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Editorial on the Research Topic

Unifying Ecology Across Scales: Progress, Challenges and Opportunities

THE NEED TO UNIFY ECOLOGY: A GRAND CHALLENGE FOR A

CHANGING WORLD

Ecology is the science of how living systems grow, change, and persist. Although this is not the
definition presented in most textbooks, this is the central theme of this scientific discipline as
it is practiced in the current era of rapid global change. Change comes in many forms, from
natural succession of communities to biological invasions affecting patterns of biodiversity to the
collapse of fisheries. Understanding and forecasting natural change as well asmitigating undesirable
anthropogenic change is one of the grand challenges we face in the twenty-first century.

With our collective focus on global change, the ecological sciences—from organismal,
population, community, and ecosystem ecology to evolutionary ecology—are undergoing a
revolution. It has become clear that although we have vast and multifaceted ecological knowledge,
it has yet to solidify into a coherent body of science. For example, over decades in the latter half
of the twentieth century researchers, journals and even entire academic departments focused on
specific branches of ecological thinking as narrowly defined as behavioral ecology, population
ecology, or community ecology. Currently though, it has become clear that to understand our
changing world and our place in it, examining the ecological changes afoot from a fragmented
and narrow disciplinary perspective is insufficient. Population dynamics, ecosystem functions,
individual behavior, and other aspects of living systems are deeply connected, and we cannot project
changes in one without understanding how they are related to other processes across scales of space
and time and levels of biological organization.

CONTRIBUTIONS IN THIS SPECIAL TOPIC

In recent decades, efforts to unify ecological understanding across scales and levels of organization
have flourished and disciplinary barriers have fallen (see, for example, Brown et al., 2004; Scheiner
and Willig, 2008; Harte, 2011; Marquet et al., 2014). In this special topic, we highlight recent
progress in the unification of ecological sciences. Papers in this issue can be organized in three
groups. Some papers take a very broad view on the current state of ecology, proposing frameworks
and approaches to organize understanding and guide new research (Fulton et al.; Hodapp et al.;
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Kempes et al.; Martinez; O’Connor et al.). A second group
provides concrete tools and approaches to unifying ecological
data and models, through specific and quantitative frameworks
(McCabe and Dietze; Newman et al.; Niklas and Hammond;
Tekin et al.; Yen et al.). A third group provides specific analyses
that reveal new insights into how dynamics in natural systems
are linked across scales and levels of organization (Amarasekare;
Bideault et al.; Cavan et al.; Gibert and Yeakel; Pawar et al.; Segura
and Perera; Zelnik et al.; Ziv andDavidowitz). Together, this issue
is full of big ideas complemented by specific analyses, providing
an exciting and welcome step in our ongoing effort for a unified
science of ecology.

Fulton et al. offer a sweeping view of ecology, moving
through what they identify as a transitional period now to
a future in which we will have developed a more coherent
ecological science through better models. This paper is a must-
read, providing an impressive and inspiring perspective on
the successes of synthesis in ecology through models. Among
the many successes they highlight is the recognition that we
understand that human activities and evolutionary change both
occur within ecological time scales, and “this new reality drives
home that ecology lacks a universally solid foundation from which
to extend existing theories and modeling approaches to easily
absorb the many interacting components and scales.” Fulton et
al. identify immediate challenges as the need to embrace new
modeling approaches that spanmore dimensions and allowmore
dynamic and evolving parameterizations and structures to allow
models to incorporate new sources of data. They emphasize that
these advances require not only technical advances in modeling,
but also coordinated advances in ecological theory and concepts,
as well as multiscale data streams. To continue the ecological
tradition of using models to explain and predict, now in a rapidly
changing world, they argue for continued investment in an
approach that unifies disparate ideas while also allowing multiple
approaches to be employed to solve the problems we face.

Other contributions propose frameworks to unify concepts
across scales, disciplines, and levels of organization. Consistent
with Fulton et al.’s call for greater attention to a universally
solid foundation for ecological science, O’Connor et al.
propose strengthening the foundation by integrating concepts of
information and information theory into ecology’s fundamental
principles. They review major concepts in information theory,
and highlight how these fundamental principles of science have
not been fully explored in ecological understanding. Their paper
provides a set of ecological principles grounded firmly in a
science that includes information processing as fundamental
to living systems, along with energy flows and material cycles.
Similarly, with firm grounding in these first principles, Kempes
et al. provide scaffolding that explains how evolution must
occur within the boundaries of the physical world, and what
these physical constraints imply for all that we still do not
know about evolution. Martinez extends a unifying framework
further with allometric networks, and like several other proposed
frameworks in this issue, Martinez includes humans and socio-
ecological systems in his unifying scheme. Hodapp et al. provide
additional structure through emphasizing resource use efficiency
as a unifying concept across diverse living systems, which may

differ in the identity and number of limiting resources, trophic
levels, and ecological, temporal and spatial scales.

Inspired by the broad roadmap laid out by contributions like
those described above, we might then ask, “how do we proceed
and implement a unifying framework?”. This is a hard question.
Thoughtful and constructive answers are provided in every
paper in this edition. Yen et al. identify the statistical challenge
of integrating data—often collected specifically at one level of
biological organization—across multiple levels of organization.
They provide an approach integrating multiple data types and
parameterize more complex, process-explicit models, providing
a path forward to testing multi-scale theory using data spanning
many organizational levels. Niklas and Hammond’s contribution
dives into understanding body form and function in generalized
terms, and renders the allometric scalingmodel more biologically
relevant and useful by exposing the value and meaning of the
often-overlooked scaling normalization constant. Newman et
al. identify and explain specific challenges that we face when
trying to understand emergent patterns of complex ecological
systems at landscape scales: coarse-graining, the middle number
problem of the domain of data complexity, and non-stationarity
issues when predicting future ecological states from models
based on adjustable parameters. McCabe and Dietze offer a
solution to another landscape-scale problem—scaling contagious
disturbance. They provide an approach that allows modeling of
such events in the context of climate change, thereby linking
community-scale disturbance events with broader scale climate
change and feedbacks. Cavan et al. also work with climate
change models and finer scale ecological dynamics by using the
metabolic theory of ecology (MTE) to link rates of carbon flux in
microbial systems to global climate feedbacks.

Tekin et al.’s contribution provides an approach that could
potentially also serve as an important part of a unifying
framework by demonstrating that many if not all measures of
pairwise interactions—present in a diverse array of complex
systems across very different scientific disciplines—can be
derived from and analyzed in the context of a singlemathematical
framework. They build upon this finding to introduce consistent
measures of higher order interactions. In this way they provide
a practical tool and an insightful guide to thinking about
complexity that is likely to benefit unification efforts across
ecological (and other scientific) disciplines.

The third set of papers in this issue dives deeper into ecological
and evolutionary dynamical models. These contributions
implement unifying concepts by integrating ideas from diverse
areas of thought into a single framework for population
dynamics, and then analyzing the models to understand possible
patterns and processes in nature. Gibert and Yeakel demonstrate
how evolutionary change within the context of ecological
dynamics can provide unexpected links between individual traits
and the structure of an emergent food web. Ziv and Davidowitz
link landscape-scale features (patch size and fragmentation)
to evolutionary outcomes (selection for life-history traits
increasing survival) and population dynamics (likelihood of
population extinction). The need for strong quantitative general
predictions of fluctuations of species abundance are addressed
by Segura and Perera through deriving a theoretical model

Frontiers in Ecology and Evolution | www.frontiersin.org 2 October 2020 | Volume 8 | Article 6104596

https://doi.org/10.3389/fevo.2019.00242
https://doi.org/10.3389/fevo.2020.00092
https://doi.org/10.3389/fevo.2019.00219
https://doi.org/10.3389/fevo.2019.00064
https://doi.org/10.3389/fevo.2019.00293
https://doi.org/10.3389/fevo.2018.00212
https://doi.org/10.3389/fevo.2018.00166
https://doi.org/10.3389/fevo.2019.00095
https://doi.org/10.3389/fevo.2019.00146
https://doi.org/10.3389/fevo.2019.00045
https://doi.org/10.3389/fevo.2018.00230
https://doi.org/10.3389/fevo.2019.00015
https://doi.org/10.3389/fevo.2019.00202
https://doi.org/10.3389/fevo.2019.00148
https://doi.org/10.3389/fevo.2018.00224
https://doi.org/10.3389/fevo.2019.00137
https://doi.org/10.3389/fevo.2019.00424
https://doi.org/10.3389/fevo.2019.00424
https://doi.org/10.3389/fevo.2019.00424
https://doi.org/10.3389/fevo.2019.00219
https://doi.org/10.3389/fevo.2019.00242
https://doi.org/10.3389/fevo.2020.00092
https://doi.org/10.3389/fevo.2020.00092
https://doi.org/10.3389/fevo.2018.00233
https://doi.org/10.3389/fevo.2019.00095
https://doi.org/10.3389/fevo.2018.00212
https://doi.org/10.3389/fevo.2019.00293
https://doi.org/10.3389/fevo.2019.00064
https://doi.org/10.3389/fevo.2018.00230
https://doi.org/10.3389/fevo.2018.00166
https://doi.org/10.3389/fevo.2019.00015
https://doi.org/10.3389/fevo.2019.00137
https://doi.org/10.3389/fevo.2019.00148
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


O’Connor et al. Editorial: Unifying Ecology Across Scales: Progress, Challenges and Opportunities

that links metabolism to abundance fluctuations in ecological
populations and communities. Amarasekare carefully considers
how physiological effects of temperature on the rates that
drive consumer resource dynamics can lead to very different
consequences of warming and climate change in different
thermal regimes (e.g., tropics vs. temperature). Tackling the
same question from a different angle, Bideault et al. find that
the way temperature dependences are distributed among
the processes that determine consumer-resource interactions
and outcomes can substantially affect the ultimate outcome
of warming. Pawar et al. build on an immense database of
consumer-resource interactions and related traits to observe
that body size distributions differ for consumers foraging in
two-dimensional and three-dimensional habitats. They provide
a theoretical explanation for this pattern, and use their joint
mathematical/empirical approach to offer new insights about
how consumer resource interactions are constrained and how
they flourish in different environments. Zelnik et al. provide
a theoretical analysis of the effects of different spatial and
temporal properties of disturbance on ecosystem stability. Their
modeling approach provides insights into the tight link between
temporal and spatial dimensions on ecosystem responses to
disturbance. By integrating Earth System Models and satellite-
derived temperature data, and using principles from MTE,
Cavan et al. estimate changes in global exports of marine carbon.
Their findings suggest a main role of temperature sensitivity
shaping carbon outputs and call for the need of incorporating
organismal temperature dependence into biogeochemical
models. Each of these contributions is exciting, novel and
potentially transformative to how we think about ecological
dynamics and the structures they produce. These are the bricks
and mortar of a unified science, providing specific and clear

new ideas and observations to our body of knowledge. Many
work at the intersection between population dynamics and
the unifying approach of MTE, which is based on general
principles of how ecological rates of energy flux and material
cycling scale with body size and temperature (Brown et al.,
2004).

The contributions in this issue advance current themes in
unifying efforts, specifically those employing MTE (Bideault et
al.; Cavan et al.) or its core allometric scaling model (Kempes
et al.; Martinez; Niklas and Hammond), those integrating data
and models (Fulton et al.; Newman et al.; Yen et al.), bridging
between local scale dynamics and climate change models (Cavan
et al.; Fulton et al.; McCabe and Dietze), and those focusing on
resource use and trade-offs (Hodapp et al.; Ziv and Davidowicz).
Newer themes in unifying ecological science are also emerging,
in the form of emphasis on disturbance and its multi-scale
consequences (McCabe and Dietze; Segura and Perera; Zelnik
et al.), on trait based perspectives on consumer-resource
interactions and interaction strengths (Amarasekare; Bideault et
al.; Pawar et al.; Tekin et al.), eco-evolutionary feedbacks (Gilbert
and Yeakel; Kempes et al.) and on information as a unifying
principle for mainstream ecological thinking (O’Connor et al.).
Together, the full issue opens doors and guides our steps through
them in our collective efforts to better understand our changing
biosphere through ecological science.
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Interactions are ubiquitous and have been extensively studied in many ecological,

evolutionary, and physiological systems. A variety of measures—ANOVA, covariance,

epistatic additivity, mutual information, joint cumulants, Bliss independence—exist that

compute interactions across fields. However, these are not discussed and derived within

a single, general framework. This missing framework likely contributes to the confusion

about proper formulations and interpretations of higher-order interactions. Intriguingly,

despite higher-order interactions having received little attention, they have been recently

discovered to be highly prevalent and to likely impact the dynamics of complex

biological systems. Here, we introduce a single, explicit mathematical framework

that simultaneously encompasses all of these measures of pairwise interactions. The

generality and simplicity of this framework allows us to establish a rigorous method for

deriving higher-order interactionmeasures based on any of the pairwise interactions listed

above. These generalized higher-order interaction measures enable the exploration of

emergent phenomena across systems such as multiple predator effects, gene epistasis,

and environmental stressors. These results provide a mechanistic basis to better account

for how interactions affect biological systems. Our theoretical advance provides a

foundation for understanding multi-component interactions in complex systems such

as evolving populations within ecosystems or communities.

Keywords: complex biological systems, emergent patterns, higher-order interactions, ecological interactions,

biodiversity

INTRODUCTION

Because of their key role in understanding the dynamics of complex biological, physical, and
social systems, there is a long and rich history of studying interactions and their consequences
(Wootton, 1993; Billick and Case, 1994; Darling and Côté, 2008; Mihaila et al., 2010; Hamilton,
2011; Toprak et al., 2013; Barrios-O’neill et al., 2014; Foucquier and Guedj, 2015; Palmer et al.,
2015; Podgornaia and Laub, 2015; Nishikawa and Motter, 2016; Shi, 2016). These approaches have
often been complemented and enhanced by network theory that has led to important advances
in prediction of patterns (Segrè et al., 2005; Yeh et al., 2006; Braun and Shah, 2015). Studies of
interactions and networks have heavily and almost solely focused on two-component interactions.
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As a result, we have a thorough understanding of pairwise
interactions and the various interaction categorization measures
defined across distinct subject areas such as statistical physics,
gene networks, and prey-predator systems. Yet despite this focus
on interactions at the pairwise level, a general and comprehensive
framework for two-way interaction categorizations has not
been established. Moreover, this lack of a framework makes
it particularly challenging to address and incorporate higher-
order interactions that must be scaled up from any specific
pairwise interaction model. This also likely contributes to the
paucity of studies or higher-order interactions—defined here as
interactions among three or more components—in the literature.
Indeed, many studies have hypothesized or either implicitly or
explicitly assumed that higher-order interactions are extremely
rare and/or insignificant (May, 1972; Van Belle, 2011; Wang
et al., 2015; Wootton and Stouffer, 2016). In contrast, recent
studies have provided evidence that there is a large amount of
higher-order interactions, suggesting a critical need to include
higher-order effects to better understand complex systems and
alterations of ecosystem processes (Weinreich et al., 2013; Taylor
and Ehrenreich, 2015a,b; Beppler et al., 2016; Tekin et al., 2016;
Levine et al., 2017; Mayfield and Stouffer, 2017).

Constructing an integrated theoretical framework that
encapsulates all the pairwise interaction measures and rigorously
constructs higher-order interaction measures by building up
from a generalized formula for pairwise interactions would
be extremely valuable for gaining insights into understanding
complex systems. Here, we provide a perspicuous path to this
general theory of interaction measures at pairwise and higher-
order levels. We aim consequently to enhance the understanding
of interactions via the comparison of different interaction
measures and via the search for higher-order interactions,
potentially providing profound insights into complex systems
research.

In Table 1 we give several of the most common choices for
interaction measures that have been introduced and utilized in
diverse fields. Diverse examples of interaction measures include
(i) covariance for calculating the joint variability of multiple
random variables (Rice, 2003), (ii) mutual information (MI)
defined to quantify the information gained about one random
variable through knowledge of the other random variable (Cover
and Thomas, 2012), (iii) joint cumulants in statistical physics,
also known as an n-point correlation or Ursell functions in
quantum field theory (Kendall and Stuart, 1969), (iv) statistical
measures of analysis of variance (ANOVA) for detecting the
differences of means and variances among different groups
(Cohen, 2008), (v) additive and multiplicative models introduced
for quantifying the interactions among multiple predators in
their ability to affect the survival of a prey population (Figure 1)
(Sih et al., 1998), and (vi) a commonly used measure of Bliss
or epistatic Independence for identification of drug-drug and
gene-gene interactions (Bliss, 1939). Although these measures
are all grounded on the unifying objective of quantifying
the dependence or interaction between different components
(referred to as objects, variables, or factors), a general theory
for deriving these measures does not exist. Indeed, some of the
interaction measures mentioned above are strongly associated

with each other (see Similarities across different interaction
measures), hence introduction of a general framework of
interactions becomes much more needed.

Identifying higher-order interactions is essential because the
behavior of complex systems can be unpredictable due to
interactions among the pairwise subsets of system components
(Case and Bender, 1981; Billick and Case, 1994). However,
generalizing 2-way (pairwise) interaction measures to three
or more component systems is often challenging, often done
incorrectly or incompletely, and requires a heuristic process
of learning the complex calculations or directly implementing
software packages with implicit choices and computations.
Consequently, measures for higher-order interactions are often
not known or not well-defined (Tekin et al., 2017). All in
all, a simplified yet rigorous approach for studying pairwise
and higher-order interactions is vitally important for creating
a basis to explore the patterns and consequences of emergent
phenomena in a wide range of systems.

One important point to consider is that proceeding from
lower-order to higher-order interaction measures requires the
resolution of ambiguities concerning what exactly higher-order
interactions represent (Foucquier and Guedj, 2015). In this
respect, two recent studies on higher-order drug interactions
with a major focus on three-way interactions—in terms of
data representation and analysis—shed light by distinguishing
between net and emergent higher-order interactions (Beppler
et al., 2016; Tekin et al., 2016). A net interaction, which is the
more commonly considered type of higher-order interaction,
refers to the total interaction that results from effects at all
levels. In contrast, emergent interactions arise only when all
of the components (or objects) or some subset of components
are combined. Similarly, a more comprehensive and general
approach is needed to evaluate higher-order interaction effects
in a wide range of fields. From an ecological perspective, when
conservation management is the goal for a prey population,
understanding the actual interactions among all predators
can be critical. We cannot assume that more predators will
increase prey risk, and similarly, without proper emergent
interactions analysis, we do not know which predator removal
or decrease will ultimately increase a prey’s number. Therefore,
a generalized approach for quantifying higher-order interactions
must directly distinguish between net and emergent interactions
and incorporate effects resulting from different levels of
interaction [where the level corresponds to the number of
components in any given subset of component, ranging from
one component (level 1) up to the whole system (level N)].
This higher-order interaction framework would require data for
responses for each subsets of components—singles, pairs, triples,
etc.

In this paper, we first establish a general framework for
analyzing two-way interactions and show how our framework
can be used to derive the many interaction measures described
above. Indeed, we show how all the measures mentioned above
(such as mutual information, ANOVA, multiplicative models,
etc., see Table 1) fit within this framework. Next, we present
a conceptual and theoretical advance for building higher-order
interaction measures that starts from a general framework of
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TABLE 1 | Summary table of two-way interaction measures with our generalized formula TXY = F (X◦Y) − (F (X◦ I)△F (Y◦ I)).

Interaction measure (T) F (Functional) ◦ (Operation) I (Identity of ◦) △ (Operation) Applications

Covariance Expectation (E) Multiplication 1 Multiplication Neuroscience Kohn and Smith, 2005; Staude

et al., 2010, gene epistasis, economics Miller,

2013, signal processing Sahidullah and

Kinnunen, 2016, risk analysis and management

Cox L. A. Jr., 2009

Mutual information Negative entropy (−H) Addition 0 Addition Gene epistasis Margolin et al., 2006; Moore

et al., 2006, machine learning Jakulin and

Bratko, 2003; Jakulin, 2005, astronomy

Pandey and Sarkar, 2017

Additive model or ANOVA Response Addition 0 Addition Stressor interactions Chen et al., 2008, gene

epistasis Matsui and Ehrenreich, 2016, food

webs O’gorman and Emmerson, 2009, political

studies Sigal et al., 1988

Multiplicative model or Bliss

Independence

Survival or fitness Addition 0 Multiplication Multiple predator studies Sih et al., 1998, drug

interactions Bliss, 1939; Yeh et al., 2006, gene

epistasis Segrè et al., 2005

pairwise interactions and the definition of no-interaction at the
pairwise level. In doing so, we show how different interaction
measures are generated by different choices of mathematical
operations and functionals, potentially allowing exploration of
all possible interaction measures via all possible choices of
operations and associated identity elements. Importantly, our
general theory of interactions facilitates the understanding of
connections between different measures that are frequently used
in different research areas and will thus be a useful guide for
studies of interactions in many distinct fields.

Similarities Across Different Interaction
Measures
Despite the fact that there are a wide range of choices for
pairwise interaction metrics (see Table 1), interactions are
defined generically based on a prediction or expectation that
signifies no interaction and corresponds to each respective
measure having a value of 0. Given the no-interaction
expectation—equivalently referred to as additive, multiplicative,
or independence expectations—the classification of interactions
is evaluated based on deviations from this no-interaction case.
When the combined effect is sufficiently greater or weaker than
the expected effect of no-interaction, the interaction is classified
as positive (synergy or cooperation) or negative (antagonism or
interference), respectively (see Figure 1 for a toy example and an
ecological case study). Interpreting the magnitude of interaction
often requires rescaling (normalizing), using methods such as
those developed by Segrè et al. (2005) and Tekin et al. (2016),
and then testing the significance by various statistical analysis
methods such as t-tests, bootstrapping experiments, and Bayesian
statistics (Jakulin, 2005).

Importantly, some interaction measures (as briefly
overviewed in the Introduction and presented in Table 1)
are strongly associated with each other in terms of their
construction and baseline expectation of no-interaction. For
instance, the underlying additive model of ANOVA is strongly
linked with the additive model of Multiple Predator Effects

(MPE) studies (Sih et al., 1998), where the expected effect of
combination is sum of their individual effects. On the other
hand, there is a correspondence between the multiplicative
model of MPEs—the expected effect of combination is product
of their individual effects—and the Bliss Independence model
of drug interactions and epistasis (Beppler et al., 2016). These
correspondences suggest that further exploration and potential
applications of interactionmeasures to different systems could be
fruitful. Our general framework uncovers these similarities and
hence proves to be very useful in understanding the interaction
measures and their similarities as well as their applications to
different systems.

When proceeding from simpler forms of interactions (i.e.,
pairwise interactions) to higher-order interactions (i.e., three-
way, four-way, N-way interactions), two different types of
interaction classifications arise, namely net and emergent
interactions (Beppler et al., 2016). Net interactions measure
whether any effective interaction exists at all, whereas emergent
interactions measure whether there are interactions beyond what
is expected from the “sum” of the lower-order parts. Inherently,
characterizing higher-order interactions necessitates data for all
the system outcomes (i.e., responses) in the presence of all the
subsets of components. For example, for the characterization
of three-way interaction, one would need responses in the
presence of each single component alone, responses under all
pairwise component combinations, and responses under all three
components. Overall, better understanding of how higher-order
interaction measures translate into these two different types of
higher-order interactions is vital to better predict dynamics of
complex system cooperations.

METHODS

Generalized Form of Interaction Measures
General Theory of Two-Way Interactions
Here, we introduce a mathematical framework that generalizes
and unifies interaction measure formulations for two
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FIGURE 1 | Example representation and ecological case study of 2-way and 3-way interactions for consumer-resource systems. A toy example of an interaction

study design for multiple predator effects (MPE) is given to represent 2-way and 3-way interactions, where mortality rates of prey population (small fish) are dependent

on the consuming ability of certain predator or combination of predators. Schematic of no predator, single predator, pairwise combination, and triple combination of

fish predator populations are illustrated in 8 different panels, where the pairwise panels of XY, XZ, YZ are chosen to represent the three distinct types of interactions:

synergy, antagonism, and no-interaction by the multiplicative model with the rescaling introduced in Segrè et al. (2005) and Tekin et al. (2016). In particular, synergistic

interaction corresponds to the case when the mortality rate with two predators is sufficiently larger than the expected mortality rate of predators based on

single-predator effects. Conversely, predators can act antagonistically, meaning that the mortality rate in the presence of combined predators is sufficiently less than

the expected mortality rate based on single-predator effects. In the latter scenario, predators do not interact, hence expected prey mortality is the same as actual prey

mortality with both predators in the environment. Classification of interactions is typically done by evaluating the effects of the combined components relative to the

effects of independent single components or lower-order combination effects. Given the raw data (see table), we employ the analysis of variance (ANOVA) as well as

multiplicative model of interactions and present p-values and interaction measure calculations (T, see section Methods for the definition), respectively. For 3-way

combinations, two distinct types of interactions are characterized by the multiplicative model, where net interaction represents the overall effect and emergent

interaction represents the three-way combination effect that is beyond any pairwise interactions. The same interaction study design has been performed for an

ecological case study by Coors and De Meester (2008), where stressors are a predator (X), parasite infection (Y ), and pesticide exposure by carbanyl (Z) on a water

flea Daphnia magna survival. A MATLAB code package that has the toy data with the implementation of the interaction measure calculations are included as part of

our paper (see Data Sheet 1).

components (equivalently referred to as factors or objects).
In a broad context, interactions are determined based on the
evaluation of the combined effect relative to a null expectation

of no-interaction based on the single-component effects.
Hence, for defining a generalized formula for interactions, it
is essential to introduce notation, properties of operations for
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combining components, and formulations for assessing the
effects of combined or single components. Here, we define
an algebraic operation ◦ (associative and commutative) that
combines two components X and Y and that has identity
element I, and a real-valued functional, F , (a function of
functions) and a second algebraic operation △ (associative
and commutative) that combines this functional with different
arguments (Figure 2). Then, we express the definition of no-
interaction as F (X◦Y) = (F (X◦I)△F (Y◦I)), and define the
generalized measure for quantifying interactions between two
components as

TXY = F
(

X◦Y
)

−
(

F
(

X◦I
)

△ F
(

Y◦I
))

(1)

The identity element in the functional form of the interaction
measure is provided in the generalized formula to explicitly make
the point that the absence of another component should yield
no interaction. In other words, combining any component (X)
with the identity element (Y = I) should be equivalent to no
interaction, corresponding to I = 0 for addition and to I =

1 for multiplication. Moreover, the arithmetic operations are
restricted to either addition or multiplication to preserve the
associativity and commutativity properties of combining more
than two components. This preservation property is because
there is no time component in our framework that corresponds to
introducing different components to the system. In other words,
the ordering of different components in the interaction definition
does not matter, hence TXY = TYX for two components and
TXYZ = TYXZ = TZXY for three components (see next section).
By definition, TXY = 0 generally means there is no interaction or
dependence between two components, whereas deviation of TXY

from zero suggests an interaction. Different choices of operations
and functional F correspond to different choices of interaction
measures as derived below. Furthermore, the sign andmagnitude
of TXY indicates the type and strength of interaction after proper
rescaling (Segrè et al., 2005; Tekin et al., 2016). Rescaling has a
firm conceptual foundation that has been proven useful in many
areas and is defined relative to important baselines, such as a
maximally synergistic scenario or special cases of antagonism, to
appropriately reflect the strength of any interaction (Segrè et al.,
2005; Sanjuán and Elena, 2006; Tekin et al., 2016). Similarly,
two-way and higher-order interaction measures need a rescaling
method (a normalization procedure) to distinguish different
interaction categorizations.

General Theory of Higher-Order Interactions
As we proceed from two-way to higher-order interactions, there
are two distinct types of interactions: (1) net interactions and
(2) emergent interactions (Figure 2). The first form measures
whether an effective or net interaction exists at all, hence defined
as an effect of a combination that is different than predicted
from solely the effects of non-interacting single components.
On the other hand, the second form measures whether there
are emergent interactions beyond what is expected from the
lower-order parts of the whole combination. Below, by following
a similar notation as for two-way interactions, we introduce

the functional forms of generalized higher-order interaction
measures. For that, we first note that the ordering of the
components (or objects) does not matter as we assume the
absence of a time component in our framework. Therefore,
the interaction measures are symmetric with respect to each
component—hence X (Y◦Z) is equivalent to X◦Y◦Z or X◦Z◦Y
and vice versa—because algebraic operations of ◦ and △ hold
commutativity and associativity properties.

Net interactions
Net interactions are measured by a direct extension of the
generalized formula for two components (Figure 2) (Sanjuán and
Elena, 2006; Staude et al., 2010; Beppler et al., 2016). For example,
when three components are completely independent or do not
interact at any level, then the functional with the combined
components as the argument is equal to the combination
of functionals of single components under the operation △.
Therefore, adding a third component (Z) into the generalized
version of the two-way interaction measure (Equation 1), the
generalized version of the three-way net interaction measure
becomes

TXYZ, NET = F
(

X◦Y◦Z
)

−
(

F
(

X◦I
)

△F
(

Y◦I
)

△F
(

Z◦I
))

(2)

Next, we derive the net interaction formulation for a combination
of an arbitrary number, N, of components. Representing the
set of components by X1, X2, · · · , XN , and assuming there
is no interaction between component X1 and the rest of the
components, we have

F
(

X◦
1X

◦
2 · · ·

◦XN

)

= F
(

X◦
1 I

)

△F(X◦
2 · · ·

◦ X◦
NI)

By induction or equivalently applying the same realization
repeatedly to the right side of the above equation yields theN-way
version of the generalized formula as given by

F
(

X◦
1X

◦
2 · · ·

◦XN

)

= F
(

X◦
1 I

)

△F
(

X◦
2 I

)

△ . . .△F
(

X◦
NI

)

(3)

Using a big△ notation to denote the application of the operation
△ to a sequence of numbers—similar to sigma (or pi) notation
for summation (or multiplication)—our generalized formula for
quantifying net N-way interaction is given by

TX1 X2 ··· XN , NET = F
(

X◦
1X

◦
2 . . .◦ XN

)

−
△

i
F

(

X◦
i I

)

Emergent interactions
Emergent interactions are defined as interactions that exist even
after the exclusion of all interaction effects that are due to
lower-order parts and may contribute to a combined overall
(net) interaction (Figure 2). In the drug interaction and epistasis
terminology, emergent interactions are concretely defined in our
recent work and clearly contrasted with the definition of net
interaction (Beppler et al., 2016; Tekin et al., 2016). Specifically,
an emergent interaction is an interaction that exists beyond
the effects that are due to all lower-order parts, whereas a net
interaction is any effect beyond only the individual component
effects. In an article by Staude et al. (2010) on covariance,
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FIGURE 2 | Generalized form of interaction diagrams and measures. Two-way and three-way interaction diagrams and measures (T) over distinct interaction types,

general functionals (F ), and operations (, △) are given. Empirically, classification of pairwise interaction requires measurements from each single component alone as

well as measurements from each pairwise combination of components. On the other hand, classification of three-way interactions requires measurements from all

possible subsets: measurement under each single-component alone, measurement from all pairwise subsets, and measurement from triple-component combination.

Theoretically, for two-way interactions, the definitions of net and emergent interactions are identical. On the other hand, net and emergent interactions are not the

same at the three-way level because the net three-way combination subsumes the pairwise combination effects of each pair (XY, XZ, YZ). Therefore, the emergent

3-way interaction (the diagram on the bottom far left) is expressed by subtracting all lower-order contributions from the net 3-way interaction. The interaction

classification is obtained from the sign of the interaction measure, T, where T = 0 represents no-interaction, T < 0 represents synergy (positive interaction), and

T > 0 represents antagonism (negative interaction). See Figure 1 for a toy example of consumer-resource systems that depicts different interaction classes: synergy,

no-interaction, and antagonism.

this concept is referred to as the dependence in the higher-
order combination that is not embedded through the lower-
order correlations. In information theory, Jakulin et al. (Jakulin,
2005) referred to this idea similarly and stated that interaction
information among different attributes can be gained by the
information that is not present in any subset. By definition, at
the two-way level, an emergent interaction is identical to the
net interaction because there is nothing from which to emerge
except the single-component effects. On the other hand, at the
next level, the emergent three-way interaction measure captures
the interaction that does not originate from the pairwise parts,
and hence emerges only in the presence of all three components.
For more than three components, it matters what level of lower-
order interactions needs to be excluded. There can be different
choices based on the specific system or the main purpose of the
interaction identification, as revealed in more detail below and in
the Appendix A in Supplementary Material.

As a start, to measure the emergent three-way interaction, we
calculate how much of the three-way net interaction originates
from each of the isolated pairs and subtract that from the net
(or total) three-way interaction. In this case, the contribution that
comes solely from the pair X, Y represents the situation that only
X,Y interacts within the three-way combination ofX,Y, and Z. In
other words, the remaining component Z within the combination
does not interact with the pairwise part of X and Y or either X

or Y individually. Employing the two-way interaction formula of
generalized interaction measure (Equation 1) and the associative
properties of operations, this is equivalent to saying that
F (X◦Y◦Z) = F ((X◦Y◦) ◦Z) = F ((X◦Y) ◦I)△F (Z◦I). Hence,
the two-way combination of components X, Y contributes to the
entire (net) three-way interaction (Equation 2) by an amount
of F ((X◦Y) ◦I)△F (Z◦I)−F (X◦I)△F (Y◦I)△F (Z◦I), which
is equal to F (Z◦I) △ TXY when △ is multiplication and
is equal to TXY when △ is addition. Similarly deriving the
contribution coming solely from the interaction of components
Y and Z and also from X and Z, the generalized formula of the
emergent three-way interaction is given by disentangling the sum
of the pairwise parts from the three-way interaction. Therefore,
given the multiplication operation of △, the emergent 3-way
interaction among components X, Y, and Z is

TXYZ, EMERGENT = TXYZ, NET−F
(

X◦I
)

△ TYZ − F
(

Y◦I
)

△ TXZ − F
(

Z◦I
)

△ TXY (4)

On the other hand, the weighting parameters (e.g., F (X◦I))
disappear when △ is the addition operation, so an emergent
interaction is given by

TXYZ, EMERGENT = TXYZ, NET − TYZ − TXZ − TXY (5)
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These expressions mean that when some interaction exists but all
the pairs are independent (or not interacting), then the emergent
interaction is equal to the net interaction because any interaction
can only be coming from the combined effects of all three
drugs for this special case. When pairwise interactions exist and
do not cancel, the net and emergent interaction measures will
virtually always differ. Notice also that all interaction measures
are symmetric with respect to each component. Moreover, when
a single component is independent (or not interacting) with the
others, the emergent three-way measure vanishes, as desired.

For N components (X1,X2 . . . XN), the emergent N-way
interaction formula can be derived similarly by starting from
the definition of the generalized formula for net N-way
interactions and subtracting the appropriate lower-order effects.
The derivation for generalized formula of emergent interactions
with four components is described in detail in Appendix A in
Supplementary Material.

RESULTS

Construction of Specific Two-Way
Interaction Measures From General Theory
We will now derive how our generalized framework of two-way
interactions leads to numerous interaction measures introduced
in studying generic multi-component systems (Table 1). For this,
we start by defining X and Y as random variables and will
show that the generalized formula reduces to the covariance
formulation and mutual information by the choice of different
algebraic operations of and △. Given that F is the expectation
operator, and both and△ are the operation ofmultiplication,TXY

(Equation 2) becomes covariance and hence measures the joint
variability between X and Y, as

TXY = E (X∗Y) − E (X∗1) ∗E (Y∗1) = E (XY) − E (X)E (Y)

Here, we note that when X and Y are independent, their
covariance is zero, i.e.,TXY = 0. Notably, the two-way covariance
measure is analogous to concepts in theoretical physics such as
joint cumulants or Ursell functions (Kendall and Stuart, 1969)
and the Isserlis formula in statistics (Isserlis, 1918). However,
the higher-order interaction formulations of these concepts differ
from the higher-order covariance when there are more than
three components, as derived in Appendix A in Supplementary
Material.

Following the covariance derivation using our general
theory of two-way interactions, we now show that choosing
appropriate functional and algebraic operations leads to the
mutual information measure of interactions. Hence, we define F
to be negative entropy,△ to be addition, and ◦ to be addition (i.e.,
I = 0). Here, the ◦ operation represents the combination of two
components and hence defines joint entropy under the functional
F . For these choices, the generalized formula yields the mutual
information

TXY = −H (X,Y) +H (X) +H (Y)

Here, associating the random variables X and Y with attributes,
the interaction formulation TXY measures the correlation

between the attributes based on concepts of information theory.
By definition, when X and Y have no interaction, their mutual
information vanishes because no information is gained about one
attribute through the other attribute (Jakulin, 2005).

Proceeding to cases for which the arguments X and Y
represent experimental data rather than standard random
variables, we discuss how interactions are measured by the
formula TXY by evaluating the effects of combined components
inferred from system responses (F) such as growth, survival,
or mortality rates (Figure 1). These experimental data types
and response functions are used in many important and
frequently-used measures of interactions, such as ANOVA,
epistatic additivity, Bliss Independence, and multiple predator
effects measures.

We begin by reviewing how ANOVA (Analysis of Variance)
translates into a measure for the prediction of interactions
and then deriving its correspondence with our general
interaction formula. In the case of two-component systems,
ANOVA interactions are quantified by a 2 by 2 factorial
design with four different observations—corresponding to no
components (0), component X alone, component Y alone,
and components X and Y together. In this case, two-way
ANOVA tests whether the presence of Y affects the impact
of X according to a measure based on linear deviations.
When the effects of observations are denoted by S, no
interaction is described as S (X)−S (0) = S (X + Y)−S (Y).
Note that this equation can be re-expressed in the form
S (X + Y)−S (0) = S (X)−S (0) + S (Y)−S (0).
Therefore, redefining the response measurement to be
F (X) :=S (X)−S (0), the interaction is quantified by the
significance of deviation from the additive effects of two
components, i.e., F (X + Y)−F (X)−F (Y). This corresponds
to a general formula of interactions, TXY , with ◦ and △ being
addition operations

TXY = F (X + Y)−F (X)−F (Y)

Regarding the use of ANOVA for interaction classifications, work
by Billick and Case (1994) andWootton (1994) demonstrate that
the results of ANOVA can be misleading if the transformation of
data is not carefully done or when the empirical system does not
align with the assumptions of ANOVA.

Following the similar component types and response
measurements, our general interaction measure produces
another widely-used model of interactions, namely the
multiplicative-risk model. This measure has been introduced
by Soluk and Collins (1988) for quantifying multiple predator
effects (MPE), and it overcomes the ambiguities of the additive
prediction by ANOVA when the single components have
large impacts on the response function (F). In such cases, the
additive expectation can never be achieved because the predicted
combined effect is stronger than is feasible or possible for the
two together (for example you cannot have a stronger effect than
complete killing, see Appendix B in Supplementary Material for
details). The multiplicative model formulates no-interaction as
F (X + Y) = F (X)F (Y), based on the idea of proportional
decreases in population size. It is thus much more akin to Bliss
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Independence discussed below. Importantly, the multiplicative
model of interaction can be written as a general interaction
formula, where ◦ and △ are addition and multiplication
operations, respectively. Hence,

TXY = F (X + Y) − (F (X + 0) ∗F (Y + 0))

= F (X + Y)−F (X)F (Y)

associates the null model of no-interaction based on the product
of response measurements (F), which is prey survival rates for
the MPE system (Sih et al., 1998; Barrios-O’neill et al., 2014).
The subscript notation (such as FXY ) is still typically used to
express response measurements under different combinations
of predators, or similar component types in different settings,
even though X and Y are actually being summed together in
this case. Hence, the equation above takes a form TXY =

FXY − FXFY . As explained in Appendix B in Supplementary
Material, this multiplicative model is preferred over additive
models that do not always yield plausible expectations of
combination effects. As a further note, this multiplicative model
of two-way interaction can be tested by merely applying two-
way ANOVA on log-transformed data because testing for
logF (X + Y) = logF (X) + logF (Y) is equivalent to testing
for F (X + Y) = F (X)F (Y) by properties of logarithms.
However, the multiplicative model at higher-order levels is not
simply equivalent to the log-transformed ANOVA as detailed
below. Note that following the same logic of additive and
multiplicative models, where the interaction effect signifies the
deviation from the null model of additivity or multiplicativity,
alternative measures to two-way ANOVA [namely Hedge’s d and
log response ratio (LnRR)] have been proposed to determine
interactions based on the deviation from the corresponding
model expectation standardized to the effect size (Gurevitch et al.,
2000; Crain et al., 2008; Côté et al., 2016). Similar correction
terms for the effect sizes can be added to net and emergent
higher-order interaction measures for meta-analysis studies.

