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Editorial on the Research Topic

Electron-Microscopy-Based Tools for Imaging Cellular Circuits and Organisms

Electron microscopy (EM)-based reconstruction of neuronal circuits from serial ultrathin sections
was introduced more than three decades ago (White and Keller, 1987). Initially, all the steps were
conducted manually, including cutting serial ultrathin sections using the ultramicrotome, image
capturing with transmission electron microscope (TEM), and reconstruction using cardboard
pieces of selected profiles of neural structures to provide the impression of depth. In the 1990s,
computer software assisted reconstruction methods to make it more efficient were introduced
(Harris et al., 1992; White et al., 1994). This reconstruction analysis software was used in a
limited number of laboratories where good skills for obtaining serial ultrathin sections had been
established and, thus, significant and valuable results were obtained. In general, however, this
reconstruction technology was not popular because of a high demand on skills to obtain high
quality serial ultrathin sections. In the early 2000s, a number of groups, with many represented in
this special issue, started to conduct neural network analyses with reconstruction of serial sections
by adapting new EM technologies such as focused ion beam-scanning electron microscopy (FIB-
SEM; Knott et al., 2008), serial block-face electron microscopy (SBEM; Denk and Horstmann,
2004; Ohno et al., 2014), automated tape-collecting ultramicrotomy (ATUM) with SEM (Terasaki
et al., 2013), transmission electron microscope camera array (TEMCA; Bock et al., 2011), and
transmission-mode SEM (Kuwajima et al., 2013). These approaches have been modified and
improved vigorously (Kubota et al., 2018a,b), and a large amount of noteworthy results were
published in the last decade (Tomassy et al., 2014; Kasthuri et al., 2015; Lee et al., 2016; Villa
et al., 2016; Schmidt et al., 2017; Takemura et al., 2017; Bae et al., 2018). The size of EM volume
data sets has grown year by year, and it could be huge especially when data are obtained with
high-throughput EM systems of either TEMCA (Bock et al., 2011; Lee et al., 2016), multi-beam
SEM (Eberle and Zeidler; Shibata et al.) or parallel processing with multiple single beam SEM
systems (Plaza and Funke; Scheffer.) For instance, a 100 cubic µm EM data set with 5 nm/pixel
and 30 nm z-step of mouse cortex block, which amounts to 1.3 TB, was obtained that provides
a sufficient resolution to detect synaptic contacts. This data set should contain about 1,000,000
synapses (Merchan-Perez et al., 2009) and be sufficient in volume to include many different kinds
of connections among a wide variety of cortical neuron subtypes and afferent axonal fibers from
other brain regions. Such large volume EM data sets could not be acquired with the conventional
manually operated EM using the ultramicrotomes and TEM (White and Keller, 1987; Kubota and
Kawaguchi, 2000; Kubota et al., 2015; Marc et al.).
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The success of large volume EM acquisition using these new
EM systems has created an issue, i.e., how to process large
image data sets thus obtained. Soon it became obvious that
it was difficult to handle large EM volume data sets using
conventional 3D reconstruction image processing computer
applications that had been developed for the conventional
EM data sets obtained with the ultramicrotome and TEM.
Therefore, new image processing tools that can handle large
volume data sets have been developed. For example, NIH
imageJ plugins provide useful tools to stitch tiles for montage
and to align serial section images (Cardona et al., 2012). The
current bottle neck is the segmentation process. Currently, the
majority of researchers working on EM volume data pursue
segmentation of their data obtained from brains of a wide variety
of animal species: Caenorhabditis elegans (Mulcahy et al.), leech
(Pipkin et al.), Drosophila (Takemura et al., 2017), Zebrafish
(Wanner and Vishwanathan), mouse (Maclachlan et al.), rat,
marmoset, and human, and use manual image processing
applications including: VAST, Reconstruct, Knossos, and others
(Fiala, 2005; Dorkenwald et al., 2017; Berger et al.). To achieve
segmentation easily and efficiently, automated segmentation
computer applications have been developed (Januszewski et al.,
2018; Lee et al., 2019) and used for many EM volume data sets.
Segmentation performance has increasingly been improved and
achieved coverage of∼90% of the volume, but it is not yet perfect
(Plaza and Funke). Annotators are used to fix segmentation
errors to create correct wiring of brain networks. This can
be done manually using image software with a proof-reading
function (Zhao et al.; Katz et al.). Hopefully, segmentation
performance will improve further in the near future to reach an
almost 100% success rate while reducing the time required for the
proof-reading process. Toward this goal, the histological process
should be improved (Hua et al., 2015; Mikula and Denk, 2015;
Mikula, 2016; Genoud et al.; Maclachlan et al.; Nguyen et al.)
and image processing tools with better performance (Berger
et al.; Jorstad et al.; Titze et al.) should be developed. Finally,
despite these technological advances, analyzing fully segmented
EM volume data sets can be done only manually by researchers so
far, whomust have a good knowledge and understanding of brain
networks. In addition, automated cell type identification tool
(Schubert et al., 2019), automated synapse detection tool (Staffler
et al., 2017), and correlated light and electron microscopy
methods (Kubota et al., 2015; Wanner and Vishwanathan) are

useful for neural network analyses. This special issue covers most
of the cutting-edge 3D-EMmethods currently available.

On September 8th, 2017, I contacted Shawn Mikula at the
Max Planck Institute in Martinsried, to ask him if he would
be willing to work as co-editor with me on a special issue of
Frontiers in Neural Circuits Research Topic “Volume electron
microscopy for neuroscience.” I wanted Shawn to be my partner
to edit the special issue because I knew that he had a deep
knowledge not only for the EM volume data set analysis but
also histology, chemistry, mathematics and other areas. He
immediately accepted the invitation and we chose the title
of the Research Topic “Electron-Microscopy-Based Tools for
Imaging Cellular Circuits and Organisms.” We started to invite
contributors to the special topic issue at the end of October,

2017. Shawn invited many excellent researchers who have
been developing image analysis applications or systems and/or
working on large volume EM data sets. His selections indeed led
to the success of this special topic issue. Subsequently, Shawn
joined my laboratory at the National Institute for Physiological
Sciences in Okazaki, Japan, briefly from January 2nd to March
30th, 2018. After visiting his family in the USA in April and May
of 2018, he moved to the Keio University School of Medicine in
Tokyo. With great sadness and most unfortunately, on July 8th,
2018 we lost Shawn tragically, when we just started reviewing a
few manuscripts submitted.

This special issue reflects Shawn Mikula’s great interest in the
brain network architecture and his commitment to introduce
the best technology available to all researchers conducting
neuroscience research with EM volume data set analyses. I took
over all the editorial work after Shawn was lost and always kept
these convictions with me during the editorial work. I hope
he would appreciate the results. Finally, I express my sincerest
condolences and special thanks to Shawn Mikula’s family.
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The geometries of axons, dendrites and their synaptic connections provide important

information about their functional properties. These can be collected directly from

measurements made on serial electron microscopy images. However, manual and

automated segmentation methods can also yield large and accurate models of neuronal

architecture from which morphometric data can be gathered in 3D space. This technical

paper presents a series of software tools, operating in the Blender open source software,

for the quantitative analysis of axons and their synaptic connections. These allow the

user to annotate serial EM images to generate models of different cellular structures, or to

make measurements of models generated in other software. The paper explains how the

tools can measure the cross-sectional surface area at regular intervals along the length

of an axon, and the amount of contact with other cellular elements in the surrounding

neuropil, as well as the density of organelles, such as vesicles and mitochondria, that

it contains. Nearest distance measurements, in 3D space, can also be made between

any features. This provides many capabilities such as the detection of boutons and the

evaluation of different vesicle pool sizes, allowing users to comprehensively describe

many aspects of axonal morphology and connectivity.

Keywords: neuroimaging software, 3D modeling, data visualization, serial section electron microscopy, cell

morphology, neuron, synapse, connectomics

1. INTRODUCTION

The development of volume EM imaging methods now provides unprecedented opportunities
to understand the detailed morphology and connectivity of neurons (Briggman and Denk, 2006;
Kornfeld and Denk, 2018). Geometrical analysis of the imaged structures, however, requires either
measuring the required features directly on the serial images, or interacting with 3D models, once
they have been extracted after segmentation. Here we present a set of software tools for exploring,
annotating and measuring various features of 3D models.

Open source software such as Fiji1(Cardona et al., 2012), KNOSSOS2(Helmstaedter et al., 2011),
Espina3(Morales et al., 2011), Reconstruct4(Fiala, 2005), and ITK-SNAP5(Yushkevich et al., 2006),
and proprietary software including Amira6, exist for annotating and measuring features

1fiji.sc
2knossostool.org
3cajalbbp.cesvima.upm.es/espina
4synapseweb.clm.utexas.edu/software-0
5http://www.itksnap.org/pmwiki/pmwiki.php
6www.fei.com/software/amira-avizo
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on 2D serial images, and constructing 3D models that can be
examined visually but generally not manipulated. In contrast,
NeuroMorph has been developed to analyze and interact with
the models reconstructed from any of these tools directly in a 3D
environment. The NeuroMorph tools augment these models, and
perform specialized analyses directly on them.

To explain the different functionalities of these tools, we
present how they can be used to measure a range of different
features of axonal boutons. This includes how the 3Dmodels can
be visualized together with the original image stacks, and features
such as synapses and vesicles added to the model. We explain
how to make volume, surface area, and length measurements on
any part of the model, and how a centerline of an axon can be
used to show the changing densities of elements such as vesicles
along its length. In addition we include tools for measuring
the degree to which structures such as boutons are in contact
with other cellular features such as dendrites. This is useful for
understanding more about axonal function.

The software and detailed instructions, along with a stack
of EM images and corresponding scale models of biological
structures including the ones shown in this paper, are available
from our website7 which links to our GitHub page8.

The Blender models created and analyzed with these tools are
also compatible with the simulation software MCell9 that uses
the same Blender software via the CellBlender graphical user
interface to simulate various aspects of cellular processes (Kerr
et al., 2008).

2. MESHES

Blender10 is a widely used, free, open-source software package
developed primarily for 3D computer graphics applications.
NeuroMorph is a toolset comprising “addons” that can be
integrated into Blender to provide specialized tools for the
analysis of 3Dmodels derived from electron microscopy imagery
of neurons. However, much of its functionality can be applied to
models derived from any source. This paper extends our previous
work (Jorstad et al., 2015), which presented an earlier version of
the NeuroMorph Measurements tool, described here briefly in
section 4.

A 3D model is comprised of a mesh that is defined by points
called vertices, edges connecting the vertices, and polygons called
faces that are bounded by the edges, to create that 3D surface, see
Figure 1. The surfaces can be either closed like a ball or open like
a piece of cloth.

Meshes can be loaded into Blender from a variety of sources,
or constructed directly within the software itself. For example,
.obj files of annotations made in Fiji11 can be imported into
Blender using the NeuroMorph Import Objects tool (found in
the “Other Tools” section of the toolkit).

7neuromorph.epfl.ch
8https://github.com/NeuroMorph-EPFL/NeuroMorph
9mcell.org
10www.blender.org
11https://fiji.sc/

FIGURE 1 | Mesh geometry fundamentals. (Left) Part of a sphere, with four

orange vertices that are connected by edges, forming a single face. (Right) A

closed object and an open object.

FIGURE 2 | A 3D drawing of a single axon with synaptic bouton reconstructed

from serial EM images. The axon (gray) contains synaptic vesicles (orange),

synapses (purple), and mitochondria (green). This axon will be used as an

example throughout this paper.

In this paper we will analyze the 3D meshes of an axon
containing meshes of mitochondria, vesicles, and synaptic
contacts (see Figure 2). In section 3 we will describe how to
visualize the serial images, as well as how to add spherical meshes
at the position of each vesicle, and also create surface meshes
representing the synapses. In section 5 we will also make use of a
centerline, running through the axon, and consisting of vertices
strung together by edges, without any faces. This centerline can
be used to carry out various analyses that are useful for describing
the geometry of the axon.

3. DRAWING IN 3D

A commonmethod of creating 3Dmodels from serial EM images
is to annotate each image pixel by pixel, painting the structure of
interest. This can be done in software such as Fiji andMicroscopy
Image Browser12. The models are then exported as 3D objects.
This process can be very time-consuming, and the repetitive
task of drawing on 2D planes gives little information of the 3D
nature of the structure of interest. The NeuroMorph 3D Drawing
tool offers a faster alternative, by allowing users to mark and
draw onto the serial images directly in the 3D workspace of
Blender. The image stack can be efficiently navigated while the
3D structures are being constructed, providing the user with a
better sense of the structure as it is being created.

When the user loads the image stack into the software, an
“Image Stack Ladder” object is created in Blender that is the
height of the image stack, located in the corner of the images,
and consists of small triangular faces pointing to the locations of

12http://mib.helsinki.fi
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each image in the stack, see Figure 3. This allows the user to select
any vertex in the Image Stack Ladder, and view the image at that
location in the image stack. Multiple images can be displayed at
once. Clicking on a single image, the user can scroll through the
image stack, allowing the user to explore the image stack and see
how the 3D objects align with the images.

From a single image stack, with many images stacked in the
Z dimension, a tool to generate image stacks of the same data
in the X and Y dimensions is also provided, called “Generate
3D Image Stacks” (found in “Other Tools”). All three stacks can
be loaded into Blender and explored for extended 3D analysis.
Special thanks to Tom Boissonnet for the contribution of this
feature.

3.1. Plotting Synaptic Vesicles
The “Mark Points on Image” tool allows the user to create
spherical meshes of any size with a single click on an image
plane, see Figure 4. Here we use this tool to place spheres of
a chosen size in the axonal bouton at the exact position of
each vesicle. After placing each vesicle sphere, the user can
scroll back and forth between the nearby images to visualize
the sphere’s placement in 3D. If an annotation is incorrect, it
can be quickly deleted and the sphere placed again. In this
manner, many vesicles can be quickly plotted. If a large number of
spheres are going to be created, an option is available to construct
spheres using fewer vertices, which results in meshes that look
less smooth, but are computationally more efficient.

The vesicles created with this tool will be used in the Sphere
to Surface Distances tool described in section 6 to analyze the
proximity of vesicles to the pre-synaptic membrane.

3.2. Drawing Surfaces
The “Draw Curves and Surfaces on Image” tool allows the user to
draw curves on images, connect these curves from several layers
of the image stack, and create a 3D surface. Here this is used to
construct a pre-synaptic membrane.

The user can draw along the boundary of a neuronal structure
in an image, erasing if necessary, to correctly outline an object,
see Figure 5, top left. When the desired curve has been drawn,
it can be converted into a mesh curve consisting of vertices and

edges. For faster annotation, the tool can be set to convert curves
automatically as soon as the mouse click used for drawing is
released. Curves outlining an object should be drawn on several
images, either on adjacent images for more precision, or leaving
out a few images in between each curve for faster annotation, see
Figure 5, top right. Once several curves outlining the same object
have been created, the “Construct Mesh Surface from Curves”
tool will fit a mesh surface through the curves, adding faces to
result in a 3D mesh surface of the object that was outlined, see
Figure 5, bottom row.

It is also possible to construct surfaces with holes, such as
perforated synapses. Simply drawing curves on either side of
the hole on each image, with no drawing inside the hole, then
constructing the mesh surface from the curves as before, will
result in a 3D mesh surface with holes as annotated, see Figure 6.

3.2.1. Limiting Cases
When two adjacent curves have very different trajectories, the
resulting surface might be incorrect. The algorithm works by
fitting a linear surface through each adjacent pair of curves, and
then combining all surface segments together at the end to form
a single continuous surface. The surface construction functions
well when adjacent curves are near parallel, with endpoints not
too far from each other. However, when adjacent curves are close
to perpendicular, the algorithm cannot be sure which endpoints
should correspond, and this can result in a self-intersecting
surface. In this case, the user should add more intermediate
curves, to better define the progression of the surface being
reconstructed.

If a curve is drawn too fast, it is possible that the constructed
mesh curve might include extraneous vertices outside of the
desired chain of vertices. If this happens, the extra vertices can
simply be deleted.

If the constructed surface is not sufficiently smooth for a given
application, the user is able to add more intermediate curves to
provide as much fine detail as necessary.

3.3. Drawing Tubes
It is also possible to connect closed curves into closed tubular
objects, see Figure 7. Checking “Closed Curve” tells the tool that
the curves should be closed, like a circle. Constructing a mesh

FIGURE 3 | The Image Stack Ladder used for navigation through the 3D image stack.
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FIGURE 4 | Vesicles spheres annotated with a single click.

FIGURE 5 | Drawing curves in 3D, and connecting them into a synapse surface.

surface from these closed curves will create a closed tube, and the
ends of this tube can also be closed to form a closed object. This
tool is not currently capable of handling branching objects, but
can be used for annotating tubular objects such as mitochondria.
It is possible to handle U-shaped tubular structures with more
than one cross section in a single z-plane, but such objects must
be constructed in parts with only one cross section per z-plane,
and then joined together, which is a simple operation in Blender.

4. MEASUREMENTS

4.1. Lengths
The NeuroMorph Measurements tool provides three different
length measurement functionalities.

• Distance Between 2 Points: calculates the distance
between two selected vertices, ignoring the mesh
surface.
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FIGURE 6 | Creating a surface with holes is possible simply by drawing the

surface curves on either side of the hole, and leaving the hole empty.

• Shortest Distance on Mesh: calculates the shortest distance
between two selected vertices along a path through the vertices
of the mesh.

• Length of Selected Edges: calculates the total length of all
currently selected edges on the mesh.

4.2. Surface Areas
The surface area of a mesh or any subsection of a mesh can
be calculated by highlighting the desired faces and clicking the
“Surface Area” button, see Figure 8.

4.3. Volumes
The volume of a mesh or any subsection of a mesh can be
calculated by highlighting the faces defining the region and
clicking the “Volume” button. The tool will first close any holes
in the mesh, and then calculate the volume of the closed region,
see Figure 8.

For more details on measurement calculations, see Jorstad
et al. (2015) where the NeuroMorph Measurements tool and its
limitations are described in full.

5. CENTERLINE AND CROSS SECTIONAL
ANALYSES

This suite of tools allows the user to gather structural information
about the object (the axon in this case) in terms of the presence
of other objects (organelles), or how certain geometric properties
change along its length.

The tool first facilitates the creation of a line down the center
of the axon, which provides an object along which various
properties can be measured. The Vascular Modeling Toolkit
(VMTK) (Antiga et al., 2008) is a separate software package that
provides a useful tool for centerline creation13, based on the
algorithm from Antiga and Steinman (2004). The NeuroMorph

13http://www.vmtk.org/tutorials/Centerlines.html

Centerline tool exports the axon in a format that can be processed
by VMTK, and then reads back in the centerline mesh to be used
with the rest of this tool. VMTK must be installed separately in
order to use this tool.

The constructed centerline does not run down the exact
geometric center of the axon, but is instead of smooth curve that
always remains on the inside of the structure, and serves as a
representative skeleton of the axon, see Figure 9.

Although VMTK is able to construct branching centerlines,
the NeuroMorph centerline functionality is based on a single
non-branching centerline per axon. To handle branches, a second
additional centerline can be constructed, and the calculations
performed separately on that branch. Output data can then be
combined as determined by the user. U-shaped and S-shaped
axons are handed correctly by all the functionality provided by
this tool, even in the case when there are multiple cross-section
per z-plane.

If the user prefers instead to construct their own axon
centerline using standard functionality in Blender, the tools
in this section will all function, as long as the centerline is
entirely contained inside the axon mesh; extreme precision is not
required. The user must simply tell the software about the hand-
made centerline by clicking the “Update Centerline” button. The
only functionality that is lost by working with user-created or
user-edited centerlines is that the minimum axonal radius at each
centerline vertex will not be exported. This is data provided by
VMTK, and is not re-calculated by NeuroMorph.

The number of vertices that define the centerline can be set
by the user. This value determines the precision of the rest of the
functions in this section. In practice, we generally use a number
of vertices on the order of 200, or a vertex spacing of not less than
100 nm. The points are generally not precisely equally spaced
along the centerline curve, but there exact spacing is given in the
exported data file.

Functionality is also provided to clean the axon mesh as a
pre-processing step before further handling. This removes non-
standard geometry such as self-intersections, floating vertices,
and other non-manifold geometry that can sometimes result
when surfaces are imported from other tools. This mesh cleaning
is often necessary in order for other tools, including VMTK,
to be able to properly function. Sometimes the input mesh
has too many problems, and the tool will delete a large chunk
of the mesh (don’t worry, every action in Blender can be
undone). This is a sign to the user that the mesh should be
inspected and modified by hand near the deletion point, possibly
by removing some of the problematic regions of the surface
and filling in the surface holes with simple faces, an action
easily accomplished in Blender. The mesh cleaning function
should then be re-run to confirm that the final mesh used
for processing is clean. It is recommended to always clean
meshes using this tool before they are analyzed, and this
functionality has broad utility outside of the context of this suite
of tools.

5.1. Cross-Sectional Surface Areas
Once the centerline has been generated, cross-sectional
surfaces of the axon can be constructed at every vertex on
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FIGURE 7 | Drawing a closed tubular surface, here a mitochondria.

FIGURE 8 | (Left) Selecting a region to calculate its surface area and volume. (Right) An open surface, and the result after it is closed by the tool to perform the

volume calculation.

FIGURE 9 | The smooth centerline of an axon.

the centerline, see Figure 10. The cross-sectional surface
areas are then calculated along the axon providing a
quantitative measure of how the axon’s shape changes
along its length. This can be used to accurately define the

position of axonal boutons, using the bouton detection tool, see
section 5.6.

The cross sections are generated perpendicular to the
centerline. Therefore, in regions where the centerline is bending
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FIGURE 10 | (Top) Cross sections of the axon as computed along the centerline. (Bottom) The surface areas of the cross sections (in micrometers) at each

centerline vertex along the length of the axon.

back toward itself with high curvature, the user should note that
some cross-sections may intersect. However, the area values for
each cross section is correct.

5.1.1. Limiting Cases
If the diameter of the axon is particularly wide, the tool must
be told to use a larger plane when performing the plane-
axon intersection calculation that produces the cross section.
The computation time of this intersection calculation increases
with size, so the tool by default uses a moderately sized
plane, but the user is able to adjust the diameter of this
intersection plane as necessary via a parameter provided in the
user interface.

5.2. Max Radius of Each Cross Section
This tool calculates the maximum radius of each cross
section, as measured from the centroid of the cross
section to each of its vertices separately. The centroid
is calculated as the average location of all boundary
vertices of the cross section, and the intersection point of
the centerline with the cross section does not affect this
calculation.

Note that for C-shaped cross sections, it is possible that the
location of the centroid can technically be outside of the cross
section mesh. This does not affect the calculation, and it is up to
the user to decide in these cases if the “maximum radius” makes
sense.

5.3. Project Spheres to Centerline
This function aids in the analysis of the distribution of
objects such as vesicles along an axon, see Figure 11. The
user provides a collection of input mesh objects, such as
the vesicles created in section 3.1, which are assumed to be
spheres, but are not required to be. Only the centroid of each
object is considered. The centroid of each object is defined
as the average (x,y,z) location of its boundary surface vertices,
and the user should keep in mind that irregularly shaped
objects may not be well-represented by the centroid of their
vertices.

The distance from each centroid to each distinct vertex on the
centerline is computed, and the object is said to be “projected”
to the closest vertex. The number of distinct objects projected to
each vertex is tallied, and the function returns the final count of
projected objects for each vertex. This data will be exported along
with all other data for the centerline.

5.4. Project Surface Areas to Centerline
This function aids in the analysis of the distribution of surface
contact with objects such as synapses along an axon. The user
provides a collection of surfaces which do not have to be
continuous.

The distance from the centroid of each surface face to each
distinct vertex on the centerline is computed. The individual
areas of each surface face projecting to each centerline vertex
are summed, and the function returns the total projected area
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FIGURE 11 | (Left) Vesicles (orange) projected to their nearest vertices on the axon centerline (black; for clarity, only a subset of the projection arrows are shown). The

tool counts the number of vesicles that project to each centerline vertex. (Right) The number of vesicles projected to each centerline vertex along the length of the

entire axon, shown in Figure 1.

FIGURE 12 | (Left) Synapse surfaces (purple) are projected onto the axon centerline vertices. (Right) Closeup of the individual faces that make up a surface, each of

which is projected to the nearest vertex on the centerline. The tool sums the total surface areas of the faces that project to each vertex.

sum for each centerline vertex, see Figure 12. This data will be
exported along with all other data for the centerline.

5.5. Centerline-Based Output
Using the tools in this section, a file can be exported for further
analysis that contains some or all of the following data for each
centerline vertex:

• Length along centerline from endpoint of centerline to this
vertex

• Surface area of cross section
• Minimum radius of mesh
• Maximum radius of mesh
• Number of spheres projected
• Sum of chosen surface areas projected

5.6. Detect Boutons
A final tool is provided that helps the user to define bouton
swellings of an axon in a well-defined, reproducible manner,
based on certain geometric criteria. Applications of this tool were
first reported in Gala et al. (2017).

The user is able to input and experiment with three variables
that define the possible beginning and end of a bouton:

A = Area Change (ratio)

D = Distance for Area Change

M = MinimumMax Radius

Colored spheres are then placed along the centerline at locations
that meet certain geometric constraints based on these values, as
follows, see Figure 13.

5.6.1. Increasing/Decreasing Cross-Sectional Surface

Area
If the cross-sectional surface area is increasing or decreasing by
at least a factor of A (A = 2.0 in Figure 13) over a distance of
D (D = 0.2 Figure 13) along the axon, this might indicate the
presence of a bouton. (The direction of increase is defined from
the lowest to the highest centerline vertex index used in its mesh
representation in Blender.)
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FIGURE 13 | (Top) Colored balls mark certain geometric criteria that potentially define a bouton. In this example, the blue spheres indicate the position along the

centerline where the maximum radius of the cross-sectional surface area was greater than 0.2 micrometers. Red spheres indicate where the cross sectional surface

area of the axon is decreasing by a factor of 2 over a distance 0.2 micrometers (looking from right to left). Green spheres indicate where the cross sectional surface

area of the axon is increasing by a factor of 2 over a distance 0.2 micrometers (looking from right to left). (Bottom) Two user-chosen balls are used to define and

extract a new bouton object.

• A green sphere indicates that somewhere over the next D
distance along the centerline, there is a vertex whose cross-
sectional surface area is at least A times larger than the
surface area at the vertex with the green sphere. If there are
two green spheres in a row, this condition is true for each
of them independently; the spheres do not mark the entire
region of area increase, they only mark where the condition
starts.

• A red sphere indicates that somewhere over the nextD distance
along the centerline, there is a vertex whose cross-sectional
surface area is at least A times smaller.

5.6.2. Large Cross-Sectional Radius
If the maximum radius of the cross section at a vertex is greater
thanM (M = 0.2 in Figure 13), this might indicate the presences
of a bouton. The radius is measured from the centroid of the
cross section (the average location of all its vertices) to each of
its vertices separately, and the maximum radius is defined as the
largest of these distances.

• A blue sphere indicates that the maximum radius of the cross
section at that vertex is greater thanM.

From the possibly many spheres placed along the centerline, the
user can select the two that they decide best bound the desired
bouton. The tool will then extract the region of the axon between
these two points, returning a new bouton object whose volume
can be calculated using the NeuroMorph Measurement tools as
described in section 4.

6. PROXIMITY ANALYSIS

The tools described in this section enable the analysis of regions
of two different classes of objects that are close to one another.

6.1. Sphere to Surface Distances
This tool computes the shortest distance in 3D from each instance
of one class of object, such as the vesicles created in section 3.1, to
a given mesh object, such as a synapse surface created in section
3.2, see Figure 14. This tool was first developed for use in Barnes
et al. (2015).

Each vesicle object is assumed to be a sphere, and only their
centroids are used in the calculation. Non-spherical mesh objects
will be processed without question, but the user should keep in
mind that irregularly shaped objects may not be well-represented
by the centroid of their vertices. The distance from the centroid
of each vesicle to each vertex on the selected synapse surface
is calculated, and the shortest distance found for each vesicle is
exported in an output file.

6.2. Interacting Regions
The NeuroMorph toolset also provides functionality to extract
the regions of two different objects that lie within a certain
distance of each other. Here, we show in Figure 15 how it
can be used to measure the area of apposition between the
axonal bouton and an astrocytic process that lies alongside. The
functionality could equally be used to analyze the interactions
between endoplasmic reticulum and mitochondria.
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FIGURE 14 | (Left) The shortest distance from each vesicle sphere center (orange) to the pre-synaptic surface (purple) is calculated. (Right) A histogram showing the

numbers of vesicles in each 50 nm bin from the pre-synaptic surface.

Given two different objects, or two different classes of
objects with pieces joined together into two Blender objects, the
Proximity Analysis tool extracts the regions of the objects that
are less than a user-defined distance threshold T from each other,
see Figure 15, and exports the corresponding surface area pairs
of each interaction sub-region for analysis.

All interacting sub-regions of the two input objects will be
created as child objects of the original input objects. The objects
are initially not visible, in order to not clutter the scene, but
can be viewed individually using Blender’s visibility toggle. All
child objects can be made visible together using the NeuroMorph
Parent-Child Tools, provided in NeuroMorph’s “Other Tools”
toolbox.

The algorithm works by determining all vertices on each
object that are less than the distance T from a vertex in
the other object. A k-d tree (Bentley, 1975), which is an
optimized geometric search structure, is used to speed up
the processing time of the distance calculations. The vertices
are grouped into contiguous units on each object, and paired
with their corresponding nearby regions on the other object.
The surface areas of each of these distinct sub-regions are
calculated.

The output file provides the names of the sub-regions of
the first object (e.g., “object1.001”), their surface areas, the
corresponding regions of the second object (e.g., “object2.027”),
their surface areas, and the centroid of the two regions in
order to provide some context for the interaction in space.
It also provides the total non-overlapping surface area of
each object class, which is generally not the same as the
sum of the surface areas of each individual sub-region, see
below.

6.2.1. Understanding the Output

6.2.1.1. Regions where surface area = 0
Edges and vertices that are not part of any faces are cleaned
away at the end of the procedure. This means that there may
be a region of mesh faces on one object with no corresponding
region on the second object, because the corresponding region

consisted only of vertices or edges, but no full faces, so had
a surface area of 0. If these deleted regions are important to
the user, a finer mesh should be provided where entire faces lie
within the threshold distance. Remeshing, or simply subdividing
faces to result in a finer mesh, is a straightforward operation in
Blender14.

6.2.1.2. Doubly counted overlapping regions
The provided results consist of pairs of interacting individual
contiguous mesh regions from each object. If a region on one
object corresponds to two separate regions on the second object,
its surface area will be included in two separate entries in the
output file. For this reason, summing the interacting surface
areas may result in a greater overall surface area than the true
area in space. This may be the desired result, depending on the
application. The last line of the output file provides the total
non-overlapping surface area for each object.

7. DISCUSSION

Serial electron microscopy is now a commonplace technique
for exploring cell and tissue structure. Although many methods
have appeared in recent years for reconstructing different
features from the image stacks (e.g., Morales et al., 2011;
Sommer et al., 2011; Cardona et al., 2012; Belevich et al.,
2016), few provide any means by which geometric data
can be extracted directly from the resulting 3D models.
The NeuroMorph tools were primarily constructed, therefore,
not as a tool for segmentation or reconstruction, but to
allow the user to make detailed measurements of any part
of the models. We have integrated these into the Blender
software as this open-source platform is arguably the most
comprehensive and well-maintained of its type. Its 3D view
allows the user to manipulate any part of a mesh while
simultaneously viewing the original bitmap images, therefore,

14https://docs.blender.org/manual/en/dev/modeling/modifiers/generate/remesh.

html
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FIGURE 15 | (Upper left) Two different types of objects (orange and purple) are close to each other in space. (Upper right) The regions of the two object types that

are less than a given distance apart are identified and extracted. The potential physical interactions of nearby biological structures are often important, and there are

many biological applications of this functionality. (Lower left) Part of a green astrocytic process lies close to an gray axonal bouton. (Lower right) The proximity tool

was used to extract and measure the area of astrocytic process (green) within 50 nm of the bouton.

providing the opportunity to further add to the models or make
corrections.

Blender’s versatility as modeling and visualization software
has been exploited for other biological applications, leading
to the creation of independent tools developed for this
platform. BioBlender (Andrei et al., 2012) was developed
as a molecule visualization tool so that molecular models
imported from various sources can be viewed, and manipulated.
This enables their physical and chemical properties to be
included so that their activity can be seen in a realistic way.
Similarly, MCell (Kerr et al., 2008) is a Blender-based piece
of software into which cellular models can be imported and
populated with different molecules that are assigned with their
kinetic properties. The software can then carry out particle-
based Monte Carlo simulations to understand the molecular
diffusion and interactions within biologically relevant cellular
geometries.

The NeuroMorph toolset is entirely complementary to these
other software packages, giving the user the ability to quantify
the geometry. We show here how the different parts of the
software can provide details about the morphology from a single
glutamatergic axon, but all of this functionality could equally
be used to study any other cellular elements represented by

mesh models. The computational functionality of NeuroMorph
is limited only by the speed and memory of the computer on
which it is run. We have successfully tested scenes with many
hundreds or thousands of objects on a personal computer. When
only the location of an object matters, NeuroMorph also provides
a tool to reduce objects to their centroids, so thatmore objects can
be processed.

As the list of algorithms for segmenting different features from
serial electron microscopy images grows, tools such as these will
become increasingly more in demand as scientists continue to
map and quantify cellular environments.
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We present SBEMimage, an open-source Python-based application to operate serial
block-face electron microscopy (SBEM) systems. SBEMimage is designed for complex,
challenging acquisition tasks, such as large-scale volume imaging of neuronal tissue
or other biological ultrastructure. Advanced monitoring, process control, and error
handling capabilities improve reliability, speed, and quality of acquisitions. Debris
detection, autofocus, real-time image inspection, and various other quality control
features minimize the risk of data loss during long-term acquisitions. Adaptive tile
selection allows for efficient imaging of large tissue volumes of arbitrary shape. The
software’s graphical user interface is optimized for remote operation. In its user-friendly
viewport, tile grids covering the region of interest to be acquired are overlaid on
previously acquired overview images of the sample surface. Images from other sources,
e.g., light microscopes, can be imported and superimposed. SBEMimage complements
existing DigitalMicrograph (Gatan Microscopy Suite) installations on 3View systems but
permits higher acquisition rates by interacting directly with the microscope’s control
software. Its modular architecture and the use of Python/PyQt make SBEMimage highly
customizable and extensible, which allows for fast prototyping and will permit adaptation
to a wide range of SBEM systems and applications.

Keywords: SBEM, imaging software, connectomics, serial block-face, SEM, volume EM, microtome, 3View

INTRODUCTION

The efficient reconstruction of neuronal circuits and other biological ultrastructure by electron
microscopy requires fast, reliable, and high-quality acquisition of large volumetric image datasets
(Lichtman and Denk, 2011; Denk et al., 2012). Several automated acquisition methods based on
scanning or transmission electron microscopy have been developed for this purpose (reviewed in
Briggman and Bock, 2012; Peddie and Collinson, 2014; Titze and Genoud, 2016). One approach is
to collect series of ultrathin sections on a supporting structure before image acquisition (Hayworth
et al., 2006; Schalek et al., 2012), which preserves sections but requires solutions for large-scale
section collection and image alignment. Alternatively, a stained and embedded tissue block can
be cut with an ultramicrotome inside the vacuum chamber of a scanning electron microscope
that is used to image the block-face after each cut (Denk and Horstmann, 2004). This approach,
termed serial block-face electron microscopy (SBEM), achieves reliable thin sectioning and requires
only minimal alignment of successive images. However, it does not permit repeated imaging
of the same tissue since sections are destroyed during the acquisition. It is therefore crucial to
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ensure high reliability of data acquisition and to have efficient
error detection procedures in place to prevent data loss when
running long SBEM acquisitions. Also, to minimize the duration
of such acquisitions, it is desirable to efficiently restrict image
acquisition to regions of interest. Furthermore, solutions to
integrate data acquisition with image post-processing would
allow to perform operations such as stitching, alignment, and
image analysis while the acquisition is running.

SBEM has been successfully used for ultrastructural imaging
of large tissue volumes in the past (Briggman et al., 2011;
Wanner et al., 2016a,b; Schmidt et al., 2017, among others),
but further software improvements are desired to optimize the
acquisition workflow. After the initial development of automated
SBEM (Denk and Horstmann, 2004), a commercial system
(Gatan 3View) based on the original design was introduced
and is now widely used. The 3View microtome and image
acquisition process are controlled via the proprietary software
DigitalMicrograph (Gatan Microscopy Suite; GMS 2 or 3). This
software provides the basic functionality to set up and run
acquisitions on 3View systems. However, it does not provide key
features such as automatic debris detection that are important
to prevent data loss during long acquisitions, and it does not
allow for fine-grained control and customization. Furthermore,
DigitalMicrograph currently limits the image acquisition rate
to 2 MHz. These restrictions prompted the development of
SBEMimage as a flexible and powerful open-source acquisition
platform for SBEM/3View systems.

SBEMimage provides essential quality control features
for long-term acquisitions. When running an acquisition
continuously over days, weeks or even months, the following
problems can occur: (1) debris falling on the sample surface
and obscuring the region of interest; (2) focus and astigmatism
drifts or jumps; (3) electron beam instability; (4) malfunctions
of the (proprietary) control software (here: DigitalMicrograph
and SmartSEM); (5) I/O errors such as disk or network drive
unavailability for writing image data; (6) hardware failures
(stage motors, SEM cathode, backscattered electron detector,
vacuum system, power). With these issues in mind we designed
SBEMimage to provide improved error handling capabilities,
more extensive monitoring functions, and other features
that enhance stability and reduce user interaction time. An
automatic debris detection and removal mechanism and a
reliable autofocus function combined with slice-by-slice tile
monitoring solve problems (1), (2), and (3). Error detection
procedures pause the acquisition when errors of type (4),
(5), or (6) occur that cannot be resolved by the software.
Additional features allow for imaging of volumes with complex
geometries and for the integration of image analysis procedures
into the acquisition process. A flexible and user-friendly
graphical interface minimizes the risk of human error when
setting up and running acquisitions. The highest priority
during development was to prevent data loss in case of major
failures.

SBEMimage is an open-source project, released on
GitHub under the MIT License, and intended as a free-to-
use community-supported resource. The code repository,
installation instructions, and further documentation can be

found on GitHub1. The software was developed with a modular
architecture, and the source code is fully commented, which
should allow Python programmers to easily customize it and add
new functionality.

IMPLEMENTATION

We implemented SBEMimage in Python (version 3.6), a high-
level programming language that is widely used in the scientific
community. The toolkit PyQt 5 was used for the graphical
user interface. SBEMimage is currently designed to operate a
3View microtome combined with a ZEISS Merlin microscope.
It interacts with two pieces of existing proprietary software:
(1) The microscope control software SmartSEM, which must
be installed on the EM server PC, and (2) DigitalMicrograph
(Gatan Microscopy Suite 2 or 3), which runs on a support PC.
Together, these two applications control the SBEM system in the
conventional configuration (Figure 1A).

Acquiring images in DigitalMicrograph with DigiScan (Gatan’s
scan generator) limits the acquisition rate to 2 MHz. To overcome
this limit, SBEMimage acquires images via SmartSEM, which
permits acquisition rates of up to 40 MHz. This approach requires
an adapter that connects the amplified BSE detector output to one
of the microscope’s acquisition boards. Details are provided on
the GitHub page.

To achieve maximum flexibility, we first had to find
a way to control all relevant low-level functions of the
3View system through Python commands. For the ZEISS
Merlin and other ZEISS microscopes, a powerful API already
exists: the SmartSEM Remote API, developed by Carl Zeiss
Microscopy, implemented as an ActiveX control, with test
programs available in C++, C#, and Visual Basic. We built
a wrapper module that allows all relevant commands of
that API to be used in a Python application. This module
may be adapted in the future to allow SEMs from other
manufacturers to be controlled with the same SBEMimage Python
commands.

DigitalMicrograph offers an internal scripting language that
provides a number of commands to control the 3View stage and
the microtome’s knife. However, there is no publicly accessible
and documented API that lets programs running outside of
DigitalMicrograph use these functions. Our solution was to
create a communication script that runs in DigitalMicrograph
and enables the exchange of commands and parameters with
external programs. This information exchange is achieved
through reading and writing files. In 0.1-s intervals, the
DigitalMicrograph script checks for the existence of a trigger
file. If this trigger file is detected, the script reads an input file
that contains a command and up to two parameters. In this
way, SBEMimage can send commands to DigitalMicrograph and
read return values. Through the SmartSEM remote API and
the DigitalMicrograph communication script, SBEMimage can
thus control all relevant low-level functions of the SBEM system
(Figure 1B).

1https://github.com/SBEMimage
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FIGURE 1 | (A) Conventional setup of the 3View system. The software SmartSEM (Carl Zeiss Microscopy, Cambridge, United Kingdom), running on the EM Server
PC, controls the scanning electron microscope (SEM). The software DigitalMicrograph (Gatan), running on a support PC, controls the 3View hardware (diamond
knife and motorized stage). DigitalMicrograph can also indirectly control the SEM via SmartSEM. (B) SBEMimage interacts with SmartSEM through a proprietary
remote API, provided by Carl Zeiss Microscopy, and with DigitalMicrograph through a custom-written communication script. SBEMimage can thus control all
relevant low-level functions of the SBEM system and exert full control over the acquisition process.

DESCRIPTION OF THE USER
INTERFACE

The graphical user interface consists of two windows, by default
positioned next to each other on a wide screen (Figure 2A).
The interface was designed with remote desktop software such
as TeamViewer and VNC in mind: All functions (including basic
SEM operations such as turning on the high voltage and focusing
the beam) are accessible on a single screen.

The window “Main Controls” on the right displays at a
glance all relevant settings, the acquisition status, the current
electron dose, and real-time estimates for the duration of the
acquisition and the storage size of the dataset. Various dialogs
let the user set up all acquisition parameters and, when using
the program for the first time, perform a motor speed and stage
calibration. Calibrating the stage is necessary because the X and
Y motor axes are rotated and scaled with respect to the SEM
coordinate system (Supplementary Figure S1B). Additional tabs
of the “Main Controls” window contain a novel tool for manual
focusing (explanation below) and various functions for testing
and debugging.

The window “Viewport” on the left lets the user set up
and monitor acquisitions visually. The workspace shown in the
viewport’s main tab covers the entire accessible range of the
stage motors. When sufficiently zoomed out, the stage boundaries
are shown as solid white lines, and the X and Y stage axes as
dashed white lines. To obtain an overview of the entire surface
of the sample holder (“stub”) mounted on the 3View stage, the
user can acquire a “stub overview image,” a large low-resolution
(372 nm pixel size) mosaic of specified size that is displayed in
the workspace as the main background image (Supplementary
Figure S1A).

The user can use this stub overview image to comfortably
locate the region of interest and navigate there to acquire smaller
overview images at higher resolution (typically 100–200 nm pixel
size). To acquire image tiles at the target resolution for analysis
(typically 5–20 nm pixel size), the user can set up a tile grid in

the region of interest. Grid size, tile size, overlaps/gaps between
tiles, and acquisition parameters (frame size, pixel size, and dwell
time) are specified for each grid. Tiles can be individually selected
or deselected for imaging and the whole grid can be shifted when
necessary. For complex acquisition tasks, multiple overviews can
be set up to cover the region(s) of interest, and multiple grids
can be created with different imaging parameters. The user can
choose for each overview image and for each grid whether it
should be acquired on every slice, or in intervals. This permits,
for example, to image a region of interest with alternating pixel
sizes from one slice to the next, or to acquire an overview stack
at low resolution with a high-resolution mosaic on every tenth
slice.

The basic elements described above are displayed as different
layers inside the viewport. The background layer consists of the
stub overview image, which provides the main reference frame
for an acquisition. The layer above contains the overview images
that cover the regions of interest. They are primarily used for
debris detection and to position the tile grids. The tile grids
are placed in the next layer above the overview images. Finally,
additional imported images (see feature description below) are
shown in the foreground, typically with a transparency setting
that allows the user to see through these images. Users can freely
position all tile grids, overviews, and imported images within
the accessible motor range and choose whether to show or hide
them.

The visual scene can be panned by left-click dragging, and
zoomed in and out with the mouse wheel or a zoom slider.
All elements can be selected and edited with mouse clicks and
dragged to new positions. The viewport is fully functional even
while an acquisition is running.

BRIEF DESCRIPTION OF FEATURES

In the following, we have summarized the key features of
SBEMimage and a few additional features that may be of interest
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FIGURE 2 | SBEMimage user interface. (A) The default window arrangement during a stack acquisition. Recommended screen resolution is 1920 × 1080. Left
window: Viewport showing an overview image and two tile grids. The highlighted tiles have been selected for imaging. A low-resolution stub overview mosaic is
displayed in the background. The right window contains the main controls: Settings are shown for the SEM and the microtome, the current overview image and one
of the tile grids. In the lower part of the window, all activity is logged. In the stack acquisition panel, users can select or deselect features to be used during the
acquisition and watch the progress of the acquisition. Electron dose range and duration/storage estimates are shown on the right side of the panel. (B) The
slice-by-slice viewer lets the user view recently acquired images at full resolution. With the mouse wheel, the user can scroll through consecutive slices to assess
cutting and image quality. (C) In the statistics tab, the user can select an overview image or a tile, for which the current reslice, the histogram, and mean/SD plots are
shown. All errors, warnings, and debris events are logged in the lower right part of this tab.

for special applications. Users can select before and during an
acquisition which features should be active while the acquisition
cycle (Figure 3) is running.

Debris Detection and Removal
When the debris detection option is activated, each newly
acquired overview image is compared to the one on the previous
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FIGURE 3 | A simplified flowchart of SBEMimage’s stack acquisition cycle.

slice to check if debris is present. To initiate this process, the
user is asked to confirm that the very first overview image
at the beginning of a stack does not contain debris. Three
different methods (based on comparisons of mean/SD values,
histograms, and pixel differences, respectively; for details, refer
to the GitHub repository) are currently available to detect
debris on the surface. The default detection procedure divides
the region of interest into four quadrants and compares the
pixel mean and standard deviation in each quadrant between
successive images. If the maximum difference across all four
quadrants exceeds a user-defined threshold, the program assumes
that debris is present. In this case, SBEMimage performs a
“sweep” (first described in Helmstaedter et al., 2013): After
the sample is lowered by 70 nm (or a different amount as
specified by the user), the knife is moved across the sample
surface in an attempt to push the debris away. The process
can be repeated until the user-specified maximum number of
sweeps has been reached. Depending on the option settings,
the program will then either pause the acquisition or continue
regardless of the debris. Detection parameters should be fine-
tuned for a given sample and imaging settings to achieve optimal
results. In our hands, the automated procedure detected and
removed all medium- to large-size chunks of debris (>10 µm).
The detection and removal of very small flakes of debris
on the order of microns or smaller may, however, be less
efficient, depending on sample properties, imaging parameters,
and residual charging.

Focus and Stigmation Control
For remote focusing with TeamViewer or VNC, SBEMimage
offers a focus tool that acquires a 512-pixel× 384-pixel through-
focus series on a specified tile or overview image (Figure 4A).
The user can then choose the optimal focus setting from this
image series. Optimal X/Y stigmation settings are chosen with
the same procedure. For refinement, the cycle can be repeated.
This focus tool offers two advantages: (1) It can be used remotely
(when no adjustment knobs and no access to the EM server PC
are available) and even at slow connection speeds of the remote

desktop software; (2) The procedure minimizes the electron dose,
at least in case of small focus corrections, since each image
series is acquired only once, whereas manual refocusing with the
microscope software relies on continuous scanning. The focus
tool can also be used to set working distances for individual
tiles, which is needed for setting up an adaptive focus for tilted
surfaces. A slight tilt of the 3View knife is usually unavoidable,
which for very large distances across the sample surface can lead
to a difference in working distance: One part of the region of
interest may be well focused, but a more distant part will be
out of focus. This also typically occurs when mounting a sample
in the 3View holder that will not be cut. Any initial tilt of the
surface will thus not be physically corrected by the blade. For
these cases, SBEMimage offers a gradient correction mechanism
(Figure 4B). To correct the focus during an acquisition, two
autofocus methods are implemented in SBEMimage: Method
(1) uses the built-in SmartSEM autofocus/stigmator, which is
called in regular intervals, as specified by the user. The user
can choose the reference position(s) where the focus/stigmation
procedure should be performed, and decide if both autofocus
and autostigmation are to be performed on the same slice or
a specified number of slices spaced apart to minimize beam
exposure. Method (2) uses a continuous heuristic autofocus
procedure based on autocorrelation. The algorithm works on
tiles that have already been acquired and applies corrections
continuously. This approach was first used in Briggman et al.
(2011) and is described in appendix A of Binding et al.
(2013).

Adaptive Tile Selection
Within each grid, tiles can be selected as “active,” or deselected,
with single mouse clicks. Only active tiles are acquired.
Deselecting tiles outside the region of interest therefore makes
imaging non-rectangular regions of interest more efficient
(Figure 5A). When debris detection is used, SBEMimage can
automatically adjust the detection region to cover only the region
of the overview image that contains active tiles. The active tile
pattern can be adjusted by the user while an acquisition is
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FIGURE 4 | (A) The focus tool (the second tab in the main controls window)
allows the user to remotely focus individual tiles or overview images and
adjust the stigmator settings. A brief explanation is provided in the main text.
(B) For imaging tilted surfaces, SBEMimage offers a focus gradient correction
feature. When the optimal focus for three tiles on a given grid is specified (see
drawing in the dialog window), SBEMimage computes the gradient and
adjusts the focus (working distance) automatically for every tile in the grid. In
the viewport, the different working distances for each tile are displayed below
the tile number.

running. Grids can be shifted when the acquisition is paused.
When an error occurs or the user pauses the acquisition,
SBEMimage remembers which tiles on the current slice have
already been acquired and will resume the acquisition at the
correct position in the grid.

Slice-by-Slice Tile Monitoring
On each slice, the mean and standard deviation of a selected
tile is compared to the mean and standard deviation of the
same tile in the previous slice. If the differences exceed user-
defined thresholds, the acquisition is paused. This approach
permits detection of sudden unexpected changes (loss of focus,
darkening, and blank images). In the second tab of the viewport
window (slice-by-slice viewer), the user can load the most

recently acquired tiles and overviews into memory and view
them at full resolution (Figure 2B). Panning and zooming work
as in the viewport. The mouse wheel and control buttons let
the user go backward and forward through the acquired slices
to check if the cutting is regular and to assess image quality.
Distances in the images can be measured with a ruler tool
(also available in the viewport). The viewport offers in situ tile
previews during acquisitions. A preview image (512 pixels× 384
pixels) is generated from each tile as soon as it is acquired. This
preview image is then immediately displayed in the tile grid, such
that the user can inspect it in its relative position to the other tiles.
To check whether the specified overlaps are sufficient and the
stage calibration is accurate, tile previews can be shown either in
“overlap mode,” where they are placed at the exact stage positions
where they were acquired, or in “gap mode,” where artificial gaps
are put between the tiles, which is useful to verify the alignment
and the width of overlapping areas.

Image Inspection and Selection
After each image acquisition, the module ImageInspector reads
the acquired image file from disk into memory and performs
a number of image integrity and quality checks. If a check
fails, the user is alerted via e-mail and the acquisition is paused
automatically. It is also possible to test incoming images for other
user-defined features and either select or discard them on the
basis of these tests. This feature can save storage space and also
time since it can be exploited to carry out some data processing
and pre-selection operations already during the acquisition.

Data and Metadata Handling
Images are first saved on a primary drive (usually the local
hard disk or SSD of the support PC; see Supplementary
Figure S2 for SBEMimage’s folder structure and file name
conventions). The user can specify a second local or network
drive as a mirror drive, where the acquired image data and
the metadata are mirrored during the acquisition. This feature
provides a backup solution and makes the data available for
post-processing while the acquisition is running. For seamless
integration into an image post-processing pipeline, SBEMimage
metadata can be exported in the TrakEM2 image list format
(Cardona et al., 2012). Metadata can also be transferred to
a remote server while the acquisition is running. SBEMimage
integrates with the Volume Image Environment (VIME; Gerhard
et al., in preparation2), which allows for the visualization and
post-processing of images in real-time as they are acquired by
SBEMimage. A communication protocol between SBEMimage
and VIME lets users implement a flexible remote quality control
system. In case of problems with post-processing of the acquired
image data – for example when stitching is not possible due to
insufficient overlap – the acquisition can be paused remotely by
VIME and the user is notified.

Error Handling
When an error is detected, SBEMimage in most cases makes a
second or third attempt to carry out the failed operation and

2https://github.com/vime
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FIGURE 5 | A whole Platynereis dumerilii, late nectochaete stage (6 days post-fertilization), acquired with SBEMimage. Imaged with a ZEISS Merlin SEM at 1.8 keV
landing energy, 270 pA beam current, and 0.8 µs dwell time. 11,416 slices with >200,000 image tiles at 10 nm × 10 nm × 25 nm voxel size. Platynereis were
provided by H. Martínez and D. Arendt, EMBL, Heidelberg. Sample preparation by P. Machado and Y. Schwab, EMBL, Heidelberg. Alignment: A. Wanner. Silver
epoxy embedding was used to reduce charging, as described in Wanner et al. (2016b). (A) Stitched mosaic, slice 6298. The corresponding tile pattern is shown in
the upper left corner. Adaptive tile selection was used throughout the stack acquisition to efficiently capture the irregular shape of the worm along its (tilted)
anterior-posterior axis. (B) The worm’s 3D shape, as reconstructed from the EM dataset. Segmentation and 3D rendering: www.ariadne.ai.

writes a warning message into the log. If the second/third attempt
also fails, the acquisition is paused and the user is notified via
e-mail. Error codes have three digits and are grouped according
to the first digit: (1) errors related to communication with
DigitalMicrograph; (2) errors related to 3View/SBEM hardware;
(3) errors related to SmartSEM/SEM; (4) I/O errors; (5) errors
related to the acquisition process and image inspection; (6) user-
defined errors. Detailed information about the entire acquisition
process including all warnings and errors is saved in the main log.

Additional Features
Configurations for Multi-User Multi-Project
Environments
All system settings, calibrations, acquisition parameters, and
workspace options are stored in configuration files. This allows
each user to maintain his or her own configuration and to work
on different projects on the same system.

E-Mail Monitoring and Control
In user-specified intervals, a status report is sent via e-mail.
The user can customize the content of the report (screenshots,
log files, images, and reslices). When a critical error occurs,
SBEMimage immediately sends an e-mail to alert the user. The
user can also send commands to SBEMimage via e-mail, for
example to pause an acquisition remotely when TeamViewer or
VNC are unavailable.

Importing Overview Images
Existing images can be imported into the workspace at
a variable pixel size, stage position, rotation angle, and
transparency, which is of special interest for correlative

light and electron microscopy (CLEM). For example, light
microscopic images can be loaded and superimposed on EM
images of the same tissue to align cell bodies or other
structures.

Real-Time Reslices, Histograms, and Statistics
The z-reslice image for a user-selected overview or tile, its
histogram, and its time course of mean and standard deviation
measurements are shown in the third tab of the viewport window
(Figure 2C). By clicking on the plots, the user can select a past
slice along the time axis, for which the histogram and mean/SD
values will be displayed.

Plasma Cleaner Control
SBEMimage includes a module to control the downstream asher
GV10x (ibss Group Inc., Burlingame, CA, United States) to clean
the inside of the microscope’s vacuum chamber and the surface of
the BSE detector.

SUMMARY AND OUTLOOK

With the development of SBEMimage we have addressed key
problems encountered frequently in SBEM acquisition projects.
The software has been tested extensively and used in multiple
projects including long-term acquisitions. One example is a 6-
week acquisition of an image stack covering an entire specimen
of Platynereis dumerilii at a voxel size of 10 nm× 10 nm× 25 nm
(Figure 5). This dataset comprises >200,000 image tiles that
were unevenly distributed over 11,416 slices (approximately
18 tiles per slice on average). The efficient acquisition of this

Frontiers in Neural Circuits | www.frontiersin.org 7 July 2018 | Volume 12 | Article 5426

www.ariadne.ai
https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-12-00054 July 29, 2018 Time: 15:53 # 8

Titze et al. SBEMimage Acquisition Software

dataset depended critically on two SBEMimage features, debris
detection and adaptive tiling. Debris was detected and removed
on 493 slices. Hence, a substantial fraction of slices would have
been compromised at least locally without automated debris
detection. Adaptive tile selection allowed us to acquire data
only from those tiles that contained sample tissue. The entire
Platynereis specimen was contained within a bounding cuboid of
approximately 275 µm × 260 µm × 285 µm. However, because
the specimen was tilted and had a complex shape, image data had
to be acquired from only ∼30% of this cuboid. Adaptive tiling
therefore saved a substantial amount of time and resources for
data acquisition, post-processing, and storage.

The release of SBEMimage on GitHub3 allows potential users
to test it on their systems and adapt it to their needs. The software
currently supports Gatan 3View microtomes and ZEISS SEMs.
Operation of SBEMimage with devices from other manufacturers
will require the adaptation of SBEMimage modules with device-
specific code for low-level functions. The development of
SBEMimage was inspired by a previous open-source microscopy
project that has been highly successful: ScanImage, a widely used
application for operating laser scanning microscopes (Pologruto
et al., 2003).

A promising future application of SBEMimage are “data-
driven acquisitions,” where image data is used in real-time by
the program to algorithmically determine what to acquire next.
SBEMimage offers an ideal framework to implement such an
approach. For example, machine learning could be used to detect
tissue boundaries in overview images. For a given volume to be
acquired, the user would specify the starting grid configuration
and select all the tiles needed to cover the tissue. The algorithm
would then decide from slice to slice whether to shift or expand
the tile pattern to follow the tissue through the sample.

Another potential application is sparse and selective imaging
of tissue volumes. For many SBEM applications, only a fraction
of the acquired data is actually needed for further analysis.
As described above, substantial time can be saved by adaptive
tile selection to avoid imaging irrelevant parts of the sample.
Beyond that, imaging may be restricted to specific objects that
are of interest to a user, such as the dendritic tree of a specific
neuron. For such applications, SBEMimage provides a framework
to detect these features in real-time during acquisitions or to
exclude images in which the existence of these features can be

3 https://github.com/SBEMimage

ruled out. Such inspection algorithms can be easily incorporated
in SBEMimage’s acquisition cycle to select a given tile for
registration or to discard it.
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FIGURE S1 | (A) The viewport’s workspace, zoomed out to show a stub overview
image that covers the entire motor range of the stage. (B) The stage axes form a
coordinate system that is rotated and scaled with respect to the SEM coordinate
system. SBEMimage provides a calibration routine. Note that the motors move on
slightly curved paths; the straight stage axes shown are an approximation.

FIGURE S2 | Folder structure of a SBEMimage dataset and naming conventions
for overview and tile image files. All images are saved as 8-bit greyscale TIFFs.
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Fixation and staining of large tissue samples are critical for the acquisition of volumetric

electron microscopic image datasets and the subsequent reconstruction of neuronal

circuits. Efficient protocols exist for the staining of small samples, but uniform contrast

is often difficult to achieve when the sample diameter exceeds a few hundred

micrometers. Recently, a protocol (BROPA, brain-wide reduced-osmium staining with

pyrogallol-mediated amplification) was developed that achieves homogeneous staining

of the entire mouse brain but requires very long sample preparation times. By exploring

modifications of this protocol we developed a substantially faster procedure, fBROPA,

that allows for reliable high-quality staining of tissue blocks on the millimeter scale.

Modifications of the original BROPA protocol include drastically reduced incubation times

and a lead aspartate incubation to increase sample conductivity. Using this procedure,

whole brains from adult zebrafish were stained within 4 days. Homogenous high-contrast

staining was achieved throughout the brain. High-quality image stacks with voxel sizes

of 10 × 10 × 25 nm3 were obtained by serial block-face imaging using an electron dose

of ∼15 e−/nm2. No obvious reduction in staining quality was observed in comparison to

smaller samples stained by other state-of-the-art procedures. Furthermore, high-quality

images with minimal charging artifacts were obtained from non-neural tissues with low

membrane density. fBROPA is therefore likely to be a versatile and efficient sample

preparation protocol for a wide range of applications in volume electron microscopy.

Keywords: EM, protocol, BROPA, connectomics, SBEM, block-face, zebrafish, sample preparation

INTRODUCTION

Volume electron microscopy (volume EM) is currently the only imaging approach that enables
dense reconstructions of neuronal circuits. A current goal for large-scale projects is the acquisition
of high-resolution image data from volumes up to 1mm3, which may be achieved by different
approaches that rely on automated sectioning and imaging (Briggman and Bock, 2012; Denk et al.,
2012; Titze and Genoud, 2016). One strategy is to collect sections on a support for subsequent
imaging in a scanning EM (SEM) or in a transmission EM (TEM). Alternatively, stacks of images
may be acquired by serial block-face scanning electron microscopy (SBEM), a technique that
repeatedly cuts and images the sample block-face in an SEM (Denk and Horstmann, 2004). For
both approaches, unsliced tissue blocks must be fixed and impregnated with heavy metals. Efficient
methods for en bloc staining of EM samples on this size scale are thus of key importance for
connectomics.
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En bloc staining methods for connectomics should ideally
achieve uniform and strong impregnation of membranes with
heavy metals throughout large sample blocks. This has been
achieved by the rOTO (reduced osmium—thiocarbohydrazide—
osmium) protocol (Seligman et al., 1966; Malick and Wilson,
1975) and its recent adaptations and modifications (Deerinck
et al., 2010; Tapia et al., 2012a). The rOTO protocol achieves
high membrane contrast, but staining intensity decreases with
depth (Hua et al., 2015), presumably because the penetration
of reagents is inefficient. Acceptable staining can usually be
achieved up to 200µm below the tissue surface, but staining of
thicker samples remains challenging. Hence, new approaches are
required for high-contrast staining of samples containing large
neuronal circuits.

Recently, two protocols for efficient staining of larger
samples have been introduced. The first protocol is based on
modifications of the osmium steps and produced homogeneous
and strong staining in 1 × 1 × 1mm3 blocks of mouse brain
tissue (Hua et al., 2015). However, we obtained variable results
when applying this protocol to the brain of adult zebrafish, which
is difficult to impregnate because densely packed somata and
meninges form strong diffusion barriers. The second protocol,
referred to as BROPA, was developed to stain entire mouse brains
and uses different reagents such as formamide and pyrogallol
(Mikula and Denk, 2015). Uniform staining of an entire mouse
brain requires very long incubation times that result in a total
protocol duration of 2–3 months. We therefore explored the
possibility to modify this protocol to achieve faster staining of
smaller samples.

We developed a modified BROPA protocol, referred to as “fast
BROPA” (fBROPA), that achieves strong and uniform staining
of samples on a millimeter scale. The procedure takes advantage
of the reagents used in the BROPA protocol but uses drastically
shorter incubation times and contains additional modifications.
A lead aspartate (Walton, 1979) incubation step substantially
increased the conductivity of the sample, which greatly facilitated
SBEM imaging of sample blocks. The protocol does not include
uranyl acetate, thus resolving concerns about radiation safety
(Odriozola et al., 2017). The time required for the complete
fBROPA staining procedure (four days) is similar to the duration
of other protocols such as rOTO. We tested fBROPA on different
samples including tissue from the adult zebrafish brain and
mammalian intestinal organoids using SBEM. In all samples,
fBROPA produced uniform staining with high contrast and
conductivity. We therefore conclude that fBROPA is a promising
stainingmethod for volumetric EM applications in connectomics
and other fields.

RESULTS

The goal of this study was to develop an en bloc staining protocol
for reliable staining of samples on the millimeter scale. Our
starting point was the BROPA protocol (Mikula and Denk, 2015),
which has been developed for larger samples. In order to adapt it
to smaller samples we first used the same reagents and procedures
but reduced incubation times by a constant factor. Protocols

were then used to stain entire brains of adult zebrafish, which
have a maximal diameter of >1mm. Brains were imaged in an
SEM (Zeiss Merlin or FEI Quanta 200 FEG) in low or high
vacuum. Under these conditions, intense staining with heavy
metals is required to obtain high-contrast images. Moreover,
highly conductive samples are required to prevent charging in
high vacuum.

We first reduced all incubation times of the original BROPA
protocol by a scaling factor given by the approximate length ratio
of the zebrafish brain and the mouse brain, which resulted in a
total duration of 2 weeks for the complete protocol. However,
this approach was not successful. Although we used a fixation
procedure that is known to preserve ultrastructure very well
(Briggman and Denk, 2006; Deerinck et al., 2010; Tapia et al.,
2012b; Hua et al., 2015; Mikula and Denk, 2015) brains showed
obvious signs of damage. Staining was poor, membrane integrity
was not preserved, and broken nuclear envelopes were observed
(Figure 1A). Moreover, the tissue contained large empty spaces
and was not sufficiently conductive to obtain high-quality SBEM
images in high vacuum (Figure 1B).

We then varied incubation times to optimize conditions.
Surprisingly, we found that shorter incubation times resulted
in more intense and more homogeneous staining. Moreover,
shorter incubation times eliminated obvious signs of damage and
dramatically improved the preservation of tissue ultrastructure
(Figure 2). To further optimize the protocol we varied the
following steps and systematically analyzed staining in the
telencephalon of the adult zebrafish brain:

1. Dissection and fixation. We found no obvious difference in
staining between brains that were dissected in cold artificial
cerebrospinal fluid (ACSF) before fixation and brains that
were dissected directly in cold fixative.

2. Sucrose. We did not observe an obvious correlation between
the sucrose concentration and the preservation of extracellular
space (Pallotto et al., 2015). However, we observed that
the proportion of extracellular space differed between brain
regions. While the telencephalon contained almost no
extracellular space (Figures 2B,C), substantial amounts of
extracellular space were observed in the olfactory bulb.

3. Osmium incubation. Best results in the zebrafish forebrain
were obtained when the durations of osmium incubations
were limited to ∼90min for each incubation. This time
was sufficient for reagents to diffuse throughout the
forebrain and produce homogeneous staining. Longer
incubation times, in contrast, may produce inhomogeneous
staining. Tissue ultrastructure was well-preserved. Further
observations indicated that the optimal duration of osmium
incubations varies between samples. In intestinal organoids,
for example, the best tissue preservation and the most
homogeneous staining was obtained with an incubation time
of 45min. We therefore recommend systematic variation
of this parameter when adapting the protocol to new
samples.

4. Lead aspartate. In order to increase conductivity and prevent
charging in the SEM (Figure 1B) we incubated samples
in lead aspartate. This procedure was found to increase

Frontiers in Neuroanatomy | www.frontiersin.org 2 September 2018 | Volume 12 | Article 7630

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Genoud et al. En Bloc Staining of Large Tissue Samples

FIGURE 1 | Unsuccessful staining attempts. (A) Telencephalon of adult zebrafish stained with a protocol that reduced incubation times of the original BROPA protocol

to a total duration of 2 weeks. Note severe tissue damage. (B) Telencephalon of adult zebrafish stained with a protocol that reduced incubation times of the original

BROPA protocol to a total duration of 5 days without lead aspartate. Note charging artifacts in nuclei and neuropil.

sample conductivity in the rOTO protocol. Consistent with
this observation, we found that lead aspartate substantially
increased conductivity of samples prepared by fBROPA. This
step was necessary to acquire stacks of SBEM images in high
vacuum.

5. Uranyl acetate. Initial attempts without lead aspartate staining
produced samples that were not sufficiently conductive
(Figure 1B). As a consequence, charging was severe and high-
quality images in SBEM could not be obtained with beam
currents >90 pA. To alleviate this problem we explored an
additional incubation in uranyl acetate but did not observe
an obvious increase in conductivity or image contrast. We did
therefore not include a uranyl acetate incubation in the final
protocol but recommend to revisit this option if problems are
encountered in other samples.

6. Pyrogallol. The use of pyrogallol instead of
thiocarbohydrazide (TCH) was one of the main innovations
of the BROPA protocol (Mikula and Denk, 2015). We tested
the option to return to TCH but abandoned this idea because
pyrogallol produced substantially better results.

7. Dehydration. A time of 5–10min was optimal to dehydrate
samples without creating artifacts. It is critical that samples
do not become dry at any time during dehydration. We
therefore always add the next solution onto the previous one
and reiterate this procedure many times to ensure that the
sample is always immersed.

8. Embedding. As described previously (Wanner et al., 2016),
we first embedded the sample in epoxy resin (Denk and
Horstmann, 2004) and subsequently transferred it into a
different resin containing silver particles. This procedure
renders the sample volume around the tissue conductive and
suppresses charging in the SBEM. We found that the epoxy
resin for the initial embedding should be kept liquid for a
longer time when samples are larger, which was achieved by
variations in the formulation of the resin.

The final protocol for fBROPA is described in detail in
Materials and Methods and consists of the following main steps:

Day 1: Dissection of tissue and fixation overnight.
Day 2: Incubation in reduced osmium, osmium, pyrogallol,

osmium.
Day 3: Incubation in lead aspartate, dehydration, incubation in

resin.
Day 4: Embedding of sample.

We used the zebrafish telencephalon to optimize the protocol
because pilot experiments had shown that other sample
preparation procedures often failed to produce strong and
uniform staining in this brain area. One possible explanation
for this observation is that the ventricle stretches as a thin
sheet over the dorsal telencephalon and hinders diffusion
of reagents into the tissue. Nevertheless, fBROPA resulted
in uniform high-contrast staining throughout the zebrafish
forebrain (Figure 2). Contrast and signal-to-noise ratio of
images taken deep below the surface appeared indistinguishable
from superficial images (Figures 2B,C). In some cases, contrast
was even higher in deep regions as compared to superficial
regions. Hence, fBROPA allows for efficient staining of large
samples.

To corroborate this conclusion we analyzed sample blocks
that were cross-sectioned through the optic tectum of adult
zebrafish where the diameter of the brain is maximal. The
diameters of these cross-sections were ∼1.1 and 0.8mm along
the long and short axes, respectively. Homogeneous staining
was observed throughout (Figure 3A). High-resolution images
of sub-regions in different locations demonstrated that contrast
was uniformly high (Figures 3B–D). As observed with related
protocols for en bloc staining of large volumes, synaptic vesicles
could be clearly resolved while staining of postsynaptic densities
was not prominent (Figure 3E). Images with high signal-to-noise
ratio could be obtained at all locations using image acquisition
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FIGURE 2 | Application of fBROPA to the adult zebrafish brain. (A) Coronal

section through the telencephalon of adult zebrafish at the level of Dp

(posterior zone of the dorsal telencephalon). Note homogeneous staining.

Black particles outside the tissue are silver particles in the surrounding resin to

optimize conductivity. (B) Neuropil close to the surface. (C) Neuropil 300µm

below the surface.

parameters that are typically used in high-throughput SBEM (1.5
keV landing energy, 15 e−/nm2, high vacuum).

We next applied fBROPA to intestinal organoids that are
small in volume compared to the zebrafish brain. However, these
samples have a lower membrane density than brain tissue and
contain relatively large sub-volumes devoid of cells. Organoid
samples therefore accumulate less osmium and tend to be less
conductive than brain samples. As a consequence, organoid
samples are prone to charging effects and present a challenge
for high-quality imaging using SBEM. We found that organoid
samples prepared using fBROPA allowed for acquisition of
high-resolution image stacks (3 keV landing energy, 3 nm pixel
size, 50 nm section thickness; Figure 4). Charging artifacts were
minimal and image quality was similar to that obtained in other
samples. The acquisition of high-quality stacks at low section
thickness (≤30 nm) was not possible when the incubation in
lead aspartate was omitted because charging effects became too
strong. These observations show that fBROPA allows for the
preparation of volumetric EM samples with high contrast and
conductivity from different biological sources.

DISCUSSION

We developed fBROPA, an en bloc staining method for volume
EM. fBROPA is based on similar reagents and procedures as
BROPA but uses substantially shorter incubation times, resulting
in a total duration of four days that is similar to that of
other en bloc staining protocols. Moreover, fBROPA includes
an additional lead aspartate incubation step that substantially
increases sample conductivity.

Compared to the well-established rOTO protocol, fBROPA
substantially extends the volume of homogeneous staining
to the millimeter range without an obvious loss in staining
intensity, contrast or conductivity. The appearance of synapses is
similar as in rOTO-stained tissue, with distinct synaptic vesicles
and lightly stained postsynaptic densities. Homogeneous high-
contrast staining of cubic millimeter samples has also been
achieved by a modification of the original rOTO protocol (Hua
et al., 2015). This protocol has been applied successfully to
the rodent neocortex. fBROPA now provides a complementary
option for en bloc staining of large samples that has been applied
successfully to different parts of the zebrafish brain and to
organoid samples. These samples present different challenges
for staining procedures including diffusion barriers and low
membrane density. fBROPA resulted in high contrast and
conductivity in all of these samples, indicating that it may
be applicable to a wide range of biological specimens. Hence,
fBROPA extends the range of available options for en bloc
staining of large EM samples. Future studies may thus further
explore applications of fBROPA and compare it to alternative
protocols.

Recent developments in 3D EM technology substantially
increased the speed of data acquisition without loss in image
quality. As a consequence, the acquisition of high-resolution
image stacks covering volumes as large as a cubic millimeter
appears realistic in the near future. Ultrastructural imaging
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FIGURE 3 | Application of fBROPA to the adult zebrafish brain. (A) Section through the tectum near the location where the diameter is maximal (1.1mm). Image is a

mosaic of 6 × 6 tiles. (B–D) Three images acquired at different depths. Approximate locations of images are indicated by outlines in (A). (E) Examples of images

showing synapses (5 nm pixel size). Vesicle pools close to the presynaptic membrane and a thickening of both membranes are visible. Synapse detection can be

performed in 3D as shown in Supplementary Data S1 (movie). Note uniformly high contrast. The partial damage on the right side of the tectum occurred during

dissection and is unrelated to fixation or staining.

of such volumes can enable the reconstruction of important
neuronal circuits such as entire neocortical columns. We
therefore assume that fBROPA will become a valuable method
for large-scale connectomics and neuronal circuit reconstruction.
Moreover, fBROPA has the potential to facilitate various
applications of volumetric EM in other scientific domains.

MATERIALS AND METHODS

Reagents
Fixative: 2.5% wt/vol glutaraldehyde (16400, Electron
Microscopy Sciences [EMS]) in 0.1M cacodylate buffer
(Sigma CO250) with 4% sucrose (Sigma S9378), pH 7.4. Use
fresh fixative (within less than 4 hours after preparation). Add
3ml (2.5% wt/vol) of freshly opened glutaraldehyde (25%
vol/vol aqueous solution) to 15ml 0.2M cacodylate buffer with
1.2 g sucrose. Correct pH to 7.4, and then fill up to 30ml with
double-distilled water (ddH2O).

Cacodylate buffer (0.2M stock solution): Prepare 100ml of
0.4M cacodylate buffer (8.56 g to 100ml of ddH2O) and add
∼10.8ml of 0.2M HCl. Adjust the pH to 7.4 and fill up to 200ml
with ddH2O. Can be stored at room temperature.

OsO4/K4Fe(CN)6 solution: 40mM OsO4 (EMS 19110)
with 35mM K4Fe(CN)6 (Sigma Aldrich 60280) in 0.1M
cacodylate buffer and 2.5M formamide (Sigma 47670). Add
2.5ml of 4% aqueous osmium tetroxide (stock solution
prepared at least 24 h in advance by dissolving 2 g of osmium
tetroxide crystals in 50ml of ddH2O) to 5ml of 0.2M
cacodylate buffer. Add 0.15 g of K4Fe(CN)6 (0.147812 g for
35mM) and 1.125ml of formamide. Fill up to 10ml with
ddH2O.

OsO4 solution A: 40mM OsO4 (EMS) in 0.1M cacodylate
buffer. Add 2.5ml of 4% aqueous osmium tetroxide (stock
solution prepared at least 24 h in advance by dissolving 2 g of
osmium tetroxide crystals in 50ml of ddH2O) to 5ml of 0.2M
cacodylate buffer. Fill up to final volume of 10ml with ddH2O.
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FIGURE 4 | Application of fBROPA to early differentiated organoids (two cells).

Insert shows details of the membrane ultrastructure between the two cells.

OsO4 solution B: 40mM OsO4 (EMS) in ddH2O. Prepare
2.5ml of 4% aqueous osmium tetroxide (stock solution prepared
at least 24 h in advance by dissolving 2 g of osmium tetroxide
crystals in 50ml of ddH2O) and fill up to final volume of 10ml
with ddH2O.

Pyrogallol (Sigma 16040), 320mM, pH 4.1, unbuffered:
Solution can be used for up to 6 weeks after preparation.
Add 2.5ml of 1.28M stock pyrogallol solution (stock
solution is obtained by adding 40.35 g in 250ml
ddH2O and stored in the dark at 20◦C) in 7.5ml
ddH2O.

Walton’s lead aspartate: Ensure that all solutions are kept at
60◦C in a water bath and that pH is measured at this temperature.
Mix 0.040 g aspartic acid (Sigma A9256) in 10ml ddH2O and
bring the solution to 60◦C. Then add 0.066 g lead nitrate (EMS
17900) and let the solution stabilize at 60◦C. Adjust pH to 5.5
(at 60◦C) with 1M NaOH (∼350 µl). Keep solution at 60◦C
throughout.

Uranyl acetate solution (1% wt/vol in ddH2O): Add 0.2 g of
uranyl acetate powder to 20ml of ddH2O, and agitate gently until
solution is transparent.

Durcupan resin (Knott et al., 2009): Mix 33.3 g of resin
A/M (Sigma 44611), 33.3 g of hardener B (Sigma 44612) and
1 g of hardener D (Sigma 44614) into a plastic pouring flask.
Stir continuously with magnetic stirrer for at least 30min. Add
16 drops of DMP-30 (tris-(dimethylaminomethyl)phenol, EMS
13600), and stir for a further 10min.

Durcupan resin (Deerinck et al., 2017): Mix 11.4 g part A/M
(Sigma 44611), 10 g part B (Sigma 44612) and 0.3 g part C
(Sigma 44613) into a plastic pouring flask. Stir continuously with
magnetic stirrer for at least 30min. Add 0.05-0.1 g part D (Sigma
44614). For both recipes of Durcupan, the EMS products can also
be used.

Epoxy “SERVA” resin (Denk and Horstmann, 2004):
Mix 11.1 g of glycid ether (SERVA Electrophoresis GmbH
21045), 6.19 g of dodecenylsuccinic anhydride (DDSA, SERVA
Electrophoresis GmbH 20755), and 6.25 g of methyl nadic
anhydride (MNA, SERVA Electrophoresis GmbH 29451) into a
plastic pouring flask. Stir continuously with magnetic stirrer for
at least 30min. Add 0.325ml of benzyldimethylamine (BDMA,
SERVA Electrophoresis GmbH 14835), and stir for a further
10min.

Epoxy “EMbed812” resin: Mix 20ml of “EMbed812” (EMS
kit 14120), 16ml of DDSA (EMS kit 14120), and 8ml of MNA
(EMS kit 14120) into a plastic pouring flask. Stir continuously
with magnetic stirrer for at least 30min. Add 0.75ml of DMP-30
(tris-(dimethylaminomethyl)phenol, EMS 13600), and stir for a
further 10min.

fBROPA Protocol for Adult Zebrafish Brain
1. Dissect brain in ice-cold, precarbogenated ACSF as

described (Zhu et al., 2012).
2. Immerse in fixative for 1 hour at room temperature and then

overnight at 4◦C.
3. The next morning, replace the fixative by 0.1M cacodylate

buffer with 4% sucrose, pH 7.4. Samples can be stored in this
buffer for at least seven days when the medium is changed
every other day.

4. Stain in freshly prepared OsO4/K4Fe(CN)6 solution (40mM
OsO4 with 35mMK4Fe(CN)6 in 0.1M cacodylate buffer and
2.5M formamide) at room temperature for 90min.

5. Stain in OsO4 solution A (40mM OsO4 in 0.1M cacodylate
buffer), pH 7.4, at room temperature for 90 min. Do not
rinse between steps 4 and 5.

6. Wash at least 3× 5min with 0.1M cacodylate buffer, pH 7.4.
Repeat rinsing until solution remains clear for 5min.

7. Place sample in 320mM pyrogallol, pH 4.1, unbuffered, in
ddH2O, for 30 min.

8. Wash at least 3× 5min with 0.1M cacodylate buffer, pH 7.4.
Repeat rinsing until solution remains clear for 5min.

9. Stain in in OsO4 solution B (40mM OsO4 in ddH2O) at
room temp for 90 min.

10. Store in ddH2O at 4◦C overnight.
11. Wash 3× 5min in ddH2O at room temperature.
12. Immerse in Walton’s lead aspartate solution at 60◦C for 60

min.
13. Wash 3× 5min in ddH2O at room temperature.
14. Dehydrate in graded EtOH balanced with water (10%, 25%,

50%, 75%, 2× 100%) at room temperature or on ice.
15. Depending on the resin used, the samplemay be incubated in

100% propylene oxide twice for 10min. This step is optional
and may be used if the resin does not penetrate throughout
the tissue. Otherwise, we recommend avoiding this step
because it can wash out reagents.

16. Immerse the sample in 50% resin−50% propylene oxide,
or in 50% resin−50% ethanol, for at least 120min. This
step can be extended overnight. We successfully used four
recipes of resin (see Reagents for details). Ensure that the
resin penetrates evenly through the sample.

17. Immerse the sample in 100% resin overnight before
embedding.
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18. If samples need to be oriented on the stub used for
SBEM imaging, transfer samples to the stub in liquid resin.
Superglue can be used to glue the sample in liquid resin onto
the stub. If the sample is to be embedded in silver-containing
resin for high conductivity, proceed as described in (Wanner
et al., 2016).

19. Cure the resin in the oven at 60◦C for at least 48 h.
20. Trim sample in an ultramicrotome to prepare the block

surface for the SBEM (Wanner et al., 2016).

As recommended inMikula and Denk (2015), tubes should be
changed for each staining step.

All experiments were approved by the Veterinary Department
of the Canton Basel-Stadt (Switzerland).

Imaging
Images were acquired on a ZeissMerlin SEM (Zeiss, Oberkochen,
Germany) and on a Quanta 200 VP-FEG (FEI, Eindhoven,
Netherlands; now ThermoFisher Scientific). Both microscopes
were equipped with an automated ultramicrotome inside the
vacuum chamber for SBEM (3View; Gatan, Pleasanton, CA,
USA; now ThermoFisher Scientific). On the Zeiss Merlin,
image acquisition was controlled by SBEMimage, an open-
source software for image acquisition in SBEM (Titze et al.,
2018). Images were acquired with a landing energy of 1.5 keV
in analytical mode. Other imaging parameters were chosen
to maintain an electron dose of 15 e−/nm2 (beam current:
300 pA, pixel dwell time: 0.8µs, pixel size: 10 × 10 nm2).
These conditions were used to acquire all high-resolution images
from the zebrafish brain. Images from intestinal organoids were
acquired on theQuanta 200 with a landing energy of 3 keV, a pixel
size of 3× 3 nm2, and a pixel dwell time of 2µs.
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Analysis Tools for Large
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New reconstruction techniques are generating connectomes of unprecedented size.

