer et al., 2012 64 (32) Verbal Nausea Pla F = M

Horing et al., 2013 32 (16) Conditioning Nausea Pla F = M

Krummenacher et al., 2014 49 (23) Verbal Pain Pla F > M

Colloca et al., 2015 109 (54) Verbal Pain Pla F > M

Haltia et al., 2008 24 (12) Verbal Dop response Pla F > M

Klosterhalfen et al., 2005 24 (12) Conditioning Nausea Pla F > M

Stockhorst et al., 2014 24 (12) Conditioning Nausea Pla F > M

Weimer et al., 2013 64 (32) Verbal Rot.tolerance Pla F > M

No (Fem), Total number of volunteers included (number of females); Intervention,
Placebo (Pla), nocebo (Noc); Sex, M = males, F = Females.

to different methods of placebo induction (verbal instruction
versus conditioning), cannot be answered due to the small
number of studies.

It is noteworthy though that placebo conditioning experi-
ments have never worked for visceral pain (Sigrid Elsenbruch,
personal communication); none is reported in the literature so
far, despite own and other’s attempts. Taking visceral pain out of
the equation, it appears that verbal induction of analgesia works
better in men than in women.

Important to note also is the fact that the Colloca et al.
(2015) study used oxytocin for support the placebo effect,
which is known to work specifically well in females, and
may explain the paradoxical finding – compared to all other
placebo analgesia studies that reported higher responses in
males. The Krummenacher et al. (2014) study was performed
in children, so that data are not easily transferable to adults
(Weimer et al., 2013).

EXPERIMENTAL NOCEBO STUDIES

Table 4 lists the 8 experiments performed to induce a nocebo
reaction in healthy volunteers; here the distribution seems
cleared: Five of the eight studies, and in addition the only patient
study reports higher nocebo responses in females than in males,
and only 1 male predominance; two remain inconclusive.

It is noteworthy that among the six with stronger responses
in females, four are conditioning studies, as are two of the
placebo studies (see Table 3). This underlines our assumption
that conditioning may work specifically well in females. When
we combine the experimental placebo and the nocebo studies
in healthy volunteers and compute a chi-square distribution
for conditioning versus expectancy with female predominance
versus female non-dominance (F = M and M > F), it yields
significance (Fisher’s Exact test, p = 0.06, one-sided).

BEHAVIORAL VERSUS PHYSIOLOGICAL
RESPONSES

Of specific note is that none of the four studies on visceral
placebo analgesia ever produced sex differences at the behavioral

TABLE 4 | Nocebo experiments reporting sex in healthy volunteers either by
verbal induction or conditioning of the response (data in part from Vambheim and
Flaten, 2017, supplemented by further studies).

Reference No (Fem) Method Condition Condition Sex

Swider and Babel, 2013 84(42) Conditioning Pain Noc F > M

Aslaksen et al., 2015 111(76) Verbal Pain Noc F > M

Klosterhalfen et al., 2009 (1) 48(24) Conditioning Nausea Noc F > M

Faasse et al., 2015 82(51) Conditioning AE Noc F > M

Lorber et al., 2007 86(51) Conditioning AE Noc F > M

Elsenbruch et al., 2019 60(30) Verbal Visceral pain Noc F = M

Stumpf et al., 2016 100(50) Verbal Itch Noc F = M

Klosterhalfen et al., 2009 (2) 48(24) Verbal Nausea Noc M > F

No (Fem), Total number of volunteers included (number of females); Intervention,
Placebo (Pla), nocebo (Noc); Sex, M = males, F = Females; AE, Adverse events.
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(pain report) level, but one showed sex-dependent brain
correlates of a placebo intervention despite equal subjective pain
reports (Theysohn et al., 2014): Women exhibiting stronger
responses in some brain regions (insular, prefrontal cortex) in
anticipation of pain, but lower downregulation of activation
in the same areas during the pain, in contrast to men; this
may be indicative of the known higher pain sensitivity of
females. An early PET study had demonstrated that females
when exposed to placebo show significantly greater brain
activation in the prefrontal cortex, as compared to the males
(Paulson et al., 1998). Further imaging studies showed that
the (blinded) application of i.v. glucose induced dopamine
and increased glucose binding in the striatum in men but
not in women (Haltia et al., 2008) and differentially affected
blood pressure between sexes (Haltia et al., 2007), underlining
a similar mechanisms at the CNS level than the Theysohn
et al. study. Sex differences have also been shown to exists for
the opioid system (Niesters et al., 2010), further supporting
and explaining these differential effects on the background of
approved involvement of the opioid (Sauro and Greenberg,
2005) and dopamine system (Scott et al., 2007, 2008) in
placebo analgesia.

Other neuro-endocrine mediators have been nominated to the
placebo response, among the first were NO (Stefano et al., 2001;
Fricchione and Stefano, 2005), oxytocin (Enck and Klosterhalfen,
2009), the endocannabinoid system (Benedetti et al., 2011),
and CCK (Benedetti et al., 2006). While for the first (NO),
an empirical prove has never been presented, the involvement
and OXT has been shown (Kessner et al., 2013; Colloca et al.,
2015; Tracy et al., 2017), though not without contradictory data:
While OXT worked in enhancing placebo analgesia, especially
in women (Colloca et al., 2015; Tracy et al., 2017), it did not in
dermal itch (Skvortsova et al., 2018). Its greater action in women
supports the behavioral finding of smaller effects in women in
pain challenges, as compared to men: mere verbal suggestion of
beneficial effects of presumed analgesics (in fact, placebos) is not
sufficient to induce analgesia in women, but requires additional
trust, mediated by OXT.

For CCK the involvement in nocebo hyperalgesia has
only shown in one study so far (Benedetti et al., 2006),
and for the endocannabinoid system, supporting evidence
has been shown by Pecina et al. (2014). Specifically for
placebo and nocebo effects of hypobaric pressure (high altitude)
sickness symptoms, the involvement of prostaglandins has
been shown (Benedetti et al., 2014), but neither of these
neuroendocrine mediator produced differential effects between
the men and women.

SEX EFFECTS ON EXPERIMENTER –
VOLUNTEERS INTERACTIONS

In a sham-acupuncture trial with one male and one female
therapist, the female acupuncturist induced greater trust than
the male in having received true acupuncture (White et al.,
2003). In the re-evaluation of a RCT in 120 IBS patients, the
female physician produced greater symptom improvements in

the drug and the placebo arm of the trial than her two male
colleagues, and more female than male patients responded to
placebo (Enck et al., 2005). Both studies can point toward the
potential role of sex of doctors in the placebo responses, but
cannot prove it.

In an experimental pain study by Kallai et al. (2004) significant
interaction of the sex of male and female experimenter (N = 4
each) and sex of male and female volunteers (N = 80 each) on
pain tolerance (cold pressor test) indicated that subjects tolerated
pain longer when investigated by an experimenter of opposite sex.
A significant main effect was found for sex of the experimenter:
higher pain intensities and higher pain tolerance were found with
female experimenters.

The first experiment in a placebo research setting (Flaten
et al., 2006) noted higher placebo analgesia in males than in
females following verbal manipulation of expectancies – in this
experiment they used five female nurses as experimenters. To
further explore sex differences on pain perception, they included
experimenters of both sexes (n = 3 each) in another experiment
(Aslaksen et al., 2007) and found significant interaction between
both factors, in that female experimenters produced higher
placebo analgesia in male volunteers than in females, while male
experimenters did not produce similar responses, neither with
male nor with female participants. This was not reflected in
physiological data (heart rate), indicating – so the authors –
the sex effect seen is probably due to psychosocial factors.
In a third placebo analgesia experiment, this time with 8
experimenters (4 females), and with 64 volunteers (32 females),
equally distributed in a balanced fashion, the dominant male
response to female experimenters was not replicated. Instead
significant sex (experimenter) × sex (volunteers) with a
larger placebo analgesic response in males reporting to male
experimenters, compared with male subjects reporting to female
experimenters. With respect to pain reports (but not to placebo
analgesia) the influence of experimenter sex persisted, however,
male participants reported lower pain to female experimenters
compared with the male experimenters in line with previous
studies, as is a significant main effect of experimenter sex,
with lower pain reports to female experimenters than to
male experimenters.

Further evidence for a sex-by-sex interaction comes for
two other placebo experiments, however, except Flaten et al.
(2006), neither study has varied systematically the number
and sex of the experimenters, and it may well be that the
effects seen are therefore not sex- but personality-linked.
Stumpf et al. (2016) noted no sex difference in the placebo
response for itch, but a difference between the one male
and female investigators, with respect to the exaggerated
verbal suggestion and the respective control conditions, with
the female experimenter producing higher flares size in the
histamine condition. In a nausea study by Weimer et al.
(2012) that provided verbal information of the anti-emetic
effect of ginger (placebo), men who received placebo responded
stronger to placebo information when provided by the male
experimenter, and to ginger information when provided by the
female experimenter; such effect was not seen in females. One
explanation provided by the authors is that women’s behavior
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is stronger connected to their symptoms (and to information
provided) than men’s behavior.

WHY APPEAR PAIN AND NAUSEA
PRONE TO (OPPOSITE) SEX
DIFFERENCES IN PLACEBO/
NOCEBO RESPONSE?

Placebo and nocebo effects, as has been shown by many
experimental investigations, can reliably be elicited in healthy
volunteers, with many experimental paradigms, verbally induced
or conditioned, but specifically with pain and nausea. At the same
time, only pain and nausea have been shown to reliably be effected
by sex, and two opposite conclusions can be drawn from the
above discussed data:

(1) Despite higher sensitivity toward pain in females, placebo
analgesia is easiest to elicit verbally in males.

(2) Conditioning is specifically effective to elicit nocebo effects,
and works specifically well in females and with nausea.

For both conclusions, a rational concept is needed, despite the
fact that they are based on only a few experiments from only a
few placebo research groups, not necessarily interested in sex and
gender differences per se.

For one, the above (Tables 3, 4) displayed distribution of
research paradigms may be biased by an arbitrary or rational
selection processes: Investigating placebo analgesia (instead of
placebo responses in other areas of medicine) is determined –
among others – by the simplicity of testing pain under laboratory
conditions through a variety of techniques, that all (or many)
also allow exportation into brain scanners and other advanced
research technology. As we have elucidated before (Enck et al.,
2018), our own decision to focus on nausea and a rotation
paradigm was made before this was labeled placebo research
(in 2004), as was our interest in sex differences, e.g., of nausea
susceptibility (Stockhorst et al., 1998; Klosterhalfen et al., 2000).

Both pain and nausea were among the earliest clinical condi-
tions that gain interest for their strong placebo responsiveness,
as early reports from Beecher (1955) and Wolf (1959) indicate.
At the same time, pain as well as nausea are among the most
frequent symptoms reported in medicine, be it in clinical practice
as subjective symptom in many somatic and functional diseases
(Enck et al., 2016, 2017), or as adverse events or patient reported
outcomes in RCT of drugs and other interventions, also in the
placebo arms of trials (Rief et al., 2006). At the same time, both
symptoms lack a biological correlate (biomarker) that can be used
reliably to measure it, so that medicine is still relying on subjective
assessment of its nature (threshold, tolerance, intensity) (Weimer
et al., 2014; Saltychev et al., 2016).

Both symptoms are not per se diseases by their own, but
rather indicative of an underlying process that requires medical
attention and explanation, and only as a chronic condition
(without such a process) become markers of a disease, as chronic
pain or recurrent nausea and vomiting. Nausea has been called an
maladaptation symptom, e.g., in the context of motion sickness
(Lackner, 2014). For women, especially nausea has an additional

health relevance not apparent for men: Nausea may be indicative
of pregnancy at an early stage, and may serve as a biological
warning signal in the interest of the safety of the unborn life, that
has overcome from evolution.

The apparent difference between men and women with
regards nausea on the one hand, and to verbally induced or
conditioned responses on the other hand is best illustrated by
the Klosterhalfen et al. (2009) experiment where we showed
that women respond to conditioning of nausea symptoms
much better than men, while men were more susceptible
toward verbally induced symptom provocation. The obvious
interpretation of these differences is that for women, learning
mechanisms dominate – and previously learned content remains
relevant -, while in men, an acutely provided information is of
higher relevance than past experiences. This may also explain
the higher susceptibility of men for verbally induced placebo
analgesia, despite their lower overall pain sensitivity.

Three more experiments from our pre-placebo research
tradition may further illustrate the importance of sex for nausea
experience: In a study using a circular-vection drum to induce
nausea (Klosterhalfen et al., 2008), we found that women
responded stronger to the stimulus while sitting, while in men,
the lying position was much more aversive. Significant differences
between sexes were also found for habituation to repetitive
rotation exposure: both endocrine and inflammatory markers
habituated differently between men and women with multiple
(five) rotations on the same day: increases in men and decreases
in women in the first session versus increases in men and in
women in the last session (Rohleder et al., 2006). With rotations
repeated over (five) consecutive days (Meissner et al., 2009),
males responded stronger on day 1 and reduced responses on
days 2 and 3, while women responded stronger on day 3, as
compared to days 1 and 2. For days 4 and 5, these trends reversed,
again differentially between sexes.

All these data has led us to believe that both psychological
and biological factors contribute to nausea reports in these
experimental situations and interaction in rather complex ways,
and presumably involving other factors that our experiments did
not completely control for (Klosterhalfen et al., 2005, 2006).

THE APPARENT DISCREPANCY
BETWEEN RCT AND EXPERIMENTS
REQUIRES AN EXPLANATION

In 2012, Franconi et al. (2012) stated that the available data are
too preliminary in order to reach to a definitive conclusion, but
that a sex effect on placebo responses is conceivable. In 2013,
Weimer et al. (2015) found that sex effects on placebo responses
in RCT across medicine and its subspecialties are not visible
and can therefore be ignored. A few years later the evidence has
substantially strengthened for sex effects in experimental work on
placebo and nocebo effects, as we show above, but still remains
poor for clinical RCT data. This apparent discrepancy between
RCT and experimental data also needs an explanation.

The best explanation that we can provide today is referring
to the different nature of experiments on the one hand and
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RCT on the other. In a well-planned experiment, the separation
of expectancy manipulation and learning/conditioning – as the
two main underlying mechanisms of the placebo response –
can be achieved, and the relative contribution of either can
be explored. For instance, this allowed Colloca and Benedetti
(2009) and others, to directly compare the relative potency of
a novel learning mechanisms for placebo analgesia (by social
observation) to the other two (expectation and conditioning).

In a randomized placebo-controlled trial, in contrast, the
amount and degree of factors referring to patients’ learning
(medical history, previous therapies and their success and/or
failure, duration of knowing the treating doctor, etc.) and
to expectancies delivered and associated with the treatment
(informed consent and AE reports, symptom diaries, number

and intensity of doctor-patient contacts etc.) is neither known
nor balanced, and may vary from patient to patient as well, e.g.,
in relation to his/her social environment and the "placebo by
proxy" influences (Grelotti and Kaptchuk, 2011). Under these
circumstances it is conceivable that any existing differences in
placebo responsiveness between the sexes are averaged out in
RCT, and result in equally sized placebo effects in men and
women, as we have seen.
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Despite major research interest regarding gender differences in emotion regulation, it
is still not clear whether men and women differ in their basic capacity to implement
specific emotion regulation strategies, as opposed to indications of the habitual
use of these strategies in self-reports. Similarly, little is known on how such basic
capacities relate to indices of well-being in both sexes. This study took a novel
approach by investigating gender differences in the capacity for generating cognitive
reappraisals in adverse situations in a sample of 67 female and 59 male students,
using a maximum performance test of the inventiveness in generating reappraisals.
Participants’ self-perceived efficacy in emotion regulation was additionally assessed.
Analyses showed that men and women did not differ in their basic capacity to generate
alternative appraisals for anxiety-eliciting scenarios, suggesting similar functional
cognitive mechanisms in the implementation of this strategy. Yet, higher cognitive
reappraisal capacity predicted fewer depressive daily-life experiences in men only. These
findings suggest that in the case of cognitive reappraisal, benefits for well-being in
women might depend on a more complex combination of basic ability, habits, and
efficacy-beliefs, along with the use of other emotion regulation strategies. The results
of this study may have useful implications for psychotherapy research and practice.

Keywords: cognitive reappraisal, emotion regulation, gender differences, depression, maximum performance

INTRODUCTION

Among the most pervasive differences between men and women in the realm of emotion is
women’s heightened vulnerability toward the development of affective disorders, in particular
depression and anxiety (e.g., Nolen-Hoeksema, 2001; Kessler et al., 2007; Steel et al., 2014).
Over the years, this female proneness to depressive symptoms has been attributed to heightened
emotional reactivity toward negative stimuli (Bradley et al., 2001; Kessler, 2003; Kelly et al.,
2008) as well as potentially maladaptive emotion regulation (e.g., Garnefski et al., 2004; Nolen-
Hoeksema, 2012), both behaviorally and on the level of the brain (e.g., Domes et al., 2010;
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Whittle et al., 2011; Stevens and Hamann, 2012). However,
consistent empirical support for sex differences especially in
emotion regulation that may in turn elucidate gender differences
in several types of psychopathology is sparse (see Nolen-
Hoeksema and Aldao, 2011; Whittle et al., 2011; Zimmermann
and Iwanski, 2014). This, along with increasing recognition that
deficient emotion regulation is at the core of various disorders
(Martin and Dahlen, 2005; Aldao and Nolen-Hoeksema, 2010;
Hofmann et al., 2012; Berking et al., 2014; Joormann and Stanton,
2016), highlights the need for more in-depth investigations on
gender differences1 in the proficiency of implementing certain
emotion regulation strategies.

One emotion regulation strategy that merits special attention
in this case is cognitive reappraisal. Cognitive reappraisal aims
at changing the emotional impact of a situation by deliberately
viewing it from a different perspective by using alternative
situational interpretations (e.g., Lazarus and Alfert, 1964;
Lazarus and Folkman, 1984; Gross and John, 2003). Converging
evidence from multiple studies has shown that cognitive
reappraisal is particularly powerful in dealing with adverse
events, sustainably regulating negative affect and decreasing
depressive symptoms (e.g., Martin and Dahlen, 2005; Augustine
and Hemenover, 2009; Troy et al., 2010; Webb et al., 2012). In
this respect, Martin and Dahlen (2005) found that independent
of gender, higher self-reported positive reappraisal predicted
lower depressive symptoms, while Troy et al. (2010) showed
that cognitive reappraisal protected against depressive symptoms
during stressful life events. Meta-analyses corroborated these
findings, with Augustine and Hemenover (2009) demonstrating
links between cognitive reappraisal and large hedonic shifts in
affect (defined as decreases in negative or increases in positive
emotions and indexed by self-report). These findings were
supported by the meta-analysis of Webb et al. (2012), who
reported cognitive reappraisal to be highly effective in modifying
emotional outcomes on behavioral and physiological levels as
well. While this invites assumptions that a higher prevalence of
depression in women may partly originate from less frequent
or less effective use of cognitive reappraisal, available data are
mixed. According to some studies, women employ cognitive
reappraisal on a more frequent basis than men do (e.g., Tamres
et al., 2002; Spaapen et al., 2014; also see Nolen-Hoeksema,
2012), though in the meta-analysis of Tamres et al. (2002),
this effect was reported for most emotion regulation strategies.
These findings are, however, challenged by others that report no
gender differences in the habitual use of cognitive reappraisal
(Gross and John, 2003; Haga et al., 2009; Zlomke and Hahn,
2010), or even endorse more positive re-interpretations in men

1We adopted the current definitions of sex and gender, according to which sex is
considered a biological component, which is defined via the genetic complement
of chromosomes, whereas gender refers to the social, environmental, cultural, and
behavioral factors and choices that influence a person’s self-identity and health
(Clayton and Tannenbaum, 2016; National Institute of Health Office of Research
on Women’s Health, 2019). Since it cannot be determined that any of the effects
discussed in this study are caused by biological factors alone, differences between
men and women are referred to as “gender differences.” This does, however, not
exclude the possibility that biological and social factors may interact in explaining
the present results. If cited literature addressed sex or gender differences, their
wording was adopted.

(Öngen, 2010). Research on gender-specific effects of cognitive
reappraisal use on depressive symptoms during adolescence
yielded disparate results as well, either denoting cognitive
reappraisal equally effective in attenuating depressive symptoms
in both men and women (Shapero et al., 2018) or suggesting
that greater habitual use of cognitive reappraisal more strongly
decreases depressive symptoms in adolescent girls than boys
(Duarte et al., 2015).

One possible explanation for these inconclusive results is
that, while having provided vital evidence, these approaches
mainly focused on self-reported tendencies to use cognitive
reappraisal, thereby neglecting potential gender differences in
actual capacity to adequately implement cognitive reappraisals in
critical situations (e.g., Perchtold et al., 2018). Several researchers
pointed out that individuals’ typical reappraisal use in daily life
cannot be equated with their actual capacity to use this strategy
when confronted with adverse scenarios, given the absence
of or only weak correlations between the two (McRae et al.,
2008; Troy et al., 2010; Weber et al., 2014). However, despite
numerous appeals for more objective performance measures of
individuals’ actual emotion regulation capacity (Demaree et al.,
2006; McRae et al., 2008; Whittle et al., 2011; Opitz et al.,
2015), few efforts have been made in that direction. Thus,
assumptions that men and women may differ in their basic
capacity for cognitive reappraisal remain rather speculative to
date. In an attempt to add some clarity to the picture, two
brain imaging studies (McRae et al., 2008; Domes et al., 2010)
specifically investigated sex differences in neural correlates of
instructed cognitive reappraisal, albeit with different outcomes.
McRae et al. (2008) reported lower increases in prefrontal
activity and greater decreases in amygdala activity during
reappraisal efforts in men compared to women, despite similar
attenuations of self-reported negative emotions in both sexes.
Domes et al. (2010) found quite the opposite activation pattern,
indicating greater prefrontal activity in men compared to women
during cognitive reappraisal implementation, with no notable
sex differences in amygdala activity or self-report regulation
success. Intriguingly, both studies interpreted their results in
terms of a more efficient reappraisal process in men, suggesting
less effortful cognitive control (McRae et al., 2008) and more
appropriate recruiting of regulatory areas (Domes et al., 2010)
in men compared to women. Although this argument critically
implicates executive control processes in effective reappraisal
(Joormann and Gotlib, 2010; Malooly et al., 2013; Pe et al.,
2013; Rominger et al., 2018), neither study used objective
behavioral indicators of reappraisal capacity, making it difficult
to put their findings into perspective. Altogether, the question
whether men and women differ in their basic capability for
implementing alternative appraisals in critical situations is thus
still unanswered.

The present study aims to address this gap in literature
by investigating gender differences in the basic capacity for
generating cognitive reappraisals. Moreover, it was examined
how this capacity relates to individuals’ depressive daily-life
experiences. More precisely, we sought to determine whether
cognitive reappraisal capacity may serve as a predictor of
depressive experiences in daily life also over and above
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individuals’ self-efficacy in the regulation of emotions, and
whether this holds for both genders in a similar way.
In this study, we used the Reappraisal Inventiveness Test
(RIT; Weber et al., 2014), which confronts individuals with self-
relevant, threatening situations and instructs them to produce
as many different cognitive reinterpretations as possible in
order to downregulate their experienced stress and anxiety.
Importantly, by using the RIT, our focus was on gender
differences in reappraisal capacity in the psychometric sense,
that is, to what degree men and women are theoretically capable
of implementing cognitive reappraisal in aversive situations
(maximum performance, Cronbach, 1970). Objective coding of
participants’ reappraisal ideas in terms of appropriateness (see
Demaree et al., 2006) then results in an index of reappraisal
capacity. This capacity can be referred to as basic or fundamental,
as it delineates an individuals’ basic cognitive potential to
construct different interpretations for given situations in the
first place (i.e., a construction competence), allowing for more
flexibility in coping with everyday challenges (Weber et al.,
2014). In this regard, studies have linked higher cognitive
reappraisal capacity to more appropriate recruitment of the
lateral prefrontal cortex during emotion regulation efforts
(Papousek et al., 2017), which also predicted self-perceived
chronic stress levels (Perchtold et al., 2018). This corroborates
the notion that this brain-based cognitive reappraisal capacity
may affect more distal emotional outcomes like stress perception
and by implication, possibly depressive experiences. Thus,
cognitive reappraisal capacity likely constitutes a necessary
prerequisite for effective reappraisal implementation in daily
life (Weber et al., 2014; de Assuncao et al., 2015; Papousek
et al., 2017). However, in this regard, two things need to be
considered. Firstly, in daily life, it might occasionally seem more
relevant to produce one high-quality reappraisal than a variety
of different reappraisals to effectively diminish the emotional
impact of aversive situations. Yet, it can be argued that the
capacity to generate a large pool of potential reappraisals for
a given situation makes it more likely to select reappraisals
individuals can effectively implement in this specific context
(also see Wisco and Nolen-Hoeksema, 2010). Having a broad
repertoire of potential reappraisals readily available may be
especially relevant when individuals face new situations, in
which they cannot rely upon their routine strategies (Weber
et al., 2014). Secondly, though considered a vital prerequisite
for effective cognitive reappraisal implementation, reappraisals
capacity only covers a certain aspect in the reappraisal process,
as individuals not only need to be principally capable of
constructing various situational appraisals, they also need to
make use of this ability in daily life (Perchtold et al., 2018).
Conversely, however, if individuals’ basic capacity for cognitive
reappraisal generation is impaired, habitual use of cognitive
reappraisal in daily life may not yield any benefits, and reappraisal
trainings, e.g., in cognitive behavioral therapy, may not be
sufficiently effective.

To the best of our knowledge, no study to date has tested
gender differences in the explicit ability to ad hoc generate
cognitive reappraisals for adverse situations. Moreover, given
equivocal evidence from literature as to sex differences in

executive control processes relevant to emotion regulation
(McRae et al., 2008; Domes et al., 2010; Franklin et al., 2018),
we did not have strong a priori predictions regarding which
gender would show better cognitive reappraisal capacity and
how this capacity would relate to depressive symptoms in
men and women. In line with available literature, however, we
did hypothesize that women would report more depressive
experiences than men (Nolen-Hoeksema, 2001; Van de
Velde et al., 2010; Salk et al., 2017) and conversely, less
self-efficacy in emotion regulation (e.g., Freudenthaler and
Papousek, 2013). A relationship between cognitive reappraisal
capacity and self-efficacy beliefs seems likely, with self-efficacy
potentially acting as the decisive variable for daily-life experience
of depression. In this regard, previous research reported
substantial correlations between perceived self-efficacy in
emotion regulation and various indexes of well-being (see
Baudry et al., 2018). Additionally, in light of recent findings
that some cognitive reappraisal strategies (e.g., positive re-
interpretations) might be more adaptive than others as regards
implications for well-being (Kalisch et al., 2015; Willroth and
Hilimire, 2016; Perchtold et al., 2018), we tested for gender
differences in the quality of generated reappraisals (positive
re-interpretation, de-emphasizing, problem-orientation,
symptom re-interpretation).

MATERIALS AND METHODS

Participants
The sample comprised 126 participants (67 women, 59 men),
aged between 18 and 35 (M = 22.42, SD = 3.15). All participants
were university students enrolled in various fields. No participant
reported using drugs or psychoactive medication and none
had participated in an experiment using the RIT before.
Thirty women reported the use of hormonal contraceptives,
with n = 25 using the contraceptive pill (duration of use:
M = 3.86 years SD = 2.59), and n = 5 using intrauterine
devices (duration of use: M = 2.04 years; SD = 1.16). The study
was approved by the authorized ethics committee. Participants
gave their written consent to participate in the study. After
receiving general instructions, participants completed the RIT
and questionnaires.

Reappraisal Inventiveness Test (RIT)
The RIT (Weber et al., 2014) is a maximum performance
test for cognitive reappraisal ability that confronts individuals
with adverse emotional situations likely to occur in their
everyday lives. Participants are instructed to imagine the situation
happening to them and to generate and write down as many
different ways as possible to think about the situation in a way
that diminishes their negative emotions. In the present study,
four vignettes depicting anxiety-eliciting situations (de Assuncao
et al., 2015) were presented one at a time on separate pages and
were supplemented by a picture in order to make them more
vivid. For each vignette, participants were given 20 s to imagine
the situation happening to them and then turn to the next page at
the signal of the experimenter. Subsequently, participants wrote
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down as many different ways to reappraise the situation with
the goal to diminish anxiety until the allotted time of 3 min per
situation had elapsed. In the night item of the RIT (situation 1),
for instance, participants face the following situation: “At night,
you lie alone in bed and are about to fall asleep, when you suddenly
hear a loud noise from the living room. You get up, go into the living
room and realize that the window is open.” In the other situations,
individuals are confronted with walking home alone at night (2),
a root canal appointment (3), and a smoke alarm going off at
the neighbors (4). For the assessment of behavioral measures of
their reappraisal inventiveness, participants’ responses to the RIT
items were used and independently rated by two experienced
experimenters, who received extensive training beforehand.

Cognitive Reappraisal Capacity
Following the scoring procedure of the RIT and previous relevant
research (Weber et al., 2014; Fink et al., 2017; Papousek et al.,
2017; Perchtold et al., 2018; Rominger et al., 2018), RIT-fluency
was used as an index of cognitive reappraisal capacity, calculated
as the total number of generated non-identical reappraisals
(α = 0.93). On average, participants generated M = 22.12
(SD = 5.23) valid reappraisals. The number of reappraisal ideas
generated for each of the four situations differed slightly, with
significantly fewer ideas generated for situation 4 (M = 5.12)
than for the rest (situation 1: M = 5.75, p < 0.001; situation
2: M = 5.74, p < 0.001; situation 3: M = 5.51, p = 0.060).
The inter-rater reliability with two-way random, single measure
ICC (95% confidence intervals, consistency) was = 0.99 for
overall RIT-fluency. Reappraisal were additionally categorized
according to the category scheme of the RIT (Weber et al.,
2014), which allows for a more profound categorization of
reappraisal ideas according to content. The four reappraisal
categories in the RIT are: positive re-interpretation (generating
positive aspects; M = 8.64, SD = 4.46; e.g., “Now that I am
awake, I get to do some stargazing”), de-emphasizing (trivializing
the impact of the situation; M = 9.54, SD = 4.03; e.g., “Why
would someone break into my apartment, I do not own anything
valuable”), problem-orientation (finding ways to reduce harm;
M = 3.27, SD = 3.47; “I have my phone, I can call for
help anytime”), and symptom re-interpretation (reappraising
physical arousal; M = 0.35, SD = 0.62; e.g., “My heart is just
beating rapidly because I got out of bed so fast”). For more
example answers matched to their respective category, please see
Supplementary Appendix. Other reappraisal ideas not matching
these four categories were excluded due to lack of respective
answers generated by the participants. Inter-rater reliabilities
were ICC = 0.96, ICC = 0.95, ICC = 0.97, and ICC = 0.89 for
positive re-interpretation, de-emphasizing, problem-orientation,
and symptom re-interpretation, respectively. After completion
of all vignettes, participants rated the extent of anxiety they
would experience when confronted with the depicted situations
(7-point scales ranging from 0 “not anxious at all” to 6 “very
anxious”). Ratings were M = 3.56 (SD = 1.78), M = 3.40
(SD = 1.68), M = 2.72 (SD = 1.78), and M = 3.18 (SD = 1.47). In
one-sample t-tests, ratings for all vignettes differed significantly
from zero (t-values ranging from 17.14 to 24.27, all p-values
<0.001), indicating that all situations were indeed perceived

as anxiety evoking. Situation 3 (M = 2.72) was perceived as
significantly less anxiety evoking than situation 1 (p = 0.003) and
situation 2 (p = 0.017).

Self-Report Measures
Depression
The Center for Epidemiologic Studies Depression Scale (CES-D,
German version; Hautzinger and Bailer, 1993) is comprised of
20 items, rated from 0 (rarely or none of the time – less than
1 day) to 4 (most or all the time – 5 to 7 days; α = 0.90). It refers
to mood and attributions over the past week and is designed
for measuring sub-clinical depressive daily-life experiences in the
general population (Wood et al., 2010). Scores ranged from 0 to
37 (M = 12.05, SD = 7.0).

Perceived Efficacy in Managing Negative Emotions
The emotion regulation subscale of the Self-report Emotional
Ability Scale (SEAS; Freudenthaler and Neubauer, 2005) was
used to assess how able individuals feel to regulate negative
affect in their everyday life (e.g., “It is easy for me to change
my bad mood”). The 6 items are rated on 6-point Likert scales
ranging from 1 to 6 (α = 0.75). Scores ranged from 9 to 34
(M = 22.51, SD = 5.17).

Statistical Analysis
In order to investigate basic gender differences in the central
variables of interest (cognitive reappraisal capacity, self-efficacy
in managing negative emotions), two independent sample
t-tests were computed. Subsequently, a three-step hierarchical
multiple regression analysis was employed with depression as
the dependent variable. In the first step, gender was entered as
a predictor of depressive daily-life experiences. The second step
added reappraisal capacity and self-efficacy in emotion regulation
as predictors, with the third step additionally considering
interactions of gender and reappraisal capacity, as well as
of gender and perceived self-efficacy in managing negative
emotions. The applied hierarchical regression approach allowed
to examine, firstly, whether men and women differ in the amount
of depressive experiences in their everyday lives (first step).
Secondly, it examined whether gender differences in depressive
experiences are explained by individual differences in reappraisal
capacity and/or self-efficacy in managing negative emotions, and
whether these variables as such are related to depression (i.e.,
explain unique variance in the amount of depressive experiences
beyond that afforded by gender differences; second step).
Thirdly, it allowed to examine whether potential relationships
between reappraisal capacity and self-efficacy in managing
negative emotions with depression are differently expressed for
men and women (third step of the hierarchical regression).
The statistical assumptions for the model (i.e., ratio of cases
to independent variables, normality, independence of errors,
homoscedasticity, linearity, and absence of multicollinearity)
were met. A significance level of p < 0.05 (two-tailed) was used.
Additionally, a multivariate analysis of variance was computed
to test for potential gender differences in the patterns of used
reappraisal categories (number of reappraisals qualifying as

Frontiers in Psychology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 55353

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00553 March 13, 2019 Time: 18:17 # 5

Perchtold et al. Gender Differences in Reappraisal Capacity

positive re-interpretation, de-emphasizing, problem-orientation,
and symptom re-interpretation).

RESULTS

Basic Gender Differences in Cognitive
Reappraisal Capacity and Self-Efficacy
in Managing Negative Emotions
In terms of perceived self-efficacy in managing negative
emotions, men reported significantly higher self-efficacy than
women [men: M = 24.46, SD = 4.93; women: M = 20.79,
SD = 4.77; t(124) = 4.24, p < 0.001]. However, men and
women did not differ in their basic capacity to generate
cognitive reappraisals for anxiety-eliciting events [men: M = 5.55,
SD = 1.24; women: M = 5.52, SD = 1.37; t(124) = 0.118,
p = 0.906]. Moreover, while women reported feeling greater
anxiety elicited by the presented scenarios [men: M = 2.81,
SD = 0.12; women: M = 3.58, SD = 0.69; t(124) = −5.27;
p < 0.001], this self-reported anxiety was uncorrelated with
performance on the reappraisal test (r = −0.07, p = 0.468). No
significant differences in any variables of interest were observed
between women who did and those who did not report using
hormonal contraceptives (all p’s > 0.140).

Relationships Between Cognitive
Reappraisal Capacity and Self-Efficacy
in Managing Negative Emotions With
Depressive Experiences in Men and
Women
In Table 1, the findings of the hierarchical regression analysis
are summarized. At step one, gender significantly correlated with

TABLE 1 | Summary of hierarchical multiple regression results.

β p 1R2 p

Step 1

Gender 0.207 0.020

0.043 0.020

Step 2

Gender 0.042 0.621

Cognitive reappraisal capacity −0.175 0.027

Self-efficacy in emotion regulation −0.460 <0.001

0.209 <0.001

Step 3

Gender 0.049 0.552

Cognitive reappraisal capacity −0.211 0.008

Self-efficacy in emotion regulation −0.442 <0.001

Reappraisal capacity × gender 0.184 0.020

Self-efficacy × gender −0.071 0.357

0.039 0.042

Dependent variable: amount of depressive daily-life experiences (CES-D). Gender
was scored such that the positive beta weight indicates that women reported more
depressive experiences than men. For an illustration of the significant interaction
effect see Figure 1. Full model: F(5,120) = 9.82, p < 0.001.

the amount of depressive experiences [r = 0.21; F(1,124) = 5.57,
p = 0.020], indicating that, overall, women reported more
depressive experiences than men (men: M = 10.51, SD = 6.35;
women: M = 13.40, SD = 7.30). In addition to gender, reappraisal
capacity and self-efficacy explained additional 21% of the variance
in depressive experiences [F(3,122) = 13.67, p < 0.001]. While
both of these variables explained unique portions of variance
in depression (reappraisal capacity: sr = −0.18, p = 0.027; self-
efficacy: sr = −0.43, p < 0.001), the contribution of gender
became non-significant (sr = 0.04, p = 0.621) as reappraisal
capacity and self-efficacy were included in the model. Together,
this suggests that the observed gender differences in reported
depressive experiences are to a large part attributed to differences
in self-efficacy in emotion regulation. Overall, higher scores
in self-efficacy as well as in cognitive reappraisal capacity
were associated with less depressive experiences. Entering the
interaction terms reappraisal capacity by gender and self-efficacy
by gender in the model additionally increased the explained
amount of variance in the experience of depression by 4%
[F(5,120) = 9.82, p < 0.001]. Of the two interactions, only the
contribution of the interaction reappraisal capacity by gender
was significant (sr = 0.18, p = 0.020; self-efficacy by gender:
sr = −0.07, p = 0.357). The significant interaction indicates
that while a higher basic capacity for cognitive reappraisal
generation for anxiety-eliciting situations was associated with
lower self-reported depressive experiences in men, the capacity
for reappraisal generation was unrelated to the experience of
depression in women (men: r = −0.42, p < 0.001; women:
r = 0.03, p = 0.820). See Figure 1 for an illustration of the
significant interaction effect.

In light of evidence that the difficulty of cognitive reappraisal
increases with the intensity of emotional situations (e.g., Sheppes
et al., 2014), we additionally ran two separate hierarchical
regression analyses for the lower and higher anxiety eliciting
items. In both analyses, the previously observed interaction
reappraisal capacity by gender remained significant (lower
anxiety eliciting: sr = 0.19, p = 0.019; higher anxiety eliciting:
sr = 0.16; p = 0.042), indicating that differences in anxiety
ratings for the RIT vignettes did not influence the main
findings of this study.

Gender Differences in Use of
Reappraisal Sub-Strategies
Men and women did not differ in their employment of
different reappraisal strategies [F(4,121) = 1.04, p = 0.387].
See Table 2 for a descriptive summary of the rates of
generated reappraisal categories. On an exploratory basis, it
was additionally examined how the use of different reappraisal
strategies contributed most to the reporting of depressive
daily-life experiences (standard multiple regression analysis).
The generation of relatively more reappraisals categorized as
de-emphasizing (sr = −0.16, p = 0.038) and positive re-
interpretation (sr = −0.15, p = 0.064) were associated with fewer
depressive experiences, whereas the use of problem orientation
(sr = 0.03, p = 0.724) and symptom re-interpretation (sr = −0.10,
p = 0.214) did not seem to play an important role on their
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FIGURE 1 | Interaction effect of cognitive reappraisal capacity by gender on depressive daily-life experiences.

TABLE 2 | Use of reappraisal strategies, expressed as percentage of total
generated cognitive reappraisals.

Positive re-
interpretation

De-
emphasizing

Problem-
orientation

Symptom re-
interpretation

Women 38.29 41.48 17.34 0.98

Men 38.56 45.65 12.60 1.37

own [F(6,119) = 7.68, p < 0.001]. This result was independent
from variance explained by gender and self-efficacy in managing
negative emotions.

DISCUSSION

This study examined gender differences in the fundamental
capacity to spontaneously generate alternative cognitive
reappraisals for anxiety-eliciting scenarios as well as their
potential relevance to depressive experiences in everyday life. In
line with indications of greater emotional reactivity to negative
information and stressful events in women than men as well
as women’s greater proneness to clinical depression (Bradley
et al., 2001; Nolen-Hoeksema, 2001; Kessler et al., 2007; Kelly
et al., 2008; Steel et al., 2014), women reported more depressive
symptoms than men in the current study. Nevertheless, these
differences were not reflected in basic reappraisal skills, as
men and women demonstrated a similar capacity to generate
meaningful alternative interpretations for adverse anxious

events. This constitutes a novel finding in literature, as
potential gender differences in emotion regulation capacity
have never been scrutinized with a maximum performance test
of reappraisal ability before. Despite previous studies hinting
at a more efficient reappraisal process in men based on their
prefrontal cortex engagement and related stronger executive
functioning (e.g., McRae et al., 2008; Domes et al., 2010; also
see Masumoto et al., 2016), this study yielded no evidence
suggesting a potential advantage of men in the behavioral
test for reappraisal inventiveness. Note that while greater
reappraisal inventiveness does not automatically translate to
efficacy in cognitive reappraisal, it may inform about vital
cognitive prerequisites of efficient reappraisal implementation.
Accordingly, based on their performance in this study, men
and women presumably recruit similar functional executive
processes during reappraisal generation, of which set-shifting,
memory updating, and inhibition of dominant yet irrelevant
responses are proposed as crucial building blocks for cognitive
reappraisal (Joormann and Gotlib, 2010; Malooly et al., 2013;
Pe et al., 2013). Since the importance of executive functions
has also been endorsed by specific research on reappraisal
inventiveness (Weber et al., 2014; Papousek et al., 2017;
Perchtold et al., 2018; Rominger et al., 2018), our findings suggest
equivalent executive functioning in both genders as regards
cognitive reappraisal.

Interestingly, however, a higher capacity for reappraisal
generation predicted fewer depressive symptoms in men only,
while this effect was absent in women. Hence, our results
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indicate that while both genders do not differ in their basic
reappraisal capacity, this capacity appears to be a protective
buffer against depression in men only. Although it is premature
to draw any firm conclusions from this novel observation, the
trends in this study prompt us to speculate on some non-
competing explanations for this result. A possible explanation for
the observed null effects of reappraisal capacity on depression
in women could be linked with the finding of lower self-
efficacy in managing negative emotions in women than in
men. Substantial positive effects of emotion regulation self-
efficacy on well-being are abundant in literature (see Baudry
et al., 2018 for review). Further, it was suggested that
individuals with higher self-efficacy in emotion regulation
put more efforts in actively modifying their emotions and,
hence, are prone to use effortful regulation strategies such as
cognitive reappraisal more consistently (Tamir et al., 2007).
On that note, findings showed that individuals regarding
themselves more capable of controlling their emotions were
more prone to use cognitive reappraisal in their daily lives.
Furthermore, those individuals who more persistently used
cognitive reappraisal and scored higher on emotion regulation
self-efficacy were more successful in downregulating negative
emotions (Gutentag et al., 2017).

Thus, for the present study, the following tentative
interpretation is suggested: Men, due to higher confidence
in their emotion regulation skills, could generally show greater
attempts to actively cope with adverse events, and use effortful
active regulation strategies such as cognitive reappraisal with
greater determination than women do. Thereby, they may
benefit from good reappraisal capacity in terms of fewer
depressive daily-life experiences. In contrast, good reappraisal
capacity might be less significant for the experience of depression
in women because based on lower self-perceived regulation
skills, they show reduced emotion regulation attempts from
the start. It is thus assumed that effort or motivation in
using cognitive reappraisal may be more important than a
more frequent employment of cognitive reappraisal alone,
as suggested by several indications that men tend to report
less habitual use of reappraisal than women (Tamres et al.,
2002; Nolen-Hoeksema and Aldao, 2011; Spaapen et al., 2014),
although this assumption is not corroborated by all studies
(Gross and John, 2003; Haga et al., 2009; Zlomke and Hahn,
2010). Specifically for anxiety-eliciting situations, it is possible
that women are less motivated to downregulate anxiety by
means of cognitive reappraisal, since they are more prone to
feelings of anxiety (e.g., McLean and Anderson, 2009) and
are thus more likely to accept these feelings as part of their
everyday lives. Complementing this assumption, despite good
reappraisal capacity, women might also be less convinced
of the effectivity of cognitive reappraisal in reducing their
anxious feelings, which adds beliefs about consequences of
cognitive reappraisal as another potential influencing factor
(e.g., Ortner et al., 2017). Our data, however, can only partly
support all these arguments, because we did not assess efforts
put in the reappraisal task, beliefs in reappraisal effectiveness,
and the preferred use of cognitive reappraisal as a trait
(e.g., Gross and John, 2003).

Additionally, it can be derived from literature that women
tend to report using both, adaptive and maladaptive emotion
regulation strategies more than men (Thoits, 1991; Tamres
et al., 2002; Nolen-Hoeksema and Aldao, 2011). While this
at first underlines a supposedly more flexible repertoire of
regulation strategies in women, there are also studies suggesting
that maladaptive emotion regulation strategies (e.g., rumination,
suppression) are more strongly linked to depression than are
adaptive ones (e.g., cognitive reappraisal, acceptance; Aldao
et al., 2010; Nolen-Hoeksema and Aldao, 2011; Joormann and
Stanton, 2016). As a consequence, if women endorse more
maladaptive regulation strategies than men, and if these strategies
were eminently detrimental to mental well-being (e.g., Nolen-
Hoeksema et al., 2008, also see Krause et al., 2017), good
cognitive reappraisal capacity alone may not suffice to guard
against the experience of depression in women, as the impact
of concomitantly employed maladaptive strategies prevails. It
is hence possible that in women, interactions between adaptive
and maladaptive emotion regulation strategies have a more
pronounced impact on depressive experiences than the capability
to effectively implement one adaptive strategy per se.

In line with recent indications that some reappraisal strategies
might be more adaptive than others in the long run (Kalisch
et al., 2015; Perchtold et al., 2018, 2019), this study also
examined gender differences in four reappraisal categories
scored in the cognitive reappraisal test (Weber et al., 2014; de
Assuncao et al., 2015). No differences emerged, however, despite
some evidence that men more often employ problem-oriented
coping strategies (Ptacek et al., 1994; Baker and Berenbaum,
2007), whereas women favor emotion-focused tactics (Lazarus
and Folkman, 1984; Eaton and Bradley, 2008). It appears
that these allegedly basic preferences are not reflected in
reappraisal categories. Yet, further research is warranted to
look more closely into potential gender differences among
the myriad of available strategies that occur in cognitive
reappraisal of aversive events (e.g., McRae et al., 2012; Perchtold
et al., 2019). Independent of gender and other strategies, the
generation of relatively more de-emphasizing reappraisals and
positive re-interpretations was associated with fewer depressive
experiences. This result supports previous studies that find both,
self-focused (de-emphasizing) and situation-focused (positive)
reappraisal effective in reducing negative emotional reactivity
(Shiota and Levenson, 2012; Ranney et al., 2017), albeit
more long term-benefits are suggested for positive reappraisal
(e.g., Kalisch et al., 2015).

Importantly, in the present study, the obtained differences in
reappraisal capacity effects on depressive experiences between
men and women cannot be definitively interpreted in terms of
sex or gender. Cognitive reappraisal capacity reflects individuals’
capability to recruit appropriate brain activation when faced
with the demand of reappraising an aversive event (Papousek
et al., 2017; Perchtold et al., 2018). Since no differences in
this basic capacity were observed, this potentially also points
to the absence of sex differences in recruitment of adequate
brain circuits, as far as the inventiveness in generating alternative
reappraisals is concerned. This inventiveness, however, is a
necessary, but not a sufficient prerequisite for effective emotion
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regulation, since individuals not only need to be theoretically
capable of generating suitable reappraisals for critical situations,
they also need to do so when faced with these situations in
daily life. Here, how men and women actually make use of
their capabilities might critically depend on gender roles, which
likely entail different beliefs in emotion regulation self-efficacy,
reappraisal effectiveness, or controllability of stressors. However,
these notions remain speculative until further investigation.

This study presents a novel approach for investigating
gender differences in cognitive reappraisal by explicitly
testing performance in generating alternative cognitive re-
interpretations for anxiety-evoking situations. By drawing on an
actual behavioral performance measure instead of self-reported
data, our measure of reappraisal capacity is independent from
the participants’ ability or willingness to accurately report on
their abilities. Post hoc power analysis confirmed that at 0.989,
our results are unlikely to be skewed by a type 2 error for women.
Some limitations of this study must be noted. Naturally, the
capacity to generate multiple cognitive reappraisals as assessed
in this study only covers a certain aspect of an individual’s
ability to effectively implement cognitive reappraisal for
negative affect regulation. While specifically for situations
that exceed routines, it can assumed that the likelihood for
effective reappraisal implementation increases with the pool
of generated ideas, for recurrent negative events in daily life,
the ability to repeatedly implement just one reappraisal in a
successful manner may be equally or even more important. Yet,
since recurrent anxiety-eliciting situations (e.g., walking home
alone at night) are not always exactly alike, a high capacity to
generate manifold reappraisals may still prove vital. Secondly,
it may be questioned why depression and not anxiety was
used as an outcome variable when testing gender-specific
effects of cognitive reappraisal capacity for anxiety-eliciting
situations. Depression and anxiety greatly overlap; they share a
great proportion of their symptomatology, as well as common
genetic and environmental contributors (e.g., Preisig et al.,
2001; Kessler et al., 2005; Burton et al., 2015). Yet, compared to
anxiety, markedly more literature indicated correlations between
depression and emotion regulation strategies, particularly
cognitive reappraisal (e.g., Martin and Dahlen, 2005; Aldao et al.,
2010; Joormann and Gotlib, 2010; Troy et al., 2010; Everaert
et al., 2017). Thirdly, our claim that men and women possess
similar cognitive reappraisal capacity and related executive
functioning is based on experimentally instructed reappraisal
within a limited time span. That is not to say that gender
differences might not emerge when reappraisal time increases,
perhaps as a function of cognitive effort, as was proposed by
others (McRae et al., 2008; Domes et al., 2010). Thus, more
fine-grained investigations into gender differences at specific
stages of the cognitive reappraisal process are warranted that go
beyond the presumably very early stage of generating multiple
potential reappraisals scrutinized in this study (e.g., selection of a
suitable reappraisal, implementation of that reappraisal, etc.). In
this respect, scrutinizing the time-course of cognitive reappraisal
by means of EEG may be particularly informative as regards
(neural) efficacy of the reappraisal process in men and women.
Next, this study’s results are based on cross-sectional data, which

do not allow causal interpretations of the relations. While the
research background denotes cognitive reappraisal capacity as
the cause and depressive experiences as the effect (e.g., Hofmann
et al., 2012; Berking et al., 2014), circular mechanisms may
also be at work. In this respect, other studies suggested that
deficits in implementing effective emotion regulation strategies
might also arise as a consequence of depressive episodes (e.g.,
Troy et al., 2010; Liu and Thompson, 2017). Additionally, sex
hormones and phases in menstrual cycle are known to affect
emotional responding, including emotion regulation strategy
choice (Toffoletto et al., 2014; Graham et al., 2018). Although
in the present study, women with and without use of hormonal
contraceptives did not differ in any variables of interest, we
did not control for menstrual cycle data in our analyses, which
constitutes an important direction in future research. Moreover,
although we attempted for a comprehensive interpretation of our
findings based on available literature, our propositions regarding
potential influences of other variables on the relationship of
reappraisal capacity and depressive symptoms (e.g., regulation
effort, impact of other strategies) should be considered as
preliminary until further studies demonstrate they significantly
moderate the discussed effect. Also, note that our findings are
restricted to reappraisal capacity in dealing with anxiety-eliciting
events only. While reappraisal inventiveness can be regarded a
trans-emotional capacity that is not specific to certain emotions
(de Assuncao et al., 2015), gender differences might nonetheless
emerge for the downregulation of anger, disgust, or sadness.
Thus, a vital goal for future research is to identify whether
the relationships identified in this study also hold for other
versions of the RIT (e.g., anger, Weber et al., 2014). Lastly, this
study used a sample of young students without severe mental
health problems. Findings may not generalize to more serious
depressive symptoms.

Taken together, the present study demonstrated that while
men and women do not differ in their basic cognitive capacity
to implement cognitive reappraisals in threatening situations,
higher reappraisal capacity seemingly reduces depressive daily-
life experiences in men only. This possibly implies a more
complex link between cognitive reappraisal and depressive
experiences in women, suggesting their benefits for well-
being more strongly depend on several aspects of their
emotion regulation efforts through reappraisal and beyond
working in concert. Though preliminary, these findings may
have useful implications for psychotherapy research and
practice. For instance, whereas men might benefit from ability-
based reappraisal trainings alone, in women, it may also
need concomitant interventions that focus on reducing the
use of maladaptive emotion regulation strategies as well as
enhancing self-efficacy and determinedness in the context of
cognitive reappraisal.
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Personality reflects the set of psychological traits and mechanisms characteristic for
an individual. The brain-trait association between personality and gray matter volume
(GMv) has been well studied. However, a recent study has shown that brain structure-
personality relationships are highly dependent on sex. In addition, the present study
investigates the role of sex on the association between temperaments and regional
GMv. Sixty-six participants (33 male) completed the Temperament and Character
Inventory (TCI) and underwent structural magnetic resonance brain imaging. Mann-
Whitney U tests showed a significant higher score on Novelty Seeking (NS) and Reward
Dependence (RD) for females, but no significant group effects were found for Harm
Avoidance (HA) and Persistence (P) score. Full factor model analyses were performed to
investigate sex-temperament interaction effects on GMv. This revealed increased GMv
for females in the superior temporal gyrus when linked to NS, middle temporal gyrus
for HA, and the insula for RD. Males displayed increased GMv compared to females
relating to P in the posterior cingulate gyrus, the medial superior frontal gyrus, and the
middle cingulate gyrus, compared to females. Multiple regression analysis showed clear
differences between the brain regions that correlate with female subjects and the brain
correlates that correlate with male subjects. No overlap was observed between sex-
specific brain-trait associations. These results increase the knowledge of the role of sex
on the structural neurobiology of personality and indicate that sex differences reflect
structural differences observed in the normal brain. Furthermore, sex hormones seem
an important underlying factor for the found sex differences in brain-trait associations.
The present study indicates an important role for sex in these brain structure-personality
relationships, and implies that sex should not just be added as a covariate of no interest.

Keywords: sex, temperaments, voxel-based morphometry, brain-trait association, full factor model

INTRODUCTION

Some people are almost constantly looking for new challenges, while others choose to stick to
old habits. There is a large diversity in the way people behave and how they think. This diversity
can be explained by personality, a set of psychological traits and mechanisms characteristic for
an individual (Larsen and Buss, 2010). It is well known that personality traits are subject to sex
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differences. For instance, females typically show higher
agreeableness and neuroticism compared to males (Chapman
et al., 2007; Weisberg et al., 2011). Little is known about the
neurobiology that is associated with sex differences in personality
traits. However, there are striking differences between the sexes
in the neural basis of emotional processes (Kret and De Gelder,
2012), in the relationship between narcissistic personality and
regional grey matter volume (GMv; Yang et al., 2015) and
findings implicate structural differences as a partial explanation
for sex differences in antisocial personality (Raine et al., 2011).
A recent study of Nostro et al. (2016) showed that brain
structure-personality associations are highly dependent on sex.
They used the NEO Five Factor Inventory (NEO FFI) to measure
personality and found no significant associations between the
NEO FFI (Costa and McCrae, 1992b) and regional (GMv) for the
combined (males and females) sample. However, they did find
sex-specific associations. Interestingly, significant associations
with GMv were detected only in males. For neuroticism
negative correlations were found for GMv of parieto-occipital
sulcus/cuneus, left fusiform gyrus/cerebellum, and right
fusiform gyrus. Positive correlations were found between
conscientiousness and GMv of left precuneus and parieto-
occipital sulcus. Also a positive correlation was found between
extraversion and GMv precuneus/parieto-occipital sulcus,
thalamus, left fusiform gyrus/cerebellum, and right cerebellum.

The present study addresses sex differences in the
neurobiology of temperaments which are based on the
psychobiological personality account of Cloninger et al. (1993).
Temperaments are regarded to be heritable and homogeneous,
stable over time, emerge early in life, and independent of each
other (Cloninger, 1986; Cloninger et al., 1993; Heath et al.,
1994; Stallings et al., 1996; Comings et al., 2000; Larsen and
Buss, 2010). The Temperament and Character Inventory (TCI)
assess these temperaments (Cloninger et al., 1993). The TCI
contains four temperament scales: (1) novelty seeking (NS);
(2) harm avoidance (HA); (3) reward dependence (RD); and
(4) persistence (P) (Cloninger et al., 1993). These temperament
scales can be further subdivided into different subscales: NS can
be divided into exploratory excitability (NS1), impulsiveness
(NS2), extravagance (NS3), and disorderliness (NS4); HA is
composed of anticipatory worry (HA1), fear of uncertainty
(HA2), shyness (HA3), and fatigability (HA4); RD can be
divided into sentimentality (RD1), social attachment (RD2), and
dependency (RD3); the temperament P is not further divided
(Cloninger et al., 1993).

Several studies have investigated the associations between
temperaments and regional GMv (Iidaka et al., 2006; Gardini
et al., 2009; Picerni et al., 2013; Laricchiuta et al., 2014; Stam
et al., 2018). However, sex is a variable that is typically statistically
controlled for and little is known about its effect on temperament-
brain associations.