Intriguingly, there is a strong correspondence between the
multiplicative model introduced for MPEs and the frequently
used drug-interaction model of Bliss Independence. This
indicates that the Bliss measure can also be expressed by
utilizing the general interaction formulation we propose here,
i.e., TXY = FXY − FXFY . In drug interaction studies, response
measurements, F , are given as growth rates of pathogens in
the presence of single or multiple drug environments relative to
the no-drug environment. Relative growth is commonly referred
to as relative fitness and is indeed analogous to the survival
rates of prey species in predator environments (Beppler et al.,
2016). Bliss Independence categorizes interactions based on
deviations from a null expectation (no-interaction case) that the
percent decrease of the pathogen growth rate in the presence
of drug X is not affected by the presence of the other drug
Y. Analytically, the deviation from no-interaction instance is
measured byF (X + Y)−F (X)F (Y) orFXY−FXFY , following
a subscript notation as in the multiplicative model.

Building Higher-Order Specific Interaction
Measures From General Theory
In this section, we discuss the widely-used pairwise interaction
measures described above and summarized in Table 1, and
we derive the three-way interaction measures based on the
corresponding no-interaction criterions and our general theory.
For clarity, we follow the same order of measures as in the
section on the construction of two-way interactions. Therefore,
we start by reviewing the standard interaction measures when
the components are random variables. In probability theory,
the extensions of probabilistic measures of moments to multi-
variable systems are generally referred as higher-order cross
moments. For example, adapting the generalized formula of
covariance (seeTable 1) to three variables yields a 3rd-order cross
moment known as co-skewness that is used as a risk management
measure in finance or in social problems (Cox L. A. Jr., 2009;
Miller, 2013). To be more explicit, the net interaction measure
(Equation 3) is given byTXYZ, NET = E (XYZ)−E (X)E (Y)E(Z)
(Stratonovich, 1967; Staude et al., 2010), which vanishes when
X, Y, and Z are mutually independent with each other and each
pairwise product. Next, substituting the generalized formula of
two-way interactions (i.e., covariance) and the net three-way
interaction, the emergent interaction (Equation 4) becomes

TXYZ, EMERGENT = E (XYZ) − E (X)E (YZ) − E (Y)E (XZ)

−E (Z)E (XY) + 2E (X)E (Y)E(Z)

which is equivalent to the three-way covariance [i.e.,
E ( (X − E (X)) (Y − E (Y)) (Z − E (Z)))] or the non-normalized
formula of co-skewness as discussed above. Notably, this three-
way measure is equivalent to the Isserlis formula (Isserlis,
1918), 3-point connected correlation, or equivalently the Ursell
function with three random variables (Kendall and Stuart,
1969; Staude et al., 2010). However, this does not hold true for
more than three components (Appendix A in Supplementary
Material).

Continuing with the component types as random variables, we
now show that the general formula of higher-order interactions
reduces to two interaction measures of paramount importance
in information theory. Defining the functional F as the negative
of entropy and following the algebraic operations that yield
mutual information (seeTable 1), the net interaction formulation
coincides with the total correlation measure as given by

TXYZ, NET = −H (X,Y ,Z) +H (X) +H (Y) +H(Z)

This measures the total dependence among three attributes X,
Y , and Z (Watanabe, 1960; Jakulin, 2005). By incorporating
the pairwise mutual information into the emergent interaction
formulation when △ is the addition operation (Equation 5),
we attain the multiple mutual information measure defined by
McGill (McGill, 1954; Sun Han, 1980; Jakulin, 2005).

TXYZ, EMERGENT = −H (X,Y ,Z) +H (X,Y) +H (X,Z)

+H (Y ,Z) −H (X) −H (Y) −H (Z)

Thus far, we have introduced the commonly used interaction and
dependence measures from probability theory. Next, we move
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onto the standard measure of ANOVA, which analyzes the effects
of multiple components via the factorial experiment design. As in
the two-way interactions, we simply use the underlying additive
model of three-way ANOVA and refer to it as just an additive
model (Table 1). When the response function F is defined
relative to the control (no component is present), the three-
way net interaction formula of the additive model is given by
F (X + Y + Z)−F (X)−F (Y)−F (Z). Now, substituting each
pairwise contribution in the generalized formula of emergent
interactions (Figure 2), the emergent interaction measure is
identical to the underlying model of three-way ANOVA.

TXYZ, EMERGENT = F (X + Y + Z)−F (X + Y)−F (X + Z)

−F (Y + Z) + F (X) + F (Y) + F(Z)

This correspondence is proven explicitly in the Appendix C

in Supplementary Material by recognizing that three-way
ANOVA determines how the two-way interaction between the
components X and Y is affected by an addition of a third factor
Z. This in-depth derivation of the underlying model of three-way
ANOVAhelps to compare the statistical measure of ANOVAwith
other interaction classification methods.

Due to the additive model’s implausible predictions
under certain cases, many MPE studies have pursued the
implementation of the multiplicative model (Appendix A in
Supplementary Material). Subsequently, we now derive the
definition of three-way interactions under the multiplicative
model of MPE studies or equivalently the Bliss Independence
formula. This derivation is very similar to the foundation of the
covariance for three random variables as △ is the multiplication
operation in both concepts (Table 1). Defining the functional
F as survival rate relative to the control, the net interaction
measure becomes

TXYZ, NET = F (X + Y + Z)−F (X)F (Y)F (Z)

or TXYZ, NET = FXYZ − FXFYFZ using subscripts for denoting
the combination of components. In this case, substituting
the terms corresponding to each pairwise contribution, such
as FXYFZ − FXFYFZ = FZFXY for XY combination, the
emergent interaction becomes

TXYZ, EMERGENT = FXYZ − FXFYZ − FYFXZ − FZFXY

+2FXFYFZ

Using a fitness definition for F , TXYZ, NET and TXYZ, EMERGENT

correspond to the net and emergent interaction formulas with
three components in the fields of drug interactions and gene
epistasis (Sanjuán and Elena, 2006; Beppler et al., 2016).

DISCUSSION

Multi-level interactions play an important role in explaining
the characteristics of systems that arise as collective behaviors
or responses among different components. As an example
in conservation biology, mammalian herbivory, invertebrate
herbivory, and nutrient levels all interact to affect the survival,

growth rates, and fecundity of rare plant species in a forest
ecosystem (McGill et al., 2006; Savage et al., 2007; Webb et al.,
2010; Dávalos et al., 2014; Enquist et al., 2015). Given this
importance across diverse fields, many different interaction
classification methodologies have been introduced. However, a
unified theory behind these choices has been lacking, and as a
result, higher-order interaction measures are often incorrectly
derived and interpreted and thus higher-order interactions are
not well understood. Moreover, the lack of a general theory
behind the pairwise interaction measures makes it difficult to
establish a common understanding of higher-order interactions
and to design well-defined measures that go beyond pairwise
interactions. In our study, we introduce a pioneering approach
to resolve these uncertainties and for studying interactions
in complex systems. We further propose a general theory of
interaction measures to uncover interactions at pairwise and
higher-order levels. Our framework provides an advance in such
a way that specific cases and measures can be derived from the
definition of what an interaction means—the deviation from
an expectation that there is no interaction—and what response
measurements are needed to evaluate for the interactions—the
functional with different arguments. From that we establish
a rigorous framework for extending and generalizing these
concepts and measures to higher-order levels.

In doing so, we show the utility of our general framework by
deriving pairwise interaction measures across different fields—
covariance, mutual information, cumulants, ANOVA, Bliss
independence, and epistatic additivity (Table 1). Furthermore,
we demonstrate that all pairwise interaction measures can
be easily extended to characterize the net interaction—an
overall effect resulting from all levels—and the emergent
interaction—a measurement of an overall interaction effect
relative to interactions at lower-order levels. We also discuss their
specific representations, correspondences, and interpretations in
a diverse set of study areas. Overall, our advance is of importance
for studies of diverse complex systems that rely on a large number
of interactions and emerge across multiple levels.

Despite a rich focus on pairwise interactions in the literature,
recent studies have shown that higher-order interactions are
pervasive in drug and gene systems (Taylor and Ehrenreich,
2015a,b; Tekin et al., 2016), and that the typical approach
of focusing solely on pairwise interactions is most likely
inadequate for successfully attaining important insights into
research on complex systems (Weinreich et al., 2013; Beppler
et al., 2016; Levine et al., 2017; Mayfield and Stouffer,
2017). Therefore, higher-order interactions (i.e., among any
number of components) must be incorporated to fully grasp
system dynamics. In this respect, our study provides a
promising framework to uncover emergent phenomena in
multi-component systems such as protein and gene interaction
networks, multiple predator effects, food webs, interacting agents
in economics, voting behaviors in political science and the
cohesion dynamics of social groups.

As shown by our previous studies (Yeh et al., 2006; Tekin
et al., 2016), empirical data of drug interactions separate
into a trimodal distribution—clearly separating synergy, no-
interaction, and antagonism—and clearly different than would
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arise from a random model of interactions because stochastic
effects would have smoothed out this distribution and led to a
more uniform distribution. Furthermore, in our previous study
(Tekin et al., 2016), we assessed the statistical significance of
interactions by testing against the null hypothesis of random
interactions that would on average lead to a uniform distribution
that ranges from −1 to 1 across the entire interaction scale. To
quantify these comparisons, we used a Silverman test (Silverman,
1981) and found the higher-order emergent interactions are
significantly different from random effects. These results reveal
higher-order interactions are not simply due to random effects.
Also worth noting is that uncertainty and error estimation due
to measurements can be dealt with using bootstrapping strategies
(Cruz-Loya et al., 2018).

Throughout the text, we also point out a well-founded concept
of “rescaling” in physics that has been proven to enhance the
categorization of pairwise and higher-order emergent effects
(Segrè et al., 2005; Tekin et al., 2016). Without employing an
appropriate rescaling approach, the magnitude of interactions
is often not apparent and hence can lead to misleading results
and erroneous insights. Therefore, appropriately understanding
and rescaling the interaction formulations is an essential part
of studying and understanding multi-component interactions in
any system.

We further note that many systems have additional
complexities besides just many interacting components or
higher-order interactions. For example, in predator-prey
systems, both predators and prey can evolve, and there are
direct feedbacks in the interactions. Both of these effects can
lead to drastic changes in multiple predator effects (MPEs)
(Barrios-O’neill et al., 2014). In addition, pathogens can evolve
in response to drug combinations in ways that are almost
impossible to predict due to rugose fitness landscapes. To
predict and understand the dynamics of pathogen populations
thus requires further theory (Palmer et al., 2015). Our general

framework of interactions, with additional modifications,
will help address some of the important questions about
complexities in biological, physical, and social systems. Overall,
understanding emergent features can help us to predict the
dynamical consequences of complex interactions, including in
questions of crucial significance to human and global health,
such as combatting the evolution of resistance to antibiotics and
mitigating detrimental impacts of climate change on the diversity
and stability of food webs.
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Ecosystems constantly face disturbances which vary in their spatial and temporal

features, yet little is known on how these features affect ecosystem recovery and

persistence, i.e., ecosystem stability. We address this issue by considering three

ecosystem models with different local dynamics, and ask how their stability properties

depend on the spatial and temporal properties of disturbances. We measure the spatial

dimension of disturbances by their spatial extent while controlling for their overall strength,

and their temporal dimension by the average frequency of random disturbance events.

Our models show that the return to equilibrium following a disturbance depends strongly

on the disturbance’s extent, due to rescue effects mediated by dispersal. We then reveal

a direct relation between the temporal variability caused by repeated disturbances and

the recovery from an isolated disturbance event. Although this could suggest a trivial

dependency of ecosystem response on disturbance frequency, we find that this is true

only up to a frequency threshold, which depends on both the disturbance spatial features

and the ecosystem dynamics. Beyond this threshold the response changes qualitatively,

displaying spatial clusters of disturbed regions, causing an increase in variability, and even

a system-wide collapse for ecosystems with alternative stable states. Thus, spanning

the spatial dimension of disturbances is a way to probe the underlying dynamics of an

ecosystem. Furthermore, considering spatial and temporal dimensions of disturbances

in conjunction is necessary to predict ecosystem responses with dramatic ecological

consequences, such as regime shifts or population extinction.

Keywords: localized disturbance, rescue effect, bistability, return time, variability, persistence

1. INTRODUCTION

Understanding the stability of ecosystems, i.e., their ability to recover and persist in the face of
natural and anthropogenic disturbances, is of fundamental importance to ecology and conservation
(May, 1973; Neubert and Caswell, 1997; Loreau and deMazancourt, 2013). Ecosystems are spatially
extended, comprised of multiple interacting communities in different locations, and therefore an
important factor in understanding their stability is their spatial structure (Levin, 1992; Peterson
et al., 1998; Wang and Loreau, 2016). However, while the influence of space on properties such
as biodiversity and food web structure has been intensely investigated (Loreau et al., 2001; Chase
and Leibold, 2002; Montoya and Sol, 2002; McCann et al., 2005), basic questions regarding
spatial stability remain open. In particular, despite the fact that most disturbances (e.g., fires, pest
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outbreak, pollution runoff) are strongly heterogeneous in
space, the impact of their spatial structure on stability is
largely unknown. Similarly, their temporal dimension, e.g.,
their timespan or the frequency of their occurrence, is critical.
Taken together, these dimensions span a vast space of possible
disturbances that ecosystems can face (e.g., fires and storms).
This, in part, explains why reaching a clear understanding of
ecosystem stability has proven to be an extremely challenging
endeavor.

Research on ecosystem stability has a long history in ecology,
and numerous studies have investigated how various properties
of disturbances affect ecosystem responses. The importance
of spatial properties of disturbances, in particular, has been
assessed by a few studies of regeneration dynamics under
recurrent, spatially structured disturbances (Turner et al., 1993;
Moloney and Levin, 1996; Fraterrigo and Rusak, 2008). These
studies introduced the concept of landscape equilibrium and
demonstrated how the spatial and temporal scales of disturbances
can generate different stability patterns. A point not explicitly
addressed in these studies, however, is the importance of rescue
dynamics occurring at a regional scale when local recovery
processes are too slow or fail altogether. This can occur
in sufficiently connected ecosystems, following high-intensity
disturbances (Foster et al., 1998; Fraterrigo and Rusak, 2008). In
fact, recovery from a disturbance is a consequence of both local
and regional processes. Local processes lead to recovery due to
dynamics that are internal to local communities (e.g., birth and
death of individuals), while regional processes lead to recovery
by bringing in individuals from neighboring communities via
dispersal (Turner, 1989; Leibold et al., 2004). These two processes
mediate the large-scale system response to a disturbance, and
their respective parts in this response is bound to strongly depend
on the spatial connectivity of the system and, importantly, on the
spatial structure of disturbances.

Recent work has made this relationship more explicit, by
defining three distinct regimes of recovery from a single spatially
heterogenous disturbance: Isolated, Rescue and Mixing (Zelnik
et al., 2018). If a system is highly connected due to strong
dispersal of organisms, then it is in the Mixing Regime, and
the system’s behavior at large scales is essentially an extended
version of a local system (Durrett and Levin, 1994). At the other
extreme, if dispersal is low and hence each site acts separately
with its own local dynamics, then the system is in the Isolated
Regime, and its large-scale behavior is an aggregation of many
independent small systems (Tilman et al., 1998; Yachi and Loreau,
1999). In between these two extremes is the Rescue Regime,
where systems with intermediate connectivity show large-scale
rescue dynamics due to the interaction between limited dispersal
and the system’s behavior at the local scale (Peterson, 2000; Dai
et al., 2013; Wang et al., 2017). For instance, in the study by
Dai et al. (2013), a metapopulation of yeast exhibits a front
structure which emerges due to interaction of dispersal with
nonlinear local behavior of the yeast. A different example is
found in the work of Wang et al. (2017), where the correlations
between local bird populations, mediated by dispersal, leads to a
spatial scaling law of the variability of populations across North
America.

While the spatial structure of both system and disturbance
plays no role in the Mixing regime, for weaker dispersal it
does: in both the Isolated Regime and the Rescue Regime the
spatial structure of the disturbance has significant effects as it can
initiate qualitatively different responses that involve both local
and regional processes (Zelnik et al., 2018). This is the case in an
experimental study of a predator-prey protist system, in which
local extinctions are met by rescue processes, which prevent
synchronization of the regional metapopulation (Fox et al., 2017).
We will therefore consider systems with intermediate dispersal,
and focus on the effect of the spatial structure of disturbances as
well as their temporal properties.

Quantifying the impact of disturbances amounts to defining
relevant stability measures. If the disturbance is an isolated
event, a natural measure to consider is the return time to
the unperturbed state (May, 1973; Neubert and Caswell, 1997).
On the other hand, in a regime of repeated disturbances (e.g.,
climatic events), measures of temporal variability are commonly
used (Tilman et al., 2006). In the presence of alternative stable
states, those repeated disturbances can cause a regime shift
from one state to another. One well-known example is that of
lake eutrophication (Carpenter, 2005) due to fertilizer runoff
disturbances. Here the stability measure of interest is typically
persistence, i.e., the probability that a system will remain in a
desired state (Holling, 1973; Pimm, 1984). Importantly, these
stability measures reflect not only the spatial and temporal
properties of the disturbance, but also the dynamical features
of the perturbed ecosystem. Exploring this interplay is the
focus of our study, which we will address by considering
three spatial ecosystem models with increasing nonlinear local
dynamics, ranging from logistic growth to bistability. Under
various perturbation scenarios we will measure their stability
using return time, variability and persistence.

We begin by looking at the ecosystem’s recovery following a
single disturbance, and show that changing the spatial structure
of the disturbance reveals two basic recovery trajectories:
isolated and rescue. Isolated recovery trajectories reflect the
local resilience of the system, while rescue trajectories involve
spatial processes, and their dominance signals the failure of local
processes. We thus argue that the relationship between spatial
structure and recovery contains substantial information about
the local dynamics of the system, both close to and far from
equilibrium. We continue by exploring the temporal axis of
disturbances, and demonstrate a direct link between return time
(following an isolated disturbance event) and temporal variability
(under a regime of repeated disturbances). We find that for
low disturbance frequency patterns of variability do not contain
additional information in comparison to the patterns of return
time. However, past a frequency threshold (which depends on the
system’s internal dynamics) the variability patterns change. As we
will argue, this signals the onset of a new dynamical regime driven
by disturbances, which can lead to a regime shift—in our case a
transition from a populated to a bare state (extinction).

Our work demonstrates that the spatial dimension of
disturbances can be used to reveal information on the ecosystem’s
internal behavior. Furthermore, our results illustrate that
the conjunction of the spatial and temporal properties of
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disturbances may lead to unforeseen dynamical responses, with
drastic ecological consequences.

2. METHODS

2.1. Models
We assume for simplicity that the local community dynamics
can be described by a single state variable N that represents the
ecosystem’s local biomass density. We study the dynamics in
multiple locations in space using partial differential equations.
We define three different models that differ in their local
dynamics but have identical dispersal across space with linear
diffusion. In all models the local biomass may reach a carrying
capacity K, so that N = K (the populated state) is a stable
steady state in all three models. An additional solution exists
for N = 0 (the bare state), with its stability properties differing
among models.

The first and simplest model (LG) describes local logistic
growth coupled with dispersal:

Nt = rN(1− N/K)+ d∇2N, (1)

where Nt is the change in time of the local biomass and ∇2N is
the second derivative in space of N (a diffusion term). Here r is
the characteristic, local dynamical rate of growth, while the rate
of spread by dispersal is governed by d. In this model the bare
state N = 0 is an unstable solution. This is the classic model of
population growth (Hall, 1988), shown to appropriately depict
the dynamics of various biological systems, from the growth
of unicellular organisms (Gause, 1934), to human populations
(Marchetti et al., 1996).

The second model (AE) describes species dynamics with a
strong Allee effect (Kramer et al., 2009), so that low biomass
densities are not viable. Such dynamics have been found in a
variety of species, ranging from the gypsy moth to woodland
caribou (Kramer et al., 2009). The model reads

Nt = rN(1− N/K)(N/α − 1)+ d∇2N, (2)

where α is the viability threshold, i.e. the minimal amount of
biomass N that is necessary to allow positive growth. This model
has two alternative stable states (N = 0, N = K) and a single
unstable state (N = α), and we assume that 0 < α < K. This
is the simplest model for dynamics with alternative stable states,
a property that has been found in many ecosystems (Scheffer,
2009), such as lakes (Carpenter, 2005) and coral reefs (Nyström
et al., 2000).

Finally, our third model (SR) describes dynamics with slow
recovery following intense disturbances, and stands as an
intermediate between the two previous models. It will help us to
clarify the distinction between strong nonlinearity and bistability.
Its main feature is that while there is only one stable equilibrium
at N = K, far from this equilibrium the return rate is very slow
compared with the return rate close to equilibrium. This could
model succession dynamics, for which the recovery following
strong disturbances (e.g., clearcutting) is very slow, as it involves
the successive colonization by different species, and not simply
the regrowth of the disturbed species (Uhl, 1987), or a weak Allee

effect, a prevalent feature in population dynamics (Kramer et al.,
2009). The model is:

Nt = rN(1− N/K)(N/K)γ + d∇2N, (3)

where γ controls the nonlinearity of the dynamics, such that
at high values of γ local recovery is very slow following high-
intensity disturbances.

For each model we can define a local potential (see left
panels of Figure 2), such that its derivative with respect to N
corresponds to the derivative of N with respect to time—i.e., the
local dynamics. This means that the local dynamics follow the
slope of this potential, so that the biomass density can be thought
of as a ball moving from peaks to valleys in the landscape that the
potential defines. In both the LG and SR models only one stable
equilibrium exists, but the speed of return to the equilibriummay
be much slower for low biomass density in the SR model. Two
stable states exist in the AE model (the populated state and the
bare state).

By rescaling time, space and biomass, we can effectively
reduce the parameter space, and set r = 1, d = 1 and
K = 1. Our results thus hold for any values of these three
parameters. We set α = 0.4 to make sure that the AE model
recovers from a single disturbance (see next subsection), and
γ = 4 to make sure the return time far from equilibrium of
the SR model is sufficiently slow. We focus on one-dimensional
systems as they are simpler to analyze, but the qualitative
results hold for other types of spatial structure such as two-
dimensional systems (see Appendix D). We use a system size
of L = 500, which is large enough to allow for the spatial
dynamics to manifest itself (so that the system is not in the
Mixing Regime Zelnik et al., 2018), with periodic boundary
conditions. For a clearer illustration, in Figure 3 and Figure S2

we show snapshots of a two-dimensional system of size 200 ×

200.

2.2. The Spatial Dimension of Disturbances
We define a disturbance as a change in the state variable that
is forced on the ecosystem. We consider a pulse disturbance
occurring at a given time, with its full effect being applied
at that time. This assumption is appropriate for the many
types of disturbances that are faster than the dynamics of the
ecosystem, and lends itself to mathematical analysis. We choose
a disturbance that removes biomass (reduces N), so that a
disturbance of strength s will reduce the overall biomass of the
ecosystem by sK (but any negative values of N will be set to 0
for consistency). Once a disturbance takes place, the ecosystem
may recover to its original state, or a regime shift can occur if
the ecosystem is bistable. We are interested here in stability and
recovery dynamics, and therefore focus on parameter values for
which a single disturbance cannot lead to a regime shift.

Since a disturbance need not occur uniformly across space,
we vary the spatial extent of the disturbance σ while keeping
its overall strength s constant. A disturbance is performed by
choosing its locus, and removing some biomass in a domain of
size σ centered around the locus. We can vary the spatial extent
from σ = 1 for a uniform disturbance across space, to σ = s for
a localized disturbance.
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To measure recovery we use the return time T defined as the
time needed for the ecosystem to recover 90% of the biomass lost
to the disturbance. While the choice of a threshold is arbitrary, its
specific value has no significant effect on the results as long as it
is not too close to either 0% or 100% (which roughly correspond
to reactivity and asymptotic resilience, respectively Arnoldi et al.,
2016). By avoiding these extreme values, we simply emphasize the
role played by the overall recovery dynamics, rather than by the
system’s initial response or final convergence.

2.3. The Temporal Dimension of
Disturbances
We consider a disturbance regime by repeatedly applying
disturbances with a given average frequency f , over a time period
τ . For simplicity we assume no correlation in space or in time, so
that the time between disturbances is drawn from an exponential
distribution with some average frequency (a Poisson process, see
Appendix B for details), while the location of the disturbance’s
center is drawn from a uniform distribution.

We use two measures of stability for a system that is disturbed
repeatedly, i.e., variability, which measures how far the system
ventures from its average value, and persistence, which measures
how likely it is to move to the basin of attraction of a different
equilibrium. We define variability V as the variance in time
of the total biomass of the system, given a regime of repeated
disturbances. In order to neglect the effect of transients, we
calculate V over the last 80% of the simulations, which last for
10, 000 time steps. We define the collapse probability C as the
probability that the system will be in the bare state at the end
of a simulation, such that C = 0 means no chance of a system

collapse, while C = 1 means that a collapse is certain. We use a
longer simulation time (100, 000 time steps) to calculate C since
we are interested in predicting a collapse before it occurs. For
each of these calculations we run 100 simulations with different
randomizations of the location and time of disturbances.

3. RESULTS

3.1. Spanning the Spatial Dimension of
Disturbances Reveals Local Ecosystem
Dynamics
We begin by looking at the response of an ecosystem to a
single disturbance with varying spatial extent σ . We focus on
disturbances with a fixed overall strength s = s0 for simplicity
and clarity, and relax this assumption in the discussion. Thus a
global disturbance σ = 1 (Figure 1, right panels) occurs when
N is decreased by s0K in the entire system, while a localized
disturbance σ = s0 (Figure 1, left panels) occurs when N is set
to zero in a domain of relative size s0.

The response to a disturbance can take two possible forms:
isolated recovery due to local processes, and rescue recovery due
to incoming biomass from outside the disturbed region. Isolated
recovery dominates the system response when each site recovers
without the aid of neighboring sites (Figure 1, right panels).
In contrast, rescue recovery occurs when the disturbed region
cannot recover without the rest of the system, or when the bulk
of the recovery occurs due to such spatial dynamics (Figure 1, left
panels).

The coupling of local dynamics and dispersal results in
distinct recovery processes in the three models, as shown by

FIGURE 1 | Recovery dynamics following a localized and a global disturbance (left and right panels, respectively) for the bistable AE model (see Main text). Top

panels: snapshots at different times (t) along recovery trajectories, each snapshot showing a biomass spatial profile. Bottom panels show the change in overall

biomass over time following the disturbance, where the dotted line denotes the threshold beyond which the system is considered to have recovered, and red circles

correspond to the snapshots. Note that the return time T from a localized disturbance is much longer than the one from a global disturbance. Disturbance parameters

are s = 0.1, with σ = 0.1 for the localized disturbance and σ = 1 for the global one.
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the trajectories in phase-space diagrams in the middle column
of Figure 2. In these panels we unfold the recovery along
two dimensions: the horizontal axis denotes the size of the
disturbed region at a given time, while the vertical axis shows the
biomass density in the disturbed region. Immediately after the
disturbance, the system is along the dashed black curve, and it
then changes over time until it enters the shaded region where it
is considered to have recovered.

If a large part of the trajectory during recovery is horizontal,
this means that the disturbed region is shrinking due to rescue
recovery, which indicates a lack of local resilience, which would
otherwise allow isolated recovery to take place. This behavior
reflects the strong nonlinearity of local dynamics, which can be
seen in the changing curvature of the local potential (Figure 2,
left column). We can see that for the AEmodel (Figure 2, bottom
row) the recovery is along a horizontal line for recovery scenarios
with a sufficiently small spatial extent, so that regional processes
bring about the recovery. In contrast, the recovery is entirely due
to local processes in the LG model since the local dynamics are

much faster here, while for the intermediate SR model a mixture
of the two processes can be seen to take place.

These differences translate into markedly different values
of the return time T (Figure 2, right panels). The vertical
recovery trajectories that follow all disturbances in the LG model
and large-sized disturbances in other models indicate isolated
recovery, and hence small values of T. For the intermediate
SR model localized disturbances lead to a larger contribution
of rescue recovery, leading to a sigmoid shape of T as a
function of disturbance extent σ . The AE model shows a similar
behavior of larger T following localized disturbances, but the
trend here shows a maximum for mid-sized disturbances. This
occurs because in bistable systems, the most efficient way to
perturb the system is to locally remove biomass just bellow
the viability threshold, and then let the system collapse locally.
Such a disturbance has an equivalent effect to that of a stronger
disturbance that would remove all biomass over a larger region.
The spatial recovery process will take longer to recover, thus
giving larger return time values (see Appendix A for details).

FIGURE 2 | Contribution of isolated and rescue recovery as a function of disturbance spatial extent for the three models presented in the main text. The left column

shows the local potentials defining local processes. Top row: Logistic (LG) model; Middle row: the highly non-linear SR model; Bottom row: bistable AE model. Middle

column: isolated recovery on the y-axis, and rescue recovery on the x-axis. Black dashed line shows the equal disturbance strength used s = 0.2 for different

disturbance extent σ . Blue lines are recovery trajectories, where recovery is considered complete when trajectories reach the gray shaded region. For the SR and AE

model, as disturbances become more localized, a shift is observed from a dominant isolated recovery (upward trajectories) to a dominant rescue recovery (leftward

trajectories), impacting return times (right column). The “x” marks in blue correspond to the different trajectories shown in middle columns. The green and magenta

circles show initial states following two different disturbances (left and middle columns) and their associated return times (right column). The dotted line (bottom row)

shows the local tipping point of the bistable AE model, beyond which local dynamics collapse to the bare state.
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This explains the humped shape of return time as a function of
disturbance extent. Since bistability is a sufficient condition for a
hump-shaped relationship to occur, the latter could be used as an
indicator of bistability. This illustrates the more general idea that
considering the spatial dimension of disturbances can allow us to
probe the local dynamics of a spatially extended ecosystem.

3.2. From Variability to Collapse Under
Increasing Frequency of Disturbances
Natural ecosystems are constantly perturbed, leading us to
consider a temporal dimension of disturbances, namely their
average frequency. We therefore translate the results of the
previous section on the response to a single disturbance
(Figure 3, top) into an understanding of temporal variability
under repeated disturbances (Figure 3, bottom). In fact, there
is a direct link between the response to a single disturbance
and temporal variability in response to repeated disturbances.
Indeed, biomass fluctuations are the result of past disturbances,
as they integrate short- to long-term responses of the ecosystem
to individual disturbances (Arnoldi et al., 2016). Variability is
a statistic of those fluctuations, and is therefore a function of
both the integrated response to a single disturbance and the
average frequency f of disturbances. More precisely, if g(t) traces
the change in overall biomass through time following a pulse
disturbance a time t = 0, then variability V can be expressed as
V = f

∫

∞

0 g2(t)dt (see Equation S15 in Appendix B). However,
this identity assumes no interaction in space between the different
disturbances, and therefore should not hold at high disturbance
frequency.

As expected, at low frequency of disturbances the analytical
approximation agrees with the numerical simulations quite
well for all three models (Figure 4, second column). For
higher frequencies (Figure 4, third column) where multiple
disturbances often take place in the same time frame, we see a
slight underestimation of the analytical approximation, although
the general trend is well captured. Importantly, variability and
return time show the same behavior. We see effects of regional
processes on variability for more localized disturbances in both
the SR and AE models, where the former shows a sigmoid shape
while the latter has a hump shape, which is a consequence of
the bistability in the AE model. We note that these trends hold
in more general scenarios, such as disturbances with a random
extent or following seasonal patterns (Appendix D).

At this point it would appear that the temporal dimension of
disturbances f is not as informative on ecosystem behavior as the
spatial dimension of disturbances σ . However, as f is increased
further, a discrepancy between variability and its prediction
based on recovery from a single disturbance starts to grow.
This signals that the disturbances start to interact with each
other, a phenomenon that is not captured by our approximation.
Disturbances start to aggregate in space, which can substantially
increase variability (Appendix C) due to large excursions toward
low total biomass levels. For bistable systems such as the AE
model, such excursions can lead to a collapse of the whole system.
This is evident in the two last columns of Figure 4, in which
we see, for the AE model, that the values of σ for which the

FIGURE 3 | Single and multiple disturbance regimes and the relationship

between return time and variability. The left panels show time series of the

overall biomass, while right panels are spatial snapshots of the corresponding

time-series (red dots in the left panels). The response to a single disturbance is

shown in the top left panel. We focus on two of its characteristics: return time

T, and an integral measure of the transient g(t) (see main text). The response

to multiple disturbances occurring randomly at an average frequency f is

shown in the bottom left panel. It is summarized by its variability V (variance of

overall biomass). In the limit of low f there is an inherent relationship between

return time and variability in the sense that V can be approximated by

f
∫

∞

0 g2(t)dt. Simulations were made using the SR model with parameters

values: s = 0.1, σ = 0.11, f = 0.025, and γ = 2. Random uniform noise was

added in left panels to demonstrate how realistic time series might look like.

discrepancy of variability is highest precisely corresponds to the
values of σ for which the collapse probability is most significant.
Thus, at high frequencies, disturbances of similar strength but
different spatial extent lead to dramatically different responses.
This example highlights the fact that the combination of spatial
and temporal dimensions of disturbances can have a drastic effect
on ecosystem stability.

4. DISCUSSION

Investigating the role of the spatial and temporal dimensions
of disturbances in ecosystem stability, we obtained four main
results: (1) In comparison with a global disturbance, a localized
one of the same strength can initiate a fundamentally different,
and much slower, ecosystem response, especially when local
dynamics are nonlinear. (2) The return time from a single
disturbance and the temporal variability caused by repeated
disturbances show the same trends, even for locally intense (and
therefore nonlinear) disturbances. (3) The relationship between
a system’s response and the spatial extent of the disturbances
it experiences reveals its underlying dynamics. For instance, a
hump-shaped relationship between return time and the spatial
extent of the disturbances may indicate bistability. (4) The
correspondence between return time and variability breaks down
for high disturbance frequencies. This discrepancy signals the
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FIGURE 4 | Return time, variability and collapse probability as a function of disturbance spatial extent for three models (from top to bottom: LG, SR, AE). Left column

shows return times (as in Figure 2) while middle columns show variability under low and high frequency of disturbances, and right column shows collapse probability.

The black dashed (solid) line is a numerical (analytical prediction) value of variability, with gray shading noting error estimation. Deviation from this prediction implies

some degree of interaction between disturbances. Return time and variability are qualitatively similar with low dependency of disturbance spatial extent for the LG

model but a much stronger dependency when local dynamics are highly non-linear (SR and AE models). In the case of the bistable AE model we recognize a

non-monotonous “hump-shaped” dependency with disturbance extent, with mid-sized disturbances causing the most severe response. Disturbance parameters

were s = 0.1, σ = 0.1, and for low frequency: f = 0.002, while for high frequency: f = 0.02.

occurrence of spatial interactions between disturbed regions,
which, in turn, may lead to a regime shift.

Althoughwe considered simple spatially homogenousmodels,
our results should apply to a wide range of ecosystems. Forests,
savannah and shrublands might be good examples of ecosystems
to which our models apply since disturbances such as fires
and grazing occur frequently and are often localized, and the
recovery of plant communities often follows complex succession
dynamics driven by spatial processes (Adler et al., 2001; Turner,
2010; Staver and Levin, 2012). Our results, however, need not be
restricted to such spatially homogeneous systems. Although we
built our theory using spatially uniform models, this simplifying
feature is not essential to our arguments, which only require a
notion of locality. Therefore, our theory may also be relevant to
less homogeneous ecosystems, such as mountain lake networks,
coral reefs and riverine systems. Indeed, such ecosystems
undergo different disturbances that are often strongly localized,
and their dynamics may be sufficiently nonlinear (Knowlton,
1992; Campbell Grant et al., 2007; Forrest and Arnott, 2007).

Uniquely to our work, we considered systems locally pushed
far from their equilibrium, and even to a different basin of
attraction. In a marine ecosystem context, this could represent

coral reefs (Nyström et al., 2000; Adjeroud et al., 2009) or rocky
intertidal systems (Sousa, 1979; Paine and Levin, 1981), which
frequently undergo intense disturbances (e.g., storm damage).
These locally intense disturbances can allow rescue recovery,
mediated by dispersal, to dominate the ecosystem response. In
the case of the bistable (AE) model this glimpse outside the basin
of attraction of the populated state is the direct cause of the
hump-shaped trends of variability and return time as a function
of disturbance extent. In fact, the front propagation that drives
rescue recovery contains information about the ecosystem’s
basins of attractions, reflecting the existence of alternative stable
states and the transient dynamics between them. Thus, by
observing the ecosystem’s response to localized disturbances,
rescue recovery allows us to probe ecosystem dynamics far
from equilibrium. For instance, comparing between different
disturbed marine ecosystems may give further evidence that
some have alternative states (e.g., coral reefs) while for others
the dynamics show a succession process (e.g., rocky intertidal
systems). This reasoning could be taken further by focusing on
regions where rescue recovery takes place, e.g., analyzing the
plant community structure at transition zones between grassland
and forest in a savanna ecosystem (Augustine, 2003).
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FIGURE 5 | Reconstruction of return time vs. disturbance extent curve from the more general parameter space of disturbance properties. Top (bottom) panels

correspond to the SR (AE) model. Left column shows the return time over the parameter space of disturbance extent σ (x-axis) and of disturbance strength s (y-axis).

Right column shows the corresponding reconstruction of the return time curve, using 100 randomly chosen points (red asterisks) in the parameter space. The return

time values are normalized by the disturbance strength s, while the normalized disturbance extent is defined as σ̃ = 1− s/σ . Note that the hump (sigmoid) shape of

the curve for the AE (SR) model are easily recognizable from these reconstructions.