These must be analyzed to generate human comprehensible results. The analyses

being used fall into three general categories. The first is interactive tools used during

reconstruction, to help guide the effort, look for possible errors, identify potential cell

classes, and answer other preliminary questions. The second type of analysis is support

for formal documents such as papers and theses. Scientific norms here require that

the data be archived and accessible, and the analysis reproducible. In contrast to

some other “omic” fields such as genomics, where a few specific analyses dominate

usage, connectomics is rapidly evolving and the analyses used are often specific to

the connectome being analyzed. These analyses are typically performed in a variety of

conventional programming language, such as Matlab, R, Python, or C++, and read the

connectomic data either from a file or through database queries, neither of which are

standardized. In the short term we see no alternative to the use of specific analyses,

so the best that can be done is to publish the analysis code, and the interface by

which it reads connectomic data. A similar situation exists for archiving connectome

data. Each group independently makes their data available, but there is no standardized

format and long-term accessibility is neither enforced nor funded. In the long term, as

connectomics becomes more common, a natural evolution would be a central facility

for storing and querying connectomic data, playing a role similar to the National Center

for Biotechnology Information for genomes. The final form of analysis is the import of

connectome data into downstream tools such as neural simulation or machine learning.

In this process, there are two main problems that need to be addressed. First, the

reconstructed circuits contain huge amounts of detail, whichmust be intelligently reduced

to a form the downstream tools can use. Second, much of the data needed for these

downstream operations must be obtained by other methods (such as genetic or optical)

and must be merged with the extracted connectome.

Keywords: analysis of connectomes, EM reconstruction, neural circuits, neural simulation, reproducibility

1. INTRODUCTION

A connectome is a detailed description of a neural circuit, including the neurons and the
synaptic connections between them. New and improved reconstruction techniques, using electron
microscopy(EM) (Chklovskii et al., 2010), optical labeling (Lichtman et al., 2008), or sequencing
(Zador et al., 2012), are generating connectomes of unprecedented size. These must be analyzed to
generate human comprehensible results and provide input to downstream tools. There are at least

37

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2018.00085
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2018.00085&domain=pdf&date_stamp=2018-10-15
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles
https://creativecommons.org/licenses/by/4.0/
mailto:schefferl@janelia.hhmi.org
https://doi.org/10.3389/fncir.2018.00085
https://www.frontiersin.org/articles/10.3389/fncir.2018.00085/full
http://loop.frontiersin.org/people/251507/overview


Scheffer Analysis of Connectomes

three very different use cases. The first is interactive analysis, used
during the reconstruction itself. Next, there is formal analysis,
for reports, papers, and proceedings. Finally, connectomes are
used as input to further stages of analysis, such as simulation and
machine learning algorithms.

Each of these use cases is rapidly evolving. The increased scale
of reconstructions requires new interactive analysis methods for
efficiency and quality control. The more formal analyses used
so far are often specific to the connectome being analyzed. For
example, the analyses used for extremely stereotyped circuits,
such as the fly’s optic lobe, are very different than the analyses
used for the apparently random wiring of portions of olfactory
systems. Finally, the usage of connectomes as input to further
tools, such as simulation, is just beginning. It is not yet clear what
the requirements are.

Analysis of connectomes is likely to follow the path of analysis
of genomes. Initially, genomes were difficult to acquire, and
the same group that did the acquisition did the analysis. But
as the technology for sequencing improved, analysis became
the limiting step. Groups that acquired genomes could no
longer analyze all the data they collected, and conversely,
many of the scientists who analyze genomes had no hand in
the data collection. This same transition will likely happen in
connectomics. One difference, however, is that connectomics has
a much larger variety in the form, function, and usage of its
analyses. This differs from genomics, where a few specific forms
of analysis dominate the usage, as exemplified by the Basic Local
Sequence Alignment Tool, or BLAST (Altschul et al., 1990).

2. PREVIOUS WORK

There is another usage of “Connectome,” that refers to the
connections between regions of the brain, and not detailed
connections between neurons. These apply to much larger
animals where detailed neural reconstruction is not yet possible.
This paper does not cover analysis of such connectomes, which
has its own literature (Sporns, 2003; He et al., 2011; Kaiser, 2011;
Leergaard et al., 2012; Xia et al., 2013).

At its heart, a connectome is a directed graph. Since graphs
are useful representations in many science and engineering tasks,
there has been considerable research into specific tasks on graphs,
such as partitioning (Kernighan and Lin, 1970; Pothen et al.,
1990; Karypis and Kumar, 1998), clustering (Hartuv and Shamir,
2000; Brandes et al., 2003; White and Smyth, 2005), finding
cliques (Everett and Borgatti, 1998), finding patterns (Kuramochi
and Karypis, 2005), finding small motifs (Itzkovitz and Alon,
2005) and so on. Only some of these techniques have been applied
to connectomes, and it is not clear which, if any, can provide
useful answers to practical biology problems.

One challenge with connectomes is that the connectomes
are “fuzzy,” meaning every instance of a common sub-graph
is slightly different. This means that some well-known graph
and subgraph matching algorithms (such as Ullmann, 1976),
particularly those based on graph invariants (Corneil and
Kirkpatrick, 1980), may not work well when applied to
connectomes. Conversely, algorithms designed to cope with

errors, such as (Messmer and Bunke, 1998), are more likely to
be applicable.

“ConnectomeExplorer” (Beyer et al., 2013) is an integrated
tool, intended to solve many of the problems indicated in
this article. It includes its own visualization tools and analysis
language. However, it does not appear to have been used in any of
the major connectome analysis efforts, likely because familiarity
with conventional tools such as Matlab has outweighed the
advantages of a new tool with its corresponding learning curve.

3. DISCOVERY

Currently, there are three main use cases for connectomes, here
called “discovery,” “formal,” and “input.”

“Discovery” involves inspecting the connectome for
interesting features. These tools are typically fast and graphical
in nature, and must work with the approximate connectomes
that exist as reconstruction progresses. They are often built into
the reconstruction tools, and are used to look at reconstruction
concerns and ordering, as well as generate science results as early
in the reconstruction process as practical. Examples include
connectivity tables of various kinds, plot of connections as a
function of graph connectivity or distance from the root of
the neuron, and comparisons of seemingly similar neurons. In
this paper, we look at tools used during past reconstructions,
those being used currently in the still larger reconstructions
in process, and those we think will be needed in the
future.

Tables of connections are one of the most obvious outputs.
Typically, these show the upstream and downstream neurons,
sorted by strength, as shown in Figure 1. Color coding makes
connection patterns more obvious. Comparing rows shows the
differences between neurons with similar names or types.

Dendrograms are another natural representation. Nervous
systems often contain many similar cells, often referred to a
“cell type.” Cell types are traditionally defined by morphology
(Fischbach and Dittrich, 1989) but with connectomes it makes
sense to define them by connectivity as well. One natural way
to group cells is to represent their connections by a vector of
connection strengths to various other types. These vectors can be
grouped by distance to create a dendrogram, grouping together
cells with similar connectivities and separating cells with very
different connection patterns. An example is shown in Figure 2.

Another natural representation of a connectome is as an
instance of a directed graph. Circuits are easier to visualize
connections as a graph rather than a collection of tables, even
if the information is the same. In the circuits reconstructed
so far, nervous systems are seemingly constructed of several
motifs small enough to be easily visualized, including reciprocal
connections and small loops. These graphs may be annotated
with connections weights (expressed in number of synapses).

A connectome expressed as a graph also facilitates queries
defined by connectivity, such as “Find all cells of type A that
connect to any instances of type B by a path of 2 hops or less.”
A connectome can be loaded into a graph database such as
Neo4j (Miller, 2013), and then a variety of graph query languages
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FIGURE 1 | Example of connection table. Each row shows the connections to a single neuron, sorted by synapse count. Each box shows the identity of the

connected neuron, the synapse count in both directions (separated by a “:”), and the internal identifier of the connected neuron. Colors are arbitrary, but all cells of the

same type share the same color. Data from Takemura et al. (2015).

(Wood, 2012), such as cipher or Gremlin, can be used query the
data.

One often requested graphical form is the connections to
just one cell type, as shown in Figure 3. In general only the
stronger connections are of interest. Also, for some purposes the
connections to one instance of a cell are wanted, but in other cases
it might be the average connectivity to all cells of the same type.

One of the main reasons to draw a graph, rather than a table
or list, is to enable human understanding of circuit operation. It
is therefore important that the display diagram be designed not
only to be technically correct, but to show the information flow
in a way that is easy for humans to understand. Programs that
do this for arbitrary electronic circuits (Jehng et al., 1991) and
directed graphs (Gansner et al., 1993) have long existed. These
could perhaps be mined for ideas helpful for drawing biological
networks.

An example of what is desired is shown in Figure 4. This
diagram was created (manually) to highlight the role of two
cell types, Mi4 and Mi9 from the medulla, in the pathways to
the motion detecting cell T4. Mi4 and Mi9 have strong cross-
connections, and between them receive inputs from many cells
from the lamina. In particular, Mi1 is a strong contributor
to both paths. The diagram is organized with inputs at the
top and the T4 cell at the bottom. Only strong connections
are shown, and other inputs to the T4 are ignored in this
diagram.

4. FORMAL

We define “Formal” analysis as the analysis used in formal
scientific documents such as papers, theses, and proceedings.
Such analysis should at least be archival and reproducible,
and ideally easily extendable. A scientist who seeks to
reproduce the results might wish to do so at several
levels:

• Take the orginal raw data, re-reconstruct and re-analyse it.
• Take the connectome as input and write their own analysis

code.
• Reconstruct another organism, then run the first papers

analysis.

These options require physical access to the data,
an understanding by programs and humans of
how the data are structured, and ability to run
the analysis. We consider each of these issues in
turn.

Due to the recent introduction and rapidly evolving nature
of connectome analysis, no standards are yet available, and
publication of data sets and analysis code is largely handled
on an ad-hoc basis. Another problem is that the data sets are
large (often many terabytes). Thus the data are too big to
publish as supplemental data to a paper, and must be archived
elsewhere.
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FIGURE 2 | Example of dendrogram describing clustering of neurons by their connectivity, based on their proximity in N dimensional connectivity space, where N is

the number of cell types to which this neuron is connected. Coordinates in this space are determined by synapse counts (Top) or percentage of input (Bottom).

Counts and percentages shown for the five most strongly connected types. Data from Takemura et al. (2015).

4.1. Formal Analysis
Analyses of connectomes are varied and often complex (up to
tens of thousands of lines of code). For such procedures, as data
scientists are well aware, the “Methods” section of a paper is
just a summary of the actual analysis performed. Details such
as the resolution of ties in sorting procedures, the numerical
precision of intermediate results, differences in library routines,
and so on, make it almost impossible to precisely reproduce
results from the methods section alone. In general (one hopes)
this does not affect the main points made in the paper, nor
affect the conclusions when comparing substantially different
organisms. However, when connectomics advances to comparing
closely related species then it will be critical to use the exact
same software for both, to ensure that any differences found
are the result of biology and not an artifact of slightly different
computation.

There are two main approaches to this problem. One is to
centralize the analysis, so all researchers are using the same
program. The other is to publish the code and the accessmethods.
Then each researcher should be able to run the analysis at their
own facility, and ideally get the exact same result.

The field of genomics had similar problems. The adopted
solution (at least in the USA) was a funded center, the National

Center for Biotechnology Information, that both stored the
data and hosted the primary analysis tools. The initial version
(Wheeler et al., 2000) stored mostly genetic data but it has
since expanded to hold other related items (NCBI Resource
Coordinators, 2018). This helps in several ways. Two different
papers, using (for example) BLAST, can be compared directly
since they use the same analysis tools. Next, since the data sets
and analysis tools are hosted on the same site, the network
bandwidth requirements are much reduced.

Could such a centralized analysis work for connectomics?
Probably not yet, since tools have not yet converged on a
commonly used set. To show this, we look at a (small) subset
of analyses that have been attempted, and what tools were used,
based on published analysis of large connectomes, both our own
and others. This is shown in Table 1. Even this subset shows that
analysis tools span a wide range of methods and techniques, and
most analyses so far have typically been computed in an external
tool such as Matlab, R, or Python.

One common analysis matches receptive fields to the circuits
that compute them, such as in Briggman et al. (2011), Bock et al.
(2011), Takemura et al. (2013), and Takemura et al. (2017b).
These analyses can’t be done with connectomes alone—they
need the physical location of the input, such as the location of
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FIGURE 3 | Connectivity to and from each T4 cell in Drosophila, as shown by a

reconstruction of 7 columns of the optic lobe (Takemura et al., 2015). The

incoming strengths are indicated as A/B C%, where A is the total number of

synapses to all cells of that type, B is the number of cells connected, and C is

the percentage of total input (output). The outgoing strengths are the number

of synapses. The area of each circle is roughly proportional to the connection

strength.

FIGURE 4 | Circuits leading to Mi4 and Mi9, and hence to the motion

detecting cell T4. To facilitate human understanding, the signal flow is largely

uni-directional (top to bottom in this case), there are relatively few line

crossings, and the edges are annotated with weights. This diagram was drawn

manually, but automated and semi-automated tools to create such diagrams

would be helpful. Data from Takemura et al. (2015).

photoreceptors in the retina or the hexagonal grid of the flys
eye. They then require a weighted sum through the network, and
perhaps network signs and delays as well. Receptive fields for
other modalities such as olfaction, gustation, or auditory, will be
very different and require specialized analyses of their own.

Another sample analysis is that of stereotypy. To examine
the limits of neural wiring accuracy, Lu et al. (2009) compared
the wiring of the same neurons on the left and right sides of a
mouse. Similarly, Takemura et al. (2015) examined a particularly
stereotyped system, the medulla of Drosophila, comparing each
of 7 nearly identical columns against each other, using a detailed
statistical model to try to separate the different potential causes
of differences—differences in biology of pre- and post-synaptic
counts, and reconstruction errors. In both studies, one of the
main goals was to measure the rate of biological differences
and errors, by manually re-examining all differences between
the sides and/or columns. This is unlikely to be a common
operation while reconstruction is limited to a single specimen,
since such a crystal-like repetition of circuits is not expected in
most parts of the brain. It will become more common, however,
as comparisons of connectomes across multiple animals are tried,
once increased throughput makes this practical.

Another very specific analysis is that of randomness of a
specific set of connections. This was examined in the visual cortex
of the mouse (Bock et al., 2011), and the olfactory system of
Drosophila larva (Eichler et al., 2017) and adult (Takemura et al.,
2017a), respectively. In each case, preliminary analysis showed
no obvious pattern of connectivity between certain classes of
input cells and the output neurons. However, to back up this
apparent randomness, a detailed statistical model was required,
and then the circuit compared to this model, generating p
values, statistical powers, and so on. While the basic problem
of modeling seemingly random connections is likely to re-occur,
the details of each computation make it unlikely that the exact
computations can be re-used.

These examples of the various and sundry analyses used show
that it is unlikely that any reconstruction tool could perform
all, or even most, of the analyses needed after reconstruction.
Therefore, we find no practical alternative to the use of external
tools, so the challenge is to make the use of such tools convenient,
transparent, and reproducible. Transparency is the easiest to
address, with the analysis code posted on a publically available
site such as GitHub (Blischak et al., 2016) or included as
supplementary data.

4.2. Formal Data Storage
More difficult, perhaps, is storing the connectome data itself in a
reproducible and archivable way.

Formal analysis is based on, and analyzes, many different
products of the reconstruction process. In all reconstruction
techniques to date, EM, optical, or genetic, the raw data is large,
and requires significant processing to generate a connectome.
While here the discussion concentrates on EM, the same
principles will apply if other modes of analysis are used.

In order of decreasing size, the data used in EM connectivity
analysis is:

• The source EM images.
• The aligned, stitched, and normalized image stack.
• The segmentation of the volume into neurons.
• Skeletons, which are a list of 3-D points and line segments

that approximate the full and typically complex shape of the
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TABLE 1 | Analysis tools as used in a selection of connectome analyses.

Paper Analysis Tools used

Wiring optimization can relate neuronal structure and

function (Chen et al., 2006)

Wire length optimization MatLab

Exploring the retinal connectome (Anderson et al., 2011) Various Python, Excel, Tulip (Auber, 2004), Graphvis (Ellson

et al., 2001)

Wiring specificity in the direction-selectivity circuit of the

retina (Briggman et al., 2011)

2 photon correlation, specificity of synapses MatLab, ITK-SNAP, custom software

Network anatomy and in vivo physiology of visual cortical

neurons (Bock et al., 2011)

2 photon imaging of same sample, statistics of

connections

MatLab, Linux tools, custom software

A visual motion detection circuit suggested by Drosophila

connectomics (Takemura et al., 2013)

Receptive fields C++, Matlab, Gephi (Bastian et al., 2009)

Connectomic reconstruction of the inner plexiform layer

in the mouse retina (Helmstaedter et al., 2013)

Various Matlab, Mathematica, Amira

Synaptic circuits and their variations within different

columns in the visual system of Drosophila (Takemura

et al., 2015)

Stereotypy C++, Matlab, Linux tools

Saturated reconstruction of a volume of neocortex

(Kasthuri et al., 2015)

Additional structures (mitochondria, spines,

and so on)

MatLab, AutoDesk, custom tools

A connectome of a learning and memory center in the

adult Drosophila brain (Takemura et al., 2017a)

Poisson statistics of connections C++, Boost, Linux tools

The complete connectome of a learning and memory

centre in an insect brain (Eichler et al., 2017)

Single vs. Multi-claw Matlab, R, and Python

The are only examples from a much larger field of studies, and intended only to show the wide variety of tools and languages employed.

neuron. These are typically formatted as SWC1 files (Carnevale
and Hines, 2006) with an additional list of synapse locations.

• A graph, with neurons as nodes and synapse counts as weights.

Reproducing or extending an analysis will require using
one or more of these representations. The raw source EM
images are probably not of general interest, and “Contact the
authors” probably suffices. The aligned, stitched, and normalized
images form the source for machine segmentation and human
proofreading. These could be made available as a stack of images,
with the main problem not the technical storage but instead who
will maintain (and pay for) such storage over archival lifetimes.
As of mid-2018, the cheapest cloud storage costs about $4 (US)
per terabyte per month. Thus a 100 TB data set costs about
$400/month to store. For an active project this is reasonable,
but for a 50 year archive, the cost would be $250,000 US, or the
cost of several researcher-years. Most universities and research
institutions would not feel such archiving is their responsibility.
Even if they did, research institutions, and their focus areas, come
and go over decade-long time scales. Universities and scientific
journals have longer histories, but not the budgets to pay for
archival storage.

Technically, reading a stack of stored images, no matter how
large, should not be problem. Smaller examples can be read by
publically available software such as ImageJ (Schneider et al.,
2012), or its distribution FIJI (Schindelin et al., 2012), already
commonly used in neuroscience. Larger examples can be read by
existing software such as BigDataViewer (Pietzsch et al., 2015),

1SWC is not an abbreviation, but the initials of the developers (Stockley et al.,

1993).

a public extension of Fiji. There are higher performance and
cloud compatible solutions, such as the internal format “n5”
(Saalfeld, 2017) of BigDataViewer, but the longevity of these
formats has not been established, whereas a stack of images
should be readable for the forseeable future.

Segmentation can be stored similarly, with more bits per pixel
but much better compression, due to long runs of the same value.

Skeleton data is smaller and is commonly stored as text
files. There is an existing public and funded database for this,
“Neuromorpho.org” (Ascoli et al., 2007). However this does not
include the synapse locations or any volumetric description, and
so can only store part of the results of connectomics.

4.3. Making Sense of the Data
Acquiring the physical bits that describe a connectome is only
part of the problem—the next problem is making sense of it.
There are two main technical methods by which external tools
can get connectome data for analysis. In the oldest method,
the reconstruction software writes out the relevant data as files,
normally in text formats such as JavaScript Object Notation
(JSON) (ECMA International, 2017) or Extensible Markup
language (XML) (Bray et al., 1997) for the connectome, and SWC
for the skeletons. Then an external program can read and parse
these files, then do the requested analysis. In a more modern
approach, a program wishing to do analysis requests the data
it needs from a reconstruction server. This has been done for
CATMAID (Saalfeld et al., 2009), VAST (Berger, 2015), and
DVID(Katz, this issue), three recent reconstruction tools. This
method has several advantages - no export step is necessary, only
the needed data is transferred, and the external analysis gets the
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most recent version of the data (or the requested version, if the
reconstruction tool supports versioning).

Multi-decade archiving requirements are most easily met by
using simple text files, combined with programs in standard
languages such as C++ or Python. Such files and programs will
likely be readable and usable decades from now—for example,
many FORTRAN programs from 50 years ago, such as LINPACK
(Dongarra et al., 1979) are still used today. Furthermore, files
from multiple sources can be easily combined, and files have a
much lower barrier to entry. Students anywhere in the world,
by themselves, could easily download the relevant files and start
analysis. A one-time file format conversion is typically a one
day job for an undergraduate, whereas modifying a server to
support a different set of queries can take months of an expert’s
time. Furthermore, if running the analysis requires connection
to a server, the process has considerably more human overhead,
either requiring someone to run and maintain a local instance
of a server, or considerable cooperation from already busy
researchers.

The approach of querying a server for connectome data, while
undoubtedly convenient, has downsides for reproducibility, with
exactly the same risks as references to web sites. In a decade
or two, the servers may be unavailable, the queries that are
supported may have changed, or the owners may have moved
on and no longer remember (or care) how to run the needed
servers. A number of technical fixes to this problem have been
proposed, such as scientific workflows (SWFs) (Altintas et al.,
2004), virtualization (Dudley and Butte, 2010), and automated
build systems such as Docker (Boettiger, 2015). However, each
of these has their own disadvantages and overheads, particularly
when combining two or more analyses that were archived using
different methods. Furthermore, the author is skeptical that these
methods will remain effective over the multi-decade timescales
desired for scientific reproducibility.

However, despite these drawbacks, the use of servers with
queries instead of text files is technically inevitable. Text forms
are not efficient enough for the bigger data sets, and with a
large data set a way to get desired subsets will be needed in
any event. Larger and more powerful computers will not solve
this problem, as their capacity will surely be used to attack
correspondingly larger problems. Therefore it is incumbent on
the researchers in the field of connectomics, in the interest
of scientific reproducibility, to make sure their interfaces are
efficient, stable, and well-documented.

4.4. Formal Analysis Conclusions
Public and archival storage of connectomic data and algorithms
remains an area for development. For now, the field is dependent
on the good will of practitioners to preserve and provide access
to the data they collect, and the algorithms that operate on
that data. We urge that they continue to use best practices, and
perhaps a concensus solution will emerge. A funded center, with
storage and the most common analysis tools, seems like the long
term answer. TheNational Center for Biotechnology Information
already stores and analyzes many forms of biological data, in
addition to its original charter of genetic information. It would
make sense for this center, or its equivalent in other countries, to

pick up the task of storing and providing access to connectomic
data.

5. INPUT

The final use case is “Input,” where the connectome is used as
input to another process. In general the goal of connectome
reconstruction is not the connectome itself, but a mechanistic
understanding of the operation of the nervous system. This
involves integrating other data, obtained from other sources by
other methods. This is because the EM images typically used for
circuit reconstruction show the detailed shapes of cells, and the
existance, location, and partners of synapses, but many details
critical to the circuit and synapse operation are not visible in these
images. Gap junctions and synapse models including transmitter
and receptor types are the most obvious examples, but locations
of ion channels, receptors and sources for neuromodulators
and hormones, biochemical cascades affecting synapses, and
sensor/actuator links to the sensory andmotor system are needed
as well.

This additional data must be generated by methods other
than electron microscopy. The neurotransmitter(s) of each cell
can often be determined by techniques such as RNA sequencing
(Croset et al., 2018), or Fluorescent in-situ Hybridization (FISH)
(Spencer et al., 2000). Receptors expressed by a cell can also be
found by RNA sequencing, but this does not tell where each
receptor is expressed. This is a particular problem in insects,
where many of the main transmitters, such as acetylcholine
and glutamate, have multiple different receptors, sometimes of
differing sign (Osborne, 1996), and all expressed in the same
cell. In the case of a single receptor and a single cell type, this
problem has been approached via FISH, but techniques with
higher throughput are clearly needed. A combination of multi-
color labeling (Bayani and Squire, 2004), genetically identified
cell lines, and expansion microscopy seems the most likely
approach to resolving this. An entirely different approach (Jonas
and Turaga, 2016; Tschopp and Turaga, 2018) is to reverse fit
the known operation to try to find the sign, strengths, and time
constants of the synapses.

Integrating this additional data with connectomes is both an
opportunity and a requirement in the quest to understand the
operation of the nervous system.

5.1. Input for Simulation
One typical use for connectomes includes neural simulators
such as Neuron (Carnevale and Hines, 2006), Genesis (Bower
and Beeman, 2012), or Nest (Gewaltig and Diesmann, 2007),
or a theoretical model of circuit operation. This seems
straightforward in principal, but there are several concerns. First,
there can be problems with the accuracy of extracted values.
Second, the data (particularly from EM) can be too detailed, and
overwhelm downstream tools. Conversely, some of the required
data will still be missing, and must be supplied from other
sources.

One problem is the accuracy of extracted parameters, such
as the cytoplasmic resistance and the membrane capacitance.
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FIGURE 5 | An illustration of the central problem of circuit simulation from EM reconstruction. (A) shows the run time for a simulation of the ON-pathway motion

detection circuit from Drosophila, when exposed to patterns moving in the four cardinal directions, using the simulation program Neuron. When the full “compartment”

model (one compartment per extracted segment) from the EM reconstruction was used, run times exceeded 105 s, or more than one day. The “compressed” form,

which keeps only the branch points of the neuron and merges all other segments, ran in minutes. The “node” model, where each neuron is represented as a single

compartment, ran in seconds. For this circuit, the difference in accuracy between the representations is small (Gornet and Scheffer, 2017). (B) however, shows the

neuron CT1, where reduction to a single node leads to incorrect results. The large size (scale bar is 10µm) and small connecting neurites create a many-millisecond

delay between the clusters defined by the dotted ellipses. If the neuron model is compressed to a single node, as is optimal for (A), this delay will not be simulated

correctly.

Some techniques for obtaining connectomes, such as bar-
code sequencing, do not generate this information, even
approximately, so it must be supplied from other sources. Even
techniques that do reveal morphology of cells, such as optical
or EM, are subject to errors introduced in the staining and
fixing process. None of the reconstruction techniques reveal
the resistivity of the cytoplasm. Membrane capacitance is well-
defined, per unit area, but influences such as myelinization can
change the effective value.

Another problem arises if simulation of extracted
connectome, or a theoretical model of operation, is the
goal. In these cases the models from EM reconstruction are
typically much more detailed than needed, requiring intelligent
reduction to get a useable representation (Gornet and Scheffer,
2017). A typical neuron reconstructed by EM has hundreds if not
thousands of segments, typically represented as an SWC file. This
is much more detail than required, at least when considering
electrical effects, and results in impractical runtimes. Reducing
the level of detail leads to orders of magnitude better execution
times, and for many neurons the resulting error is acceptable.
There are some neurons, however, where full reduction leads to
inaccurate simulations. This problem is illustrated in Figure 5,
where the first panel shows the impracticality of including all
detail, but the second panel shows a case where the detail cannot
be entirely ignored.

This analysis can be quantified using a simple approximation
of simulation accuracy, which shows that EM produces much
more detail than is likely required, but that larger neurons cannot
be reduced to a single compartment. Neurons operate on roughly
millisecond time scales. Compartments with much smaller time
constants make solving the equations of simulation difficult (due

to both the large number of compartments and the wide span
of time constants) while adding little accuracy. Compartments
with time constants much larger than a millisecond are easy to
simulate but may be silently inaccurate. So what is in general
desired is a model with time constants somewhat less than a
millisecond, but not too much less. The exact tradeoff of course
depends on the accuracy needed and the circuit under analysis.

Using a resistor-capacitor(RC) model to estimate time
constants, the Elmore delay (Elmore, 1948) d of a cylinder of
diameter D, length L, cytoplasmic resistivity ρ, and membrane
capacitance Cm, is

d =

R · C

2
=

1

2
· ρ

4L

πD2
· CmπdL = ρCm

2L2

D
(1)

Typical values are ρ = 1 ohm·m, and Cm = 10−2 F/m2. A thin
branchmight have a diameterD of 100 nm or 10−7m,while a very
thick neurite might have a a diameter of 10µm. The resulting
delays are shown in Figure 6. For example, a length L of 50µm
yields a delay of 0.5 millisec for a thin neurite.

Since the delay scales as L2, but only inversely as diameter D,
this means that even a very thin branch will allow compartments
10µ in length, within which the differential delay will be less than
100µs. Conversely, long neurons (such as those 1 mm or longer)
will need to be divided into compartments, even if they are very
thick, to keep the differential delay under a millisecond.

This drives the requirement that the EM skeletons must
be reduced (otherwise they will overwhelm simulation
resources and create time-constant problems), but
cannot be reduced indiscriminately (or they will not be
accurate). Very similar problem have been addressed in
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FIGURE 6 | Electrical delay through a simple model of a neurite as a function

of length and diameter.

the field of electronics when simulating circuits derived
from IC layouts, and previously developed solutions
(for example, Sheehan, 1999; Ionutiu et al., 2011; Reis
and Stykel, 2011) can provide good starting points
here.

Consider what would be needed to do a simulation of a
functional unit comprising a subset of amuch larger connectome.
Even in a small animal such as an insect, just defining the
subset of neurons to simulate is already a big task if performed
manually—a typical functional circuit (say the mushroom body,
the seat of olfactory learning in insects) already contains
a few thousand neurons. In a vertebrate or mammal, the
circuits are likely even larger. Here are some of the steps
required:

• First, the user needs to pick out the relevant neurons
that define a sub-circuit to simulate. This can require
defining sizeable subsets from circuits containing hundreds
of thousands of neurons (for connectomes currently being
reconstructed as of 2018). This is already too big to do
manually.

• Next, the user must decide what to do with the neurons that
stick out of the volume. Outside the volume, theymay not need
synapses, but will need ion channels, cytoplasmic volume, and
so on, to get characteristics such as time constants right.

• The user must decide which synapses to include. Since these
are often detected automatically, there may be a recall-
precision tradeoff in this decision. The user may wish to get
as many synapses as possible, at the cost of false positives, or
use only those that are certain.

• The user must decide how the synapses work. The first step
is defining the neurotransmitters(s). These may be available
from NeuroSeq or explicit staining, but these are different
databases, maintained by different folks for different purposes,
using different nomenclature.

• Next, the receptors need to be decided. Often there are
multiple families of receptors (for example muscarinic and
nicotinic) and then many variations on these.

• The usermust decide how to drive the inputs and what outputs
to measure. The neural coding used by animal brains can
make this cumbersome. For example, one representation of
odor in a fruit fly is believed to involve a 6% randomly sparse
representation of roughly 3000 neurons. Even defining one of
these patterns requires effort.

• The software must then compress the neurons down to a
sensible size, small enough to simulate efficiently but not so
small as to introduce significant inaccuracy.

• Finally, then the user can perform simulations to try to figure
out biology, likely involving comparisons to electrophysiology
and/or behavior.

To make this easier, the software that writes the
simulator input should do a number of these (non-
trivial) operations automatically, then format the file for
the simulator concerned (perhaps Neuron, Genesis, or
Nest).

An interesting problem that has not yet been seriously
addressed is matching simulation results with in-vivo recordings
made before the reconstruction. Several data sets have acquired
in-vivo 2-photon calcium imaging of nervous system activity
before ex-vivo reconstruction, usually with the goal of identifying
some subset of cells in later images (Bock et al., 2011;
Briggman et al., 2011; Lee et al., 2016). Matching simulated
with measured results holds the potential of demonstrating
that all relevant factors have been considered. We are quite
far from this ideal currently, due to both lack of detailed
knowledge of much of the cellular machinery, and limitations of
current reconstructions. In particular, all existing reconstructions
include many neurons that extend outside the reconstructed
volume. Accurate simulation of these neurons is impossible,
nor can the activity of all such neurons be adequately
measured by existing techniques. Better recording techniques,
increased knowledge of cellular detail, and larger reconstructions
will all bring this goal closer, but it remains many years
away.

Finally, large, and particularly full-animal, connectomes will
drive the requirement to co-simulate with mechanical and other
simulators. These will be animal and environment specific, such
as acoustic simulation for animals that echolocate, hydrodynamic
simulation for animals that swim, and aerodynamic simulation
for animals that fly. This co-simulation will require cross-domain
conversion, for example converting neural activity to muscular
forces, to drive mechanical models, and converting joint angles,
forces, and other sensory inputs back into neural codes. Steps in
these directions have been taken by programs like AnimatLab
(Cofer et al., 2010) and FlySim (Huang et al., 2014), but much
more remains to be done.

6. CONCLUSIONS

Until recently, connectomes have been difficult and time
consuming to acquire. Analysis took a comparatively small effort

Frontiers in Neural Circuits | www.frontiersin.org 9 October 2018 | Volume 12 | Article 8545

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Scheffer Analysis of Connectomes

and was performed by the same team doing the reconstruction.
Reconstruction technology, however, is rapidly improving and
we are about to enter a new era. In this era, analysis rather
than data collection will dominate, and the researchers doing
analysis will often be distinct from those doing reconstruction.
This change happened quickly in the field of genomics, and we
need to plan for a similar transition in connectomics.

Along these lines, we note that the many unique analyses
required to date are likely a result of our lack of understanding
of the principles behind neural circuit organization. It seems
likely that as more and more connectomes are analyzed, patterns
of circuit organization will emerge. In the future, it is therefore
possible that a standard set of analyses may suffice for most users,
as is currently the case for genomics.
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Recent developments in serial-section electron microscopy allow the efficient generation
of very large image data sets but analyzing such data poses challenges for software
tools. Here we introduce Volume Annotation and Segmentation Tool (VAST), a freely
available utility program for generating and editing annotations and segmentations of
large volumetric image (voxel) data sets. It provides a simple yet powerful user interface
for real-time exploration and analysis of large data sets even in the Petabyte range.

Keywords: connectomics, segmentation, visualization, serial section electron microscopy, CLEM, proofreading,
TrakEM2, voxel

INTRODUCTION

The acquisition of microscopic data is becoming ever faster and more and more automated, leading
to the generation of enormous image datasets. At the same time progress in processing speeds
and storage capacity of computer hardware enables imaging scientists to work with big data. In
neuroscience acquisition of high-resolution volumetric data sets of the nervous system has become
routine, with the goal of addressing a number of long-standing questions (Briggman and Bock,
2012; Helmstaedter, 2013; Morgan and Lichtman, 2013, 2017; Plaza et al., 2014; Titze and Genoud,
2016). Projects include descriptions of the entire nervous systems of a variety of animals, for
example Caenorhabditis elegans (White et al., 1986; Varshney et al., 2011), Drosophila melanogaster
(Zheng et al., 2017), Zebrafish (Hildebrand et al., 2017); wiring diagrams of specific parts of larger
nervous systems, for example mouse retina (Helmstaedter et al., 2011, 2013; Kim et al., 2014; Bae
et al., 2018), thalamic nuclei (Morgan et al., 2016), and cortex (Bock et al., 2011; Kasthuri et al.,
2015; Lee et al., 2016); function-structure relationships, for example directional selectivity in the
retina (Briggman et al., 2011; Kim et al., 2014), detection of visual motion in drosophila (Takemura
et al., 2013), learning and plasticity in hippocampus (Mishchenko et al., 2010; Bartol et al., 2015),
synapse elimination in the neuromuscular junction (Tapia et al., 2012); and many others.

Several experimental techniques have been introduced to enable processing and imaging such
large volumes of tissue with electron microscopy. Among these are the development of advanced
techniques for preparing and staining very large pieces of tissue for electron microscopy (McIntyre
and Fahy, 2015; Mikula and Denk, 2015), block-face cutting and imaging methods like SBEM/SBF-
SEM (Denk and Horstmann, 2004) and FIB-SEM (Knott et al., 2011; Hayworth et al., 2015),
automated collection of sections on tape, for example ATUM (Hayworth et al., 2006; Kasthuri et al.,
2015), and high-speed imaging techniques like TEMCA (Bock et al., 2011), and the Zeiss mSEM
(Eberle et al., 2015).
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Because of the wider availability of these methods, analyzing
big data sets poses a challenge for a growing number of
researchers. Many existing software tools are not well suited for
big data nor the wide variety of research questions these data sets
allow. Many, if not all, of the software applications for analyzing
microscopic image data allow labeling of cellular or subcellular
constituents of the volumetric tissue. This fundamental process is
called segmentation and can be done in several ways including:
(1) Bread crumbs/Seeds; Markers are placed inside objects
to identify their location from one section to the next, (2)
Skeletonization; If objects have a tree- or graph-like structure,
they can be described by a set of nodes that are connected by
straight lines called edges, (3) Outlining; Objects of arbitrary
shape can be delineated by their outlines in each section to create
the surface of a 3-dimensional object, (4) Voxel painting; Objects
of arbitrary shape can be labeled by filling in their area in each
section to create a volume.

As the number of biological laboratories analyzing large
image data sets is increasing, it is the purview of computer
scientists to create the (segmentation) tools for analyzing such
data sets. Taking into consideration the diverse range of potential
applications from 3D microscopy, an ideal segmentation tool
would have the following features:

• Usability. Easy to set up and use, without complicated
dependencies on external libraries and packages; accessible
documentation.
• Scale and speed. Ability to work with Petabyte-sized data

sets interactively, including data sets stored in online
databases.
• Interactivity. Easy import and export functions, to enable

interactivity with other programs (for example for image
stack alignment, data analysis and 3D rendering).
• Versatility: Full freedom to label any 3D object in the

dataset, for example to generate flexible ground truth for
automated segmentation by artificial neural networks.
• Organization of labeled objects to represent object classes

and parts.
• Flexible visualization: Multi-layer image stack overlays

and configurable color channels for light microscopy (LM)
and correlated light and electron microscopy (CLEM)
applications, selective display and highlighting of relevant
objects and semantic object groups.
• Automation: Ability to make use of automatic

segmentations if available, to help manual segmentation
and/or as a basis for manual proof-reading.
• Data privacy: Full control over who can access the data set.
• Extensibility, scripting: Users may want to write their own

scripts that exchange data with the segmentation program,
for example for custom data analysis.

Table 1 shows a comparison of features of several popular
programs for EM stack segmentation. Many tools were originally
made for smaller data sets and require the complete data to be
loaded in memory, which is not feasible for large image stacks,
though for some programs workaround exist; these include ITK-
SNAP (Yushkevich et al., 2006), trakEM2 (Cardona et al., 2012),

Reconstruct (Fiala, 2005), which loads two complete sections
at a time, ilastik (Sommer et al., 2011), and IMOD (Kremer
et al., 1996). Other tools are limited to be used only by their
respective developers, like Eyewire (Marx, 2013; Kim et al., 2014;
Bae et al., 2018), and/or are specialized for skeleton tracing, like
Catmaid (Saalfeld et al., 2009), Knossos (Helmstaedter et al.,
2011), and WebKnossos (Boergens et al., 2017), or for splitting
and merging for proof-reading of automatic segmentations like
Raveler (Chklovskii et al., 2010; Takemura et al., 2013) and
its successor NeuTu1. The professional tools Imaris (Bitplane
Inc.) and Amira-Avizo (Thermo Fisher Scientific) have work-
arounds to use large data sets that cannot be fully loaded
into memory. However these latter programs appear to have
only rudimentary tools for manual segmentation and are not
specialized to do voxel painting or proof-reading of automatic
segmentations. Neurolucida (MBF Bioscience) is a specific tool
for analyzing light microscopy data and appears to be RAM-
size limited. Neurolucida 360 does support large datasets beyond
the machine’s RAM limit, however it is still focused on light
microscopy applications.

To address the requirements of an ideal segmentation tool
and to supersede the functionality of available segmentation tools,
we built VAST, a lightweight, freely available utility program for
manual annotation and segmentation of large volumetric image
(voxel) data sets even in the Petabyte range. VAST is written
in C++ with Direct3D graphics for optimal performance (see
Figure 7 for information about the internal program structure).
It provides an intuitive yet powerful user interface for exploring
image stacks at interactive speeds, and for labeling structures of
interest by voxel painting at multiple resolutions. As Table 1
shows, VAST solves many of the problems that beset other
tools. For ground truth annotation by voxel painting VAST is
an excellent choice. In addition, because of the availability of
automatically segmented data, we found VAST can reconstruct
whole volumes faster than fully manual segmentation (see below).
Although this tool was developed for neural circuit analysis of
EM datasets, it can load and process any three-dimensional 8- or
24-bit image stack and be used for other applications like multi-
color light microscopy, CLEM, video analysis and object tracking.
VASTs extensive import and export functions make it easy to
integrate it with other applications.

Volume Annotation and Segmentation Tool can open
grayscale and RGB image stacks which have been either imported
into VAST’s own 3D data file format or are stored locally in
image tiles, and it can stream image data from several online
sources. Multiple image and segmentation layers of the same
dataset can be loaded and displayed together. Segmented objects
can be named, grouped and organized in a tree structure, and
segmentations and their metadata can be imported and exported.
Automatic segmentations can be proof-read with merge and split
operations and novel trans-layer masking techniques. Custom
client programs can exchange data with VAST via a documented
API. VAST includes the API client program “VastTools” which
runs in Matlab (The Mathworks, Inc.) and provides additional

1https://github.com/janelia-flyem/NeuTu
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FIGURE 1 | The Volume Annotation and Segmentation Tool (VAST) user interface. The main window of VAST shows an EM dataset with a manual segmentation
layer as transparent overlay in which segments are colored by type (colors of collapsed folders in the “Segment Colors” tool window). The “3D Viewer” window (B)
shows spiny dendrites in the area in individual colors. The tool windows A and C–F are explained further in section 2 of the main text.

functions for exporting, measuring, and navigating data loaded
into VAST.

Volume Annotation and Segmentation Tool has been key for
the data analysis for a number of scientific papers and continues
to be a versatile tool with growing functionality and an expanding
user base (Tomassy et al., 2014; Kasthuri et al., 2015; Ai-Awami
et al., 2016; Joesch et al., 2016; Ke et al., 2016; Morgan et al.,
2016; Quadrato et al., 2017; Sheu et al., 2017; Zung et al., 2017).
Because VAST is designed as a general labeling tool, it is not
limited to tracing neurites, but can be used for a large variety of
3D data sets and tasks (see Figures 5, 6). This includes working
with electron-microscopic, multi-channel light-microscopic, and
Micro-CT data sets as well as videos, and annotating arbitrary
structures, regions and locations, depending on the user’s needs.

The version of VAST discussed in this paper is VAST Lite
1.2. An earlier version of VAST, which lacked most of the key
features reported here, was briefly discussed in the methods
section of (Kasthuri et al., 2015). New features implemented since
then include: VSVI files (section “Reading Image Files Directly,
.VSVI”), VSVR files for Google Brainmaps and Butterfly servers
(section “Reading From Online Databases, .VSVR”), collect tool
(section “Organization of Segments in Hierarchies”), working
with multiple image stack and segmentation stack layers (section
“Working With Multiple Image and Segmentation Stack Layers”),
image layer coloring and blending (Figure 3), filling tool (section
“Manual Segmentation by Drawing and Filling”), trans-layer

masking (section “Working With Automatic Segmentations” and
Figure 4), the 3D viewer (section “The Integrated 3D Viewer” and
Figure 5), and the API and VastTools (section “The VAST API
and VastTools”). At the time of writing of this manuscript, the
current version of VAST can be downloaded at: https://software.
rc.fas.harvard.edu/lichtman/vast/.

THE VAST USER INTERFACE

Volume Annotation and Segmentation Tool’s user interface is
based on familiar Windows controls and is optimized for efficient
use of pen tablets for fast and accurate user interaction. The main
window of VAST (Figure 1) shows a 2D section of the loaded
dataset(s) and has several floating tool windows which can be
moved and resized. The tool bar of the main window provides
quick access to the different editing tools, as well as a switch to
hide all image layers (EM), and sliders to control the opacity of
the selected segmentation layer (Alpha) and, if enabled, separately
for the segment or group of segments selected in the ‘Segment
Colors’ tool window (SelAlpha). To increase the number of
distinguishable segment colors beyond RGB, VAST can combine
two 24-bit RGB colors with one of 16 patterns to reach a color
space of almost 52 bits. The strength of the patterns can be
controlled with the ‘Pattern’ slider. Figure 2 shows examples
of different settings of Alpha, SelAlpha, and Pattern. Further
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FIGURE 2 | Selective segmentation display. Which segments in a segmentation layer are shown in what color depends on the selection and folder collapse state of
the segment hierarchy. The top shows the appearance in the VAST main window; the middle shows the transparency and pattern settings of the segmentation
layer in the “Layers” tool window, and the bottom shows the “Segmentation Colors” tool window. (A) All object type folders are closed, so all objects are shown in
colors depending on their identity (Dendrite, Axon, Glia, Other). Patterns are disabled. (B) By enabling “Sel Alpha” for selective opacity control of the selected branch,
disabling Alpha and selecting the “Dendrites” folder, now only dendrite segments are shown and colored depending on their subtype (spiny or smooth). (C) When
“Alpha” and “Sel Alpha” are both enabled, the opacity of the selected subfolder and all other segments can be controlled separately. In this example, the segments in
the “Smooth Dendrites” folder are given a higher opacity with the “Sel Alpha” slider to highlight them. (D) The folders in the segmentation hierarchy are opened such
that all neurites and glial branches in the segmentation are shown with individual colors. Here patterns are enabled, showing all segments with their individual
patterns. The strength of the patterning can be controlled with the “Pattern” slider.

options for color correction and blending of individual layers are
provided in the ‘Layers’ tool window (Figure 1A).

The ‘Coordinates’ tool window (Figure 1C) shows the current
volume coordinates (center point of the main window) which
can be copied from and pasted into the text field to store and go
to particular coordinates in the stack. Its drop-down menu lists
coordinates that were recently visited.

The ‘Drawing Properties’ tool window (Figure 1D) contains
the parameters relevant for the pen tool, including settings for
the optional ‘masking’ mode. This mode can be used to constrain
manual painting by an automatic segmentation result, which can
lead to an increase of accuracy and speed of manual tracing, even
if the automatic segmentation has errors.

Equivalently, the ‘Filling Properties’ tool window (Figure 1E)
contains the parameters relevant for the filling tool. Filling
can also use masks derived from colored regions in a separate
source layer, which allows for efficient proof-reading of automatic
segmentations (split and merge operations).

The ‘Segment Colors’ tool window (Figure 1F) lists all
segments used in the selected segmentation layer, with their color
and label, in a tree folder structure which represents grouping
and parts/subparts relationships of segments. Collapsing and
expanding these folders determines the display colors in the main

window – segments in collapsed folders will be shown in the
folder color (Figure 2). The search field at the top of the tool
window can be used to find segments by (part of) their label text
or their internal ID. The ‘Menu’ button leads to a context window
with many more functions to edit segment properties and the tree
hierarchy.

All tool windows are listed under ‘Window’ in the main menu;
this also includes a window with control buttons to be used with
touch screens, a window showing all keyboard shortcuts, and the
options window for the ‘Remote Control API server’ to link to
external programs via TCP/IP.

IMPORTING IMAGE STACKS

Volume Annotation and Segmentation Tool can access image
data from three types of sources: (1) image stacks which have
been imported into VASTs own data file format (“VAST Volume”,
.VSV/.VSVOL), (2) image data sets stored as image files, accessed
via a .VSVI descriptor file (“VAST Volume of Images”), and
(3) data sets stored online, accessed via a .VSVR descriptor
file (“VAST Volume of Remote data”). Segmentation data can
be imported from image files representing segment IDs, and
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optionally a metadata description file, into VASTs segmentation
file format (.VSS/.VSSEG). The image file formats from which
VAST can import are listed in Table 2.

VAST Image Data Files, .VSV/.VSVOL
These files store a complete image stack together with a resolution
pyramid of lower-resolution versions of the same image data
[“mipmaps”, (Williams, 1983)]. During importing, the image
data is reordered as 16 pixel × 16 pixel × 16 pixel cubes in
optional Z-order and packed with lossless or lossy compression.
Mipmaps are precomputed. A file-internal tree of pointer blocks
is generated which allows VAST to access arbitrary regions with
minimal overhead.

Keeping the image data of one data set in a single file has the
advantage that it can only be copied as a whole, making storage
and distribution of data sets simpler. Also, the file system does not
have to handle thousands or millions of image files. However, this
comes at the disadvantage that images in the dataset cannot be
modified or the stack extended without regenerating the data file.
Also, the importing procedure is impractical for large datasets,
not only because the target file can get unwieldy, but also because
importing can take a very long time since processing cannot be
easily parallelized. For example, importing the ∼6.8 teravoxel
data set of (Morgan et al., 2016) took around 30 days on a
single computer, with disk and network I/O being the largest
bottleneck. Therefore, for large datasets (exceeding one terabyte),
we typically keep the image data in individual image tile files
which VAST can load directly.

Reading Image Files Directly, .VSVI
Image stacks can be kept as a collection of image files (.PNG,
.TIFF, or .JPG) with a descriptor file for VAST (.VSVI, “VAST
Volume of Images”). VAST can then load and cache specific

regions directly from the images. The image files have to be
stored in a regular directory structure, and reduced-resolution
images (mipmaps) have to be precomputed and stored as separate
files. Then, a .VSVI file for VAST is prepared. This is a text file
following the JSON syntax which specifies the naming scheme
and storage location of the image tiles, as well as other metadata
for the data set. The .VSVI file can be opened in VAST, which then
loads regions of the dataset from the image files as requested.

Reading From Online Databases, .VSVR
Volume Annotation and Segmentation Tool can also stream in
remote data from online databases. Some data sets are too large to
be stored locally, and/or they reside on a server which is accessible
via HTTP. VAST can load data from such sources dynamically
by requesting parts of the data set from the server. Currently,
protocols for openconnecto.me, neurodata.io, Harvard Butterfly
servers, and Google Brainmaps are supported. The specification
of the source address, the data request protocol, and additional
metadata is stored in a .VSVR file (also a JSON text file). Once
such a file is opened, VAST will request and stream in image data
from the server dynamically. In the case of Google Brainmaps,
VAST will first negotiate access rights with the server through
the OAuth2 protocol (including user login in a browser window).
VAST always caches the image data locally to optimize speed and
minimize the network load. Several .VSVR files linking to existing
online datasets are included in the VAST supplementary package
(see section “The VAST API and VastTools”).

Importing Segmentations, .VSS/.VSSEG
Similar to.VSV files described above, VAST stores segmentations
in single files with extension .VSS or .VSSEG. These files contain
the voxel data in 16 pixel × 16 pixel × 16 pixel cubes, including
mipmaps, as well as the metadata for the segments. To allow

TABLE 2 | Available data and file formats for importing and exporting in Volume Annotation and Segmentation Tool (VAST) and VastTools.

Importing To Data formats File formats

EM/LM image stack files, .VSV/.VSVOL 8 bit, 24 bit images .png, .tif, .bmp, .jpg

Segmentation stack files, .VSS/.VSSEG 16 bit IDs as images .png, .tif, .txt for metadata

.VSVI image tiles RGB, graylevel images .png, .tif, .bmp, .jpg

Exporting To Data formats File formats

VAST EM/LM image stacks 8 bit, 24 bit images .png, .tif, .raw

Segmentation stacks 16 bit IDs as images .png, .tif, .raw

Screenshot stacks 24 bit (RGB) images .png, .tif, .raw

3D viewer screenshots 24 bit (RGB) image .png, .tif, .bmp

Segmentation metadata Text file .txt

VastTools.m 3D object meshes Triangle mesh .obj/.mtl

Isosurface shells Triangle mesh .obj/.mtl

3D particle clouds Triangle mesh .obj/.mtl

3D boxes Triangle mesh, texture .obj/.mtl, .png

3D scale bars Triangle mesh .obj/.mtl

Projection images 24 bit (RGB) image .png, .tif, .bmp, .jpg

Surface measurements Text file .txt

Volume measurements Text file .txt

Particle metadata Text file .txt
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segmentation files to store arbitrary subregions of a large data
set and to make arbitrary extension of those regions possible
as users continue to trace, a tree of file-internal pointer blocks
(16 × 16 × 16 pointers per block/tree node) is maintained
which references the storage location of different segmentation
image blocks within the segmentation file. Pointer blocks are also
cached in memory when the segmentation file is opened in VAST
for optimal file access speed. Selective storage of subregions of the
dataset keeps file sizes small if sparse segmentations are generated
on very large image stacks.

ORGANIZING DATA IN VAST

In VAST, image and segmentation data can have attributes
in three separate categories; multiple resolutions, semantic
hierarchies of segments, and multiple layers showing different
data from the same location. The following sections discuss these
possibilities.

Multiresolution Voxel Representation of
Image and Segmentation Stacks
Different from many other segmentation tools for large image
stacks, VAST uses voxels not only to represent image stacks,
but also segmentations. A voxel is a three-dimensional image
element, equivalent to the two-dimensional pixel. Analogous to
the brightness or color value of a voxel in a microscopic image
stack, in a segmentation layer in VAST each voxel stores one ID
(segment identifier number). When VAST displays segmentation
data, these IDs are translated to colors based on a metadata table.

Voxel representations of segmentations are typically more
memory-intensive than vectorized outlines (Fiala, 2005) or ‘area
lists’ (Cardona et al., 2012), because an ID value has to be
stored for each voxel rather than a set of coordinate points and
edges around the perimeter of the segment region. However, a
segmentation stored in voxels has a more direct relationship to
the image stack it is based on, can directly represent segmentation
data produced by machine learning algorithms which is typically
also voxel-based, and allows for voxel-by-voxel masking and
filling.

While scaling of vector data is straight-forward in computer
graphics, voxel data is more difficult to handle. In VAST, image
and segmentation stacks use mipmaps to limit the amount of
voxel data which must be handled at one time. Mipmaps are
lower-resolution versions of the original images. VAST uses
powers-of-two XY mipmaps, which means that for example for
original images of 4096 pixel × 4096 pixel, there will also be
versions with 2048 pixel × 2048 pixel, 1024 pixel × 1024 pixel,
512 pixel × 512 pixel, and 256 pixel × 256 pixel available.
Because the number of pixels on a computer screen is limited,
the data which has to be loaded and displayed to fill the screen is
always limited by the extent of the display area and the on-screen
resolution. Like Google Maps, by loading just the part of the data
set at the resolution necessary for the current zoom level and view
region, VAST loads and caches data for display from the center of
the view area outwards as needed.

Volume Annotation and Segmentation Tool implements LRU
(least-recently-used) memory caches for image and segmentation
data. LRU caches remove the least recently used image blocks
first when memory runs low. Individual cache blocks can be
locked and marked as modified. For segmentation data, VAST
preferentially removes unmodified cache blocks. Modified cache
blocks cannot be deleted, so disk buffering is used when the
memory cache overflows with modified cache blocks.

Organization of Segments in Hierarchies
Grouping objects into different classes and representing each
object as a hierarchy of parts can be an important intermediate
step for further analysis of labeled objects in a data set. For
example, counting spines or measuring their volume and other
morphological properties becomes much easier once each spine
is represented as a separate sub-object of its dendrite. In VAST,
segments can be arranged in a configurable hierarchy tree which
is visualized in the ‘Segment Colors’ tool window. VAST uses the
segment hierarchy tree to selectively color and display objects in
different sub-branches. Objects in collapsed folders are shown in
the folder color, and transparency can be separately controlled for
the selected segment and its children versus all other segments,
so that users can hide or highlight semantic groups of objects
(see Figure 2). The same hierarchy is also used for selective
exporting, and for operations on the segmentation layer like drag
and drop, deleting and welding of branches. The tree structure
can be exported or accessed via the API together with the rest of
the segmentation metadata (segment IDs, labels, anchor points,
bounding boxes) and analyzed externally.

Volume Annotation and Segmentation Tool provides a
“Collect” tool which can be used to collect (translocate) segments
which are clicked in the 2D view into the selected folder in
the segment hierarchy. This can be used to quickly classify
segments into different classes represented by different folders in
the hierarchy. Since each segment stores an anchor point and a
label text, segments can also be used as bookmarks to annotate
and store locations of interest. The paint color can be used as a
visual marker.

Working With Multiple Image and
Segmentation Stack Layers
Volume Annotation and Segmentation Tool can load multiple
image and segmentation layers of the same dataset at the same
time, visualize them together in 2D and 3D, and use the data in
one layer to guide labeling in another (trans-layer masking). Both
8-bit graylevel and 24-bit RGB images are supported for image
layers. Segmentation layers are currently limited to 16-bit values
per pixel (65535 segments maximally). Since VAST can load
multiple graylevel and RGB image stack layers, it can also be used
to visualize and annotate multi-channel light-microscopic image
stacks. VAST can assign an arbitrary color to each channel, and
filter and blend the layers in several ways (see Figure 3). Using
masking, 3D models can be traced semi-automatically from
optical image data. For combined light and electron microscopy
(CLEM) data sets, once aligned, EM and LM image stacks can be
loaded together and superimposed, for example to allow for easy

Frontiers in Neural Circuits | www.frontiersin.org 7 October 2018 | Volume 12 | Article 8854

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-12-00088 October 15, 2018 Time: 17:38 # 8

Berger et al. VAST (Volume Annotation and Segmentation Tool)

FIGURE 3 | Layer blending. For each image layer, VAST can apply color filters, recolor channels of RGB images, adjust contrast and brightness, and blend the layers
with different modes.

identification of structures in the electron-microscopic images
which are fluorescently labeled in the light-microscopic image
stack.

Volume Annotation and Segmentation Tool can also load
more than one segmentation layer at once. This can be useful if
single pixels should be given more than one ID. For example, one
segmentation layer can be used to trace out axons and dendrites,
and a second one is used to trace organelles (mitochondria,
vesicles, synaptic contacts; see Figures 6D–F). The overlap of the
labels in different layers can then be used by an external script
to analyze which organelles are in which axons and dendrites,
and which axons and dendrites are connected with synapses
and where. This method was used to compute the synaptic
connectivity in (Kasthuri et al., 2015).

Another application is to load different parts of a segmentation
and display them together, if those parts are stored in separate
files, for example if several people work on segmenting different
parts of the same data set.

GENERATING AND EDITING
SEGMENTATIONS

Manual Segmentation by Drawing and
Filling
Volume Annotation and Segmentation Tool provides a pen tool
with adjustable tooltip size and a 3D fill tool for manual editing.
They can be accessed via the pencil and the paint bucket button
in the toolbar. A pipette tool is also provided which selects the
segment clicked in the 2D view for painting.

In VAST, users always edit the segmentation at the currently
viewed mipmap resolution. A segmentation layer can thus
contain segmented objects at different resolutions, and VAST
automatically combines the information from different mip levels
as the user moves and zooms through the data set. This allows
for voxel painting on very large image stacks. Voxel painting

speed in VAST is independent of the zoom level, allowing users
to paint very large regions (gross morphology, cell bodies) at low
resolution as instantly as fine axonal processes at high resolution.
To our knowledge VAST is the first and only application in
existence which provides this functionality.

Editing in VAST is non-destructive in the sense that the source
segmentation files are not changed unless the user saves changes
back to the opened file explicitly. All changes are kept in VASTs
cache system until the user saves them or discards them by exiting
the program.

The parameters of the pen tool are accessible in the “Drawing
Properties” tool window (see Figure 1D). The diameter of the
tooltip can be set to specific values and locked. If “Fill” is
enabled in the “Drawing Properties” tool window, VAST will
automatically fill empty closed contours as they are drawn. Users
can choose to paint on all voxels or to restrict painting to only
empty voxels or to voxels of the direct parent segment of the
selected segment in the hierarchy. Painting and filling can be
restricted to a specified mip level, so that a required resolution
can be guaranteed. If the “Max Paint Depth” option is set to a
nonzero value, VAST will look in the Z-stack for voxels with the
paint color (selected segment ID) at the same XY coordinates in
neighboring sections and fill the gap in Z with the paint color,
up to the specified distance. This can be used to speed up rough
manual tracing, for example by setting “Max Paint Depth” to+-8
and painting outlines of the object only in every eighth section.
VAST will fill in the vertical overlap between painted outlines in
the seven sections which were skipped. Users can then check and
correct the segmentation where needed to refine the object shape.

When users hold down the “Delete” key, which can be mapped
to buttons on the pen of a tablet, the pen will erase instead of
painting. Holding down the “Shift” key will allow users to pick
colors from the 2D view. As long as the “Control” key is held
down, users can pan the view with the pen or mouse instead of
painting. Holding down the “Tab” key allows for quick changes of
the pen tooltip size. These modifiers allow for rapid and intuitive
access to the different functions needed during manual painting.
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The parameters of the “Fill” tool can be set in the “Filling
Properties” tool window (Figure 1E). Some of the options
are (linked) duplicates of the same options in the “Drawing
Properties” tool window described above. The fill tool can be used
to recolor complete connected components of segments with a
single click, but it shows its real power when used in combination
with trans-layer masking, as described below.

Working With Automatic Segmentations
While VAST does not generate automatic segmentations itself,
it can be used to proof-read automatic segmentations generated
elsewhere. Automatic segmentations can be loaded into VAST
in two fundamentally different ways. First, they can be loaded
as an image layer and used to guide manual segmentation in
a separate segmentation layer. This allows users to generate a
separate proof-read copy of the segmentation data. Second, if
the automatic segmentation does not exceed the 16-bit limit for
number of segments (65,535), it can be loaded as a segmentation
layer itself and then edited by the user with split and merge
operations as well as fully arbitrary manual corrections. The
VAST download page contains a link to Youtube tutorial videos
illustrating the proofreading process (specifically2,3).

Using Automatic Segmentations to Guide Manual
Painting
Volume Annotation and Segmentation Tool can use two types
of automatic segmentation results to guide manual painting:
boundary (probability) maps, in which each voxel is assigned its
probability to be located on a boundary between objects, and
candidate segmentations, in which each voxel stores an object ID.
In both cases the automatic segmentation is loaded as an image
layer (source layer) and the “Masking” feature is used to constrain
the painting area in a separate segmentation layer (target layer)
based on information from the source layer (see Figure 4). In
this mode, parts of the automatic segmentation can be transferred
from the source to the target layer by the user, keeping the
“raw” source and the “proof-read” target segmentations strictly
separate.

To use a boundary probability map for this process, it is
selected as the source layer, and VAST’s “Masking” mode is set
up to restrict painting to contiguous regions of “interior” voxels
only (excluding the boundaries) by setting an appropriate source
layer pixel value range. Either the pen or the fill tool can then be
used to create segments with boundaries defined by the boundary
probability map.

If the automatic segmentation in the source layer provides
candidate objects or supervoxels instead, masking can be set up
so that for each pen stroke or fill operation, the color in the
source layer is picked and painting of the new segment in the
target layer is constrained to the region in which the source
layer has the picked color (as shown in Figure 4). In this mode,
single segments can be copied from the source to the target
layer with the pen and fill tools, which allows for correction
of split and merge errors. Another strategy is described in

2http://www.youtube.com/watch?v=BZ_0TVMSdjA
3http://www.youtube.com/watch?v=4XCNRgDzSjc

FIGURE 4 | Masked painting. During painting, VAST intersects a mask of the
pen tooltip (Pen Mask) with a mask derived from the target layer (Paint All,
Background or Parent) and optionally, if “Masking” is enabled, a mask derived
from an additional source layer (Brightness/Color range or Picked Segment) to
constrain which voxels in the target layer are painted. This can for example be
used to guide manual painting in the target layer by an automatic
segmentation in the source layer.

section “Correcting Automatic Segmentations in VAST”. VAST
supports 8-bit and 24-bit image layers, which restricts the number
of representable distinct objects to a maximum of 16,777,215.
However, data sets with more segments can be loaded as well,
though only 24 bits of their object IDs will be available in VAST.
This can lead to mergers of neighboring objects in rare cases,
if the originally different IDs are represented by the same 24-
bit number. Those mergers can however be corrected easily by
the user. In this manner segmentations with virtually unlimited
numbers of segments can be used to guide the generation of a
proof-read segmentation. Care should be taken during importing
such that segments with IDs of multiples of 224 are not mapped
to 0 and disappear.

Correcting Automatic Segmentations in VAST
When an automatic segmentation is loaded into VAST as a
segmentation layer, the user has full freedom to manipulate the
segments by painting or erasing. Split errors (cases in which a
single object consists of several parts in the segmentation) can be
corrected non-destructively by collecting all parts of the object
into a folder using the ‘Collect’ tool. If necessary, all segments of a
folder can be “welded” to a single segment. Merge errors (several
actual objects appear as a single object in the segmentation) are
more difficult to correct because the user must define where
within the merged object the boundaries should be. To correct
mergers, the user can paint over part of a segment with a different
segment. For this, VAST’s “Parent” mode can be used, which
restricts painting to the immediate parent of the current paint
color in the segment hierarchy. One side of the split boundary
is relabeled in a different segment color by painting, and the
remaining part of the branch which should be split off is recolored
by filling. Alternatively, the user can split an object into separate
connected components by erasing the segment at the point of
connection to disconnect the parts, and then use the fill tool to
change the segment ID of one of the connected components.
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FIGURE 5 | Example screenshots of the 3D viewer. (A) Capillary running through cortex, rendered from EM image stack. (B) Segmented spiny dendrites and cell
bodies (fully manual segmentation). (C) Organelles in a neuron soma; mitochondria in orange, Golgi apparatus in blue, lysosomes dark gray, nucleus light gray (fully
manual segmentation). (D) Erythrocyte in a capillary in LGN rendered from an EM image stack. (E) Micro-CT scan of a fossil specimen of Paleothyris acadiana
(Museum of Comparative Zoology, Harvard). Data in A–C from (Kasthuri et al., 2015); D from (Morgan et al., 2016); E with kind permission of S. Pierce, Museum of
Comparative Zoology, Harvard.

Afterwards the boundary where the split was performed can be
cleaned up by manual painting.

On-demand automatic segmentation of very large data sets is
in principle possible if the segmentation image stack is loaded
from a web server and the segmentation is done on the server
side. VAST would request parts of the automatic segmentation
from the server, which would do the on-demand computation
and send the result to VAST. This approach could for example
be used to trace axons quickly over very large distances without
requiring a complete automatic segmentation of the whole
data set.

Multi-User Segmentation, Splitting and
Merging of Segmentations
Even though VAST is not a client-server solution where multiple
users can edit a single segmentation at the same time, by
requesting data from and committing changes to a central data
server, it is possible to have several scientists work on the
same dataset and combine the results. VAST provides a merge

function by which several .VSS segmentation files can be merged
into one, with options to define voxel overwrite and segment
ID renumbering rules. When merging a ‘source’ segmentation
onto a ‘target’ segmentation, conflicts are resolved on a voxel-
by-voxel basis. The user can decide whether nonzero target
voxels can be overwritten by merged-in source data (source
precedence) or are write protected (allowing only empty target
voxels to be written; target precedence). VAST can also export and
import segmentations as image stacks with metadata, allowing for
more complicated merge procedures done externally. Also when
importing segmentation images onto an existing segmentation,
either source or target precedence can be applied.

Parts of segmentation files can be recombined by using branch
deleting or branch exporting and merging. A selected segment
or branch of segments (selected segment and child tree in the
segmentation hierarchy) can be saved to a separate .VSS file using
“File/Save Segmentation As Special . . .” and subsequently merged
with a target segmentation file. Alternatively, the “Delete Segment
+ Subtree” function from the context menu of the “Segment
Colors” tool window can be used to delete all unwanted segments,
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FIGURE 6 | Examples of 3D models segmented in VAST and rendered in Autodesk 3ds Max. (A) Spiny dendrite (red) and axons (green) in a
10 µm × 10 µm × 6 µm cube of mouse cortex. At a voxel size of 6 nm × 6 nm × 30 nm, even the finest neural processes are segmentable. (B) Neurons traced in a
low-resolution EM stack of mouse cortex, shown in situ above one EM section, with apical dendrites running in a bundle toward the pia (to the right in the image).
Field of view roughly 510 × 340 micrometers. (C) Putative basket cell in rat cortex, traced semi-automatically with trans-layer masking in a
∼100 µm × 100 µm × 200 µm tissue volume. Tracing this cell took ∼15 h for a single expert. (D) Organelles in a neuron cell body (same cell as Figure 5C) shown
from two directions. Nucleus white, with pores visible; endoplasmic reticulum green, mitochondria yellow, Golgi apparatus blue. (E) Two spiny apical dendrites with
side branches in rat cortex. Synapses shown in yellow. (F) Spiny dendrite in red, with transparent axons making synapses on it. Neurotransmitter vesicles (white)
were exported using particle clouds to generate spherical vesicles. All images are based on EM data from the lab of Jeff Lichtman, Harvard. All segmentations
except C were done fully manually. A,B,D,F used data published with (Kasthuri et al., 2015).

and the result can be saved to a separate .VSS file and then
processed further.

DATA VISUALIZATION, EXPORTING, AND
ANALYSIS

The Integrated 3D Viewer
The 3D viewer in VAST can be used to inspect and visualize image
and segmentation stacks. It makes use of a volumetric texture
with transparency rather than surface meshes to display voxel
data in its native format. Because the 3D textures are retrieved
from the 2D view, the same coloring and blending options are
available, and image and segmentation stacks can be visualized
together. The transparency of the 3D textures can either be

derived from the pixel brightness or set to opaque to show a full
cube. The view can be rotated and zoomed and screenshot images
can be exported. The user can also click on objects in the 3D
viewer to set the 2D window to the same location. Figure 5 shows
a selection of examples rendered with the 3D viewer.

Image Stack Exporting
For further processing and visualization of voxel data in other
applications, VAST includes functions to write image and
segmentation data back to stacks of image files. The image
stack export dialog can be found under “File/Export . . .” in the
main menu. VAST can export image stacks of data in single
image layers, segmentation layer data (images encoding IDs in
blue and green color channels), and the composited 2D view
(“screenshots”), of a definable sub-region of the loaded data set, at
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FIGURE 7 | Internal program structure and control flow of VAST. VAST is structured as a collection of modules (C++ classes) which implement different parts of the
program, the most important of which are listed in (A). The internal state of the program is held in a global state system class (B). Layers are kept in a linked list, with
each layer holding a set of further class instances depending on type (C). There are two caching systems, one for image data (D) and one for segmentation data (E).
All image layers share the image cache and all segmentation layers share the segmentation cache. (F) Shows the threading structure and the control flow of the
main thread. Even though each layer has its own loader thread, cache updating is done in the main thread only to prevent multithreading problems.

a definable mipmap resolution. Large sections can be exported as
a mosaic of image tiles. Metadata for segmentation layers can be
exported to text files using the “Save Segmentation Metadata . . .”
function in the menu of the “Segment Colors” tool window. VAST
provides a Matlab script to parse these text files. Table 2 lists the
image formats which are available for image stack exporting.

The VAST API and VastTools
Volume Annotation and Segmentation Tool includes an API
which can be accessed from client programs through the TCP/IP
network protocol, either locally on the same computer or
remotely through a network connection. Once the TCP/IP port
is enabled in VAST, client programs can connect and send API
commands to VAST to exchange data. The protocol for the API
and all API functions are documented in the user manual, which
is part of the supplementary package which can be saved to disk
from VAST (under “Info/Save Documentation .ZIP To Disk . . .”)
or downloaded from the VAST webpage4.

“VastTools.m” is a Matlab (The Mathworks, Inc.) script which
can communicate with VAST via its API. It implements a number

4http://software.rc.fas.harvard.edu/lichtman/vast/

of supplementary functions, in particular for data exporting.
VastTools is also included in VAST’s supplementary package.
Since it is a Matlab script, its source code is fully readable and it
can serve as a reference for implementing other client programs.
Also, once VastTools is running and connected to VAST, other
Matlab scripts can simply call API functions through the hidden
global variable “vdata.vast”.

The export functions of VastTools are summarized in Table 2.
Most importantly, VastTools can export surface meshes of
segmented objects to generic Wavefront OBJ files, which can
then be imported into 3D rendering applications like 3ds Max
(Autodesk, Inc.; see example images in Figure 6), Blender
(Blender Foundation) or Unity (Unity Technologies). It can
also export isosurface meshes (based on voxel brightness) which
can for example be used to visualize fluorescence signals in
light microscopic image stacks, and particle clouds, where a
prototype 3D object (for example a small sphere representing a
vesicle) is placed at the centers of all separately painted regions
and the compound object is exported (3D object instancing).
Furthermore, 3D boxes at specific locations in the data set can
be exported as wireframe models or with single-color or textured
sides, with a texture derived automatically from the loaded image
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stack. Finally, VastTools can export correctly sized scale bar
models. Figure 6 shows a selection of renderings made from 3D
models labeled in and exported from VAST.

VastTools can also render and export projection images
along cardinal axes from the loaded data with multiple options,
including illumination simulation. These projection images can
not only be exported but also be used for single-image-click 3D
navigation in VastTools’ “Simple Navigator Image” functionality.

“Target Lists” in VastTools can be used to create and organize
annotated lists of particular points of interest in the data set
loaded in VAST. Target coordinates are stored in the list together
with a zoom level and the ID of the selected segment, and text
descriptions can be added to each target. The corresponding 2D
view of any listed target can then be restored in VAST with a
single click in the target list.

Even though VAST is not a specialized analysis tool,
several measurement functions are included in VastTools. First,
Euclidian distances between any two points in the image stack
can be measured. Second, VastTools can calculate the volumes
of the volumetrically labeled segments and estimate their surface
area during mesh exporting by summing the area of all generated
mesh triangles for the object. This measurement is however likely
to provide an overestimate of the true surface area because of the
roughness of voxel models. A better estimate could be generated
externally after smoothing the 3D models. Finally, VastTools can
count the number of separately painted regions and export a list
of centroid coordinates during particle cloud exporting.

The features discussed here are described in more detail in
VASTs user manual.

DISCUSSION

Volume Annotation and Segmentation Tool is a light-weight
and versatile tool specialized for volumetric annotation and
segmentation of objects in very large image stacks. It is a self-
contained program which is simple to set up and use even
for inexperienced users. Typical applications include: Exploring
very large EM and LM image stacks interactively; efficient
manual segmentation of arbitrary structures to generate voxel
training data for automatic segmentation algorithms; and sparse
volumetric tracing of objects of interest, either manually or
assisted by an automatic segmentation of the volume. VAST can
also be used to proofread automatic segmentations, which is
likely to become an important part of connectomic studies now
that automated methods are becoming more commonplace.

Volume Annotation and Segmentation Tool is the only
tool to our knowledge which can load multiple image and
segmentation layers at the same time and use trans-layer masking
to speed up manual segmentation and to proof-read automatic
segmentations. For example, an automatic segmentation, even
if it contains many errors, can be loaded as a separate layer
and used to provide masks for painting objects with perfect
outlines. Users can then volumetrically label neurites instantly
while scrolling through the data set, while precise boundaries of
the segmented objects are defined by the automatic segmentation.
The 3D filling function speeds this process up further. Any defects

caused by splits and mergers in the automatic segmentation can
be corrected immediately by painting and filling. This process can
also be seen as proof-reading a segmentation, in which original
and proof-read versions are kept strictly separate because they
reside in different layers.

In this way, volumetric voxel painting in VAST can reach
speeds comparable to manual skeleton tracing based on placing
nodes while scrolling through a 3D EM image stack. In both
cases the speed is likely limited by either the rate at which
images can be loaded and displayed, or by the speed at
which humans can reliably follow a winding process through
the neuropil. Voxel painting immediately generates filled-
in areas of object cross-sections, which makes it easier for
human observers to spot splits and mergers. Also, it natively
produces volumetric objects, which for skeleton tracing requires
an additional step. Also, different from tools which perform
segmentation proof-reading by agglomerating object parts, in
VAST proof-read segments are represented as voxels, which
gives the user full freedom to modify them by painting as
needed.

With VAST, these operations can be performed on image
stacks which can reach Petabytes, including datasets which
are streamed from a network source. As datasets grow larger
and more and more research labs get interested in reusing
these data-rich EM image volumes to address various scientific
questions, online hosting and remote access will become more
commonplace.

Limitations
However, there are data sets and segmentation tasks for
which VAST in its current form is not suitable. First of
all, VAST was designed as a single-user standalone program,
and as such it is not a multi-user client-server solution in
which multiple annotators can simultaneously contribute to a
shared server-hosted segmentation. While VAST allows image
stacks to be loaded dynamically from a server, segmentation
layers are currently hosted in local files only. It is possible
to combine the segmentation results from multiple users by
merging segmentation files, but this is comparatively slow and
inconvenient. Therefore it is tricky to use VAST in settings
where numerous annotators are working together to segment or
proof-read the same segmentation volume. A future version may
implement a segmentation layer type in which the data is hosted
on and synchronized with a server, for interactive multi-user
editing. The server would also keep track of the changes each user
makes (provenance tracking and version control), which becomes
more important in multi-user settings. In VAST, provenance can
be tracked rudimentarily by saving to a new file every time and
keeping the old versions, and having different users keep their
work separate.

Second, as a voxel painting program, VAST is not equipped
to work with skeletons or surface mesh data directly. It is
possible to use voxel painting to indicate skeleton lines of 3D
objects, and to analyze these externally to generate skeletons
(Morgan et al., 2016), but this is more a work-around than a true
solution. VAST does not use surface meshes internally either; for
example the 3D viewer uses a three-dimensional texture instead.
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Surface meshes of segmented objects can however be generated
in VastTools for external analysis and rendering. Measurement
of lengths, diameters, axonal branching patterns etc. are also not
included in VAST but have to be performed externally.

When using skeletons, synapses between two neurons can
be represented by edges of a special ‘synapse’ type, bridging
between the skeletons of two cells. This is not possible in VAST
since it does not provide skeletons. However, voxel annotation
of synapses can be (and has been) used to compute synaptic
connectivity (Kasthuri et al., 2015; Morgan et al., 2016; Quadrato
et al., 2017). If synapses are manually or automatically labeled so
that the synapse region overlaps with the pre- and postsynaptic
partner neurites volumetrically, the synapse label can then be
used as a mask to extract the IDs of the connected neurites
automatically. This can be done with an external script which uses
either the API or exported segmentation image stacks.

While VAST has no problem allowing users to label all the
synapses in a dataset, it is not a tool specialized for the analysis
of connectivity structure or other more sophisticated analyses of
tissue morphology. Data on synaptic partners can be exported
and analyzed downstream with specific tools, as was done in
(Kasthuri et al., 2015; Morgan et al., 2016; Quadrato et al., 2017).
The possible future addition of explicit skeletons associated with
the volumetric labels in VAST may make many of these tasks
more straight-forward.

Currently, the 2D view in VAST is limited to XY sections,
mainly because of our anisotropic ATUM data sets and the fact
that using only XY mip maps saves time and storage space. Data
can in principle be resliced externally if tracing at a different
orientation is preferable. However, supporting different mip
mapping and 2D slicing options, as well as improved capabilities
of the 3D viewer, may be useful features in the future.

Finally, VAST is based on the Windows user interface and
graphics system (Direct3D 11) for speed and simplicity, and
cannot easily be ported to other operating systems. Also it is
currently not an open source program, and feature additions and
bug fixes depend on the developers. However, its API is fully
documented and many functions can be accessed remotely for
external processing and script-based automation to add custom
functionality.

Though VAST is still being developed further and more
features are added as needed, its main strength is manual and
semiautomatic segmentation by voxel painting. Extensive import
and export functions are provided, including an API, so that
VAST can play its role as a powerful tool in a larger pipeline.
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For a mechanistic understanding of neuronal circuits in the brain, a detailed description

of information flow is necessary. Thereby it is crucial to link neuron function to the

underlying circuit structure. Multiphoton calcium imaging is the standard technique to

record the activity of hundreds of neurons simultaneously. Similarly, recent advances in

high-throughput electron microscopy techniques allow for the reconstruction of synaptic

resolution wiring diagrams. These two methods can be combined to study both function

and structure in the same specimen. Due to its small size and optical transparency,

the larval zebrafish brain is one of the very few vertebrate systems where both, activity

and connectivity of all neurons from entire, anatomically defined brain regions, can be

analyzed. Here, we describe different methods and the tools required for combining

multiphoton microscopy with dense circuit reconstruction from electron microscopy

stacks of entire brain regions in the larval zebrafish.

Keywords: zebrafish, connectome, olfactory bulb, hind brain neurons, electron microscopy, two-photon (2P),

neural circuit

1. INTRODUCTION

The larval zebrafish has been gaining a lot of traction as a model system in systems neuroscience
(Friedrich et al., 2010). From amodel system point of view for neuroscience, the larval zebrafish sits
in between the fly and the mouse, two of the most popular model systems. At larval stage, 4–7 days
post fertilization (dpf), these fish have approximately 100,000 neurons in their nervous systems
(Hill et al., 2003). The larvae are accessible to a variety of tools that include advanced genetic
manipulation, high-throughput screening, behavioral assays, electrophysiology, and functional
imaging. More importantly, at their larval stage they are optically transparent which makes them
accessible for functional imaging and allows brain-wide monitoring of neuronal activity (Ahrens
et al., 2013; Dal Maschio et al., 2017). To this end many studies use the larval zebrafish to study
mechanisms by which activity in networks of neurons can lead to meaningful sensory processing
and eventually behavior. In terms of behaviors the larvae display a rich set of behaviors like
prey-capture, looming, and foraging that can be studied either in freely moving animals or in
a virtual environment where typically the read out is in the form of eye and tail movements
(Wyart et al., 2009; Ahrens et al., 2012; Bianco and Engert, 2015; Temizer et al., 2015; Dunn et al.,
2016a,b; Naumann et al., 2016) and have thus been used extensively to investigate sensorimotor
transformations (Mathuru et al., 2012; Barker and Baier, 2015).

From a systems neuroscience perspective, having access to the function, genetics, structure, and
a wiring diagram of the neurons involved is key to understanding how fundamental computations
are performed in the brain. Recent studies have shown how it is possible to extract single-cell
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transcriptomic data from entire brains or regions (Pandey et al.,
2018; Raj et al., 2018). Similarly, it is also possible to functionally
image the activity of the entire nervous system (Ahrens et al.,
2013; Dal Maschio et al., 2017). However, detailed ultrastructural
information on connectivity of the underlying neuronal circuits
is still missing for most zebrafish brain regions. For a mechanistic
understanding of neuronal computations and information flow
it is essential to reconstruct the neuronal circuits at synaptic
resolution. While low resolution electron microscopy (EM) and
light microscopy is sufficient for mapping axonal projection
patterns and somata locations (Randlett et al., 2015; Förster et al.,
2017a; Hildebrand et al., 2017), a detailed mapping of neuronal
circuits requires EM at synaptic resolution (Wanner et al., 2016b;
Vishwanathan et al., 2017; Svara et al., 2018).

We present here a comprehensive step-by-step guide for
neuronal circuit reconstruction in the larval zebrafish using
serial block-face scanning electron microscopy (SBEM) or
automated tape collecting ultra-microtome based scanning
electron microscopy (ATUM-SEM). We outline the typical
workflow for dense and targeted reconstruction of connectivity
and activity of neurons using correlative light and electron
microscopy. We exemplify the workflow by highlighting two
recent studies in which significant parts of neuronal circuits have
been reconstructed at synaptic resolution in the olfactory bulb
and the hindbrain of the larval zebrafish, respectively (Table 1)
(Wanner et al., 2016b; Vishwanathan et al., 2017). The main
factors contributing to the quality of a volume EM stack are
tissue preservation, voxel resolution, image contrast, and image
registration. The most time consuming step and at the same time
the major bottleneck in combining functional imaging and EM-
based circuit analysis is the neuron reconstruction and synapse
annotation. The accuracy and efficiency of image annotation
depends highly on the quality of the underlying EM image stacks,
thus it is crucial to optimize the EM preparation and image
acquisition for the subsequent circuit reconstruction. Each of
these steps takes significant time to optimize and to get right. By
comparing the two methods that were used we hope to provide
the reader a detailed overview of the methods and tools required
for accomplishing such reconstructions.