In the current study, we try to answer the question “how does
sex affect the association between temperaments and regional
GMv?” In order to answer this question, we investigate the
interaction between sex and temperaments (NS, HA, RD, and
P) on regional GMv. Not much is known about the relation
between sex and the association between temperaments and

regional GMv. The study of Nostro et al. (2016) showed a positive
correlation between extraversion and GMv precuneus/parieto-
occipital sulcus, thalamus, left fusiform gyrus/cerebellum, and
right cerebellum, in males. As extraversion is a trait known
to be linked with NS (Gocłowska et al., 2018), we expect
to find comparable results. The aim of the current study
is to reveal distinct and common effects between the sexes
in associations between regional GMv and temperaments.
Furthermore, sex-specific associations between personality and
risk for neuropsychiatric disorders have been reported, including
eating disorders (Gual et al., 2002; Krug et al., 2009) and
mood disorders (Costa and McCrae, 1992a; Afifi, 2007).
A better understanding of the neurobiology of sex differences in
personality temperaments may hold benefits for development of
sex-specific treatments of those disorders.

MATERIALS AND METHODS

This study was approved by the Ethical Committee of University
Hospitals Leuven. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

Participants
Sixty-six healthy subjects participated, 33 males (mean
age ± SD = 38 ± 13 years, range 21–75) and 33 females
(mean age ± SD = 36 ± 11 years, range 21–65)1. Mann-Whitney
U tests showed that no significant sex differences were detected
for age (P = 0.568). The sample was a non-clinical population
composed of three subgroups to increase the variability of the
loadings on personality scales: (1) Fourteen participants with
premanifest Huntington’s disease [21% (50% male)], (2) Eighteen
gene-negative controls from Huntington’s disease families [27%
(50% male)], (3) thirty-four healthy controls [52% (50% male)].
We included premanifest Huntington’s disease subjects, referring
to the absence of motor symptoms in combination with a
positive mutation status. In addition, a radiologist evaluated
the structural scans and there were no abnormalities at the
individual level. As the main question of the current article
focusses on sex differences, observing possible group differences
of the three subgroups falls outside the scope of this article. The
different subgroups are merely added for methodological reason
(increasing the variability in the dataset).

Temperament and Character Inventory
Temperament and character inventory is a questionnaire for
measuring seven domains of personality and consists of 240-
dichotomous items. The seven domains are divided in three
character scales (self-directedness, cooperativeness, and self-
transcendence) and four temperament scales (NS, HA, RD, and
P). A validated Dutch translation was used with reasonable to
good psychometric internal consistency (Cronbach’s α range,
0.64–0.87). It was validated in a representative sample of Dutch
individuals (n = 1034) (version 1.3; Datec Psychological Tests,

1All data is available through the corresponding author
(jan.vandenstock@med.kuleuven.be).
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Leiderdorp, Netherlands). NS reflects enthusiasm, impulsivity,
and reward-sensitivity (e.g., “I like to explore new ways to
do things”); HA is related to acting with caution and passive
avoidance behavior (e.g., “I often feel tense and worried in
unfamiliar situations, even when others feel there is little to
worry about”); RD is associated with responsiveness to signals
of reward (e.g., “I like to please other people as much as
I can”) and P indicates motivation without direct external
reward (e.g., “I am more of a perfectionist than most people”)
(Cloninger, 1986; Cloninger et al., 1993; Larsen and Buss, 2010;
Laricchiuta et al., 2014).

MRI Acquisition
Neuroimaging was performed on a 3T MRI scanner. A high-
resolution T1-weighted anatomical image (voxel size:
0.98 mm × 0.98 mm × 1.20 mm) was acquired on a single
3T Philips Achieva system equipped with a 32 channel head coil
using a 3D turbo field echo sequence (TR:9.6 ms; TE:4.6 ms;
matrix size:256× 256; 182 slices).

Structural Data Analysis
Data was analyzed using CAT12, a Computational Anatomy
Toolbox2 (Gaser and Kurth, 2017) running under SPM123 and
MATLAB (R2016b). In order to investigate the role of sex
in the association between regional GMv and temperaments,
we performed voxel-based morphometry (VBM). Preprocessing
consisted of normalization to MNI space, tissue classification
(segmentation) into GM, white matter (WM), and cerebrospinal
fluid (CSF), and bias correction of intensity non-uniformities.
The amount of volume changes due to spatial registration were
scaled, in order to retain the original local volumes (modulating
the segmentations). The modulated images were smoothed using
a 12 mm × 12 mm × 12 mm full-width at half-maximum
Gaussian kernel.

Statistical Analysis
In order to investigate sex differences in both the main scales
(NS, HA, RD, and P) as in the subscales (NS1, NS2, NS3,
NS4, HA1, HA2, HA3, HA4, RD1, RD2, RD3, and P) statistical
tests were preceded by a normality check on the distributions
of the respective residuals by means of Shapiro-Wilk test. In
case normality could not be assumed, non-parametric tests
were performed. For the purpose of uniformity of analyses,
we performed parametric tests or non-parametric tests on all
behavioral data.

To investigate sex differences in brain-temperament
associations, we first performed a full factorial model analysis on
the voxelwise GMv of the total sample, to observe the interaction
effect between sex and the temperament scores (NS, HA, RD,
and P). Sex was included as factor and the temperament scores
as interaction with the factor. Age and total intracranial volume
(TIV) were included as variables of no interest.

Eight contrasts were performed: for every temperament scale,
we investigated the male and female association. In every analysis

2http://www.neuro.uni-jena.de/cat/
3http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

we added the remaining temperament scores as variables of no
interest, in order to maximize the specificity of the results of
a single temperament (as it controls for the association that is
contained by the other temperaments).

Secondly, multiple regression analyses were performed on
the smoothed GM-images for males and females separately. The
four temperament scores (NS, HA, RD, and P) were entered
as regressors in a single model, in addition to age, and TIV,
which were included as variables of no interest. In total eight
contrasts were performed on the male data and eight contrasts
on the female data.

To investigate any overlap between the sex-selective results,
we inclusively masked the results of the regression analysis of
both groups. The statistical threshold was set at a Pheight < 0.001
(k = 10) in combination with Pheight < 0.05 FWE-corrected
following Small Volume Correction.

Anatomic labeling of significant clusters was performed using
xjView4 and clusters were visualized using MRICron5.

RESULTS

Shapiro-Wilk test showed that residuals of NS, HA, RD, and
P were normally distributed (P > 0.108). The residuals of
the different subscales, however, were not normally distributed.
For the purpose of uniformity of analyses, we performed non-
parametric tests on all behavioral data. Mann-Whitney U tests
showed a significantly higher score on NS (p = 0.02) and RD
(p < 0.001) for females, but no significant group effects were
found for the HA and P score (P > 0.445). Furthermore,
Mann-Whitney U tests showed sex differences between the
subscales (Figure 1).

Interaction Between Sex and
Temperaments in Voxel-Wise GMv
To investigate the role of sex in the association between regional
GMv and temperaments, we ran a full factorial model on the
smoothed GM images. This revealed interactions between sex
and temperaments. The results are presented in Table 1. Males
and females show opposite associations between NS and GMv in
the superior temporal gyrus (females show positive association;
t = 4.96, p = 0.001), for HA in the middle temporal gyrus (females
show positive association; t = 4.56, p = 0.003), for RD in the insula
(females show positive association; t = 4.42, p = 0.003 and t = 3.66,
p = 0.001), for P in the posterior cingulate gyrus (females show
a negative association; t = 4.72, p = 0.006), the medial superior
frontal gyrus (females show a negative association; t = 4.62,
p = 0.006), and the middle cingulate gyrus (females show a
negative association; t = 4.56, p = 0.001). See Figure 2.

Within-Sex Correlation Between
Temperaments and Voxel-Wise GMv
To investigate the correlation between temperaments and voxel-
wise GMv for males and females separately, we performed

4http://www.alivelearn.net/xjview
5http://www.mccauslandcenter.sc.edu/mricro/mricron
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FIGURE 1 | Mean score of the four temperament scores [novelty seeking (NS), harm avoidance (HA), reward dependence (RD), and persistence (P)] and each
subscale (NS1, NS2, NS3, NS4, HA1, HA2, HA3, HA4, RD1, RD2, RD3, and P) for males and females separately. Error bars represent standard error of the total
score (NS, HA, RD, and P). The results show a significant higher score on NS and RD for females, driven by NS2, NS3, RD1, and RD2. ∗Marks significance at
p < 0.05.

TABLE 1 | Sex-temperament interaction effects in voxel-wise GMv.

Area P R/L #Voxels Z-value t-value Coordinates

x y z

NS Superior temporal gyrus 0.001 R 12 4.51 4.96 56 −44 18

HA Middle temporal gyrus 0.003 L 10 4.56 5.04 −50 −74 23

RD Insula 0.003 R 11 4.42 4.09 35 −8 9

Insula 0.001 R 15 3.66 3.45 35 17 −14

P Posterior cingulate gyrus 0.006 R 12 4.72 5.25 5 −36 29

Medial superior frontal gyrus 0.006 L 12 4.62 5.11 11 44 48

Middle cingulate gyrus 0.001 L 18 4.56 5.03 0 −32 36

Overview results full factorial model [Pheight < 0.001 (k = 10), combined with SVC, FWE-corrected at cluster level], observing the role of sex for GMv associations with
temperament traits of the TCI; novelty seeking (NS), harm avoidance (HA), reward dependence (RD), and persistence (P). Coordinates refer to MNI-space.

two separate multiple regression analyses on the smoothed
GM-images. The results are shown in Table 2. To investigate
any overlap between the sex-selective results, we inclusively
masked the results of the regression analysis of both groups. No
overlap was observed.

DISCUSSION

In the current study, we investigated sex differences in
temperament-brain associations, as well as shared temperament-
brain associations between the sexes.

Sex Differences in Temperament Traits
We observed significant sex differences in NS and RD between
males and females. For both temperaments, females had a
significantly higher score than males.

Extraversion, is a trait of the Big Five that is known to
be linked with NS (Gocłowska et al., 2018). A study by
Weisberg et al. (2011) observed significantly higher overall
extraversion score in females. Furthermore, individuals scoring
high with respect to NS tend to be enthusiastic, impulsive,
and NS is known to be linked to the neurotransmitter
dopamine (Cloninger, 1987; Larsen and Buss, 2010). Previous
research has shown that females score higher in enthusiasm
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FIGURE 2 | Full factorial model results obtained at a statistical threshold of Pheight < 0.001 (k = 10), combined with SVC, FWE-corrected at cluster level. The results
are shown at a significance level of P = 0.05 and are overlaid on a canonical 3-dimensional–rendered MRI brain template with a cut-out. (A) In the middle a statistical
map displaying the sex-temperament interaction effects on GMv for reward dependence. Left and right the partial correlation (Female: r = 0.963, Male: r = –0.939)
between GMv in the insula as a function of reward dependence. (B) In the middle a statistical map displaying the sex- temperament interaction effects on GMv for
novelty seeking. Right a scatterplot showing the partial correlation (Female: r = 0.943, Male: r = –0.925) between GMv in the superior temporal gyrus as a function of
novelty seeking. (C) In the middle a statistical map displaying the sex-temperament interaction effects on GMv for harm avoidance. Left a scatterplot showing the
partial correlation (Female: r = 0.989, Male: r = –0.973) between GMv in the middle temporal gyrus as a function of harm avoidance. (D) In the middle a statistical
map displaying the sex-temperament interaction effects on GMv for persistence. Left a scatterplot showing the partial correlation (Female: r = –0.938, Male:
r = 0.924) between GMv in the middle cingulate gyrus as a function of persistence. Right a scatterplot showing the partial correlation (Female: r = –0.938, Male:
r = 0.924) between GMv in the medial superior frontal gyrus as a function of persistence and the partial correlation (Female: r = –0.938, Male: r = 0.924) between
GMv in the posterior cingulate gyrus as a function of persistence.
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TABLE 2 | Within-sex correlation between temperaments and voxel-wise GMv.

Area r P R/L #Voxels Z-value t-value Coordinates

+/− x y z

NS Female Caudate nucleus + <0.001 R 22 4.24 5.16 3 9 −6

Thalamus + 0.002 L 10 3.68 4.27 −45 −62 50

Angular gyrus + 0.001 L 13 3.55 4.07 −18 −26 11

Anterior cingulate sulcus − <0.001 L 20 3.60 4.14 0 32 11

Mid frontal gyrus − <0.001 L 30 4.32 5.29 −35 2 62

NS Male Rolandic operculum + <0.001 R 69 4.28 5.13 53 5 2

Precentral gyrus + <0.001 R 21 4.22 5.22 30 −9 56

HA Female Inferior frontal gyrus + 0.002 L 14 4.20 5.09 −18 32 −24

Fusiform gyrus + 0.001 L 16 4.31 5.28 −44 −65 −18

Superior temporal sulcus + 0.001 R 15 3.91 4.62 60 2 −5

Superior temporal sulcus + 0.002 L 13 4.39 5.40 −65 −39 11

Mid temporal sulcus + 0.004 L 11 4.01 4.78 −59 −51 14

Supramarginal gyrus + <0.001 R 19 4.04 4.82 63 −24 33

Cerebellum (L9) − <0.001 R 15 3.80 4.45 8 −57 −59

HA Male Rolandic operculum + <0.001 R 25 4.14 4.99 53 5 2

Mid cingulate sulcus + <0.001 R 17 3.51 4.02 5 5 30

RD Female Cerebellum Crus1 + <0.001 L 30 3.87 4.56 −33 −78 −29

Cerebellum Crus1 + 0.001 L 15 3.78 4.42 −24 −84 −27

Cerebellum Crus1 + 0.003 L 12 3.54 4.06 −21 −80 −27

Frontal inferior orbital gyrus + 0.001 L 17 3.96 4.65 −24 24 −20

Insula + 0.004 R 11 4.15 5.01 35 −9 11

Fusiform gyrus − 0.001 L 15 3.49 3.99 −39 −60 −21

Insula − 0.002 L 11 3.58 4.11 −38 −11 −6

Insula − 0.002 L 11 3.78 4.41 −36 −30 21

RD Male −

P Female Cerebellum (L7b) − <0.001 L 161 4.77 6.12 −44 −53 −53

Parahippocampal gyrus − <0.001 L 35 4.28 5.22 −18 −26 −20

Inferior frontal gyrus − <0.001 R 53 5.04 6.66 21 12 −18

Thalamus − <0.001 R 33 4.19 5.07 11 −30 9

Posterior cingulate gyrus − <0.001 R 56 4.46 5.54 5 −51 11

Parahippocampal gyrus − 0.001 R 17 4.45 5.53 17 −41 −9

Inferior Frontal gyrus − <0.001 L 24 4.13 4.98 −29 38 −14

P Male −

Overview Multiple regression results [Pheight < 0.001 (k = 10), combined with SVC, FWE-corrected at cluster level], investigating GMv associations with temperaments of
the TCI; novelty seeking (NS), harm avoidance (HA), reward dependence (RD), and persistence (P) for males and females separately. Coordinates refer to MNI-space. L9,
lobe 9; L7b, lobe 7b.

(Costa et al., 2001; Weisberg et al., 2011) and that estradiol, the
female sex hormone, modulates mesolimbic dopamine systems
and so affects motivated behaviors (Yoest et al., 2014). On
the other hand, no associations between the total scores of
NS and total testosterone, the male sex hormone, have been
found (Tsuchimine et al., 2015). Previous studies have looked
at sex differences in a previous version of the TCI, the
Tridimensional Personality Questionnaire (TPQ) (Cloninger
et al., 1991). However, these studies found conflicting findings
on NS score and impulsivity when looking at sex differences
(Reynolds et al., 2006; Mitchell and Potenza, 2015). A possible
explanation for these conflicting findings on impulsivity and
NS, may be that females show fluctuating levels of impulsivity
due to the menstrual cycle and changing estrogen levels
(Weafer and de Wit, 2014). Furthermore, when looking at the

different subscales of NS, we found that the impulsiveness (NS2)
(p = 0.029) and the extravagance (NS3) (p = 0.005) dimensions of
NS specifically drive the significant sex differences in NS. A study
using the TPQ (Cloninger, 1987) also found a significantly
higher score for females on NS3 (Zohar et al., 2001). They also
found a positive correlation between NS3 and RD, the second
temperament where we found a significant higher score for
females than for males.

Reward dependence has been shown to be linked with
norepinephrine, previous research has already shown that
through the central nervous system estrogen can modulate
noradrenergic neurotransmission (Vega-Rivera et al., 2013).
Furthermore, our findings on RD are in line with previous
research (Cloninger et al., 1991; Zohar et al., 2001) and
showed that for RD the significant sex difference was
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driven by sentimentality (RD1) (p < 0.001) and attachment
(RD2) (p = 0.010). RD is often described as inter-personal
sensitivity and sociability. Generally, females focus more
on interpersonal relationships, score higher on attachment,
warmth and empathy (Zohar et al., 2001; Weisberg et al.,
2011; Weafer and de Wit, 2014) and are more concerned with
the opinion of others in social tasks than males (Cloninger
et al., 1991; Vega-Rivera et al., 2013). Males tend to focus
more on individuality and achievement (Sato and McCann,
1998). These results provide support for the higher score
for females on RD.

In summary, we found significantly higher scores for females
on NS and RD. These results indicate that mainly for the
temperaments linked to sociability and attachment, we find a
significant higher score for females.

Interaction Between Sex and
Temperaments on Voxel-Wise GMv
We found opposite associations in both groups between GMv
in the superior temporal gyrus and NS, with a positive
association for females. Previous research found a significant
positive correlation between NS and glucose metabolism in
the superior temporal gyrus (Hakamata et al., 2006), which is
a region that is linked with impulsivity and social cognition
(Horn et al., 2003; Grecucci et al., 2013). Furthermore, a
previous study showed that females mainly have more GM
percentage in the superior temporal gyrus than males (Schlaepfer,
1995). A study looking at the difference between pre- and
post-menopausal females, showed a decrease in GMv in post-
menopausal females. The GMv was also found to be positively
correlated to estradiol, the major female sex hormone (Kim et al.,
2018). In contrast with our hypothesis we did not find any
results for NS that were comparable to the study of Nostro et al.
(2016). A possible explanation for this discrepancy may relate
to the methods (Multiple regression analysis vs. full factorial
model analysis). Alternatively, the similarity between NS and
extraversion may be limited.

Secondly, we observed inverse associations in both groups
between GMv in the insula and RD, with a positive association
in females. RD is associated with responsiveness to signals of
reward, the insula is known to play a part in the additional
reward-sensitive brain areas (O’Doherty et al., 2002; Kirsch et al.,
2003). Research shows that females show more GMv in the right
insula (Ruigrok et al., 2014) and estrogen is found to excite
neurons in the insula (Saleh et al., 2004). The insula is part of
the limbic system. Previous research has shown that females have
a larger limbic volume (Goldstein et al., 2001; Zaidi, 2010). It has
been proposed that due to a larger limbic brain females are better
in touch with their emotions and can better connect to others
(Zaidi, 2010).

Thirdly, we found opposite associations between HA and
GMv in the middle temporal gyrus. There are contradictory
findings about the link between HA and the middle temporal
gyrus (Hakamata et al., 2006; Iidaka et al., 2006). As previous
studies have shown both positive (Iidaka et al., 2006) and negative
correlations (Hakamata et al., 2006) between HA and the middle

temporal gyrus. The middle temporal gyri is also known to be
linked to social cognition (Grecucci et al., 2013). Furthermore,
we did not find a significant sex difference in HA score.

P is the only temperament with opposite associations for
which we found a positive association for males. We did not find a
sex difference for score in P. P indicates motivation without direct
external reward (Cloninger et al., 1993). The medial superior
frontal gyrus and the cingulate gyri are areas known to be
involved in cognitive control and motivation (Heilbronner et al.,
2011; Bahlmann et al., 2015).

In summary, the results show that GMv of the superior
temporal gyrus, middle temporal gyrus, and insula show a
positive association between temperaments and regional GMv
in females and a negative association in males, while a positive
association in males and a negative association in females was
observed between P and regional GMv in the posterior cingulate
gyrus, medial superior frontal gyrus, and middle cingulate gyrus.

Within-Sex Correlation Between
Temperaments and Voxel-Wise GMv
We found non-overlapping sex-specific topographic patterns in
temperament-brain associations. These results suggests that the
structural neurobiology underlying personality is to a high degree
sex-specific and our results are in line with the study of Nostro
et al. (2016), who only found sex-specific associations. Our
results support their hypothesis that brain structure-personality
associations are highly dependent on sex and this may be
attributable to hormonal interplays.

Clinical Implications
Different temperaments from the TCI have been linked to several
neuropsychiatric disorders; NS is known to be correlated with
drug addiction (Bardo et al., 1996; Lin et al., 2015; Vanhille et al.,
2015), tobacco abuse (Palmer et al., 2013), and depression (Duclot
and Kabbaj, 2013). NS and HA are both linked to pathological
gambling (Kim and Grant, 2001; Nordin and Nylander, 2007)
and alcohol abuse (Palmer et al., 2013; Wennberg et al., 2014).
However, the risk for these neuropsychiatric symptoms differs
between males and females. For example, studies show that
males have a higher risk for developing an alcohol or gambling
addiction (Engwall et al., 2004; Nolen-Hoeksema and Hilt, 2006).
Our results support the importance of sex in the neurobiology of
these disorders.

Limitations
A limitation of the current study is the small sample size.
However, the different subgroups that constituted the sample
presumably increased the variability of the dataset and benefited
the statistical power. Furthermore, we used a statistical threshold
[Pheight < 0.001 (k = 10) in combination with Pheight < 0.05 FWE-
corrected following Small Volume Correction]. However, as the
current study is an exploratory study, further studies are needed
with larger sample sizes. It is important to keep in mind that
females generally have smaller brains than males (Ruigrok et al.,
2014) and this can effect volume of specific brain regions (Pintzka
et al., 2015). To control for this, TIV was entered as variable of no
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interest in all analyses. Furthermore, as the study is correlational
in nature, any causal interpretations are unjustified.

CONCLUSION

The present study documents opposing associations in males
and females between temperament brain associations. The
results reveal that sex-specific associations outweigh sex-general
associations in the neurobiology of personality.
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Objective: The clinical course of unconsciousness after traumatic brain injury (TBI) is

commonly unpredictable and it remains a challenge with limited therapeutic options.

The aim of this study was to evaluate the early changes in serum sex hormone

levels after severe TBI (sTBI) and the use of these hormones to predict recovery from

unconsciousness with regard to sex.

Methods: We performed a retrospective study including patients with sTBI. A statistical

of analysis of serum sex hormone levels and recovery of consciousness at 6 months was

made to identify the effective prognostic indicators.

Results: Fifty-five male patients gained recovery of consciousness, and 37 did not.

Of the female patients, 22 out of 32 patients regained consciousness. Male patients

(n= 92) with sTBI, compared with healthy subjects (n= 60), had significantly lower levels

of follicular stimulating hormone (FSH), testosterone and progesterone and higher levels

of prolactin. Female patients (n = 32) with sTBI, compared with controls (n = 60), had

significantly lower levels of estradiol, progesterone, and testosterone and significantly

higher levels of FSH and prolactin. Testosterone significantly predicted consciousness

recovery in male patients. Normal or elevated testosterone levels in the serum were

associated with a reduced risk of the unconscious state in male patients with sTBI. For

women patients with sTBI, sex hormone levels did not contribute to the prediction of

consciousness recovery.

Conclusion: These findings indicate that TBI differentially affects the levels of sex-steroid

hormones in men and women patients. Plasma levels of testosterone could be a

good candidate blood marker to predict recovery from unconsciousness after sTBI for

male patients.

Keywords: traumatic brain injury, sex hormones, consciousness, sex, differences

INTRODUCTION

Traumatic brain injury (TBI) is a major cause of death and disability worldwide and is increasing
in incidence (1). Patients with acute severe TBI (sTBI) often develop severe disorders of
consciousness, i.e., coma, minimally conscious state or vegetative state. Although many patients
may regain consciousness during the 1-month post-TBI period, the minimal conscious state may
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also develop into a chronic and even permanent state (2). Early
detection of consciousness in patients with TBI could predict
subsequent recovery of neurological function since early recovery
of consciousness is closely related to better long-term functional
outcomes (3). However, there is an ongoing debate about the
clinical assessment of consciousness, which relies on inferences
obtained from observed responses to external stimuli. This
clinical evaluation of consciousness may be erroneous in 40%
of patients, since the responses of patients with severe brain
damage may be very limited (4, 5). In addition, rehabilitative
care will be limitedly accessible to those who are inaccurately
identified as poor prognoses due to the lack of a tool for
predicting consciousness recovery (6). Hence, it is crucial to find
a biomarker to predict the recovery of consciousness for patients
suffering from TBI.

Hormone dysfunction, also known as post-TBI hormonal
deficiency syndrome, is very common in the post-acute phase
of sTBI. It has been reported that up to 80% of patients with
sTBI suffer from some types of acute hypopituitarism and
related hypogonadism (7, 8). The literature suggests that sex
hormones can affect damage after TBI and are associated with
the stress response occurring in the acute phase of the disease.
Furthermore, there is proof that estrogen and progesterone
have neuro-protective effects, suggesting that inadequate levels
may have both acute and long-term consequences on the
recovering brain (9). Decades of studies show that testosterone
levels are low in 36.5–100% of patients with sTBI, however,
the prognostic significance of testosterone levels remains
controversial (10). Although insufficiency in hormones after
TBI has become increasingly recognized, there are limited data
focusing on TBI survivors regarding the role of sex hormones in
predicting consciousness.

There is increasing evidence demonstrating significant sex
differences in the nervous system response to traumatic injury
(11). A growing number of studies in experimental TBI report
that female brains consistently exhibit less damage in comparison
to their male counterparts because of effects of gonadal steroid
hormones at time of injury (8). However, studies regarding
the influence of sex on outcomes and recovery of TBI are still
scarce. To the best of our knowledge, there is no previous study
investigating the association between serum hormone levels
during the acute TBI phase and the recovery of consciousness
in patients with TBI. The goals of this study were to assess sex
differences in alterations of serum sex hormones after sTBI and
determine whether sex hormones can effectively predict recovery
of consciousness with regard to sex.

METHODS

Patients and Definitions
We retrospectively screened all patients with TBI admitted
to the neurosurgery, emergency or rehabilitation department
of our institution from 2007 to 2017. The inclusion criteria
were as follows: (1) age of 18–75 years old; (2) head trauma
with Glasgow Coma Scale (GCS) score of 3–8 based on the
first score registered after resuscitation, with no eye opening
for at least 24 h; (3) absence of previous neurologic disorders;

(4) absence of a previous history of breast cancer requiring
chemotherapy treatment/tamoxifen, pituitary, or hypothalamic
tumor, prostate cancer receiving orchiectomy, or hormone
suppression agents, or untreated thyroid disease; (5) serum sex
hormone measurement received within 1 week after trauma.
Ninety-two male patients and 32 female patients with sTBI
were enrolled in this study following above-mentioned criteria.
Healthy subjects were separately enrolled as controls for serum
sex hormone measurement. Healthy subjects had no history
of neurological, psychiatric, cardiovascular, pulmonary, renal
or endocrinological disease, and had not received replacement
hormone therapy or contraception. In addition, control women
were interviewed about their menopausal status and reproductive
history. If this information was not available, subjects >50
years of age were defined as post-menopausal. Sixty age-and
sex-matched healthy controls were included for both male and
female group.

All patients were given both oral and written information
about the study and a written informed consent was obtained.

Parameters
A standardized case collection form was used to determine the
causes of trauma, age, sex, injury severity score (ISS), GCS scores,
and neuroradiological data at baseline. The severity of the trauma
was evaluated by ISS. The lowest recorded GCS scores before
sedation and intubation from the emergency department or scene
of accident was used in this study. The type of injury was obtained
from initial head computed tomography (CT) report.

Serum sex hormone measurements for all patients were
performed in 1 week after sTBI. Additionally, serum samples
for premenopausal females were collected either in the follicular
phase (days 5–10) or the luteal phase (days 18–23) of their
cycle. Blood for enrolled patients was primarily collected in
the morning (∼7:00 a.m.) for analysis of estradiol, follicular
stimulating hormone (FSH), luteinizing hormone (LH),
progesterone, prolactin, and testosterone. All sex hormones
were analyzed at the accredited clinical chemistry laboratory
at Nanfang Hospital, Southern Medical University. Serum
estradiol, progesterone, and testosterone were analyzed using
radioimmunoassay with the Coat-A-Count in-vitro diagnostic
test kit (Siemens Healthcare Diagnostics Inc., Los Angeles
CA). Serum FSH, LH, and prolactin were measured by
electrochemiluminescence immunoassay (ECLIA; Modular
Analytics E170, Roche, GmbH, Hannheim, Germany). Male
patients were divided into two subgroups according to the
normal range (1.80–8.82 ng/ml) of male testosterone provided
by the accredited clinical chemistry laboratory. Testosterone
levels <1.80 ng/ml was classified as low testosterone level group,
and testosterone levels >1.80 was classified as normal or elevated
testosterone level group.

Study Outcome
The primary outcome was consciousness recovery. All enrolled
patients were classified into two groups according to their final
coma recovery result: recovery of consciousness (RC) and no
recovery of consciousness (NRC). Patients were considered to
be the RC group if they met at least one of the following
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demonstrations: (1) functional use of one or more objects, (2)
functional interactive communication, or (3) clearly discernable
behavioral manifestation of a sense of self. The judgment on the
unconscious state during the follow-up period was evaluated by
the Coma Recovery Scale–Revised (CRS-R) (12). The patients
were followed for at least 6 months.

Statistical Analysis
Normally distributed data are presented as the mean ± standard
deviation (SD) and compared using Student’s t test. Non-
normally distributed continuous data are presented as median
(interquartile range) and compared by the Mann- Whitney
U test. Chi-square or Fisher’s exact tests were performed to
compare categorical data. Independent variables were screened
to select those with statistically significant differences between
the RC and NRC groups using single-factor analysis. Logistic
regression analysis was used to determine which variables
independently predicted recovery of consciousness. A logistic
regression model contained sex hormones and clinical predictors
including age, pupil reactivity, GCS score, ISS, and computed
tomography (CT) characteristics (Rotterdam CT classification).
The times to recovery of consciousness for patients with sTBI
were illustrated with Kaplan–Meier curves and compared using
the Cox proportional hazards regression model in hazard
ratios (HR), with adjustment for baseline characteristics. The
prediction of recovery of consciousness was analyzed using the
receiver operating characteristic (ROC) curve method. A p-value
of < 0.05 was considered statistically significant. All analyses
were two-sided and performed using SPSS software version 21.0
(SPSS Inc., Chicago, IL, USA).

RESULTS

Enrollment and Characteristics of
the Patients
Of 3,411 patients with TBI screened for eligibility, 124 patients
with sTBI met all inclusion criteria and were enrolled in this
study. Thirty-two of 124 patients were women. The primary
mechanism of injury was motor vehicle collisions in both men
and women. The median GCS at admission for men and women
was 4 and 5, respectively. The median ISS score was 36 in both
men and women. No sex differences were found in the types of
injury observed by head CT, demographic, and injury variables
including age, GCS score at admission, and ISS. The baseline
characteristics of the patients are shown in Table 1.

Serum Sex Hormone Levels by Sex After
sTBI
Table 2 summarizes serum sex hormones by sex for estradiol,
FSH, LH, progesterone, prolactin, and testosterone for patients
and healthy controls. Serum estradiol levels were significantly
lower in women with sTBI than observed in matched healthy
subjects (58.50 ± 43.79 vs. 94.69 ± 73.66 pg /ml; p = 0.013),
whereas levels were similar in control values for men. The mean
FSH levels for men with sTBI were lower than those for their
controls (3.56 ± 3.50 vs. 5.27 ± 2.89 mIU/L; p = 0.002). In
contrast, FSH levels in women with sTBI were higher than

TABLE 1 | Characteristics of patients at baseline.

Characteristic Men (n = 92) Women (n = 32) P-value

AGE (YEARS)

Median (IQR) 35 (23–45) 42 (27–48) 0.278

CAUSE OF INJURY (NO.%)

Automobile/motorcycle 57/92 (61.96%) 16/32 (50.00%) 0.236

Fall/jump 16/92 (17.39) 9/32 (28.13%) 0.192

Other 19/92 (20.65%) 7/32 (21.88%) 0.884

RADIOLOGICAL INJURY TYPE

Subdural hematoma 37/92 (40.22%) 11/32 (34.38%) 0.559

Diffuse axonal injury 18/92 (19.57%) 6/32 (18.75%) 0.920

Epidural hematoma 14/92 (15.22%) 3/32 (9.38%) 0.556

Subarachnoid hemorrhage 24/92 (26.09%) 10/32 (31.25%) 0.573

Contusion 49/92 (53.26%) 21/32 (65.63%) 0.224

Intraventricular hemorrhage 6/92 (6.52%) 2/32 (6.25%) 0.957

Intracerebral hemorrhage 13/92 (13.04%) 9/32 (28.13%) 0.074

GCS at admission, median 4 (3–6) 5 (3–6) 0.652

ISS, median 36 (30–42) 36 (28–42) 0.514

DAYS FROM INJURY

To measure the level of sex

hormone (days)

4.62 ± 1.77 5.09 ± 2.18 0.235

GCS, Glasgow Coma Scale; ISS, Injury Severity Score; IQR, interquartile range. Results

are given as median (IQR) or n (%). Overall scores on the GCS range from 3 to 15, with

lower scores indicating a lower level of consciousness. The ISS ranges from 0 to 75, with

higher scores indicating greater severity of injury.

those in their controls (17.76 ± 12.78 vs. 8.87 ± 5.93 mIU/L;
p < 0.001). Mean prolactin levels for both men (26.91 ± 14.35
vs. 10.00 ± 4.69 ng/ml; p <0.001) and women (52.77 ± 23.26
vs. 18.89 ± 10.26 ng/ml; p < 0.001) were significantly higher
than those in matched healthy controls. Testosterone levels were
significantly lower than control values for both men (1.98± 1.79
vs. 5.28 ± 1.82 ng/ml; p < 0.001) and women (0.19 ± 0.15 vs.
0.26 ± 0.11 ng/ml; p = 0.008). Similar trends were noted for
progesterone (both p < 0.001). No significant difference was
found in LH levels for both men and women between patients
with sTBI and healthy controls.

Recovery of Consciousness and
Associated Hormone Levels by Sex After
sTBI
Of the 92 male patients with sTBI, consciousness was regained
in 55 (59.78%) patients. Among these patients, the duration
of recovery to consciousness after sTBI was <1 month for 32
patients, 1–3 months for 15 patients, 3–6 months for 6 patients,
and more than 6 months for 2 patients. Of the 32 female patients
with sTBI, 22 (68.75%) patients had regained consciousness. The
recovery to consciousness duration after sTBI was <1 month
for 13 patients, 1–3 months for 5 patients, and 3–6 months
for 4 patients. There is no statistically significant difference in
percentage of the patients regaining consciousness between male
and female groups.

Table 3 summarizes the results of single-factor analysis of
variables for the RC and NRC groups by sex. There were no

Frontiers in Endocrinology | www.frontiersin.org 3 April 2019 | Volume 10 | Article 26172

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Zhong et al. Sex Differences in Severe TBI

TABLE 2 | Serum hormones.

Parameters Male patients Male controls P-value Female patients Female controls P-value

Age (years) 35 (23–45) 38 (30–47) 0.182 42 (27–48) 36 (28–45) 0.628

Estradiol (pg/ml) 26.14 ± 18.89 29.59 ± 10.93 0.155 58.50 ± 43.79 94.69 ± 73.66 0.013*

FSH (mIU/L) 3.56 ± 3.50 5.27 ± 2.89 0.002* 17.76 ± 12.78 8.87 ± 5.93 <0.001**

LH (mIU/L) 4.26 ± 2.74 4.76 ± 1.64 0.22 9.79 ± 5.85 9.35 ± 7.52 0.776

Progesterone(ng/ml) 0.25 ± 0.19 0.55 ± 0.21 <0.001** 1.20 ± 1.13 4.79 ± 3.84 <0.001**

Prolactin(ng/ml) 26.91 ± 14.35 10.00 ± 4.69 <0.001** 52.77 ± 23.26 18.89 ± 10.26 <0.001**

Testosterone(ng/ml) 1.98 ± 1.79 5.28 ± 1.82 <0.001** 0.19 ± 0.15 0.26 ± 0.11 0.008*

FSH, follicular stimulating hormone; LH, luteinizing hormone. Results are given as mean± standard deviation or median (IQR). *p < 0.05. **p< 0.001.

TABLE 3 | Single factors analysis of variables between two groups by sex.

Male patients Female patients

Variables RC (n = 55) NRC (n = 37) P-value RC (n = 22) NRC (n = 10) P-value

Age (years) 33 (23–45) 35 (24–48) 0.687 35 (23–47) 46 (36–52) 0.095

ISS, median 38 (32–46) 35 (28–42) 0.258 35 (28–42) 36 (30–53) 0.411

GCS at admission 5 (3–6) 4 (4–6) 0.711 5 (3–6) 6 (3–6) 0.24

Estradiol (pg/ml) 23.50 ± 17.94 30.05 ± 18.83 0.103 76.79 ± 41.12 18.26 ± 6.50 < 0.001**

FSH (mIU/L) 3.40 ± 2.26 2.13 ± 1.62 0.007* 16.00 ± 12.95 21.63 ± 12.12 0.255

LH (mIU/L) 3.54 ± 2.63 4.67 ± 2.75 0.078 9.35 ± 5.37 10.77 ± 6.99 0.532

Progesterone (ng/ml) 0.22 ± 0.17 0.31 ± 0.22 0.029* 1.66 ± 1.09 0.20 ± 0.07 < 0.001**

Prolactin (ng/ml) 23.90 ± 11.22 31.44 ± 17.27 0.014* 61.63 ± 22.26 33.28 ± 9.68 0.001**

Testosterone (ng/ml) 2.69 ± 1.95 0.93 ± 0.72 < 0.001** 0.20 ± 0.14 0.16 ± 0.16 0.436

GCS, Glasgow Coma Scale; ISS, Injury Severity Score; FSH, follicular stimulating hormone; LH, luteinizing hormone. Results are given as mean± standard deviation or median (IQR).

*p < 0.05. **p < 0.001.

statistically significant differences between the two groups in
terms of age, GCS, and ISS at baseline for both men and women
with sTBI, yet there were statistically significant differences
for serum levels of estradiol, FSH, progesterone, prolactin and
testosterone. For male patients with sTBI, the RC group had
higher levels of FSH (3.40 ± 2.26 vs. 2.13 ± 1.62 mIU/L;
p = 0.007), higher levels of testosterone (2.69 ± 1.95 vs. 0.93 ±

0.72 ng/ml; p < 0.001), lower levels of progesterone (0.22 ± 0.17
vs. 0.31 ± 0.22 ng/ml; p = 0.029), and lower levels of prolactin
(23.90 ±11.22 vs. 31.44 ± 17.27 ng/ml; p = 0.014) than those
for the NRC group. For the female patients with sTBI, the levels
of estradiol (76.79 ± 41.12 vs. 18.26 ± 6.50 pg/ml; p < 0.001),
progesterone (1.66 ±1.09 vs. 0.20 ± 0.07 ng/ml; p < 0.001), and
prolactin (61.63 ± 22.26 vs. 33.28 ± 9.68 ng/ml; p < 0.001)
were significantly higher in the RC group compared with the
NRC group.

Outcome Predictors
We then attempted to evaluate the use of these hormone
levels, i.e., the significant differences between the RC and
NRC groups, to predict recovery of consciousness by sex,
as shown in Table 4. A logistic regression model with
recovery of consciousness/no recovery of consciousness
as the dependent factor for male patients, which was a
combination of the clinical predictors with FSH, progesterone,

TABLE 4 | Logistic regression analysis of variables to predict recovery of

consciousness.

Multivariate analysis

Variables OR 95%CI P-value

MALE PATIENTS

FSH (mIU/L) 0.801 0.605–1.060 0.120

Progesterone (ng/ml) 0.367 0.039–3.452 0.379

Prolactin (ng/ml) 0.992 0.980–0.942 0.329

Testosterone (ng/ml) 3.495 1.792–6.815 <0.001**

FEMALE PATIENTS

Estradiol (pg/ml) 1.204 0.929–1.559 0.161

Progesterone (ng/ml) 8.944 0.001–200.015 0.341

Prolactin (ng/ml) 0.986 0.953–1.021 0.428

FSH, follicular stimulating hormone. **p < 0.001.

prolactin, and testosterone as independent factors, showed
that testosterone significantly predicted consciousness
recovery (OR, 3.495, 95% CI, 1.792–6.815, p < 0.001).
For the women patients with sTBI, however, sex hormone
levels did not contribute to the prediction of consciousness
recovery when examining these hormones together with the
clinical predictors.
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FIGURE 1 | Kaplan-Meier curves of consciousness recovery in male patients

with severe TBI, based on testosterone subgroup. Blue curves show the

proportion of consciousness recovery in male patients with low testosterone

levels. Green curves show the proportion of consciousness recovery in male

patients with normal or elevated testosterone levels.

Furthermore, the times to recovery from coma for male
patients with normal or elevated testosterone levels and those
with low testosterone levels were compared by Kaplan–Meier
survival curves, which showed the proportion of male patients
regaining consciousness (Figure 1). The analysis showed that
normal or elevated testosterone levels in serum significantly
reduced the risk of remaining in an unconscious state in male
patients with sTBI (log-rank test, p = 0.011) (HR, 2.12; 95% CI,
1.22–3.66, p= 0.007).

In addition, in evaluating the power of testosterones to predict
recovery of consciousness/no recovery of consciousness in men,
an ROC curve was drawn, as shown in Figure 2. The ROC
analysis showed that the area under the curve (AUC) was 0.736
(p < 0.001).

DISCUSSION

The literature suggests that pituitary hormone abnormalities
occur early, with high frequency post-TBI (7, 8). However,
these research findings are mostly mixed regardless of sex.
Our study investigated alterations in sex hormones and
specifically focused on the effects of these hormones on
consciousness after sTBI by sex, which has not been well-
studied. In the current study, sex-specific alterations in serum
sex hormone levels were identified in the acute phase of
sTBI. Importantly, our data suggested that serum testosterone
was a significant predictor of consciousness recovery in
male patients with sTBI, whereas serum sex hormones did
not contribute to consciousness recovery in women patients
with sTBI.

Hypopituitarism is highly prevalent during the acute phase of
TBI. Thus, far, the exact mechanisms underlying hypopituitarism

FIGURE 2 | Probability of recovery of consciousness at 6 months related to

serum testosterone levels observed 1 week after sTBI in male patients. The

probability results are from the ROC curve, where larger test results indicate a

more positive test. The AUC for testosterone is 0.736 (p <0.001).

have not yet been clarified. The most widely accepted
theory belongs to the ischemic insult to the pituitary gland.
Raised intracranial pressure and edema around the region
of hypothalamic–pituitary may also contribute to hormonal
abnormalities (13). Therefore, it is conceivable that surgical
treatment during the acute phase of TBI, such as decompressive
surgery operations, could alleviate hormonal abnormalities by
reducing intracranial pressure. There is increasing proof that
hypopituitarism may be badly neglected in patients with TBI
because the lack of routine follow-up of hormone levels (14).
In addition, the majority of clinical researches on pituitary
abnormalities in TBI to date have been on men because men
have a higher incidence of TBI than women or regardless of
sex (15, 16). The results of this study further extended previous
work examining hormone profiles after sTBI by sex. Our results
showed statistically significant changes in FSH, progesterone,
prolactin, and testosterone for men patients, whereas in
women patients, the changes were observed in estradiol, FSH,
progesterone, prolactin, and testosterone. Interestingly, the trend
of changes in FSH and prolactin was opposite for sex groups.
These findings indicated that TBI differentially affects the levels
of sex-steroid hormones in men and women with sTBI. It is
frequent to observe sex differences in post-TBI outcomes (17–
23). Results from experimental models show that female rats
exhibit lesser susceptibility to post-TBI and male rats developed
more severe cerebral edema, which could significantly cause
secondary brain injury (11). Data from clinical study have
noted that women are more likely to survive their injuries
and less likely to suffer posttraumatic complications than men
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(17–20). However, other researchers have found the opposite
results that women have worse outcomes and are more likely
to die from their injuries than men (18). Sex differences in the
extent of brain damage has also been reported among survivors
post-TBI, with the female brain suffering from less damage
compared to their male counterparts (24). These studies support
that pathophysiologic variables may underlie these differences.
Numerous studies from clinical and laboratory research support
the essential role of sex hormones in the injured brain (20–23).
Hence, sex-specific changes of hormonal steroids may contribute
to innate sex-based differences in physiology and pathobiology
of TBI.

Unconsciousness resulting from TBI is frustrating for
clinicians and distressing for patients’ families, since the
mechanisms behind the recovery from unconsciousness are
largely unknown and its prognosis is especially challenging
(17). Consciousness is considered to exhibit an emergent
property of cortical activity (25). The ascending reticular
activating system (ARAS) of the brain structures accounts for
the regulation of consciousness (24). It has been proposed
that impaired consciousness level post-TBI may be due to
damage of part of the ARAS, including the brainstem,
thalamus, extensive injury to the cortex, or the disconnection
of white matter between the thalamus and cerebral cortex
(26). In addition, the hypothalamus plays an important role
in maintaining self-awareness since it is involved in the
regulation of sleep and awakening as the primary timekeeper
of consciousness (27, 28). Hypothalamus-pituitary dysfunction
resulting from TBI is mainly caused by damage to the
hypothalamus, including hypoxic insult, direct mechanical
injury, and vascular injury (7, 14). Hence, we speculated that
hormone alterations after sTBI may have a certain degree of
predictive value for recovery of responsiveness by combining the
above-mentioned studies.

In the current study, we determined how serum sex hormones
may be useful for predicting the outcome of unconsciousness.
Our results showed that testosterone, only in male patients,
was an effective predictor of recovery of consciousness.
Notably, normal or elevated testosterone levels were significantly
associated with a reduced risk of unconsciousness. Despite the
exact mechanism of how testosterone promotes the recovery of
consciousness being unknown, several previous studies could
support the results from this study. It has been reported that
the descent of testosterone is dependent on the severity of
TBI. In males, there is a positive correlation between plasma
testosterone level and GCS score (29, 30). Moreover, it has
also been reported that testosterone level is associated with
mortality or morbidity of patients with sTBI (31). Clinical
studies suggest that male TBI patients could benefit from
restoring serum testosterone levels (10, 32). Beneficial effects
of testosterone after brain injury have also been reported in
animal experiments. Results of experiment conducted by Lopez-
Rodriguez and coworkers show that testosterone levels on brain
inversely correlate with the severity of TBI and edema formation,
but positively correlate with GCS scores. They also suggest that
animals with lower levels of testosterone on brain had higher
neurological deficiency (33). Furthermore, brain testosterone

plays a neuroprotective effect against oxidative damage in
experimental model (34). Other research suggests that intrinsic
androgen may impact the capacity of neural stem/progenitor
cells to produce neural progenitors under oxidative stress
conditions (35). There is evidence that steroid hormones may
modulate adult subventricular zone neurogenesis by affecting
synthesis of brain-derived neurotrophic factors (36). It has
also been reported that testosterone could improve working
memory in aged rats by aiding transport of nerve growth
factor from hippocampus to cortex (37). Therefore, it is not
surprising that testosterone level has an effective predictive
value in terms of consciousness recovery. Though male RC
group had a significantly higher levels of testosterone and FSH
and lower levels of prolactin and progesterone, FSH, prolactin
and progesterone were not included in the logistic regression
equation. As with females, none of sex hormone was associated
with consciousness although RC group presented with higher
levels of estradiol, prolactin and progesterone, which may be
explained by sex-specific responses to sex hormone. It has also
been previously demonstrated that loss of testosterone in men
could change the brain’s hormonal landscape because alteration
of testosterone is gradual in healthy men and can be clinically
subtle, whereas change in sex hormones in healthy women
is rapid and overt (38). There are notable sex differences in
neurochemistry, brain morphology and functional outcomes in
addition to similarities between female and male brains (39).
Marked sex-specific responses to injury caused by trauma have
also been reported in the nervous systems above-mentioned (16–
19). These studies may provide evidence for the difference in the
association between sex hormones and consciousness for male
and female patients post-TBI.

In addition to use of testosterone to distinguish whether
patients were likely to have RC vs. NRC, it was of interest to
analyze the probability of testosterone levels predicting recovery
of consciousness. In the current study, by using testosterone
levels in male patients with sTBI the ROC analysis showed a
high AUC. The probability of consciousness recovery increased
with increasing levels of testosterone, which provides a rationale
for why male TBI patients could benefit from restoring their
serum testosterone levels as previously suggested in a clinical
study (32). There is an increasing belief that unconsciousness
following TBI may be the consequence of traumatic axonal
injury to the brainstem reticular activating system and thalamus,
extensive damage to the cortex (2, 40). Androgens were shown
to be an important promoting factor in axons regeneration
in males (41). The potential mechanism by which testosterone
could enhance consciousness recovery post-TBI was presumably
due to facilitating axonal regeneration. However, systemic
administration of testosterone to female animal elicited a less
extent of axonal regeneration, which could have been due
to conversion of testosterone to estradiol by aromatase and
subsequently inability to bind to androgen receptors within
neurons (42). In addition, effects of sex hormones on brain
and behavior can be moderated by factors such as menopausal
status, age, and parity (38, 43). These results could contribute to
the absence of associations between gonadal hormones and TBI
outcomes in women.
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In the present study, progesterone and estrogen were
not associated with consciousness, although progesterone was
significantly lower in both sexes relative to controls, and
estrogen was lower only in the female patients compared
with health subjects. Decades of researches demonstrate that
progesterone can suppress neuroinflammation and reduce
edema, oxidative injury, blood-brain barrier damage, enhance
dendritic arborization and synaptogenesis, and limit cellular
necrosis after brain trauma (8, 44, 45). Experimental literature
also suggests that estrogen can increase cerebral blood flow,
reduce inflammatory, prevent lipid peroxidation, and promote
cell survival post-TBI (11, 46, 47). Despite a growing body of
evidence from laboratory studies supporting the influential role
of progesterone and estrogen in TBI, there is an alarming paucity
of clinical data. The large clinical trials show no clinical benefit
of progesterone and estrogen in patients with severe TBI (48, 49).
There are currently no recommendation for the use of treatment
with estrogen or progesterone to afford neuroprotection in
TBI (8, 48). These results may explain that progesterone and
estrogen were not associated with consciousness in both sex at
current study.

This study was limited by the fact that sex hormone levels
were assessed only once and were not evaluated for their dynamic
changes. Our data do not allow discrimination between what
proportion of the hormone alteration is caused by the TBI
itself and how much is caused by the extracranial injuries and
critical illness situation. Additionally, the observed indicators
were also limited. Functional magnetic resonance imaging and
electroencephalography responses, known to provide useful
prognostic information, were not included in this study.
However, this study was mainly designed to find a biomarker for
predicting consciousness recovery at an early stage post-TBI. Our
sample size was also relatively small. In the future, more study
subjects are needed to overcome possible bias and to improve the
generalizability of data.

CONCLUSION

The results of this work indicate that acute serum sex hormone
profiles are different between male and female patients in
the acute phase of sTBI. Serum testosterone concentration is
an effective prognostic indicator in male patients with sTBI
for recovery of consciousness. Hence, these patients should
be considered and referred to neuroendocrine evaluation in
an early phase after traumatic event. However, progesterone
and estrogen are not significantly associated with the outcome
of unconsciousness, so early treatment with progesterone and
estrogen may not work on the recovery of consciousness. Further
work is needed to investigate the exact mechanism of how
testosterone promotes the recovery of consciousness in male
population with TBI.
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“The first task of every science is the clear definition of the object it has to investigate. In no

science, however, is this preliminary task so difficult as in psychology; and this circumstance is

the more remarkable since logic, the science of defining, is itself a part of psychology. When we

compare all that has been said by the most distinguished philosophers and scientists of all ages on

the fundamental idea of psychology, we find ourselves in a perfect chaos of contradictory notions.”

From Haeckel (1905)

We agree with Haeckel that definitional issues are paramount in science and that we should be
mindful of our human biases, especially when thinking about subjects such as sex and gender
that are so central to our identity. It is our view that sex and gender can both be incorporated
into neuroscience research in a meaningful, rigorous way but not with the current dichotomous
approach: sex and gender are not distinct variables with mutually exclusive causes and cannot be
considered as such. Our use of the terms sex and gender herein will reflect current conventional
definitions, including those associated with this special issue, with “sex” referring to biological
attributes and “gender” referring to social structure and socially constructed roles, behaviors,
and identities. Here we argue that the most significant restriction for the successful widespread
inclusion of sex and gender into neuroscience research is definitional. We believe a comparative
and interdisciplinary approach to this question will help desegregate current definitions and drive
sex and gender science forward in an efficient, integrative, and conceptually accurate manner.

The definitional issues surrounding sex and gender originate in part from a conflation of
observable traits with inferences as to their causality. That is, “biological” and “social” are attached
to “sex” and “gender,” respectively in a familiar dialectic that echoes notions of nature and nurture
and by extension determinism and free will. This conflation is problematic not only because it
leads to conceptual ambiguity and fuels unnecessary disagreements (see Griffiths, 2002, for relevant
discussion of “innateness”), but also because defining traits based on presumed causality introduces
a major obstacle to scientific investigation. Our thinking and experimentation should not be
constrained by definitions that on the one hand are difficult to observe (i.e., to categorize a trait as
a manifestation of sex or gender requires knowledge of its cause) and on the other hand precludes
causal investigation (traits thus defined are then canonized). Case in point is the assumption or
assertion that gender is a non-biological, social construction, or that sex has a purely biological
basis. This dichotomous causal inference implies orthogonality and is dubious even when only
considering traditional laboratory rodents and humans, but all the more so when we take a truly
comparative perspective.

As a species, we seem to cherish a belief that humans are fundamentally unique among animals,
beyond the obvious fact that, by definition, all species are unique from each other. It is common
even among academics to hold the view that humans have categorically unique cognitive and
social abilities, such as language, self-awareness, technology, and culture. These beliefs persist

78

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00475
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00475&domain=pdf&date_stamp=2019-05-09
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:melissa.holmes@utoronto.ca
https://doi.org/10.3389/fnins.2019.00475
https://www.frontiersin.org/articles/10.3389/fnins.2019.00475/full
http://loop.frontiersin.org/people/48313/overview
http://loop.frontiersin.org/people/730215/overview


Holmes and Monks Rethinking Sex and Gender Definitions

despite evidence for at least rudimentary forms of these abilities
in other species. Notable for the current discussion, there is
compelling evidence for at least limited theory of mind (i.e., the
ability to recognize mental states in others such as their goals,
intentions, perceptions, knowledge, and/or beliefs) in diverse
non-human animals. For example, chimpanzees (Pan troglodytes)
are able to “pass” tests of theory of mind that are applied to
human infants. These include: adaptivelymodifying food begging
according to whether an experimenter is unable or unwilling to
give food, correctly producing an action that was unsuccessfully
attempted by an experimenter, using stealth adaptively to disguise
food retrieval from a competitor, and selectively retrieving food
that is unknown to competitor (reviewed in Call and Tomasello,
2008). As further example, western scrub-jays (Aphelocoma
californica) not only have effective food caching strategies to
minimize thieving from competitors, but also move the location
of their caches when they are observed if they have prior
experience thieving from others (reviewed in Clayton et al.,
2007). Several rodent species also show evidence of self-other
awareness in the form of empathy or consolation behavior
(Burkett et al., 2016; Mogil, 2019). Whereas it is important to
acknowledge doubt concerning the extent to which the adaptive
performance of other animals or even human infants reflects true
understanding of the mental states of others rather than resulting
from more simple behavioral rules (see Penn and Povinelli,
2007), we believe it is fair to say diverse species have remarkably
sophisticated social behavior, enabling behavioral responses that
adapt to mental states of conspecifics.

If other animals can, for lack of a better word, understand
the goals, intentions, perceptions, and knowledge of their
conspecifics, why would we assume that they are incapable
of having awareness of their sex or sexuality, or for these to
be separate from their social environment? To the contrary,
it seems to us that it would be remarkable if this did not
occur to varying extents in non-human animals, and there is
considerable evidence to support this conclusion. Other species,
too, appear to make at least rudimentary assumptions about
how conspecifics will behave based on biological and social
cues and shift their sociosexual phenotype based on social
environment. For example, in bluehead wrasse (Thalassoma
bifasciatum), adult females can undergo complete sex change
based on social cues, becoming sperm-producing males if the
existing dominant male is removed from their habitat (Warner
and Swearer, 1991). Furthermore, male Astatotilapia burtoni, a
species of cichlid, exist in two morphs: territorial, aggressive
males have striking coloration while non-territorial, subordinate
males do not. Importantly, these morphs are plastic. Males
can shift between phenotypes, showing changes in behavior,
morphology, and neuroendocrinology, depending on their social
environment (reviewed inMaruska and Fernald, 2018). Are these
male morphs equivalent to different genders? We believe they
could be considered as such, however gender is, by most current
definitions, a manifestation of human sociocultural factors and is
therefore exclusively applied to humans.