Spanning the spatial dimension of disturbances could thus
allow us to detect nonlinearities in ecosystem behavior, revealed
by the increasing local intensity of disturbances (see Figure 2).
One might expect that along the temporal dimension of
disturbances, increasing their average frequency could also reveal
nonlinear effects, since the ecosystem becomes more strongly
disturbed. In fact, increasing frequency has only a trivial linear
effect, as reflected by the relation we found between return time
and variability (see Figure 3). Beyond some threshold, however,
a response of a different kind emerges, due to spatial interactions
between disturbed regions which aggregate in potentially large-
scale clusters. This causes a higher variability than expected
and can, consequently, cause a global loss of persistence or a
regime shift. Taking, once again, the example of corals reefs, we
could ask how the impact of both natural and anthropogenic
disturbances leads to a phase-shift from hard coral to fleshy algae
dominance. A regime shift due to an aggregation of unrecovered
regions would occur not as a typical tipping point due to loss
of resilience (e.g., due to changing temperatures), but rather
due to the crossing of a threshold for disturbance frequency.
Importantly, in such a scenario the two dimensions, spatial and
temporal, must be considered in conjunction. The threshold

beyond which aggregation occurs depends strongly on the spatial
extent of disturbances and hence the associated response is not a
mere superposition of responses to single disturbances. In other
words, this finding highlights and explains how the interplay
between the spatial and temporal dimensions of disturbances can
have drastic ecological consequences, such the loss of persistence.
Since our findings are purely theoretical, it would be enlightening
to elucidate the prevalence of this interplay in empirical systems
that have undergone regime shifts (e.g., phase-shifts in coral reefs
Nyström et al., 2000 or the desertification of the once green
Sahara Ortiz et al., 2000).

As previously mentioned, in bistable systems the relationship
between return time (as well as variability) and the spatial
extent of disturbances is hump-shaped. This relation could
be used as an indicator of bistability, assessed empirically
by comparing time series of the same ecosystem in different
regions with estimates of the intensity of single disturbances.
Its implications for ecosystem management depend on the type
of disturbances considered. Anthropogenic disturbances that are
largely controlled, such as logging in forests (Chazdon, 2003) or
large-scale fishing (Kaiser et al., 2006), can be better planned to
avoid both an unpredictable yield due to high variability and
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an overall collapse. For many natural disturbances control is
neither possible nor desired (e.g., fires in semi-arid ecosystems
necessary for plant germination Wellington and Noble, 1985),
but predicting their effects and the possibility of regime shifts is
paramount (Kéfi et al., 2007).

In order to focus on the role of the spatial properties of
disturbances and allow a clearer presentation, we conducted our
analysis assuming disturbances of constant overall strength. It is
straightforward to extend the analysis to more general settings,
such as a random extent of disturbances and seasonal patterns
(see Appendix D for details). It is particularly interesting to
consider the case of different values of disturbance strength s.
As shown in Figure 5, if we randomly choose a set of points
with different values of strength s and extent σ , we can use
these to reconstruct a normalized version of the dependency
of the different stability measures on disturbance extent. Thus
we can use the different phenomena described previously, such
as a hump-shape relationship as an indicator of bistability,
under more general conditions, thereby making our theory more
empirically accessible.

Our work is a step toward a quantitative account of spatial and
temporal dimensions of disturbances, and their interplay with
local and regional ecosystem dynamics. This is an important goal
in the context of global change. Disturbances are of increasing
frequencies and occur at different scales (which is evident, e.g., in
coral reefs Jackson, 1991 and forests Turner et al., 1993), while the
spatial structure of ecosystems themselves is altered by land use
change, often causing fragmentation of the landscape (Harrison
and Bruna, 1999). It is thus important to build a framework in
which we can understand and predict the ecological impacts of
this complex interplay.
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Under future warming Earth System Models (ESMs) project a decrease in the magnitude

of downward particulate organic carbon (POC) export, suggesting the potential for

carbon storage in the deep ocean will be reduced. Projections of POC export can also be

quantified using an alternative physiologically-based approach, the Metabolic Theory of

Ecology (MTE). MTE employs an activation energy (Ea) describing organismal metabolic

sensitivity to temperature change, but does not consider changes in ocean chemistry or

physics. Many ESMs incorporate temperature dependent functions, where rates (e.g.,

respiration) scale with temperature. Temperature sensitivity describes how temperature

dependence varies across metabolic rates or species. ESMs acknowledge temperature

sensitivity between rates (e.g., between heterotrophic and autotropic processes), but

due to a lack of empirical data cannot parameterize for variation within rates, such

as differences within species or biogeochemical provinces. Here we investigate how

varying temperature sensitivity affects heterotrophic microbial respiration and hence

future POC export. Using satellite-derived data and ESM temperature projections we

applied microbial MTE, with varying temperature sensitivity, to estimates of global POC

export. In line with observations from polar regions and the deep ocean we imposed an

elevated temperature sensitivity (Ea = 1.0 eV) to cooler regions; firstly to the Southern

Ocean (south of 40◦S) and secondly where temperature at 100m depth <13◦C.

Elsewhere in both these scenarios Ea was set to 0.7 eV (moderate sensitivity/classic

MTE). Imposing high temperature sensitivity in cool regions resulted in projected declines

in export of 17 ± 1% (< 40◦S) and 23 ± 1% (< 13◦C) by 2100 relative to the present

day. Hence varying microbial temperature sensitivity resulted in at least 2-fold greater

declines in POC export than suggested by classic MTE derived in this study (12 ± 1%,

Ea = 0.7 eV globally) or ESMs (1–12%). The sparse observational data currently available

suggests metabolic temperature sensitivity of organisms likely differs depending on the

oceanic province they reside in. We advocate temperature sensitivity to be incorporated

in biogeochemical models to improve projections of future carbon export, which could

be currently underestimating the change in future POC export.
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INTRODUCTION

The biological pump exports large amounts of carbon from
the surface ocean to the deep, where it can be stored on
climatically-relevant timescales helping to regulate atmospheric
carbon dioxide levels (Volk and Hoffert, 1985; Falkowski et al.,
1998). However future ocean warming threatens to decrease the
amount of particulate organic carbon (POC) reaching the deep
ocean (Laufkötter et al., 2016). The magnitude of deep ocean
carbon storage by the biological pump is largely dependent on
3 factors; (1) the magnitude and size-partitioning of primary
production taking place in the surfacemixed layer, (2) the sinking
rate of the particles formed initially from particle production,
and (3) the organic remineralisation rate by organisms such as
zooplankton and microbes that degrade POC (Buesseler and
Boyd, 2009; Turner, 2015). Each of these parameters is a function
of temperature, with warming increasing all three rates if other
factors, such as nutrient supply, remain unchanged (López-
Urrutia et al., 2006; Taucher and Oschlies, 2011; Iversen and
Ploug, 2013).

Warming is projected to increase metabolic rates (Brown
et al., 2004), which will increase both primary production (more
carbon available to sink to deep ocean) and the metabolic
rates of heterotrophs that consume phytoplankton and sinking
POC (decreasing the carbon sink) (López-Urrutia et al., 2006;

Taucher and Oschlies, 2011; Cavan and Boyd, 2018). In parallel
warming-induced stratification and shoaling of the mixed layer

will reduce nutrient inputs to the sunlit upper ocean (Bopp
et al., 2001), expanding oligotrophic waters thus likely favoring

smaller phytoplankton species and ultimately reducing primary
production (Bopp et al., 2005). The decrease in nutrient supply

to surface waters is typically considered to have the greatest
effect on the magnitude of future primary production (Marañón
et al., 2014) and thus overall primary production is expected to
decline, although there is some disagreement amongst models
(Laufkötter et al., 2015). One feedback from warming that will
increase the carbon sink is the reduction in water viscosity,
allowing particles to sink through the water column faster,
escaping the upper ocean where remineralisation is most intense
(Bach et al., 2012).

Export production is projected to decline by 1–12% depending
on the Earth System Model (ESM) model used, due to declines
in the magnitude and changes in the size-partitioning of
primary production, and increased remineralisation of POC due
to warming (Laufkötter et al., 2016). Remineralisation occurs
throughout the water column and affects both the amount of
POC exported and POC attenuation through the mesopelagic
zone. Export or formation of detritus can either be parameterised
by simple empirical algorithms, which may include primary
production and temperature terms (Dunne et al., 2005; Henson
et al., 2011; Britten et al., 2017) or in ESMs by phytoplankton
aggregation and remineralisation parameterisations (Aumont
et al., 2015).

Currently, there are a range of approaches to parameterise
temperature-dependent terms in models. For example,
in the biogeochemical model REcoM2, one theoretical
exponential (Arrhenius type) relationship is used to describe all

temperature-dependent terms; remineralisation of particulate
and dissolved organic matter, silicon uptake, zooplankton
respiration, and zooplankton grazing (Schourup-Kristensen
et al., 2014). However, in the PISCES-v2 model, a constant Q10

of 1.9 from Eppley (1972), which correlated phytoplankton
growth rates with temperature, is used to describe both
phytoplankton growth rates and POC degradation (Aumont
et al., 2015). A Q10 of 1.9 implies an increase in 10◦C will result
in metabolic rates that are 1.9 times higher. None of the marine
biogeochemical components of the ESMs account for adaptation,
which may be an important response to ocean warming with
knock-on effects for POC export. For example, a laboratory
study has shown that after 100 generations (freshwater)
phytoplankton can adapt to warming by down-regulating
respiration relative to photosynthesis to maintain the carbon
allocation efficiency needed for growth (Padfield et al., 2016).
Although phytoplankton in nutrient-poor regions may exhibit a
different adaptation response as nutrient limitation can supress
the temperature dependence of phytoplankton (Marañón et al.,
2014).

In some ESMs temperature dependence varies between
different metabolic rates (e.g., heterotrophic processes have a
higher rate of change to temperature than autotrophic processes)
(López-Urrutia et al., 2006; Dunne, 2013) thus incorporating
differences in temperature sensitivity are only captured at a
coarse scale. At present these biogeochemical models do not
acknowledge temperature sensitivity within rates i.e., differences
in the response to temperature between species or between
the same species living in a different biogeochemical province.
However, there is unlikely to be one uniform metabolic response
to warming globally.

Sensitivity to temperature can be quantified as the activation
energy (Ea) of a metabolic reaction—the amount of energy
needed for a chemical reaction to occur (Schoolfield et al., 1981;
Clarke and Johnston, 1999; Yvon-Durocher et al., 2012). Ea
can be estimated via the Metabolic Theory of Ecology (MTE),
which describes how metabolic processes vary as a function of
organismal mass and temperature (Brown et al., 2004):

ln
(

I M−0.75
)

= −Ea

(

1

cT

)

+ ln(i0) (1)

Where I is the metabolic rate normalized by mass (M), Ea
is the activation energy, c is Boltzmann’s constant (8.62 ×

10−5 eV K−1), T is the temperature in Kelvin and finally
i0 is a normalization constant. The latter can be used to
describe how organisms or communities are adapted to living
at different temperatures (Clarke, 2006). When computed in
the context of MTE using Equation 1, the Ea is the slope
between mass-normalized metabolism and temperature. MTE
states all organisms have an activation energy of 0.6–0.7 eV
(Gillooly et al., 2001; Brown et al., 2004), thus there is
little natural variation in temperature sensitivity. Activation
energies higher than this range suggest organisms are more
sensitive to changes in temperature, as shown in Arctic,
and Antarctic zooplankton [Ea = 1.29 eV, (Alcaraz, 2016)],
mesopelagic heterotrophs [Ea = 0.9 eV, (Brewer and Peltzer,
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2016)] and a mixed heterotrophic microbial community from
the sub-Antarctic [Ea = 0.9 eV, (Cavan and Boyd, 2018)].
As primary production and respiration (remineralisation) are
both metabolic rates, MTE can be used to describe how they
might change with future warming in the global oceans, and
thus their influence on POC export. Model experiments have
confirmed that temperature sensitivities of metabolic rates have
an important role in ecosystem function, by regulating the
magnitude of primary production and respiration (Taucher and
Oschlies, 2011).

If organisms do respond differently to warming based on
the environmental conditions they currently encounter, then
biogeochemical models are likely to be inaccurately projecting
carbon sequestration under future warming scenarios. Therefore,
the objective of this study is to use empirical algorithms,
including MTE, satellite data, and ESM outputs to determine
the effect of temperature sensitivity on future POC export
projections by 2100. We varied the activation energy in line
with observations to investigate how temperature sensitivity
influences POC export. MTE only accounts for changes in
metabolic rates due to temperature, and thus using this
framework implies that nutrients, phytoplankton community
composition, and ocean physical changes, such as stratification,
are unaltered in the year 2100.

METHODS

Data
Annual satellite sea surface temperature (SST) and output
from the Vertically Generalized Production Model (VGPM) for
primary production for 2003–2016 (Oregon State University,
2017) were used as the baseline data for the beginning of
this century. Coupled-Model Intercomparison Project-Phase 5
(CMIP5) ESM outputs over 1986–2005 (historical run) and
under the IPCC Representative Concentration Pathway (RCP)
8.5 (business-as-usual run) for 2081–2100 were used to estimate
the change in temperature at the sea surface and at 100m depth
and the change in export and primary production by the end of
this century. See Table 1 for a list of frequently used acronyms.
The 8 models used were GFDL-ESM2G and GFDL-ESM2M
(Dunne et al., 2013), HadGEM2-CC and HadGEM2-ES (Bellouin
et al., 2011; Collins et al., 2011), IPSL-LR and IPSL-MR (Séférian
et al., 2013), MPI-LR and MPI-MR (Jungclaus et al., 2013) (see
Supplementary Table 1 and Bopp et al. (2013) for a summary of
model set-ups). These models were selected as they were the ones
available in the CMIP5 (at the time of our analysis) that simulated
export, primary production, and temperature.

Satellite-Derived Climatologies
Global, 9 km resolution, mean SST data for the years 2003–2016
inclusive were downloaded from the NASA ocean color database
(https://oceancolor.gsfc.nasa.gov) in annual composites. The
data were then averaged (mean) over the 14 years and re-
gridded onto a 1 × 1◦ grid (Figure 1A). The temperature at
our chosen export depth of 100m was extracted from World
Ocean Atlas (WOA) climatology (Figure 1B). We chose 100m as
this is typically below the sunlit mixed layer and conventionally

TABLE 1 | Frequently used acronyms.

Acronym Explanation

CMIP5 Coupled model intercomparison project phase 5

Ea Activation energy (in eV)

ESM Earth system model

MTE Metabolic theory of ecology

POC Particulate organic carbon

Q10 Temperature coefficient, the rate ratio at a temperature

increase of 10◦C

RCP Representative concentration pathway

SST Sea surface temperature

VGPM Vertical generalized production model

WOA World ocean atlas

defines the upper mesopelagic zone. Global, mean monthly
primary production data (9 km resolution) for the same years
(2003–2016) were downloaded from the Ocean Productivity site
(Oregon State University, 2017, https://www.science.oregonstate.
edu/ocean.productivity/), using the standard product of the
VGPM (Behrenfeld and Falkowski, 1997). Monthly means were
summed to produce a total primary production (mg Cm−2 yr−1)
per year for all years, which were then converted to g C m−2 yr−1

and finally the mean over the 14 years was computed. These data
were also re-gridded onto a 1× 1◦ grid.

The exported POC at 100m was calculated using the export
ratio (e-ratio; export/primary production) from (Henson et al.,
2011) (Equation 2):

e− ratio = 0.23∗e(−0.08 ∗SST) (2)

where SST is the mean annual satellite-derived SST for 2003–
2016. The e-ratio was then multiplied by primary production to
give a global POC export at 100m as in Henson et al. (2011).
Primary production and exported POC were then summed
globally (accounting for variability in the areal extent of the
grid cells with latitude) to give production and export estimates
as Gt C yr−1. The input parameters (primary production and
export algorithms) were varied to run a sensitivity analysis (see
Supplementary Methods) to calculate the change in export by
the year 2100 and sequentially compare the effects of each
parameter on export.

ESM Projected Future Changes
Output from eight different ESMs were downloaded from the
CMIP5 archive (https://esgf-node.llnl.gov/projects/esgf-llnl/) to
compute the projected increase in sea temperature by 2100
(Supplementary Table 1). Most of the models include two
phytoplankton functional groups (diatom and non-diatom) and
at least one zooplankton group. The ensemble member for each
model dataset was r1i1p1. Monthly historical and RCP 8.5 runs
[business-as-usual (Moss et al., 2010)] were downloaded and the
last 20 years of each run (1986–2005 and 2081–2100, respectively)
were extracted. An annual mean, and then the mean across
all years was computed for each model and time period. The
desired depth levels (0 and 100m) were extracted, temperatures
converted from Kelvin to Celsius and the data re-gridded onto a
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FIGURE 1 | (A) Global mean sea surface temperature climatology for 2003–2016 derived from AQUA MODIS satellite data. (B) Global temperature at 100m (our

chosen export depth) from WOA data collected over 1955–2012, heavily weighted toward the latter years. (C) Multi-model median change in sea surface temperature

from 1986–2005 to 2081–2100 predicted from CMIP5 models with representative concentration pathway 8.5 applied. (D) Multi-model median change in sea

temperature at 100m from 1986–2005 to 2081–2100 predicted from CMIP5 models with representative concentration pathway 8.5 applied. (E) Mean annual primary

production climatology for 2003–2016 (VGPM) and (F) Export ratio calculated from VGPM using algorithm of Henson et al. (2011).

1× 1◦ longitude-latitude grid. Finally, a multi-model median was
computed over all 8 model outputs resulting in two datasets for
SST and temperature at 100m, one for each run (historical, 1986–
2005, and RCP8.5, 2081–2100). The change in temperature by the
end of the century for each depth was calculated by subtracting
the historical period from the end-of-century period.

The parameter “epc100” was downloaded for the same model
runs and years. epc100 is the sinking mole flux of particulate
organic matter expressed as carbon in seawater at 100m. For
primary production the integrated primary production “intpp”
was downloaded. Tomake themodel output comparable with the
satellite-derived export estimates, the mean monthly export was
summed for each year and then the mean taken for all years per
model. The data were converted to a 1 × 1◦ longitude-latitude
grid and a multi-model median taken over the 8 model outputs.
This was done for both the historical and RCP8.5 runs and the
change in export by 2100 computed as the difference between
the two datasets. The same processing steps were applied to the
modeled primary production.

Applying Metabolic Theory of Ecology
To determine the change in POC export due solely to the effects
of rising temperatures on microbial metabolism, the metabolic

theory of ecology (MTE) was applied (Brown et al., 2004). MTE is
partly based on the biomass of metabolizing organisms (Equation
1). Microbial biomass scales in the ocean with POC, such that
as POC decreases with depth so does microbial biomass (Boyd
et al., 1999). Bacterial biomass contributes between 20 to >100%
of exported POCmass, depending on the region (Steinberg et al.,
2001; Stewart et al., 2010; Collins et al., 2015), withmost estimates
close to 50% of POC (Ducklow et al., 1993; Boyd et al., 1999).
Therefore, we normalized our estimated POC mass at 100m to
50% to estimate heterotrophic microbial biomass, as also applied
in Cavan et al. (2018). As we are computing the relative change
in respiration, and the mass term is the same in all model
simulations (only the temperature changes), the magnitude of
the mass term has little effect on the change in respiration (see
sensitivity analysis in Supplementary Materials).

The respiration of microbes (Rmicro) can therefore be
calculated following Equation 3:

Rmicro = I∗MHB
0.75

∗e
−Ea
k∗T (3)

where I and Ea are the normalization constant and activation
energy, respectively, MHB is the mass of heterotrophic bacteria
at 100m, k is the Boltzmann constant (8.62 × 10−5 eV K−1)
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and T is the temperature in Kelvin. For this global analysis I
was determined as the mean of constants given for unicells (I
= 19.21) and inverts (I = 19.75) in Brown et al. (2004), which
was 19.48. The Ea (0.7 eV) used was also from Brown et al.
(2004), which was consistent in their study over all groups of
organisms tested (unicells to fish). Although deviations away
from this value do exist with published Ea’s ranging from 0.29 eV
for primary production (López-Urrutia et al., 2006) to 1.3 eV for
zooplankton respiration (Gleiber et al., 2015). For the beginning
of the century, Rmicro was calculated using theWOA temperature
data at 100m. For the end of the century we altered only the
temperature term by adding the temperature change between
the beginning (1986–2005) and end of the century (2081–
2100) projected by the CMIP5 models at 100m onto the WOA
temperature climatology at 100m (mean temperature 1955–
2012). The change in respiration (Figure 2A) was computed by
subtracting the beginning of the century Rmicro from the end of
the century Rmicro.

The change in the rate of primary production (Figure 2B)
due to increasing temperature alone was also calculated to
determine the overall net decrease in POC at 100m. For primary
production the MTE constants from López-Urrutia et al. (2006)
were used where in Equation (1) I =−11.28 and the Ea = 0.29 eV
with M (mass) being the satellite-derived primary production
(Figure 1E). Here though the change in SST by 2100 predicted
by the difference in the beginning and end of the century runs
of the CMIP5 models was used rather than the change in T at
100m. The net change in export was calculated by subtracting
the change in autotrophic primary production from the change
in heterotrophic microbial respiration.

RESULTS

Using the business-as-usual representative concentration
pathway (RCP8.5) the global mean projected SST increases from
the beginning to the end of the century according to 8 CMIP5
ESMs (ESMs) is 2.5 ± 1.1◦C (Figure 1C), with temperature
at 100m only increasing by 2.0 ± 1.1◦C (Figure 1D). SST is
projected to increase globally, apart from a small area in the
Pacific Southern Ocean. However, whilst the temperature at
100m is mostly predicted to increase, there are large regions
where the temperature is predicted to decrease, namely in
some Atlantic polar regions and the equatorial Pacific. The
largest change of temperature at 100m is in the North Atlantic.
Immediately north of this warming is a region of projected
cooling.

As MTE is principally based on temperature, the change
in respiration, and primary production spatially reflect the
change in temperature at 100m. Using the VGPM (Figure 1E),
Henson e-ratio (Figure 1F), and the change in temperature
according to the CMIP5 models (Figure 1D), the MTE model
projects an increase in the rate of microbial respiration
by 2100 of 22.5% and an increase in the rate of primary
production of 10.5%, resulting in a net decline in export of 12%
(Figure 2E, Supplementary Table 2). Deviations from classical
MTE occurred where the decline in export was large (>50%), as
shown in the Arrhenius plot (Figure 3A, <0.5% of data points).

Globally, export is projected to decrease from 3 Gt C yr−1 (2003–
2016 climatology) to 2.6 Gt C yr−1 by the end of this century
according to MTE, with the maximum decreasing from 100 g C
m−2 yr−1 (Figure 2C) to 90 g C m−2 yr−1 (Figure 2D), found
off the west coast of the US. The global total current (2003–2016
climatology) primary production is 51 Gt C yr−1 according to the
VGPM, suggesting 6% of primary production is exported each
year when applying the Henson e-ratio in present day. Under
future warming, MTE projects increased primary production to
59 Gt C yr−1 and decreasing POC export, reducing the global
mean e-ratio to 4%.

We also explored the effect of varying Ea, both globally and
regionally, on projected POC export. First we increased the Ea
from 0.7 to 1 eV globally resulting in 2.2 Gt C yr−1 of POC
export in 2100, due to of an increase in respiration. Thus, the total
projected reduction in POC export globally was 30%. We then
explored the effect of varying Ea by latitude and temperature.
Following results from a recent study in the Southern Ocean
(Cavan and Boyd, 2018) we set all microbes residing below 40◦S
(30% of global ocean by area) to have an activation energy of
1 eV and all those northwards an Ea of 0.7 eV. This resulted in
a 17% decline in POC export by 2100. Second, we imposed an Ea
of 1 eV on just those regions where the temperature at 100m is
<13◦C (46% of global ocean), in accordance with observational
studies by Alcaraz et al. (2013, 2014) and (Cavan and Boyd, 2018),
resulting in a decline in POC export of 23% by 2100.

The CMIP5 multi-model median historical (1986–2005)
export was 7.6 Gt C yr−1 and the future (2081–2100) export is
projected to be 6.4 Gt C yr−1. Both these estimates are higher
than our estimates made using the Henson algorithm and the
MTEmodel. However, the net global change in POC export from
our analysis of the CMIP5 model output was 16% (Figure 2F),
the same direction of change (a decline) in export as predicted
our MTE model (Figure 2E). The greatest effect on the change in
export in the MTE model was the temperature term, which is to
be expected given it forms the exponential part of the algorithm.
Changing the temperature by even just a small amount (median
temperature difference +0.5◦C) increased the decline in export
from 12 to 18% (Supplementary Table 2). A large temperature
change (median temperature difference +3.5◦C) resulted in a
greater decline in export of 61%. Changing the mass term using
different primary production or export algorithms did not change
the total decline in export as the only change imposed between
the beginning and end of the century was temperature. See
Supplementary Table 2 and supplementary text for results of the
sensitivity analyses.

DISCUSSION

Satellite data can be combined with empirical algorithms and
MTE to investigate the effect of future warming on the rates
effecting the oceans biological pump and carbon storage. Here,
we investigated the theoretical effect of warming by 2100 globally,
focusing solely on temperature-driven metabolic changes to
microbial respiration and primary production, and thus POC
export flux. We compared our results with an analysis of CMIP5
model output projections for export production by the end of this
century to put our results into context.
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FIGURE 2 | (A) Change in primary production from current (2003–2016) data in Figure 1E and that estimated using the metabolic theory of ecology (MTE) and SST

changes shown in Figure 1C. (B) Difference in microbial respiration of exported POC between present day (2003–2016) and 2100 estimated using MTE and the

temperature changes at 100m shown in Figure 1D. Notice how the patterns in both a and b match those in Figures 1C,D, respectively. (C) POC export at 100m

calculated by multiplying primary production (Figure 1E) by export ratio (Figure 1F). (D) POC export at 100m in 2100 calculated by multiplying the current export

(C) by the net change in export [E = change in respiration (B)—change in primary production (A)]. (E) Net change in export used to calculated export by 2100 in D.

(F) Net change in export as determined by a suite of CMIP5 models. For both plots positive change (red) indicates an increase in export.

FIGURE 3 | (A) Arrhenius plot of temperature (1/kT), where k is Boltzmann’s constant, and T is temperature in Kelvin against the natural log of mass-corrected

(M-0.75) respiration (R). Color is the net change in export by 2100 as predicted by MTE. Black line is regression with a slope of −0.7, which is the activation energy.

Where decrease in export is > ∼30% the points deviate from the line. (B) Change in metabolic rate. The red solid line is the change with an Ea of 0.7 eV according to

metabolic theory and the red dashed line is with an Ea of 1 eV as determined by previous experimental warming studies and applied in this study. (C) Change in Q10

using Equation 4. The contours and colors are activation energies (0.1–2 eV). The orange lines show the temperature (in Kelvin) and Ea at which Q10 = 2, a commonly

used parameterisation in ESMs.
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Our MTE model predicted a similar decline in export (12%)
as our CMIP5 model analysis (16%), which was unexpected
given that our MTE model is based on a simple physiologically-
based exponential equation (Equation 1) and does not include
changes in physics or plankton community structure. The MTE
model only accounts for two possible changes due to increasing
temperature that can affect POC export (energetics of respiration
and primary production), whereas the 3DCMIP5models include
future physical and chemical changes such as water circulation,
stratification and nutrient availability. We expected our MTE
model to potentially overestimate changes in export given it is
based on an exponential relationship between temperature and
metabolism and does not consider optimum temperatures for
metabolism.

The lack of an optimal temperature in our MTE approach is a
limitation of our model, although Cavan and Boyd (2018) found
that in the Southern Ocean an optimal temperature for microbial
respiration was never reached (maximum experimental
temperature was 8◦C above the annual maximum). In our
model, metabolic rates will continue to increase exponentially
with temperature, potentially over-estimating the future declines
in POC export. In addition our MTE model does not account for
any adaptation of microbial respiration to rising temperatures
(Listmann et al., 2016), which would act to decrease the reduction
in export by 2100. Nevertheless, we expect the inclusion of an
adaptation term would still result in larger declines in future
export when temperature sensitivity is high, which is the main
aim and result of this study.

Previous studies have observed higher activation energies
(Ea, 1 eV) in organisms residing at cool (polar and deeper
waters) temperatures (Alcaraz, 2016; Brewer and Peltzer, 2016),
suggesting these organisms are more sensitive to temperature
changes when adaptation is not considered. A recent study on
the effect of warming on POC export showed sub-Antarctic
microbial respiration on sinking particles presents a higher Ea
(0.9 eV) than predicted by typical MTE (0.7 eV and I = 19)
(Cavan and Boyd, 2018). In our first model experiment in this
study we originally set the Ea to 0.7 eV (Figure 3A) globally
for heterotrophic respiration (Brown et al., 2004, Equation 1).
Increasing the Ea from 0.7 to 1 eV (Figure 3B) resulted in a 30%
decline in POC export globally. This is more than double our
original MTE estimate of 12% when Ea = 0.7 eV and higher than
our CMIP5 model output analysis (16%) and other ESM analyses
and empirical models (Cael and Follows, 2016; Laufkötter et al.,
2016).

Varying Ea by latitude and water temperature produced an
intermediate response of POC export by 2100, with a 17% decline
in POC export by 2100 in the Southern Ocean and 23% decline
in regions where the water temperature at 100m is <13◦C.
Our estimates of the spatial patters of microbial temperature
sensitivity, based on a few empirical data, are likely to be over-
simplifications the global sensitivity to Ea. This is because of
the limited empirical data available to make more advanced
simulations of the spatial variability on marine microbial Ea.
As well as spatial heterogeneity in the response to temperature,
there may also be variability in the organismal adaptation to
warming, potentially damping the effects of variable Ea. To be

able to confirm with any certainty the change in POC export
associated with temperature change, observational studies need
to be conducted on the response of organisms to future warming
in different ocean ecosystems.

It is important to note that our MTE analysis assumes
that neither the physical environment nutrient availability
nor community structure change with ocean warming.
Biogeochemical models do however predict shifts in
phytoplankton composition, nutrient availability, magnitude
of primary production, and increases in particle sinking rates
(Richardson, 2008; Bach et al., 2012; Thomas et al., 2012;
Dutkiewicz et al., 2013). We consider our results in the context
of these predicted changes. Reduced primary production and
smaller phytoplankton will produce fewer smaller, slow-sinking
particles (Baker et al., 2017) where small phytoplankton
dominate the community (Richardson and Jackson, 2007;
Cavan et al., 2018). The reduced sinking rate due to smaller
particles may be offset if viscosity decreases (due to increasing
temperature) allowing particles to sink through the water
column faster (Bach et al., 2012), potentially resulting in
negligible changes to particle sinking rates.

Incorporating reduced primary production in ourMTEmodel
would only influence the mass term, which we have shown does
not significantly influence our results (Supplementary Table 2).
Conversely, as microbial turnover on small particles is faster than
on large particles at the same temperature, likely due to the larger
surface area for microbes to attach to Cavan et al. (2017), it is
possible that the response of microbes to temperature will differ
depending on particle size, i.e., microbes on smaller particles
may exhibit a faster response to temperature change (higher Ea)
than those on larger particles, but this hypothesis needs testing.
Any difference in temperature sensitivity driven by the particle
type/composition or size will be set principally by the mixed
layer plankton composition, which could be a useful descriptor
in parameterising Ea, along with biogeochemical province and/or
latitude.

Accounting for the additional temperature sensitivity outlined
above may alter our projections on the direction and magnitude
of future carbon export, but data is currently lacking on the
response of particle-attached microbes in different regions and
the response of microbes residing on particles of different size
and composition. Spatial variance in temperature sensitivity
has been frequently observed over the past few decades, in
different biomes and with different organisms, including coastal
mussel populations (Gilman et al., 2006), insects (Deutsch et al.,
2008), and soil microbes (Lloyd and Taylor, 1994). However,
similar observations are scarce in the marine realm, hence
the lack of temperature sensitivity parameterisations in marine
models. The potential for a non-uniform microbial response to
ocean warming across the globe has important implications for
biogeochemical models, and thus ESMs. We recommend that to
more accurately project the effects of climate change on carbon
sequestration we need to consider that heterotrophic organisms
will not necessarily respond to warming in a straightforward
manner. Their response will be dependent on their ability to
adapt (Visser, 2008; Thomas et al., 2012; Sal et al., 2015; Padfield
et al., 2016), the species composition, and the biogeographical
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province and latitude they inhabit. ESMs do not currently
account for a varying metabolic response such that, for example,
if organisms at the Equator are exposed to a 2◦C increase in
temperature, current parameterizations in ESMs will elicit the
samemetabolic response as those at the poles exposed to the same
temperature increase.

Ocean biogeochemical models that parameterize metabolic
processes as a function of temperature typically use a Q10

approach, with some using the same value of Q10 = ∼2
globally (Bopp et al., 2013). A Q10 of 2 suggests that if the
temperature increases by 10◦C, the rate of the reaction will
double. The value of 2 is from the seminal work of Eppley
(1972). There are two limitations to using the Eppley (1972)
study for heterotrophic processes in biogeochemical models:
(1) the study solely assessed the response of phytoplankton
growth to temperature, an autotrophic process, and (2) the
data were only from laboratory cultures. It is well known
that autotrophic and heterotrophic processes respond differently
to temperature change (López-Urrutia et al., 2006), and that
organisms in laboratory conditions react differently to those
in their natural environment. The Eppley Q10 should only be
applied to phytoplankton growth and with caution given only
laboratory cultures were used. Whilst the PISCES model does use
higher Q10 for zooplankton processes, temperature dependency
of POC degradation is still based on phytoplankton production
rates (Buitenhuis et al., 2006) and the TOPAZ2 model uses a
combination of the Eppley (1972) temperature and stoichiometry
to parameterise grazing (Dunne, 2013). In the TOPAZ2 model
though, export is parameterised using a temperature-dependent
empirical algorithm (Dunne et al., 2005).

In the natural world, deviations away from a Q10 of 2 occur
because Q10 varies depending on (1) the initial temperature, and
(2) the activation energy of the reaction (which in itself varies,
depending on the type of reaction being measured, Figure 3C).
This has been highlighted in an ocean study where the bacterial
degradation of dissolved organic carbon (DOC) varied (Q10 = 2–
8) as different compounds of different labilities within the DOC
degraded at different rates (Lønborg et al., 2018). Q10 can be
related to activation energy using the following equation (Li and
Dickie, 1987):

Q10 = e

[

Ea∗(T2−T1)
R∗T1∗T2

]

(4)

Where Ea is the activation energy here expressed as J mol−1 (1 eV
= 96 kJ mol−1), T1 is the initial temperature in Kelvin and T2

= T1 + 10, and R is the gas constant of 8.31 J mol−1 K−1. For
example, a Q10 of 2 is obtained with an activation energy of 0.5 eV
and at a temperature of 285K (12◦C, Figure 3C). If Ea within the
range found experimentally in the oceans is applied to Equation
4, then at Ea = 0.7 eV, T must be 338K (65◦C) to give a Q10

of 2. If Ea = 1 eV, T will be 405K (132◦C, Figure 3C). Only
the first example here is within the normal temperature range
found in the ocean (excluding proximity to deep ocean vents).
At most ocean temperatures (<30◦C) Q10 is higher (>2.5) if a
typical activation energy, according toMTE, of 0.6–0.7 eV is used
(Figure 3C). Many studies, particularly in terrestrial ecology,
have shown that using a constant Q10 is not appropriate and

variable Q10, where the rate of increase is dependent on the
baseline temperature, should be imposed in models (Lloyd and
Taylor, 1994; Wang et al., 2014; Jian et al., 2018).

A final point to acknowledge is whether incorporating
varying Q10 (suggested by other studies e.g., Jian et al. 2018)
or Ea (suggested in our study) into ocean biogeochemical
models will result in more accurate estimates of export, as
these theoretical models are often deemed over-simplified.
The Arrhenius equation has been continuously developed
since its origins in the nineteenth Century to more closely
reflect a biological system (Johnson et al., 1942), including
more recently the addition of temperature-induced enzyme
denaturation (Ratkowsky et al., 2005; Corkrey et al., 2012,
2016). However, these improved theoretical models have
escaped the attention of many oceanographers. Whilst
incorporating these more sophisticated thermodynamic
models into biogeochemical models might be a step too far
at present, with too many unknown parameters and certainly
beyond the scope of this study, we as an oceanographic
community should consider moving away from Q10 and the
data from Eppley (1972) and start to apply process-based
parameterizations founded on empirical data from natural ocean
communities.

In conclusion, POC export is projected to decline by
12% by the end of the century according to fundamental
metabolic theory and ESMs. The inclusion of spatially variable
temperature sensitivity terms that deviate from classical MTE
resulted in more pronounced projected declines in POC export;
applying high sensitivity globally resulted in a decline in
export of 30% and applying it just to cold regions resulted
in a global decline of up to 23%. This is an important
finding. Current biogeochemical models that do not account
for variable temperature sensitivity are likely underestimating
the change in future POC export decline, because metabolic
reactions degrading POC will occur faster than currently
parameterized in some regions. Where possible, metabolic
functions such as respiration should be parameterized as
a function of temperature as standard in models, and in
turn the temperature dependence term should vary spatially.
Incorporating an activation energy that varies with latitude
and/or biogeochemical province would be a simple first
step to assess the response of organisms to temperature
change. However, we should also consider incorporating more
complex thermodynamic models that can biologically explain the
temperature-dependence of metabolic reactions. Future research
that generates empirical data on the differing response of
the same functional groups adapted to different temperature
conditions is needed to elucidate these processes further and
more accurately understand how carbon sequestration will
change with future warming.
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The scaling equation, Y1 = βYα

2, has been used empirically and explored theoretically

primarily to determine the numerical value and meaning of the scaling exponent, α. The

mathematical interpretation of α is clear—it is the quotient of the relative rate of change

of Y1 with respect to the rate of change of Y2. In contrast, the interpretation of the

normalization constant, β, is obscure, so much so that some workers have rejected the

idea that it has any biological importance. With the notable exception of Steven J. Gould’s

early work, Huxley’s dismissal of β largely relegated the study of its biological role to

that of an academic afterthought. Here, we attempt to clarify the meaning of β by using

examples from plant biology to illustrate the four primary difficulties that have obscured

its importance: (1) the consistency of the units of measurement and the metric being

measured (e.g., meters and body length, respectively), (2) the relationship between β

and α, (3) the interpretation of scaling equations, and (4) detecting if the numerical value

of β has changed and if the change is biologically meaningful. Using examples, we show

that β is biologically interpretable and offers a way to quantitatively consider similarities

of biological form if (1) it is expressed in terms of the relative magnitudes of Y1 or Y2 for

corresponding data points in a set of Y1 = βYα

2 equations, (2) the units of measurements

are in the same scale, and (3) the corresponding dimensionless numbers are established

based on the same units of measurement. We provide examples of where the numerical

value of β or differences in the values of β are important, and we propose a research

agenda examining the meaning of β values in terms of trait-based ecology.

Keywords: allometry, biomass allocation patterns, organic form, plant growth, plant size, scaling theory

I’m so glad I am a Beta. Alpha children work much harder than we do because they’re

so frightfully clever. I am really awfully glad I’m a Beta because I don’t work as hard.

–Aldous Huxley (Brave NewWorld).

INTRODUCTION

A central goal of biology is the derivation of general rules that describe how organic form is achieved
and how it changes, both ontogenetically and over evolutionary time, as a function of size. Scaling
theory has provided a powerful over-arching perspective to achieve this goal, particularly in terms
of understanding the biological nature of the scaling exponents governing families of equations
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taking the general form Y1 = β Yα

2 , where Y1 and Y2 are
interdependent variables of interest, β is the normalization
constant, and α is the scaling exponent. The significance of α

is immediately apparent, viz. its numerical value stipulates the
proportional relationship between Y1 and Y2 for any numerical
value of β or, more precisely, it is the quotient of the relative
rate of change of Y1 with respect to the relative rate of change

of Y2 (e.g., when cast in the context of growth rates, α =
1
Y1

dY1
dt

/ 1
Y2

dY2
dt

). It is not surprising therefore that much empirical and
theoretical attention has been paid to understand how and why
scaling exponents take on specific numerical values.