2. FUNCTIONAL IMAGING

The recent advances in optogenetic tools and light microscopy
(LM) have revolutionized population scale imaging of neuronal
activity at cellular resolution. The advent of better transgenic
tools (Halpern et al., 2008; Kimura et al., 2014; Marquart et al.,
2015; Förster et al., 2017b), calcium reporters (Chen et al.,
2013; Piatkevich et al., 2018), imaging techniques like light
sheet microscopy (Ahrens et al., 2013; Panier et al., 2013) and
two photon microscopy (O’Malley et al., 1996; Friedrich and
Korsching, 1997; Ritter et al., 2001; Brustein et al., 2003; Niell
and Smith, 2005; Yaksi and Friedrich, 2006; Orger et al., 2008;
Ramdya and Engert, 2008; Sumbre et al., 2008; Naumann et al.,
2010, 2016; Niessing and Friedrich, 2010; Blumhagen et al.,
2011; Zhu et al., 2013; Kubo et al., 2014; Portugues et al., 2014;
Candelier et al., 2015; Romano et al., 2015; Pérez-Schuster et al.,

2016; Dal Maschio et al., 2017; Pietri et al., 2017) and data
analysis (Miri et al., 2011; Freeman et al., 2014) have allowed
for the imaging and interpretation of whole brain volumes at
high spatial and temporal resolution. Typically, the temporal
resolution of these experiments is on the order of few seconds
to few miliseconds, enabling to measure neuronal activity with
single spike resolution. It is also possible to image the entire
brain during free swimming, more close to naturalistic behaviors
(Kim et al., 2017). A detailed description of the factors that
need to be considered for using two-photon imaging on larval
zebrafish have been covered previously (Renninger and Orger,
2013). Instead, we highlight in the following somee important
factors that need to be considered for combining functional
imaging and EM-based circuit reconstruction.

The acquisition parameters of light microscopes are usually
optimized for maximizing temporal resolution and signal-to-
noise (SNR) of the activity measurements while minimizing
the observable photo damage. At light microscopy level, photo
damage is most prominently observable as photo bleaching
(Magidson and Khodjakov, 2013). While a comprehensive study
of photo damage at ultra structural level in combination with
electron microscopy is still missing, several labs and researchers
have observed and anecdotally reported that extended LM
imaging prior to EM sample preparation can affect the tissue,
ultra-structural integrity and staining quality in the subsequent
EM steps, even if signs of photo damage are missing on the
light microscopy level. It is therefore crucial to reduce photo-
damage beyond avoiding photo bleaching. On one hand, this can
be achieved by decreasing the laser power under the objective
which comes at the cost of sacrificing SNR. On the other hand,
decreasing the photon dose by decreasing the dwell time and
increasing the imaging rates seems also to reduce photo-toxic
effects. The loss in SNR can be compensated partially by using
improved transgenic or synthetic reporters.

3. STRUCTURAL IMAGING

Following functional imaging, the same larvae are prepared
for EM. During this process the ultrastructure of the tissue is
preserved and stained using a combination of fixatives and heavy
metal stains.

3.1. Immersion Fixation and Craniotomy
The tissue fixation is one of the most important steps toward
good preservation and staining of cellular ultrastructure. The
larval skull consists of soft cartilage covered by connective tissue
and skin that hinders the penetration of aldehydes. This layer
gets typically removed by a craniotomy. To allow for fast and
homogeneous penetration of fixatives such as paraformaldehyde
and glutaraldehyde we strongly suggest performing a craniotomy
around the brain region of interest as follows (see Wanner
et al., 2016b; Vishwanathan et al., 2017 for details on animal
procedures):

1. Anesthetize the larva by putting it into a small drop of larval
medium (E3medium) and the anesthetic MS222 (0.1 mg/ml,
Sigma E10521).
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TABLE 1 | Dataset comparison.

Wanner et al. Vishwanathan et al.

1. Imaged region, dimensions Olfactory bulb (OB) - 72×108×119 µm Hindbrain (HB) - 120×250×80 µm

2. Imaging method Scanning block face imaging (SBEM) Automated tape collecting ultramicrotome (ATUM)

3. Imaging mode Back scattered electrons Back scattered electrons

4. Imaging resolution (lateral, axial) 9×9×25 nm 5×5×45 nm

5. Image alignment Custom MATLAB tools TrakEM2

6. Light and electron microscopy

registration

Custom MATLAB tools TrakEM2, MATLAB

7. Image segmentation - Deep nets (https://github.com/seung-lab)

8. Neuron reconstruction Manual skeleton tracing and synapse annotation of

~98% of all neurons (n > 1,000) in the larval OB

Manual skeleton tracing and synapse annotation of

22 neurons, volumetric segmentation of ~2000

neurons in the HB

9. Software: PyKNOSSOS (Wanner et al., 2016a)

https://github.com/adwanner/PyKNOSSOS

KNOSSOS (Helmstaedter et al., 2011)

https://knossostool.org

TrackEM2 (Cardona et al., 2012)

https://imagej.net/TrakEM2

BigWarp

http://imagej.net/BigWarp

2. The anesthesia has to be deep enough such that the larva does
not show any response/muscle tension to gentle mechanical
stimuli such as gentle touches by forceps. Monitor the
vital functions of the larva through a stereo microscope. In
particular, make sure that there is sufficient blood flow in
the brain and monitor the heart beat (~200 beats per minute;
Luca et al., 2014).

3. Prepare 2–3% low melting agarose (Sigma A9539) in
artificial cerebrospinal fluid (ACSF) and let it cool down to
about 35◦C . Load a fresh transfer pipette with about 3–4ml
of liquid, lowmelting agarose. Pick up the dropwith the larva
using the agarose-loaded transfer pipette and mix it well but
gentle for 2–3 s.

4. Place the larva with the low melting agarose in a mold and
orient the larva using forceps such that you can access the
brain region of interest from the top.

5. Let the agarose cure for about 2–5 min.
6. Gently remove any remaining agarose on top of the brain

region of interest with a scalpel such that you can easily
access the brain to make a craniotomy.

7. Make sure that that region is always covered by ACSF.
8. Now use a sharp-tip tungsten needle or glass-pipette to

cut and remove the skin and cartilage generously around
the brain region of interest and neighboring areas without
damaging the brain. Try not to rip any blood vessels because
that can easily cause severe tissue damage.

9. Gently remove the larva from the agarose using a scalpel.
Make star like incisions away from the larva and then remove
the agarose by pulling it away from the larva to minimize
any pressure onto the larva and the exposed brain. Make sure
that the exposed brain is always covered by ACSF during this
procedure.

10. Make sure that the heart is still beating regularly after the
craniotomy.

11. Use a fresh transfer pipette to transfer the larva into freshly
prepared fixative at room temperature for 1 h and for 1–23 h
in the fridge.

TABLE 2 | Fixation and staining comparison.

Wanner et al. Vishwanathan et al.

Fixative 2% Paraformaldehyde, 1%

Glutaraldehyde in 0.15 M

Cacodylate buffer with 2

mM calcium chloride at pH

7.4. (1h at room

temperature, 1 h on ice)

2% Paraformaldehyde,

2.25% Glutaraldehyde in

70 mM Cacodylate buffer

at pH 7.4 (over night at

4◦C)

Reduced fixation 2% Osmium Tetroxide ,

1.5% Potassium

Ferrocyanide in 0.15 M

Cacodylate buffer with 2

mM calcium chloride (1 h on

ice)

1% Osmium Tetroxide ,

1.5% Potassium

Ferrocyanide in 0.15M

Cacodylate buffer (2 h on

ice)

Amplification 1% TCH (20min at RT) 1% TCH (15min at RT)

Secondary fixation 2% Osmium tetroxide (30

min at room temperature)

1% Osmium tetroxide (1 h

on ice)

Uranyl acetate 1% aqueous UA (overnight

at 4◦C)

1% aqueous UA

(overnight)

Lead aspartate 20 min at 60◦C at pH 5.3 30 min at 60◦C at pH 5.5

Dehydration in

ethanol (in %)

20,50,70,90,100,100 (5min

each)

20,50,70,90,95,2×100,

100 - Propylene Oxide

(PO) (10 min each)

Resin formulation 11.1 g Glycid ether 6.2 g

DDSA 6.25 g MNA Mix very

well Add 0.325 ml BDMA

Mix and degas

A = 10g LX-112 + 10.9 g

NSA ; B = 18 g LX-112+

15.5 g NSA;

3A+7B+2%BDMA.

3.2. Electron Microscopy Staining,
Embedding, and Sectioning
For heavy metal staining we used conventional reduced
Osmium (ROTO) based techniques that impart good contrast
to the samples (Deerinck et al., 2010). Briefly, this involves
staining with reduced Osmium followed by amplification with
thiocarbohydroazine (TCH) and another round of Osmium. This
is further amplified by en bloc staining of the samples with Uranyl
acetate and Lead aspartate (Table 2). We used two different
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volume EM techniques to acquire large stacks of the zebrafish
brain. The olfactory bulb dataset (Figure 1) was acquired with
a serial block-face scanning electron microscope (SBEM) (Denk
and Horstmann, 2004), whereas the hindbrain dataset (Figure 2)
was acquired using automated tape collecting ultra-microtome
based scanning electron microscopy (ATUM-SEM) (Schalek
et al., 2011). During this process, we have encountered few failure
modes as listed in Table 3.

During the staining of the tissue we observed poor penetration
or precipitation of the stain in the form of large contrast gradients
in the images. In both cases, beginning with good craniotomies
was able to mitigate these problems. Occasionally, reducing the
amount of TCH helped to reduce the occurrence of precipitates.
Depending on the acquisition method, different resins should be
used for embedding. In SBEM, surface charging due to electrons
that accumulate in regions with low conductivity/heavy metal
content is a common problem (Wanner et al., 2015; Titze and
Genoud, 2016). Besides the image saturation due to accumulating
electrons, the charging can impair the cutting quality and even
more importantly, it can lead to non-linear, non-stationary
distortions in the images, which can complicate the stitching
of a mosaic of overlapping tiles tremendously. These effects
are in particular problematic for zebrafish samples, because
there is typically empty resin surrounding the brain tissue.
One way to cope with this problem is to use variable pressure
SEM (Griffin, 2007). This technique reduces charging artifacts
by adding a gaseous agent into the recording chamber (e.g.,
water or nitrogen) whose molecules get ionized and neutralize
excessive electrons on the block surface. These agents typically
compromise the vacuum in the chamber and scatter electrons
which can severely affect the resolution and SNR in the images.
However, a promising new focal gas injection-based charge
compensation seems to largely mitigate the charging problems
without compromising the SNR (Deerinck et al., 2017). Another,
technically more challenging method is to introduce a sputter-
coating device into the recording chamber that coats the sample
surface after each cut with a thin layer of Chromium or Palladium
and makes its surface perfectly conductive (Titze and Denk,
2013). An alternative approach is to improve the grounding of
the tissue and the sample block by adding conductive material
such as carbon black (Nguyen et al., 2016) into the otherwise
empty resin space surrounding the tissue. In the case of the larval
OB image stack (Wanner et al., 2016b) an alternative embedding
method called Epo-tek and Epon (EE) embedding was developed,
in which the tissue was surrounded with a silver-filled epoxy glue
before curing the Epon. EE-embedding effectively resolves the
surface charging problems during backscattered electron imaging
and is therefore suitable for blockface imaging in high vacuum
mode. This also results in an order of magnitude increase in
both, SNR and acquisition speed (Wanner et al., 2016b). In the
following we give a step-by-step description of the procedure for
EE-embedding of a resin-immersed tissue sample:

1. Normal sample preparation (fixation, staining, dehydration,
etc.).

2. Immerse sample in resin (Epon in this case) for 4h to
overnight.

3. Prepare a small batch of EPO-TEKr EE129-4 compound
A and B with ratio A:B = 1.25:1. Typically, we use 0.5g A
and 0.4g B for 2 zebrafish larvae. Perform the following steps
quickly (within a couple of minutes), because the conductive
glue becomes more viscous over time.

4. Mix compounds A & B very well with a toothpick.
5. Fill the mixed conductive glue carefully into a mold. Make

sure that there are no air bubbles. Vacuum degassing might
help.

6. Take the sample out of the resin, for example by using
a toothpick such that the larva sticks to the tip of the
toothpick.

7. Remove remaining resin around the sample using
gravity or by carefully wiping the sample surface with a
tissue.

8. Put the sample into the mold with the conductive glue. Make
sure that there is as little resin as possible getting into the
mold.

9. Mix the sample very well and very carefully with the
conductive glue. Because the conductive glue is opaque it
can be useful to only immerse the parts of the sample that
are going to be imaged in the conductive glue. The rest (e.g.,
the larval tail) can be used to gently move the sample around
(tilting and rotating) with a toothpick in order to mix it with
the conductive support.

10. Cure the embedded samples in a 60◦C oven for 48 h.

For ATUM-SEM, since the sample is collected prior to imaging,
the resin had to be customized in order to facilitate good cutting
characteristics. Embedding the samples in most typical resins
resulted in the formation of micro-folds and compression of
the tissue at the tissue-resin interface. This kind of folds can
typically be attributed to the change in the density at the interface
between the tissue and the resin. In order to overcome these
problems, one approach is to re-embed the sample with resin
that has been made more dense by the addition of tissue slurry
that acts to homogenize the resin. Another similar approach was
to embed the larvae inside a larger piece of tissue that then
serves to homogenize the resin (Hildebrand et al., 2017). Our
approach was to design a low-viscosity resin, that was able to
withstand the compression at the interface while retaining good
cutting characteristics (Table 2). This resin allowed for collection
of 1000’s of fold free sections from zebrafish larvae and murine
tissue.

4. NEURON RECONSTRUCTION

We have employed two different methods for neuron
reconstruction. In the case of the larval OB, neurons were
skeletonized manually by a cohort of more than 30 professional
image annotators (Wanner et al., 2016b), whereas in the case of
the hindbrain, crowd-sourced players and professional image
annotators proofread an automated, volumetric reconstruction
(Kim et al., 2014). There are pros and cons to each of these
methods, and here we list some of them, based on our
experiences.
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FIGURE 1 | Workflow for SBEM based pipeline: First, two-photon calcium imaging was performed in the OB and the telencephalon over multiple planes to record

neuronal activity while delivering different odor stimuli. Next, the same sample was prepared for EM and a complete stack of the OB and parts of the telencephalon was

acquired with a SBEM. Subsequently, all neurons in the OB have been reconstructed by manual skeleton tracing (Wanner et al., 2016b). After the co-registration of the

EM stack and the two-photon planes, the neuronal activity can be mapped onto the reconstructed neurons for detailed structure to function comparison and analysis.
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FIGURE 2 | Workflow for ATUM-SEM based pipeline: (A) Perform two-photon calcium imaging (left) over the region of interest (in this case hindbrain) over multiple

planes to record from neurons while delivering stimulus and/or monitoring behavior (middle). Analyze activity from population offline to compute variable of interest

(right) (Vishwanathan et al., 2017). (B) Prepare and section the same animal from (A) using an ATUM. Prepare sections on conductive substrate (silicon wafer, left) and

map all sections in low-resolution (middle) first and then define region corresponding with functionally imaged region for high-resolution imaging (right). After

(Continued)
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FIGURE 2 | registration of EM images, correspondences between LM and EM are used to register LM images onto EM images to locate somata in both volumes.

(C) Automatic image segmentation using neural networks is used to generate affinities from raw images, that are then segmented to distinguish neurites from each

other. Alternatively, another neural network is used to detect synapses in the entire volume. (D) Dense segmentation is agglomerated to produce entire neurites (left).

These neurites are proof-read and corrected for mistakes such as false terminations and mergers to reconstruct entire neurons (middle). Colors represent different

classes of neurons. (E) Accuracy of crowd sourced players reported as F1 scores when proof-reading neurons either the first time (round 1) or the second time (round

2). Each gray dot represents an individual player. Black dot and line is the average.

TABLE 3 | Failure modes.

Serial block-face scanning electron microscopy (SBEM)

(Wanner et al., 2016b)

Automated tape collecting ultra-microtome scanning

electron microscopy (ATUM-SEM) (Vishwanathan et al.,

2017)

Tissue integrity 1. Dissociated, dense tissue and broken or jagged membranes indicate poor tissue fixation. This can be addressed by

increasing the size of the craniotomy and/or moving the craniotomy closer to the region of interest.

2. Broken or jagged membranes and exploded mitochondria may indicate problems with the osmolarity of the ACSF.

3. Cracks in the tissue may indicate problems with dehydration.

Tissue staining 1. Bands of precipitates of the stains are occasionally observed in the neuropil. This can be avoided by having clean large cranial

access and longer wash times.

2. Low contrast can indicate that the pH of the lead aspartate was not within the optimal range of 5.3–5.7 or that the craniotomy

was not large enough.

Tissue sectioning

problems

1. For reliable 25–30 nm thin sectioning on the SBEM it is

important carefully trim the sample to a rectangular pyramid

with smooth faces, usually falling of at an angle of 46–48

degree.

2. Multiple beam exposure of the same area can impair

reliability and quality of the cutting. To cover larger FOV, use a

mosaic of tiles with alternating overlap to avoid having regions

that are scanned four times.

3. For reliable 25–30 nm thin sectioning, it is crucial to use a

fresh knife and to keep the electron dose and energy to a

minimum. Typical parameter settings result in an electron

dose of about 14–18 electrons per nm2 and landing energies

of <2 keV.

1. Reliable series collection requires an accurate mesa

(rectangular profile was used) and preferably a new knife for

cutting.

2. Folds observed at the interface of tissue and resin. This

can be overcome by using a resin formulation that has low

viscosity during infiltration.

3. Another source of folds can be caused by hydrophobic

tape substrate. This can be avoided by glow discharging the

substrate prior to collection.

Tissue imaging

problems

Use conductive embedding procedures such as E/E

embedding (Wanner et al., 2016b) or adding carbon black to

the resin (Nguyen et al., 2016) to reduce charging artifacts.

1. Charging can sometime occur for very thin layers of

evaporated Carbon. This can be avoided if >5 nm of Carbon

is coated. Poor contrast in sections can be enhanced by post

staining the sections.

2. Charging can also be avoided by collecting sections on

conductive substrates (Kubota et al., 2018).

4.1. Skeleton Based Reconstructions
Despite the fact that automated image segmentation methods
have made tremendous progress in the last few years,
manual neuron reconstruction is still the preferred and often
more economical approach for small and intermediate sized
reconstruction projects involving few hundreds to few thousands
of neurons. While manual volumetric annotation is extremely
time consuming, skeleton tracing of neurites usually is sufficient
for many circuit neuroscience related questions and is orders
of magnitudes faster (Helmstaedter et al., 2011). Neurons
are traced manually by placing connected nodes onto cross-
sections of neurites in the image data, many such nodes
are then connected to form entire neurons. This is typically
done using open-sourced software packages such as Catmaid
(Saalfeld et al., 2009), KNOSSOS (Helmstaedter et al., 2011),
and PyKNOSSOS (Wanner et al., 2016a). These software tools
are specifically designed for high-throughput, multi-user, 3D
image annotation and neuron reconstruction. Typically, skeleton

tracing is performed by cohorts of students or researchers.
A motivated researcher or student can learn a lot about the
underlying data while manually annotating neurons, but it is
probably not the best use of their talents to trace neurons
for several thousands of hours (Helmstaedter et al., 2011).
However, crowd sourcing neuron reconstruction and synapse
annotation is intrinsically difficult. First, tracing neurons is not
trivial and it requires 10–40 h of training for a naive student to
become a good annotator (Helmstaedter et al., 2011). Second,
neuron tracing is relatively monotonous and only few people
are willing to do this kind of work over a prolonged period
of time with the necessary care and accuracy. Helmstaedter
et al. developed a redundant-skeleton consensus procedure
(RESCOP) that can be used for reliable neuron reconstruction
with cohorts of weakly trained students. RESCOP was used
to densely reconstruct 950 neurons in the inner plexiform
layer of a mouse retina (Helmstaedter et al., 2013). However,
manual tracing is an error-prone process, even if performed
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by expert annotators. A single expert annotator misses on
average at least 10 percent of the true neuronal arbor (Wanner
et al., 2016b). Therefore, expert revision and/or redundant
annotation is typically used to leverage the accuracy of the
resulting reconstruction (Helmstaedter et al., 2011; Schneider-
Mizell et al., 2016; Wanner et al., 2016b). In the case of the mouse
inner plexiform layer connectome, RESCOP required an average
redundancy of 6 for ganglion cells and 4 for amacrine and bipolar
cells.

While tracing straight neurites is typically faster than
tracing branching neurites with complex morphology,
the tracing speed of a single annotator is on average 2–
15 h per mm neurite length (Helmstaedter et al., 2011;
Wanner et al., 2016b; Boergens et al., 2017). Hence,
redundant reconstruction can be time consuming and costly.
Therefore a new iterative consensus procedure called CORE
(“COnvergence by Redundancy and Experts”) (Wanner
et al., 2016b) was developed to reconstruct >1,000 neurons
in the larval zebrafish OB. CORE leverages redundant
reconstruction with focused expert input. For the OB
reconstruction CORE achieved very high accuracy (F1 score
>0.989 for mitral cells) with just a three-fold redundant
reconstruction together with local re-tracing at mismatch
points and focused expert inspection. Thereby the bulk
skeleton tracing was outsourced to professional annotators
(www.ariadne.ai).

4.2. Segmentation Based Volumetric
Reconstructions
Volumetric reconstructions generally mean “coloring” entire
neurons, including intracellular regions. In contrast to skeletons,
this method effectively captures detailed morphologies of the
neurons, including spine architecture and gives an accurate
representation of the changes in the thickness of the neurites
that originate from the somata. Manual volume annotation,
although accurate, is very laborious, time consuming and about
50 times slower than skeletonization (Helmstaedter et al.,
2011). Recent advances in machine learning tools such as
deep convolutional networks (CNNs) have been developed to
segment entire images based on human generated ground-
truth annotations (Chklovskii et al., 2010; Jain et al., 2010;
Kreshuk et al., 2011; Andres et al., 2012; Berning et al.,
2015; Kaynig et al., 2015; Lee et al., 2015; Dorkenwald et al.,
2017; Staffler et al., 2017). Typically the process requires
(Figure 2):

1. Accurate painting of all the objects, neurites and boundaries
also referred to as the ground-truth annotation.

2. Training of a neural net to recognize and classify pixels as
belonging to a boundary or not.

3. Segmenting neurites based on this boundary detection.
4. Agglomerating segments to reconstruct entire neurons.

Similar approaches can be employed for other features of
interest, for example neural networks can be trained to identify
synapses, mitochondria etc. Using the above described methods,
we have automatically segmented the hindbrain dataset in

order to reconstruct entire volumetric profiles of neurons.
To validate and to correct the mistakes that are made by
these machine learning algorithms, we use a crowd-sourcing
platform where experienced players check the validity of the
algorithms and override in regions where the AI makes mistakes
(Kim et al., 2014). The typical workflow for a single neuron
requires:

1. Seeding of the neuron of interest.
2. Letting the AI populate the entire neuron.
3. Human proofreading of false terminations and mergers
4. Correcting identified mistakes.

To ensure high accuracy, this process is performed twice in a
“wikipedia” like manner, where the first player proof-reads and
checks for errors in round 1 and a second player then checks
that intermediate result in round 2 with the latest player having
veto privileges. Finally, the entire neuron is checked by experts,
who have >5,000 h of expertise to mark the neurons as complete.
Using this process on average we can accurately reconstruct 3–4
neurons per day, with an average of 1.6mmneurite length per day
with a coverage factor of 3, which means each neuron had been
reconstructed by 2 players and proof read by 1 expert. The crowd
sourced players have F1 scores on average >0.8 as compared to
expert tracers.

5. CORRELATION OF FUNCTION TO
STRUCTURE

A long standing question in neuroscience is whether and how
the structure of neuronal circuits determines their function. A
directly related question is to what extent knowledge about circuit
structure can predict circuit function (Lichtman and Sanes, 2008;
Seung, 2009; Bargmann, 2012; Morgan and Lichtman, 2013).
Although fundamental, these questions remain unresolved for
many circuits, largely because the detailed analysis of circuit
structure, or connectivity, is still a major challenge. The first
step involves mapping the neuronal activity from calcium
imaging to the reconstructed neurons from EM based circuit
reconstruction. To do this it is necessary to precisely register
the calcium imaging planes to the electron microscopy image
stack. Typically, this is done by iterative point matching and
3D alignment between the LM and EM data. Corresponding
landmarks such as prominent blood vessel patterns or unique
soma locations can be identified in both datasets. These
landmarks can be used to calculate a spatial transform between
the LM and the EM data. Tools for performing point
matching are available on open sourced platforms (Table 1—
software) and can be easily scripted using built-in functions
in Python (www.python.org) and Matlab (www.mathworks.
com). The reconstructed connectivity or wiring diagrams can
be used for hypothesis testing of circuit models. Using two
recent larval zebrafish circuit reconstruction studies, we provide
two examples of hypotheses that can be tested from such
connectomes.

Example 1: In the hindbrain, eye position encoding neurons
persistently fire action potentials during eye fixations (McFarland
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and Fuchs, 1992; Aksay et al., 2000). These neurons transform
eye velocity signals to eye position signals and are called velocity-
to-position-integrator (VPNI) neurons. Theoretical models
suggest that persistent activity could be induced by recurrent
connectivity between VPNI neurons (Cannon et al., 1983;
Seung, 1996). To test this hypothesis we reconstructed the
connectivity between functionally identified VPNI neurons
(Vishwanathan et al., 2017). From these reconstructions we
found that the VPNI neurons are not a homogeneous class of
neurons. We observed at least three classes of neurons, two
excitatory and one inhibitory, that differed in their morphology,
synaptic distribution and axonal targets. We further observed
that only the excitatory class of neurons were recurrently
connected, which supports the idea of positive feedback as
one of the mechanisms by which persistent activity can be
implemented.

Example 2: In the OB chemically similar odors tend to
activate overlapping sets of olfactory glomeruli. This activity
is decorrelated and normalized, presumably by interactions
between interneurons (INs) and mitral cells (MCs), the major
output neurons of the OB (Friedrich and Laurent, 2001; Yaksi
et al., 2007; Niessing and Friedrich, 2010; Zhu et al., 2013).
However, a mechanistic understanding of these population-level
computations is lacking. By the dense reconstruction of all OB
neurons we found that most MCs are largely uniglomerular
(Wanner et al., 2016b). In contrast, INs tend to innervatemultiple
glomeruli and the glomerular IN innervation is governed by
glomerular identity. Moreover, the examined INs did not have
specific input or output glomeruli, implying that interglomerular
interactions have a strong non-directional component. As
a consequence, selective interglomerular connectivity may
support differential preprocessing of odor information that
is routed to specific target regions and that is relevant for
different behaviors. Moreover, the specific projections between
glomeruli may favor inhibitory interactions between processing
channels with specific tuning properties which in turn could
be an efficient solution for decorrelating activity patterns
between small groups of neurons. This kind of questions can
only be tested with experiments in which both, connectivity
and activity, are measured exhaustively with single neuron
resolution.

6. CONCLUSIONS

Detailed anatomical maps and wiring diagrams can be a very
powerful tool not only for gaining a mechanistic understanding
of brain function, but perhaps even more importantly as a
source of inspiration for new models and hypotheses for circuit
functions. Here, we presented some of the tools, methods and
examples that are required for large scale circuit reconstruction,

based on our work in the larval zebrafish. We hope that this
article helps lowering the threshold for combining synaptic
resolution circuit reconstruction and functional imaging. We
highlighted two different sets of methods that were used to study
the larval zebrafish. Both highlighted methods have advantages
and disadvantages that the end user should consider before
embarking on similar studies. Other important factors that have
to be considered for large-scale volume EM projects, such as
image acquisition speed, have been extensively discussed in
previous reviews (Briggman and Bock, 2012; Wanner et al.,
2015). Many of the tools that were used in the studies
presented here are available in the form of open sourced
software (Table 1) with more tools becoming available every
day, ultimately making it possible to routinely analyze wiring
diagrams.
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Fully-Automatic Synapse Prediction
and Validation on a Large Data Set
Gary B. Huang*, Louis K. Scheffer and Stephen M. Plaza

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States

Extracting a connectome from an electron microscopy (EM) data set requires

identification of neurons and determination of connections (synapses) between neurons.

Asmanual extraction of this information is very time-consuming, there has been extensive

research efforts to automatically segment the neurons to help guide and eventually

replace manual tracing. Until recently, there has been comparatively little research on

automatic detection of the actual synapses between neurons. This discrepancy can, in

part, be attributed to several factors: obtaining neuronal shapes is a prerequisite for the

first step in extracting a connectome, manual tracing is much more time-consuming than

annotating synapses, and neuronal contact area can be used as a proxy for synapses in

determining connections. However, recent research has demonstrated that contact area

alone is not a sufficient predictor of a synaptic connection. Moreover, as segmentation

improved, we observed that synapse annotation consumes a more significant fraction of

overall reconstruction time (upwards of 50% of total effort). This ratio will only get worse

as segmentation improves, gating the overall possible speed-up. Therefore, we address

this problem by developing algorithms that automatically detect presynaptic neurons

and their postsynaptic partners. In particular, presynaptic structures are detected using

a U-Net convolutional neural network (CNN), and postsynaptic partners are detected

using a multilayer perceptron (MLP) with features conditioned on the local segmentation.

This work is novel because it requires minimal amount of training, leverages advances

in image segmentation directly, and provides a complete solution for polyadic synapse

detection. We further introduce novel metrics to evaluate our algorithm on connectomes

of meaningful size. When applied to the output of our method on EM data from Drosphila,

these metrics demonstrate that a completely automatic prediction can be used to

effectively characterize most of the connectivity correctly.

Keywords: connectomics, synapse prediction, deep learning, quantitative evaluation, Drosophila

1. INTRODUCTION

High-resolution EM imaging allows one to identify synapses, such as those shown in Figure 1

below. In these examples, there is an electron dense region corresponding to the synapse at the
pre-synaptic body. This consists of different transport apparatuses, such as vesicles, that abut the
neuronal membrane. In a data set that contains numerous organelles of varying electron densities
(i.e., imaging intensity) and neuronal membrane that intricately weaves throughout, identifying
synapses can be challenging. When creating a connectome, an annotator will typically scan the
data set or a traced neuron and manually identify and mark these sites. Even for organisms as small
as a fruit fly, there are up to 100 million connections, making the process of manual annotation
intractable.
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Consequently, there have been recent research efforts
to automate synapse detection using machine learning,
which we discuss below in section 2. However, existing
techniques for automated synapse detection have primarily
been applied to detection in mammalian tissues. It is unclear,
then, how well such approaches would translate when they
are applied to synapse detection in Drosophila tissues. In
contrast to synapses in the mammalian brain, which are
predominantly monadic, involving a single presynaptic site
and postsynaptic site, synapses in Drosophila are mostly
polyadic, involving multiple postsynaptic partners for a given
presynaptic site (Cardona et al., 2010), as can be seen in the
examples shown in Figure 2. Even when the pre-synaptic
site is given, these neuronal processes are often difficult to
segment, which makes identifying the post-synaptic partners
nontrivial.

With the exception of Staffler et al. (2017), prior work on
automated synapse identification, as discussed below in section 2,
has also focused only on the detection problem in isolation, with
performance evaluated at the individual synapse level. However,
synapse detection is one step in a larger pipeline, whose final goal
is the extraction of a connectome from the electron microscopy
(EM) data. Therefore, we are interested not only in individual
synapse detection accuracy but also in how synapse detection
integrates into this larger system and how errors in individual
steps in this system combine when evaluating the final produced
connectome.

For instance, one straightforward method for reliably using
automated synapse detections in an EM pipeline is as hints
for manual annotation, as done by Plaza et al. (2014). By
manually verifying detections, errors in the final connectome
are minimized but at the expense of human effort and time.
An alternative would be to simply accept all detected synapses
above a certain confidence threshold, but there has been limited
prior work on whether such a prediction would result in a
meaningful connectome (Dorkenwald et al., 2017). In particular,
many connections between neurons are formed from a large
number of synaptic contacts, and, therefore, one might hope that
automated algorithms are capable of faithfully reconstructing
such high strength connections, but there has been limited
experimental testing in this direction.

Moreover, extracting a connectome is also dependent upon
automatic neuron segmentation. In addition to possibly being
outright incorrect, a segmentation may also be noisy along
a border. Both cases may potentially cause errors in the
connectivity graph when combined with the automated synapse
identification output.

To our knowledge, these questions of evaluating synapse
detection in a larger context have only been investigated in the
recent work by Staffler et al. (2017). They find that many synapse
detection errors occur near errors in automated segmentation
and that manually fixing these segmentation errors is sufficient
to correct nearly half of the synapse detections. They also give
a theoretical analysis of individual synapse accuracy vs. binary
neuron-to-neuron connection accuracy, assuming a distribution
of synapses per neuron pair estimated from paired recordings
in rodent cerebral cortex; additionally, they compute synapse

accuracy and neuron-to-neuron level accuracy on a sparse local
cortical connectome.

Therefore, in this paper, we introduce algorithms that enable
fully automatic synapse prediction and evaluate the results of the
end to end process from the standpoint of the final produced
connectome. Specifically, key contributions and results of our
approach include the following:

1. an algorithm that generalizes well over a large data set of
Drosophila tissue with minimal supervision required,

2. new metrics to better evaluate synapse prediction in realistic
settings, and

3. empirical results analyzing the end to end accuracy of the
proposed approach on a publicly available connectome data
set (Takemura et al., 2015), demonstrating high performance
and preservation of biological pathways, in particular, relative
to a baseline using body-proximity as a proxy for synaptic
contact.

2. BACKGROUND

An automated approach for synapse identification in EM images
using machine learning was first proposed by Kreshuk et al.
(2011), who used a random forest (RF) classifier on hand-selected
image features to detect synapses. In a subsequent study, Kreshuk
et al. (2014) extend this method by applying graph cut on the
synapse probabilities to obtain a segmentation of each putative
synapse, extracting object-level features when the segmentation
is given, and then applying a RF classifier to determine whether
each segmented region is a synapse or not.

Becker et al. (2013) attempt to generate more informative
features, by conditioning on the synaptic cleft, thereby, allowing
features to be extracted from consistent spatial locations relative
to the putative synapse. These features are then used as input
for AdaBoost for synapse detection. Staffler et al. (2017) extend
this by conditioning on presynaptic and postsynaptic regions
separately, and use extracted features from these regions as input
for LogitBoost for synapse detection, yielding improved results.

Jagadeesh et al. (2013) consider the problem of large-scale
synapse detection in a large image volume. They first use a
fast interest point detector based on image-thresholding to
generate proposals for possible synapse locations. They then use
feature descriptors hand-designed to extract information about
relevant biological structures, namely vesicles, clefts, and ribbons.
These features are used as input for a support vector machine
(SVM) or a multiple kernel learner for patch-based synapse
detection.

Biological preparation has also been considered as a means to
aid automated synapse detection. Navlakha et al. (2013) apply a
technique for the selective staining of synapses, leading to more
pronounced opacity at synaptic sites, and leaving non-synaptic
membranes unstained. They propose a high-throughput method
for automated detection by first filtering down to a candidate
set of patches and then applying an SVM to classify each patch
as synapse or non-synapse. While this technique can be used
to compute statistics on synapses such as density, since the
membranes are left unstained, it cannot be used in conjunction
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FIGURE 1 | Five examples of synapses in the Drosophila optic lobe (columns). Rows show three orthogonal views (xy, yz, xz slices) of each synapse. The presynaptic

structure, referred to as a T-bar because of its shape, is centered in each image. Red dots mark segments containing postsynaptic densities (PSDs) that partner with

the T-bar. Each image slice captures 1 µm2 of data.

with segmentation and, therefore, cannot be directly used for
extracting a connectome.

More recently, Roncal et al. (2015) also consider large-
scale synapse detection, presenting two different techniques.
They propose a fast RF classifier using hand-selected features,
including a filter designed for vesicle detection. This RF classifier
yields results that are similar to the results of Becker et al. (2013)
but with approximately half the run-time. They also propose a
deep learning classifier for synapse detection, which yields results
that are superior to the fast RF classifier but is approximately two
orders of magnitude slower. Dorkenwald et al. (2017) also give a
deep learning multiclass CNN for detecting synapses along with
vesicle clouds and mitochondria and report improved results
over Roncal et al. (2015).

The above approaches were evaluated on synapse detection
in mammalian tissues, assuming a single postsynaptic site for
each presynaptic site. Several approaches also make additional
assumptions on the data, such as being able to reliably identify the
synaptic cleft to extract spatially consistent features (Becker et al.,
2013) or having feature descriptors hand-tuned for particular
biological structures (Jagadeesh et al., 2013).

While manual annotation of synapses has been performed
for sparse EM reconstructions (Zheng et al., 2018) and
software tools have been created to facilitate manual synapse
annotation (Boergens et al., 2017), a scalable alternative to

facilitate reconstruction of larger connectomes is to make use
of automated methods within a semi-manual workflow. For
example, the method of Kreshuk et al. (2011) was adapted
for presynaptic site detection by Plaza et al. (2014), where
human proofreaders subsequently verified or rejected each
automated detection, but the labeling of postsynaptic partners
was performedmanually with no automated guidance. Takemura
et al. (2017) also took a similar approach, using the method of
Huang and Plaza (2014) to generate presynaptic site proposals,
with postsynaptic partner identification again being performed
manually.

As mentioned in the introduction, synapse detection in
Drosophila can be more challenging, owing to the polyadic
nature of such synapses, where presynaptic sites have multiple
postsynaptic partners and where postsynaptic processes can often
be small and difficult to segment. To address this difficulty in
Drosophila synapse detection, Kreshuk et al. (2015) specifically
studied the problem of synaptic partner assignment. Conditioned
on ground-truth neuron segmentation and synapse detection,
they formulate a pairwise graphical model wherein nodes of the
model, Pij, represent possible assignments between two neurons
i, j at a putative synapse, for example, neuron i is presynaptic
and neuron j is postsynaptic. Edges in the model, connecting
Pij and Pik, encode biological priors on triplets of neurons i, j, k
at a putative synapse, such as a preference for a one-to-many
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connection pattern over one-to-one. In a recent study, Heinrich
et al. (2018) propose a deep learning CNN model for synaptic
cleft segmentation in Drosophila, achieving state of the art results
(evaluated on the CREMI challenge data set). With its specific
focus on voxel-wise identification of the synaptic cleft, this work
can be distinguished from ours in that we attempt to directly
predict synaptic connectivity, which would require a nontrivial
subsequent step conditioned on the cleft prediction output (for
instance, by applying the method of Kreshuk et al. (2015).

In this study, we propose a complete system for automated
synapse detection, capable of handling polyadic synapses as
found in Drosophila. Our system uses a weakly-supervised deep
learning approach and takes the simple point-wise annotations
of presynaptic and postsynaptic sites as training data and,
therefore, can be applied to new data sets with relatively minimal
supervision. By comparison, existing methods as discussed
above, which require hand-designed features to extract high-level
information such as vesicles and ribbons, may not be appropriate
for new data sets or may require significant manual effort to
tune or redesign the feature descriptors. In contrast to Kreshuk
et al. (2015), we evaluate our system on completely automated,
noisy segmentation. Although our overall system was designed
for synapse detection in Drosophila, in section 6, we discuss how
the elements of our approach could be adapted for other domains
such as mammalian tissue.

3. AUTOMATED SYNAPSE DETECTION

Our system for automated synapse detection proceeds in two
distinct steps. First, independent of any segmentation, we apply a
classifier to automatically identify presynaptic sites inDrosophila,
which are often referred to as T-bars, because of their T-
like shape, formed by a pedestal and platform structure. Next,
conditioned on predicted T-bar locations and a segmentation,
we apply a second classifier to predict partnering postsynaptic
densities (PSDs) for the identified T-bars.

Owing to its distinct structure, we focus on first predicting
T-bars in isolation, independent of both segmentation and PSD
prediction, and delay the problem of determining the potentially
multiple PSD partners until after segmentation, as PSDs are
typically more ambiguous and difficult to identify. We note that
this approach of splitting T-bar and PSD prediction into separate
steps, with PSD prediction aided by segmentation, has also been
employed for manual synapse detection (Plaza et al., 2014).

We describe each step in our pipeline inmore detail in the next
two sections. We have also released source code that implements
the proposed methods1.

3.1. Presynaptic T-bar Identification
Algorithm
The first step in our automated synapse detection pipeline is to
detect the presynaptic T-bar sites. Examples of T-bars can be seen
in Figure 1.

For automated T-bar detection, we follow the approach
described in Huang and Plaza (2014), except that we update

1https://github.com/janelia-flyem/flypylib

FIGURE 2 | T-bar precision/recall. (This figure and subsequent figures are best

viewed in color.) The dashed red curve indicates PR when the only constraint

for a match between a predicted T-bar and a ground-truth T-bar is that the two

locations fall within a specified distance from each other. The dotted blue curve

gives PR when a match is further constrained to enforce that the predicted

T-bar and ground-truth T-bar both fall within the same segment, in the

ground-truth segmentation. Finally, the solid green curve gives PR with the

segmentation constraint, if the predicted T-bar locations are first shifted

slightly, away from potentially ambiguous regions. See the accompanying text

and section 3.1 for more discussion.

the voxel-wise classifier to be a 3D U-Net CNN (Ronneberger
et al., 2015). We give an overview of our approach here; for more
details, see Huang and Plaza’s paper (2014).

Unlike the problem of image segmentation, which is naturally
framed as a voxel-wise prediction problem (at each voxel, predict
whether that voxel belongs to a cell boundary or not), T-bar
detection is an object detection problem, which we formulate
as predicting, for each T-bar, a point annotation, specifying the
spatial coordinates of the center of the T-bar. To generate voxel-
wise training data for the U-Net, we simply consider any voxels
within a certain radius of a T-bar point annotation to be a positive
example and all other voxels to be negative examples. We find
that the U-Net is able to successfully learn from this simple
training data, allowing for less manual supervision effort relative
to methods and tasks that require dense labeling. Our specific U-
Net model consists of layers of convolution with 33 voxel filters
and two downsampling and two upsampling layers, with a total
receptive field size of 193 voxels.

To generate final T-bar point predictions from the voxel-
wise output of the U-Net, we spatially smoothen the voxel-wise
predictions, selecting the voxels with highest confidence, and
apply non-maxima suppression.

We make two notes concerning the evaluation of T-bar
prediction, in the context of a larger connectomics pipeline.
First, it is important to consider the precision/recall (PR) curve
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for the automated predictions. Different applications may have
different misclassification costs, leading to different thresholds
along different points of the PR curve. For instance, if very high
fidelity is required, one may need to select a threshold for high
recall, at the expensive of precision, whereas if the final goal is
to determine strong connections in the connectome with some
tolerance for small errors, the optimal threshold may be to select
for the PR break-even point.

Second, T-bar prediction accuracy can be computed by
necessitating for instance, that predicted T-bars be within a
specified distance of a ground-truth T-bar to be counted as a
correct match, as described by Huang and Plaza (2014). However,
ultimately, the exact location of a T-bar annotation will be
abstracted as one end point of an edge in a connectomic graph,
indicating the presynaptic body. Therefore, the primary concern
is that annotation be placed in the correct neuron. Thus, when
a segmentation is available, T-bar prediction accuracy should be
computed by further necessitating that the predicted T-bar falls
within the same segment as the ground-truth T-bar.

Owing to this interaction with the segmentation when
evaluating T-bar performance accuracy, it may be beneficial to
post-process the T-bar predictions. For instance, we find that
our T-bar detection often places the annotation in the distinctive
dark T-like structure itself, which, owing to its dark intensity,
can cause problems for automated segmentation. We, therefore,
find a benefit in slightly shifting T-bar predictions within a small
radius to the brightest intensity voxel, helping the annotation to
be placed in a nonambiguous region relative to the segmentation.

3.2. Segmentation-Aware Postsynaptic
Partner Identification
Once we automate T-bar predictions and a (possibly automated)
segmentation, we condition on this information in order to
predict the PSDs that partner with each T-bar. For a given T-
bar, we can consider all nearby segments as potentially possessing
a partner PSD. More precisely, we use the set of segments that
have a non-empty intersection with a sphere of a given radius,
centered at a given T-bar, as the candidate set of bodies that
may be postsynaptic to the T-bar. We exclude the segment
containing the T-bar itself and, therefore, make no attempt at
predicting autapses. Additionally, we do not attempt to identify
cases where a single T-bar makes multiple connections to the
same postsynaptic body, and, thus, any such biological multiple-
connections will at most be predicted as a single synapse.

With this setup, we have a binary classification problem, where
for each T-bar and each candidate segment, we wish to determine
if the candidate segment contains an actual PSD and, thus, forms
a synapse with the T-bar. For classification, we use a multi-layer
perceptron (MLP) with a single hidden layer consisting of 50
hidden units, trained using cross-entropy loss. To generate the
feature representation, we estimate the interface of the synapse
between the T-bar segment and candidate segment, by dilating
both segments by varying amounts and letting the estimated
interface to be the intersection. We then pool a set of simple
image features over the interface, computing statistics such as
size of the interface and image intensity within the interface

(such as number of voxels with intensity lower than some given
threshold), giving a total input feature dimensionality of 135.

One important consideration is that PSD prediction
performance will depend on both the accuracy of the PSD
predictor itself as well as the performance of the algorithm used
to generate the segmentation. Therefore, it may be necessary
to tune the PSD predictor with an awareness of the behavior of
the segmentation algorithm. For instance, we found that dark
intensity values such as those found at a boundary, as well as
at T-bars, would often present difficulties for the segmentation
algorithm. This ambiguity could lead to, for instance, small parts
of the T-bar being incorrectly assigned to a neighboring segment.
Although such localized errors would not have a large effect
on the topology of the segmentation (in terms of Rand error,
for example), they could have a large effect on the proposed
feature representation and, hence, the PSD classifier. Therefore,
we attempt to make the classifier more robust to such errors by
ignoring the segmentation at voxels with such dark intensity
values.

4. METRICS FOR EVALUATION

As discussed above, to properly evaluate automated synapse
detection performance in the context of a larger pipeline, it
is important to consider the full performance curve as the
threshold of classifier confidence is varied. This allows for
synapse prediction to be evaluated at the appropriate threshold
for varying misclassification costs, which will depend on the
final application that is being considered. One straightforward
metric for evaluating detection at the individual synapse level
is to produce a (PR) curve. Under the view of the connectome
as a graph, with directed edges between nodes (representing
neurons) defined by synapses, we can consider two variations for
computing PR. First, we can view the connectome as a weighted
graph and compute PR by considering each individual synapse
as a ground-truth label that is to be predicted. Second, we can
consider the connectome as an unweighted graph and compute
PR by considering each edge (formed by any number of synapses
between a pair of neurons) as a ground-truth label that is to be
predicted.

The above methods for computing PR are two ways of
dealing with the finding from connectomic studies that many
connections between neurons consist of multiple synapses
(Takemura et al., 2013, 2015). This multiplicity may be a weight
on the synapse strength ormay be amechanism for robustness. In
either case, a general assumption in many connectomic efforts is
that important biological connections will have somemultiplicity
greater than one. Therefore, we would like to consider a range of
metrics that will better reflect whether a set of automated synapse
predictions is actually good enough for use in connectomic
studies.

Computing PR with a weighted graph requires that the
automated predictions match the ground-truth precisely in terms
of strength, without any regard to topology. For example,
predicting an edge of strength 7 for a ground-truth edge of
strength 9 is equivalent to missing an edge of strength 2 (in terms
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of impact on total recall value), which may be inappropriate if
we fail to care about precisely determining the multiplicity of
strong connections. Computing PR with an unweighted graph,
on the other hand, evaluates the automated predictions solely in
terms of unweighted topology. Therefore, no penalty is incurred
for not correctly determining multiplicity, but missing an edge of
multiplicity 1 is equivalent to missing an edge of multiplicity 7.

One simple modification that can be made to the unweighted
graph computation is to consider the unweighted graph
produced by thresholding the edge weights by some value t (in
both the predicted and ground-truth connectomes). For t = 1,
we have the original unweighted PR; for t > 1, we focus only on
stronger predicted and ground-truth edges, with multiplicity of
at least t. We can also examine performance of a given classifier
over different sets of curves as we vary this threshold t.

4.1. Asymmetric PR, Connections
Added/Missed
By thresholding the edge weights at some t > 1 and computing
unweighted PR, we focus on the strong edge connections and
ignore potentially noisy weak connections. However, there is still
a strong boundary effect, where, for instance, a predicted edge of
strength t − 1 for a corresponding ground-truth edge of strength
t is counted as a false negative, the same as if the predicted edge
strength had been simply zero. This harsh decision boundarymay
also be problematic from the standpoint of potential small errors
in the manually annotated ground-truth. We would like a metric
that focuses on identifying clear error cases in the automated
predictions.

We, therefore, introduce an asymmetric variant of the above
thresholded PR curve. Let the asymmetric t1, t2 thresholded
PR curve (with t1 > t2) be defined as follows: consider the
(weighted) ground-truth connectome graph g and the predicted
graph p produced by applying some classifier threshold, and let
g(e) be the weight of a given edge e in g and similarly for p(e).
Recall is then computed as

∑
e[p(e) ≥ t2 ∧ g(e) ≥ t1]

∑
e[g(e) ≥ t1]

,

where the square Iverson brackets equate to 1 if the condition
inside is true and 0 otherwise. In other words, the total set of
positive ground-truth instances consists of all edges with ground-
truth weight greater than t1, but the subset of true positives
allows for edges with predicted weight greater than the smaller
t2. Conversely, precision is computed as

∑
e[p(e) ≥ t1 ∧ g(e) ≥ t2]

∑
e[p(e) ≥ t1]

.

Here, the total set of positive predicted instances consists of all
edges with predicted weight greater than t1, but the subset of true
positives allows for edges with ground-truth weight greater than
the smaller t2.

From the above PR definitions, it can be seen that the
asymmetric t1, t2 thresholded PR upper bounds the original
symmetric thresholded PR at t = t1. This more lenient

performancemeasure focuses on themore clear, egregious errors,
where there is a strong edge in either the ground-truth or
predicted connectome graph but a weak or no edge in the
other graph. We can also report these types of errors directly
as connections falsely added (false positives) and connections
missed (false negatives). Let connections missed be the set of
edges e such that g(e) ≥ t1 ∧ p(e) < t2. The number of
connections missed is an unnormalized version of 1− recall. Let
connections added be the set of edges e such that p(e) ≥ t1 ∧

g(e) < t2. The number of connections added is an unnormalized
version of 1 − precision. When plotting number of connections
added vs. number of connections missed, we normalize these
values by the number of edges in the ground-truth connectome
after thresholding, that is, the number of edges e such that g(e) ≥
t1, to put curves with different values of t1 on the same scale.

By using asymmetric thresholded PR and connections
added/missed, we can focus on strong error cases when
comparing sets of predictions and be robust to small amounts
of labeling noise. These error measures also more clearly indicate
to what extent strong biological connections are being missed or
falsely introduced through prediction.

5. RESULTS

In this section, we present a case study of our proposed synapse
detection system on data from theDrosophila optic lobe. The data
set that we use comprises seven columns of the medulla, acquired
using focused-ion beam milling scanning electron microscopy
(FIB-SEM). The image data has a total volume of 40 × 40 ×

80 µm, with an isotropic resolution of 10 nm per voxel. The
manually annotated subset of the data that we use in this study
consists of 27, 000 cubic microns and contains ∼56,500 T-bars
and ∼336,500 PSDs. Our methods operate on the data at the
original resolution. Additional details of the data can be found
in the papers of Plaza et al. (2014) and Takemura et al. (2015),
and the raw EM image data, FIB-25, is available online2.

We give results of the individual steps of our pipeline, full end
to end results, results using the proposed error metrics focusing
on clear error cases, comparison against a surface area contact
baseline, and results in the context of preserving biological
findings.

5.1. Performance of T-bar, PSD Detectors
We first train a T-bar detector using the system described above
in section 3.1, using the ground-truth annotations contained in
two 5203 voxel subcubes of the total volume, containing a total
of 325 T-bars. Figure 2 gives the precision/recall curve for the
automated predictions over the entire data volume. The plot
highlights two important points that were made in section 3.1:
First, T-bar prediction accuracy should ideally be assessed
within the context of segmentation and the final produced
connectome graph, rather than only considering the distance
between predicted and ground-truth T-bar locations. A predicted
T-bar that is very close to a ground-truth T-bar, but placed
in the wrong ground-truth segment, will lead to errors in the

2https://www.janelia.org/project-team/flyem/data-and-software-release
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connectome graph. This is highlighted in the difference between
the dashed red curve and the dotted blue curve. Consequently,
second, the T-bar detector may need to be aware of the behavior
of the corresponding segmentation algorithm. In our case, we
found that simply shifting the predicted T-bar locations slightly,
toward brighter image voxels, would move the predictions away
from dark image regions that are more difficult or ambiguous for
the segmentation algorithm and, therefore, improve performance
when applying the segmentation constraint.

Next, we evaluate the performance of the PSD predictor.
We consider performance both under the scenario in which
we have access to the ground-truth segmentation and in
which we only have access to a predicted, fully-automated
segmentation. We first make a note about the “ground-truth
segmentation.” This segmentation was produced by starting from
an automated segmentation (separate and distinct from the fully-
automated segmentation we use for synapse prediction) and
manually proofreading the segmentation by applying merge and
split operations as necessary. This ground-truth segmentation,
therefore, aims to get the correct general topology, but it is
not refined to the point of necessarily assigning a correct
label at the voxel level, and additionally this segmentation
may have orphan fragments that were not merged into larger
bodies. One important consequence is that, when we compute
performance using this ground-truth segmentation, we typically
ignore all predictions that fall into such orphan fragments,
defined as segments that contain neither a ground-truth T-
bar nor a ground-truth PSD. In other words, predictions that
fall into such fragments are not counted when computing
precision. Additionally, we shift PSD point annotations using the
same criteria as those used when shifting T-bar annotations as
mentioned above.

We first evaluate PSD prediction assuming that we have
access to ground-truth T-bar locations, in order to evaluate the
performance of the PSD detector on its own. This performance
is given in the left plot of Figure 3. Next, we evaluate PSD
prediction using predicted T-bar locations (using a conservative
threshold on the T-bar confidence scores, aimed at achieving
a high recall of 0.9). We compute precision/recall considering
each PSD separately, corresponding to a weighted view of
the connectome graph. Importantly, we note that although
performance is best when the ground-truth segmentation is
available during PSD prediction, our PSD predictor is still able
to achieve close performance using the automated, predicted
segmentation.

5.2. End to End Synapse Performance and
Comparison
We now move from evaluating each of the detectors in isolation
to giving a full end to end evaluation of our synapse detection
pipeline, with respect to the final generated connectome. As
determining an acceptable prediction accuracy is difficult without
considering the particular connectomics application domain,
we present a range of performance curves using our proposed
error metrics. Additionally, we compare against a baseline using
neuronal-body proximity/contact as a proxy for synaptic contact.
For this baseline, we use the ground-truth segmentation. We
randomly sample points at boundaries between ground-truth

segments and then randomly select the direction of the synapse
(presynaptic and postsynaptic bodies). For this proximity-
based comparison, we also compute precision/recall using an
undirected view of the connectome graphs, thereby, allowing for
matches even if the predicted direction of synapse was incorrect.

The left plot of Figure 4 gives the PR of our proposed system,
using the fully-automated predicted segmentation. We fix a
conservative threshold for T-bars, accepting all T-bars above this
threshold, and vary the threshold for the PSD detector to generate
PR curves, under both a weighted and unweighted view of the
connectome graph edges. The right plot shows a comparison
against the baseline using body-proximity as a proxy for synaptic
contact. Even after using the ground-truth segmentation and
computing the undirected edge PR this baseline performs much
worse.

Next, we evaluate synapse detection performance using our
proposed variants to PR, as shown in Figure 5. We give curves
when thresholding the edges at different values t, that is, a
(unweighted) edge is preserved in the connectome graph if the
original edge weight is greater than t. If t = 1, then the curve
is equivalent to the above unweighted graph PR. We also give
curves using our proposed asymmetric thresholded t1, t2 PR. We
again compare with the baseline of using body-proximity.

We give another view of synapse detection performance,
using our metrics of connections strongly added and missed,
in Figure 6. For the case of thresholding with t1 = 10, t2 =

5, we have a total of about 2000 edges in the ground-truth
connectome with a weight of at least t1 = 10. Using our proposed
system, we can recover more than 99% of these edges (less
than 1% connections missed) while introducing less than 1%
falsely added connections. By comparison, from the right plot
in Figure 6, we can see that by using body-proximity as a proxy
for synaptic connection, when thresholding by t1 = 10, t2 =

5 and considering the directed graph, the normalized number
of connections added and missed is approximately 50/50%.
Therefore, even with this error metric that focuses on clear,
unambiguous errors, this baseline approach is missing half the
ground-truth connections and adding in approximately the same
number of false connections.

Lastly, we present plots comparing automatic vs. manual
synapse counts when restricting edges to a core set of bodies
and connectomes, used in a study by Takemura et al. (2015).
Figure 7 gives scatter plots, where each point gives the automated
and manual synapse count for an edge in the connectome.
As mentioned above in section 3.2, our proposed system has
limitations in that it does not attempt to predict autapses
and predicts at most one connection from a T-bar to a given
postsynaptic body. Therefore, we also give a comparison of
automatic vs. manual counts, shown to the right in Figure 7, after
removing autapses and collapsing multiple connections from a
single T-bar to the same postsynaptic body.

We note that, for strong edges with a synapse count of 30
or above, our automated predictions fall within the indicated
bounds of y = 2x and y =

1
2x. We can also examine edges

in the automated and ground-truth connectome for which the
corresponding connectome has a synapse count of zero. We can,
thus, see that, for all edges with a manual synapse count of at
least four, we are able to recover the edge, in the sense that
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FIGURE 3 | PSD precision/recall, where each PSD is considered separately (weighted view of connectome graph, see section 4). Performance is computed both

when access to the ground-truth segmentation is available during PSD detection (ground-truth/gt segm), and when only the fully-automated, predicted segmentation

is available during PSD detection (predicted/pd segm). (Left) Plot of PSD prediction performance in isolation, using ground-truth T-bar locations. (Right) Plot of

end-to-end performance, using predicted T-bar locations.

FIGURE 4 | Global connectome graph precision/recall. (Left) The top blue curves show PR of the connectome graph, with the dashed curve computing PR using a

weighted view of the graph edges and the solid curve computing PR using a unweighted binary view of the graph edges. These curves are computed using the

filtered set of bodies in the ground-truth segmentation, as described in section 5.1. For reference, the bottom red curves show weighted and unweighted PR if all

bodies (adding in orphan segments) are considered. (Right) Comparison against the baseline of using ground-truth body-proximity as a proxy for synaptic contact. All

curves show unweighted PR on the filtered set of bodies.
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FIGURE 5 | Thresholded global connectome graph precision/recall. (Left) The solid blue curve shows the unweighted PR from the previous figure, which is equivalent

to a threshold of t = 1. The red curves give symmetric thresholded PR at t = 5, 10. The green curves show asymmetric thresholded PR at t1 = 10, t2 = 5, 8. (Right)

Comparison against the baseline using body-proximity. Focusing on strong error cases shows that while the proposed method only makes a few mistakes at

t1 = 10, t2 = 5, the body-proximity baseline still performs comparatively poorly.

FIGURE 6 | Thresholded global connectome graph connections added/missed. (Left) The curves show errors in terms of connections that were added and missed,

using the same thresholds as the PR curves in Figure 5. (Right) Comparison against the baseline using ground-truth body-proximity, both directed and undirected

edges.
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FIGURE 7 | Comparison of manual and automatic synapse counts, where each point indicates the counts for an edge in the connectome. Edge weights of 0 have

been shifted to 0.5 to appear on the log plot. Dashed lines indicate y = 2x and y =
1
2 x. (Left) Comparison with full ground-truth connectome. (Right) Comparison

after removing ground-truth autapses and collapsing multiple connections from one T-bar to the same postsynaptic body.

the automated prediction gives a synapse count of at least one.
Similarly, for all edges with an automated synapse count of at
least five, the edge appears in the ground-truth connectome, as
the manual synapse count is at least one.

6. CONCLUSIONS

In this paper, we have proposed an end to end system for
automatic synapse detection in EM image data, capable of
handling the polyadic synapses found in Drosophila. We have
additionally proposed a set of metrics to better assess the quality
of a set of synapse predictions and whether such predictions
are sufficiently accurate to be of use in connectomic studies.
We evaluate our system on the Drosophila seven column
medulla data set and show that it is capable of reconstructing
high multiplicity synaptic connections, preserving biological
pathways, while only making a small number of clear errors; we
also show that our system greatly outperforms the baseline using
body proximity as a proxy for synaptic connections.

By performing an evaluation on the entire end to end
automatic predictions, we are able to assess both how each
component contributes to the overall performance as well as
how the components interact. For instance, by comparing
performance of PSD prediction using ground-truth T-bars or
ground-truth segmentation, we can estimate the expected gains
from improving T-bar prediction or segmentation. At the same
time, we are able to see that overall performance may be
improved by taking into account noise in a previous component,
such as the need to spatially shift the synapse predictions to be
more robust to noise in the segmentation.

Although our proposed method is designed for synapse
detection in Drosophila, we believe that the success of our
presynaptic T-bar detector suggests that our weakly-supervised
approach may be of value in other domains as well. For
example, in synapse detection in mammalian tissues, rather
than spending manual annotation time to obtain ground-
truth labeling of synapses accurate at a voxel-level, as is
common practice (Roncal et al., 2015), it may instead suffice
to place two landmarks per synapse (to indicate location and
directionality), allowing one to obtain more synapse annotations
in an equal amount of time. Training on a larger, potentially
more diverse set of synapses may lead to better accuracy and
generalization across a large volume. A combination of the two
approaches could also be used, wherein a small number of
synapses is labeled at voxel-wise accuracy and a large number
is labeled with landmarks, thereby, maintaining voxel-level
performance with the added benefit of a larger, more diverse
training set.
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In this article, we describe the method that allows fluorescently tagged structures such
as axons to be targeted for electron microscopy (EM) analysis without the need to
convert their labels into electron dense stains, introduce any fiducial marks, or image
large volumes at high resolution. We optimally preserve and stain the brain tissue for
ultrastructural analysis and use natural landmarks, such as cell bodies and blood vessels,
to locate neurites that had been imaged previously using confocal microscopy. The
method relies on low and high magnification views taken with the light microscope, after
fixation, to capture information of the tissue structure that can later be used to pinpoint
the position of structures of interest in serial EM images. The examples shown here are
td Tomato expressing cortico-thalamic axons in the posteromedial nucleus of the mouse
thalamus, imaged in fixed tissue with confocal microscopy, and subsequently visualized
with serial block-face EM (SBEM) and reconstructed into 3D models for analysis.

Keywords: correlative light and electron microscopy (CLEM), axons, scanning electron microscopy, neuron
ultrastructure, serial block-face electron microscopy (SBEM)

INTRODUCTION

Scanning electron microscopy (SEM) has become the tool of choice for many investigations of
cell and tissue 3D ultrastructure. Serial block-face SEM (SBEM; Denk and Horstmann, 2004),
focused ion beam SEM (FIBSEM, Knott et al., 2008), array tomography (Micheva and Smith,
2007) and automated tape collecting ultramicrotome SEM (ATUM-SEM; Schalek et al., 2012)
provide biologists with the means to image large volumes of biological material with enough
resolution to see all organelles and membranes (reviewed by Briggman and Bock, 2012). The
methods have proved particularly useful in neuroscience as significant portions of neural circuits
can now be visualized and mapped. However, identifying different types of cells, or parts of cells,
with EM is not straightforward. Many different immunocytochemical or tracing approaches can
be combined with EM, but these often require the cellular material to be less stringently fixed
or permeabilized in such a way as to allow marker molecules, such as antibodies, free access, or
quite often both (Knott et al., 2009). This reduces the quality of the ultrastructure and leads to
difficulties in interpreting the images. The vast array of molecular biology manipulations that can
label molecules, cells and tissues with fluorescent markers offers a myriad of possibilities for light
microscopy. Therefore, combining the two by imaging initially with light microscopy, and then
subsequently finding the same structure in the serial EM images offers significant advantages.
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These include the opportunity to combine in vivo imaging data
from the light microscopy (LM), with the ultrastructural analysis
of the same structures that have been optimally preserved. This
correlated approach is used frequently in single-cell experiments
(Murphy et al., 2011), especially cells cultured as a single
monolayer, but in tissue volumes this is more difficult, and
various strategies have been used to locate the fluorescently
labeled structures in the EM image stacks without using
immunocytochemistry. In very small structures, such as the
Drosophila neuromuscular junction, serial sectioning of the
entire muscle is possible and allows single axonal boutons,
previously imaged in vivo, to be found with EM (Zito et al.,
1999). For structures located in much larger pieces of tissue
such as the mouse brain, or retina, the vasculature is used
to identify the region and this is then completely sectioned
and imaged prior to identifying individual neurons of interest
afterward (Bock et al., 2011; Briggman et al., 2011). Targeting
small structures and reducing the volumes that need to be
cut and imaged is possible by laser branding the fixed tissue
to create fiducial marks (Bishop et al., 2011). This is a
proven technique for localizing neurites that had previously
been imaged in vivo (Maco et al., 2014). Small (approximately
10–50 micrometer) squares around the structures of interest
can be seen in the resin embedded tissue, and in the EM
images, giving the opportunity to indicate the position of the
structures of interest. This has been used in a number of
correlative studies with in vivo 2 photon microscopy (Grillo
et al., 2013; Mostany et al., 2013; Cane et al., 2014). However,
while this is an effective approach, a 2-photon laser system
may not always be at hand, particularly when not in vivo
imaging.

For these reasons, we developed a method, using SBEM, that
does not require introducing any fiducial marks, or the need
to section and image massive volumes of tissue to reliably find
axons and dendrites previously imaged with light microscopy.
The approach relies on the natural landmarks, such as blood
vessels and cell bodies. It only requires low-resolution imaging,
of the entire section, using transmitted light, combined with
high-resolution confocal imaging of the structures of interest.
Once the tissue section is heavy-metal stained and resin
embedded, careful block preparation using the blood vessel
pattern and trimmed edges, allows regions of interest to be
accurately positioned ready for EM. SBEM imaging can then
collect both high and low-resolution images that reveal the exact
location of the relevant structures.

The reliability with which SBEM can collect serial images of
structures that were previously imaged with light microscopy
removes the need to convert fluorescent markers to electron
dense stains. This gives opportunities to carry out combined
light and EM analyses using a wide range of different types of
fluorescence imaging. To demonstrate this method, we show
how fluorescent cortico-thalamic axons, and their boutons that
synapse with neurons in the posteriormedial thalamic nucleus,
can be imaged with laser scanning confocal microscopy and
then 3D reconstructed from serial electron micrographs using
SBEM. The structure of axons communicating between the
thalamus and cortex have been the focus of many ultrastructural

studies. These have used a variety of labeling strategies to
locate them including tracers such as lectins (Hoogland et al.,
1991) or biotinylated dextrans (Li et al., 2003), lesions (Mathers,
1972), autoradiography (Ogren and Hendrickson, 1979) and
immunocytochemistry against endogenous markers (Godwin
et al., 1996; Groh et al., 2014) or fluorescent tags expressed in
axons (Hoerder-Suabedissen et al., 2018a).

METHODS

Tissue Preparation
The animal experiments were performed in the animal facilities
of the University of Oxford (UK) under a valid Animals
(Scientific Procedures) Act project license as well as with local
ethical approval by the central Committee on Animal Care and
Ethical Review (ACER) and the Animal Welfare and Ethical
Review Body (AWERB) at the University of Oxford. Adult
mice containing a Cre-recombinase expressing strain (Tg(Rbp4-
cre)KL100Gsat/Mmucd (Rbp4-Cre; Jackson Laboratories)
were crossed with B6;129S6-Gt(ROSA)26Sortm14(CAG-
tdTomato)Hze/J (Ai14) to label cortical layer 5 neurons.
The axons of these Rbp4-Cre;Ai14 mice were visible in the
posterior medial thalamic nucleus (POm; Grant et al., 2016;
Hoerder-Suabedissen et al., 2018b). Mice at P18 were perfused
with a buffered solution of 2.5% glutaraldehyde (Electron
Microscopy Sciences, 16220), and 2% paraformaldehyde
(Electron Microscopy Sciences, 15714) at pH of 7.4. The brain
was then removed and embedded in agarose, and 80-micrometer
thick sections cut with a vibratome in the coronal plane, at the
level of the thalamus. Only sections containing the posterior
medial nucleus were collected.

Collecting of Fluorescence and Light
Microscopy Images
Prior to confocal imaging, the sections were viewed under
a dissecting microscope and using a scalpel the region of
the thalamus was trimmed away from the rest of the brain
(Figure 1A). This created a section of approximately 4 × 4 mm.
These pieces were then imaged with both bright field and
epi-fluorescent illumination to capture the entire section
(Figure 1A) and then at increasingly high magnifications so that
blood vessels could be seen in each image (Figures 1B,C), and
also their proximity to the fluorescent axon terminals of interest
recorded (Figures 1D,E). At this point, confocal microscopy
was used to capture images of the fluorescent axons (LSM710;
Zeiss). Image stacks were collected with 0.5µmdistance between
images at using a×63 objective. These are crucial for locating the
fluorescent axons in the final EM image series. In the example
shown in Figure 1, the blood vessel is seen at a depth of
30 microns (Figure 1D), however, the axonal bouton of interest
lies only 8 micrometers below the surface (Figures 1E,F).

Preparation of Tissue for Electron
Microscopy
The trimmed and imaged sections were then transferred to
cacodylate buffer (0.1 M, pH 7.4), and heavy metal stained

Frontiers in Neuroanatomy | www.frontiersin.org 2 November 2018 | Volume 12 | Article 8887

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Maclachlan et al. Targeting Labeled Axons With SBEM

FIGURE 1 | Locating fluorescent structures in an 80-micrometer thick coronal brain section from a P18 Rbp4-Cre;Ai14 mouse. (A) Low magnification image of the
thalamic region in the vibratome section. The yellow box indicates the region shown in (B). (B,C) Higher magnification views of the region containing the fluorescent
axons of interest showing a prominent blood vessel indicated with a white dotted line. Yellow box in (B) indicates region shown in (C). (D) Confocal image of
corticothalamic axonal boutons in the region indicated in (C). The dark shadow of the same blood vessel is seen at a depth of 30 micrometers. (E) At a shallower
depth of 8 microns (z = −8 µm) a specific bouton is singled out from imaging with electron microscopy (EM). (F) Higher magnification view of the region indicated
with the yellow box in (E). White arrowhead indicates a single bouton that is targeted for ultrastructural analysis. Scale bar in (A) is 1 mm; (B), 200 µm; (C), 50 µm;
(D) 25 µm; (F), 10 µm.

with a protocol largely similar to that described by Hua
et al. (2015). In brief, the sections were postfixed in 1.5%
potassium ferrocyanide (Sigma 14459-95-1) and 2% osmium
tetroxide mixed together (Electron Microscopy Sciences, 19110),
then stained with 1% thiocarbohydrazide (Sigma, 101001342)
followed by 2% osmium tetroxide and then further stained
overnight in 1% uranyl acetate (Electron Microscopy Sciences,
22400). They were then washed in distilled water at 50◦C before
being transferred to a lead aspartate solution at pH 5, at the
same temperature. After 20 min the sections were rewashed
in distilled water at room temperature and then dehydrated
in increasing concentrations of ethanol followed by increasing
amounts of Durcupan resin (Electron Microscopy Sciences
14040 Parts A, B and D replace C with DMP30 from Electron
Microscopy Science 13600) until at 100%. After infiltrating
overnight, the sections were placed between glass microscope
slides coated in a mold separating agent (Glorex Inspirations,
Switzerland; 6 2407 445) and the resin hardened at 65◦C for
24 h.

Preparation of Block Ready for SBEM
Imaging
Once the resin had completely polymerized, the glass slides
were removed, leaving a thin resin lamella containing the
section (Figure 2B). However, at this point, the section is
well impregnated with heavy metals and completely opaque to

transmitted light. It is therefore difficult to see any histological
features other than bright spots of light from the blood vessel
lumens traversing vertically through the section (Figure 2B).
To locate the region of interest, images of the entire section
are overlaid and aligned with the image of the same section
prior to embedding (Figures 2A,B). There is no shrinkage at
this stage as little deformation of the second image (Figure 2B)
is required to align onto the first (Figure 2A). On this first
image of the unstained section, it is possible to pinpoint the
region of interest, from the position of the blood vessel, and
therefore identify the same region in the stained resin embedded
section (highlighted with a yellow box in the Figures 2A,B).
These two overlaid images are then used to indicate from where
excess material can be trimmed. It is important to note that
blood vessels lying horizontally in the section, and visible in
the wet section, may not be visible in the resin embedded
section. Therefore, the accurate alignment of the two images is
important, using the edges, so that the region of interest can
be identified. In this example, a large vessel is being used as
a fiducial mark for the smaller fluorescent structures. Smaller
vessels radiate away from such structures providing a unique
pattern throughout the entire section. This allows any regions
to be found back in the EM as the closeness of blood vessels
means they are never too far from fluorescent structures. An
indication of this is given in the analyses of vasculature in
different regions of rodent brain (Schlageter et al., 1999). In
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FIGURE 2 | The region of interest can be located in the tissue section using blood vessels and the edge of the tissue section as guides. The resin-embedded tissue
is trimmed according to these landmarks. (A) The wet section is imaged with transmitted light to show the position of the blood vessel in relation to the entire
section. The arrowhead indicates the same highlighted blood vessel shown in Figures 1A–D. The white arrowhead in (A–C) indicates the exact same position in the
tissue. (B) After the section has been heavy-metal stained, and resin embedded, the same region can be localized by overlaying the image of the wet section (shown
in A) with that of the resin-embedded section, whether or not the blood vessels are still visible. (C) This region is trimmed from the rest of the section by sequentially
removing one side of a square that contains the region of interest. The yellow boxes in the first three trims indicate the final region stuck to the stub. After each trim,
an image is taken and this is overlaid with the previous so that the yellow box can be positioned precisely, indicating the region of interest. The small yellow box
shown in the 4th trim shows the final region that remains after trimming in the ultramicrotome. This region corresponds with the block face shown in Figure 3.
(D) The schematic diagrams show the initial and final trimming of the block from the side that is mounted on the pin. The block is initially trimmed to leave only the
region of interest of approximately 250 × 250 µm. This is then surrounded in the conductive glue again, and this is trimmed away again until some of the resin
remains around the edge to help with conduction. Scale bar in (A,B) is 1 mm.

sections through the cerebral hemispheres the average distances
between microvessels are between 17 and 26 micrometers.
Although the smallest capillaries may not be clearly visible when
focusing through wet, thick sections, in our experience a blood
vessel is always seen within approximately 20 microns of a
structure.

Using a razor blade, parts of the section are removed
(Figure 2C). This is done by first cutting one side, and then
recording an image of the remaining piece. This image is then
overlaid with the previous one, showing exactly how much
material was removed. This process is repeated for the adjacent
side, and again the image overlaid with the previous. Repeating
this for each of the four sides leaves a small block with the region
of interest located in the center (Figure 2C), and importantly, its
location in the original section known. Typically, the remaining
piece of the section is approximately 1 mm × 1 mm. This can
then be glued to the SEM pin (Micro to Nano place, 10-006003-
50) using electrically conductive epoxy resin (Ted Pella Inc.,

Redding, CA, USA 16043), and left to harden completely at 65◦C,
overnight.

When the glue is completely hardened, the pin is mounted
to the arm of an ultramicrotome and with glass knives a block
face of approximately 250 µm× 250 µm trimmed. As before, an
image is taken after each side is cut away and overlaid with the
previous image to indicate the position of the remaining tissue.
This allows the region of interest to be positioned close to the
center of the block (Figure 3A). To avoid any confusion as to the
orientation of the block, a trapezoid shape is cut. It is important
to trim down through the entire thickness of the block, leaving at
least 80-micron proud of the pin.

This block is then again surrounded with electrically
conductive epoxy resin and left to harden at 65◦C overnight.
The reason for this second application of glue is to maximize
the amount of electrical contact between the tissue and the pin.
The second glue layer is trimmed away, using a glass knife in the
ultramicrotome, being careful not to remove more resin from the
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block, and not too deep as was previously trimmed (see schematic
diagram in Figure 2D). This means that the resin embedded
tissue is now surrounded by the conductive resin, which will
help to disperse the charge when the sample is imaged. Any
excess resin is then removed from the surface of the block until
the surface of the tissue is exposed. At this point, the block is
ready and is gold sputter coated with a 50 nm layer (Quorum
Technologies; Q300T).

SBEM Imaging
The sample is loaded into the SEM microscope (Merlin,
Zeiss NTS) fitted with the 3View cutting system (Gatan, Inc.,
Pleasanton, CA, USA). While the microscope chamber is open,
the initial cutting of the face is performed to ensure that the

FIGURE 3 | The final trimmed block is scanned in the microscope revealing
the position of cell bodies and blood vessels seen with fluorescence
microscopy. (A) The block is carefully trimmed so that the region of interest
lies just within its borders. An image of this final block can be overlaid precisely
with an image of the entire region taken prior to trimming. Then, a box (yellow)
is able to indicate the precise region where images can be taken. (B) The
block is then placed in the microscope and once a large part of the face has
been revealed with the diamond knife, an scanning EM (SEM) image is taken.
(C) The region of interest is then confirmed by matching the position of cells
and vessels (arrowheads) with those seen previously in the confocal image
stacks. Their height in the image stacks is also noted. Scale bar in (B) is 50
µm and in (C; right-hand images) is 20 µm.

cutting window is in the correct position, the block is seated
securely, and sections are cleanly removed. The door is closed
and the microscope pumped down to high vacuum ready for
imaging.

The first SEM image is then taken to see the entire block
face. This image can be overlaid with all previous aligned
images taken during the preparation (Figures 3A,B). In this
way, the EM image can be positioned on the LM image of
the section prior to any trimming revealing the location of
the region of interest on the block face. After this alignment,
the imaging window can be positioned on the block face.
However, it is important to now look at the serial confocal
images to understand which features will be visible in the
EM. The most obvious ones are blood vessels and cell bodies
which appear dark in the confocal stack (Figure 3C). Their
depth in the block can also be estimated from this stack.
This Z-depth value is important for indicating when the ROI
will appear in the serial EM images. To reach the correct
position more quickly, thicker sections can be cut (e.g., 200 nm)
while imaging at lower magnification (1K× Magnification,
2 kV, 150 pa and 19 nm resolution) using the backscatter
detector. As this approach is carried out it is important to
compare each low magnification EM image with the different
images in the confocal stack to make sure that the imaging
is proceeding as expected and to better pinpoint where in
the block the ROI will appear. When the block surface is
estimated to be close to the structure of interest (2 µm in
the case shown in Figure 3), the higher resolution images can
be collected. For this the parameters are: 6000 × 6000—pixel
images, 6.5 nm x and y resolution, 2 kV beam tension, 150 pA)
and sectioning thickness of 50 nm. This gives a field of view
of 39 µm (Figure 4B). The imaging then continues until the
entire thickness containing the relevant structures have been
imaged.

Image Processing, Analysis and 3D
Reconstruction
The final image series is aligned using the alignment
functions in the TrakEM2 plugin of FIJI (Cardona et al.,
2012)1. Segmentations are then made on suspected structures
corresponding to those imaged with LM. These first drawings
are done rapidly only to confirm the correct identities by
checking their shape with those of the fluorescent structures
in the confocal stack. As well as these features, blood vessels
and cell bodies are also roughly segmented to orientate the
different features in the two image stacks (Figure 4). When it
is clear that the correct structures have been found, the same
software is used to make the final reconstruction. The models
are then exported in the OBJ file format that can be imported
as meshes into the Blender software2. Within this software,
any parts of the meshes can be manipulated and measured,
using the NeuroMorph tools (Jorstad et al., 2015, 2018). This
includes surface areas, volumes, and distances, as well as
tools to see the original EM images combined with the final

1http://fiji.sc
2www.blender.org
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FIGURE 4 | The matching of structures seen in both fluorescence and EM images allows features of interest to be identified and serially imaged. (A) Fluorescent
image of labeled axons and their boutons (arrowed) shows their location in relation to the shadows of a cell body and blood vessel (labeled). Bouton indicated with a
white arrow is the same bouton from Figure 1. (B) EM micrograph of the same region shown in (A) with the corresponding features labeled. These features are used
to pinpoint the position of the axons and axon terminals (pseudo-colored in purple). (C) Higher magnification view of the highlighted region in (B). (D) The axonal
bouton shown in three images from the series, and from which the reconstruction is made. The depth of each image in the stack is shown at the bottom left of each
image. (E) Reconstruction of the bouton (purple) shown in (D) and the dendrite (yellow) to which it synapses. Lower image, side view shows the position of each of
the images shown in (D). Scale bar in (A,B; left hand image) is 10 µm; in (C) is 2.5 µm; in (D) is 1 µm.

models so that other features can be added, or their identities
checked.

RESULTS AND DISCUSSION

This article demonstrates that fluorescent structures seen with
confocal microscopy can subsequently be imaged with EM
without using any additional specific markers, introducing any
fiducial marks or collecting large EM stacks of entire samples
to locate them. Our approach uses fixatives that ensure optimal
preservation of the ultrastructure, i.e., glutaraldehyde. In the
example shown here, the fixation attenuated the fluorescence
of the tdTomato deeper into the tissue, but we were still able
to collect reasonable images at a depth of 30 µm (Figure 1D).
Imaging beyond 40 µm would have been very limited, but as the
section was 80 µm thick it would have been possible to flip the
section if features of interest were closer to the opposite surface.

We reconstructed axon terminal of layer 5 pyramidal neurons
(Rbp4-Cre; Ai14) in PO in this study. The density of these
axons in this region is reasonably high, but nevertheless,
the shape of individual boutons could be easily distinguished
from one another. The advantage of such a labeling is that
cell body and blood vessels appear as unlabeled holes in the
tissue, and easily seen (Figure 4A). Denser labeling would
leave these structures even more evident but would make it
difficult to isolate the individual axons. Sparser labeling would
limit the ability to see the cell bodies and vessels, but in such

a case a fluorescent stain such as DAPI could be used to
highlight all the cell nuclei. This would not compromise the
quality.

The results show how the imaging capacity of the SBEM
is well suited to this correlative light and EM method. The
ability to rapidly capture an image of the entire block face
that approximately matches the field of view of the LM image
(Figure 3C) makes it easy to correlate the different features
of the tissue. As soon as the same structures, such as cell
bodies, have been identified, the field of view in the SBEM
can be narrowed, and the resolution increased, to the region
with the structures of interest (Figures 4A,B). For this reason,
the method is not as suitable for FIBSEM. Accurately milling
such a large field of view, in just a few minutes, would be
impossible with an ion beam. In addition, with FIBSEM the
region of interest needs to be close (within 20 µm) to the
edge of the milled surface so that milling aberrations, such as
curtaining, do not occur. Therefore, a much smaller block would
need to be prepared with the ultramicrotome, and the risk of
removing important distinguishing features would be high. The
advantages of the FIBSEM imaging are that lower amounts of
heavy metals can be used to stain the tissue to produce images
with high contrast. This means that the laser marks can be seen
with transmitted light microscopy, even after staining and resin
embedding. In the staining protocols that are used for SBEM
imaging, the transmitted light is not able to traverse the section,
so any laser marks are obscured. This means that the laser
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marks cannot be used to accurately guide the block trimming
process.