These comparative examples highlight that the intersection
of numerous physiological and behavioral traits can manifest in
predictable morphs beyond “male” vs. “female”. In behavioral

ecology, polymorphism is defined as the occurrence of two or
more forms/morphs/phenotypes at the same ontogenetic stage
within a population. These morphs must be discontinuous
and occur at a frequency higher than explained by the rate
of mutation. Importantly, while the morphs themselves are
discontinuous, trait expression can be either categorical
or continuously distributed. For example, male plainfin
midshipman fish (Porichthys notatus) exist in two morphs
(reviewed in Forlano et al., 2015). Type I males are larger,
establish and defend territories, and produce sonic vocalizations
to attract females. Type II males are smaller, do not maintain
territories, and do not produce the same vocal repertoire.
Rather, they mate cryptically by ejaculating when females are
laying eggs in the territory of a Type I male. In this species,
the presence or absence of testes is categorical between males
and females but is continuous within males with Type II males
having a higher gonadosomatic index than Type I males, on
average. Furthermore, polymorphisms can be strictly genetic
or environmentally-cued. In sexually reproducing species,
the most obvious example of a polymorphism—and this is
not a coincidence—is the differentiation of an embryo along
male or female lines. In mammals, this is a classic example
of genetic polymorphism whereby the mechanism of sexual
differentiation is provided by polymorphic sex chromosome
genes (reviewed in Arnold et al., 2012). In several species,
however, sex determination is environmentally controlled.
For example, in leopard geckos (Eublepharis macularius), the
gonadal sex of the individual is attributable to the temperature
in which the egg incubates (Viets et al., 1993). This is not to
say that environmentally-cued polymorphism is independent
of genetics. Rather, while genetic polymorphisms result from
discontinuously distributed but continuously active genetic
material, environmentally-cued polymorphisms stem from
universally distributed but differentially active genetic material
(Clark, 1976). Key to the current debate, because polymorphism
means “many forms,” it is an appropriate term for observable
differences in form between members of a population regardless
of how many forms and whether or not the mechanism of morph
determination is known (Clark, 1976). Importantly, this concept
inherently acknowledges the intersectionality of biological and
environmental mechanisms.

Discussion about the intersections between genes and
environment in the evolution of human sex and gender
differences is ongoing (e.g., Smuts, 1995; Eagly and Wood, 2013;
Liesen, 2013; Neuberg and Sng, 2013; Barker, 2015) and it has
been argued that the social environment and/or culture are not
entirely distinct from genetic and epigenetic mechanisms (see
for example Jablonka and Lamb, 2014; Fine et al., 2017). Indeed,
others have advocated for a redefinition and expansion of sex and
gender categories (e.g., Fausto-Sterling, 2000; Fine, 2010; Jordan-
Young, 2010; Hyde et al., 2019) or suggested methodological
approaches to better integrate sex and gender in neuroscience
research (e.g., Rippon et al., 2014; Joel and McCarthy, 2017;
Hyde et al., 2019). However, some of this discourse is inherently
based on dichotomous definitions of sex and gender whereas we
further the call for an empirical, theoretically agnostic approach
to the re-examination of sex and gender categories on the
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basis of observable traits in the absence of causal assumptions.
Using polymorphism as a theoretical framework for all sex
and gender research (both human and non-human animal),
we can statistically determine if a given phenotype (behavioral,
morphological, or otherwise) is a continuous or categorical
variable and how different variables cluster together (or not).
We can then analyze sex and gender variables using multilayer
network analysis, which is specifically designed to explore
multifaceted systems (e.g., Finn et al., 2019). We can incorporate
chromosomal, hormonal, and morphological variables with key
environmental variables including social and sexual experience,
social rank, and current and evolutionary social/sociocultural
milieu. We can disrupt networks in silico to identify putative
causal relationships and generate testable hypotheses concerning
orthogonality of the variables that define morphs. We have little
doubt that some of these variables will cluster together and
influence each other in clear and predictable ways, particularly
given well-established links between chromosomes, gonads, and
morphology. However, exactly how this happens will differ
according to species and, importantly, a broad comparative
approach will allow us to identify opportunities for modeling
specific target mechanisms that might better align with the
human condition.

In sum, we agree with the idea that neuroscientists should
theoretically be both “sex-informed” and “gender-informed” but
we do not think the current definitions of sex and gender facilitate
this goal. We argue for a reevaluation of the current consensus
definitions that primarily serve to dichotomize the biological
and the social when these are inextricably intertwined in any
social animal. As a result, these definitions serve to inhibit
investigations of mechanism, broadly defined. Furthermore, it
is our opinion that applying “sex” to non-human animals but
both “sex” and “gender” to humans is fundamentally inaccurate
and imposes further bias on the study of mechanism. To correct

this, we either need to redefine gender to focus exclusively
on those features that are truly unique to humans, which will
require significant introspection and debate, or we need to more
broadly apply gender concepts to non-human social animals.
In pursuit of a desirable social goal (i.e., inclusion and equal
opportunity for individuals) we should not ignore or deny the
biological variability that exists and themechanistic determinants
that cause the variability. That is, variability is not solely caused
by disadvantage, suppression, and prejudice. Conversely, in
pursuit of a standardized, reductionist translational approach,
we cannot ignore or deny species-specific social adaptations
and the importance of social interactions on physiology. We
fully acknowledge the complexity of studying/modeling sex
and gender (e.g., Jordan-Young and Rumiati, 2012; Eliot and
Richardson, 2016) but we believe this should be a source of
scientific inspiration. We need to keep asking the questions,
we just need to reframe how we do so. By taking a step back,
shedding our biases about causation, and appreciating variability
within and across species, we can revisit the consensus definitions
of sex and gender in an unbiased, data driven way.We believe this
will reframe how we study sex and gender and ultimately better
reveal the interplay between an organism’s brain, body, behavior,
and environment.
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The present study investigates the relationship of circulating sex hormone levels and
gender role to gray matter volumes in sexually dimorphic brain areas and explores,
whether these relationships are modulated by biological sex (as assigned at birth based
on sexual anatomy) or oral contraceptive (OC) use. It was hypothesized that testosterone
and masculinity relate positively to gray matter volumes in areas that are typically larger
in men, like the hippocampus or cerebellum, while estradiol/progesterone and femininity
relate positively to gray matter volumes in the frontal cortex. To that end, high resolution
structural MRI scans, sex hormone levels and gender role self-assessments were
obtained in a large sample 89 men, 89 naturally cycling (NC) women, and 60 OC users.
Men showed larger regional gray matter volumes than women in the cerebellum and
bilateral clusters spanning the putamen and parts of the hippocampi/parahippocampi
and fusiform gyri. In accordance with our hypotheses, a significant positive association
of testosterone to hippocampal volumes was observed in women irrespective of OC
use. Participant’s self-reported femininity was significantly positively associated with
gray matter volumes in the left middle frontal gyrus (MFG) in men. In addition several
differences between OC-users and NC women were identified.

Keywords: sex hormones, gender role, brain structure, oral hormonal contraceptives, sex differences

INTRODUCTION

Sex differences in brain structure and function have long been a matter of debate and have
attracted considerable research interest, as they are assumed to underlie sex differences in behavior
(e.g., Cosgrove et al., 2007; Andreano and Cahill, 2009). For instance, sex differences in the
brain are thought to explain sex differences in cognition, or the differential vulnerability for
neurodevelopmental and psychiatric disorders in men and women.

Sex differences in brain structure have repeatedly been reported, with consistencies in some
areas, but inconsistencies in others (see Ruigrok et al., 2014 for a meta-analysis). Regional gray
matter volumes change with age at a different rate in males and females, both during development
(Gur and Gur, 2016) and during aging (Jäncke et al., 2015). These age-related changes account
for some of the variability between studies. Recent meta-analyses (Ruigrok et al., 2014) and more
large-scale studies (Ritchie et al., 2018) arrive at similar conclusions. In adults, larger regional
volumes in males compared to females are consistently reported in subcortical areas, including the
hippocampus, amygdala, basal ganglia and nucleus accumbens, in parts of the parahippocampal
gyrus, in the cerebellum and the posterior cingulate cortex (PCC). Larger regional volumes
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in females compared to males are consistently reported in frontal
areas, including the anterior cingulate cortex (ACC).

It can be speculated whether males’ larger
hippocampal/parahippocampal volumes play a role in their
frequently reported advantage in spatial tasks (Andreano and
Cahill, 2009; Levine et al., 2016) or whether females’ larger
volumes in frontal areas play a role in their frequently reported
advantage in verbal tasks (Andreano and Cahill, 2009) or self-
control (e.g., Chapple et al., 2010; Hosseini-Kamkar and Morton,
2014). However, the relationship between structure and function
is not always as clear-cut, and the larger volume of a brain area
doesn’t necessarily lead to better performance in tasks involving
this area. As a counter-example, the hippocampus has also been
implicated in verbal memory tasks and larger hippocampal
volumes relate to better verbal memory performance in females
(Protopopescu et al., 2008). Also in females, larger volumes
of the fusiform face area relate to better performance in a
face-recognition task (Pletzer et al., 2015a). Nevertheless,
these areas show regionally larger volumes in men (e.g.,
Pletzer et al., 2010), while women outperform men in verbal
memory and face-recognition tasks (see Andreano and Cahill,
2009 for a review).

Sex differences in brain morphology are thought to result
from organizational effects of sex hormones on the brain during
development – both prenatally and during adolescence (Kelly
et al., 1999; Cosgrove et al., 2007). At a smaller scale, sex
hormones appear to also exert activational effects on the brain
throughout our adult life span, the most prominent example
being menstrual cycle-dependent changes (Protopopescu et al.,
2008; Lisofsky et al., 2015; Barth et al., 2016; Pletzer et al., 2018).
The hippocampus has consistently been reported to increase
gray matter volumes during the high estradiol pre-ovulatory
phase (Protopopescu et al., 2008; Lisofsky et al., 2015; Barth
et al., 2016; Pletzer et al., 2018), while an increase in right basal
ganglia volumes has been observed in the high progesterone
luteal phase (Protopopescu et al., 2008; Pletzer et al., 2018).
In good accordance, animal studies also report increases in
hippocampal spine density in response to estradiol (Woolley
and McEwen, 1993, 1994). Furthermore, animal studies have
also found similar estradiol-dependent changes in spine-density
in the frontal cortex (e.g., Hao et al., 2006). These changes
are more subtle and short-lived, but suggest that sex hormones
continuously reshape our brain, particularly in areas, that are
rich in sex hormone receptors (Barth et al., 2015). Apart from
brain areas involved in the regulation of neuroendocrine axes
(i.e., hypothalamus), areas with a particularly high density of
sex hormone receptors include the hippocampus, the frontal
cortex and the cerebellum (Barth et al., 2015). These are the
same areas that show the strongest sexual dimorphism (Cosgrove
et al., 2007; Ruigrok et al., 2014). Nevertheless, only few studies
have addressed whether circulating levels of sex hormones relate
to gray matter volumes in these areas across participants. For
instance it has been demonstrated, that cross-sex hormone
treatment in male-to-female and female-to-male transsexuals
alters their brain structure toward the proportions of the aspired
sex (Hulshoff Pol et al., 2006; Guillamon et al., 2016). However, it
has not been addressed whether subjects with higher circulating

testosterone levels also display larger volumes in brain areas
known to be larger in men, and whether vice versa, subjects with
higher circulating estradiol levels, display larger volumes in brain
areas known to be larger in women. Furthermore, it is unclear,
how this association may be modulated by the biological sex
of participants.

Due to the accumulating knowledge of sex hormone actions
on the human brain and age-related changes therein, sex
hormones have been implicated as one potential cause for
sex differences in cognitive functions (e.g., Kelly et al., 1999).
Particularly regarding spatial abilities, a role of testosterone has
been repeatedly discussed (Hooven et al., 2004; Driscoll et al.,
2005; Hausmann et al., 2009; Courvoisier et al., 2013). However,
most contemporary models of sex differences in cognitive
functions follow a psychobiosocial approach and consider not
only biological factors, like sex hormones, but also socialization
(e.g., Hausmann et al., 2009; Levine et al., 2016). One social
factor that has been implicated in sex differences, is gender
role. Gender role refers to the predominant views of what’s
typically male or typically female in a given society (e.g., Eagly
and Koenig, 2006). The extent to which a person identifies
with typically male characteristics, is referred to as masculinity.
The extent to which a person identifies with typically female
characteristics, is referred to as femininity. Unlike biological sex,
gender roles are neither dichotomous nor mutually exclusive.
Rather masculinity and femininity are assessed on two different
continuous scales (e.g., Bem, 1974). While typical males score
high on masculinity and low on femininity and typical females
vice versa, a substantial proportion of individuals show no
such gender-typical identification (Bem, 1974). About 30% of
individuals score high on both masculinity and femininity, and
are considered androgynous (e.g., Vafaei et al., 2016).

According to the gender role mediation hypothesis (Nash,
1979), the extent to which a person identifies with the societal
expectations toward their biological sex transfers to their
behavior, and may explain sex differences in a variety of domains,
including cognitive abilities. In line with this hypothesis, a
recent meta-analysis found for instance, that higher masculinity
relates to better spatial performance in both men and women
(Reilly and Neumann, 2013). However, while the actions of sex
hormones on cognitive functions are thought to result from
their actions on the brain, the relationship of gender role to
brain structure and function has hardly been addressed. Only
a handful of studies have assessed brain structure in untreated
transgendered individuals (see Guillamon et al., 2016 for a
review) and homosexuals (Ponseti et al., 2007; Abé et al., 2014;
Manzouri and Savic, 2018), both groups that usually show
low gender role conformity. In general, these studies suggest
little differences between untreated transsexuals or homosexual
and non-transsexual heterosexuals. However, these studies are
characterized by small sample sizes and a certain variability in the
inclusion criteria for the transsexual or homosexual groups. Thus,
it remains unclear whether participants with higher masculinity
show a more male-typical brain morphology, i.e., larger gray
matter volumes in brain areas that are typically larger in men.
Vice versa, it has not been assessed whether participants with high
femininity show a more female-typical brain morphology, i.e.,
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larger gray matter volumes in brain areas that are typically larger
in women. However, a few findings do stand out. For instance,
Luders et al. (2012) report larger cortical thickness in the left
MFG of untreated male-to-female transsexuals compared to non-
transsexual men. Abé et al. (2014) report smaller hippocampal
volumes in homosexual men compared to heterosexual men. It
can thus be speculated that, at least in men, gender identity is
reflected to some extent in brain morphology. For instance, brain
structure has been related to personality (e.g., Riccelli et al., 2017),
and our understanding of what’s masculine and what’s feminine
relies to a great extent on personality traits (Bem, 1974; Gruber
et al., in press). Accordingly, most measures assessing masculinity
and femininity include personality dimensions, like expressivity
on the femininity scale and assertiveness on the masculinity scale
(e.g., Eagly and Koenig, 2006). It is thus possible, that a person’s
perception of how masculine or feminine they are, depends in
part on their brain morphology and chemistry. A recent fMRI
study has assessed brain activation in men and women during
the processing of gender-related attributes (Hornung et al., 2019),
as are used to assess gender role (Gruber et al., in press). They
found stronger activation for gender-congruent attributes in the
amygdala and putamen (Hornung et al., 2019). The present study
focuses on brain morphology.

The aim of the present study is to assess whether circulating
levels of sex hormones and/or participants masculinity and
femininity relate to gray matter volumes in brain areas that show
a high density of sex hormone receptors and have been described
as sexually dimorphic. To address these questions, a hypothesis-
driven region-of interest (ROI) based approach is combined
with more exploratory whole-brain analyses. The hippocampus
was selected as a brain area with high density of sex hormone
receptors that is typically larger in men. The middle frontal
gyrus (MFG) was selected as a brain area with high density of
sex hormone receptors that is typically larger in women. To
that end, high-resolution structural MRIs, saliva samples and
gender role ratings were obtained from a large sample of 89
men and 149 women. It was hypothesized, that testosterone and
masculinity relate positively to gray matter volumes in areas that
are typically larger in men, like the hippocampus or cerebellum,
while estradiol/progesterone and femininity relate positively to
gray matter volumes in the frontal cortex. It was also explored
whether these relationships are modulated by biological sex.

An important factor to consider, when addressing these
questions, is hormonal contraceptive use in women. Oral
hormonal contraceptives (OC) contain synthetic estrogens and
progestins that do not only influence a woman’s endogenous
hormonal milieu (e.g., Wiegratz et al., 2003). Previous work
has outlined potential OC-dependent effects on gray matter
volumes in sexually dimorphic brain areas (Pletzer et al., 2010,
2015a; De Bondt et al., 2013; Petersen et al., 2015) and on
gender role (Pletzer et al., 2015b). Across different cultures,
OC-users describe themselves as more feminine compared to
non-users (Pletzer et al., 2015b), even though several studies
indicate that their behaviors and brain activation patterns may
in fact be more comparable to men (e.g., Nielsen et al., 2011;
Pletzer et al., 2014). Accordingly, effects of OC-use will also be
assessed in all analyses.

MATERIALS AND METHODS

Participants
As add-on to three different neuroimaging studies, 89 men (mean
age: 24.18 ± 4.44 years), 89 naturally cycling women (mean
age: 24.02 ± 3.94 years), and 60 women using oral hormonal
contraceptives (OC; mean age: 21.42 ± 2.46 years) completed
self-ratings for their masculinity/femininity.

In all three studies, participants were right-handed, Caucasian,
aged between 18 and 35 years, heterosexual, had no diagnosis of
psychological, neurological or endocrinological disorders and no
brain tissue abnormalities on the structural MRI. The majority of
participants were university students who had completed general
qualification for university entrance. All naturally cycling women
had a regular menstrual cycle of 21 to 35 days length (mean
duration: 29.36 ± 2.91 days).

Among them a subsample of 54 men (mean age:
24.33 ± 4.37 years) and 51 naturally cycling women (mean
age: 24.12 ± 4.26 years) also completed a standardized gender
role questionnaire. For those 51 women, mean cycle duration
was 29.11 days (SD = 3.05).

Naturally cycling women and men did not differ in age (both
|t| < 0.26; both p > 0.79), but hormonal contraceptive users were
significantly younger than the other two groups (both t > 4.87,
both p < 0.001).

Ethics Statement
The studies were approved by the University of Salzburg’s ethics
committee and conform to the Code of Ethics of the World
Medical Association (Declaration of Helsinki). Informed written
consent was obtained from all participants.

Procedure
Study 1 investigated brain responses to different risk taking tasks
(Pletzer and Ortner, 2016). Study 2 investigated sex differences in
brain responses to numerical and attention tasks (Pletzer, 2016;
Pletzer and Harris, 2018) and included only naturally cycling
women. Study 3 was a resting state study (currently unpublished).

In all three studies, participants gave one saliva sample before
entering the scanner and one saliva sample after scanning, both
via the passive drool method. Questionnaires were completed on
site immediately after the scanning session as to not interfere
with the main research question of the studies. Self-ratings were
included in all three studies, the GERAS was completed by
participants of Study 2 and some participants of Study 1.

Among the 89 naturally cycling women in the whole
sample, 58 were scanned in their luteal cycle phase (11-3 days
before the onset of the next menses are counted backwards;
mean cycle day: 22.03 ± 3.98). The remaining 31 women
were unavailable during their luteal cycle phase and scanning
sessions were scheduled during or shortly after the next menses
(mean cycle day: 7.25 ± 4.07). Among the 60 hormonal
contraceptive users in the whole sample, 39 used contraceptives
containing androgenic progestins (Levonorgestrel, Desogestrel,
Dienogest, Gestoden), while 16 used contraceptives containing
anti-androgenic progestins (Drospirenon, Cyproteronacetat,
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Chlormadinonacetat). Five women were unable to provide
information about the hormonal contraceptives they were using.

As expected, progesterone [t(84) = 6.78, p < 0.001] significantly
higher during the luteal cycle phase compared to the early
follicular cycle phase, while testosterone and estradiol did not
differ between cycle phases (both t < 1.29, both p > 0.20).
However, in accordance with our previous studies hippocampal
volumes did not differ significantly between menses and luteal
cycle phase (both t < 0.50, both p > 0.61; compare Pletzer
et al., 2018), MFG volumes were only by trend higher in the
luteal cycle phase (both t < 1.91, both p = 0.06; compare Pletzer
et al., 2018) and masculinity/femininity ratings did not differ
significantly between menses and luteal cycle phase (all |t| < 1.54,
all p > 0.13; compare Pletzer et al., 2015a). Furthermore, there
were no differences between pill-types in masculinity/femininity
self-ratings, sex hormones or GM-volumes (all |t| < 1.58, all
p > 0.13). Accordingly, NC-women and OC-users were not split
into sub-groups for the analyses.

Among the 51 naturally cycling women in the subsample,
41 were scanned in their luteal cycle phase (mean cycle day:
21.78 ± 3.85), while 10 were scanned in their menses (mean cycle
day: 8.80 ± 4.60). Again, the NC group was not split by cycle
phase due to the small number of participants in their menses.

Hormone Analysis
Prior to analysis, saliva samples were stored frozen at −20◦

and centrifuged twice at 3000 rpm for 15 min and 10 min,
respectively. As recommended by the ELISA kit instructions,
aliquots from both samples were then pooled to account for
fluctuation in hormone release and saliva production and obtain
a more stable measure of hormone levels throughout the
scanning session. Estradiol, progesterone and testosterone levels
were assessed using DeMediTec1 salivary ELISA kits (DES6644,
DES6633, and DES6622). All samples were assessed in duplicates
and assessment was repeated for samples showing coefficients of
variation (CV) above 25%. For estradiol, sensitivity is 1.4 pg/ml,
intra-assay CV is 8.5%, inter-assay CV is 7%. For progesterone,
sensitivity is 5 pg/ml, intra-assay CV is 7%, inter-assay CV is
9%. For testosterone, sensitivity is 2.2 pg/ml, intra-assay CV is
7.5%, inter-assay CV is 9%. For three participants (two men,
one OC), hormone levels were not assessed due to visible blood
contamination. Hormone levels of more than three SD above the
group mean were discarded prior to analyses (E: two men, one
OC, two NC; P: two OC, two NC).

Questionnaires
Gender Role Self-Assessment
On a nine-point Likert-Scale, participants were asked to rate how
masculine or feminine they perceived themselves in comparison
to (other) men, (other) women, or the general population. The
same scale was already employed by Pletzer et al. (2015b). The
three comparisons were performed to take into account the
fact that women tend to compare themselves to other women,
while men tend to compare themselves to other men (Pletzer
et al., 2015b). These ratings represent subjective measures of

1http://www.demeditec.com

masculinity and femininity and depend on the participant’s
personal understanding of these concepts. As outlined by Pletzer
et al. (2015b), the concepts of masculinity and femininity vary
between cultures and possibly also subcultures, e.g., depending
on education or generation.

Gender-Related Attributes Scale (GERAS)
To additionally obtain a more objective measure of masculinity
and femininity, a subsample of participants also performed
the gender related attributes scale (GERAS). The GERAS was
developed by Gruber et al. (in press) as a standardized measure
to assess gender role via attributes that are typically perceived
as masculine or feminine in middle European cultures. It has
been well-validated and shows excellent internal consistency and
reliability (Gruber et al., in press). It extends previous sex/gender
role inventories (e.g., Bem Sex Role Inventory – Bem, 1981;
Personal Attributes Questionnaire – Spence et al., 1975) by
including not only personality traits, but also cognitive abilities
and interests that are typically associated with the male or female
gender on three subscales: (i) personality subscale, (ii) cognitions
subscale – 14 items (7 masculine, 7 feminine), and (iii) interests
subscale – 16 items (8 masculine, 8 feminine). The personality
subscale consists of 20 traits (both positive and negative), 10 of
which are typically associated with the male (e.g., dominant, bold)
and 10 with the female gender (e.g., warm-hearted, sensitive).
Participants are asked to rate how often they think these traits
apply to them. The cognition subscale consists of 14 cognitive
skills (7 masculine, 7 feminine), for which previous studies have
demonstrated sex differences favoring men (e.g., find a way) or
women (e.g., find the right words). Participants are asked to
rate how well they think they are able to perform these tasks.
The interests subscale consists of 16 activities, 8 of which are
stereotypically preferred by men (e.g., boxing, drinking), the
other 8 are stereotypically preferred by women (e.g., dancing,
talking). Participants are asked to rate how interested they would
be to engage in these activities. All ratings are performed on a
seven-point Likert-scale. For each subscale, separate masculinity
and femininity scores are obtained by averaging the ratings
for masculine and feminine items, respectively. The overall
masculinity and femininity scores are obtained by averaging the
masculinity and femininity scores of the three subscales.

MRI Data Acquisition and Analysis
All three studies were performed on the same scanner (Siemens
Magnetom Trio Tim 3 Tesla) at the Christian Doppler Klinik
(Salzburg, Austria). All studies included the same scanning
sequence to obtain a high resolution structural scan using a
T1-weighted sagittal 3D MPRAGE sequence (TR = 2300 ms,
TE = 2.91 ms, TI delay of 900 ms, FOV 256 mm, slice
thickness = 1.00 mm, flip angle 9◦, voxel size 1.0 × 1.0 × 1.0 mm,
160 sagittal slices). Images were segmented into gray matter,
white matter and csf partitions using cat12 standard procedures
and templates. SPM12 tissue probability maps and European
brain templates for affine regularization were used during the
initial SPM12 affine registration, light affine preprocessing and
moderate (0.5) strength of local adaptive segmentation, skull
stripping and final clean-up for CAT12 segmentation. Images
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were spatially normalized to the same stereotactic space (MNI
template) and voxel size for normalized images was set to 1.5 mm.
To control for individual differences in brain size, brain segments
were modulated using non-linear normalization parameters.

For ROI-based analyses, gray matter volumes were extracted
from the left and right hippocampus, as well as the left and right
MFG using the get_totals script by G. Ridgeway2. Masks were
constructed via the wfu-pickatlas toolbox, using aal-masks for
the hippocampus and 10 mm spheres around the coordinates
that showed the strongest sex difference favoring women for the
MFG. The extracted gray-matter volumes were analyzed using
JASP 0.8.1.1 (see section “Statistical Analysis”).

For the more exploratory, whole-brain analyses, gray matter
partitions were smoothed using a 12 mm Gausian kernel.
The smoothed images were entered into SPM12 second level
analyses. Total intracranial volume (TIV) and age were entered
as covariates in all analyses. In a first step, men, naturally cycling
women and OC users were compared using a one-way ANOVA
design. Sexually dimorphic brain areas were identified by defining
contrasts comparing men to both female groups. In addition
contrasts comparing OC-users to NC women were also defined.
In a second step, whole brain multiple regression designs were
used, to identify areas sensitive to sex hormone levels or gender
role. These whole brain regression analyses were performed
separately for each group. A primary uncorrected threshold of
p < 0.001 and a secondary cluster-level family wise error (FWE)
corrected threshold of pFWE < 0.05 were used.

Statistical Analysis
Statistical analysis was performed using JASP 0.8.1.1. Since age
differed significantly between NC and OC women, age was
controlled in all analyses. For analyses of brain volumes, TIV
was entered as additional covariate. Accordingly, ANCOVAs
were used to compare endocrine measures, behavioral measures
and brain volumes between groups, while multiple regression
analyses were used to relate endocrine and behavioral measures
to gray matter volumes. For group comparisons in the whole
sample the omnibus test comparing all three groups (men, NC,
OC) is reported in the text and pairwise comparisons are listed
in Table 1. For pairwise comparisons an FDR-correction of
p-values was used.

Since previous work has outlined OC-dependent effects not
only on gray matter volumes (Pletzer et al., 2010, 2014; Petersen
et al., 2015), but also on sex hormone levels (Wiegratz et al.,
2003) and on gender role (Pletzer et al., 2015b), the following
analyses approach was chosen for ROI-based multiple regression
analyses. In a first step it was assessed, how men differed from
naturally cycling women, by accounting for biological sex in the
analyses, but excluding OC-users. In a second step, naturally
cycling women were compared to OC-users by accounting for
OC-use in the analyses, but excluding men. Multiple regression
analyses modeled age and TIV, sex hormones/gender role,
and biological sex/OC-use, as well as their interactions as
independent variables. If significant interactions were observed,

2http://www0.cs.ucl.ac.uk/staff/gridgway/vbm/get_totals.m

separate partial correlations controlling for age and TIV were
performed for each group to clarify.

RESULTS

Endocrine Results
In the whole sample (Table 1), testosterone, progesterone
and estradiol levels differed significantly between groups [T:
F(2,232) = 78.05, p < 0.001, η2 = 0.40; P: F(2,227) = 19.26,
p < 0.001, η2 = 0.15, E: F(2,220) = 5.99, p = 0.005, η2 = 0.05].
Post hoc comparisons revealed that testosterone levels were
significantly higher in men compared to women irrespective
of their hormonal status. Progesterone and Estradiol levels
were significantly higher in NC women compared to men.
Testosterone and progesterone levels were significantly higher in
NC women compared to OC users.

Behavioral Results
Gender Role Self Assessment
In the whole sample (Table 1), significant group differences
were observed in both self-rated masculinity [F(2,234) = 119.44,
p < 0.001, η2 = 0.51] and self-rated femininity [F(2,234) = 108.23,
p < 0.001, η2 = 0.48]. Men rated themselves as significantly
more masculine and significantly less feminine than women
irrespective if their hormonal status. Women on hormonal
contraceptives rated themselves as significantly more feminine
and significantly less masculine than naturally cycling women.

In men masculinity and femininity self-ratings showed a
highly significant negative interrelation (r = −0.55, p < 0.001).
Similarly in NC women a moderate negative association
was observed between masculinity and femininity self-ratings
(r = −0.23, p = 0.03). In OC women no significant association
between masculinity and femininity self-ratings was observed
(r = −0.19, p = 0.15). The correlation in men was significantly
stronger than in the female groups (both Z > 2.52, both
p < 0.012). Correlation coefficients did not differ significantly
between NC and OC women (Z = 0.25, p = 0.80).

GERAS
Also in the GERAS, men reached significantly higher masculinity
and significantly lower femininity scores compared to NC
women. Differences were strongest for the interests subscale and
weakest for the cognition subscale (Table 2). The masculinity
and femininity subscales of the GERAS were not significantly
interrelated in either men or NC women (both |r| < 0.15,
both p > 0.30).

In men, self-rated masculinity correlated significantly with
masculinity scores as assessed by the GERAS (r = 0.43, p = 0.001),
while self-rated femininity did not correlate with femininity as
assessed by the GERAS (r = −0.14, p = 0.33). In NC women, self-
rated masculinity did not correlate with masculinity as assessed
by the GERAS (r = 0.09, p = 0.54), while self-rated femininity
correlated significantly with femininity as assessed by the GERAS
(r = 0.34, p = 0.01). Taking into account GERAS subscales,
the best predictor of men’s self-rated masculinity and women’s
self-rated femininity was the personality subscale (Table 3).
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TABLE 1 | Average hormone levels and masculinity/femininity self-assessment for men and women.

Whole sample men women NC women OC Men vs. NC Men vs. OC NC vs. OC

(n = 89) (n = 89) (n = 60) F p F P F p

Testosterone (pg/ml) 105.58 ± 53.24 48.43 ± 20.92 37.62 ± 18.09 87.14 < 0.001 78.12 < 0.001 9.86 0.002

Estradiol (pg/ml) 2.76 ± 1.02 3.11 ± 1.15 3.31 ± 0.94 4.45 0.05 12.90 < 0.001 0.61 0.44

Progesterone (pg/ml) 65.58 ± 55.32 136.05 ± 116.63 62.96 ± 47.82 26.20 < 0.001 0.27 0.60 13.49 < 0.001

Masculinity (self) 6.49 ± 1.16 3.83 ± 1.39 3.08 ± 1.76 188.84 < 0.001 187.54 < 0.001 4.58 0.03

Masculinity vs. men 5.80 ± 1.30 2.26 ± 1.10 1.88 ± 1.04 372.11 < 0.001 333.84 < 0.001 2.40 0.12

Masculinity vs. women 7.52 ± 1.56 5.20 ± 1.74 3.98 ± 2.11 85.42 < 0.001 124.31 < 0.001 11.27 0.001

Femininity (self) 3.60 ± 1.66 6.02 ± 1.51 6.93 ± 0.95 263.11 < 0.001 183.05 < 0.001 16.63 < 0.001

Femininity vs. men 4.48 ± 1.98 7.30 ± 1.70 8.05 ± 1.24 102.27 < 0.001 139.13 < 0.001 8.65 0.004

Femininity vs. women 2.54 ± 1.57 5.31 ± 1.71 6.33 ± 1.56 126.75 < 0.001 192.63 < 0.001 12.38 < 0.001

TIV 1582 ± 115.53 1400 ± 99.46 1400 ± 107.73 127.53 < 0.001 98.58 < 0.001 < 0.01 0.97

WM 559.9 ± 47.87 486.8 ± 47.48 479.5 ± 49.81 0.62 0.43 1.25 0.81 0.70 0.80

GM 756.0 ± 55.15 694.7 ± 52.04 688.3 ± 55.40 1.58 0.21 4.12 0.08 9.88 0.006

HippocampusL 4.60 ± 0.33 4.27 ± 0.38 4.13 ± 0.40 0.97 0.33 6.82 0.03 5.18 0.04

HippocampusR 4.15 ± 0.34 3.86 ± 0.32 3.77 ± 0.30 < 0.01 0.98 2.98 0.18 5.94 0.06

MFG_L 1.38 ± 0.25 1.34 ± 0.25 1.35 ± 0.28 2.72 0.30 0.21 0.65 0.35 0.55

MFG_R 1.24 ± 0.25 1.29 ± 0.21 1.31 ± 0.26 19.22 < 0.001 9.69 0.004 < 0.01 0.98

Age was controlled in all comparisons. P-values were FDR-corrected. NC, naturally cycling. OC, oral contraceptive user. MFG, middle frontal gyrus. L, left; R, right.
Significant effects are highlighted in bold font.

Sex hormone levels were not correlated with masculinity
or femininity scores (either self-rated or assessed with
the GERAS) in either men, NC-women or OC-women
(all |r| < 0.17, all p > 0.20).

Neuroimaging Results
Group Differences
In the whole sample (Table 1), significant group differences in
TIV were observed [F(2,234) = 80.53, p < 0.001, η2 = 0.41]. Post
hoc comparisons revealed that TIV was significantly larger in
men compared to women, but did not differ between naturally
cycling women and OC users. Controlling for age and TIV, the
three groups did not differ significantly in overall WM volumes
[F(2,233) = 0.89, p = 0.41, η2 = 0.002], but group differences were

TABLE 2 | Average hormone levels and GERAS scores for 54 men and 51
naturally cycling (NC) women.

Subsample Men (n = 54) women NC (n = 51) F p

Testosterone (pg/ml) 113.57 ± 62.45 43.96 ± 18.63 56.69 < 0.001

Estradiol (pg/ml) 2.40 ± 0.73 2.90 ± 1.00 8.37 0.005

Progesterone (pg/ml) 52.52 ± 53.67 153.75 ± 139.71 24.12 < 0.001

Masculinity (GERAS) 4.54 ± 0.63 4.09 ± 0.70 14.21 < 0.001

Masculinity personality 4.38 ± 0.63 4.14 ± 0.78 3.18 0.07

Masculinity cognition 4.76 ± 0.94 4.37 ± 0.96 4.29 0.04

Masculinity interests 4.49 ± 0.94 3.76 ± 1.17 13.92 < 0.001

Femininity (GERAS) 4.26 ± 0.59 4.92 ± 0.54 35.51 < 0.001

Femininity personality 4.66 ± 0.73 5.09 ± 0.74 8.53 0.004

Femininity cognition 4.81 ± 1.04 5.16 ± 0.68 3.93 0.05

Femininity interests 3.29 ± 0.82 4.53 ± 0.83 58.33 < 0.001

Age was controlled in all comparisons.

identified in GM volumes [F(2,233) = 6.25, p = 0.002, η2 = 0.02].
Men and NC women did not differ in GM volumes, after age
and TIV were accounted for. However, OC users had significantly
smaller overall GM volumes than NC women.

In the ROI analyses, significant group differences were
observed in the left hippocampus [F(2,233) = 4.00, p = 0.02,
η2 = 0.03] and the right MFG [F(2,233) = 11.74, p < 0.001,
η2 = 0.07]. Pairwise comparisons revealed that OC users showed
significantly smaller gray matter volumes in the left hippocampus
than NC women. Men showed significantly smaller volume in
the right MFG than women irrespective of their hormonal status.
No significant group differences were observed in the right
hippocampus [F(2,233) = 2.66, p = 0.07, η2 = 0.02] and the left
MFG [F(2,233) = 1.28, p = 0.28, η2 = 0.01].

At the whole-brain level, regional volume differences between
men and women (both groups) are depicted in Figure 1.
Controlling for age and TIV, men showed larger GM-volumes
than women in the cerebellum ([34, −78, −20], 16405 voxels,
T = 6.86, pFWE < 0.001) and a large cluster spanning the bilateral
putamen, hippocampi, parahippocampi and amygdalae [(26, −3,
−9), 7319 voxels, T = 5.00, pFWE = 0.005]. Women showed larger
GM volumes than men in the frontal pole [(−18, 68, −4), 4241
voxels, T = 5.01, pFWE = 0.005], right MFG [(36,18,27), 627
voxels, T = 5.01, pFWE = 0.004; Table 1] and right IFG [(46,50,10),
2491 voxels, T = 4.95, pFWE = 0.006].

Controlling for age and TIV, OC users showed significantly
smaller regional GM-volumes than naturally cycling women in
the right parahippocampal/fusiform gyrus [(28, −14, −42), 1882
voxels, T = 5.29, pFWE = 0.001; Figure 2].

Sex Hormones and GM-Volumes
In men and NC women, sex hormones were not related to TIV,
overall GM or WM volumes (all |r| < 0.17, all p > 0.11). In
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TABLE 3 | Interrelation between sex-role self-assessment and GERAS-scores.

Masculinity (self) Femininity (self)

Men R2= 0.21, F = 4.62, p = 0.006 R2= 0.06, F = 1.18, p = 0.33

β t P β t P

Personality 0.32 2.42 0.019 0.14 0.87 0.387

Cognition 0.10 0.76 0.452 −0.27 −1.85 0.071

Interests 0.23 1.81 0.076 −0.08 −0.56 0.577

Women R2= 0.02, F = 0.38, p = 0.76 R2= 0.19, F = 3.71, p = 0.02

β t P β t P

Personality 0.03 0.18 0.859 0.32 2.15 0.03

Cognition 0.15 0.94 0.351 −0.09 −0.69 0.491

Interests −0.04 −0.26 0.794 0.18 1.21 0.234

Significant effects are highlighted in bold font.

FIGURE 1 | Sex differences in regional gray matter volumes. Areas with larger
regional volumes in men are depicted in blue (Cerebellum,
Hippocampus/Parahippocampus, Amygdala, Putamen). Areas with larger
regional volumes in women are depicted in red (frontal pole, middle/inferior
frontal gyrus).

FIGURE 2 | Differences in regional GM volumes between naturally cycling
women and OC users. Areas with smaller regional volumes in OC users are
depicted in green.

OC users, estradiol levels were significantly related to TIV and
overall GM and WM volumes (all r > 0.25, all p < 0.05; results
not shown), but there was no association between testosterone
or progesterone levels and TIV/GM/WM (all |r| < 0.20, all
p > 0.13). The higher the estradiol levels of OC users, the larger
were their brains.

In the ROI-based analyses of sex hormones, significant
sex × testosterone interactions were identified in the hippocampi,
which are attributable to the fact that testosterone related more
positively to hippocampal volumes in women (left: r = 0.26,

p = 0.02; right: r = 0.16, p = 0.15) than in men (left: r = 0.07,
p = 0.53; right: r = −0.14, p = 0.19; Figure 3 and Table 4).
This association did not differ between OC-users and NC
women (Table 5).

For the left MFG, a significant interaction between OC-
use and testosterone was observed (Table 5). This interaction
resulted from a negative association to testosterone in OC women
(r = −0.27, p = 0.04), but non-significant association in NC
women (r = 0.13, p = 0.25).

No additional associations to sex hormones were observed in
whole-brain analyses.

Gender Role and GM-Volumes
In men and NC women, neither self-rated nor GERAS-
masculinity or femininity were related to total TIV, GM or WM
volumes (all |r| < 0.15, all p > 0.17). In OC users, self-rated
femininity was negatively related to TIV (r = −0.25, p = 0.05;
results not shown).

Neither Self-rated nor GERAS masculinity or femininity were
related to GM-volumes in any ROI and there were no differences
in these associations depending on biological sex or OC-use
(all |b| < 0.26, all |t| < 1.98, all p > 0.05).

Whole-brain analyses revealed no associations between
gender role as assessed by the GERAS and GM volumes in any
brain area. In men larger GM volumes in the left MFG were
significantly positively related to higher femininity ratings [(−32,
36, 22), k = 721 voxels, T = 5.01, pFWE = 0.015; Figure 4].
The more GM in the left MFG, the more feminine did men
consider themselves. Masculinity self-ratings were not related
to GM volumes in any area. In NC-women and OC-users
masculinity and femininity self-ratings were not related to GM
volumes in any area.

DISCUSSION

The present study set out to (i) investigate the relationship of
circulating sex hormone levels and gender role to gray matter
volumes in sexually dimorphic brain areas and explore, whether
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FIGURE 3 | Relationship of testosterone to hippocampal gray matter volumes. A positive relationship was observed in women (left: r = 0.26, p = 0.02; right:
r = 0.16, p = 0.15) but not in men (left: r = 0.07, p = 0.53; right: r = –0.14, p = 0.19). Women with higher Testosterone levels, showed larger hippocampal gray
matter volumes. This association was irrespective of oral contraceptive (OC) use, i.e., both naturally cycling women and OC users are included in the female data
depicted. For illustrative purposes, the x-scale was cut at 150 pg/ml of Testosterone. Note that male values reached up to 350 pg/ml.

TABLE 4 | Relationship of sex hormones to gray matter volumes in the hippocampus and middle frontal gyrus (MFG) while controlling for biological sex.

HippocampusL HippocampusR MFG_L MFG_R

b t b t b t b T

Sex 0.10 0.97 0.02 0.21 0.24 1.99∗ 0.30 2.55∗∗

Age −0.02 −0.33 −0.05 −0.73 –0.19 –2.54∗ -0.21 –2.81∗∗

TIV 0.55 6.56∗∗∗ 0.64 7.69∗∗∗ 0.39 3.92∗∗∗ 0.51 5.23∗∗∗

Estradiol −0.11 −1.56 −0.10 −1.43 −0.03 −0.34 −0.07 −0.88

Progesterone −0.01 −0.15 0.10 1.07 −0.03 −0.22 0.16 1.44

Testosterone 0.37 2.88∗∗ 0.12 0.92 0.16 1.07 −0.18 −1.19

Sex × Estradiol −0.01 −0.09 0.03 0.37 −0.02 −0.26 0.06 −0.72

Sex × Prog 0.05 0.58 −0.06 −0.66 −0.13 −1.19 −0.14 −1.35

Sex × Test 0.26 2.44∗ 0.22 2.05∗ 0.19 1.50 −0.10 −0.83

MFG = middle frontal gyrus. L, left; R, right. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. Significant effects are highlighted in bold font.

TABLE 5 | Relationship of sex hormones to gray matter volumes in women, while controlling for OC-use.

HippocampusL HippocampusR MFG_L MFG_R

b t b t b t b T

OC-use −0.20 −1.48 −0.17 −1.35 –0.46 –3.09∗∗
−0.10 −0.66

Age −0.01 −0.17 −0.07 −0.91 –0.18 –2.05∗
−0.14 −1.55

TIV 0.51 6.97∗∗∗ 0.60 8.50∗∗∗ 0.24 2.93∗∗ 0.37 4.48∗∗∗

Estradiol −0.10 −1.03 −0.08 −0.85 −0.05 −0.46 −0.004 −0.04

Progesterone 0.04 0.49 0.05 0.63 −0.16 −1.60 −0.002 −0.02

Testosterone 0.25 2.40∗ 0.17 1.68 0.16 1.37 −0.13 −1.10

OC × Estradiol 0.02 0.24 0.02 0.27 0.15 1.49 0.05 0.46

OC × Prog −0.01 −0.13 −0.05 −0.54 0.15 1.44 −0.01 −0.13

OC × Test −0.15 −0.93 −0.09 −0.57 –0.51 –2.90∗∗
−0.02 −0.09

MFG = middle frontal gyrus. L = left, R = right. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Significant effects are highlighted in bold font.

these relationships are modulated by (ii) biological sex and (iii)
OC-use. Indeed, a variety of associations between sex hormones
and gender role to gray matter volumes were observed, that
were dependent on either biological sex or OC-use. The fact that
gender role and sex hormones showed no significant interrelation

in this sample underlines the view of gender role as a social
construct and provides the opportunity to study their influence
on gray matter volumes independently.

In accordance with our hypothesis, testosterone related
positively to gray matter volumes in the hippocampi (Figure 3),
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FIGURE 4 | Association between femininity (Fem) and gray matter volumes in the left middle frontal gyrus (MFG). A positive relationship was observed in men
(r = 0.44, p < 0.001), but not in women (r = 0.07, p = 0.42). The larger the left MFG, the more feminine did men consider themselves.

i.e., brain areas showing a sexual dimorphism favoring men.
These findings are in good accordance with studies in
transsexuals, demonstrating that cross-sex hormone treatment
alters brain structure toward the proportions of the aspired sex
(Hulshoff Pol et al., 2006; see Guillamon et al., 2016 for a review).
Furthermore, they are in good accordance with animal studies,
demonstrating a testosterone-dependent increase in synaptic
spine density in the hippocampus (e.g., Leranth et al., 2003).
The association was significantly stronger in women compared
to men, but did not differ significantly between NC women and
OC-users, even though the strongest associations were observed
in NC women. This observation is consistent with the animal
literature showing testosterone actions on hippocampal spine
density via local conversion to estradiol also only in females (see
Atwi et al., 2016 for a review).

Furthermore, in line with our hypothesis, a positive
association between self-rated femininity and gray matter
volumes in the left MFG, i.e., a brain area typically larger in
women, was observed in men. Men, who perceive themselves
as more feminine, show larger left MFG volumes. This is in line
with a previous study reporting larger cortical thickness in the
left MFG of untreated male-to-female transsexuals compared
to men (Luders et al., 2012). This association probably reflects
an important role of the MFG in personality traits and other
characteristics, typically considered as feminine. Results of
the present study support the assumption that gender role
self-concepts are largely driven by personality (compare Table 3).
As an example, conscientiousness (Schmitt et al., 2008), which is
typically higher in women, was shown to relate to gray matter
volumes in the lateral prefrontal cortex (DeYoung et al., 2010).

It is an interesting observation that female brain structure
relates more strongly to sex hormone levels than male brain
structure, while male brain structure relates more strongly
to gender roles than female brain structure. While several
associations between gray matter volumes and testosterone were
observed in women, no significant association to sex hormones

were observed in men. Based on this observation it can be
speculated whether the female brain is more susceptible to sex
hormone influences, which is plausible given the continuous
plasticity required to respond to hormonal fluctuations along
the menstrual cycle (e.g., Pletzer et al., 2018; see Sundström
Poromaa and Gingnell, 2014 for a review) or during other
hormonal transition periods (e.g., pregnancy, menopause, see
Barth et al., 2015 for a review). Notably, however, no associations
to estradiol or progesterone were observed in women, even
though such influences have been demonstrated in within-
subjects designs in women (Barth et al., 2016; Pletzer et al.,
2018). It is possible that gray matter volumes are not so
much dependent on the absolute circulating hormone level,
as measured in the present study, but respond to sudden
changes in hormone levels as can only be assessed in within-
subject designs.

Vice versa, no association between gender role and brain
structure was observed in women. This finding is in line with
previous research on transsexual and homosexual participants.
Altered regional brain morphology was only observed in
untreated male-to-female transsexuals and male homosexual
participants (Luders et al., 2012; Abé et al., 2014) not in
female-to-male transsexuals or female homosexual participants
(Guillamon et al., 2016; Manzouri and Savic, 2018). Furthermore,
a stronger association of personality traits to brain structure
in men compared to women has also been previously reported
(Nostro et al., 2016). One research question that arises from
this observation is whether the stability of personality traits
or gender role constructs differs between men and women. If
women’s gender role self-concept is more flexible over time,
a relationship to brain structure is not to be expected. While
this has hardly been assessed for personality or gender identity,
a higher flexibility in women has been reported regarding
sexual orientation (Kinnish et al., 2005), which may explain
the lack of brain structural differences between homosexual and
heterosexual women (Manzouri and Savic, 2018).
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However, apart from the relationship of self-reported
femininity to the left MFG volumes in men, no association
between masculinity or femininity (neither self-rated, nor
questionnaire-based) and brain structure was observed. Again,
this is in line with previous literature on transsexual individuals
reporting that before sex hormone treatment their brain
morphology largely corresponds to their natal sex (Guillamon
et al., 2016). While personality traits have been successfully
related to brain morphology, it is important to keep in mind, that
the gender role self-concept develops at the interplay between
an individual’s traits, abilities and interests on the one hand and
social norms on the other hand. While some traits may relate to
different brain structures, the same traits and abilities may result
in different perceptions of masculinity/femininity in different
cultural contexts. Furthermore – as the factorial structure of
the GERAS shows – gender role is a multi-facetted construct
spanning a variety of traits, abilities and interests, which cannot
all be pinpointed to the same brain area. It is, however, possible,
that in the left MFG several of the traits contributing to femininity
intersect. The fact that men tend to show stronger lateralization
of brain functions may also have contributed to this finding (e.g.,
Hausmann and Güntürkün, 1999, 2000).

Finally, some important differences between naturally cycling
women and OC-users have been identified. In interpreting these
differences it is important to keep in mind, that the results
reported here represent between-group comparisons. It is thus
possible that the groups of OC-users and NC-women differ
for other reasons than their OC-use. First, OC users show
significantly lower testosterone and progesterone levels than
NC women, which is probably a result of the downregulation
of the HPG-axis by synthetic steroids (Wiegratz et al., 2003).
Estradiol levels did not differ significantly between OC-user
and NC women. This may be due to the fact that none of
the NC-women tested in the present study were in the pre-
ovulatory phase, when estradiol levels peak, but may also be
the result of some cross-reactivity between the synthetic ethinyl-
estradiol and the antibodies used for estradiol assessment.
Second, the finding that OC-users rate themselves as more
feminine and significantly less masculine compared to naturally
cycling women was replicated (Pletzer et al., 2015b). This
observation does not necessarily imply a hormonal modulation
of gender role. There are various non-hormonal reasons why
women on OCs may perceive themselves as more feminine.
On the one hand, the daily intake of a pill controlling one’s
reproductive functions may act as a constant reminder of one’s
own femininity. It is also possible, that the heightened femininity
is not a result of the OC-use, but that women who consider
themselves more feminine are more likely to choose OCs as
a contraceptive method. This is probably related to the fact
that a majority of women start OC-use when entering a long-
term relationship. Accordingly, the increased femininity may
be a result or a pre-requisite of OC-users different relationship
status. Note, however, that relationship status was not assessed in
the present study.

Furthermore, several differences in brain volume results
between OC-users and NC women were observed. The fact
that OC-users show larger TIV is likely attributable to chance

in sampling, which represents another issue in between-
group comparisons. More importantly, OC-users show smaller
regional GM volumes than NC women in the hippocampi
and parahippocampal gyri. These results are in contrast to
previous studies demonstrating larger gray matter volumes
of OC-users compared to non-users in the hippocampus,
parahippocampus and fusiform gyri (Pletzer et al., 2010,
2015a; De Bondt et al., 2013). These inconsistencies between
studies highlight the importance of longitudinal study designs
to disentangle effects of OC-use from other variables that
might differentiate OC-users and NC-women in cross-sectional
designs. The inconsistencies may be a result of different
actions of the various progestin compounds contained in
different OCs. The majority of OC-users in the present study
used OCs containing androgenic progestins, i.e., progestins
that are derived from 19-nortestosterone and thus able to
bind to testosterone receptors. Previous findings of increased
parahippocampal/fusiform volumes were observed in users of
anti-androgenic progestins (Pletzer et al., 2015a). A reduction
of GM-volumes, has previously been reported for androgenic
progestins, albeit in the MFG (Pletzer et al., 2015a). Comparably,
in the present study, OC-users show smaller left MFG-volumes
with higher testosterone levels.

In summary, our study corroborates findings of activational
effects of sex hormones on brain morphology in adults,
demonstrating that – at least in women – testosterone promotes
a more male-like brain morphology and estradiol a more female-
like brain morphology. In addition our study also demonstrates
for the first time an association between a more feminine gender
role and a more female-like brain morphology in men. Finally
our study identifies differences in gender role and gray matter
volumes between OC-users and naturally cycling women.
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Ketamine is a drug that reduces depressive and elicits schizophrenia-like symptoms
in humans. However, it is largely unexplored whether women and men differ with
respect to ketamine-action and whether age contributes to drug-effects. In this study
we assessed dissociative symptoms via the Clinician Administered Dissociative States
Scale (CADSS) in a total of 69 healthy subjects aged between 18 and 30 years (early
adulthood) after ketamine or placebo infusion. Dissociative symptoms were generally
increased only in the ketamine group post-infusion. Specifically, within the ketamine
group, men reported significantly more depersonalization and amnestic symptoms than
women. Furthermore, with rising age only men were less affected overall with respect
to dissociative symptoms. This suggests a sex-specific protective effect of higher age
which may be due to delayed brain maturation in men compared to women. We
conclude that it is crucial to include sex and age in studies of drug effects in general
and of ketamine-action in specific to tailor more efficient psychiatric treatments.

Clinical Trial Registration: EU Clinical Trials Register (EudraCT), trial number:
2010-023414-31.

Keywords: ketamine, dissociation, depersonalization, sex, age, brain maturation

INTRODUCTION

Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist and has been shown to
decrease depressive symptoms in humans (Murrough et al., 2013), even for low doses (Xu
et al., 2016), leading to rapid acting and long lasting effects. Furthermore, ketamine leads to
schizophrenia-like symptoms including positive and negative symptoms and has been used as a
psychosis model in both human and animal studies for decades (Krystal et al., 1994; Adler et al.,
1998; Newcommer et al., 1999). Additionally, acute ketamine administration induces transient
dissociative symptoms, i.e., a kind of experience of detachment from surroundings, body and time
(Sleigh et al., 2014). Importantly, ketamine induced dissociative symptoms, especially the degree of
depersonalization, can predict the antidepressant response 24 h after ketamine infusion in major
depression patients, whereas neither other acute psychotomimetic nor physiological effects can
(Luckenbaugh et al., 2014; Niciu et al., 2018).

Despite the long history of ketamine’s use in experimental and clinical medicine, only few
studies have addressed the question whether modulatory factors like sex and age may contribute to
the effects of ketamine. In animal studies sex-specific effects of repeated ketamine administration
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have been shown leading to antidepressant effects and enhanced
hippocampal synapsin levels in male mice but increased
depressive like symptoms and attenuated glutamate and aspartate
levels in female mice (Thelen et al., 2016). Other studies reported
faster antidepressant effects in female but longer lasting effects
in male mice (Franceschelli et al., 2015) and higher sensitivity
of female rats to low doses of ketamine (Carrier and Kabbaj,
2013). Furthermore, juvenile males were reported to be less
sensitive to antidepressant effects of ketamine in comparison
to adult male rats (Parise et al., 2013). Regarding sex-specific
effects of ketamine in humans, initial research provides evidence
that after drug infusion men show a larger decline of verbal
memory than women (Morgan et al., 2006). However, most of
the previously published studies did not investigate an effect of
sex or the interaction of sex and age on any of the ketamine
induced symptoms and physiological alterations, despite its
great relevance for uncovering ketamine’s therapeutic potential
(Wright and Kabbaj, 2018).

Among many targets, ketamine is primarily an NMDA
receptor antagonist and its consequent enhancing effect in the
function of another glutamatergic ionotropic receptor, AMPA
receptor, is well known (for review see Aleksandrova et al., 2017).
The glutamatergic system displays prominent sex differences
from the DNA level to physiological behaviors of neurons,
potentially contributing to the well-known gap in prevalence
rates, symptomatology and treatment success in women and
men suffering from mental disorders (for review see Wickens
et al., 2018). The little information we have from human studies
indicates that women show higher levels of glutamate compared
to men, in particular in the striatum and the cerebellum (Zahr
et al., 2013) as well as the sensorimotor cortex and the anterior
cingulate cortex (Grachev and Apkarian, 2000). Moreover,
changes in cerebral glutamate levels across the lifespan have been
predominantly reported in adult men, exhibiting a steep decline
with age (Sailasuta et al., 2008). Interestingly, serum levels of
glutamate increase with older age in adult women, while this is
not observed in men (Kouchiwa et al., 2012).

Sex and age effects have been more extensively explored
in animal studies, critically pointing to the differential
reorganization of the glutamatergic system in the developmental
period in females and males especially in the prefrontal cortex
(PFC; Spear, 2000). The NR2 subunit of NMDA receptor displays
a developmental switch as the NR2B subunits in the PFC play
important roles in regulating the maturation of PFC circuits
in the transition phase between puberty and early adulthood
(Flores-Barrera et al., 2014). Provided that maturation of the
PFC is not completed until mid-twenties due to gradual synaptic
pruning throughout adolescence and early adulthood (Tsujimoto,
2008; Elston et al., 2010; Kolb et al., 2012), these developmental
stages can be called as critical periods (Bale and Epperson, 2017).
These critical periods also correspond to the developmental
stages, where female and male brains become more and more
distinct from each other in many levels (Bale and Epperson,
2017). Men and women differ with respect to brain maturation
leading to a 1–2 years earlier peak of gray maturation (Lenroot
et al., 2007) as well as reduced cortical gray matter loss during
adolescence/early adulthood in women (Sandu et al., 2014).