In contrast, with few exceptions, it is charitable to say that far
less attention has been paid to the biological significance of β (see
however, Enquist et al., 2007), despite the fact that differences
in β values stipulate differences in the absolute size of Y1 with
respect to Y2 for a specified α value (Niklas and Hammond,
2014). For example, if the numerical value of α is equivalent in
a paired set of formulas [Y1 = β1 Y

α

2 ]|[Y3 = β2 Y
α

2 ], it follows
that (Y1/Y3) = (β1/β2). Here, the numerical value of (β1/β2)
stipulates the difference in the absolute size of Y1 with respect
to Y3, and, since (β1/β2) is dimensionless, it can be used to
designate shape when Y1, Y2, and Y3 are in the same units and
share the same metric measurements of body size (e.g., meters
and body length or mass, respectively). Here, shape is defined
as any dimensionless quotient constructed out of two reference
dimensions, such as plant height divided by basal stem diameter.
Likewise, (β1 / β2) can be used to establish differences in biomass
allocation. Consider a simple example involving leaf biomassML

allocation with respect to stem biomass MS allocation patterns
in conifers and angiosperms. Analysis of a small data shows
that MLc = 0.35MSc

0.751 and MLa = 0.13MSa
0.749 for conifers

and angiosperms, respectively (see Figure 5). Noting that the α

values are statistically indistinguishable, we see that MLc/MLa =

0.35/0.13 = 2.69, which reveals that for any given stem mass
conifers bear substantially more leaf mass than their angiosperm
counterparts. It is also easy to show that β values are important
even when α1 6= α2 in any ordered pair of equations in a family
{Y1 = β Yα

2 }. For example, using the previous notation and

setting α16= α2, it follows that Y
1/(α1−α2)
1 /Y3 = β1

1/(α1−α2)/β2.
This example shows that β and α values are of equal importance,
particularly because, under some circumstances, β and α values
can be significantly correlated in data sets drawing on the same
variables of interest (Figure 1).

The goal of this paper is to explore the biological significance
of β values drawing on examples from plant biology and
evolution. In the following sections, we briefly review the
historical background that prefaced the focus on scaling
exponents to the neglect of their normalization constants. We
then address the three major stumbling blocks concerning the
interpretation of β values: (1) the units of β change according
to the units of Y1 and Y2 when α 6= 1.0, (2) β can only be
computed in a size range for which the extrapolation of data
is valid, and (3) β and α are often correlated (see Figure 1)
simply because the units of measurement for Y1 and Y2 are
much smaller than the size of the organs or organisms being
measured. We show that in some cases the absolute value of β

FIGURE 1 | Bivariate plot (and regression statistics of the log-log normal

curve) of the inverse autocorrelation between β vs. α values for the regressions

of log10-transformed stem diameter frequency distributions taking the general

form of N{i,j} = βj log D{i,j}
αj, where N is the number of stems in a bin size i and

D is the diameter of the stems in the size bin i (see Niklas et al., 2003a).

Dashed lines denote 95% CIs. The autocorrelation emerges because the

measurement units of stem diameter is much smaller than the organisms

being measured, i.e., the autocorrelation has no intrinsic biological meaning.

is biologically unimportant, whereas in other cases differences in
β values illuminate biology. We conclude by offering suggestions
for a research agenda focusing to elevate β to the equal status of α.

PREAMBLE: STATISTICS AND HISTORY

Before delving into the interpretation of β values, it is instructive
to consider their “statistical” and “historical” background, i.e.,
why they emerge in the first place and why they are neglected
in theoretical attempts to understand the biology of scaling.

Historical as well as recent studies show that researchers
continue to debate the types of statistical models and the types of
regression protocols that should be employed when investigating
scaling relationships (Thompson, 1942; Sholl, 1950; Yates, 1950;
Zuckerman, 1950; Gould, 1966; Smith, 1980; Harvey, 1982;
Chappell, 1989; Packard, 2013). Nevertheless, there is consensus
favoring linear regression when the error structure of a data set
is multiplicative, heteroscedactic, and log normal, and the use
of non-linear models when the error is additive, homoscedastic,
and normal (Niklas and Hammond, 2014). The choice of model
is not arbitrary therefore because (1) the error structure in a
data set dictates the use of a linear or non-linear model and
because (2) a data set cannot simultaneously manifest both error
structures. Nevertheless, there are two philosophies regarding
the implementation of a regression protocol, one that is strictly
empirical and seeks the best fit to the data for the purpose of
predicting trends, and another that emphasizes a mechanistic
approach and seeks to test the predictions of a particular theory.
In both cases, the classic scaling formula Y1 = β Yα

2 can emerge,
but the significance of its regression parameters differs according
to the purpose of the analysis. When the purpose of regression
analysis is prediction, the numerical values of β and α are strictly
utilitarian. Indeed, a reviewer of Huxley’s book, which arguably
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propelled the application of scaling analysis, noted that Huxley’s
methods were

. . .necessarily empirical. Of the causes of differential growth we

have little knowledge; their investigation is the problem at issue. A

variety of possible relations, in fact, reduce approximately to this

formula. But it is not the object of the formula to establish the

correctness of a particular hypothesis as the cause of differential

growth; it merely expresses the observed facts with considerable

accuracy in a simple way, so that many very significant features

emerge which would not otherwise do so. (Pantin, 1932)

However, the objective of the modern analysis of scaling
phenomena is to uncover the mechanisms that drive size-
dependent changes in form. The numerical values of β and α

are not just numbers plugged into an equation to predict the
numerical value of a dependent variable based on the numerical
value of its corresponding independent variable—the values of β

and α can shed light why one variable changes in value as another
changes in value.

Despite the dichotomy of how regression protocols are used,
the disagreement about the importance of β values dates back
to the seminal publications of Julian Huxley (1887–1975) and
Georges Teissier (1900–1972) (Huxley and Teissier, 1936a,b).
The two differed in opinion regarding the significance of β

sufficiently enough that their simultaneously published articles—
in English and French—differ by only one sentence, with Teissier
endorsing the biological significance of β values (Huxley and
Teissier, 1936a) and Huxley, by implication, dismissing their
importance (Huxley and Teissier, 1936b).

This is in marked contrast with some the earliest scaling
work done in the later 19th and early twentieth centuries. Early
workers, such as the German Psychiatrist Otto Snell (1859–1939)
and the Dutch paleontologist, geologist, and discoverer of “Java
man” (Homo erectus) Eugene Dubois (1858–1940), attempted to
derive a quantitative means of determining how “evolved” an
organism was by comparing the mass of its brain to the mass of
its body (Snell, 1892; Dubois, 1897). Dubois derived the formula

e = csr , (1)

or, when log-transformed,

log e = log c + r log s, (2)

where e (for encephalon) is brain size, c is the “coefficient of
cephalization”, s is body size, and r is the “coefficient of relation”
(Dubois, 1897). This same interest in correlating brain size with
other traits, such as group size among primates, is a technique in
practice 120 years later (Kudo and Dunbar, 2001).

Dubois’ data would be combined with data on the brain
sizes of various animals from diverse classes (reptilian,
avis, and mammalia) by the French neuroscientist Louis
Lapicque (1866–1952). Lapicque would present the data in
1907 by generating the first known log-log plot showing
common slopes among allometric data (Lapicque, 1907)
(Figure 2A). Curiously, Lapicque did not plot all of his

data, perhaps because he thought of them as redundant
(Figure 2B).

During these initial studies, it was the magnitude of
difference between the different organisms–what Dubois called
the “coefficient of cephalization” (c) (Dubois, 1923, 1928), and
what allometrists after Huxley and Tessier call the “normalization
constant” (β)—that was the object of study. As noted by Gould’s
review of Dubois’ later work:

“Dubois, 1922, Dubois (1928) built his famous theory of brain

evolution on a belief that evolutionary increase in b [Gould used

b in his notation instead of β] occurred in steps of a geometric

progression with base 2. Thus, he reasoned, the brain evolves by

a doubling of neurons early in embryology;(the change is reflected

only in the increase of size- independent b; the slope remains

constant)” Gould (1971)

That the scaling relationships between the mass of the brain and
body seemed to have the same slope in log-log space was certainly
an unusual observation, but it didn’t forward the attempts to
describe forms in terms of ratios of size, and it certainly didn’t
clarify how to quantify how “evolved” a given organism was.

Huxley’s breakthrough, starting in 1924, was to focus on ratios
of relative growth instead of ratios of size (Huxley, 1924). This
began the shift in focus away from the differences in β, and
with his joint 1936 paper with his Continental colleague, Teissier,
firmly shifted the importance to α.

As a side note, we would be remiss if we failed to point out
the historical timing and potential significance of the quotation
with which we began this paper. Julian Huxley’s younger brother,
Aldous Huxley (1894–1962), published his novel Brave New
World in 1931. This is firmly within the time period that
the elder Huxley was deeply contemplating how to unify the
Continental and English allometric literature, as they differed
in both terminology and symbols used in equations. One can
imagine the conversations between the two brothers, influencing
one another in terminology and, by extension, the importance of
variables (or people) as determined by the Greek letter used.

With the notable exception of Steven J. Gould’s early work
(White and Gould, 1965; Gould, 1966, 1967, 1971), the biological
significance of β values has been largely as a side note to the more
interesting α value (Newell, 1949; Huxley, 1950; Needham, 1950;
Shadé, 1959). The lack of an underlying theory explaining the
significance of β is strikingly similar to scaling theory before the
emergence of theWest, Brown, Enquist theory (West et al., 1997).
This lack of attention is both a detriment to scaling theory and an
immense opportunity for future research.

It would be ethically irresponsible when dealing with
any historical treatment of allometry not to point out
that the early application of scaling theory was often used
to promote eugenics, racism, and anti-feminism (e.g.,
Snell, 1892). Clearly, this practice is totally unacceptable,
intolerable, and scientifically invalid. As pointed out by Deacon
(1990), the explicit assumption that brain size correlates
in a positive linear or nonlinear way with intelligence
has no valid scaling baseline for estimating differences in
encephalization at different taxonomic levels. In addition,
it conflates evolutionary trends in overall body and brain
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FIGURE 2 | Bivariate plot of brain mass e vs. body mass s. (A) A photo-copy of the first known log-log plot showing common slopes among allometric data published

by Louis Lapicque (1866–1952) in 1907. Dark dashed lines represent regression curves for individual species; gray dashed lines represent boundaries of interspecific

trends. (B) Lapicque’s data replotted to include data omitted from his original diagram. Missing data indicated by black circles. Reduced major axis regression curve

and 95% CIs are provided.

sizes with differences in cognitive abilities. Theories that
purport to establish a correlation between brain size and
intelligence are entirely incompatible with studies showing
that intelligence is not intrinsically correlated with body
size, but rather correlated with the degree of folding in the
temporo-occiptal lobe, particularly in the outermost section of
the posterior cingulate gyrus (Luders et al., 2008). And even
these studies are inconclusive owing to other factors such as
sexually dimorphic cranial features that conflate correlation with
causation.

THE FOUR PROBLEMS WITH β

As noted in the Introduction, there are three principal difficulties
that have impeded the interpretation of β values and obscured
their biological significance. Here, we address these three
difficulties and show that they are avoidable and surmountable.

The Problem of Dimensionality
Unlike α, which is dimensionless and thus a “pure” number,
β values have dimensionality. This is easily illustrated by
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a dimensional analysis of any allometric relationship as for
example the scaling relationship between the critical bending
height Hcrit and basal stem diameter D of trees modeled as very
slender columns:

Hcrit = C(
E

ρg
)1/3D2/3, (3)

or, when log-transformed and noting the constants in this
equation,

logHcrit = (1/3)log[C(
E

ρg
)]+ (2/3)Log D, (4)

where C is a dimensionless constant (approximately equal to 0.79
and 1.24 for an un-tapered and conical column, respectively), E
is Young’s elastic modulus (with units of N/m2), ρ is bulk tissue
density (with units of kg/m3), and g is the gravitational constant
(with units of m/s2) (Greenhill, 1881). When interpreted strictly
as a scaling equation with the form Y1 = β Y2

α, it follows that
β is C(E/ρg)1/3 and α is 2/3. Because N has units of kg m s−2,
dimensional analysis shows that β has units of m1/3. Although
this unit makes little biological sense, the importance of β cannot
be rejected on dimensional grounds because any formula taking
the form Y1 = βY2

α6=1 can be re-written as Y1 = β0 γ
1−α Y2

α,
where γ is a dimensional conversion factor (a pacifier parameter)
that has the same units as those used to measure Y1 and Y2.
This conversion factor transforms β0 into a dimensionless “pure”
number equivalent to α regardless of the units used to measure
Y1 and Y2. Although it is obvious, it bears repeating that Y1 and
Y2 must bemeasured in the same units (e.g., m or kg) and that the
units are applied to the same metric (e.g., body length or mass).
Under these circumstances, comparisons are made among data
sets using the same units of measurements, both β and β0 have
biological meaning. Provided that Y1 and Y2 are in the same
units and the same metrics, we can set γ = 1 and continue to
write Y1 = β Yα

2 , while recognizing that β is somewhat more
complicated because it has units.

The issue of the units of measurement should not be
overstated because there are mathematical tools to cope with
using different units. It should be obvious that physical laws
and biological phenomena cannot depend on the choice of units
used to measure them. Thus, it should be equally obvious that
scaling relationships between physical or biological quantities
must be independent of the units in which they are measured.
That this is so becomes evident by means of dimensional analysis
as for example by the π-theorem. This theorem states that a
physical relationship between a dimensional quantity and several
parameters governing its relationship to them can be re-written
as a relationship between a dimensional parameter and several
dimensional products of the power of its governing parameters
minus the number of governing parameters with independent
dimensions. Barenblatt (2003) and Bridgman (1922) provide
detailed and explicit expositions on the π-theorem and how it
can be applied to scaling relationships.

To illustrate dimensional analysis, let us assume that cell
growth G is some function of cell mass M and length L, and

time T:

G = f(M, L,T) ∝ Ma Lb Tc, (5)

where the exponents a, b, and c are real numbers. The
dimensional analysis of this formula proceeds by finding fixed
relationships (proportionalities) between paired variables. For
example, density ρ is the quotient of M and V. If cell cytosolic
density is a constant, if follows that ρ = ML−3 = a constant,
and assuming that cells increase in size without changing their
geometry or shape, we see that V ∝ L3. BecauseM ∝ V, it follows
that L∝M1/3. Thus,

G ∝ Ma+b/3Tc. (6)

Assuming that G depends on the rate at which mass is exchanged
between a cell and its environment, G likely depends on overall
metabolic rate, which has the dimensions of LT−1. If this rate is
constant on average, it follows that T ∝ L, and because L∝M1/3,
we find that Tc

∝Mc/3 such that

G ∝ Ma+b/3+c/3. (7)

This dimensional analysis is brought to closure when the
dimensions of G are specified because the numerical values of
a, b, and c depend on how Y1 is measured. If G is measured as
mass per unit time, G has the dimensions of MT−1. Thus, the
real numbers a, b, and c become 1, 0, and −1, respectively, such
that G ∝ M1+0/3−1/3

∝ M2/3. If G is measured as a production
rate, which has units ML2T−3, we see that G ∝ M1+2/3−3/3

∝

M0.333. This example shows that, for any formula Y1 = βYα

2 , the
units of β and the numerical value of α depend on the numerical
values of the real numbers a, b, and c, which depend in turn on
the dimensions of Y1 and Y2.

The Range of Applicability Problem
The numerical value of β and α can change over the course
of ontogeny and over the course of evolution. Therefore, β

and α are not “constants” even for data sets gathered across
similar species. This is strikingly evident when standing leaf dry
mass per plant is plotted as a function of standing stem dry
mass per plant for herbaceous plants, the juveniles of woody
species, and mature individuals of woody species differing in
age (Figure 3). Inspection of the resulting bivariant plot of
data shows that the numerical values of β and α change in a
statistically significant way once woody plant individuals begin
to manifest secondary growth and accumulate wood in their
stems. Among individuals of herbaceous species, the β value is
numerically smaller and the α value is numerically higher than
the corresponding values manifested by juvenile and mature
plants belonging to woody species. The regression curves for
these two plant groupings intersect at the point where secondary
growth becomes anatomically evident in representative cross-
sections through stems (the gray area in Figure 3). [In passing,
this is also the size-range predicted by computer simulations
in which tree species reach reproductive maturity (Hammond
and Niklas, 2009)]. Importantly, in the absence of a careful
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FIGURE 3 | Bivariate plot of log10-transformed standing leaf dry mass vs.

standing stem dry mass (original units in kg) for herbaceous non-woody plants

(green circles) and woody plants (purple triangles). The gray area in the middle

of the plot denotes the region where the β and α values of the solid and

dashed regression curves numerically change. This area also corresponds to

where cross sections through representative stems manifest observable

amounts of secondary tissues. Red dots indicate data from non-vascular and

vascular seedless species (e.g., algae and mosses, and ferns and lycophytes).

See text for scaling formulas. Data taken from the primary botanical literature.

understanding of plant anatomy and the phenomenology of
secondary growth, the two regression curves would lead to
significant errors in estimating standing leaf or standing stem dry
mass (over estimating the former and under estimating the latter
across woody plants).

This example illustrates an under-appreciated feature of any
scaling analysis: it is not mathematically correct to present a
formula such as Y1 = β Yα

2 without specifying the range of
Y2 over which it holds true (i.e., Y i ≤ Y2 ≤ Y j, where Y i and
Y j are respectively the smallest and largest numerical values
in a specified data set). Attempts to bypass this truism while
giving β values biological meaning has resulted in meaningless
mathematics, e.g., setting Y2 equal to 1.0 at the lowest value
in a data set such that Y1 = β across all data sets (see Lumer
et al., 1942). What is important is that β values have biological
meaning over their stated Y i ≤ Y2 ≤ Y j intervals even when
Y i > 1.0.

Extrapolating beyond the range of a data set is not necessarily
a problem if the objective is to formulate predictions, or
simply to graphically evaluate whether disconnected data share
similar scaling exponents. Indeed, one of the efforts in science
is to extend what we know to explain what we do not
know. However, it is always important to know that range
over which β- and α-values have been determined in scaling
analyses.

The Inverse Relationship Problem
Figure 1 shows an inverse relationship between β and α values
among a set [Y1 = β Yα

2 ]. Similar inverse relationships have been
reported by many early workers (e.g., Hersh, 1931; Hamai, 1938;
Clark and Hersh, 1939; Anderson and Busch, 1941) so much so
that the relationship β = a e−bα (where a and b are constants)
has been held to be biologically meaningful. That this is evidently
not true is easily seen by asking under what conditions would we

FIGURE 4 | Three bivariate plots showing how the placement of a shared

point of intersection in a set of log-log linear scaling relationships (only three are

shown for convenience) affects whether β and α are inversely correlated (top),

not correlated (middle), or directly correlated (bottom). See text for details.

expect to see an inverse or direct correlation between β- and α-
values and under what conditions would there be no correlation?
The answer to this question can be obtained by hypothesizing a
set of linear regression curves taking the form [Y1 = β Yα

2 ] and
by assuming that all of these curves intersect at one point (y1,
y2), i.e., all of the curves share a common point defined by (y1,
y2). Solving for the relationship between β and α, we obtain the
formula

β = β
′(y2)

α
′−α, (8)
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where y′2 is the numerical value of y2 at the point of intersection
and (β′, α

′) is any ordered pair of the normalization constant
and scaling exponent in the set of Y1 = β Yα

2 regression curves
(see White and Gould, 1965). Only three conditions exist for
this formula (Figure 4): (1) when the point of intersection y′1
is greater than one, an inverse correlation exists between β and
α because β > β

′ if and only if α
′ > α, (2) when the point of

intersection y1
′ equals one, β = β

′ regardless of the value of α,
and (3) when the point of intersection y′1 is less than one, a direct
correlation exists between β and α because β > β

′ if and only if α
> α

′.

The Detection Problem
Biologists often observe deviations in the linearity of log-log
linear relationships spanning many orders of magnitude as in
Figure 3 (e.g., Hammett and Hammett, 1939; Economos, 1983).
In these cases, the challenge is to determine whether these
deviations are statistically and biologically meaningful. From a
strictly statistical perspective, determining whether the numerical
value of β or α has changed can be detected using a variety of
techniques as for example using segmented regression, change-
point modeling, graphical inspection of regression residuals, and
95% confidence intervals (Quandt, 1958; Chow, 1960; Brown
et al., 1975; Chappell, 1989). For example, Brown et al. (1975)
developed the method of recursive residuals, which allows for
a formal significance test. This method places considerable
emphasis on graphical examination. Although a plot of residuals
from a linear regression model is useful, it is not a very sensitive
indicator of small changes in β. A more sensitive method was
developed by Chappell (1989) that amounts to fitting a “bent
line” by means of least squares regression protocols that can
be validated subsequently by graphical diagnostics. Chappell’s
method provides a superior change-point regression model.
However, it should be obvious that regardless of the technique
used to determine whether the numerical value of β or α has
changed presupposes that a researcher suspects that such has
occurred. It is advisable, therefore, to test all scaling relationships
to determine their log-log linearity.

Perhaps an even greater challenge is to determine whether
a change in the numerical value of β or α is biologically
meaningful. We are of the opinion that proof that a change is
statistically significant is not a priori infallible proof that the
change is biologically meaningful, and that the failure to detect a
statistically significant change in a regression parameter does not
necessarily mean that the change is biologically insignificant. A
careful understanding of the biology of an organism or group of
organisms provides the final arbitration of the challenging aspect
of scaling analysis.

The Meaning of β
The four problems with β reviewed in the previous section
obscure but do not diminish the biological significance of
the normalization constant, which in many cases reflects an
ontogenetic change in related organisms, or provides a descriptor
of differences in growth or body type. Figure 3 provides
an example of where a change in ontogeny (e.g., a shift
from primary to secondary growth) is attended by significant

FIGURE 5 | Bivariate plot (and regression parameters) of log10-transformed

standing leaf dry mass vs. standing stem dry mass (original units in kg) for

conifers (purple circles) and angiosperms (blue squares) with corresponding

solid and dashed regression curves. This example shows that differences in

the numerical values of β indicate that, for any stem diameter, conifers bear

more dry leaf mass than their angiosperm counterparts. See text for scaling

formulas. Data taken from the Cannell (1982) worldwide compendium.

changes in the numerical values of both β and α. Consider,
another example showing how β values illuminate biology
(i.e., the relationship between standing leaf dry mass, ML,
and standing stem dry mass, MS) (Figure 5). Reduced major
axis regression analyses of these data obtains ML = 0.344
M0.751

S for conifers and 0.132 M0.749
S for angiosperms. In this

example, the numerical values of the scaling exponents are
statistically indistinguishable, whereas the β values significantly
differ. Consequently, for any value of standing stem mass, the
standing leaf mass of conifers is on average approximately 2.6
times larger than that of the angiosperms in this data set.
This computation is mathematically trivial, but it exposes a
biologically meaningful fact, viz coniferous species tend to retain
their leaves (which tend to have high bulk tissue densities) for
2–3 years in contrast to angiosperms, the majority of which are
deciduous.

A third example in which β values take on importance is the
relationship among the annual growth in stem, leaf, and root dry
mass per plant: GS, GL, and GR, respectively (Figure 6). Reduced
major axis regression of the data shows that both GS and GR

scale as the 1.14 power of GL to yield the allometric formulas
GS = 1.64 G1.14

L and GR = 0.12 G1.14
L (Table 1). These formulas

hold across the herbaceous as well as arborescent species in the
data set and indicate that on average both species groupings
allocate an order of magnitude more of their total growth in body
size to new stem tissues as opposed to new root tissues. This
is probably a gross over-estimate because the data for root dry
mass are skewed for woody roots rather than new feeder roots.
Nevertheless, estimates indicate that stem growth exceeds that of
total root growth.

Yet another example illustrating the importance of β values
is their role in understanding plant size frequency distributions,
species richness, and species-specific density. For example, across
the data sets accumulated by Alwyn H. Gentry (1945–1993), stem
size frequency distributions are approximated by the formula
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FIGURE 6 | Bivariate plots of log10-transformed data for stem, leaf, and root

annual growth rates (original units stranding dry mass produced per year per

plant) for herbaceous non-woody (green circles) and woody (purple triangles)

species. Solid lines are log-log regression curves. (A) Stem growth vs. leaf

growth. (B) Root growth vs. leaf growth. See text and Table 1 for scaling

formulas and regression parameters. Data for herbaceous species taken from

the primary botanical literature; data for woody species taken from the Cannell

(1982) worldwide compendium.

TABLE 1 | Reduced major axis regression parameters for the scaling of annual

growth in stem, leaf, and root dry mass (GS, GL, and GR, respectively) per plant

per year (log10-transformed data plotted in Figure 5). Original units kg/yr.

Y1 vs. Y2 r2 α 95% CIs β 95% CIs

log GS vs. log GL 0.969 1.139 (0.664, 1.616) 0.214 (−0.493, 0.920)

log GR vs. log GL 0.960 1.142 (0.765, 1.519) −0.921 (−1.480, −0.361)

Ni = β Log Dα

i , where Ni is the number of individuals within
stem diameterDi bin size (Enquist and Niklas, 2001; Niklas et al.,
2003a). However, the numerical values of β and α change as a
function of any change in bin size, 1x. Mathematical analyses of
this variation obtains a formula predicting the total number of
individuals in any size frequency distribution, NT, approximated
by the formula Ni = β log Dα

i as a function of β, α, 1x, and
maximum and minimum stem diameter (Niklas et al., 2013b):

NT =
β

1x(1− α)

(

D1−α
max − D1−α

min

)

. (9)

The importance of β in this context is mathematically transparent
because it equals the quotient of the number of individuals
in the smallest bin size 1xmin and Dmin

α (i.e., β = 1xmin

/ Dmin
α), a relationship that obviates the autocorrelation

between β and α (see Figure 1) in subsequent analyses
of the biological significance of size frequency distributions
(Niklas et al., 2013b).

β in Development and Evolution
The significance of β values in development and evolution can
be seen in the context of how organic shape might change
in an ancestor-descendent transition. Consider a log-log plot
of the size of one organ-type Y1 against another organ-type
Y2 (Figure 7). In the isometric condition (i.e., Y1 = β Yα=1

2 ),
it follows that β = Y1/Y2, which is dimensionless and thus
can serve as a measure of shape if Y1 and Y2 are metrics
of form (e.g., petal length and sepal length). In this example,
β is invariant and the organism does not change its shape
throughout its ontogeny (Figure 7A). If this type of organism
gives rise to a descendent for which the relationship between
Y1 and Y2 is allometric (i.e., α 6= 1), it is evident that shape
has changed and that it changes allometrically throughout the
ontogeny of the descendent (i.e., β = Y1/Y

α

2 ). Consequently,
changes in β values in the phylogeny of a lineage or clade can
be used to infer evolutionary changes in shape or some other
variable of interest. This hypothetical scenario is not unlike the
evolutionary transition between plants capable only of primary
growth into those capable of secondary growth (as reflected in
Figure 3).

Comparisons of shape are possible even when Y1 vs. Y2 is
allometric (i.e., α 6= 1), provided that scaling relationships share
the same exponents. Consider two regressions with the same
α values: Y1 = β1Y

α

2 and Y1’= β1Y
′α
2 (Figure 6B). For any

value of Y2 within the range of both regression curves, there
are two values of Y1 (i.e., at Y2 , Y1 6= Y ′

1), such that β1/β2
= (Y1/ Y

α

2 ) / (Y
′
1/ Y

α

2 ) = Y1/ Y
′
1. This relationship can be used

to consider what appear to be stepwise (saltational) ancestor-
descendent differences between related organisms (as reflected in
Figure 5).

Finally, consider the case of two regression curves, Y1 =

β1Y
α

2 and Y ′
1 = β2Y

′α
2
′, that intersect at a single point,

(Y i, Y j), such that Y ′
1 < Y1 below the intersection point and

Y ′
1 > Y1 above the intersection of the two curves (Figure 7C).

Under these conditions, it follows that (β1/β2) = Y j
(α′−α), or

Y j = (β1/β2)
1/(α′−α). This relationship can be used to compare

ancestor-descendent ontogenies as to when the form specified by
the metrics (Y i, Y j) is achieved during growth. If the descendent
achieves (Y i, Y j) earlier than the ancestor, the ontogenetic
trajectory of the descendent has been accelerated with respect to
that of the ancestor, as shown in Figure 7C. If the descendent
achieves (Y i, Y j) later than the ancestor, the ontogenetic
trajectory of the descendent has been retarded with respect to that
of the ancestor. Note that (1) the terms “earlier,” “accelerated,”
and “retarded” refer to rates of change, specifically the rate of
change of Y1 with respect to Y1, i.e., ∂Y1/∂Y2 = β1(α)Y

α−1
2

and ∂Y ′
1/∂ Y ′

2 = β2(α
′)Yα

2
′−1, and (2) the point (Y i, Y j)

represents some designated shared stage in the ontogeny of the
ancestor and descendent (e.g., the time of germination, or sexual
maturity).
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FIGURE 7 | Hypothetical scaling relationships between two body parts, Y1

and Y2, showing changes in β–values over the course of development or

evolution. (A) The shift between an ancestral isometric scaling relationship

between Y1 and Y2 (denoted by the line a-b) and an allometric relationship in

the descendent (denoted by the line b-c). (B) Two scaling relationships sharing

the scaling exponent (denoted by lines a-b and c-d) but differing in β values.

For any value of Y2, there exist two corresponding values of Y1 (i.e., Y1 and

Y1’). (C) An ancestor-descendent relationship (denoted by dashed and solid

lines, respectively) in which β and α values change. If the ancestral body shape

achieved at point (Y i, Y j) occurs earlier in the ontogeny of the descendent,

development has accelerated. If the ancestral body shape achieved at point

(Y i, Y j) occurs later in the ontogeny of the descendent, development has been

retarded.

Future Directions
The purpose of this review was to show that β values are as
biologically meaningful as α. That this is so becomes immediately
apparent because, in general terms, β is dimensionless (i.e., a
“pure” number) dependent on the scale used to measure the
relationship between two variables of interest, i.e., β = Y1/Y2

when α = 1 and β = Y1 / (γ1−α Y2
α) when α 6= 1 (where

γ is a dimensional conversion factor). Yet, despite its obvious
importance, little attention has been paid to how or why β values
differ across data sets or lineages, or how it changes during the
course of evolution by natural selection.

Future studies can, at the very least, document how β values
relate to the scaling exponents governing the relationships being
investigated. The greater challenge is to explain why β values
differ and what these changesmean. A good way to approach this
challenge is to first explore isometric scaling relationships. For
example, using a large data set reporting the annual production
(growth) of new leaves and stems, GL and GS, across conifer
and angiosperm tree species (Cannell, 1982), Niklas and Enquist
(2002) found an isometric scaling relationship such that β =

GL/GS. Because GL is the product of the number of new leaves
produced per year, nL, and leaf area, thickness, and bulk tissue
density (AL, t, and ρL) because GS is the product of the number
of new stems produced per year, nS, and stem length, transverse
area, and bulk tissue density (L, AS, and ρL), it follows that
β = (nL AL t ρL)/(nS L AS ρS) across species. Assuming that
the average values of AL, t, L, AS, ρL and ρS are invariant for
any particular species, we see that in theory β describes the
intraspecific proportional relationship between the number of
new leaves and stems produced per plant per year, i.e., β ∝

(nL/nS). Thus, if the numerical value of β remains constant for
a particular species, it follows that the number of new leaves
produced per year remains proportional to the number as well
as the size of new stems produced per year over the course of a
plant’s ontogeny. This scenario is not biologically unreasonable
because the number of leaves on twigs is likely to be proportional
to the size of the stems bearing them. Regardless, the hypothesis
engendered by considering β to be biologically meaningful is
testable empirically.

In a broader sense, what we are proposing is the examination
if β in terms of trait-based ecology. Far from being a modern
point of interest, trait-based ecology can be traced back to
Theophrastus’ Enquiry into Plants (5ερi φυτω̃ν iστoρiα)
written between 350 and 287 BCE, wherein he classified plants
as trees, shrubs, or grasses based primarily on height and stem
density (Morton, 1981) While these general traits have remained
as major de facto classifications for terrestrial plants, ecologists
have continued to propose additional trait-based criteria (for
reviews, see Weiher et al., 1999; Westoby et al., 2002). The
interest in conducting research in trait-based ecology is the
underlying belief that understanding trait costs and benefits
will provide insights into how vegetation properties differ over
space (geography) and time (evolution), and explain patterns of
diversity (MacArthur, 1984; Messier et al., 2010).

Part of what we have tried to illustrate in this paper is
that β can often be a measure of differences in a quantitative
trait among species or within a species. Real and meaningful
trait-based differences between conifers and angiosperms in
terms of their standing leaf mass relative to the standing
stem mass can be seen when examining the numerical values
of the β values (Figure 4). Differences in β should not be
limited to what one sees among species, however: within the
same species one should predict to see statistically identical
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α values, but differing β values depending on the natural
variation of the environment. Soil quality, light intensity, water
availability, and a host of other environmental factors should
all contribute to intra-species variation in β that is measurable
and meaningful, beyond the inter-species variations in β. Put
another way, inter-species variations in β reflect different
evolutionary strategies, whereas intra-species variations in β

reflect the limits of the species’ plasticity to environmental
variation.

We are certainly not the first to propose the importance
of β in terms of trait-based ecology. Work by Brian
Enquist, for example, illustrated how the β for the annual
biomass growth vs. whole plant leaf biomass could be
derived for angiosperms and gymnosperms (Enquist et al.,
2007). The paucity of published work related to β as being
biologically meaningful strengthens our sense that this line of
inquiry remains under-researched, and can potentially offer
important insights into the questions of ecological trait-based

fitness, natural plasticity, and evolutionary/biogeographical
history.
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Resource use efficiency (RUE) is an ecological concept that measures the proportion

of supplied resources, which is converted into new biomass, i.e., it relates realized to

potential productivity. It is also commonly perceived as one of the main mechanisms

linking biodiversity to ecosystem functioning based on the assumption that higher

species numbers lead to more complementary and consequently more efficient use of

the available resources. While there exists a large body of literature lending theoretical and

experimental support to this hypothesis, there are a number of inconsistencies regarding

its application: First, empirical tests use highly divergent approaches to calculate RUE.

Second, the quantification of RUE is commonly based on measures of standing stock

instead of productivity rates and total pools of nutrients instead of their bioavailable

fractions, which both vary across systems and therefore can introduce considerable bias.

Third, conceptual studies suggest that the relationship between biodiversity, productivity

and RUE involves many more mechanisms than complementary resource use, resulting

in variable magnitude and direction of biodiversity effects on productivity. Moreover,

RUE has mainly been applied to single elements, ignoring stoichiometric, or metabolic

constraints that lead to co-limitation by multiple resources. In this review we illustrate and

discuss the use of RUE within and across systems and highlight how the various drivers

of RUE affect the diversity-productivity relationship with increasing temporal and spatial

scales as well as under anthropogenic global change. We illustrate how resource supply,

resource uptake and RUE interactively determine ecosystem productivity. In addition,

we illustrate how in the context of biodiversity and ecosystem functioning, the addition

of a species will only result in more efficient resource use, and consequently, higher

community productivity if the species’ traits related to resource uptake and RUE are

positively correlated.

Keywords: resource limitation, uptake, productivity, biodiversity, ecological stoichiometry, diminishing marginal

returns, ecosystem functioning

RUE IN ECOLOGY

Resource use efficiency (RUE) is defined as the amount of biomass produced per unit of supplied
resource. It is commonly applied to explain and understand ecological phenomena such as the
link between potential and realized productivity or biodiversity effects on ecosystem biomass
production, and therefore constitutes a concept of major interest to research questions in various
ecological contexts.
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The origins of the concept go back to early agricultural
research. In a comprising review, de Wit (1992) summarizes
how during the agricultural industrialization, the increasing
use of fertilizers and the ensuing environmental consequences
triggered ideas to define the optimal supply of resources
so as to maximize the efficiency of agricultural production.
This agricultural view on resource use efficiency dates
back to the law of the minimum (Sprengel, 1826; Liebig,
1840) and Liebscher’s (1895) law of the optimum, which
defines the optimal supply rate and ratio of mineral
nutrients to foster plant growth. Based on Liebscher’s
work, Mitscherlich (first in 1909) and others expressed the
decelerating production of biomass with linear increases
in fertilizer addition as a law of diminishing returns.
Derived from this work in agricultural sciences, ecology
developed similar questions, but focused on morphological or
physiological mechanisms regulating the observed patterns in
resource use and its efficiency (Vitousek, 1982; Chapin et al.,
1997).

Its oldest and most direct conceptual application is clearly
the link between potential and realized productivity within
and across communities and ecosystems (for a full history of
this debate, see the supplement published with Grace et al.,
2016). The higher the proportion of resources turned into new
biomass, the higher are the levels of realized productivity. In
that respect, RUE can be understood analogously to Odum’s
concept of transfer efficiency (Odum, 1957) which describes the
amount of energy that is transferred from one trophic level
to the next measured in, e.g., joules. Similar to reductions in
energy transfer due to respiration at each trophic level, the
amount of resource or matter that is converted to biomass
at the next higher trophic level is constrained. Reasons are
manifold and include inaccessibility of resources (Soares et al.,
2017), stoichiometric mismatch and the need to respire, excrete,
or exudate excess resources (Andersen et al., 2004) as well
as co-limitation (Danger et al., 2008). Consequently, transfer
efficiency and RUE determine important emergent properties
of ecosystems such as food chain length (Hessen et al., 2004)
or the internal (re)cycling of nutrients (Vitousek, 1982). Also,
community composition and biodiversity turnover are affected
by RUE, as species differ in their ability to sequester resources
and turn these into growth. Tilman’s competition theory (1982)
is directly based on these ideas, predicting that the outcome of
resource competition will be directly linked to community-wide
RUE.

The growing interest in understanding RUE as a fundamental
constraint of realized productivity over the last decades has
been driven by research on how species diversity affects
community or ecosystem production. The central hypothesis of
the biodiversity—ecosystem functioning (BEF) research is that
higher levels of diversity (species richness, functional diversity)
result in a more efficient use of the available resources and will
therefore yield greater amounts of biomass than the same system
at lower levels of diversity (Chapin et al., 1997; Loreau, 2001).
In other words, species loss will result in a reduction of RUE
and therefore decreased ecosystem function (Cardinale et al.,
2006). In addition to ample support for this general hypothesis

from theoretical work and experimental studies, there also
exists an increasing number of empirical tests, especially from
natural communities (Filstrup et al., 2014; Hodapp et al., 2015;
Fontana et al., 2018), highlighting the importance of individual
traits rather than simple diversity measures. Acknowledging
this trait-dependence results in potentially different signs and
strengths of BEF relationships, as different relationships between
traits mediating coexistence and traits mediating RUE can exist
(Hillebrand and Matthiessen, 2009). This implies potentially
high degrees of context dependence in BEF relationships, which
requires to shed light on RUE as a central mechanism linking
composition and function in ecological systems (Nijs and
Impens, 2000; Binkley et al., 2004; Forrester and Bauhus, 2016).

