Humans have observed the natural world and how people interact with it for millennia. Over the past century, synthesis and expansion of that understanding has occurred under the banner of the “new” discipline of ecology. The mechanisms considered operate in and between many different scales—from the individual and short time frames, up through populations, communities, land/seascapes and ecosystems. Whereas, some of these scales have been more readily studied than others—particularly the population to regional landscape scales—over the course of the past 20 years new unifying insights have been possible via the application of ideas from new perspectives, such as the fields of complexity and network theory. At any sufficiently large gathering (and with sufficient lubrication) discussions over whether ecologists will ever uncover unifying laws and what they may look like still persist. Any pessimism expressed tends to grow from acknowledgment that gaping holes still exist in our understanding of the natural world and its functioning, especially at the smallest and grandest scales. Conceptualization of some fundamental ideas, such as evolution, are also undergoing review as global change presents levels of directional pressure on ecosystems not previously seen in recorded history. New sensor and monitoring technologies are opening up new data streams at volumes that can seem overwhelming but also provide an opportunity for a profusion of new discoveries by marrying data across scales in volumes hitherto infeasible. As with so many aspects of science and life, now is an exciting time to be an ecologist.
Landscapes and the ecological processes they support are inherently complex systems, in that they have large numbers of heterogeneous components that interact in multiple ways, and exhibit scale dependence, non-linear dynamics, and emergent properties. The emergent properties of landscapes encompass a broad range of processes that influence biodiversity and human environments. These properties, such as hydrologic and biogeochemical cycling, dispersal, evolutionary adaptation of organisms to their environments, and the focus of this article, ecological disturbance regimes (including wildfire), operate at scales that are relevant to human societies. These scales often tend to be the ones at which ecosystem dynamics are most difficult to understand and predict. We identify three intrinsic limitations to progress in landscape ecology, and ecology in general: (1) the problem of coarse-graining, or how to aggregate fine-scale information to larger scales in a statistically unbiased manner; (2) the middle-number problem, which describes systems with elements that are too few and too varied to be amenable to global averaging, but too numerous and varied to be computationally tractable; and (3) non-stationarity, in which modeled relationships or parameter choices are valid in one environment but may not hold when projected onto future environments, such as a warming climate. Modeling processes and interactions at the landscape scale, including future states of biological communities and their interactions with each other and with processes such as landscape fire, requires quantitative metrics and algorithms that minimize error propagation across scales. We illustrate these challenges with examples drawn from the context of landscape ecology and wildfire, and review recent progress and paths to developing scaling laws in landscape ecology, and relatedly, macroecology. We incorporate concepts of compression of state spaces from complexity theory to suggest ways to overcome the problems presented by coarse-graining, the middle-number domain, and non-stationarity.
The persistence of ecological systems in changing environments requires energy, materials, and information. Although the importance of information to ecological function has been widely recognized, the fundamental principles of ecological science as commonly expressed do not reflect this central role of information processing. We articulate five fundamental principles of ecology that integrate information with energy and material constraints across scales of organization in living systems. We show how these principles outline new theoretical and empirical research challenges, and offer one novel attempt to incorporate them in a theoretical model. To provide adequate background for the principles, we review major concepts and identify common themes and key differences in information theories spanning physics, biology and semiotics. We structured our review around a series of questions about the role information may play in ecological systems: (i) what is information? (ii) how is information related to uncertainty? (iii) what is information processing? (iv) does information processing link ecological systems across scales? We highlight two aspects of information that capture its dual roles: syntactic information defining the processes that encode, filter and process information stored in biological structure and semiotic information associated with structures and their context. We argue that the principles of information in living systems promote a unified approach to understanding living systems in terms of first principles of biology and physics, and promote much needed theoretical and empirical advances in ecological research to unify understanding across disciplines and scales.
Resource use efficiency (RUE) is an ecological concept that measures the proportion of supplied resources, which is converted into new biomass, i.e., it relates realized to potential productivity. It is also commonly perceived as one of the main mechanisms linking biodiversity to ecosystem functioning based on the assumption that higher species numbers lead to more complementary and consequently more efficient use of the available resources. While there exists a large body of literature lending theoretical and experimental support to this hypothesis, there are a number of inconsistencies regarding its application: First, empirical tests use highly divergent approaches to calculate RUE. Second, the quantification of RUE is commonly based on measures of standing stock instead of productivity rates and total pools of nutrients instead of their bioavailable fractions, which both vary across systems and therefore can introduce considerable bias. Third, conceptual studies suggest that the relationship between biodiversity, productivity and RUE involves many more mechanisms than complementary resource use, resulting in variable magnitude and direction of biodiversity effects on productivity. Moreover, RUE has mainly been applied to single elements, ignoring stoichiometric, or metabolic constraints that lead to co-limitation by multiple resources. In this review we illustrate and discuss the use of RUE within and across systems and highlight how the various drivers of RUE affect the diversity-productivity relationship with increasing temporal and spatial scales as well as under anthropogenic global change. We illustrate how resource supply, resource uptake and RUE interactively determine ecosystem productivity. In addition, we illustrate how in the context of biodiversity and ecosystem functioning, the addition of a species will only result in more efficient resource use, and consequently, higher community productivity if the species' traits related to resource uptake and RUE are positively correlated.