Among other brain regions like the amygdala, hippocampus or
hypothalamus, orbital and medial PFC show sexual dimorphisms
(Goldstein et al., 2001) and differing maturation processes, e.g.,
gray matter in frontal cortices becomes thinner earlier in females
than males (McEwen and Morrison, 2013). Interestingly, Deakin
et al. (2008) showed that dissociative effects of ketamine are
associated to activity in ventromedial regions of PFC.

In view of these findings, we expected sex differences
with respect to dissociative symptoms after single ketamine
infusion in women and men during early adulthood when
brain maturation is still ongoing. This study was designed
to compare effects of a ketamine infusion in healthy young
women and men using the Clinician-Administered Dissociative
States Scale (CADSS) assessing dissociative symptoms, i.e.,
derealization, depersonalization, and amnestic effects. To do so,
we matched women and men for age and restricted the age range
from 18 to 30 years.

MATERIALS AND METHODS

Participants
The study was part of a randomized, double-blind, placebo-
controlled trial (EudraCT number: 2010-023414-31).
Participants were recruited by public advertisement. Participants
were screened for MR compatibility and completed extensive
medical examination to assure healthy physical status. The
German version of Mini-International Neuropsychiatric
Interview (MINI; Sheehan et al., 1998) was used to exclude
DSM–IV psychiatric disorders. Participants were additionally
screened for general psychiatric (BPRS; Overall and Gorham,
1960) depressive (HAM-D; Hamilton, 1960) and anxiety related
symptoms (HAM-A; Hamilton, 1959). Moreover, participants
were free of current substance use or abuse (excluding smoking)
and did not take any medication (excluding contraception pills).
Seventeen subjects were excluded during screening process.
The age range was set to 18–30 years. Thus, 29 healthy female
and 40 male participants were recruited and randomly assigned
to receive either a racemic ketamine or a placebo (saline)
infusion. Study investigators, research coordinators, attending
care teams and subjects were blind to treatment allocation.
Fourteen women (mean age = 23.43 years; SD = 2.47) and 21
men (mean age = 24.57; SD = 2.51) received ketamine, whereas
15 women (mean age = 24.33 years; SD = 2.66) and 19 men
(mean age = 24.00 years; SD = 1.97) received a placebo infusion.
The Ethics Committee of the Medical Faculty of the University
of Magdeburg approved the experimental protocol of the study
and the study was conducted in accordance with the Declaration
of Helsinki (World Medical Association, 2002). Participants
provided written informed consent prior to participation and
received financial compensation for their participation.

Procedure
First participants completed a baseline assessment of the
CADSS (Bremner et al., 1998) which assesses dissociative
symptoms divided into depersonalization, derealization,
and amnestic symptoms. Afterward, 50 ml of either 0.9%
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saline (NaCl 0.9%; Berlin-Chemie AG, Berlin, Germany) or
0.5 mg/kg body weight of ketamine +/− racemate (Ketamine-
ratiopharm R©500 mg/10 ml; Ratiopharm GmbH, Ulm, Germany)
were infused continuously over 40 min via an infusion pump
(Injectomat 2000; Fresenius Kabi GmbH, Langenhagen,
Germany). Immediately after the end of infusion, participants
completed the CADSS the second time and again 20–40 min
after the end of infusion. During infusion, participants were
monitored for cardiovascular response every 5 min, and again 20
as well as 60 min after infusion (Liebe et al., 2017). To ensure the
safety of participants, they were additionally asked about their
general condition after the end of infusion.

Statistical Analysis
Statistical analyses were conducted via SPSS 23 (IBM). First
independent samples t- or U-tests compared the placebo and
ketamine group with respect to demographical variables. Further
women and men in the ketamine group were also compared for
the same variables.

To assess whether placebo and ketamine group differed
for baseline or post-infusion dissociative symptoms, a 2 × 2
independent samples analysis of variance (ANOVA) was
conducted including the within-subject-factor Time (baseline,

post-infusion) and the between-subject-factor Treatment
(placebo, ketamine).

To investigate dissociative symptoms in the ketamine group,
a multivariate analysis of covariance (MANCOVA) with sex
(women, men) as fixed factor and the three CADSS-subscales
(scores after ketamine infusion) as dependent variables was
conducted to assess sex differences across all subscales. Test
statistics are reported according to Pillai’s Trace. Furthermore,
a univariate ANCOVA was computed to assess sex differences
for the total score. To adjust for potential differences on the
total dose depending on body weight, this variable was added
as a covariate to both tests. In each case, the statistical threshold
was set to α = 0.05. P-values between 0.05 and 0.09 were labeled
trend-significant.

Correlation Analyses
To assess whether age was associated to symptom manifestation
for the total score or one of the three subscales within the
ketamine group, partial correlations controlling for weight
were conducted separately for women and men. To address
the question whether correlation coefficients were different for
women and men, Fisher’s z tests were computed. Differences in
correlation scores were corrected for multiple comparisons, with
an effective threshold of p < 0.0125.

TABLE 1 | Demographic details of the ketamine and placebo group for female and male participants.

Ketamine (n = 35) Sex-differences Placebo (n = 34) Sex-differences Treatment group
-differences

Sex 14 F/21 M 15 F/19 M χ2(1) = 0.12, p = 0.73

Age 24.11 (2.53) 24.15 (2.27) U = 587, p = 0.92

M 24.57 (2.52) t(33) = −1.32, p = 0.20 M 24.0 (1.97) U = 130.5, p = 0.68

F 23.43 (2.47) F 24.33 (2.66)

BMI 23.82 (3.07) 23.57 (3.01) U = 539, p = 0.72

M 24.15 (2.98) t(33) = −0.77, p = 0.45 M 23.80 (2.50) U = 115, p = 0.35

F 23.33 (3.26) F 23.28 (3.62)

Weight (kg) 74.65 (13.88) 74.37 (14.50) t(67) = 0.08, p = 0.94

M 81.71 (12.58) t(33) = −4.68, p < 0.001 M 81.03 (12.99) U = 41, p < 0.001

F 64.07 (7.72) F 65.93 (11.91)

HAM-A 0.63 (1.11) 0.26 (0.79) U = 478, p = 0.063

M 0.71 (1.31) U = 147, p > 0.9 M U = 129, p = 0.66

F 0.50 (0.76) F 0.40 (1.06)

HAM-D 0.51 (1.10) 0.24 (0.55) U = 539, p = 0.35

M 0.62 (1.28) U = 136, p = 0.73 M 0.16 (0.50) U = 120.5, p = 0.45

F 0.36 (0.75) F 0.33 (62)

CADSS total score
baseline

– –

CADSS total score end
of infusion

9.46 (8.76) 0 F (1,67) = 39.65, p < 0.001,
η2 = 0.37

M 10.57 (8.23) F (1,32) = 2.99, p = 0.09, η2 = 0.09

F 7.79 (9.56)

CADSS total score
20–40 min end of
infusion

– –

Both groups did not differ in age and psychiatric symptoms. Only in the ketamine group general CADSS scores showed an increase post-infusion, that differed between
men and women Variables are presented as mean (SD). Hamilton Anxiety Rating Scale (HAM-A); Hamilton Depression Scale (HAM-D), Clinician Administered Dissociative
Symptoms Scale (CADSS), F (females), M (males).
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RESULTS

Demographics
Independent samples t-tests confirmed that the placebo and
ketamine group did not differ significantly in demographic
variables or psychiatric symptoms. Also, women and men in both
groups did not differ in all parameters except weight (see Table 1).

General Effects of Ketamine Infusion
First, a 2 × 2 ANOVA detected main effects of Treatment,
F(1,67) = 39.65, p < 0.001, η2 = 0.37, and Time, F(1,67) = 39.65,
p < 0.001, η2 = 0.37, and a significant interaction of
Treatment × Time, F(1,67) = 39.65, p < 0.001, η2 = 0.37,
indicating enhanced dissociative symptoms only in the ketamine
group immediately post-infusion.

Sex-Specific Effects in the Ketamine
Group Depending on CADSS Subscale
Second, sex- and subscale-specific effects of ketamine were
investigated. The MANCOVA including weight as covariate
showed a significant effect of sex [F(3,30) = 3.60, p = 0.025,
η2 = 0.27]. Looking at subscales individually, depersonalization
[F(1,32) = 7.38, p = 0.011, η2 = 0.19] and amnesia [F(1,32) = 5.09,
p = 0.031, η2 = 0.14] showed significantly higher scores in men,
which was not the case for derealization [F(1,32) = 0.93, p = 0.34,

η2 = 0.03]. Univariate ANCOVA showed a marginal effect on the
total score [F(1,32) = 2.99, p = 0.09, η2 = 0.09] (see Figure 1).

Sex- and Subscale Specific Effects in
Connection With Participant Age
Next, we assessed whether participant age was associated
with symptom manifestation in CADSS total and sub-scores,
separately for men and women. In men, significant negative
correlations between age and CADSS scores were observed (for
depersonalization on a trend-level), which was not the case for
women (see Figure 2 and Table 2).

To further validate whether men and women differed for any
of the above correlations, Fisher’s Z-tests were conducted. For
derealization, z = −3.08, p = 0.002, and the CADSS total score,
z = −2.99, p = 0.003, significant sex-differences were detected
indicating that in men symptom manifestation decreased more
strongly with age than in women. Correlation coefficients of
men and women did not differ significantly for depersonalization
z =−1.59, p = 0.11 and amnesia, z =−0.98, p = 0.33 (see Table 2).

DISCUSSION

The present study investigated whether dissociative
symptoms as induced by the anti-depressive drug ketamine

FIGURE 1 | Illustration of sex- and subscale-specific effects of ketamine. Data is presented as mean ± 95 CI and is not corrected for weight. # indicates p < 0.05.
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FIGURE 2 | Illustration of correlations between age and CADSS scores separately for women and men. Data points are not corrected for weight.

differ as a function of sex and age. In general, a sub-
anesthetic dose of ketamine led to profound dissociate
symptoms affecting women and men, though men
showed significantly stronger symptom manifestation
regarding depersonalization and amnesia than women.
Furthermore, taking into account our participants age, in
men dissociative symptoms in total and derealization in
specific decreased with rising age while this association was not
observed in women.

TABLE 2 | Correlation analyses testing sex-specific associations between Age
and CADSS scores immediately after infusion.

Men
(n = 21)

Women
(n = 14)

Fisher’s z (p-value)
sex-difference

Age × CADSS
total score

−0.64 (0.002) 0.36 (0.22) −2.99 (0.003)∗

Age × CADSS
derealization

−0.64 (0.002) 0.40 (0.18) −3.08 (0.002)∗

Age × CADSS
depersonalization

−0.39 (0.085) 0.19 (0.53) −1.59 (0.11)

Age × CADSS
amnesia

−0.45 (0.048) −0.11 (0.73) −0.98 (0.33)

Women and men differed with respect to the CADSS total score and the subscale
derealization. Clinician Administered Dissociative Symptoms Scale (CADSS). Data
is presented as r coefficient (p-value). Bold values and ∗ indicate p < 0.05.

Surprisingly, the effects of sex and age on ketamine’s actions
have not been broadly examined in humans, although prevalence
rates and symptomatology of mental disorders associated with
the glutamate system and ketamine-action, e.g., depression,
significantly differ between women and men (Whiteford et al.,
2013; Strong and Kabbaj, 2018; Wickens et al., 2018; Wright and
Kabbaj, 2018). Although animal studies point to a variation in
sensitivity to antidepressant and addictive effects of ketamine
depending on age and sex (Carrier and Kabbaj, 2013; Parise
et al., 2013; Franceschelli et al., 2015; Zanos et al., 2016;
Schoepfer et al., 2017; Strong et al., 2017), human studies
rarely report sex or age effects (Cho et al., 2005; Niciu et al.,
2014). In humans, the reported differences between women and
men focused on metabolites and hepatic clearance of ketamine
(Saland et al., 2017), biomarkers (Colic et al., 2019) or side
effects (Liebe et al., 2017). Sigtermans et al. (2009) reported
that S-Ketamine is metabolized faster in female subjects and
the effect of ketamine is greater on cardiac output and heat
pain. Another study which used racemic ketamine, as also used
in the current study indicated a sex-specific metabolism of
ketamine in depressed and bipolar patients (Zarate et al., 2012).
Additionally, a previous meta-analysis reported a significant
association between effect sizes of ketamine response at later
time points, i.e., 7 days post-infusion, and percentage males, but
the number of included studies that contributed data was quite
low (Coyle and Laws, 2015). Reviewing the relevant literature,
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Wright and Kabbaj (2018) stressed that most of the clinical
studies lack the information about sensitivity to the effects of
ketamine because generally one particular dose of ketamine is
administered instead of an application of a dose-response regime
like in animal studies. Indeed, Morgan et al. (2006) showed
that men are more sensitive to verbal and subjective memory
disturbances induced by intravenous ketamine infusions, of
which doses ranged between 0.5 and 1.3 mg/kg. Likewise, in
the current study male participants reported higher subjective
memory disturbances measured by CADSS supporting earlier
findings by Morgan et al. The single dose regime that was applied
in the current study might have hindered the clear sex effect
insensitivity to the amnesic effect of ketamine. More studies using
a wider range of doses would be beneficial to understand both the
role of sex and age in effects of ketamine.

Concerning age effects, dissociative effects of ketamine
were negatively associated with age only in male participants.
Early adulthood is a critical development stage that engenders
vulnerability for a variety of mental disorders for women and
men (Paksarian et al., 2016). Plenty of previously reported
findings indicate that the effects of ketamine show variation
across participants according to the basal status of associated
circuits (Lahti et al., 2001; Corlett et al., 2006; Morgan et al.,
2008). Regarding clinical populations, reports on geriatric
patients are scarce but seem to be similar to generally observed
effects (although see Szymkowicz et al., 2014), but the samples
were very small or case-control studies (Iglewicz et al., 2015;
George et al., 2017; Medeiros da Frota Ribeiro and Riva-
Posse, 2017). Regarding depressed adolescents and young adults,
studies investigating antidepressant effects of ketamine are
virtually non-existent.

This study is limited in that we specifically focused on young
adults, thus included only data from participants younger than
30 years. However, to fully test our assumption of an age-specific
decline of dissociative symptoms in men, future studies should
include a broader age range, informing about age- and sex-
specific effects across different developmental stages (e.g., from
puberty to menopause and further) as changes across the lifespan
have been reported for cerebral glutamate levels in men (Sailasuta
et al., 2008) and serum levels in women (Kouchiwa et al., 2012).
Moreover, a modulatory role of estradiol has been shown in
animal studies addressing glutamate transmission (Smejkalova
and Woolley, 2010). Regarding ketamine, sex differences in
ketamine pharmacokinetics in rats have been reported, however,
the impact of circulating hormone levels was negligible (Saland
and Kabbaj, 2018). Another limitation to be addressed is the lack
of measurements of ketamine and its active metabolites in the
blood. Evidence indicates that the metabolism of both racemic
and S-ketamine differ between men and women (Sigtermans
et al., 2009; Zarate et al., 2012). A common limitation of
placebo-controlled ketamine studies is the reliability of blinding.
Ketamine induces symptoms that are evident mostly to the
participants and also to the involved scientists. For this reason,
studies are conducted with active placebos like midazolam
(Wilkinson et al., 2019), which result in their own caveats.

In summary, male participants in our study reported stronger
depersonalization and amnestic symptoms following ketamine

infusion. Interestingly, this effect was potentiated by age, i.e., the
younger the age the stronger the symptoms. Thus, our findings
suggest a sex-specific protective effect of age, which may be due
to progressed brain maturation in women compared to men. We
conclude that it is crucial to include sex and age in studies of drug
effects in general and of ketamine-action in specific to tailor more
efficient psychiatric treatment strategies.
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Sex differences in spatial abilities are well documented, even though their underlying
causes are poorly understood. Some studies assume a biological basis of these
differences and study the relationship of sex hormone levels to spatial abilities.
Other studies assume social influences and study the relationship of gender
role (masculinity/femininity) to spatial abilities. Contemporary theories postulate a
psychobiosocial model of sex differences in spatial abilities, in which both biological
(e.g., hormonal) and psychosocial (e.g., gender role) variables interactively modulate
spatial abilities. However, few studies have addressed both aspects simultaneously.
Accordingly, the present study explores potential interactive effects between gender role
and sex hormones on spatial performance. 41 men and 41 women completed a mental
rotation and a virtual navigation task. Sex hormone levels and gender role were assessed
in all participants. Sex differences favoring men were observed in both tasks. We found
that neither sex hormones nor gender role alone emerged as mediators of these sex
differences. However, several interactive effects between gender role and sex hormones
were identified. Combined effects of masculinity and testosterone were observed for
those variables that displayed sex differences. Participants with both, high masculinity
and high testosterone showed the best performance. However, this association was
further modulated by biological sex and progesterone levels. Furthermore, we observed
an interactive effect of femininity, estradiol and testosterone on response times in both
tasks. Consistent across both tasks and irrespective of biological sex, testosterone
related to response times in participants with low estradiol levels, depending on their
femininity. In participants with low femininity, testosterone was related to slower reaction
times, while in participants with higher femininity, testosterone was related to faster
reaction times.

Keywords: gender role, sex hormones, mental rotation, navigation, sex differences

INTRODUCTION

Sex differences have attracted considerable research interest over the past decade, but their
underlying mechanisms remain yet to be uncovered. Some researchers see sex differences in
adults as the direct result of organizational or activational effects of sex hormones, i.e., effects
of sex hormones on the brain that occur either during fetal development or later in life
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(e.g., Kelly et al., 1999). Other researchers see sex differences
in adults as a result of socialization and experience (e.g., Nash,
1979; Eagly and Koenig, 2006). With increasing age, children are
more and more exposed to societal views of what’s acceptable
or desirable for their biological sex (gender role/sex role). They
develop their gender identity and a sense of how much they
conform to these gender roles (e.g., Eagly and Koenig, 2006).
The extent to which individuals conform to male gender roles is
referred to as masculinity. The extent to which they conform to
female gender roles is referred to as femininity.

Sex differences have been described for various domains
including spatial, verbal and memory abilities (see Andreano and
Cahill, 2009 for a review). While sex differences in some areas are
more disputed than others, the predominant view is that some
abilities are better developed in women, while other abilities are
better developed in men (e.g., Halpern, 2000). The most robust
sex differences have been described in the spatial domain, in
which men on average outperform women (e.g., Levine et al.,
2016). However, an important observation in sex difference
research is their task specificity, since different – seemingly
similar tasks – may involve a variety of different cognitive
processes (Andreano and Cahill, 2009). Accordingly, the male
superiority in spatial tasks is by no means universal. For instance,
women outperform men in tasks of object location memory (see
Voyer et al., 2007 for a meta-analysis). However, men appear
to have a robust advantage in tasks of spatial visualization, like
mental rotation tasks and navigation tasks (Andreano and Cahill,
2009). Sex differences in mental rotation and navigation have
been described across different cultures (Silverman and Eals,
1992) and emerge with moderate to large effect sizes (0.5–1.3) in
meta-analyses (e.g., Linn and Petersen, 1985; Voyer et al., 1995).

Accordingly, most research on the question of whether sex
differences are of biological or societal origin, has focused on
sex differences in these tasks (compare Levine et al., 2016). An
important question in that regard concerns the development
of sex differences in spatial visualization (Linn and Petersen,
1985; Levine et al., 2016). If sex differences in tasks of spatial
rotation or navigation are already observed in early childhood,
they may be the result of organizational effects of sex hormones.
If they arise with the onset of puberty, they may be the result of
activational effects of sex hormones. If they emerge at school age
or after puberty, this may provide stronger support for societal
influences. While children are first introduced to societal gender
roles at home, the extent to which gender roles are enforced by
parents varies greatly depending on their own views. With school
age, however, gender role expectations are enforced by classmates
and teachers, leading to a stronger and more homogenous
exposure to societal gender roles at that age. However, a recent
study places the onset of strongest enforcement of gender roles
around the age of ten, linking it to an increased concern about
girl’s sexuality and safety during puberty (Blum et al., 2017). Thus,
endocrinological and social aspects of puberty are invariably
confounded, making it hard to disentangle activational effects of
sex hormones and societal influences during that time period.

Nevertheless, a variety of studies have focused on sex
differences in spatial visualization in children and adolescents of
various age groups. However, different studies arrive at different

conclusions. While some studies do indeed report sex differences
in mental rotation already in infants (Moore and Johnson, 2008,
2011; Quinn and Liben, 2008; Lauer et al., 2015) and preschoolers
(Levine et al., 1999; Frick et al., 2013a), other studies are unable to
find sex differences in spatial abilities in young children (Leplow
et al., 2003; Frick et al., 2013b). However, studies in children
require the use of age-appropriate tasks and the comparability of
the tasks used in children to the tasks used in adults has been
criticized (Andreano and Cahill, 2009; Levine et al., 2016). For
instance, infant studies rely on different looking times between
figures and their mirror image, and it is unclear, whether such
looking patterns reflect spatial abilities. Furthermore, mental
rotation tasks used in children are mostly two-dimensional,
while adult MRT are three-dimensional. Most studies locate the
emergence of sex differences in spatial abilities around puberty
(Voyer et al., 1995; Andreano and Cahill, 2009; Titze et al.,
2010). However, Linn and Petersen (1985) argue in their meta-
analytic review, that the emergence of sex differences in spatial
abilities is likely later around the age of 18, which they link to a
stronger age-related increase in spatial abilities in boys compared
to girls. However, since this point is far past the onset of puberty,
the increase in boy’s spatial abilities cannot be explained by
activational effects of sex hormones. It is, however, possible, that
young adults experience an increased exposure to gender role
expectations with the transition to independence at the age of 18.
This is usually the time during which they choose a career and –
in many countries – boys undergo military training. These factors
may not only contribute to enforce the societal views of what’s
male or female, but also lead to increased training of young men
in spatial abilities. Numerous studies indicate that spatial skills
are highly trainable and that training reduces sex differences in
spatial tasks (see Levine et al., 2016 for a review).

Furthermore, findings of hormone-related changes in
cognitive functions, including spatial functions, along the female
menstrual cycle (e.g., Hausmann et al., 2000), during pregnancy
(Workman et al., 2012) or menopause (e.g., Halbreich et al.,
1995), suggest that sex hormones continuously reshape our brain
throughout our adult life. Accordingly, pinpointing the onset of
sex differences in cognitive abilities to a certain age, may not be
sufficient. If sex differences in adults are the result of different
hormonal milieus between men and women, the actual level of
circulating sex hormones at the time of testing should modulate
sex differences in spatial abilities. However, studies relating
circulating testosterone levels to spatial abilities in adults arrive
at mixed results. While some studies observe linear or u-shaped
relationships in men or women (e.g., Hooven et al., 2004; Driscoll
et al., 2005; Hausmann et al., 2009; Courvoisier et al., 2013), other
studies find no relationship of circulating testosterone levels to
mental rotation performance (Halari et al., 2005; Falter et al.,
2006; Puts et al., 2010). It is possible that these conflicting results
arise from complex interactions between organizational and
activational effects of sex hormones, i.e., activational effects of
hormones may differ in differently organized neural structures.
For instance it was recently observed that testosterone relates to
hippocampal volumes in women, but not in men (Pletzer, 2019)
and findings of testosterone showing different relationships
to spatial abilities in men and women are not uncommon
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(Hooven et al., 2004; Driscoll et al., 2005; Hausmann et al.,
2009; Courvoisier et al., 2013). However, not only biological
sex, but also interactive effects between different sex hormones
may play a role. Testosterone is converted to estradiol via the
enzyme aromatase and into the physiologically more active
dihydro-testosterone via the enzyme 5α-reductase. This enzyme
does, however, show a higher affinity to progesterone, such that
in the presence of high progesterone levels, less testosterone gets
converted into dihydro-testosterone. Accordingly, testosterone
effects may be alleviated in the presence of high progesterone.

Furthermore, if sex differences in adults are indeed the
result of socialization by which individuals learn to adapt their
behavior according to the societal views of what’s typical for a
certain gender, the extent to which individuals have incorporated
these roles into their self-image, should explain sex differences
in spatial abilities. Indeed masculinity was found to relate
positively to mental rotation performance in a recent meta-
analysis (Reilly and Neumann, 2013), while femininity showed
no such association. However, the majority of studies included in
this meta-analyses have used the Bem sex role inventory (BSRI;
Bem, 1974) to assess gender role. This measure has however
been criticized due to its poor factorial validity on the one hand,
the exclusion of relevant dimensions of gender role, such as
activities and interests, and the fact that the item pool as collected
in the 1970s appears outdated with respect to a more modern
understanding of gender roles (e.g., Choi and Fuqua, 2003).

Contemporary theories assume that sex differences develop
according to a psychobiosocial model, i.e., as a result of
interactions between biological, e.g., hormonal, influences,
societal influences and individual characteristics (e.g., Levine
et al., 2016). Individuals differ in the extent to which they
conform to societal expectations not only because of the way
they are brought up, but also because of their personality.
Furthermore, personality factors have also been known to
affect how susceptible subjects are to fluctuations in their
hormonal milieu (e.g., Gingnell et al., 2010; Stenbæk et al., 2019).
Particularly higher scores of neuroticism have been related to a
higher susceptibility to hormonal fluctuations in women, albeit
this has mostly been studied with respect to mood changes.
It is unclear whether the personality trait neuroticism reflects
a certain brain organization that responds more strongly to
hormonal changes or whether vice versa concurrent mood
changes in response to hormonal fluctuations are perceived
as more neurotic by participants. Nevertheless, these findings
suggest that like activational effects of sex hormones, social
influences act differently on differentially organized neural
structures. In line with this assumption, it was recently observed
that femininity relates to frontal gray matter volumes in men,
but not in women (Pletzer, 2019). Particularly since conceptually
there is some overlap between scales assessing neuroticism
and scales assessing femininity, it is also plausible that social
influences (e.g., gender role) amplify or diminish hormonal
influences (both organizational and activational) on behavior.

However, only a few studies have addressed both biological
and psychosocial factors in the same study. To the best of our
knowledge, only one study has done so with respect to spatial
abilities (Hausmann et al., 2009). They found interactive effects

of sex hormones and stereotypes on spatial performance in the
sense that testosterone mediated the effects of gender stereotypes
in spatial abilities. In the present study, we address whether sex
differences in mental rotation and spatial navigation are mediated
via masculinity, femininity or sex hormones. We hypothesize that
particularly testosterone levels and masculinity relate positively
to spatial abilities and act as mediators for sex differences
therein. In an integrative approach we additionally seek to
identify interactive effects of biological sex, gender role, and sex
hormones on spatial abilities. More specifically, we expect the
best spatial abilities in participants with both, high masculinity
and high testosterone levels, i.e., we expect masculinity to
facilitate testosterone actions on spatial abilities. Furthermore,
we expect stronger testosterone effects in participants with low
progesterone levels.

MATERIALS AND METHODS

Participants and Procedure
A total of 41 healthy young men and 45 healthy young women
was recruited for the present study. All participants were between
18 and 35 years of age, had passed general qualification for
university entrance and had no psychiatric, neurological or
endocrinological disorders. Women did not take hormonal
contraceptives, had no current or prior diagnosis of premenstrual
dysphoric disorder and had a regular menstrual cycle of 21–
35 days with no more than 7 days of variation between individual
cycles (Fehring et al., 2006). Cycle-length and cycle regularity
was established by participants self-reports of their last three
onsets of menses. Test sessions for women were scheduled in the
mid-luteal cycle phase, since some previous studies suggest that
women behave most “female-like” during this cycle phase and
the largest sex differences in spatial abilities have been reported
for this phase (e.g., Hampson, 1990; Hausmann et al., 2000).
The mid-luteal cycle phase spanned from 3 days post-ovulation
up to 3 days before the expected onset of participants next
menses. Ovulation was calculated by subtracting 14 days from the
expected onset of next menses according to the participant’s last
onset of menses and cycle length as based on the past three cycles.
Onset of next menses was evaluated in follow-up.

Upon arrival at the lab, participants were asked to rinse
their mouth, signed the informed written consent for the study
and completed a general health related screening questionnaire.
They then gave the first saliva sample. Afterward, they
completed the computerized mental rotation task (MRT).
After the MRT, participants gave their second saliva sample.
Then they completed the virtual navigation task (VNT). Upon
completion of the navigation task, participants gave a third
saliva sample and completed questionnaires regarding the video-
gaming experience, the gender related attributes questionnaire,
the masculinity and femininity self-report scales, as well as
the screening version of Ravens Advanced Progressive Matrices
(APM; Raven et al., 1962) to obtain an estimate of IQ. Gender
role scales were scheduled after the spatial tasks and after
the last saliva samples in order to avoid any stereotype threat
like influences by briefing participants about gender role. After
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debriefing the participants they received either course credits or
monetary enumeration.

Ethics Statement
The study was approved by the University of Salzburg’s ethics
committee and conforms to the Code of Ethics of the World
Medical Association (Declaration of Helsinki). Informed written
consent was obtained from all participants.

Assessment of Spatial Abilities
Mental Rotation Task (MRT)
For the mental rotation task, 30 items were selected from
the Ganis and Kievit (2015) stimulus library. Participants were
presented with two three-dimensional figures. Their task was to
decide whether the two figures were the same, but rotated, or
whether the two figures were different, as fast and accurately
as possible within a pre-specified time-limit of 7 s. 15 items
required a “same” response (left mouse button), 15 items a
“different” response (right mouse button). Same figures were
rotated by 50◦ (5 items), 100◦ (5 items) or 150◦ degrees (5
items). Different figures were mirror images of the same figures
and rotated by the same degree. The order of stimuli was
randomized in each participant. Reaction time (RT) and accuracy
were recorded for each item.

Virtual Navigation Task (VNT)
The navigation task used in the present study was a virtual reality
(VR) adaptation of the task used in Harris et al. (2019). Ten
items were selected from the task developed by Harris et al.
(2019) using Unreal Engine 4 18.3 and presented to participants
via a HTC Vive virtual reality system. Each item represented a
new environment consisting of a 10 × 10 matrix with different
landmarks placed on each field. Participants were given three
lines of directions to a target location in the environment and
their task was to reach the target location as quickly as possible.
There was no pre-specified time-limit to complete each item.
Participants could only move on to the next item, once they
found the target location. All directions used allocentric terms
(“north,” “south,” “east,” and “west”) to guide participants through
the environment and participants learned which direction they
were facing at the beginning of each item. Furthermore, half of
the items used landmark-terms to guide participants (e.g., “go to
the tree”), the other half used Euclidian terms (e.g., “go for four
blocks”). For each item, the time participants needed to reach the
target location (navigation time) was recorded.

Assessment of Gender Role
Two measures were used to assess gender role: (i) self-
ratings of masculinity and femininity. (ii) the gender-related
attributes questionnaire as an objective measure of personality
traits, cognitive abilities and interests that are (stereo-)typically
associated with men or women.

Gender Role Self-Assessment
On a nine-point Likert-Scale, participants were asked to rate
how masculine or feminine they perceived themselves. Since men
tend to compare themselves to other men, while women tend

to compare themselves to other women (Pletzer et al., 2015),
each rating was performed three times: (i) in comparison to
(other) men, (ii) in comparison to (other) women, and (iii)
in comparison to the general population. The same scale was
already employed by Pletzer et al. (2015). These ratings represent
subjective measures of masculinity and femininity and depend
on the participant’s personal understanding of these concepts. As
outlined by Pletzer et al. (2015) the concepts of masculinity and
femininity vary between cultures and possibly also subcultures,
e.g., depending on education or generation.

Gender-Related Attributes Scale (GERAS)
As a more objective measure of masculinity and femininity,
we recently developed the gender related attributes scale
(GERAS; Gruber et al., 2019). The GERAS assesses gender
role via attributes that are typically perceived as masculine
or feminine in middle European cultures. It extends previous
sex role inventories (e.g., BSRI; Bem, 1974) by including not
only personality traits, but also cognitive abilities and interests
typically associated with the male or female gender, and thus
spans multiple aspects of gender roles. Accordingly it consists
of three subscales: (i) personalities subscale with 20 items (10
masculine and 10 feminine), (ii) cognitions subscale with 14
items (7 masculine and 7 feminine), and (iii) interests subscale
with 16 items (8 masculine and 8 feminine). In the personality
subscale participants are asked to rate how often in their opinion
positive and negative traits typically associated with the male (e.g.,
dominant and bold) or female (e.g., warm-hearted and sensitive)
gender apply to them. In the cognitions subscale participants
are asked to rate how well they think they are able to perform
certain tasks, for which previous studies have demonstrated sex
differences favoring men (e.g., find a way) or women (e.g., find
the right words). In the interests subscale participants are asked to
rate how interested they would be to engage in activities which are
stereotypically preferred by men (e.g., boxing and drinking) or
women (e.g., dancing and talking). All ratings are performed on
a seven-point Likert-scale. Separate masculinity and femininity
scores can be obtained for each subscale by averaging the
ratings for masculine and feminine items, respectively. Overall
masculinity and femininity scores are obtained by averaging the
masculinity and femininity scores of the three subscales. The
GERAS has been well-validated and shows excellent internal
consistency and reliability (Gruber et al., 2019). In particular,
masculinity and femininity scores obtained with the GERAS
are highly correlated to participant’s masculinity and femininity
self-assessment (Gruber et al., 2019).

Accordingly, composite measures of masculinity and
femininity were obtained by averaging GERAQ and self-
assessment scores after recoding self-assessment scores to a
seven-point scale by collapsing the two extreme categories at
both ends of the scale. The composite score does not only reflect
how much participants identify with pre-dominant societal
views of what’s male and what’s female, but also take into
account their self-perceived masculinity and femininity based on
their own views of what’s male and what’s female. To address,
how much participants conform to the typical male vs. typical
female dichotomy, a masculinity-to-femininity ratio was also
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calculated. The masculinity-to-femininity ratio was the higher
the more typically male and the lower, the more typically female
participants were.

Assessment of Sex Hormones
As outlined in the procedures, three saliva samples were obtained
throughout the study – one in the beginning of the experiment,
one after the MRT and one after the VNT. All saliva samples
were acquired before masculinity and femininity were assessed
in order to avoid any effects of priming participants about gender
role on sex hormones. Saliva samples were immediately frozen
at −20◦ after the experiment and centrifuged twice for 15 and
10 min at 3000 rpm, respectively. As recommended by the ELISA
kit instructions, the three samples of each participant were pooled
to account for fluctuations in hormone and saliva production.
Estradiol, progesterone and testosterone were assessed from the
pooled samples using DeMediTec salivary ELISA kits. While
the approach to pool samples certainly has the advantage of
providing a more stable measure of the average hormone
concentrations throughout the experiment, hormonal variations
in response to experimental manipulations are not taken into
account. While effects of priming participants about gender roles
were avoided by the order of measures (see procedure), it cannot
be completely ruled out that the spatial tasks themselves elicited
a hormonal response.

To reflect the activity of the enzyme aromatase, which converts
testosterone to estradiol, an estradiol-to-testosterone ratio was
calculated. Furthermore, testosterone is more physiologically
active in its dehydrogenized form (dihydro-tetosterone) by
conversion via the enzyme 5α-reductase. Since progesterone
has a higher affinity to that enzyme than testosterone,
testosterone is less physiologically active in the presence of
high progesterone levels (e.g., Sitruk-Ware, 2006). Accordingly,
to assess testosterone’s access to the enzyme 5α-reductase and
obtain a measure of its physiological activity, a testosterone-to-
progesterone ratio was calculated. Similarly, in women, estradiol
actions are often counteracted by progesterone – possibly
due to their opposite effects on a variety of neurotransmitter
systems (Barth et al., 2015). Accordingly, to obtain a measure
of free estrogenic activity, an estradiol-to-progesterone ratio
was calculated.

Statistical Analyses
Statistical analyses were performed in SPSS 22 and R 3.5.1. As
a manipulation check gender role, sex hormones, and spatial
ability scores were compared between men and women using
independent samples t-tests. To identify potential candidates
for mediation analyses, interrelations between gender role, sex
hormones and spatial abilities were assessed using Pearson
correlations. In addition, partial correlations controlling for
biological sex were performed to assess which variables
related to spatial abilities, irrespective of biological sex. To
assess, whether gender role or sex hormones were able
to explain the sex difference in spatial abilities, mediation
analyses were performed using the mediate function of the
mediation packages (Tingley et al., 2017). To assess, whether
biological sex, gender role and sex hormones interactively

modulated spatial abilities, multiple regression analyses were
performed. Details are described in the results section. To
illustrate the combined or interactive effects of multiple
variables in 3d space (Figures 1, 3, 4), we used the gridfit
function in matlab 2016.

RESULTS

Four women had to be excluded because the onset of their
next menses after the study was too early or too late and their
progesterone values were below the acceptable range for the luteal
cycle phase (<43 pg/ml; compare Harris et al., 2019). Hormone
levels of one male participant were excluded from analysis as
outliers, since they exceeded the group mean by more than
three standard deviations. Accordingly data of 40 men and 41
women were used for analysis. Women’s average cycle length
was 29 days (SD = 3 days). They were on average tested on day
22 of their cycle (SD = 4 days). An additional 5 participants (1
men and 4 women) did not complete the VNT task due to severe
motion sickness.

Sex Differences
Table 1 summarizes the descriptive statistics and gender
comparisons for demographic data, sex hormones, gender role
and spatial abilities. Men and women did not differ in age
and IQ. Furthermore, there were no differences in estradiol
levels between men and women (compare Table 1). As expected,
men showed higher testosterone levels and masculinity ratings
than women, while women showed higher progesterone levels
and femininity ratings than men. Regarding spatial abilities,
sex differences were observed for MRT accuracy and VNT RT,
but not for MRT RT.

Relationship Between Gender Role, Sex
Hormones, and Spatial Abilities
To identify potential mediators of sex differences in spatial
abilities, Pearson correlations between gender role, sex hormones
and their respective ratios and spatial abilities were calculated.
Table 2 summarizes zero-order correlations between gender
role, sex hormones and spatial abilities below the diagonal.
Masculinity and testosterone levels were highly positively
interrelated and both related to mental rotation accuracy and
navigation time, but not mental rotation RT. Progesterone was
positively related to femininity and both related negatively to
MRT accuracy, but not RT or navigation time. Estradiol was not
related to gender role, MRT accuracy or navigation time, but was
positively related to MRT RT.

To assess the interrelation between gender role and sex
hormones and their relationship to spatial abilities irrespective
of biological sex, partial correlations controlling for biological
sex were performed, since gender role and sex hormones
are inadvertently confounded with biological sex. Partial
correlations are summarized above the diagonal in Table 2. After
controlling for biological sex, the masculinity and femininity
total score were significantly negatively interrelated, while
sex hormones were significantly positively interrelated. There
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FIGURE 1 | Relationship of sex hormones and masculinity to mental rotation reaction times (MRT RT). Estradiol was positively related to MRT RT in men and
women, while testosterone and progesterone were positively related to MRT RT only in men. Note, however, that the association to testosterone survived across
participants. Masculinity was negatively related to MRT RT in both men and women. Accordingly, in the MRT participants with higher levels of sex hormones
responded slower, and participants with higher masculinity responded faster.

TABLE 1 | Descriptives and biological sex differences for demographic variables, gender role, sex hormones, and spatial abilities.

men Women comparison

mean SD mean SD MD d t p

Age (years) 23.20 3.53 24.32 3.42 −1.12 −0.32 −1.46 0.15

IQ 112.54 7.95 109.29 8.59 3.24 0.39 1.78 0.08

Masculinity self (1–9) 6.37 1.15 3.20 1.56 3.17 2.31 10.45 < 0.001

Femininity self (1–9) 3.45 1.08 6.82 1.33 −3.37 −2.79 −12.62 < 0.001

Masculinity GERAQ [1–7] 4.54 0.90 3.90 0.77 0.64 0.77 3.48 < 0.001

Femininity GERAQ [1–7] 4.36 0.69 4.78 0.70 −0.42 −0.61 −2.77 0.007

Masculinity total (Z) 0.56 0.66 −0.56 0.62 1.12 1.78 8.04 < 0.001

Femininity total (Z) −0.54 0.52 0.54 0.72 −1.11 −1.78 −8.07 < 0.001

Masc./fem. ratio (Z) 0.77 0.74 −0.77 0.53 1.54 2.40 10.87 < 0.001

Estradiol (E) (pg/ml) 1.71 0.98 1.72 0.69 −0.02 −0.02 −0.09 0.93

Progesterone (P) (pg/ml) 85.70 74.68 208.22 127.47 −122.53 −1.17 −5.31 < 0.001

Testosterone (T) (pg/ml) 114.94 43.93 44.82 13.19 70.12 2.16 9.79 < 0.001

E/T ratio (Z) −0.71 0.40 0.69 0.93 −1.40 −1.94 −8.74 < 0.001

E/P ratio (Z) 0.63 1.03 −0.61 0.44 1.24 1.58 7.11 < 0.001

T/P ratio (Z) 0.72 1.00 −0.70 0.12 1.41 1.99 8.97 < 0.001

MRT Accuracy (%) 90.40 8.80 79.20 16.00 0.11 0.88 3.96 < 0.001

MRT RT (ms) 3286.85 815.67 3220.20 685.84 66.65 0.09 0.40 0.69

VNT RT (s) 76.80 50.52 115.60 72.62 −38.80 −0.63 −2.74 0.008

GERAQ, gender-related attributes questionnaire; MRT, mental rotation task; VNT, virtual navigation task; RT, reaction time; MD, mean difference; d, Cohen’s d.
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was no significant association between gender role and sex
hormones. Gender role and sex hormones were not related to
MRT accuracy or navigation time. Testosterone and estradiol
both related positively to MRT RT. MRT RT and navigation
time were significantly positively interrelated. Separate analyses
by biological sex confirmed that these correlations were
observed in both men and women, although the associations
of sex hormones to MRT RT were significant only in men
(Figure 1 and Table 3). Furthermore a positive correlation
between progesterone and MRT RT was observed only in
men (Figure 1).

Mediation Analyses
To address, whether gender role or any of the sex hormones
mediated the sex differences in spatial performance, mediation
analyses were performed. In all except two analyses, the

direct effect of sex remained significant, while the indirect
effect never reached significance (Table 4). Exceptions were
masculinity and testosterone in the navigation task. Controlling
for masculinity or testosterone the direct effect of sex was not
significant anymore. However, the indirect effect also did not
reach significance. Accordingly, neither gender roles nor sex
hormones mediated the sex difference in MRT accuracy and
navigation time.

Beyond Biological Sex Differences:
Interactive Effects of Gender Role and
Sex Hormones
To explore interactive effects of gender role and sex hormones
on spatial abilities, we used a data driven approach. For
masculinity and femininity, respectively, models including
all interactions with biological sex and sex hormones were

TABLE 2 | Pearson and partial correlations between gender role, sex hormones, and spatial abilities.

Gender role Sex hormones MRT Acc. MRT RT VNT RT

Masc. Fem. M/F T E P E/T E/P T/P

Masculinity (Masc) −0.60∗∗∗ 0.85∗∗∗
−0.13 −0.02 −0.06 0.03 0.08 0.03 0.10 −0.16 0.09

Femininity (Fem) −0.83∗∗∗
−0.81∗∗∗ 0.05 −0.04 0.05 −0.07 −0.02 0.02 0.04 −0.05 −0.10

Masc/Fem (M/F) 0.94∗∗∗
−0.92∗∗∗

−0.14 −0.04 < 0.01 0.04 0.02 0.03 −0.01 −0.10 0.13

Testosterone (T) 0.54∗∗∗
−0.59∗∗∗ 0.55∗∗∗ 0.55∗∗∗ 0.31∗∗

−0.12 −0.08 −0.18 0.02 0.32∗
−0.07

Estradiol (E) −0.03 −0.01 −0.04 0.33∗∗ 0.43∗∗∗ 0.59∗∗∗ 0.25∗
−0.38∗∗∗

−0.15 0.23∗
−0.07

Progesterone (P) −0.46∗∗∗ 0.47∗∗∗
−0.44∗∗

−0.28∗ 0.37∗∗∗ 0.19 −0.39∗∗∗
−0.34∗∗

−0.17 0.04 −0.20

E/T −0.51∗∗∗ 0.52∗∗∗
−0.52∗∗∗

−0.60∗∗∗ 0.44∗∗∗ 0.51∗∗∗ 0.23∗
−0.24∗

−0.17 0.06 0.06

E/P 0.52∗∗∗
−0.50∗∗∗ 0.49∗∗∗ 0.45∗∗∗ 0.18 −0.61∗∗∗

−0.31∗∗ 0.57∗∗∗ < 0.01 −0.09 −0.06

T/P 0.55∗∗∗
−0.55∗∗∗ 0.56∗∗∗ 0.47∗∗∗

−0.28∗
−0.60∗∗∗

−0.62∗∗∗ 0.76∗∗∗ 0.04 −0.18 −0.05

MRT Accuracy 0.36∗∗∗
−0.29∗∗ 0.31∗∗ 0.33∗∗

−0.15 −0.36∗∗∗
−0.40∗∗∗ 0.26∗ 0.32∗∗

−0.04 −0.09

MRT RT −0.07 < 0.01 −0.02 0.24∗ 0.23∗ < 0.01 0.01 −0.04 −0.09 −0.02 0.30∗

VNT RT −0.19 0.20 −0.17 −0.27∗
−0.08 < 0.01 0.25∗

−0.23∗
−0.24∗ 0.21 0.27∗

Pearson correlations are displayed below the diagonal in light gray. Partial correlations after controlling for biological sex are displayed above the diagonal in white. MRT,
mental rotation task; VNT, virtual navigation task; RT, reaction time. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

TABLE 3 | Pearson correlations between gender role, sex hormones, and spatial abilities for men and women.

Gender role Sex hormones MRT Acc. MRT RT VNT RT

Masc. Fem. M/F T E P E/T E/P T/P

Masculinity (Masc) −0.62∗∗∗ 0.90∗∗∗ 0.17 0.10 −0.09 −0.01 0.23 0.14 0.16 −0.16 −0.04

Femininity (Fem) −0.59∗∗
−0.85∗∗∗ 0.03 −0.14 0.11 −0.09 −0.30 −0.23 −0.02 0.12 −0.01

Masc/Fem (M/F) 0.85∗∗∗
−0.90∗∗∗ 0.10 0.15 −0.07 0.05 0.27 0.17 0.14 −0.16 −0.05

Testosterone (T) −0.29 0.09 −0.21 0.38∗ 0.48∗∗∗
−0.37∗

−0.26 −0.01 < 0.01 −0.03 −0.24

Estradiol (E) −0.12 0.06 −0.13 0.63∗∗∗ 0.53∗∗∗ 0.66∗∗∗ 0.19 −0.37∗
−0.24 0.13 −0.02

Progesterone (P) −0.01 −0.20 0.13 0.48∗∗∗ 0.51∗∗ 0.16 −0.63∗∗∗
−0.74 −0.20 −0.10 −0.28

E/T 0.13 −0.01 0.04 −0.01 0.74∗∗∗ 0.37∗ 0.38∗
−0.38∗

−0.18 0.06 0.10

E/P 0.03 0.17 −0.06 −0.05 0.27 −0.49∗∗∗ 0.25 0.63∗∗∗
−0.07 0.07 0.23

T/P 0.03 0.08 0.02 −0.19 −0.44 −0.72∗∗∗
−0.53∗∗∗ 0.59∗∗∗ 0.10 −0.07 0.03

MRT Accuracy −0.04 0.23 −0.19 0.03 −0.07 −0.03 −0.13 0.06 0.07 0.10 −0.09

MRT RT −0.16 −0.03 0.05 0.46∗∗ 0.29 0.35∗ 0.07 −0.15 −0.23 −0.26 0.31

VNT RT 0.27 −0.26 0.30 < 0.01 −0.13 0.04 −0.05 −0.25 −0.10 −0.11 0.32∗

Pearson correlations for men are displayed below the diagonal in light gray. Pearson correlations for men are displayed above the diagonal in white. MRT, mental rotation
task; VNT, virtual navigation task; RT, reaction time. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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TABLE 4 | Direct and mediated effects of sex on spatial abilities.

age IQ masc Fem M/F T E P E/T E/P T/P

MRT Accuracy Indirect −0.03 −0.05 −0.20 0.09 0.01 0.04 −0.01 −0.22 −0.29 < 0.01 −0.08

Direct −0.77∗∗∗
−0.76∗∗

−0.59∗
−0.90∗∗∗

−0.82∗
−0.78∗∗

−0.82∗∗∗
−0.60∗

−0.53∼
−0.82∗∗∗

−0.74∗∗

Total −0.81∗∗∗
−0.81∗∗∗

−0.79∗∗∗
−0.81∗∗∗

−0.81∗∗∗
−0.81∗∗∗

−0.82∗∗∗
−0.82∗∗∗

−0.83∗∗∗
−0.82∗∗∗

−0.82∗∗∗

%mediated 0.03 0.05 0.25 −0.10 −0.02 −0.04 < 0.01 0.26 0.36 < 0.01 0.09

VNT RT Indirect < 0.01 0.07 −0.22 −0.28 −0.33 0.15 0.006 −0.25 0.11 0.10 0.11

Direct 0.60∗∗ 0.54∗ 0.82∗ 0.88∗ 0.92∗ 0.45 0.59∗ 0.85∗∗ 0.48 0.49 0.47

Total 0.60∗∗ 0.60∗∗ 0.60∗∗ 0.60∗∗ 0.59∗∗ 0.60∗∗∗ 0.59∗ 0.61∗∗ 0.59∗∗ 0.59∗∗ 0.58∗

%mediated < 0.01 0.10 −0.34 −0.44 −0.56 0.25 0.003 −0.40 0.18 0.16 0.18

Sex differences were not mediated by demographic variables, gender role or sex hormones. MRT, mental rotation task; VNT, virtual navigation task; RT, reaction time;
Masc, masculinity; fem, femininity; T, testosterone; E, estradiol; P, progesterone. ∼p < 0.10, ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

defined and non-significant interactions were backward
eliminated from higher to lower orders, such that only
significant interactions and their lower order terms remained
in the model beyond the main effects. Table 5 summarizes
results for masculinity, while Table 6 summarizes the
results for femininity.

For mental rotation accuracy, a significant interaction between
sex, masculinity and testosterone was observed (b = 1.00,
SEb = 0.39, t = 2.55, p = 0.01). Women with both high masculinity
and high testosterone levels had the highest mental rotation
accuracy, while in men only a trend toward higher accuracy with
higher testosterone levels was visible (Figure 2).

For mental rotation reaction times (MRT RT), no significant
interaction between masculinity and testosterone was observed,
but masculinity and testosterone remained significant predictors
in the model. While masculinity was negatively related to
mental rotation reaction times (b = −0.28, SEb = 0.13,
t = −2.18, p = 0.03), testosterone was positively related
to mental rotation reaction times (b = 0.39, SEb = 0.13,

TABLE 5 | Results of exploratory multiple regression models including interactions
between biological sex, masculinity, and sex hormones.

MRT accuracy MRT RT VNT RT

b t b t b t

Masculinity (Masc) 0.87 2.57∗
−0.28 −2.18∗

−0.03 −0.14

Testosterone (T) 0.63 1.72∼ 0.39 3.06∗∗
−0.44 −1.74

Masc∗T 1.18 3.00∗∗ 0.12 0.69

Sex 0.10 0.32 −0.21 −0.60

Sex∗Masc 1.05 3.10∗∗

Sex∗T 0.75 2.03∗

Sex∗Masc∗T 1.00 2.55∗

Progesterone (P) 0.52 1.57

Estradiol (E) 0.01 0.95

Masc∗P −0.24 −0.98

Masc∗E −0.40 −2.29∗

T∗P −0.59 −1.94

Masc∗T∗P −0.74 −2.52∗

Sex∗P −1.08 −2.69∗∗

MRT, mental rotation task; VNT, virtual navigation task; RT, reaction time. ∼p < 0.10,
∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

t = 3.06, p = 0.003). Irrespective of their biological sex,
participants with higher masculinity, but lower testosterone levels
solved mental rotation items faster (Figure 1). Estradiol and
progesterone did not survive as significant predictor in the model,
highlighting testosterone as the hormone with the strongest
effect on MRT RT.

For navigation times, the interaction between masculinity and
testosterone was further qualified by progesterone (b = −0.74,
SEb = 0.29, t = −2.51, p = 0.01). This interaction resulted
from the fact, that testosterone was most negatively related to
navigation times in participants with high progesterone levels
and high masculinity (Figure 3). In participants with low
progesterone levels and high masculinity the opposite pattern
was observed, i.e., a positive association between testosterone and
navigation times. Accordingly in the absence of progesterone,
testosterone improved navigation performance for participants
with low masculinity, but impaired navigation performance for
participants with high masculinity.

There was no interaction between femininity and sex
hormones in the prediction of mental rotation accuracy.
However, for both mental rotation reaction times and navigation

TABLE 6 | Results of exploratory multiple regression models including interactions
between biological sex, femininity, and sex hormones.

MRT accuracy MRT RT VNT RT

b t b t b t

Sex −0.41 −4.02∗∗∗

Femininity (Fem) −0.01 −0.05 0.18 1.07

Testosterone (T) 0.20 1.17 −0.63 −3.37∗∗

Estradiol (E) 0.51 3.01∗∗ 0.44 1.86∼

Fem∗T −0.29 −1.61 −0.55 −2.88∗

Fem∗E 0.07 0.40 0.35 1.87∼

T∗E 0.22 1.65 0.21 1.58

Fem∗T∗E 0.67 3.07∗∗ 0.58 2.27∗

Progesterone (P) 0.15 0.57

Fem∗P −0.09 −0.44

T∗P −0.22 −0.94

Fem∗T∗P 0.77 3.33∗∗

MRT, mental rotation task; VNT, virtual navigation task; RT, reaction time. ∼p < 0.10,
∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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FIGURE 2 | Relationship of masculinity and testosterone to mental rotation accuracy (MRT Accuracy). A combined effect of masculinity and testosterone was
identified in women. Women with both, high masculinity and high testosterone levels had the highest MRT accuracy. In men a small, but non-significant positive
association to testosterone was observed, but no effect of masculinity – probably due to a ceiling effect. Data were smoothed in the 3d space using the matlab
function gridfit.

FIGURE 3 | Relationship of masculinity and testosterone to navigation times. A combined effect of masculinity and testosterone was identified. In participants with
high progesterone levels, high masculinity and high testosterone levels related to the fastest navigation times. In participants with low progesterone levels, the
opposite pattern was observed. Data were smoothed in the 3d space using the matlab function gridfit.

times significant three-way interactions between femininity,
testosterone and estradiol were observed (MRT: b = 0.68,
SEb = 0.22, t = 3.07, p = 0.003; VNT: b = 0.77, SEb = 0.23,
t = 3.33, p = 0.001). These 3-way interactions were accompanied
by a two-way interaction between femininity∗testosterone and
a main effect of estradiol in the case of the MRT. For the
MRT, but not for the VNT, estradiol was related to longer
(slower) RT. The interactions are plotted in Figure 4. In both
tasks associations between testosterone and reaction time were
observed for participants with low estradiol levels, depending on
their femininity. In participants with low femininity, testosterone
showed a positive relationship to RT, i.e., the higher the
testosterone levels, the slower the reactions. In participants with
high femininity, testosterone showed a negative relationship to
RT, i.e., the higher the testosterone levels, the faster the reactions.
In addition, for navigation times the same interaction was
observed for progesterone, i.e., interactive effects of femininity
and testosterone on navigation times in participants with low
progesterone levels.

DISCUSSION

The present study set out to investigate, whether gender role or
sex hormones mediate sex differences in spatial performance.
In addition we sought to explore potential interactive effects
between gender role and sex hormones on spatial performance.
We hypothesized highest spatial abilities in participants with
both high masculinity and high testosterone levels. Furthermore
we hypothesized stronger testosterone influences in participants
with lower progesterone levels.

We found that neither gender role nor sex hormones or their
ratios alone explained sex differences in spatial tasks. This was
observed in both the mental rotation and the virtual navigation
task, even though performance in both tasks was unrelated.
This is in line with results of a previous study, demonstrating
no effect of sex hormones on a similar navigation task (Harris
et al., 2019). While sex differences in the mental rotation task
emerged in accuracy, but not reaction times, sex differences in
the navigation task emerged in response times. These differences
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FIGURE 4 | Interactive effect of estradiol, testosterone and femininity on response times in the mental rotation task (MRT) and navigation task. Testosterone related
to response times for participants with low estradiol levels, depending on their femininity. Participants with low femininity showed a positive association between
testosterone and response times, i.e., higher testosterone was related to slower reactions. Participants with high femininity showed a negative association between
testosterone and response times, i.e., higher testosterone was related to faster reactions. Data were smoothed in the 3d space using the matlab function gridfit.

may be due to the fact that a time limit was posed for the mental
rotation task, but not for the navigation task, while all items
had to be solved correctly in the navigation task, but not in the
mental rotation task.