However, as we detail below, the way RUE has been used in
ecology generally, and BEF research especially, differs broadly.
This includes conceptual and mathematical differences, which
come with rarely-stated specific assumptions in the way RUE
is implemented. Therefore, in this review paper, we aim to
unify the concept of RUE across different types of ecological
systems and scales of ecological organization, as well as
spatial and temporal extent to identify and describe common
mechanisms and distinguish these from system- or organism-
specific phenomena. Based on an overview of the existing use of
the concept (section Definitions and Differences in RUE Across
Systems: Interpretation and Limitations), we present the basis
for a unified view on RUE (section Unifying the Concept of
RUE: a Suggestion). We discuss the validity of this concept
in light of recent discussions on multiple resource limitation
(section RUE Under Multiple Resource Limitation) and across
scales (section RUE Across Ecological, Temporal, and Spatial
Scales). Finally, we specifically address the importance of RUE
in the context of global change (section RUE in a Changing
Environment) and BEF (Section Biodiversity Effects on RUE)
research.

DEFINITIONS AND DIFFERENCES IN RUE
ACROSS SYSTEMS: INTERPRETATION
AND LIMITATIONS

Despite the common applicability of RUE as a concept,
measurement and quantification of the relevant quantities
vary considerably across ecosystems. These differences arise
from distinct types of resource use, organism physiology,
and ecosystem properties. Table 1 gives an overview of
examples for the definition and quantification of resource use
efficiency for different types of resources, ecosystems, and
organisms.

One early suggestion of how to quantify nutrient use efficiency
in plants goes back to (Chapin, 1980). He stated that the resource
use efficiency defined as the amount of dry matter produced per
unit nutrient taken up (e.g., g biomass/g nutrient) is simply the
inverse of nutrient concentration in plant tissue (e.g., expressed
as % nutrient in dry mass or g nutrient/g tissue). In addition,
he mentioned that future productivity could be influenced by
mechanisms such as luxury consumption or accumulation of
storage polysaccharides and that consequently respiration or
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TABLE 1 | Examples for definitions and uses of resource use efficiency for different organism types along different ecological scales.

Limiting

resource

Organism type Definition Measured as Ecological scale References Limitation

Nutrient Terrestrial plants Inverse of nutrient

concentration in plant tissue

Tissue nutrient concentration Individual

organism/

community

Chapin, 1980 Only valid for

short-lived plants

Nutrient Forest Inverse of nutrient

concentration in the

aboveground litterfall, root

turnover and organic matter

increment of vegetation

Litterfall mass/ litterfall N

content

Individual

organism/

community

Vitousek, 1982 Assumption that

litterfall is a

constant

proportion of

ANPP

Nutrient Microbial Fraction of consumed

organic N that is not

released as ammonium

(UN-MN)/UN

UN, gross rates of amino-acid

consumption

MN, gross N mineralization

rate determined via stable

isotope analysis

Community Mooshammer et al.,

2014

Nutrient Freshwater and

marine plankton

Biomass production per unit

of limiting nutrient

Biomass or biovolume/total

phosphorus

Community Ptacnik et al., 2008;

Filstrup et al., 2014;

Hodapp et al., 2015

Standing stock,

not considering

loss due to

consumption

Nutrient Terrestrial

ecosystems

Nutrient uptake Left over nutrient in soil Ecosystem Cardinale et al., 2006

Nutrient Marine Plankton Amount of C or nutrient

incorporated into biomass

Copepod RUE was calculated

total copepod C produced

per unit algal N

Copepod NUE was calculated

as copepod tissue N per unit

algal N

Community Plum et al., 2015 Standing stock

Water Terrestrial, forest,

peatlans,

grassland

The amount of C

assimilated per unit of water

loss by transpiration or

inverse of transpiration ratio

GPP/ transpiration Ecosystem Briggs and Shantz, 1913;

Cowan and Farquhar,

1977, see also Brümmer

et al., 2012

Water Temperate steppe Photosynthesis per unit of

water loss due to respiration

Leaf photosynthesis/ leaf

transpiration

Leaf Niu et al., 2011

Water Temperate steppe Gross ecosystem

productivity per unit water

transpired

GEP/ transpiration Canopy Niu et al., 2011

Water Temperate steppe Productivity per unit water

transpired

GEP/ canopy transpiration,

net ecosystem CO2

exchange/ evapotranspiration,

leaf photosynthesis/ leaf

transpiration

Leaf, canopy and

ecosystem

Niu et al., 2011

Radiation Forest ecosystems GPP per unit radiation

intercepted by terrestrial

vegetation

Net ecosystem exchange

fluxes of CO2/absorbed

photosynthetically active

radiation (PAR)

Ecosystem Garbulsky et al., 2010

Carbon Microbial Biomass C produced per

unit organic carbon

resource C consumed

Growth rate/(growth rate +

respiration rate)

Community Keiblinger et al., 2010

The limiting resources used for the examples as well as possible limitations of the respective measurements are given.

rates of photosynthesis and assimilation might be more adequate
measures of the efficiency of nutrient use. Vitousek (1982) further
pointed out that the definition of inverse concentrations in
plant tissue can only be applied to short-lived plants, because in
perennial plant species seasonal processes, such as withdrawal
of nutrients from senescing leaves, allow within-individual
recycling of nutrients. He suggested quantifying resource use
efficiency as the inverse of the nutrient concentration of the

aboveground litterfall, root turnover, and the organic matter
increment. However, this approach only works when litterfall
mass is a constant proportion of ecosystem production, which
is usually not the case since higher proportions of nutrients
are allocated to wood production than leaf production across
gradients of forest productivity (Binkley et al., 2004).

Water use efficiency (WUE) in plant communities is
usually quantified as ratios of gross primary production
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over transpiration, i.e., unit of water loss (Garbulsky et al.,
2010; Niu et al., 2011; Brümmer et al., 2012). In aquatic
systems, RUE usually refers to biomass production per unit of
nitrogen or phosphorus. Here, biomass production is commonly
quantified as somemeasure of standing stock (particulate carbon,
biovolume, or other proxies, such as chlorophyll a concentration
for phytoplankton) and divided by values of total pools of the
limiting nutrient (Ptacnik et al., 2008) or similar quantities
representing the degree of nutrient limitation (Breton et al.,
2017). Another example is the approach by Hood et al. (2018)
who used the ratio of net primary production, calculated as
the difference between gross primary production (GPP) and
autotrophic respiration divided by nutrient uptake as a measure
for RUE of the autotroph community. Rates of GPP are generally
laborious or even infeasible to obtain, especially in the field.
Hence, the above definitions all use measures of standing stock
as proxies for productivity. However, few studies report actual
rates, such as photosynthetic capacity per leaf nitrogen content
(Field and Mooney, 1983) and ratios of productivity rates over
nutrient supply (Lehtinen et al., 2017).

Thus, the major divide between different applications of RUE
is the difference between using gross and net production, and
replacing the latter with estimates of standing stock. This is
crucial as it has strong implications for interpretation. Gross
production is an estimate of realized productivity including
losses (exudation, excretion, or mortality through senescence and
consumption), whereas especially in aquatic systems, realized
productivity is often only weakly related to standing stock at all.
Hence, a major drawback of using estimates of standing stock
instead of productivity rates is that it is impossible to determine
biomass losses due to consumption, which is a bias that will differ
strongly between ecosystems.

For example, one general difference between aquatic and
terrestrial systems is that aquatic systems are characterized by
rapidly growing primary producers, which are more efficiently
consumed by herbivores (Shurin et al., 2006). In part, this
originates from better palatability of phytoplankton compared
to terrestrial plants due to lower proportions of low-quality
structural components, such as lignin or cellulose (Hessen et al.,
2004). Consequently, aquatic systems have higher energy transfer
efficiency compared to terrestrial ecosystems (Cebrian, 1999).

However, other system-specific caveats in using gross or net
productivity or standing stocks also apply. In forests, nitrogen use
efficiency (NUE) depends on resource resorption from senescing
leaves and should therefore be integrated over the whole year,
which is hardly feasible inmost studies (Birk andVitousek, 1986).
Thus, any resource use efficiency determined based on standing
stock values is confounded by system-specific conditions, which
complicates the interpretation of observed differences between
systems.

Similar issues are debated regarding differing ways to quantify
the amount of limiting resource in a system. Using total resource
pools such as soil N or P, or total N and P in water, ignores
the fact that not all of this pool may be available to organisms.
Additionally, bioavailability of resources differs considerably
between nutrient types (Soares et al., 2017). Thus, any RUE
calculated based on “total nutrient pool” measurements will

inevitably deviate from the real ratio. Similar issues arise when
using remaining resource concentrations in the ecosystem as
a proxy since these do not reflect the available, but only the
left-over resource pool.

A third line of differences between RUE approaches captures
the identity of the potentially limiting resources (Table 1),
which reflects different physiological processes and their distinct
resource requirements, as well as system-specific constraints on
availability. For example, contrary to aquatic systems, water
availability is one of the most crucial and limiting factors to
plant growth and photosynthesis in terrestrial systems (Farooq
et al., 2012). Therefore, water use efficiency (WUE) is only
relevant in a terrestrial setting. Several approaches to RUE in
autotroph organisms focus on photosynthesis, i.e., relate to
the efficiency of using light energy and water to transform
atmospheric CO2 into biomass. Thereby, water use efficiency
(WUE) and light use efficiency (LUE) in plants mainly reflect
processes of carbon fixation and thus differ from nitrogen use
efficiency, which is the result of carbon fixation AND protein
synthesis. Heterotrophic organisms, in contrast to autotrophs,
rely on organic carbon as their main energy source and their
growth ismajorly constrained by the nutrient content of their diet
(Hessen et al., 2004). Therefore, the energy and the matter related
aspects of RUE are rather tightly coupled. In heterotrophic
microbes, however, the balance between metabolic processes is
highly regulated and therefore resource use of carbon as well as
nitrogen and other nutrients is rather flexible (Keiblinger et al.,
2010; Mooshammer et al., 2014). Thus, although RUE definitions
for different types of resource or organism might resemble each
other, the observed patterns will likely vary as RUE is regulated
by different mechanisms.

UNIFYING THE CONCEPT OF RUE: A
SUGGESTION

Given the plethora of alternative definitions and proxies for
variables in numerator and denominator of the ratio quantifying
RUE, it might be worthwhile taking a step back to reconsider
what exactly RUE is supposed to represent and under what
circumstances the common assumptions hold. According to
its general definition, RUE is the ratio of the amount of
biomass produced (i.e., productivity) per unit resource. However,
regardless of the difficulties in choosing the most adequate or
representative variables for its quantification, the relationship
between resource availability and productivity is far from trivial
as it involves essentially two processes, the uptake and the
conversion of resources into biomass. This aspect is illustrated
by the “production ecology equation” (Monteith andMoss, 1977;
Binkley et al., 2004, Eqn. 1), where the realized gross productivity
of a system is determined by the amount of resource supplied, the
proportion of resource taken up, and the efficiency of converting
the ingested resource into new biomass.

GPP = resource supply x resource uptake x resource use

efficiency (1)
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Depending on the relative increase or decrease of each of the
three components in the equation and the position along the
resource supply axis, productivity can show correlations of
either direction with RUE. Hence, interpretation of empirical
patterns becomes less straightforward. However, the knowledge
of potential feed-back mechanisms and interactions between
these three components offers the opportunity to understand
diverging patterns across environmental conditions and
systems.

For example, the common assumption originating from
the concept of “diminishing marginal returns” (de Wit, 1992)
describes a decelerating increase of biomass accumulation
with an increasing supply of resource (Figure 1). This implies
decreasing levels of RUE with increasing resource supply (Niu
et al., 2011), but this assumption does not hold in general (Binkley
et al., 2004). An addition of resources can lead to both, enhanced
or reduced, RUE in the resource that was manipulated (Han
et al., 2016, see also sections RUE Under Multiple Resource
Limitation and RUE Across Ecological, Temporal, and Spatial
Scales). Binkley et al. (2004) show that higher water supply
increased the amount of light captured by a clonal eucalyptus
stand, but these increased levels of light capture were lower
than the increase of GPP, which indicates an increase in RUE of
light. Similarly, water uptake increased in response to elevated
water availability, but again the differences were smaller than the
relative changes in GPP, indicating higher levels ofWUE (Binkley
et al., 2004).

FIGURE 1 | Conceptual graph describing the relationship of resource use

efficiency (RUE) and production with increasing levels of resource supply. The

law of “Diminishing marginal returns” predicts decelerating rates of production

with increasing resource supply. RUE on the other hand is usually negative at

very low resource supply rates (yellow) due to resource losses as a

consequence of general maintenance mechanisms (e.g., respiration). With

increasing resource supply RUE increases until limitation by other resources

constrains resource needs (orange). Finally, at very high resource supply levels

saturation sets in (blue) which gradually decreases the amount of a particular

resource that can be incorporated into new biomass.

In fact, the effect of increased resource supply on productivity
depends on the scale of operation (leaf vs. canopy) and the type of
resource (light vs. nutrients) (see section RUE Across Ecological,
Temporal, and Spatial Scales). In terrestrial ecosystems, the
assumption of decreasing RUE as resource supply increases
at least partly holds at the leaf level. Physiological constraints
lead to negative net gains of resource (i.e., higher losses
due to for example respiration than gains in resource) and
accordingly negative RUE values at very low levels of resource
supply. As a consequence, RUE must increase at the lower
end of resource supply until it is increasingly constrained by
limitation from other resources and finally decreases as the
saturation point for a particular resource is reached (Figure 1).
However, the RUE patterns at the leaf scale can vary substantially
from patterns at higher organismal or ecological level (see
section RUE Across Ecological, Temporal, and Spatial Scales).
The difference between these observed patterns arise from
the variable forms of relations between resource uptake and
somatic (or numerical) growth. Growth directly depends on
external resource supply only if there is no storage involved,
otherwise growth depends on the internally available resource
stocks (e.g., cell quotas, i.e., intracellular level of the limiting
nutrient) (Monod, 1950; Droop, 1983). In phytoplankton, the
ratio between minimal cell quota (reflecting demand) and
maximal cell quota (reflecting storage) can give information on
the degree of luxury consumption possible, i.e., to what extent
an organism is able to take up and store surplus resources.
The potential decoupling of supply and production through
luxury uptake and storage differs between resource types and
organisms leading to different relationships between resource-
supply and RUE at the individual scale and above. Moreover,
it allows for preemption effects, where RUE is not driven by
the potentially most productive species but by species able to
monopolize resources through rapid uptake (Schmidtke et al.,
2010; Kardol et al., 2013).

Most established ways of calculating RUE do not consider
uptake explicitly, as in many empirical situations disentangling
uptake and conversion efficiency is not trivial. Still, we
recommend the use of the ecology production equation in order
to explicitly state the assumptions underlying the calculations
(Figure 2). This also implies to acknowledge different roles for
both functional response (i.e., intake rate of a consumer as
a function of resource density) and numerical responses (i.e.,
consumer population density as a function of resource density)
to resource gradients, which has strong implications for altering
the supply to RUE relationship at different levels of organization
(see section RUEAcross Ecological, Temporal and Spatial Scales).

RUE UNDER MULTIPLE RESOURCE
LIMITATION

For decades, primary production in communities was considered
to be limited by the least available nutrient, reflecting the
classical law of the minimum postulated by Sprengel (1826) and
popularized by Liebig (1840). However, more recent evidence
suggests that primary production in multispecies communities is
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FIGURE 2 | Based on the production ecology equation, realized productivity

(Preal) is a product of potential productivity (Ptot), resource uptake (U), and

resource use efficiency (RUE). Rearranging the equation gives the common

definition for RUE as the realized productivity divided by the amount of

assimilated resources, which is influenced by resource availability and uptake.

Thus, several ecological mechanisms have to be taken into account when

quantifying and interpreting RUE patterns.

frequently limited bymultiple nutrients (Arrigo, 2005; Elser et al.,
2007; Harpole et al., 2011). At the organism level, biochemical
processes can be actively and passively co-limited by nutrients
substituting each other, regulating each other’s uptake rate or
being equally essential (Saito et al., 2008; Bonachela et al., 2015;
Sperfeld et al., 2016). At the community level, co-limitation
additionally occurs as the result of individual populations being
limited by different resources (Danger et al., 2008).

The predominance of co-limitation has also direct
consequences for the definition of RUE, which in most
cases is defined as biomass production (realized productivity)
per single, limiting resource reflecting potential productivity.
Until now, co-limitation of resources has been little considered
when using RUE (but see Lehtinen et al., 2017, who include
resource availability and resource ratios in their (phytoplankton)
model; Hirose and Bazzaz, 1998; Tarvainen et al., 2015; Han
et al., 2016). Here, we discuss the importance of acknowledging
resource ratios when addressing RUE (section Stoichiometry and
RUE) and use this discussion to address RUE across multiple
trophic levels (section Multiple Trophic Levels).

Stoichiometry and RUE
Multiple resource limitation can be considered in different
ways when assessing RUE. One way is to explicitly mark the
transition between limitation by one resource to limitation
by another, e.g., by using the concept of threshold elemental
ratio (TER) (Figure 3). Here, one resource is limiting at any
time but the identity of the limiting resource can switch
depending on the supply ratio. TER was introduced in the

FIGURE 3 | Conceptual figure modified after (Mooshammer et al., 2014). The

relation between threshold elemental ratio (TER) and resource use efficiency

(RUE) depending on the available resource ratio. The TER is defined as the

optimal resource elemental ratio for consumer growth (Urabe and Watanabe,

1992). The TER marks the ratio of two resources above which a maximal RUE

for one resource is reached (here resource 2) as this resource becomes

limiting. While the limiting resource is expected to be used for growth, the

resource in excess must be disposed of.

framework of Ecological Stoichiometry (ES) (Sterner and Elser,
2002). ES is used to describe and understand the relation
between organisms and populations and their surrounding
environment based on the availability of and demand for
multiple resources. The TER concept has been developed to
understand the interactions between trophic levels (Urabe and
Watanabe, 1992; Sterner, 1997; Sterner et al., 1997), especially to
distinguish between energy-limited and nutrient-limited growth.
Further, this approach was used to investigate consumer-
resource interactions (Andersen et al., 2004) and fluxes of energy
and materials (Allen and Gillooly, 2009). When consumers
ingest food of different chemical composition, they can be
limited by energy if the C:nutrient ratio in their food is very
low. With increasing C:nutrient ratio, however, the nutrient
becomes so dilute in the ingested particles that growth rate
decreases even if ingestion rates are maximal (Urabe and Sterner,
1996).

The threshold elemental ratio is the food C:nutrient ratio
at which this switch between C- and nutrient limitation
occurs, and can differ between consumer species by an
order of magnitude, depending on nutrient requirements
(Frost et al., 2006). TER thus reflects that organisms require
elements for metabolism in ratios which are often different
from what is available in their environment. While primary
producers mainly obtain the same nutrient ratios as their
environment (Elser and Urabe, 1999; Güsewell, 2004), higher
trophic levels, such as zooplankton consumers or invertebrate
and vertebrate taxa, keep a relatively fixed elemental body
ratio, independent from the available food sources (Andersen
and Hessen, 1991; DeMott et al., 1998; Elser et al., 2000;
Jaenike and Markow, 2003). Therefore, consumers demand
for essential nutrients and the relatively plastic balance of
these nutrients in their prey can create elemental mismatches.

Frontiers in Ecology and Evolution | www.frontiersin.org 6 January 2019 | Volume 6 | Article 23356

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Hodapp et al. Unifying Resource Use Efficiency

Keeping such a fixed elemental body ratio and thus facing
a mismatch compared to the ratios mostly manifested by
producers, requires physiological mechanisms (by regulating
their cellular nutrient content via excretion or respiration)
and implies some costs (Elser et al., 2001; Kooijman et al.,
2004; Vrede et al., 2004). Some consumers adjust their food
intake by increasing the individual grazing rate with increasing
mismatch between their own requirements and their food as
demonstrated in a meta-analysis, pointing toward compensatory
feeding responses (Hillebrand et al., 2009). Others select their
food dependent on its nutritional content (Mayntz et al., 2005)
or digest and retain elements in ratios different from that
in the food in order to minimize the imbalances between
the available food and their requirements. Below, we show
that stoichiometry and stoichiometric mismatches are affected
by changing environmental conditions (section RUE in a
Changing Environment) and subject to adaptation onmicro- and
macroevolutionary time scales (section Resource Use Efficiency
Across Temporal and Spatial Scales).

While TER has mainly been used to characterize the
resource need of heterotrophic consumers, the concept also
applies to autotrophs or mixotrophs, where the limitation
between two elements switches at optimal ratios between
these resources (Figure 3). This has been described as a
mechanism to enhance nutrient supply under nutrient-limited
conditions for phytoplankton (Rothhaupt, 1996; Klausmeier
et al., 2004a,b; Hillebrand et al., 2013) as well as terrestrial
plants (Wakefield et al., 2005; Farnsworth and Ellison, 2008).
Recent evidence suggests that mixotrophs (i.e., organisms that
are able to use different sources of energy and carbon) may
buffer stoichiometric constraints for herbivores and thus stabilize
secondary production compared to systems dominated by
phototrophs (Moorthi et al., 2017).

A second approach to consider multiple resource limitation
when assessing RUE (Figure 4) is to distinguish between
balanced and imbalanced resource supply (Cardinale et al.,
2009). Nutrient uptake, and therefore RUE, also depend on the
balance or imbalance of resource ratios, the heterogeneity of
their spatial distribution and the identity of the most limiting
resource. Cardinale et al. (2009) separated between the amount
of resources and the ratios of these resources by standardizing
(rescaling) all resource concentrations and then using Euclidian
geometry for distinguishing between resource balance and
imbalance. Balanced resource supply means that all resources
are equally abundant with all of them equally rare or abundant.
Imbalanced resource supply indicates that some resources are
available in excess while others are limiting. Studies using this
approach showed that more balanced supply of resources leads
to more efficient resource use and thus higher overall RUE
as less resources remain unconsumed (Gross and Cardinale,
2007; Cardinale et al., 2009; Hodapp et al., 2016). This could
reflect the low RUE for the overly abundant resources or the
inability to access resources if uptake of multiple resources is
co-dependent.

Recently, Han et al. (2016) extended a model based on the
production ecology equation considering one resource (Binkley
et al., 2004) to integrate multiple resource use efficiency. A

FIGURE 4 | Relationships between resource ratio and RUE under multiple

resource limitation. Under conditions when one resource is limiting (either high

or low R1:R2 ratio) RUE can be determine based on a single resource (either

R1, green shaded area, or R2, blue shaded area) whereas multiple resource

limitations need to be considered for the determination of RUE if both

resources are in higher supply (more balanced).

test of their algorithm on a water-availability gradient in semi-
arid grasslands showed that water availability affected the
resource absorption rates, resource use efficiencies and resource
availabilities of all three resources in their model, water, light and
nitrogen, and that their interaction jointly regulated ecosystem
productivity.

Multiple Trophic Levels
Approaches considering multiple resources have major appeal
when addressing RUE across more than one trophic transfer. The
community structure of a food web depends on the efficiency
of energy transfer between different trophic levels (Hutchinson,
1959; Hairston et al., 1960). Hessen et al. (2004) argued that
while energy is given in joules, carbon units are more suitable to
describe both energy and matter flows. However, the efficiency of
C transfer depends also on the cell quotas of N and P relative to
C (Hessen et al., 2004). Moreover, the ratios in which consumers
digest and retain elements depend on organism-specific resource
limitations and might differ from that in the food material.
Another example for multiple nutrient interactions across
trophic levels are organisms with an intermediate role in the
food web, that “repack” small food compounds by ingesting and
assimilating them and thus serve as more complex food sources
for higher trophic levels. In general, uptake and utilization
efficiency of nutrients differ among organisms on different
trophic levels and lead to differences in the release of resources,
which is greater for the resource in excess. This leads to the
suggestion to consider not only one but multiple resources when
defining RUE among multiple trophic levels.
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RUE ACROSS ECOLOGICAL, TEMPORAL
AND SPATIAL SCALES

The constraints on resource use efficiency are likely to be different
at different scales of organization from individuals to ecosystems
(section Resource Use Efficiency Across Scales of Organization)
and also when including more environmental heterogeneity
when increasing the temporal and spatial scale of inference
(section Resource Use Efficiency Across Temporal and Spatial
Scales).

Resource Use Efficiency Across Scales of
Organization
The cellular and individual RUE are mainly characterized by
the functional response of resource uptake to resource supply,
reflecting the concentration—dependent on an increase in uptake
as well as luxury consumption and storage. The RUE at
the level of populations, communities or ecosystems involve
resource use in the form of somatic growth or numerical
responses (Figure 5). Moreover, the processes affecting resource
demand and (co)limitation are highly different between these
different scales (Danger et al., 2008; Saito et al., 2008). At
the scales of cells, organs or organisms, limitation is mainly
based on biochemical processes. Co-limitation occurs when the
resource uptake and incorporation of one element depend on
the availability of another. Within populations, genetic, and
phenotypic variation between individuals creates differences
in demand for—and thus limitation by—different resources.
This variability will increase when considering different species
or species interactions (competitive or mutualistic), as the
community-level resource use differs from the one exhibited
by single species (Figure 5). Thus, the role of stoichiometry
of resource supply will also increase with levels of ecological

FIGURE 5 | Resource use and resource demand depending on organizational

levels from single cells to ecosystems. Increasing complexity of resource use

processes and types of resource limitation decrease the predictability of RUE

by up or downscaling across levels of organization.

complexity, especially if it includes interactions between species
(Kay et al., 2005). For example, mycorrhiza-plant associations
can be described as a trade-balance between the abundant access
of plants to carbon and the access of the fungal partner to soil
nutrients (Schwartz and Hoeksema, 1998; Johnson, 2010). Here,
the shared use efficiency for the different resources is higher than
predicted from each partner’s specific RUE. Similar mutualistic
increases in effective RUE can be found in endosymbiont bearing
animals (Fenchel and Finlay, 1991), but also in ecosystem-wide
facultative mutualisms (Bradley and Kenneth, 2001). In any
of these cases, RUE is predicted to change when extending
the scope from single individuals to species to the community
level, where the directionality of change depends on the type
of interaction between organisms. Mutualistic interactions and
complementarity can be predicted to increase shared resource use
efficiency, whereas interference competition or predation might
reduce overall RUE.

Much empirical evidence supports the idea that the
relationship between resource supply and RUE depends on
the scale of organization. Increased precipitation decreases the
efficiency of water use at the level of single leaves, but increases
it at the canopy and ecosystem level (Niu et al., 2011). Likewise,
leaf-scale resource use efficiency for light in trees declines with
increasing irradiance, but increases at the scale of entire forests
(Binkley et al., 2004). In these examples, the efficiency of the
functional response decreases with supply (lower marginal
gains), but the interactions between individuals and species as
well as the inclusion of growth responses can lead to different
relationships at the community scale. This is true beyond
autotrophs. For herbivores, decreasing food quality (increasing
stoichiometric mismatch between consumer and plant) leads to
increased ingestion rates at the level of individuals, but decreased
population or community biomass (Hillebrand et al., 2009). The
latter example reflects that individuals tend to overcome shortage
by compensatory functional responses, whereas poor growth
efficiency leads to reduced resource use efficiency at higher levels
of organization.

Resource Use Efficiency Across Temporal
and Spatial Scales
Examining patterns of RUE at larger spatial and temporal scales
will, in most cases, lead to an increase in the heterogeneity of
resource supply rates and ratios and thereby alter RUE. The
consequences of spatial heterogeneity of resource supply for RUE
have been well developed in models and experiments conducted
in the framework of metacommunity (Leibold and Miller, 2004)
or metaecosystem (Gounand et al., 2018) ecology. In both
theories, resource use in local habitats (patches) is explained
from local community dynamics as well as regional processes
(dispersal, mobility). Regional scale RUE will be affected by
three major factors, (i) the relative difference in the resource
supply between patches, (ii) the spatial connectivity between
patches, and (iii) the spatial arrangement of the heterogeneity in
resource supply. Theory and empirical evidence give predictions
for changes in RUE across all pairwise combination of these
axes (Figure 6). With respect to resource supply, models,
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FIGURE 6 | Conceptual graph describing consequences of scaling up in

space for RUE. If multiple resources are more heterogeneously distributed in

space, RUE will decline unless high spatial connectivity (high rate of dispersal

or active movement of consumer) allows efficient capture of multiple resources

across the resource landscape (Hodapp et al., 2016). Thus, RUE will be

minimal if resources are heterogeneously distributed, but low connectivity

prevents consuming resources in different patches. The positive effect of

dispersal or mobility decreases however, when neighboring patches differ

strongly in their resource supply, reflected by the difference between a more

gradual heterogeneity in the left panel compared to a more patchy difference in

resource supply in the right panel. As detailed in the text, similar arguments

can be made for temporal fluctuations in resource supply.

and experiments converge on the conclusion that a more
heterogeneous landscape of resource supply leads to overall
lower RUE at the landscape scale. On the one hand, the
heterogeneity affects how well resource uptake traits match
the local environment. On the other hand heterogeneity in
multiple resources likely leads to stoichiometric imbalances,
leading to higher amounts of resources left over and lowered
multi-element RUE (Gross and Cardinale, 2007; Hodapp et al.,
2016; Gülzow et al., 2019). Consequently, the RUE at larger
spatial scales becomes more dependent on the variability and
complementarity of resource traits between species (Cardinale
et al., 2004; Hodapp et al., 2016). Regarding spatial connectivity,
spatial connectivity alters the spatial imprint on RUE if diffusive
processes homogenize resource differences (Gülzow et al., 2019)
or organisms are able to move between patches (Marleau et al.,
2015). In both cases, resource supply will be experienced as less
heterogeneous and regional RUEwill not decrease asmuch as in a
low connectivity system (Figure 6). Extending these predictions,
stoichiometric distribution models have been developed to
address how the RUE of a spatially foraging consumer will
eventually lead to spatial patterns in resource stoichiometry
(Leroux et al., 2017).

Both axes will be altered by the spatial distribution of resources
(Hodapp et al., 2016). In a landscape characterized by smooth
resource gradients, neighboring patches are similar in their
resource supply, and a short-distance disperser is likely to find
similar resource conditions as in its original patch, increasing
RUE (Figure 6). By contrast, in a landscape where resources
are much more randomly distributed, a species performing well
in one patch and producing a lot of offspring might disperse
into neighboring patches with highly different resource supply,

where its RUE will be low. Depending on the relative strength
of dispersal compared to local responses of population growth to
resource availability, a very patchy distribution of resources will
be detrimental to overall resource use.

In contrast to the large number of studies examining
RUE in space, there is a much smaller body of literature
on the effect of larger temporal scales on RUE. However,
in principle the same arguments prevail: RUE will decrease
when measured over longer time scales if different resources
are supplied asynchronously, leading to temporal imbalance in
supply stoichiometry, analogous to the spatial supply imbalance
(Figure 6). This effect will be less prominent if long-lived species
can integrate over the fluctuations in supply, analogous to the
effect of connectivity in space. RUE will also be higher if changes
in temporal supply are gradual, whereas pulsed, abrupt changes
will decrease the match between resource use traits and resource
availability (Figure 6). A nice support for this analogy is a
study on Norwegian spruce stands, showing that RUE peaks for
different resources occurred in different seasons (Tarvainen et al.,
2015).

On evolutionary time scales, the stoichiometric match
between resource requirements and supply ultimately determines
the trade-off between the material and energetic costs of
a particular trait or strategy and its fitness benefits (Kay
et al., 2005). For instance, resources that are allocated to
structural components as opposed to fast growth can be valuable
investments if they are beneficial in terms of reproductive success.
Thus, flexibility in elemental ratios and therefore mechanisms
driving RUE are subject to selective pressure.

In general, responses to spatial and temporal gradients of
resource supply might differ (Paruelo et al., 1999), thus, more
research joining both perspectives might be needed to assess the
full scale dependency of RUE.

RUE IN A CHANGING ENVIRONMENT

Given the central role that has been ascribed to RUE in explaining
biodiversity effects on ecosystem processes, it is mandatory to
understand how RUE will directly be affected by anthropogenic
drivers of environmental change. These drivers can be separated
in two categories: those altering RUE through altering resource
supply, and those altering RUE by altering the demand.

Anthropogenic changes in supply include eutrophication (or
in later years also re-oligotrophication), fossil fuel burning
increasing e.g., carbon dioxide availability in the atmosphere,
changes in precipitation or changes in light climate, e.g., through
increased turbidity. The effect of altering the availability of any
of these resources will alter the RUE for this resource, where the
sign depends on the non-linear relationship between supply and
RUE (see section Unifying the Concept of RUE: a Suggestion,
Figure 1). Additionally, changes in the supply of any resource can
indirectly influence RUE for another resource, a phenomenon
often observed in agricultural studies, which aim to increase
productivity and RUE with minimal effort in irrigation and
fertilization. Examples include increasing water use efficiency
over gradients of CO2 availability (Policy et al., 1993; Keenan
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et al., 2013) and light (Aranda et al., 2007). Likewise, enhancing
CO2 increased light and nutrient use efficiency (Hirose and
Bazzaz, 1998).

Global warming is an example for an anthropogenic driver
of global change affecting the demand rather than the supply.
It has only recently been fully accepted that one of the
consequences of global warming is that the inevitable increase
in base metabolic rates and growth rates alters the absolute
and relative demands for nutrients. One of the most elegant
examples is the model by Thomas et al. (2017) that shows
how the minimal requirements for a nutrient increase with
temperature, whereas simultaneously an increase in nutrient
supply allows for a thermal optimum shifted to higher
temperatures. While others have argued that the increase in
demand might be alleviated by higher efficiency in resource
use (Toseland et al., 2013), there is evidence from studies
on phytoplankton showing that half saturation constants for
nutrients increase with temperature (Bestion et al., 2018)
or that internal algal stoichiometry reflects higher relative
nutrient limitation (Yvon-Durocher et al., 2015). A recent
study investigating combined temperature and supply level
effects on phytoplankton community growth (Verbeek et al.,
2018) showed that whereas single treatments of temperature
increase or oligotrophication led to increases in RUE, the
combined treatment resulted in non-linear responses, reflecting
themismatch between increasing demand and decreasing supply.
Similarly, shifts in biochemical composition of zooplankton
species with increasing temperature were shown, where the sign
of the effect was dependent on resource availability (Bullejos et al.,
2014). In addition to effects of increasing mean temperature,
species responses to changes in temperature variance are also
governed by asymmetric thermal performance curves. In most
cases, performance declines faster at superoptimal temperatures
than it increases at suboptimal temperatures. Consequently, the
effect of temperature fluctuations on growth rate (and thus
resource demand) in the short term can be net positive or net
negative depending on the degree of asymmetry in the thermal
performance curve (Bernhardt et al., 2018). On longer time scales
different adaptive response were shown to evolve under different
timescales depending on the frequency of the environmental
fluctuation (Botero et al., 2015). Thus, the changes in demand and
supply of resources that interactively shape responses of RUE are
influenced by the magnitude and fluctuation of environmental
properties.

BIODIVERSITY EFFECTS ON RUE

A common perception among ecologists is that higher levels of
diversity (richness and evenness) generally result in higher levels
of depletion of the supplied resources, i.e., resource use efficiency,
which then leads to an increase in biomass production (Figure 7).
While there is plenty of theoretical and empirical support for this
assumption for mainly terrestrial ecosystems (Cardinale et al.,
2006), the general patterns show quite a variability across systems
(Balvanera et al., 2006). In fact, study outcomes from natural
systems suggest a considerable flexibility of diversity effects on

RUE and production (Filstrup et al., 2014; Gagic et al., 2015;
Hodapp et al., 2015; Fontana et al., 2018).

As illustrated by the production ecology equation, system
productivity is determined by more than just RUE. In fact, the
common diversity effects, such as complementarity, selection,
and facilitation are, strictly speaking, associated with resource
uptake rather than resource use efficiency itself (Nijs and Impens,
2000). As illustrated earlier, resource uptake is intricately related
to and regulated by RUE through resource demand, depending
on environmental conditions, species interactions, andmetabolic
constraints.

However, whether increased species richness yields higher
biomass depends on the resource use efficiency traits of
the species that is added to the system. Given a system
with a certain number of species and the associated RUE,
increasing community richness by just a single species will
result in the re-distribution of resources within the species
community and any resource re-distributed from a species
with high RUE to a new species with lower RUE will result
in a reduction of community productivity (Nijs and Impens,
2000). An appropriate example is phytoplankton communities,
where the potential for complementarity effects is lower due
to the rather homogeneous aquatic environment and the fact
that plankton are floating freely in the water column, i.e.,
they have similar access to nutrients. Schmidtke et al. (2010)
showed experimentally that instead of increasing biomass, all
of their tested algal communities declined in biomass when
adding further functional groups to the species assemblage.
They ascribe this pattern to a trade-off between growth rate
and the ability to build larger amounts of biomass as slow-
growing species produced higher biovolumes in monoculture,
but were outcompeted by fast-growing, less productive species in
the species mixtures. Hence, positive effects of diversity on RUE
and production will only occur in case of a positive correlation
between resource uptake and resource use efficiency traits of the
additional species. This is not contradictory to the huge body
of biodiversity-ecosystem functioning (BEF) literature, which,
in the vast majority, reports positive diversity effects. Classic
BEF experiments tend to influence their outcomes, because in
these highly controlled environments the only reason why species
coexist is usually resource complementarity. In natural systems,
however, coexistence is affected by many more mechanisms, e.g.,
dispersal rate, (selective) grazing pressure, and environmental
fluctuations.

Here, adding more species might not or even negatively
affect total RUE when traits mediating coexistence are not or
are negatively related to traits mediating resource use (Mouquet
et al., 2002).

Additional variability in natural systems originates from the
distribution of resource supply. Resource supply can be more
or less heterogeneous in space, time, and the range of resource
options provided, e.g., variability in nutrient ratios. In this
context, more heterogeneous resource supply requires high trait
diversity in uptake and/or resource use in order to achieve
complementarity and high proportions of realized biomass
production. On the contrary, in uniform resource environments
(i.e., low heterogeneity in resource supply), resources will most
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FIGURE 7 | Conceptual figure of possible relationships between diversity measures and resource use efficiency (RUE) or productivity. Positive, neutral or negative

correlations are possible, depending on the match between resource supply and species assemblage. Shaded areas indicate potential variation around the general

trend.

effectively be turned into new biomass when the local community
consists of one or a few species that are well adapted to the given
resource conditions (Hodapp et al., 2016). However, natural
environments are seldom static or uniform. Therefore, in the
more common case of patchy environments and fluctuating
resource conditions over time, large regional species pools,
and sufficient connectivity between patches will always serve
as insurance for sustaining high levels of RUE, and therefore,
ecosystem functioning through time (Danger et al., 2008). These
considerations also hold with regard to other environmental
factors. For instance, Norberg et al. (2001) use a theoretical
framework to illustrate how the phenotypic diversity effects on
functioning are affected by changing environmental conditions.
Empirically, this can be shown by the effect of temporal or spatial
heterogeneity on BEF relationships (Allan et al., 2011; Isbell et al.,
2011). More species are needed to maintain a certain fraction of
the productivity in systems varying more in space or time, as
the species-specific RUE decreases if there are times or places
where the performance of specific species is not maximal. In
other words, environmental dimensionality has to match the
dimensionality of species traits in the local assemblage in order
to guarantee efficient use of the given resources (Ptacnik et al.,
2010), and consequently, higher productivity.