The SBEM technique is also able to remove far larger volumes
of resin from the block face than the FIB within only a few hours.
This is a clear advantage if the region of interest lies deep inside
the section. Accurately milling a window of the size shown in
Figure 4 would not be possible with FIBSEM.

Therefore, while the resolution of the FIBSEM is superior in
the Z plane, resulting in image stacks with near isotropic voxels,
it is limited in the size of images that are possible in the x and y
plane. This means that collecting images of a similar size to those
of the high-resolution light microscopy is impossible, making
it hard to match the same feature seen in both modalities: LM
and EM.

In summary, for many years neuroscientists have used EM
to analyze the connectivity in the brain. With a range of
labeling approaches, different types of cells and features can
be specifically targeted for ultrastructural analysis. Cell-type
specific Cre-recombinase expression enabled us to monitor
selective populations of neurons using stop-floxed fluorophores.
However, without using any labeling methods that may disrupt
the tissue ultrastructure we instead use a correlative approach

using landmarks within the tissue to locate precise regions in
the EM images and find specific structures seen with light
microscopy. By relying only on the light microscopy to provide
details of the cell identities, rather than specific staining at the
EM level, we show here how the ultrastructure can be maintained
and structures such as axons easily targeted and serially imaged at
the EM level to allow for 3D analysis, revealing uncompromised
details of their morphology, and also that of their synaptic
partners.
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Reconstructing a connectome from an EM dataset often requires a large effort of
proofreading automatically generated segmentations. While many tools exist to enable
tracing or proofreading, recent advances in EM imaging and segmentation quality
suggest new strategies and pose unique challenges for tool design to accelerate
proofreading. Namely, we now have access to very large multi-TB EM datasets
where (1) many segments are largely correct, (2) segments can be very large (several
GigaVoxels), and where (3) several proofreaders and scientists are expected to
collaborate simultaneously. In this paper, we introduce NeuTu as a solution to efficiently
proofread large, high-quality segmentation in a collaborative setting. NeuTu is a client
program of our high-performance, scalable image database called DVID so that it
can easily be scaled up. Besides common features of typical proofreading software,
NeuTu tames unprecedentedly large data with its distinguishing functions, including:
(1) low-latency 3D visualization of large mutable segmentations; (2) interactive splitting
of very large false merges with highly optimized semi-automatic segmentation; (3)
intuitive user operations for investigating or marking interesting points in 3D visualization;
(4) visualizing proofreading history of a segmentation; and (5) real-time collaborative
proofreading with lock-based concurrency control. These unique features have allowed
us to manage the workflow of proofreading a large dataset smoothly without dividing
them into subsets as in other segmentation-based tools. Most importantly, NeuTu
has enabled some of the largest connectome reconstructions as well as interesting
discoveries in the fly brain.

Keywords: NeuTu, connectome, electron microscopy, proofreading, segmentation

INTRODUCTION

Building the structural connectome of a brain is widely considered as an essential step of
understanding the brain (Seung, 2012). Even if it is only a static snapshot of the brain without
functional details, the information obtained from connectomes has been expected to provide
unique and critical biological insights, as demonstrated in practice from the earliest efforts on
Caenorhabditis elegans (White et al., 1986) to recent achievements on larger animals, such as
Drosophila melanogaster (Takemura et al., 2013; Eichler et al., 2017), zebrafish (Wanner et al.,
2016), and mice (Bock et al., 2011; Briggman et al., 2011; Lee et al., 2016; Morgan et al., 2016).
Although the strategy of tracing neuronal skeletons has been widely used (Saalfeld et al., 2009;

Frontiers in Neural Circuits | www.frontiersin.org 1 November 2018 | Volume 12 | Article 10194

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2018.00101
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncir.2018.00101
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2018.00101&domain=pdf&date_stamp=2018-11-13
https://www.frontiersin.org/articles/10.3389/fncir.2018.00101/full
http://loop.frontiersin.org/people/513957/overview
http://loop.frontiersin.org/people/621153/overview
http://loop.frontiersin.org/people/592492/overview
http://loop.frontiersin.org/people/136993/overview
https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-12-00101 November 10, 2018 Time: 13:47 # 2

Zhao et al. NeuTu Software for Connectome Reconstruction

Boergens et al., 2017), segmentation-based reconstruction (Plaza
et al., 2014; Kasthuri et al., 2015), or labeling every voxel
in a volume, has its unique advantages. First, it is the most
reliable way to get the complete reconstruction of a circuit, or
at least it is easier to verify in dense reconstruction if some
inconsistency is caused by reconstruction errors or biological
randomness (Takemura et al., 2015). Second, it can leverage
automated segmentation methods more easily to reduce manual
work than skeleton-based sparse tracing can. Once segmentations
are available, errors can be corrected by making local decisions
without having to trace any long-range path of neuronal
branches. For example, it is common that the border between
two large segments to be merged is only a small fraction of the
segments’ overall surface area. Confirming merges by examining
small contact regions can often produce a high-quality long
segment with much less effort than manual skeleton tracing.
Third, it provides more detailed information about neuronal
morphology, which cannot only facilitate quality control, but
also play an important role in simulation (Hines and Carnevale,
1997).

The workflow of segmentation-based connectome
reconstruction typically involves EM image acquisition,
image pre-processing, automated segmentation, and manual
proofreading. While each of these steps is technically challenging,
the last step, manual proofreading, usually consumes the most
human labor, which can become extremely expensive and
time-consuming as the dataset is scaled up to the whole brain.
Even though there are significant efforts of improving automated
segmentation to reduce the work load of manual proofreading
(Beier et al., 2017; Januszewski et al., 2018), manual proofreading
is still currently the primary bottleneck. Improvement on
manual proofreading is usually generally applicable and expected
to save tremendous resources regardless of what automated
segmentation algorithm is applied in the pipeline.

Due to the necessity of manual proofreading and its
complexity, it is not surprising that various software tools,
including Raveler (Olbris et al., 2018), Knossos1, Dojo/Mojo
(Haehn et al., 2014), Eyewire2 and VAST (Berger et al.,
2018), have been developed almost in parallel for correcting
segmentation for dense or sparse reconstructions. While they
have been successfully applied to produce local connectomes,
recent advances in EM imaging (Briggman and Bock, 2012;
Eberle et al., 2015; Hayworth et al., 2015; Xu et al., 2017)
and segmentation (Beier et al., 2017; Januszewski et al.,
2018) suggest new strategies and pose unique challenges
for tool design to accelerate proofreading. For example, to
the best of our knowledge, there is a lack of tools designed
to operate on large segmented 3D objects freely without
special constraints on the data, such as separating data
into blocks (e.g., Raveler and Eyewire) or fixing errors slice
by slice (e.g., Dojo and Mojo). Modifying, or mutating
segmentation data in three dimensions is critical for
providing a scalable solution for densely proofreading a
large connectome.

1https://knossostool.org
2http://eyewire.org

Therefore, we have developed NeuTu to enable scalable
proofreading on segmented datasets. Like many other
proofreading tools, proofreading in NeuTu consists of a
series of merges or splits. But unlike those tools, NeuTu has
different approaches for scalable 3D object visualization and
splitting, enabling intuitive operations in three dimensions.
NeuTu has been used to both densely and sparsely proofread
multiple regions of the fly brain, including connectomes of seven
columns in medulla (Takemura et al., 2015) and the alpha lobe of
the mushroom body (Takemura et al., 2017a).

MATERIALS AND METHODS

Table 1 provides terminology we used to describe our
proofreading pipeline and software in this paper.

Collaborative Proofreading Workflow
Based on Segmentation
NeuTu has been designed and improved continuously based on
our current workflow of proofreading large-scale segmentation
results. Before developing NeuTu, we used Raveler to proofread
connectomes, such as the single-column medulla reconstruction
(Takemura et al., 2013). Raveler was developed to handle a
block-based workflow, in which the whole data are divided
into disjoint blocks and different proofreaders worked on these
blocks in isolation (Figure 1A). With the rapid increase of
image size and improvement of automatic segmentation, which
benefited from both advances in deep learning and innovative
imaging technologies, however, it is difficult to manage the
block-by-block workflow without a proportional increase of the
overhead cost of dividing and reintegrating the data. One major
difference resulting from these changes is that a segment can
occupy many blocks. Fixing an error in a given block, especially
a false merge error, becomes cumbersome when only a small
portion of the segment is visible in the block. Many errors
need a larger context to identify. Therefore, it is critical to
visualize or manipulate a 3D segment or body with a global
context.

For a segmentation-based workflow, the input is a set of
segments, each composed of a set of voxels, and proofreading
will output a new set of segments by reassigning voxels. Although
this basic assumption remains the same, the major change in
the current work is that the input segments are produced from
3D segmentation directly instead of a two-step process of 2D
segmentation and linking. It implies that the typical way of
fixing errors on individual planes followed by updating linkages
is no longer a suitable option. Since we are also dealing with
isotropic data, such as images acquired from focused ion beam
scanning electron microscopy (Xu et al., 2017), there should
be no predefined principal direction for a 3D segmentation.
The old pipeline relied on 2D segmentation slices with a
preferred planar direction for slicing because anisotropic data
acquired from the widely used transmission electron microscopy
often has the XY resolution one order of magnitude higher
than the Z resolution, naturally leading to data management
that uses the Z-axis as the principle direction to see image
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TABLE 1 | Terminologies used in our proofreading workflow.

Terminology Definition Comment

DVID A distributed, versioned, image-orientated dataservice
developed by the Janelia Fly EM project team.

See https://github.com/janelia-flyem/dvid for more details.

3D image/volume A function defined on a finite 3D grid:
{1,. . .,L}×{1,. . .,M}×{1,. . .,N}→I

I is usually an integer value.

(Image) Block A 3D image, when referred to as a subset of a larger 3D image.

Grayscale image/data The original image used for producing segmentation results. In practice, they are registered and contrast-adjusted images
acquired from electron microscopy.

Segment A region labeled by segmentation to represent the same object,
which is a neuron in our application.

A false merge means that a segment has voxels from different
neurons. A false split means that voxels from multiple segments
belong to the same neuron.

Body A 3D segment.

Sparse volume A volume that has been compressed by ignoring background
voxels.

Multi-scale data Data represented at different scales, in which a higher scale
representation is a downsampled form of a lower scale
representation.

A typical specification of scales is that the (n+1)th scale is
downsampled by 2 from the nth scale.

FIGURE 1 | In our old proofreading workflow (A), we partitioned image data into blocks and assigned the blocks to multiple proofreaders. The proofreading results
from the blocks were then stitched and further proofread by an expert. The new workflow (B) simplifies the procedure by supporting simultaneous proofreading on
the same dataset. Another significant improvement in the new workflow is providing visualizations and interactions in 3D space to help users view 3D segmented
objects more naturally instead of as stacks of 2D slices.

details more conveniently. A better workflow should be free of
this constraint, encouraging human proofreaders to perceive a
segment as a 3D object without worrying about its underlying
representation.

More specifically, proofreading workflows that work
on large datasets with high-quality segmentation requires
the following functions, which NeuTu implements
(Figure 1B):
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(1) Allowing multiple users to proofread the same dataset in
parallel without worrying about generating inconsistency;

(2) Efficient and high-quality 3D visualization of mutable
segments, which are subject to modification at any time;

(3) Intuitive interaction with 3D segments;
(4) Ways of marking proofreading progresses of individual

bodies as well as the overall connectome.

Architecture of NeuTu
Since NeuTu is supposed to be used on multiple computers at
the same time for proofreading a shared dataset, designing it as a
client of a data service is a natural choice. Specifically, we built it
as a client of a distributed, versioned, image-oriented dataservice
(DVID)3, which provides a fast IO access to large-scale 3D image
data. Many functions in NeuTu are tuned to exploit important
features of DVID, such as versioning, and optimized for data
formats that DVID provides. On the other hand, NeuTu is a
GUI application, which allows the user to interact with data as
intuitively as possible. To this end, we provide two visualization
modes in NeuTu. The 2D View provides a slice-based display
of image and annotation data, while the 3D View shows those
data in the 3D space. These two views can control each other
through a direct communication channel to facilitate navigation.
A command issued by the user will be passed from the front-end
view to a lower-level IO directly or through a data processing
engine. Changes in the data will be returned to update the
views accordingly. Information related to the change, such as
which bodies have been modified, may also be sent to the
Computing Service for updating non-critical but useful results
such as skeletons, which are usually expensive to compute.
Although the DVID service can receives inputs from multiple
users, it does not prevent users from interleaving merge or split
results inconsistently. Therefore, we introduced a service called
the Librarian to coordinate the workflow of multiple users. The
Librarian allows a user to lock a body to keep it from being
modified by other users, and unlock it when it is done. This
lock-based coordinating workflow is well-suited for managing
segments because each segment has a unique ID for the Librarian
to track its status. Whenever a user wants to manipulate a body
through NeuTu, the NeuTu client will ask the Librarian to lock
the body first. If the body has already been locked by another
user, the Librarian will return an error message, keeping the client
from modifying the body. The overall architecture is illustrated in
Figure 2.

Feature Highlights
Data Management and Flow via DVID
All major data, including the original EM volume images
(grayscale data) are stored in DVID. In this sense, NeuTu is a
client of the DVID server. Since NeuTu fetches data from DVID
on demand, the difficulty in handling a large connectome on the
client side can be minimized. For example, to merge two bodies,
NeuTu only needs to send DVID a request containing the IDs
of the bodies, without having to deal with actual voxels. Body
size is not a big issue for merging because the computation is

3https://github.com/janelia-flyem/dvid

FIGURE 2 | Architecture of NeuTu as a client of DVID and other remote
services, include the Librarian for coordinating body assignment and the
Computing Service for updating accessory results with data fetched from
DVID.

as trivial as assigning a new ID to all voxels to merge, which is
done by DVID and does not involve any inter-voxel relationship.
In the case of visualizing or splitting a body, where big body
size becomes a challenge for computation, we store the binary
mask of each body separately as a sparse volume (i.e., only
foreground voxels are recorded) in DVID. Each sparse volume
is further compressed with run-length encoding (RLE). When
a user wants to split a body, NeuTu can just download the
binary mask and relevant grayscale data that contains EM signals.
In DVID, images are stored as small fixed-sized blocks, with a
typical size of 32 × 32 × 32 voxels or 64 × 64 × 64 voxels, for
fast indexing. Retrieving a whole DVID block is usually faster
than retrieving the same number of voxels distributed across
multiple blocks. For optimal performance, NeuTu uses the same
kind of block structure to manage grayscale data for a body.
When a block contains voxels both inside and outside of the
body, all the grayscale data in that block will be retrieved and
stored in memory for further usage. Conforming to the block
alignment by using a little more memory space to retrieve and
store block-aligned data can lead to speedups since unnecessary
data slicing is avoided in DVID.

NeuTu takes advantage of the sparse volume representation
provided by DVID to allow manipulation of individual bodies.
For example, when a body is selected, NeuTu downloads the
binary mask of the body with RLE, which is typically much
smaller than a list of individual voxel locations, allowing it to
fit in memory. The downloaded body data can be used in two
ways that are critical for 3D body manipulation. First, surface
points can be extracted from the body data and converted
into a convenient form for 3D visualization. The user can
select any of the surface points in 3D to perform a further
operation such as exploring grayscale data at the corresponding
position or adding a bookmark at the position directly. Second,
the sparse body data can be used as a mask for constraining
the range of watershed-based split computation, thus reducing
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computational time significantly. Although the final watershed
step has to be run over the bounding box around the body
for computational efficiency, some pre- or post-processing steps
such as downsampling or connected component analysis can be
applied to the sparse form directly.

3D Body Representation and Visualization
3D visualization is the most critical component of NeuTu to
achieve the goal of intuitive operation in 3D. Showing a neuron
in 3D allows the user to examine the reconstruction much more
easily than displaying a slice. The user can click a surface point on
the reconstruction and jump to that location in the 2D view. This
is very helpful for examining problematic branches. For example,
in some dataset, a branch terminal without synapses often means
that a part of the branch is missing. The user can easily see the
point and perform more careful examination in the 2D view.

In NeuTu, besides mesh visualization, 3D visualization of a
body is also implemented by rendering 3D surface points of the
body as a set of spheres with independent shading. Compared to
other techniques such as mesh or volume rendering, rendering
surface spheres has advantages in updating speed and intuitive
interaction. Without the need to create faces and compute
normals, surface points can be extracted more quickly than
generating a mesh, so that loading a body into the 3D
visualization engine takes shorter time when pre-computation is
not an option. Overlapping spheres (Figure 3A) actually emulates
surface shading (Figure 3B) naturally, thus saving the time
of computing normals. Furthermore, the sphere representation
provides an easy and intuitive interface for the user to select

FIGURE 3 | NeuTu can render a body with a collection of surface spheres (A),
which has overall shading similar to mesh rendering (B). Any of the spheres
can be selected for further operation such as localization or size adjustment
(C).

a surface point in 3D, which only needs a click on the
corresponding sphere. Once a position is selected, the user
can then quickly navigate to grayscale image nearby or add a
bookmark directly at that position. The user can even select a
collection of spheres and adjust their sizes to highlight some
morphological features in dense arborization (Figure 3C).

Instead of using pre-computed visualization primitives,
NeuTu computes them to ensure consistency between the scene
and its underlying data, which is subject to modification at any
time. This requires fast computation of visualization data to
reduce waiting time. Even though approximating with surface
spheres helps, transferring and parsing data from the server
can still be time-consuming for a large body. Therefore, we
exploit the multi-scale data representation in DVID to allow a
multi-scale updating strategy in NeuTu. When a body is selected
for 3D visualization, its RLE data is fetched first from the lowest
resolution representation, and then to the next higher resolution,
until a certain size threshold is reached. Thanks to flexible version
control in DVID, which allows us to set any checkpoint of
proofreading results and create a new version from it, NeuTu
is able to visualize body differences from different segmentation
versions (Figure 4), which is particularly useful for tracking
proofreading progress and for training.

Fast Interactive Segmentation
NeuTu uses a seeded approach for fixing false merges
interactively. In this approach, the user needs to paint seeds on
regions belonging to different neurons with different colors. The
seeds can be painted in either the 2D view (Figure 5A) or the
3D view (Figure 5B). In the 2D view, a seed can be painted
on any slice, and in the 3D view, a seed can be painted as a
sequence of rays, each going through the target body from the
first surface point to the last surface point it encountered on its
path. The splitting results can be viewed in both views as well
(Figures 5A,C).

To improve the speed of fixing false merges, we designed an
efficient seeded splitting system on the client side. The system

FIGURE 4 | By comparing different versions of a given body stored in DVID,
NeuTu is able to show proofreading history of the body with color coded
parts. The figure shows the difference (C) between the current version (B) of
the neuron and an earlier version (A). Green sections in panel (C) show
additions from the earlier version, red sections show subtractions, and gray
sections are unchanged.
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FIGURE 5 | Splitting in NeuTu is powered by seeded watershed, which takes seeds painted by user in 2D (A) or 3D (B) as input. Note that painting a single point in
the 3D view can generate multiple seed points by ray shooting (B). Seed points outside of the body are ignored by split computing. Splitting results can be
previewed in 3D (C). The user can also paint a bounding box to accelerate computation (A). NeuTu runs connected component analysis to assemble regions
outside of the box and produce the final result (D).

is powered by a highly optimized implementation of the seeded
watershed algorithm. According to our benchmark test, our
seeded watershed implementation is about as twice fast as
that in Insight Segmentation and Registration Toolkit (ITK)4,
a widely used image processing library. Because membrane
voxels are generally darker than cytoplasm voxels, the watershed
computation is applied on grayscale data directly by assuming
that lower intensity has a higher “water level.” Although this may
not be as accurate as using boundary maps or affinity graphs,
especially when there are dark organelles near the boundary,
saving computational overhead of edge enhancement leads to a
good accuracy-speed trade-off in practice.

To further reduce computational time significantly for
splitting a sparse volume, watershed computation is constrained
to the body foreground. However, even excluding background
voxels is often not enough for a quick turn-around. Therefore,
NeuTu provides options of adding further constraints. The user
can quickly check splitting results locally by trigging a local
computation that only covers an area around the seeds. This
provides a fast feedback for the user to adjust seeds accordingly,
making less accurate segmentation more tolerable by making it
easier to correct. Even though correct local splits do not guarantee
correct global splits, it is a reasonable indicator of seed quality.
Alternatively, the user can explicitly define a bounding area for
splitting by painting a rectangle (Figure 5A). NeuTu can produce
correct results if the bounding box contains the whole merging
border, which is often constrained in a region much smaller than
the bounding box of the body. Any piece outside of the local box
will be attached back to the local split regions after connected
component analysis (Figure 5D). Although it is not common,
there may be multiple false merging spots that are far away from
each other. The user can decide to split the segment progressively
in this case.

It is possible that a body can have multiple disconnected
components. Because watershed never crosses from one

4https://itk.org

component to another, splitting such a body is the same as
running watershed on each component independently and
then joining regions that have the same watershed labels. If a
component has no seed point on it, it stays with the origin body.

Synapse Editing
Besides neuron segmentation, synapse identification is also
essential for building a connectome. Each synapse has a
pre-synaptic element and a post-synaptic element to define
a directed connection. In our system, synapses are stored in
DVID as a kind of annotation data that can be queried by their
coordinates. NeuTu reads synapses from DVID and displays
them in both 2D (Figure 6A) and 3D (Figure 6B). The user
can add a synaptic element at any position, connect/disconnect
an element from/to another, or remove/move an element.
Since synapse editing starts from automatic predictions,
NeuTu adds some special visualization hints to the glyph
of a synapse to indicate its confidence level or verification
status.

Data Annotation for Workflow Management
Like any large-scale workflow, the workflow of large-scale
proofreading should be organized to avoid duplicated work or
blind spots. NeuTu provides various data annotation tools for
such a purpose. In NeuTu, the user can annotate a body by
giving it a biologically meaningful name and/or specifying its
status. For example, the user can annotate a body with one of the
seven pre-defined statuses, including “not examined,” “traced,”
“traced in ROI,” “partially traced,” “orphan,” “hard to trace,”
and “finalized.” We can assign bodies to different proofreaders
according to the statuses. For example, if a body is annotated
as “hard to trace,” we can assign it to an expert for further
examination. The assignment is often done as a separate process
outside of NeuTu. To help examine the bodies sequentially or as
a group, NeuTu provides a table widget called the “sequencer” in
which bodies can be filtered by regular expression or sorted by
their properties such as synapse counts.
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FIGURE 6 | Synapses can be edited in either 2D (A) or 3D (B) with the assistance of informative visualization.

Those body-specific annotations do not tell where the
problematic sites are. Therefore, we added another kind of
annotations called bookmarks (Figure 7A). A bookmark is
defined as a 3D point with a type and a comment. For example,
the user can add a bookmark with a type “false merge” to
specify that the corresponding location has a potential false
merge error. A comment can be any text with more detailed
information about the site. While bookmarks are handy for
tagging interesting locations, they are only visible to their owners
and are not necessarily used in proofreading. A special kind of
location-specific annotation called reviewing marks is designed to
show potential spots to proofread. Visible to all the proofreaders,
those annotations have two statuses, to-do or done. To-do can be
further labeled as “to merge” or “to split.” They serve as a check
list in the proofreading workflow. When a user displays a body in
the 3D window, he/she is able to see all the reviewing marks in the
3D visualization (Figure 7B), with different colors to distinguish
to-do or done statuses. The user can add, delete or modify
an annotation in 3D directly. The synchronization between
annotations and body IDs is managed by DVID. Whenever a
body ID is changed by merging or splitting, all annotations

associated with the old ID will be updated automatically to use
the new ID.

Implementation
NeuTu is mainly written in C++, initially built upon the
visualization and interaction engines from neuTube, software
for tracing neurons in light microscope images (Feng et al.,
2015). Important development updates introduced in NeuTu
include replacing Qt4 with Qt5, allowing C++11 syntax to take
advantage of modern C++ features, as well as using Conda
Package Management5 for cross-platform deployment. The code
is publically available on Github6.

RESULTS

Designed to be cross platform, NeuTu has been built and
tested on several modern Linux systems (Fedora 16+, Scientific

5https://conda.io
6https://github.com/janelia-flyem/NeuTu

FIGURE 7 | NeuTu uses point-based markers to facilitate proofreading workflow. For example, bookmarks are point annotations for labeling interesting locations (A),
which can be a place assigned for a double-check. To-dos are body-associated flags for tracking the proofreading status of a body. They can be edited in either 2D
(A) or 3D (B).
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Linux 7) and Mac OS X (10.12.6+). Figure 8 shows a typical GUI
of NeuTu on Mac OS X. The user can interact with 2D and 3D
windows side by side, assisted by glyphs in the 3D view to infer
relative positions of selected bodies and the field of view in 2D.
As shown in Table 2, our focus on scalable segmentation-based
reconstruction and feedback from in-house proofreaders have
led to a combination of unique features in NeuTu compared to
other available proofreading software. More details about NeuTu
functions can be found in our online user manuals, including
a short manual for quick start7 and a long manual for full
details8.

We evaluated how particular designs and strategies in
NeuTu could help improve user experience and proofreading

7https://github.com/janelia-flyem/NeuTu/blob/master/neurolabi/doc/user_manual/
neutu/quick_start.pdf
8https://github.com/janelia-flyem/NeuTu/blob/master/neurolabi/doc/user_manual/
neutu/manual.pdf

efficiency. The testing results obtained from 27 bodies showed
that the multi-scale updating strategy described in Section
“3D Body Representation and Visualization” could greatly
improve response time (Figure 9A), which is measured by
how long it takes to convert a body in DVID into geometric
primitives for 3D rendering. Sampled from our 7-column
medulla dataset (Takemura et al., 2015), the 27 bodies have
59 × 106 voxels on average, with a range from 15 × 106

to 16 × 107 voxels. A typical body among them can be
displayed in real time (∼100 ms latency) at the lowest resolution,
which is good enough to show the overall shape. To test if
3D visualization is important for proofreading, we chose 10
incomplete bodies from a superset of the 7-column medulla
dataset (Shinomiya et al., unpublished) and asked 10 proofreaders
to trace from each body with or without 3D visualization within
2 min. Bodies were assigned randomly to each proofreader
without duplication. The results showed that 3D visualization

FIGURE 8 | Overall GUI of NeuTu on Mac OS X with 2D and 3D windows side by side to enable efficient proofreading by showing global information as well local
details. For more details, please refer to the user manual (see text footnote 8).

TABLE 2 | Feature comparison for segmentation-based proofreading tools shows that NeuTu has a unique combination of features tuned to proofread large-scale dense
connectomes.

Software Data store 3D interaction1 Fixing false
merge

Synapse editing Real time
collaboration

NeuTu Server High 3D seeded splitting Synaptic sites and links X

Raveler Local Low Supervoxel
splitting/3D seeded
splitting (limited2)

Synaptic sites and links N/A

Knossos Server Low N/A N/A N/A

Dojo Server Medium 2D splitting N/A X

Mojo Local Medium 2D splitting N/A N/A

Eyewire Server Medium N/A N/A N/A

VAST Local/Server Medium 2D splitting Synaptic sites N/A

1High: 3D visualization, bookmark, proofread directly in 3D, localization; Medium: 3D visualization, localization; Low: 3D visualization. 2Slow computation, unable to handle
large body.
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could almost double the efficiency of locating false splits
by finding 4.40 ± 1.05 false spits per minute, compared to
2.25 ± 0.80 false splits per minute (p < 0.01) without the
help of 3D visualization (Figure 9B). Note that 2D and 3D
visualizations are more complimentary than exclusive. In some
cases, such as in a severely over-segmented region, examining
the 2D view may lead to more corrections than using 3D
visualization only. 3D visualization becomes more heavily used
when false splits are more sparsely distributed because of
its advantage of showing global morphology. For example,
one important feature to identify a false split is a branch
terminal without synapses, which is difficult to miss in 3D
visualization.

We have applied NeuTu to aid in the reconstruction of
two EM datasets, the 7-column medulla dataset and the MB
dataset, acquired from an optical lobe and a mushroom body
of the fly brain, respectively. Table 3 summarizes the data
and reconstruction results. More details of data acquisition
and processing methods can be found in Takemura et al.
(2015, 2017a). Most of the work for the 7-column medulla
dataset was done in Raveler, while NeuTu was still under
development. The initial connectome was later refined by
sparsely tracing more than one hundred neurons in NeuTu,
which has significantly better 3D visualization for finding
false merges efficiently. The extra tracing made the neurons
become more complete and reliable for biological analysis,
allowing us to add seven new neurons to the NeuroMorpho

database9 along with 525 neurons proofread by Raveler
previously.

For the MB dataset, automatically computed segments and
synapses were initially proofread in Raveler, and then imported
into DVID. A second round of proofreading, which involved
real-time collaborative work of multiple proofreaders, was
performed in NeuTu to create the final connectome. We
used focused proofreading (Plaza, 2016) available in Raveler to
proofread 903,309 potential false splits and then used NeuTu
to trace 24,480 bodies potentially with false splits that were
often trickier to identify automatically than manually. NeuTu
was also used to correct false merges in 9,870 bodies, which
was challenging for Raveler. The scale of either connectome is
significantly larger than the one previously produced by Raveler
alone, which has skeleton length amount to about 105 mm and
8637 synapses (Takemura et al., 2013). The number of synapses
in each connectome is also at least one order of magnitude bigger
than any other connectome that has been published, such as 4,657
synapses in Wanner et al. (2016) and 1,700 synapses in Kasthuri
et al. (2015).

DISCUSSION

We have developed NeuTu for addressing emerging demands for
connectome proofreading, such as managing big data smoothly,

9http://neuromorpho.org

FIGURE 9 | Experimental results showed that particular designs and strategies in NeuTu could help improve user experience and proofreading efficiency: (A) the
waiting time for converting a body in DVID to geometric primitives for 3D rendering decreases exponentially as the downsampling scale increases, leading to
real-time response (109 ± 66 ms) at scale 5 (downsampled by 32 along each dimension); (B) using 3D visualization can accelerate proofreading significantly, such
as doubling the productivity in fixing false splits.

TABLE 3 | Summary of published connectomes proofread by NeuTu.

Region EM Volume
Size (µm3)

Resolution
(nm3)

Size of
segmented

region (µm3)

Skeleton
length (mm)

#Neurons #Synapses

Medulla 40 × 40 × 80 10 × 10 × 10 ∼30 × 103
∼278 11491

∼53,500 presynaptic;
∼315500 postsynaptic

Mushroom body 180× 180× 480 8 × 8 × 8 ∼176 × 103
∼256 983 89,406 presynaptic; 224,697

postsynaptic

1The number of neurons for the 7-column dataset is more than we reported in Takemura et al. (2015) because unidentified neuronal segments are also included here.
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leveraging high-quality segmentations, and simultaneous
collaborative proofreading. Our software has specific functions
tailored to these needs. For example, the highly interactive 3D
visualization provided by NeuTu allows the user to trace a
neuron quickly with terminal examination. NeuTu has helped
two large connectome reconstructions for deciphering vision
and memory, respectively, in the fly brain. Both of them are one
order of magnitude more complex than any other connectome
in the literature in terms of the number of connections. In the
connectome involved in visual processing (Takemura et al.,
2015), accurate neuronal morphologies of the T4 neurons traced
in NeuTu has revealed more details of the motion-detection
circuit (Takemura et al., 2017b) and led to accurate prediction
of motion-detection cells in in silico simulation (Gruntman et al.,
2018). The other circuit, which is located in the memory center of
the fly brain, is the most detailed connectome related to memory
and learning to date. From that highly detailed connectome, we
have not only confirmed the surprisingly random connections
in sense information encoding, but also found some new
connections that had never been observed before (Takemura
et al., 2017a).

NeuTu is mature enough to be employed as a research
proofreading tool without any further development, assuming
automatic segmentation is available along with its registered
EM data. However, some improvements may provide better
user-friendliness and efficiency. One major limitation of NeuTu
is that it is bound to DVID. This means that relevant data need
to be imported into DVID first for NeuTu to work. Currently
there is no easy plug-and-play interface for a user to proofread
their data that are commonly stored as image files or in their own
database format. This problem can be alleviated by providing a
single script for converting common data formats into a DVID
repository. Likewise, exporting proofreading data from DVID
back to the format preferred by the user will also be useful.
A more fundamental solution regarding this issue is to add an
abstract layer to separate NeuTu from the actual APIs of a specific
database. With such a layer, adding support of a new database to
NeuTu would not require changing NeuTu itself. Such flexibility
would help NeuTu scale too. For example, the number of users
working on the same dataset is limited by the capability of DVID
in our practice. Choosing more performance backends would be
a reasonable option to match specific application goals that need
to go beyond these limits.

Regarding performance on the client side, one challenge for
NeuTu, or any other similar proofreading software, is efficient
processing of big bodies (>100 M voxels). Even though we
have employed strategies such as sparse volume representation,
bounded splitting, and multi-scale updating to enable NeuTu
to manipulate big bodies smoothly in most cases, there are
some bottlenecks like data fetching and flood filling that are
proportional to the body size. In practice, we used downsampling
to limit the bounding box of a body to 1G voxels for responsive
visualization and splitting. The major side effect of downsampling
is the loss of morphological details, which can be addressed
by using hybrid resolution scales for the same body. While we
have not encountered any memory issue for common operations
such as splitting or merging, which usually involves only a small

number of big bodies, some unusual operations such as loading
many big bodies (say, hundreds) into 3D visualization can indeed
cause the machine to run out of memory. Potential solutions to
this problem include optimizing related data structures, limiting
memory usage, and automatically suggesting the user to visualize
skeletons instead.

Future work could involve adding more functions for
biological analysis, such as querying neurons and local circuits
freely and allowing the annotation of more biological details (e.g.,
synapse sizes and subcellular structures). These features would
be particularly useful at the late stage of proofreading, when
the focus is shifting from an image-guided process to extracting
biologically relevant circuits.

Being more intelligent is another important direction of
NeuTu development. This will involve significant research work,
like making suggestions based on global shape priors, as well as
some simpler tricks, such as presenting nearby orphans segments
automatically. But for most of those intelligent strategies, one
common challenge will be harnessing fast computation to create
a pleasant user experience. Tackling the challenge by optimizing
code or algorithms for real-time computation is not generally
practical because data involved are usually big. Extensive pre-
computation will be necessary. Pre-computed results should be
relatively light so that they can be uploaded into the database
quickly without taking too much bandwidth and space. The
results can be organized at different levels, such as skeletons at a
lower level and skeleton similarity at a higher level, and do not
need to be up to date. The NeuTu client should leverage such
information, which can be noisy but has meaningful statistical
patterns, to generate useful hints for the user.

Developing a proofreading tool does not only involve software
development, it is also about designing proofreading strategies
and workflows. Interestingly, this synergy between software
design and reconstruction goals resulted in NeuTu software that
can be used beyond the initial target application. For example,
the flexible annotation system in NeuTu is directly shaped by the
need of organizing collaborative proofreading, even though our
main goal is to correct segmentation errors.
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Automatic image segmentation is critical to scale up electron microscope (EM)

connectome reconstruction. To this end, segmentation competitions, such as CREMI

and SNEMI, exist to help researchers evaluate segmentation algorithms with the

goal of improving them. Because generating ground truth is time-consuming, these

competitions often fail to capture the challenges in segmenting larger datasets required in

connectomics. More generally, the common metrics for EM image segmentation do not

emphasize impact on downstream analysis and are often not very useful for isolating

problem areas in the segmentation. For example, they do not capture connectivity

information and often over-rate the quality of a segmentation as we demonstrate later. To

address these issues, we introduce a novel strategy to enable evaluation of segmentation

at large scales both in a supervised setting, where ground truth is available, or an

unsupervised setting. To achieve this, we first introduce new metrics more closely

aligned with the use of segmentation in downstream analysis and reconstruction. In

particular, these include synapse connectivity and completeness metrics that provide

both meaningful and intuitive interpretations of segmentation quality as it relates to

the preservation of neuron connectivity. Also, we propose measures of segmentation

correctness and completeness with respect to the percentage of “orphan” fragments

and the concentrations of self-loops formed by segmentation failures, which are helpful

in analysis and can be computed without ground truth. The introduction of new metrics

intended to be used for practical applications involving large datasets necessitates a

scalable software ecosystem, which is a critical contribution of this paper. To this end,

we introduce a scalable, flexible software framework that enables integration of several

different metrics and provides mechanisms to evaluate and debug differences between

segmentations. We also introduce visualization software to help users to consume the

various metrics collected. We evaluate our framework on two relatively large public

groundtruth datasets providing novel insights on example segmentations.

Keywords: image segmentation, evaluation, metrics, connectomics, electron microscopy

1. INTRODUCTION

The emerging field of EM-level connectomics requires very large 3D datasets to even extract the
smallest circuits in animal brains due to the high resolution required to resolve individual synapses.
Consequently, at typical nanometer-level resolution single neurons in even a fruit-fly brain typically
span over 10,000 voxels in a given orientation. An entire fly dataset which is less than 1mm3 requires
over 100TB of image data (Zheng et al., 2017).
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FIGURE 1 | Small segmentation errors locally can lead to large topological errors. The field-of-view for modern convolutional neuronal networks is a small fraction of

the size of the neuron leading to potentially bad global mistakes. Segmentation evaluation is typically done on datasets only a few times bigger (in one dimension) than

this field of view.

FIGURE 2 | Synapses are often located on thin neurites. The above shows a T5 neuron where many synapses are on the neuron tips. Each sphere represents a

different synapse site.

These dataset sizes pose several challenges for automatic
image segmentation, which aims to automatically extract
the neurons based on electron-dense neuron membranes.
First, image segmentation algorithms struggle with classifier
generalizability. For a large dataset, there are greater
opportunities for anomalies that are significantly outside of
the manifold of training samples examined. Even with advances
in deep learning (Funke et al., 2018; Januszewski et al., 2018),
the size and high-dimensional complexity of neuron shapes
allow even small segmentation errors to result in catastrophically
bad results as shown in Figure 1. Independent of dataset
size, image segmentation struggles in regions with image
contrast ambiguity, inadequate image resolution, or other image
artifacts. This is particularly prominent for small neurites where
synapses often reside (Schneider-Mizell et al., 2016). In Figure 2,

the synapses for the neuron reside on the small tips of the
neurons.

It should follow that image segmentation should be
evaluated on large datasets with additional consideration
for the correctness of small neurites critical for connectivity.
Unfortunately, this is not the case. The authors are aware of no
publications for new segmentation algorithms that emphasize
this. Recent work (Maitin-Shepard et al., 2016; Januszewski
et al., 2018) have evaluated segmentation on large datasets, such
as Takemura et al. (2015). But these works do not consider
synaptic connectivity explicitly, which is the ultimate application
of the image segmentation. Neither SNEMI (Arganda-Carreras
et al., 2015) nor (CREMI, 2016) segmentation challenges use
datasets that span large sections of neurons. While they have
been instrumental to meaningful advances to the field, they are
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ultimately limited by their small size and can under-represent
problems as shown in Figure 1. This occurs because the actual
cause of the error is in only one small region, but the impact is
observed in many more regions.

There are reasons large-scale, connectivity-based evaluations
are uncommon. Importantly, evaluating large datasets requires
considerable ground truth that is time-consuming to produce.
The groundtruth dataset in Takemura et al. (2015) is an
order-of-magnitude bigger than the other public challenges
but took 5 years of human proofreading and is still over
three orders of magnitude smaller than the whole fly brain.
We believe connectivity-based metrics have not been readily
adopted because (1) it requires the annotation of synapse
objects which is an independent step of the typical segmentation
workflows, (2) the segmentation optimization objectives used
in classifier training focus on lower-level, local topology (Rand,
1971; Meilă, 2003), whereas connectivity is more global, (3)
there are no proposed connectivity metrics that are widely
adopted, and (4) there are no sufficiently large challenge
datasets to meaningfully capture neuron connectivity. For
algorithm designers, it is probably disconcerting to achieve poor
evaluation scores based on connectivity that cannot be directly
optimized in segmentation objectives without clever engineering
and heuristics. While the training and local validation of
segmentation is both practical and leading to significant
improvements to the field, ignoring the higher-level objectives
could lead to an over-estimation of segmentation quality and
missed opportunities for more direct improvements for the target
applications. We will show later that evaluating segmentation
around synapses more directly results in less optimistic scoring
compared to traditional metrics like (Meilă, 2003). Recent work
in Reilly et al. (2017) also introduced a metric that more
appropriately weighs the impact of synapses on segmentation,
though it does not explicitly consider connectivity correctness
between neurons.

To address these issues, we propose a segmentation evaluation
framework, which allows one to examine arbitrarily large
datasets using both traditional and newly devised application-
relevant metrics. Our contributions consist of (1) new evaluation
metrics, (2) novel mechanisms of using metrics to debug and
a localize errors, (3) software to realize these evaluations at
scale, and (4) visualization to explore these metrics and compare
segmentations.

We advocate an “all-of-the-above” philosophy where multiple
metrics are deployed. In addition, we provide an approach to
decompose some of these metrics spatially and per neuron to
provide insights for isolating errors. This overcomes a limitation
in previous challenge datasets that mainly produce summary
metrics over the entire dataset, which provides no insight
to where the errors occur. By decomposing the results, our
framework is useful as a debugging tool where differences
between segmentations are highlighted. While ground truth is
ideal for evaluating different segmentations to know which one
is better in an absolute sense, these debugging features highlight
differences even if directly comparing two test segmentations
without ground truth. This is critical for practically deploying
segmentation on large datasets. The best segmentation can

often be discerned by quickly examining the areas of greatest
difference. While this provides only a qualitative assessment, this
information is useful for identifying areas where new training
data could be provided. Also, if one samples some of these
differences, potential impact on proofreading performance can
be discerned. For instance, such analysis might reveal that the
most significant differences are due to one segmentation having a
lot of large false mergers, which tend to be time consuming to fix.

Beyond decomposing metrics in new ways, we introduce the
following evaluations:

• A novel, synapse-aware connectivity measure that better
encapsulates the connectomics objective and provides
intuitive insight on segmentation quality.

• New strategies to assess segmentation quality with different
definitions of connectome completeness, 95 providing a
potentially more lenient and realistic optimization goal. This
is motivated by research that suggests a 100% accurate
connectome is unnecessary to recover biologically meaningful
results (Takemura et al., 2015; Schneider-Mizell et al., 2016;
Gerhard et al., 2017).

• Ground-truth independent statistics to assess segmentation
quality, such as counting “orphan” fragments and self-
loops in the segmentation. These statistics provide additional
mechanisms to compare two segmentations without ground
truth.

The above is deployed within a scalable, clusterable software
solution using Apache Spark that can evaluate large data on
cloud-backed storage.

We evaluate this ecosystem on two large, public datasets.
Our parallel implementation scales reasonably well to larger
volumes, where a 20 gigavoxel dataset can be pre-processed
and evaluated on our 512-core compute cluster in under 10
min with minimal memory requirements. The comparison
results emphasize the importance of considering the synapse
connectivity in evaluation. We also show that groundtruth is not
necessary to generate interesting observations from the dataset.

The paper begins with some background on different
published metrics for segmentation evaluation. We then
introduce the overall evaluation framework and describe in detail
several specific new metrics. Finally, we present experimental
results and conclusions.

2. BACKGROUND

Several metrics have been proposed for segmentation evaluation,
where the goal is analyzing the similarity of a test segmentation
S to a so-called ground truth G. We review four categories
of metrics in this section: volume-filling or topological,
connectivity, skeleton, and proofreading effort.

2.1. Volume-Filling or Topological
Topological metrics measure segmentation similarity at the
voxel-level, so that the precision of the exact segmentation
boundaries is less important than the topology of the
segmentation. For instance, if the segmentation splits a
neuron in half, the similarity score will be much lower than a
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segmentation that mostly preserves the topology but not the
exact boundary. Example metrics of this class include the Rand
Index (Rand, 1971; Hubert and Arabie, 1985), Warping Index
(Jain et al., 2010), and Variation of Information (VI) (Meilă,
2003). Since VI will be discussed later in this work, we define it
below as:

VI(S,G) = H(S|G)+H(G|S) (1)

where H is the entropy function. VI is decomposed into an over-
segmentation component H(S|G) and an under-segmentation
component H(G|S). A low score indicates high similarity.

2.2. Connectivity
Examining topological similarity using the above metrics can be
misleading in some cases since small shifts in segment boundaries
can greatly impact the scores as noted in Funke et al. (2017).
Furthermore, as shown in Figure 2, the synaptic connections
are often on the harder-to-segment parts of a neuron that only
make a small percentage of overall neuron volume. One potential
solution is to define S and G in Equation 1 over a set of exemplar
points representing synapses, instead of all segmentation voxels
as done in Plaza (2016) and Plaza and Berg (2016). A similar
strategy of measuring groupings of synapses was introduced
in Reilly et al. (2017), which additionally breaks down results
per neuron making the results more interpretable. While these
metrics better emphasize correctness near synapses, it is not
obvious how to interpret error impact to connectivity pathways.

2.3. Skeleton
Similar to topological metrics, the works in Berning et al.
(2015) and Januszewski et al. (2018) describe metrics based
on the correct run-length of a skeleton representation of a
neuron. This class of metric provides an intuitive means of
interpreting data correctness, namely the distance between
errors. In (Berning et al., 2015), the run length can be very
sensitive to small topological errors if one tries to account for
synapse connectivity since synapses can exist in small neuron
tips or spine necks where segmentation errors are more prevalent
due to the small size of the processes. While this can be useful
to emphasize synaptic-level correctness, it can also under-value
a neuron that is mostly topologically correct. Januszewski et al.
(2018) proposes an expected run length metric (ERL) that
proportionally weights contiguous skeleton segments.While ERL
is the most topologically intuitive metric, it conversely suffers
from under-weighting correctness for small process such as
at dendritic neuron tips in Drosophila or spine necks seen in
mammalian tissue.

2.4. Proofreading Effort
Tolerant-edit distance (Funke et al., 2017) and estimates of
focused proofreading correctness time (Plaza, 2016) provide
another mechanism to measure segmentation quality. Good
segmentation should require few proofreading corrections
(shorter edit distance) than bad segmentation. A segmentation
that splits a neuron in half would be better than one with
several smaller splits, since the former would only require one
merge and the later several mergers. Designing interpretable

edit distance formulations are challenging because different
proofreading workflows could lead to very different proofreading
reconstruction times.

The usefulness of the above metrics often depend on the
application. For practical reasons, mathematically well-formed
metrics like VI and ERL that have few parameters are often
favored. Metrics that better reflect connectivity are harder to
define since they depend more on the target application or
require the existence of synapse annotation which is currently
predicted in a separate image processing step from segmentation.

Finally, there has been only limited exploration in using
segmentation metrics as debugging tools. Presumably, this
becomes a bigger concern when evaluating larger datasets.
Notably, the authors in Reilly et al. (2017) recognized this
challenge and describe a metric that allows intuitive insights at
the neuron level. In Nunez-Iglesias et al. (2013), the authors
decompose the VI calculation to provide scores per 3D segment.
For instance, the over-segmentation VI score H(S|G) can be
decomposed as a sum of oversegmentation per ground truth
neuron g:

H(S|G) = −

∑

g

P(g)H(S|G = g) (2)

Presumably, other metrics like ERL, can be used to provide
neuron-level information for finding the worst segmentation
outliers.

3. METRIC EVALUATION ECOSYSTEM

We introduce a metric evaluation ecosystem that is designed to
assess the quality of large, practical-sized datasets. To this end, we
propose evaluation paradigms that emphasize interpreting and
debugging segmentation errors that make comparisons between
two different segmentations. While having ground truth is
mostly necessary to quantify whether one segmentation is better
than another, meaningful comparisons are possible without
laboriously generated ground truth since the metrics highlight
differences and these differences can be readily inspected. In the
following few paragraphs, we will discuss the overall philosophy
of our efforts. Then we will explore in more detail novel metrics
and the software architecture.

In this work, we do not advocate a specific metric, but instead
recommend an “all-of-the-above” framework where for each
dataset multiple metrics are used to provide different subtle
insights on segmentation quality. While not every popular metric
is implemented, our framework is extensible and can support
customized plugins.

We provide feedback on segmentation quality at different
levels of granularity: summary, body, and subvolume.

3.1. Summary
Each segmentation sample is evaluated with several scores
applied to the whole dataset. These scores do not provide insight
to where errors occur but provide a simple mechanism to
compare two segmentation algorithms succinctly. VI and Rand
index are two such examples. Section 3.4 introduces several new
connectivity-based metrics.
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3.2. Body
We provide per segment (or body) statistics with respect to
segments from both datasets S and G (G need not be ground
truth). For example, this includes the per-body VI score defined
in Equation 2, which provides insights on where over and under-
segmentation occur in the volume. We highlight a couple new
body metrics in section 3.4.

3.3. Subvolume
When appropriate, metrics that are computed for the whole
dataset are also applied to a regular grid of subvolumes that
partition it. In this manner, the quality of segmentation can be
assessed as a function of its location in the volume. This is useful
for potentially detecting regions in the dataset where a classifier
fails to generalize. For example, the framework runs VI on each
subvolume. To partially disambiguate errors that originate in one
region but propagate to another, distant region, we apply a local
connected component algorithm to treat each subvolume as an
isolated test segmentation1.

The evaluation framework can run over several distinct sets
of comparison points. By default, segmentations are compared
at the voxel level, i.e., the comparison points are all segmented
voxels. If other sets of important points (such as synapses)
are provided, analysis is similarly applied over these sets. The
evaluation provides a mechanism to compare against oneself (no
ground truth or alternative segmentation). We discuss metrics
that enable self-evaluation in Figure 3. Comparisons to ground
truth can be restricted to sparsely reconstructed volumes or dense
labeling.

3.4. Metrics
In the following, we highlight a few novel metrics for evaluating
segmentation, which is a subset of all metrics implemented in the
framework. These new metrics are divided into the categories of
summary, per-segment, and self-comparison.

3.4.1. Summary
We propose a metric to assess the connectivity correctness (CC)
of the given segmentation S compared to ground truth G. At a
high level, CC(S|G) defines the percentage of connections that
match the ground truth connections. A connection is defined
as an edge between two segments (neurons) that represents a
synapse. There can be multiple connections between the same
two segments. More formally:

CC(S|G) =

∑
(gi ,gj)∈G

|x(AS(gi),AS(gj)) ∩ x(gi, gj)|
∑

(gi ,gj)∈G
|x(gi, gj)|

(3)

where x returns the set of synapse connections between
two segments. AS(gi) determines the optimal assignment of
groundtruth segment gi to a segment in S (e.g., using the
Hungarian matching algorithm). The matching is one-to-one
and if there is no match x will be an empty set. In practice, an
algorithm that greedily finds a set of matches by using greatest

1In cases of serious false merging that results in incidental contact between

segments far away from the error site, connected components within a subvolume

containing this site will be ineffective.

segment overlap with ground truth is likely sufficient since one
would not expect the set of intersecting segments in S to a given
segment in G to greatly overlap with intersection sets to other
segments inG in a manner that would require joint optimization.
This is true by construction in the scenario where every segment
in S is either a subset of a given segment G or equal to a set of g.

This metric is sensitive to both false merge and false split
segmentation errors. If there is a false split, there will be fewer
matching connections compared to ground truth. If there is a
false merge between g1 and g2, the one-to-one assignment AS

ensures that AS(g1) 6= AS(g2) meaning that there will be no
matching connections involving either g1 or g2.

Additionally, we introduce a thresholded variant of the
connectivity metric to emphasize the percentage of connection
paths that are found with more than k connections. We modify
Equation 3 to include this threshold and decompose into recall
and precision components as defined below:

recCCk(S|G) =

∑
(gi ,gj)∈G

I(|x(AS(gi),AS(gj)) ∩ x(gi, gj)| > k)
∑

(gi ,gj)∈G
I(|x(gi, gj)| > k)

(4)

preCCk(S|G) =

∑
(gi,gj)∈G

I(|x(AS(gi),AS(gj)) ∩ x(gi, gj)| > k)
∑

(si ,sj)∈S
I(|x(si, sj)| > k)

(5)
The above metrics to measure the similarity between two
connectomes have advantages over using a more general graph
matching algorithm. First, by requiring an initial assignment of
each segment to a groundtruth neuron (if a distinct match exists),
the CC metric aims to better constrain the problem of measuring
the similarity between two connectivity graphs, thereby avoiding
the need for the computational complexity typical in general
graph matching algorithms. Second, the CC metric allows one to
express the matching in terms of individual neurons and number
of connections preserved, which is more biologically intuitive
compared to a general edit distance score.

In addition, to CCk, we define a class of statistics that analyzes
the fragmentation of S compared to G based on the simple
formula:

Frag = |S| − |G| (6)

where a high score indicates that S consists of many more
segments thanG. While very simple, this provides a lower-bound
on the number of edits (or segments to “fix”) to transform S
into G. In practice, we find that S is typically an over-segmented
subset ofG and Frag provides a reasonable edit distance estimate.
We can extend Frag by extracting a subset of S and G, S∗ and
G∗, that represent a less-than-100% correct segmentation. More
specifically, we define a thresholded fragmentation score, where
S∗ and G∗ are the smallest set of segments whose cumulative
size reaches a specified size threshold, where size can be number
of voxels or synapses. This trivially computed measure allows
us to discern the number of segments required to produce a
connectome that is X% complete.
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FIGURE 3 | High-level parallel evaluation framework. Segmentation and ground truth data is partitioned into several small pieces. Most metrics are computed in

parallel by combining local contingency tables.

3.4.2. Body
As described in Equation 7, VI can be decomposed to provide
insight about the fragmentation of a given segment. If this
score is applied with respect to segment g, it provides an
over-segmentation score of g. If this applied with respect to
segment s, it provides an under-segmentation score of s. We can
alternatively decompose the VI calculation to report the over
and under-mergers that intersect a given segment. We define the
under and over segmentation score for g as:

H(S|g)+H(g|S) = −P(g)H(S|G = g)−
∑

s

P(s)H(G = g|S = s)

(7)
where P is the the probability of g (or percentage of g in G). This
metric is useful to provide a simple score for the neuron that has
the worst segmentation. This metric works most naturally over
a densely labeled G since the impact of the false merging can be
more accurately assessed.

Additionally, we modified the metric in Equation 3 to provide
a score for each g the percentage of connections that are
covered. We further note which bodies are the most correct
by simple overlap, which is conceptually similar to examining
the largest error-free run lengths often used in skeleton-based
reconstructions.

3.4.3. Self-Compare
As mentioned, the ability to decompose the metrics at segment
level allows one to compare two different segmentations.
However, it is often useful to have some information on
segmentation reliability when no comparison volume is available.
One simple statistic that can be extracted is the number of
segments that are needed to reach a certain volume threshold
(as defined previously), which provide insights in regions that
are relatively over-segmented compared to others. However, this
metric can be misleading since neuropil regions vary in neuron
packing density.

We introduce two metrics to better assess segmentation in
the absence of ground truth: orphan segments and segmentation
loops. Biologically, one does not expect a neuron to be a small
fragment below a certain size K. A count of the number of
segments below this threshold, provides a crude error measure.
This will not uncover potential under segmentation errors. To
find potential under segmentation errors, we note that neurons
should have few connections to itself (self-loops). By counting
the number of autapses or finding the segments that have a lot of
autapses, we can detect potential false mergers. As segmentation
gets better the effectiveness of using autapses as a proxy for
false-merge errors is limited since such connections due exist
in practice, such as in the Drosophila medulla connectome in
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Takemura et al. (2015). Therefore, the loop detector should
be viewed as a mechanism to detect outliers due to either
segmentation error or biological design and serve as a good entry
point for analyzing a segmentation. Depending on the organism
and the extent of the region being evaluated, additional metrics
could be considered, such as ensuring that each segment has
both inputs and outputs. We only formally consider orphans and
self-loops in this work.

3.5. Architecture
We introduce an Apache Spark-based system for comparing two,
large segmentations at scale. The implementation is built over the
framework described in Plaza and Berg (2016) and is available
at https://github.com/janelia-flyem/DVIDSparkServices as the
EvaluateSeg workflow . The segmentation and synapse
data is stored using DVID (Katz and Plaza, 2018). In general,
segmentation compresses to a small fraction of the original EM
data size and we do not observe fetching segmentation to be
a bottleneck in the analysis workflow. However, evaluating on
datasets that are significantly larger than the 1 gigavoxel datasets
common in SNEMI and CREMI necessitates a framework that
can compute metrics on a large-memory, multi-core, cluster
environment.

An overview of the software workflow is shown in Figure 3.
We partition the dataset into disjoint, equal-size subvolume
for a region of interest (ROI). A local connected component
algorithm is computed for each subvolume and other filters are
applied, such as (1) dilating groundtruth segment boundaries
to reduce the impact of small variations in the exact boundary
between segmentation and (2) filtering out neurons that are not
groundtruthed for sparse evaluation. If the ROI being analyzed
is part of a larger segmentation, one can run a global connected
component algorithm which ensures that segments that merge
outside of the ROI are treated as separate objects within the
ROI. The global connected component algorithm is computed
by examining the boundaries between all subvolumes in parallel
and determining which components have a connecting pathway
through the ROI.

For each subvolume, we compute a contingency table between
segments in S (when not doing a self-comparison) and G (where
G is treated like ground truth unless otherwise specified). The
overlaps computed between S and G allow many of the metrics
to be computed per subvolume and then combined into global
summary and body stats. This is done over the set of voxels and
optionally any available synapse (or other point) data. In the
current workflow, one of the largest, non-parallelized compute
components is this final grouping of results. Future work to
further reduce these non-parallel points is possible but not
currently necessary for the experimented data sizes.

The framework allows additional plugins that conform to the
API to be added without changing the surrounding framework.
In circumstances where this partitioning and combination
strategy will not solve a given metric algorithm, it is possible
to define a completely custom workflow based on the input
segmentation. The current framework does not implement ERL
or other skeleton-based metrics, but our ecosystem should admit
for its straightforward inclusion.

The statistics from this computation are collected into a
file that can be easily parsed. However, the myriad of metrics
can make interpreting results overwhelming, so we designed a
single web page application in Javascript as shown in Figure 4

to improve accessibility. The web application groups similar stat
types together displaying the list of summary stats and per-body
breakdowns for provided metrics. A visualization tool shows
a heat-map highlighting subvolume to subvolume variation in
segmentation quality. The application also allows one to compare
the summary results of two different segmentation evaluations.
The web page application is available at https://github.com/
janelia-flyem/SegmentationEvaluationConsole.

4. EXPERIMENTS

We demonstrate our evaluation framework on two large, public
datasets: a portion of the Drosophila medulla (Takemura et al.,
2015) and mushroom body (Takemura et al., 2017). The
medulla dataset segmentation and grayscale can be accessed at
http://emdata.janelia.org/medulla7column, and the mushroom
body dataset can be accessed at http://emdata.janelia.org/
mushroombody. Both datasets are around 20 Gigavoxels in size
and contain over 100,000 synaptic connections. Since neither
dataset is 100 percent accurate, we filter small orphan segments
in the ground truth using options in the metric tool and we
dilate ground truth neuron boundaries with a radius of two
pixels. We compare these ground truths to initial segmentation
generated using a variant of the algorithm developed in Parag
et al. (2015).2 A smaller portion of the optic lobe segmentation
is also compared against a more recent segmentation algorithm
(Funke et al., 2018). The purpose of the following experiments
is to demonstrate the breadth of provided metrics, as well as,
some insights that might impact how one analyzes segmentation
results.

4.1. Summary Results
The evaluation service produced a series of summary stats. A
subset of these are depicted in Figure 5. The stats are split into
two broad categories: voxel-based and synapse-based. The voxel-
based stats provide volume-relevant information. The synapse-
based stats emphasize only the exemplar points that define each
input and output for a synapse.3

In both the mushroom body and medulla, we notice that
there are very few false merge mistakes indicated by merge

VI. Notably, the split VI is much higher when focusing
near synaptic regions. The comparably higher values in the
mushroom body highlight both the conservative segmentation
used and the presence of very small, hard-to-segment processes.
The thresholded segment count shows that to examine 50 percent
of the synaptic points, a relatively small number of segments need
to be examined compared to achieving 90 percent coverage. For

2We only have an archival version of mushroom body segmentation available

where a few catastrophic false mergers were already eliminated.
3In Drosophila tissue, synaptic connections are polyadic meaning multiple post-

synaptic targets for one pre-synaptic region. For this analysis, each pre and

post-synaptic site represented by a single exemplar point is considered as one

connection endpoint.
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FIGURE 4 | Evaluation web application. Web application that displays results and tools to visualize segmentation errors.

FIGURE 5 | Select metrics for the medulla and mushroom body dataset. The

data shows voxel-based metrics like VI and less-common, but more useful

synapse-based metrics. The histogram metric shows the many more

segments are required to reach X percent of the total volume.

both datasets, the connectivity correctness defined by Equation
3 is very low, in particular in the mushroom body where
the neurites are very small. This indicates that the automatic
segmentation is far from being useful for biological analysis
without proofreading.

The summary results also report the worst body VI score
and the segment ID number corresponding to this body. We
show one example from the medulla in Figure 6. The evaluation
service reports the biggest overlapping segments. Notice that
the top 10 biggest fragments only cover a small portion of the
complex neuron arbor.

We compare the baseline segmentation with a newer
segmentation approach in Funke et al. (2018) for a subset of
the medulla dataset in Figure 7. As expected, Funke et al. (2018)
achieves a better score across all reported metrics. While the
VI scores indicate significant improvement, the fragmentation
thresholds and synapse connectivity clearly show the advantages
for the newer segmentation. There are far fewer segments to
consider to reach different levels of completeness as seen in Frag
thres. Perhaps more significant is the much greater percentage
of neuron connections found with the new segmentation. The CC
metrics are sensitive to large neurons being correct in addition to
the small synapse processes being correctly segmented. Metrics
less sensitive to this level of correctness, like the VI numbers
reported, might, in effect, over-rate the quality of inferior
segmentation.

4.2. Unsupervised Evaluation
The previous results show comparisons between test
segmentations and ground truth. As previously explained,
the metric service is useful for comparing two segmentations
directly even if one is not ground truth since there are many stats
that highlight differences useful for debugging. For instance,
while the VI between two test segmentations fails to suggest
which one is better, it does indicate the magnitude of the
differences, can indicate whether one segmentation is over-
segmented compared to the other, and gives a list of bodies
that differ the most, which can then be manually inspected to
determine segmentation errors. But we also introduced stats that
do not require a comparison volume. We evaluated both medulla
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FIGURE 6 | Segmentation for worst neuron in medulla. The neuron on the left segmented poorly according to the body-based synaptic VI metric. The top 10 largest

pieces from the example segmentation are shown on the right and make up only a small portion of the neuron’s complex arbor.

and mushroom body in this way. In Figure 8, we see a heatmap
highlighting the small orphan segmentation density over the
subvolumes that partition both datasets. We define orphan as
any segment with fewer than 10 synaptic endpoints. Visually,
the diagram shows more errors in the alpha 3 lobe and proximal
region of the mushroom body and medulla respectively. If we
evaluate these regions separately against the ground truth, we
observe that the supervised VI scores are consistent with the
unsupervised visualization.

We were also able to find one neuron in the medulla dataset
that had many autapses, which suggests a potential false merge.
This worst neuron in the un-supervised analysis corresponds to
the fourth worst body in the supervised analysis. This suggests
that the autapse count can reveal false merge errors.

4.3. Performance and Scaling
These datasets are much larger than previous challenge datasets
but are still much smaller than the tera to peta-scale datasets
that are being produced. One obvious solution to handling
larger datasets is to run the framework on a larger compute
cluster.

We show the scalability of our framework by evaluating our
two sample datasets with varying numbers of cores. The charts
in Figure 9, shows a breakdown of runtime between the top
parallelizable portion of the code and the bottom, sequential
small overhead. As the number of cores increase we observe a
speedup that is slightly less than linear to the number of added
cores (indicated by the trendline). We observe that the sequential
overhead indicated by the lowest two section of each bar is
roughly constant and a small portion of this time (the lowest
section) could potentially be partially parallelized with future
optimizations.

The results in the table suggest that 512 cores can roughly
process around 20 gigavoxels in around 5 min, or over 60

FIGURE 7 | Comparing two segmentations from a subset of the medulla

dataset. Unsurprisingly, the more recent segmentation from Funke et al. (2018)

performs better on all metrics (indicated by the highlighted boxes). In

particular, Funke et al. (2018) achieves much higher CC scores finding 33

percent of all neuron connections with weight greater than or equal to ten

synapses, compared to only 9 percent for the baseline.

megavoxels of data per second, or 1 TB in a little over 4.5 h.
Note that the comparison framework requires two datasets to
be processed and this analysis includes the global connected
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FIGURE 8 | Orphan density map. For both the medulla and mushroom body sample, the orphan count density (an unsupervised statistic) appears greater (darker) in

regions with worse synaptic VI compared to the other regions.

FIGURE 9 | Runtime of metric computation at different levels of parallelization. The line represents the optimal speedup for increasing the number of cores from the

baseline 64 core implementation. The non-parallelized part of the framework represents the computation performed solely on the driver node and is indicated by the

bottom two sections of each bar. This non-parallel time is around 129 and 187 s from the mushroom body and medulla respectively.

components analysis, which is not necessary if segmentation is
completely contained within the defined region. Also, note that
medulla and mushroom body ROIs do not perfectly intersect the
subvolumes, so more data is actually fetched to retrieve the entire
20 gigavoxel ROI.

In practice, we expect additional bottlenecks if there are
a lot of small segment fragments which could lead to more
computation in the sequential parts of the code and in shuffling
data around on the network. Future work should aim to improve
the performance when dealing with a large number of small
fragments since its relevance to analysis is mostly in the aggregate
and not at the individual fragment level. We do not observe
slowness fetching the segmentation data, but the data could
always be partitioned betweenmultiple servers to allow for higher
cumulative read bandwidth.

To further improve performance, we consider downsampling
the segmentation. (A multi-resolution segmentation

representation is available in DVID and does not need to be
computed.) Figure 10 shows both datasets at original resolution
and downsampled by a factor of 2, 4, and 8 along each axis. One
might expect that downsampling the dataset considerably would
greatly change the statistics particularly related to fragmentation
due to presumably small synaptic processes. Perhaps surprisingly,
a few key metrics have a consistent value when downsampling
by 4x suggesting that significant computation reduction is
possible since full resolution is unnecessary. For example, the
fragmentation scores in these datasets, which provide a rough
estimate of the number of merge edits required, is similar
(within 20 percent) to full resolution. Once the resolution starts
getting worse than 40x40x40nm, there is considerable impact
on the synaptic VI and the number of thresholded segments.
However, the significant differences reported between the two
segmentations in Figure 7 are preserved even at the lowest
resolution tested.
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FIGURE 10 | Stability of various metrics when downsampling the dataset. When the voxel resolution is higher than 40 × 40 × 40 nm, the results are fairly consistent.

When the voxel resolution is too low, several synapses on smaller neurites are missed. The 50, 75, and 90% connections number refers to the number of segments

required to cover the specified percentage of connection endpoints.

5. CONCLUSIONS

In this work, we demonstrate a metric evaluation framework
that allows one to analyze segmentation quality on large datasets.
This work necessitated diverse contributions: new metrics
that provide novel insights in large connectomes, a software
framework to process large datasets, and visualization software
to enable intuitive consumption of the results. All of these
contributions, in synergy, were critical to enable segmentation
evaluation in practical settings.

We implemented multiple metrics to provide different

insights on segmentation. In particular, we introduced new

connectivity-based metrics that clearly show that significant

improvements are still needed to produce fully-automatic
reconstructions, which seem to correctly reflect our observations

in practice. Furthermore, we note that for purposes of
comparison, it is possible to downsample the data significantly
without significant impact on important metrics. Finally, we
introduced the possibility of comparing two segmentations
without ground truth, where evaluation can be done by manually
inspecting the largest segmentation differences revealed by
decomposing the metrics in different ways and providing
useful visualizations, such as showing segmentation quality
variation as a function of region location. We believe that this
work should help accelerate advances in image segmentation
algorithm development and therefore reduce bottlenecks in large
connectomic reconstructions.

The diverse set of statistics produced by our workflow could
make the task of comparing segmentations overwhelming, as
one desires to know which is the best metric. This paper has
taken an agnostic position to the best metric largely because
it depends on the application. If one is concerned about
optimizing proofreading performance, edit distance measures
make the most sense. However, this is complicated because
edit distance costs depend on the proofreading methodology.
The fragmentation scores provide a very intuitive, parameter-
free measure of segmentation quality if one has mostly
tuned the algorithms to over segment, since the number of

segments is a guide for the number of mergers required.
To assess whether the segmentation can be used in a
biologically meaningful way, our new connectivity metric
will provide the best insight on the quality of the resulting
connectome. For assessing general neuron shape correctness,
ERL (which we do not currently implement) or VI can be
used.

We expect additional improvement is needed to further
parallelize sequential portions of the framework. Also, we
believe that additional metrics should be invented that provide
interesting insights for evaluating the connectivity produced
from the segmentation. We have introduced a few metrics to
this end in this paper. We advocate the inclusion of more
metrics in evaluation to better understand the failure modes of
segmentation, which will hopefully lead to the implementation
of better algorithms.
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Heterocellular Coupling Between
Amacrine Cells and Ganglion Cells
Robert E. Marc†, Crystal Lynn Sigulinsky†, Rebecca L. Pfeiffer, Daniel Emrich,
James Russell Anderson and Bryan William Jones*

Moran Eye Center, Department of Ophthalmology and Visual Sciences, The University of Utah, Salt Lake City, UT,
United States

All superclasses of retinal neurons, including bipolar cells (BCs), amacrine cells (ACs)
and ganglion cells (GCs), display gap junctional coupling. However, coupling varies
extensively by class. Heterocellular AC coupling is common in many mammalian GC
classes. Yet, the topology and functions of coupling networks remains largely undefined.
GCs are the least frequent superclass in the inner plexiform layer and the gap junctions
mediating GC-to-AC coupling (GC::AC) are sparsely arrayed amidst large cohorts of
homocellular AC::AC, BC::BC, GC::GC and heterocellular AC::BC gap junctions. Here,
we report quantitative coupling for identified GCs in retinal connectome 1 (RC1), a
high resolution (2 nm) transmission electron microscopy-based volume of rabbit retina.
These reveal that most GC gap junctions in RC1 are suboptical. GC classes lack
direct cross-class homocellular coupling with other GCs, despite opportunities via
direct membrane contact, while OFF alpha GCs and transient ON directionally selective
(DS) GCs are strongly coupled to distinct AC cohorts. Integrated small molecule
immunocytochemistry identifies these as GABAergic ACs (γ+ ACs). Multi-hop synaptic
queries of RC1 connectome further profile these coupled γ+ ACs. Notably, OFF alpha
GCs couple to OFF γ+ ACs and transient ON DS GCs couple to ON γ+ ACs, including
a large interstitial amacrine cell, revealing matched ON/OFF photic drive polarities within
coupled networks. Furthermore, BC input to these γ+ ACs is tightly matched to the
GCs with which they couple. Evaluation of the coupled versus inhibitory targets of
the γ+ ACs reveals that in both ON and OFF coupled GC networks these ACs are
presynaptic to GC classes that are different than the classes with which they couple.
These heterocellular coupling patterns provide a potential mechanism for an excited GC
to indirectly inhibit nearby GCs of different classes. Similarly, coupled γ+ ACs engaged
in feedback networks can leverage the additional gain of BC synapses in shaping
the signaling of downstream targets based on their own selective coupling with GCs.
A consequence of coupling is intercellular fluxes of small molecules. GC::AC coupling
involves primarily γ+ cells, likely resulting in GABA diffusion into GCs. Surveying GABA
signatures in the GC layer across diverse species suggests the majority of vertebrate
retinas engage in GC::γ+ AC coupling.

Keywords: amacrine cell, ganglion cell, gap junction, GABA, retina, neural circuitry, transmission electron
microscopy, computational molecular phenotyping
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INTRODUCTION

Retinal ganglion cells (GCs) are the signal outflow cells of
the vertebrate retina: a network layer that integrates bipolar
cell (BC) and amacrine cell signals and passes them to CNS
targets. Like BCs, most GCs are part of a unidirectional synaptic
chain, not evidencing any direct feedback to the preceding input
stage. However, early physiological studies established the ability
of a GC to excite amacrine cells, other GCs and even itself
(Matsumoto, 1975; Marchiafava, 1976; Marchiafava and Torre,
1977; Mastronarde, 1983; Sakai and Naka, 1988; Sakai and Naka,
1990). This excitation was always sign-conserving and occurred
with short latency, yet electrical synaptic transmission was often
dismissed due to a lack of anatomical evidence, in stark contrast
to many other retinal neurons (Vaney, 1994). Later, intracellular
biotinylated tracer injection studies (Vaney, 1991, 2002; Vaney
and Weiler, 2000) showed tracer diffusion patterns between
ganglion and amacrine cells that were interpreted as coupling
mediated by gap junctions (e.g., Bloomfield and Xin, 1997;
Massey, 2008), and more recently confirmed with gap junction
protein knockout mice (e.g., Schubert et al., 2005a,b; Pan et al.,
2010).

Gap junctions are intercellular channels that mediate the flux
of small molecules and ions and, therefore, are the anatomical
basis for electrical synaptic transmission in the nervous system.
Like chemical synapses, gap junctions are extremely diverse
structures mediating intercellular signaling. The primary proteins
of gap junctions are drawn from a large family of connexins with
four transmembrane spanning domains, cytosolic domains that
usually (though not always) provide predominantly homotypic
or bihomotypic binding even if the junctions are heteromeric
(Li et al., 2008; Rash et al., 2013), and intracellular domains that
mediate recognition and binding of other gap junction proteins.
In general, it is thought that the peak open conductance of
a single connexon is principally related to its pore diameter
(this is not always true) with complex modulation enabled by
a range of mechanisms (Ek-Vitorin and Burt, 2013; Hervé and
Derangeon, 2013) including connexin phosphorylation (Pereda
et al., 2013; O’Brien, 2017), methanesulfonate-analog (taurine)
binding (Locke et al., 2011), and many different adapter protein
interactions (e.g., Zou et al., 2017). Light-induced changes in
gap junctions are currently understood to modify the open
conductance of a connexon through these mechanisms, but will
not change the presence or absence of gap junctions at contact
sites with coupling partners. That said, photopic or scotopic
changes may alter gap junctional sizes.

Modes of coupling in the retina can be grouped into broad
categories such as homocellular (coupling between the same
“types” of cells) and heterocellular (coupling between different
cell types). But what do we mean by “type” in the context of
retina? Our terminology is based on computational classification
theory where a class is the ultimate level of granularity
(Marc and Jones, 2002). In this terminology, mammalian rod
photoreceptors, blue cones, rod BCs, and AII amacrine cells,
are all classes. In contrast, the categories of photoreceptors,
bipolar, amacrine and GCs are all superclasses, as they contain
collections of classes or larger intermediate groups often defined

ad hoc (see Supplementary Table S1). So what we really
mean by heterocellular coupling is that it occurs between
superclasses with clearly different morphologies, such as between
AII amacrine cells and ON cone BCs. Homocellular coupling
occurs within classes or between intermediate groups with the
same morphology. Thus CBb3n::CBb4 coupling, where :: denotes
the presence of gap junctions between the pair, is homocellular
(between BCs) but is cross-class coupling engaging two different
BC classes (Table 1; also see Mills, 2001). GCs are unique
among retinal cells in favoring heterocellular over homocellular
coupling. While sparse ultrastructure studies support in-class
homocellular coupling for some GC classes (e.g., Hidaka et al.,
2004), tracer coupling surveys (Bloomfield and Xin, 1997; Völgyi
et al., 2009; Pan et al., 2010) of many GC classes suggests that
most participate in heterocellular coupling with amacrine cells.
In-class homocellular coupling, appears rarely, although it is
impossible to distinguish between direct GC::GC coupling and
indirect GC::AC::GC coupling when the tracer-labeled cohort
includes both amacrine and GCs. Here, we show that specific GCs
in the retina exhibit common rules for heterocellular coupling
with amacrine cells, ranging from none to extensive. We have yet
to identify instances of GC in-class homocellular coupling and
have no proven cross-class homocellular coupling.

While we know quite a bit about the general patterns of
GC heterocellular coupling from tracer coupling studies, the
network topology for the specific cell class partnerships involved
and significance of coupling between the cell classes is elusive.
Heterocellular coupling with amacrine cells subserves a circuit
for synchronous GC firing (Brivanlou et al., 1998; Völgyi et al.,
2013a), which may contribute to encoding aspects of the visual
scene, such as direction (Meister and Berry, 1999; Ackert et al.,
2006; Schwartz et al., 2007). There has also been discussion
about whether coupling leads to maladaptive receptive field
center expansion that would depress spatial resolution (Massey,
2008). However, two anatomical tools can assess the extent
of coupling, enable precise definition of the partners and lead
to more refined models of function: computational molecular
phenotyping (CMP) and connectomics. While physiological
analyses will always be definitive arbiters of global network
functionality, connectomics can resolve network topologies that
physiology cannot (e.g., Lauritzen et al., 2016). CMP allows
quantitative specification of the small molecule signatures of

TABLE 1 | Patterns of retinal coupling.

Homocellular Heterocellular

Group In-class Cross-class Cross-superclass Partner

Rods + ∅ + Cones

HCs + ∅ ∅

AI AC + ∅ ∅

AII AC + ∅ + CBb BC

CBa BC + + ∅

CBb BC + + + AII AC

RB ∅ ∅ ∅

GC ∅ ∅ + γ ACs
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retinal neurons, especially GCs (Marc et al., 1995; Marc and Jones,
2002). Here, we simply asked: what is the network embedding
(in the mathematical sense) of GC::AC motifs? The answer is
that for two specific GC classes, transient ON (tON) directionally
selective (DS) and OFF alpha, heterocellular coupling exclusively
occurs with multiple classes of γ+ amacrine cells that enable
diverse modes of network specificity depending on the topology
of the coupled inhibitory network. For the tON DS GC network,
excitation of the GC may lead directly to the inhibition of
neighboring GCs of differing classes.

Diffusion of small molecules, such as dyes and biotinylated
tracers, through gap junctions has long been used to identify
coupling between retinal cells (Vaney, 1994). Glycine, a small
metabolite, readily identifies ON cone BCs due to glycine
diffusion through gap junctions with AII amacrine cells, as cone
BCs neither synthesize nor transport it (Cohen and Sterling,
1986; Vaney et al., 1998; Haverkamp and Wassle, 2000; Deans
et al., 2002; Petrides and Trexler, 2008). Other small molecules
are also likely to diffuse through gap junctions and accumulate,
such as GABA from the γ+ amacrine cells to which the tON
DS GC and OFF alpha GC are coupled. We show that both
cells contain intermediate levels of GABA. In mammals, many
classes of GCs exhibit an intrinsic GABA signal superimposed
on a classic high-glutamate, high-glutamine and low taurine GC
signature, suggestive of heterocellular coupling with γ+ amacrine
cells (Marc and Jones, 2002). We note that no known GABA
transporters have been described in any GCs, much less in the
adult rabbit retina (Hu et al., 1999), and there are no studies that
definitively report GAD in the GCs (in contrast to the amacrine
cells in the GC layer), though there are studies that report GAD
mRNA in developing rat retina (Brecha et al., 1991; Dkhissi
et al., 2001), no functional protein has yet been identified. It
should also be pointed out that the presence of GABA in the
GCs does not imply that they are themselves, inhibitory. That
circumstance would depend upon GABA vesicular loaders being
present at the GC terminals. Rather, we only hypothesize about
GABA being present due to coupling of GCs to amacrine cells
where that GABA derives. It should also be noted that GABA is
a central carbon metabolite that can be utilized for a number of
biosynthetic pathways. As we will show, that signal is not unique
to mammals.

MATERIALS AND METHODS

Samples
Over 40 years our laboratory has collected retinal samples from
over 50 vertebrate species spanning all classes. All euthanasia
methods followed institutionally approved procedures, some
of which changed over the years IACUC oversight evolved.
Aquatic vertebrates were euthanized via cervical transection and
double pithing (pre-1995) or sedated in 0.2% methanesulfonate
prior to cervical transection (post-1995). Reptiles were similarly
euthanized by cervical transection and double-pithing (pre-1995)
or IP injection with 10% urethane followed by cervical
transection. Mammals were euthanized by urethane overdose
and thoracotomy (rabbits) or decapitation (pre-2014, mice),

deep isoflurane anesthesia and thoracotomy or decapitation
(2015); or Beuthanasia R© euthanasia and thoracotomy (rabbits,
post-2015). The basic fixation method for all of them has
been the same, as summarized in Marc (1999b): 250 mM
glutaraldehyde, 1320 mM formaldehyde in either cacodylate
or phosphate 0.1 M buffer pH 7.4, 3% sucrose, 1% MgSO4
or 1% CaCl2. All tissues were embedded in Eponate resins
(Marc et al., 1978), serially sectioned at 100–250 nm onto
array slides, probed for small molecules (Marc et al., 1998),
visualized by quantitative silver-immunogold detection (Marc
and Jones, 2002), and imaged as described below. Some retinas
were incubated for 10 min in either teleost saline (Marc et al.,
1995) or Ames medium (Marc, 1999a,b) containing 5 mM
1-amino-4-guanidobutane (AGB) and either 1 mM NMDA or
0.05 mM kainic acid for excitation mapping of retinal GCs.

Immunocytochemistry
For the purposes of this paper, data from ≈20 years of
post-embedding immunocytochemistry were analyzed and
summarized. The same protocols and antibodies were used
for all analyses. It is important to note that post-embedding
immunocytochemistry for glutaraldehyde-trapped amines or
imines is idempotent: once the sample is fixed and embedded,
no detectable changes in immunoreactivity occur, even over
decades. Indeed, tissues deriving from multiple species fixed in
mixed glutaraldehydes and plastic embedded over 1980–1990
and published (Marc et al., 1990; Mills and Massey, 1992;
Kalloniatis et al., 1996; etc. . .) have been directly compared with
blocs of the same species (e.g., goldfish, rabbit, human, primate
etc.) fixed in the past few years. They are indistinguishable.
A good reference for this is Jones et al. (2003) where blocs
of ≈30 individual transgenic rats had been prepared in the
1980s by Matthew LaVail. Rat retinas prepared post-2000 for
this paper showed the same strength of GABA signals as blocs
prepared in the 1980s. Signals were indistinguishable, and there
is no published evidence showing any signal decline in resin
embedded samples.

The key marker for heterocellular coupling is 4-aminobutyrate
(GABA) detected in post-embedding immunocytochemistry
(Marc, 1999b) using YY100R IgG (RRID:AB_2532061) from
Signature Immunologics Inc. (Torrey, UT, United States).
Additional channels for cell classification (Marc et al.,
1995; Anderson et al., 2009, 2011b) targeted AGB (B100R,
RRID:AB_2532053), glutamate (E100R, RRID:AB_2532055),
aspartate (D100R, RRID:AB_2341093), glycine (G100R,
RRID:AB_2532057), glutamine (Q100R, RRID:AB_2532059),
and taurine (TT100R, RRID:AB_2532060) from Signature
Immunologics Inc. For ease of notation, the Greek nomenclature
for amino acids is used: GABA (γ), Glutamate (E), Glutamine
(Q), Aspartate (D), Glycine (G), and Taurine (τ). AGB is denoted
with (B). The activity tracer 1-amino-4-guanidobutane (AGB)
is used to map both endogenous and exogenous ligand-driven
glutamatergic signaling in single cells. Guanidinium cations are
permeable to a wide variety of non-selective cation channels.
The Guanidinium analog, AGB has demonstrated the same
non-selective cation channel permeability to that seen by
guanidinium (Yoshikami, 1981; Qwik, 1985; Kuzirian et al.,
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1986) and can be utilized as channel permeant markers by
selectively activating glutamate receptors (Marc, 1999b; Marc
and Jones, 2002), and allowing AGB to diffuse in along a
concentration gradient. In essence, the tissue is incubated in
a high concentration of AGB, which enters the cell through
cation channels when the cell is activated. In the case of RC1, a
flicker photopic light was used to drive neuronal classes allowing
AGB entry via cation channel opening in response to glutamate
receptor activation in neuronal classes (Marc, 1999a,b; Marc
and Jones, 2002; Marc et al., 2005; Anderson et al., 2011b). All
IgGs were detected with silver-intensified 1.4 nm gold granules
coupled to goat anti-rabbit IgGs (Nanoprobes, Yaphank, NY, SKU
2300), imaged (8-bit monochrome 1388 pixel × 1036 pixel line
frames) in large mosaic arrays with a 40× oil planapochromatic
objective (NA 1.4) on a 100 × 100 Märzhäuser stage and
Z-controllers with a QImaging Retiga camera, Objective Imaging
OASIS controllers, and Surveyor scanning software (Anderson
et al., 2011b; Lauritzen et al., 2016).