However, while none of the variables tested were able to
explain the sex difference alone, sex did not remain a significant
predictor in any of the multiple regression models assessing the
interactive effects of gender role and sex hormones. This suggests
that it’s their interactive effects that contribute to the differences
observed between men and women, which is in line with
psycho-biosocial models. Specifically, we observed the expected
interaction between masculinity and testosterone for both
performance measures that showed a sex difference, i.e., mental
rotation accuracy and navigation times. While the interaction
was qualified by biological sex for the MRT, it was qualified by
progesterone in the VNT. In the MRT, a combined effect of
masculinity and testosterone on accuracy was only observed in
women. As expected, women with both, high masculinity scores
and high testosterone levels showed the best performance. For
navigation times the same effect was observed in participants with
high progesterone levels, while the opposite effect was observed

in participants with low progesterone levels. Since women have
higher progesterone levels than men, both observations are in line
with the assumption that progesterone modulates testosterone
influences. They are, however, in the opposite direction as
hypothesized. While we assumed that testosterone effects would
be stronger in participants with lower progesterone levels due
to progesterone’s higher affinity for the enzyme 5α-reductase,
we found that testosterone and masculinity enhance spatial
performance in participants with high progesterone levels
(Figures 2, 3), but impair spatial performance in participants
with low progesterone levels (Figure 3). This suggests different
mechanisms of testosterone action in the presence or absence
of progesterone. It can be assumed that in the absence of
progesterone, testosterone mainly acts as dihydrotestosterone,
while in the presence of high progesterone, testosterone does not
get converted to dihydrotestosterone. In this case, testosterone
can either act directly on androgen receptors or it acts as
estradiol on estrogen receptors after conversion via the enzyme
aromatase. This suggests different effects of dihydrotestosterone,
testosterone and estradiol on spatial abilities and emphasizes
dihydrotestosterone as an important sex hormone to consider
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in future studies. The fact that progesterone only emerged
as a predictor for navigation times, as well as the fact that
the combined effect of masculinity and testosterone on mental
rotation accuracy was only observed in women, may be
attributable to a ceiling effect in men (compare Figure 1). Almost
all men reached an accuracy of over 90 percent, leaving little room
for variation due to gender role or sex hormones.

Interestingly, associations of gender role and sex hormone to
spatial performance also emerged for mental rotation reaction
times – the one measure that did not show sex differences
in spatial abilities. Irrespective of biological sex, masculinity,
but not femininity, emerged as a predictor of mental rotation
reaction times, such that more masculine individuals of either
sex, showed faster reactions. This finding is in line with
previous reports summarized in the meta-analysis by Reilly and
Neumann (2013) and the effect size is in the range reported
by Reilly and Neumann (2013). Note, however, that this effect
only reached significance in the multiple regression model,
when testosterone was also controlled for. Testosterone showed
the opposite effect, i.e., individuals with higher testosterone
levels were slower. While the correlation to testosterone was
only significant in men, the effect survived across participants
and did not interact significantly with biological sex. This is
probably attributable to the overall lower testosterone levels
in women. Likewise, in the correlation analyses, estradiol
was related to slower reaction times across participants and
progesterone was related to slower reaction times in men. Note,
however, that the multiple regression analysis clearly identified
testosterone as the hormone with the strongest influence,
since neither estradiol nor progesterone survived as predictor
in that model. The fact that masculinity and testosterone
had opposite effects on mental rotation reaction times may
explain, why no sex difference was found in this measure.
Since masculinity includes personality traits like risk taking
and competitiveness, its relationship to faster reactions seems
plausible. The finding regarding testosterone levels, however,
suggests, that testosterone may play a role in regulating the
speed-accuracy trade-off participants are faced with during a
timed task. This finding hints at the possibility of testosterone
improving spatial performance by slowing reaction times, leading
to more considerate decision making in the MRT. This idea is
somewhat unexpected as testosterone has previously been shown
to increase impulsive behavior (e.g., Agrawal et al., 2018) and
better spatial performance (e.g., Hooven et al., 2004; Hausmann
et al., 2009). However, u-shaped relationships and negative
activational influences of testosterone on spatial performance
have also been reported (e.g., Hromatko and Tadinac, 2006). On
the contrary, estradiol has been discussed to decrease impulsive
behavior (Howard et al., 1988, Diekhof, 2015, Roberts et al.,
2018), which is in line with it’s relation to increased response
times observed in the present study. Furthermore, the estradiol
finding is in line with other studies suggesting a negative effect
of estradiol on spatial performance in humans (e.g., Courvoisier
et al., 2013; Hampson et al., 2014), but contrasts findings from
animal studies, suggesting a positive effect of estradiol on spatial
working memory (e.g., Williams et al., 1990; Healy et al., 1999;
Workman et al., 2012). Note, however, that also in animal studies,

negative findings and null effects regarding estradiol actions
on spatial performance have been described and it has been
discussed that estadiol actions may differ between different types
of spatial abilities and depending on spatial strategy (Williams
et al., 1990; Chesler and Juraska, 2000; Snihur et al., 2008;
Lipatova and Toufexis, 2013).

However, the present study did not only identify masculinity
to interact with sex hormone actions, but also femininity in a
three-fold interaction of femininity, testosterone and estradiol
on response times in both tasks (compare Figure 1). The fact
that the association of testosterone to spatial response times is
modulated by both estradiol and femininity may contribute to
the mixed findings reported in the literature, where both positive
and negative associations, as well as u-shaped relationships have
been reported (e.g., Hooven et al., 2004; Driscoll et al., 2005;
Halari et al., 2005; Falter et al., 2006; Hausmann et al., 2009;
Puts et al., 2010; Courvoisier et al., 2013). Furthermore, this
3-fold interaction may help to shed light on the seemingly
contradictory findings discussed in the previous paragraph.
Including femininity in the model, revealed that testosterone
related to response times in spatial tasks in participants with
low estradiol levels, but depending on their femininity. These
findings show that testosterone exerts its actions on response
times (i) only in the absence of estradiol and (ii) in different
directions for high and low femininity. In participants with low
femininity, testosterone was related to slower reaction times,
while in participants with higher femininity, testosterone was
related to faster reaction times. Most importantly, this finding
was consistent across the two spatial tasks employed in this
study, even though response times revealed sex differences in the
navigation task, but not in the mental rotation task.

Regarding (i), the fact that the interaction between femininity
and testosterone only emerges for individuals with low estradiol
levels may reflect the underlying biochemistry of these hormones.
Testosterone is converted to estradiol via the enzyme aromatase.
Accordingly across comparable testosterone levels, high estradiol
may reflect higher aromatase activity, while low estradiol may
reflect lower aromatase activity. Thus, in individuals with
higher aromatase activity, estradiol may be the more relevant
hormone to modulate performance, while in individuals with
low aromatase activity, testosterone may be the more relevant
hormone for modulating performance.

Regarding (ii), the interaction between femininity and
testosterone highlights – for the first time – an important role
for femininity in spatial abilities. The fact that this role is clearly
modulatory may explain, why no associations between femininity
and spatial performance were observed in previous studies (Reilly
and Neumann, 2013). Linking this finding to the discussion in
the previous paragraph regarding testosterones relationship to
more impulsive decision making, it appears that personality traits
associated with high femininity (e.g., expressivity, neuroticism)
fuel this association, while low femininity reverses it. This finding
adds to the discussion that sex hormones may have different
effects on differently organized neural structures. However, it
appears that gender role is a better proxy for how a brain is
organized, since femininity survived as a predictor in the model,
while biological sex did not.
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While of course most participants with high femininity were
female and most participants with low femininity were male,
we specifically identified 14 participants, whose gender role did
not correspond to their biological sex. Using a median cut-off,
three men showed high masculinity but low femininity, i.e.,
a typically female gender role, while four women showed low
masculinity but high femininity, i.e., a typically male gender
role. Furthermore, several participants showed an indifferent
(low masculinity and low femininity, 2 men) or androgynous
(high masculinity and high femininity, 2 men, 3 women)
gender role pattern.

In summary, results of the present study suggest, that neither
gender role nor sex hormones alone mediate sex differences in
spatial performance. Rather it seems that their contributions
to spatial performance are mostly combinatory and interactive.
While masculinity seems to boost testosterone effects in those
tasks that show significant sex differences, femininity modulates
testosterone effects on response times. The combined effect of
masculinity and testosterone was modulated by progesterone,
while the interactive effect of femininity and testosterone was
modulated by estradiol levels.
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Testosterone can be safely and effectively administered to estrogen-treated post-
menopausal women experiencing hypoactive sexual desire. However, in the
United States and Canada, although it is often administered off-label, testosterone
co-administered with estradiol is not a federally approved treatment for sexual
arousal/desire disorder, partly because its mechanism is poorly understood. One
possible mechanism involves the aromatization of testosterone to estradiol. In an
animal model, the administration of testosterone propionate (TP) given in combination
with estradiol benzoate (EB) significantly increases sexually appetitive behaviors (i.e.,
solicitations and hops/darts) in ovariectomized (OVX) Long-Evans rats, compared
to those treated with EB-alone. The goal of current study was to test whether
blocking aromatization of testosterone to estradiol would disrupt the facilitation of
sexual behaviors in OVX Long-Evans rats, and to determine group differences in Fos
immunoreactivity within brain regions involved in sexual motivation and reward. Groups
of sexually experienced OVX Long-Evans rats were treated with EB alone, EB+TP, or
EB+TP and the aromatase inhibitor Fadrozole (EB+TP+FAD). Females treated with
EB+TP+FAD displayed significantly more hops and darts, solicitations and lordosis
magnitudes when compared to EB-alone females. Furthermore, TP, administered with
or without FAD, induced the activation of Fos-immunoreactivity in brain areas implicated
in sexual motivation and reward including the medial preoptic area, ventrolateral division
of the ventromedial nucleus of the hypothalamus, the nucleus accumbens core, and the
prefrontal cortex. These results suggest that aromatization may not be necessary for TP
to enhance female sexual behavior and that EB+TP may act via androgenic pathways to
increase the sensitivity of response to male-related cues, to induce female sexual desire.

Keywords: sexual desire, testosterone, estradiol, preclinical model, aromatase, fadrozole

INTRODUCTION

The role of androgens and estrogens in male sexual behavior in rodent models has been well
characterized (Hull et al., 1997; Sato et al., 2005; Hull and Dominguez, 2007), but the role
of androgens given in combination with estradiol has not been well studied in female sexual
behavior. This is particularly true for female sexually appetitive behaviors and the associated
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neural mechanisms, despite human data suggesting that
testosterone plays a key role in female sexual desire. Testosterone
is an effective treatment for estrogen-treated post-menopausal
women experiencing hypoactive sexual desire (Sherwin et al.,
1985; Burger et al., 1987; Shifren et al., 2000; Sherwin, 2002;
Braunstein et al., 2005; Davis and Braunstein, 2012). However,
one of the reasons that testosterone is not FDA-approved is due
to a lack of understanding of the neural mechanisms through
which it facilitates sexual desire in these women, and human
studies cannot identify where in the brain testosterone is acting,
nor the neural mechanisms through which it exerts its effects.
Testosterone is an aromatizable androgen that can exert its effects
through androgenic or estrogenic pathways and can activate
androgen receptors directly or indirectly following conversion
by 5α-reductase into dihydrotestosterone (DHT). Testosterone
can also activate estrogen receptors following aromatization to
estradiol (E2) (Simpson, 2002), or by increasing bioavailable
E2 through the displacement of E2 from sex-steroid binding
globulins, which bind androgens with higher affinity than
estrogens (Burke and Anderson, 1972; Selby, 1990). Some early
work has shown that both aromatizable and non-aromatizable
androgens are involved in female rat sexual preference tests
(de Jonge et al., 1986b), although comprehensive mechanistic
studies of where in the brain and through which mechanisms
testosterone facilitates sexual motivation when administered on
an EB-baseline have not been conducted. Animal literature has
identified hypothalamic, limbic, and the prefrontal cortex as
key brain regions involved in the activation of female sexually
appetitive behaviors, making them candidate regions where
testosterone may exert its actions. Thus, a better understanding
of the mechanisms through which testosterone facilitates sexual
desire, in candidate brain regions, can be addressed using
preclinical rodent models.

Animal studies have demonstrated that testosterone
propionate (TP) can facilitate sexual behaviors in ovariectomized
(OVX) as well as gonadally intact reproductively senescent
female rats. Administration of TP to OVX rats treated with
estradiol benzoate (EB) increases scent-marking frequency,
proceptive behaviors and partner preference for sexually active
males over EB administration alone (de Jonge et al., 1986a; Van
de Poll et al., 1988). Administration of TP also synergistically
increases proceptive (i.e., appetitive) sexual behaviors in OVX
females treated with EB and progesterone (Fernández-Guasti
et al., 1991), and to levels equivalent to treatment with EB
and progesterone (Jones et al., 2017). It has also been shown
that in the aged gonadally-intact female rat, TP capsules
implanted subcutaneously acutely increase both appetitive and
consummatory sexual behaviors (Jones et al., 2012). Recently it
was reported that testosterone propionate (TP) administered to
the sexually experienced EB-treated OVX Long-Evans rat, 4 h
prior to testing facilitates appetitive sexual behaviors beyond
the effect of EB alone (Jones et al., 2017). Thus, this rodent
model can be useful for increasing our understanding of the
mechanisms involved in TP-induced facilitation in an animal
model of hypoactive sexual desire.

One potential mechanism through which testosterone can
facilitate sexual desire is through an androgenic pathway.

Testosterone binds to androgen receptors directly and indirectly
following reduction to DHT, and numerous reports suggest this
as a possible mechanism. Firstly, whereas estrogen replacement
therapy alone does not restore decreased sexual function, desire
and arousal in many postmenopausal women (Utian, 1975;
Nathorst-Böös et al., 1993; Shifren et al., 1998), studies have
shown that testosterone, even in the absence of E2, yields a
modest, yet significant increase in sexual episodes and desire
in post-menopausal women (Davis et al., 2008). Secondly,
human studies have found a limited role of aromatization in
testosterone’s ability to reinstate female sexual behavior. In one
clinical study, post-menopausal women who were unresponsive
to an estrogen therapy received transdermal testosterone in
combination with either the aromatase inhibitor Letrozole, or
placebo. Blocking aromatization with letrozole did not affect
the enhancement in sexual satisfaction, general well-being and
overall mood (Davis et al., 2006). In addition, Shifren et al.
(2000) demonstrated that while a transdermal testosterone patch
improved sexual function and well-being in postmenopausal
women over placebo alone, serum free estradiol concentrations
between these groups did not significantly differ, suggesting
minimal aromatization. These results indicate that aromatization
may not be necessary for testosterone to exert its facilitative role
on female sexual desire in women treated with estrogens and
suggest that facilitation may occur via an androgenic mechanism.

The first goal of the current study was to determine whether
administration of the aromatase inhibitor fadrozole (FAD) would
block the facilitation of female sexual behavior by TP in EB-
treated females. Androgen receptors, estrogen receptors and
the aromatase enzyme are widely distributed in the female
brain, including the medial preoptic area (mPOA), ventromedial
hypothalamus (VMH), and amygdala (Roselli et al., 1985, 1987;
Handa et al., 1986, 1987; Wu and Gore, 2009; Wu et al., 2009;
Feng et al., 2010; Stanić et al., 2014), and these are some
key regions implicated in sexually appetitive behaviors. Thus,
a second goal was to begin to address the activation of neural
regions by testosterone’s facilitation of female sexual desire. To
this end, we examined the number of Fos-immunoreactive (Fos-
IR) cells within brain regions associated with sexual behavior
(Pfaus and Heeb, 1997).

MATERIALS AND METHODS

Animals
Sexually naive Long-Evans female rats (150–200 g), were
obtained from Charles River (St-Constant, Quebec). Female rats
were housed in pairs in shoebox cages in a reversed lighting
schedule (12/12 h light-dark, with lights off at 8 p.m.). Food and
water were given ad libitum. Male Long-Evans rats (200–250 g)
obtained from the same supplier were used as stimulus animals
(n = 33). These males were sexually experienced in the bi-level
chambers with a group of OVX sexually experienced Long-Evans
stimulus females primed with EB (10 µg/0.1 mL sesame oil) and
progesterone (500 µg/0.1 mL sesame oil) administered 48 and
4 h prior to sexual training, respectively. Males were housed
in groups of 3 or 4 in large plexiglass chambers lined with
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betachip. All other housing conditions were identical to those
described for females.

All animal procedures were conducted in accordance with
the standards established by the Canadian Council on Animal
Care (CCAC) and approved by the Concordia University Animal
Ethics Committee.

Surgery
One week after arrival, experimental female rats were bilaterally
ovariectomized (OVX) through lumbar incisions under a
mixture of 4 parts ketamine hydrochloride to 3 parts xylazine
hydrochloride administered by intraperitoneal injection
(1 mL/kg of body weight). Females were treated post-operatively
with subcutaneous injections of 3cc physiological saline, 0.03 mL
Banamine and 0.1 mL Penicillin G.

Hormone and Drug Preparation
All steroid compounds were received from Steraloids (Newport,
RI). EB (10 µg), progesterone (500 µg), and TP (200 µg)
were dissolved in 0.1 mL sesame oil under low heat for
approximately 30 min, and stored at room temperature.
Fadrozole hydrochloride (FAD; 1.25 mg/kg, Novartis Pharma and
Sigma Aldrich) was dissolved in 0.1 mL of 0.9% physiological
saline containing 20% 2-hydroxy propyl b-cyclodextrin and
administered via subcutaneous injection twice a day (12 h apart).
This dose was selected based on work showing that E2 was
reduced in hypothalamic and amygdaloid nuclear pellets in FAD
treated males compared to controls (Bonsall et al., 1992).

Experimental Procedure
All sexual behavior training and testing occurred in bi-level
chambers (Mendelson and Pfaus, 1989), during the middle third
of the dark cycle. These chambers are designed to facilitate the
experimenter’s view of the full behavioral repertoire of sexual
behaviors (Mendelson and Pfaus, 1989; Pfaus et al., 1999). Males
were placed in chamber alone for a 5 min habituation period.
Next, females were introduced to the chamber for a 30 min
training session.

After a 7 day post-operative recovery period, experimental
females were primed with subcutaneous injections of EB 48 h
before, and progesterone 4 h prior to each of four sex-training
sessions with sexually vigorous males (Jones et al., 2013). The
purpose of the sexual training sessions is to ensure that all
females have sexual experience and to reduce variability in sexual
responding (Gerall and Dunlap, 1973; and as in Jones et al., 2013).
Following these 4 training sessions, females were given a 2 week
hormone wash-out period before being randomly assigned to one
of three experimental groups (n = 11/group). During this 2 week
hormone wash-out, males were given 30 min training sessions
with a different subset of sexually-experienced, hormonally-
primed females every 4 days, to keep them sexually active.

EB was administered to experimental females by subcutaneous
injection 48 h, and TP (or an equal volume of the oil control) 4 h
before testing. FAD (or an equal volume of the vehicle control)
was administered by subcutaneous injection at 8 a.m. and 8 p.m.
every day for 3 days including the test day (Figure 1). For the
experimental session, females were given 30 min to copulate with
a sexually vigorous male.

All training and test sessions were video-recorded with a Sony
Handycam, digital files were transferred to a personal computer,
and sexual behaviors were scored blind to group condition using
the Behavioral Observation Program (Cabilio, 1996) customized
for rat sexual behavior.

Behavioral Measures
Solicitations, defined as head-wise orientation toward the male
followed by a run-away to the same or a different level, and hops
and darts were used as measures of appetitive sexual behaviors
(Pfaus et al., 1999; Jones et al., 2017). The consummatory
measure, lordosis, was measured on a 4-point scale according
to Hardy and Debold (1971) such that no lordosis was coded
as a zero and increasing lordosis magnitudes (LM) from low
to high were coded from 1 to 3. A lordosis quotient (LQ) was
calculated by taking the ratio of total LMs to the number of
mounts, intromissions and ejaculations received by the male.
Mounts, intromissions and ejaculations received from the male
were also coded (Pfaus et al., 1999).

c-Fos Immunoreactivity
Two weeks following the test day, a subset of females that
had been behavioral responsive on the test day (n = 5/group)
were given their respective treatments of EB, EB+TP, or
EB+TP+FAD, and were exposed to a sexually vigorous male
behind a metal grid divider for 1 h prior to sacrifice. This was
done so that females received only visual, auditory and olfactory
cues from the males, since the goal was to investigate activation
of regions involved in sexually appetitive behaviors without the
confound of activation induced by receipt of sexual stimulation
from the male, which is also known to differentially activate brain
regions (Pfaus et al., 1993, 1994, 1996).

Immunocytohistochemistry
Females were deeply anesthetized with an intraperitoneal
injection of sodium pentobarbital (120 mg/kg/mL), and perfused
intracardially with ice-cold phosphate-buffered saline (300 mL)
followed by ice-cold 4% paraformaldehyde in 0.1 M phosphate
buffer (300 mL). Brains were then removed, postfixed in
4% paraformaldehyde for 4 h, and stored overnight in 30%
sucrose at 4◦C.

Histology
Frozen coronal brain sections were sliced using a cryostat from
the olfactory bulb until the beginning of the cerebellum. All
sections were rinsed in cold 0.9% 50 mM tris buffer saline (TBS)
and put into a 30% hydrogen peroxide TBS solution and left for
30 min at room temperature. The sections were incubated for
2 h at room temperature in a 3% Normal Goat Serum (NGS)
solution mixed in 0.2% triton TBS. Following the preblocking
phase, sections were incubated for 72 h at 4◦C in a solution
containing: 3% NGS, primary rabbit polyclonal c-Fos antibody
(Fos ab5, Calbiochem, Mississauga, ON; diluted 1:10,000) in
a 0.05% triton TBS solution. Sections were transferred into
a solution containing: 3% NGS, secondary antibody (Vector
Laboratories Canada, Burlington, ON; 1:200) in a 0.2% triton TBS
solution for 1 h at 4◦C. Sections were then incubated for 2 h at
4◦C in the avidin-biotinylated-peroxidase complex (Vectastain
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FIGURE 1 | Experimental timeline. Females were ovariectomized 1 week after arrival into the colony, and given 1 week of recovery. All females were primed with
estradiol benzoate (EB) 48 h before, and progesterone (P) 4 h prior to each of four sex-training sessions with males. After a 2 week hormone washout period females
were randomly assigned to one of three experimental groups (n = 11/group): EB+Oil+Saline, EB+TP+Saline, or EB+TP+FAD (fadrozole). Estradiol benzoate (EB) was
administered to experimental females by subcutaneous injection 48 h, and testosterone propionate (TP), or an equal volume of the oil control, 4 h before testing.
FAD, or an equal volume of the vehicle control, was administered by subcutaneous injection at 8 a.m. and 8 p.m. every day for 3 days including the test day. For the
experimental session, females were given 30 min to copulate with a sexually vigorous male.

Elite, ABC kit, Vector Laboratories, diluted 1:55). Sections were
washed in TBS (3 × 5 min) between each incubation. Sections
were then washed for 10 min in a 50 mM Tris buffer solution
(pH = 7.6) before transferring to 3,3′-diaminobenzidine (DAB)
in 50 mM Tris (0.1 mL of DAB/Tris buffer, pH 7.6) for another
10 min. Finally, sections were incubated in a 8%NiCl2 (0.08 g)
solution (400 µL per 100 mL of DAB/H2O2 solution). The DAB
reaction was stopped by transferring the sections to cold TBS
(3 ×10 min washes) at room temperature. Sections were then
mounted on gel-coated slides and allowed at least 24 h to dry.
Sections were then dehydrated for 10 min each in 70, 90, and
100% ethanols, and immersed in Xylene for 2 h. The sections were
then coverslipped using permount glue and allowed to dry for
48 h before examination under a light microscope. Confirmation
of successful Fos-IR was made when dark staining was detected
within cell nuclei, as in Pfaus et al. (1993).

Tissue sections were examined at 40× and average numbers
of Fos-IR cells were counted bilaterally using five sections
for each region/rat, which appeared to contain the largest
number of Fos-IR cells (Pfaus et al., 1993, 1996; Coria-Avila
and Pfaus, 2007; Parada et al., 2010). Using the Paxinos and
Watson (1986) rat brain atlas regions of interest were identified
using standard visible anatomical landmarks (Pfaus et al., 1993,
1996; Smith et al., 1997; Coria-Avila and Pfaus, 2007; Parada
et al., 2010). Fos-IR cells were counted in the infralimbic
prefrontal cortex (IL; Plates 8–10), medial amygdala (MeA:
Plates 27–29), medial preoptic area (mPOA: Plates 20–22),
ventromedial hypothalamic nucleus (VMH; Plates 27–29) ventral
tegmental nucleus (VTA: Plates 39–43), nucleus accumbens
(NAc) core, and shell (Plates 11–15). The methodology applied
for taking pictures, selecting the region of interest, and
counting Fos-IR cells was as in previous papers from our
group, but specifically, we applied methodology and regions
of interest as previously reported in Coria-Avila and Pfaus
(2007), Parada et al. (2010), Pfaus et al. (1993, 1996) and
Smith et al. (1997). All pictures were taken by a researcher
(JGG) blind to experimental group. The researcher identified
and captured all sections containing the region of interest

which could be identified with the visible landmarks (as
described in Figure 2).

Images of each section were captured on a desktop computer
under the same light intensity using Q Capture Pro (version
5.1) connected to a Leitz microscope (40×) and saved in TIFF
format before importing into Image J. ImageJ software was used
to count the number of Fos-IR cells in each region by a researcher
blind to experimental group (SR). For each brain region, the
region of interest was identified according to standard anatomical
landmarks (Figure 2), then manually outlined on the sections
containing the largest number of Fos-IR positive cells. It should
be noted that this can lead to some minimal degree of inter-
subject variability in the exact location of Fos-IR counts within
the region of interest. The region of interest was identified and
outlined as described in previous publications (Pfaus et al., 1993,
1996; Smith et al., 1997; Coria-Avila and Pfaus, 2007; Parada
et al., 2010). Our methodology for counting Fos-IR cells consisted
first, of adjusting the brightness and contrast on the first section
counted using ImageJ and noting that contrast value to apply it to
all subsequent images for that region. Next, the threshold tool was
used to manually capture all cells that were subjectively identified
as immunopositive, blind to experimental group. For all images,
circularity was set to 0.3–1, and pixel size was set to 2–40.

Statistical Analyses
Data were analyzed with Statistical Package for the Social Sciences
(SPSS) software (Version 18). Due to violation of homogeneity of
variance, the Kruskall–Wallis test was used to analyze behavioral
differences between groups. Post hoc analyses were conducted
using the Mann–Whitney U and a Bonferroni correction was
applied for the three group comparisons (padj), but unadjusted
p-values are also reported for transparency and interpreted as
trends. Effect sizes were computed on the Mann–Whitney tests
using the formula r = Z/(sqrt(n)). The level of significance was
set to 0.05 for all tests.

Data are presented using boxplots, and outliers were defined
as generated by SPSS (outliers are defined as 1.5–3 times the
interquartile range, and extreme outliers are defined as values 3 or
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FIGURE 2 | Representative pictures of Fos-immunoreactive cells taken at 40X magnification in different hypothalamic and limbic structures in ovariectomized female
rats treated with estradiol benzoate (EB) alone, or in combination with testosterone propionate (TP), or TP and the aromatase inhibitor fadrozole (FAD). Landmarks
used to identify regions of interest include the claustrum (cl) and the forceps minor corpus callossum just superior to the cl for the IL; the ventral extent of the lateral
ventricle and the anterior portion of the anterior commissure (aca) for the NAc; the 3rd ventricle, optic chiasm and continuous anterior commissure for the mPOA; the
3rd ventricle and arcuate nucleus (Arc) and the three distinct VMH subdivisions for VMH sections; the optic tract (opt), internal capsule (ic), and piriform cortex for
MeA sections, and the dorsal 3rd ventricle, medial mammillary nuclei (ML and MM, lateral and medial, respectively) and the fasciculus retroflexus (fr) for the VTA. IL,
Infralimbic prefrontal cortex; NAc, Nucleus Accumbens; mPOA, medial preoptic area; VMH, ventromedial hypothalamus; MeA, medial amygdala; VTA, ventral
tegmental area.

more times the interquartile range). The number of animals that
displayed at least one occurrence of the behavior was calculated.
All animals were included in all analyses, except for lordosis
measures, where only females that received a mount from a male
were included, because the calculation of LQ and LM depends on
mounts received.

Brain data were analyzed using a one-way analysis of variance
(ANOVA) to test for differences between EB-alone, EB+TP and
EB+TP+FAD groups, and significant ANOVAs were followed up
with Fisher’s Least Significant Difference post hoc analysis. The
level of significance was set at 0.05 for all comparisons. Eta square
is reported as a measure of effect size for ANOVAs and Hedge’s g
for between group comparisons.

RESULTS

The percentage of females displaying each behavior within each
treatment group is shown in Table 1.

Appetitive Sexual Behaviors
The non-parametric Kruskall–Wallis was conducted to test for
behavioral differences between groups. Females treated with
EB+TP+FAD displayed more hops/darts (Figure 3A) compared
to EB-alone (U = 24, z = 2.486, p = 0.013, padj = 0.039,
r = 0.53), and to levels equivalent to EB+TP (U = 44, z = 1.091,
p = 0.275, padj = 0.825, r = 0.23; main effect, X2(2) = 7.530,
p = 0.023), whereas EB+TP tended to increase the number of

hops/darts compared to EB-alone (U = 30.5, 2.04, p = 0.041,
padj = 0.123, r = 0.43). Sexual solicitations (Figure 3B) did not
differ between females treated with EB+TP compared to EB-
alone (U = 44, p = 0.069, padj = 0.207, z = 1.817, r = 0.39), whereas
females administered EB+TP+FAD displayed significantly more
solicitations compared to EB-alone (U = 16.4, p = 0.001,
padj = 0.003, z = −3.354, r = 0.715) and tended to display more
than females treated with EB+TP (U = 30, p = 0.032, padj = 0.096,
z =−2.144, r = 0.46); main effect, X2(2) = 13.009, p = 0.001.

TABLE 1 | Percentage of females (n) displaying sexual behaviors according to
hormone treatment group (N = 11/group).

EB+O EB+TP EB+TP+FAD

Hops and darts 45.5%(5) 81.8%(9) 72.7%(8)

Solicitations 0% 27.3%(3) 72.7%(8)

Level changes 100%(11) 100%(11) 100%(11)

Defensive behaviors 91%(10) 100%(11) 90.9%(10)

LQa 0% 36.4%(4) 72.7%(8)

LRa 0% 36.4%(4) 72.7%(8)

Mounts 54.5%(6) 72.7%(8) 90.9%(10)

Intromissions 0% 18.2%(2) 72.7%(8)

Ejaculations 0% 9.1%(1) 63.7%(7)

aFor lordosis quotient (LQ) and lordosis rating (LR), only those females that were
mounted could be included in the analyses. The number of females mounted (with
or without intromission) per group are EB+O n = 6; EB+TP n = 8, EB+TP+FAD
n = 11.
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FIGURE 3 | Median frequency of hops/darts (A), solicitations (B), level changes (C), defensive behaviors (D), lordosis rating (E), and lordosis quotient (F) of
ovariectomized Long-Evans rats (n = 11/group) treated with estradiol benzoate (EB) with or without testosterone propionate (TP) and the aromatase inhibitor
fadrozole (FAD). Data were analyzed using Kruskall–Wallis to detect differences between groups, and significant effects were followed up using Mann–Whitney U, and
p-values were adjusted using a Bonferroni correction. Boxes represent interquartile range, and whiskers each represent the top and bottom 25% of scores. o Outlier.
+Extreme outlier. ∗Different from EB-alone, padj < 0.05. #Tendency to differ from EB-alone, p < 0.05, or padj < 0.10. aTendency to differ from EB+TP, p < 0.05.

Level Changes and Defensive Behaviors
More level changes (Figure 3C) were observed in females treated
with EB+TP+FAD (U = 19, p = 0.006, padj = 0.018, Z = −2.727,
r = 0.58) compared to those treated with EB-alone, whereas there
was a tendency for EB+TP to increase level changes compared
to EB-alone (U = 28, p = 0.033, padj = 0.099, Z = −2.137,
r = 0.46); EB+TP and EB+TP+FAD did not differ (U = 47,
p = 0.375, padj = 1.00, Z = −0.887, r = 0.19) [main effect,
X2(2) = 8.625, p = 0.013]. Defensive behaviors (Figure 3D) did
not differ between groups, X2(2) = 2.761, p = 0.251.

Lordosis
Lordosis rating (LR; Figure 3E) was higher in females treated
with EB+TP+FAD compared to EB-alone (U = 6.0, p = 0.005,
padj = 0.015; Z = −2.781, r = 0.70) and tended to be higher in
females treated with EB+TP compared to EB-alone (U = 9.0,
p = 0.036, padj = 0.108, Z =−2.094, r = 0.45), whereas LR did not
differ between females treated with EB+TP+FAD and EB+TP
[U = 18.0, p = 0.093, padj = 0.279, Z = −1.680, r = 0.41; main
effect, X2(2) = 9.455, p = 0.009]. LQ tended to be higher in
females treated with EB+TP compared to EB-alone (U = 12,
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FIGURE 4 | Median frequency of mounts (A), intromissions (B), and
ejaculations (C) that males made toward ovariectomized Long-Evans rats
(n = 11/group) treated with estradiol benzoate (EB) with or without
testosterone propionate (TP) and the aromatase inhibitor fadrozole (FAD). Data
were analyzed using Kruskall–Wallis to detect differences between groups,
and significant effects were followed up using Mann–Whitney U, and p-values
were adjusted using a Bonferroni correction. Boxes represent interquartile
range, and whiskers each represent the top and bottom 25% of scores. o

Outlier. +Extreme outlier. ∗Different from EB-alone, padj < 0.05. #Tendency to
differ from EB-TP, p < 0.05; ∗∗Different from EB-alone and EB+TP, both
padj < 0.05.

p = 0.052, padj = 0.156, Z = −1.940, r = 0.52, Figure 3F), and
was significantly higher in females treated with EB+TP+FAD
(U = 9.0, p = 0.009, padj = 0.027, Z = −2.612, r = 0.63) compared

to EB-alone, whereas LQ did not differ between females treated
with EB+TP and those treated with EB+TP+FAD [U = 28.0,
p = 0.206, padj = 0.618, Z = −1.355, r = 0.31; main effect,
X2(2) = 7.802, p = 0.020].

Male Stimulations
Females treated with EB+TP+FAD received significantly more
mounts (Figure 4A) than females treated with EB-alone (U = 21,
p = 0.008, padj = 0.024, Z = −2.626, r = 0.56), whereas females
treated with EB+TP did not differ from EB-alone (U = 41.5,
p = 0.200, padj = 0.600, Z = −1.281, r = 0.27), or from
EB+TP+FAD [U = 38.5, p = 0.151, padj = 0.453, Z = −1.452,
r = 0.31; main effect, X2(2) = 7.173, p = 0.028].

Whereas females treated with EB+TP did not differ from
EB-alone in the number of intromissions received (U = 49.5,
p = 0.148, padj = 0.444, Z = −1.447, r = 0.31), females treated
with EB+TP+FAD received significantly more intromissions
than females treated with EB-alone (U = 16.5, p = 0.001,
padj = 0.003, Z = −3.353, r = 0.71) and tended to receive
more than females treated with EB+TP [U = 28.0, p = 0.020,
padj = 0.060, Z = −2.332, r = 0.50; Figure 4B; main effect,
X2(2) = 13.729, p = 0.001].

Similarly, whereas females treated with EB+TP did not differ
from EB-alone in the number of ejaculations received (U = 55.0,
p = 0.317, padj = 0.951, Z = −1.000, r = 0.21), females treated
with EB+TP+FAD received significantly more ejaculations than
females treated with EB-alone (U = 22, p = 0.002, padj = 0.006,
Z = −3.067, r = 0.65), and compared to females treated with
EB+TP [U = 28.5, p = 0.014, padj = 0.042, Z = −2.451, r = 0.52;
Figure 4C; main effect, X2(2) = 13.136, p = 0.001].

Fos-IR
Descriptive data of all Fos-IR counts for each brain region by
group are shown in Table 2, and representative pictures are
shown in Figure 2. One-way ANOVAs were used to determine
if there were significant differences between treatment groups,
followed by an LSD post hoc analysis. EB+TP and EB+TP+FAD
had higher Fos -IR counts than EB alone, in the mPOA [p = 0.023,
g = 1.66; p = 0.01, g = 2.71, respectively, main effect of group,
F(2, 11) = 5.432, p = 0.023, R2 = 0.497], the NAc core [p = 0.02,
g = 2.36, p = 0.01, g = 2.70, respectively, main effect of group,
F(2, 11) = 6.008, p = 0.022, R2 = 0.572], the IL [p = 0.005,
g = 2.52, and p = 0.0048, g = 2.62, respectively, main effect
of group, F(2, 11) = 6.912, p = 0.015, R2 = 0.606], and the
vlVMH [p = 0.024, g = 2.46; p = 0.022, g = 1.74, respectively,
main effect of group, F(2, 12) = 14.705, p = 0.036, R2 = 0.485]
but EB+TP and EB+TP+FAD did not differ from each other
(mPOA, p = 0.624, NAc core, p = 0.654; IL, p = 0.180, vlVMH,
p = 0.850). In the VTA, EB+TP+FAD females had higher Fos-
IR counts than EB-alone (p = 0.007, g = 2.95) whereas EB+TP
tended to increase the number of Fos-IR counts compared to
EB-alone (p = 0.08, g = 1.57), but EB+TP and EB+TP+FAD
did not differ (p = 0.122) [main effect of group, F(2, 10) = 6.409,
p = 0.022, R2 = 0.616].

No differences between groups were found in the dmVMH,
F(2, 12) = 1.874, p = 0.204, R2 = 0.273, the NAc shell [F(2,

11) = 2.041, p = 0.186, R2 = 0.312], or the MeA [F(2, 12) = 0.455,
p = 0.647, R2 = 0.083].
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TABLE 2 | Average ± SEM numbers of Fos-immunoreactive cells in different
hypothalamic and limbic structures in ovariectomized female rats treated with
estradiol benzoate (EB) alone, or in combination with testosterone propionate (TP),
or TP and the aromatase inhibitor fadrozole (FAD).

Region EB EB+TP EB+TP+FAD

MeA 125.49 ± 38.85 159.19 ± 29.5 169.50 ± 31.14

mPOA 72.77 ± 26.28 224.13 ± 50.06∗ 251.03 ± 33.33∗

NAc

Core 74.23 ± 6.18 161.77 ± 19.98∗ 174.46 ± 23.6∗

Shell 273.37 ± 56.05 397.56 ± 47.85 402.33 ± 34.91

IL 83.40 ± 4.67 163.80 ± 17.26∗ 134.92 ± 12.25

VMH

Dorsomedial 19.81 ± 3.12 32.54 ± 5.92 27.79 ± 3.52

Ventrolateral 23.21 ± 2.46 38.81 ± 3.22∗ 39.94 ± 6.36∗

VTA 58.83 ± 4.62 76.81 ± 6.62 91.36 ± 6.32∗

n = 5/group. Some tissue sections were damaged or had poor staining, resulting
from 3 to 5 sections per region. EB, Estradiol Benzoate; TP, Testosterone
Propionate; FAD, Fadrozole Hydrochloride; MeA, Medial Amygdala; mPOA, Medial
Preoptic Area; NAc, Nucleus Accumbens; IL, Infralimbic Prefrontal Cortex; VMH,
Ventromedial nucleus of the hypothalamus; VTA, Ventral Tegmental Area.
∗Different from EB, p < 0.05.

DISCUSSION

The purpose of this study was to determine whether
administration of the aromatase inhibitor FAD would disrupt
the facilitation of female sexually appetitive behaviors that occurs
with TP treatment in EB-treated OVX rats, and to determine
whether Fos-IR differed between groups in brain regions known
to be involved in sexual motivation and reward. The present
results illustrate that blocking aromatization using FAD in
females treated with EB+TP increased hops/darts, solicitations,
level changes and lordosis measures compared to those treated
with EB-alone. These findings suggest that aromatization of
TP to estradiol is not necessary for the display of female sexual
behaviors in OVX rats treated with EB and TP. The Fos-IR
data suggest that TP may act within the mPOA, NAc core,
IL, and vlVMH to elicit its effects, and as well as the VTA,
which specifically had higher numbers of Fos-IR cells in the
EB+TP+FAD group compared to the EB-alone group.

In the current study, the behavioral levels induced by EB+TP
were less pronounced than levels reported in Jones et al.
(2017), particularly for LQ. However, this is not surprising given
previous reports that a number of factors can influence behavioral
sensitivity to estradiol, such as sexual experience (Gerall and
Dunlap, 1973; Pfaus et al., 1999), EB dose (Pfaus et al., 1999;
Jones et al., 2013), strain (Jones et al., 2013), bedding type (Jones
et al., 2015), and exposure to male cues (Jones et al., 2015).
Important individual differences exist in behavioral sensitivity
to hormone treatments on sexual behavior. Thus, to ensure that
females were all behaviorally sensitive to sex steroid hormones,
we examined behaviors induced by EB+P priming on the fourth
day of behavioral training, and for all groups LQ and LR were
near maximal (range LQ = 0.93–0.98; range LR = 2.43–2.69), and
no differences were detected between groups on any behavioral
measure (Supplementary Table 1) suggesting that on average,
the groups were equally as responsive to sex steroid hormones

under equivalent and optimal hormone priming conditions.
The variability in sensitivity to EB and TP is reminiscent of
reports in the human literature, showing that some women’s
low sexual desire responds rather well to estrogens administered
alone, and that testosterone can be particularly beneficial to
improving sexual desire in women who are unresponsive to
estradiol alone, as originally reported by Burger et al. (1987). In
addition to the environmental and experiential factors outlined
above, hormone sensitivity can be dependent on differences
in biological mechanisms, such as steroid hormone receptor
density, enzymes, and hormone binding globulins, among other
factors. Although the effectiveness of surgical ovariectomy and
hormone administration were not formally tested, the high and
normal levels of behavioral responding during the training phase,
as well as the low level of responding in the control groups suggest
that those manipulations were effective. Additional research will
be needed to increase our understanding of individual differences
in hormone sensitivity, and to determine who responds best to
which treatments. Such considerations are already being taken
into account for women presenting with differing etiologies (i.e.,
top-down or bottom-up sexual inhibition) of hypoactive sexual
desire (e.g., Sarin et al., 2013; Poels et al., 2014).

The facilitation of EB+TP compared to EB-alone did not
attain the strict statistical cut-offs in the current study, in contrast
to the statistically significant increase in appetitive behaviors
reported in Jones et al. (2017). We note however that the pattern
of results in the current study mimic those reported in Jones
et al. (2017), and moreover, the effect sizes on appetitive behaviors
between EB-alone and EB+TP treated animals are similar in
magnitude in the current study (hops/darts r = 0.43; solicitations
r = 0.39; level changes r = 0.46) and Jones et al. (2017) (hops/darts
r = 0.68, solicitations r = 0.68, level changes r = 0.60). The effect
sizes range from moderate to large, suggesting a reliable and
moderate ability for TP to facilitate appetitive sexual behaviors
in EB-treated OVX female rats.

In the present study, blocking aromatase in OVX EB+TP
treated rats enhanced appetitive sexual behaviors beyond that of
EB-alone. The administration of TP tended to increase hops/darts
and level changes beyond that of EB-alone, with moderate effect
sizes on hops/darts, level changes, as well as solicitations (with
r ranging from 0.39 to 0.46). The administration of FAD to
females treated with EB+TP enhanced appetitive measures of
sexual behaviors, such that EB+TP+FAD displayed significantly
more hops/darts than EB-alone, and tended to display more
sexual solicitations than females treated with EB+TP. The effect
sizes between EB and EB+TP+FAD were moderate to large, with
r = 0.53 for hops/darts and r = 0.715 for solicitations, and small to
moderate between EB+TP and EB+TP+FAD, with r = 0.23 for
hops/darts and r = 0.39 for solicitations. These findings suggest
that aromatization to estradiol is not necessary for the facilitation
of appetitive sexual behaviors by TP when administered to EB-
treated females.

One strict interpretation of the present data is that FAD had
no statistically significant facilitative effect on appetitive sexual
behaviors beyond treatment with EB+TP (i.e., only a statistical
trend for FAD to increase solicitations beyond EB+TP was
detected). This interpretation could suggest that FAD may release
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an inhibitory effect induced by EB+TP (given that EB+TP+FAD
facilitated sexually appetitive behaviors beyond EB-alone), which
could involve, for example, extragonadal estradiol synthesis.
However, an inhibitory action of extragonadal estradiol in the
context of these data may not be a likely explanation for two
reasons. First, estradiol is not inhibitory to sexual behavior
in OVX oil-treated animals, and is necessary for the display
of sexual behaviors (Pfaff, 1980). One mechanism through
which EB+TP is thought to exert its effects is by indirectly
increasing bioavailable estradiol, following its displacement from
steroid hormone binding globulins by testosterone (Burke and
Anderson, 1972). However, in our OVX females, endogenous
levels of estradiol are probably too low, even given the multiple
sites of extra-gonadal synthesis of estradiol (Barakat et al., 2016),
particularly because FAD was administered twice a day for the
duration of the experimental phase, and has previously been
shown to effectively reduce E2 in hypothalamic nuclear pellets
(Bonsall et al., 1992). As such, a more likely explanation is that
more free androgen was available to act on androgen receptors
to facilitate sexual behaviors. Second, when considered with
previous publications using similar methods, EB+TP facilitates
appetitive sexual behaviors beyond EB-alone, as discussed above.
Nonetheless, we cannot rule out the interpretation that TP+FAD
releases inhibition in EB-alone treated OVX females, particularly
given that FAD was administered systemically, and that we
did not measure circulating E2, nor did we confirm that FAD
effectively reduced neural estradiol in our animals.

A more plausible and parsimonious interpretation of these
data, particularly when considered in the context of the data
presented in Jones et al. (2017) is that TP given in combination
with EB facilitates appetitive sexual behaviors, at least in part,
through androgenic mechanisms (Cappelletti and Wallen, 2016).
As discussed above, TP induces a reliable and moderate increase
in appetitive behaviors in EB-treated females, which was not
blocked by FAD administration. This is consistent with previous
results indicating the importance of androgen receptor activation
in female sexual behavior (Jones et al., 2010; Kudwa et al.,
2010). Testosterone has been shown to require the presence of
estradiol to exert its modulatory role on female sexual behavior
(Sherwin and Gelfand, 1987; Buster et al., 2005), thus it is
possible that EB administration 48 h before testing upregulates
androgen receptors, thereby facilitating the ability of testosterone
to act on androgen receptors in areas of sexual behavior as it
does with progesterone (Rubin and Barfield, 1983). It is also
interesting that EB+TP+FAD tended to enhance the expression
of sexual solicitations beyond that of EB+TP, and the only
brain region that revealed increased Fos-IR specifically in the
EB+TP+FAD group was the VTA. The VTA, a core component
of the mesocorticolimbic reward pathway, contains androgen
receptors (Kritzer, 1997; Kritzer and Creutz, 2008) and therefore
this is a key region of interest for future mechanistic studies.

Some earlier animal studies have shown the importance of
AR in the facilitation of female sexual behavior. For example,
Yahr and Gerling (1978) demonstrated that administration of
6-alpha-fluorotestosterone, a non-aromatizable androgen, could
induce sexual receptivity in female rats comparable to that of
TP. In addition, recent studies using selective androgen receptor

modulators (SARM) have revealed an important role of ARs in
female sexual behavior. Administration of a non-aromatizable
SARM that does not interact with estrogen receptors, to OVX rats
primed with sub-optimal levels of EB (2.0 µg) + progesterone
(100 µg) increased both proceptive and receptive sexual behavior
in sexually-experienced females (Kudwa et al., 2010). Moreover,
TP given in combination with R-bicalutamide, an anti-androgen,
reduced sexual preference of a female for an intact male
compared to TP-alone (Jones et al., 2010). Together these data
highlight the importance of ARs and contribute to a more
mechanistic approach underlying testosterone’s role in female
sexual behavior.

Additionally, treatment with FAD appears to have increased
the female’s attractivity. EB+TP+FAD-treated females received
more mounts and intromissions than EB-alone treated females
and tended to receive more intromissions than EB-TP, and
receive more ejaculations than both the EB-alone and EB+TP
treated females, all with correspondingly moderate effect sizes.
We suspect that the behavior of the males was influenced by
the appetitive behaviors and receptivity of their female partners,
which is also reflected in the percentage of females that were
mounted (i.e., about half the EB-treated females, and 73% of
the EB+TP, and 91% of the EB+TP+FAD females). Pfaus and
Pinel (1989) demonstrated that when training a male with a
non-receptive female, the male quickly learns that she is not
receptive followed by a drastic decrease in rate of mounting over
trials. In the present study, the male’s mounts, intromissions and
ejaculations on the final training day, occurring 2 weeks prior to
testing were normally distributed, and 100% of females in each
group were mounted (see Supplementary Table 1). Therefore,
the males’ sub-par sexual behaviors toward females receiving
EB-alone and EB+TP could be explained by the low appetitive
and receptive behaviors displayed by these females, a behavioral
pattern consistent with our previous reports of OVX Long-Evans
rats treated acutely with EB-alone (Jones et al., 2013, 2017).

As a first step to investigating potential brain regions where
TP may be exerting its effects to facilitate sexual motivation,
Fos-IR was examined within mesocorticolimbic regions known
to be involved in sexual motivation (Pfaus, 2009) following EB
treatment and exposure to a male behind a screen. Fos-IR was
investigated within the mPOA, MeA, IL, VMH, VTA, and NAc
core and shell. TP administration to OVX EB-treated females
induced Fos-IR in the mPOA, NAc core, IL and the vlVMH,
whereas activation within the VTA occurred with the addition
of FAD. These regions have a moderate to high density of ARs
(Handa et al., 1986, 1987; Fernández-Guasti et al., 2000; Wu et al.,
2009; Feng et al., 2010), making them potential candidate regions
where TP may exert its effects.

The mPOA is a critical component in mediating female
proceptive behaviors such as hops, darts and solicitations
(Erskine, 1989b; Hoshina et al., 1994), and is important for the
integration and interpretation of olfactory and auditory sensory
cues (Hull et al., 1997). In the current study we found that
compared to EB-alone, Fos-IR was expressed in more cells in
females treated with EB+TP regardless of whether FAD was
administered. These Fos-IR data parallel the behavioral data,
namely the higher appetitive measures compared to EB-alone.
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Activity in the mPOA is sensitive to changes in hormonal milieu,
thus one possible mechanism is that TP is working in the female
mPOA as it does in the male, to modulate the mPOA’s neural
responsiveness to olfactory cues (Pfaff and Pfaffmann, 1969). TP
has also been shown to upregulate nitric oxide synthase, which
increases levels of nitric oxide, thereby increasing dopamine
release in the mPOA of male rats (Lorrain et al., 1996; Hull
et al., 1997; Hull and Dominguez, 2006). This relationship has
not been examined in the female brain, and we acknowledge that
the mechanisms may be different between the sexes. Nonetheless,
it is a likely candidate mechanism given that dopamine and the
activation of its distinct receptors (D1 and D2) in the mPOA
has been shown to mediate female sexual behavior (Matuszewich
et al., 2000; Graham and Pfaus, 2010, 2012). Therefore, within
the mPOA, TP may act through androgenic mechanisms. Future
mechanistic studies are needed to determine the combined effects
of estrogens and androgens on female sexual motivation within
the female mPOA.

Upstream of the mPOA, the amygdala is important for
integrating sensory information from the environment. The MeA
itself is involved in female sexual motivation, via dopaminergic
and progesterone signaling (Holder et al., 2015). The lack
of difference in Fos-IR expression within the MeA between
groups suggests that testosterone does not act within this region
to facilitate appetitive sexual behaviors, and further suggest
that all the females were detecting similar sensory input in
response to male cues.

The vlVMH is well-known as a critical region for the
expression of lordosis via estradiol signaling (Pfaff, 1968; Pfaff
and Sakuma, 1979; Pfaff et al., 2000, 2011). In the current study,
the vlVMH had significantly more Fos-IR nuclei in females
given either EB+TP or EB+TP+FAD, when compared with EB
alone. Consistent with this, EB+TP females displayed higher LR
and LQ compared to EB-alone. There is evidence that certain
androgens, such as DHT and 5α-androstane-3α,17β-diol, inhibit
EB-induced lordosis in female rats (Baum and Vreeburg, 1976;
Erskine, 1989a), and as such it is somewhat surprising that
FAD led to a significant increase in lordosis measures beyond
EB-alone, given that FAD is an aromatase inhibitor, which
suggests that TP acted via an androgenic pathway. In summary,
it is unclear through what mechanism within the vlVMH
EB+TP+FAD might facilitate lordosis, although downstream
midbrain mechanisms cannot be ruled out (Pfaff, 1980).

The dopaminergic output from the mPOA to the VTA is
essential for sexual behavior (Brackett and Edwards, 1984).
Females receiving EB+TP+FAD had significantly more Fos-IR
in the VTA compared to females receiving EB alone. Downstream
of the VTA, EB+TP+FAD, and EB+TP had significantly higher
Fos-IR expression in the NAc core, although not in the shell,
when compared to EB alone. The NAc has been implicated in
the motivation to engage in sexual behavior, as well as in the
rewarding properties of sexual behavior such as paced mating in
the female rat (Jenkins and Becker, 2001, 2003; Guarraci et al.,
2002, 2004). Specifically, the NAc shell has been shown to be
involved in processing of rewarding stimuli, while the core is
involved in motor function related to reward and reinforcement
(Ito and Hayen, 2011). Infusion of the testosterone metabolite

3a-diol into the NAc shell selectively increased appetitive sexual
behaviors (hops darts and ear wiggles) (Sánchez Montoya et al.,
2010). Because in the current study the administration of TP to
OVX EB-treated females upregulated Fos-IR in the NAc core
but not shell, and that occurred regardless of whether FAD
was also administered, it is likely that the effect of TP within
the NAc is associated with the rewarding properties of sexual
stimuli, or with the rewarding properties of TP itself (Nyby,
2008). It should be noted, however, that the dose of FAD used
in this study was selected based on work showing that estradiol
was reduced in hypothalamic and amygdaloid nuclear pellets
in FAD-treated male rats compared to controls (Bonsall et al.,
1992). Thus, because we did not measure aromatase activity in
our female animals following FAD administration, we cannot
be certain that the dose had the same level of effectiveness as
reported by Bonsall et al. (1992).

CONCLUSION

In conclusion, administration of FAD enhanced the facilitation
of appetitive and consummatory sexual behaviors in OVX
female rats treated with EB and TP, showing that aromatization
of testosterone to estradiol is not required for TP-induced
facilitation of sexual desire in our preclinical model. Moreover,
TP-induced activation of Fos-IR expression in brain areas
implicated in sexual motivation, behavior and reward, suggests
that TP may increase the sensitivity to male-related cues and may
enhance the female’s attractivity to the male. Future mechanistic
studies should investigate whether the facilitation by TP can be
blocked by giving androgen receptor inhibitors, and measuring
circulating levels of estradiol, testosterone, and SHBG to better
inform the mechanisms.
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In recent years, digital communication and social media have taken an indispensable
role in human society. Social interactions are no longer bound to real-life encounters,
but more often happen from behind a screen. Mimicking an online communication
platform, we developed a new, fMRI compatible, social threat paradigm to investigate
sex differences in reactions to social rejection. During the Verbal Interaction Social
Threat Task (VISTTA), participants initiate 30 short conversations by selecting one of
four predefined opening sentences. Two computerized interlocutors respond to the
opening sentence mostly with negative comments and rejections toward the participant,
which should induce social-evaluative threat. Physiological and subjective responses
were measured, before, during, and after the VISTTA in 61 (29 male and 32 female)
first year students who received either mostly negative (n = 31; threat group) or neutral
comments (n = 30; control group). Two-level behavioral validation included social threat-
induced mood changes in participants, and interlocutor evaluation. The latter consisted
of multiple variables such as “willingness to cooperate” after every conversation, an
overall fairness evaluation of interlocutors, and evaluations per reaction indicating how
positive or negative it was received. We acquired additional physiological measures
including cortisol assays via saliva samples, heart rate, and blood pressure. Confirming
our hypotheses, peer rejection and exclusion during the VISTTA led to less willingness
to cooperate and lower fairness evaluation of interlocutors. It also induced feelings of
anger and surprise and lower happiness in the social-threat group. Women showed
overall higher emotion ratings compared to men. Contrary to our a priori hypothesis,
the VISTTA did not induce cortisol and heart rate increases. However, the stable cortisol
response in women in the threat group does not follow the circadian decline and might
reflect an endocrinological response. The decline in cortisol response in men in both
the threat and control group could indicate faster habituation to the VISTTA. Taken
together, these findings indicate effects of social-evaluative threat on a behavioral level,
and more moderate effects on the emotional and physiological level. Sex differences in
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affective and cortisol responses may indicate that women are more susceptible for the
social-evaluative threat than men. With a realistic implementation of verbal, interactive,
and social components, the VISTTA is designed as an fMRI paradigm that can be
applied to elucidate the neural representation of social-evaluative threat.

Keywords: social-evaluative threat, rejection, cortisol, social stress, verbal communication, VISTTA

INTRODUCTION

With the increasing influence of social media and online
communication platforms, digital communication has taken a
vital role in current society. With this development, social
interaction more often happens from behind a screen, rather
than in real life. Interactions that involve rejection, exclusion,
and negative evaluation can lead to a lower self-esteem and
acceptance (Dickerson, 2008). This can also lead to a set
of physiological responses including activation of one of the
main biological responses to stress: the hypothalamus–pituitary–
adrenal gland (HPA) axis (Mason, 1968), leading to an increased
production of cortisol by the adrenal glands (Lupien et al.,
2009). In the initial definition of stress by Selye (1950), “mere
emotional stimuli” were considered negligible in comparison
to physical variables such as physical trauma, heat, and
fasting. Emotional stimuli, that is, conditions involving novelty,
uncertainty, unpredictability, and anticipation of something
previously experienced as unpleasant, however, may challenge
one’s capacity to cope with the situation, which will be
experienced as a burden and distress.