CONCLUSIONS

As discussed in the previous sections, RUE and its role in
governing BEF relationships does not only vary due to organism-
specific physiological properties, but also between levels of

biological organization and in response to heterogeneity in
environmental conditions. Thus, while the ultimate aim of
studies on RUE should be to relate rates of productivity to
the amount of available resource, it might not be feasible to
define a general concept for the quantification and mechanisms
driving RUE that is valid across types of ecosystem, organism,
and resource. Albeit, any deviation from the original concept
that might be necessary needs to be acknowledged and discussed
when making inferential statements. New insights could be
generated by testing the extension of the concept to more than
one nutrient and investigating how anthropogenic alteration of
environmental conditions will affect long-term changes in RUE.
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Organismal traits and their evolution can strongly influence food web structure and

dynamics. To what extent the evolution of such traits impacts food web structure,

however, is poorly understood. Here, we investigate a simple three-species omnivory

food web module where the attack rates of all predators evolve as ecological dynamics

unfold, such that predator trophic levels are themselves dynamic. We assume a timescale

where other vital rates that govern population dynamics are constant and incorporate

a well-known tradeoff between attack rates and the conversion of prey into predator

biomass. We show that this eco-evolutionary model yields a surprisingly rich array of

dynamics. Moreover, even small amounts of selection lead to important differences in

the abundance, trophic, and biomass structure of the food web. Systems in which

intermediate predators are strongly constrained by tradeoffs lead to hourglass-shaped

food webs, where basal resources and top predators have large abundances, but

intermediate predators are rare, like those observed in some marine ecosystems. Such

food webs are also characterized by a relatively low maximum trophic level. Systems

in which intermediate predators have weaker tradeoffs lead to pyramid-shaped food

webs, where basal resources are more abundant than intermediate and top predators,

such as those observed in some terrestrial system. These food webs also supported a

relatively higher maximum trophic level. Overall, our results suggest that eco-evolutionary

dynamics can strongly influence the abundance-, trophic-, and biomass-structure of food

webs, even in the presence of small levels of selection, thus stressing the importance

of taking traits and trait evolution into account to further understand community-level

patterns and processes.

Keywords: consumer-resource interactions, eco-evo dynamics, omnivory, biomass, metabolic costs, trophic

levels

INTRODUCTION

Food webs often share structural similarities across ecosystems, such as the relationship between
the number of species and the number of feeding interactions (Martinez, 1992; Williams and
Martinez, 2004; Gravel et al., 2013), the existence of an upper limit to the number of trophic
levels (Pimm et al., 1991; Williams and Martinez, 2004), and the prevalence of highly repeated
structural modules (McCann et al., 1998; Milo et al., 2002; Williams et al., 2002; Paulau et al., 2015).
Surprisingly, these characteristics are relatively conserved over both space and time (Lafferty et al.,
2008; Dunne et al., 2014; Yeakel et al., 2014), although some of these structural patterns might have
simple statistical underpinnings (Williams, 2010). Understanding the factors that determine these
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structural similarities, despite large differences in the identity
of species and environments that give rise to these food webs
has long been a central issue in ecology (May, 1973; Cohen and
Newman, 1985; Pimm, 1991; Dunne, 2006; Dunne et al., 2008;
Lafferty et al., 2008; McCann, 2011; Allesina and Tang, 2012;
Gravel et al., 2013, 2016).

Multiple biotic and abiotic factors have been shown to
influence food web structure. For example, the transfer of energy
and matter across trophic levels is highly inefficient, which
limits the number of trophic levels (Schoener, 1989; Arim et al.,
2016). The quality of energy also changes across trophic levels:
arthropods are richer in protein than in lipids as their trophic
level increases (Wilder et al., 2013) which is why adaptive
foraging (Kratina et al., 2012) and/or prey switching (Abrams and
Matsuda, 2004) can lead to omnivory in food webs (Thompson
et al., 2007). In addition, environmental variables often determine
food web structure. For example, temperature may decrease the
number of trophic levels (Petchey et al., 1999; Brose et al., 2012),
influence the biomass distribution and body-size structure of
food webs (Yvon-Durocher et al., 2011; Gibert and DeLong, 2014;
Binzer et al., 2016), and alter the energetic structure and function
of soil food webs (Schwarz et al., 2017) as well as the number
of interactions between species in mountain communities (Lurgi
et al., 2012).

Phenotypic traits, such as body size, have long been known
to play an important role in determining food web structure
through gape limitation in aquatic food webs (Arim et al., 2010,
2016) and thus, predator-prey interactions (Vucic-Pestic et al.,
2010; DeLong and Vasseur, 2012; Schneider et al., 2012; Kalinkat
et al., 2013; DeLong et al., 2014). In fact, larger body sizes often
result in consumers that feed at higher trophic levels (Riede
et al., 2011), thus playing a central role in determining food web
trophic structure (Petchey et al., 2008; Iles and Novak, 2016;
Barneche and Allen, 2018). The effect of traits other than body
size, however, has long been overlooked, despite evidence that
such traits can impact both vulnerability to predation (Black and
Dodson, 1990; Hammill et al., 2010; Yin et al., 2011), as well
as foraging rates (Gibert et al., 2017). Trait variation has been
shown to strongly influence predator-prey dynamics (Bolnick
et al., 2011; Schreiber et al., 2011; Vasseur et al., 2011; Gibert
and Brassil, 2014; Gibert and DeLong, 2015; Gibert et al., 2015),
which could in turn impact food web structure and dynamics.
For example, genetic variation on host plants determines which
herbivores feed on them (Barbour et al., 2016) through trait
matching (Dehling et al., 2016), which determines food web
structure from the bottom up. Phenotypic variation in predator
traits, on the other hand, increases predator connectivity
and reduces trophic level (Gibert and DeLong, 2017), which
structures food webs from the top down. Together, these results
suggest that evolutionary changes in traits controlling predator-
prey interactions can have important but poorly understood
impacts on food web structure and dynamics.

Indeed, ecological and evolutionary processes are increasingly
recognized to operate at largely overlapping timescales
(Thompson, 1998; Yoshida et al., 2003; Hairston et al.,
2005; Jones et al., 2009; Cortez and Ellner, 2010; Vasseur
et al., 2011; DeLong and Gibert, 2016; DeLong et al., 2016;

Yeakel et al., 2018a), and the combined effects of these eco-
evolutionary dynamics may have a large influence on food
web structure (Allhoff et al., 2015). Given that genotypes and
phenotypes as well as genetic and phenotypic variation, can all
influence patterns of species interactions, evolutionary change
occurring on ecological time-scales has the potential to impact
ecological dynamics within food webs, thus leading to changes in
abundances across trophic levels, which we refer to as abundance
structure. Considering that biomass is the product of a species
average mass and its abundance, changes in food web abundance
structure may also lead to changes in the distribution of biomass
across the food web, which we refer to as biomass structure. Last,
because trophic levels also change as ecological dynamics unfold
(Gibert and DeLong, 2017), how such changes in abundance
and biomass structure impact the distribution of trophic levels
throughout the food web, which we refer to as trophic structure,
is largely unknown.

Here we assess the effects that low levels of evolutionary
change in traits controlling predator-prey interactions can have
on the abundance, biomass, and trophic structure of a simple
food web. To do so, we investigate the steady state behavior
of the omnivory trophic module (a resource, an intermediate
consumer that eats the resource, and a top predator that eats both;
Figure 1A) where the abundances and the parameters controlling
each predator-prey interaction are subject to selection, and
thus, change over time. We show that even small amounts
of evolutionary change can lead to important differences in
abundance and biomass structure, as well as maximum trophic
level, underlining the potential importance of eco-evolutionary
dynamics in shaping the structure of food webs.

METHODS

The Model
We model the eco-evolutionary dynamics of a three species
omnivory module (Figure 1A) as it is the simplest system where
the trophic level of the top predator can change over time.
The underlying ecological model tracks the abundances of the
top predator (T), the intermediate consumer (C), and the basal
resource (R). We assume that all predator-prey interactions
are controlled by a type-II functional response, determined
by the attack rate (α), and the handling time (η) of the
predator. Resources grow logistically, hence experience density-
dependence, and predators die at constant per-capita rates (dC
and dT). Together, our ecological dynamics are defined by the
following system of differential equations:

dR

dt
= rR

(

1−
R

K

)

−
αRCRC

1+ αRCηRCR
−

αRTRT

1+ αRTηRTR
(1)

dC

dt
= εRC

αRCRC

1+ αRCηRCR
−

αCTCT

1+ αCTηCTC
− dCC (2)

dT

dt
= εRT

αRTRT

1+ αRTηRTR
+ εCT

αCTCT

1+ αCTηCTC
− dTT, (3)

were K is the carrying capacity of the resource, r is the maximal
per-capita growth rate of the resource, εRC is the efficiency of
resource biomass conversion into consumer biomass, εRT is the
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FIGURE 1 | (A) Depiction of the omnivory food web module, where T is the top predator (red), C is the intermediate consumer (black), and R is the basal resource

(gray). Colors are consistent across all figures. (B) Tradeoff between conversion efficiency (ε) and attack rate (α) for different levels of the tradeoff magnitude (γ ). (C)

Changes in abundance over time for all three species, and all evolving attack rates (E), for a low consumer tradeoff (γRC = 0.01). (D,F) Same as in (C,E) but for a

large consumer tradeoff (γRC = 2). Parameter values in Table 1.

efficiency of resource conversion into top predator biomass, and
εCT is the efficiency of consumer biomass conversion into top
predator biomass.

To model the evolutionary component of the full eco-
evolutionary omnivory module, we assume that only the traits
controlling the attack rates of both predators can evolve over
time. If large changes in important underlying traits, such as
body size, were to occur over time, we would expect sweeping
changes across all parameters (DeLong et al., 2014; DeLong
and Gibert, 2016). Instead, we are implicitly assuming that the
timescale is relatively short and selection by the environment is
relatively weak such that the other vital rates in the model remain
constant. Under these assumptions, we model the evolution of
predator attack rates using the standard formulation (Lande,
1976; Kondoh, 2003; Ellner and Becks, 2010; Schreiber et al.,
2011), where the rate of evolutionary change of the focal trait
(here, the attack rates) is determined by the total amount of
heritable genetic variation for that trait (or the product of the
genetic variance, σ 2, with the heritability of the trait, h2), and

the adaptive landscape, defined as the rate of change of the per-
capita growth rate of the focal predator (i.e., its absolute fitness,

Wi =
1
Ni

dNi
dt

) with respect to a change in the evolving trait:

dαi

dt
= σ 2

i h
2
i

∂Wi

∂αi
. (4)

We also assume the existence of a tradeoff between predator
conversion efficiencies and attack rates following previous work
(Mougi and Iwasa, 2010; Van Velzen and Gaedke, 2017), which
leads to reduced conversion efficiencies with increased attack
rates (Figure 1B):

εi = εi0e
−γi(α0−αi), (5)

where εi0 is the maximum conversion efficiency, α0 is the initial
attack rate (at t = 0), and γi is the strength of the tradeoff.
When the strength of the tradeoff, or tradeoff magnitude, is
low, the attack rate and conversion efficiency of the consumer
are relatively independent; when the tradeoff magnitude is
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TABLE 1 | Model parameters and variables descriptions and values.

Parameter

or variable

Name Values

R, C, T Resource, consumer, and top

predator abundances,

respectively

Initial values: R0 = 2,

C0 = 1, T0 = 1

r Maximum per-capita growth rate 1.5

K Carrying capacity 5

αRC,αRT ,αCT Consumer-resource, top

predator-resource and top

predator-consumer attack rates,

respectively

αRC = αRT = αCT = 1, at

t = 0

ηRC,ηRT ,ηCT Handling times, for all three

pairwise interactions

ηRC = ηRT = ηCT = 0.1

dC,dT Consumer and top predator

death rates

dC = dT = 0.8

εRC0
,εRT0 ,εCT0 Conversion efficiencies when the

tradeoff magnitude is zero for all

three pairwise interactions

εRC = εCT = 0.8,

εRT = 0.2

γRC,γRT ,γCT Tradeoff magnitude for all three

pairwise interactions

Specified in each figure

σ2
i
h2
i

Product of the genetic variance

σ2
i
, and the trait heritability h2

i
,

for each species i (heritable

genetic variation)

σ2
i
h2
i
= 0.5 for all i unless

otherwise specified

high, low attack rates lead to high conversion efficiencies and
vice versa (Figure 1B). The tradeoff magnitude can lead to
differences in transient and steady state dynamics in abundance
(Figures 1C,D), as well as trait evolution (Figures 1E,F).
Different assumptions regarding this tradeoff are possible for
different ecological contexts, though a thorough exploration of
how these would play out is beyond the scope of the present
paper [but see (Gounand et al., 2016) for examples of variation in
such assumptions in a different context]. The starting parameter
values of the model were chosen to allow species coexistence in
the absence of evolution.

Food Web Structure
To address how eco-evolutionary dynamics may affect food
web structure, we tracked equilibrium abundances for all three
species across different combinations of the tradeoff magnitude
associated with the attack rate of the intermediate consumer
preying on the basal resource (γCR) and that of the tradeoff
magnitude associated with the attack rate of the top predator
preying on the consumer. The tradeoff magnitude associated
with the attack rate of the top predator preying on the basal
resource (γTR) was kept constant and equal to unity. Thus, we
were able to examine how species abundances changed across
trophic levels. The model can lead to oscillations in abundance
in certain regions of parameter space, in which case we used
a geometric mean over time as our measure of average species
abundance.

To assess how trophic structure changed over time, we
measured the maximum trophic level in the food web module
over time, which has been shown to change dynamically with

species abundance in the omnivory module (Gibert and DeLong,
2017). Using the standard definition of trophic level, TLi = 1 +
∑n

j=1 pijTLj, where TLi is the trophic level of species i, and pij is

the fractional contribution of species j to the diet of species i, it is
possible to rewrite the pij as a function of predator foraging rates.
The trophic level of the top predator, T, then becomes:

TLT = 1+
1

εRT
αRTRT

1+αRTηRTR
+ εCT

αCTCT
1+αCTηCTC

×

(

TLRεRT
αRTRT

1+ αRTηRTR
+ TLCεCT

αCTCT

1+ αCTηCTC

)

, (6)

where TLR = 1 and TLC = 2. Because the foraging rates are
functions of time, the trophic level of the top predator, TLT (i.e.,
the maximum trophic level of the omnivory module) will also be
a function of time. The trophic level will approach a stable steady
state as the abundances approach a stable steady state.

Last, we converted steady state abundances into biomass by
multiplying steady state abundances by species body mass. We
defined the mass of the basal resource to be equal to 1 unit
of mass, and used well-known predator-prey body size scaling
relationships (Layman et al., 2005; Brose et al., 2006; Riede
et al., 2011) to obtain the mass of the intermediate consumer
and that of the top predator. The scaling exponent between
prey and predator mass varies widely in nature but has a
mean of 1.16 (Brose et al., 2006). We examined three different
scaling exponents to observe its influence on equilibrium biomass
structure: 0.85, 1.16, and 1.5, while keeping the intercept constant
and equal to 1.80 (Brose et al., 2006). These three scenarios
impose different constraints on the biomass structure of the food
web. A larger scaling exponent means that predators tend to be
much larger than their prey compared to a scenario where the
exponent is smaller. All analyses were performed in Julia v0.62
(Bezanson et al., 2014) using the DifferentialEquations package
(Rackauckas and Nie, 2017). Julia code is available to download
from https://github.com/JPGibert/Eco_evo_food_webs

RESULTS

General Dynamics
The eco-evolutionary dynamics of the omnivory food web
module are quite sensitive to changes in the tradeoff magnitude
that controls the relationship between conversion efficiencies
and attack rates when only one attack rate is allowed to evolve
at any given time (Figures 1C–F, 2). We find that the tradeoff
magnitude associated with the attack rate of the intermediate
consumer on the resource mediates coexistence (red arrow,
Figure 2A) in the parameter range that was analyzed. When the
tradeoff magnitude is small, the consumer attack rate evolves
to very large values, which leads to competitive exclusion of
the top predator, and unstable consumer-resource dynamics.
Intermediate values lead to stable coexistence (Figure 2A),
whereas too large of a tradeoff magnitude leads to instability and
fluctuations in both abundances and traits (Figure 2A). Steady
state attack rates decrease with increasing tradeoff magnitudes
throughout, although trait fluctuations are observed only at very
large values of the consumer tradeoff magnitude (Figure 2B).
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FIGURE 2 | (A) Bifurcation plots (abundance minima and maxima at equilibrium) for the top predator (red) and intermediate consumer (black), across increasing levels

of the consumer tradeoff (γRC). Only the attack rate between the consumer and the basal resource is allowed to evolve. Oscillatory behavior (instability) occurs

whenever maxima and minima are not equal (there are two curves rather than one). The red arrow indicates the tradeoff value below which top predators cannot

persist. (B) Same as in (A) but for the consumer attack rate instead of the abundance. (C) As in (A) but for the tradeoff associated with the attack rate between the

top predator and the basal resource (γRT ). (D) As in (B) but for the interaction depicted in (C). (E) As in (A,C), but for the cost associated with the attack rate between

the top predator and the intermediate consumer (γCT ). (F) As in (B,D) but for the interaction depicted in (E). In all cases, only the focal attack rate is allowed to evolve,

and all other parameter values are as in Table 1.

Tradeoff magnitudes also impact steady state abundances,
with intermediate consumer abundances being larger than top
predator consumer abundances for low to moderate values of the
tradeoff magnitude, and smaller for larger values (Figure 2A).

These results largely hold for the tradeoff magnitude
associated with the other interactions: the tradeoff magnitude of
the top predator consuming the resource, and that of the top
predator consuming the intermediate consumer (Figures 2C–F).
However, neither the tradeoff magnitude of the top predator

consuming the basal resource, or the intermediate consumer
appear to affect persistence (Figures 2C,E), although both can
impact stability: an increase in the tradeoff magnitude of the
top predator-resource interaction leads to more stable dynamics
(Figure 2C), and an increase in the tradeoff magnitude of the
top predator-intermediate consumer interaction first stabilizes
the system at lower values, and then destabilizes the system
at larger values (Figure 2E). In all cases, steady state attack
rates decline as the tradeoff magnitudes increase (Figures 2D,F).
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FIGURE 3 | (A) Plot of discretized changes in the abundance structure of the omnivory food web module assessed across all combinations of the consumer tradeoff

(γRC), and the top predator tradeoff (γCT ). A qualitative depiction of the abundance structure appears in black within each discrete region. (B) Discretized plot of the

continuous changes in maximum trophic level (trophic level of the top predator, depicted in red), as the top predator and consumer tradeoffs change. Numbers

indicate the trophic level of the top predator at each boundary. Gray areas indicate regions where coexistence is not feasible in (A,B). Parameter values as in Table 1.

An increase in tradeoff magnitudes also leads to larger top
predator abundance than intermediate consumer abundance
(Figures 2C,E). Together, these results suggest that dynamically
rich behaviors emerge from the eco-evolutionary dynamics of
omnivory, even when selection is weak.

Impacts on Food Web Structure
Changes in steady state abundances with tradeoff magnitudes
result in differences in the abundance structure of the food
web (Figure 3A). The omnivory food web module can take
on different shapes depending on which species (resource,
intermediate consumer, top predator) has higher or lower
abundances. Indeed, observed abundance structures in our
model range from a top-heavy hour-glass food-web, when
the intermediate consumer has a large tradeoff magnitude
(Figure 3A, yellow), to a bottom-heavy pyramid when the
intermediate consumer has a smaller tradeoff magnitude
(Figure 3A, blue, green). When the intermediate consumer has
a small to moderate tradeoff magnitude, several scenarios are
possible. If the top predator has a smaller tradeoff magnitude,
the abundance structure becomes a “bent pyramid”: consumer
abundances are more similar to resource abundances than they
are to top predator abundances, giving the pyramid a convex
curvature (Figure 3A, blue). If the top predator has a moderate
tradeoff magnitude, a pyramidal abundance structure is also
possible, but consumer abundances are smaller and more similar
to top predator abundances than they are to resource abundances,
giving the pyramid a concave curvature (Figure 3A, green). Last,
if the top-predator has a large tradeoff magnitude, the abundance
structure of the food web is diamond-shaped, where intermediate
consumers are the most abundant of all species (Figure 3A,
orange).

Interestingly, all changes in abundance structure are
accompanied by changes in the maximum trophic level of the

food web: maximum trophic level ranges from low for the hour-
glass abundance structure to high for the diamond abundance
structure (Figure 3B). In other words, as eco-evolutionary
dynamics unfold, hourglass food webs result in top consumers
and intermediate consumers with similar trophic levels, and
overall greater amounts of omnivory as the top predator relies
more heavily on the basal resource (Figure 3B). On the other
hand, diamond abundance structures result in top predators with
a greater dietary reliance on intermediate consumers than on
resources, resulting in a higher trophic level, which in turn leads
to a more chain-like food web trophic structure (Figure 3B).

Taking into account three different scaling exponents for the
predator-prey mass relationship (Figure 4A), the equilibrium
biomass structure of the food web remains qualitatively similar
to that of the abundance structure, but with some important
quantitative differences (Figures 4B–D). First as the exponent
increases such that predators are increasingly larger than their
prey, the hourglass biomass structure becomes more prevalent
(Figures 4B–D). Second, the size of parameter space that leads
to diamond biomass structure appears to be unaffected by
an increase in the steepness of the body size relationship,
which suggests that other factors influence its occurrence
(Figures 4B–D, orange). Third, bent pyramid biomass structures
(Figure 4, blue) become more rare as the scaling exponent
increases, while concave-pyramid biomass structure (Figure 4,
green) becomes more common across the range of parameter
values that we consider.

DISCUSSION

The results of our model show that ecological and evolutionary
processes can jointly determine food web abundance, trophic,
and biomass structure. By modeling a simple tri-trophic system
with omnivory, in which the maximum trophic level of the food
webs can be accounted for explicitly, we have shown that most
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FIGURE 4 | (A) Plot of the assumed predator-prey body-size scalings where only the scaling exponent was allowed to change. The middle line is the average taken

across taxa (Brose et al., 2006). (B) Same as in Figure 3A, but with respect to biomass structure and assuming 0.85 as the slope of the predator-prey body size

scaling. (C) As in (B) but for a slope of 1.15. (D) As in (B,C) but for a slope of 1.5. Color coding and qualitative biomass depictions (black) as in Figure 3. All other

parameter values as in Table 1.

types of abundance and biomass food-web structures, namely,
pyramid, hourglass, and diamond, can occur as the result of
eco-evolutionary dynamics, even when selection is weak. As
omnivorous interactions are ubiquitous in nature (Thompson
et al., 2007), our theoretical predictions may be relevant for larger
and more complex food webs. Together, our findings suggest
that the dynamical and evolutionary constraints on food web
structure are perhaps much greater than previously thought.

Evolutionary changes in attack rates, as ecological dynamics
unfold, can impact species persistence (Figure 2), as well as
steady state abundances and their stability (Figures 1, 2). Such
impacts are mediated by the tradeoff between conversion
efficiency and attack rates. This tradeoff is common in
nature (Kiørboe, 2011). Increasing attack rates typically are
the consequence of greater velocities for cursorial predators
(Aljetlawi, 2004; Pawar et al., 2012). These greater velocities
can in turn result in a higher metabolic cost (Carbone et al.,
2007), which leads to lower net assimilation rates and, thus,
conversion efficiency. Because of this, we posit that larger
tradeoff magnitudes would be typically associated with increased
metabolic costs and lower conversion efficiencies. We point

out that larger tradeoff magnitudes could also be driven by
concomitant changes in assimilation rates as attack rates evolve,
provided that other physiological traits are also evolving. While
we explicitly assume that this does not occur in our framework,
we acknowledge that our results could be interpreted from this
perspective, and the sensitivity of our model results to differences
in the attack rate-conversion efficiency relationship suggests that
this may be a fruitful area for additional empirical and theoretical
work.

The magnitude of the metabolic costs associated with
predation can strongly impact food web richness and stability,
emphasizing the important role that this tradeoff plays in trophic
interactions. Lower costs typically lead to less speciose, unstable
systems (Figure 2A), intermediate costs lead to speciose, stable
systems, and large costs lead to speciose, but unstable dynamics
(Figure 2). Metabolic costs can in turn scale with phenotypic
traits such as body size (Brown et al., 2004; DeLong et al., 2010;
Barneche and Allen, 2018; Yeakel et al., 2018b) or depend on
external environmental factors such as temperature (Gillooly
et al., 2001; Savage et al., 2004). Larger organisms, or organisms
that experience elevated temperatures, may thus have increased
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metabolic costs than do smaller species or species that live in
colder climates. Ecosystems where intermediate predators are
too small or live in colder climates may thus be less speciose
and unstable, as is the case in high-latitude predator-prey
systems involving rodents and raptors (Hanski et al., 1991, 1993;
Brommer et al., 2010), while speciose but more stable systems
may be more common in warmer climates (Ims et al., 2008).

The relationship between metabolic costs and steady state
abundances and instability has consequences for different aspects
of food web structure, as different abundance, and biomass
distributions are possible for different values of the metabolic
costs (Figures 2, 3). Indeed, as unstable dynamics typically occur
at low and high values of the metabolic costs, we expect food
webs occurring in those value ranges to experience fluctuations
in predator-prey dynamics. If we further consider that large
fluctuations can increase the chance of stochastic extinctions
(May, 1973; Chesson, 1981; Fox and Kendall, 2002), then our
results suggest that food-web structures that are composed of
species with very low or very high metabolic costs may be prone
to stochastic extinction. For example, it is possible that diamond
food-web structures may be rare in nature, and perhaps more
often exist in a transient state, as such structures appear to be
associated with very large metabolic costs for the top predator,
and hence, large fluctuations in abundance.

Albeit a minimal food web module, our model retains key
features of large, complex food webs, such as the occurrence
of omnivory and more than two trophic levels, features that
are generally not included in models exploring eco-evolutionary
dynamics [e.g., (Schreiber et al., 2011; Vasseur et al., 2011;
DeLong and Gibert, 2016; Yeakel et al., 2018a)]. Interestingly,
such a simple model yields a surprisingly rich array of
possible food-web abundance and biomass structures and reveals
important differences in the maximum trophic level as a function
ofmetabolic costs.While there is variation in the types of biomass
structures observed within different ecosystem types (Hatton
et al., 2015), fully inverted or hourglass food webs may be more
typical of marine ecosystems (Fath and Killian, 2007; Woodson
et al., 2018) but see (Trebilco et al., 2013) for an alternative
standpoint), pyramid food webs tend to be terrestrial (Hatton
et al., 2015), while diamond food webs may be more common
in ponds, lakes or other systems with very abundant intermediate
consumers, and less common top predators (Polis, 1999).

Our model offers key insights into how differences in food-
web structure across ecosystems may be influenced by the
eco-evolutionary dynamics of attack rates and their associated
metabolic costs. For example, our results suggest that marine
ecosystems (hourglass-structured food webs) should have higher
metabolic costs associated with intermediate predators, while
top predators should generally have lower costs (Figures 3, 4).
This may indeed be true: larger organisms suffer lower energetic
penalties when swimming because of reduced drag, while smaller
organisms spend more energy to overcome drag (Batchelor,
2000). Our results also suggest that terrestrial ecosystems
(pyramid-structured food webs) occur whenever intermediate
predators have lower metabolic costs, while top predators can
be variable (Figures 3, 4). This prediction also appears to be
supported by observations: energy expenditures associated with

terrestrial cursorial locomotion scales with body size (Carbone
et al., 2007), such that smaller organisms, typically occupying
lower trophic levels [e.g., (Riede et al., 2011)], have lower costs
than larger, higher trophic, organisms.

While direct empirical tests of these predictions may be
challenging, it may be possible to assess the validity of some of
these ideas usingDaphnia sp. as a top predator. Daphnia can prey
upon bothmeso andmicro zooplankton (Wickham, 1998), and as
such, can prey upon bacteria as well as their protist consumers.
This would lead to an omnivory module with Daphnia as
the top predator and omnivore, a bacterivore protist species
as the intermediate consumer, and bacteria as the resource.
Microcosms can be inoculated with clonal Daphnia, in which
evolution is not possible because of the absence of variation,
or non-clonal Daphnia, which will allow for eco-evolutionary
dynamics to ensue (Fussmann et al., 2003). Over time, it would
be possible to assess whether there are differences in abundance
or biomass accumulation between the two treatments, and also
assess whether parameters of the Daphnia functional response,
such as attack rates or handling times, are diverging between
the clonal and non-clonal lines. It would then be possible
to examine whether changes in metabolic costs could lead to
similar abundance and biomass accumulations by running the
same experiment at two different temperatures. While these
results would not be exactly replicating the assumptions of our
toy model, they could shed light on whether eco-evolutionary
dynamics can influence food web abundance and biomass
structure.

Taking individual-level and trait variation into account has
recently been shown to be important to fully understand
population and community-level patterns (Bolnick et al., 2011;
Violle et al., 2012; Gibert et al., 2015). Indeed, genetic variation
in basal resources strongly determines which organisms can prey
upon them, thus influencing food web structure from the bottom
up (Barbour et al., 2016), while phenotypic variation in predator
traits determines species-level connectivity (Gibert and DeLong,
2017), trophic level (Svanbäck et al., 2015; Gibert and DeLong,
2017), and can be used to predict multiple structural features in
food webs (Gibert and DeLong, 2017). Our model only follows
mean attack rates and disregards how joint changes in mean and
variance could potentially influence food web structure through
eco-evolutionary dynamics. Because both genetic and phenotypic
variation can directly impact food web structure and the pace
of evolutionary change, an extension of our initial exploration
that includes the dynamics of trait variance as well as that of
mean trait values may further illuminate how evolving traits may
impact food web structure.

We show that even small amounts of evolutionary change for
traits that determine the strength of predator-prey interactions
may lead to dramatic differences in food web structure. We
therefore anticipate that additional complexity, such as the
simultaneous evolution of multiple traits [e.g., through ecological
pleiotropic traits (Strauss and Irwin, 2004; DeLong and Gibert,
2016)], a larger number of species with highly heterogeneous
interactions such as those observed in empirical food webs, the
inclusion of changes in variation as well as mean trait values, as
well as a broader exploration of parameter space, will provide
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additional insight into the fundamental eco-evolutionary drivers
of the different types of large-scale structural attributes observed
in food webs. As a case in point, differences in the functional
form of imposed tradeoffs can lead to quantitative differences in
model output in a model that tracks trait selection in food webs
(Gounand et al., 2016). Moreover, in a tri-trophic model with
explicit life-history stages tracking juvenile and adult biomass,
differences in energy transfer leads to differential biomass
accumulation across stages, including overcompensation (De
Roos et al., 2007). In some cases, biomass accumulation is more
likely for juveniles than for adults, and vice versa, which is
analogous to our results that show the emergence of different
abundance and biomass food web structures.

Despite the inherent simplicity of our approach, we show
that an impressively diverse array of food web abundance,
biomass, and trophic structures are possible when trait evolution
is incorporated into a three-species omnivory model. Changes in
metabolic costs (or assimilation rates) mediating trait evolution
and energy transfers across species are partly responsible for
resulting patterns of abundance and biomass accumulation
across trophic levels, which leads to differences in trophic
structure and trophic position. Our model reproduces most
known types of abundance and biomass structure, i.e., concave

and convex pyramidal structures, diamonds, and hourglasses,
which suggests that even small levels of evolutionary changes in
one trait can have important consequences on these large-scale
structural characterizations of food webs.
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Temperature is the most significant environmental gradient at the global scale, impacting

the distributions of species and their ecological interactions. It is now established

that temperature affects several biological rates and body mass, and can, in turn,

alter interaction strength. Latitudinal variation in the strength of interactions has been

observed for trophic and competitive interactions and many studies support that biotic

interactions are more intense at low latitudes. Nevertheless, the mechanisms underlying

the temperature dependence of trophic regulation, the effect of consumers on their

preys, remain unclear. The aim of our study is to get better insights on the effects of

temperature on trophic regulation. We used a consumer-resource model and considered

that organisms’ biological rates present a unimodal thermal response and that bodymass

decreases with temperature. We compared three measures of interaction strength: per

capita, per population and net interaction strength. Our results demonstrate that the

effect of temperature on interaction strength is contingent upon which species’ biological

rates are temperature dependent. When all biological rates are temperature dependent,

the thermal response of interaction strength is hump-shaped following the scaling of

search rate, whilst it is monotonically decreasing when only mortality rates vary with

temperature. Finally, we show that temperature can indirectly impact trophic interaction

strength through the temperature-size rule. A decrease in organisms’ body size due to

temperature induces a decrease in per capita and per population interaction strength

and tend to decrease net interaction strength, depending on which trophic level follows

the temperature-size rule. Our analysis gives an overview of how temperature, through

various effects, may impact different measures of interaction strength.

Keywords: consumer-resource, interaction strength, temperature, metabolic theory, bodymass, temperature-size

rule

1. INTRODUCTION

Temperature can strongly affect food-web structure and interaction strength (Beveridge
et al., 2010; Rodríguez-Castañeda, 2013). Understanding its impact on trophic regulation
is vital for predicting the consequences of climate change on communities and ecosystems
stability. The strength of consumer–resource interactions is expected to vary along large-scale
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latitudinal and climatic gradients (Schemske et al., 2009), with
recent evidence suggesting that these interactions are stronger
toward lower latitudes and in warmer regions. Several studies
have indeed shown that changes in temperature can induce
shifts in the magnitudes of top-down and bottom-up forces.
For instance, it can strengthen the effect of fishes on primary
producers in aquatic systems (Kratina et al., 2012; Shurin et al.,
2012), of spiders and vertebrate predators on plants in terrestrial
systems (Barton et al., 2009) and of large mammalian herbivores
on primary producers (Gibert and Delong, 2014). Within the
Arctic, predation tends to decrease with latitude whilst herbivory
tends to increase (Legagneux et al., 2014). Indirect effects
(cascading effects through trophic levels) may thus increase the
complexity of the impact of temperature by inducing antagonistic
effects between trophic levels (Beveridge et al., 2010). Moreover,
the short- to long-term responses of interacting species may
diverge.Warmingmay induce accelerated feeding rates, resulting
in stronger top-down control over short time-scales, whereas, in
the longer term, food-web reorganization could lead to weaker
top-down control (Brose et al., 2012). Some interactions are then
magnified with warming while others are weakened depending
on the study system and the duration of the study. This diversity
of empirical observations suggests that the response of trophic
regulation to warming could be context-dependent (Gilbert et al.,
2014; Sentis et al., 2014; Amarasekare, 2015). Discrepancies
among studies about the impact of temperature on trophic
regulation can arise for two reasons, among others: (1) increased
temperatures induce various changes on individual metabolism
and body mass that can in turn impact interaction strength in
multiple ways, and (2) different measures of interaction strength
are typically used from one study to another and thus lead to
different interpretations.

Temperature affects individuals’ life-history (reproduction,
development and survival) and foraging traits (search rates and
handling times) (Savage et al., 2004; Englund et al., 2011).
It has long been established that, in addition to body mass,
temperature affects biochemical reaction rates, metabolic rates,
and nearly all other biological activities (Gillooly et al., 2001;
Brown et al., 2004; Savage et al., 2004). However, the temperature
dependence of some biological rates may vary from one species
to another. For instance, the temperature dependence of search
rates varies according to foraging strategies. For sit-and-wait
predators, it may not be dependent upon temperature (Sentis
et al., 2017b), while it can be temperature dependent for
predators that actively search for prey. Temperature changes
can also induce reductions in body mass for many organisms,
including diatoms (Montagnes and Franklin, 2001), phyto- and
zooplankton, and fishes (Daufresne et al., 2009; Gardner et al.,
2011). Within the range of physiologically tolerable temperatures
for ectothermic organisms, individual body mass is expected to
decrease with warming according to the temperature-size rule
(TSR) (Atkinson, 1994). This phenotypically plastic response
can be explained by the fact that adult size is a combination
of individual growth rate (increase in weight per time) and
development rate (increase in life stage per time). Because
development rates are more sensitive to temperature (i.e.,
increase faster with warming) than are growth rates (Forster et al.,

2011; Gardner et al., 2011; Zuo et al., 2012), individuals reared
at warmer temperatures typically reach a maturity at a smaller
size than those reared at colder temperatures (Atkinson, 1994;
Zuo et al., 2012). Reduced body mass has been considered as the
third universal ecological response to global warming (Daufresne
et al., 2009). Body mass is a key aspect of community structure
as it strongly determines life history rates and the strength
of interaction between species (Pawar et al., 2016). As body
mass affects biological rates and foraging traits, temperature can,
through the TSR, indirectly impact consumer-resource dynamics
(Osmond et al., 2017; Sentis et al., 2017a). Integrating these
different effects of temperature into a general framework is thus
essential to predict its effect on interaction strength (Osmond
et al., 2017; Sentis et al., 2017a).

Even though many theoretical studies analyze the effect of
temperature on the dynamics of food chains, most of them
focus on how temperature impacts stability (oscillations and
predator persistence) (Vasseur and McCann, 2005; Gilbert et al.,
2014; Amarasekare, 2015) via its effect on biological rates only.
These studies neglect indirect effects of temperature on food
webs via the TSR and do not explicitly consider interaction
strength. Sentis et al. (2017a) and Osmond et al. (2017), in
contrast, study the effect of warming on interaction strength
through its effects on biological rates and body mass. However,
they consider conditions under which organisms remain below
their optimal and only one interaction strength measure [the
dynamic index (Berlow et al., 1999) or net interaction strength,
called BCR in Osmond et al. (2017)]. Yet it is known that
some tropical ectotherm species already experience stressful body
temperatures impacting their physical performance (Huey et al.,
2009). Understanding the dynamics of species interaction under
a sufficiently consequent temperature range is essential to tackle
the effects of climate change on communities. To bridge these
gaps we consider temperatures above optima but also different
interaction strength measures.

Although the concept of interaction strength seems intuitive,
many definitions have been used (Laska and Wootton, 1998;
Berlow et al., 2004). Generally speaking, interaction strength is
a measure of the magnitude of the effect of a species on the
growth rate of another (Laska and Wootton, 1998). However,
theoreticians and empiricists measure interaction strength in
different ways (Laska and Wootton, 1998); and, even within
theoretical and empirical studies, there are discrepancies in the
way it is quantified. Berlow et al. (2004) enumerated a set of
interaction strength measures that include for instance elements
of the community matrix, biomass flux, maximum consumption
rate or perturbation effects on population abundance. Field
experiments have shown that the removal of species from
ecosystems can highly impact species communities (Paine, 1980,
1992). Various indices of net interaction strength have thus been
derived from removal experiments and describe how a focal
species impacts the abundance of other species in the community.
These experiments are however limited because their results can
vary with experimental duration, with the density of the focal
species and with the species composition of the community
(Wootton and Emmerson, 2005). Several indices have also been
used for the analysis of theoretical models. Many studies use
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per capita effect of a species on the growth rate of another one
because it is defined without reference to the equilibrium state,
explicit in many models and because many other measures can
be derived from it (Laska and Wootton, 1998; Wootton and
Emmerson, 2005; Novak and Wootton, 2010). Commonly used
interaction strength indices relate to various food web properties
and dynamics therefore may lead to misleading conclusions
(Berlow et al., 2004). For instance, a strong interaction strength
measured from the community matrix does not always coincide
with a strong effect of species removal (Berlow et al., 2004). There
is then a need to clarify the haziness around how temperature
impacts different interaction strength measures, to help bridge
the gap between theory and experiments.

Hence, while most studies focus on one interaction strength
measure at a time, we investigate here, how temperature
affects three aspects of interaction strength. We aim at
decomposing the different mechanisms that may influence
the effect of temperature on trophic regulation in a linear
food chain. We develop a nutrient explicit tri-trophic model
of consumers and resources to tackle the joint effects of
temperature on interaction strength and compared three
different commonly used theoretical and experimental measures
of interaction strength: per capita, per population and net (i.e.,
log response ratio) interaction strength. We derive predictions
of how the temperature dependence of species’ biological
rates impacts the relationship between temperature and theses
measures of interaction strength. Finally, we examine how
temperature indirectly affects interaction strength through
decreasing organisms’ body mass.