Raw signal is used to describe the original image acquired
following staining without any image processing. Density
mapped images are obtained from light microscopy of the silver
intensified antibody labeled images. In these images, darkness of
a region indicates a higher density of antibody labeling. Intensity
mapped images are the inverted image of density mapped images,
we invert these images to better facilitate the readers ability
to interpret the small molecule mixtures within cells. Theme
mapping is the assignment of a color to each cell class generated
through k-means cluster analysis and overlaid in the same space
as the original image to visualize which cells cluster together,
and therefore have the same cell signature. Segmentation
of cell classes using amino acid labeling was performed as
previously described (Marc et al., 1995; Marc and Jones, 2002).
In brief, IgG labeled sections were co-registered and clustered
as N-dimensional images using k-means. Each separable cluster
is made up of a distinct signature of concentrations of multiple
amino acids unique to that cell class. The clustering results were
then remapped in the same x–y dimensions as the original IgG
image. This graphical representation of the cell classes is termed
a theme map. Using the theme map as a mask, the underlying
histograms can be evaluated for each cell class, where the
histogram demonstrates the approximate log concentration of
small molecule within the cell. For a more comprehensive review
of these methods see Marc and Jones (2002). Image analysis,
histogram thresholding, object counts and spacing measures were
performed using ImageJ 2.0.0-rc-43/1.51w (Rueden et al., 2017)
in the FIJI Platform (Schindelin et al., 2012) and Photoshop CS6
(Lauritzen et al., 2016).

Connectomics in Rabbit Retinal
Volume RC1
Connectome assembly and analysis of volume RC1 has been
previously described (Anderson et al., 2009, 2011a,b; Lauritzen
et al., 2012, 2016; Marc et al., 2013, 2014a) and only key concepts
expanded here. RC1 is an open-access rabbit retina volume
imaged by transmission electron microscopy (TEM) at 2 nm
and includes 371 serial 70–90 nm thick sections, with six and

twelve optical sections flanking the inner nuclear and ganglion,
cell layers, respectively, containing small molecule signals and
additional intercalated optical sections throughout (Anderson
et al., 2011b). The retina was dissected from euthanized
light-adapted female Dutch Belted rabbit (Oregon Rabbitry, OR)
after 90 min (under 15% urethane anesthesia, IP) of photopic
light square wave stimulation at 3Hz, 50% duty cycle, 100%
contrast with a 3 yellow – 1 blue pulse sequence (Anderson
et al., 2011b) with 13–16 mM intravitreal AGB. All protocols
were in accord with Institutional Animal Care and Use protocols
of the University of Utah, the ARVO Statement for the Use of
Animals in Ophthalmic and Visual Research, and the Policies on
the Use of Animals and Humans in Neuroscience Research of
the Society for Neuroscience. Each retinal section was imaged as
1000–1100 tiles at 2.18 nm resolution in 16- and 8-bit versions,
and as image pyramids of optimized tiles for web visualization
with the Viking environment (Anderson et al., 2011a). Synapses
and other intercellular relationships and intracellular structures
were identified anatomically from TEM images and re-imaged
at 0.27 nm resolution with goniometric tilt where necessary for
validation. Neural networks in RC1 have been densely annotated
with the Viking viewer (Lauritzen et al., 2016), reaching over
1.4 million annotations of 3D rendered volumetric neurons,
processes, pre- and postsynaptic areas, locations in the volume
with subnanometer precision (Jensen and Anastassiou, 1995),
and explored via graph visualization of connectivity and 3D
renderings as described previously. The volume contains≈1.5 M
annotations, 104 rod BCs, >145 classified, 24 unclassified, 10
classified partial arbors, 300 amacrine cells and 20 GC somas.
This density of annotations belies the additional work required
to validate, classify and scale. Each annotation is a size and
location entity coupled to a full metadata log (Anderson et al.,
2011a) and has been validated by at least two tracing specialists;
many have been revisited 5–10 times, representing a total of
7 person-years of work. No current automated tracing tool
makes fewer errors than a trained human annotator (even our
own: Jagadeesh et al., 2013). Therefore, any time saved by
automation is negated by the necessity for human cross-checking,
validation and correction/re-annotation. Rendered neurons in
RC1 were produced in Vikingplot (Anderson et al., 2011a,b) and
VikingView (Lauritzen et al., 2016).

Mining Coupled Ganglion Cell Networks
Candidate GC coupling networks in RC1 were visualized and
annotated by identifying GABA-positive (γ+) GC somas and
dendrites in Viking1 (RRID:SCR_005986) in the intercalated
GABA channels and by searching the RC1 database for coupling
connections using network graph tools and database queries.
All resources are publicly accessible via Viking and a range of
graph and query tools are available at connectomes.utah.edu. All
cells in this article are numerically indexed to their locations,
network associations, and shapes. The data shown in every
TEM figure can be accessed via Viking with a library of
∗.xml bookmarks available at marclab.org/GCACcoupling. Each
cell index number in the RC1 database can be entered into

1connectomes.utah.edu
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different software tools for analysis, visualizations, or queries:
Viking, Network Viz, Structure Viz, Info Viz, Motif Viz (Viz
tools are based on the GraphViz API2, developed by AT&T
Research, RRID:SCR_002937), and VikingPlot developed by the
Marclab; and VikingView developed by the University of Utah
Scientific Computing and Imaging Institute. Further, Viking
supports (1) network and cell morphology export into the graph
visualization application Tulip3 developed by the University of
Bordeaux, France; (2) cell morphology for import into Blender4

(RRID:SCR_008606); and (3) network queries for Microsoft SQL
and Microsoft Excel with the Power Query add-in to use the
Open Data Protocol (OData.org) to query connectivity features.
More efficiently, we discover and classify coupling networks in
Tulip with TulipPaths: a suite of regex (regular expression) based
Python plug-ins for network queries5,6, . Tulip networks can be
directly exported from our connectome databases with a web
query tool at connectomes.utah.edu and all data used in this
article can be accessed via marclab.org/GCACcoupling.

Statistics
Small molecule signal comparisons across groups were done
by both k-means clustering and histogram analysis using
PCI Geomatica (Toronto, Canada) and CellKit based on
IDL (formerly ITT, now Harris Geospatial, Melbourne, FL,
United States) as described in Marc and Jones (2002). Various
parametric and non-parametric analyses of feature sets (e.g., gap
junction numbers, sizes) and power analyses were performed
in Statplus:mac Version v67 (RRID:SCR_014635) and R8

(RRID:SCR_001905).

Signatures
The signature hypothesis is the concept that each
morphologically and functionally distinct cell would also
possess distinct neurochemical compositions (Burnstock, 1976;
Watt et al., 1984). We define the signature as quantitative
differences in small molecule concentration mixtures as
determined by k-means cluster analysis, indicating unique cell
classes.

RESULTS

Phylogeny of Heterocellular Ganglion
Cell Coupling With GABAergic Amacrine
Cells
Our analysis of two γ+ GC classes in connectome RC1
demonstrates a mechanism by which the small molecule
GABA could accumulate in GCs: heterocellular coupling via
numerous small gap junctions with sets of γ+ amacrine cells.

2graphviz.org
3tulip.labri.fr
4Blender.org
5https://github.com/visdesignlab/TulipPaths
6https://docs.python.org/2/library/re.html
7www.analystsoft.com/en/
8www.r-project.org

Thus, GABA signals superimposed on a classic high-glutamate,
high-glutamine, and low taurine GC signature, can in turn be
used to screen vertebrates for possible heterocellular GC::AC
coupling. Specifically, cells in the GC layer with GABA
signal histograms matching those of conventional amacrine
cells (1–10 mM) are classified as displaced amacrine cells and
those with intermediate signals (0.1–1 mM) are classified as
provisionally coupled GCs (see Marc and Jones, 2002 for
calibrations). In many species, we are also able to correlate these
intermediate GABA levels with classical high glutamate signals
of GCs and distinctly large GC sizes (e.g., Marc and Jones,
2002). Using the marclab.org tissue database we reviewed 53
vertebrate species spanning all vertebrate (Supplementary Table
S2) classes to assess the scope of potential coupling. Importantly,
evidence of GC heterocellular coupling with GABAergic
amacrine cells occurs in every vertebrate class, even if other
markers of comparative function vary: e.g., Müller cell GABA
transport (limited to Cyclostomes, Chondrichthyes, Mammals
and advanced fossorial ectotherms such as snakes), horizontal
cell GABA transport (limited to most bony ectotherms) and
horizontal cell GABA immunoreactivity (dominant in bony
ectotherms and variable in mammals). The only vertebrate class
we can say appears to clearly lack evidence of heterocellular
GC::AC coupling is Testudines: turtles.

In every vertebrate class that shows a potential coupling
profile, the GABA signal and GC types involved are diverse.
Figure 1 shows the spectrum of GABA signals in the rabbit
GC layer, just below the visual streak, obtained by registering
the glutamate (Figure 1A) and GABA (Figure 1B) channels
of 2385 cells in the GC layer. The signals in Figure 1B reveal
that GABA levels range from undetectable in many cells to
levels that nearly match those of conventional amacrine cells,
starburst amacrine cells in particular. In between are a range
of concentrations far lower than any GABAergic amacrine cell
(Marc and Jones, 2002) but much higher than background. Our
previous assessments of the selectivity of the YY100R anti-GABA
IgG (Marc and Jones, 2002) and competition assay results are
shown in Supplementary Table S3, and range from 104 to
106 log units in concentration. Thus, the intermediate values
cannot be due to cross reactivity with any plausible alternate
biomarkers (e.g., L-alanine, β-alanine, taurine, etc.), else they
would have to be present at levels of 1–100 M (100 µM low signal
range× 104–106 cross-reactivity), which is physically impossible.
Glutamate concentrations seen in GABAergic neurons is over
a log unit lower than levels of glutamate found in presumptive
glutamatergic cells. This range of glutamate immunoreactivity
in GABAergic neurons has been described before (Marc et al.,
1990, 1995) and it is likely that all GABA cells have at least some
detectable glutamate given that glutamate is a central carbon
skeleton metabolite and is the direct precursor to GABA synthesis
via glutamate decarboxylase (GAD).

The intermediate ranges of GABA signals are associated with
GC soma sizes ranging from some of the largest to some of the
smallest GCs (Figure 1C), and the GC layer is separable by either
clustering or histogram thresholding (Marc et al., 1995) into
pure glutamate signal GCs (uncoupled), γ+ GCs (provisionally
coupled) and starburst and minor displaced amacrine cell cohorts
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FIGURE 1 | Glutamate and GABA colocalization in the rabbit ganglion cell layer; registered serial 200 nm horizontal sections through the plane of the ganglion cell
layer with silver density visualization. (A) Raw glutamate signals of ≈2100 cells, density mapped; Scale, 0.5 mm. (B) Raw GABA signals of the same cells, density
mapped. (C) Intensity mapped [inverse images of A,B)] registered channels with GABA (γ) signals encoded as a yellow (y) channel (R + G) and glutamate signals (E)
as the blue (b) channel (γE = yb mapping) to create additive and quantitative concentration maps that reflect the free amine content of the cells. (D) Theme mapped
data produced through GABA histogram segmentation. Magenta: high GABA content (5–10 mM) population containing mostly starburst amacrine cells and a few
displaced amacrine cells. Yellow: medium GABA content population containing provisional γ+ ganlion cells (0.1–1 mM). Cyan: Ganglion cells with no measurable
GABA content (<0.1 mM); small fragments represent portions of cross-sectioned cell dendrites. (E) Glutamate histograms of peak normalized pixel number (N) vs.
pixel value (PV) for starburst amacrine cells (SACs), GABA-positive ganglion cells (γ+ GCs) and GABA-negative ganglion cells (GCs). The pixel value is the digital
grayscale readout from the raw imagery, ranging from 0 to 255 and the peak normalized pixel number is the normalized maximum frequency of pixels in the image
for a given pixel value. Pixel value reflects the quantitative amounts of small molecules which are log-linearly scaled with histogram pixel value representing an
approximation of concentration (Marc et al., 1995). (F) GABA histograms of peak normalized pixel number (N) vs. PV for starburst amacrine cells (SACs),
GABA-positive ganglion cells (γ+ GCs) and GABA-negative ganglion cells (GCs).

(Figure 1D). Importantly, all γ+ GCs show glutamate signatures
indistinguishable from γ− pure glutamate GCs (Figure 1E),
while starburst and other displaced amacrine cells display much

lower glutamate contents similar to γ+ amacrine cell signatures
in various vertebrate species (Marc et al., 1995; Marc, 1999a).
The amacrine cell cohort is unique in quantitative glutamate and
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GABA signatures, and soma size, while the γ+ GCs and γ− GCs
are not discriminable in glutamate signatures, or soma size and
are separable as an intermediate class only by the modest GABA
signatures of γ+ GCs.

GABA signals in GCs are not unique to mammals. Teleost
fishes represent the Actinopterygii, a vertebrate class with
≈400 Mya divergence from class Sarcopterygii, while infraclass
Teleostei is of even more modern origin (≈310 Mya) with a
massive post-Mesozoic, early Cenozoic expansion (Friedman,
2010) contemporaneous with mammalian speciation. The

emergence of the cyprinids (goldfish and zebrafish) is extremely
modern with estimated peak speciations in the Miocene and even
early Holocene (Dubut et al., 2012), postdating the divergence of
anthropoid primates (Pozzi et al., 2014). Arguably, comparing
mammals and teleosts is one of the most diverse spans that
could be conceived in assessing a putative synapomorphy
(specialization of a clade) such as coupling, with a last common
ancestor in the Devonian. Figure 2 shows varying GABA signals
exhibited by cells within the GC layer of the goldfish Carassius
auratus. There are clearly different classes of GCs with GABA

FIGURE 2 | Glutamate and GABA colocalization in the goldfish ganglion cell layer; registered serial 200 nm sections with silver density visualization inverted (with a
logical NOT) to an intensity display (Marc et al., 1995). (A) GABA (γ), AGB (B), and glutamate (E) signals assigned to the red (r), green (g), and blue (b) channels,
respectively, creating an rgb image reflecting the combined small molecule signature. AGB permeation was activated in vitro with 50 µM kainic acid (KA) in the
presence of 10 mM AGB in Hickman’s Teleost saline (Marc et al., 1995). This signature separates ON starburst amacrine cells (small circles) with a yellow signal
mixture (high GABA and AGB, representing classic strong starburst amacrine cell KA responses) from cyan ganglion cells (high glutamate and AGB, representing
strong ganglion cell responses to KA), light blue ganglion cells (high glutamate, low AGB, representing weak ganglion cell responses to KA), and deep blue spherical
terminals of Mb ON cone bipolar cells (surrounded by a polygon), which lack ionotropic glutamate receptors. The northwest arrow labeled with the E symbol
indicates a high glutamate content ganglion cell with modest GABA and high AGB signals. The northwest arrow labeled with the γ symbol indicates a low glutamate,
high GABA, non-starburst amacrine cell. (B) Glutamate channel, intensity mapped as medium blue for visibility (R = 0, G ≈ 0.5B, B ≈ 0–240). Southeast arrows
denote high glutamate ganglion cells that also have significant GABA signals. (C) GABA and glutamate channels mapped as γE :: rb, revealing γ+ ganglion cells as
magenta cells. (D) GABA channel mapped as orange for visibility (R ≈ 0–240, G ≈ 0.5R, B = 0), clearly revealing weak GABA signals in a set of high glutamate
ganglion cells. Scale, 100 µm.
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signals that are below the amacrine cell signal range (Figure 2,
northwest arrow labeled with the E symbol and southeast
arrows). As a control, the population of goldfish starburst
amacrine cells (small circles) forms a single signature cohort with
GABA levels much higher than provisionally coupled GCs. Their
glutamate, GABA and kainate-activated AGB signals show that
they form a distinct, monolithic, inseparable signature group that
cannot be drawn from any other population, while presumably
coupled and uncoupled GCs have much weaker (or no) GABA
signals and diverse signatures (Figure 2).

Ultrastructural Evidence of
Heterocellular GC::AC Coupling
Tracer coupling suggests widespread heterocellular GC::AC
coupling in the vertebrate retina, and significant correlative
evidence supports that view (Völgyi et al., 2013a). But what
are these coupled amacrine cells and what networks do they
comprise? What is the relationship between coupling and gap
junction expression? This is where retinal connectomics can offer
critical insights. To direct our tracing efforts, we took advantage
of the integrated CMP in connectome RC1. Most amacrine cells
utilize either GABA or glycine as a neurotransmitter, which likely
diffuses through gap junctions into coupled GCs. Consistent with
this, many GC classes exhibit a range of GABA signals, but well
below that of conventional amacrine cells (Marc and Jones, 2002).
The GC layer in rabbit retinal connectome RC1 contains the
somas of 20 GCs and 7 ON starburst amacrine cells (Figure 3A).
Several of the GCs show significant levels of GABA (Figure 3B),
suggesting they may couple with γ+ amacrine cells. We have
reconstructed the gap junction patterns of two major classes of
γ+ GCs, the tON DS GC GC 606 and a length of dendrite within

the inner plexiform layer of the OFF alpha ganglion cell GC 9787
(not shown in Figure 3 as the soma is not contained within the
RC1 volume). We traced most of the connections of both of
these cells in connectome RC1 and demonstrate that both are
extensively coupled to unique sets of γ+ amacrine cells.

GC 606
GC 606 has a large, γ+, crescent-shaped soma with a maximum
diameter of 35 µm positioned within the GC layer of connectome
RC1 (Figure 3). Its GABA signal is strong, albeit at much
lower concentrations than truly GABAergic amacrine cells such
as ON starburst amacrine cells. Its dendritic arbor spans the
entire RC1 volume, extending beyond its boundaries in all
directions, and appearing to fully stratify within sublamina b
of the inner plexiform layer, just distal of the ON starburst
amacrine cell dendritic stratification within the inner plexiform
layer (Figure 4). GC 606 is indisputably an ON GC. Its excitatory
synaptic input exclusively arises from ON cone BCs. GC 606
heavily couples with at least two classes of γ+ amacrine cells,
including an interstitial amacrine cell (IAC) consistent with the
γ+ PA1 polyaxonal cell (Famiglietti, 1992; Wright and Vaney,
2004) with which it extensively co-stratifies (Figure 4). Due
to this coupling, GC 606 cannot be an ON alpha GC (Hu
and Bloomfield, 2003) nor a classic sustained ON directionally
selective (DS) GC (Hoshi et al., 2011). Moreover, there are no
starburst amacrine cell inputs, further supporting that it cannot
be a classic sustained ON DS GC (Hoshi et al., 2011). The
soma size, arborization level, γ+ coupling and lack of starburst
inputs are all consistent with the classification of GC 606 as
a tON DS GC, known to be tracer coupled to at least two
classes of γ+ amacrine cells, one of which is clearly an IAC

FIGURE 3 | Ganglion cell - GABA colocalization in retinal connectome RC1. (A) Slice 371 TEM image displaying somas of 20 GCs (numbered) and 7 ON starburst
ACs (circled). GC 606 is the largest GC soma in the volume with major and minor diameters of 34 and 19 µm. (B) Slice 371 GABA channel (Anderson et al., 2011b)
with γ+ GC 606 and γ– GC 40488 labeled and starburst amacrine cells circled as in (A). Scale, 100 µm.
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FIGURE 4 | (A) XY projection of commingled GC 606 (light blue) and IAC
9769 (yellow) dendritic arbors just distal to the dendrites of starburst amacrine
cell (SAC) 4890 (red) in the inner plexiform layer of connectome RC1.
Computer generated three dimensional rendering of Viking annotations
generated with VikingPlot. Small dots indicate the relative sizes (scaled by a
factor of 2 for visualization) and locations of presynaptic specializations
(green), PSDs (orange), gap junctions (magenta). (B) XZ projection
demonstrating lamination of GC 606, SAC 4890, and IAC 9769. Scale,
100 µm.

(Ackert et al., 2006, 2009; Hoshi et al., 2011; Massey, personal
communication).

The initial stage of characterizing a neuron in a connectome is
defining its excitatory, inhibitory and coupling drive (Figure 5).
The drive for GC 606 extracted by data queries from connectome
RC1 is summarized in Table 2 for 1267 validated contacts.
As in previous analyses of the inner plexiform layer (Marc
and Liu, 2000), synaptic drive is dominated by inhibition with
≈3 inhibitory synapses per excitatory input and 5.5 µm2 of
inhibitory PSD area per µm2 of ribbon PSD. By measuring
dendrite lengths of representative cells from Hoshi et al. (2011),
we estimate that GC 606 represents only 18% of the dendritic
length of a complete tON DS GC. Thus, a complete tON DS
GC should receive ≈1440 excitatory ribbon synapses driving
≈54 µm2 of PSD area; ≈4350 inhibitory conventional synapses
driving ≈290 µm2 of PSD area; and make ≈1270 gap junctions
summing to 35 µm2 of coupling area across its arbor (assuming
no dramatic influence of eccentricity on the frequency of these
interactions). However, this comprises only about 6% of the gap
junction density in the inner plexiform layer (Marc et al., 2014a)
and since many of the gap junctions are suboptical, tracing them
by fluorescence imaging (even super-resolution methods) could
be challenging.

Excitation patterns are class-specific. GC 606 receives
glutamatergic excitation exclusively from ON cone BCs as can

be shown by querying the RC1 database with the TulipPaths
plugin (see section “Materials and Methods”): e.g., query “CB.∗,
ribbon, GC ON” which returns all the cone BC ribbon synapses
onto specific ON GCs from identified BCs (Figures 6, 7). Of the
259 ribbon complexes that drive GC 606 in RC1, 54% originate
from one class of BCs, CBb4w (Figure 6A), and over 99%
of the input excludes CBb5 BCs, which represent the primary
drivers of ON starburst amacrine cells (Figure 7). This is largely
due to stratification. CBb5 BCs stratify just proximal to CBb4w
BCs in the inner plexiform layer with only marginal overlap of
their axonal arbors (Lauritzen et al., 2016). Likewise, the ON
starburst amacrine cell 4890 stratifies just proximal to GC 606
(Figure 4), consistent with previous descriptions of tON DS GCs
(Hoshi et al., 2011). As a reference, the highly coupled IAC 9769
extensively commingles with GC 606 and samples many of the
same BCs with an even narrower preference spectrum dominated
by CBb4w and effectively excluding CBb5 (Figure 7). In contrast,
ON starburst amacrine cells contact a different profile with over
90% of their inputs deriving from CBb5 and CBb6, and less than
1% from CBb4w (Figure 7). While ON starburst amacrine cells
make numerous synapses onto GC dendrites in the RC1 volume,
they make no synapses onto either GC 606 or IAC 9769, nor do
they receive any synapses from IAC 9769.

In addition to its extensive excitatory cone BC input, GC 606
also collects 783 conventional inhibitory chemical synapses from
amacrine cells. Of those that are neurochemically identified, 33
have been mapped to definitive γ+ amacrine cells and only two
to G+ amacrine cells as they traverse GABA or glycine reference
slices (see Anderson et al., 2011b).

The key feature that distinguishes GC 606 is its extensive
and obvious coupling with amacrine cells and IACs (Figure 8).
The morphology of retinal gap junctions is characteristic of
vertebrate CNS, yielding multilaminar profiles at 0.27 nm/pixel
resolution with spacing identical to those reported by Marc
et al. (1988) using ≈0.1 nm resolution on film. In parsing the
GC arbor contained within RC1, it is clear that GC 606 makes
abundant small gap junctions with amacrine cell-like processes
(Table 2). Of the 228 gap junctions, 61 have been successfully
traced to specific source amacrine cells or IACs. The mean gap
junction diameters for the entire cohort (181 ± 56 nm) are not
significantly different from those of the identified amacrine cell
subset (paired homoscedastic T-test, p = 0.43, dof = 284). The
diameter range is 72–357 nm, and many gap junctions are thus
sub-optical. All but two of the GC gap junctions in the entire
volume RC1 are associated with amacrine cell processes and every
GC::AC gap junction that is associated with a complete soma
or traverses a reference slice arises from a GABAergic amacrine
cell. Figure 9 illustrates the arbor of GC 606 and its overlap with
coupled partner IAC 9769 (Figure 9A) and an additional set of
seven coupled amacrine cells (Figure 9B). Key locations where
representative gap junctions are formed are marked as A1, A2,
B1, B2, etc. and displayed in Figure 10.

While the arbor of IAC 9769 coarsely intertwines with GC 606
at several loci, fasciculation doesn’t correlate with the occurrence
of gap junctions, which typically appear at brief crossing points
where the processes align for less than a few µm and even
then gap junctions do not occur along the apparent alignment
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FIGURE 5 | Computer rendering of GC 606 (A) superimposed on connectome slice z304 with separate displays of (B) excitatory ribbon synapse PSDs, (C)
inhibitory conventional synapse PSDs and (D) 49 confirmed out of 228 identified gap junctions each displayed at 2× their true diameters. Most gap junctions are
with partner GABA+ amacrine cells in Figures 9, 10. Scale, 100 µm.

TABLE 2 | Contacts of GC 606.

Feature n Mean area µm2 ± 1SD Area range µm2 606 total area µm2 GC total area µm2 Area/µm2

Ribbon synapse PSDs 259 0.038 ± 0.023 0.009–0.153 9.8 54 0.005

Inhibitory synapse PSDs 783 0.068 ± 0.034 0.067–0.335 53.6 294 0.030

Gap junctions 228 0.028 ± 0.017 0.004–0.100 6.4 35 0.004

(Figure 9A). From a TEM perspective, gap junctions occur at
loci where gaps in suboptical glial processes expose the target,
similar to axonal ribbons in BCs (Lauritzen et al., 2012). IACs
are not the only γ+ neurons that couple with GC 606. A set
of conventional amacrine cells driven by CBb BCs are also
coupled to GC 606 (Figure 9B). While their reconstructed fields
are too limited to classify them all, they mostly appear to be
wide-field (wf) γ+ amacrine cells, and there may be two or
three classes that couple to GC 606. Representative validated
gap junctions from IAC 9769 and the other γ+ amacrine cells

are shown in Figure 10. At high resolution, it is clear that
most gap junctions are not fasciculations but rather crossings
(Figure 10 Column 1). The resolution of RC1 (2.18 nm/pixel) is
sufficient to reliably detect gap junctions and measure their areas
(Figure 10 Column 2) but is not adequate for complete validation
as occasional adherens junctions can mimic gap junctions in
oblique view (Marc et al., 2014b). High resolution (0.27 nm/pixel)
reimaging with goniometric tilt allows validation of gap junctions
by visualizing their characteristic multilaminar density profiles
(Figure 10 Columns 3, 4 and inset). Finally, all of these coupled
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FIGURE 6 | (A,B) Are combined VikingPlot and VikingView renderings. GC
606 and its bipolar cell input. (A) The dominant synaptic ribbon drive (58%)
arises from a single class, CBb4w, a coupled homocellular network of ON
cone bipolar cells. Each cell is colored individually. (B) The entire CBb input
cohort to GC 606. Scale, 100 µm.

neurons are GABAergic (Figure 10 Columns 5, 6). Of course
it is not possible to reimage every structure in every grid, but
of the more than 2000 partner-identified gap junctions tagged
in RC1 at 2.18 nm/pixel resolution, ≈20 have proven to be
mistaken adherens junctions (<1% error) through tilt series
recapture.

The real advantage of TEM connectomics database analysis is
that we can take additional network hops and ask what the roles
of the coupled interneurons might be. Every cell that is coupled to
GC 606 is exported as a ∗.tlp format and its embedding network

FIGURE 7 | The classes of bipolar cell input to GC 606 (Cyan, n = 247), IAC
9769 (gold, n = 145) and all ON starburst amacrine cell (SAC) dendrites (red,
n = 165) in RC1. Ordinate: number of synaptic ribbons from each class.
Abscissa. All bipolar cell groups, including ON cone bipolar cell classes CBb3,
CBb3n, CBb4, CBb4w, CBb5, CBb6, the aggregate OFF cone bipolar cell
superclass (CBa) and the rod BC class. CBbx cells are ON cone bipolar cells
from the volume margins with insufficient reconstruction to allow identification.

displayed in the Tulip framework9. All the amacrine cells coupled
to GC 606 receive excitatory drive from CBb3, CBb3n, CBb4,
and/or CBb4w ON cone BCs but not from the CBb5 and CBb6
cells that drive ON starburst amacrine cells and sustained ON and
transient ON-OFF DS GCs. Thus, all are ON γ+ amacrine cells
with matched input cone BC drive to that of GC 606.

Many ON γ+ amacrine cells are predominantly feedback
amacrine cells that target ON cone BCs. Consistent with this, the
density of feedback synapses in the ON cone BC networks in the
entire connectome RC1 appears ≈3:1 higher than feedforward
synapses: 2359 feedback synapses from amacrine cells onto BCs,
336 feedforward synapses by amacrine cells onto GCs and 564
feedforward synapses by amacrine cells onto other amacrine cells.
This lumped analysis masks the exceptional specificity of various
well-known cells. For example, rod BC-driven AI amacrine cells
are exclusively feedback amacrine cells, and the cohort of AI
amacrine cells in RC1 make 837 feedback synapses onto BCs and
0 feedforward synapses to either GCs or other amacrine cells. In
contrast, the specific cohort of ON γ+ amacrine cells coupled to
GC 606 also shows direct feedforward to GCs other than GC 606
with morphologies and circuities inconsistent with the tON DS
GC classification. For example, IAC 9769 has a strongly reversed
bias (>10:1 feedforward:feedback), targeting 38 amacrine cells
and 13 GCs but only 3 cone BCs (Figure 11).

Feedforward does not send inputs recursively into the
upstream network like feedback does, allowing for strong channel
isolation even if the interneuron is involved in feedback. An
excellent example is ON γ+ AC 598 (Figure 9B) which engages
in both feedforward and feedback, transferring sign-conserving
coupled signals from GC 606 via sign-inverting GABA synapses
to another ON GC (Figure 12).

9tulip.labri.fr
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FIGURE 8 | Coupling between GC 606 and IAC 9769. (A) Connectome RC1
image of CBb4w 5601 (cyan) providing dyadic synaptic ribbon (R) input to GC
606 (red) and IAC 9769 (yellow). A large gap junction between GC 606 and
IAC 9769 is visible as a unique dense line over the apposed membranes of
the two cells (bracketed by arrowheads). This is the basic identification
schema for identifying gap junctions in the RC1 volume at its native
2.18 nm/pixel. Note that the gap junction can be “zoomed” to subpixel image
levels in practice for annotating it (Anderson et al., 2011a). (B) TEM reimaging
of the same gap junction and ribbon complex visualized at high resolution
(0.27 nm/pixel) and goniometrically tilted 5◦ to optimize the multilaminar gap
junction structure (inset). Reprinted by permission from (Marc et al., 2013).

The coupled set of identified γ+ IACs/ACs and additional
unclassified ACs form over 200 gap junctions with GC 606 in the
RC1 volume, implying that the complete cell forms over 1000 gap
junctions, thereby comprising a massive coupling path between
the inhibitory and excitatory networks of the retina. Cross-class
inhibitory feedforward driven by coupling to GC 606 converges

FIGURE 9 | Selected sites of heterocellular coupling between inhibitory
amacrine cells and GC 606. (A) Two loci of coupling (A1, A2) between IAC
9769 and GC 606 viewed as a horizontal field. Lower image, vertical overlay.
(B) Seven loci of coupling between displaced amacrine cell (DAC) 10559; γ+
amacrine cells with somas in the RC1 volume (YACs) 5481, 5442, 5481, and
598; and wide-field γ+ amacrine cell (wfAC) processes 55403 and 55517
arising from somas outside the volume. Horizontal and vertical overlays. High
resolution analyses of these loci are shown in Figure 10.

on pure ON GCs (ID 7594, 15796) and ON-OFF GCs (ID 5107,
6857). ON GC 7594 is also γ+ (Figure 3), albeit at lower levels
than GC 606, but none of the GC 606-coupled amacrine cells
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appear to couple with GC 7594. ON-OFF GC 5107 is uncoupled
and γ−, while ON GC 15796 is very weakly γ+ and GC 6857 is
strongly γ+. Thus, this feedforward inhibition does not appear
to discriminate GC classes. We can mathematically summarize
this chain as: GC1 :: AC > iGC2 (where class 1 6= class 2, i.e.,
they are disjoint sets). Other GCs receiving feedforward input
in connectome RC1 are too incomplete to classify as they arise
from outside the volume and it is impossible to connect branches
to exclude mixed polarity inputs. Those with pure OFF inputs
(OFF GCs) remain a possibility. For example, GC 606-coupled
γ+ AC 5451 is pre-synaptic to GC 28950, an unbranched process
traversing the OFF layer with only OFF cone bipolar inputs. If
we use the rough scaling for size obtained in Table 2, a target GC
could receive at least 200 inhibitory synapses via a single amacrine
or axonal cell, driven by a coupled GC of a different class. This
must be a vast underestimate, since we cannot trace the majority
of the coupled processes that arise from outside the volume.

Finally, we have found no proven homocellular gap junctions
between GCs. This is consistent with findings in mouse retina
that homocellular coupling is always in-class, never cross-class
(Völgyi et al., 2009, 2013b; Pan et al., 2010). There are 2 candidate
junctions out of many thousands of gap junctions in the RC1
connectome, but we cannot validate the processes as GCs. The
lack of homocellular coupling in connectome RC1 does not mean
it does not exist in rabbit, since the RC1 volume is too small to
ensure discovery of coupling between the small overlap zones of
GCs of the same class.

GC 9787
Among the full cohort of GCs, OFF alpha GCs in the rabbit retina
are characterized by a number of key features. In peripheral retina
(rabbit volume RC1) they are among the largest of retinal GCs
with very large, simple dendrites of 1–2 µm diameter, dendritic
arbors of ≈0.5–0.9 mm, somas approaching 30 µm in diameter
and extensive heterocellular coupling to amacrine cells (Xin and
Bloomfield, 1997; Marc and Jones, 2002; Peichl et al., 2004). The
somas can protrude deeply into the inner plexiform layer and
insert large dendrites into the OFF layer of the inner plexiform
layer. Additionally, they receive extensive input from both OFF
(CBa) cone BCs and AII ACs (Kolb and Famiglietti, 1975; Marc
et al., 2014a). None of the GCs with somas positioned in the
RC1 volume fit this profile. Due to the sparse but uniform
coverage of OFF alpha GC dendrites, we presumed that the
largest crossing dendrite of the OFF layer in volume RC1 was
the most probable candidate to be from an OFF alpha GC: GC
9787 (Figure 13). GC 9787 is a large, 1.5 µm diameter process
traversing the proximal half of the OFF stratum, while reference
ON-OFF GCs, e.g., GC 5107 have their dendrites and input OFF
BC terminals in the most distal portion of the inner plexiform
layer. Because the dendrite exhibits a single branch along the
entire stretch of its crossing volume RC1, it likely represents
a cell with a much larger field than nearby bistratified diving
GC (Lauritzen et al., 2012) and even tON DS GCs, and clearly
excludes classification as a classical X-type sustained GCs and a
range of W-type cells, even those that are coupled. Beyond size,
four features suggest that this single large dendrite crossing the
volume arises from an OFF alpha GC. First, it collects inputs

only from a subset of OFF cone BCs (mostly CBa2), especially
at multi-ribbon, large PSD sites (Supplementary Figure S1), but
not CBa1 and CBa1w BCs and axonal ribbons of ON cone BCs
in the OFF layer. In contrast, dendrites of bistratified diving
GCs traverse the OFF layer collecting OFF-layer axonal ribbon
inputs from ON cone BCs but never inputs from the resident
OFF cone BCs (Lauritzen et al., 2012). Interestingly, GC 9787
appears to form large PSDs (up to 600 nm diameter) only at
pre-synaptic ribbon sites (Supplementary Figure S1) and never
at conventional (ribbonless) BC pre-synapse sites, which are, in
fact, quite common in the OFF layer and formed by the same
BCs onto different targets (Anderson et al., 2011b; Marc et al.,
2013). For example, bistratified ON-OFF GC 8575 collects two
conventional ribbonless OFF BC synapses for every OFF ribbon
it contacts. Second, GC 9787 receives conventional inhibitory
chemical synapses from every AII AC it encounters, six cells in
all across the volume (Supplementary Figure S2). Third, the
process traverses GABA-labeled slice z184 in the RC1 volume
multiple times and is clearly γ+ (Figure 14), making it an
excellent candidate for heterocellular coupling with γ+ amacrine
cells. Finally, it forms distinct gap junctions with amacrine cells
(Figure 14C).

Except for the southeast margin of the volume, GC 9787
is a smooth, unbranched dendrite very unlike the topology of
GC 606 and represents only ≈0.3 mm of length. The entire
passage of GC 9787 through the OFF layer collects 13 gap
junctions with an area of 9142 nm2/µm of dendrite length,
which is ≈46% of the gap junction density of GC 606. The
frequency and range of size of gap junctions formed by GC 9787
(≈0.37± 0.19 µm2) tend to be on the larger size of gap junctions
in RC1, but this sampling is not significantly different from those
gap junctions formed by GC 606 (≈0.28 ± 0.18 µm2) as assayed
by either parametric (unpaired, heteroscedastic t-test; F-test) or
non-parametric (Kolmogorov–Smirnov) measures. However, as
any power calculation is defined by the smallest sampling group
(gap junctions in GC 9787), the calculated power only reaches
≈0.3 with α = 0.05, and the false negative rate β is very high at
0.7. So, it is very possible that the gap junction sizes between GCs
are significantly different, especially since the GC 606 statistics are
stable (due to the very large sample) and its coefficient of variation
is stable to less than 25% of a decimated sample set.

The cohort of coupled amacrine cells exclusively receive input
from OFF cone BCs. Whether the class distribution of these
excitatory inputs matches that of GC 9787 will have to wait for
more detailed classification of the OFF cone BC cohort, but like
GC 9787, these amacrine cells exclusively receive this input via
ribbon-containing pre-synaptic sites. The set of GC 9787-coupled
amacrine cells includes two γ+ amacrine cells: a large, γ+

monostratified OFF AC (YAC 7859, Figure 13A) and a long,
unbranched amacrine cell process whose soma lies outside the
RC1 volume. While we cannot verify that every coupled process
is γ+, there is no evidence that any glycinergic amacrine cell in
RC1 is coupled to either GC 9787 or GC 606. While we previously
identified a single candidate glycine- and GABA-coupled GC
class in the rabbit retina (Marc and Jones, 2002), we have not yet
encountered a valid instance of glycinergic amacrine cell coupling
to GCs in RC1.
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FIGURE 10 | High-resolution analysis of coupling loci in Figure 9 imaged as: Column 1, VikingPlot renders; Column 2, RC1 native TEM at 2.18 nm/pixel; Columns 3
and 4, Goniometric reimaging at 0.27 nm/pixel; Column 5, soma or major process TEM; Column 6, GABA (γ) signal from the nearest intercalated CMP channel
(Anderson et al., 2011b). (A1) Gap junction between GC 606 (cyan) and IAC 9769 (yellow). (A2) Gap junction between GC 606 (cyan) and IAC 9769 (yellow). Inset in
columns 5,6 show a normalized plot of membrane density spanning the entire junction starting from the paramembranal density in GC 606, crossing the trilaminar
zone and ending in IAC 9769 (ImageJ). (B1) Gap junction between GC 606 (cyan) and γ+ amacrine cell YAC 5451 (pink). (B2) Gap junction between GC 606 (cyan)
and γ+ amacrine cell YAC 598 (tan). (B3) Gap junction between GC 606 (cyan) and γ+ amacrine cell YAC 5481 (yellow). (B4) Gap junction between GC 606 (cyan)
and γ+ amacrine cell YAC 5542 (lavendar). (B5) Gap junction between GC 606 (cyan) and displaced γ+ amacrine cell DAC 5451 (green). Note that the lamination of
the gap junction can be visualized through the inadvertent stain debris in column 4. (B6) Gap junction and adjacent conventional synapse between GC 606 (cyan)
and wf γ+ amacrine cell wfAC 55403 (red). (B7) Gap junction and adjacent conventional synapse between GC 606 (cyan) and wf γ+ amacrine cell wfAC 55517
(orange).
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FIGURE 11 | Graph of synaptic and gap junctional connectivity from IAC
9769 to amacrine, bipolar and ganglion cells. Tulip query showing bundled
(i.e., multiple synaptic paths between loci are represented as single lines)
dendrograms. Each line in the dendrogram represents a connection from IAC
9769 to another cell. (A) Annotation-free view with (C) inset marked (box).
(B) Key: Red symbols, IAC, γ+ ACs and unidentified ACs; green symbols, AII

and GACs (glycinergic amacrine cells); blue symbols, bipolar cells; orange
symbols, ganglion cells; small red symbols at left, IAC coupled ::ACs (coupled
amacrine cells); red lines and arcs, synaptic outflow from IAC 9769; blue lines
and arcs, synaptic input to IAC 9769 and instances of bipolar cell; yellow lines
and arcs, gap junctions. (C) Enlargement of inset in (A). GC 606 is strongly
coupled to IAC 9769 (circled yellow edge, GC::AC) and other γ+ amacrine
cells (yellow arc). Massive coupling networks exist among ON cone bipolar
cells (yellow box).

Similar to GC 606, there is feedforward signal flow from
GC 9787 via coupled OFF γ+ amacrine cells to both GC 9787
itself and other short fragments of non-alpha GC dendrites

in the OFF layer. Some non-alpha dendrites are themselves
γ+. At least one of these does not form gap junctions with
these same amacrine cells (ID 43716), implying that they may
be coupled to different sets of amacrine cells, as is the case
with GC 606. However, with both the GC and amacrine cell
extending processes beyond the volume boundaries of RC1, it is
possible that such coupling occurs elsewhere in their arbors. Two
GC processes do couple with these same amacrine cells. Both
(ID 28950, 5150) are also large-caliber single- or un-branched
processes and receive frequent input from AII amacrine cell
lobules, not inconsistent with OFF alpha dendrites. The high
overlapping coverage of adjacent OFF alpha dendritic arbors
(Völgyi et al., 2005) therefore makes it impossible to rule out
that these are OFF alpha dendrites from the same or other OFF
alpha GCs. While a complete tabulation of the connectivity of
coupled OFF amacrine cells would require over a year’s worth of
dedicated annotation and classification time, Tulip queries reveal
that some partners such as wf γ+ AC 7859 appear to be biased
toward feedforward contacts, similar to IAC 9769 in the ON
system, and support cross-class inhibitory feedforward to other
GC classes.

DISCUSSION

GABA Signatures
GABA content is a useful signature for predicting coupling in
the GC layer. There have been no known GABA transporters
described on any GCs, much less GCs in the adult rabbit retina
(Hu et al., 1999). Unlike coupled GCs, uncoupled cells have
no GABA signal but all GCs have mathematically inseparable
glutamate signatures (Marc et al., 1990, 1995; Marc and Jones,
2002), regardless of GABA content (Figure 1E). In support
of this observation, we have found no gap junctions made
by any γ− GCs in RC1. GCs display GABA levels ranging
from undetectable to close to bona fide amacrine cell levels
(Marc and Jones, 2002), with the majority centered around
300–600 µM, 10-fold lower than typical starburst amacrine
cell levels (Figure 1F). Given that specific GCs show extensive
heterocellular coupling with markers such as Neurobiotin (MW
322), it is not surprising that a molecule several times smaller,
such as GABA (MW 103), is highly mobile through gap junctions,
similar to quantitative measures of glycine coupling into ON cone
BCs from glycinergic AII amacrine cells (Marc et al., 2014a).
Glycine is present in appreciable amounts in BCs despite the lack
of a synthesizing enzyme and transporter, explicitly due to AII
amacrine cell coupling. Indeed, for other work, we use glycine
as an index on ON cone BCs revealing their coupling to AII
amacrine cells (Marc et al., 2014a). Importantly, GCs known
to show heterocellular coupling such as rabbit OFF alpha GCs
(Xin and Bloomfield, 1997) and tON DS GCs (Hoshi et al.,
2011) uniformly show intermediate GABA levels (Marc and
Jones, 2002). Importantly, Ackert et al. (2006, 2009) and Hoshi
et al. (2011) also demonstrated that an axonal cell (axon-bearing
“amacrine” cell) virtually identical in dendritic morphology to
our IAC 9769 was both coupled to tON DS cells and γ+

by immunocytochemistry, and that other amacrine cells with
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FIGURE 12 | Coupling flow from GC 606 through γ+ amacrine cell 598 to multiple targets. (A) Tulip query bundled dendrogram plot of all the sources and targets of
amacrine cell 598: GC yellow circles, ganglion cells: GAC green dots, glycinergic amacrine cells; γAC red dots, GABAerigc amacrine cells; CBb cyan dots, ON cone
bipolar cells; RB magenta dot, rod bipolar cell. Line color denotes the presynaptic source. Arrows denote presynaptic source in γAC to γAC paths. Each line
represents a bundle of synaptic lines. (B) Validation of GABAergic identity for AC 598. (C) A gap junction between AC 598 (red) and GC 606 (yellow) delimited by
arrowheads. (D) Synapse from AC 598 (red) to GC 38810 (arrow).
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FIGURE 13 | OFF alpha ganglion cell candidate dendrite GC 9787 crosses
the connectome volume. (A) Horizontal view of OFF alpha GC 9787 (cyan)
dendrite in comparison to ON–OFF GC 5107 arbor (yellow–green) and four
reference bipolar cells. ON–OFF GC 5107 is driven by both ON cone bipolar
cells (e.g., CBb3n 6120 tangerine) and OFF cone bipolar cells (CBa 165 blue)
that bracket the OFF inner plexiform layer and are distal within the inner
plexiform layer to the rod bipolar cell terminals (e.g., RB 11031, magenta). GC
9787is driven by a separate set of more proximal OFF cone bipolar cells (e.g.,
CBa 473 gray). Ellipses delimit bipolar cell axonal fields. (B) Vertical view
displaying the separate strata for rod (RB), ON cone (CBb) and OFF cone
(CBa) bipolar cells. CBa 473 that drives OFF alpha GC 9787 is proximal to the
OFF CBa 165 and similar bipolar cells that drive GC 5107.

differing arbor patterns were also coupled. In contrast, GCs
that we know are definitively not dye-coupled, such as primate
midget GCs (Dacey and Brace, 1992), never show GABA coupling
(Kalloniatis et al., 1996).

This sets the framework for using glutamate and GABA
as markers of GC coupling in other species (Figure 2), since
antibodies targeting small molecules have no species bias.
In surveying our library of all vertebrate classes and many
vertebrate orders (Supplementary Table S2), we find that
apparent heterocellular coupling between GCs and amacrine cells
is widespread with only one group failing to show evidence of
coupling: Trachemys scripta elegans (formerly Genus Pseudemys),
Order Testudines, Class Reptilia. As all vertebrate classes show
evidence of heterocellular GC::AC coupling, this argues for such
signaling as a feature of primitive retina and perhaps even of its
predecessor diencephalic primordia. Indeed, extensive coupling

FIGURE 14 | GABA-coupled signals in GC 9787. (A) Single TEM slice z184
containing a segment of GC 9787 (cyan) flanked by AII AC lobules
(yellow–green). (B) The same TEM image from slice z184 overlayed with the
neighboring intercalated GABA signal showing positive colocalization. Scale
5 µm. (C) Typical gap junction between GC 9787 (cyan) and an amacrine cell
(AC 85607) at a crossing, non-fasciculated junction. Scale 1 µm. Inset. High
resolution image of the gap junction, showing characteristic gap occlusion.
Scale 100 nm.

and regions of high cell firing synchronicity is a hallmark of
early mammalian brain differentiation (Niculescu and Lohmann,
2014). In sum, these considerations argue for heterocellular
GC::AC coupling as a retinal plesiomorphy (a basal feature
of ancient retinas), not a synapomorphy (specialization of a
clade) among select classes, and that heterocellular coupling is
foundational for the retina as argued by Völgyi et al. (2013a).

Coupling and Feedforward
But what is the functional network role of heterocellular
coupling? A fundamental clue arose when certain retinal GCs and
downstream neurons in brain were found to show synchronized
spiking across cells (Alonso et al., 1996; Hu and Bloomfield, 2003)
and that the mostly narrowly correlated retinal firing persisted
after global pharmacologic synaptic suppression, leading to the
argument that it was mediated by coupling (Brivanlou et al.,
1998). Subsequent analyses have refined these concepts to show
that correlated spiking appears to occur within sets of the
same GC class, including the OFF alpha GC class, and that
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one essential pathway is heterocellular coupling (Völgyi et al.,
2013b; Roy et al., 2017). Our findings are consistent with this
view: (1) homocellular cross-class GC coupling is non-existent
in connectome RC1, (2) heterocellular coupling between GCs
and multiple classes of amacrine cells is abundant and robust,
and (3) in instances where multiple GC processes couple to the
same amacrine cell, the ganglion processes are not obviously of
different classes. No evidence emerged to show that any amacrine
cells in the coupling networks for one tON DS GC and one OFF
alpha GC are shared: they seem completely separate. However, we
do find sparse instances of coupling among the γ+ ACs coupled
to GC 606, but these short fragments are impossible to classify
and may reflect homocellular coupling between amacrine cells
of the same class, which has been supported, for example, for
the IACs due to their robust tracer coupling (Wright and Vaney,
2004) and Neurobiotin visualization using photochromic 2-stage
intensification as described in Vaney (1992).

Interstitial amacrine cells and ON γ+ amacrine cells coupled
to tON DS GCs share the same profile of excitation: a bias for class
CBb4w ON cone BCs and against classes CBb5 and CBb6 cells
that drive starburst amacrine cells (Figure 7). While our analysis
of OFF cone BC populations is not yet as refined as for ON cone
BCs, the excitatory drive to amacrine cells coupled to OFF alpha
GCs shares similar biases: toward OFF Cba2 BCs and away from
CBa1 BCs. Considering the high diversity of vertebrate amacrine
cell classes (Wagner and Wagner, 1988; MacNeil et al., 1999),
every instance of GC::AC coupling could easily involve unique
sets of amacrine cells for each coupled GC class, though such class
separation may not be essential.

But amacrine cells are not simply conduits for coupling. Every
amacrine cell class that we know well is either GABAergic or
glycinergic. Indeed, every amacrine or axonal cell involved with
heterocellular GC::AC coupling whose signature can be retrieved

is GABAergic. And connectomics can resolve the targets of these
coupled amacrine and axonal cells. Importantly, both ON and
OFF instances of GC::AC coupling demonstrate feedforward
synapses directly from coupled ACs to different classes of GCs:
cross-class inhibition. As schematized in Figure 15, heterocellular
coupling allows an active GC to directly inhibit its neighbors:
GC1::ON AC > i GC2; where >i denotes sign-inverting
signaling, :: denotes coupling and classes GC1 and GC2 are
disjoint. The essential feature is that inhibitory postsynaptic
currents (IPSCs) should be generated in a halo of different GC
classes closely synchronized with the spikes of a source GC. If
these IPSCs were strong enough to suppress some incidentally
coincident spikes in target GCs, this could create an improved
signal-to-noise ratio (SNR) at the CNS downstream targets of the
source GC compared to a parallel channel (Figure 15). Certain
GCs (e.g., ON–OFF DS GCs) show Na-dependent dendritic
spiking (Oesch et al., 2005; Schachter et al., 2010), potent spike
veto by inhibitory processes (Sivyer and Williams, 2013) and
postsynaptic current integration (Brombas et al., 2017). This
argues that dendritic inhibition in GCs can be strong enough
to suppress dendritic spiking. The bleed-through of excitation
from the tON DS GC into a set of GABAergic neurons that
target different GCs means that such heterocellular coupling
likely has the ability to suppress activity in nearby disjoint
populations.

While the potential for precise timing of both synchronized
spikes and feedforward inhibition is clear, it is also certain that
many wf γ+ amacrine cells (e.g., Figure 12) provide feedback
to cone BCs of matched polarity: ON AC > i ON CBb and
OFF AC > i OFF CBa. This provides a much broader fan-out
of targets for the GC::AC inhibitory couple, amplified explicitly
by the positive gain of BC ribbon synapses (e.g., Lauritzen et al.,
2016).

FIGURE 15 | Signal flow through the tON DS GC :: γ+ AC network. Key in inset. (1) ON cone bipolar cell signals are collected by all cell classes at AMPARs or
AMPARs + NMDARs. GC :: AC gap junctions connect networks of (2) γ+ IACs and wide-field (wf) γ+ ACs. IACs are predominantly feedforward, driving sets of
ganglion cells including (3) the coupled tON DS GC, (4) local dendrites from GCs outside this coupled set, and (5) distant instances of tON DS GCs in the far surround
via their axons. IACs also engage in (6) nested feedback with wf γ+ ACs, which are themselves mixed feedforward (not shown) and (7) feedback inhibitory neurons.
This model may also support a directional bias for tON DS GCs with the preferred direction arising from the regions driven by the axonal field of distant IACs.
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Heterocellular coupling between spiking projection neurons
and local inhibitory neurons may be more widespread than
appreciated. Like retina, olfactory bulb generates synchronized
oscillatory excitation/inhibition interactions that are enhanced
by Cx36-mediated coupling (Pouille et al., 2017) though the
initial mechanism was modeled as homocellular coupling
of mitral cell (MC) pools. However, detailed analysis of
inhibitory intraglomerular networks provide strong evidence
for heterocellular coupling between mitral cells and specific
short axon GABAergic cells in olfactory glomeruli and that the
coupling, at least, is part of the mechanism that truncates events
to permit more precise excitation/inhibition coordination in
mitral cells (Liu et al., 2016). This may be a common mechanism
in many “transient” neurons as it is consistent with feedforward
onto the coupled source in both instances of GCs, albeit with
completely different inhibitory networks. Similarly, physiological
evidence supports an analogous network for timing control in
olfactory bulb. While little is known of the cell class distinctions
among neighboring mitral cells in olfactory bulb, there is strong
evidence for multiple projection classes, intrabulb short-range
excitatory projections, and inhibitory classes including different
classes of GABAergic short axon cells (Nagayama et al., 2014). We
would predict that specific classes of short axon neurons (SANs)
make heterocellular gap junctions with specific mitral cells and
inhibit neighboring mitral cells where MC1 and MC2 are disjoint
sets: M1 :: SAN > i M2.

Finally, coupling networks involving inhibitory neurons can
take on very complex frequency-dependent operations, such as
Golgi neurons in cerebellum (Vervaeke et al., 2010, 2012; Pereda
et al., 2013). In a similar fashion, it is plausible that the IAC might
not have effective dendritic spiking and are more passive cables,
like cerebellar Golgi interneurons, but the high density of GC::AC
coupling acts as an excitation repeater. Further, such networks
could either enhance synchrony or desynchronize in different
excitation modes (Vervaeke et al., 2010).

Arbor Size and Resolution
There is a major caveat arising from the conflicting demands
of connectomics coverage and resolution. Once captured, one
can downsample but never upsample, one can mine an area
but never expand. Dedicating more bits to one mode steals
from the other. Unlike small-field BCs and glycinergic amacrine
cells, GCs and GABAergic neurons can have arbors much larger
than a connectome. Ackert et al. (2009) showed the axonal cells
coupled to ON DS GCs had fine extensions of their terminal
dendrites that ascended into the OFF layer and co-stratified
with the OFF ChAT+ starburst amacrine cells. As IAC 9769 has
long straight dendrites that exit the full volume perimeter, such
unusual morphologic features cannot be excluded. Thus, there
appears at least two crossover paths between the IAC and the OFF
layer. In addition to the apparent cholinergic layer ramification,
it is clear (via Tulip queries) that crossover glycinergic amacrine
cells driven by OFF cone BCs also synapse on IAC 9769. The
data of Ackert et al. (2009) do not reveal a glycinergic path,
though it clearly exists. Their data support the OFF starburst
amacrine cell path: OFF CBa > OFF SAC > IAC :: ON DS
GC; where > denotes sign-conserving synapses and :: denotes

coupling. It is remarkable that, despite abundant opportunity
(Figure 4), the ON γ+ IAC completely rejects interaction with
the ON starburst amacrine cell arbors in favor of the OFF
arbors.

Direction of Motion
The coupled tON DS GC is a largely separate stream of directional
signaling with little apparent engagement with the ON-OFF DS
cohort (Ackert et al., 2006; Hoshi et al., 2011), but does contribute
to the classic three-lobed orientation distribution of ON DS
GCs reported by Oyster and Barlow (1967). Consistent with this
model, we find not only complete synaptic separation of tON
DS GCs and the starburst amacrine cell network, but also nearly
total separation of each other’s BC input profile. Nevertheless, like
other DS cells, directional signaling by tON DS GCs is dependent
on GABAergic inhibition and is suppressed after global GABA
blockade (Ackert et al., 2006, 2009). Directional selectivity in
visual cortex has been thought to be driven by asymmetries in
excitation, although differing spatial distributions of excitation
and inhibition clearly play a role (Li et al., 2017). IACs, as axonal
cells, offer a built-in simple asymmetry that could be maximized
for low velocity directional motion if: (1) their axons behave
as classical axons and arborize into predominantly presynaptic
terminals; (2) the axons do not form gap junctions; and (3) the
axons target tON DS GCs. We simply don’t have information
on the latter in connectome RC1, but it is important to consider
two quantitative points. First, a complete tON DS GC likely
receives over 4,000 inhibitory synapses and the bulk of those
will be GABAergic (15-fold more prevalent than glycinergic
synapses onto GC 606). The fact that coupled amacrine cells
make up a small fraction of that inhibitory input via feedforward
simply means that the bulk of inhibition is driven by sets of
wide field amacrine cells or IAC axons arising from outside
the volume, displaced from the centroid of the GC 606 arbor.
Importantly, prior work had shown these IACs (also known
as axon-bearing amacrine cells) had long sparse axons (Ackert
et al., 2006, 2009; Hoshi et al., 2011) but some of these are
incomplete, as a more complex terminal arbor was demonstrated
in Massey (2008). A more complete description of bona fide
IACs in primate by Dacey (1989) describe each IAC as being
surrounded by a sparse halo of axon terminals roughly 10x the
diameter of the dendritic arbor and yielding perhaps over 100
fold greater coverage. Similarly, IAC 9769 in RC1 is identical
to the PA1 polyaxonal cell in rabbit meticulously described by
both Famiglietti (1992) and Wright and Vaney (2004). In any
case, there is ample additional space in the tabulation of synapses
to accommodate sparse inhibitory cells with very high coverage
factors, in addition to IAC axons. Wright and Vaney (2004) also
show that the net density (length) of axonal processes is ≈10×
higher than dendritic density. If this translates to synaptic density
and the axon has the same target preferences as the IAC dendrites,
it is very likely that a large fraction of inhibition targeting tON
DS GCs could arise from the IAC or PA1 polyaxonal cell. We
have not shown that the non-IAC processes coupled to GC 606
correspond to the diffuse multistratified cell previously described
(e.g., Hoshi et al., 2011), but presuming we are selecting for parts
of their arbors, this cell may be even better suited than the IAC
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for mediating cross-class inhibition. The second point is that
a gap junction on GC 606 is never more than a micron away
from a BC ribbon input, so the shunting path for any dendritic
spikes is very short. This lays the framework, via IAC axons or
wf amacrine cells, to provide narrowly shaped and time-locked,
delayed feedforward IPSCs to other tON DS GC instances in the
coupled neighborhood.

CONCLUSION

Physiological and tracer studies have firmly established
heterocellular coupling as a norm in the mammalian retina.
By combining small molecule markers and connectomics we
provide some additional insights. First, heterocellular GC::AC
coupling is likely a plesiomorphy and not a synapomorphy.
Second, in the instances of GC::AC coupling we know well in
the mammalian retina, one involving tON directionally selective
GCs and the other engaging transient OFF alpha GCs, the
coupled GABAergic amacrine and axonal cells clearly inhibit
many neighboring cells, including feedforward inhibition onto
neighboring GCs of different classes, outside the coupled set.
Thus, an activated GC may inhibit neighboring GCs of different
classes in a time-locked fashion, potentially erasing coincident
dendritic spikes across GC classes. If we can now begin to tabulate
and explore the detailed distributions of inhibition relative to
the sites of coupling, we may uncover spatial asymmetries that
convert to temporal delays necessary for encoding direction in
this unique cohort of ganglion cells.
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FIGURE S1 | Multi-ribbon OFF cone bipolar cell inputs to GC 9787. Five serial
TEM sections (z168–z172) are coded for GC 9787 (cyan) and CBa 165 (green).
Over a span of 280–300 nm, at least 4 bipolar cell synaptic ribbons (R) dock
presynaptically across from a single large postsynaptic density (bracketed by
arrowheads). Arrows denote direction of synaptic flow (pre→ post). Scale
1000 nm.

FIGURE S2 | GC 9787 dendrites (cyan) collect multiple synaptic inputs from
glycinergic AII amacrine cell distal lobular appendages (green) across the volume.
(A) Conventional synapses from GAC AII 7113 onto both GC 9787 and CBa
35696 (tan) which is presynaptic to GC 9787 at two other sites. (B) Convergent
signaling from γ+ amacrine cells (pink γ+ AC), GAC AII 284, and a CBa bipolar
cell (tan) onto GC 9787. GAC AII 7157 makes synapses onto 9787 in another
section (not shown) but is also presynaptic to the CBa bipolar cell. (C) Single
synapse from lobule GAC AII 8032 onto GC 9787. (D) Classical multiple
presynaptic densities associated with a single GAC AII synapse. Scales 1000 nm.

TABLE S1 | Examples of retinal cell classes, intermediate groups and
superclasses.

TABLE S2 | GABA immunocytochemistry species list.

TABLE S3 | Log10 relative ligand required to block tissue binding.
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Vervaeke, K., Lőrincz, A., Nusser, Z., and Silver, R. A. (2012). Gap junctions
compensate for sublinear dendritic integration in an inhibitory network. Science
335, 1624–1628. doi: 10.1126/science.1215101

Völgyi, B., Abrams, J., Paul, D. L., and Bloomfield, S. A. (2005). Morphology and
tracer coupling pattern of alpha ganglion cells in the mouse retina. J. Comp.
Neurol. 492, 66–77. doi: 10.1002/cne.20700

Völgyi, B., Chheda, S., and Bloomfield, S. A. (2009). Tracer coupling patterns of
the ganglion cell subtypes in the mouse retina. J. Comp. Neurol. 512, 664–687.
doi: 10.1002/cne.21912

Völgyi, B., Kovács-Öller, T., Atlasz, T., Wilhelm, M., and Gábriel, R. (2013a). Gap
junctional coupling in the vertebrate retina: variations on one theme? Prog.
Retin. Eye Res. 34, 1–18. doi: 10.1016/j.preteyeres.2012.12.002

Frontiers in Neural Circuits | www.frontiersin.org 22 November 2018 | Volume 12 | Article 90138

https://doi.org/10.1523/JNEUROSCI.15-07-05106.1995
https://doi.org/10.1523/JNEUROSCI.15-07-05106.1995
https://doi.org/10.1002/cne.901820204
https://doi.org/10.1002/cne.901820204
https://doi.org/10.1113/jphysiol.1976.sp011273
https://doi.org/10.1113/jphysiol.1976.sp011273
https://doi.org/10.1113/jphysiol.1977.sp011860
https://doi.org/10.1152/jn.1983.49.2.350
https://doi.org/10.1016/0042-6989(75)90028-0
https://doi.org/10.1016/S0896-6273(00)80700-X
https://doi.org/10.1017/S0952523899166057
https://doi.org/10.1002/cne.903210112
https://doi.org/10.1002/cne.903210112
https://doi.org/10.3389/fncir.2014.00098
https://doi.org/10.3389/fncir.2014.00098
https://doi.org/10.1093/cercor/bht175
https://doi.org/10.1093/cercor/bht175
https://doi.org/10.1016/j.neulet.2017.09.003
https://doi.org/10.1016/j.neuron.2005.06.036
https://doi.org/10.1016/j.neuron.2005.06.036
https://doi.org/10.1126/science.155.3764.841
https://doi.org/10.1126/science.155.3764.841
https://doi.org/10.1002/cne.22254
https://doi.org/10.1002/cne.902630103
https://doi.org/10.1016/j.bbamem.2012.05.026
https://doi.org/10.1016/j.bbamem.2012.05.026
https://doi.org/10.1002/cne.21617
https://doi.org/10.1113/JP274408
https://doi.org/10.1016/j.ympev.2014.02.023
https://doi.org/10.1016/0006-8993(85)90304-X
https://doi.org/10.1016/j.neuron.2013.06.037
https://doi.org/10.1016/j.neuron.2013.06.037
https://doi.org/10.1073/pnas.1708261114
https://doi.org/10.1073/pnas.1708261114
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1152/jn.1988.60.5.1568
https://doi.org/10.1152/jn.1990.63.1.105
https://doi.org/10.1371/journal.pcbi.1000899
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1016/j.neuron.2007.07.042
https://doi.org/10.1038/nn.3565
https://doi.org/10.1016/0304-3940(91)90024-N
https://doi.org/10.1016/0165-0270(92)90013-4
https://doi.org/10.1016/S0079-6123(02)36020-5
https://doi.org/10.1016/1350-9462(94)90014-0
https://doi.org/10.1523/JNEUROSCI.18-24-10594.1998
https://doi.org/10.1523/JNEUROSCI.18-24-10594.1998
https://doi.org/10.1016/S0165-0173(99)00070-3
https://doi.org/10.1016/j.neuron.2010.06.028
https://doi.org/10.1016/j.neuron.2010.06.028
https://doi.org/10.1126/science.1215101
https://doi.org/10.1002/cne.20700
https://doi.org/10.1002/cne.21912
https://doi.org/10.1016/j.preteyeres.2012.12.002
https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-12-00090 November 14, 2018 Time: 16:6 # 23

Marc et al. Amacrine-Ganglion Cell Coupling

Völgyi, B., Pan, F., Paul, D. L., Wang, J. T., Huberman, A. D., and Bloomfield, S. A.
(2013b). Gap junctions are essential for generating the correlated spike activity
of neighboring retinal ganglion cells. PLoS One 8:e69426. doi: 10.1371/journal.
pone.0069426

Wagner, H. J., and Wagner, E. (1988). Amacrine cells in the retina of a teleost
fish, the roach (Rutilus rutilus): a Golgi study on differentiation and layering.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 321, 263–324. doi: 10.1098/rstb.1988.
0094

Watt, C. B., Su, Y. Y., and Lam, D. M. (1984). Interactions between enkephalin and
GABA in avian retina. Nature 311, 761–763. doi: 10.1038/311761a0

Wright, L. L., and Vaney, D. I. (2004). The type 1 polyaxonal amacrine cells
of the rabbit retina: a tracer-coupling study. Vis. Neurosci. 21, 145–155.
doi: 10.1017/S0952523804042063

Xin, D., and Bloomfield, S. A. (1997). Tracer coupling pattern of amacrine and
ganglion cells in the rabbit retina. J. Comp. Neurol. 383, 512–528. doi: 10.1002/
(SICI)1096-9861(19970714)383:4<512::AID-CNE8>3.0.CO;2-5

Yoshikami, D. (1981). Transmitter sensitivity of neurons assayed by
autoradiography. Science 212, 929–930. doi: 10.1126/science.6262911

Zou, J., Salarian, M., Chen, Y., Zhuo, Y., Brown, N. E., Hepler, J. R., et al.
(2017). Direct visualization of interaction between calmodulin and connexin45.
Biochem. J. 474, 4035–4051. doi: 10.1042/bcj20170426

Conflict of Interest Statement: RM is a principal of Signature Immunologics Inc.,
the source of some of the antibodies used for this research.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2018 Marc, Sigulinsky, Pfeiffer, Emrich, Anderson and Jones. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 23 November 2018 | Volume 12 | Article 90139

https://doi.org/10.1371/journal.pone.0069426
https://doi.org/10.1371/journal.pone.0069426
https://doi.org/10.1098/rstb.1988.0094
https://doi.org/10.1098/rstb.1988.0094
https://doi.org/10.1038/311761a0
https://doi.org/10.1017/S0952523804042063
https://doi.org/10.1002/(SICI)1096-9861(19970714)383:4<512::AID-CNE8>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1096-9861(19970714)383:4<512::AID-CNE8>3.0.CO;2-5
https://doi.org/10.1126/science.6262911
https://doi.org/10.1042/bcj20170426
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


ORIGINAL RESEARCH
published: 14 November 2018

doi: 10.3389/fnana.2018.00095

Verifying, Challenging, and
Discovering New Synapses Among
Fully EM-Reconstructed Neurons in
the Leech Ganglion
Jason E. Pipkin 1*, Eric Allen Bushong 2, Mark H. Ellisman 2,3 and William B. Kristan Jr. 1

1Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States, 2National Center for
Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, United States, 3Department
of Neuroscience, University of California, San Diego, La Jolla, CA, United States

Edited by:
Yoshiyuki Kubota,

National Institute for Physiological
Sciences (NIPS), Japan

Reviewed by:
Marcel Oberlaender,

CAESAR Zentrum für fortgeschrittene
europäische Wissenschaft und

Forschung, Germany
Antonia Marin-Burgin,

CONICET Instituto de Investigación
en Biomedicina de Buenos Aires

(IBioBA), Argentina

*Correspondence:
Jason E. Pipkin

jason.e.pipkin@gmail.com

Received: 16 July 2018
Accepted: 18 October 2018

Published: 14 November 2018

Citation:
Pipkin JE, Bushong EA, Ellisman MH

and Kristan WB Jr (2018) Verifying,
Challenging, and Discovering New

Synapses Among Fully
EM-Reconstructed Neurons in the

Leech Ganglion.
Front. Neuroanat. 12:95.

doi: 10.3389/fnana.2018.00095

Neural circuits underpin the production of animal behavior, largely based upon the
precise pattern of synaptic connectivity among the neurons involved. For large numbers
of neurons, determining such “connectomes” by direct physiological means is difficult, as
physiological accessibility is ultimately required to verify and characterize the function of
synapses. We collected a volume of images spanning an entire ganglion of the juvenile
leech nervous system via serial blockface electron microscopy (SBEM). We validated
this approach by reconstructing a well-characterized circuit of motor neurons involved
in the swimming behavior of the leech by locating the synapses among them. We
confirm that there are multiple synaptic contacts between connected pairs of neurons
in the leech, and that these synapses are widely distributed across the region of
neuropil in which the neurons’ arbors overlap. We verified the anatomical existence
of connections that had been described physiologically among longitudinal muscle
motor neurons. We also found that some physiological connections were not present
anatomically. We then drew upon the SBEM dataset to design additional physiological
experiments. We reconstructed an uncharacterized neuron and one of its presynaptic
partners identified from the SBEM dataset. We subsequently interrogated this cell pair
via intracellular electrophysiology in an adult ganglion and found that the anatomically-
discovered synapse was also functional physiologically. Our findings demonstrate the
value of combining a connectomics approach with electrophysiology in the leech nervous
system.

Keywords: serial block face scanning electron microscopy, invertebrate neurobiology, leech, EM reconstruction,
synapse

SIGNIFICANCE STATEMENT

The function of any nervous system depends on the arrangement of its component neurons into
circuits. Determining this precise pattern requires an account of which neurons are linked by
synapses, and where. Here, we use serial electron microscopy to confirm, challenge, and discover
synapses in the neuropil of one ganglion from a juvenile leech. Relying on the homology of the
ganglion from animal to animal, we demonstrate that we can identify synapses we knew existed
from previous physiological work, and that we can confirm a new anatomically-discovered synapse
by subsequently recording from the same neurons in a different animal. Here, we show how analyses
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of anatomical detail and physiologically determined interactions
complementarily yield insight into how neural circuits produce
behavior.

INTRODUCTION

The behavioral repertoire of a given neural circuit is constrained
in part by the connectivity pattern among its constituent
neurons. To understand how circuits produce behavior, it is
therefore necessary to know which neurons make synapses
onto which other neurons. Deciphering this connectivity by
means of exhaustive electrophysiology is possible in preparations
involving relatively few neurons, as in the ∼25–30 neuron
crustacean stomatogastric ganglion (Marder and Bucher, 2007).
As the number of neurons increases however, an imaging-based
anatomical approach is required to capture the full connectivity
of all neurons within a given volume of tissue (Denk et al.,
2012). The resolution necessary to reconstruct neurons and
identify synapses among them is provided by serial electron
microscopy. For instance, the C. elegans hermaphrodite nervous
systemwas reconstructed from a set of overlapping serial electron
micrographs from ____ individual animals, resulting in the
first whole-organism ‘‘connectome’’ (White et al., 1986). Yet
the time-consuming nature of this approach has, until recently,
dissuaded attempts to apply serial EM to larger volumes of tissue.
In the past decade the development of serial blockface scanning
electron microscopy (SBEM; Denk and Horstmann, 2004) and
refinement of serial section transmission electron microscopy
(ssTEM, e.g., Bock et al., 2011; Kasthuri et al., 2015; Ohyama
et al., 2015) has dramatically reduced the image acquisition
time for large volumes of neural tissue. The resulting datasets
have been used to provide insight into both existing and novel
circuits. Among others, these results include discovering new
features of a known retinal circuit (Briggman et al., 2011), the
circuitry of the tail of male C. elegans (Jarrell et al., 2012),
a new type of retinal bipolar cell (Helmstaedter et al., 2013),
the complete visual circuitry of a polychaete worm (Randel
et al., 2014), the elucidation of circuits responsible for turning
behavior (Ohyama et al., 2015) in larval Drosophila as well
as olfactory processing in both the larval (Berck et al., 2016;
Eichler et al., 2017) and adultDrosophila (Takemura et al., 2017a;
Tobin et al., 2017), the reconstruction of visual circuits in larval
(Larderet et al., 2017) and adult Drosophila (Takemura et al.,
2013, 2017b), and the full connectome of the central nervous
system of the larval tunicate Ciona intestinalis (Ryan et al.,
2016).

To link the connectivity information gleaned from SBEM or
ssTEM datasets to models of circuit function, the anatomically-
predicted synapses must be testable physiologically. In C. elegans,
the connectome has been essential for guiding cell manipulation,
ablation, and functional imaging experiments (Bargmann and
Marder, 2013). Similarly, calcium confirmed the existence of
synapses identified by EM reconstructions ofDrosophila circuitry
(Ohyama et al., 2015; Takemura et al., 2017b). These applications
rely on the ability to identify the same neurons from preparation
to preparation—an advantage afforded by many invertebrate
systems.

The utility of an anatomically-defined connectivity map
is enhanced by the amenability of the preparation to
electrophysiological techniques. A connectome specifies
which neurons are synaptically connected, but subsequent
physiological inquiry is needed to determine whether those
connections are inhibitory or excitatory and how strongly a
given presynaptic neuron influences its postsynaptic partners.
The leech ganglion is particularly advantageous for this purpose
as the positioning and size of its neurons render them accessible
to sharp electrode intracellular electrophysiology in a way
that neurons of C. elegans or Drosophila are not. In the
medicinal leech, Hirudo verbana, behaviors are produced by a
chain of homologous ganglia each containing approximately
400 neurons. To date, most of the work uncovering the circuitry
responsible for given behaviors in the leech has relied on
intracellular electrophysiology (e.g., Nicholls and Baylor, 1968;
Ort et al., 1974) or optical monitoring of voltage-sensitive dyes
(e.g., Briggman et al., 2005). These experiments have resulted in
several well-characterized synapses and circuits (e.g., Ort et al.,
1974; Stent et al., 1978; Lockery and Kristan, 1990a,b; Kristan
et al., 2005), yet many neurons and their connectivity in the
leech ganglion remain completely or partly uncharacterized
(Wagenaar, 2015).

We applied SBEM to leech tissue to study known circuits
and discover new synaptic connections. We previously reported
on the distribution and pattern of synaptic sites in two SBEM
datasets: one small volume of mature leech neuropil, and one
entire ganglion taken from the smaller yet behaviorally-mature
juvenile leech (Pipkin et al., 2016). Herein, we report on the
connectivity uncovered within the juvenile ganglion dataset.
To validate the approach, we first analyze the connections of
well-characterized motor neurons that innervate the longitudinal
muscles and participate in the swimming behavior. Second,
we use the dataset to identify a previously uncharacterized
synaptic relationship and subsequently verify it physiologically.
Our results demonstrate the utility and potential of EM-based
circuit reconstruction in the medicinal leech by linking anatomy
and electrophysiology at the level of individual cell pairs.

MATERIALS AND METHODS

Animals
We used both adult and juvenile medicinal leeches (Hirudo
verbana). Adult leeches were obtained from Niagara Leeches
(Niagara Falls, NY, USA) and housed in aquaria on 12 h daily
light/dark cycle at 15–16◦C. Juvenile leeches were obtained by
harvesting cocoons produced by a breeding colony of adult
leeches maintained in our laboratory. Leeches were allowed
to mature within the cocoons at room temperature (RT) and
collected once they had emerged. We then waited 2 weeks to
ensure full development prior to dissection. We confirmed that
the juveniles lacked any embryonic features using established
staging criteria (Reynolds et al., 1998). For the juvenile sample,
we stained and embedded several ganglia but eventually imaged
only ganglion 11. The methodological description of this
sample’s preparation (below) and results of some analyses have
been published previously (Pipkin et al., 2016).
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Sample Preparation for Electron
Microscopy
We anesthetized the juvenile leech in ice-cold leech saline
(4◦C) containing 115 mM NaCl, 4 mM KCl, 1.8 mM CaCl2,
2 mM MgCl2, 10 mM HEPES buffer (Nicholls and Purves,
1970). Midbody ganglia were then dissected from the nerve
cord and pinned to the bottom of a Sylgard-coated dish. The
ganglia were then fixed for 2 h at RT in 2% PFA, 2.5%
glutaraldehyde, and 0.1 M phosphate buffer. After fixation the
ganglia were rinsed in 0.1 M phosphate buffer and incubated in
2%OsO4/1.5% potassium ferrocyanide. For this step, the samples
were microwaved in a scientific microwave (Pelco 3440 MAX)
three times at 800 W with a duty cycle of 40 s on and 40 s off
at a measured temperature of 35◦C and subsequently left to sit
at RT for 30 min. Samples were then washed in ddH2O and
microwaved three times at 800 W with a duty cycle of 2 min on
and 2 min off at 30◦C. We found that this and subsequent brief
microwave incubations facilitated staining penetration to the
center of our samples and was necessary to gain sufficient image
contrast. Samples were then incubated in 1% thiocarbohydrazide
(Electron Microscopy Sciences) and microwaved three times
at 800 W with a 40 s on and 40 s off duty cycle at 30◦C
and subsequently left to incubate for 15 min RT. The samples
were then washed again with the same microwave incubation
as described earlier. Next, the samples were incubated in 2%
aqueous OsO4 and microwaved three times at 800 W with a
40 s on and 40 s off duty cycle at 30◦C and then incubated at
RT for 1 h. After washing, the samples were then left in 1%
uranyl acetate overnight at 4◦C. The next day, samples were
incubated in a lead aspartate solution prepared by dissolving
0.066 gm of lead nitrate into 10 ml of 0.03 M aspartic acid
with the pH subsequently adjusted to 5.5 using 1 N KOH. This
incubation took place in a 60◦C oven for 30 min. The samples
were then washed and dehydrated through a series of ethanol
solutions (50%, 70%, 90%, 100%, 100%, 10 min each) at RT and
incubated in acetone. Following this, samples were infiltrated
with epoxy resin by first incubating them for 2 h at RT in a
solution of 50% acetone and 50% Durcupan and then overnight
in 100% Durcupan. The next day, samples were transferred to a
freshly prepared 100% Durcupan solution and incubated at RT
for 2 h. Samples were then incubated within a 60◦C oven for
3 days. Durcupan Araldite resin was made by mixing 11.4 g of
component A, 10 g of component B, 0.3 g of component C and
0.1 g of component D.

Imaging
The resin-embedded ganglia were preserved within epoxy blocks
trimmed until tissue was barely exposed. For the juvenile sample,
the edges of the block were trimmed until very near to the
external capsule of the ganglion to reduce charging in the outer
image tiles that contained both tissue and empty plastic. Blocks
were mounted onto aluminum pins to which they were adhered
with conductive silver paint. The pin and block were then sputter
coated with a thin layer of gold and palladium to further enhance
conductivity.

We imaged ganglion 11 from a juvenile animal with a
Zeiss MERLIN SEM equipped with a Gatan 3VIEW SBEM

system. We collected montages of 8,000 × 8,000 raster tiles
at 5.7 nm pixel size. We oriented the sample so that it was
imaged from the dorsal surface to the ventral surface with
sectioning occurring perpendicular to the dorsal-ventral axis.
Montage size thus varied from 1 × 1 to 5 × 5 tiles depending
on the area of tissue that was exposed to the surface of the
block. We sectioned the block 2,203 times at 50, 100, or 150 nm
thicknesses for a total z-distance of 138 µm. The 100 nm
and 150 nm sections were taken in regions containing only
cell bodies (at the top and bottom of the overall volume) as
there are very few fine neuronal processes to trace here and
thus imaging time could be reduced. Similarly, we varied dwell
time throughout acquisition along a range of 0.8-µs to 1.5-µs
with higher dwell times used in neuropil-containing sections.
During the juvenile ganglion acquisition, an unexpected and
gradual reduction of contrast occurred due to the premature
degradation of the filament in the electron gun. As imaging
proceeded from the dorsal surface towards the ventral, we
therefore focused most of our analysis and reconstruction on
cells whose arbors tended to fall within the dorsal half of
the ganglion. Where processes from these cells entered the
low-contrast region of the volume, we were likely to have
missed some fine branches and any associated synapses in this
area.

Reconstruction and Annotation
In the juvenile ganglion volume, montages and sections were
aligned in the TrakEM2 (fiji.sc/TrakEM2, RRID: SCR_008954,
Cardona et al., 2012). Subsequent tracing and annotationwas also
performed in TrakEM2. In this volume, we largely reconstructed
arbors via skeletonization rather than full segmentation via
membrane tracing. Locations of synaptic inputs and outputs
were denoted by placing ball objects as markers on the
skeletons.

All tracing, segmentation, and analysis was performed by JP.
To reduce errors, the arbors of the motor neurons discussed in
Table 1 and Figures 1, 2 were reviewed at least twice. As has
been previously reported (Ohyama et al., 2015), false negatives
(missing branches) were far more likely errors than false positives
(adding the wrong branch).