As proposed by Mason (1968), emotional stimuli such as
social evaluation and exclusion can also trigger the stress
response. This idea has been confirmed by more recent studies
(Williamson et al., 2018) investigating the effect of social
exclusion on cardiovascular and affective responses in response
to a social evaluative stressor. Excluded participants showed
increased cardiovascular and anxiety responses to the stressor.
Included participants reported similar increases in anxiety,
but cardiovascular responses did not change. Social evaluation
functions as a stressor through the salience of negative judgment,
and the threat that it poses to maintaining self-esteem and
social status. Uncontrollable and social-evaluative elements of
a psychological stressor have been shown to increase cortisol
and blood pressure (Dickerson and Kemeny, 2004). The threat
is specific but common; several studies have indicated that
cortisol rises after social evaluation in various settings such as
public speaking, paced auditory serial addition test, and mental
arithmetic under time pressure (Kirschbaum et al., 1993; Bibbey
et al., 2015; Smith and Jordan, 2015; Dahm et al., 2017).

The stress response is not universal. Differences between
men and women responding to various stressors have been well
documented. Multiple underlying factors have been identified,
often divided into biological and social factors. The menstrual
cycle and oral contraceptives (OCs) have been found to
affect the stress response. During the follicular phase of the
menstrual cycle, the cortisol response is attenuated compared
to the luteal phase (Villada et al., 2017), possibly explained
by higher levels of progesterone and estrogen in the luteal

phase (Gordon and Girdler, 2014). OC use has a dampening
effect on the stress response. A meta-analysis based on 34
studies by Liu et al. (2017) reported lower salivary cortisol
in women on OCs compared to women not on OC both at
baseline and peak following the Trier Social Stress Test (TSST)
but not during the recovery phase. When comparing men to
women on OC and men compared to women not on OC, they
found no differences in salivary cortisol at baseline between
the sexes, but reported higher cortisol levels in men during
peak and recovery compared to women on OC. In addition to
biological factors, gender and socialization seem to affect the
stress response in men and women differently (Pruessner, 2018).
When being subjected to psychosocial stress, social support
from a partner dampens the cortisol response in men, women
on the other hand respond more strongly with their partner
around (Kirschbaum et al., 1995). Comparing an achievement
stressor with a social rejection stressor, Stroud et al. (2002)
showed increases in cortisol in men for the former and in
women in the latter Task. This suggests that men are more
sensitive to competitive and achievement aspects of a situation,
and that women are more affected by social components that
can affect their social standing within a group. They did not
differentiate between sex and gender and only included women
who were not on OC. There is, however, empirical evidence
showing increased cortisol and testosterone levels in women in
anticipation of a rugby match, whereby postgame levels of these
hormones were higher than pregame levels (Bateup et al., 2002).
The testosterone rise was associated with team bonding and
aggressiveness and the cortisol change was positively related to
the level of challenge of the opponent. These findings provide
evidence that not only men, but women too are sensitive to
competitive aspects of a situation and that it is reflected in
their endocrinological response. A study applying an adjusted
TSST, whereby the audience during the 5 min speech was behind
a one-way mirror so participants could not see them, yielded
sex-specific results. Men reported comparable cortisol levels,
whereas women showed no response when they could not see
the audience (Andrews et al., 2007; Wadiwalla et al., 2010). This
sex-based difference paved the way for follow-ups investigating
the influence of gender identity on the stress response. Sex
refers to physiological differences in the gonads, sex hormones,
external genitalia, and internal reproductive organs. Gender on
the other sided refers to social, environmental, cultural, and
behavioral factors that affect someone’s self-identity (Clayton and
Tannenbaum, 2016). To differentiate between the effects of sex
and gender identity, four groups were subjected to the adjusted
TSST: male gender identity with male sex, female gender with
female sex, male gender with female sex, and female gender with
male sex. The cis-gendered groups replicated previous results.
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However, subjects with female gender identity combined with
male sex did not respond to the Task, whereas subjects with
male gender identity and female sex responded like cis-gendered
males with an increased cortisol response (Pruessner, 2018).
Future studies examining the effect of OC on women with
female vs. male gender identity could give more insight which
factor dominates the stress response. These results emphasize the
importance of gender identity in explaining differences between
men and women.

Inducing social-evaluative threat commonly involves
evaluation and judgment by others. Numerous stress paradigms
comprise both social evaluation and performance, such as the
TSST, Montreal Imaging Stress Task (MIST), and ScanStress
(Kirschbaum et al., 1993; Dedovic et al., 2005; Dahm et al.,
2017, respectively). Evaluation through rejection/exclusion has
often been examined using the Cyberball paradigm (Williams
et al., 2000). A modified version of the Cyberball Task, with
exclusion based on negative performance evaluation, proved to
increase subjective stress (Wagels et al., 2017). Due to the mild
nature of exclusion in the original Cyberball, however, cortisol
increases are not consistently found (Zöller et al., 2010; Seidel
et al., 2013; Gaffey and Wirth, 2014; Radke et al., 2018). Similarly,
the Yale Interpersonal Stressor (YIPS) is a well-established
way to induce social-evaluative threat, whereby participants
are excluded during the course of a real-life conversation
with two confederates (Stroud et al., 2002; Zwolinski, 2008).
While Stroud et al. (2000, 2002) reported a cortisol increase
following the YIPS, others also relying on the YIPS failed to
elicit a cortisol response (Linnen et al., 2012). Following recent
developments in computer-mediated communication, a novel,
exclusion-based paradigm, “Ostracism Online,” mimics a social
media environment to induce social exclusion (Wolf et al.,
2014). Here, participants can receive “likes” from others on a
short introduction they wrote about themselves; in the exclusion
condition they, however, receive only one “like” from 11 other
group members (Wolf et al., 2014). Ostracism Online has been
validated using the Need-Threat Scale (van Beest and Williams,
2006) and has been reported to induce increased self-ratings
in the extent to which participants felt bad, unfriendly, angry,
and sad following exclusion compared to including conditions.
Mimicking more realistic online communication, Donate et al.
(2017) developed a chatroom Task whereby participants can ask
questions to and answer questions from two confederates in a yes
or no format. Participants in the inclusion condition are asked
a question in 33% of the rounds (equal to the confederates),
compared to only 15% in the exclusion condition. The results
revealed that exclusion led to increased anger and higher levels
of self-pain feelings, namely feeling tortured and hurt. It is
important to note that both paradigms have been validated using
self-ratings only.

Overall, responses to social-evaluative threat can be assessed
on various levels. Performance oriented paradigms, like the
MIST, ScanStress, and TSST, confirmed their validity with
physiological measures using cortisol assays. Exclusion-related
paradigms such as Cyberball and Ostracism Online mainly
focused on subjective ratings of stress and mood to indicate an
emotional effect.

There is, however, no fMRI compatible paradigm available
yet that combines social-evaluative threat with social media-
or online communication. We have therefore designed the
“Verbal Interaction Social Threat Task” (VISTTA) suitable for
investigating the direct neural representation of social-evaluative
situations and responses. This study is the first to investigate the
possibilities and implications of the VISTTA, aiming to validate
it as a social threat induction method. Considering the scope
of the current study, additional research will have to be done
to have a broader understanding of the domains affected by the
VISTTA. Verbal communication is central to this new paradigm
that bears a strong resemblance to online chatting. The increasing
influence of social media and online communication platforms
comes with an increase in the number of cases of cyberbullying.
The Cyberbullying Research Center in the United States reported
that on average 28% of all middle and high school students,
who participated in different studies between 2007 and 2016,
have been the victim of cyberbullying (Patchin, 2016). The
VISTTA mimics an online communication environment with
two interlocutors. It has a realistic implementation of verbal,
interactive, and social components and can be deployed to
gain valuable insights in the above-described social interactions.
Participants are told they will do a cooperation Task with the
interlocutors at the end of the VISTTA and are asked after
every conversation to rate how much they like to cooperate with
them. We expect the VISTTA to elicit a behavioral, emotional,
and a physiological response. Lower subjective ratings with
regard to the cooperation Task and a more negative mood
indicate a behavioral and emotional effect, respectively. We
also expect to find elevated cortisol levels, and increased heart
rate over the course of the paradigm. Based on the above-
described sex differences, we hypothesized to find larger effects
in females than in males.

MATERIALS AND METHODS

Ethics Statement
The local ethics committee at the Medical Faculty of RWTH
Aachen University approved the current study. The experimental
protocol was carried out in accordance with the provisions of the
World Medical Association Declaration of Helsinki.

Participants
Sixty-one healthy first year students (29 males, Mage = 19.9,
SD = 1.6, 32 females, Mage = 19.85, SD = 1.2; sex was defined
by self-report) who were all fluent in German, participated
in this experiment. When discussing males/females, we refer
to the sex that is reflected physiologically by the gonads,
sex hormones, external genitalia, and internal reproductive
organs (Clayton and Tannenbaum, 2016). To ensure that all
participants were in a new social environment without an
established social network, we only included students who
had recently moved to Aachen and did not switch studies.
Further inclusion criteria were: age of 18–30 years, right-
handedness, no metabolic illnesses (hypertension; lung-, brain-,
and kidney diseases; diabetes mellitus; and drug dependence),
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no neurological or psychiatric disorders (determined with
Structured Clinical Interview for DSM-IV; Fydrich et al., 1997),
no medication use, and no pregnancy in women. Only women
who took hormonal contraceptives via the pill were included.
We made this choice to control for hormonal fluctuations and
interpersonal differences in the menstrual cycle (Liu et al., 2017).
Participants were told to refrain from alcohol 24 h, eating 2 h,
and coffee 3 h prior to the experiment. All experimental sessions
took approximately 2 h and took place between 1.30 pm and
6.30 pm to control for the circadian rhythm in cortisol. All
participants gave written informed consent and received €20, as
monetary compensation.

Paradigm – Social-Evaluative Threat
The VISTTA is partially based on the YIPS (Stroud et al., 2000).
The YIPS uses real confederates that are trained to exclude the
participant from the conversation, whereas the VISTTA is a
variation that employs a digital communication platform. The
Task simulates an online communication environment in which
the participant is led to believe he/she is communicating with two
peers, one male (Daniel) and one female (Julia).

During 30 short conversations, which the participant initiates
by selecting one of the four presented opening sentences, the
two computerized interlocutors respond mostly with negative
comments and rejections toward the participant. This approach
should induce feelings of social rejection and exclusion and
induce feelings of social stress in the participants. The
participants had 40 s to select an opening sentence by pressing
button 1, 2, 3, or 4 on the keyboard. If they did not select
an option, the first sentence was automatically selected. We
created unique reactions per opening sentence, in a way that
they did not contradict over the course of the experiment. After
selecting an opening sentence, a chat box was shown whereby
“. . . is typing” was shown when the interlocutors were supposedly
typing there response. Depending on the length of the response,
the duration of “. . . is typing” varied in length with longer
presentation times for longer responses (ranging from 4 to 8 s)
(see Figure 1 for an overview of the VISTTA). In order to
create a within-subject control condition and to make it more
credible that participants were chatting with two actual people,
they also received neutral to positive reactions in 10 out of
30 conversations. Reactions from interlocutors were both either
positive or negative, so that acceptance and rejection would
take place in the same set of topics for all participants. Two
examples are presented in Figure 2. This experimental group,
from here on referred to as “threat group,” was compared to
a control group that only received neutral/positive reactions.
The 20 topics with dismissive comments were changed so that
the interlocutors replied with agreement and consent. A pilot
study among Ph.D. and master students (n = 15 for threat
condition, n = 11 for control condition) showed that all negative
responses were rated significantly more negative than all positive
responses (p ≤ 0.009), except one that showed only a trend
toward significance (p = 0.052) (see Supplementary Table 1 for
all opening sentences and corresponding reactions). We created
two pseudorandom orders of topics that were randomly assigned
to the participants to rule out any possible confounding effects

of order. Each block of 10 conversations contained the same
set of topics in both versions. All responses were created to
match the opening sentences. The experiment started with a
practice round to familiarize the participants with the structure
of the paradigm.

Procedure
As part of the cover story, participants were told that the
experiment was about initiating social interactions between
students via online communication and that the two interlocutors
were each in a separate room nearby. They were also led to believe
they had to do a cooperation Task with the two others after the
VISTTA and that the height of their monetary reward depended
on how well they cooperated. It was therefore preferable if they
maintained a good bond with the interlocutors. To reinforce
the cover story, participants were told to be punctual, because
the experiment was conducted together with two other students.
They could not meet the “others,” as the goal of this study was said
to investigate online communication. During the experiment,
the investigator left the participant three times to check whether
the “others” were ready to start and if everything went as
planned; first before the start of the VISTTA (T2), in the short
break after 20 conversations (T3), and directly after finishing
the VISTTA (T4). Mood and physiological measures were also
acquired at these time points. During the debriefing at the
end of the experiment, all participants were asked about their
experience with regard to the confederates, and whether they
believed they were communicating with two real people. Five
participants reported they did not believe the two interlocutors
were real. Exploratory analyses whereby non-believers were
excluded yielded a similar pattern of results. Final analyses
were therefore conducted on the whole sample. As the study
was conducted in Aachen, Germany, all opening sentences and
responses were in German (see Supplementary Table 1 for the
English translation).

Social-Evaluative Threat Measures
Trait Measures
We acquired a set of personality questionnaires covering stress
coping mechanisms [Coping Inventory for Stressful Situations
(CISS); Endler and Parker, 1990], anxiety {State-Trait Anxiety
Inventory [STAI(T)]; Spielberger et al., 1983, Liebowitz Social
Anxiety Scale; Liebowitz, 1987}, primary appraisal secondary
appraisal (PASA; Gaab, 2009), rejection sensitivity [Rejection
Sensitivity Questionnaire (RSQ); Berenson et al., 2009], social
network questionnaire (Linden et al., 2007), stress processing
(Stressverarbeitungsfragebogen; Janke and Erdmann, 1997), and
intelligence [Wortschatztest (WST); Schmidt and Metzler, 1992].

Subjective Ratings
The subjective experience of social evaluative threat was assessed
on three distinct levels. First, at the end of every conversation,
participants were asked to rate the extent to which they wanted
to cooperate with the two interlocutors on a Scale from 1 to
5, with 1 being “not at all” and 5 “very much.” Second, after
finishing the VISTTA, participants answered open questions how
they experienced the interaction and how they felt to not have
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FIGURE 1 | Overview of the experiment. The participant selects an opening sentence, which is then presented in the chatbox. The two interlocutors respond
consecutively. The last page including both their responses is presented for 10 s to give participants enough time to read and think about them.

met their interlocutors. They also rated on a Scale from 1 to 8
how fair they thought the “others” were (1 being “not fair at all,”
8 being “very fair”). Third, in an additional, reaction rating Task,
participants were presented with all reactions (2 reactions per
topic, total of 60 reactions) they had received during the VISTTA.
For each reaction separately, they indicated to what extend they
experienced that reaction as positive or negative in regard to their
opening sentence (on a Scale from 1 to 5 with 1 being “very
negative” and 5 “very positive”).

Emotional and Physiological Responses
Mood was measured repeatedly using the Emotional Self-Rating
(ESR; Weiss et al., 1999) and the Positive and Negative Affect
Scale (PANAS) at T2, T3, and T4 (Watson et al., 1988).

Salivary cortisol levels, heart rate, and blood pressure were
repeatedly measured throughout the experiment (see Figure 1
for overview). Saliva samples were taken using SaliCaps, to
measure cortisol (IBL International, Hamburg, Germany). Saliva
samples were taken at the start of the VISTTA (T2), in the
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FIGURE 2 | Two examples of conversations, a negative on the left, and a positive on the right. The blue line represents a response by the male interlocutor (Daniel)
and the red line corresponds with the female interlocutor (Julia).

short break after 20 conversations (T3), and directly after
finishing the VISTTA (T4). Sampling time varied among
participants, but was not timed. The samples were stored at
−30◦C until they were analyzed by the Dresden LabService
(Germany). Samples were analyzed in duplicate and the
average was used in subsequent analyses. Cortisol concentrations
were measured using Luminescence Immunoassays with high
sensitivity (Immuno-Biological Laboratories GmbH, Hamburg,
Germany), with intra-assay and inter-assay coefficients of <8%.
Heart rate and blood pressure were acquired via an automatic
blood pressure monitor with arm cuff (Intellisense, OMRON,
Germany) at six time points (minutes after onset) throughout
the experiment (T1 = 15, T2 = 30, T3 = 50, T4 = 60,
T5 = 75, T6 = 120).

Statistical Analyses
All analyses were performed using SPSS 25 (IBM Corp., Armonk,
NY, United States). The alpha level was set to 0.05 and
Greenhouse–Geisser correction was applied when necessary. Post
hoc pairwise comparisons were Bonferroni corrected.

Trait Measures
All scores except PASA and Social Network were normally
distributed. PASA and Social Network were logarithmically
transformed to meet the criterion of normal distribution.
Separate 2 × 2 ANOVAs were conducted for each of the
personality questionnaires, with Group (threat, control) and Sex
(male, female) as between-subject factors.

Subjective Ratings
Ratings on the willingness to cooperate were averaged for
positive/neutral and negative reactions separately. Subsequently,
a 2 × 2 × 2 ANOVA was conducted, with Valence (positive or
negative reactions) as within-subject factor and Group and Sex
as between-subjects factors. A similar analysis was used for the

fairness rating, without Valence as a within-subject factor (i.e., a
2 × 2 ANOVA).

Ratings for the individual reactions all deviated from
normal distribution (Kolmogorov–Smirnov was significant).
Moreover, the subset of reactions presented to the participant
depended on the choice of opening sentence, which led
to a unique combination of reactions for every participant.
Hence, individual reactions could not be directly compared
between conversations. The ratings per reaction (one from each
interlocutor) were combined into a mean score indicating the
overall positivity/negativity of the reaction-pair per conversation.
For these reasons, these data were analyzed using generalized
estimating equations (GEEs). This mean rating was entered as
dependent variable in the full model of the GEE analysis with
Topic Valence (two levels: positive, negative) as within-subject
factor and Group (threat, control) and Sex (male, female) as
between-subject factors. Subjects were modeled as random effects
and all factors as fixed effects.

Emotional Responses
Repeated measures ANOVAs with post hoc pairwise comparisons
were conducted for PANAS, with positive and negative mood
as subscales, with Time (T2, T3, T4) as within-subjects factor
and Group (threat, control) and Sex (male, female) as between-
subjects factors.

A similar analysis as for the reaction ratings was performed
for the ESR Scales (anger, disgust, happiness, fear, sadness,
surprise) as they deviated from normal distribution. The GEE
analysis was designed with Emotion (six levels: anger, disgust,
happiness, fear, sadness, surprise) and Time (T2, T3, T4) as
within-subject factors and Group (threat, control) and Sex (male,
female) as between-subject factors. Subjects were modeled as
random effects, and all factors were included as fixed effects.
To test for differential effects of the two VISTTA versions, only
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interactions involving the factor Group were entered in the model
(as fixed effects).

Physiological Responses
Cortisol was acquired three times and heart rate and blood
pressure six times. Cortisol values were not normally
distributed and hence logarithmically transformed. All
analyses were computed based on the transformed data.
Repeated measures ANOVAs were conducted for cortisol,
heart rate, systolic and diastolic blood pressure, with
Time as within-subjects factor and Group and Sex as
between-subjects factors.

RESULTS

Trait Measures
There were no differences between groups or sexes regarding
the personality questionnaires, after correcting for multiple
comparisons. Before correction, scores on trait anxiety (STAI-
T; p = 0.041) and Task-oriented coping (CISS_Task; p = 0.013)
were significantly higher for men than women, whereas scores
on avoidance-oriented coping (CISS_avoidance; p = 0.009), and
social anxiety (Liebowitz_anxiety: p = 0.014), were higher for
women compared to men. Both, however, did not survive
the corrected alpha level that was set to 0.0029. All other
comparisons were not significant. The descriptive statistics of all
questionnaires are included in Supplementary Table 2.

Subjective Ratings
Willingness to Cooperate and Perceived Fairness
As expected, participants who took part in the threat group were
less willing to cooperate with the interlocutors than participants
who received only neutral/positive reactions during the Task.
This was shown by a main effect of Group [F(1,57) = 37.254,
p ≤ 0.001, η2

p = 0.395], whereby the overall “willingness to
cooperate” was lower in the threat group (M = 3.21, SD = 0.53)
than in the control group (M = 3.94, SD = 0.37) (p ≤ 0.001).
We also found a main effect of Valence [F(1,57) = 49.033,
p ≤ 0.001, η2

p = 0.462], showing higher “willingness to cooperate”
after positive (M = 3.88, SD = 0.55) than after negative
(M = 3.25, SD = 0.87) reactions. A Valence ∗ Group interaction
[F(1,57) = 35.082, p ≤ 0.001, η2

p = 0.381] revealed a group
difference for negative reactions, with lower cooperation ratings
in the threat group compared to the control group (p ≤ 0.001).
No group difference was found for positive reactions (p = 0.453).
“Willingness to cooperate” also significantly differed within-
subjects in the threat group, with higher ratings after positive
comments than after negative comments (p≤ 0.001) (Figure 3A).
No Valence effect was present in the control group (p = 0.453), as
all reactions were neutral/positive. “Willingness to cooperate” did
not differ between sexes, regardless of valence (p = 0.438) (see
Table 1 for means per group and emotion).

Interlocutors in the threat group (M = 4.22, SD = 1.32) were
rated significantly less fair than interlocutors in the control group
(M = 7.43, SD = 1.14) [F(156.34,1.56) = 1319.08, p ≤ 0.001,
η2

p = 0.637]. There was no main effect of Sex on the willingness to

cooperate and no significant interaction including Sex emerged
(all p ≥ 0.579).

Comment Ratings
The GEE analysis for the comment ratings showed a main effect
of Group [Wald-χ2(1) = 87.0, p ≤ 0.001], whereby reactions
were rated lower (more negative) in the threat group (M = 2.77,
SD = 1.19) than the control group (M = 3.80, SD = 0.77). We
also found a main effect of Topic Valence [Wald-χ2(1) = 221.5,
p ≤ 0.001], with lower ratings for negative comments (M = 2.94,
SD = 1.14) compared to neutral/positive comments (M = 3.95,
SD = 0.75). Again, there was no main effect of Sex (p = 0.931).
Two interactions were found significant, i.e., Group ∗ Sex [Wald-
χ2(1) = 47.0, p = 0.031] and Group ∗ Topic Valence [Wald-
χ2(1) = 137.9, p ≤ 0.001]. No other interactions were significant
(p ≥ 0.221). Post hoc analyses for the Group ∗ Sex interaction
showed that both men and women in the threat group rated
the comments overall as more negative than the participants
in the control group (p ≤ 0.001). Within the threat group,
men tended toward lower ratings (more negative) than women
(p = 0.093). There was no difference in ratings between men
and women in the control group (p = 0.152). Decomposing
the Group ∗ Topic Valence interaction showed that reactions
in the 20 negative topics in the threat group were rated more
negative than neutral/positive reactions to the same topics in the
control group (p≤ 0.001). The reactions to the 10 neutral/positive
topics that were the same for both groups were rated equally
(p = 0.905) (Figure 3B).

Emotional Responses
Positive and Negative Mood
The VISTTA led to a significant decrease in positive mood over
time, that is, there was a main effect of Time for positive mood
[F(1.793,98.613) = 14.651, p ≤ 0.001, η2

p = 0.210]. Pair-wise
comparisons showed a general decrease between T2−T3 and
T2−T4 (p ≤ 0.001). We did not find a main effect of Time for
negative mood (p = 0.545). A Time ∗ Group interaction did
occur for negative mood [F(1.558,98.613) = 6.012, p = 0.007,
η2

p = 0.099], but not positive mood (p = 0.677). Post hoc analyses
showed that negative mood decreased only in the control group
between T2−T3, that is, from the start of the Task until the
break. Negative mood did not change over time in the threat
group (p ≥ 0.272). No other effects or interactions were found
significant (p ≥ 0.197).

Emotional Self-Rating
The GEE analysis for the ESR revealed significant main effects
of Emotion [Wald-χ2(5) = 532.1, p ≤ 0.001], Sex [Wald-
χ2(1) = 4.63, p = 0.031], and Time [Wald-χ2(2) = 7.66, p = 0.022].

There were significant interactions of Group ∗ Time [Wald-
χ2(2) = 6.8, p = 0.033], and Group ∗ Emotion [Wald-
χ2(5) = 15.98, p = 0.007]. In addition, there were significant
three-way interactions of Group ∗ Emotion ∗ Time [Wald-
χ2(17) = 43.4, p ≤ 0.001], and Group ∗ Sex ∗ Emotion [Wald-
χ2(10) = 19.01, p = 0.040].

The main effect of Emotion was due to significantly higher
ratings for happiness (M = 2.97, SD = 0.95) than for all other
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FIGURE 3 | (A) Willingness to cooperate was lower after negative reactions compared to positive reactions. As expected, no difference was present in the control
group. (B) Negative reactions in the threat version of the VISTTA were rated significantly lower than reactions to the same topics in the control version. Also
within-subject they were rated lower than the positive reactions in 10 topics. (C) Cortisol stayed stable in women in the threat group, but decreased in the control
group. Men showed decreasing cortisol levels in both groups. For illustrative purposes only significant differences between women in both groups and the decay in
the women control group are marked with an asterisk. (D) Anger increased from T2 to T3 in the threat group, compared to unchanged anger scores in the control
group. (E) The threat version led to an increased score of surprise, whereas this score stayed stable in the control group. (F) Participants in the threat group reported
decreased levels of happiness. The control version did not elicit such a decrease. Raw values were used to create the graphs, although some analyses used
transformed scores. Error bars represent standard deviations. Asterisks indicate significant differences with p < 0.05.

emotions, followed by surprise (M = 2.17, SD = 1.02), which
also differed significantly from all other emotions, as well as a
significant difference between anger (M = 1.20, SD = 0.56) and
disgust (M = 1.02, SD = 0.13). The main effect of Sex was due
to higher emotional ratings in females (M = 1.62, SD = 1.02)
than in males (M = 1.52, SD = 0.85) (see Table 2 for means per
group and emotion). The main effect of Time was due to overall
higher ratings, that is, more intense emotions, at T3 (M = 1.58,
SD = 0.95) than at T4 (M = 1.52, SD = 0.93).

Decomposing the two significant two-way interactions
revealed higher ratings for anger (p ≤ 0.001) and surprise
(p = 0.012) in the threat group than in the control group, along
with overall higher ratings in the threat group than in the control
group at T3 (p = 0.015), that is, after the first block of the
VISTTA. These effects need to be viewed within the context
of the Group ∗ Emotion ∗ Time interaction: For anger and
surprise, ratings differed between threat and control only at T3
and T4 (p ≤ 0.002), not at T2 (p ≥ 0.068) (before the VISTTA).
Moreover, ratings for happiness differed at T4, with lower ratings
in the threat group than in the control group (p = 0.0026).
Crucially, temporal changes of emotional ratings were limited to

the threat group: Here, ratings for anger increased from T2 to
T3 (p ≤ 0.001), and from T2 to T4 (p = 0.005). Similarly, ratings
for surprise increased from T2 to T3 (p = 0.022). Analogously,
happiness decreased from T2 to T4 (p ≤ 0.001), and T3 to T4
(p = 0.030), while no such changes over time were evident in the
control group (p ≥ 0.0164) (Figures 3D–F).

The Group ∗ Sex ∗ Emotion interaction was due to sex-
specific responses: In males, higher ratings in the threat than
in the control group were evident for anger and surprise. In
females, differences in emotional ratings between threat and
control emerged for anger and happiness, with higher and lower
values in the threat group, respectively. Comparing males and
females directly indicated differences in the rating of happiness
only for the control group, that is, females rated themselves as
happier than males.

Physiological Responses
Cortisol
The repeated measures ANOVA with Time as within-subject
factor and Sex and Group as between-subjects factors showed
a main effect of Time [F(1.322,75.930) = 24.031, p ≤ 0.001,
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TABLE 1 | Overview of means of subjective and emotional responses in men and
women in the threat and control group.

Control
men

(N = 14)

Control
women
(N = 16)

Threat
men

(N = 15)

Threat
women
(N = 16)

Subjective ratings

Cooperation positive 3.85 (0.27) 4.1 (0.43) 3.81 (0.78) 3.78 (0.59)

Cooperation negative 3.74 (0.34) 4.02 (0.47) 2.69 (0.78) 2.55 (0.7)

Fairness 7.36 (1.03) 7.5 (1.26) 4.1 (1.49) 4.34 (1.17)

Comment positive 4.01 (0.75) 3.85 (0.69) 3.79 (0.84) 4.1 (0.71)

Comment negative 3.83 (0.81) 3.62 (0.75) 2.16 (0.89) 2.19 (0.85)

Emotional responses

PANAST2pos 29.86 (6.5) 31.5 (5.93) 30.62 (3.78) 30.75 (5.12)

PANAST3pos 29 (5.92) 31.06 (7.09) 29.08 (6.03) 29.63 (6.86)

PANAST4pos 25.86 (6.74) 30.38 (7.2) 27.86 (4.61) 28.44 (8.07)

PANAST2neg 11.64 (1.86) 12.81 (3.04) 12.29 (2.61) 11.38 (1.78)

PANAST3neg 11.21 (2.26) 11.25 (1.61) 13.2 (3.41) 11.81 (2.76)

PANAST4neg 11.36 (1.98) 11.06 (1.48) 12.67 (3.2) 11.94 (3.77)

AngerT2 1.07 (0.27) 1.13 (0.34) 1.00 (0.00) 1.00 (0.00)

AngerT3 1.00 (0.00) 1.00 (0.00) 1.60 (0.82) 1.50 (0.73)

AngerT4 1.00 (0.00) 1.00 (0.00) 1.47 (0.83) 1.56 (1.03)

DisgustT2 1.00 (0.00) 1.06 (0.25) 1.07 (0.26) 1.00 (0.00)

DisgustT3 1.00 (0.00) 1.00 (0.00) 1.07 (0.26) 1.00 (0.00)

DisgustT4 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

HappinessT2 2.93 (0.92) 3.50 (0.97) 3.00 (0.54) 3.13 (0.72)

HappinessT3 2.71 (1.07) 3.56 (0.81) 2.53 (0.83) 3.00 (0.89)

HappinessT4 2.50 (1.02) 3.56 (0.89) 2.27 (0.80) 2.75 (1.07)

SadnessT2 1.00 (0.00) 1.19 (0.40) 1.07 (0.26) 1.00 (0.00)

SadnessT3 1.07 (0.27) 1.06 (0.25) 1.07 (0.26) 1.00 (0.00)

SadnessT4 1.00 (0.00) 1.06 (0.25) 1.07 (0.26) 1.06 (0.25)

SurpriseT2 2.00 (0.96) 2.13 (1.09) 2.33 (0.98) 2.00 (0.82)

SurpriseT3 1.79 (0.70) 2.06 (1.12) 2.73 (0.96) 2.69 (0.95)

SurpriseT4 1.79 (0.80) 1.81 (1.11) 2.33 (1.23) 2.38 (1.15)

FearT2 1.00 (0.00) 1.19 (0.40) 1.07 (0.26) 1.06 (0.25)

FearT3 1.00 (0.00) 1.13 (0.34) 1.07 (0.26) 1.06 (0.25)

FearT4 1.00 (0.00) 1.00 (0.00) 1.07 (0.26) 1.06 (0.25)

Cooperation positive and – negative (willingness to cooperate after positive and
negative reactions, respectively), comment positive and – negative (how positive or
negative both reactions from interlocutors were experienced by participants).

η2
p = 0.297] with T2 ≥ T3 (p = 0.013), T3 ≥ T4 (p ≤ 0.001),

and T2 ≥ T4 (p ≤ 0.001). We also found a main effect of Group
[F(1,57) = 6.193, p = 0.016, η2

p = 0.098] with higher cortisol levels
in the threat group (M = 5.25 nmol/L, SD = 1.88) than the control
group (M = 4.31 nmol/L, SD = 2.58) at all three time points
(p ≤ 0.036), and a main effect of Sex [F(1,57) = 9.051, p = 0.004,
η2

p = 0.137], whereby men (M = 5.75, SD = 2.57) had higher
cortisol levels than women (M = 3.92, SD = 1.58) at all three time
points (p ≤ 0.034).

A significant three-way interaction between
Time ∗ Sex ∗ Group emerged [F(1.332,75.930) = 3.653,
p = 0.048, η2

p = 0.060]. Post hoc comparisons for men and
women separately showed a main effect of Group among women
[F(1,30) = 14.233, p = 0.001] with higher cortisol levels at all
three time points in the threat group (p ≤ 0.027) (Figure 3C).
Cortisol levels in men did not differ between groups (p ≥ 0.212).
Comparing men and women in both groups showed a main

TABLE 2 | Overview of means of all physiological responses per group.

Control
men

(N = 14)

Control
women
(N = 16)

Threat
men

(N = 15)

Threat
women
(N = 16)

Cortisol T2 5.87 (3.04) 3.58 (1.62) 6.92 (3.23) 5.03 (1.44)

Cortisol T3 6.02 (3.38) 2.98 (1.17) 5.81 (2.16) 4.78 (1.65)

Cortisol T4 5.23 (3.5) 2.72 (0.99) 4.63 (1.7) 4.45 (1.63)

HR T1 69.86 (10.04) 71.13 (9.37) 76.15 (13.56) 72.53 (7.78)

HR T2 70.57 (6.96) 70.75 (7.96) 76.4 (12.43) 74.94 (7.41)

HR T3 69 (6.75) 69.88 (10.45) 74.73 (14.65) 72 (7.37)

HR T4 69.21 (6.39) 69.25 (9.95) 69.73 (11.22) 72.88 (7.86)

HR T5 65.15 (8) 68.63 (8.16) 70 (12.07) 68.5 (7.53)

HR T6 65.5 (7.19) 65.88 (6.61) 69.93 (12.42) 67.56 (7.47)

SBP T1 130.07 (11.06) 105.38 (5.77) 125.62 (12.98) 110.47 (6.74)

SBP T2 124.93 (13.3) 104.94 (8.03) 119.73 (14.54) 110 (7.19)

SBP T3 119.07 (32.02) 105.44 (9.68) 119.67 (14.72) 108.81 (11.15)

SBP T4 124.43 (10.47) 104.88 (6.57) 117.13 (15.25) 107.19 (6.96)

SBP T5 121.08 (10.63) 102.94 (8.54) 119.53 (10.41) 105.63 (6.68)

SBP T6 122.36 (10.59) 103.56 (7.59) 115.07 (10.33) 105.44 (10.89)

DBP T1 72.36 (5.73) 70.31 (7.12) 69 (10.26) 68.8 (6.17)

DBP T2 68.71 (6.12) 68 (6.35) 67.47 (9.01) 68.25 (6.5)

DBP T3 71.79 (7.98) 68.56 (5.14) 66.6 (10.01) 69.13 (7.63)

DBP T4 69.43 (6.32) 68.81 (8.64) 64.67 (9.57) 68.94 (7.09)

DBP T5 67.92 (5.57) 66.94 (4.46) 64.4 (9.63) 66.06 (6.14)

DBP T6 69.5 (6.8) 67.75 (5.13) 66.73 (8.66) 67.38 (5.83)

HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure.

effect of Sex in the control group [F(1,28) = 7.989, p = 0.009]
with higher cortisol levels in men than women. Cortisol levels
in the threat group did not differ between men and women
(p ≥ 0.137) (see Table 2 for an overview of means and standard
deviations). Time point comparisons to investigate the course
of cortisol levels showed that the cortisol level did not change
over time for women in the threat group (p ≥ 0.281). Women
in the control group showed a significant decrease between
T2−T3 and T2−T4 (p ≤ 0.040). The control group in men
led to a decrease between T3 and T4 (p ≤ 0.001). In the threat
group, cortisol levels decreased significantly between T2−T4 and
T3−T4 (p ≤ 0.001). All other time point comparisons did not
reach significance (p ≥ 0.116) (Figure 3C).

Heart Rate and Blood Pressure
The repeated measures ANOVA with Time as within-subject
factor and Sex and Group as between-subjects factors showed
a main effect of Time [F(3.919,207.718) = 18.127, p ≤ 0.001,
η2

p = 0.255]. No main effects of or interactions with Group and
Sex were found (p ≥ 0.224). The Time ∗ Sex ∗ Group interaction
showed a trend toward significance (p = 0.053). The overall
pattern showed that heart rate decreases in both groups, with
more fluctuation in the threat group.

We found a main effect of Time for both systolic and diastolic
blood pressure (SBP and BPD, respectively) (p ≤ 0.17), with a
general decay over time. For SBP, there was a main effect of Sex,
showing that men had higher SBP than women (p ≤ 0.022). No
difference between sexes was found for DBP (p ≥ 0.795). Blood
pressure did not differ between groups (p ≥ 0.239).
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DISCUSSION

The aim of the current study was to develop and validate a
new, fMRI compatible, social threat paradigm that implements
a realistic representation of nowadays’ digital communication
environments. As a second objective, we were interested if and
how social-evaluative threat affects men and women differently.
The opening sentences were created in a way that they stated
something about the participant’s personality or interests, so that
the reactions that followed from the interlocutors would directly
target the participant. Reactions in the control group were of an
agreeing and accepting nature so that those participants did not
experience any social evaluative threat. Our results indicate that
the VISTTA elicits both subjective, emotional, and physiological
responses as apparent from lower willingness to cooperate after
negative reactions, reactions rated as more negative in the threat
group, increased feelings of anger and surprise, decreased feeling
of happiness, negative mood decreased in the control group, but
stayed stable in the threat group and the stable cortisol levels in
women in the threat group throughout the experiment. However,
increased physiological measures at the start of the testing session
could reflect pre-experimental arousal, as the experiment started
approximately 30 min after arrival.

Relevance of VISTTA as New
Social-Evaluative Threat Paradigm
Although the VISTTA contains obvious similarities with the
Chat-room Task (Donate et al., 2017), these paradigms target
different concepts. The Chat-room ostracizes participants by not
asking them the same amount of questions as the confederates.
This “lack of interest” in the participant is the driving force
behind the ostracism induction. The content of the questions
and answers does not play a role. The VISTTA is differently
structured, whereby participants are continuously involved in the
conversations. Our goal was to use personally directed rejection
to drive the experience of social-evaluative threat. Participants
might have felt ostracized during the VISTTA when the two
confederates repeatedly agreed, and together disagreed/insulted
the participants’ perspective.

Subjective Responses
Lower willingness to cooperate after negative reactions than
after positive ones shows rejection negatively affected the
motivation for social, cooperative interactions. We did not find
sex differences for this measure despite different characteristic
coping strategies between men and women. Nickels and Kubicki
(2017) reported that performance stress, induced via the TSST,
led to less prosocial behavior in men and more cooperative
behavior in women. The VISTTA is not performance based,
which could be a possible explanation why this sex difference
is not reflected in our findings. As an additional validation
of social rejection, participants rated how positive or negative
they experienced all reactions they received. As this was also
a 1–5-Scale, just like “willingness to cooperate” the findings
showed an almost identical pattern, with more negative ratings
for negative comments and more positive ratings for positive

comments. Men and women showed a similar rating pattern.
Although these measures were very similar, we tried to target
different concepts. “Willingness to cooperate” was hypothesized
to reflect a motivation for facing the two individuals who rejected
the participant, whereas “comment ratings” to reflect the level of
positivity or negativity of each individual reaction. We wanted to
indirectly measure social-evaluative threat using these measures.

Affective Responses
Also, no sex difference emerged for the subjective mood ratings.
We found that positive mood decreased over time for both
men and women. This decrease, however, was seen in both the
threat and control group, suggesting the negative comments
during the VISTTA did not affect participant’s positive emotional
state. Negative mood did differ between groups. Participants
in the control group reported a decreased negative mood in
the first half of the VISTTA. The threat group showed an
increase, although that did not reach significance. These findings
suggest that the inclusive interactions in the control condition
positively affected the negative mood. This underlines that
positive and negative mood are not bipolar, but rather change
independently from one another. We also demonstrated effects
on multiple emotions such as anger, surprise, and happiness.
Over the course of the threat version of the VISTTA, participants
reported increased feelings of anger and surprise, and decreased
feelings of happiness. Similar results have been reported using
other exclusion paradigms. Unfair exclusion, compared to fair
exclusion in a modified Cyberball Task, was linked to increased
anger (Chow et al., 2008). Exclusion from participation in the
Chat-room Task also led to higher anger ratings (Donate et al.,
2017). Our finding regarding surprise indicates that the negative
interaction was unexpected, since the control group did not
report any changes for this emotion. Decreased happiness in
the threat group, contrary to stable happiness levels in the
control group, indicates that the VISTTA negatively affected the
positive state. Two factors might contribute to these findings. The
most evident is the content of the personally directed negative
comments that affects the emotional state of the participants.
Second, the anticipation of having to face the interlocutors
after the chat Task and to cooperate with them on a separate
Task for additional monetary reward could contribute to a
less positive mood.

Physiological Responses
Contrary to our a priori hypotheses, the VISTTA did not
induce cortisol and heart rate increases. A possible explanation
is that there is no direct social evaluation, but indirect
via a computerized communication. Other fMRI compatible
paradigms, such as Cyberball (Williams et al., 2000) have also
been found to not elicit a cortisol increase in both men and
women (Zöller et al., 2010; Zwolinski, 2012; Seidel et al.,
2013; Gaffey and Wirth, 2014; Radke et al., 2018). Cortisol
increases are generally found after a stressor that includes
direct personal interaction. Using a modified version of the
TSST, Woody et al. (2018) investigated the effect of social-
evaluative threat, and added cognitive load as additional factor
of interest. They reported increased cortisol and blood pressure
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in response to social-evaluative threat, but a flat line for
the non-social-evaluative threat group. Following the circadian
rhythm, in healthy individuals, cortisol levels peak early in the
morning and, without a stressor, decline throughout the day
(Krieger et al., 1971; Weitzman et al., 1971; Debono et al., 2009;
Chan and Debono, 2010). The fact that we do not see this decline
in women in the threat group during the experiment could be
an indication that social-evaluative threat by the VISTTA elicits
an endocrinological response in women. For men, the decline in
cortisol, as well as in heart rate, might indicate that they habituate
to the social evaluation. As the social evaluation occurs through
a computer without face-to-face interaction, the physiological
responses we found could be dampened due to a more indirect
threat. During the YIPS, female, but not male, participants,
who are excluded during the course of a conversation with
two confederates, show a cortisol increase (Stroud et al., 2000,
2002; Zwolinski, 2008). However, this cortisol response is not
replicated in all studies (Linnen et al., 2012). Women appear to
respond more strongly to social rejection, whereas men show
increased cortisol responses to achievement challenges (Stroud
et al., 2002; Kogler et al., 2017). In the study of Blackhart
et al. (2007) participants were told that no one wanted to be
paired with them to complete a Task after a group interaction
session. Although the rejection did not come directly from the
confederates, cortisol levels were significantly higher following
social rejection compared to acceptance. It seems that direct
personal interaction whereby investigators/jury/peers judge or
reject participants is an important factor to elicit a cortisol
increase, and that it is particularly effective in women. Meeting
the two confederates could help reinforce the cover story and
elicit a stronger response to rejection. Looking back at the
factors influencing the stress response that we discussed in the
section “Introduction,” an important note here is that the above-
mentioned studies either included women not using OC or did
not report on contraceptive use. Also, to this day, the majority of
research papers focuses on sex difference whereas gender identity
has been shown to differently affect the stress response. It would
be a valuable addition to future research to assess not only sex
but also gender, and include it as a factor of interest or at least as
confounding factor.

At the start of the experiment, heart rate was significantly
higher for both men and women compared to when the VISTTA
was finished; however, this was seen in both experimental groups
(threat vs. control). This decline opposes our previous hypothesis
that HR increases as an effect of the social threat. Throughout
the entire experiment, SBP was significantly higher for men
compared to women, with no effect of experimental group. Men
have, in general, a higher SBP than women (Reckelhoff, 2001).
Overall, the VISTTA did not elicit a significant response in HR
or blood pressure.

Limitations
We were unfortunately not able to measure a continuous heart
rate signal or skin conductance. The blood pressure monitor
we used had to be attached separately for each time point and
hence only enabled us to acquire heart rate and blood pressure
for T1–T6. It was therefore not possible to directly compare

physiological responses to negative and positive feedback, only
between-subjects. During an acute stressor, the release of
catecholamines increases heart rate and blood pressure (McEwen,
2007). Heart rate is therefore a suitable measure to investigate the
immediate response to a stressful situation. To directly compare
the effects of negative and positive feedback, a continuous heart
rate signal would shed more light on the physiological responses
to social-evaluative threat and be a suitable indicator for stress
response. Although physiological measures could not be acquired
continuously, we did have a behavioral measure after every
conversation, allowing us to directly compare subjective effects
of positive vs. negative feedback.

For this study, we chose to test a group with a specific age
and social background to restrict possible confounding factors.
This might result in lower generalizability of the results. Also,
given this is the initial study investigating the effects of VISTTA,
future studies including larger and different samples should
shed more light on wider applicability of this new paradigm.
Since all conversations were in German, the VISTTA should
be adapted for other studies using non-German speakers. All
opening sentences and responses are also available in English.
Also, two topics should be changed, as they were specific for the
region the study took place.

We made the choice to only include women on OCs to control
for hormonal fluctuations and interpersonal differences in the
menstrual cycle. It should be noted that OCs heighten estrogen
levels and consequently dampen the stress response in women
(Pruessner, 2018).

Although, we included a variety of affective measurements,
additional measurements such as feelings of embarrassment and
changes in self-esteem could have served as extra validation for
experiencing social-evaluative threat. Validation of the VISTTA
by means of psychological responses was aimed at differences
in positive and negative mood, as well as changes in a range of
emotions including anger, fear, happiness, and surprise among
others. We did not find changes in fear and sadness, which
may suggest participants experienced surprise rather than social-
evaluative threat from the interactions. Increases in anger,
however, are comparable to other studies investigating social
exclusion using the Cyberball and Chat-room Task (Chow et al.,
2008; Donate et al., 2017).

CONCLUSION AND FUTURE
DIRECTIONS

Implementing personally directed, verbal negative feedback, we
applied the VISTTA to induce social-evaluative threat. Men and
women in the threat group responded similar on the subjective
level, that is, with increased anger and surprise and a lower
willingness to cooperate in comparison to the control group.
However, physiological measures differed between both groups
and sexes. We demonstrated an overall higher endocrinological
response in the threat group. Regardless of group, a cortisol
decay over time was reported for men, whereas women showed
a stable cortisol level over time in the threat group and a decay
in the control group. These findings might indicate stronger
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habituation in men than in women and underline the importance
of multi-level assessment of responses to social-evaluative threat,
even in computer-mediated communication. Further replication
and validation during fMRI will be crucial to determine its
effects in different experimental settings. It will be of interest
to which extent meeting the interlocutors affects the perception
of social threat. Also rating how much the participants identify
with the opening statement of choice could give more insight
how threatening the negative reactions might be perceived. Social
media environments, as used in the VISTTA, can lower the
threshold for negative interaction, which, in turn, can elicit
feelings of stress and rejection. Given the increasing influence
of online communication platforms, the VISTTA is a useful
addition for research on social-evaluative threat and psychosocial
stress. In reaction to performance and evaluative stressors, sex
and gender have been shown to affect the stress response
differently (Pruessner, 2018). As most research has focused on
the role of sex to differentiate between males and females, gender
has not been given the same level of investigation despite having
a demonstrated effect. The discussion on sex and gender has
taken a flight over the last few years, both in society, and
in the scientific community. The VISTTA enables multi-level
assessment of social-evaluative threat, hence, using samples with
varying compositions of sex and gender identity, this paradigm
could help bridge the gap between sex and gender in this
particular field.
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Stereotypes exist in the interactions between different social groups, and gender
stereotypes are particularly prevalent. Previous studies have suggested that the medial
prefrontal cortex (mPFC) is involved in the social cognition that plays an important role
in gender stereotypes, but the specific causal effect of the mPFC remains controversial.
In this study, we aimed to use transcranial direct current stimulation (tDCS) to identify
a direct link between the mPFC and gender bias. Implicit stereotypes were measured
by the gender implicit association test (IAT), and explicit prejudice was measured by
the Ambivalent Sexism Inventory (ASI). We found that male and female participants
had different behavioral and neural correlates of gender stereotypes. Anodal tDCS
significantly reduced male participants’ gender D-IAT scores compared with cathodal
and sham stimulation, while the stimulation had an insignificant effect in female
participants. The reduction in male participants’ gender bias mainly resulted from a
decrease in the difference in reaction time (RT) between congruent and incongruent
blocks. Regarding the explicit bias measurement, male and female participants had
distinct attitudes, but tDCS had no effect on ASI. Our results revealed that the mPFC
played a causal role in controlling implicit gender stereotypes, which is consistent with
previous observations and complements past lesion, neuroimaging, and transcranial
magnetic stimulation (TMS) studies and suggests that males and females have different
neural bases for gender stereotypes.

Keywords: gender stereotypes, medial prefrontal cortex, transcranial direct current stimulation, implicit
associations test, gender difference

INTRODUCTION

Stereotypes refer to socially shared conceptual attributes associated with members of a social
category that describe their traits and characteristics (Greenwald and Banaji, 1995; Amodio,
2014). On the one hand, this automatic association process strengthens the distinction of different
groups through overgeneralized social categorization, which is efficient as a cognitive heuristic for
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simplifying the complexity of the physical and social world
(Abrams and Hogg, 1988); on the other hand, it influences
people’s social attitudes and behavior, which leads to prejudices,
discrimination, and more severe social conflicts (Amodio, 2014).
Gender stereotypes have appeared in the mass media and the
general public, have been described and discussed in the research
literature (Gray, 1992; Rudman et al., 2001), have attracted the
attention of both males and females, and have contributed to the
foundation of beliefs and behaviors in terms of gender (Becker
and Sibley, 2009). In part, gender stereotypes reflect the different
characteristics of genders; however, the broad generalization of
such a large group of people can never be true and accurate. For
example, although social gender stereotypes accentuate gender
differences, males and females are more similar than different
on most but not all psychological variables (Hyde, 2005). In
addition, the intensity of gender stereotypes and the perception
of similarities and differences in characteristics between males
and females vary across cultures (Guimond, 2008).

Explicit measures are commonly used for assessing an
individual’s stereotypes and bias towards a particular group, and
these measures require participants to report their own attitudes
(Olson and Zabel, 2009). Studies using explicit measures have
shown that levels of stereotyping and sexism have reduced in the
past few years, but these specious conclusions were drawn from
women more than from men (Spence and Buckner, 2000) and
cannot reflect unconscious bias when controlled and regulated
by social norms and political correctness (Rudman et al., 2001).
Moreover, old-fashioned sexist beliefs have gradually evolved
from the appearance of discriminatory behavior and negative
beliefs towards women to modern sexism (Swim et al., 1995) and
neosexism (Tougas et al., 1995) and have been expressed under
subtle guises, such as ambivalence and chivalry (Glick and Fiske,
1996; Barreto and Ellemers, 2005).

Implicit measures on gender stereotypes have developed
during the past few decades (Rudman and Kilianski, 2000;
Rudman et al., 2001); however, previous studies have also
revealed that the correlations between results from explicit and
implicit methods vary across studies (Greenwald and Banaji,
1995; Rudman and Kilianski, 2000), which has led to a further
discussion of the power of implicit measures. The implicit
association test (IAT) is one of the most popular methods
consistently used for measuring the automatic concept–attribute
associations that underlie implicit social biases and stereotypes
(Greenwald et al., 1998). In gender stereotypes, this method
assesses the association of a target name (either a male name or
a female name) with respective attribute categories (e.g., strong
vs. weak) that represent the social stereotypes towards these
different groups of people. This task requires participants to
categorize the target names and attribute words by pressing two
corresponding response keys as quickly as possible when they
see the words appear on the computer screen. In congruent
blocks, participants are instructed to categorize male names and
strong attributes using one response key, while female names
and weak attributes are categorized by pressing another key. In
incongruent blocks, the response mapping is reversed, so male
names and weak attributes share one key, and female names and
strong attributes share the other key. Since the response time

and accuracy rate in the congruent blocks are different from
what is obtained in the incongruent blocks, the IAT scores can
be calculated following a standard procedure (Greenwald et al.,
2003), which represents an individual’s personal implicit social
bias towards these two genders.

Gender stereotypes were discovered in past behavioral
research, and males and females tend to have different
patterns of evaluative gender stereotypes (Rudman et al.,
2001). Recently, Pavlova et al. (2014) conducted a series
of experiments manipulating implicit and explicit gender
stereotyping information and identified the susceptibility to
these attitudes. Messages delivered in explicit positive (implicit
negative) terms and explicit negative (implicit positive) terms can
elicit significant gender differences in cognitive performance on
a task with no initial gender gap, and this gender effect is more
pronounced in females. However, these studies still lacked direct
neural evidence underlying the fluctuation in gender bias.

In accordance with behavioral research, recent neurocognitive
studies have investigated the neural basis of prejudice and
stereotypes and have found that these psychological phenomena
primarily rely on the function of a specific brain region, the
medial prefrontal cortex (mPFC; Amodio, 2014). In the social
cognition context, the mPFC is associated with the ability to
‘‘mentalize,’’ which underlies theory of mind, and furthermore,
with the formation of impressions about other people (Frith and
Frith, 1999; Amodio and Frith, 2006; Amodio, 2014), and the
mPFC is more activated during the judgment of people than
in the judgment of inanimate objects (Mitchell et al., 2002).
Neural activity within the mPFC also predicted empathy and an
altruistic motivation towards ingroup members (Mathur et al.,
2010; Cikara et al., 2011a), while the absence of activity of the
mPFC was observed in the ‘‘dehumanization’’ process towards
outgroup members (Harris and Fiske, 2006), which leads to
biased attitudes and discrimination. In a gender prejudice study,
mPFC activation in men who had stronger hostile sexist attitudes
when viewing sexualized images of female bodies was lower than
that in men who had weaker attitudes (Cikara et al., 2011b),
which demonstrates the neural function of the mPFC in sexual
objectification. These studies revealed a correlation of prejudice
and mPFC activity in the gender field but did not provide direct
evidence that proved a causal relationship.

Compared with the role of the mPFC in prejudice, it
is more directly involved in stereotyping (Amodio, 2014).
According to previous studies, the mPFC participated in brain
functions related to stereotypes, for example, cognitive control
(Amodio and Frith, 2006), automatic associations, storing social
knowledge (Mitchell et al., 2002; Krueger et al., 2009), and
integrating information to coordinate social behavior (Contreras
et al., 2012; Gilbert et al., 2012). However, the function of the
mPFC in gender stereotypes is still not clear. Neuroimaging
studies have demonstrated the critical role of themPFC in gender
stereotyping using the behavioral task IAT. Using functional
magnetic resonance imaging (fMRI), the anteromedial PFC was
significantly activated in congruent blocks of the gender IAT,
where the association between gender and social attributes was
consistent with the stereotypes (Knutson et al., 2007). Quadflieg
et al. (2009) also found that the ventromedial prefrontal cortex
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(VMPFC) shows stronger activation for stereotypic judgments
than for non-stereotypical judgments, which further confirms
the indispensable role of the mPFC. However, the results of
lesion studies on the function of the mPFC are not all consistent.
In earlier clinical observations, male patients with VMPFC
lesions had a lower level of gender stereotypes than patients
with dorsolateral prefrontal cortex (DLPFC) lesions (Milne and
Grafman, 2001). However, a subsequent clinical study found
that large lesions in the VMPFC increased stereotypical attitudes
(Gozzi et al., 2009). The divergent conclusions result from the
different classifications of the brain-damaged region: in Milne
and Grafman (2001), patients had damage to both lateral and
medial sectors of the ventral PFC, but in Gozzi et al. (2009), the
researchers distinguished participants who had lesions in these
regions and suggested a differential function of these two sectors
of the mPFC.

Although neuroimaging and lesion studies demonstrated
associations between the mPFC and gender stereotypes, the
direct causal relationship remained imprecise. Brain stimulation
technologies such as transcranial magnetic stimulation (TMS)
and transcranial direct current stimulation (tDCS) can modulate
the activity of target brain regions and establish causal
connections between the brain and decisions. One TMS study,
Cattaneo et al. (2011) found that applying TMS over the
right anterior dorsomedial prefrontal cortex (aDMPFC) of male
participants led to increased gender stereotypes as assessed by
the IAT. In the present study, we aimed to investigate the
effect of tDCS on the mPFC of subjects performing a gender
stereotyping task. We chose to apply this noninvasive brain
stimulation technique because of the features and advantages
compared with TMS (Nitsche and Paulus, 2001; Fecteau et al.,
2007). tDCS is safe and easy to use with reliable modulatory
effect (Nitsche and Paulus, 2001). Moreover, tDCS does not
cause noise interference, nor does it cause muscle twitching
during stimulation, which makes it a good choice for performing
the IAT, which needs a rapid response (Sellaro et al., 2016).
In addition, tDCS can apply reliable sham stimulation, which
produces a similar skin sensation but does not modulate the
excitability of the brain region (Gandiga et al., 2006; Sellaro et al.,
2016). More importantly, tDCS can both enhance and suppress
the excitability of local brain activity (Nitsche and Paulus, 2001;
Ardolino et al., 2005), so we can determine whether tDCS applied
over the mPFC changed the participant’s gender stereotypes
and thereby figured out the precise causal role of the mPFC in
this process, which would also provide complementary evidence
for the TMS study. Furthermore, to test the possible explicit
prejudice of the participants influenced by tDCS, we investigated
whether there were any divergent results between conscious and
unconscious attitudes.