2. MODELING FRAMEWORK

2.1. Consumer-Resource Model
The model is nutrient explicit and describes the dynamics of a
three level linear food chain (see Figure 1). The nutrient (N)
is assimilated by an autotrophic primary producer (P), itself
eaten by a herbivore (H) which is consumed by a carnivorous
top-predator (C). The dynamics are given by:

dN

dt
= I − dN− µNP (1)

dP

dt
= qµNP− aPHPH− (zP + bP)P

dH

dt
= ePHaPHPH− aHCHC− (zH + bH)H

dC

dt
= eHCaHCHC− (zC + bC)C

where N is the nutrient concentration and P, H and C the
total biomasses of primary producer, herbivore and carnivore,
respectively. Temperature and body mass dependencies of
parameters are omitted for clarity of the representation.
Nutrients are continuously added and leached out of the system
at rates I and d, respectively. µ is the primary producer growth
rate and q the carbon-to-nitrogen ratio. Some biomass is lost
due to respiration and mortality at rates zi and bi, respectively,

C

H

P

N

qµNP

I dN

(bP + zP)P

(bH + zH)H

(bC + zC)C

metabolic loss

metabolic loss

aPHPH

ePHaPHPH

aHCHC

eHCaHCHC

ISC−P

ISC−H

ISH−P

FIGURE 1 | Conceptual diagram of the model. N, P, H and C respectively

represent the nutrient, primary producer, herbivore and carnivore variables.

Complete arrows stand for fluxes between variables and metabolic losses and

dashed arrows correspond to the effects of consumers on resources. IS

stands for interaction strength. ISH−P and ISC−H represent the direct

interaction between herbivores and primary producers and between

carnivores and herbivores, respectively; while ISC−P represents the indirect

interaction between carnivores and primary producers.

for the different compartments i. aij is the mass-specific search
rate and eij is the conversion efficiency of resource i to consumer
j biomass. We consider a Type-I functional response as a first
approximation in order to track equilibrium densities. bi is a
constant mortality rate to account for various processes that do
not depend upon temperature, such as dilution, sedimentation
or natural disturbances. Similarly, eij does not vary with body
mass and temperature (O’Connor et al., 2011; Dell et al., 2014;
Pawar, 2015). Conversely, biomass production rate µ, biomass
loss rate zi and search rate aij may all vary with body mass
and temperature.

2.2. Body Mass and Thermal Dependence
of Biological Rates
Following the “Metabolic Theory of Ecology,” we used the
Boltzmann-Arrhenius model from chemical reaction kinetics to
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describe the rise of several biological rates with temperature
(Gillooly et al., 2001; Brown et al., 2004; Savage et al., 2004).
Many biological rates also decline at high temperatures, often
due to changes in enzyme kinetics (Johnson and Lewin, 1946),
and therefore we also consider the Johnson-Lewin function.
Hence, according to the Boltzmann-Arrhenius-Johnson-Lewin
model (BAJL model here after), the scaling of a metabolic (or a
biological) rate, ri, with average adult body mass mi and body
temperature T, in Kelvin, is given by:

ri(T,mi) = r0m
β
i e

−
E

kT l(T) (2)

with,

l(T) =
1

1+ e

−1

kT

(

ED−

( ED

Toptr

+k ln

( E

ED − E

))

T

)

(3)

where r0 is a rate-dependent constant and β the allometric
scaling exponent. E is the activation energy in eV (electronvolts)
of the rising response and ED the average energy constant at
which proteins denature, therefore controlling the rate of decline
beyond Toptr , the temperature at which rate r is maximal. Finally,
k is the Boltzmann constant (8.617× 10−5 eV .K−1). The thermal
response of biological rates according to Equation 2 is illustrated
in Figure 2. We take the average values of activation energy E
from Dell et al. (2011) for a given trophic level and a given
biological rate. As few data are available for the de-activation
energy ED, we consider the average value across all trophic
levels and biological rates (Dell et al., 2011). The growth rate
µ and the search rate aij vary with temperature and body mass
according to Equation 2. However, the biomass loss rate zi follows
an exponential increase with temperature, as described by the
first part of Equation 2 when l(T) = 1. Biological rates and
body temperature are assumed to be uniform within species.
Parameters are summarized in Table 1.

2.3. Temperature-Size Rule
We use the estimates of temperature-size response slopes from
Forster and Hirst (2012) (see also Sentis et al., 2017a) to simulate
the temperature dependence of body mass according to the
following equation:

mi = cmi293e
s(T−293.15) (4)

where c is the conversion of dry mass into wet mass, mi293 is
the dry mass of species i at 293.15 K and T is temperature.
s quantifies the sign and magnitude of the TS response and
is determined by the percentage change in body mass per
degree (originally in Celsius in Forster and Hirst (2012), we
converted from Kelvin) : PCM = (es − 1) × 100. TS response
slopes vary between ecosystem types but we consider only the
mean TS response for aquatic organisms (the average response
for freshwater and marine metazoa), which is negative. The
reference body masses are measured at 293.15 K, in our case

FIGURE 2 | Effect of temperature on the search rate aij which is equal to per

capita interaction strength, ISpc, as described by Equation 2. Topt is the

temperature at which the rate value is maximal. Below Topt, the individual

stands within its PTR (“Physiological Temperature Range”), where the trait

performance increases with temperature, whilst above Topt the trait

performance decreases. Note that growth rate µ also follows this equation,

but mortality rates zi monotonically increase with temperature.

body masses therefore decrease for temperatures above 293.15 K
(Forster and Hirst, 2012):

PCM = −3.90− 0.53log10(mi293 ) (5)

From this TS response slope, we investigate three possible
scenarios where either (1) only the carnivores, (2) herbivores and
carnivores and (3) all species follow a TS response, in addition
to the case with no TSR at all. We chose these scenarios because,
according to Forster and Hirst (2012), in aquatic environments,
increases in species’ sizes cause the temperature-size response to
become increasingly negative.

2.4. Measuring Interaction Strength
The strength of ecological interactions can be assessed through
several ways. We consider here three different interaction
strength (IS hereafter) measures (Berlow et al., 2004). Per
capita IS, ISpc, measures the direct and instantaneous effect
of a consumer individual j on the growth rate of a resource
individual i; it equals search rate, aij, in our model (Figure 2,
Equation 2). This measure is commonly used in theoretical
studies because it is defined without reference to the equilibrium
state (Laska and Wootton, 1998; Wootton and Emmerson, 2005;
Novak and Wootton, 2010), contrary to other measures, which
typically include equilibrium densities. The second IS measure
we consider is per population IS, ISpp, which is the direct long
term effect of the population of consumer j on the growth rate
of the resource i at equilibrium and is equal to ISpcJ

∗ = aijJ
∗,

Frontiers in Ecology and Evolution | www.frontiersin.org 4 February 2019 | Volume 7 | Article 4579

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Bideault et al. Temperature Modifies Consumer-Resource Interaction Strength

TABLE 1 | Parameters descriptions and values.

Symbol Description Dimension Value

d Dilution rate Time–1 0.8

q Carbone-to-nitrogen ratio a – 6

ePH Herbivore conversion efficiency b – 0.45

eHC Carnivore conversion efficiency b – 0.85

I Nutrient input mol.N.volume-1.Time–1 12

bi T◦ independent biomass loss rate Time–1 0.4

mp Primary producer body-mass mg 1

mh Herbivore body-mass mg 1.102

mc Carnivore body-mass mg 1.104

c Dry to wet mass conversion constant c – 6.5

T Temperature T◦ Kelvin 285–315

Topt Optimal temperature Kelvin 298

k Boltzmann constant eV.K–1 8.617.10–5

aij Consumer-resource search rate Volume.time–1 (Equation 2)

zi T◦ dependent biomass loss rate Time–1 (Equation 2)

µi Primary producer growth rate Time–1 (Equation 2)

βa Allometric scaling exponent for a d – 0.25

βz,µ Allometric scaling exponent for z & µ e – –0.25

Eaph Activation energy for aph
f eV (electronvolt) 0.8

Eahc Activation energy for ahc
f eV (electronvolt) 0.74

Ezp Activation energy for zp f eV (electronvolt) 0.55

Ezh Activation energy for zh
f eV (electronvolt) 0.43

Ezc Activation energy for zc f eV (electronvolt) 0.72

Eµ Activation energy for µ f eV (electronvolt) 0.53

ED De-activation energy f eV (electronvolt) 1.15

aph0 Scaling constant for aph – 5.1013

ahc0 Scaling constant for ahc – 3.1012

zp0 Scaling constant for zp – 2.108

zh0 Scaling constant for zh – 4.106

zc0 Scaling constant for zc – 1.5.1012

µ0 Scaling constant for µ – 3.108

References: aSterner and Elser (2002), bYodzis and Innes (1992), cPeters and Peters (1986), dRall et al. (2012), eSavage et al. (2004), fDell et al. (2011).

where J∗ is the equilibrium density of consumer j. This index
also corresponds to the coefficient of the Jacobian matrix, that
describes the dynamics of species at equilibrium, in our model.
It has been commonly used in ecology to quantify interaction
strength (May, 1974) and is reviewed in Montoya et al. (2009).
Finally, net IS, ISnet , is the net long term effect of the population
of consumers j on the equilibrium density of the resource i and
is equal to the (log) ratio of resource equilibrium densities, I∗, in
absence I∗− and in presence I∗+ of the consumer, log(I∗−/I∗+). This
definition of IS is typically used in experimental removal studies
(Paine, 1980; Laska and Wootton, 1998; Berlow et al., 2004).

We assess interactions between the three trophic levels. We

thus consider the direct effect of herbivores on primary producers
in absence of carnivores, ISH−P; the direct effect of carnivores on

herbivores, ISC−H ; and, for ISnet , the indirect effect of carnivores
on primary producers, ISC−P, as carnivores can indirectly impact
primary producers by reducing herbivore density when feeding
on them. In the following analyses, we focus on ISpp and
ISnet which are analytically derived as they are dependent upon
equilibrium biomasses. We compare their thermal responses

with the one of ISpc which is given by Equation 2. Equilibrium
densities, I∗ for species i, are obtained by solving the system
of differential equations (Equation 1) when dI/dt = 0. We
first investigate how temperature directly affects IS. We then
look at the effect of varying the temperature dependence of
biological rates (by alternately fixing model parameters at their
optimal value) and temperature independent mortality rates.
Finally we explore how the indirect effect of temperature through
decreasing body mass affects IS. Note that, for brevity, we mainly
illustrate our results for the interaction between carnivores
and herbivores.

3. RESULTS

3.1. Thermal Dependence of Biological
Rates
When all parameters are temperature dependent, the relationship
between temperature and consumer-resource IS follows the
shape of Equation 2. Because of the definition of the search rate
aij, ISpc (which is equal to search rate in our model) follows
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FIGURE 3 | Effects of temperature on two interaction strength measures: interaction strength per population, ISpp, and net interaction strength, ISnet. Each column

corresponds to different interactions between consumers and resources: H-P stands for the interaction between herbivores and primary producers in absence of

carnivores, C-H for the interaction between carnivores and herbivores and C-P for the indirect interaction between carnivores and primary producers. (Note that to

facilitate the comparison between those different interactions, we represented here the inverse of ISC−P. Hence, for all interactions, a hump-shaped relationship

means that IS first increases with temperature and a U-shaped relationship means that IS first decreases with temperature.) Each row corresponds to a different

scenario of thermal dependence of parameters. Parameters that vary with temperature are specified on the left of the plot (e.g., second row: only zP, the primary

producer mortality rate, varies with temperature, other parameters being fixed). When the subscript is not indicated, biological rates of every trophic levels vary with

temperature (e.g., 5th row: z, mortality rates of primary producers, herbivores and carnivores vary with temperature). When the trophic level is indicated (P, H and/or

C), the parameters of the given trophic level(s) vary with temperature (e.g., 9th row: primary producer parameters, µ and zp, vary with temperature). Hence for the last

row (PHC), all parameters vary with temperature. Fixed parameters are set at their optimal value. (A) Qualitative representation of the shape of the thermal response of

IS measures for different scenarios of parameters temperature dependence (as in Figure 2). The shapes of the thermal dependence of interaction strength are color

coded; see color key, dark blue: hump-shaped, light blue: U-shaped, light green: decrease and gray: no temperature dependence. (In the last case, gray cells, there is

no effect of temperature because all parameters are fixed for those interactions. Indeed, here the interactions between primary producers and herbivores are

independent of carnivore’s biological rates). (B) Thermal sensitivity of interaction strength for different scenarios of parameters temperature dependence, quantified as

the standard deviation of interaction strength measures (color coded, see color key).

exactly the shape of the temperature-dependence of biological
rates. This measure of IS propagates and thus affects ISpp and
ISnet similarly. All three measures of IS therefore increase with
temperature, up to a point above which it starts decreasing
(Figure 3). Importantly, the temperature-IS relationship holds
for the interactions between all trophic levels: for the interactions
between primary producers and herbivores (in the absence of
carnivores), between herbivores and carnivores and between
carnivores and primary producers (for ISnet). Note that for this
indirect interaction, primary producers are more abundant in
the presence than in the absence of carnivores. The log of ISC−P

net

is thus negative. A hump-shaped relationship demonstrates that
trophic cascades also increase with warming under the PTR
before decreasing at the warmest temperatures.

The sensitivity of IS to temperature varies significantly
according to which parameter varies with temperature
(Figure 3). The thermal response of IS can be hump-shaped,
U-shaped or decrease with temperature. It is then determined
by the temperature dependence of the biological rates that
are expressed in the IS measures’ formulas, which are based
on equilibrium biomasses (see Table S1 and Figure S2). In
our model, mortality rate increases with temperature whilst
growth and search rates follow a hump-shaped relation with
temperature. These differences in the shape of the thermal
responses of biological rates show in the thermal responses of IS

measures. When only mortality rates zi vary with temperature,
intraspecific competition increases leading to a decrease in
population biomass i at equilibrium, but also to an increase
in equilibrium biomass of the resource of species i (if any).
Equilibrium biomasses influence ISpp and ISnet , which in turn
decrease with increasing temperature. The intrinsic growth rate
varies with temperature because of its effect on both mortality
and consumption rates. The equilibrium biomass of a consumer
species i decreases with mortality rate zi, while the equilibrium
biomass of its resource does increase because of lower regulation.
The change of equilibrium with increasing temperature of both
consumer and resource therefore influences both ISpp and ISnet .
When only search rates ai vary with temperature, the thermal
dependence of equilibrium biomasses can be hump-shaped or
U-shaped. As equilibrium biomasses of the different trophic
levels are interdependent, the relationships between biomasses at
equilibrium and ISpp and ISnet are not straightforward. ISpp and
ISnet are generally hump-shaped, although they can be U-shaped
(for ISC−H

net ). This shows that generally, ISpp and ISnet directly
follow the scaling relationship of ISpc. When consumption rates
increase or decrease, IS increases/decreases too. We also vary
the parameters by trophic level (i.e., mortality and growth or
search rates are temperature dependent only for a given level).
For these scenarios, the thermal response of IS measures is
generally determined by search or growth rates (hump-shaped or
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FIGURE 4 | Effect of temperature (in Kelvin) on, (A), interaction strength per population, ISC−Hpp , and, (B), net interaction strength, ISC−Hnet , between carnivores C and

herbivores H. The relationship between temperature and both interaction strength measures is hump-shaped and follows the thermal dependence function of search

rate (or per capita interaction strength) and growth rate (Figure 2). Varying the mortality rate, from 0.2 to 2.8 time–1, changes the magnitude of the temperature effect,

the relative strength of interaction and shifts the temperature at which interaction strength is maximal.

U-shaped relationship) but can also be determined by mortality
rates (decrease with temperature) according to IS measures. The
variation in the shape of IS thermal responses is more important
for ISnet than for ISpp, which can be explained by the fact that
ISnet is equal to the ratio of equilibrium biomasses of resources
and consumers.

The shapes of the thermal responses of IS measures are
qualitatively described in Figure 3A. However, the magnitude of
the temperature effect, as well as the strength of the interaction,
varies from one scenario of parameter temperature dependence
to another. We find that the occurrence of temperature-
independent rates can alter the thermal sensitivity of ISpp and
ISnet (Figure 3B), which is highly variable from one IS measure
to another, and according to which rate is fixed. It tends
to increase with the number of rates that are temperature
dependent and is stronger for ISnet . The equilibrium biomass of
a given trophic level is dependent upon equilibrium biomasses
of other trophic levels (Table S1). These interactions between
parameters and trophic levels in equilibrium biomasses can in
turn lead to an increase in the temperature sensitivity of ISpp
and ISnet . We further investigate the response of IS between
carnivores and herbivores, and its thermal dependence, to a
change in temperature-independent biomass loss rate (Figure 4).
The shape of the thermal response of both IS measures remains
hump-shaped whatever the value of biomass loss rate. However,
increasing biomass loss rate bi decreases both IS measures and
shifts the temperature at which IS is maximal toward higher
temperatures, mainly for ISnet . Increasing mortality rate bi
diminishes carnivore equilibrium biomass, which in turn lead
to a decrease in ISpp. Increasing mortality rate bi also decreases
herbivore equilibrium biomass in absence of carnivores but
increases its equilibrium biomass in presence of carnivores,
resulting in a decrease in ISnet (see Table S1 and Figure S3).

3.2. Temperature-Size Rule
Temperature, through its effect on body mass, can indirectly
induce changes in IS (for the interaction between carnivores
and herbivores in Figure 5). The TSR does not alter the shape
of the thermal response of IS, which remains hump-shaped for
all TS scenarios. According to Equation 4, the temperature of
reference is 293.15 K. Organisms are larger for temperatures
under 293.15 K and smaller for temperatures above 293.15 K.
Hence IS values with and without TSR are equal at 293.15 K (lines
are crossing at 293.15 K on Figure 5). However, below and above
this temperature of reference, IS can either decrease or increase
with the TSR.We also observe a shift in the temperature at which
IS is maximal.

ISpc (Equation 2, Figure S1) and ISpp (Figure 5A) both
increase for temperature below 293.15 K (increase in body
mass) and decrease for temperature above 293.15 K (decrease in
body mass). These IS measures then directly depend on species
body mass. ISpp gradually becomes lower as more trophic levels
experience a decrease in body mass (Figure 5A). ISnet declines
with decreasing carnivore body mass regardless of whether or
not herbivore body mass also decreases (Figure 5B). However,
when the three trophic levels follow the TSR, ISnet increases
with reduced body mass compared to the case with no TSR
effect. This is due to the fact that a reduction in body mass can
affect equilibrium biomasses of the different trophic levels in
distinct ways. The equilibrium biomass of herbivores increases
in both the presence and absence of carnivores when the three
trophic levels follow the TSR (Figure S2 ), which results in
an increase of ISnet . Hence, the indirect effect of temperature
through altering body mass does not qualitatively affect the
relationship between temperature and IS except for a shift of
the location of the maximal IS. However, it changes the relative
strength of the interactions.
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FIGURE 5 | Effect of temperature (in Kelvin) on, (A), interaction strength per population, ISC−Hpp , and, (B) net interaction strength, ISC−Hnet , between carnivores and

herbivores, when organisms body mass decreases with temperature due to the temperature-size rule. Four scenarios are simulated: no TS response in either species

(None), only carnivores follow a TS response (C), herbivores and carnivores follow a TS response (HC) and the three trophic levels follow a TS response (PHC).

4. DISCUSSION

There is no consensus about the effect of temperature on

trophic regulation, as studies are often based on different
assumptions, models or measures of interaction strength (IS).
It is known that temperature directly influences the physiology

of organisms by changing their biological rates (Gillooly et al.,
2001; Brown et al., 2004; Savage et al., 2004) and inducing a
change in body mass (Forster and Hirst, 2012). These effects
then propagate to the population- and community-level. The
comparison of IS measures allows us to reveal three main
mechanisms by which temperature affects trophic regulation :
(i) temperature directly affects metabolic rates and body mass,
which in turn induces changes in biological rates and in the rate
at which individuals consume their resource (and in ISpc). As a
result, (ii) population sizes at equilibrium become temperature
dependent, which in turn infuences ISpp, the total effect of
consumers on resource populations. Moreover, (iii) the effect
of temperature propagates between trophic levels meaning that
interactions between parameters (or trophic levels) that are
temperature dependent may make more sensitive ISpp and ISnet
to temperature changes. We thus support the widely believed
hypothesis that temperature has an effect on trophic interaction
strength, but we also show that this effect can vary in direction,
magnitude and location of its peak.

More precisely, in our analyses, the relationship between
temperature and interaction strength follows the scaling
relationship between search rates and temperature when all
compartments respond to temperature. This result is obvious
for a linear functional response but nonetheless underlines
parameters that need to be better documented empirically.
Sensitivity of the different IS measures to temperature increases
when all parameters are temperature dependent. A precise
definition of IS is therefore essential to linkmultiple experimental
and theoretical studies. Yet many indices have been used, making

it difficult to compare outcomes from different studies (Wootton
and Emmerson, 2005). The coherence in the thermal response
of the different IS measures considered here demonstrates
that different indices can behave similarly to an increase
in temperature.

When all parameters are temperature dependent, IS thus
increases with temperature up to a certain threshold above
which it decreases. Our result is consistent with previous studies
that experimentally manipulated the presence of predators
and measured either net IS (log ratio of prey biomass in
absence/presence of predators) (Barton et al., 2009; Kratina et al.,
2012; Shurin et al., 2012; Gray et al., 2015) or per capita IS
(ratio of predation rate and resource density) (Sentis et al., 2014).
Sentis et al. (2014) theoretically and experimentally measured
omnivory strength, computed as the number of resources and
consumers eaten. Their model predict that omnivory strength
increases with temperature but rapidly decreases at extreme
temperatures due to the hump-shaped thermal response of
search rate. However, they did not experimentally measure
this decrease at extreme temperatures because their warmest
temperature was 30 ◦C. On a narrow range of temperature,
Osmond et al. (2017) also found that net IS monotonically
increases with temperature. Hence, most experimental studies
found that temperature increases IS but few of them detailed
the different rates that are temperature dependent. Our results
also show that IS decreases at higher temperatures, in agreement
with Sentis et al. (2014). These authors suggest that the effect
of temperature on interaction strength is mediated by its effect
on predator foraging activities. Temperature, through increasing
search rate, promote predation of resources. However, at higher
temperatures, search rate decreases and so does IS. It is therefore
critical to characterize the thermal response of search rates and
other biological rates over a large range of conditions to catch this
peak. Yet few data or theories exist for the decline in individuals
rate performance at higher temperatures (Dell et al., 2011) as the
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majority of studies concentrates on the rising part of biological
rates responses to temperature. The decreasing phase has raised
less attention, partly because organisms usually live within their
physiological temperature range (PTR), and partly because a
majority of experiments perform a marginal warming relative to
current conditions (Sentis et al., 2014).

We also find that the relationship between temperature and

IS can differ according to which biological rates are temperature
dependent. Thermal sensitivity of IS when multiple rates are

affected by temperature appears stronger than the sum of
individual effects, suggesting interactions and synergies between
trophic levels are taking place (Figure 3B). Indeed, effects of
temperature propagate through the entire food chain, from
primary producers at the bottom to carnivores at the top
and conversely. For instance, when only the primary producer
mortality rate zP varies with temperature, the interactions
between carnivores and herbivores, e.g ISC−H

pp , still vary with
temperature. This arises because zP influences the equilibrium
concentration of the nutrient, which in turn influences the
equilibrium biomass of the primary producers, and so does
the equilibrium biomass of the carnivores (Table S1), all
together impacting ISC−H

pp . Similarly, when only the carnivore

mortality rate zC varies with temperature, ISC−P
net , which is

the ratio of primary producers biomass in absence and in
presence of carnivores, still varies with temperature (Figure 3B).
zC influences the equilibrium biomass of herbivores and
subsequently the equilibrium biomass and concentration of
primary producers and nutrients. The same reasoning applies for
herbivore parameters. Hence, even though some parameters are
not directly involved in IS measures, they can indirectly influence
IS through the interdependence of equilibrium biomasses across
trophic levels.

There is usually coherence in the thermal response of IS when

multiple parameters from different trophic levels vary together.
For instance, when mortality rates of all trophic levels vary

with temperature (search rates and growth rates are fixed), the

relationship between IS and temperature is no longer hump-
shaped but instead exponential (Figure 3A). Similarly, when

consumption rates of all trophic levels vary together, the thermal
response of IS is unimodal. When multiple rates are temperature

dependent, the thermal response of IS is also usually stronger
than when a single parameter varies (Figure 3B). For instance,

when the mortality rate z of the three trophic levels vary

with temperature, the thermal sensitivity of ISpp and ISnet is
stronger than when the mortality rate of a single trophic level

is temperature dependent. There may be however interactive

effects that can lead in some cases to surprising IS thermal
responses. We find this situation for instance when only the

search rate of herbivore aPH varies with temperature. In that

case, the equilibrium biomass of herbivores in presence of
carnivores is then temperature independent but the equilibrium

biomass of herbivores in absence of carnivores is U-shaped
(Figure 3A), resulting in a U-shaped thermal response for

ISC−H
net . All in all, this variation in the thermal response of IS

indicates that there are multiple pathways by which temperature
may affect IS.

Knowledge of which rates are influenced by temperature,
and how, is therefore critical to document (Dell et al., 2011;
Englund et al., 2011; Huey and Kingsolver, 2011; Vucic-Pestic
et al., 2011; Burnside et al., 2014; Amarasekare, 2015). It
will also be important to better measure activation energies
for each rate since some parameters are more sensitive than
others. It has been shown for instance that search rate can
have a steeper temperature response than maximal intake rate
or handling time (Englund et al., 2011; Sentis et al., 2014),
and that it can be temperature independent for sit-and-wait
predators (Sentis et al., 2017b). However, even when search
rate (i.e., ISpc) is fixed, ISnet can vary with temperature. This
result is in agreement with previous experimental studies (Sentis
et al., 2017b) and emphasize the importance of considering
different IS measures. Temperature sensitivity can also vary
across trophic levels. Climate sensitivity is assumed to increase
with trophic levels (Voigt et al., 2003), possibly due to the fact that
respiration increases faster than photosynthesis with warming
(Pawar et al., 2015). On the other hand, upper trophic levels
are often endotherms which can control their body temperature
to a certain extent. According to our results, differences in the
thermal sensitivity of species can in turn alter the shape of the
thermal response of interaction strength but also its sensitivity.
We also find that the thermal sensitivity of IS can be contingent
on parameters that are not temperature dependent, such as
mortality rates, that can magnify thermal responses. Mortality
can increase via many other mechanisms than temperature.
Natural disturbances or dilution, for instance, can affect mortality
rates and in turn species biomasses leading to a change in the
strength of their interactions. Hence, we show that, in addition
to temperature, other factors can impact trophic regulation
and, more importantly, magnify the temperature effect, without
altering the shape of its thermal response.

Finally, we investigated the effect of a shift in body mass
due to temperature on IS. Warming is assumed to have a
negative effect on ectothermic organisms’ body mass due to the
temperature-size rule (Ashton et al., 2000). Despite body mass
being a key determinant of trophic interactions (Brose et al.,
2006; Sentis et al., 2017a), the ecological consequences of such
phenotypic responses remain largely unexplored. Here we show
that the unimodality of the relationship between temperature
and interaction strength (for the case where all parameters
vary with temperature) holds even when body mass decreases
with temperature. However, per population interaction strength
decreases with decreasing body mass whilst net interaction
strength tends to either increase or decrease depending on
which trophic levels follow the TSR. Osmond et al. (2017)
found that the TSR had little effect on net IS but increases the
stability of the interaction. While they considered symmetric TS
responses between resources and consumers, we demonstrated,
in agreement with (Sentis et al., 2017a) that heterogeneous TS
reponses across trophic levels lead to different responses of
IS. By altering resource and consumer body mass ratios, TS
responses may alter IS. Increasing body mass ratio is expected
to increase the relative rate of consumption per unit consumer
biomass which decreases IS and stabilizes the food chain (Sentis
et al., 2017a). We indeed find that when carnivores’ body mass
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decreases, thus decreasing body mass ratio between carnivores
and herbivores, the effect of carnivores on herbivores (ISC−H) is
lower. The indirect effect of temperature through body mass can
then be opposite to its direct effect (which increases interaction
strength under the PTR). Nevertheless, we also found that TS
responses can further enhance the direct effect of warming on
IS. We demonstrate that TS responses can impact IS in various
directions depending on TS scenarios, consistent with Sentis
et al. (2017a), but also show that these responses can vary
from one measure of IS to another. This also raises the point
that experiment duration is essential to accurately measure IS:
experiments that are too short to observe a decrease in body mass
could lead to under or overestimation of IS.

In summary, we find that temperature has numerous effects
on IS. Presently, studies investigating how temperature influences
ecosystem functioning mainly focus on only one effect of
climate change at a time (Yvon-Durocher and Allen, 2012). Our
results show that developing a framework that integrates the
diverse effects of temperature on species’ interactions is key to
understand food web dynamics. Hence, through a simple model,
we show that the impact of temperature on IS can be complex
but that different measures of IS behave similarly with warming.
Our approach however did not account for thermal adaptation
of the species, which can reduce the physiological responses of
organisms to warming. Furthermore, we considered a simple
trophic chain, whereas a food-web approach would be relevant
to investigate how various effects of temperature affect more
complex communities. Hence, our analysis provides insights
on various outcomes arising from communities under warming
and demonstrates the importance of considering diverse effects
of temperature.
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Spatial processes often drive ecosystem processes, biogeochemical cycles, and

land-atmosphere feedbacks at the landscape-scale. Climate-sensitive disturbances,

such as fire, land-use change, pests, and pathogens, often spread contagiously

across the landscape. While the climate-change implications of these factors are

often discussed, none of these processes are incorporated into earth system

models as contagious disturbances because they occur at a spatial scale well

below model resolution. Here we present a novel second-order spatially-implicit

scheme for representing the size distribution of spatially contagious disturbances.

We demonstrate a means for dynamically evolving spatial adjacency through time in

response to disturbance. Our scheme shows that contagious disturbance types can

be characterized as a function of their size and edge-to-interior ratio. This emergent

disturbance characterization allows for description of disturbance across scales. This

scheme lays the ground for a more realistic global-scale exploration of how spatially-

complex disturbances interact with climate-change drivers, and forwards theoretical

understanding of spatial and temporal evolution of disturbance.

Keywords: landscape ecology, fire regime, heterogeneity, adjacency, fragmentation, LANDFIRE

INTRODUCTION

Disturbances pose a fundamental scaling problem as they both create and respond to spatial
heterogeneity in the environment (Turner, 2010). Seminal theoretical and experimental work in
scaling explore how disturbances introduce heterogeneity into ecosystem at varying scales: the
patch-dynamics of Pickett and White, the “shifting-mosaic” of Bormann and Likens, and Turner’s
landscape equilibrium, all attempt to resolve the issue of how disturbances on a range of scales
interact to create ecosystem-level patterns (Bormann and Likens, 1979; White and Pickett, 1985;
Turner et al., 1993).

Among disturbance types, contagious disturbances, such as fire, are particularly important
ecologically as they are not only large in total area, but can have large impacts on spatial pattern,
process, and heterogeneity. Contagious disturbances mediate biogeochemical fluxes, are drivers of
landscape ecology, and contribute uncertainty to understanding consequences of anthropogenic
climate change. At the end of the twentieth century on average, 608 Mha of land burned per
year globally, affecting nutrient cycles, community composition, and altering local energy budgets
(Mouillot and Field, 2005; Marlon et al., 2012; Parks et al., 2016; Dannenmann et al., 2018).
Anthropogenic land-use-change also often follows a contagious pattern, beyond its total area and
carbon impact, it is a major driver of habitat fragmentation, with 75% of forests globally located
<1 km from an edge (Haddad et al., 2015). Forest insects and pathogens also frequently spread as
a spatially contagious process and impact a greater area in North America than fire and forestry
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combined (Hicke et al., 2012). Similarly, the spread of invasive
species can alter nutrient cycling and change ecosystem
composition by outcompeting local populations (Vitousek et al.,
1996). Many of the disturbances listed here interact with one
another, for example invasive plants and forest pests can alter
the flammability of an ecosystem (D’Antonio and Vitousek,
1992), while land use creates breaks that alter fire regimes
and other contagious disturbances (Carmo et al., 2011). In
addition, most contagious disturbances are sensitive to climate—
suggesting that anthropogenic climate change could cause novel
behavior or interactions (Mitchell et al., 2014; Harris et al.,
2016). Contagious disturbances are a central component of
understanding an ecosystem, and to understand how ecosystems
will behave in the future we need an understanding of how to
predict contagious disturbances.

Contagious disturbances pose a particular challenge to scaling,
as they not only create and respond to heterogeneity at a local
scale, but they also respond to heterogeneity in neighboring
locations, and in the process create a larger scale spatial pattern.
To date, most efforts at modeling contagious disturbance have
focused on spatially-explicit simulations (Seidl et al., 2011).
In such models, rules are implemented that govern when
and where a disturbance is initiated and whether it spreads
contagiously to adjacent locations. Such rules are easy to
formulate, typically invoking properties of the disturbance (e.g.,
fire intensity), adjacent locations (e.g., fuel load), and some
degree of stochasticity, and are well-known for their ability to
generate complex spatial pattern and temporal dynamics (Keane
et al., 2004; Wolfram, 2017). While such simulation models
have provided considerable insight into contagious disturbance,
they have two critical limitations when it comes to scaling
up disturbance. First, there are basic computational challenges
to simulation at large scales. While contagious disturbance
processes are common in landscape-scale models, they are absent
from dynamic global vegetation models (DGVMs) because it is
not currently possibly to run global models at the fine spatial
resolution required to represent contagion, which has impacts on
estimates of the carbon sink (Melton and Arora, 2014). Second,
simulation models do not provide the same general theoretical
insight found in analytical models.

The goal of this paper is to explore the development of a
general, analytically-tractable, and spatially-implicit approach to
modeling the scaling of contagious disturbance. This framework
is general in the sense that it aims to capture a wide range of
different disturbance types (including non-spreading disturbance
as a special case) to provide a common framework for
understanding their emergent scaling behaviors. It is spatially-
implicit because we make the simplifying assumption that,
when viewed from a large scale, the exact spatial locations of
disturbances do not matter but rather their aggregate statistical
properties. In moving up scales we are not focusing on the spread
of individual disturbance events, but the broader distribution
of disturbance size and shape that characterizes a disturbance
regime spatially.

In developing this approach, we separate the problem of
spatial scaling into two components, heterogeneity and spatial
arrangement. Problems characterized by spatial heterogeneity

are conceptually easier to scale. If an ecological process is only
responding to its local environment, then even if those responses
are non-linear, the emergent “whole” behavior at a larger scale
is just the sum of all the local “parts.” In this case spatial
arrangement does not matter, just the frequency distribution
of the different environmental conditions. This approach has
been applied successfully to the upscaling of many key ecological
processes, such as carbon and water fluxes, even when the
heterogeneity of the process (e.g., distribution of vegetation stand
ages) is evolving dynamically through time (Moorcroft et al.,
2001; Fisher et al., 2018). In practice such approaches are typically
modeled discretely, e.g., a finite number of age classes each with
some fractional area on the landscape.

Ecological processes that depend on spatial arrangement are
conceptually harder to scale, however we argue that not all spatial
arrangement problems have to be spatially-explicit, as many only
depend on relative spatial context. Herein we take the approach
of focusing specifically on approximating the well-established
landscape ecology concept of spatial adjacency, which is a key
driver of many spatial processes. Similar to how we represent
heterogeneity with a probability distribution, at a large scale
we can likewise represent spatial adjacency with the probability
that any two conditions will be adjacent to each other. And
like with heterogeneity, this will typically be modeled discretely,
in this case with a spatial adjacency matrix. If a vector of
fractional abundances provides a first-order approximation of
spatial variability, the combination of a vector of abundances
and matrix of adjacencies thus provides a second-order model.
Not all spatial processes can be approximated via adjacency,
as sometimes higher-order shape and arrangement does matter,
but we posit that this is a useful framework for considering
contagious disturbance and spatial processes of adjacency or of
dynamically evolving adjacency.

For processes where the heterogeneity in the landscape is
fixed on ecological timescales (e.g., elevation, soils), fractional
area and adjacency are likewise fixed and can be pre-computed
(e.g., in GIS). Spatial processes, such as movement across a
landscape, can then be approximated based on adjacency (e.g.,
what is the probability of moving from class A to class C
directly vs. indirectly via B). The challenge with contagious
disturbance arises because it not only responds to heterogeneity
and adjacency, but it also alters both dynamically. Therefore, a
successful approach to scaling contagious disturbance requires
a means of updating both fractional areas and adjacencies in
response to disturbances.

This paper examines three questions: First, how do we
take advantage of adjacency to approximate spatial disturbance
spread? Second, given that disturbance, how do we update
the fractional areas and adjacencies (i.e., how do we make it
dynamic)? Finally, given our ability to simulate disturbances
in a spatially implicit manner, how does this theory compare
to observations? Specifically, our spatially implicit disturbances
model suggests that different disturbance regimes can be
characterized by two metrics: (1) the size distribution of
disturbances; and (2) the relationship between disturbance size
and disturbance interior adjacency scaling. These two metrics
were examined for different disturbance types and ecoregions for
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two contrasting locations, the states of Florida and Oregon, USA.
We hypothesize: (1) that our metrics will distinguish between
different disturbance types and different states; (2) our metrics
will reflect the nested structure of the ecoregions, with ecoregions
from the same state being more similar than comparisons across
states. While many different configuration-based landscape
metrics and indices exist and are used inmanagement, evaluation
of landscape change, and habitat analysis (Uuemaa et al., 2009),
the strength of our metrics is that they are derived directly from a
theoretical understanding of contagious disturbances, thus giving
us an ability to predict how changes in either metric will translate
into changes in future ecosystem processes, heterogeneity, and
adjacency in both the short and long term.

METHODS

Simulating Disturbance Spread
Before diving into how to approximate spatially-explicit models
of contagious disturbance analytically, we first illustrate simple
versions of these spatial models so as to clarify their key
features. Arguably the simplest disturbance process is gap
dynamics (e.g., mortality of individual canopy trees), which is
often approximated as a stochastic process disturbing individual
patches on a grid at random. If we simulate this process through
time (Figure 1 top left), keeping track of the age of each patch
(time since disturbance), and running the simulation until the
stand age distribution reaches steady state, we see that this
age distribution converges to a geometric (discrete exponential)
distribution (Figure 1 mid left). Furthermore, since disturbance
is random and does not depend on patch age or neighborhood,
the spatial neighborhood of each patch is just a sample from this
same geometric distribution. This can be shown by calculating an
adjacency matrix, which tallies the probability that one age class
is adjacent to another (Figure 1 bottom left).