Electrophysiology
Adult leeches were anesthetized in ice-cold saline, dissected and
chains of four midbody ganglia were removed and pinned in
Sylgard-coated dish. The ventral sheath of the second ganglion
and dorsal sheath of the third ganglion were removed to expose
cell bodies for penetration with 1.0 mm (OD) × 0.75 mm
(ID) glass microelectrodes with an omega dot pulled to a
resistance of ∼20 M�. Microelectrodes were filled with 20 mM
KCl and 1 M potassium acetate. To verify that the S cell was
impaled, and its intracellular spikes were matched 1:1 with
the largest extracellularly-recorded spikes in the connective
between the third and fourth ganglia. To verify cell 116’s
identity, we loaded electrode tips with either Alexa Fluor
488 or Alexa Fluor 594 (Thermo Fisher Scientific) and filled
the electrode shanks with 3 M potassium acetate. Dye was
then injected with alternating depolarizing and hyperpolarizing
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TABLE 1 | Number of chemical synaptic contacts found among six pairs of motor neurons.

Right DI-1 Left DI-1 Right VI-2 Left VI-2 Right DE-3 Left DE-3 Right VE-4 Left VE-4 Right DI-102 Left DI-102 Right L Left L

Right DI-1 2 2 18 1 1
Left DI-1 9 3
Right VI-2 2 2
Left VI-2 5
Right DE-3
Left DE-3
Right VE-4
Left VE-4
Right DI-102 17 1
Left DI-102 2 16
Right L
Left L

Presynaptic cells are listed in the first column and postsynaptic cells are listed in the first row. All expected connections were found, with the exception of direct connections
from DI-1, DI-102, or VI-2 onto the L cells. Some unexpected synapses were also found but were typically low in number compared to expected synapses (e.g., right
DI-1 onto left DE-3).

current pulses (2 nA for 300 ms, −2 nA for 50 ms, 10%
duty cycle for 30 min) and the shape of the arbor compared
to the reconstructed arbor from the juvenile ganglion SBEM
dataset.

Intracellular current injection and measurement of
membrane potential were mediated by an Axoclamp-2B
amplifier (Axon Instruments Inc., San Jose, CA, USA) operated
in bridge mode. Extracellular recordings were amplified by
a Model 1700 A-M Systems differential amplifier. Electrical
signals were digitized, recorded and analyzed with WinWCP
(Strathclyde Electrophysiology Software). Further analysis was
performed with Microsoft Excel (Microsoft).

Experimental Design and Statistical
Analysis
This bulk of this work represents analyses of a single volume of
electronmicrographs containing one juvenile leech ganglion.We
therefore do not make any statistical comparisons—we present
our work as a set of observations which can then be compared
to prior work and suggest future experiments. Similarly for our
electrophysiology experiment, we do not make any statistical
comparisons.

RESULTS

Neuron and Synapse Identification
The somata of leech neurons are arrayed along an outer rind
of each midbody ganglion. To identify a soma in our EM
volume, we first compared its size and location with the known
map (Ort et al., 1974; Muller et al., 1981). Soma position can
vary slightly from ganglion to ganglion, but the basic shape of
the neuron’s arbor can distinguish it from its neighbors (Fan
et al., 2005). Our identifications were based on a combination
of soma size, position, and arbor morphology. By convention,
neurons are named according to their corresponding letter
or number identifier in the accepted map (Ort et al., 1974;
Muller et al., 1981). In the case of motor neurons, these
cell number identifiers are preceded by two letters indicating
which motor group the cell innervates and whether its outputs
are excitatory or inhibitory. For example, cell DI-1 is an

inhibitor of the dorsal longitudinal muscles while cell VE-4 is
an excitor of the ventral longitudinal muscles. Most neurons
in the leech ganglion are paired, having both a right and
a left homolog. An exception (the ‘‘S-cell’’) is considered
below.

We identified synapses by the criteria discussed in recent
work (Pipkin et al., 2016). Briefly, leech presynaptic varicosities
lack densely-staining T-bars characteristic of neuropil in
Drosophila and some other invertebrate preparations. Instead,
presynaptic sites are labeled by small presynaptic tufts of
electron-dense material and faint postsynaptic densities that are
indistinguishable at the resolution afforded by SBEM (Purves
and McMahan, 1972; Muller and McMahan, 1976; Muller and
Carbonetto, 1979). Our requirements for synapse identification
were twofold: (1) a concentration of small presynaptic vesicles
in the presynaptic neuron, some of which lie near to the
membrane apposition of presynaptic and postsynaptic neurons;
and (2) that the apposition of presynaptic and postsynaptic
membranes persists over three or more consecutive imaging
sections. Our criteria are more liberal than those afforded by
higher-resolution TEM. As a result, while they capture the
majority of real synapses we cannot exclude the possibility
that we have mis-identified some nonsynaptic appositions as
synapses.

Testing Physiologically-Characterized
Circuits Anatomically
The synaptic connections among neurons that generate
behaviors in the leech are made in the neuropil of each
ganglion. Within our juvenile ganglion volume, we explored the
connections of a subset of motor neurons known to participate
in the swimming behavior (Ort et al., 1974). Specifically, we
searched the neuropil for synapses among the bilateral pairs of
neurons DI-1, VI-2, DI-102, DE-3 and VE-4, which innervate
dorsal and ventral longitudinal muscles and are responsible in
part for the undulation of the leech’s body during swimming.
In addition, we also searched for connections made by these
cells with the pair of L motor neurons, which are excited
during the shortening reflex but are inhibited throughout
swimming.

Frontiers in Neuroanatomy | www.frontiersin.org 4 November 2018 | Volume 12 | Article 95143

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Pipkin et al. Leech Ganglion EM Reconstruction

FIGURE 1 | Most, but not all, of the predicted physiological connections were
found anatomically after reconstructing the arbors of six pairs of dorsal motor
neurons. (A) Predicted circuitry based on dual electrophysiological recordings,
adapted from Ort et al. (1974). Lines ending in circles represent inhibitory
connections; lines ending in a T-junction indicate excitatory connections;
resistors indicate non-rectifying gap junctions; diodes represent rectifying gap
junctions. (B) Updated circuitry based on what was directly observed after
anatomical reconstruction. Electrical connections are grayed out as these are
not directly observable with serial blockface electron microscopy (SBEM). All
predicted connections were found except those onto the L cell. A few
unexpected synapses were found (e.g., from cell 1 to cell 102); these typically
involved far fewer overall synapses (Table 1). The total number of synaptic
contacts made by both the right and left pairs of neurons are shown next to
each line (see also Table 1). (C) Examples of synapses between the right DI-1
and the right DE-3 (upper panel), the right DI-102 and the right DE-3 (middle
panel), and the left VI-2 and the right VE-4 (lower panel). In these examples,
the cells are fully segmented to display the relative scale of the participating
processes; the remainder of their arbors were traced via skeletonization. Scale
bars 300 nm.

The physiologically-determined circuit among these cells is
depicted in Figure 1A (adapted from Ort et al., 1974). In
this diagram, non-rectifying electrical synapses are represented
by resistors and rectifying electrical synapses are represented
by diodes. As the resolution of SBEM precludes the direct
observation of gap junctions, we turned our attention first
to chemical synapses (Figure 1A). We first sought to locate
and quantify the number of known inhibitory synapses made
within the neuropil in this circuit. To do so, we manually
traced skeleton arbors of all the neurons involved, noting
where each neuron made a synapse onto the other neurons

(Figures 1B,C), using the criteria established in our previous
study (Pipkin et al., 2016). The number of synapses formed
in this network are summarized in the connectivity matrix
shown in Table 1. We found numerous synaptic contacts
consistent with the previously-described direct inhibition of
DE-3 by the ipsilateral DI-1 and DI-102 and the direct
inhibition of VE-4 by the ipsilateral VI-2. We did not find
any chemical synapses from DI-1, DI-2, or DI-102 onto either
L cell (Figure 1B), suggesting that the observed physiological
inhibition occurs via an indirect pathway, potentially via the
electrical connections.

As suspected from electrophysiological recordings (Ort et al.,
1974), we observed that each DE-3 received direct inhibitory
input from the ipsilateral DI-1. We previously observed that
each DI-1 forms presynaptic boutons only in the contralateral
portion of their arbors (Pipkin et al., 2016). In Figure 2A, the
right DI-1 (green) is presynaptic to the right DE-3 via 18 synapses
(red dots). Within the contralateral arborization of DE-3, these
18 synapses were widely distributed, contradicting previous
predictions that inputs from DI-1 might be concentrated onto
a single branch (Lytton and Kristan, 1989). We found a similar
pattern among the inputs from the DI-102s onto the DE-3s (data
not shown). Notably, the right DE-3 received no input from
the left DI-1, despite overlap of the vesicle-containing portion
of the left DI-1’s arbor with the ipsilateral arborization of the
right DE-3 (box, Figure 2B). With the exception of a single
synaptic contact, this was also true for the right DI-1 and left
DE-3 and for both DI-102s and DE-3s (Table 1). Similar to
the dorsal muscle inhibitory motor neurons (DI-1 and DI-102),
the ventral inhibitor (VI-2) neurons form presynaptic boutons
in only the contralateral portion of their arbor. Consistent
with the fact that the pair of ventral excitatory motor neurons
(VE-4) arborize exclusively in the in the ipsilateral half of
the neuropil each VE-4 received direct inhibition only from
the contralateral VI-2 (Table 1), a finding that agrees with
the electrophysiological characterization of this connection (Ort
et al., 1974).

Electrical Connections
It is impossible to directly observe the fine structures
characteristic of gap junction membrane appositions when
constrained by the resolution limits of SBEM (Brightman
and Reese, 1969). Nonetheless, several of the cells we traced
formed electrical connections with each other on the basis
of prior electrophysiological evidence (Ort et al., 1974). We
therefore took note when the membranes of two cells known
to be electrically-coupled came into extended contact over
many sections. On the basis of this criterion, we observed several
suggestive contacts. In some cases, the contact is extensive in area
and seen at many separate sites. For example, we traced the S cell,
a unique excitatory interneuron involved in the shortening reflex
(Laverack, 1969; Frank et al., 1975; Magni and Pellegrino, 1978;
Crisp and Muller, 2006) and known for its large fast-conducting
axon that it extends both anteriorly and posteriorly in Faivre’s
nerve. Halfway between each ganglion, this axon forms an
electrical synapse with the S cell of the adjacent ganglion such
that spikes generated in one S cell are propagated throughout the
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FIGURE 2 | The right DE-3 receives numerous widely-distributed synaptic inputs from the right DI-1 and none from the left DI-1. (A) The right DE-3 (blue skeleton)
receives synaptic input from the right DI-1 (green skeleton) at 18 sites (red dots) widely distributed throughout the contralateral half of its arbor. Inset displays the
previously-known connectivity among these three cells. (B) The left DI-1 arbor (pink skeleton) overlaps with the right DE-3 arbor. Even where the left DI-1 forms
presynaptic boutons and the right DE-3 receives synaptic inputs, no synapses are found (region within black box). Scale bars 10 µm. Arbors are presented as
viewed from above, with anterior to the top. Cell bodies are omitted for clarity, as their position above the arbors would partially obscure them.

entire nerve cord (Muller and Carbonetto, 1979). Additionally,
the S cell is known for making strong electrical connections
with two ‘‘coupling interneurons’’ that act in part as relays
for sensory inputs (Muller and Scott, 1981). In Figure 3A, we
show a confluence of processes belonging to the S cell (blue)
and one of each coupling interneuron (green and pink). In this
particular junction, each cell’s membrane is closely apposed to
and conforms to each other’s and this interaction persists over
several sections. We also searched for contacts among other
known coupled cells. For example, Figure 3B depicts the close
apposition of the left DI-102 (red) and left DI-1 (yellow). Both
these cells are known to be physiologically coupled (Figure 1A).
Here two of their secondary branches come into close contact
as they travel adjacent to each other; notice again that both
cells’ membranes are closely apposed and conformed to each
other. Not all possible junction sites involved symmetrically
sized processes. In one case, a thin process belonging to the
left DE-3 (orange) burrows into the primary process of the
right DE-3 (purple; Figure 3C). Again, both these cells are
known to be coupled (almost all pairs of dorsal motor neurons
are electrically coupled (Ort et al., 1974; Fan et al., 2005)). In
every instance involving known electrically coupled cells, we
observed sites of membrane contact that could harbor gap
junctions. For instance, we found 24 and 26 contacts between
the S cell and each coupling interneuron, 5 between the left
DI-1 and left DI-102 and 10 between both DE-3s. Like chemical
synapses (Figures 2A,B), these contact sites were distributed
throughout cells’ arbors. Because we traced arbors chiefly

via skeletonization, we cannot say whether the cumulative
amount of membrane apposition predicts electrical connections.
However, we can report that we did not observe similarly
prolonged, conformed appositions among cells not known to be
coupled.

Predicting a Physiological Connection
From an Anatomical Connection
We next sought to test whether an anatomical synapse predicts a
physiological connection. For this experiment, we turned to cell
116. Each cell 116 is inhibitory and resides in the dorsal aspect
of the anterolateral packet (E.P. Frady and K. L. Todd, personal
communication). In tracing arbors of the pair of cells 116, we
noticed that each received synaptic input from the S cell. The S
cell (blue skeleton, Figure 4A) made six synapses onto the right
116 (orange skeleton, Figure 4A) and seven synapses onto the
left 116 (green skeleton, Figure 4A), distributed throughout the
extent of the S cell arbor (pink dots, Figure 4A). In one case, both
cells 116 were postsynaptic to the same S cell bouton.

We next tested to see if inducing action potentials in the S
cell network would reliably lead to excitatory potentials in cell
116. Because the S cell in one ganglion is strongly coupled to
the S cells in the next ganglion anterior or posterior to it, we
were able to circumvent the practical difficulty of simultaneously
recording intracellularly from one cell on the ventral surface and
another cell on the dorsal surface. Instead, we impaled the S cell
in the ganglion adjacent to the one in which we recorded cell
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FIGURE 3 | The close apposition of cell pairs known to be electrically coupled could harbor gap junctions. Though the arbors shown were all traced by
skeletonization, we fully segmented them in each particular section shown here to highlight their membrane appositions. (A) The confluence of the S cell (blue) and
both coupling interneurons (pink and green). (B) Close apposition between two processes of the left DI-102 (red) and left DI-1 (yellow). (C) A small branch of the left
DE-3 (orange) invades the main branch of the right DE-3 (purple). Scale bars 500 nm.

116 (Figure 4C). To confirm that the spike traversed through
the network, we recorded the connective nerves posterior to the
cell 116 ganglion with an extracellular electrode (Figure 4C). We
observed that each S cell spike reliably preceded a 1–2 mV EPSP
in cell 116. The cell 116 response to 15 S cell spikes (overlaid,

gray traces in middle panel) is presented in Figure 4C along with
their average (black trace in middle panel). The 4–5 ms latency
between spike and EPSP is consistent with known conduction
velocity of the S cell spike through Faivre’s nerve (Frank et al.,
1975).
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FIGURE 4 | A synapse discovered anatomically makes an electrophysiological connection. (A) Skeleton arbors of the presynaptic S cell (blue) and postsynaptic cells
116 (green and orange) with pink dots representing sites of synaptic contact. Scale bar 10 µm . Arbors are presented as viewed from above, with anterior to the top.
Cell bodies are omitted for clarity, as their position above the arbors would partially obscure them. Inset displays the connections between the S cell and cells
116 that we tested physiologically. (B) Examples of synapses from S onto the left 116 (top) and right 116 (bottom). scale bars 300 nm. Cells are fully segmented in
these example sections to display the relative scale of the individual processes; the remainder of the arbors were reconstructed via skeletonization as shown in (A).
(C) Example recordings from one adult nervous system preparation of the S-116 connection. Spikes were induced in the S cell in one ganglion (bottom trace)
whereupon they traveled across the S cell network down the nerve cord, eliciting a reliable depolarization in cell 116 (middle trace). The S cell spike was visible in an
extracellular recording of the connective nerves posterior to the ganglion containing the recorded 116, indicating that the spike successfully passed through (top
trace). A single spike in the S cell is presented for clarity in the bottom trace while the middle and top represent recordings following 15 separate S-cell spikes from
the same preparation (gray) and their average (black).

DISCUSSION

Our results validate a connectomics approach for circuit
discovery in the leech ganglion. We show that reconstruction of
selected cells can be used to confirm the existence of previously

known connections among motor neurons (Figure 1, Table 1).
Previous work showed that the ipsilateral DI-1 and DI-102
monosynaptically inhibit DE-3, while the contralateral VI-2
inhibits VE-4 (Ort et al., 1974; Granzow et al., 1985). At the
resolution of lightmicroscopy, others have observed considerable
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overlap between the processes of these cells and have noted
possible sites of apposition of postsynaptic processes with
presynaptic varicosities (Granzow et al., 1985; Fan et al., 2005).
At the EM level, Granzow et al. (1985) attempted to demonstrate
the connection between DI-1 and DE-3 by differentially staining
the two cells with intracellular fills (Imposil in DI-1, horseradish
peroxidase in DE-3) and taking thin sections of the contralateral
half of the neuropil. However, due to suspected disruption of
vesicle structure wrought by Imposil they found presynaptic
vesicles near only one of many sites of abutment between the
two cells (Granzow et al., 1985). By analyzing a complete SBEM
volume of an entire ganglion, our report is the first to provide
direct EM anatomical confirmation of these synapses among
motor neurons.

For each of these known connections (DI-1 -> DE-3, DI-102 -
>DE-3, VI-2 -> VE-4), we foundmore than one synapse from the
presynaptic cell onto the postsynaptic cell. The number of such
contacts ranged from 2 (from the right VI-2 onto the left VE-4) to
18 (from the right DI-1 onto the right DE-3; Table 1). It is unclear
in what ways this variability is physiologically meaningful, as
we cannot infer the synaptic strength of a given synapse in
a SBEM volume. While it is tempting to speculate whether a
connection with more contacts is stronger than one with fewer,
the highly electrically-coupled motor circuit we reconstructed is
not ideal for addressing this question. Other subcircuits in the
leech ganglion are more attractive. For example, the connections
among the sensory P cells and local bend interneurons are known
to vary in strength physiologically (Lockery and Kristan, 1990a).
Unfortunately, the cells involved primarily form their arbors
in the ventral aspect of the neuropil, where the deteriorated
quality of our dataset precluded accurate reconstruction (see
‘‘Materials and Methods’’ section). Ongoing work carrying this
project forward in the adult leech ganglion by the Wagenaar
and Ellisman groups may be able to more fully explore the
relationship between contact number and physiological synapse
strength.

The range of contact number we observe falls below that
measured by light microscopic analysis of overlap between
adult sensory and motor neurons (13–41 in DeRiemer and
Macagno, 1981). This difference could be due to the maturity
of the tissue, the specific cell pairs studied, or methodological
differences (processes may overlap at the light level but do
not touch at the EM level). The range of synapse number per
connection that we find (1–18) is somewhat comparable to
what has been found in other systems in which entire arbors
have been reconstructed from serial EM images (C. elegans:
1–19 in the hermaphrodite (White et al., 1986), 1–61 in
the male tail (Jarrell et al., 2012); Platynereis dumerilii:
1–45 including neurons and muscles of visuomotor circuitry
(Randel et al., 2014); Drosophila melanogaster: 1–in the visual
circuitry (Takemura et al., 2013), 1–23 from a selectively
reconstructed motor circuit in the larva (Ohyama et al.,
2015).

We observed some unexpected sites of potential synaptic
contact among the motor neurons we traced (for example, the
right DI-1 makes a single synapse onto the left VE-4, Table 1).
Notably, these cases involve far fewer overall contacts (1–3).

Ohyama et al. (2015) also examined circuitry in which multiple
types of the same cell in Drosophila larvae (Basins 1–4) made
inputs onto various postsynaptic cells. In their data, they report
instances where these postsynaptic cells predominantly receive
input from one of these Basin cell types while still receiving
scattered input from the others (for example, the cell they label
A12q a1l receives 15/14 synaptic inputs from the right/left Basin
2 s and 0/1 from the right/left Basin 1). There are a number of
possible explanations for our finding of unexpected connections:
(1) these synapses may be real but so relatively few in number
as to be physiologically undetectable and unimportant; (2) these
synapses may be present only in juvenile tissue that is still
undergoing synaptic refinement; (3) these synapses could be
mistakenly identified or otherwise be the result of a tracing
error that we cannot detect after reviewing them; (4) some of
these synapses might actually be gap junctions occurring at
a location that makes them appear to be chemical synapses
(e.g., the connections between left DI-1 and left DI-102, two
inhibitory neurons known to be electrically coupled (Fan et al.,
2005)).

We found that synapses between two cells widely spanned
the region of overlap between the vesicle-containing portion
of the presynaptic cell’s arbor and the postsynaptic cell’s arbor
(Figure 2). Earlier reports had suggested that the synapses made
by DI-1 and DI-102 might be concentrated onto separate single
branches of the DE-3 arbor (Lytton and Kristan, 1989). We
find no evidence for such selectivity in our juvenile ganglion
volume, though we cannot rule out that synapse strength might
vary depending on where a synapse occurs or that branch-
selectivity is a process that is not yet complete in juvenile
tissue.

We almost exclusively found synapses from the DI-1 and
DI-102 cells onto the ipsilateral DE-3 even though the vesicle-
containing portion of the DI-1 or DI-102 arbor overlaps with
postsynaptic regions of both the ipsilateral and contralateral
DE-3. This lateral selectivity suggests that there may be
some chemical basis by which synapse formation is restricted
to the ipsilateral cell pair. This result also underscores the
strengths of EM vs. light microscopy: arbor overlap is not
predictive of where synapses occur. In the retina, random
synapse formation on the basis of process proximity cannot
explain the location of synapses found between direction-
selective cells and starburst amacrine cells (Briggman et al.,
2011). Similarly, the proximity of axons to dendritic spines is a
poor predictor of connectivity in a densely-reconstructed ssTEM
dataset spanning a volume of the mouse neocortex (Kasthuri
et al., 2015).

The presence and pattern of synapses we found among DI-1,
DI-102, VI-2, DE-3 and DE-4 conformed to our expectations
given known physiological evidence (Ort et al., 1974). However,
we failed to find any synapses from DI-1, DI-102, or VI-2 onto
either L cell as previous physiology predicted (Table 1, Ort
et al., 1974). The L cell is known to be electrically coupled to
other excitatory motor neurons that receive direct monosynaptic
inhibition from DI-1, DI-102 and VI-2 (Ort et al., 1974; Fan
et al., 2005). Therefore, the synaptic input from these cells
onto the L cell may be indirect while physiologically appearing
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otherwise (this pattern has been observed before in the leech
whereby sensory cells influence the S cell via a pair of cells
electrically coupled to the S cell (Muller and Scott, 1981)).
This finding underscores the utility of anatomical synapse
verification at the EM level: physiological connections between
cells whose arbors overlap are nonetheless not necessarily
monosynaptic.

Detecting electrical connections mediated by gap
junctions remains an unsolved challenge in SBEM-based
connectomics. In our volume, we knew certain cell pairs
to be coupled, and were able to locate several places where
their membranes came into prolonged contact (Figure 3).
Some of these sites are almost certain to contain gap
junctions, but we cannot determine how many contacts
are functional vs. incidental. New specimen preparation
techniques (e.g., Pallotto et al., 2015) that preserve or expand
the extracellular space can aid in identifying gap junctions
even in SBEM. In future samples of leech neuropil, these
approaches, in concert with pre or post hoc physiological
verification, could lead to the description of patterns of
membrane apposition associated with gap junctions in the
leech.

Connectomes produce anatomical predictions of neuronal
connectivity which can then be verified physiologically. In
C. elegans, the connectome has long served as a roadmap for
guiding subsequent cell ablation, imaging, and physiological
experiments (Bargmann and Marder, 2013). In the larval fruit
fly, connectomics predicted a neuronal circuit responsible for
multisensory integration involved in rolling behavior (Ohyama
et al., 2015), connections that were then verified using
calcium imaging. Similarly, we demonstrated that anatomical
connections can be recapitulated in physiological measurements
by first discovering synapses from the S cell onto both
cells 116 in our EM volume and subsequently demonstrating
that spikes in the S cell produce a depolarization in cell
116 (Figure 4). This result also highlights the advantages
of using an electrophysiologically accessible system in which
the same cells can be identified from ganglion to ganglion
and animal to animal. In principle, a complete reconstruction
of a ganglion could dramatically reduce the number of
pairwise recordings needed in other ganglia to confirm
the existence of the identified connections, as opposed to
testing every possible pair of neurons (∼80,000). Importantly,
in the leech ganglion these physiological experiments can
involve the direct measurement of membrane potential (via
intracellular electrophysiology) rather than indirect measures of
activity like calcium imaging that struggle to reveal inhibitory
connections.

While the leech is studied in part because of how
reproducible physiological recordings are from ganglion to
ganglion, anatomical features including soma position, neuronal
composition (Lent et al., 1991), and fine branching patterns
also vary. It is possible that there will exist some cases
in which two cells are synaptically connected in some of
the 21 ganglia in the nerve cord and not others, or that
there are reproducible connections in different ganglia that
nonetheless involve differing numbers and locations of synapses.

Unfortunately, the high time and labor commitment required
to produce full cell reconstructions and annotations currently
limits image acquisition and analysis to a single ganglion. In
other systems, measuring sample-to-sample variability from
EM reconstructions has thus far been largely confined to
two samples. In the earliest connectome, C. elegans was
reconstructed from partially overlapping datasets from different
animals; the connections found in the region of overlap were
largely consistent from sample to sample (White et al., 1986).
Similarly, in the region of overlap in two different first instar
Drosophila larvae, 96% of connections involving two or more
synapses in one animal were also found in homologous cells
in the other animal (Ohyama et al., 2015), a pattern of
connectivity that remained consistent in third instar larvae
(Gerhard et al., 2017), though overall numbers of synapses
increased proportional to the growth of the arbors. In a
partial connectome of the Platynereis visual system, there was
also a high concordance between two animals (Randel et al.,
2015). Moving beyond these low N experiments will eventually
require even further acceleration of imaging and analysis. In
particular, automated and semi-automated reconstruction and
annotation techniques currently in development (Helmstaedter,
2013; Berning et al., 2015; Kasthuri et al., 2015; Dorkenwald
et al., 2017; Staffler et al., 2017; Januszewski et al., 2018)
could considerably decrease time costs, enabling larger sample
sizes.

Our results demonstrate the utility of applying serial
EM reconstruction to a system in which individual neurons
can be identified from preparation to preparation. Known
connections can be verified or challenged, and previously
unknown connections can be discovered and subsequently
tested. This connectomics approach enables the interplay
between anatomical thoroughness and physiological precision
that will allow future researchers to uncover previously
inaccessible details regarding the circuits underpinning behavior
in the leech ganglion.
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The “connectome,” a comprehensive wiring diagram of synaptic connectivity, is
achieved through volume electron microscopy (vEM) analysis of an entire nervous
system and all associated non-neuronal tissues. White et al. (1986) pioneered the
fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent
advances in vEM allow mapping new C. elegans connectomes with increased
throughput, and reduced subjectivity. Current vEM studies aim to not only fill the
remaining gaps in the original connectome, but also address fundamental questions
including how the connectome changes during development, the nature of individuality,
sexual dimorphism, and how genetic and environmental factors regulate connectivity.
Here we describe our current vEM pipeline and projected improvements for the study of
the C. elegans nervous system and beyond.

Keywords: C. elegans, volume electron microscopy, connectome, nervous system, high-pressure freezing

A BRIEF BACKGROUND OF Caenorhabditis elegans
CONNECTOMICS

In the 1960s, Sydney Brenner and colleagues adopted the nematode Caenorhabditis elegans
as a model to better understand the development and function of a complete nervous
system. Part of their strategy was to reconstruct the entire synaptic wiring diagram of a
nervous system using manual volume electron microscopy (vEM). C. elegans was a wise
choice. Its small size, a cylinder of ∼1 mm in length and 70 µm in diameter, provided
a reasonable chance of success with the laborious and technically challenging procedures
required for vEM. Nichol Thompson developed the essential skill in cutting long series of
serial sections without gaps. Initial successes included reconstructions of the anterior sensory
anatomy (Ward et al., 1975; Ware et al., 1975), the pharyngeal nervous system (Albertson
and Thomson, 1976), and the ventral nerve cord (White et al., 1976). When John White
and Eileen Southgate succeeded in tracing the nerve ring, the first near-complete wiring
diagram of an animal’s nervous system was obtained (White et al., 1986; White, 2013).
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The C. elegans connectome provided the first comprehensive
physical map through which information flows to select,
enact, and modify motor functions. This structural foundation
first allowed the formulation and experimental validation of
hypotheses for mechanosensory and motor behaviors (Chalfie
et al., 1985). The small number of neurons and their connections
has since inspired numerous theoretical and experimental studies
to model entire sensorimotor circuits (e.g., Varshney et al., 2011;
Towlson et al., 2013; Szigeti et al., 2014; others).

With the recent emergence of partial wiring diagrams for
neural circuits in other invertebrates and some vertebrates (e.g.,
Helmstaedter et al., 2013; Takemura et al., 2013; Randel et al.,
2014, 2015; Kasthuri et al., 2015; Ryan et al., 2016, 2017; Eichler
et al., 2017; Veraszto et al., 2017; Williams et al., 2017; others), the
search for conserved features and circuit motifs that might have
homologous functions across species becomes possible.

Caenorhabditis elegans connectomics will play a crucial role
in uncovering general principles of neural circuit structure and
function. The C. elegans nervous system embeds computational
properties sufficiently powerful for many complex behaviors:
different motor patterns and states, adaptive, and integrative
sensory perception, as well as forms of associative learning
and memories (Zhang et al., 2005; Ardiel and Rankin, 2010;
Sasakura and Mori, 2013; Allen et al., 2015; Zhen and Samuel,
2015). Its small and accessible size – both in terms of neuron
number (302) and synapse number (∼7000) – makes it a tractable
system to propose and test theoretical models of nervous system
function. If the circuit designs that enable sensory coding,
decision-making, and plasticity are evolutionarily conserved,
understanding mechanisms of the compact C. elegans nervous
system will yield useful insights into shared principles.

Progress still needs to be made at multiple fronts in C. elegans
connectomics.

First, the original C. elegans connectome was assembled from
partially overlapping fragments of a few individuals, not one
intact individual (White et al., 1986). The validity of this approach
hinges on the stereotypy of the wiring diagram across individuals.
The stereotypy observed for most C. elegans cells identified
by lineage studies (Sulston and Horvitz, 1977; Sulston et al.,
1983) and preliminary comparison of the central nervous system
connectivity of two animals (Durbin, 1987) made this plausible.
However, an explicit analysis of variability across connectomes of
multiple individuals is required.

Second, postembryonic neurogenesis occurs across C. elegans
development. Post-embryonically born neurons make up ∼25%
of neurons in the adult. The original C. elegans connectome
was assembled from parts of several adults and one last stage
larva, reflecting one snapshot of a dynamic wiring diagram.
How the connectome develops, remodels to incorporate newly
born neurons, and modifies the behavioral repertoire at different
developmental stages needs to be addressed.

Third, sexual dimorphism is prominent in the C. elegans
nervous system. Compared to adult hermaphrodites, adult males
have an additional 85 neurons, accounting for ∼20% of the
nervous system (Sulston and Horvitz, 1977; Sulston et al., 1980;
Sammut et al., 2015; Molina-Garcia et al., 2018). Though progress
has been made on the wiring of parts of the male nervous system

(Hall and Russell, 1991; Jarrell et al., 2012), a complete and
comprehensive side-by-side comparison of high-quality male and
hermaphrodite connectomes awaits.

Fourth, natural variants of C. elegans exhibit substantial
genetic and behavioral differences from that of the laboratory
wild-type strains. The connectomes of these and other nematode
species should be obtained and compared.

Addressing questions about individual variability,
developmental plasticity, sexual dimorphism, genetic
perturbations, and so on requires higher-throughput vEM
reconstruction. Recent focus on technology development, such
as automation in serial sectioning (Schalek et al., 2012), image
acquisition (Inkson et al., 2001; Denk and Horstmann, 2004;
Holzer et al., 2004; Heymann et al., 2006; Knott et al., 2008;
Hayworth et al., 2014), and segmentation of neurons and
connections (Saalfeld et al., 2009; Helmstaedter et al., 2011;
Cardona et al., 2012; Boergens et al., 2017), has accelerated
vEM throughput. Originally designed to allow acquisition
of connectomes of single large samples, these technological
advances offer small model systems such as C. elegans an
opportunity to employ vEM as a rapidly deployable tool for
developmental and comparative connectomics, and other aspects
of nematode biology.

Below we describe such a pipeline.

OUTLINE OF A PIPELINE FOR CURRENT
C. elegans EM STUDIES

This pipeline has been successfully used for high-throughput
volume reconstruction of intact C. elegans of all developmental
stages, and has yielded high-resolution connectomes for multiple
animals (Figure 1; Witvliet et al., in preparation). We describe
technical issues general to vEM studies and highlight key
technical considerations for C. elegans.

Step 1: Preparing Samples for EM
Rapid freezing of living animals facilitates uniform vitrification.
Subsequent freeze-substitution and fixation allows preservation
of organelles, cells, and tissues in their native states. Due
to its small size, intact C. elegans is well suited to high-
pressure freezing, circumventing the mechanical damage and
physiological perturbation caused by dissection. Through
standard en bloc and post-sectioning staining with heavy metals,
sufficient contrast can be imparted to lipids, proteins, and nucleic
acids for visualization with an electron microscope.

Step 2: Serial Sectioning
The thickness and number of serial sections are determined
by the sectioning method, as well as the size of the object of
interest. Reducing section thickness facilitates reconstruction of
fine cellular structures (such as neurites), and distinction between
intracellular features (such as vesicles, ER, and microtubules).
Because of the small diameter of C. elegans neurites, serial
sections of 50 nm or thinner are needed for reliable connectome
reconstruction.
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FIGURE 1 | A pipeline for C. elegans connectome reconstruction using vEM. Samples are fixed using high-pressure freezing and freeze substitution, embedded in
plastic then cut into ultrathin serial sections before imaging on an electron microscope. Images are stitched together into a 3D volume, and neurons are identified and
traced throughout the dataset by skeleton tracing using CATMAID. Synapses are annotated by three independent annotators to obtain the connectome. Volumetric
reconstruction, which yields topographical information of cells and neurons, is facilitated by computational filling followed by manual proofreading using VAST.

Step 3: Image Acquisition and
Processing
Image resolution is set by the size of object of interest. For adult
and larval connectome reconstructions, a resolution of 1–2 nm
per pixel is optimal for reliable synapse annotation. A montage
of images that cover the area of interest are computationally
stitched and aligned into a 3D volume. Minimization of artifacts
during sample preparation (e.g., mechanical compression during
sectioning) and imaging (lens distortion and shrinkage during
electron beam exposure), and their correction are critical for
acquiring a well-aligned image volume.

Step 4: Segmentation
The aligned image stacks are segmented into objects of interest.
For connectomes this means tracing neurons and mapping
synapses. Volumetric segmentation consists of coloring in each
section of neurite throughout the volume, reconstituting the 3D
morphology of the cell. Skeleton segmentation consists of placing
a point in the center of the neurite on each section. Tracing
skeletons is faster than volumetric segmentation, but less rich in
morphological detail.

Step 5: Synapse Annotation
Synapse identification is based on stereotypic ultrastructural
features. A sample with well-preserved neurite morphology
and intracellular organelles, such as presynaptic active zones

and synaptic vesicles, facilitates high-confidence annotation
of chemical synapses. However, synapse annotation is not
completely objective. Subjectivity arises in the identification
of small synapses, gap junctions, and assigning postsynaptic
partners for polyadic synapses. Increased section thickness,
section and staining artifacts, and unfortunate synapse
orientation relative to the plane of sectioning also increase
subjective uncertainty. Parallel annotation of the same dataset
by multiple tracers, constructing connectomes from multiple
animals, and comparing with existing datasets help to reduce
annotation errors.

Step 6: Neuron Identification
Every somatic C. elegans cell can be assigned a unique
name. The location and identity of each nucleus was
lineage-mapped by following its migration throughout
development (Sulston and Horvitz, 1977; Sulston et al.,
1980, 1983; White et al., 1986). Additionally, all processes
within the neuropils have characteristic features, allowing
identification without necessarily tracing the process back to
the cell body. Stereotypic features include entry-point into
the neuropil, neurite trajectory and morphology, placement
within the neuropil, abundance of clear and dense-core vesicles,
multi-synapse clusters, and unique morphological features.
Each neuron can be identified by characteristic features at
multiple points along its process, increasing the confidence of
tracing.
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STEP-BY-STEP DESCRIPTION OF
METHODS AND CONSIDERATIONS

Preparation of EM Samples
General Considerations for High-Pressure Freezing
and Freeze Substitution
For the original C. elegans wiring diagram reconstruction,
animals were submerged in one or more chemical fixatives,
either glutaraldehyde followed by osmium tetroxide, or osmium
tetroxide alone (White et al., 1986). Some animals were cut by
razors to aid the diffusion of fixatives through the tissue. This
fixation process is not instantaneous (e.g., tomato hair cells have
been estimated to be fixed at a rate of 2 µm/s in a glutaraldehyde-
cacodylate solution; Mersey and McCully, 1978), and distortions
to native ultrastructure occur before fixation is complete (Smith
and Reese, 1980; Gilkey and Staehelin, 1986; Figures 2A,C).

A better strategy for tissue preservation involves rapid freezing
of samples in vitreous ice, dehydration at low temperatures to
prevent the growth of damaging ice crystals, and simultaneous
fixation. In early work in other experimental systems, this was
achieved by subjecting samples to extremely low temperature
(around −175◦C), either by plunging the sample into cold
liquids, propelling the cold liquid at the sample (Feder and
Sidman, 1958; Moor et al., 1976), or slam freezing – dropping
tissue onto a metal block cooled with liquid nitrogen or

FIGURE 2 | High-pressure freezing improves preservation of ultrastructure.
(A) The dorsal cord of an adult prepared using the slow chemical fixation
protocol (White et al., 1978). The DD motor neuron is making a neuromuscular
junction to dorsal muscle cells. (B) The dorsal cord of an adult fixed using
high-pressure freezing and imaged using TEM. The DD motor neuron is
making a neuromuscular junction to dorsal muscle cells. (C) The ventral nerve
cord of a chemically fixed first stage (L1) C. elegans larva (White et al., 1978).
The DD axon makes a NMJ to the ventral muscle cell (M). (D) A TEM
micrograph of the ventral nerve cord of a high-pressure frozen first stage larva
(L1) at similar region, where DD makes a NMJ to the ventral muscle cell. The
advent of high-pressure freezing allows better preserved neurite morphology,
synapse structure, and extracellular space, facilitating connectomic and
topological analyses of the C. elegans nervous system. Scale bar 1 µm. Panel
(A) was reprinted with permission from White et al. (1978). Panel (C) a scan of
the micrograph used in White et al. (1978), hosted by the WormImage
Consortium (www.wormimage.org).

helium (van Harreveld and Crowell, 1964; Heuser et al., 1979;
Heuser and Reese, 1981). Vitreous ice typically forms only
within a few micrometers from the surface of the tissue.
However, when water is pressurized to 2100 atmospheres,
vitreous ice forms more easily and deeply (Kanno et al., 1975;
Dahl and Staehelin, 1989; Dubochet, 2007). By applying this
level of pressure during rapid freezing, Hans Moore and Udo
Riehle obtained good preservation several hundred micrometers
from the surface of biological tissues (Riehle, 1968; Moor,
1987).

Frozen samples are then freeze-substituted, a process where
the immobilized water is dissolved by an organic solvent
(Simpson, 1941). Fixatives such as osmium tetroxide are included
in the freeze substitution solvent to fix the sample as it is warmed
to room temperature. Once the sample reaches −80◦C, secondary
ice crystals may grow and disrupt ultrastructure (Steinbrecht,
1985; but see Dubochet, 2007). Thus, organic solvents that
are liquid below −80◦C, such as acetone, are used for freeze
substitution.

The recent availability of commercial high-pressure freezers
has made this approach more accessible. Successful high-
pressure freezing and freeze-substitution of C. elegans preserves
ultrastructure and extracellular space better than chemical
fixation (Figures 2B,D).

High-Pressure Freezing of C. elegans
Basic protocols for high-pressure freezing of a range of organisms
including C. elegans have been described (e.g., Weimer, 2006;
McDonald, 2007; Manning and Richmond, 2015). Below is a
modified procedure that we have used successfully with both
the Leica HPM100 and ICE models of high-pressure freezing
machines.

(a) The carriers in which animals will be frozen (Leica
Microsystems, Germany, catalog nos. 16770141 and
16770142) are coated with a non-stick coating (0.1% soy
lecithin in chloroform, or 1-hexadecene; McDonald et al.,
2010). This coating prevents samples from sticking to
the carrier, minimizing damage to samples when they are
removed from the carrier.

(b) Worms can be loaded into the 100 µm side of the base
carrier using several means (see Tips). The simplest and
most effective method is to grow a thick lawn of bacteria
and a dense population of worms, and swipe the carrier at
an angle of 45◦ across the surface of the plate to pick up
worms with bacteria (Figure 3A). Bacteria act as a filler,
minimizing water content and facilitating freezing.

(c) The lid of the carrier is placed on the base immediately
prior to freezing (Figure 3B). To preserve animals in their
physiological state, we transfer worms from happily eating
bacteria on the culture plate to a state of vitreous ice within
30 s.

(d) After freezing, metal carriers that encase frozen samples are
transferred under liquid nitrogen into a pre-frozen 1.5 ml
cryotube containing 1 ml freeze-substitution solution (see
next section), and then to a freeze-substitution unit for
processing.
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FIGURE 3 | High-pressure freezing of C. elegans. (A) To pack the carrier with
worms, our preferred method is to swipe it across a densely packed lawn of
worms and bacteria. After swiping, the worm-bacteria mixture is spread
across the cavity of the carrier with tweezers or a worm pick (a thin platinum
wire mounted to a holder), the lid put in place, and the sample immediately
high-pressure frozen. The entire process takes less than 30 s. (B) A carrier
when it is packed. It is filled just right, without air bubbles. The smallest cavity
for freezing is used, as freezing efficiency decreases with increasing depth.
(C) A carrier packed with a mixed-staged larva after high-pressure freezing,
freeze substitution, and resin infiltration. This carrier has retained the “cake” of
worms, but much of the time the cake floats out. One can see how densely
the worms are packed by the swiping method. (D) Worms are separated from
the cake and individually embedded and cured in plastic blocks. Well-packed
carriers as shown in panel (C) can yield hundreds of intact worm samples.

Tips:

• Soy lecithin is an emulsifier that can be obtained
economically from baking or health food stores.

• Samples are packed in the 100 µm side of the base carrier
because freezing efficiency decreases with increasing depth.

• It is critical that the carrier is completely filled, and there
are no air bubbles, which would act as an insulator and also
collapse under pressure.

• To freeze samples at defined developmental stages, we
either use a synchronized culture, or first fill the carrier with
filler, and pick individual animals into the filler. A mixed
paste of 10% BSA (dissolved in M9 buffer) and OP50
(an E. coli strain commonly used as worm food) forms a
nice filler that does not dry up quickly during the loading
of individual animals, and allows separation of individual
worms after freeze-substitution.

• Samples need to be frozen soon after loading into the carrier
to prevent desiccation.

• Some protocols take steps to straighten C. elegans prior
to freezing, either using pharmacological agents (Hall,
1995), or cooling carriers (Bumbarger et al., 2013). We do
neither, to eliminate the chance of introducing changes to
ultrastructure.

Freeze Substitution With C. elegans Samples
For morphological analyses, freeze substitution is performed
in a programmable freeze substitution unit, where frozen
samples are kept at −90◦C in the presence of tannic acid and
glutaraldehyde, before being replaced by 2% OsO4, and brought

to room temperature (Box 1; Weimer, 2006). This protocol
yields consistent results as long as samples are handled properly
(see sections “General Considerations for High-Pressure Freezing
and Freeze Substitution” and “High-Pressure Freezing of C.
elegans”), and the high-pressure freezer is properly assembled and
maintained.

This protocol can be further modified to reduce processing
time and increase the membrane contrast, with the following
considerations. Tannic acid helps target osmium to the
membrane (Bridgman and Reese, 1984), but glutaraldehyde,
inactive at −90◦C (Bridgman and Reese, 1984; McDonald,
2007), is likely expendable for the first-step fixation. Inclusion
of 5% water in the organic solvent may improve membrane
staining (Walther and Ziegler, 2002; Buser and Walther, 2008).
To increase heavy metal deposition one can use a mordant to
perform a double osmium stain, such as tannic acid (Simionescu
and Simionescu, 1976; Wagner, 1976; Jiménez et al., 2009), or
thiocarbohydrazide (Seligman et al., 1966; Webb and Schieber,
2018), followed by further en bloc uranyl acetate and lead
acetate staining (Webb and Schieber, 2018). Lastly, we have
confirmed that a fast freeze substitution protocol lasting just a
few hours (McDonald and Webb, 2011) also yields well preserved
C. elegans.

Infiltration and Embedding C. elegans Samples in
Resin
After freeze substitution, the sample needs to be infiltrated with
resin and cured in a block. We infiltrate in the same cryotube
used for freeze substitution, either in graded steps on a rocker,
or employing a fast protocol using centrifugation (McDonald,
2014). For morphology studies carried out by standard TEM and
ATUM-SEM, we use Spurr-Quetol resin (NSA 27.88g, ERL4221
9.70g, DER 4.50g, Quetol651 6.12g, and BDMA 0.87g; Ellis,
2006) because it has good sectioning and staining properties,
and a relatively low viscosity. For serial block face and FIB-SEM
imaging, samples are infiltrated and cured with harder resins,
such as hard Epon (EMbed 812 22.6g, DDSA 9.05g, NMA 14.75g,
and DMP-30 0.8g) or Durcupan (Durcupan ACM resin 11.4g,
DDSA 10.0g, dibutyl phthalate 0.35g, and DMP-30 0.15g).

Once infiltrated, contents of the cryotube are poured into
a plate ready for embedding. By this stage, the disk-shaped
“cakes” of worms and bacteria will often have fallen out of
their carriers. If they are still inside the carrier (Figure 3C),
an intact cake can be pried out of the coated carriers using
the fine tip of a broken wood stick while holding the carrier
in place with tweezers. Using a wooden stick instead of metal
instruments is gentler on both the sample and the carriers.
We embed either the whole cake, or individual worms released
from the cake by repeatedly tapping the cake with the tip of
a broken wooden stick until the bacteria crumble away, and
intact worms remain (a delicate procedure, especially for young
larvae).

Horizontal molds are used to cure samples, as we find it easier
to orient samples for subsequent serial sectioning. To place the
worm in the center of the block, which makes trimming and
cutting easier, we semi-cure half-filled molds by putting them at
60◦C for a few hours, let cool, then fill to the top with fresh resin.
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BOX 1 | Some freeze substitution protocols for C. elegans volume EM. Both (A) and (B) are effective protocols for ultrastructural preservation (Weimer, 2006).

After we transfer and orient the worms as desired inside the mold,
they are cured at 60◦C for at least 24 h. The resulting blocks are
ready for cutting (Figure 3D).

Serial Sectioning
Imaging sequential layers of a sample normally requires
collecting serial sections for the sample. Although block face
imaging techniques avoid this step (Inkson et al., 2001; Denk
and Horstmann, 2004; Holzer et al., 2004; Heymann et al., 2006;
Knott et al., 2008), samples are destroyed during imaging. There
will always be applications for obtaining and preserving long
image series. Many effective techniques have been developed (see
Box 2).

Manual Serial Sectioning for TEM
(a) Trim the block, leaving a wide surface with the worm in the

center (the final block face will be ∼0.7 mm wide).
(b) Collect semi-thin sections when approaching the region of

interest using a glass knife. Perform toluidine blue staining
to determine the position. Collect ultrathin sections and
examine using TEM if precise positioning is necessary.

(c) Once the desired starting position is reached, re-trim the
block into a trapezoid with the worm in the center. The

height of the trapezoid should be as close to the top and
bottom edges of the worm as possible, and the width should
be ∼0.7 mm (Figure 4A). Gently dab a thin layer of glue
(Elmer’s rubber cement, in a mixture of 1 part glue, 3 parts
xylene) to the bottom edge of the block to aid the ribbon
formation.

(d) 50 nm serial sections are cut using an ultramicrotome with
an antistatic device (we use Static Line Ionizer II, Diatome).
Cut as many sections as will fit in the water boat in a single
unbroken ribbon. Use a pair of eyelashes glued to wooden
sticks to break the long ribbon into smaller ones, which
contain 10–20 sections and are able to fit inside a slot grid
(Figures 4B,C).

(e) Collect the small ribbons on formvar-coated slot grids.
Submerge a grid underneath a ribbon. Hold and align the
ribbon with an eyelash, and raise the grid at a 30◦ angle until
the bottom section adheres at the top of the slot. Gently pull
up the grid, and the rest of the sections will come with it,
with the worm in the center of the slot.

(f) Allow grids to dry before transferring into grid boxes for
storage.

(g) Once all sections are picked up, repeat cutting until
required volume is complete.
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BOX 2 | A collection of sectioning strategies for vEM. vEM using non-block face imaging (TEM and SEM) requires collecting large unbroken series of serial sections.
There are multiple ways of making the process less error-prone, each with its own merit. One simply has to choose which process works best for them, or devise
their own strategy. 1Gay and Anderson (1954);2Westfall and Healy (1962); 3Fahrenbach Wolf (1984);4Galey and Nilsson (1966); 5Mironov et al. (2008);6Anderson
and Brenner (1971);7Rowley and Moran (1975); 8Abad (1988); 9Wells (1974); 10Mironov et al. (2008); 11Stevens et al. (1980); 12Hall (1995); 13Schalek et al.
(2012);14Micheva and Smith (2007); 15Burel et al. (2018); 16Leica Microsystems, Germany.
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FIGURE 4 | Cutting serial sections for TEM. (A) A block face trimmed for
cutting. The worm is oriented transversely in the center of the block face (white
arrow). (B) Ribbons of 10–20 sections are picked up on formvar-coated slot
grids. (C) A low magnification TEM image of a slot grid, 0.5 mm in diameter.
The ribbon of section spans the slot, contributing to the formvar stability.
(D) Many grids of serial sections, stored in a grid box, are ready for imaging.

(h) Sections are post-stained with 2% aqueous uranyl acetate
and 0.1% lead citrate.

Tips:

• We use 2 mm × 0.5 mm slot grids (instead of 2 mm × 1 mm
grids) as there is less chance of damaging the formvar film
during handling.

• For serial section datasets, we use commercially
prepared 10 nm-thick formvar grids (EMS catalog no.
FF205-Cu).

• Make the block face slightly wider than the width of the slot.
When the plastic sections span the slot, they contribute to
grid stability, reducing the chance of disaster if the formvar
is imperfect or becomes damaged (Figure 4).

• Using a 35◦ diamond knife reduces section compression.
• Holding a stick dipped in xylene or chloroform above the

sections corrects compression, but take care not to over-
stretch the samples.

• For observing fine details, and tracing neurons that run
across the plane of sectioning, 50 nm sections or thinner
are necessary.

• The loss of a few sections of a C. elegans nerve
ring can invalidate the whole dataset for connectome
reconstruction. Not only is it difficult to trace through
neurons, synapses will also be missing from the final
dataset. Handle the grids with care.

Automation of Serial Sectioning for SEM
Alternative methods have been devised to automatically cut
large volumes of serial sections, including the automated tape
collecting ultramicrotome (ATUM; Schalek et al., 2012). Here, the
sample is cut on an ultramicrotome and picked up by a rolling
reel of tape. The tape is cut into strips, glued to a wafer and post-
stained with uranyl acetate and lead citrate. Electrons cannot pass
through the tape, therefore scanning electron microscopy (SEM)
must be used to image samples cut using an ATUM. We have
used this approach to collect serial sections at 30 nm thickness,
and used a SEM capable of high resolution imaging (1 nm/pixel;
FEI Magellan XHR 400L) to acquire several high-quality datasets
for C. elegans connectomics studies. Modern high-end SEMs
are capable of producing TEM-equivalent micrographs and are

suitable for identifying both chemical synapses and gap junctions
with high confidence (e.g., Figure 6).

In contrast to the traditional approach of cutting, staining,
then imaging sections in an electron microscope, new methods
have been established to mount an uncut sample inside the
microscope, image the surface using SEM, cut off the top layer,
and image again. This process is repeated until the entire region
of interest is processed. The cutting uses either a diamond
blade inside the microscope (serial block face EM; Denk and
Horstmann, 2004), or of a focused ion beam (FIB-SEM; Inkson
et al., 2001; Holzer et al., 2004; Heymann et al., 2006; Knott et al.,
2008). Both applications can produce images of large volumes
for connectomics studies in an exceptionally short amount of
time (Briggman and Bock, 2012). Without post-section staining,
however, both SBF-SEM and FIB-SEM rely on en bloc staining for
contrast.

Image Acquisition and Processing
For connectome reconstruction, we acquired images of entire
C. elegans cross-sections by either TEM or ATUM-SEM, at 1–
2 nm/pixel resolution. We found such a resolution to be necessary
for unambiguous annotation of intracellular structures, tracing
through small neurites, and synapse annotation. Acquiring the
entire cross-section not only allowed us to fully reconstruct
dorsal-ventral commissures and lateral nerve cords, but also
provided landmarks that facilitated neuron identification.

After sections are imaged, they are stitched and aligned
into a 3D volume. This requires processing of acquired images
to compensate for artifacts generated during sectioning (e.g.,
differential compression of sections), and imaging (e.g., lens
distortion, shrinkage of samples due to the energy of the electron
beam). There are multiple solutions for alignment of datasets into
3D volumes (reviewed in Borrett and Hughes, 2016). We found
TrakEM2 (Saalfeld et al., 2010; Cardona et al., 2012) to be most
suitable for our C. elegans datasets, and we outline the process
below.

(a) Sections are imaged at the required resolution in the
electron microscope. Imaging at a resolution of 1–2 nm
per pixel is optimal for tracing fine processes and mapping
small synapse with high confidence.

(b) When a region of interest does not fit into the field of view
of the camera, it is imaged as a montage with 10% overlap
on each side.

(c) A text file is generated containing the paths to the images
and their respective coordinates in x, y, and z, then used to
import the dataset into TrakEM2.

(d) Once the dataset is imported into TrakEM2, image filters
are applied to optimize brightness and contrast throughout
the dataset.

(e) The lens correction function in TrakEM2 is used to correct
for lens distortion caused by imperfect lenses in the electron
microscope. Using a set of heavily overlapping images,
the distortion of images is calculated, and a correction is
applied to each image in the dataset.

(f) Each section is montaged rigidly in x-y using the TrakEM2
least-squares alignment tool.
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FIGURE 5 | Skeleton and volumetric reconstruction of the C. elegans nervous system. (A) A complete reconstruction of all nuclei (round balls) and all neuronal
processes (blue cables) of a first larval stage C. elegans, achieved through skeleton tracing in CATMAID, and visualized with Blender. (B) A skeleton reconstruction of
anterior DD-type motor neurons and the neuromodulatory neuron RID generated using CATMAID. Synaptic input and output are indicated by cyan and red spheres,
respectively, and putative gap junctions in marked in dark purple. (C) Volumetric segmentation of part of a DD motor neuron and RID using TrakEM2, with
intracellular ultrastructure segmented. (D) A cross-section of an L1 larva. Its nerve ring was fully reconstructed by volumetric segmentation. These segmentation
profiles were generated by expanding skeleton seeds to a membrane probability map, followed by manual proofreading in VAST.

(g) Each section is montaged elastically in x-y using the
TrakEM2 elastic alignment tool.

(h) Layers are aligned rigidly in z using the TrakEM2 least-
squares alignment tool.

(i) Layers are aligned elastically in z using the TrakEM2 elastic
alignment tool.

(j) Images are exported from TrakEM2 either as flat images, or
tiles ready for importing into an instance of CATMAID.

Tips:

• Samples on slot grids shrink when exposed to the electron
beam. We reduce the shrinkage by coating these grids with
a thin layer of carbon, and “prebaking” each section at a
lower magnification in the electron beam for around 1 min
before imaging.

• Automatic montaging is a function available in some
camera softwares (e.g., Gatan Microscopy Suite). Free
software such as SerialEM is capable of performing

montages and compatible with a range of cameras
(Mastronarde, 2005).

• Text files with paths to the images and coordinates can
be generated in various ways. We use a Python script to
extract the paths from the folder containing the images, and
set the coordinates. It can also be done manually in Excel.
Consistent file naming and number padding facilitate this
step.

• Adjustable parameters for stitching are numerous and
daunting. The TrakEM2 manual1 and ImageJ feature
extraction page2 provide guides for parameter selection.
Optimal parameters for each dataset have to be worked out
through trial and error. Test a few sections at a time until all
images can be reasonably well aligned.

• Manual inspection and correction is necessary for each
step. We frequently use the transform function while

1www.ini.uzh.ch/ acardona/trakem2_manual.html
2http://imagej.net/Feature_Extraction
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FIGURE 6 | Chemical synapses and gap junctions in C. elegans. (A) A section of the first larva (L1) ventral ganglion neuropil imaged using SEM at 1 nm/pixel.
Multiple chemical synapses are visible (white arrows) as well as a gap junction (white flat-ended line). (B) Enlarged view of the chemical synapse highlighted with a
dashed box in panel (A). There is a presynaptic dense projection and a pool of synaptic vesicles, as well as some dense core vesicles further back in the neurite.
This synapse is polyadic, releasing onto three neurons. (C) Enlarged view of the gap junction highlighted with a dashed box in panel (A). There is a relatively flat area
of close apposition between the membranes.

superimposing a transparent copy of the previous layer
to register poorly aligned sections. Using manually placed
landmarks to register multiple sections is also an effective
strategy.

• Care must be taken not to distort or twist the images whilst
proceeding through the image stack.

Segmentation
We have used several open-source software packages for manual
segmentation of image stacks. For small image stacks, we have
used Reconstruct (Fiala, 2005; Yeh et al., 2009; Hung et al.,

2013) and TrakEM2 (Cardona et al., 2012; Meng et al., 2015;
Lim et al., 2016) for volumetric reconstruction. For connectomics
studies, which requires handling of large image datasets, we have
used CATMAID (collaborative annotation toolkit for massive
amounts of imaging data; Saalfeld et al., 2009) for skeleton
tracing, and VAST (Volume Annotation and Segmentation Tool;
Kasthuri et al., 2015) for volume reconstruction.

Skeleton Tracing With CATMAID
To generate C. elegans connectomes, we apply skeleton tracing
to reconstruct all neurons and their connectivity. Skeleton
tracing consists of placing dots, or “nodes,” in the center of a
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neurite throughout the volume, forming a skeleton as the tracing
progresses. Compared to volumetric reconstruction, skeleton
tracing allows faster manual reconstruction of the nervous
system. With a high-quality dataset, a first larval stage nerve
ring (the worm central nervous system) can be manually traced
to completion by a well-trained and committed tracer in a
few days. As neurons are traced, they are identified based
on stereotypic structures and connectivity patterns, along with
neurite trajectory and placement, and cell body position (see
below). Ambiguities may arise due to artifacts such as section
folding or stain precipitation, and can be resolved by completing
the tracing of the rest of the neurons in the immediate area.
Neurons are identifiable by features distributed throughout the
nerve ring.

After neurite tracing is complete, connectors can be placed
between nodes of different skeletons to signify chemical synapses
and gap junctions. Visualization of neuron skeletons in 3D is
often sufficient for assessing the coarse position and process
trajectory of individual neurons, as well as the overall architecture
of neuropils and ganglia (Figures 5A,B). However, substantial
morphological information is omitted.

Volumetric Segmentation With VAST
To accurately obtain morphological information such as neuron
size, shape, and the relative contact area between neurons,
volumetric segmentation is necessary. Additional segmentation
of intracellular ultrastructure can yield information such as the
distribution, morphology, number, and size of microtubules,
mitochondria, ER, presynaptic densities, synaptic and dense
core vesicles and other vesicular structures. This is useful to
understand the cell biology of the neuron (Figure 5C).

The VAST software package is capable of segmenting in
such a way (Kasthuri et al., 2015). In our hands, VAST has
the best performance when handling large datasets like the
entire C. elegans nerve ring (Figure 5D). Manual volumetric
segmentation, however, is very low throughput. Fully automated
segmentation methods have been reported, but they have
yet to perform well with our C. elegans datasets. We took
an alternative, semi-automated approach. In this approach,
membrane probability maps were generated from small training
stacks (Meirovitch et al., 2016), and nodes that were generated
from skeleton tracing were expanded to the calculated membrane
boundary to fill the neurite (Meirovitch et al., in preparation).
This is followed by manual proof-reading in VAST (Figure 5D).

Synapse Annotation
Different fixation protocols can lead to differences in the
morphology of fixed tissues. Therefore, it is important to
adjust criteria for synapse annotation for datasets generated
using different fixation protocols and imaging conditions.
For example, the slow fixation protocol used for generating
the original C. elegans adult wiring datasets was optimized
for cell membrane contrast. Fine intracellular ultrastructure
was less well preserved, and presynaptic dense projections
appear as a dark density close to the membrane, with
hard to discern morphology. This makes chemical synapse
annotation more prone to staining artifacts. The slow fixation

protocol caused shrinkage of neurites, which tore apart weak
adhesions between adjacent neurites. Such a distortion could
complicate the assignment of postsynaptic partners in polyadic
synapses, but highlight gap junctions, which remain intact.
Synapse annotation and connectome assembly were carried out
cautiously and carefully with these caveats in mind (White
et al., 1986). Any reconsideration of these micrographs should
involve careful study of the entire dataset and apply similarly
rigorous criteria to avoid the “false positive” identification of
synapses.

Even with a well-preserved sample that has been fixed using
high-pressure freezing and aligned well into a 3D volume,
synapse annotation requires training, and includes of element
of subjectivity (see below; Figures 6, 7). For a compact nervous
system such as C. elegans, where neuron and synapse numbers
are small, it is even more pertinent to establish stringent criteria
for sample preparation and synapse annotation, and to obtain
and compare multiple datasets from isogenic individuals, so that
errors can be minimized.

Below we describe the criteria used for synapse annotation in
our high-pressure frozen and freeze substituted volumes of the
C. elegans nervous system.

Chemical Synapses
Caenorhabditis elegans presynapses generally consist of a swelling
in the neurite, with a visible electron-dense presynaptic density
attached to the plasma membrane marking the active zone,
with a cloud of vesicles adjacent to the presynaptic density
(Figures 6A,B, 7A). Vesicle clouds often consist of many clear
core synaptic vesicles close to the active zone, and a small number
of large, dense-core vesicles that reside more peripherally. Vesicle
clouds can cover large areas with multiple small presynaptic
dense projections, especially in the nerve ring. If the synapse
is small, cut at an awkward angle, or if there are artifacts
covering or interfering with the putative synapse, assigning
whether it is a synapse or not can sometimes be a bit subjective
(Figures 7B,C). Many synapses are polyadic. Since most synapses
in the C. elegans nervous system do not have visible postsynaptic
densities, postsynaptic partners are assigned based on their
proximity to the presynaptic active zones, which can be a source
of subjectivity (Figure 7D).

To minimize the problem of subjectivity, our datasets are fully
annotated by three independent annotators. Using CATMAID
one can assign confidence scores to synapses, with a score
of 5 indicating a high level of confidence, and a score of 1
indicating very low confidence. The triplicate annotations are
then merged, and every inconsistency between annotators is
flagged for discussion. If agreement is not reached by the three
annotators after debate, an average of the confidence scores
is reported to allow subsequent data users to make their own
judgments.

Gap Junctions
Gap junctions are notoriously difficult to identify in vEM.
There are some morphological criteria that can help identify
some with reasonable certainty. A classic gap junction profile
includes a close, relatively flat area of membrane apposition of
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FIGURE 7 | Examples of synapse annotation with different degrees of subjectivity. (A) Serial sections through a large, confidently annotated polyadic synapse (from
IL1VL to RIPL, RMDDL and body wall muscle BWM-VL01). This synapse spans these three sections, and beyond (not shown). (B) Serial sections through a very
small synapse (from RIS to RIBL and RMDR). The annotation of this synapse is less confident that the one presented in panel (A). (C) Serial sections of a membrane
swelling that is confidently annotated as not-a-synapse. A small density in the membrane of RIBL with sparse vesicles is not a presynaptic specialization. (D) Serial
sections through a synapse showing the occasional subjectivity involved in defining postsynaptic partners. While all annotators agreed RMGL was a postsynaptic
partner of RIGL, whether SAADL should be included as a postsynaptic partner was cause for debate. White arrowheads indicate the membrane of interest. Scale
bars are 500 µm.
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limited extracellular space (∼2 nm) across multiple sections, a
thicker membrane, with a characteristic sharp zippering of the
membranes immediately at the boundaries of the putative gap
junction (Figure 6C). These features can be quite clear if cut
at the perfect angle with thin (30–50 nm) sections, but even
in well-stained samples not all gap junctions can be marked
unambiguously. Tomography, which acquires images of the same
section at different tilt angles to generate a high-resolution 3D
volume of the section, helps survey a putative gap junction, but it
is unrealistic to apply such an approach to the entire series of the
nervous system.

We corroborate our gap junction annotation by comparing
patterns across our multiple new datasets and to the original
datasets (White et al., 1976, 1986). The slow chemical fixation
protocol used for the original adult connectome, while distorting
neurite morphology and pulling apart weaker contacts between
neurites, allowed strong membrane connections such as gap
junctions to be particularly well distinguished. Some of the
morphologically identified gap junctions have been functionally
validated (Chalfie et al., 1985; Liu et al., 2017). Comparing
new and old datasets allows us to refine criteria for gap
junction annotation in high-pressure frozen datasets. These
criteria are validated by uncovering recurrent gap junction-like

structures when comparing the same membranes between
neuronal classes across datasets. Because in each sample, the
junction between each neuron pair was sectioned from a different
angle, stereotypic gap junctions can be confirmed in multiple
views. Our approach will likely miss small or sparse gap
junctions.

Multiple approaches have been attempted to highlight
gap junctions in EM volumes. CLEM (correlative light and
electron microscopy), where gap junctions are labeled by
immunostaining against one of the C. elegans innexin::GFP
fusions, showed promise (Markert et al., 2016, 2017). This
approach requires a weak fixation that compromises structural
preservation, and it would be difficult to expand this approach
to all 25 C. elegans innexins. We and others are working to
develop EM preservation protocols to improve gap junction
annotation.

Neuron Identification
In a large, good quality C. elegans volume, every single cell
can be assigned its unique cell name. Each neuron class has
been described in such superb detail in The Mind of a Worm
(White et al., 1986) that by reading the neuron descriptions
while going through the complete EM series, one can identify

FIGURE 8 | Neurons can be identified from 3D volumes. Electron micrographs showing snapshots of part of the ventral nerve cord from an animal at the end of the
second larval stage, imaged using SEM at 2 nm/pixel. (A) A VD2 NMJ is pointing laterally toward a muscle arm. This example also “hits” a projection from the VA2
motor neuron, but it is not clear if receptors are present. Some other motor neurons are also labeled, to give a sense of the relative position within the nerve cord.
(B) A VA2 NMJ is pointing more dorsally, releasing onto a muscle arm, a DD1 spine and VD2. (C) A VB2 NMJ is also pointed dorsally, releasing onto muscle, a DD1
spine and VD2. (D) A cartoon of most of the commissure bundles in C. elegans, available on WormAtlas (Altun et al., 2002–2018) and based on The Mind of a Worm
(White et al., 1986). The positions, handedness and commissure bundle partners are known, and very stereotypic. Bundles of neuron processes are shown as red
cables. The cell bodies are denoted with spheres, and also have stereotypic positions along the body of the worm and relative to each other.
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neurons one by one throughout the volume. WormAtlas hosts
scanned copies of the neuron pages from The Mind of a
Worm that are accessible through a drop-down menu in an
internet browser (Altun et al., 2002–2018). Several features
indicate neuron identity: cell body position, neurite trajectory,
stereotypic neurite placement or morphology and stereotypic
connectivity patterns. We found that this stereotypy holds across
postnatal developmental stages for most neurons, with a few
exceptions.

For example, in the adult ventral nerve cord, VC processes
are generally most dorsal, followed by VD, DD, VA, then VB
toward the ventral side. Synapses to body wall muscles come from
VA, VB, VD, and VC class motor neurons. Among them, VD
presynaptic swellings are large, face directly toward the muscle,
most of the time without any neurons as dyadic postsynaptic
partners (Jin et al., 1999; White et al., 1976, 1986; Figure 8A). On
the other hand, VA and VB, form NMJs that consist of smaller
swellings, are often on the dorsal side of the neurite, and almost
always dyadic with DD dendrites, which send spine-like structure
toward the NMJ (White et al., 1976, 1986; Jin et al., 1999; White,
2013; Figures 8B,C).

Neurite trajectory and process placement are used to further
identify neurons. For example, VAs project axons anteriorly
from the soma, whereas VB axons project posteriorly. VDs also
project their axons anteriorly, but they send a dorsal-projecting
commissure at the end of the axon regions. Commissure
trajectory (whether it exits the ventral nerve cord from the left
or right side) and partners in each commissure bundle further
assist cell identification (Figure 8D). For example, VD2 runs in a
left-handed commissure, always bundled with that of DD1, DA1,
and DB2.

These, and other observations, allow one to recognize the
“fingerprints” of motor neuron identity. Similar observations and
strategies apply to the other neuropils in the worm, such as the
dorsal nerve cord, the nerve ring, and the other cords and ganglia
of the worm, as well as across different stages of development.
Some neurons are not born until later in development (Sulston
and Horvitz, 1977), but most neurons have stereotypic features
and connectivity across larval stages. A notable exception is the
DD motor neuron class, which exhibits extensive remodeling of
connectivity during development (White et al., 1978).

Assembly of a Wiring Matrix
After obtaining a connectome, we further assess pairwise
connections to gauge confidence in biologically relevant
connections. Connections between two neurons consisting of
many synapses are considered high confidence. A connection is
considered uncertain if it consists of very few synapses. When
few synapses are observed between neurons, we often observe
inconsistency in the existence of the connection across animals.
From comparing multiple datasets that we have acquired for the
C. elegans nerve ring and ventral ganglion, three synapses seem
to be a sensible lower bound on a high confidence connection.
Even so, to minimize variability introduced by annotators, and
assess true biological variability, acquiring connectomes from
multiple animals is advisable.

PERSPECTIVES

The pipeline described above represents only a starting point
for modern high throughput C. elegans vEM. We should expect
rapid and substantial improvement both in terms of throughput
and quality. Future improvements will include automated image
segmentation, synapse annotation and neuron and neurite
identification. This will be facilitated by the generation of
new C. elegans connectomes as training datasets for machine
learning approaches. Incorporating of these improvements will
allow not only rapid reconstruction of connectomes from
multiple animals, but also facilitate targeted reconstruction
of specific segments of the nervous system by computer
vision.

The C. elegans nervous system is compact, allowing precise
correlation of anatomy (connectome) with membrane physiology
(activity and excitability of individual neurons), sign of synaptic
communication (neurotransmitter and receptor of individual
synapses), and behavior. The delineation of the neurotransmitter
type and receptor complement of each neuron (Serrano-
Saiz et al., 2013; Pereira et al., 2015; Gendrel et al., 2016),
combined with the connectivity, allow for more sophisticated
modeling of information flow through the nervous system.
Whole brain calcium imaging from fixed and behaving animals
allows observation of the activity of functioning neural circuitry
(Schrödel et al., 2013; Prevedel et al., 2014; Kato et al.,
2015; Nguyen et al., 2016; Venkatachalam et al., 2016),
allowing correlation of anatomic and functional connectivity.
Performing connectomics on animals with genetic mutations
that affect diverse properties of neurons – neuronal fate,
synaptic transmission, cell adhesion and signaling – holds the
promise of identifying genetic and biochemical pathways that
determine connectivity. This system holds a promise to reveal
insight on principles of how a connectome leads to hard-
wired and flexible behaviors (Johnson et al., 1995; Harris-
Warrick et al., 1998; Marder and Bucher, 2007; Agnati et al.,
2010).

The field of C. elegans connectomics is at a new beginning.
Modern techniques now allow us to use connectomics to address
questions about the dynamic and comparative structures of
complete nervous systems. How does a connectome remodel
across development? What sexual dimorphisms are held within
a connectome? How do mutations in genes that establish
the trajectory of neurite growth, the specificity of synapse
partners, and the molecular complement of the plasma
membrane, change a connectome? Does a connectome drift
with age? How much inter-individual variability is there?
Is learning and memory physically manifested within the
connectome? What about the influence of environment?
How are the behavioral differences between morphologically
similar but evolutionarily distinct Caenorhabditis species
represented by the connectome? How does a connectome
evolve?

Finally, volume EM of C. elegans does not only generate
information about the nervous system. Packaged within the small
volume, our volumes of the nervous system data also capture
other tissues – the skin, gut, musculature, excretory cells, and
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reproductive system – each with their own exquisite intracellular
ultrastructure. All datasets will be useful to the much larger
community of biologists.
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Recent advancements in electron microscope volume imaging, such as serial imaging
using scanning electron microscopy (SEM), have facilitated the acquisition of three-
dimensional ultrastructural information of biological samples. These advancements
help build a comprehensive understanding of the functional structures in entire
organelles, cells, organs and organisms, including large-scale wiring maps of neural
circuitry in various species. Advanced volume imaging of biological specimens has
often been limited by artifacts and insufficient contrast, which are partly caused
by problems in staining, serial sectioning and electron beam irradiation. To address
these issues, methods of sample preparation have been modified and improved in
order to achieve better resolution and higher signal-to-noise ratios (SNRs) in large
tissue volumes. These improvements include the development of new embedding
media for electron microscope imaging that have desirable physical properties
such as less deformation in the electron beam and higher stability for sectioning.
The optimization of embedding media involves multiple resins and filler materials
including biological tissues, metallic particles and conductive carbon black. These
materials alter the physical properties of the embedding media, such as conductivity,
which reduces specimen charge, ameliorates damage to sections, reduces image
deformation and results in better ultrastructural data. These improvements and
further studies to improve electron microscope volume imaging methods provide
options for better scale, quality and throughput in the three-dimensional ultrastructural
analyses of biological samples. These efforts will enable a deeper understanding
of neuronal circuitry and the structural foundation of basic and higher brain
functions.
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INTRODUCTION

The brain is composed of circuits of neurons connected to
one another by neurite projections, which enables information
processing in the nervous system. Impairment of neural circuitry
is associated with psychiatric and neurological disorders, and
a complete understanding of the wiring diagram of neuronal
connections, termed the ‘‘connectome,’’ will provide important
clues to understand brain functions and develop treatments
for psychiatric and neurological disorders (Filippi et al., 2013;
Deco and Kringelbach, 2014; Fornito et al., 2015). To completely
understand neural circuitry, multiple imaging approaches are
needed to analyze various brain structures (Le Bihan et al., 2001;
Fenno et al., 2011; Grienberger and Konnerth, 2012; Lichtman
et al., 2014; Ohno et al., 2016). Light microscopic technologies
have enabled high-throughput and detailed analyses of neuronal
circuits at a very large scale (Wilt et al., 2009; Osten and
Margrie, 2013). In addition, the development of cell-specific
labeling with genetically encoded tags led to marking of brain
cells with different colors and tracking of specific neuronal
projections at the whole-brain level (Gong et al., 2003; Livet
et al., 2007). Studies on such ‘‘mesoscopic connectome’’ achieved
big datasets and demonstrated the physical and functional
connections among neurons which can span the whole brain,
but a deeper understanding on neuronal circuitry has been
hampered by several factors (Ohno et al., 2016). Among
them, one critical factor of light microscopic approaches is the
difficulty to ensure synaptic connections of fine projections,
because the resolution of light microscopy is limited. The
processes of neurons can be ∼50 nm in diameter, and the
neck of the dendritic spines can be even thinner (Briggman
and Bock, 2012). These structures are too small to resolve
with light microscopes for volume imaging of the brain. To
overcome this problem, the standard approach is electron
microscopic observation at the level of individual synapses,
which unequivocally visualize fine projections and physical
connections among neurons through synapses using serial
section images at the ultrastructural level (Palay, 1958; Brightman
and Reese, 1969). Serial electron microscope images and
reconstruction of three-dimensional ultrastructural information
are powerful approaches to understand the neuronal connectivity
of complex brain architectures.

The three-dimensional reconstruction of biological samples
has been made possible using serial ultrathin sections observed
by scanning (SEM) or transmission electron microscopy (TEM;
Harris et al., 2006; Bock et al., 2011; Briggman and Bock, 2012).
The throughput of these microscopy techniques has recently
increased significantly (Briggman and Bock, 2012). In the case
of SEM, new section collection procedures such as focused
ion beam SEM (FIB-SEM; Knott et al., 2008), serial block-face
SEM (SBEM or SBF-SEM; Denk and Horstmann, 2004) and
automated tape-collecting ultramicrotome (ATUM; Hayworth
et al., 2014) are revolutionizing the field of volume electron
microscopy. These new TEM- and SEM-based approaches are
often complementary and differ in resolution, throughput,
sample types and post-acquisition image alignment. In this
context, the SEM-based methods have recently advanced

our understanding of three-dimensional structures in various
organelles, cells, tissues and organisms in life science and clinical
medicine, including large scale neural wiring maps of various
organisms (Briggman et al., 2011; Kubota et al., 2011; Holcomb
et al., 2013; Terasaki et al., 2013; Ohno et al., 2014; Ichimura et al.,
2015; Kasthuri et al., 2015; Katoh et al., 2017). In addition, new
devices to image large tissue areas, such asmulti-beam SEM, have
been developed and facilitated data acquisition from very large
tissues such as whole brains (Eberle et al., 2015).

At the same time, methods using SEM for serial image
acquisition generally require specific sample preparation
techniques, in particular for the acquisition of large stacks of
serial images with satisfactory contrast for subsequent tissue
annotation, segmentation and analysis. For example in SEM
imaging, the available parameter range for beam irradiation, e.g.,
beam current and voltage, is limited by insufficient conductivity
of the biological samples. In order to acquire high contrast and
high quality images, it is preferable to have sufficient deposition
of heavy metals in the sample. To overcome these problems,
extensive efforts have been made to improve throughput and
image quality from SEM-based imaging in large tissue volumes.

Here, we review recent methodological advances in volume
imaging using SEM with particular emphasis on newly
developed approaches and conductive materials used in sample
preparations and tissue embedding for serial sectioning and
imaging, which will contribute to our understanding of the
connectome in different organisms.

BASIC METHODOLOGY OF SAMPLE
PREPARATIONS AND DATA ACQUISITION
FOR VOLUME IMAGING USING SEM

In SEM, images are produced by focusing electron beams,
scanning over the bulk specimens and detecting ultrastructural
information of the specimen surface using secondary or
backscattered electrons (BSE). But when BSE and/or secondary
electrons derived from the flat block/section surface of
resin-embedded tissue samples are detected in SEM, images
which are similar to those obtained from the embedded
samples in TEM can be acquired (Richards and Gwynn, 1995;
Wergin et al., 1997). When low electron energies are used
for the block/section face imaging with SEM, the BSE contain
information only from near the surface of the embedded samples
(Hennig and Denk, 2007), which can result in a depth resolution
of <30 nm depending on the energy of landing electrons (Denk
and Horstmann, 2004; Knott et al., 2008). For these reasons,
observation of block/section faces in SEM facilitated serial image
acquisition for large volume 3D reconstruction of the fine
processes and synaptic connections of the nervous system, but
requires specific sample preparation which can be distinct from
conventional approaches for TEM or SEM observation.

Biological samples are mostly composed of light elements
such as carbon, oxygen, hydrogen and nitrogen, and therefore
imaging non-conductive biological specimens with SEM is often
hampered by artifacts associated with charging and insufficient
contrast (Figure 1). Various efforts have been made to achieve
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FIGURE 1 | Charging in scanning electron microscopic imaging and artifacts
caused during the acquisition of block-face images with scanning electron
microscopy (SEM). When the specimens (resin blocks with samples) are
sufficiently conductive (A), excessive electrons in the incident electron beam
reach the ground. When the conductivity of the specimens is low (B), some of
the incident electrons accumulate on the surface of the specimens and cause
charging. Schematic images show that the artifacts that can be observed in
the block-face image of the mouse spinal cord (C) involve low contrast (D), or
abnormal contrast (E) and deformation (F) due to sample charging.

higher contrast and better resolution for volume imaging
of biological specimens under SEM. These efforts consist of
modifications of different steps including post-fixation, staining,
embedding and image acquisition (Figure 2A).

Most tissue preparation procedures for serial imaging with
SEM include common fixation with chemicals such as aldehydes
and en bloc metal staining involving osmium, uranium and
lead. Following these post-fixation and staining procedures, the
small pieces of tissue blocks are embedded in common resins.
Efficient acquisition and analyses of serial electron microscope
images are facilitated by higher contrast in cells and organelles,
and therefore the procedures are designed to achieve enhanced
deposition and en bloc staining of metals, and are now widely
used to observe membranous organelles and cellular morphology
(Figure 2; Deerinck et al., 2010; Tapia et al., 2012; Ohno et al.,
2015; Yin et al., 2016). The en bloc preparation is essential
for block-face imaging such as SBEM and FIB-SEM, since the
block-face is imaged immediately after exposure. The en bloc
staining is also used for imaging of the sections in ATUM or
TEM because of the benefits of relatively even staining and more
metal deposition for increased conductivity, which results in

improved contrast. As a consequence, lower beam doses can be
used for imaging which reduces radiation damage. The methods
to enhance membrane contrast used heavy metal deposition to
cellular membranes (Seligman et al., 1966; Karnovsky, 1971;
Walton, 1979). These methods have drawbacks, such as areas
with limited staining and tissue destruction from the generation
of nitrogen gas. Inhibition of nitrogen bubble formation along
with staining of much wider areas was achieved in a method
termed BROPA using the additional solvent and pyrogallol
(Mikula and Denk, 2015). In addition, another method employed
sequential modification of common preparation procedures to
facilitate homogeneousmetal deposition (Hua et al., 2015). These
methods addressed the problems of stain penetration depth by
modifying sample preparation methods for observation of large
areas in brain tissues (Hua et al., 2015; Mikula and Denk, 2015).
Collectively, these approaches including alternative reagents and
devices which are combined with historical methods became
powerful options for efficient acquisition of high quality datasets
from various types of specimens including large brain tissues.

The development of improved staining procedures has been
accompanied by the development of new in-chamber techniques
for charge compensation that modify the acquisition condition
inside of the SEM chambers. The next section introduces some of
such mechanical improvements, which are termed ‘‘In-Chamber
Techniques for Charge Compensation’’ in this review.