MATERIALS AND METHODS

Participants
A total of 192 right-handed healthy students (96 males, mean
age = 20.53 SD = 2.00; 96 females, mean age = 20.21, SD = 1.58)
participated in our experiments. All of the participants declared
no history of psychiatric illness or psychiatric problems, had

normal or corrected-to-normal vision, and were naïve to tDCS,
our decision-making task, and IAT. Before participants started
the tasks, all of them gave written informed consent approved
by the Zhejiang University ethics committee. The experiment
lasted approximately one and a half hours, and each participant
received an average payment of 30 RMB yuan (approximately
4.35 United States dollars) after the experiment. No participants
reported any adverse side effects regarding pain in the scalp or
headaches after the experiment.

tDCS
tDCS applied a weak direct current to the scalp via two saline-
soaked surface sponge electrodes (5 cm × 7 cm; 35 cm2). The
current was constant and was delivered by a battery-driven
stimulator (NeuroConn, Ilmenau, Germany). It was adjusted
to induce cortical excitability of the target area without any
physiological damage to the participants. Various orientations
of the current had various effects on cortical excitability. In
general, anodal stimulation would enhance cortical excitability,
whereas cathodal stimulation would restrain it (Nitsche and
Paulus, 2000).

Participants were randomly assigned to one of three tDCS
treatments, and the target areas were localized according to the
International electroencephalography (EEG) 10–20 System. For
anodal stimulation over mPFC (n = 64, 32 males and 32 females),
the anodal electrode was placed horizontally over the Fpz
position, whereas the return electrode was placed horizontally
over Oz (Sellaro et al., 2015). For the cathodal stimulation
(n = 64, 32 males and 32 females), the polarity was reversed,
where the cathodal electrode was placed over Fpz, whereas the
anodal electrode was placed over Oz (Figure 1). The current was
constant for 20 min and was 1.5 mA in intensity, with a 30 s
ramp up and down; the safety and efficiency of this stimulation
have been demonstrated in previous studies (Riva et al., 2015).
For sham stimulation (n = 64, 32 males and 32 females),
the procedures were the same as in the active tDCS, but the
stimulation was automatically turned off after 30 s without the
participant’s knowledge. The participants may have felt the initial
itching, but there was no current for the rest of the stimulation.
This method of sham stimulation has been shown to be reliable
(Gandiga et al., 2006). Before the decision-making tasks, the
laboratory assistant put a tDCS device on the participant’s head
for stimulation. After 20 min of stimulation, the tDCS device
was taken off, and the participant was then asked to complete
several tasks.

Task and Procedure
All of the participants received a single-blinded stimulation
session (either anodal, cathodal, or sham stimulation), with
tDCS applied on the mPFC for 20 min, and then completed
IAT tasks programmed by Inquisit 4 (Millisecond Software,
Seattle, WA, USA). After the IAT task, they were asked
to complete a questionnaire including an explicit test and
personal information.

In the IAT task, 20 words were used as stimuli—10 common
typical Chinese names and 10 attributes. Five of the names were
Chinese male names, and five were Chinese female names. The
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FIGURE 1 | Locations of the electrodes and stimulation modes in transcranial direct current stimulation (tDCS) treatments. Schematic of electrode positions Fpz
and Oz based on the international electroencephalography (EEG) 10–20 system of the human brain. The shading represents the range of input voltage from
−19.379 V to 18.948 V.

attribute words consisted of five strong words, and five weak
words, which were selected from a previous gender stereotyping
study (Rudman et al., 2001); the stimuli from that study have
been applied several times in other neurological studies using
gender IAT since then (Knutson et al., 2007; Gozzi et al., 2009;
Cattaneo et al., 2011).

The task used the procedure designed by Greenwald et al.
(1998) consisting of five blocks. Blocks 1, 2, and 4 are for practice,
and the others (Blocks 3 and 5) are test blocks. In (practice) Block
1, participants were asked to classify male and female names by
pressing left (E) and right keys (I). In (practice) Block 2, they
were then asked to categorize the strong words and weak words
using these two keys as well. In (practice) Block 4, participants
were asked to categorize male and female names again, but the
key assignments were reversed compared with Block 1. In (test)
Block 3 and Block 5, names and attributes words are combined.
One of these blocks was in the congruent condition, where
participants were required to press key ‘‘E’’ for male names with
the left hand and strong words and key ‘‘I’’ for female names
and weak words with the right hand. The other block was in
the incongruent condition, and the association was switched
such that female names shared key ‘‘E’’ with strong words,
and male names shared key ‘‘I’’ with weak words. The order
of the congruent and incongruent blocks was counterbalanced;
meanwhile, the order of the name practice blocks corresponded
with the order of the test blocks (the position of Block 1 was
swapped with Block 4 when Block 3 was incongruent and Block
5 was congruent).

Stimuli were presented in the center of the computer screen
in white text on a black background using Inquisit 4 (Millisecond
Software, Seattle, WA, USA). The category labels (‘‘men’’ and
‘‘women, ’’ ‘‘strong’’ and ‘‘weak’’) were displayed on the left and
right top sides of the screen. Practice Blocks 1, 2, and 4 had

20 trials, and test Blocks 3 and 5 had 40 trials. To complete the
task, Participants needed to classify names and attributes words
by pressing the keys ‘‘E’’ and ‘‘I’’ on the computer keyboard
according to the label’s position. Each trial was kept on the screen
until the participant had given the correct response, followed
by a 500 ms blank screen. Participants were asked to respond
as quickly and accurately as possible when stimuli appeared
on the screen.

Analysis
The critical variables aremean reaction time (RT) and percentage
of error rate (PE), which reflect the subjects’ direct responses to
the different types of associations. According to Greenwald et al.
(2003), an improved algorithm performed better in measuring
implicit association strength, so we calculated D-IAT scores for
the three stimulation conditions following this procedure. All
trials except the extreme long trials (latencies >10,000 ms) were
included, and error latencies were replaced with block mean
latencies plus 600 ms. The RTs and PEs were then synthesized
to D-IAT scores—the difference between the adjusted latencies
of the incongruent and congruent blocks divided by the pooled
standard deviation of all trials. In general, these three variables
together indicate how strong the stereotypes are, with higher
IAT scores and larger differences in RTs and PEs between
the congruent block and the incongruent block representing a
stronger implicit bias towards males or females.

To evaluate explicit stereotypes, we used the Ambivalent
Sexism Inventory (ASI; Glick and Fiske, 1996) and calculated the
scores according to the standard method (Supplementary Table
S1). Because some of the reversed-worded items did not perform
well when translated into other languages in cross-cultural
studies (Glick et al., 2000), only valid items were retained
in the test. In general, the ASI scores represent ambivalent
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attitudes towards women. HS represents hostile sexism,
expressing negative stereotypes and attitudes towards women,
while BS represents benevolent sexism expressing positive
stereotypes and attitudes, both of which complementarily
generate gender inequity in various cross-cultural ideologies
(Glick and Fiske, 2001). In addition, there are three subfactors
of benevolent sexism: protective paternalism, complementary
gender differentiation, and heterosexual intimacy, which
correspond with three types of questions (BP, BG, and BI) in BS.

RESULTS

The data were statistically evaluated using SPSS software (version
22, SPSS Inc., Chicago, IL, USA). The significance level was set at
0.05 for all analyses.

Implicit Measures
The Shapiro–Wilk test showed that the residuals of the D-IAT
scores were normally distributed (p = 0.129). To test whether
both male and female participants had gender stereotypes, we
used a one-sample t-test to compare D-IAT scores and zero.
Figure 2 shows both male and female participants’ IAT-scores
in different stimulation conditions. In all of the male data, there
was a significant difference between the IAT-D scores and zero
(t(95) = 29.35, p < 0.001, Mean = 0.87, SD = 0.29). Analyses
also showed that IAT-D scores from all three stimulation
conditions were significantly different from zero respectively
(anodal: t(31) = 13.47, p < 0.001, Mean = 0.72, SD = 0.30;
cathodal: t(31) = 19.30, p < 0.001, Mean = 0.89, SD = 0.26;
sham: t(31) = 23.73, p < 0.001, Mean = 1.01, SD = 0.24),
which indicated that male subjects had strong associations of
male names with strong attributes and female names with weak
attributes regardless of the stimulation conditions. As for the
female subjects in the three tDCS types, they also had gender
stereotypes in all groups. t-tests revealed that the D-IAT scores
from the three stimulation conditions were significantly different
from zero respectively (all: t(95) = 9.86, p < 0.001, Mean = 0.40,
SD = 0.40; anodal: t(31) = 7.03, p< 0.001, Mean = 0.49, SD = 0.40;
cathodal: t(31) = 4.81, p < 0.001, Mean = 0.37, SD = 0.44; sham:
t(31) = 5.36, p< 0.001, Mean = 0.35, SD = 0.37).

One-way ANOVA performed on the D-IAT scores of all
subjects using gender and tDCS types as factors showed that the
main effect of gender (F(1,186) = 90.34, p < 0.001, η2p = 0.32)
and the interaction of gender and stimulation conditions
(F(2,186) = 6.22, p = 0.002, η2p = 0.06) were significant, which
indicated that male and female participants’ D-IAT scores have
different patterns. The main effect of tDCS types was not
significant (F(2,186) = 0.85, p = 0.429, η2p < 0.01). Post hoc analysis
using Bonferroni corrections revealed that male participants’
D-IAT scores significantly decreased when subjects underwent
anodal stimulation compared with sham stimulation (p = 0.003),
while the D-IAT scores of those that underwent cathodal
stimulation were not significantly changed compared with the
sham group (p = 0.476) and anodal group (p = 0.163). However,
the female participants’ D-IAT scores were not significantly
changed by the stimulation. Bonferroni post hoc tests revealed
that no significant result was found in the pairwise comparison

FIGURE 2 | Data of D-implicit association test (IAT) scores. Error bars
indicate 95% confidence intervals. Asterisks indicate significant differences in
gender stereotypes between treatments.

between these three stimulations (p > 0.1). Post hoc analysis
using Bonferroni corrections also found that male participants’
D-IAT scores were higher than those of female participants in all
stimulation conditions (anodal: p = 0.006, cathodal: p < 0.001,
and sham: p< 0.001).

D-IAT scores depend on RTs and PEs: lower D-IAT
scores mean higher RTs and PEs in the congruent blocks
or lower RTs and PEs in the incongruent blocks. Therefore,
we further decomposed the D-IAT effect and analyzed RTs
and PEs. Table 1 shows all the means and SD for RTs and
PEs across genders, blocks, and stimulation conditions. The
Shapiro–Wilk test showed that the residuals of RTs and PEs in
congruent and incongruent blocks were not normally distributed
(p < 0.05), so we performed non-parametric tests to analyze
them. First, we tested RTs; Figure 3 shows the results. The
Wilcoxon signed-rank test showed significant results for the
relationship between RTs in congruent blocks and incongruent
blocks (p < 0.001), indicating that RTs were overall higher in
incongruent blocks than in congruent blocks. This difference is
RTs remained present for both male and female participants in
the three stimulation conditions (p< 0.001).

More importantly, we analyzed the factors of block
conditions, gender, and stimulation conditions. First, we
applied these tests on the data from male participants separately.
With a Kruskal–Wallis test, we found no significant difference
in RTs either in congruent blocks or in incongruent blocks
(p > 0.1), indicating that tDCS did not change the latencies in
these two distinctive blocks respectively. However, the difference
in RT between congruent blocks and incongruent blocks was
significantly modulated by tDCS (p = 0.028). Post hoc analysis
using Dunn–Bonferroni corrections revealed that the difference
in RTs in anodal stimulation is significantly smaller than that
in sham stimulation (p = 0.023), while the cathodal stimulation
had no significant effect compared with the anodal and sham
group (p > 0.1). These results indicated that the effect of tDCS
on male participants’ gender stereotypes stemmed from the
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TABLE 1 | Mean and SD D-IAT scores, reaction times, percent of error, and rate correct scores across genders, blocks, and stimulations.

Gender Stimulation Anodal Cathodal Sham Average

Block Cong Incong Cong Incong Cong Incong Cong Incong

Male RT (ms) 715.98∗∗∗ 994.82∗∗∗ 641.77∗∗∗ 963.66∗∗∗ 642.43∗∗∗ 1043.85∗∗∗ 666.73† 1000.78†††

(SD) 173.80 254.12 103.03 218.71 84.85 238.73 129.99 237.45
PE (%) 1.80∗∗ 4.22∗∗ 2.42∗∗∗ 5.94∗∗∗ 1.88∗∗∗ 7.42∗∗∗ 2.03† 5.86††

(SD) 2.13 4.51 3.39 5.30 2.77 8.51 2.79 6.42
D_IAT 0.72 0.89 1.01 0.87
(SD) 0.30 0.26 0.24 0.29
RCS 1.43∗∗∗ 1.01∗∗∗ 1.56∗∗∗ 1.03∗∗∗ 1.55∗∗∗ 0.94∗∗∗ 1.51†† 0.99†††

(SD) 0.27 0.21 0.24 0.24 0.19 0.24 0.24 0.23
Female RT (ms) 694.95∗∗∗ 875.25∗∗∗ 682.36∗∗∗ 816.22∗∗∗ 713.32∗∗∗ 856.9∗∗∗ 696.88† 849.45†††

(SD) 107.18 195.55 124.36 251.52 116.46 191.51 115.69 213.79
PE (%) 2.89 3.59 3.28 4.30 2.34 3.28 2.84† 3.72††

(SD) 3.31 3.42 3.89 4.85 2.69 4.64 3.32 4.32
D_IAT 0.49 0.37 0.35 0.40
(SD) 0.39 0.44 0.37 0.40
RCS 1.43∗∗∗ 1.16∗∗∗ 1.46∗∗∗ 1.26∗∗∗ 1.40∗∗∗ 1.18∗∗∗ 1.43†† 1.20†††

(SD) 0.21 0.26 0.25 0.30 0.22 0.24 0.23 0.27

Asterisks indicate statistically significant differences between congruent and incongruent blocks. Daggers indicate statistically significant differences between male and female genders.

FIGURE 3 | Data on reaction times (RTs) in male participants. Error bars
indicate 95% confidence intervals. Asterisks within stimulation conditions
indicate significant differences in RTs between congruent and incongruent
blocks. Asterisks between stimulation conditions indicate significant
differences in the gap of congruent and incongruent blocks between
stimulations.

relative association between congruent blocks and incongruent
blocks rather than these two blocks independently. As for female
participants, the effect of tDCS disappeared. Kruskal–Wallis
tests on RTs in congruent blocks, incongruent blocks, and the
difference of them were all insignificant (p> 0.1).

We also tested PEs using the same non-parametric test.
Figure 4 shows the results. The Wilcoxon signed-rank test
showed a significant difference between PEs in congruent blocks
and incongruent blocks (p < 0.001), indicating that participants
made more mistakes overall in incongruent blocks than in
congruent blocks. For male participants in the three stimulation
conditions, this difference in PEs between block conditions still
existed (cathodal, sham: p < 0.001, anodal: p = 0.002), while
differences in female participants’ error rate were insignificant
between condition blocks. Meanwhile, for both males and
females, the Kruskal–Wallis test on PEs in both congruent blocks

FIGURE 4 | Data on percentage of error in male participants. Error bars
indicate 95% confidence intervals. Asterisks within stimulation conditions
indicate significant differences in PEs between congruent and incongruent
blocks.

and incongruent blocks and the difference between them were all
insignificant (p> 0.1).

We further focused on gender differences in the RTs
and PEs of both congruent and incongruent blocks. The
Mann–Whitney test was applied to show that the differences
in RTs and PEs between genders existed in both block
conditions, but the differences were in the opposite direction
between block conditions. As for RTs, in incongruent
blocks, male participants reacted significantly more slowly
than females (p < 0.001) but in congruent blocks, male
participants reacted significantly more quickly (p = 0.014).
In terms of PEs, males made significantly more mistakes
than females in incongruent blocks (p = 0.010), but in
congruent blocks, males made significantly fewer mistakes
(p = 0.049).

Explicit Measures
The Shapiro–Wilk test showed that the residuals of ASI were
normally distributed (p = 0.116). To investigate whether tDCS
directly changes explicit prejudice, we tested the effect of tDCS
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on the explicit test (Table 2). One-way ANOVA with stimulation
conditions (anodal, cathodal, and sham) and gender (male and
female) as between-subjects factors showed no significant main
effect in stimulation conditions (F(2,186) = 2.46, p = 0.088,
η2p = 0.03), gender (F(1,186) = 3.46, p = 0.064, η2p = 0.02), and the
interaction of stimulation conditions and gender (F(2,186) = 0.20,
p = 0.818, η2p < 0.01), which revealed that tDCS did not
modulate the explicit gender stereotypes of either male or
female participants.

Since the ASI has four subscales: HS, BI, BG, and BP, and
only the residuals of HS were normally distributed according to
the Shapiro–Wilk test (HS: p = 0.152 BI, BG, BP: p < 0.05), we
performed non-parametric tests for analysis. Kruskal–Wallis was
used to test the tDCS effect on these subscales from male and
female participants, respectively. Overall, tDCS stimulation did
not change the subscales (p > 0.1). The only explicit attitude
influenced by tDCS was BG from female participants (p = 0.045).
Post hoc analysis using Dunn–Bonferroni corrections revealed
that anodal stimulation reduced the intensity of females’ attitudes
on gender differentiation compared with sham stimulation
(p = 0.041).

The Mann–Whitney test was applied to analyze the gender
difference in the subscales further. There were some distinctions
between the attitudes of male and female participants. On the
whole, males and females had a similar degree of hostile sexism
towards the female (p = 0.083). However, there were significant
differences in benevolent sexism between male and female
participants. Males had higher BI factor values than females
(p< 0.001), and they also had higher BP factor values (p = 0.027).
Nevertheless, the male participants’ sexism was weaker than that
of females in terms of the BG factor (p < 0.001). These results
demonstrated that males and females had their own reasons for
benevolent sexism: males are more sexist in terms of protective
paternalism and heterosexual intimacy, while females focus more
on complementary gender differentiation.

Correlation Between Implicit and Explicit
Measures
Finally, we tested whether the explicit attitudes, the ASI scores,
were correlated with the implicit gender stereotypes. The ASI
scores were positively correlated with the D-IAT score in the
sham group (ρ = 0.24, p = 0.053 in a Pearson correlation test).
In our study, the HS from our participants in the sham situation
had a significant relationship with the D-IAT score according to
Pearson correlation test (ρ = 0.39, p = 0.002 for HS, ρ = 0.03,
p = 0.83 for BS), which implied that hostile sexism was the only
explicit attitude correlate with the implicit gender stereotypes.
When we tested the correlation of all six (three stimulation
conditions × two genders) combinations, HS was only positively

TABLE 2 | Mean and SD of Ambivalent Sexism Inventory scores.

Gender HS BS BP BG BI ASI

Male Mean 2.35 2.55 3.03 1.69 3.12 2.45
(SD) 0.77 0.80 0.98 0.92 1.42 0.64

Female Mean 2.13 2.4 2.65 2.29 2.17 2.26
(SD) 0.84 0.92 1.08 0.93 1.55 0.74

FIGURE 5 | Data on RCS in male participants. Error bars indicate 95%
confidence intervals. Asterisks within stimulation conditions indicate
significant differences in RCS between congruent and incongruent blocks.
Asterisks between stimulations indicate significant differences in the gap of
congruent and incongruent blocks between stimulations.

correlated with the D-IAT scores for both males (ρ = 0.34,
p = 0.057) and females in the sham stimulation (ρ = 0.34,
p = 0.061), a trend close to significance.

Robustness Analysis: RCS
In the implicit measures, we first calculated D-IAT scores, and
then analyzed the RTs and PEs separately. In this section, we
further applied another method called the rate correct score
or RCS, which combines speed and accuracy as a robustness
analysis. The RCS is the number of correct responses divided by
the sum of all RTs in the congruent and incongruent conditions,
respectively (Woltz and Was, 2006; Vandierendonck, 2017).
Table 1 shows all of the mean and SD values for RCS across
genders, blocks, and stimulation conditions. Figure 5 also shows
the results.

The Shapiro–Wilk test showed that the residuals of RCS
in incongruent blocks were normally distributed (p = 0.315),
while those in congruent blocks were not normally distributed
(p = 0.027), so we performed non-parametric tests to analyze
them. The Wilcoxon signed-rank test showed significant results
between RCS in congruent blocks and incongruent blocks
(p < 0.001), indicating that RCS were higher overall in
congruent blocks than in incongruent blocks and that people
made more correct responses per second. For both male
and female participants in the three stimulation conditions,
these differences in RCS between block conditions still existed
(p< 0.001).

Kruskal–Wallis testing on RCS in both the congruent blocks
and incongruent blocks from male and female participants
showed that tDCS did not change the RCS in these two distinctive
blocks, respectively (p > 0.1). However, for male participants,
the difference in RCS between congruent blocks and incongruent
blocks was significantly modulated by tDCS (p = 0.003). Post
hoc analysis using Dunn–Bonferroni corrections revealed that
the difference in RCS in anodal stimulation is significantly
smaller than that in sham stimulation (p = 0.002), while cathodal
stimulation had no significant effect compared with the anodal
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and sham groups (p > 0.1). These results demonstrated that
tDCS modulated male participants’ relative correct responses
per second between congruent blocks and incongruent blocks,
which was consistent with the results of the RT analysis. For
female participants, these effects were all insignificant.

We also checked the gender difference in RCS in congruent
and incongruent blocks by using the Mann–Whitney test. In
congruent blocks, male participants’ number of correct responses
per second were higher than females’ (p = 0.006), but in
incongruent blocks, male participants made significantly fewer
correct responses per second than females (p < 0.001). This
result is consistent with our finding for RTs and PEs, in
that differences in RCS between genders existed in both block
conditions but the differences were in the opposite direction in
the two block conditions.

DISCUSSION

This article investigated the contribution of the mPFC to
stereotypes, specifically within the domain of gender stereotypes,
and this effect was found to be limited to male participants.
Previous lesion studies (Milne and Grafman, 2001; Gozzi et al.,
2009), neuroimaging studies (Knutson et al., 2007; Quadflieg
et al., 2009), and a TMS study (Cattaneo et al., 2011) suggested
that the mPFC was involved in prejudice and stereotyping
(Amodio, 2014), especially in the gender stereotyping assessed
by the IAT (Greenwald et al., 1998, 2003). Nevertheless, the
mechanistic role of the mPFC in this test remained vague, and
the conclusions have not been convergent.

Because of the inconsistency of previous results and the lack
of a test of the causal relationship between the mPFC and
gender stereotypes, in this study, we applied tDCS over the
mPFC in our participants to directly modulate this brain region
and reveal the precise effect on gender stereotypes. We found
that, when enhancing the activity of the mPFC, the implicit
gender stereotyping attitudes of male participants, as indicated
by the D-IAT scores measured by the gender IAT (Rudman
et al., 2001) were reduced compared to the sham group. This
observation demonstrated the causal relationship betweenmPFC
activation and gender-stereotyped attitudes. The reduction in
the D-IAT scores mainly stemmed from a decrease in the
difference in RTs between the incongruent and congruent blocks
when participants underwent anodal stimulation over mPFC,
which seems to conflict with previous research that the effect
of modulating the activity of the mPFC resulted from altered
performance only in the incongruent blocks (Sellaro et al., 2015).
In this study, the researchers found that enhancing the activation
of the mPFC reduced the negative bias towards social outgroups.
Thus, the interpretation was that the mPFC was an essential
region in self-regulatory and cognitive control in the context
of ethnic stereotyping. Cattaneo et al. (2011) suggested that the
inhibition of the aDMPFC by TMS led to an increase in gender
bias based on an increased error rate in the incongruent blocks.
Our findings were not inconsistent with that result because the
aDMPFC is involved in the network mediating cognitive control
in the DLPFC. In the present study, the target brain region was
the mPFC, or the VMPFC specifically, which proved to have

a different function than the DMPFC based on a lesion study
(Gozzi et al., 2009). This result can also be compared to the
outcome from Gladwin et al. (2012), where anodal stimulation
of the L-DLPFC only improved the RT in congruent blocks using
the IAT about insects and flowers. They found that the function
of the L-DLPFC was to influence working memory, which meant
that the activation of the L-DPLFC increased the associations in
congruent blocks and led to faster RTs but that, in incongruent
blocks, this activation of the brain region affected congruent and
incongruent associations at the same time.

In this study, several factors contributed to the changes
observed in the congruent blocks comparing to incongruent
blocks. First, the effect of mPFC activation on congruent blocks
also correlates with the role of the mPFC in memory and
decision making. According to Euston et al. (2012), when
confronted with different contexts, locations, and events, the
mPFC takes part in the process of learning and using the
associations between these targets to provide the corresponding
response. This function in both long-term and short-term
memory provides the possible explanation that the activation of
the mPFC reduced the association intensity in congruent blocks
but had an effect on both congruent and incongruent associations
in incongruent blocks, which finally led to a reduction in the
bias. Another reason was that gender stereotypes are culture-
sensitive. In Western culture and Chinese culture, the history
and current situation of social gender stereotypes are not entirely
the same. In the meantime, there is a gap in the intensity of
the gender stereotypes between these two societies. For example,
the D-IAT scores from our experiment were higher than those
from the previous study (Cattaneo et al., 2011). The similar,
but not identical, cultural background influences an individual’s
neural activity, which underlies cognitive functions such as
emotional processing, mental attribution, self-representation,
and self-awareness (Han and Northoff, 2008), which possibly
causes the distinct change in the congruent blocks during
anodal stimulation. The reasons above combined can account
for the effect of tDCS on the differences in RTs and RCS
between incongruent and congruent blocks. Actually, a more
precise role of the mPFC in the neural circuit of prejudice
and stereotypes can be found by further combining fMRI and
tDCS techniques.

We also revealed that cathodal tDCS had no significant
effect on the behavior of either the male or female participants
compared with the sham group, which was consistent with
Sellaro et al. (2015). This result may be because the mPFC is
insensitive to cathodal stimulation, which was also investigated
in studies of cathodal stimulation of the somatosensory cortex,
while anodal stimulation influenced the activity of this brain
area (Matsunaga et al., 2004). Another possible explanation also
mentioned in previous studies is that the low background level
of activity in the mPFC and the high prejudice baseline have a
ceiling effect, which limits the influence of cathodal stimulation
(Matsunaga et al., 2004; Sellaro et al., 2015).

This study also investigated gender differences in the view
of gender bias. Regarding implicit stereotypes, the female
participants’ bias was significantly lower than that of the male
participants, and only the male participants’ gender stereotypes
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were significantly affected by the tDCS, which has also been
observed in several studies (Rudman et al., 2001; Knutson et al.,
2007; Cattaneo et al., 2011). Additionally, the female participants
showed a significant gender bias in the IAT, which resulted from
a different gender culture baseline between the societies. One
possible reason is that the different behaviors of the male and
female participants stemmed from different neural stereotype
substrates or different sensitivities to activation of the mPFC
during tDCS. The female participants had a relatively higher
activation level of the mPFC and lower gender bias so that
stimulation power was limited, and stimulation could not further
reduce the bias. Because explicit attitudes correlated with D-IAT
scores for some of the subscales, different neural activities in
the male and female participants may both consciously and
unconsciously influence the bias.

In terms of the neural substrates of gender difference,
Stam et al. (2019) demonstrated that brain structure-personality
associations are dependent on sex. Specifically, in some brain
regions, there were inverse associations between temperament
and regional gray matter volume (GMv) in males and females,
and the brain regions related to gender and temperament
were non-overlapping. So, the difference in personality between
genders has a sex-specific neural basis. In our study, what we
found is consistent with Stam et al. (2019): the difference in
implicit gender stereotypic attitudes between male and female
have a sex-specific association with the target region, the
mPFC. We demonstrated the causal relationship between the
mPFC and gender stereotypes by modulating the activity of
the mPFC. Although personal characteristics, temperaments and
stereotypic attitudes are distinct from each other, for example,
temperaments are heritable, homogeneous, and stable while
stereotypic attitudes can be influenced by culture and evolved in
the lifetime (Comings et al., 2000; Stam et al., 2019), sex-specific
associations between brain regions and personal traits and
attitudes still exist. In summary, our results provided extensive
evidence from personality to stereotypes for the neural basis of
gender difference.

In this study, the participants’ explicit prejudicial beliefs were
measured by the ASI, which has been widely used in previous
research (Glick and Fiske, 1996; Milne and Grafman, 2001;
Rudman et al., 2001; Knutson et al., 2007; Cattaneo et al.,
2011). The ASI scores correlated with the D-IAT scores in
the sham group, which indicated that the explicit attitudes of
gender stereotypes and the automatic association process were
closely related. However, our study demonstrated that tDCS
had no effect on the majority of the explicit test. Therefore,
we interpret these findings to show that the explicit gender
bias in the ASI was consciously controlled according to social
norms and discipline, and this bias expression can be controlled
by external influences, such as culture and education (Crandall
et al., 2002; Cunningham et al., 2004). This cultural background
may explain the different results in our research from previous
research. For example, Rudman et al. (2001) revealed that
both BS and HS significantly correlated with gender potency
stereotypes measured by a similar IAT to that used in our
experiment, and these findings demonstrated that participants
who held both hostile and benevolent sexist attitudes had

the same automatic associations between males and potency.
However, in our study, only the HS scores in our participants
in the sham stimulation condition showed trends close to a
significant relationship with the D-IAT scores through the
Pearson correlation test, which revealed that hostile sexism
was the only explicit behavior related to the implicit gender
stereotypes here.

Limitations
One limitation of this study is that although our findings
confirmed that modulating the excitability of the mPFC reduced
male participants’ gender stereotypes, the neural circuitry
underlying this process cannot be demonstrated by a single
experiment. Future studies may focus on other brain regions
and discuss the functions of the mPFC within the neural
circuit. Moreover, by using this bipolar tDCS montage, whether
only the mPFC influences the gender stereotypes or whether
both target and return electrodes and the interaction between
them influence participant’s behavior together is still unclear.
These issues should be considered seriously in further studies.
In addition, this study applied a between-subject design to
avoid the learning effect, which can also be improved upon
in the future.

CONCLUSION

Our study revealed that male and female participants had
different behavioral performance and neural substrates regarding
gender stereotypes. Males had a relatively higher level of
gender stereotyping than females, and the mPFC plays a
causal role in controlling male participants’ implicit gender
stereotypes. Male participants’ implicit bias was significantly
restrained by tDCS, but female participants were not significantly
influenced. The stimulation did not directly influence the ability
to make automatic associations in congruent blocks or to
overcome automatically activated gender-biased associations in
incongruent blocks but affected the difference between the
two blocks. We also found differences in explicit prejudice
between male and female, which have both neural and
cultural underpinnings.
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The fibromyalgia syndrome (FMS) is characterized by chronic widespread pain,
sleep disturbances, fatigue, and cognitive alterations. A limited efficacy of targeted
treatment and a high FMS prevalence (2–5% of the adult population) sums up to
high morbidity. Although, altered nociception has been explained with the central
sensitization hypothesis, which may occur after neuropathy, its molecular mechanism
is not understood. The marked female predominance among FMS patients is often
attributed to a psychosocial predisposition of the female gender, but here we will
focus on sex differences in neurobiological processes, specifically those of the immune
system, as various immunological biomarkers are altered in FMS. The activation of
innate immune sensors is compatible with a neuropathy or virus-induced autoimmune
diseases. Considering sex differences in the immune system and the clustering of FMS
with autoimmune diseases, we hypothesize that the female predominance in FMS is
due to a neuropathy-induced autoimmune pathophysiology. We invite the scientific
community to verify the autoimmune hypothesis for FMS.

Keywords: autoimmune disease, central nervous system sensitization, fibromyalgia, pathophysiology, sex
differences, widespread chronic pain

INTRODUCTION

As long as the pathophysiology of the FMS is not elucidated, the diagnosis (Wolfe et al.,
2016; Arnold et al., 2019) and the treatment (Macfarlane et al., 2017) will remain inadequate.
Many consider FMS to be psychosomatic (Lami et al., 2018) and there are still physicians
who do not recognize the disorder. Although the name indicates a fibromuscular affection
and the syndrome is classified as a rheumatic disorder, FMS is treated as a neurological
problem, in accordance with the currently most accepted hypothesis: central sensitization
(Staud et al., 2009). The history of FMS not only reveals the confusion (Inanici and Yunus,
2004) but also the importance of (1) inflammation, (2) a neuropathic type of pain, (3)
referred pain after irritation or damage of the paraspinal ligaments, (4) increased substance
P levels in cerebrospinal fluid (CSF), and (5) an etiology of trauma and/or infection
accompanied by mental stress, which are all consistent with neuroinflammation. Female
predominance and clustering with autoimmune diseases were recognized in the historical review

Abbreviations: AIRE, autoimmune regulator; CNS, central nervous system; CSF, cerebrospinal fluid; FMS, fibromyalgia
syndrome; HLA, human leukocyte antigen; MS, multiple sclerosis; NK, natural killer cell; SLE, systemic lupus erythematosus;
TCR, T cell receptor; TLR, Toll-like receptor; Th, helper T lymphocyte; Treg, suppressor T lymphocyte.
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(Inanici and Yunus, 2004), but suggestions of autoimmunity
markers were omitted (Jacobsen et al., 1990; Klein et al., 1992),
despite being actual at the time of the review. Still, it seems that
autoimmune susceptibility accompanies FMS. We propose that
FMS is a neuropathy-induced autoimmune disease directed to
nervous tissue. As autoimmunity is sex biased (Beeson, 1994),
the autoimmune hypothesis may explain the female prevalence
observed in FMS.

The focus of the paper is to present the biological data from
which this hypothesis emerges, followed by how it may explain
central sensitization and the sleep alteration that characterize
FMS. Next, we describe the mechanisms of immunological self-
tolerance and how it can be breached, as well as the well-
known sex differences in the immune system, which explains why
women are more susceptible to develop certain autoimmunity
disorders. We reflect on the complexities of proving the
hypothesis and offer suggestions to verify the hypothesis.

FIBROMYALGIA: INTRODUCING THE
AUTOIMMUNE HYPOTHESIS

Fibromyalgia syndrome is characterized by unexplained chronic
(>3 months) widespread pain accompanied by moderate to
severe sleep problems and/or fatigue (Arnold et al., 2019). Fatigue
upon awakening has been associated with altered sleep wave
patterns, especially a lack of slow-wave sleep (Roizenblatt et al.,
2001). A myriad of additional symptoms tends to accompany the
disease, amongst them cognitive difficulties, depression, irritable
bowel, irritable bladder, restless legs, dry mouth and eyes, and
altered sense perception (Arnold et al., 2019). Primary FMS
is not accompanied by another chronic pain disorder, whereas
secondary FMS develops as a co-morbidity of another dominant
chronic disease, commonly an autoimmune disease (Häuser et al.,
2015). FMS prevalence among the adult population ranges from
0.8–5% worldwide, depending on the geographical area, case
definition, and assessment method (Johnston et al., 2013; Jackson
et al., 2015). FMS occurs in the pediatric population, generally
beginning with the onset of puberty (Gedalia et al., 2000), but the
highest prevalence is among middle-aged women. The female-
to-male ratio ranges from 1:1 to 30:1, but a worldwide average
is about 3:1 in both the pediatric (Gedalia et al., 2000) and adult
populations (Queiroz, 2013).

Although FMS is classified as a musculoskeletal disease,
the currently most accepted hypothesis of pathogenesis,
central sensitization (Staud et al., 2009), is neurobiology-based
and supported by empirical and impartial evidence (Maestu
et al., 2013; Sluka and Clauw, 2016). As the etiology and
pathophysiology of FMS remain elusive, FMS treatment is
directed to symptom management, which includes inhibition of
an overreacting CNS (Macfarlane et al., 2017). In general, 30%
of the patients report a 30% improvement because of treatment
(Häuser et al., 2015). This modest efficacy suggests that the
pharmacological treatment does not target the cause.

We hypothesize that FMS is a neuropathy-induced
autoimmunity directed against nervous tissue. The autoimmune
hypothesis provides a mechanistic explanation for the central

sensitization hypothesis and thus the two hypotheses are
compatible. Considering sex differences in the immune system,
the autoimmune hypothesis may explain female predominance
among FMS patients.

The autoimmune hypothesis emerged from the following
observations. First, the epidemiological profile of FMS is
similar to the one of autoimmunity as both peak among
middle-aged women (Beeson, 1994). Second, FMS co-occurs
with a cluster of autoimmune diseases e.g., sicca syndrome,
SLE, rheumatoid arthritis, irritable bowel syndrome, thyroiditis,
interstitial cystitis/painful bladder syndrome, and restless legs
syndrome co-occur. Autoantibodies ‘specific’ for aforementioned
autoimmune diseases tend to be shared rather than unique. When
they are detected in FMS, a corresponding autoimmunity is
diagnosed and FMS is redefined as secondary FMS (Hervier et al.,
2009). Still, secondary FMS reveals autoimmune susceptibility
(Buskila and Sarzi-Puttini, 2008; Giacomelli et al., 2013; Haliloglu
et al., 2017). Specific antibodies for FMS have been reported
(Supplementary Table 1), but they are neither consolidated
nor generally accepted (Werle et al., 2001; Giacomelli et al.,
2013). Third, there is overlap in the clinical profile of FMS and
certain autoimmune diseases, with respect to complex genetic
and environmental risk factors. The latter include infections
(Smatti et al., 2019) and stress due to traumatic experiences
(Sharif et al., 2018). Stress and certain personality characteristics
associate positively with autoimmune diseases, FMS, and other
chronic diseases in retrospective studies with selected controls
(Martin et al., 1996; Lami et al., 2018). But whereas stress and
personality are considered precipitating factors or consequences
in autoimmune diseases (Mitsonis et al., 2009; Hassett and Clauw,
2010), they are interpreted as the cause in FMS (Lami et al.,
2018) despite a lack of convincing evidence demonstrating a
causal relation (Häuser and Henningsen, 2014). Similarly, there
is no convincing evidence that a certain personality causes
pain (Naylor et al., 2017). Fourth, although routinely screened
inflammatory biomarkers in FMS samples (such as C-reactive
protein levels and erythrocyte sedimentation velocity) tend to
be within the normal clinical range, these and other immune
markers are significantly different from the ones of healthy
controls in a research setting (Kadetoff et al., 2012; Xiao et al.,
2013; Pernambuco et al., 2015; Mendieta et al., 2016; Bäckryd
et al., 2017; Ciregia et al., 2018). Although data on inflammatory
biomarkers are not consisted among studies, they correlate
weakly with clinical variables (Ernberg et al., 2018), or can
be explained by comorbid conditions, the general impression
is that chronic inflammation occurs in FMS (Ernberg et al.,
2018). Similarly, routine leukocyte counts are within the normal
range, but specific lymphocyte subgroups, not screened in clinical
routine studies, are altered in FMS patients. Compared to
age-matched healthy controls, female FMS patients had higher
proportions of CD57+ natural killer cells (NK) (17.1% vs.
11.3%) and CD5+ B cells (6.46% vs. 2.5%) (Russell et al.,
1999) but lower CD56+ NK (Landis et al., 2004). Case-control
observational whole-genome expression studies among women
revealed altered expression of immune pathways and markers
of tissue destruction (Lukkahatai et al., 2015; Jones et al., 2016).
These expression studies did not confirm gene polymorphisms
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FIGURE 1 | The autoimmune hypothesis for FMS. FMS complies with all
mentioned risk factors of autoimmune disease, as well as with research
biomarkers of an altered immune response. The missing pieces (indicated by
“?”) are the evidence of autoantibodies or autoreactive lymphocytes against
nervous tissue.

that had been identified in genome association studies (Park and
Lee, 2017). The gene association studies often had a selection
bias and did not clarify why the genetic susceptibility would
only lead to a disorder later in life. In this respect, the HLA
alleles (Branco et al., 1996; Yunus et al., 1999) form an exception,
as their impact depends on an interaction between genetic
and environmental factors. HLA genes have an essential role
in the immune system. Thus, the emerging picture is that
a combination of genetic predisposition, a precipitating event
(infections, trauma, autoimmune diseases or other reasons of
necrosis) (Jiao et al., 2015), and immune dysregulation due
to psychological stress (Takahashi et al., 2018) may convert
autotolerance or pre-existing occult autoimmunity into overt
autoimmunity, but the autoreactive component remains elusive
(Figure 1). Importantly, though the precipitation event may be
transitory, autoimmunity is a response of the adaptive immune
system and is chronic. The sex bias in the immune system may
explain the female preponderance of FMS.

WHY DOES CENTRAL SENSITIZATION
OCCUR?

Pain perception not only depends on the pain stimulus, but also
on the emotional and psychosocial state at a certain moment
(Rhudy et al., 2010; Finnern et al., 2018). Both human and
animal studies reveal greater pain sensitivity among females
than males for most pain modalities (Rhudy et al., 2010; Kisler
et al., 2016; Melchior et al., 2016; Aufiero et al., 2017; Kosek
et al., 2018). The gender/sex bias in pain perception in various
animal species denotes the importance of biological processes
and thus sex differences therein. Unfortunately, pain studies
aimed at other aspects than a sex or gender bias seldom report
outcome variables according to sex or gender and only mention

the proportion of males or females among study participants
(Supplementary Table 1). As a consequence, although the sex-
neutral neurophysiology of the pain pathway is well-described
in several reviews (Basbaum et al., 2009; Zeilhofer et al., 2012;
Peirs et al., 2015; Kendroud and Hanna, 2019) (Figure 2), little
is known about sex differences in pain processing, except for
modulation by sex-related hormones (Taleghany et al., 1999;
Vincent and Tracey, 2008; Artero-Morales et al., 2018). These
biological aspects are at least as important as the psychological
aspect (Foo et al., 2017). Though sex differences in functional
pain processing in itself are interesting, for FMS the focus is on
pathological pain processing, which has been explained with the
central sensitization hypothesis.

Central sensitization was originally described as an increased
electrophysiological activity in the dorsal horn in both a
polyarthritic (Menétrey and Besson, 1982) and a post-injury
male rat model (Woolf, 1983). Importantly, in both models a
peripheral tissue injury triggered off alterations in dorsal horn
neurons so that they augment pain signaling to normal input,
even from low-threshold Aβ mechanoreceptors (Woolf, 1991).
Besides, in animal models, sex differences in pain processing,
i.e., at a biological level, could only be detected after neuropathy
(Sorge et al., 2015) and involved the immune system.

Central sensitization has become the most accepted hypothesis
to explain FMS mainly because peripheral sensitization due
to autoimmunity is discarded because FMS does not comply
with the following criteria of inflammation: (a) the presence of
blood inflammatory biomarkers according to common clinical
criteria, (b) responsiveness to non-steroid anti-inflammatory
cyclooxygenase inhibitors. The former is debatable once research
findings on immunological biomarkers (as mentioned in the
previous section) are considered. The latter only indicates that
FMS is not cyclooxygenase dependent, but discredits neither
the involvement of other inflammatory and immune response
pathways, nor does it nullify the possibility of neurogenic
pain. Failure to comply with inflammatory criteria have not
prevented the recognition of Graves’ disease (Baruah and
Bhattacharya, 2012) and MS as autoimmune diseases (Luzzio
and Dangond, 2018). Furthermore, the need for inflammatory
biomarkers does not apply to secondary FMS because the
accompanying autoimmune disease will generate not only
inflammatory biomarkers but also a continuous nociceptive
input. In secondary FMS, the CNS changes appear to improve
when nociceptive input is removed (Sluka and Clauw, 2016).
The point is that the nociceptive input may also be present
in primary FMS, but we are ignorant of it. FMS pain is
said to be idiopathic, but the burning, nagging, excruciating
pain that is characteristic of FMS (Inanici and Yunus, 2004)
is consistent with neuropathy. Histopathological studies have
been performed on muscular and connective tissues (Inanici
and Yunus, 2004), but not on dorsal root ganglia and central
nervous tissue along the pain pathway. History teaches that
myasthenia gravis was considered an idiopathic paralysis. Only
after having established the involvement of the immune system
were pathological immune infiltrates observed in muscle tissue
(Hughes, 2005). There are indications that neuropathy is present
in FMS patients (Üçeyler et al., 2013; Ramírez et al., 2015;
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FIGURE 2 | Neuroanatomy and chemistry of the central modulation of pain. Blue projections, incoming signals from 1st order neurons; red projections, ascending
projections from 2nd order neurons toward thalamus (Thal) and cortical areas; yellow projections, projections for 3rd order neurons to cortical areas for awareness;
green projections, descending projections that modulate the pain pathway. I-X, Reddit layers within the gray matter of the spinal cord;↔, Integration of modulatory
ascending and descending information in the dorsal horn Reddit laminae I-V (DH LI-V). 5-HT, serotonin; Aα, Aβ, Aδ y C, incoming nerves with decreasing levels of
myelination; Amyg, amygdala; CC, cingulate cortex; CCKBR, cholecystokinin B receptor; CGRP, calcitonin gene-related peptide; DRG, dorsal root ganglia; Glu,
glutamate; Ins, insula; LC, locus ceruleus; Nav, voltage-gated sodium channels; NE, norepinephrine; NGF, nerve growth factor; PAG, periaqueductal gray; RN, raphe
nucleus; RVM, rostroventral medulla; S1, S, somatosensory areas 1 and 2; SP, substance P; TRP, transient receptor potential sensitive to nociceptive stimulus; µR,
µ-opioid receptor with high affinity for enkephalins and beta-endorphin. Image based on (Tracey and Mantyh, 2007; Allen Human Brain Atlas, 2010; Ossipov et al.,
2010).

Krumina et al., 2019). FMS pain may reflect a neuropathy of
a currently unknown etiology, which is compatible with the
central sensitization hypothesis. Latremoliere and Woolf (2009)
reviewed neuroplasticity at the molecular and cellular level
to explain central sensitization in pain hypersensitivity. They
underscore the fundamental contribution of an inflammatory or
neuropathic event to initiate the central sensitization.

Rat spinal cord slices exposed to pro-inflammatory cytokines
display patch-clamp recordings that are congruent with
the central sensitization hypothesis (Kawasaki et al., 2008),
suggesting that the immune system plays a role; but, as is the case

too often, proper controls were missing. A mouse study revealed
the essential role of the immune sensor TLR8 in the maintenance
of neuropathic pain. After nerve injury, TLR8 levels increased
in the small IB4+ neurons in the dorsal root ganglia and in the
ipsilateral dorsal horn. Subsequent intrathecal or intradermal
injection of TLR8 agonists (VTX-2337 and miR-21) induced
mechanical allodynia, and increased excitability of neurons
in the dorsal root ganglia, accompanied by the expression of
inflammatory mediators like interleukin 1 beta, interleukin 6, and
tumor necrosis factor alpha. These effects were absent or reduced
in TLR8 knock-out mice (Zhang et al., 2018). Aforementioned
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study did not report on sex differences, but in humans, TLR8 is an
X-linked gene that may escape X-inactivation leading to a dosage
difference between men and women (Umiker et al., 2014). TLR8
is especially important because of its pro-autoimmunity potential
(Peng et al., 2005). A recent study with BALB/c and C57BL/6
mice suggests that circulating immunoglobulin G (IgG)-type
immune complexes may directly mediate hyperalgesia at the
level of dorsal root ganglia (Bersellini Farinotti et al., 2019) where
macrophages and neurons have receptors for IgG1 and IgG2b
(Bersellini Farinotti et al., 2019). If this mechanism were to be
confirmed in humans, it would make women more vulnerable,
because women are more inclined to humoral adaptive immune
responses than men (see Section Sex Differences in the Immune
System). Another mouse study revealed sex differences in pain
processing. Intrathecal stimulation of the immune sensor of
danger TLR4 induced mechanical allodynia in male, but not
in female mice. At a cellular level, microglia in the spinal cord
proliferated in both sexes after peripheral nerve injury, but
only male microglia upregulate the immune sensor of danger,
P2RX4 (Mapplebeck et al., 2016). P2RX4 detects nucleotides,
mainly ATP, released after CNS stress or injury (Di Virgilio and
Sarti, 2018). Activation of P2RX4 receptors leads to release of
pro-inflammatory interleukin 1β and brain-derived neurotropic
factor, which promote pain hypersensitivity. The inhibition of
microglia in the spinal cord reversed allodynia only in male
rodents. The female pain process requires more investigation
(Sorge et al., 2015). As for humans, sex-biased pain because
of knee osteoarthritis could be explained by differences in
immune signaling molecules, interleukin 8 and monocyte-
chemoattractant protein-1 (Kosek et al., 2018). Interleukin
8 is one of the immunological biomarkers most consistently
associated with FMS (Kosek et al., 2015). Thus, sex differences
in pathological pain processing mainly involves immune
sensors and immune cells. And as we will see in Section “Sex
Differences in the Immune System,” the immune system presents
sex differences.

Besides, the sex bias of central sensitization remains to be
elucidated. We hypothesize that autoimmunity directed to the
CNS, either toxic or stimulatory, explains not only central
sensitization, but also the female predominance of FMS and the
lack of peripheral inflammatory biomarkers.

WHY IS SLOW-WAVE SLEEP MISSING?

The neurobiology of sleep and the regulation of the daily sleep-
wake cycle have been reviewed with a clinical perspective by
España and Scammell (2011). Gender and sex differences in sleep
health have been recognized but major gaps continue to exist is
areas of sleep regulation, the epidemiology of sleep problems,
diagnosis and treatment (Mallampalli and Carter, 2014). Two
sexually dimorphic areas, the preoptic area and suprachiasmatic
nucleus (Hofman and Swaab, 1989; Hofman et al., 1996) have
been associated with sleep problems (España and Scammell,
2011). However, it seems that the sexual dimorphic nucleus of
the preoptic area is dedicated to sexual and parental behavior
(Rosenblatt et al., 1996) rather than to sleep regulation. More

recently, another brain area, the anterior cingulate cortex, has
been involved in both primary insomnia (Yan et al., 2018)
and FMS (Jensen et al., 2009), but neither study analyzed sex
differences. Still, sleep differs between men and women and may
contribute to a sex-biased risk for sleep disorders (Mallampalli
and Carter, 2014) and, consequently, for FMS.

Polysomnography studies have revealed a variety of sleep
disturbances in FMS patients (Choy, 2015). Especially, the
phase of deep sleep is reduced and otherwise affected. Instead
of the synchronized and therefore high-amplitude slow waves
characteristic of the δ rhythm, desynchronized low-amplitude
high-frequency waves characteristic of the α rhythm interfere,
generating a pattern known as α-δ sleep (Choy, 2015). Deep
sleep is considered to be important for memory consolidation
and restoration processes. Abnormal deep sleep and other sleep
disturbances may contribute to the development of chronic pain
(Finan et al., 2013) and FMS (Mork and Nilsen, 2012).

Taking together the difficulty to maintain slow-wave sleep
and the peak symptomology upon awakening, it seems as if the
regulation of the different sleep phases may be involved. The
well-known somnogenic adenosine seems to have a special role
in the regulation of the slow-wave sleep phase as revealed by
studies with male C57BL/6 mice (Oishi et al., 2017). Extracellular
adenosine accumulation activates the adenosine A1 receptor
which inhibit arousal and induces slow-wave sleep. Another
adenosine receptor, A2A receptor, can induce slow-wave sleep,
but can be overruled by a motivation stimulus, like hunger
or stress (Lazarus, et al. 2019). These receptors are found in
the nucleus accumbens. Thus, the nucleus accumbens, already
known for being part of the reward circuit, has a role in the
control of the slow-wave sleep phase via adenosine receptors.
A variety of enzymes and adenosine and nucleotide transporters
in both neurons and astroglia are important for extracellular
adenosine levels in the micro-environment of the nucleus
accumbens. Interestingly, the A2A receptor also regulates naive
T cell development in the thymus and its maintenance in
the periphery (Cekic et al., 2013). In summary, adenosine,
associated metabolites and involved enzymes and transporters
may be important in slow-wave sleep and FMS, but further
research is necessary.

AUTOIMMUNE DISEASES: A CONFUSED
IMMUNE SYSTEM

Activation and Tolerance in the Immune
System
The definition of autoimmune disease is relatively
straightforward: a “disease that results when the immune
system [..] mistakenly attacks the body’s own tissues” (Wein,
2013). In practice it is more complicated as non-symptomatic
healthy persons tend to have autoantibodies (Tan et al.,
1997), which are eliminated before doing harm (Nagele
et al., 2013). For a disease to be classified as autoimmune
there must be detectable autoantibodies or autoreactive
T-cells in amounts sufficiently higher than non-symptomatic

Frontiers in Neuroscience | www.frontiersin.org 5 January 2020 | Volume 13 | Article 1414156

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01414 January 8, 2020 Time: 18:33 # 6

Meester et al. Immune Sex Bias in FM

controls and they must explain the symptoms or present a
strong epidemiological association with the symptoms. These
requirements are fulfilled for all recognized autoimmune
diseases, most often because of autoantibodies whether or
not in combination with immune infiltrates (Dornmair
et al., 2003). In autoimmune diseases that cluster with
FMS, such as rheumatoid arthritis, Sjögren’s syndrome,
and SLE, specific and diagnostic autoantibodies have
been identified. Autoantibodies against cryptic nuclear,
cytoplasmic and proteolipid protein antigens are shared in
various autoimmune diseases (Suurmond and Diamond, 2015;
Fayyaz et al., 2016).

Instead of being due to one specific cause, autoimmune
diseases develop when risk factors accumulate. Central to
autoimmune diseases is the loss of tolerance to autoantigens.
Tolerance of the immune system is the non-activation of the
immune response. Upon contact with a substance, particle
or pathogen our defense system must decide to attack or
to be tolerant. Essential for this decision is recognition,
which is different for the three levels of protection of
our defense system.

The first line of defense is a biophysicochemical barrier that
does not need activation nor recognition. The second level of
protection is provided by the innate immune system, a fast-
reacting system without memory. Memory is not required as
similar cell types or humoral factors share the same receptors
for dangers and will attack the same patterns of danger.
This in contrast with the third level of protection, provided
by T lymphocytes and B lymphocytes. Lymphocytes have
unique receptors, so that few will react upon a pathogenic
invasion. T lymphocytes are activated by antigen presenting
cells of the innate immune system, that provide instructions
according to the danger pattern that were encountered. When
selected and activated, lymphocytes generate a clone for
future memory and effector cells that are either cytotoxic
(Tc) or differentiate in a variety of mediators (helper T
cells, Th) that potentiate different components of the innate
and adaptive immune systems, while effector B lymphocytes
(B) become plasma cells (plasma) that produce antibodies.
If a tolerance response is erroneously converted into an
active immune response, the memory of the adaptive immune
response will respond with immune hypersensitivity upon
future challenges.

Activation and Tolerance in the Innate Immune
System
The tolerance mechanism of the innate immune system is
passive; i.e., the innate immune system is only activated upon
the detection of a limited number of non-self molecular patterns
associated with pathogens (PAMPs) or endogenous damage
(DAMPs). Hereto, innate immune cells share a limited set
of PAMP recognition receptors. Depending on the pattern
recognized, an appropriate action is initiated (Hoebe et al.,
2004). Everything that is not a PAMP or DAMP is automatically
tolerated by the innate immune system. In general, loss of
auto-tolerance is not due to breaches of tolerance of the
innate immune system.

Activation and Tolerance in the Adaptive Immune
System
Both recognition/activation and tolerance are more complex in
the adaptive immune system (Schwartz, 2012). The adaptive
immune system is able to recognize a huge number of structures
(known as antigenic determinants or epitopes) because of an
enormous variety of specific receptors, T-cell receptors (TCRs)
and B-cell receptors, that differ among lymphocytes. As a
consequence, when a noxious antigen invades the body, only
few specific lymphocytes will react. Clonal proliferation of a
triggered lymphocyte generates a specific ‘army’ composed of
effector lymphocytes (to eliminate current danger) and memory
lymphocytes to provide a faster and stronger immune response
for a future challenge with the same antigen.

As the specificity of the TCR and B-cell receptors is generated
at random, these receptors may recognize harmless xenoantigens
and autoantigens (Klein et al., 2014). To avoid allergies
and autoimmune diseases, the adaptive immune system has
three control mechanisms: (a) central tolerance, (b) peripheral
tolerance, and (c) major histocompatibility complex-restricted
activation of T cells, i.e., a T cell can only be activated when
its cognate antigen is presented by a major histocompatibility
complex molecule.

HLA Presents Protein-Associated Epitopes to the
Adaptive Immune System
In humans, the major histocompatibility complex is known as
HLA. The HLA genes of class I (A, B, and C) and II (DP,
DQ, and DR) are the most polymorphic genes of the human
genome and provide a molecular identity to an individual. All
nucleated cells of the human body express HLA-I, although
leukocytes express them in larger amounts, while HLA-II is
expressed by specialized antigen-presenting cells. HLA-I presents
antigens to CD8 + cytotoxic T cells, while HLA-II presents
antigens to CD4+ helper T cells (Th) (Hoebe et al., 2004).
As antigen presentation to T cells is HLA-restricted, only
body-own cells will be protected. The polymorphism of the
HLA molecules has an impact on the quality of the immune
response. Certain HLA-antigen complexes facilitate the immune
response of an individual and others not. Thus, the individuals
of a population differ in their protective capacity and their
susceptibility to autoimmune diseases. The antigen presentation
process is designed for large proteins, preferentially in a
particulate presentation. Therefore, electrolytes, sugars, lipids
(e.g., sex hormones), nucleic acids, peptides (e.g., neuropeptides),
and other small molecules (e.g., neurotransmitters) are passively
tolerated. On the other hand, tolerance to protein autoantigens is
an active, energy-consuming, and highly controlled process with
central and peripheral mechanisms.