IN-CHAMBER TECHNIQUES FOR CHARGE
COMPENSATION

Multiple approaches have been proposed which can modify
the circumstances or samples in SEM chambers in order to
reduce artifacts and acquire data with higher quality. For
example, observation with SEM under low vacuum conditions,
such as variable-pressure SEM, has often been used to acquire
images from samples with problems of charging. However, these
observation methods generally involve electron-gas interactions
and electron beam scattering and can reduce the signal-to-
noise ratio (SNR) and worsen image quality (Mathieu, 1999). To
overcome the observation problems in low vacuum conditions,
focal gas injection onto the block-face was used for SBEM
imaging, which was termed focal charge compensation (FCC)
system (Deerinck et al., 2017). This approach substantially
improved charging and enabled image acquisition from samples
prepared without dense heavy-metal staining. In FCC, a
retractable application nozzle, mechanically coupled to the
reciprocating action of the built-in ultramicrotome, was paired
with a gas injection valve. The system enables the application
of nitrogen gas precisely over the block-face during imaging
while the high vacuum of the specimen chamber is maintained.
The locally applied nitrogen gas molecules are ionized, approach
the sample surface, and neutralize electrons, which charges
the sample surface (Thiel et al., 1997). As a result, the FCC
system does not interfere with the operation of the SBEM, but
greatly reduces image artifacts in the stacks of charge-prone
specimens. The addition of FCC does not affect the total time
of data acquisition, but can reduce the time by allowing shorter
dwelling times due to the improved SNR. Quantitatively, when
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FIGURE 2 | En bloc staining with dense heavy metal deposition facilitates image acquisition with SEM. A diagram of the procedure for sample preparation widely
used in serial block-face (SBF) imaging with SEM (A). Fixation of target tissues (mouse brain in this case) is performed by the common perfusion or immersion
fixation using aldehyde fixatives (a,b). Post-fixation along with en bloc staining with metals is performed through treatments with ferrocyanide-reduced osmium
tetroxide (OsO4), thiocarbohydrazide (TCH), OsO4, uranyl acetate and lead aspartate (b,c). The specimens are embedded after staining in epoxy resins following
dehydration with organic solvent (c,d). Light microscope images of unstained sections obtained from cerebellar tissues embedded in epoxy resin (B–D). The sections
were prepared with either the standard procedure for transmission electron microscopy (TEM) including only post-fixation with OsO4 (B), or the procedure for volume
imaging, which includes treatments with reduced OsO4, thiocarbohydrazide, OsO4, uranyl acetate and lead aspartate (C,D). Compared with the standard procedure
for TEM (B), the procedure for volume imaging clearly visualized histological features (C), such as myelinated nerve fibers (D, arrows). Mo, molecular layer; Gr,
granular layer; WM, white matter. For SEM imaging, cellular structures, such as myelin membranes (E, arrowhead) and mitochondria (E, arrows), were clearly
observed in samples with dense heavy metal staining. N, nucleus. Bars: 50 µm (B,C), 12.5 µm (D), 5 µm (E) or 500 nm (E, inset). Images were adapted from Ohno
et al. (2015) with permission.

increasing the accelerating voltage from 2.5 keV to 4.0 keV
(60%) and increasing the pixel dwell time from 1 µs to 4 µs
(4×), SNR was 28% lower using variable pressure-SEM than
FCC, and the resolution obtainable by FCC was nearly the same
as measured using high vacuum (Deerinck et al., 2017). Taken
together, FCC is a promising approach to observe charging-
prone samples by modifying SBEM system but not samples
themselves.

In addition to alterations of the sample atmosphere,
beam deceleration can significantly improve the contrast and
resolution of images in block-face imaging of biological samples
in SEM under low landing energy levels and a low beam
current (Ohta et al., 2012; Titze and Denk, 2013). In the beam
deceleration approach, the specimens are held at a negative bias
voltage, and the electrons leaving the column are decelerated
before reaching the specimens. The beam deceleration system
has multiple advantages including improved detection of signals
from negatively biased specimens and better resolution by very
low landing energy of the incident electrons. Although the

sample conductivity is critical for the beneficial effects of beam
deceleration, imaging of such conductive samples at high spatial
resolution could be significantly facilitated by applying beam
deceleration upon imaging in SEM.

Treatments to increase the surface conductivity of samples
have been widely used in observation of biological specimens
in SEM. Attempts to apply this concept to the SBEM imaging
have beenmade in SEM chambers by automated block-facemetal
coating, and charging could be significantly improved during
SBEM imaging (Titze and Denk, 2013). In this study, the surface
of the imaged blocks was covered with thin (1–2 nm) metallic
films composed of chromium or palladium using an electron
beam evaporator that is integrated into the microscope chamber.
In this system, the conductivity of the surface was increased
by the thin metallic films prior to each cycle of imaging. The
reduction in SNR caused by the metallic film is smaller than
that caused by the widely used low-vacuum method. So the film
coating results in better signal than the low-vacuummethod, but
still fully compensates any charging artifacts. In addition, one big
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advantage of this in-chamber coating method is that it allows
detection of secondary electrons, which in turn enables much
higher acquisition speeds than BSE-based imaging. The sample
whose surface was 12 mm across could be coated and imaged
without charging effects at beam currents of 25 nA, and more
than 1,000 serial images could be acquired under the automated
cut/coat/image cycles. However, one critical drawback of this
approach is the requirements for the specific devices which
enable in-chamber coating of the samples with the metallic
films.

Another method using plasma etching prior to imaging has
been used to remove contaminants and enhance contrast in serial
image acquisition using ATUM (Morgan et al., 2016). Plasma
cleaning has been used to remove contaminants, and this would
be helpful in ATUM since it is possible that various contaminants
which perturb image acquisition can be attached on the surface of
sections during sectioning, mounting on the tape and subsequent
preparation for imaging. In addition, plasma etching can be used
to enhance contrast in SEM imaging using secondary electrons,
presumably due to the removal of specimen components near the
specimen surfaces and generation of surface unflatness (Hukui,
1996). The plasma etching could be beneficial in serial image
acquisition in SEM when the secondary electrons are used for
imaging of the block/section faces.

The modifications of physical properties, such as sample
conductivity, and improvements in observation methods have
improved image quality. Dense deposition of heavy metals on
specimens is beneficial for SEM imaging because it increases
conductivity and improves the SNR of samples. Increasing
the conductivity of the embedding media in addition to
specimen conductivity could be beneficial for the observation
of non-conductive biological materials. Different materials and
methods for specimen embedding have improved in the life
sciences and clinical medicine, and in the next section we discuss
several recent studies that modified embedding procedures
and media in order to facilitate serial image acquisition
using SEM.

IMPROVEMENT OF EMBEDDING
METHODS FOR CHARGING
COMPENSATION

Developing new embedding media for electron microscope
imaging requires consideration of the physical properties
associated with the imaging procedures, such as stability in
sectioning and the degree of deformation under electron
beam irradiation. Sectioning with a diamond knife requires
careful consideration of the physical properties of the target
materials, which significantly affect knife lifetimes (Hashimoto
et al., 2016). Imaging and cutting conditions, such as sample
temperature, cutting speed, cutting thickness and size, knife
shape and knife temperature, also affects knife lifetimes, but
material hardness is the most important factor for image
quality. In addition, electron beam irradiation causes thermal
damage to the resin, and artifacts occur from resin shrinkage
and deformation, which can be ameliorated by cooling the

samples to cryotemperatures (Luther, 2006). These artifacts
also depend on electron beam properties, such as acceleration
voltage strength and electron current, which can be evaluated
with sections mounted on conductive tapes (Kubota et al.,
2018). However, damage and structural deformation of the
resin-embedded samples from electron beam irradiation may
also be affected by the properties of the stained and embedded
tissues.

Historically, various resins have been used for electron
microscope observation of biological specimens. Early resins,
such as methacrylates, developed for ultrathin sectioning
and epoxy resins developed later resulted in less structural
changes (e.g., shrinkage) upon curing and high stability during
ultrathin sectioning and electron beam irradiation (Glauert
and Glauert, 1958; Luft, 1961). Different types of resins,
including water soluble and hydrophilic resins, have been
developed and used for electron microscope observation,
and these resins have unique properties which are suitable
for different target samples and staining and observation
methods (Staeubli, 1963; Leduc and Bernhard, 1967). The
artifacts from shrinkage and deformation typically include
depth-direction and planar shrinkage during electron beam
irradiation. This type of shrinkage is obvious during SBEM
imaging, when there is local failure of physical slicing in
areas with intensive irradiation of the electron beam for
focusing. TEM-based evaluation revealed that the stability
against electron beam artifacts varies among different resins
(Kizilyaprak et al., 2015). Interestingly, maximal resistance
against electron beam damage is achieved by a mixture
of different resins, but the exact mechanisms of improved
resistance remain unclear. These studies provide options for the
optimization of embedding media, which enables better stability
for the imaging of biological specimens with intensive beam
irradiation.

Generally, resins used for electron microscope observation
have distinct physical properties compared with adjacent
embedded biological specimens. Most resins are composed
of light elements, which have lower conductivity than that
of the embedded specimens, particularly when the specimens
are densely stained with heavy metals. In addition, the
hardness of the resin is altered in regions with biological
specimens. These problems could be potentially solved by
modifying the undesired physical properties of the resins around
the samples. ‘‘Fillers’’ have long been used to modify the
physical properties of base materials (e.g., plastics, concrete),
such as electrical conductivity and hardness. It is therefore
possible that those conventional or new filler materials
have beneficial effects on physical properties of the resins
and facilitate serial image acquisition in SEM by reducing
artifacts. Recent studies have started exploring this possibility
and found some promising results using different types of
‘‘fillers’’ beneficial for the serial image acquisition in SEM
(Figure 3).

To facilitate SEM imaging, biological specimens that are
not related to the experiment are embedded with the target
samples. These biological specimens are used as a kind of
‘‘filler material,’’ which modifies the physical properties of
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FIGURE 3 | Three different approaches for serial image acquisition in SEM which modulate physical properties of resin around samples. In the first approach (A),
samples are embedded with irrelevant biological samples which are prepared similarly as the target samples. In the second approach (B), the samples are incubated
in pure resin and then embedded in conductive resin containing metallic particles. In the third approach (C), the samples are incubated in pure resin and then
embedded in conductive resin which is mixture of the resin and carbon black. In addition to the schemes showing preparation methods, the schematic images of the
sample appearance in electron microscopy, benefits which have been quantitatively or qualitatively evaluated and references using each approach are shown. SNR,
signal-to-noise ratio. Carbon-based conductive resin generates little contrast in block-face images of SEM (C, asterisks).

the surrounding resin. Biological filler materials are stained
and prepared similarly to the target tissues, and therefore the
physical properties of the filler and target tissues are similar.
One example of the biological filler materials is tissue from
the mouse brain, which was embedded with larval zebrafish
for serial sectioning by ATUM (Figure 3A; Hildebrand et al.,
2017). Homogenous hardness and stability of sample blocks
facilitate repeated serial sectioning by ATUM and prevent
heterogeneous shrinkage, deformation and folding of sections.
Small larval zebrafish samples were post-fixed, stained en bloc,
embedded into resin blocks, and finally surrounded by mouse
brain tissues for stabilization during sectioning. In this study,
17,963 sections at 60 nm thickness were acquired in ATUM
for serial image acquisition. In total, 244 (1.34%) sections
were lost and 283 (1.55%) were partially lost, while no two
adjacent sections were lost. Although more quantitative analyses
on physical properties of the brain ‘‘filler materials’’ are

required, it is possible that filler biological samples treated
and embedded similarly to the target specimens substantially
improve production of and imaging from serial ultrathin
sections.

Aggregated unicellular organisms can also be used as
biological support materials. C. elegans was embedded with
E. coli or yeast cells during cryofixation to facilitate handling
and localization of the samples (Figure 3A; Möller-Reichert
et al., 2003; Hall et al., 2012). The samples were still
surrounded by biological material during the subsequent
tissue preparation procedures, including freeze-substitution,
and the resins surrounding the C. elegans sample at the
time of observation were filled with biological material
that was stained and embedded at the same time (Hall
et al., 2012). Because the sample has biological components
enriched with metal deposition, the regions occupied by the
organism had different physical properties from bare resin.
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These types of approaches using biological filler materials
are promising options to facilitate serial image acquisition
using SEM.

Besides biological tissues, other filler materials have been
used to modulate the physical properties of resins. For example,
the addition of metal particles alters properties such as the
electrical and thermal conductivity of plastic (Bhattacharya and
Chaklader, 2006). Metallic particles are embedded to image brain
tissues by SBEM, where samples with low metal deposition or
areas of non-conductive embedding media outside of tissues
are susceptible to charging artifacts (Figure 3B). Epo-Tek and
Epon embedding (EE embedding) uses commercially available
epoxy glue containing silver particles, and this technique enables
embedding conductive resins with metal particles in the vicinity
of target brain samples (Wanner et al., 2016). Although areas
with less heavy metal deposition have charging artifacts, this
approach facilitated serial imaging of brain samples under
high-vacuum conditions. Serial images of 4,750 sections at 25 nm
thickness could be acquired in this study, and only one section
was lost, proving that EE-embedding is a promising approach
and considered to be suitable for ultra-thin sectioning. Recent
studies used the same approach, and one of them acquired
11,416 slices of tiled images at 10 nm × 10 nm × 25 nm
resolution in SBEM (Genoud et al., 2018; Titze et al., 2018).
This approach is further evidence that using conductive metal
particles around target samples facilitates serial SEM image
acquisition, especially SBEM, which is readily affected by
charging artifacts.

Increasing conductivity without influencing the contrast
of the embedding medium can be achieved by using
conductive materials composed of light elements. Carbon-
based materials have relatively high conductivity, and for
example, conductive tape covered by carbon nanotubes
was used for imaging with ATUM and SEM (Kubota et al.,
2018). Carbon black fillers have been used to modify the
physical properties of plastics and polymers, such as electrical
conductivity and material toughness, and therefore the
addition of carbon black to embedding media may improve
conductivity without affecting contrast (Yacubowicz et al.,
1990; Chekanov et al., 1999; Novák et al., 2005; Domun et al.,
2015).

One type of commercially available carbon black, called
Ketjen black, reduces the resistance of base resins without
altering mechanical stability (Kim et al., 2008). The reduction
in resistance depends on the amount of the carbon added to
the resin, but Ketjen black increases conductivity at relatively
low concentrations (Connor et al., 1998; Chekanov et al., 1999;
Balberg, 2002). A more structured carbon black, such as Ketjen
black, forms larger agglomerates, which results in networks of
conductive fillers with small gaps and improves the conductivity
of non-conductive base materials even at lower concentrations
(Balberg, 2002). Together, these studies suggest that Ketjen black
is the most suitable carbon black for electronmicroscopy because
it efficiently reduces resistance while maintaining mechanical
stability.

Indeed, conductive resin produced by Ketjen black is
useful for imaging with SBEM under several different sample

FIGURE 4 | Higher concentrations of Ketjen black increased conductivity and
viscosity of the conductive resin. A light microscope image of the section
obtained from a mouse brain tissue embedded in the conductive resin shows
dark granular aggregates of carbon (A, asterisks) in the vicinity of the tissue
(A, arrowheads) but little penetration into the tissues (A, arrow). BV, blood
vessel. Scanning electron microscope block-face images show abnormal
contrast was prominent in resin without carbon black (B, asterisks) but
eliminated in resin with Ketjen black (C, asterisks). The schematic graph
shows resistance of the block decreased (D, blue arrow) and viscosity of
uncured resin increased (D, red arrow) when conductive resin contained
increasing concentrations of Ketjen black. Bars: 20 µm (A) or 10 µm
(B,C). Images (A–C) were adapted from Nguyen et al. (2016) with permission.

preparations (Figure 3C; Thai et al., 2016). Ketjen black
particles are too large to enter cells and tissues, and therefore
cannot penetrate deep inside tissues even when well dispersed
in base resins and incubated with samples for a long time
(Figure 4A). However, the addition of conductive materials in
the resin substantially diminishes charging of the samples and
resins for SBEM imaging (Figures 4B,C; Nguyen et al., 2016).
In addition, embedding Ketjen black into resin ameliorates
image deformation caused by insufficient sample conductivity,
improves slicing quality and facilitates acquisition of serial
images at higher resolution (Nguyen et al., 2016). Conductive
resins based on carbon black fillers substantially reduce charging
artifacts, result in better ultrastructural data and are applicable to
various types of tissues in SBEM imaging (Nguyen et al., 2016,
2018; Thai et al., 2016, in press; Yoshimura et al., 2017; Saitoh
et al., 2018; Sawada et al., 2018; Takeda et al., 2018).

FUTURE PERSPECTIVES OF THE
EMBEDDING MEDIA FOR VOLUME
IMAGING

Although the currently available conductive resins have
beneficial effects in volume imaging with SEM, there are several
drawbacks in their usage. For example, the amount of the
carbon black that can be added is limited partly by the increased
viscosity of uncured resin (Lee, 1992; Nguyen et al., 2016).
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Addition of more Ketjen black into the resin results in further
reduction of resistance, and also further increase in viscosity
(Figure 4D), which impairs sample embedding. Therefore,
the amount of Ketjen black that can be added to the resin is
limited by the maximum viscosity acceptable for embedding. It is
important to choose the concentration of Ketjen black where the
resistance of the cured block and viscosity of the uncured resin
are at acceptable levels. This issue might be partly addressed by
selection of the base resins with lower viscosity. At the same time,
selection of appropriate base resins and embedding media which
will reduce deformations from electron irradiation facilitates
better serial image acquisition (Kizilyaprak et al., 2015). Future
studies might elucidate the optimal selection of the embedding
media with acceptable viscosity and deformations, which would
significantly facilitate production of conductive resins and
acquisition of high quality data from biological specimens.

In addition, carbon-based resins in general require careful
dispersion of the carbon powder during mixing with the base
resin. Suboptimal dispersion impairs conductivity of the resins
produced with the conductive fillers. Metallic filler materials
would also have similar requirement of dispersion, and usage
of premixed products which are commercially available reduced
the burden of manual dispersion of the fillers (Wanner et al.,
2016). Development and distribution of such premixed products
would be preferred for the future conductive embedding media
with conductive filler particles used for electron microscopic
imaging.

Lastly, the reduced transparency or complete opacity of the
samples applies not only to carbon-filled resins, but also to
the other filler materials. These issues are attributable to the
non-transparent properties of the filler materials added to the
base resins. Although improvement in the conductivity of the
base resin could not be achieved so far by addition of transparent
and conductive ionic liquid (Nguyen et al., 2016), exploration
and application of transparent conductivematerials might lead to
development of conductive embedding media which is preferred
for the identification and orientation of the embedded samples
without exposure.

CONCLUDING REMARKS

During the past several years, there have been rapid
methodological advancements for volume imaging of large
biological specimens with SEM including increased options for
staining, embedding and observation. Conductive materials
are a unique option for better quality of images by reducing
the charging of sample blocks in serial image acquisition
with SEM, which is prone to charging artifacts. The available
methods still have many limitations, and future studies involving
the development and application of novel materials and a
combination of available modifications may lead to better scale,
quality, and throughput for the three-dimensional ultrastructural
analyses of biological samples. These efforts will enable a deeper
understanding of neural circuitry and provide the structural
foundation for basic and higher brain functions.

AUTHOR CONTRIBUTIONS

All authors contributed to the writing and approved the final
version of the manuscript.

FUNDING

This work is partly supported by Japan Society for the Promotion
of Science (JSPS) KAKENHI Grant Number 16K12345 (to
NO), Research Grant from National Center of Neurology and
Psychiatry (No. 30-5 to NO), Cooperative Research Program
of ‘‘Network Joint Research Center for Materials and Devices’’
and Cooperative Study Programs of National Institute for
Physiological Sciences (to NO).

ACKNOWLEDGMENTS

We thank Dr. Toshiyuki Oda in University of Yamanashi for
providing some images. We would like to thank Setsuro Fujii
Memorial, Osaka Foundation for Promotion of Fundamental
Medical Research, for providing the support.

REFERENCES

Balberg, I. (2002). A comprehensive picture of the electrical phenomena in
carbon black-polymer composites. Carbon 40, 139–143. doi: 10.1016/s0008-
6223(01)00164-6

Bhattacharya, S. K., and Chaklader, A. C. D. (2006). Review on metal-filled
plastics. Part1. Electrical conductivity. Polym. Plast. Technol. Eng. 19, 21–51.
doi: 10.1080/03602558208067726

Bock, D. D., Lee,W.-C., Kerlin, A.M., Andermann,M. L., Hood, G.,Wetzel, A.W.,
et al. (2011). Network anatomy and in vivo physiology of visual cortical
neurons. Nature 471, 177–182. doi: 10.1038/nature09802

Briggman, K. L., and Bock, D. D. (2012). Volume electronmicroscopy for neuronal
circuit reconstruction. Curr. Opin. Neurobiol. 22, 154–161. doi: 10.1016/j.conb.
2011.10.022

Briggman, K. L., Helmstaedter, M., and Denk, W. (2011). Wiring specificity
in the direction-selectivity circuit of the retina. Nature 471, 183–188.
doi: 10.1038/nature09818

Brightman, M. W., and Reese, T. S. (1969). Junctions between intimately
apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677.
doi: 10.1083/jcb.40.3.648

Chekanov, Y., Ohnogi, R., Asai, S., and Sumita, M. (1999). Electrical properties
of epoxy resin filled with carbon fibers. J. Mater. Sci. 34, 5589–5592.
doi: 10.1023/A:1004737217503

Connor, M. T., Roy, S., Ezquerra, T. A., and Baltá Calleja, F. J. (1998). Broadband
ac conductivity of conductor-polymer composites. Phys. Rev. B 57, 2286–2294.
doi: 10.1103/physrevb.57.2286

Deco, G., and Kringelbach, M. L. (2014). Great expectations: using whole-brain
computational connectomics for understanding neuropsychiatric disorders.
Neuron 84, 892–905. doi: 10.1016/j.neuron.2014.08.034

Deerinck, T. J., Bushong, E. A., Lev-Ram, V., Shu, X., Tsien, R. Y., and
Ellisman, M. H. (2010). Enhancing serial block-face scanning electron
microscopy to enable high resolution 3-D nanohistology of cells and tissues.
Microsc. Microanal. 16, 1138–1139. doi: 10.1017/s1431927610055170

Deerinck, T. J., Shone, T. M., Bushong, E. A., Ramachandra, R., Peltier, S. T.,
and Ellisman, M. H. (2017). High-performance serial block-face SEM of
nonconductive biological samples enabled by focal gas injection-based charge
compensation. J. Microsc. 270, 142–149. doi: 10.1111/jmi.12667

Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron
microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol.
2:e329. doi: 10.1371/journal.pbio.002032

Frontiers in Neural Circuits | www.frontiersin.org 8 November 2018 | Volume 12 | Article 108178

https://doi.org/10.1016/s0008-6223(01)00164-6
https://doi.org/10.1016/s0008-6223(01)00164-6
https://doi.org/10.1080/03602558208067726
https://doi.org/10.1038/nature09802
https://doi.org/10.1016/j.conb.2011.10.022
https://doi.org/10.1016/j.conb.2011.10.022
https://doi.org/10.1038/nature09818
https://doi.org/10.1083/jcb.40.3.648
https://doi.org/10.1023/A:1004737217503
https://doi.org/10.1103/physrevb.57.2286
https://doi.org/10.1016/j.neuron.2014.08.034
https://doi.org/10.1017/s1431927610055170
https://doi.org/10.1111/jmi.12667
https://doi.org/10.1371/journal.pbio.002032
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Nguyen et al. Methodological Improvements for Volume Imaging

Domun, N., Hadavinia, H., Zhang, T., Sainsbury, T., Liaghat, G. H., and Vahid, S.
(2015). Improving the fracture toughness and the strength of epoxy using
nanomaterials—a review of the current status. Nanoscale 7, 10294–10329.
doi: 10.1039/c5nr01354b

Eberle, A. L., Selchow, O., Thaler, M., Zeidler, D., and Kirmse, R. (2015). Mission
(im)possible—mapping the brain becomes a reality. Microscopy 64, 45–55.
doi: 10.1093/jmicro/dfu104

Fenno, L., Yizhar, O., and Deisseroth, K. (2011). The development and application
of optogenetics. Annu. Rev. Neurosci. 34, 389–412. doi: 10.1146/annurev-
neuro-061010-113817

Filippi, M., van den Heuvel, M. P., Fornito, A., He, Y., Hulshoff Pol, H. E.,
Agosta, F., et al. (2013). Assessment of system dysfunction in the brain through
MRI-based connectomics. Lancet Neurol. 12, 1189–1199. doi: 10.1016/s1474-
4422(13)70144-3

Fornito, A., Zalesky, A., and Breakspear, M. (2015). The connectomics of brain
disorders. Nat. Rev. Neurosci. 16, 159–172. doi: 10.1038/nrn3901

Genoud, C., Titze, B., Graff-Meyer, A., and Friedrich, R. W. (2018). Fast
homogeneous En Bloc staining of large tissue samples for volume electron
microscopy. Front. Neuroanat. 12:76. doi: 10.3389/fnana.2018.00076

Glauert, A. M., and Glauert, R. H. (1958). Araldite as an embedding medium for
electron microscopy. J. Biophys. Biochem. Cytol. 4, 191–194. doi: 10.1083/jcb.4.
2.191

Gong, S., Zheng, C., Doughty, M. L., Losos, K., Didkovsky, N., Schambra, U. B.,
et al. (2003). A gene expression atlas of the central nervous system
based on bacterial artificial chromosomes. Nature 425, 917–925.
doi: 10.1038/nature02033

Grienberger, C., and Konnerth, A. (2012). Imaging calcium in neurons. Neuron
73, 862–885. doi: 10.1016/j.neuron.2012.02.011

Hall, D. H., Hartwieg, E., and Nguyen, K. C. (2012). Modern electron microscopy
methods for C. elegans. Methods Cell Biol. 107, 93–149. doi: 10.1016/B978-0-
12-394620-1.00004-7

Harris, K. M., Perry, E., Bourne, J., Feinberg, M., Ostroff, L., and Hurlburt, J.
(2006). Uniform serial sectioning for transmission electron microscopy.
J. Neurosci. 26, 12101–12103. doi: 10.1523/JNEUROSCI.3994-06.2006

Hashimoto, T., Thompson, G. E., Zhou, X., and Withers, P. J. (2016). 3D
imaging by serial block face scanning electron microscopy for materials science
using ultramicrotomy.Ultramicroscopy 163, 6–18. doi: 10.1016/j.ultramic.2016.
01.005

Hayworth, K. J., Morgan, J. L., Schalek, R., Berger, D. R., Hildebrand, D. G.,
and Lichtman, J. W. (2014). Imaging ATUM ultrathin section libraries with
WaferMapper: a multi-scale approach to EM reconstruction of neural circuits.
Front. Neural Circuits 8:68. doi: 10.3389/fncir.2014.00068

Hennig, P., and Denk, W. (2007). Point-spread functions for backscattered
imaging in the scanning electron microscope. J. Appl. Phys. 102:123101.
doi: 10.1063/1.2817591

Hildebrand, D. G. C., Cicconet, M., Torres, R. M., Choi,W., Quan, T. M., Moon, J.,
et al. (2017).Whole-brain serial-section electronmicroscopy in larval zebrafish.
Nature 545, 345–349. doi: 10.1038/nature22356

Holcomb, P. S., Hoffpauir, B. K., Hoyson, M. C., Jackson, D. R., Deerinck, T. J.,
Marrs, G. S., et al. (2013). Synaptic inputs compete during rapid formation of
the calyx of Held: a new model system for neural development. J. Neurosci. 33,
12954–12969. doi: 10.1523/JNEUROSCI.1087-13.2013

Hua, Y., Laserstein, P., and Helmstaedter, M. (2015). Large-volume en-bloc
staining for electron microscopy-based connectomics. Nat. Commun. 6:7923.
doi: 10.1038/ncomms8923

Hukui, I. (1996). Tissue preparation for reconstruction of large-scale three-
dimensional structures using a scanning electron microscope. J. Microsc. 182,
95–101. doi: 10.1111/j.1365-2818.1996.tb04796.x

Ichimura, K., Miyazaki, N., Sadayama, S., Murata, K., Koike, M.,
Nakamura, K., et al. (2015). Three-dimensional architecture of podocytes
revealed by block-face scanning electron microscopy. Sci. Rep. 5:8993.
doi: 10.1038/srep08993

Karnovsky, M. J. (1971). ‘‘Use of ferrocyanide-reduced osmium tetroxide in
electron microscopy,’’ in Abstracts of the American Society for Cell Biology
(New Orleans, LA), p.146.

Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., Conchello, J. A.,
Knowles-Barley, S., et al. (2015). Saturated reconstruction of a volume of
neocortex. Cell 162, 648–661. doi: 10.1016/j.cell.2015.06.054

Katoh, M., Wu, B., Nguyen, H. B., Thai, T. Q., Yamasaki, R., Lu, H.,
et al. (2017). Polymorphic regulation of mitochondrial fission and fusion
modifies phenotypes of microglia in neuroinflammation. Sci. Rep. 7:4942.
doi: 10.1038/s41598-017-05232-0

Kim, B. C., Park, S. W., and Lee, D. G. (2008). Fracture toughness of
the nano-particle reinforced epoxy composite. Compos. Struct. 86, 69–77.
doi: 10.1016/j.compstruct.2008.03.005

Kizilyaprak, C., Longo, G., Daraspe, J., and Humbel, B. M. (2015). Investigation
of resins suitable for the preparation of biological sample for 3-D electron
microscopy. J. Struct. Biol. 189, 135–146. doi: 10.1016/j.jsb.2014.10.009

Knott, G., Marchman, H., Wall, D., and Lich, B. (2008). Serial section scanning
electron microscopy of adult brain tissue using focused ion beam milling.
J. Neurosci. 28, 2959–2964. doi: 10.1523/JNEUROSCI.3189-07.2008

Kubota, Y., Karube, F., Nomura, M., Gulledge, A. T., Mochizuki, A., Schertel, A.,
et al. (2011). Conserved properties of dendritic trees in four cortical
interneuron subtypes. Sci. Rep. 1:89. doi: 10.1038/srep00089

Kubota, Y., Sohn, J., Hatada, S., Schurr, M., Straehle, J., Gour, A., et al. (2018).
A carbon nanotube tape for serial-section electron microscopy of brain
ultrastructure. Nat. Commun. 9:437. doi: 10.1038/s41467-017-02768-7

Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., et al.
(2001). Diffusion tensor imaging: concepts and applications. J. Magn. Reson.
Imaging 13, 534–546. doi: 10.1002/jmri.1076

Leduc, E. H., and Bernhard, W. (1967). Recent modifications of the
glycol methacrylate embedding procedure. J. Ultrastruct. Res. 19, 196–199.
doi: 10.1016/s0022-5320(67)80068-6

Lee, B. L. (1992). Electrically conductive polymer composites and blends. Polym.
Eng. Sci. 32, 36–42. doi: 10.1002/pen.760320107

Lichtman, J. W., Pfister, H., and Shavit, N. (2014). The big data challenges of
connectomics. Nat. Neurosci. 17, 1448–1454. doi: 10.1038/nn.3837

Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., et al. (2007).
Transgenic strategies for combinatorial expression of fluorescent proteins in
the nervous system. Nature 450, 56–62. doi: 10.1038/nature06293

Luft, J. H. (1961). Improvements in epoxy resin embedding methods. J. Biophys.
Biochem. Cytol. 9, 409–414. doi: 10.1083/jcb.9.2.409

Luther, P. K. (2006). ‘‘Sample shrinkage and radiation damage of plastic sections,’’
in Electron Tomography Methods for Three-Dimensional Visualization of
Structures in the Cell, ed. J. Frank (New York, NY: Springer), 17–48.

Mathieu, C. (1999). The beam-gas and signal-gas interactions in the variable
pressure scanning electron microscope. Scanning Microsc. 13, 23–41.

Mikula, S., and Denk, W. (2015). High-resolution whole-brain staining for
electron microscopic circuit reconstruction. Nat. Methods 12, 541–546.
doi: 10.1038/nmeth.3361

Morgan, J. L., Berger, D. R., Wetzel, A. W., and Lichtman, J. W. (2016). The fuzzy
logic of network connectivity in mouse visual thalamus. Cell 165, 192–206.
doi: 10.1016/j.cell.2016.02.033

Möller-Reichert, T., Hohenberg, H., O’Toole, E. T., and McDonald, K.
(2003). Cryoimmobilization and three-dimensional visualization of C. elegans
ultrastructure. J. Microsc. 212, 71–80. doi: 10.1046/j.1365-2818.2003.01250.x

Nguyen, H. B., Sui, Y., Thai, T. Q., Ikenaka, K., Oda, T., and Ohno, N. (2018).
Decreased number and increased volume with mitochondrial enlargement of
cerebellar synaptic terminals in a mouse model of chronic demyelination.Med.
Mol. Morphol. 51, 208–216. doi: 10.1007/s00795-018-0193-z

Nguyen, H. B., Thai, T. Q., Saitoh, S., Wu, B., Saitoh, Y., Shimo, S.,
et al. (2016). Conductive resins improve charging and resolution of
acquired images in electron microscopic volume imaging. Sci. Rep. 6:23721.
doi: 10.1038/srep23721

Novák, I., Krupa, I., and Janigová, I. (2005). Hybrid electro-conductive composites
with improved toughness, filled by carbon black. Carbon 43, 841–848.
doi: 10.1016/j.carbon.2004.11.019

Ohno, N., Chiang, H., Mahad, D. J., Kidd, G. J., Liu, L., Ransohoff, R. M.,
et al. (2014). Mitochondrial immobilization mediated by syntaphilin facilitates
survival of demyelinated axons. Proc. Natl. Acad. Sci. U S A 111, 9953–9958.
doi: 10.1073/pnas.1401155111

Ohno, N., Katoh, M., Saitoh, Y., and Saitoh, S. (2016). Recent advancement in the
challenges to connectomics.Microscopy 65, 97–107. doi: 10.1093/jmicro/dfv371

Ohno, N., Katoh, M., Saitoh, Y., Saitoh, S., and Ohno, S. (2015). Three-
dimensional volume imaging with electron microscopy toward connectome.
Microscopy 64, 17–26. doi: 10.1093/jmicro/dfu112

Frontiers in Neural Circuits | www.frontiersin.org 9 November 2018 | Volume 12 | Article 108179

https://doi.org/10.1039/c5nr01354b
https://doi.org/10.1093/jmicro/dfu104
https://doi.org/10.1146/annurev-neuro-061010-113817
https://doi.org/10.1146/annurev-neuro-061010-113817
https://doi.org/10.1016/s1474-4422(13)70144-3
https://doi.org/10.1016/s1474-4422(13)70144-3
https://doi.org/10.1038/nrn3901
https://doi.org/10.3389/fnana.2018.00076
https://doi.org/10.1083/jcb.4.2.191
https://doi.org/10.1083/jcb.4.2.191
https://doi.org/10.1038/nature02033
https://doi.org/10.1016/j.neuron.2012.02.011
https://doi.org/10.1016/B978-0-12-394620-1.00004-7
https://doi.org/10.1016/B978-0-12-394620-1.00004-7
https://doi.org/10.1523/JNEUROSCI.3994-06.2006
https://doi.org/10.1016/j.ultramic.2016.01.005
https://doi.org/10.1016/j.ultramic.2016.01.005
https://doi.org/10.3389/fncir.2014.00068
https://doi.org/10.1063/1.2817591
https://doi.org/10.1038/nature22356
https://doi.org/10.1523/JNEUROSCI.1087-13.2013
https://doi.org/10.1038/ncomms8923
https://doi.org/10.1111/j.1365-2818.1996.tb04796.x
https://doi.org/10.1038/srep08993
https://doi.org/10.1016/j.cell.2015.06.054
https://doi.org/10.1038/s41598-017-05232-0
https://doi.org/10.1016/j.compstruct.2008.03.005
https://doi.org/10.1016/j.jsb.2014.10.009
https://doi.org/10.1523/JNEUROSCI.3189-07.2008
https://doi.org/10.1038/srep00089
https://doi.org/10.1038/s41467-017-02768-7
https://doi.org/10.1002/jmri.1076
https://doi.org/10.1016/s0022-5320(67)80068-6
https://doi.org/10.1002/pen.760320107
https://doi.org/10.1038/nn.3837
https://doi.org/10.1038/nature06293
https://doi.org/10.1083/jcb.9.2.409
https://doi.org/10.1038/nmeth.3361
https://doi.org/10.1016/j.cell.2016.02.033
https://doi.org/10.1046/j.1365-2818.2003.01250.x
https://doi.org/10.1007/s00795-018-0193-z
https://doi.org/10.1038/srep23721
https://doi.org/10.1016/j.carbon.2004.11.019
https://doi.org/10.1073/pnas.1401155111
https://doi.org/10.1093/jmicro/dfv371
https://doi.org/10.1093/jmicro/dfu112
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Nguyen et al. Methodological Improvements for Volume Imaging

Ohta, K., Sadayama, S., Togo, A., Higashi, R., Tanoue, R., and Nakamura, K.
(2012). Beam deceleration for block-face scanning electron microscopy of
embedded biological tissue. Micron 43, 612–620. doi: 10.1016/j.micron.2011.
11.001

Osten, P., and Margrie, T. W. (2013). Mapping brain circuitry with a light
microscope. Nat. Methods 10, 515–523. doi: 10.1038/nmeth.2477

Palay, S. L. (1958). Themorphology of synapses in the central nervous system. Exp.
Cell Res. 14, 275–293.

Richards, R. G., and Gwynn, I. A. (1995). Backscattered electron imaging
of the undersurface of resin-embedded cells by field-emission scanning
electron microscopy. J. Microsc. 177, 43–52. doi: 10.1111/j.1365-2818.1995.
tb03532.x

Saitoh, S., Ohno, N., Saitoh, Y., Terada, N., Shimo, S., Aida, K., et al. (2018).
Improved serial sectioning techniques for correlative light-electronmicroscopy
mapping of human langerhans islets. Acta Histochem. Cytochem. 51, 9–20.
doi: 10.1267/ahc.17020

Sawada, M., Ohno, N., Kawaguchi, M., Huang, S. H., Hikita, T., Sakurai, Y.,
et al. (2018). PlexinD1 signaling controls morphological changes andmigration
termination in newborn neurons. EMBO J. 37:e97404. doi: 10.15252/embj.
201797404

Seligman, A. M., Wasserkrug, H. L., and Hanker, J. S. (1966). A new
staining method (OTO) for enhancing contrast of lipid’containing
membranes and droplets in osmium tetroxide—fixed tissue with osmiophilic
thiocarbohydrazide(TCH). J. Cell Biol. 30, 424–432. doi: 10.1083/jcb.30.
2.424

Staeubli, W. (1963). A new embedding technique for electron microscopy,
combining a water-soluble epoxy resin (Durcupan) with water-insoluble
Araldite. J. Cell Biol. 16, 197–201. doi: 10.1083/jcb.16.1.197

Takeda, A., Shinozaki, Y., Kashiwagi, K., Ohno, N., Eto, K., Wake, H., et al. (2018).
Microglia mediate non-cell-autonomous cell death of retinal ganglion cells.
Glia doi: 10.1002/glia.23475 [Epub ahead of print].

Tapia, J. C., Kasthuri, N., Hayworth, K. J., Schalek, R., Lichtman, J. W., Smith, S. J.,
et al. (2012). High-contrast en bloc staining of neuronal tissue for field emission
scanning electron microscopy. Nat. Protoc. 7, 193–206. doi: 10.1038/nprot.
2011.439

Terasaki, M., Shemesh, T., Kasthuri, N., Klemm, R. W., Schalek, R.,
Hayworth, K. J., et al. (2013). Stacked endoplasmic reticulum sheets are
connected by helicoidal membrane motifs. Cell 154, 285–296. doi: 10.1016/j.
cell.2013.06.031

Thai, T. Q., Nguyen, H. B., Saitoh, S., Wu, B., Saitoh, Y., Shimo, S., et al.
(2016). Rapid specimen preparation to improve the throughput of electron
microscopic volume imaging for three-dimensional analyses of subcellular
ultrastructures with serial block-face scanning electron microscopy.Med. Mol.
Morphol. 49, 154–162. doi: 10.1007/s00795-016-0134-7

Thai, T. Q., Nguyen, H. B., Sui, Y., Ikenaka, K., Oda, T., and Ohno, N.
(in press). Interactions between mitochondria and endoplasmic reticulum in
demyelinated axons.Med. Mol. Morphol.

Thiel, B., Bache, I., Fletcher, A., Meredith, P., and Donald, A. (1997). An improved
model for gaseous amplification in the environmental SEM. J. Microsc. 187,
143–157. doi: 10.1046/j.1365-2818.1997.2360794.x

Titze, B., and Denk,W. (2013). Automated in-chamber specimen coating for serial
block-face electron microscopy. J. Microsc. 250, 101–110. doi: 10.1111/jmi.
12023

Titze, B., Genoud, C., and Friedrich, R. W. (2018). SBEMimage: versatile
acquisition control software for serial block-face electron microscopy. Front.
Neural Circuits 12:54. doi: 10.3389/fncir.2018.00054

Walton, J. (1979). Lead aspartate, an en bloc contrast stain particularly useful
for ultrastructural enzymology. J. Histochem. Cytochem. 27, 1337–1342.
doi: 10.1177/27.10.512319

Wanner, A. A., Genoud, C., Masudi, T., Siksou, L., and Friedrich, R. W. (2016).
Dense EM-based reconstruction of the interglomerular projectome in the
zebrafish olfactory bulb. Nat. Neurosci. 19, 816–825. doi: 10.1038/nn.4290

Wergin, W. P., Yaklich, R. W., Roy, S., Joy, D. C., Erbe, E. F., Murphy, C. A., et al.
(1997). Imaging thin and thick sections of biological tissue with the secondary
electron detector in a field-emission scanning electron microscope. Scanning
19, 386–395. doi: 10.1002/sca.4950190601

Wilt, B. A., Burns, L. D., Wei Ho, E. T., Ghosh, K. K., Mukamel, E. A., and
Schnitzer, M. J. (2009). Advances in light microscopy for neuroscience. Annu.
Rev. Neurosci. 32, 435–506. doi: 10.1146/annurev.neuro.051508.135540

Yacubowicz, J., Narkis, M., and Benguigui, L. (1990). Electrical and dielectric
properties of segregated carbon black-polyethylene systems. Polym. Eng. Sci.
30, 459–468. doi: 10.1002/pen.760300806

Yin, X., Kidd, G. J., Ohno, N., Perkins, G. A., Ellisman, M. H., Bastian, C., et al.
(2016). Proteolipid protein-deficient myelin promotes axonal mitochondrial
dysfunction via altered metabolic coupling. J. Cell Biol. 215, 531–542.
doi: 10.1083/jcb.201607099

Yoshimura, T., Hayashi, A., Handa-Narumi, M., Yagi, H., Ohno, N., Koike, T.,
et al. (2017). GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in
the peripheral nervous system. Sci. Rep. 7:42257. doi: 10.1038/srep42257

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The handling editor declared a shared affiliation, though no other collaboration,
with several of the authors HN, TT and NO at time of review.

Copyright © 2018 Nguyen, Thai, Sui, Azuma, Fujiwara and Ohno. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 10 November 2018 | Volume 12 | Article 108180

https://doi.org/10.1016/j.micron.2011.11.001
https://doi.org/10.1016/j.micron.2011.11.001
https://doi.org/10.1038/nmeth.2477
https://doi.org/10.1111/j.1365-2818.1995.tb03532.x
https://doi.org/10.1111/j.1365-2818.1995.tb03532.x
https://doi.org/10.1267/ahc.17020
https://doi.org/10.15252/embj.201797404
https://doi.org/10.15252/embj.201797404
https://doi.org/10.1083/jcb.30.2.424
https://doi.org/10.1083/jcb.30.2.424
https://doi.org/10.1083/jcb.16.1.197
https://doi.org/10.1002/glia.23475
https://doi.org/10.1038/nprot.2011.439
https://doi.org/10.1038/nprot.2011.439
https://doi.org/10.1016/j.cell.2013.06.031
https://doi.org/10.1016/j.cell.2013.06.031
https://doi.org/10.1007/s00795-016-0134-7
https://doi.org/10.1046/j.1365-2818.1997.2360794.x
https://doi.org/10.1111/jmi.12023
https://doi.org/10.1111/jmi.12023
https://doi.org/10.3389/fncir.2018.00054
https://doi.org/10.1177/27.10.512319
https://doi.org/10.1038/nn.4290
https://doi.org/10.1002/sca.4950190601
https://doi.org/10.1146/annurev.neuro.051508.135540
https://doi.org/10.1002/pen.760300806
https://doi.org/10.1083/jcb.201607099
https://doi.org/10.1038/srep42257
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


MINI REVIEW
published: 11 December 2018

doi: 10.3389/fnana.2018.00112

Frontiers in Neuroanatomy | www.frontiersin.org 1 December 2018 | Volume 12 | Article 112

Edited by:

Yoshiyuki Kubota,

National Institute for Physiological

Sciences (NIPS), Japan

Reviewed by:

Lester Melie-Garcia,

Lausanne University Hospital (CHUV),

Switzerland

Nuno Miguel M Amorim Da Costa,

Allen Institute for Brain Science,

United States

Naomi Kamasawa,

Max Planck Florida Institute for

Neuroscience (MPFI), United States

*Correspondence:

Anna Lena Eberle

anna-lena.eberle@zeiss.com

Received: 18 May 2018

Accepted: 23 November 2018

Published: 11 December 2018

Citation:

Eberle AL and Zeidler D (2018)

Multi-Beam Scanning Electron

Microscopy for High-Throughput

Imaging in Connectomics Research.

Front. Neuroanat. 12:112.

doi: 10.3389/fnana.2018.00112

Multi-Beam Scanning Electron
Microscopy for High-Throughput
Imaging in Connectomics Research

Anna Lena Eberle* and Dirk Zeidler

Carl Zeiss Microscopy GmbH, Oberkochen, Germany

Major progress has been achieved in recent years in three-dimensional microscopy

techniques. This applies to the life sciences in general, but specifically the neuroscientific

field has been a main driver for developments regarding volume imaging. In particular,

scanning electron microscopy offers new insights into the organization of cells and

tissues by volume imaging methods, such as serial section array tomography, serial

block-face imaging or focused ion beam tomography. However, most of these techniques

are restricted to relatively small tissue volumes due to the limited acquisition throughput

of most standard imaging techniques. Recently, a novel multi-beam scanning electron

microscope technology optimized to the imaging of large sample areas has been

developed. Complemented by the commercialization of automated sample preparation

robots, the mapping of larger, cubic millimeter range tissue volumes at high-resolution is

now within reach. This Mini Review will provide a brief overview of the various approaches

to electron microscopic volume imaging, with an emphasis on serial section array

tomography and multi-beam scanning electron microscopic imaging.

Keywords: 3D volume EM, scanning electron microscopy, high-throughput imaging, high-content imaging,

multibeam

INTRODUCTION—THE DECADE OF BRAIN IMAGING

Just as “genomics” deciphers complete genomes of live beings since two decades ago, a new field
aiming at fully deciphering the circuitry of the nervous system on a large scale is emerging now.
This field has accordingly been coined “connectomics” (Sporns et al., 2005), and has similarly been
able to attract growing research interest over the past years (BRAIN, 2013).

First descriptions of neuronal morphology and the idea that individual neurons are anatomically
connected is already a century old (Cajal, 1899). In more recent times, information about the
intrinsic connectivity of the nervous system has been obtained also by in vivo approaches such
as electrophysiology (Mandonnet et al., 2010), diffusion tractography [DTI (Mori and Zhang, 2006;
Hagmann et al., 2007; Guye et al., 2008)], functional magnetic resonance imaging [fMRI (Mamedov
et al., 2012; Lowe et al., 2016)] or optical imaging (Petroll et al., 1994; Kleinfeld et al., 2011; Chen
et al., 2015). None of these methods, however, reveals information about the neuronal connections
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at their ultrastructural level, which is expected to reveal deeper
insights into how a nervous system functions (Morgan and
Lichtman, 2013). The ambitious approach of connectomics is to
gain an understanding of the circuitry of the brain by mapping
every single component and trace every connection of a certain
volume of brain tissue (Lichtman and Denk, 2011).

The actual dimension of the volume of interest depends on a
number of factors, for example on the question to be answered,
the model organism or the neuronal system to be investigated.
Originally describing the connections of a complete nervous
system, different methodologies with different spatial resolutions
lead to the differentiation of the connectome into different scales:
the microscale, the mesoscale, and the macroscale connectome.
Themacroscale connectome parcellates the brain withmillimeter
resolution into anatomically or functionally distinct brain regions
(Fellemann and Van Essen, 1991) and usually is assessed by
non-invasive measures, such as DTI (Beckmann et al., 2009)
or fMRI (Nelson et al., 2010). On the mesoscale, neuronal
populations with distinct anatomical (Mountcastle, 1997) or
functional (Callaway and Katz, 1990) features are described at a
spatial resolution of hundreds of micrometers (Zhao et al., 2005).
Mapping the finest details on the cellular level corresponds to the
microscale connectome (Bargmann and Marder, 2013, Schröter
et al., 2017). Bridging the gaps between these different scaling
levels might enable a more unified, multiscale description of the
connectome.

With specific labeling (Young and Feng, 2004; Lakadamyali
et al., 2012), light microscopical methods characterize individual
neurons very well, while still offering relatively large sample
volumes. The surrounding, unlabeled context, however, is usually
missing. Even though the resolution limit of light microscopes
has been improved over decades to well below the light
wavelength (Klar et al., 2000; Betzig et al., 2006; Hell, 2007), the
nervous system contains structures that are not easily resolvable
with them. Hence, electron microscopy (EM) has become a
commonly used technique to resolve ultrastructural details on a
cellular scale.

If acquisition of a whole volume is required, the volume of
interest needs to be sectioned physically (Ware, 1975) or optically
(Minsky, 1988; Denk et al., 1990; Neil et al., 1997; Huisken et al.,
2004; Santi, 2011) before it can be imaged in 2D. The 2D data
sets are stacked and aligned in the third dimension, and all
individual compartments are usually labeled on the 2D images
first and then tracked throughout the volume. This method in
the end yields a “dense reconstruction” (Kasthuri et al., 2015)
and will answer important questions about the general principles
how neurons connect: Does a minimal repetitive circuitry unit or
motif exist? How do different brain regions compare, and how
does this relate to differences between individuals and species
(Womelsdorf et al., 2014, Borst and Helmstaedter , 2015, Lee
et al., 2016)? Based on such data for healthy brain tissue, the
next step is to learn about deviations in pathological conditions.
Are there structural changes in brains with neurodegenerative
diseases, and how does this knowledge help to develop novel
treatments? However, before such information can be derived,
imaging of the volume of interest needs to be accomplished.

OVERVIEW OF DIFFERENT APPROACHES

TO VOLUME ELECTRON MICROSCOPY

Over the last decades, several methods for volume electron
microscopy have been established (Briggman and Bock, 2012;
Kremer et al., 2015; Mikula and Denk, 2015; Titze and Genoud,
2016). The nature of the experiment determines which method is
optimally suited.

One main differentiator is which part of the tissue block
is imaged—the cut-off and collected ultra-thin section or the
freshly exposed block surface after a cut. The main advantage of
collecting serial sections is that the sample is preserved and can be
imaged repeatedly. Reconstruction of the volume after imaging is
challenging, as the data needs to be corrected for distortion and
translation occurring during the cutting process (Saalfeld et al.,
2010). The section thickness is limited down to ∼30 nm, leading
to non-isotropic voxels when images are acquired with a smaller
lateral pixel size. With block-face imaging, the reconstruction of
the final data set needs less distortion and translation corrections,
because the acquired area is always the same in shape and
position. As the sample is lost in the sectioning process, advanced
control of the imaging step has to ensure each section is acquired
with sufficient quality before moving on to the next cutting step
(Binding et al., 2013).

Classically, serial ultrathin sections have been prepared using
an ultramicrotome, followed by manually placing them onto
copper grids for imaging in a transmission electron microscope
[TEM (Harris et al., 2006)]. Recent developments regarding
automation on the sample handling as well as the imaging
part enabled relatively large-scale sample volumes to be imaged
and reconstructed (Zheng et al., 2018). However, the standard
TEM grid ultimately limits the size of the accessible volume
to a maximum of 1 × 2mm (Briggman and Bock, 2012). For
samples exceeding this size, placement of the sections on a
solid substrate is necessary, which in turn requires imaging in
a scanning electron microscope (SEM). In principle, classical
sample preparation schemes suitable for SEM imaging can be
used (Echlin, 2009), however, such protocols might need to get
slightly adapted to accommodate larger tissue volumes (Hua
et al., 2015; Mikula and Denk, 2015).

For preparation of large series of consecutive sections, the
automated ultramicrotome [ATUMtome (Hayworth et al., 2006;
Schalek et al., 2011)] uses a conveyer belt type mechanism
to automatically pick up sections on a tape right after they
have been cut. ATUMtome has been reported to reliably
collect thousands of consecutive sections (Hayworth et al.,
2014), enabling sectioning of large sample volumes. Several tape
materials with different physical properties have been evaluated
so far (Kubota et al., 2018). For manual preparation of a small
to medium number of sections, a micromanipulator setup with
an advanced substrate holder [ASH (Spomer et al., 2015)] is
sufficient. This is especially useful with small samples and for
the preparation of ribbons of sections (Wacker et al., 2015).
Sections can be placed directly onto a silicon wafer as substrate,
which is advantageous for imaging in a SEM, or onto indium tin
oxide coated coverslips, such that imaging with light microscopes
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is possible as well. Further developments aim at more efficient
handling and placement of serial sections. For example, it has
been demonstrated that sections can be controlled magnetically
while still floating in the water bath after cutting (Templier,
2017). By tracing each individual slice to its position on the final
substrate, this technique allows dense packing of sections onto
the wafer, increasing the degree of automation by reducing on
the total number of sample carriers.

For block-face imaging, the in-situ microtome (Denk and
Horstmann, 2004) and focused ion beam ablation (Knott et al.,
2008; Xu et al., 2017) are the two most established methods. The
in-situ microtome allows for rather quick ablation of the surface
of medium sized sample volumes of up to (0.5× 0.5× 0.5) mm3.
It has been reported to run autonomously for up to several weeks
(Wanner et al., 2015). Yet, the section thickness is limited by the
radius of the knife edge. About 20 nm are achievable because the
sections do not need to be collected, but the thinner a section
thickness is chosen, the less reproducible the results will be. If
isotropic voxel data with <15 nm side length is required, FIB-
SEM is currently the only available technique. The slow ablation
speed results in only rather small accessible volumes, currently
few tens of micrometers side length at maximum. A recent
development aims to increase the throughput of this approach
by dissecting the sample with a hot knife without loss into
smaller cubicles and parallelizing the ablation/imaging process
with several FIB-SEM systems (Hayworth et al., 2015). The
acquired datasets are subsequently recombined into the original
sample volume. Even tracing of fine neuronal processes seems to
be possible across the borders of these cubicles.

SAMPLE VOLUMES AND IMAGING TIME

Comparison tables providing an overview of the various electron
microscopical approaches to volume imaging are available in
the review articles from Briggman and Bock (2012), Titze and
Genoud (2016), and Kornfeld and Denk (2018). However, the
limiting factor for all approaches is the sample volume that can
be assessed in a reasonable time and at the required resolution.
Thus, all volume electron microscopy applications will benefit
from an increase in image acquisition throughput. As neuronal
circuits can span hundreds of micrometers or more, the need for
imaging larger sample volumes is particularly important within
the field of connectomics.

For example, some types of neurons, such as Claustrum
neurons, reportedly can wrap around the whole brain (Reardon,
2017). In the case of an entire circuit, the cortical column
(Mountcastle, 1957; Fox, 2018) describes the concept of a
modular building block of circuitry. It spans all six cortical layers
and part of the underlying white matter, therefore measuring to
a depth of up to 2mm and a lateral extent of up to 500µm. Such
volumes can easily exceed the capabilities of a standard single
beam scanning electron microscope—or rather the time that can
be allocated for such a project. One cubic millimeter of brain
tissue, cut into 30 nm thin slices, results in more than 33,000
sections of 1 mm² each. Imaging this total area with a pixel size
of 4 nm, which is sufficient to grasp all required details, will take

approximately 12 years with a state-of-the-art single-beam SEM
(Titze and Genoud, 2016).

However, accelerating the imaging with a single-beam SEM
will have an impact on the image quality (Reimer, 1998):
Increasing the scan speed of the illuminating electron beam
will result in reduced contrast to noise ratio due to the shorter
dwell time per pixel, i.e., less electrons per pixel. This can be
compensated by increasing the beam current at the cost of
decreasing the resolution of the illuminating electron beam due
to electron-electron interactions. The solution to this dilemma
is parallelizing the imaging process. In principle, one could
use several SEMs in parallel; a more economical way is to
parallelize imaging within a single instrument. Multi-beam
scanning electron microscopes (Ren et al., 2014; Eberle et al.,
2015a) will enable data acquisition times of less than half a year
in the example above and might therefore help bridging the gap
between microscale- and mesoscale-connectome.

MULTI-BEAM SCANNING ELECTRON

MICROSCOPY

Using multiple electron beams in parallel has been of interest
in electron beam lithography for decades: reducing the writing
time of semiconductor structures with multiple electron beam
lithography is of great economic interest (Pease, 1979; Chang
et al., 2001; Platzgummer et al., 2013). If, next to multiple-beam
illumination, multi-beam imaging is also required, a detection
path needs to be added. Up to date, there are a number of
different concepts for multi-beam electron microscopes, such
as multi-column or multi-beam systems (Mukhtar, 2018). The
multi-column approach proposes multiple miniaturized electron
optical columns in parallel (e.g., Meisburger et al., 2015). The
number of micro-columns that have been proposed is for
example 69 in Luo and Khursheed (2014). The multi-beam
approach utilizes a bundle of electron beams generated from
a single electron source and a single column (Mohammadi-
Gheidari and Kruit, 2011; Keller et al., 2014).

What speed advance does a multi-beam SEM provide?
Theoretically, the imaging throughput of a multi-beam SEM
equals that of a comparable single-beam SEM multiplied by
the number of beams. For the single beam SEM, the area
throughput is basically given by pixel dwell time and total
number of pixels to be acquired. Overhead times, such as stage
movements, are usually of minor impact, especially for single-
beam SEMs with large frame stores that allow to tesselate an
area with fewer individual, but very large image tiles that take
quite long to acquire. For multi-beam SEMs, the pure imaging
time for a similarly large image tile consisting of many sub-
images is reduced by the above mentioned theoretical factor.
If the overhead remains unaltered, its relative impact on total
acquisition time will increase.

Under experimental conditions, an image acquisition rate of
up to one terapixel per hour (Haehn et al., 2017) is achievable
with a 61-beam SEM (Figure 1). While the illuminating beam
array scans over the sample surface, secondary electrons are
generated at each position of the primary electron beams. These
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FIGURE 1 | Multi-beam SEM principle of operation: The left image shows the signal electrons in the form of 61 secondary electron spots at the detector plane. Each

spot corresponds to one secondary beam that is collected in an individual channel and acquired by one detector. All illuminating electron beams are scanned

concurrently which leads to fluctuations in the signal intensity of the signal electron spots shown here. These changes are detected and related to the location of the

sample the signal stems from. As a result, the beams marked in dark and light blue simultaneously acquire the images marked in dark and light blue, respectively. The

right image shows a montage of the 61 single beam images recorded in one shot with a total field of view of about 110µm. Sample with courtesy from Jeff Lichtman

and Richard Schalek, Harvard University; figure adapted from Eberle et al. (2015b).

are collected into separate channels, and the signal intensity
is detected as function of the sample position of the primary
electron beams. Pixel by pixel, the image for each individual beam
is generated, and these images are merged to form the hexagonal
full multi-beam field of view (mFOV, figure 1, right). If the region
of interest (ROI) to be imaged is larger than one mFOV, the stage
is moved to an adjacent sample position and the next mFOV is
acquired with a little overlapping seam. The image information
present in the overlap areas is used to correctly stitch together all
mFOVs of an ROI. More details of the operating principle have
already been described elsewhere (Eberle et al., 2015b; Kemen
et al., 2015).

It shall be noted, though, that the highest image acquisition
speed is only useful if continuous operation can be guaranteed.
In case of a multi-beam SEM, this requires high automation
effort, as all beams of the multi-beam array need to perform
equally in order to generate homogeneous image data across
the full mFOV. Figure 2 shows an example of a seamlessly
imaged mouse brain section of ∼3 mm² at 4 nm pixel
size.

LARGE DATA CHALLENGES

The overwhelming data rates high throughput EMs produce
call for adequate strategies to handle this amount of
data.

The simplest approach is to store the data on a local storage
system as they are produced. This has the drawbacks of any
local storage system, such as limited extendibility and data
accessibility, limited simultaneous read/write operations, and
backup effort. For small imaging volumes, nevertheless, the
simplicity of this solution can still outweigh the drawbacks.
Alternatively, the data can be stored in a distributed or even
public storage system, with better scalability and accessibility.

However, in that case, data transfer may become a significant cost
factor.

Storage needs can be reduced when data compression may

be applied. There is a tradeoff between data acquisition rate and
data quality when imaging at highest data rates. Here, the task
isb not to produce the best image with good contrast-to-noise

ratio (CNR), but an image that can still be processed reliably.
Depending on the application, highest data acquisition rates may

be achieved at a point where images have a CNR inadequate

for lossless data compression. If the application allows data
compression with loss of information, larger compression factors
are achievable. Next to general image compression methods, this

might also be vectorization of data, e.g., by contour finding.
With a typical single beam image size of 5–12 Mbyte, and a
typical size of a vectorized data set of few kbytes to several 10

kbytes, the achievable data reduction rate is then about 102-103.
In the case of contour finding, for example, this value depends on

the number of features in the image and the required contour
accuracy. The more a priori knowledge about the images is

available, the better the image data can be condensed into a

corresponding model.
Ultimately, real time data processing will allow for maximum

data rate reduction. In the extreme case, each image could be
reduced to e.g., one bit of information, depending on whether
it matches a predefined criterion or not, and just storing
this information. In general, a number of key parameters,
corresponding to a few bytes, will be extracted from each image,
and only these parameters need to be stored. The data reduction
rate will then be on the order of 106.

This extreme case is often not possible. Even worse, data
amounts may increase during processing before they can be
reduced. In a connectomics data set, for example, potentially
billions of neurons need to be represented unambiguously, so
64 bit encoding is required initially. As the image data usually
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FIGURE 2 | Large area imaging example: (A) Coronal mouse brain section from one hemisphere, fully acquired within 20min with a 61-beam SEM at 4 nm pixel size,

resulting in 290 GB of image data. The area of ∼3 mm² consists of 492 individual hexagonal fields of view (B) or 30,012 single-beam image tiles (C) in total. (D) shows

an enlarged cutout. Sample with courtesy from Jeff Lichtman and Richard Schalek, Harvard University; figure adapted from Eberle et al. (2017).

is encoded in 8 bit format, the segmentation data size exceeds the
actual image size by a factor of 8. Only after segmentation, data
will be compressed by a factor of about 700 (Haehn et al., 2017).
This example shows that connectomics research today is forced to
also focus onto the development of suitable processing solutions
for such huge data sets.

OUTLOOK

The seamless integration of storage and computing solutions to
the imaging system will be one of the future requirements for
high throughput EM experiments in connectomics. Once this has
been accomplished, further improving the imaging throughput
of single-beam and multi-beam SEMs will enable investigating
even larger volumes of neuronal circuitry. This becomes even
more relevant if new sample preparation technologies with faster
ablation and higher resolution, such as high-speed ion milling,
become available (Nowakowski et al., 2017; Kornfeld and Denk,
2018).

For example, an ultrahigh-precision stage could reduce
downstream computational efforts for seamless image stitching
between adjacent mFOVs. Improving stage move times will
reduce the imaging overhead. With improved contrasting of
the sample, images could be taken at less electrons per pixel.
This means, at constant or improved current per beam, faster
scans would be possible. For several types of connectomics

investigations, there will be a need for improved resolution.
Multi-beam SEM technology has just recently become available
and has the potential to fulfill the throughput and resolution
requirements of future connectomics experiments needs.

Although both improved throughput, causing higher data
rates, as well as better resolution, enabling smaller and
therefore more voxels per volume, will pose an even larger
challenge on the already limiting computational effort, the
development of computation technology is expected to match
the demands of connectomics research in the years to come.
Manual tracing and segmentation (White et al., 1986) has
been replaced by machine learning and neural networks
trained with ground truth from manual segmentation (Turaga
et al., 2010; Arganda-Carreras et al., 2015; Berning et al.,
2015; Januszewski et al., 2016).The main task for the near
future will be to implement the existing tools into scalable
architectures.
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Image-Oriented Dataservice
William T. Katz* and Stephen M. Plaza
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Open-source software development has skyrocketed in part due to community tools like

github.com, which allows publication of code as well as the ability to create branches

and push accepted modifications back to the original repository. As the number and

size of EM-based datasets increases, the connectomics community faces similar issues

when we publish snapshot data corresponding to a publication. Ideally, there would

be a mechanism where remote collaborators could modify branches of the data and

then flexibly reintegrate results via moderated acceptance of changes. The DVID system

provides a web-based connectomics API and the first steps toward such a distributed

versioning approach to EM-based connectomics datasets. Through its use as the

central data resource for Janelia’s FlyEM team, we have integrated the concepts of

distributed versioning into reconstruction workflows, allowing support for proofreader

training and segmentation experiments through branched, versioned data. DVID also

supports persistence to a variety of storage systems from high-speed local SSDs to

cloud-based object stores, which allows its deployment on laptops as well as large

servers. The tailoring of the backend storage to each type of connectomics data leads to

efficient storage and fast queries. DVID is freely available as open-source software with

an increasing number of supported storage options.

Keywords: versioning, connectomics, EM reconstruction, dataservice, big data, datastore, collaboration,

distributed version control

1. INTRODUCTION

Generation of a connectome from high-resolution imagery is a complex process currently rate-
limited by the quality of automated segmentation and time-consuming manual “proofreading,”
which entails examination of labeled image volumes and correction of errors (Zhao et al., 2018).
Advances in the acquisition and segmentation of high-throughput volume electron microscopy
(VEM) create larger data sets (Kornfeld and Denk, 2018) that stress data management tools due
to the volume of data, the need to support proofreading as well as automated, high-throughput
batch operations, and the sharing and integration of results from different research groups. While
many data distribution systems focus on large numbers of relatively small datasets or file-based
distribution (Dutka et al., 2015; Viljoen et al., 2016), VEM reconstructions are not easily distributed
and usable to researchers through file distribution. For teravoxel to petavoxel datasets, centralized
data services can provide low latency access to areas of interest without requiring the download of
much larger volumes of data (Saalfeld et al., 2009; Burns et al., 2013; Haehn et al., 2017; Kleissas
et al., 2017).

As reconstructions increase in both number and size, more data will be published after
automated segmentation and a decreasing portion of the reconstructions will be manually
proofread due to the flood of new data. Research groups around the world should be able to

188

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2019.00005
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2019.00005&domain=pdf&date_stamp=2019-02-05
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles
https://creativecommons.org/licenses/by/4.0/
mailto:katzw@janelia.hhmi.org
https://doi.org/10.3389/fncir.2019.00005
https://www.frontiersin.org/articles/10.3389/fncir.2019.00005/full
http://loop.frontiersin.org/people/130110/overview
http://loop.frontiersin.org/people/136993/overview


Katz and Plaza DVID

download regions of interest and edit them locally to further
improve reconstructions to higher levels of accuracy. However,
no connectomics data system exists that allow remote or post-
publication editing on data copies with the option to easily
integrate these changes with other copies, including the original,
centralized data repository. Distributed version control systems
for software, like git and the collaborative website github.com
(Blischak et al., 2016), provide workflow examples of how
scientific data could be shared, forked, and collaboratively edited,
even if git is not a viable system for handling large VEM
reconstructions.

Connectomics data is also quite heterogeneous. In addition to
the large volumes of grayscale and segmentation images, there
can be agglomeration information in the form of supervoxels
and merge/split trees as well as synapse and workflow data useful
to managing the reconstruction process. Low latency retrieval of
neuron data will probably require denormalizations of data such
that segmentation is not only held across multiple resolutions
but also separated into neuron-specific sparse volumes (i.e.,
compressed binary representations that can span large volumes).
The various forms of data can be mapped onto different storage
systems based on requirements for data size, latency, and cost
per terabyte. Data services should be available in isolated,
small compute environments like laptops as well as institutional
clusters and multi-region clouds.

Over time, connectomics researchers will create a variety of
tools that need access to the data despite possible changes in
how the data is stored. A high-level Science API, focused on
connectomics operations, can shield clients from infrastructure
changes and allow easier support of multiple tools.

DVID1 has made several contributions to the state of the
art. First, it provides a simple mechanism that efficiently adds
branched versioning to storage systems that provide key-value
store interfaces (Figure 1). Our branched versioning system
permits instantaneous viewing of older versions, novel workflows
for training proofreaders, and git-like methods of distributing
data and updating remote stores. It allows one to treat committed
nodes as immutable data and leaf nodes as mutable. Under this
model, most of the connectome data will be immutable. The
use of storage via a key-value interface allows us to exploit a
spectrum of caching and storage systems including in-memory
stores, embedded databases, distributed databases, and cloud
data services. By partitioning data into key-value pairs, we
efficiently handle versioning by only storing new key-value
pairs covering modifications and not copying all data for each
version.

DVID introduces the idea of typed data instances that provide
a high-level Science API, translate data requirements to key-
value representations, and allow mapping types of data to
different storage and caching systems. The Science API provides
a reliable connectomics interface for clients and frees them
from requiring specific database technology or reimplementing
domain-specific processing. The mapping system allows DVID
to assign some data to very low-latency storage devices like
Non-Volatile Memory Express (NVMe) SSDs while exploiting

1http://github.com/janelia-flyem/dvid

FIGURE 1 | Key-value stores are among the simplest databases with few

operations. Because of their simplicity, many storage systems can be mapped

to key-value interfaces, including file systems where the file path is the key and

the value is the file data.

cheap, petabyte-scale cloud stores and efficient caching systems
for immutable grayscale data.

DVID provides a publish/subscribe mechanism for messaging
between data types so changes in one data instance can
trigger modifications in another. For example, if a segmentation
changes, associated synapses will be automatically modified so
that requests for all synapses in a particular label will be correct.

DVID was introduced in 2013 as an open-source project
and became the principal data system for the FlyEM team
at Janelia Research Campus for several of the largest, dense
VEM reconstructions done to date. Over the course of its
use, we added a number of features driven by reconstruction
demands including multi-scale segmentation, regions of interest,
automatic ranking of labels by synapse count, supervoxel and
label map support that provides quick merge/split operations,
and a variety of neuron representations with mechanisms
for updating those denormalizations when associated volumes
change. This paper discusses some of the issues and interesting
benefits that we discovered in using a branched versioning system
for our research.

2. SYSTEM DESIGN

The DVID system is a highly customizable, open-source
dataservice that directly addresses the issues encountered by
image-driven connectomics research. DVID provides versioning
and distribution inspired by software version control systems,
customizable domain-specific data types (e.g., grayscale and label
volumes, synapse annotations) accessible via a HTTP API, and
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TABLE 1 | Sample of science HTTP API.

Datatype Endpoint (URL starts with /api/node/f8a0...) HTTP action

Labelmap /name/raw/128_128_128/0_0_0 GET returns and POST stores

1283 voxel subvolume at offset (0, 0, 0).

/name/specificblocks?blocks=23,23,10,23,24,10 GET returns compressed block data

for blocks (23, 23, 10) and (23, 24, 10).

/name/label/100_100_47 GET returns JSON for the uint64 label

at voxel (100, 100, 47).

/name/size/3171 GET returns JSON for the number of

voxels in label 3171.

/name/sparsevol/3171?format=rles&minz=60 GET returns run-length encoded list

of voxels with z > 60 in label 3171.

/name/merge POST merges labels given in POSTed

JSON array [target,label1,label2,...].

/name/split/3171 POST splits label 3171 using a POSTed

sparse volume.

Annotation /name/elements POST stores 3D point annotations given in

POSTed JSON.

/name/elements/200_200_200/0_0_0 GET returns JSON of annotations within

2003 voxel subvolume at offset (0, 0, 0).

/name/move/38_21_33/46_23_35 POST moves the annotation at voxel

(38, 21, 33) to (46, 23, 35).

/name/label/3171 GET returns JSON of annotations in voxels

with label 3171.

Keyvalue /name/key/somedata GET returns and POST stores arbitrary

data with key “somedata.”

/name/keyvalues GET returns and POST stores arbitrary

key-value data using protobuf serialization.

/name/keyvalues?jsontar=true GET returns a tarball of key-value data for

keys given in the query body as a JSON

string array.

Each datatype implements its own HTTP endpoints although similar datatypes (e.g., ones dealing with image volumes) can reuse interfaces like the first “raw” endpoint.

flexibility in choosing underlying storage engines, allowing its use
on laptops, institutional clusters, and the cloud.

DVID persists data through an abstract key-value interface
that is satisfied by a number of swappable storage engines. We
started with a key-value interface because (1) there are a large
number of high-performance, open-source caching and storage
systems that match or can be reduced to a key-value API, (2)
the surface area of the API is very small, even after adding
important cases like bulk loads or sequential key read/write,
and (3) versioning can be easily added by modifying keys to
incorporate a version identifier.

From a user’s perspective, the DVID system can be described
through its two major interfaces. The first is a client-facing
Science API that provides a rich set of connectomics operations
through a REST (Level 2 of Richardson Maturity Model2) HTTP
API (Table 1). The second is a Storage API that provides a limited
set of key-value operations (Figure 2).

2https://martinfowler.com/articles/richardsonMaturityModel.html

From a developer’s perspective, pluggable data type code
packages (e.g., a uint8blk type that supports uint8 image volumes
like VEM grayscale data) expose a data type-specific HTTP/RPC
API on the user-facing side and processes data in the form of
key-value pairs that get persisted through the storage interface.
The storage interface is handled by pluggable storage engine code
packages that can obtain version and data instance IDs from
the key and store the key-value pair in a reasonable way for the
particular storage system. Data types also can be constructed that
simply proxy requests to a backend service like bossDB (Kleissas
et al., 2017) at the cost of versioning.

2.1. Example Usage
Before detailing how DVID implements the Science API and
versioned data, we will describe how DVID is used in an example
reconstruction and connectome analysis workflow.

DVID administration can be performed through a DVID
command in a terminal, sending a HTTP request through
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FIGURE 2 | High-level view of DVID. Data types within DVID provide a Science API to clients while transforming data to meet a primarily key-value Storage API or

proxy data to a connectomics service.

tools like curl or httpie3, or using the DVID Console web
application4. Using one of those three methods, we first create
a new repository, and then add a uint8blk data instance called
grayscale and a labelmap data instance called segmentation.

Due to the large scale of our image volumes, FlyEM employs
python scripts that load strips of grayscale data using HTTP
POST requests to the grayscale instance. These HTTP requests
are typically handled by libdvid, a C++ library with python
bindings5. Similarly, scripts load the automatically segmented
label data (64-bit unsigned integer per voxel) (Januszewski et al.,
2018) into the segmentation instance using strips of highly-
compressed DVID blocks (see section 2.5). Both grayscale and
segmentation voxel data can be loaded into DVID, letting DVID
do the image pyramid generation as well as the label indexing
(i.e., determining the blocks spanned by each label). However,
for very large volumes, it is more efficient to offload the image
downsampling and label indexing to a cluster and then directly
ingest the results. We have published Spark (Zaharia et al., 2010)
tools that can be used for large-scale processing6.

After ingestion of the image volume and segmentation, we
commit (lock) the root version and create a new version for
our manual proofreading. Additional data instances are typically
created, such as a synapses instance of annotation to hold
synapse point annotations and various keyvalue instances to hold
proofreader assignments, generated skeletons, and other data
useful to the various clients and scripts used for reconstruction
and connectome analysis. In each case, python, C++, or
Javascript clients connect with DVID through the languages’
built-in HTTP library or intermediate libraries like libdvid.

Proofreaders use tools like NeuTu (Zhao et al., 2018),
Neuroglancer7, and various scripts to edit the segmentation, view

3https://httpie.org/
4https://github.com/janelia-flyem/dvid-console
5https://github.com/janelia-flyem/libdvid-cpp
6https://github.com/janelia-flyem/DVIDSparkServices
7https://github.com/google/neuroglancer

2D image sections, 3D sparse volumes, meshes, and skeletons,
andmanage data necessary for our proofreader workflows. HTTP
traffic to DVID can easily exceed 100,000 requests perminute and
include server metadata queries that return within microseconds
as well as sparse volume requests for massive bodies that take tens
of seconds.

At some point in time, we may decide to create a snapshot of
all the data so we commit the current version and create a new
one. The state of the data at the time of that commit will always
be available for instantaneous viewing.

2.2. Versioned Data
Versioning can be modeled in at least two ways: branched
versioning using a directed acyclic graph (DAG) as in the git
software version control system, or a linear timeline that can be
thought of as one path through the DAG. Current connectomics
data services use no versioning or linear versioning where there
is one head, the current state. The underlying storage can be
optimized for access of the current state while any changes are
recorded into a log, which will be likely accessed less frequently
than the head (Al-Awami et al., 2015).

A DAG-based approach is more powerful, allowing branching
and merging, and has been shown to be very effective for
collaborative efforts like distributed software development.While
branched versioning is already showing utility for proofreader
training as described below, we believe its utility will be more
obvious as published reconstructions increase in both number
and size and the portion of manually proofread data decreases.
As discussed in FutureWork, specialists in various neural circuits
will be able to improve reconstruction accuracy of published
regions, maintain their own private branch until publishing
results, and then optionally merge edits back into the central
repository.

The DAG, in one way or another, will be dictated by post-
publication manual proofreading as well as any collaborative
editing involving decentralized data storage. Each edited clone
is essentially a branch, even if described as a control layer
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over linear versioning, and attempts to merge results require
a DAG for provenance tracking. Aside from edits due to
continued reconstruction improvements, full-fledged branching
and merging is also important for collaborative data analysis
(Huang et al., 2017). The drawback of a DAG is its complexity,
but even if a versioning system uses a DAG internally, its clients
could show a single selected branch unless handling operations
that need to expose that complexity.

Distributed software version control systems like git use the
nodes in a DAG to represent each committed version of data.
A commit is a snapshot of data at that time, and as such,
would include an accumulation of changes since the last commit.
Provenance is kept at the commit level, not the change level, so if
a line in a file were changed three times since the last commit,
only its final state would be recorded and not the individual
changes between the commits. While it would be nice to have a
complete record of all changes to data, there could be a significant
storage overhead for storing every change regardless of its
importance. For this reason, fine-grain provenance, if desired, is
delegated to the data type implementation while commit-level
versioning is standard for all versioned data instances. Many
data types publish each mutation to an Apache Kafka system,
a distributed logging system that can be used to inform other
services of changes to data (Wang et al., 2015). In addition
to Kafka logging, the data type labelmap always provides fine-
grained provenance by logging all mutation operations like
merges and splits to an append-only file. This log is used on server
restart to populate an in-memory label map, which provides
supervoxel id to agglomerated label mappings.

At its core, DVID adopts the DAG view of versioning used
by software version control systems like git. Unlike git, DVID
partitions data not in files but in data instances of a data
type, for example, there could be segmentation-param1 and
segmentation-param2 instances of data type labelmap, which
supports label volumes and label-specific sparse volume retrieval
and operations. DVID also allows access to any version of the data
at any time.

A dataset in DVID is described as a “repository” and
corresponds to a single DAG. Each node is a version identified by
a RFC4122 version 4 UUID8, a 32 character hexadecimal string
that can be generated locally and is unique globally. Datasets are
typically identified by the UUID of the root. At each node of
the DAG, users can store a description similar to git’s commit
message as well as append to a node-specific log.

DVID requires each branch of the DAG to have a unique
string name. By default, the root node is part of the “master”
branch that uses the empty string for a name. For each committed
node, we can create one child that extends the parent branch or
any number of children with new branch names.

The ability to easily branch and handle distributed editing
is a significant advantage of a DAG approach. Proofreaders
can branch their own versions to allow training and testing
(Figure 3). As described below, branching requires little
additional storage cost since onlymodifications need to be stored.
Also, no modification to tools are required since DVID clients

8https://tools.ietf.org/html/rfc4122

FIGURE 3 | Versioning can help train proofreaders without requiring any

changes to proofreading tools. After full proofreading (version 8d65f), an

interesting neuron is selected and its precursor at the root version c78a0 is

assigned for training. Each trainee gets her own branch off the root version,

and the reconstructed neuron (e.g., the one depicted in training version a6341)

can be compared to version 8d65f.

can simply specify the UUID of a training version and leave the
current “master” data unaffected.

Over the past 3 years, the FlyEM team has used DVID
during reconstructions of seven columns of medulla (Takemura
et al., 2015) and the mushroom body (Takemura et al., 2017)
of Drosophila. The reconstruction process produced large
DAGs with regions of heavy branching due to proofreader
training or experimental edits (Figure 4). DVID provides an
extensive HTTP API for clients to download server state and
dataset metadata, including the DAG. The DVID Console web
application provides a simple view of the master branch, and
an alternative version allows viewing of the full DAG as well as
the ability to click any node to view the log and data instances
associated with that node.

The DAG is useful for quality control and being able to look
back to previous states of our dataset as well as the comments
attached to it. If mistakes were made, we can determine where
they were introduced.While viewing historical data only requires
versioning, not necessarily branched versioning, its ease of use
requires a data service that can display all versions without a
significant time delay.

2.3. Branched Versioning of Key-Value Data
DVID implements branched versioning over different types of
key-value data by (1) keeping metadata, including the version
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FIGURE 4 | The version DAG of the mushroom body reconstruction as seen through the DVID Console’s DAG viewer. Snapshots show (A) zoomed out view showing

extent of DAG with significant proofreader training branches near root, and (B) blown up view of leaf at bottom left. Green nodes highlight the “master” branch while

the yellow leaf node is the current production version.

DAG, in memory and (2) extending keys to include data and
version identifiers. When data is modified in an uncommitted,
open node, the data type implementation retrieves and stores
key-value pairs as needed while the core DVID system modifies
the keys to include identifiers for the particular data instance
and the version. We want to emphasize that modifications in
a version usually only affect a subset of key-value pairs. For
example, the labelmap data type partitions 3D space into small
blocks (typically 64 × 64 × 64 voxels) such that each block is
a single key-value pair. Modifications of the label volume in a
new version requires only storing the affected blocks, and key-
value pairs corresponding to untouched areas will be inherited
by ancestors as described below.

The core DVID storage package uses a key composed of a data
instance identifier, the datatype-specific key, a version identifier,
and a tombstone marker, in that order by default as shown in
Figure 5. A data instance can insert multiple classes of key-value
pairs, each with different formats of datatype-specific keys and
corresponding values. For example, the labelmap and labelarray
data types (described in more detail in section 2.5) use two classes
of key-value pairs: (1) blocks or cuboids of label data where
the datatype-specific key has a scale integer prepended to the
ZYX block coordinate, and (2) label indices where the datatype-
specific key is simply a 64-bit unsigned integer label and the value
describes the blocks containing the label in question.

DVID maintains a mapping of globally unique 128-bit data
instance and version UUIDs to unsigned 32-bit integers solely
to decrease key sizes. The 32-bit identifiers are server-specific
since these identifiers could collide with identifiers in remote
DVID servers as new data instances and versions are added
locally and remotely. When key-value pairs are exchanged with

remote DVID servers, the source server identifiers are converted
to remote server identifiers by comparing the globally unique
data instance and version UUIDs.

In Figure 5, two data instances are shown: a labelmap

instance (data id 1) and an annotation instance (data id 2). The
labelmap instance has key-value pairs for label 198’s index and
two label blocks in version 0, and the annotation instance holds
a single block of annotations. A tombstone flag can mark a key-
value as deleted in a version without actually deleting earlier
versions, as shown for the last key, which marks the deletion
of annotations in block coordinate (23, 23, 10) in version 1.
The annotations for that block still exist in version 0 since a
non-tombstoned key exists.

2.3.1. Overhead of Versioning
Figure 6 shows how key-value pairs from different data instances
can be distributed across a DAG. In this example, segmentation
data for a 6,4003 voxel volume with 1,000 labels is stored in
a labelmap instance (shown in blue) at the root version 8fc4.
The segmentation requires one million key-value pairs for label
block data and another 1,000 key-value pairs for the label indices.
Additionally, synapse 3D point data is stored in an annotation

instance (shown in red). The annotation data requires key-values
for only the blocks containing synapses.

The majority of key-value pairs are ingested at the root of
the DAG and only modified key-value pairs need to be stored
for later versions. In Figure 6, three additional versions have
been created. In version e14d the synapse annotations for block
(1, 2, 3) was deleted by storing a tombstone key. Clients that
access version e14d can access all the data stored in the root
version with the exception of synapses in that one block. In
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FIGURE 5 | Each data type persists data using datatype-specific key-value pairs. Key-value pairs for two data instances are shown: a labelmap instance (data id 1)

in blue and an annotation instance (data id 2) in red. The datatype-specific component of a key (TKey) could be a block coordinate for a block of voxels. DVID then

wraps this TKey, prepending a short data instance identifier and appending a version identifier. A tombstone flag (T) can mark a key-value as deleted in a version

without actually deleting earlier versions, as shown for the last key, which marks the deletion of annotations in block coordinate (23, 23, 10) in version 1.

FIGURE 6 | Simple example of distribution of key-value pairs across the nodes of a DAG (only keys shown). In this example, segmentation and synapse data for a

6,4003 voxel volume with 1,000 labels is stored in labelmap (blue) and annotation (red) instances at the root version 8fc4. The majority of key-value pairs are

ingested at the root and only modified key-value pairs need to be stored for later versions. Several mutation requests are shown with their modified key-value pairs.

version ec80 we splitted a small fragment from label 23, which
required modification of the label block (37, 51, 53) containing
that fragment as well as the key-value pairs for the label 23 index
and a new label 1001 index for the split voxels. In version d353we
splitted from label 23 another small fragment that spanned two

blocks, and we added a new synaptic annotation to that region.
These operations required the addition of a few more key-value
pairs that take precedence over earlier key-value pairs.

Teravoxel datasets can require more than a hundred million
key-value pairs, depending on the chosen size of a labelmap
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instance’s block, and mutations to individual neurons will alter
a very small percentage of the key-value pairs. So rather than
duplicating unmodified data for each commit or snapshot, the
decomposition of data into more granular key-value pairs allows
efficient versioning.

One issue is determing the relevant key-value pairs for any
version of a data instance. As we saw in Figure 5, the version
identifier is typically appended to the type-specific key, which
leads to different versions of a type-specific key to be grouped
together in systems that order keys. Key-ordering occurs in
many popular key-value databases, particularly those that employ
log-structured merge trees (O’Neil et al., 1996) like leveldb9,
RocksDB10, and newer systems based on WiscKey (Lu et al.,
2016). These databases provide range queries (see Ordered Key-
Value API in Figure 1). Because the versions of a key-value pair
are grouped together, we can use range queries to sequentially
load the keys or key-value pairs into memory, and then use our
in-memory DAG to select the most recently stored ancestor of
our desired version. Sequential access provides significant speed
advantages across rotational disks, solid-state drives, and even
in-memory storage (Jacobs, 2009).

Returning to the example of 3d label data types like labelmap,
if a block was modified in N versions of that data instance, it
will require N key-value pairs. Support of versioning for that
particular block will incur the overhead of now reading N key-
value pairs instead of just one, as well as the time to calculate
the closest stored version using our in-memory DAG. However,
the cost of handling unnecessary versions is countered by the
significant speeds of both disk-based and in-memory sequential
access. The number of modified versions for a block should be
small because most regions are not constantly modified due to
manual proofreading. As seen in section 2.5, the labelmap data
type uses relatively static voxel labels (i.e., supervoxel identifiers)
and maintains supervoxel-to-neuron mappings as neurons are
split and fragments are merged.

2.3.2. Support for Non-ordered Key-Value Stores
We have also built support for non-ordered key-value stores
where range queries are either costly or not available. Google
Cloud Storage11 can be viewed as a distributed, petabyte-scale
key-value store that supports conditional writes as well as key
prefix searches, which could be used to implement range queries.
Unfortunately, these key prefix searches introduce significant
latency for each data request. We observed that key spaces can
be divided into two categories: a computable key space where
valid keys can be computed (e.g., the uint8blk data type stores
blocks of grayscale with block coordinate keys, easily calculated
for requested 3D subvolumes) or a non-computable key space
where arbitrary keys are used (e.g., the keyvalue data type that
allows user-specified keys).

In practice, we only use Google Cloud Storage for data
types with computable key spaces. Even with this restriction,
versioning requires range queries or speculative queries on all

9http://leveldb.org
10https://rocksdb.org
11https://cloud.google.com/storage/

possible key versions when retrieving a particular key-value pair
(kv).

To solve this problem, we introduced a novel strategy to
eliminate costly key searches or the need to separately maintain
an index of stored keys. For each type-specific key, we maintain a
single, versionless kv that stores the keys for all versions and the
highest priority kv, which comes from the most recent kv in the
master branch or, if no version of this key exists in master, the
most recent kv of any branch. Writes of a versioned kv start with
a conditional write to the versionless kv. If the conditional write
succeeds, it is the first write of any version to this key and we are
done. If the conditional write fails, we read the versionless kv and
compare the new kv to its stored kv. If the new key has higher
priority, the new value evicts the stored kv to its own versioned
kv. If the new key has lower priority, we write the new versioned
kv and append its version to the list of all versions stored in
the versionless kv. With this approach, we achieve the following
properties:

• Writes of the first version of any type-specific key are as fast as
an unversioned one. Since data destined for this type of store
tends to be immutable, write performance is not degraded in
most cases.

• Any read of the highest priority kv will be as fast as an
unversioned read.

• Any read of a lower priority kv will require reading the list of
versions in the versionless kv, finding the version closest to the
desired version using the version DAG, and then reading that
versioned kv.

As shown by the Google Cloud Storage example above, a
DVID storage engine can tailor the implementation of versioned
storage to the capabilities of a storage system. DVID storage
engines can also override the default key and form a version-first
representation (Bhardwaj et al., 2014) if it is more advantageous
to group all kv by version instead of by type-specific key. This
approach can be particularly useful for optimizing transmission
of kv corresponding to a subset of versions, as would happen
when synchronizing with a remote DVID server. A proposed
DVID store, described in Future Work, takes this approach since
we can create a compact, in-memory index of all stored keys in
committed, immutable versions.

2.4. Data Types
For each type of data, researchers can tailor a HTTP API and
trade-off access speed, storage space, versioning support, and ease
of programming.

DVID provides a well-defined interface to data type code that
can be easily added by users. A DVID server provides HTTP
and RPC APIs, versioning, provenance, and storage engines. It
delegates data type-specific commands and processing to data
type code. As long as a DVID type can return data for its
implemented commands, we don’t care how it is implemented.

By modifying or adding DVID data type implementations
and writing layers over existing storage systems, DVID allows
customizable actions on data via a HTTP API. We can tune
key-value representations for acceptable performance among
storage space, access speed, and ease of programming trade-offs.
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Different types of checksum and compression can be used for
each data type at the key-value level. And we can choose among
the different key-value stores and assign the best match for each
data instance. For example, for highly compressed label data, we
can choose fast but relatively small NVMe SSDs to maximize
access speeds.
DVID supports a variety of data types including the following:
uint8blk: 3d grayscale volumes.
labelmap: 64-bit label 3d volumes, including multi-scale support
and sparse volume operations.
imagetile: multiscale 2d images in XY, XZ, and YZ orientation,
similar to quadtrees.
annotation: 3d points that can be accessed by associated label,
tags, or spatial coordinate.
roi: regions of interest represented via a coarse subdivision of
space using block indices.
keyvalue: a simple key-value pair store that can be used as a
versioned file system.

Each of the data types above use key-value pairs in different
ways. While uint8blk and labelmap both partition 3D space
into smaller blocks, the labelmap data type persists highly
compressed 64-bit supervoxel identifiers in the blocks and also
maintains other key-value pairs for label (i.e., neuron identifier)
indexing that describe the blocks and supervoxels within any
given label. The annotation data type can employ up to three
different classes of key-value pairs holding JSON-encoded points
(synapses, bookmarks, etc.) sorted by ZYX block coordinate,
underlying label, and arbitrary string tag. The keyvalue data type
is a simple pass-through to the underlying key-value store. It is
typically used for new types of data until researchers understand
the kinds of requests that will be required and whether a new data
type should be built to optimize the handling of those requests.

DVID provides a publish/subscribe mechanism for syncing
changes in one data instance with associated data instances. For
example, we can declare a segmentation instance of data type
labelmap should be synced with a synapses instance of data
type annotation. If a label in segmentation is split or merged
with other labels, the mutation will be passed to synapses, which
then updates its internal indexing used for quickly returning all
synapses in a given label.

Users can access a detailed description of each data type’s
Science API by pointing a web browser to a running DVID’s
HTTP interface. For example, the interface to the uint8blk

data type can be examined by browsing http://emdata.janelia.
org/api/help/uint8blk for a DVID server running on port 80 of
emdata.janelia.org. Any supported data type can be reviewed by
replacing the last word in the help URL with the data type name.
Since a detailed exploration of each data type is beyond the scope
of this paper, we provide a sampling of the Science API in Table 1
and refer readers to the embedded data type documentation in
the DVID github repository.

2.5. Versioning 3D Label Data
EachDVID data type provides its own portion of Science API and
method of translating the necessary data into key-value pairs. In
this section, we describe how data types can evolve by describing
the history of four 3D label data types: labelblk/labelvol,

labelarray, and finally labelmap. The implementation of each
data type impacts the speed of neuron editing, the storage
efficiency of versioning, and the functions available through its
Science API.

The first 3D label data types were labelblk and labelvol,
which handle 64-bit label arrays and each label’s sparse volume
representation, respectively. The labelblk data type allows many
ways to read and write the 64-bit unsigned integer label at
each voxel. These include reading 2D slices in XY, XZ, and YZ
orientation in a variety of formats (e.g., PNG or JPG), reading 3D
subvolumes as label arrays in any supported compression scheme
(uncompressed, lz4, gzip and/or Neuroglancer’s compression
format), querying single or multiple voxel coordinates using
JSON, and even returning 2D PNG color images where each
label has been hashed to a color. For maximum throughput, we
also allow reading by blocks so that little processing is necessary
and data is streamed from the underlying key-value store to the
HTTP connection. The labelvol data type allows reading and
editing sparse volumes for labels. Its Science API allows reading
arbitrarily clipped sparse volumes using run-length encoding
(RLE) with optional lz4 or gzip compression. Sparse volumes can
also be split or merged.

These first data types only support two scales: the original
ingested voxels or “coarse” volumes where each block of voxels
was downsampled to a single voxel. Internally, the labelblk data
type persists key-value pairs where each type-specific key is a
ZYX block coordinate that corresponds to the label array for that
block. The labelvol uses a type-specific key composed of the 64-
bit unsigned integer label prefixed to the ZYX block coordinate,
and the associated value is the sparse volume RLEs within that
block. By doing a range query on a label, the data type code can
easily retrieve all RLEs for a given label as well as clip sparse
volumes by Z coordinate.

As described in the section above, instances of these
two data types can be synchronized using DVID’s internal
publish/subscribe mechanism. Let us assume that a DVID
server is operating on port 8000 of the server mydvid.net with
a single version at UUID ee78982c87b14d008bb3f93e9e546c10.
A two-way sync can be established between a segmentation
instance of labelblk and a sparsevol instance of labelvol

by sending a JSON string {"sync":"segmentation"} to
http://mydvid.net/api/node/ee789/sparsevol/sync and a reciprocal
string to http://mydvid.net/api/node/ee789/segmentation/sync.
Note that HTTP requests only need a recognizable substring of a
UUID rather than the full 32 character hexadecimal string.

If a user merges two labels via the labelvol merge request,
a synced labelblk instance will automatically modify all voxels
affected by the merge. Similarly, if the labels of voxels are
modified through labelblk instance requests, the change will be
sent to the synced labelvol instance and the sparse volumes of
any affected label will be modified.

We could also sync a synapses instance of annotation

data type with the underlying label volume by
sending a JSON string {"sync": "segmentation"} to
http://mydvid.net/api/node/ee789/synapses/sync. This one-
way sync means changes in the label volume will automatically
modify the list of synapses corresponding to the affected labels.
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While the first iteration of 3D label data types was successful
and allowed very fast retrieval of sparse volumes due to
its separate storage, we found that maintaining the sparse
volumes using our admitedly simple format could dominate the
underlying key-value store. So we created the labelarray data type
that consolidated both labelblk and labelvol Science APIs under
one implementation without the need for syncs.

The labelarray data type supports multi-scale representation
and primarily uses two classes of key-value pairs as described
earlier in section 2.3: label data organized into blocks and
label indices describing the blocks intersected by each label.
The storage requirement is significantly smaller than synced
labelblk/labelvol instances because potentially large sparse
volumes are replaced by an index of blocks. The new data
type also exhibits faster write and much slower sparse volume
read times since precomputed RLEs are not stored but must be
computed on-the-fly.

The most recent labelmap data type adds in-memory label
maps to the labelarray architecture and uses supervoxel
identifiers as the block label data. Many segmentation
techniques generate an initial base segmentation that tends to be
conservative followed by more aggressive agglomeration passes
(Nunez-Iglesias et al., 2014; Parag et al., 2015; Januszewski et al.,
2018). The labelmap data type supports this approach. By using
an in-memory label map, label merges are extremely fast and do
not alter the underlying supervoxel blocks.We also allow “cleave”
operations that split label bodies along supervoxel boundaries,
thereby preserving underlying supervoxel blocks as well and only
modifying the label map. Supervoxel splits require modification
of the block key-value pairs but are relatively rare compared
to merges and cleaves, particulary as both the underlying
grayscale imaging and automatic segmentation processes
improve.

For each node in the DAG, the labelmap data type stores label
edits (merges, cleaves, and supervoxel splits) in an append-only
log. Requests can cause lazy loading of all edits from the root to
the given version and population of the in-memory label map.

The newer labelmap and labelarray data types store label
data in a highly compressed format inspired by the Neuroglancer
compression scheme12, which partitions each block of data into
smaller sub-blocks. The DVID label compression format makes
the following changes: (1) adds a block-level label list with sub-
block indices into the list (minimal required bits vs 64 bits per
index in the original Neuroglancer scheme), and (2) the number
of bits for encoding values is not required to be a power of
two. A block-level label list allows easy sharing of labels between
sub-blocks, and sub-block storage can be more efficient due to
the fewer bits per index (at the cost of an indirection) and
better encoded value packing (at the cost of byte alignment).
We gain space, up to an additional 2x compression for a
given block, and simpler label updating at the cost of increased
computation andNeuroglancer’s explicit GPU support. Although
label blocks are stored in this highly compressed format, data
can be transcoded to Neuroglancer’s compressed segmentation
format during requests.

12https://goo.gl/LNMLJo

FIGURE 7 | Scalability of uncompressed grayscale image reads from Google

Cloud Store backend. As the number of DVID servers increase, simultaneously

requesting non-overlapping image subvolumes from a 16 TeraVoxel dataset,

the throughput plateaus just below 1.2 Gigavoxels or 9.6 Gigabits per second.

Servers were at the Janelia cluster with 16 real request threads per server,

connecting to a Northern Virginia Google Cloud Store through a 10 Gigabits

per second connection. The grayscale instance had only one version

corresponding to the ingested image (8-bit/voxel) volume.

Despite how differently the four data types implement 3D
label support, the HTTP APIs are mostly identical save for
optional features that were added in later data types.

2.6. Storage Backends
The use of key-value storage (KVS) systems as the underlying
store brings a number of benefits. Open source KVS systems
span from simple, embedded leveldb implementations to
strongly-consistent, globe-scale distributed systems. Once data
is immutable, there are number of distributed KVS systems for
efficiently caching the data (e.g., groupcache). This allows us to
build branched versioning systems that use different kinds of
KVS systems for different classes of data. For example, relatively
immutable, very large data like original grayscale imaging can
be assigned to extremely scalable cloud-based systems and
cached locally using off-the-shelf software due to its immutable
nature, while much more compressible and mutable data like
segmentation can be stored on fast NVMe SSD drives.

Figure 7 shows the scalability of the Google Cloud Store as a
backend for immutable, uncompressed grayscale (unsigned 8-bit
intensity per voxel) volumes. Because the data is immutable, any
number of DVID servers can be spun up and directed toward
the cloud. The maximum throughput using test servers at Janelia
requesting data from Google Cloud Storage is slightly less than
1.2 Gigavoxels (9.6 Gigabits) per second, which corresponds to
the 10 Gigabit per second connection from Janelia to the internet.
If we were looking through a sequence of grayscale images, this
would amount to approximately 4,400 (512 × 512 pixel) images
per second, or 73 proofreaders scrolling through those images at
60 fps.

Currently, the bulk of the FlyEM Team’s reconstruction and
segmentation data is held in leveldb databases on NVMe solid
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state drives and cheaper RAID-10 systems with hard disk drives.
Newer grayscale volumes are kept in Google Cloud Store and we
are experimenting with a simple key-value interface to the file
system. Contributors have recently added a storage engine for
OpenStack Swift.

2.7. Availability
DVID is freely available on github (http://github.com/janelia-
flyem/dvid) under the Janelia Open-Source Software license. The
wiki section of that github repository provides user guides as well
as installation instructions for pre-built binaries, conda builds,
and docker containers.

3. RELATED WORK

Typically, researchers have dealt with image-oriented data by
either storing it in files or writing software systems that use
a relational database to store image chunks or file pointers.
Connectomics data servers include bossDB (Kleissas et al., 2017),
OpenConnectome (Burns et al., 2013), CATMAID (Saalfeld et al.,
2009), and more visualization-focused systems like BUTTERFLY
(Haehn et al., 2017). DVID is distinguished from these other
systems by its support of branched versioning, an extensible
Science API through data type packages, and extremely flexible
storage support through a variety of key-value store drivers.

The first to support branched versioning at large scale was
SciDB (Stonebraker et al., 2011). An approach to branched
versioning in relational databases culminated in OrpheusDB
(Huang et al., 2017). Both SciDB and OrpheusDB could be
used as storage backends for DVID data types that match their
strengths. For example, SciDB is particularly adept at handling
multi-dimensional arrays and could be used for the voxel data
component of DVID label data types, while OrpheusDB could be
used for heavily indexed synapse point annotations.

The DataHub effort (Bhardwaj et al., 2014) has very similar
aims to bring a distributed versioning approach to scientific
datasets, offering an analog to github.com with a centralized
server that builds on a Dataset Version Control System (DVCS).
DataHub and DVID developed in parallel and focused on
different types of data. DVCS was designed to handle datasets
in the sub-Terabyte range without an emphasis on 3d image
data, and it’s API is a versioning query language based on SQL
so the significant connectomics-focused data layer would still be
needed. Much as OrpheusDB is a possible storage engine for
smaller data types like annotations, DVCS could be considered
a possible storage interface to DVID.

Ideally, connectomics tools would be able to use a
variety of data services. This would require the community
to develop common interfaces to standard operations.
Currently, simple operations like retrieving 2D or 3D
imagery are sufficiently similar across services so that tools
like CATMAID, Neuroglancer, and BigDataViewer (Pietzsch
et al., 2015) can use different image volume services including
DVID.

4. FUTURE WORK

Distribution of versioned data can help to efficiently synchronize
remote servers, a significant problem given the scale of VEM
data (Lichtman et al., 2014). For example, when establishing
remote copies of massive image volumes, we envision shipping
one or more disks and then synchronizing servers by sending
only data associated with new nodes in the version DAG.
The speed of such operations depend on the ability to easily
extract and transmit data from a subset of versions as well
as fast mechanisms for moving data between servers. Our
current version-last approach to key encoding makes version-
based transmission costly, since it requires scanning all keys.

FIGURE 8 | Typical EM reconstructions produce a version DAG with most changes toward the root and fewer, human-guided changes toward the leaf nodes. This

means that the bulk of data will be committed and immutable.
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As the FlyEM Team increases our sharing of reconstructions
to researchers around the world, we expect to spend some
energy to improve data transfer rates and how version data is
organized.

One such effort is a petabyte-scale DVID-tuned datastore
now in the planning stages. Mutations are relatively expensive
since they generally require transactions and impose difficult
coordination issues when scaling operations to multiple servers.
Immutable data storage is simpler and can be accelerated through
a variety of techniques. For VEM reconstructions at Janelia, the
majority of data exists near the top of the DAG since most
of our workflows involve ingesting very large image volumes
and pre-generating segmentation for every voxel (Figure 8).
This suggests a multi-stage store where on initial ingestion and
subsequent version commits, the committed, immutable data is
transformed to optimize reads, storage size, and ease of version-
based distribution.

The bulk of our data can persist in immutable stores that
combine compact, in-memory key indexing with version-first,
append-only file storage, suitable for easy access and transmission
of version deltas. This allows us to use smaller, faster storage
solutions for the mutable portion of the DAG, namely the leaf
nodes where manual editing tends to dominate. Retrieval of data
from any version then requires concurrent retrieval from both
the immutable and mutable stores.

We want to enable researchers to work on their own
branches, optionally limit download to regions of interest, and
share changes via pull requests (Figure 9). This is particularly
appealing when considering the publication of massive
datasets where specialists may improve regions and submit
changes.

Currently, DVID provides branched versioning that meets
the needs of most of our current reconstruction workflow.
Only some work has been done on the remote distribution and
syncing aspects corresponding to the push and pull operations
of distributed versioning systems like git. DVID can push data
to remote repositories and merge nodes using simple conflict
resolution like node A always wins against node B if there is a
conflict. In order to allow more sophisticated merges, we need to
add data type-specific merge tools to the DVID ecosystem. For
example, when merging two nodes of segmentation, we would
want a merge tool to provide visualizations of conflicts and
allow a user to choose a proper merge result. DVID should be
agnostic to the form of the merge tool yet provide a conflict
resolution API that could be used to select conflicts and post
results.

Availability of amerge tool also allows the possibility of scaling
proofreading by using entirely separate DVID servers instead of
scaling up a single DVID server.

Versioning should allow downloading portions of massive
datasets since it can reference the originating UUID. While full
datasets may require large servers with many terabytes of high-
speed storage, we plan to facilitate proofreading of regions of
interest on laptops even in an offline setting. This would be
similar to standard git workflows where programmers modify
code locally and then submit pull requests of their changes to the
central server.

FIGURE 9 | As shown by software version control systems like git, distributed

versioning is an effective workflow for sharing changes via pull requests. The

figure depicts a future scenario where the root version at Janelia has been

shared with remote collaborators. After changes at the remote site, a pull

request is sent back.

In the near future, we plan on adding Badger13 and
RocksDB as drop-in replacements for the current leveldb storage
backend.

Although DVID has initially focused on key-value stores,
we are evaluating OrpheusDB (Huang et al., 2017) and may
eventually support fundamentally different types of stores
(polyglot persistence) like graph, relational, and scientific array
databases. We are currently investigating OrpheusDB as a
backend for the DVID synapse annotation data type, which
indexes synapse point annotations across space, assigned labels,
and arbitrary tags. Unfortunately, polyglot persistence comes at
the cost of increased code to extend operations like remote
distribution beyond simple key-value pairs to these new types of
stores.

5. CONCLUSIONS

TheDVID system is a powerful tool that allows us to immediately
view our dataset at any commit time, and also enables training
of proofreaders so that they can handle large connectomes. It
has allowed us to flexibly store very large immutable datasets in
the cloud in conjunction with fast, smaller storage for mutable
data. This has allowed us to scale our operation and provide
regional data services to collaborators. More importantly, we
feel that distributed versioning in connectomics could be an
extremely powerful tool for collaborating with researchers

13https://github.com/dgraph-io/badger
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around the world. As the amount of published data increases
dramatically due to advances in imaging, segmentation, and
reconstruction workflows, there will be an increasing need
to provide provenance and mechanisms for collaborative data
editing and analysis. Just as distributed versioning with its notion
of pull requests has greatly impacted the open source software
movement, we believe that it can alter the way we think of sharing
and editing connectomics data.
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Recent improvements in correlative light and electron microscopy (CLEM) technology
have led to dramatic improvements in the ability to observe tissues and cells.
Fluorescence labeling has been used to visualize the localization of molecules of
interest through immunostaining or genetic modification strategies for the identification
of the molecular signatures of biological specimens. Newer technologies such as tissue
clearing have expanded the field of observation available for fluorescence labeling;
however, the area of correlative observation available for electron microscopy (EM)
remains restricted. In this study, we developed a large-area CLEM imaging procedure to
show specific molecular localization in large-scale EM sections of mouse and marmoset
brain. Target molecules were labeled with antibodies and sequentially visualized in
cryostat sections using fluorescence and gold particles. Fluorescence images were
obtained by light microscopy immediately after antibody staining. Immunostained
sections were postfixed for EM, and silver-enhanced sections were dehydrated in a
graded ethanol series and embedded in resin. Ultrathin sections for EM were prepared
from fully polymerized resin blocks, collected on silicon wafers, and observed by
multibeam scanning electron microscopy (SEM). Multibeam SEM has made rapid, large-
area observation at high resolution possible, paving the way for the analysis of detailed
structures using the CLEM approach. Here, we describe detailed methods for large-area
CLEM in various tissues of both rodents and primates.

Keywords: correlative imaging, immuno-EM, CLEM, connectomics, multibeam SEM

Abbreviations: CLEM, correlative light and electron microscopy; CNS, central nervous system; EM, electron microscopy;
GFP, green fluorescent protein; iEM, immuno-electron microscopy; ISH, in situ hybridization; LA-CLEM, large-area CLEM;
LM, light microscope; PB, phosphate buffer; PBS, phosphate buffered saline; r.t., at room temperature (24–25◦C); SEM,
scanning electron microscopy; TEM, transmission electron microscopy; UA, uranyl acetate.
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INTRODUCTION

Comprehensive investigation of neural circuits in relatively
large and complex brains such as those of humans and
marmosets requires simultaneous low- and high-magnification
observations within each layer of the cerebral cortex. To
elucidate the structural interconnection between neurons in
neocortices at both of these levels, connectomics analysis
based on the knowledge of neocortical layer development is
critical. Neocortical development involves three key processes:
neurogenesis, migration and differentiation/maturation. The
mature mammalian neocortex has a six-layered structure; the
neurons in each layer of the neocortex are generated by division
of neural stem/progenitor cells that surround the lateral ventricles
of the embryonic forebrain (Sidman et al., 1959; Takahashi et al.,
1995). These neurons migrate radially toward the pial surface in
an inside-out manner (Rakic, 1972) and express a specific pattern
of “marker” proteins (Hevner, 2007). Thus, by detecting these
layer-specific markers using immunohistochemical staining or
in situ hybridization (ISH), it is theoretically possible to specify
the layer position of specific neurons of interest in which the
synapses have been analyzed by EM. However, such analyses
have been constrained by technical challenges due to the fact
that procedures that combine results from light microscopy (LM)
and EM require the use of different instruments and sample
preparation methods and by the fact that both LM and EM
demand high levels of expertise. CLEM has begun to enable
the elucidation of subcellular architectures and morphologies
(Begemann and Galic, 2016). Traditionally, CLEM is performed
by correlating results obtained from LM and TEM. Fluorescence
microscopy has the advantage of visualizing immunolabels that
recognize specific molecules using antibodies or fluorescent
proteins such as GFP (Giepmans, 2008; Watanabe et al., 2011).
Fluorescent dyes can be distributed to a target area or to
molecules in a relatively wider field with optimal efficiency
and can be detected by LM. However, the spatial resolution
of conventional LM is restricted to a few hundred nanometers
at best due to the diffraction of light. Super-resolution light
microscopy was developed to overcome this diffraction barrier,
and its developers were recognized with the Nobel Prize in
Chemistry in 2014 (Chereau et al., 2015). Because fluorescence
imaging inherently focuses on labeled objects, peripheral cellular
structures often remain poorly visualized. EM yields much
higher-resolution images than LM but is difficult to use to
observe large tissue areas or to make precise observations
of highly dynamic processes such as those that occur in the
human brain or in living cells (Giepmans, 2008; Watanabe
et al., 2011; Chereau et al., 2015). Although CLEM has been
used for decades, until recently it has only been applied to
small-volume samples. The development of improved CLEM
techniques has enabled scientists to achieve nanometer resolution
analyses in samples that are more than several mm2 in area,
including samples of the gyrencephalic brain (Eberle et al.,
2015a). Using multibeam SEM, we have developed a novel
implementation, LA-CLEM, that offers additional advantages
for the detection of molecular localization in large areas of the
CNS at EM resolution and faster speeds. Visual information

provided by layer-specific markers in EM images proved helpful
in understanding the precise location of observed samples,
particularly in the cerebrum of the common marmoset, which is
much larger than that of mouse.

Transmission electron microscopy of ultrathin sections
obtained from human biopsy or autopsy samples or rodent
brain and collected on an EM grid has traditionally been used
to observe synaptic connections between neurons (Figure 1A).
In this process, brain tissues are dissected into small pieces
of <1 mm and fixed with glutaraldehyde and osmium. The
brain tissue block embedded in the plastic is sectioned at a
thickness of approximately 50–80 nm using a diamond knife,
and the sections are collected on an EM grid. This procedure
remains in common use for the observation of synaptic structure.
Recent improvements in the resolution of SEM images now
enable the observation of synaptic structure by back-scattered
electron imaging and by secondary electron imaging. For large-
area EM observations, section SEM is now frequently used
(Figure 1B). In this procedure, sample preparation is similar
to that for TEM except for the collection of the ultrathin
sections on flat conductive substances including silicon wafers,
conductive coated glass, or conductive tape rather than on an
EM grid. Observation of neural circuitry by EM, when combined
with visualization of specific layer components in the cerebrum
by fluorescence and EM, yields an unprecedented depth of
information on the complex features of the gyrencephalic brain.
Below, we introduce a new approach, LA-CLEM, that makes
it possible to observe samples several millimeters square in
area at resolutions that make it possible to detect individual
synapses (Figure 1C). To identify the cerebral layer in which
these synapses reside, the most common approach is the use
of antibody staining or ISH to label layer-specific markers.
The localization of specific target proteins and nucleotides
(RNA/DNA) was demonstrated not only by fluorescence at the
LM level but also by gold with iEM (immuno-EM) at the EM level
(Figure 1D). Antibodies against layer-specific marker molecules,
including antibodies against calbindin, calretinin, RORβ, Cux1,
and FoxP2, are often used to evaluate normal layer formation. By
combining immuno-EM and large-area SEM imaging, LA-CLEM
can be used to visualize the localization of specific molecules in
large areas at super-high resolution.

In this report, we present the detailed procedure of LA-CLEM,
a combination approach involving pre-embedded immuno-EM
and multibeam SEM technology that has been adapted for use in
the marmoset cerebral cortex.

SAMPLE PREPARATION

Animals
Adult common marmoset monkeys (Callithrix jacchus, CLEA,
Tokyo, Japan, n = 3), adult mice (Mus musculus, C57BL6/j
from Japan SLC, Shizuoka, Japan, n = 10), and Sox10-Venus
BAC transgenic mice (n = 4) (Shibata et al., 2010) were used
in this study. Housing of animals and all animal experiments
were conducted in compliance with the Guidelines for the Care
and Use of Laboratory Animals of Keio University School of
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FIGURE 1 | Schematic illustration of LA-CLEM. Sample preparation procedures for general TEM (A), section SEM (B), large-area CLEM (LA-CLEM) with SEM (C)
and pre-embedding immune-EM (D) are shown. Human biopsy or autopsy specimens, marmoset brain specimens and rodent tissue samples have typically been
processed for general TEM observation and for diagnostic purposes. More recently, large-area observation of tissue sections has been conducted using SEM,
including multibeam SEM. Localization of proteins and nucleotides (RNA/DNA) is possible using iEM. The combination of large-area observation with iEM is the key
to LA-CLEM imaging. Detailed procedures for LA-CLEM are presented in the main text. Numerical comparisons of the average sample size, the main factor of size
limitation, and the period of whole size EM imaging between each procedure are provided at the bottom of this chart. The average sample size for TEM observation
is a section approximately 1 mm2 (A,D). It requires several days to image the entire 1 mm2 area on the grid. In contrast, a 2–3 mm2 section is the average size
restricted by the width of the diamond knife, and it requires several hours to image the entire 2–3 mm2 area on the silicon wafer.

Medicine (approval numbers 11006-2 and 09091-12) and the
Central Institute for Experimental Animals (approval numbers
16023 and 17031). All efforts were made to reduce the number of
animals used and to minimize animal suffering.

PRIMARY SAMPLE PREPARATION FOR
LA-CLEM
The basic procedure used in immunohistochemical analysis was
performed as described previously (Shibata et al., 2010). Briefly,
animals were deeply anesthetized by intramuscular injection of
ketamine (50 mg/kg, Fujita Pharmaceutical, Tokyo, Japan) and
xylazine (4 mg/kg, Bayer, Leverkusen, Germany) for marmosets
and by an overdose of isoflurane (Pfizer) inhalation for mice.
Vascular perfusion was performed using a saline (0.9% NaCl,
Sigma, St. Louis, MO, United States) rinse followed by 4%
paraformaldehyde (PFA, 16%, Electron Microscopy Sciences, PA,
United States), pH 7.4, in phosphate buffered saline (PBS from

10×, Nacalai tesque, Kyoto, Japan) that had been chilled on
ice (Step #1 in Table 1). Perfusion with the fixative (300 ml
and 30 ml) was conducted at approximately 20 ml/min and
2 ml/min for marmosets and mice, respectively. The target
area in the brain tissue was dissected into coronal slices
3–6 mm thick using a 76 µm-thick cutting blade (Nisshin EM
Co., Ltd., Tokyo, Japan) and a marmoset brain matrix. The
sectioning matrix specific for marmoset brain was designed from
three-dimensional (3D) data obtained from magnetic resonance
imaging (MRI) (Figures 2A,B). The pieces of the perfused brain
were postfixed with 4% PFA in 0.1 M PB, pH 7.4 for 10–12 h
at 4◦C. Tissue blocks were cryoprotected by incubation in 15%
and then 30% sucrose solutions (Nacalai tesque, Kyoto, Japan)
for 12 h each and embedded into cryomolds (Tissue-Tek, Sakura
Finetek, Tokyo, Japan) with cryocompound (Leica Biosystems,
Wetzlar, Germany) for subsequent cryostat sectioning. Frozen
sections (20 µm thick in this case) were prepared using a cryostat
(Leica CM3050s, Leica Biosystems, Wetzlar, Germany), placed on
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TABLE 1 | Detailed procedure for LA-CLEM imaging with mSEM.

Step Prior to starting the experiment Duration Temp. Note

#1 Perfusion of the animal with fixative (4% PFA, etc.) r.t./4◦C

#2 Preparation of frozen sections (10–20 µm) on glass/plastic slides −30◦C

#3 Store in freezer −30/−80◦C

Step Experimental Day 1 Duration Temp. Note

#4 Dry with cool dryer and line drawing for liquid blocking 10–30 min r.t. See step #29

#5 Wash 3× with 0.1 M PBS 3 min × 3 min r.t.

#6 Pretreatment for antigen retrieval (citrate, TRS in autoclave, MW) 10 min 105◦C

#7 Wash with 0.1 M PBS 3 min r.t.

#8 Blocking (5% BlockAce, 0.01% saponin) 30 min ∼ 1 h r.t. Described in Figure 2D

#9 Ms/Rab/Chick/Rat/Goat/Human/Guinea pig 1st Abs 3 ∼ 4 o/n 4◦C Summarized in Figure 3C

application (72–96 h)

Step Experimental Day 2 Duration Temp. Note

#10 Wash 10× with 0.1 M PB and 0.005% saponin 10 min × 10 min r.t.

#11#11′ Gold- and fluorescence-conjugated 2nd Abs application
(Category 4 in Figure 3C)
Biotin-conjugated 2nd Abs application (Category 5 in Figure 3C)

1 o/n
1 o/n

4◦C4◦C Select step #11 or 11′

depending on the host of 1st
Ab and on 2nd Ab lineup

Step Experimental Day 3 (only for Step #11′ Category 5 Abs in Figure 3C) Duration Temp. Note

#12 Wash 10× with 0.1 M PB and 0.005% saponin 10 min × 10 min r.t.

#13 Gold- and fluorescence-conjugated streptavidin 1 o/n 4◦C Described in Figure 3C

Step Experimental Day 4 Duration Temp. Note

#14 Wash 10× with 0.1 M PB and 0.005% saponin 10 min × 10 min r.t.

#15 Fluorescence imaging with light microscope r.t. Described in Figures 4A, 7A–C

#16 Wash with 0.1 M PB 5 min r.t.

#17 Fix with 2.5% glutaraldehyde 1 h r.t.

#18 Wash with 0.1 M PB 5 min r.t.

#19 Wash 3× with 50 mM HEPES (pH 5.8) 10 min × 3 min r.t.

#20 Silver enhancement with R-gent Se-EM kit (Aurion) 30–40 min r.t. Described in Figures 5A–D

#20′ Silver enhancement with HQ-silver kit (Nanoprobes) 10–12 min r.t. In the dark room

#21 Wash 5× with DW and 1× with 0.1 M PB 1 min × 6 min r.t.

#22 Fix with OsO4 1.5–2 h 4◦C

#23 Wash with DW 5 min 4◦C

#24 Dehydration with EtOH (50% ×2) 5 min × 2 min 4◦C

#25 En bloc staining with 2% uranyl acetate (UA) in 50% EtOH 20 min 4◦C

#26 Dehydration with EtOH (70% ×2) 5 min × 2 min 4◦C

#27 Dehydration with EtOH (80% ×2) 5 min × 2 min 4◦C

#28 Dehydration with EtOH (90% ×2) 5 min × 2 min r.t.

#29 Dehydration with EtOH (100% ×2) + liquid blocking line removal 5 min × 2 min + α r.t. Described in Figure 5E

#30 Acetone 5 min r.t. These steps are specific for
slide glasses/glass chamber
slides/glass vials

#31 QY1 (n-butyl-glycidyl-ether) 5 min × 2 min r.t.

#32 QY1:Epon = 1:1 1 h r.t.

#30′ 100% EtOH : 100% Epon = 3:1 10 min r.t. These steps are specific for
plastic chambers/plastic culture
dishes

#31′ 100% EtOH : 100% Epon = 1:1 10 min r.t.

#32′ 100% EtOH : 100% Epon = 1:3 10 min r.t.

#33 100% pure Epon 1 h r.t.

#34 100% pure Epon 1 o/n 4◦C

Step Experimental Day 5 Duration Temp.

#35 100% pure Epon embedding (with slide-embedding mold) 72 h (3 o/n) 60◦C Described in Figures 5F–H

Step Experimental Day 6 Duration Temp.

#36 Tissue removal from slide glasses on the hot plate 100◦C Described in Figures 6A–D

#37 Block preparation on the sectioning stage 1 o/n 60◦C Described in Figures 6E–G

Step Experimental Day 7 Duration Temp.

#38 Store in desiccator 1–2 h r.t.

#39 Block trimming with blade/glass knife/diamond trim knife r.t. Described in Figure 6H

(Continued)
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TABLE 1 | Continued

Step Prior to starting the experiment Duration Temp. Note

#40 Sectioning with ultramicrotome (30–90 nm) r.t.

#41 Section collection on tape/silicon wafer/copper grid r.t. Described in Figures 6I–K

#42 Dry in desiccator 1–2 h r.t.

Step Experimental Day 8 Duration Temp.

#43 Staining with uranyl acetate (UA) 10 min r.t. With silicon wafer holder or grid
stick#44 Wash 3× with DW 1 min × 3 min r.t.

#45 Staining with lead citrate (Pb) 10 min r.t.

#46 Wash 3× with DW 1 min × 3 min r.t.

#47 Dry on clean filter paper 1–2 h r.t.

Step Experimental Day 9 Duration Temp.

#48 Electron microscopic observation with mSEM/SEM/TEM Described in Figures 7, 8

mSEM, multibeam SEM; MW, microwave; Ms, mouse; Rab, rabbit; Ab, antibody; o/n, overnight; r.t., room temperature (24–25◦C); 2 h, 2 hours.

FIGURE 2 | Tissue preparation for LA-CLEM observation. (A) After perfusion with 4% PFA pH 7.4 in PBS, brain tissue was dissected into coronal blocks 3–6 mm in
thickness suitable for cryomolds (Tissue-Tek) with the brain matrix on ice. (B) The target brain area was dissected under an optical microscope using a blade. In this
experiment, a whole coronal block from the occipital lobe of marmoset brain was prepared at 4 mm thickness. (C–E) Frozen sections at 20 µm thickness were
prepared using a cryostat; completely dried sections on slides were stored in a cryosection box and preserved in a freezer at –30 or –80◦C. (F) The sections were
thawed and redried, followed by the application of blocking solution on the day of antibody staining. Scale bars: (A) 1 cm, (B) 2 mm, (C) 1 cm, (D) 2 mm, (E) – (F)
1 cm.
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adhesive microscope slides and dried on a hot plate for 2–3 h
at 37◦C until the sections were tightly attached to the slides
(Step #2 in Table 1 and Figures 2C,D). Folding and wrinkling
of the tissue sections inhibit the preparation of ultrathin sections
after resin embedding, making it important to ensure that the
sections are as flat as possible so as to obtain larger flat samples
for EM observation. The dried sections on the slides were stored
in either a −30 or a −80◦C freezer in a cryosection box until
antibody staining on experimental day 1 (Step #3 in Table 1
and Figure 2E). The type of coating on the slides and the
materials from which the slides were constructed are critical for
LA-CLEM. For general immunostaining, microscope slides have
multiple adhesive coatings and are positively charged to keep the
section tightly fixed to the slides even after exposure to solution
for several days. In some cases and depending on the coating
conditions, it may be difficult to remove tissue sections from the
slides, as described in Step #36 in Table 1. Prior to experiments
involving samples of limited availability, trial removal of the
resin should be performed to confirm error-free processing. Glass
slides, which are commonly used in immunostaining due to their
flatness, hardness, and limited autofluorescence, can also be used
in the LA-CLEM procedure. However, it is easier to remove
specimens from plastic slides, and these are also sometimes used
in immunostaining, as described in Step #36 in Table 1.

IMMUNOHISTOCHEMICAL
PREPARATION WITH ANTIBODY
APPLICATION

The LA-CLEM procedure was based on pre-embedding iEM, as
previously described (Shibata et al., 2015b); the samples were
subsequently analyzed by multibeam SEM. On day 1, frozen
sections were thawed and dried under a cool dryer for 10–30 min
at room temperature (r.t.; Step #4 in Table 1). Before applying
blocking solution, we often use liquid blocker or a pap pen to
create a barrier that keeps the blocking solution and antibody
solution on the section and to prevent contamination of the slides
by other solutions or leakage from the slide top. Dried sections
were washed with 0.1 M PB 3 times for 3 min at r.t. and then
placed in a moist chamber (Step #5 and Figure 2F).

Specific pretreatments for immunostaining, including antigen
retrieval using an autoclave and microwaving, can be applied
to the sections before the blocking solution is applied (Step #6
in Table 1). Depending on the requirements for each antibody,
pretreatment for antigen retrieval was conducted in special
solutions, such as pH 6.0 citrate buffer, by heating the slides in
a heat-resistant staining pot in an autoclave or microwave. Other
commercially available solutions, including pH 6.0 target retrieval
solution (TRS from DAKO), should be evaluated on a sample-
by-sample basis. It is necessary to allow approximately 1 h for
the sections and solution to cool completely to room temperature
before performing the PBS wash for 3 min (Step #7 in Table 1).

Blocking solution with or without detergent (saponin, Merck,
Darmstadt, Germany) was applied to the sections to block non-
specific antibody binding (Step #8 in Table 1 and Figure 2F). We
usually used 5% BlockAce (DS Pharma Biomedical, Osaka, Japan)

with 0.01% saponin (Merck, Darmstadt, Germany) in 0.1 M PB
(Muto Pure Chemicals, Tokyo, Japan) for 0.5–1 h. Commercially
available blocking solutions other than BlockAce, such as
Blocking Reagent (PerkinElmer, MA, United States) and Blocking
Buffer (ab126587, Abcam, Cambridge, United Kingdom), can
be used for blocking. The use of donkey, goat, and horse
serum is also acceptable if the species from which the primary
antibody is derived differs from the species from which the
serum used in blocking was derived. It is critical to use a
detergent such as saponin, Triton X-100 (FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan), Tween (Sigma, St.
Louis, MO, United States), or SDS (Nacalai tesque, Kyoto,
Japan) at the minimum required concentration for smooth
antibody infiltration. The stronger the detergent we used,
the lower was the signal from cell membranes detected with
EM due to the breakdown of the lipid bilayer by active
permeabilization with detergent.

If detergent is not used in antibody staining, tissue
preservation should be much better for EM observation.
However, it is difficult for antibodies to enter brain tissue.
We attempted to evaluate the penetration of the antibodies
and nanobodies in the absence of detergent and after minimal
detergent treatment (Fang et al., 2018). The cerebral cortices
of Sox10-Venus transgenic mice (Shibata et al., 2010) were
dissected, and coronal brain slices 800 µm thick were prepared
promptly after perfusion of the animals with 4% PFA pH
7.4 in PBS on ice using a vibrating blade microtome (Leica
VT1000 S, Leica Biosystems, Wetzlar, Germany). After blocking
with blocking solution containing no detergent, the slices were
stained with antibodies and nanobodies, followed by fluorescence
labeling with secondary antibodies and Hoechst dye (Hoechst
33258, Sigma, St. Louis, MO, United States), respectively
(Figures 3A,B). Stained brain sections were vertically sliced in
the sagittal dimension at 100 µm thickness, and the penetration
of the fluorescence was evaluated. Antibodies did not infiltrate
sections several micrometers in thickness without detergent,
but fluorescence-conjugated nanobodies penetrated brain tissue
to a depth of several hundred micrometers (Figure 3B) (Fang
et al., 2018). Nanobodies are a promising immuno labeling
reagent due to their small size; however, the available selection
of nanobodies and gold labeling systems is currently very limited
compared to the selection of antibodies, which number more
than a million. As described in Steps #9–11 in Table 1 and
Figure 3C, the selection of the procedure mainly depended
on the purpose of the experiment and the available reagents
(antibodies and nanobodies). The main focus of this study is
to identify the cerebral cortical layer positions of neurons in
large marmoset brain sections using well-known and widely
used antibodies.

Sections incubated with blocking solution (5% BlockAce,
DS Pharma Biomedical, Osaka, Japan) with 0.01% saponin for
permeabilization were incubated with primary antibodies in
blocking solution for 3–4 days at 4◦C (Step #9 in Table 1,
same as Figure 2F). Dilution of the antibodies should be
evaluated by light microscopy using a solution similar to
that used in LA-CLEM. In this study, the following layer-
specific primary antibodies were used: rabbit anti-calbindin
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FIGURE 3 | Evaluation of the antibody and nanobody. (A,B) Lack of detergent application completely inhibited the infiltration of the antibody. Antibodies did not
penetrate into the center area of the tissue, but the nanobodies partially labeled the GFP prepared without detergent at a depth of several hundred micrometers.
Asterisk: center of the brain section. Scale bars: 200 µm. (C) Categorization of antibodies and nanobodies. Fluorescence labeling with antibody was usually
performed in one step using a direct fluorescence-conjugated primary antibody (Category 1) or in two steps using a fluorescence-conjugated secondary antibody
(Category 2). For EM observation, gold labeling or DAB (3,3′-diaminobenzidine tetrahydrochloride) reaction with HRP (horseradish peroxidase) was required to
visualize the antibody localization (Category 3). In this study, fluorescence- and gold-conjugated secondary antibodies were mainly used (Category 4). When an
appropriate dual-labeled secondary antibody was not available, the use of biotin-conjugated secondary antibodies and fluorescence- and gold-conjugated
streptavidin helped complete the procedure (Category 5).

(1:500, Chemicon, Merck, Darmstadt, Germany), mouse anti-
calretinin (1:200, Swant Inc., CH-1723, Switzerland), chick anti-
Tbr1 (1:100, Chemicon, Merck, Darmstadt, Germany), mouse
anti-neurofilament H (1:250, clone N52, Sigma, St. Louis,
MO, United States), anti-RORβ (1:200, Perseus Proteomics
Inc., Tokyo, Japan), rabbit anti-Cux1 (1:500, Santa Cruz
Biotechnology, Inc., Dallas, TX, United States), and goat anti-
FoxP2 (1:200, Santa Cruz Biotechnology, Inc., Dallas, TX,
United States). LA-CLEM can be adapted for use in any host
animal (mouse, rabbit, chick, rat, guinea pig, sheep, goat,
human, etc.) by using gold- or biotin-conjugated secondary
antibodies (Table 2).

On day 2, we washed the samples 10 times for 10 min
each time with 0.1 M PB and 0.005% saponin for a total

of approximately 2 h at r.t. (Step #10 in Table 1). While
washing, secondary antibodies were prepared for Step #11 by
dilution in blocking solution containing BlockAce with 0.01%
saponin in PB, as described above. In our laboratory, we used
a FluoroNanogold-conjugated secondary antibody (Alexa Fluor
488- and Nanogold-conjugated goat anti-mouse or anti-rabbit
antibody, 1:100, Thermo Fisher Scientific, MA, United States) for
mouse and rabbit primary antibodies (Step #9 in Tables 1, 2).
For detecting antibodies prepared in other species, such as chick,
rat, guinea pig, sheep goat, and human antibodies, fluorescence
and gold dual-labeled secondary antibodies are commercially
available, and biotin-conjugated secondary antibodies (1:500,
Jackson Immuno Research, West Grove, PA, United States,
or Vector Laboratories, CA, United States) with fluorescence
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and gold dual-labeled streptavidin can be used (Step #11
in Table 1 and Figure 3C). Alternatively, a 1- or 1.4-nm
colloidal gold-conjugated secondary antibody (Nanoprobes
Inc., NY, United States) can also be used for Step #11
in Table 1 in conjunction with the fluorescence-conjugated
secondary antibodies (Table 2).

In the case of the samples in Step #11 in category 5
in Figure 3C, high-affinity binding of biotin to streptavidin
was applied on experimental day 3. After 10 washes with
0.1 M PB and 0.005% saponin, the sections were incubated
with FluoroNanogold-conjugated streptavidin (Alexa Fluor 488-
and Nanogold-conjugated streptavidin, 1:100, Thermo Fisher
Scientific, MA, United States) for 24 h at 4◦C (Steps #12 and
#13 in Table 1) along with Hoechst 33258 (10 µg/ml, Sigma, St.
Louis, MO, United States) for nuclear staining. The inclusion
of these additional steps (#12 and #13) on day 3 meant that
the total experimental schedule had to be adapted to the host
species from which the primary antibodies were obtained and
to the lineup of secondary antibodies. In our case, the busiest
experimental day, day 4, was usually fixed first, and the schedule
for applying primary and secondary antibodies was adjusted
later depending on the host species from which the primary
antibody was obtained.

FLUORESCENCE IMAGING WITH LIGHT
MICROSCOPY

After washing several times with 0.1 M PB and 0.005% saponin
for approximately 2 h in Step 14, the immunostained samples
were observed using a confocal laser scanning microscope
(LSM880, Carl Zeiss, Oberkochen, Germany) or a fluorescence
microscope (BZ-9000, Keyence, Osaka, Japan) on experimental
day 4 (Steps #14 and #15 in Table 1 and Figures 4A, 7A–
C). The sections were soaked in buffer (0.1 M PB) rather
than in mounting medium. To avoid damage to the sections
due to direct contact with the cover glass, we maintained a
small space between the slide glass and the cover glass by
attaching adhesive tape or positioning an additional cover glass
at the edge of the slide glass to create an artificial space. To
identify the nuclear localization and tissue structure during
fluorescence imaging, nuclear staining dyes (Hoechst or DAPI)
were usually included in the secondary antibody solution.
Moreover, multicolor imaging with differently colored dyes can
be conducted simultaneously by identifying the other epitopes
using additional sets of primary and secondary antibodies in
Steps #9, #11, and #13.

As an example, four-color fluorescence images were obtained
using Hoechst (blue), anti-FoxP2 (green), anti-RORβ (red),
and anti-Cux1 (far red), and EM images were obtained using
FoxP2 (gold) labeling. Goat anti-FoxP2, mouse anti-RORβ

and rabbit anti-Cux1 antibodies were applied as a set of
primary antibodies on day 1. Biotin-conjugated donkey anti-
goat secondary antibody (1:500, Jackson Immuno Research, West
Grove, PA, United States) was applied on day 2. The Hoechst
dye, FluoroNanogold-conjugated streptavidin (Alexa Fluor 488
and Nanogold), Alexa Fluor 555-conjugated goat anti-mouse

IgG and Alexa Fluor 647-conjugated goat anti-rabbit secondary
antibodies were applied on day 3 (Figure 4A).

As demonstrated in Figure 4B, which shows a lateral side
view of a section with Z-stack imaging after the Cux1 antibody
reaction, 20-µm-thick cryostat sections were fully infiltrated
by the primary and secondary antibodies without any gaps
(Figure 4B). The thickness of cryostat sections varies from
laboratory to laboratory. In our laboratory, sections were usually
prepared at a thickness of 50–100 µm for free-floating vibratome
sections, 10–20 µm for frozen cryostat sections, 5–10 µm for
paraffin sections, 50–80 nm for resin-embedded EM sections, and
30–90 nm for resin-embedded SEM observation (Figures 4C,D).
Cryostat sections 20 µm in thickness were the maximum
thickness that allowed complete infiltration of the antibody
described in Steps #9 and #11 in Table 1; this thickness is also
ideal for ultrathin sectioning with an ultra-microtome for TEM
and SEM observation as described in Step #48 in Table 1.

SECTION PROCESSING FOR EM BLOCK
PREPARATION

Soon after completing the fluorescence imaging, the sections were
washed with 0.1 M PB for 5 min at r.t. and fixed with 2.5%
glutaraldehyde in PB for 10 min at r.t. for EM-grade fixation
(Steps #16 and #17 in Table 1). To minimize exposure to the
vapor produced by the toxic reagents and reduce the amount of
solution required for each process, a plastic slide case that holds
five slides (MR-500, Matsunami glass, Osaka, Japan) is convenient
for processing, especially for glutaraldehyde fixation at Steps #16–
#18 and for osmium staining, dehydration and Epon infiltration
at Steps #22–#34. The use of dummy empty slides to fill the empty
wells helps reduce the amount of solution required.

The sections were washed again with 0.1 M PB for 5 min at
r.t. and buffered with 50 mM HEPES (FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan) (pH 5.8) for half an hour
(10 min × 3 min) at r.t. (Steps #18–#19). Adjustment of the pH
for this buffer used 1 N NaOH since Cl− ions from hydrochloride
(HCl) generate a white precipitate with Ag+ ions that increases
the background. Silver enhancement was required to enlarge
the Nanogold or 1-nm colloidal gold signal due to the small
size of these reagents. Silver enhancement was conducted using
an R-gent Se-EM kit (Aurion, PD Wageningen, Netherlands)
and developed for approximately 30–40 min at r.t. in a bright
room or with the HQ-silver kit (Nanoprobes Inc., Yaphank, NY,
United States) for approximately 10–12 min at r.t in a dark
room (Step #20 or #20′ in Table 1). When the R-gent Se-EM kit
was used, 10 or 20 droplets of activator and one droplet of the
initiator (10:1 or 20:1) were mixed well by vortexing to prepare
the developer, and 50 droplets of the enhancer and 10 or 15
droplets of developer (10:2 or 10:3) were mixed with vortexing
to prepare sufficient reaction solution for processing five slides
(Figures 5A–D). When the HQ-silver kit was used in the dark
room, 20 droplets of solution A and 20 droplets of solution B
were mixed well; 20 droplets of solution C were then added to the
tube and mixed well with vortexing to prepare sufficient solution
(1:1:1) for processing 5 slides. Stopping of the enhancement
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FIGURE 4 | Fluorescence images with layer markers. (A) Multicolor fluorescence images were obtained from immunostained mouse brain samples using a confocal
laser scanning microscope. Mouse somatosensory cerebral cortex sections were stained with antibodies recognizing Cux1 (magenta, mainly layer II–IV), RORβ (red,
mainly layer IV), and FoxP2 (green, mainly layer VI) and with Hoechst dye (blue, nucleus). The white dotted lines indicate the estimated border of each layer. (B) An
immunostained section was observed by LM, and the thickness and the depth of infiltration by the antibody were evaluated. The full thickness of 20 µm was
completely infiltrated with the green-labeled secondary antibody, reflecting the Cux1 localization. (C) Floating sections 100 µm thick were prepared from a dissected
marmoset brain using a vibratome. The floating sections were frequently used for fluorescence immunostaining of large sections. (D) Summary of the thickness of
the sections. Vibratome slices and cryostat sections can be transferred for use in CLEM imaging, but the floating sections from the vibratome are too thick to be
infiltrated to their full depth. Scale bars: (A)–(B) 100 µm, (C) 2 mm.

reaction was determined by the timing of the color change of
the sections to brown or gray. To stop the silver enhancement
reaction, the sections in a slide basket were actively washed five
times in distilled water (DW) at r.t. for 1 min followed by a
wash in 0.1 M PB for 1 min at 4◦C in the slide glass plastic
case (Step #21 in Table 1). The sections were postfixed with
osmium tetroxide (OsO4, Nisshin EM Co., Ltd., Tokyo, Japan)
for 90–120 min at 4◦C, and 15 ml solution was used for 5 slides in
a plastic case (Step #22 in Table 1). After removal of the osmium
solution, the slide case was washed with DW once for 5 min
followed by two incubations with 50% EtOH for 5 min each time
(Steps #23 and #24 in Table 1).

To enhance the membrane contrast of the EM images for the
whole block, en bloc staining with 2% UA solution in 50% EtOH
was performed for 20 min at 4◦C (Step #25 in Table 1). As found
in various trials to improve EM image quality and summarized in

Table 3, en bloc staining with UA was one of the most effective
factors in our trial. Dehydration in graded concentrations of
ethanol (70, 80, 90, and 100% EtOH) was performed twice at
each concentration for 5 min (Steps #26–29). At the step in which
the sample is exposed to absolute ethanol (100% EtOH), the lines
from the liquid blocker should be removed from the tops of the
slides using a razor blade while the slides are immersed in a 10- or
15-cm plastic dish filled with absolute ethanol to facilitate smooth
removal of the section after polymerization (Step #29 in Table 1
and Figure 5E).

To replace the solution with 100% Epon for polymerization,
acetone was applied for 5 min at r.t. followed by the application
of QY1 twice for 5 min at r.t. (Steps #30 and #31 in Table 1). The
sections were exposed to the resin-containing solution QY1:Epon
(1:1) for 1 h at r.t. and then to 100% pure resin several times
at r.t. (Steps #32 and #33) and overnight at 4◦C (Step #34 in
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FIGURE 5 | Sample preparation for LA-CLEM using resin blocks. (A,B) Silver enhancement was required to visualize the localization of specific molecules using
nanogold-conjugated antibody signals. (C,D) The tissue became slightly darker when the silver enhancement procedure was completed. (E) At the middle of the
dehydration step with 100% EtOH, the lines on the slide glass applied with liquid blocker should be removed from the top using a single-edged razor blade. If this
step is omitted, it may be difficult to remove the section smoothly from the slide glass after resin polymerization. (F) Dehydrated and resin-infiltrated samples were
embedded in a silicone mold for slides. Air bubbles under the slides should be removed before beginning polymerization. (G,H) Brain slices stained with antibody
were fully polymerized by incubating at 60◦C for 72 h. Scale bars: (A,C,E)–(G) 1 cm; (B,D,H) 5 mm.

Table 1). Steps #30 to #32 were usually used only with glass
slides, glass chamber slides, and vials made of glass with sufficient
solvent resistance. Because plastic slides have limited resistance

to solvents, plastic slides should not be exposed to acetone or
to QY1. Sections on plastic slides were exposed to gradually
increasing concentrations of the resin in absolute ethanol [100%
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EtOH:100% Epon = 25% (3:1), 50% (1:1), 75% (1:3) for 10 min
each at r.t. (Steps #30′–#32′ in Table 1]. The sections were
then exposed to 100% Epon for 1 h at r.t. and incubated
overnight at 4◦C (Step #33). At the final step before beginning the
polymerization (Step #34), the slides on which the sections were
mounted were transferred to a new plastic slide case containing
100% pure resin to minimize carryover from the previous solvent.

At least one overnight infiltration of 100% pure Epon was
used both for slides made of plastic and for slides made of
glass; the slides were then embedded in new resin in a slide
glass embedding mold made of silicone (SNP2, microstar, Tokyo,
Japan) for 72 h (approximately three overnights) at 60◦C for
polymerization (Step #35 in Table 1 and Figure 5F). To achieve
complete curing of the resin (Figures 5G,H), it is important to
maintain the optimal temperature for the resin (60◦C in our
case, from datasheet) for a sufficient period. We monitored the
actual temperature on a minute-by-minute basis during the entire
period using a temperature probe. When the temperature reached
60◦C, approximately 1 h after the slides were placed in the oven
for polymerization, the air bubbles under the slides were removed
using small wooden toothpicks to maintain the thickness of the
resin on the section.

EM BLOCK SECTIONING AND WAFER
PREPARATION

After curing was completed, the sections in the polymerized resin
were manually removed from the silicone mold (Figure 6A).
Using sectioning blades, the sections were removed from the
slides on the hot plate by an experimenter wearing anti-injury
gloves that were resistant to cutting (Step #36 in Table 1 and
Figure 6B). The temperature of the sections and the coating
of the slides were crucial for smooth removal (Figure 6C).
The temperature setting of the hot plate should be adjusted
depending on the type of resin and the hot plate. With our
resin composition, an iron top hot plate (Taitec Corporation
heat block, Saitama, Japan) was set to approximately 100◦C. This
method was well suited to removal of the specimen at 95–105◦C
as measured by an infrared thermometer. If the resin was not
sufficiently hot (85–95◦C), it was difficult to remove the specimen
from the slide. If it was too hot (>110◦C), the resin was easily
fragmented into small pieces, presenting the worst condition
for block preparation. It is simple to remove resin-embedded
specimens from slides made of plastic on a hot plate with limited
use of blades (Figure 6D).

Soon after completing the smooth removal and with the
sample on the same hot plate, the sections were dissected into
blocks several millimeters square (Step #37 in Table 1 and
Figure 6E). Using small forceps, the blocks were placed on the
empty resin block (sectioning stage) and glued to the block using
old resin with high viscosity (stored in the freezer in a syringe,
Nipro, Osaka, Japan). The tissue sections should be placed on
top of a uniquely numbered sectioning stage (Figures 6E–G;
the white arrow in Figure 6E indicates the target section in the
experiment at this time point). The block should never be placed
upside down. The glued blocks were incubated for 24 h at 60◦C.

After fixing on the block, the sectioning stage with a piece of
the section on the resin block was stored in a desiccator for
at least several hours in a paper sample storage box to prevent
loss (Step #38).

Ordinarily, one block would be sufficient for large-area
imaging; however, we always fix all small blocks on the sectioning
stages for two important reasons: to permit numbering of all
the small blocks, and to preserve the adjacent blocks in case
these are needed. There is unique numbering on the lateral side
of the sectioning stage made up of resin blocks (Figure 6F).
Both the original position of the brain section and the block
number information are always clearly recorded in a notebook.
This makes it easier for us to determine the original location
of the immunostained section. If we do not place small pieces
of blocks on the stage and save them separately in a paper
storage box, it is difficult to identify the original position of the
antibody-stained section on the resin block. In some cases, it is
necessary to prepare additional ultrathin sections from adjacent
blocks due to the occurrence of cracks, breaks, or bumpy surfaces
that interfere with ultrathin sectioning. For this reason, most
of the fluorescence imaged area, at least, is usually prepared as
blocks for EM sectioning. The blocks were trimmed to a size
of several millimeters square using a sectioning blade, a glass
knife or a diamond trimming knife in an ultramicrotome (Leica
UC7, Leica Biosystems, Wetzlar, Germany or RMC ATUMtome,
Boeckeler Instruments, Inc., Tucson, AZ, United States) for
preparing ultrathin sections (Step #40 in Table 1). The size of
the sectioning surface was determined by the object, the width
of the diamond knife and the flatness of the surface. To obtain
full-layer sections from marmoset cerebral cortex, a surface with
an area of approximately 2 mm× 3 mm was sufficient to cover all
layers (from layers I to VI). To distinguish the pial surface from
the ventricular side of the sample, it is useful to prepare the block
surface in a trapezoidal shape or in a home base shape that makes
it easy to identify the top of the brain.

Ultrathin sections were prepared at a thickness of
approximately 30–90 nm using a diamond knife in an
ultramicrotome at r.t. (approximately 24◦C) (Step #40).
Ultrathin sections prepared using the ATUMtome (Boeckeler
Instruments, Inc., Tucson, AZ, United States) were collected
on conductive tape, manually transferred to silicon wafers or
collected on copper grids (Step #41 in Table 1 and Figure 6I).
The thickness of the sections was set using the ultramicrotome
and was limited by the type and hardness of the resin. For
large-area imaging with SEM, ultrathin sections with a thickness
of 50–80 nm were prepared, and the sections were transferred
to the silicon wafer from the diamond knife boat using a ring
transfer (microstar, Tokyo, Japan) (Figure 6J). For section
collecting, a silicon wafer or tape for ATUMtome that had been
treated with plasma to obtain a clean, hydrophilic surface was
used. The larger samples were transferred from the knife boat
using a water-filled beaker (Figure 6K). The diamond knife
boat containing several sections was dipped into a water-filled
beaker. The sections floating on the water were collected directly
onto the silicon wafer or conductive tape. For TEM observation,
sections approximately 50–80 nm in thickness were manually
collected on a copper grid (#100 or #150 Veco, Nisshin EM
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FIGURE 6 | Sample preparation for LA-CLEM on tape or wafers. (A) Polymerized resin with slides is easily removed from the silicone slide mold. (B) The sections in
the resin were removed from the slide glass on a hot plate using a sectioning blade. (C) The temperature of the section on the hot plate was critical for the smooth
removal of the section from the glass slide. Heating the resin to 90–100◦C yielded the best results. (D) A plastic slide (plastic chamber slide) softened on the hot
plate and was smoothly detachable from the resin. (E) Removed sections were dissected on a hot plate into several-millimeter-square blocks using a fine sectioning
blade for ultrathin sectioning with a diamond knife. The white arrow shows the block imaged in Figure 7. (F) Used resin, which has a high viscosity, was placed on
the empty resin block in the capsule stand to serve as a kind of “glue.” (G) Tissue sections on the sectioning block were placed on the top of the sectioning stage
with small forceps. The glued blocks with the sections on top were incubated for 24 h at 60◦C until the sections were strongly attached. (H) Blocks were trimmed
using a sectioning blade, glass knife, or diamond trimming knife, and ultrathin sections were prepared using an ultra-microtome or an ATUMtome. (I) Ultrathin
sections were manually collected on copper grids or silicon wafers. (J,K) For SEM observation, sections were transferred to a silicon wafer from the diamond knife
boat using a ring transfer or by manual collection in a water-filled beaker. Scale bars: (A–G) 1 cm, (H) 2 mm, (I) 1 cm, (J) 3 mm, (K) 1 cm.
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Co., Ltd., Tokyo, Japan). All sections were dried completely in a
desiccator for several hours at r.t. (Step #42).

Ultrathin sections were prepared for EM using UA for 10 min
at r.t. and lead citrate (Pb) for 10 min. Sections on a tape of
approximately 5–10 cm in length (depending on the staining
tube), sections on silicon wafers attached to a silicon wafer holder
(microstar, Tokyo, Japan), and sections on copper grids attached
to a grid staining stick (microstar, Tokyo, Japan) were dipped into
UA solution for an optimal period of time at r.t. (Step #43 in
Table 1). The sections were then washed three times with DW
in a beaker at r.t. (Step #44). The sections were dipped into Pb
solution at r.t., followed by three washes with DW (Steps #45
and #46). The ultrathin sections on the tape and on the silicon
wafer were gently blown with an air brush, the remaining water
droplets were removed from the top, and the sections were dried
completely on clean filter paper for several hours at r.t. (Step #47
in Table 1).

ELECTRON MICROSCOPIC IMAGING
WITH MULTIBEAM SEM

Electron microscopic observation was conducted with
multibeam SEM (multiSEM 505, Carl Zeiss, Oberkochen,
Germany), single-beam SEM (SU6600 from Hitachi High-tech,
Tokyo, Japan, Sigma from Carl Zeiss, Oberkochen, Germany),
and TEM (JEM1400plus JEOL, Tokyo, Japan) according to
the manufacturer’s instructions (Step #48 in Table 1). For
LA-CLEM imaging, multibeam SEM is one of the most powerful
microscopic techniques available for use in high-speed imaging
of large sections of brain tissue. The sections on the collecting
tapes were first placed on the silicon wafer with conductive
double-sided adhesive tape. The silicon wafers containing the
sections were attached to the specimen holder with silver DAG
and imaged using an optical microscope, Imager Vario (Carl
Zeiss, Oberkochen, Germany), to confirm the precise position
at low magnification as a reference position from which the
fluorescence images were obtained (Step #15 in Table 1 and
Figures 7A–C). After establishment of the workflow with
multibeam SEM so as to observe the brain sections with the best
focus and with the best acquisition parameters, the experiment
was begun with automatic focus acquisition of a sufficient
number of tiled images to cover the target section (Figure 7D).
The mosaic image files were automatically generated soon after
completing the imaging (Figure 7E). On zooming into the
specific region indicated by the white box in Figures 7A–C,E,
the localization of the fluorescently stained nucleus was clearly
demonstrated (Figure 7F). Low-magnification EM images can
be used to identify the specific nuclear localization (yellow) of
the RORβ (Figure 7G). In Figure 7F, the red circles in (G′)
originate from the yellow-colored nucleus in Figure 7G and are
superimposed on the fluorescence images shown in (A′) and (B′).
The pattern of the red circles in Figure 7F does not completely
match the fluorescence and Hoechst images in Figures 7A,B
due to the difference in thickness of the immunostained cryostat
sections and ultrathin sections. The higher-magnification
imaging demonstrated that the gold signals were mostly localized

FIGURE 7 | Imaging of whole marmoset cerebral cortex using multibeam
SEM. (A–C) All fluorescence images shown in the figure were obtained by
using a light microscope (LM) to observe the same section of the occipital
lobe of the marmoset cerebrum. The small white boxes in each fluorescence
image show the position of the enlarged area in (F). (D) Our strategy for
covering the entire imaging area of the marmoset cerebral cortex with multiple
hexagons originated from the 61 split electron beams. (E) The whole tiled
image was obtained with multibeam SEM from a marmoset brain section
labeled with specific brain layer markers. The small white box demonstrates
the position of (G). (F) A direct overlay of the fluorescence image in (A–C) and
the EM image in (G) by manual correlative observation is shown here. The red
circles in (F) originate from the yellow-colored area in (G) and were
superimposed on (A′) and (B′). (G) Low-magnification EM images of the
marmoset brain revealed the position of aggregation of an RORβ-positive layer
IV neuron, the nucleus of which is labeled with silver- enhanced gold particles
(black dots, colored yellow). (H) High-magnification image of the brain section
showing the subcellular localization of gold particles (nucleus, yellow).
(I) Image of an adjacent section on the EM grid acquired with TEM; it
exhibited similar localization of gold particles in the nucleus. Scale bars: (A–C)
100 µm, (D,E) 200 µm, (F,G) 10 µm, (H,I) 5 µm.

in the nucleus and enabled the observation of myelin and
synapses (Figure 7H). To confirm the detailed structure of
the tissue using another microscope at different magnification,
single-beam TEM observation of adjacent ultrathin sections
placed on the grids was conducted (Figure 7I).

To enhance the accuracy of the overlay between the
fluorescence and EM images of large brain sections, we
performed multicolor immunostaining using landmark markers,
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FIGURE 8 | Fluorescence imaging of landmarks and comparison between
multibeam SEM and TEM. (A–D) Multiply stained fluorescence images were
obtained using a confocal laser scanning microscope in tiling mode. The
localization of the pia mater (physical edge), blood vessels (VE-cadherin) and
nucleus (Hoechst) provided useful clues for finding the precise location of the
EM block because these were visible in EM observation. Inset: actual surface
image of the resin block corresponding to the white square windows in panels
(A–D); the white arrows indicate landmark blood vessels. (E–H) As shown in
Table 3, various trials were conducted to find methods for improving the
quality of the LM and EM images. The EM images shown in (E,F) were
produced using method (a), and the images shown in (G,H) were produced
using method (f) in Table 3. The images were evaluated by multibeam SEM
(E,F) and by TEM (F,H). n, nucleus; arrowheads, synapse. Scale bars: (A–D)
1 mm, (E–H) 1 µm.

including markers for blood vessels (VE-cadherin, Santa Cruz
Biotechnology, Dallas, TX, United States), the nucleus (Hoechst)
and the pia mater (physical edge) (Figures 8A–D). As shown
in the inset in Figure 8D, the EM block surface also contained
a superjacent section of the pia mater and many blood vessels
(white arrows) of various diameters. These positional clues are
effective not only for our manual correlative observations but also
for the computer-based correlative analysis by AI in future.

We also sought to evaluate various approaches that could
be used to enhance the image quality of our LA-CLEM
observations. A limited number of sample preparation conditions
are summarized in Table 3. The overall LM/EM image quality
obtained using different conditions, including the use of glass or
plastic slides, pretreatment for antigen retrieval, detergent use,
postfixation glutaraldehyde and OsO4, and UA en bloc staining,
was compared. For example, whereas autoclaving with citrate
buffer pH 6.0 is one of the best procedures for antigen retrieval,
autoclaving in target retrieval solution (Dako) was powerful
and effective for LM imaging but harmful for EM imaging,

offering limited microstructure preservation. One of the best
procedures tested was method (a) in Table 3. The images shown
in Figures 8E,F were obtained with multibeam SEM and TEM,
respectively. The application of reduced OsO4 in the postfixation
step was also effective for drastic enhancement of the membrane
contrast (Figures 8G,H); however, the resin-embedded sections
were stuck to the slide glass very rigidly and were very difficult to
remove. Identifying better conditions for improving the quality
of the images for large sample observation using the LA-CLEM
procedure remains an important challenge.

DISCUSSION

In this study, we report a newly developed procedure, LA-CLEM,
that can be used to visualize specific molecular localizations in
large areas of the CNS at EM resolution and at high speed
through the use of multibeam SEM. Information on layer
markers in the EM images was helpful for identifying cortical
layers in a given region, especially in the cerebrum of the
common marmoset. This method may make it possible to rapidly
observe large biological specimens, including specimens of
human tissue, at EM-level resolution while obtaining information
about molecular localization.

Correlative light and electron microscopy has often been
used to obtain a correlation between images from LM and
EM in very limited areas. In previous reports, various practical
approaches using cultured cells or transgenic animal models such
as Drosophila melanogaster, Caenorhabditis elegans, zebrafish,
and mouse have been described (Karreman et al., 2016).
To identify molecular position at higher resolution, CLEM
technology combined with immuno-EM could overcome the
limitations of LM by compensation with EM imaging (Cortese
et al., 2009), although it is not easy to identify the same area or
the same cell using both LM and EM at different magnifications in
the same specimen. This is one of the reasons why general CLEM
imaging has remained focused on limited areas.

There are two major approaches to obtaining images by EM,
SEM, and TEM; these two methods detect signals using scattered
electrons and transmitted electrons, respectively. Typically, SEM
reveals the surface micromorphology of the specimen, while TEM
can be used to visualize the internal composition of thin sections.
Due to the basic strategy of the SEM/TEM image acquisition
procedures, SEM is more suitable than TEM for the observation
of larger areas. TEM can maximally observe an area of up to
several mm in diameter within the EM grid at one time, while
SEM can scan areas of approximately several cm2. Because CLEM
imaging has usually been conducted with TEM, the observable
area has remained limited (Chen et al., 2012; Kubota et al., 2015).

In contrast, TEM delivers much higher resolution than SEM;
however, SEM technology is gradually improving and is now
approaching the resolution of TEM. Recent advances have made
it possible to obtain images of the internal composition of
thin sections on a flat surface that are quite similar to those
obtained using TEM (Marx, 2013). In this study, we sought
to observe large areas of ultrathin sections of marmoset and
mouse brain with SEM by detecting the secondary electrons
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TABLE 2 | List of the antibodies and nanobodies used in this study.

Primary antibody Property Company Host Catalog number Dilution

Anti-calbindin Neuronal subpopulation cell
marker

Chemicon, Darmstadt,
Germany

Rabbit
Polyclonal

AB1778 1:500

Anti-calretinin Neuronal subpopulation cell
marker

Swant, CH-1723 Marly 1,
Switzerland

Mouse
Monoclonal

6B3 1:200

Anti-Tbr1, T-box brain protein 1 Neuronal subpopulation
transcription marker

Chemicon, Darmstadt,
Germany

Chicken
Polyclonal

AB2261 1:100

Anti-neurofilament 200
(phosphorylated and
non-phosphorylated)

Neuronal cytoskeleton marker Sigma, St. Louis, MO,
United States

Mouse
Monoclonal

N0142 1:250

Anti-RORβ, RAR related orphan
receptor β

Neuronal subpopulation
transcription marker

Perseus Proteomics, Tokyo,
Japan

Mouse
Monoclonal

N7927-00 1:200

Anti-Cux1, cut-like homeobox 1 Neuronal subpopulation
transcription marker

Proteintech, Rosemont, IL,
United States

Mouse
Monoclonal

11733-1-AP 1:200

Anti-FoxP2, forkhead box
protein P2

Neuronal subpopulation
transcription marker

Santa Cruz Biotechnology,
Dallas, TX, United States

Goat Polyclonal sc-21069 1:200

Anti-GFP (green fluorescent
protein)

GFP, EGFP, and Venus protein
labeling

MBL (Medical and Biological
Laboratories), Nagoya, Japan

Rabbit
Polyclonal

Code 598 1:500

Anti-GFP (green fluorescent
protein)

GFP, EGFP, and Venus protein
labeling

Rockland, PA, United States Goat Polyclonal 600-101-215 1:200

Anti-VE-cadherin Endothelial cell marker Santa Cruz Biotechnology,
Dallas, TX, United States

Goat Polyclonal (C-19) sc-6458 1:200

Secondary antibody Property Company Host Catalog number Dilution

Alexa Fluor 488- and
Nanogold-conjugated goat
anti-mouse/rabbit IgG

Species-specific IgG detection Thermo Fisher Scientific, MA,
United States

Goat Polyclonal A25920/A24922 1:100

Alexa Fluor 488- and
Nanogold-conjugated
streptavidin

Biotin-specific detection with
streptavidin

Thermo Fisher Scientific, MA,
United States

Streptavidin A24926 1:100

Biotinylated donkey
anti-goat/chicken IgG

Species-specific IgG detection Jackson Immuno Research,
West Grove, PA, United States

Donkey
Polyclonal

705-065-147/703-
066-155

1:500

Biotinylated goat anti-rat IgG Species-specific IgG detection Vector Laboratories,
Burlingame, CA, United States

Goat Polyclonal BA-9400 1:500

Alexa Fluor 555-conjugated
donkey anti-rabbit IgG

Species-specific IgG detection Thermo Fisher Scientific, MA,
United States

Donkey
Polyclonal

A31572 1:800

Alexa Fluor 647-conjugated
donkey anti-goat IgG

Species-specific IgG detection Thermo Fisher Scientific, MA,
United States

Donkey
Polyclonal

A21447 1:800

Nanobody Property Company Host Catalog number Dilution

GFP-Booster_Atto594 (green
fluorescent protein)

GFP, EGFP and Venus protein
labeling

ChromoTek, NY, United States Recombinant Gba-594-100 1:200

from the surface of the sample. To increase throughput for
numbers of large sections from the brain, we used multibeam
SEM, increasing the number of primary beams and detectors
to enlarge the imaging area compared to single-beam SEM
(Marx, 2013; Eberle et al., 2015b). Multibeam SEM has opened
a new era of EM observation, enabling nanoscale resolution
imaging of areas on the order of mm2 or cm2 in size (Marx,
2013). In addition to parallel imaging with a multidetector
in a single image, multiple scanning with precise tiling can
be used to image the entire surface of large samples (Eberle
et al., 2015a). The multibeam SEM that was used in this
study achieved extraordinarily high-speed imaging with parallel
electron beams. The specifications sheet of the multibeam SEM
stated that a 1 cm2 area can be imaged within an hour at
4 nm/pixel resolution.

The LA-CLEM procedure introduced in this paper is a
novel approach in which CLEM is combined with multibeam
SEM. Primary observation with LM was conducted to visualize
the fluorescence localization, followed by observation of the
same specimen with multibeam SEM at different magnification
and resolution. Due to the use of antibody-specific fluorescent
labeling, the molecular identity of each labeled cell in the
monkey brain can be clearly categorized. Previously, 3D
molecular localization in the primate brain was visualized by
immunostaining; however, that study was conducted only at
the LM level (Mikula et al., 2009). Gold-labeled signals can be
detected simultaneously with the detailed intracellular structure
revealed by EM, directly confirming the subcellular localization
of targets in the nucleus, cytoplasm, cell membrane and synapse
at EM resolution. By combining CLEM imaging with multibeam
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SEM technology in the brain it is possible to identify the
localization of specific neuronal subtype markers at the EM level
in a large cerebral section, and such localization is important for
efficiently determining the function and connection of specific
neuron types. It would be highly beneficial to identify layer-
specific markers that can provide information at the EM level for
evaluating layer-specific connections in the brain.

Classically, SEM provides 3D images, while TEM provides
two-dimensional (2D) images. Recent technological advances
have made it possible to visualize the 3D structure of a
specimen at EM resolution using SEM; the results not only
show the irregularity and roughness of the surface but also
provide multiple serial imaging of the 2D flat surface (Shibata
et al., 2015a; Karreman et al., 2016). Some serial section EM
(ssEM) approaches, including focused ion beam (FIB)-SEM,
serial blockface electron microscopy (SBEM), and automated
tape-collecting ultramicrotome (ATUM)-SEM, are available. The
advantages of ssEM with FIB-SEM are that the highest Z
resolution available by ultrathin slicing with the FIB is several
nm and that the technique is applicable to hard tissues (teeth
and bone) that are not suitable for cutting with a diamond
knife. Instead of using a FIB, SBEM serial sectioning is
performed by using a diamond knife to slice the top surface
of the tissue, and the newly created surface is imaged with
SEM. In contrast to the destructive techniques of FIB-SEM
and SBEM, which destroy the sample as it is being imaged,
in ATUM-SEM serial sections are produced by a standard
ultramicrotome, collected automatically on tape, and imaged
by SEM, offering the possibility of reimaging the same section
multiple times if necessary (Kasthuri et al., 2015; Morgan et al.,
2016; Hildebrand et al., 2017). In addition, it is possible to
observe a larger area with sufficient conductivity by ATUM-
SEM using the on-tape conductivity escape from the charge-
up. By reconstructing the 3D structure of the sample from the
images obtained with multibeam SEM, the LA-CLEM approach
will enhance throughput and may become an important tool in
the near future.

Whole brain-wide connectomics reconstructed at EM
resolution requires novel procedures complemented by precisely
evaluated fixation and staining procedures for preserving the
cellular ultrastructure throughout the brain and sophisticated
data processing protocols for the management of petabyte-scale
data (Lichtman and Denk, 2011; Mikula and Denk, 2015; Mikula,
2016; Hildebrand et al., 2017). For the reliable reconstruction of
neural circuits, the identification of synapses and the detection
of cell bodies are critical. X-ray microcomputed tomography
(X-ray microCT) and X-ray microscopy rely on the detection
of X-rays transmitted through samples to visualize the internal

morphological composition of the block (Bushong et al., 2015;
Mikula and Denk, 2015). Improvements in X-ray 3D imaging will
help enhance microscale imaging of the whole brain by supplying
the information necessary for assessing brain integrity, including
the formation of blood vessels and large bundles of nerve
tracts (Mikula, 2016).
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