Mechanisms of Central Tolerance
Central tolerance is established in the primary lymphatic organs,
most importantly, in the thymus, where developing T cells or
thymocytes reorganize their genome at random to express a
unique TCR, either xenoreactive or autoreactive. The thymic
epithelial cells function as ‘teachers’ of the thymocytes. Hereto,
the thymic epithelial cells express “AIRE),” a transcription factor
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that facilitates the expression of organ-specific autoantigens in
the thymus. The autoantigens are presented in combination with
HLA to the thymocytes. To survive, thymocytes should recognize
HLA (positive selection) but not recognize autoantigens (negative
selection). Simplified, autoreactive thymocytes have two fates
(Klein et al., 2014): (1) they die by apoptosis, in case of a
strong and long antigen-TCR interaction, and (2) they become
regulatory T cells (nTreg), when the antigen-TCR interaction is
of intermediate strength and length (Azzam et al., 2001; Ohkura
et al., 2013). Thymocytes that do not react with autoantigens or
only shortly and with low-affinity are liberated as naïve Th or
cytotoxic T cells to protect against danger in the periphery.

As not all autoantigens are expressed in the thymus in
sufficient amounts, autoreactive naive T cells may circulate in the
periphery, a phenomenon known as ignorance.

Mechanisms of Peripheral Tolerance
Peripheral tolerance complements central tolerance by any of the
following mechanisms: (1) clonal deletion of autoreactive T cells
by apoptosis, (2) the peripheral induction of Treg (iTreg) under
the influence of transforming growth factor beta, (3) anergy, i.e., a
reversible inactive state of the T cell when the antigen presenting
cells do not provide a costimulatory signal (Mueller, 2010), and
(4) ignorance, i.e., the amount of auto-antigen is insufficient
to induce either tolerance or an immune response. The choice
for any of these tolerance options depends on the abundance,
strength and duration of the TCR-antigen interactions, but it
is conditioned by the absence of a danger signal. As the T
cell has no information about the type of danger recognized
by its at-random-generated TCR, this information is provided
by the antigen presenting cell. Depending on the type of PRR
activated the antigen presenting cell provides a costimulatory
signal and instructions about the desired type of response (Th1,
Th2, or Th17 response) via cytokines (Kaiko et al., 2008). Apart
from these major tolerance processes, immune responses are
fine-tuned by many stimulatory, inhibitory, and modulatory
molecules (e.g., CD5) (Sigal, 2012) and cells, e.g., NKT cells
(Dasgupta and Kumar, 2016) within the immune system, as well
as neuroendocrine peptides and hormones beyond the immune
system (Carniglia et al., 2017). In summary, the adaptive system
mainly attacks large protein (>10 kDa) antigens and tolerance to
large self-proteins is a complex and highly regulated process.

Loss of Tolerance and Development of
Autoimmune Diseases
Tolerance may be breached for any of the following reasons or a
combination of them. First of all, molecular mimicry between an
auto-antigen and a pathogenic antigen may confuse the immune
system. A well-known example is the Guillain-Barré syndrome
due to autoantibodies directed to peripheral nerves because of
cross-reaction between nerve autoantigens and certain pathogen
antigens, especially Campylobacter jejuni, Epstein-Barr virus,
cytomegalovirus (Jacobs et al., 1998).

Secondly, bystander autoantigens that are presented in
combination with danger signals due to concurrent infections
or physical trauma may overcome tolerance, which may play a
role in the development of autoimmune diseases (Gestermann

et al., 2018). The bystander mechanism may also explain
how a ‘founder’ or primary autoimmune disease may lead to
secondary autoimmune diseases. Cell lysis due to inflammation
of the primary autoimmune disease liberates multiple cryptic
autoantigens (mitochondrial antigens, phospholipid antigens,
ribonucleoproteins, and other cytoplasmic autoantigens) that
provide DAMPs. And the cycle repeats itself: novel autoantigens
in combination with danger signals may lead to multiple
autoreactive clones of lymphocytes. Cryptic autoantigens
liberated during necrosis are shared by different autoimmune
diseases (Suurmond and Diamond, 2015). Although the etiology
is not proven, latent viral infections associate with MS (Virtanen
et al., 2014). A reactivating latent viral infection may cause
not only minor damage to nervous tissue but also a breach in
tolerance either by molecular mimicry or the bystander effect.
Multiple cryptic autoantigens are liberated due to repeated
tissue damage, so that polyautoimmunity develops. In MS,
oligoclonals are directed against a mixture of autoantigens of
cellular debris (Brändle et al., 2016). Initially, MS can be more
or less controlled by interferon treatment (Multiple Sclerosis
Therapy Consensus Group, 2008), which has antiviral activity,
until the polyautoimmune disease has become autosustainable
and the relapsing-remitting MS patient turns into a secondary-
progressive MS patient. In MS, just as in FMS, inflammatory
biomarkers of the blood tend to be within the normal range
(Luzzio and Dangond, 2018) as the inflammatory process occurs
localized, i.e., behind the blood-brain barrier. Aforementioned
process probably plays a role in many autoimmune diseases but
have been recognized for only a few. The clinical importance
is high because antimicrobial treatment may resolve the initial
infection, once the autoimmune disease has developed it may be
too late (Mukherjee et al., 2018). Alternatively, it explains why
steroid anti-inflammatory treatment worsens (Clark et al., 1985)
rather than improves the symptoms.

Thirdly, there is a genetic predisposition for most
autoimmune diseases, especially in the HLA genes, probably
as a consequence of affinity issues between the HLA molecule
and the presented antigen (Bodis et al., 2018). HLA-DR2, DR3,
DR4, DQ6, and DQ8 are associated with SLE, sicca syndrome,
and rheumatoid arthritis (Mangalam et al., 2013). Furthermore,
gene polymorphisms in complement factors may diminish
autoantibody clearance (Macedo and Isaac, 2016).

Fourthly, CD5 expression fine-tunes the adaptive immune
response in a complex way (Sigal, 2012). CD5 on T or
B lymphocytes may either facilitate or inhibit an adaptive
immune response depending on avidity issues (Domingues
et al., 2016). In general, CD5+ B cells have been related
with increased susceptibility for autoimmune disease, while the
opposite applies to T cells (Tarakhovsky et al., 1995; Pers et al.,
1999; Hawiger et al., 2004).

Fifthly, stress dysregulates the immune system (Sharif et al.,
2018). Acute stress enhances catecholamines and circulating
leukocytes, which facilitates a stronger immune response.
Chronic stress, on the other hand, is immunosuppressive.
The stress hormone cortisol diminishes leukocyte numbers
and suppresses leukocyte function (Dhabhar, 2008). The
stress hormones epinephrine and cortisol induce a rapid
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leukocyte redistribution. Although the exact mechanisms of
this phenomenon remains to be elucidated, clinical and
epidemiological data convincingly and consistency reveal an
association between chronically stressed people and vulnerability
to and resurgence of infections and autoimmune diseases
(Reiche et al., 2004).

Sixthly, the immune response is age dependent (Elisia et al.,
2017) and age has is a risk factor for loss of central tolerance.
In over 60% of autoimmune cases, the onset of symptoms was
in the fourth and fifth decade of life, with a median onset at
37.5 years of age (Euesden et al., 2017). A detection bias may
play a role in the age effect. Autoimmune disease may not be
apparent at the onset, because the progression is slow and their
biochemical, physiological or visual detection not obvious. For
example, Sjögren syndrome, an autoimmune disease affecting
the glands, becomes apparent in older individuals, because
destruction of the glands is slow and symptoms of dryness are
only experienced when most of the glands are destroyed (Hsu
and Mountz, 2003). Importantly, the most essential organ for
central tolerance, the thymus, undergoes profound age-associated
atrophy (Lynch et al., 2009). Thymic decline is clearly associated
with the presence of sex steroids (Heng et al., 2005).

And finally, being female is a risk factor for many autoimmune
diseases. A sex bias in the immune system is well-documented
and will be described in more detail in the next section.

The unfortunate co-occurrence of aforementioned risk factors
elicits an autoimmune disease. It is important to highlight that
the initial trigger may be transitory, but the induced autoimmune
response is chronic due to the memory of the adaptive immune
response. Aforementioned risk factors all apply to FMS (see
Section Fibromyalgia: Introducing the Autoimmune Hypothesis
and Figure 1).

SEX DIFFERENCES IN THE IMMUNE
SYSTEM

The burden of infectious diseases and the incidence of cancer,
allergies, and autoimmune disease differs between men and
women. Though this phenomenon can be partially explained by
a differential exposure of men and women to environmental risk
factors, sex differences in the immune system are evident and
well-known. The expression of many immune system-associated
proteins and activation of immune cells differs between the sexes
as have been reviewed elsewhere (Klein and Flanagan, 2016;
Rainville et al., 2018). Well-known is a Th1 bias in male and
a Th2 bias in female (Klein and Flanagan, 2016). The latter
facilitates the natural passive transfer of immunity from mother
to fetus, as immunoglobulins G are able to pass the placenta
to protect the fetus. Furthermore, as of adulthood, the number
of innate and adaptive leukocytes is higher in females than in
age-matched males (Urquhart et al., 2008), except for Treg and
innate lymphoid cells, including NK, which are more abundant
in males (Klein and Flanagan, 2016). NK have functions beyond
cytotoxicity including an important role in the regulation of
immune homeostasis and inflammation (Vitale et al., 2005).
During aging, the diverse NK population changes gradually; the

proportion of immunoregulatory CD56hi NK diminishes in favor
of highly differentiated cytotoxic CD57+ NK. This redistribution
may explain functional changes in NK cells with healthy aging
(Gayoso et al., 2011). The dysregulation of NK and NKT cells is
associated with allergies and autoimmune diseases (Nielsen et al.,
2013; Tahrali et al., 2018). Here, we highlight that the cellular
immune response tends to predominate in men and the humoral
immune response in women. Furthermore, adult men tend to
have more immunoregulatory cells than women.

Differential Effect of Sex Hormones on
Leukocyte Behavior
Sex hormones differentially influence the behavior of leukocytes.
There is a differential distribution of sex hormones receptors
among leukocytes. For example, CD4+ T cells have high levels
of the estrogen receptor alpha but low estrogen receptor β levels,
whereas the opposite applies for Treg. CD8+ Tc have low
expression levels for both types of estrogen receptors, whereas
NK express both receptors highly. In mice, high estrogen
levels signal via estrogen receptor α and induce antiviral
type 1 interferon and NK cells, as well as Treg. Signaling
via estrogen receptor β has opposing effect and results in
diminished Treg activation. Furthermore, the transmembrane
G protein-coupled estrogen receptor, which induces rapid
signaling is highly expressed by certain leukocytes (CD4+
Th, Treg, B cells, and macrophages) (Koenig et al., 2017).
Estrogen diminishes neutrophil infiltrates and protects against
the harmful effects of the innate response (Shimizu et al.,
2008; Ritzel et al., 2013). Progesterone and testosterone promote
monocyte recruitment and an androgen receptor antagonist
reduced monocyte recruitment (Toyoda et al., 2012; Sutti and
Tacke, 2018). On the other hand, testosterone treatment reduced
immunoglobulin M and immunoglobulin G production and as
such diminishes peripheral humoral adaptive immunity (Kanda
et al., 1996). The effects of sex hormones are complex because
of opposing effects depending on concentration (Hughes, 2012),
the variety in metabolic forms that modulate the immune
response, and relative concentrations of various sex hormones.
Our intention is not to unravel the intricate interactions
between the sex hormones and immune system, but to
highlight its existence. The area requires more investigation,
but it seems that testosterone procures central tolerance. Taken
together, testosterone and progesterone downregulate peripheral
(humoral) adaptive immunity, but facilitate peripheral innate
immunity (Hughes and Clark, 2007; Lai et al., 2012), whereas the
opposite applies for estrogen as it is associated with peripheral
innate immune suppression, stronger humoral responses, and
weaker central tolerance (Kovats, 2015).

Sex Differences in Immune Tolerance
As mentioned above, the thymus has an essential role in central
tolerance. Thymic involution is different between the sexes,
especially after the onset of puberty, with a more prominent
decline in males than in females, so that the adult female thymus
contains more thymocytes and has a higher thymic output than
the male thymus (Gui et al., 2012). However, the T cells liberated
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from the female thymus may have been less well ‘educated’ as
the female thymic epitheliocytes express less AIRE and fewer
autoantigens (mRNA and protein) than the male ones (Dragin
et al., 2016). Low expression levels of AIRE associate with
autoimmune disease (Sato et al., 2002; Liu et al., 2014).

The sex hormones, estrogen and dihydrotestosterone
(the main active metabolite of testosterone), regulate
AIRE expression in opposite directions. At physiological
doses, estrogen diminishes AIRE expression, whereas
dihydrotestosterone increases AIRE expression (Dragin et al.,
2016). Dihydrotestosterone treatment in an experimental animal
model of MS, upregulated AIRE and tissue-specific antigen
expression in the thymus, improved negative selection of
autoreactive T cells, and diminished the severity of autoimmune
disease (Zhu et al., 2016). A cross-sectional population-
based study revealed that a higher estradiol/testosterone ratio
associated significantly with autoimmune thyroid disease among
Chinese men (Chen et al., 2017). Interestingly, a clinical phase
I/II pilot study among 12 female FMS patients revealed that a
28-day treatment with testosterone gel significantly decreased
pain, stiffness, and fatigue (White et al., 2015). Altogether,
the efficacy of the thymus depends strongly on age and sex
hormones. Male sex hormones seem to compensate for thymic
involution with an increased AIRE expression, whereas female
sex hormones contribute to diminished tolerance and increased
vulnerability to autoimmune diseases.

Sex Chromosomes and
Immune-Associated Genes
The major genetic difference between men and women are the sex
chromosomes. Men are XY, whereas women are XX. To enable
the pairing of the X and Y chromosomes during male meiosis,
small pseudo-autosomal regions are present at the extremes of
both the X and Y chromosome. In the pseudo-autosomal regions,
the X and Y chromosomes encode the same genes (Mangs and
Morris, 2007). For non-pseudoautosomal region genes, males will
express the genes of the unique X chromosome, whereas female
cells perform at random X inactivation as a dosage compensation
mechanism. X inactivation is clonally maintained and generates
a functional mosaic organism for X chromosome-encoded genes
(Rubtsov et al., 2010). Importantly, X-chromosome inactivation
is not an all-or-non-phenomenon; about 10–15% of the X
chromosome-encoded genes escape X-inactivation in humans,
and a mouse model of accelerated aging revealed increased
reactivation with age (Berletch et al., 2011).

Although it has been stated that the X chromosome encodes
a disproportionally large number of immune-associated genes
(Bianchi et al., 2012), so far no scientifically sound supporting
evidence has been published. Still, the increased susceptibility for
immune hypersensitivities of men with Klinefelter’s syndrome
(XXY) or women with Turner syndrome (X-) reveals the
importance of dosage of X-linked immune system-associated
genes (Mortensen et al., 2009; Sawalha et al., 2009). An elegant
study that used the four genome model (XXSry+, XYSry+, XX,
XYSry

−) in two gonadectomized mouse models for autoimmune
disease demonstrated a dosage effect of the X chromosome
in SJL mice. Interestingly, the dosage effect was not observed

in C57BL/6 mice (Smith-Bouvier et al., 2008). The genetic
background of C57BL/6 mice contrast with the one of SJL
mice in terms of susceptibility for murine cytomegalovirus and
autoimmune disease. In contrast to SJL, C57BL/6 has a bias
toward a Th1 response and high NK activity (Sellers et al., 2012;
Song and Hwang, 2017). This cellular immune response protects
against viral infections.

Two X-linked genes are especially associated with humoral
autoimmune disease to cryptic antoantigens. TLR7 and TLR8
(both in band Xp22.2) encode endosomal immune sensors that
sense microbial and endogenous RNA (Umiker et al., 2014).
TLR7 expression displays a dosage disequilibrium in biallelic B
lymphocytes of women and men with Klinefelter’s syndrome.
These biallelic B lymphocytes switch more easily to IgG (Souyris
et al., 2018), which is consistent with SLE symptom severity in
TLR7 + as compared to TLR7-deficient C57BL/6 mice (Desnues
et al., 2014). In a 564Igi mouse model of SLE, a dosage difference
in TLR8 determined the sex bias in anti-RNA IgG antibodies,
which were higher in female than male mice (Umiker et al., 2014).
564Igi mice are especially susceptible to autoimmunity because of
diminished somatic hypermutation (McDonald et al., 2017). The
release of miR-21 due to neuropathy stimulates TLR8 signaling in
the dorsal root ganglia, which leads to hyperexcitability and pain
(Zhang et al., 2018). Importantly, TLR8 activation can reverse
tolerant Treg into aggressive forms (Peng et al., 2005). Thus,
X-linked RNA immune sensors may be activated in neuropathy
and favor autoimmunity rather than immune tolerance.

AUTOIMMUNITY TO THE NERVOUS
SYSTEM. WHAT TRIGGERS IT OFF?

The CNS used to be considered an immunoprivileged organ,
and therefore little susceptible to autoimmune issues. But this
viewpoint has changed over the last two decades upon the
detection of autoantibodies against a variety of nervous system
autoantigens. As expected, most autoantibodies are directed
against large, complex protein autoantigens (Table 1) rather than
against small non-protein molecules. Currently, among patients
with mental illnesses, the serum prevalence of autoantibodies
against nervous tissue antigens is 11–17%, which may be an
underestimation (Graus and Santamaría, 2017).

After neuropathy (due to infection or a lesion), intracellular
macromolecules that previously were encrypted autoantigens
may be exposed and targeted by autoantibodies (Totsch
and Sorge, 2017). The latter probably occurs in MS,
where oligoclonals target ubiquitous intracellular proteins
(Brändle et al., 2016). Oligoclonal bands are interpreted as
immunoglobulins that are produced intrathecally, i.e., inside
the CNS (Luzzio and Dangond, 2018). Oligoclonal bands
occur in 95% of MS patients (Halbgebauer et al., 2016).
Other targets of MS autoantibodies are myelin-associated
autoantigens (Link et al., 1990) and viral antigens (Virtanen
et al., 2014). Although no specific virus is considered to be the
causative agent of MS, viruses may be direct or indirect risk
factors. The latter via molecular mimicry and/or bystander
activation (Virtanen and Jacobsen, 2012) as described in
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TABLE 1 | Autoantibodies against nervous tissue autoantigens.

Autoantibody target Normal function Clinical anomaly

Membrane glycolipids

GM1, GQ1b Ganglioside, Schwann cell Miller-Fisher syndrome, Bickerstaff encephalitis,
Guillain-Barré syndrome (1)

MOG, GM, Non-defined Myelin Multiple sclerosis, myelin destruction; unmyelinated fibers
(2)

Neurotransmitter receptors

Presynaptic VGCC Voltage-gated calcium channels Lambert-Eaton syndrome; weak muscles (3)

Postsynaptic nAChR Nicotinic acetylcholine receptor Myastenia gravis (4)

AMPAR Ionotropic glutamate receptor Limbic encephalitis, seizure, psychosis (5)

GluA3/GluR3 Ionotropic AMPAR-type glutamate receptor Rasmussen encephalitis, unihemispheric brain atrophy (5,
6)

GluN1 Ionotropic NMDAR-type glutamate receptor Anti-NMDAR encephalitis (psychosis, seizure (5, 6))

mGluR1 Metabotropic glutamate receptor, increase [Ca2+]intracellular Paraneoplastic cerebellar ataxia (5, 6)

mGluR5 Metabotropic glutamate receptor,
release K+

Limbic encephalitis, Ophelia syndrome (5, 6)

GABAAR Ionotropic GABA receptor; fast-reacting Encephalitis, seizure (5)

GABABR Metabotropic GABA receptor; slow-reacting Limbic encephalitis (5)

GlyR Glycine receptor Progressive encephalomyelitis with rigidity and myoclonus
(PERM); stiff-person syndrome (5)

D2R Pre-synaptic modulatory or post-synaptic dopamine receptor Limbic encephalitis, seizure, psychosis (5)

Voltage-gated sodium channels

Na(x) Sodium-sensor and channel Hypernatremia, neoplasia associated
(7)

Transmembrane proteins or associated protein

AQP4 Aquaporin-4, water channel abundant in astrocytes Neuromyelitis optica (8)

CASPR2 Contactin-associated protein-like 2, transmembrane on axons - (Limbic) encephalitis,
- neuromyotonia, muscle spasms and pain, excessive
sweating and disordered sleep
- Morvan syndrome
- Isaac syndrome, acquired neuromyotonia
- fasciobrachial dystonic seizures
(3, 5)

VGKC Voltage-gated potassium channel

LGI1 Leucine-rich glioma

DNER Delta and Notch-like epidermal growth factor-related receptor; Paraneoplastic cerebellar degeneration (5)

DPPX Dipeptidyl-peptidase-like protein 6 Encephalitis with diarrhea (5)

DCC Netrin receptor; involved in axon guidance Neuromyotonia (5)

IgLON5 Neural cell adhesion molecule Non-rapid-eye movement and rapid-eye movement
parasomnia with abnormal movements and sleep
breathing disorder (5, 9)

Neurexin Presynaptic synapse-facilitating transmembrane protein Encephalitis (5)

Cytosolic protein

GAD65 Glutamate decarboxylase 65 kD isoform; conversion Glutamate
to GABA

Associated with limbic encephalitis, schizophrenia, stiff-man
syndrome, diabetes type 1, autoimmune thyroidits,
pernicious anemia (3)

GFAP Glial fibrillary acid protein Diabetes type 1 (10)

49 kD pituitary cytosolic protein Autoimmune hypophysitis (11)

1, Koga et al., 1998; 2, Link et al., 1990; Raddassi et al., 2011; Virtanen et al., 2014; Brändle et al., 2016; 3, Kruse et al., 2015; 4, Noridomi et al., 2017; 5, Fukata et al.,
2018; 6, Levite and Ganor, 2008; 7, Hiyama et al., 2010; 8, Jarius and Wildemann, 2013; 9, Sabater et al., 2014; 10, Pang et al., 2017; 11, Caturegli et al., 2005.

Section “Loss of Tolerance and Development of Autoimmune
Diseases.” Various psychiatric diseases are considered to be
caused by either an autoimmune process or an infection
(Singh and Trevick, 2016; Dubey et al., 2018). We propose
that in many cases both occur; the infection would be the
initiation event and autoimmunity a consequence. Still

they may occur simultaneously, especially when involving
opportunistic pathogens. A variety of herpes viruses are
opportunistic, pandemic, and neurotropic. Depending on the
geographic location, 40–100% of the adult population is infected.
A primary infection establishes a lifelong latent infection, which
reactivates intermittently without obvious disease symptoms,
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except for immunocompromised persons. Stress may be a
trigger for ‘asymptomatic’ reactivation. Among herpes viruses,
cytomegalovirus seems especially apt to alter the immune
response into autoimmunity (Andersen and Andersen, 1978;
Varani and Landini, 2011; Halenius and Hengel, 2014), while
Epstein-Barr virus-transformed lymphocytes tend to produce
autoantibodies (Garzelli et al., 1984). In case FMS etiology
involves neuropathy by reactivating latent pathogens, the
unresponsiveness to corticosteroid treatment is understood.
Considering the heterogeneity of FMS patients, other infections
or neuropathic events should not be ruled out as possible triggers
of autoimmunity.

THE MISSING PIECE: EVIDENCE OF
AUTOIMMUNE COMPONENTS SPECIFIC
FOR FMS

Autoantibodies against intracellular antigen, nervous
and muscle tissue have been reported in FMS patients
(Supplementary Table 1), but their role in FMS pathogenesis
is controversial. We suggest to screen nervous tissue involved
in the pain pathway, both CNS (including the pituitary and
pineal glands) and peripheral nervous tissue (dorsal root ganglia)
with patient samples (blood and CSF), to complete the missing
evidence (Figure 1). A variety of conceptual and technical issues
may complicate the detection of autoantibodies. The lack of tissue
lesions should not be interpreted as the absence of autoimmunity,
as autoantibodies may be stimulatory as in Graves’ disease (Yeung
and Habra, 2018). Screening of autoantibodies should not be
limited to blood, as autoantibodies or oligoclonals may be limited
to CSF when neuropathic symptoms predominate (Luzzio and
Dangond). Furthermore, pleocytosis of leukocytes in CSF should
be evaluated. Autoantibody screening on certain tissues may
yield false negatives when the autoantibodies are directed against
other tissues than the ones that are screened. Screening on animal
tissues may yield false negatives when the human autoantigens
are sufficiently different from the animal forms. Screening on
fixed tissues may yield false negatives because the appropriate
antigen retrieval method was not applied. Also, the autoimmune
response may be cellular rather than humoral. A conceptual
or interpretation issue are prodromal autoantibodies; tissue
destruction mediated by prodromal autoantibodies remains
asymptomatic until the overcapacity of the targeted organ
has been lost (Arbuckle et al., 2003; Hayashi et al., 2008;
Haller-Kikkatalo et al., 2017). During the prodromal period,
autoantibodies run the risk to be interpreted as false positives.
Longitudinal follow-up studies of patients with prodromal
autoantibodies would be interesting. And finally, because of
the heterogeneity among FMS patients, a certain etiology or
pathogenesis may be limited to a subgroup of FMS patients
(Jacobsen et al., 1990; Purnamawati et al., 2018). The worst
scenario would be that the detected pathogenesis is discarded
because it does not apply to a sufficiently high proportion of
FMS patients. To avoid this situation, stratification or clustering
of FMS patients is recommendable. Despite the aforementioned,
the challenge is not impossible; the detection of anti-IgLON5

is exemplary (Sabater et al., 2014). We recommend a similar
screening technique to verify whether an autoimmune process is
involved in the pathogenesis of FMS.

CONCLUSION

The clinical profile of FMS displays a strong overlap with
certain autoimmune diseases. In fibromyalgia, physical or mental
stress may constitute a precipitating factor or a consequence
rather than a cause, similar to the situation in autoimmune
diseases. Stress may debilitate the immune system and allow
for reactivation of a latent (viral) infection, which may cause
neuroinflammation or neuropathy and facilitate autoimmune
phenomena. However, different from most autoimmune diseases,
common clinical serum markers of inflammation are within the
normal range in FMS. Still, altered immunological biomarkers,
especially CD57 and IL-8 levels, are compatible with a viral
infection or autoimmune mechanism. Sex differences in the
immune system would explain a sex bias in FMS prevalence. If
convincing evidence for an autoimmune process were detected
for FMS, diagnostic tests and effective therapies could be
developed. Blood and CSF should be screened for autoantibodies
and/or autoreactive lymphocytes. Screening for autoantibodies
directed to peripheral nervous tissues and CNS should include
dorsal root ganglia, the spinal cord, pituitary gland and pineal
gland, should be screened as possible targets for autoantibodies
and autoreactive lymphocytes.
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We proved the viability of the general hypothesis that biological motion (BM) processing 
serves as a hallmark of social cognition. We assumed that BM processing and inferring 
emotions through BM (body language reading) are firmly linked and examined whether 
this tie is gender-specific. Healthy females and males completed two tasks with the same 
set of point-light BM displays portraying angry and neutral locomotion of female and male 
actors. For one task, perceivers had to indicate actor gender, while for the other, they had 
to infer the emotional content of locomotion. Thus, with identical visual input, we directed 
task demands either to BM processing or inferring of emotion. This design allows straight 
comparison between sensitivity to BM and recognition of emotions conveyed by the same 
BM. In addition, perceivers were administered a set of photographs from the Reading the 
Mind in the Eyes Test (RMET), with which they identified either emotional state or actor 
gender. Although there were no gender differences in performance on BM tasks, a tight 
link occurred between recognition accuracy of emotions and gender through BM in males. 
In females only, body language reading (both accuracy and response time) was associated 
with performance on the RMET. The outcome underscores gender-specific modes in 
visual social cognition and triggers investigation of body language reading in a wide range 
of neuropsychiatric disorders.

Keywords: biological motion, visual social cognition, gender, emotion, body language reading

INTRODUCTION

Body language reading is an essential ability for efficient daily interpersonal exchanges and 
adaptive behavior. Another benefit of body language reading is that, although verbal information 
flow is believed to be  easily kept under control, body movement often reveals our true feelings 
and dispositions. Typically developing (TD) individuals are proficient in inferring emotions and 
intentions of others represented by biological motion (BM) in point-light displays minimizing 
the availability of other cues (such as body shape or outfit) and, thereby, isolating information 
conveyed by BM solely (Figure  1) (e.g., Dittrich et  al., 1996; Pollick et al., 2001; Atkinson et  al., 
2004; Heberlein et  al., 2004; Clarke et  al., 2005; Manera et  al., 2010; Alaerts et  al., 2011; Sokolov 
et  al., 2011; Krüger et  al., 2013; Actis-Grosso et  al., 2015; Vaskinn et  al., 2016). Perceivers can 
judge emotional content of dance, represented by a few moving dots located on a dancer’s body, 
with anger being the most reliably identified emotion (Dittrich et  al., 1996). Inferring emotions 
from BM is fairly robust across cultures (Parkinson et  al., 2017), and it remains rather accurate 
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over age: only the recognition of sadness (but not angry or 
happy displays that are more exaggerated) at short durations 
is lower in the elderly (Spencer et  al., 2016).

It has been argued that social cognitive abilities (i.e., abilities 
to perceive and understand emotional states, drives, and intentions 
of others) and BM processing are tightly linked and, therefore, 
performance on socially neutral tasks (such as detection of 
camouflaged BM, facing detection, or discrimination between 
canonical and scrambled BM) may serve as a hallmark of social 
cognition (Pavlova, 2012): individuals with neurodevelopmental 
and psychiatric conditions (such as autism spectrum disorders 
(ASD), Williams-Beuren syndrome, and Down syndrome) and 
survivors of premature birth who exhibit aberrant BM processing, 
have compromised daily social perception and possess lower 
social competence. In agreement with this assumption, newborn 
human infants (and newly hatched chicks) appear to 
be predisposed to BM, though such predispositions are impaired 
in newborns at high risk of autism (Bidet-Ildei et  al., 2014; 
Di Giorgio et  al., 2016, 2017).

In the non-clinical adult population, a possible intrinsic link 
between the ability to perceive BM and a person’s social capabilities 
appears to be in line with visual psychophysics. Emotional valence 
of BM affects the sensitivity to point-light gait masked by an 
additional set of dots taken from the same walker, with highest 
sensitivity (but also greatest response bias), to angry and lowest 
sensitivity, to neutral walking (Chouchourelou et  al., 2006). The 
sensitivity to slightly camouflaged BM is related to both anger 
and happiness (Ikeda and Watanabe, 2009). Happiness superiority 
effect in BM processing is also affirmed: BM detection within 
noise is not only facilitated by an actor’s happiness, but happiness 
is easier to recognize than angry and neutral BM (Lee and Kim, 
2017). The ability to reveal the identity of point-light dancers 
and expression intensity correlates with self-reported empathy 
(Sevdalis and Keller, 2011). Emotion recognition through BM is 

related not only to more basic capability for discrimination 
between canonical and scrambled BM, but also to performance 
on the Reading the Mind in the Eyes Test, RMET (Alaerts et al., 
2011). Empathy, performance on both the RMET and Cambridge 
Face Memory Test, and autism quotient are all positively linked 
in TD individuals with efficient BM processing (such as facing 
detection) (Miller and Saygin, 2013). In children aged 7–12 years, 
BM facing detection is already associated with mindreading in 
eyes (Rice et  al., 2016). Alexithymia (the inability to identify 
and describe emotions in the self) scores in TD individuals 
correlate with confidence in rating the emotion valence of point-
light BM displays (Lorey et  al., 2012). BM processing (decoding 
of gender) is affected by gender stereotyping elicited by depicted 
emotion: angry throwing of a ball is often judged to be performed 
by men, whereas sad throwing is judged to be performed by 
women (Johnson et  al., 2011). Inferring emotions through BM 
is modulated by administration of the neuropeptide oxytocin 
known to facilitate social cognition (Bernaerts et al., 2016; Wynn 
et  al., 2019). Moreover, smelling steroids (either androstadienone 
or estratetraenol) makes observers to estimate the emotional state 
of a point-light walker of the opposite sex as happier and more 
relaxed (Ye et  al., 2019).

Some aspects of BM processing and/or body language reading 
are aberrant in psychiatric, neurological, psychosomatic, and 
neurodevelopmental disorders (for reviews, see Pavlova, 2012; 
Pavlova, 2017a,b; Okruszek et  al., 2018). Most importantly, the 
visual sensitivity to BM is inversely linked to the severity of 
these disorders, e.g., as measured by the autistic diagnostic 
observation schedule (ADOS) in ASD (Blake et  al., 2003), or 
to autism traits in TD (Koldewyn et  al., 2010). For ASD and 
TD individuals pooled together, both BM processing and emotion 
recognition are related to social responsiveness scores (Nackaerts 
et  al., 2012). In schizophrenia (SZ), deficient BM is connected 
to aberrant social cognition (Okruszek and Pilecka, 2017; Okruszek, 

FIGURE 1 | Illustration of point-light biological motion. Three consequent static frames exemplifying human walking as a set of dots placed on the main joints and 
head of an invisible actor body. A walker is seen facing left in intermediate position between the frontal and sagittal view.

169

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Isernia et al. Biological Motion and Social Cognition

Frontiers in Psychology | www.frontiersin.org 3 February 2020 | Volume 11 | Article 128

2018). For instance, deficient BM detection (discrimination between 
such actions as climbing a stair and scrambled displays) is linked 
to lower social competence (Kim et  al., 2005). In SZ, a positive 
correlation is reported between BM processing (detection of facing 
direction of masked walkers) and the empathy index (Matsumoto 
et  al., 2015). Poorer emotion recognition is associated with 
impaired self-reported social functional capacity, community 
outcome (such as lifetime relationship status and independent 
living) and, in particular, in individuals who committed homicide, 
with a tendency to under-mentalize (Engelstad et al., 2017, 2018a,b; 
Egeland et  al., 2019).

In a number of tasks examining BM processing, gender/sex 
differences are reported (Pavlova, 2017a,b). TD adult females are 
more accurate in BM recognition of actions (such as jumping 
on the spot) and faster in discriminating between emotional and 
neutral BM (Alaerts et  al., 2011). Yet gender differences in body 
language reading appear to be modulated by the type of portrayed 
emotion and actor gender (Sokolov et  al., 2011; Krüger et  al., 
2013). TD females are reported to be  more accurate in body 
language reading through full-light body motion (Strauss et  al., 
2015). Brain imaging points to sex differences in neural circuits 
underpinning BM processing (Anderson et al., 2013; Pavlova et al., 
2015). Sex differences in BM processing are also reported in 
other species (Regolin et al., 2000; Brown et al., 2010). This points 
to their fundamental character. Gender (socio-cultural aspects) 
and sex (neurobiological aspects) impacts can be  of substantial 
value, not only for better conceptualization of social cognition 
but also for understanding neuropsychiatric conditions, most of 
which are gender/sex specific (Pavlova, 2012, 2017a,b).

Some previous studies on social cognition through BM 
possess methodological limitations: (1) BM tests are often based 
on videotapes of only one (either female or male) or two 
(female and male) performers. For example, many studies on 
emotion recognition from BM in psychiatric populations use 
videos of only one actor [e.g., EmoBio test first introduced by 
Heberlein et  al. (2004); see also Okruszek et  al., 2018]. (2) 
Socially neutral BM processing and inferring social information 
from point-light displays are often assessed with different sets 
(or types) of displays and experimental procedures. (3) 
Unbalanced design is used with samples of TD individuals 
and patients that are not properly matched in respect to gender 
(e.g., patients of one gender are compared with TD individuals 
of both genders) and/or differ in sample size (sample of TD 
individuals is twice or even larger than patient sample). If 
samples contain many more individuals of one gender and/
or more TD participants than patients, comparisons between 
groups may lead to paradoxical statistical outcomes. These 
issues can preclude proper generalization of findings.

Here we  proved the viability of the assumption that BM 
processing is firmly linked with expressive body language 
reading. Bearing in mind the occurrence of gender-specific 
modes in both BM processing and social cognition, we examined 
whether this bond is gender-specific. For this purpose, TD 
females and males completed two tasks with the same set of 
point-light BM displays portraying angry and neutral locomotion 
of female and male actors. On one task, perceivers had to 
indicate an actor’s gender, whereas on the other, the emotional 

content of locomotion. Thus, with identical visual input, 
we  directed task demands either to BM processing or emotion 
recognition. The primary benefit of this design is that it allows 
comparison between BM processing and inferring emotions 
conveyed by the same BM. In addition, in a separate session, 
perceivers were administered a set of photographs from the 
RMET for identifying either an emotional state or actor gender.

MATERIALS AND METHODS

Participants
Forty participants (20 females and 20 males, aged 19–39 years; 
students of the University of Tübingen Medical School) were 
enrolled in the study. No age difference occurred between 
them: males were aged 26.5 years [median (Mdn), 95% confidence 
interval, CI from 24.43 to 30.67], and females were aged 
25  years [Mdn, 95% CI from 23.23 to 28.27 (Mann-Whitney 
test, U  =  171.5, p  =  0.439, n.s.)]. As performance on the 
RMET (German version, for details, see section below) requires 
language command of high proficiency, German as a native 
language served as an inclusion criterion. All observers had 
normal or corrected-to-normal vision. None had head injuries 
or a history of neuropsychiatric disorders (including ASD, SZ, 
and depression), or regular drug intake (medication). They 
were run individually and were naïve as to the purpose of 
the study. None had previous experience with such displays 
and tasks. The study was conducted in line with the Declaration 
of Helsinki and was approved by the local Ethics Committee 
at the University of Tübingen Medical School. Informed written 
consent was obtained from all participants. Participation was 
voluntary, and the data were processed anonymously.

Biological Motion: Stimuli, Tasks,  
and Procedure
Participants were presented with a set of point-light black-and-
white animations portraying human locomotion. Display 
production is described in detail elsewhere (Krüger et al., 2013). 
The displays were built up by using the Motion Capture Library. 
In brief, recording was performed using a 3D position 
measurement system at a rate of 60  Hz (Optotrak, Northern 
Digital Inc., Waterloo, ON, Canada). The matrix data for each 
frame were processed with MATLAB (The Mathworks Inc., 
Natick, MA, USA) into a video sequence. Each display consisted 
of 15 white dots visible against a black background (Figure  1). 
The dots were placed on the shoulder, elbow, and wrist of each 
arm; on the hip, knee, and ankle of each leg; and on the head, 
neck, and pelvis of a human body. As we  intended to make 
tasks demanding and supposed more pronounced effects with 
brief stimulus duration, each movie lasted for 2  s which 
corresponded to one walking cycle consisting of two steps. 
During locomotion, a walker was seen facing right in an 
intermediate position of 45° between the frontal and sagittal 
view. As sagittal view is often considered neutral in respect to 
possible social interactions and the frontal view is reported to 
elicit ambiguous (facing backward or toward an observer) and 
often gender-dependent impressions of locomotion direction 
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(Pollick et  al., 2005; Brooks et  al., 2008; Schouten et  al., 2010, 
2011), the intermediate trajectory of locomotion was used. For 
creation of left faced stimuli, we rotated videos 90° horizontally. 
The walking figure was positioned with the pelvis fixed to the 
middle of the screen. Female and male actors walked either 
with angry or neutral affective expression. For avoiding variability 
in emotion portrayal, sets of neutral and angry stimuli were 
created from the same actors. The videos of six (three female/
three male) actors facing either right or left were presented in 
three separate runs with a short break between them. In total, 
each experimental session consisted of a set of 144 trials [6 
actors (3 female/3 male) × 2 emotions (neutral/angry) × 2 
facing directions (left/right) × 6 (2 repetitions of each stimulus 
in each run × 3 runs) trials. During an inter-stimulus interval 
(after stimulus offset and till onset of the next stimulus right 
after participant’s response), a white fixation cross was displayed 
in the center of the screen for 6  s. If a participant failed to 
respond within this period, the next trial automatically started. 
Participants were asked to respond after each stimulus offset.

With the same set of stimuli, in a two-alternative forced 
choice (2AFC) paradigm, participants performed two different 
tasks indicating by pressing one of two respective keys either 
actor gender (female/male) or emotion (neutral/angry). By 
contrast with emotion task, performance on gender task is based 
on revealing biomechanical characteristics of locomotion 
(Kozlowski and Cutting, 1977; Barclay et al., 1978; Cutting et al., 
1978; Pollick et  al., 2005). The order of tasks (gender/emotion 
recognition) was counterbalanced between participants. Using 
identical visual input (the same set of displays) in the same 
sample of participants, we  varied task demands re-directing the 
task either to BM processing or to bodily emotion recognition. 
The whole experimental session (consisting of two tasks) took 
about 20–25  min per participant. No immediate feedback was 
given regarding performance. The main advantage of this 
experimental design is that it allows comparison between sensitivity 
to BM and recognition of emotions conveyed by the same BM.

Reading Mind in the Eyes Test and Gender 
Recognition Task
After completion of both BM tasks, a computer version of 
the RMET was additionally administered to participants. This 
test is described in detail elsewhere (Baron-Cohen et al., 2001). 
In brief, participants were shown a set of 36 black-and-white 
photographs of female and male eyes along with a corresponding 
face part expressing a certain emotional or affective state. On 
each trial, they had to choose among four alternative descriptions 
(adjectives) simultaneously presented on the screen including 
the correct one corresponding with the picture. Participants 
were instructed to be as fast as possible. Each correct response 
was scored 1 for a total score range of 0–36. This standardized 
test is considered one of the most commonly used tasks assessing 
affective theory of mind (Baglio and Marchetti, 2016). The 
test was administered in a computerized form by 2019 Qualtrics®; 
https://www.qualtrics.com/de/ (Qualtrics International Inc.; 
Provo, Utah, U. S. A.). In the other session, with the same 
set of 36 photographs, participants completed a gender 
recognition task from RMET (RMET_G). The RMET was used 

primarily for proving whether affect recognition through body 
motion and eye expressions are linked to each other. Gender 
recognition on the RMET_G task was used as a control.

Data Analysis
Data analysis was performed by using Statistical Package for 
Social Science (SPSS version 24, IBM Corporation; Armonk, 
New York, U.S.A.) and JMP Software (version 13; SAS Institute; 
Cary, North Carolina, U.S.A.). All data were tested for normality 
of distribution by Shapiro-Wilk test with subsequent uses of 
either parametric (for normally distributed data sets) or, 
otherwise, non-parametric statistics.

RESULTS

Biological Motion Tasks: Emotion and 
Gender Recognition
In accordance with our assumption that BM processing is 
firmly linked to expressive body language reading, our data 
analysis was primarily focused on associations between 
performance on the emotion recognition task (BME) and the 
gender recognition task (BMG); the outcome of the analysis 
of variance (ANOVA) is reported for completeness.

Individual rates of correct responses on both BM tasks were 
submitted to a mixed model 2  ×  2  ×  2  ×  2 repeated-measures 
omnibus ANOVA with within-subject factors Task (gender/emotion 
recognition), Actor Gender (female/male), and Emotion (angry/
neutral), and a between-subject factor Observer Gender (female/
male). The outcome revealed main effects of Task [F(1,38) = 24.46, 
p < 0.001] with higher accuracy on revealing emotions than gender, 
Actor Gender [F(1,38)  =  37.62, p  <  0.001] with higher accuracy 
in recognition of movies of male than female actors, and Emotion 
[F(1,38)  =  64.71; p  <  0.001] with better performance for neutral 
than angry displays on both tasks together. The main effect of 
Observer Gender only tended to be  significant [F(1,38)  =  3.41; 
p  =  0.066] with a non-significant interaction between Observer 
Gender and Task [F(1,38) = 0.99, p = 0.321, n.s.]. All interactions 
are summarized in Supplementary Table S1. Post hoc analysis 
indicated a lack of gender differences in accuracy on both BM 
tasks [BME: t(38)  =  0.92, p  =  0.365, n.s., and BMG: t(38)  =  1.39, 
p  =  0.173, n.s., two-tailed]. Similarly, no gender differences in 
response time were found [BME: U  =  197, p  =  0.935, n.s.; BMG: 
t(38)  =  1.46, p  =  0.153; n.s., two-tailed].

As we  expected to find a positive link between recognition 
of emotions (BME task) and gender (BMG task) through BM, 
correlation analysis was conducted on performance accuracy 
and response time separately for females and males. In males, 
accuracy of emotion and gender recognition through BM was 
positively linked with each other [Pearson product-moment 
correlation, r(18)  =  0.38, p  =  0.049; Figure  2A], whereas no 
such association was found in females [r(18) = 0.032, p = 0.447, 
n.s., both one-tailed]. Response time of correct responses 
between the BME and BMG tasks positively correlated with 
each other in both gender groups [males: Spearman’s 
ρ(18)  =  0.633, p  =  0.002; females: ρ(18)  =  0.568, p  =  0.005, 
both one-tailed; Figure  3A].
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Relation Between Inferring Emotion 
Through Biological Motion and Reading 
the Mind in the Eyes Test
We administered a set of stimuli from the RMET primarily 
for addressing the issue of whether performance on two visual 
social cognition tasks, namely, revealing eyes expressions (RMET) 
and emotion recognition through BM (BME) are connected 
to each other. Gender recognition with the RMET set of stimuli 
(RMET_G task) served as a control.

As expected from previous work (Kirkland et  al., 2013), 
females were more proficient on the RMET with greater 
recognition accuracy [t(38) = 1.73, p = 0.046, one-tailed, effect 
size Cohen’s d  =  0.56]. Notably, we  found that females tended 
to surpass males in recognition of female images [t(38) = 1.97, 
p = 0.056, two-tailed], with no gender difference in recognition 
of male images [U  =  185, p  =  0.677, n.s., two-tailed]. No 
gender difference on the RMET task was found in response 
time (U  =  183, p  =  0.323, n.s.). No gender difference in 
recognition accuracy occurred on the RMET_G task (U = 187.5, 
p  =  0.724, n.s.), presumably because the task turned to be  far 
too easy to perform. There was also no gender difference in 
response time on this task (U  =  199, p  =  0.978, n.s.). No 
correlation occurred between recognition accuracy on the RMET 
and RMET_G task [males: Spearman’s ρ(18) = −0.161, p = 0.497; 
females: ρ(18)  =  0.17, p  =  0.473, n.s.].

Based on earlier work (Alaerts et al., 2011; Miller and Saygin, 
2013), we  expected to find a positive link between accuracy 
on the BME and RMET tasks. Yet, in males, the correlation 

between recognition accuracy on these tasks turned to 
be  non-significant [r(18)  =  0.186, p  =  0.216, n.s], whereas in 
females accuracy of BME and RMET positively correlated with 
each other [r(18)  =  0.445, p  =  0.025, one-tailed; Figure  2B]. 
Similarly, response time on the BME task and RMET correlated 
with each other in females [ρ(18) = 0.483, p = 0.016; Figure 3B, 
right panel], but not in males [ρ(18)  =  0.287, p  =  0.11, n.s., 
one-tailed; Figure  3B, left panel].

DISCUSSION

The present study was aimed at the proof of concept in accord 
with which body motion perception and visual social cognition 
are intimately tied (Pavlova, 2012). Keeping in mind experimental 
evidence for gender-specific modes in both visual social cognition 
and BM processing, we  focused on the gender specificity of 
this link. The findings revealed that: (1) A tight link occurred 
between the accuracy of gender and emotion recognition 
through BM in males, though there were no gender differences 
in performance on both BM tasks. Independent of observers’ 
gender, response time on emotion and gender recognition 
through BM correlated with each other. (2) In females only, 
body language reading (both accuracy and response time) was 
associated with mindreading through eyes.

The outcome provides further support for the general concept 
according with which BM processing serves a hallmark of social 
cognition (Pavlova, 2012). Previous research already pointed 

A

B

FIGURE 2 | Relationship between accuracy of emotion and gender recognition through biological motion, and performance on the Reading Mind in the Eyes Test 
for female and male observers. (A) Correlation matrices between accuracy of performance (correct response rate) on emotion (BME) and gender (BMG) recognition 
through biological motion (BM), and the Reading Mind in the Eyes Test (RMET). Significant correlations (Pearson product-moment correlation; p < 0.05) are color-
coded by green, non-significant correlation by violet. (B) Correlations between BMG and BME accuracy in males (left panel, diamonds), and between the RMET and 
BME accuracy in females (right panel, circles) were significant.
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to the link between BM processing and social cognition: 
individuals with aberrant BM processing are also compromised 
on daily-life social cognition possessing lower social competence, 
empathy, and face recognition capabilities (Sevdalis and Keller, 
2011; Miller and Saygin, 2013). In this study, we tried to untangle 
the ties between BM processing and body language reading 
by using identical visual input and re-directing task demands 
either to BM processing [gender decoding that is based on 
revealing biomechanical characteristics of locomotion (Kozlowski 
and Cutting, 1977; Barclay et  al., 1978; Cutting et  al., 1978; 
Pollick et  al., 2005)] or to emotion recognition. For the first 
time, we uncovered the gender specificity of these ties. It appears 
that males heavily rely upon common mechanisms underpinning 
gender and emotion recognition through BM, whereas in females, 
this tie is not so pronounced: only response time but not 
accuracy of gender and emotion recognition are positively linked 
to each other. This outcome appears to dovetail with recent 
reports indicating that females and males tend to use different 
types of information during BM processing and gender recognition 
in point-light displays: females rely on form and motion cues 
together, whereas males use motion cues solely (Hiris et  al., 
2018). This is also in line with recent findings on gender 
recognition in human infants aged 4–18 months: in a habituation 
paradigm, boys more easily differentiate the gender of a point-
light walker, presumably possessing higher sensitivity to motion 

parameters (Murray et al., 2018; Tsang et al., 2018). Yet adaptation 
effects in point-light BM gender recognition indicate that this 
process is rather unlikely to be  based on extracting low-level 
perceptual features (Jordan et  al., 2006). In accord with this, 
in SZ individuals, both emotion and gender recognition of 
avatars correlate with social functioning: emotion recognition 
correlates with the level of social engagement and interpersonal 
communication, whereas gender recognition is linked with 
independence in daily life (Peterman et  al., 2014). Future brain 
imaging research will help to clarify where and how gender 
and emotion recognition through BM talk to each other in 
the brain.

By contrast, females likely bank on tightly interconnected 
general mechanisms of social cognition for emotion recognition 
through BM and mindreading through eyes. In males, the 
link in performance between these tasks is absent. At first 
glance, bearing in mind previous reports (Alaerts et  al., 2011; 
Miller and Saygin, 2013) on the association between emotion 
recognition through point-light BM and eye expressions on 
the RMET, gender specificity of this linkage (occurrence of 
this link in females only) in the present study appears rather 
startling. Yet in these earlier studies, samples of participants 
contained predominately females.

In agreement with previous work (Kirkland et  al., 2013) 
that points to female superiority on the RMET (independent 

A

B

FIGURE 3 | Relationship between response time on emotion and gender recognition through biological motion, and the Reading Mind in the Eyes Test (RMET) for 
female and male observers. (A) Both in males (left panel, diamonds) and females (right panel, circles) BMG and BME response time were significantly linked to each 
other. (B) In males (left panel), response time on the BME task and RMET were not associated with each other, whereas in females (right panel) this association was 
significant. Significant correlations (Spearman’s ρ; p < 0.05) are color-coded by green, non-significant correlations by violet.
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of cultural differences), females tended to outperform males 
at judging mental states expressed by eyes. Yet there were 
no gender differences on the emotion through BM task. Brain 
imaging work on BM processing and inferring social interaction 
through Heider-and-Simmel-like animations suggests the 
existence of gender-specific modes in processing of socially 
relevant information even in the absence of behavioral 
differences: gender-related dimorphism in the neural circuits 
may prevent behavioral differences if they are maladaptive, 
and thereby promote proper behavioral response (Pavlova 
et al., 2010, 2015). Similarly, implementing different behavioral 
strategies by females and males may have contributed to the 
lack of gender differences in performance on BM tasks in 
the present study.

The present study was conducted in the student sample 
that affords group homogeneity. Although such a population 
is commonly used in the field, this may represent a limitation 
in terms of the outcome generalizability. However, since the 
study was focused on the association between performances 
on the tests, one would expect that, in general population, 
perceivers who are proficient on one task may be  expected 
to be  more proficient on the other and vice versa.

Gender specificity of the link between BM processing and 
visual social cognition may be of value for better understanding 
a wide range of psychiatric, neurologic, neurodevelopmental, 
and psychosomatic conditions. Some aspects of BM processing 
are atypical in ASD (e.g., Klin et  al., 2009; Nackaerts et  al., 
2012; Jack et  al., 2017), schizophrenia (e.g., Kim et  al., 2011; 
Hastings et  al., 2013; Spencer et  al., 2013; Hashimoto et  al., 
2014; Vaskinn et al., 2016, 2018; Engelstad et al., 2017, 2018a,b; 
Okruszek et  al., 2018) and schizotypal personality disorder 
(Hur et  al., 2016), bipolar disorders (Vaskinn et  al., 2017), 
attention deficit hyperactivity disorder (ADHD) (Kröger et al., 
2014), anxiety disorders and in individuals with elevated 
anxiety (van de Cruys et  al., 2013; Heenan and Troje, 2015), 
obsessive compulsive disorders (Kim et al., 2008), and unipolar 
depression (Loi et  al., 2013; Kaletsch et  al., 2014). Deficits 
are also reported in individuals who were born preterm and 
suffer congenital brain lesions (Pavlova and Krägeloh-Mann, 
2013), Alzheimer’s (Henry et  al., 2012; Insch et  al., 2015) 
and Parkinson’s diseases (Cao et  al., 2015; Jaywant et  al., 
2016a,b; Kloeters et  al., 2017), epilepsy (Bala et  al., 2018), 
and eating disorders such as anorexia nervosa and bulimia 
(Zucker et  al., 2013; Lang et  al., 2015; Dapelo et  al., 2017). 
Most of these disorders that are characterized by aberrant 
social cognition display a skewed sex ratio: females and males 
are affected differently in terms of clinical picture, prevalence, 
and severity (Pavlova, 2012, 2017a,b).

BM processing relies on a large-scale neural network 
(Grosbras et  al., 2012; Engell and McCarthy, 2013; Pavlova 
et  al., 2017). For understanding proper functioning of this 
network and especially its pathology, one has to consider 
dynamic changes in brain activation unfolding over time 
(Pavlova, 2017a,b). Recently, whole-head ultrahigh field 9.4  T 
functional magnetic resonance imaging (fMRI), along with 
temporal analysis of blood-oxygen-level-dependent (BOLD) 
responses, revealed distinct large-scale ensembles of regions 

playing in unison during different stages of BM processing 
(Pavlova et  al., 2017). An integrative analysis of structural 
and effective brain connectivity sheds light on architecture 
and functional principles of the BM circuitry, which is organized 
in a parallel rather than hierarchical manner (Sokolov et  al., 
2018). The hub of this circuitry lies in the right posterior 
superior temporal sulcus, STS (Grossman and Blake, 2002; 
Beauchamp et  al., 2003; Gobbini et  al., 2007; Kaiser et  al., 
2010; Herrington et  al., 2011; Dasgupta et  al., 2017), where 
this network likely communicates with the social brain, the 
neural circuits underwriting our ability for perception and 
understanding of drives, intentions, and emotions of others. 
The visual sensitivity to BM is best predicted by functional 
communication (effective connectivity) and presence of white-
matter pathways between the right STS and fusiform gyrus 
(Sokolov et  al., 2018).

Research on the brain networks dedicated to affective body 
language reading in normalcy and pathology is extremely sparse 
(Heberlein et  al., 2004; Atkinson et  al., 2012; Jastorff et  al., 
2015; Mazzoni et al., 2017; He et al., 2018). This work emphasizes 
the key role of the STS and fusiform face area in inferring 
emotions of point-light agents and avatars (e.g., Goldberg et al., 
2015; Vonck et  al., 2015). In a nutshell, it appears that BM 
processing engages a specialized neural network with hubs in 
the several areas of the brain including the right temporal 
cortex and fusiform gyrus, where this circuitry topographically 
overlaps and communicates with the social brain. Specifically 
tailored brain imaging is required to clarify to what extent 
visual processing of BM and expressive body language reading 
share topographically and dynamically overlapping neural 
networks. This work will contribute to better understanding of 
neurodevelopmental, psychiatric, neurological, and psychosomatic 
disorders related to social cognition.

RESUME

The present study was aimed at providing a proof of concept 
that BM perception and visual social cognition are intimately 
tied (Pavlova, 2012). Here, we focused on the gender specificity 
of this bond. By using identical visual input and re-directing 
task demands either to BM processing or emotion recognition, 
we  cautiously untangled the ties between BM processing and 
body language reading. The findings revealed that (1) although 
there were no gender differences in performance on both BM 
tasks, a tight link occurred between accuracy of gender and 
emotion recognition through BM in males. (2) In females 
only, body language reading is linked with mindreading through 
eyes. The outcome points to gender-specific modes in visual 
social cognition and fosters investigation of body language 
reading in a wide range of neuropsychiatric disorders.
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