Compare this gap dynamics model with a simple model of
a contagious disturbance (e.g., fire, insects, land use), which
is described first by a probability of disturbance initiation and
second, conditional on initiation, a probability of spread to
adjacent patches. In more complex versions of such models
both these probabilities can vary with age and environmental
conditions (Mann et al., 2012). However, even in the simplest
case, when both probabilities are fixed and disturbances are
random, the model generates much more complex spatial
patterns characterized by larger, contiguous disturbance patches
(Figure 1 right). As before, the overall stand age distribution
remains geometric (Figure 1 mid right), however the pattern
of spatial adjacency is more complicated (Figure 1 bottom
right). First, most newly disturbed patches (age class 0) are
adjacent to other newly disturbed patches (60% in the example
simulation). As we move along the diagonal of the adjacency
matrix, patches in a given age class continue to remain adjacent
to other patches of the same age through time (i.e., larger even-
aged patches remain), but this adjacency decays geometrically as
new disturbances chip away at even aged patches, leaving them
adjacent to younger disturbances. Above the diagonal we see a
pattern similar to gap dynamics, where each age class has some
probability of being adjacent to newly disturbed patches (which

in this simple class is equal for all age classes) and then this
adjacency decays equally for each age class. Matrix elements that
are below the diagonal, which represent the probability that a
patch is adjacent to a patch older than it, age classes likewise
decay geometrically, but each age class is along a different curve
because of the different cumulative probabilities. In other words,
because the elements along the diagonal differ for each age class,
and because the cumulative probabilities must sum to 1, the
remaining cumulative probability is different for each age class.

Armed with a basic understanding of the patterns that
spatially explicit simulations can produce, let us next consider
how to develop a spatially implicit model to approximate the
spread of contagious disturbance. As in the simulation, let us start
by assuming an age or stage structured approach with n discrete
age classes. Next, let us assume that the disturbance has some
initiation probability, p0, that is a vector with the same length
as the number of age classes, n. In other words, the initiation
probability could vary by age class. In this general derivation,
our timestep or “t” represents any discrete timestep (annually,
monthly, etc.). Because disturbance is simulated discretely in
time, the probabilities map to that timestep and can be time
varying (e.g., functions of environmental conditions) without
loss of generality.

Given this initiation probability, the initial disturbance area
(for disturbances with size = 1 patch) is given by I1 = p0 ◦ a,
where a is a vector of the fractional areas of each age class and
◦ denotes element-wise Hadamard multiplication. Next, let us
assume that we know the current adjacency matrix, At , that
describes the probability that a patch of a given age/stage class
is adjacent to patches of the same or other age/stage classes at
time t. Individual elements within At are probabilities, and thus
must be between 0 and 1, and all patches must be adjacent to
some other patch so each row represents a discrete probability
distribution whose elements must sum to 1. However,At does not
need to be symmetric (e.g., Figure 1 bottom right). In practice
the specification of these probabilities will depend on the spatial
grain of the analysis (i.e., patch size) but this does not affect the
mathematical derivation. Also, in practice the initial adjacency,
A0, would need to be derived from some sort of empirical GIS
analysis or some steady-state assumption but this does not affect
the derivation. Finally, except when deriving the dynamics of
updating At+1 given At we will drop the time subscript for
simplicity, as we are not considering changes in A during a
disturbance event.

To allow contagious disturbances to spread we also need to
introduce a probability of spread, ps, given initiation, which
similar to I1 is grain and timestep dependent and could be time
varying. In the general case we will assume ps is a n × n matrix
describing the probability of spreading from one class into any
other class, but in practice ps could be a scalar or set to only
vary by row (dependent on the class the disturbance is spreading
from) or column (dependent on the class being spread into). It
should also be noted that ps does not need to be symmetric—
the probability of spreading from one patch type into another
(e.g., new regeneration into old-growth) need not be the same
as the probability of spreading back. Given this framework we
can next derive the probability of a disturbance spreading to a
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FIGURE 1 | Comparison of Gap dynamics Contagious disturbance simulation. (Left column) Gap dynamic simulation. (Right column) Contagious disturbance

simulation. (Top left) spatial map of stand age, with color on a log scale from youngest (red) to oldest (yellow), (Top right) spatial map of stand age for contagious

disturbance, with color on a log scale from young (red) to old (yellow) and with new disturbances (age = 0) in white. (Middle left) simulated stand age distribution

(black) when disturbance probability is 1% compared to geometric expectation (green), (Middle right) simulated stand age distribution (black) when disturbance

probability is 1% and spread probability is 25% compared to geometric expectation (green), (Bottom) spatial adjacency matrix by age class aggregated into 10 year

bins ([0− 9] = 0, [10− 19] = 1, etc.) with all patches 100 year or older in bin 10. Matrices are colored from white (highest adjacency) through orange to green (lowest

adjacency).

second patch as depending on initiation, probability of spread,
and adjacency:

I2 = (ps ◦ A)I1

Furthermore, we can see that I3 = (ps ◦ A)I2 and so on,
leading to the more general recursion describing the probability

of spreading to h + 1 patches, given that the disturbance has
already spread to h patches.

Ih+1 = (ps ◦ A)Ih = SIh = ShI1

Where S = psA. Note that in this derivation the matrix A is
fixed as it describes the adjacencies among the undisturbed age
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classes; the ongoing disturbance is not an explicit row/column
in A and thus spread only occurs outward into undisturbed
area, and there is no need to account for the spread of a
disturbance backward into patches that were just disturbed. We
also make the simplifying assumption that we are operating
on a sufficiently larger scale that no single disturbance event
changes the adjacency among undisturbed patches enough to
invalidate this approximation (and require updating A during a
disturbance event). That said, adjacency does need to be updated
on our coarser model timestep as what we generally see is small
year-to-year changes that gradually accumulate to appreciable
landscape-scale adjacency shifts over longer time (e.g., decades).

Accumulating the spread over different disturbance sizes leads
to an overall disturbance rate of

D =

∞
∑

h=1

Ih

where D is a vector by class. Overall, while there is
slight underestimation of disturbance extent at high spread
probabilities (Figure 2), the analytical approximation performs
well and incurs a tiny computational cost relative to spatially
explicit models. Also note that this general forward model
has an important special case, ps = 0, which corresponds
to non-contagious disturbances, such as our initial gap
dynamics simulation.

In practice an infinite sum is not actually computable, but
the result will asymptotically approach the analytical result and
thus can be approximated with a finite sum. Furthermore, the
relative proportions of the different age/stage classes within the
ith iteration in the sum (i.e., disturbance of size i), Ii, will rapidly

approach a steady-state distribution. If Ii/
∑

Ii ≈
Ii+1

∑

Ii+1
then we

approximate Ii+1 = IiS with Ii+1 = Iiλ where λ is the dominant
eigenvalue of A. The remainder of the summation

∑

∞

h=i+1 Ih can

thus be approximated as Ii
∑

∞

h=i+1 λh−i. This is just a geometric
series, which has the analytical solution Iiλ(1 − λ)−1. Therefore,
our strategy is to solve the first i terms explicitly and analytically
approximate the tail of the distribution

D =

i
∑

h=1

Ih + Iiλ(1− λ)−1

As seen in Figure 3, this allows the full analytical model to be
accurately approximated with only a small number of matrix
multiplications (∼5 in this scenario)

Dynamic Updating
Fractional Areas
Once the overall disturbance rate, D, has been calculated we need
to update both the fractional areas describing the landscape and
the adjacency matrix between those fractional areas. First, let
us assume that at =

[

a0 a1 . . . an−1 an
]

is a vector describing
the fractional areas of each of our age classes. Let us also
assume that all disturbances reset patches to age class 0, which
is the conventional assumption in cohort-based vegetation
demography models (Moorcroft et al., 2001; Fisher et al., 2018;

VDMS). Note that we are not assuming that disturbance removes
all of the vegetation and that age class 0 is bare ground, but rather
we are using age 0 to semantically indicate 0 years since last
disturbance. Following this assumption, the new fractional area
in age class 0 at time t+1 is simply the sum of the disturbance
rates in each age class times the current fractional area in each of
those age classes, a0,t+1 =

∑n
k=0 ak,tDk,t . Next, for all other age

classes, each age class ages by 1 year and is reduced by the amount
of disturbance that occurred in that class

ak,t+1 = ak−1,t(1− Dk−1,t)

Finally, the oldest age class is a special case, representing all stand
equal or greater than the specified age, and thus is created by
fusing the existing area in that class with the next youngest age
class, minus the disturbance occurring in each

an,t+1 = an−1,t(1− Dn−1,t)+ an,t(1− Dn,t)

Adjacency of Newly Disturbed Patches
In addition to updating the fractional areas in different age classes
we also need to be able to update their adjacencies. This updating
is done after the disturbance events of a given time-step, not as
part of the disturbance simulation itself. This distinction means
that the adjacency at a timestep (At) is not tied to a disturbance
but rather represents the cumulative effects of disturbance on the
landscape over a timestep.

Let us start by focusing on the adjacency of the newly
disturbed age class, a0, with itself, which we will denote as
A00. If we were assessing this adjacency in a spatially-explicit
gridded dataset or simulation, we would estimate the probability
of adjacency in terms of the frequency with which disturbed
patches are adjacent to other disturbed patches vs. non-disturbed
patches. For example, for a disturbance of size 1, all four edges
are facing non-disturbed patches, so the adjacency is 0/4 = 0
(Figure 4). With a disturbance of size 2, the two patches have
a total of eight edges, two of which are on the interior of the
disturbance (disturbed patch adjacent to disturbed patch) and six
external edges that are along the perimeter of the disturbance,
giving an adjacency of 2/8= 0.25. At size 3 there are two possible
disturbance configurations (in a line or an L), but both cases
have a total of four interior edges and eight external edges,
giving an adjacency of 4/12. At size 4 there are five possible
configurations, and the different configurations do not all have
the same perimeter—the square configuration has an adjacency
of 8/16 while all other configurations have an adjacency of 6/16.
If disturbance shapes are completely random then we could work
through the combinatorics of how often each shape is likely to
occur (squares occur 20% of the time) and calculated a weighted
average (0.4). More generally, if we look at the whole map across
disturbances of different sizes the overall mean adjacency of
disturbed patches will be

A00 =

∑

Int
∑

Int +
∑

Ext

where Int are interior edges and Ext are external edges.
Thus, far we have seen that the adjacency (interior/total edges)

has tended to increase as the size of the disturbance increases.
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FIGURE 2 | Validation of the analytical model’s ability to predict disturbance area as a function of spread probability (disturbance initiation probability of 1%).

Simulations run on a 4-sided grid so, for example, a 0.25 spread probability corresponds to four independent chances, each 25%, to spread. The analytical

approximation appears to underestimate disturbance at high spread probabilities.

FIGURE 3 | In this scenario, disturbance was initiated in one class (black) at 10%, and then spread to other classes (spread probability of 25%) based on differing

probabilities of adjacency between classes (50% self-adjacency, 50% adjacent to the next class). Solid and dashed lines are a comparison of how cumulative area

disturbed increased with disturbance size for both the full model and the tail approximation (estimator).

We could continue calculating this pattern to larger disturbances
with more complex shapes and harder combinatorics (e.g., for
a size 5 disturbance there are 372 possible spread scenarios
that produces thirteen possible shapes). However, at this point
it is worth noting that different types of disturbances may be
more likely to produce certain disturbance shapes than others.
For example, some disturbances may tend to produce shapes
that tend to be round (wildfire) while others might tend to

be linear or dendritic (urban development, riverine systems).
These different shapes tend to produce different characteristic
interior/total ratios (i.e., different adjacencies). However, it is
not the overall mean adjacency (interior/total) that characterizes
a disturbance, nor any of the many other landscape metrics
in use (e.g., Maximillian et al., 2019), but the functional
relationship between disturbance size and adjacency, adj (size).
For example, Figure 5 shows the adjacency/size curves for
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FIGURE 4 | Adjacency for small disturbances. Edges are labeled as (E)xterior and (I)interior. For size 1, there is 0 probability of self-adjacency (disturbed patches

adjacent to other disturbed patches). For size 2 and 3 it is 1/4 and 1/3, respectively, while for size 4 the adjacency is either 1/2 (square configuration) or 3/8 (all other

configurations).

FIGURE 5 | Self-adjacency as a function of disturbance size for different

disturbance shapes. Core and Linear are the bounding cases of disturbance

shapes that maximize and minimize self-adjacency (respectively). Spread is a

single realization of the stochastic contagious spread model (Figure 2).

three important cases: random spread (purple), the minimum
adjacency (blue) achieved through linear disturbances, and the
maximum adjacency (red) achieved by circular disturbances that
minimize the interior:total ratio.

To get the overall A00 for the spatially implicit model, we
next replace

A00 =

∑

Int
∑

Int +
∑

Ext

which sums over individual disturbances, with

A00 =

∑

size Int(size)p(size)
∑

size Int(size)p(size)+
∑

size Ext(size)p(size)

which instead sums over each disturbance size. In this
approximation, Int (size) and Ext(size) returns the expected
number of interior and exterior edges while p(size) is the
probability of a disturbance of that size. In the denominator
we can combine terms as

∑

size(Int(size) + Ext(size))p(size) =

∑

size 4 · size · p(size) where the 4 arises from the assumption that
patches are 4 sided. The size distribution itself can be calculated
from the series of Ik, p(h) = (Ih − Ih+1) · h, because Ih represents
the probability of observing a disturbance of size greater or equal
to size h+1. Differencing gives us the probability of a disturbance
size h occurring, which is then multiplied by the disturbance
size to give us the probability of encountering a disturbance
of that size (e.g., the disturbances that stayed size 1 are the
subset of disturbances that were initiated but did not spread to
another grid cell). Finally, just as we truncated the calculation
of D in section Simulating Disturbance Spread, the tails of this
distribution can be approximated by noting that the geometric
series implies a geometric PDF with rate λ. In the numerator we
can use our previously discussed relationship between adjacency
and size class, adj(size) to calculate Int(size) = 4 · size · adj(size).
Putting these together we see that the assumption about the
number of sides to a patch cancels out leaving us with just the
mean adjacency weighted by disturbance size and the disturbance
size probability distribution

A00 =

∑

size adj(size) · size · p(size)
∑

size size · p(size)

This derivation makes sense because large disturbances should
contribute more to the adjacency, but usually occur at lower
probabilities. Our derivation states that the second-order spatial
scaling of any disturbance regime can thus be understood in
terms of its size distribution and adj(size). In the analysis
of empirical disturbances section, we will evaluate these two
components empirically for different disturbance types and
ecoregions in Florida and Oregon. In evaluating this approach
against simple simulation models, we discovered an important
inconsistency in the model, as independent disturbances do
sometimes end up adjacent to each other by chance. Consider
again our earlier example of simulating gap disturbance (ps =

0). In this case there is no spread, and thus our adjacency-
based model makes the prediction that all disturbances are size
= 1, and thus A00 = 0, but in practice we find adjacent
disturbances. To correct our model, we thus added an additional
term in the numerator that accounts for the adjacency between
independent disturbances. The simplest such correction is to
assume that other disturbances are encountered randomly at the
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overall disturbance rate, a0.

A00 =

∑

size Int(size)p(size)+
∑

size a0Ext(size)p(size)
∑

size Int(size)p(size)+
∑

size Ext(size)p(size)

A00 =

∑

size

[

adj(size)+ a0(1− adj (size))
]

· size · p(size)
∑

size size · p(size)

The adjacency predictions corrected to account for this random
self-adjacency performed well (Figure 6).

Adjacency of Non-disturbed Patches
In addition to needing to update the adjacency of disturbed
patches to each other, there are three other cases that need to
be considered: the adjacency of newly disturbed patches to non-
disturbed, the adjacency of non-disturbed to newly disturbed,
and the adjacency of non-disturbed to each other. For these
cases we are going to make the simplifying assumption that
the adjacency in each age class changes in proportion to the
disturbance rate in that age class, Dk. This assumption is likely
reasonable when spread rates are similar among age classes, but
very large differences in spread rates, or large asymmetries in
spread direction, could be tested through a detailed accounting of
the adjacency, A, and spread, ps, at every disturbance size, I, and
age class, k. Doing so would come at the expense of considerably
more complicated accounting and notational complexity, and
thus this is left to future work.

For the first case of disturbances adjacent to non-disturbances,
we want to normalize D by its sum to generate the probability
that the disturbance was in that age class. As with the age-class
distribution, we also want to shift the age classes by 1, to account
for aging, and sum the final two elements in this vector to account
for age-class fusion. Next, because rows sum to zero this vector of
probabilities needs to be reduced by 1− A00, giving

A0k,t+1 =
Dk−1
∑

D
(1− A00,t+1)

Next, consider the case of non-disturbed patches adjacent to
other non-disturbed patches. Here the adjacency should be
reduced by the amount of disturbance in that age class, which
is the disturbance rate normalized by the fractional area.

Aj,k,t+1 = Aj−1,k−1,t(1− Dj−1/aj−1)

As before, age classes are shifted by 1 and the final two classes are
merged, however in this case the merge is an average (weighted
by fractional area), rather than a sum.

Finally, because rows sum to 1, the adjacency of non-disturbed
to newly disturbed patches are one minus the sum of the other
elements in the row

Aj,0,t+1 = 1−
∑

k=1

Aj,k,t+1

To test the performance of the analytical adjacency
approximation, we compared the adjacency matrix predicted
by this model to that generated by a fully spatial stochastic

FIGURE 6 | Validation of the ability of the analytical approximation to predict

self-adjacency of newly-disturbed patches as a function of disturbance spread

probability (disturbance initiation probability set to 10%).

simulation, analogous to the one shown in the right column
of Figure 1 but with a disturbance initiation probability of 1%
and a spread probability of 10%. In both the analytical model
and stochastic simulation, we initiated the landscape from bare
ground (age = 0) and ran the model for 1,000 years to reach
a steady-state.

Analysis of Empirical Disturbances
Data Description
Our analysis looked at disturbances in Oregon and Florida
from the LANDFIRE Disturbance product (Earth Resources
Observation and Science Center, U.S. Geological Survey) for
2014, the most recent year available. Florida and Oregon were
chosen as contrasting disturbance regimes because they are both
areas with fire-based disturbance regimes and a large timber
industry (Fox et al., 2007; Marlon et al., 2012; Mitchell et al.,
2014). The LANDFIRE disturbance product is a 30 × 30m
resolution gridded raster covering the entire US, with each
disturbed cell assigned one of twenty different disturbance types.
Disturbances were determined by a combination of LANDSAT
satellite imagery, MODIS satellite imagery, vegetation change
detection techniques, and a database of disturbance events
detected by other federal agencies (Rollins, 2009; Vogelmann
et al., 2011). Specifically, the 2014 LANDFIRE Disturbance
dataset was constructed with best-pixel composite imagery, other
composite imagery, or majority focal filling to account for
missing data after the decommissioning of LANDSAT 5. In our
analysis we treated the LANDFIREDisturbance product as given,
and did not consider associated levels of uncertainty within
different disturbance types and pixels.

We downloaded US state data from the LANDFIRE
repository, available at https://landfire.cr.usgs.gov/disturbance_
2.php. The authors then subset Disturbance dataset for each
US state based on and Environmental Protection Agency level
II Ecoregion boundaries (Ecoregions; McMahon et al., 2001).
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Subsetting was done using with the R raster and rgdal packages
(Hijmans, 2017; Bivand et al., 2018). We subset the US state-level
rasters to focus on the two forested level II ecoregions within each
state: Mississippi Alluvial and Southeast Coastal Plains (8.5) and
the Southeastern USA Plains (8.3) in Florida; and the Western
Cordilleras (6.2) and Marine West Coast Forest (7.1) in Oregon.
In Oregon we excluded the Cold Deserts ecoregion (10.1) and
in Florida we excluded the Everglades (15.4) (Figure 7). The
resulting four rasters then had adjacency calculations done on all
of the disturbance clumps within each raster (see below).

Calculation of Metrics
The analysis of empirical disturbances focused on the two
metrics that emerged from our theoretical model: disturbance
size distribution and the relationship between interior ratio
and disturbance size. The analysis began by identifying
individual disturbances that were surrounded on all sides by

non-disturbance pixels. Adjacency was determined using the four
cardinal “Rook’s Case” pixels (for two pixels to be adjacent they
had to share a side). For each disturbance we then identified the
disturbance class and calculated the disturbance area and interior
ratio (number of interior edges/total number of edges, Figure 4).
After processing the four rasters, we ended up with a table of

each disturbance event in Florida andOregon, with a record of its
type, size, interior/total ratio, eco region, and US state. This table
is the basis of all further empirical calculations and is publicly
available along with the scripts used to generate it on Github
at https://github.com/mccabete/SpatialAdjacency. This analysis
has no way of distinguishing distinct but adjacent disturbance
events that occurred at different times within a year, therefore
these distinct but adjacent disturbance events were considered
the same clump. This analysis also did not account for relative
area of different disturbance types mixed within a single clump.
Clumps ofmixed disturbance types accounted for a small number

FIGURE 7 | Visualization of data subsetting and model hierarchies. Colored regions show what portions of Oregon and Florida were used in analyses. Cutouts show a

sample of LANDFIRE raster file with disturbances in green. Model hierarchies show the different models compared, and the data used to make each curve.
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of disturbance events (1%), but a large fraction of disturbance
area (56%) (Figure 9; Supplemental Table 1). We treated Mixed
disturbance as a separate class of disturbance in our comparison
of size distributions. To calculate interior ratio curves these
mixed disturbances were removed. Many of the disturbances
most frequently co-occurring within mixed disturbances are
represented in our curve fits (Supplemental Figure 2).

Assessing Statistical Significance
We used two different statistical tests for the two different
disturbance metrics. For the size distributions, we compared the
size distributions of disturbance type, US states, and ecoregions
using a two-sided Kolmogorov–Smirnov test. We corrected
the P-values using a Bonferroni correction (Massey, 1951;
Bland and Altman, 1995). We compared size distributions
of all disturbance types present within Florida and Oregon
that had 20 or more disturbance events. This excluded
biological and disease disturbance classes (N = 4, N = 6;
Supplemental Table 1). We made 66 pairwise comparisons
among 12 disturbance types, and three comparisons among
state and two ecoregions. After correction, our alpha value was
0.000725 (Supplemental Table 2).

For the interior to total ratio, we fit and statistically compared
curves corresponding to null models and different hierarchy
levels. The curves were fitted using a modified Michaelis-Menten
curves of the form y =

axc

b+xc
using a maximum-likelihood

approach assuming Gaussian error (Michaelis and Menten,
1913). The form was chosen based on visual agreement
with the data and maximum likelihood after comparison
with six other functional forms (Supplemental Figure 1;
Supplemental Table 3). Different curves were compared using
a likelihood ratio test. Comparing the curves meant comparing
different hierarchical levels (Figure 7). We fit two hierarchies,
one starting at the US state level, and one at the disturbance-type
level (Figure 7). In the US state hierarchy, an all-data null model
was compared to a model where Oregon and Florida were fit
separately. The US state-model was then compared to a model
where each ecoregion was fit separately. In the second hierarchy,
an all-data null model was compared to a model where each
disturbance type was fit separately. The disturbance-model was
then compared to a disturbance-by- US state model (Figure 7;
Supplemental Table 4). We also separately compared a one-
curve-Florida model to a two-curve-ecoregion model, and a
one-curve-Oregon model to a two-ecoregion-curve model. We
did this to see if the differences between ecoregions within
Florida would be significant in isolation of the differences
between Oregonian ecoregions (Supplemental Table 4). Because
all single-pixel, double-pixel, and triple-pixel configurations
produce the same interior ratio (Figure 4), curves were fit
only to disturbances over 3 pixels (0.27 ha) large. To meet
requirements of likelihood ratio tests, the data was subset to
include only the disturbance types that were common amongst
all ecoregions. Disturbance types included: clearcut, herbicide,
other mechanical disturbances, prescribed fire, thinning, wildfire,
and unknown. The distinction between wildfire, and prescribed
fire is that a wildfire is an unplanned fire, prescribed fires are
intentionally set and managed fires (LANDFIRE Disturbance,

2016). To contextualize modeled curves, we included hexagonal
density plots, representing the spread and overall shape of all the
data used to generate curves (ggplot2, 3.0.0; Wickham, 2016).
To aid in interpretation, the upper and lower bounds for the
interior ratio were also visualized based on calculations of the
theoretical minimum (linear disturbance) and maximum (round
disturbance) interior ratios for a given disturbance size. All
analyses were performed in R (3.5.0; R Core Team, 2018) with
adjacency calculations performed using the raster library (2.6-7;
Hijmans, 2017).

RESULTS

Dynamic Adjacency Updating
The analytical model for calculating disturbance spread and
dynamically updating landscape adjacency was assessed by
comparing the analytical model to a spatially-explicit stochastic
simulation. In both cases the landscape was initiated from bare
ground (age = 0) and run 1,000 years to reach a steady-state.
Figure 8 shows that the steady-state adjacency predicted by
both models had the same structural features, as summarized
in section Simulating Disturbance Spread: patches within an age
class tended to be more self-adjacent, but that self-adjacency
decays geometrically with age; there is also a geometric decay
along rows, but with greater adjacency above the diagonal.
Numerically, the predicted adjacencies were also very similar,
though with the analytical model slightly overpredicting A0,0.
Because so many of the other rates in the adjacency matrix decay
from A0,0, there are slight biases elsewhere. However, the error
propagation from A0,0 is consistent with the underlying structure
for updating the matrix being correct, because it means that
structural elements are preserved as the landscape ages.

This impact of errors in A0,0 on the overall adjacency
calculation was tested with a third model (Figure 8 bottom
left), where the analytical model was run using the A0,0 derived
from the numerical simulation. Overall this model improved the
overall pattern in the adjacency matrix, especially along the main
diagonal. The remaining error (Figure 8 bottom right) is largely
concentrated in two places. First, there is greater adjacency with
the oldest “absorbing” age class than observed in the simulation
(left hand column). Second, because of this the bottom left corner
(adjacency of old age classes to young classes) is a bit lower
than observed. Matrix rows have a sum-to-one constraint, so
some of these errors are inevitable compensating errors. It is also
worth noting that in nudging A0,0 directly we are not nudging
the underlying terms used to calculate A0,0 (I, D, a), which
are also used in update the rest of A, meaning this test is not
strictly internally consistent. An open question is how much of
the remaining error in the adjacency matrix updating, is in the
underlying analytical simulation of disturbance spread (I, D, a)
vs. approximations in the updating of A? This is something we
hope to investigate further in the future.

Disturbance Size Distribution
Our Kolmogorov–Smirnov pairwise comparison of disturbance
type size distributions found that the majority of disturbance
types had significantly distinct distributions (p << 0.001)
(Figure 9; Supplemental Table 2). The three exceptions were
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FIGURE 8 | Comparison between adjacency matrices for a stochastic spatial simulation (simulation from Figure 2, middle) analytical approximation (top), and

analytical approximation where a correction was applied to A00. All adjacency matrices are after 1,000 years (steady state). To the right are difference matrices

between the simulation matrix and the two analytical matrices. Age class aggregated into 10 year bins ([0− 9] = 0, [10− 19] = 1, etc.) with all patches 100 year or

older in bin 10. The 10th column of the error matrices was removed because of a summing to 1 constraint.

clearcut, wildland fire, and harvest, which had non-significant
differences with roughly half of the disturbance classes. Finally,
mastication had no significant difference between wildfire
and chemical (Supplemental Table 2). The size distributions
of Florida and Oregon were significantly different, as well
as the two ecoregions nested within Oregon (p < 0.001;
Supplemental Table 4). The two ecoregions size distributions
nested within Florida were not found to be significantly different.
However, in other size distributions significant differences were
found despite visual similarity in part due to large sample sizes.
The size distributions have a large range in sample sizes. US
state-level size distributions were based on very large sample

sizes (Oregon N = 27,137, Florida N = 20,329). Disturbance
sample sizes range from harvest with N = 22 to unknown
N = 34,560 (Supplemental Table 1). Unknown disturbances
accounted for the majority of disturbance events in the overall
dataset, and a large proportion of the area (20%). All four
ecoregions had a similarly shaped size distribution, with peaks
at single-pixel (0.09 ha) disturbances and at 7 ha disturbances.
The 7-ha peak aligns with disturbance peaks in the disturbance
categories unknown, thinning, wildland fire, mixed, harvest and
wildfire. Within Oregon, the Western Cordillera ecoregion has
more small andmid-level size disturbances than theMarineWest
Coast Forest, the Western Cordillera also had both considerably
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FIGURE 9 | Size density plots showing the contrasts between ecoregion/state

and disturbance type. Colored boxes next to disturbance size density curves

show what ecoregion contains the respective disturbance. Sample sizes

associated with density plots can be found in Supplemental Table 1.

more disturbance events than the Marine West Coast Forest,
and a larger area of disturbance (75%). Disturbance plots show
more varied patterns, Wildfire and prescribed fire have a long
tails, reflecting the influence of rare but large disturbances.
In contrast, thinning and mastication have distinct peaks and
sharper drop-offs, suggesting more standardized anthropogenic
disturbances and smaller sizes. Mixed disturbance has the longest
tail, and no peak at small disturbances. Herbicide and other
mechanical disturbances have visually similar distributions but
were found to be significantly different (Herbicide N = 4,655,
Other Mechanical N = 3,546). Within mixed disturbances,

herbicide and other mechanical disturbances co-occurred most
frequently (Supplemental Figure 2).

Disturbance Interior Ratio Curves
We found a significant effect of US state (p < 0.001) and
ecoregion nested within states (p < 0.01). Oregon had a wider
range of interior ratios, with a higher occurrence of linear
disturbances than Florida (Figure 10). Florida and Oregon have
similar numbers of overall disturbance occurrence, but Oregon
disturbances have a larger proportion of the total area of
disturbances (%79). Within Oregon, small disturbances were
more compact in Marine West Coast forests than in the Western
Cordillera small disturbances, but this relationship crosses, such
that Marine West Coast disturbances were less round at large
disturbance sizes. The curves fit for the two ecoregions in Florida
are nearly identical (Figure 10). Despite visual similarity, the two
ecoregion curves were found to be significantly different even
when compared to just a Florida curve model. Best fit parameters
for all curves are provided in Supplemental Table 5.

In our second hierarchy, there was a significant effect of
disturbance type (p < 0.0001), but not US state nested within
disturbance (p > 0.1). Herbicide is the most distinctively linear,
followed by other mechanical disturbances, and then unknown
disturbances. Fire disturbance types (prescribed and wildfire)
were closer to the maximum interior ratio curve, suggesting that
fires tend to be compact and burned pixels were predominantly
adjacent to other burned pixels (Figure 11). Disturbance-level
curves show that prescribed fires are less compact at smaller
sizes and larger sizes than natural fires, but at the most frequent
size is similarly shaped. Thinning resembles other compact
disturbances, but begins to become more linear at large sizes
relative to wildfire. Clearcut follows a similarly compact pattern
to wildfire. Individual disturbance curves and data plots can be
found in the supplement (Supplemental Figure 3).

DISCUSSION

Theoretical Framework
Our framework for scaling spatially-implicit contagious
disturbances is reasonably accurate, computationally efficient,
and theoretically provocative. Our framework was able to
estimate the fraction of the landscape that was disturbed
as a function of disturbance initiation, adjacency, and
spread probabilities (Figure 2). We were able to show that
disturbance initiated in one age class would spread into stands of
different ages based on their relative adjacencies (Figure 3). We
demonstrated not only the ability to predict the self-adjacency
of newly-disturbed areas (Figure 6), but also the adjacency of
newly-disturbed areas to non-disturbed areas and the ability
to update the adjacency of non-disturbed areas to each other
in light of new disturbance. While the corrected self-adjacency
predictions perform well (Figure 8), improving this correction is
a useful area for future research, for example by accounting for
the size of disturbed patches in calculating the probability that
they will merge. In addition, it is important to note that when
simulating disturbance using empirical adj functions that this
correction term does not need to be included unless distinct,
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FIGURE 10 | Mean trends of Ecoregion within State. Curves match

Ecoregion model curves referenced in Figure 7. Gray hexes correspond to

binned-counts of number of disturbance events. Black lines correspond to

core and linear bounding cases. Parameter values associated with curves can

be found in Supplementary Table 5.

but adjacent, disturbances occurring during the same time step,
were separated in the original data (usually this is not possible).
We were able to successfully update adjacency over 1,000 years
within a reasonable level of accumulated error, and capture the
major emergent features of contagious disturbance adjacency
(Figure 8), such as the geometric decay of self-adjacency as
even-aged stands mature and the geometric decay of adjacency
within an age class (greater probability of being adjacent to newer
disturbances) with greater adjacency above the diagonal (young)

FIGURE 11 | Mean trends of disturbance type. Curves match Disturbance

model curves referenced in Figure 7. Gray hexes correspond to

binned-counts of number of disturbance events. Black lines correspond to

linear bounding cases. Parameter values associated with curves can be found

in Supplementary Table 5. Plots of individual curves against data can be

found in Supplementary Figure 3.

than old. That said, if older age classes are aggregated (bottom
row) then considerable self-adjacency among old-growth stands
can develop.

There are a number of important applications where this
modeling framework can be immediately applied and expanded
upon. At the top of this list is improving the incorporation of sub-
grid scale disturbance processes within regional and global scale
models, such as Dynamic Global Vegetation Models (DGVMs),
Vegetation Demographic Models (VDMs, Fisher et al., 2018),
and coupled Earth System Models. These models operate at a
scale where spatially-explicit approaches are not computationally
feasible– a typical landscape model operating at LANDSAT
(30 × 30m) resolution would require simulating hundreds of
billions of grid cells to capture the Earth’s land surface. As a
result, disturbances that we know to be spatially contagious
are either absent from these models altogether (Hicke et al.,
2012; Dietze and Matthes, 2014; e.g., insects and pathogens)
or represented using much simpler zeroth-order (spatially
homogeneous) or first-order (fractional area) approximations
(e.g., fire, land use). By using these simpler approximations,
existing models miss important ecological phenomena, such as
the spread of disturbance initiated in one age class or vegetation
type into other vegetation within that grid cell. Depending on
whether these models assume fractional areas are completely
independent or randomly-distributed, these approaches will
systematically either over- or underestimate (respectively) the
degree of spatial adjacency occurring on the landscape. This will
potentially bias estimates of dispersal limitation, lateral shading,
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microclimate, and lateral hydrologic and biogeochemical
fluxes (Melton and Arora, 2014).

Even where spatially-explicit models are computable
(e.g., landscape-scale models of vegetation communities and
biogeochemistry), there is often considerable uncertainty in
the initial conditions. Spatially explicit models require state
variables to be estimated at a fine spatial resolution (Shifley
et al., 2008), which is very data intensive and frequently
underconstrained. Furthermore, the errors in spatial maps of
initial conditions are not independent, so the uncertainties
do not simply average out with the number of grid cells. In
contrast, with spatially-implicit models we can often generate
estimates of the probability distributions of age classes and
their adjacency with much greater confidence (law of large
numbers) than we can map explicitly. For example, one may
be able to estimate the fraction of a landscape that is a certain
age class (e.g., 10 to 20-years-old) much more precisely than
one can estimate the age of a specific 30 × 30m pixel. Because
of this, the total predictive uncertainty in a spatially explicit
model could be larger than a spatially-implicit approximation,
for example if the initial condition uncertainties of the spatial
model outweigh the approximation errors of the implicit model
(Dietze, 2017). Without detailed inventory data, initializing a
spatially explicit model presents a trade-off between feasibility
and accuracy.

Beyond the global and vegetation modeling communities,
our derivation can act as a null model for spatial processes
like arrangement, location dependence, and absolute distance
dependence. Arrangement can have an effect on certain
contagious disturbances: for example, corridors can differentially
affect seed dispersal dependent on angle relative to prevailing
wind direction (Damschen et al., 2014). Habitat fragmentation
can correlate with overall abundance of habitat, raising questions
about the separability of configuration from size in occupancy
modeling (Fahrig, 2002; Prugh et al., 2008; With and King,
2018). Absolute distance dependence is common in invasion
ecology, where rare dispersal events over long distances can
have a large effect on the subsequent colonization rates
(Nathan et al., 2003). While some processes have spatial
dependence that cannot be captured in our framework, the
assumptions of our approach allow it to act as a non-
trivial null-model to separate those effects (Rosindell et al.,
2011). Explicitly accounting for size with adjacency is useful
for disentangling the effects of size and arrangement, which
often co-occur and can lead to misattribution (Prugh et al.,
2008).

Empirical Analysis
In this analysis we characterized Oregon’s and Florida’s
disturbance regimes based on their size distributions and the
relationship between disturbance size and interior ratio. We
hypothesized that these metrics would differentiate between
contrasting US state-wide disturbance regimes and disturbance
types, and would reflect the nested structure of ecoregions.
Broadly, we found this to be true. Our interior ratio curves
were able to significantly differentiate between US state,
ecoregion, and disturbance types (Supplemental Table 4). In

particular, different disturbances had characteristic interior
ratio curves. Fire disturbances had compact configurations
while several anthropogenically controlled classes (herbicide
and other mechanical disturbances) spread dendritically.
Relative to other mechanical disturbances and herbicide
thinning spread in a compact way, but notably spread
more dendritically at large disturbance sizes. This could
indicate that thinning management strategies are fragmenting
landscapes compared to natural disturbances. That said,
the hierarchical structure of our analysis did not capture all
possible permutations of lumping and splitting disturbance
types, so similar curves (i.e., Clearcut and Wildfire; Figure 11)
might have been lumped if evaluated independent of other
disturbance classes. Overall, these results suggest that our
metric captures the major features of the regions’ disturbance
regimes, and highlights the effects of anthropogenically
mediated disturbances.

Size distributions of disturbances were generally distinct,
but not sufficient to differentiate all disturbance types. That
said, ecoregion-level size distributions had similar shapes
(Figure 9). The consistent shape of the size distributions
could be an artifact of the LANDFIRE disturbance attribution
(Unknowns were the largest class of disturbance events)
and could reflect the dominance of fire and thinning in
both Florida and Oregon. Visually and statistically, the
ecoregion size distributions support the nesting structure of
the ecoregions: Florida ecoregions are more similar to each
other than they are to the Oregon ecoregions (Figure 9;
Supplemental Table 2). Disturbances reflect that high
spreading probability creates larger disturbances: prescribed
fire, wildland fire, and wildfire are the most long-tailed
distributions (Figure 9).

Overall, a strength of this empirical analysis is that it
describes disturbances in terms of size and of configuration
separately, which contrasts with many spatial metrics which
convolve the two (e.g., mean interior/total). That different
sources of disturbance have different spatial patterns in
disturbances alone is not an unexpected result. Intuitively,
different disturbance mechanisms have different spatial
signatures. A roadway-construction is smaller and narrower
than a typical commercial thinning. These findings take
that intuition a step farther and explore the patterns that
emerge at larger scales. When an ecosystem’s disturbance
regime is changing, that change will manifest as changes to
disturbance size, or disturbance configuration (the interior
ratio curve), or both. In the future, if we characterize
more disturbance regimes in terms of these metrics, and
better understand what factors drive their variability in
time and across large spatial scales, it should be possible
to use these relationships to forecast the spatial scaling of
changing disturbance.

As an example, consider a shift in disturbance regime that
does not change the disturbance size, but shifts the shape from
dendritic to compact. Dendritic disturbances create corridors
through the landscape, which affects the demography of the
ecosystem by changing migration, favoring certain dispersal
mechanisms, and increasing the propagule pressure of certain
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areas. Size and shape of patch plays a role in the success
of invaders (McConnaughay and Bazzaz, 1987; Fahrig, 2002).
Dendritic disturbances alter the abiotic properties of a system
through the creation of edges. Edge-effects have been found in
forest systems to increase carbon uptake, increase available light,
and increase nutrient deposition (Reinmann and Hutyra, 2017).
At the other extreme, more compact disturbances could cause
more evenly aged composition and introduce more within-patch
homogeneity by having a larger fraction of the disturbed pixels
“sheltered” from surrounding areas.

Many contagious disturbances are projected to change
in magnitude, severity, and location with climate change
(Flannigan et al., 2000; Bradley et al., 2010; Mitchell et al.,
2014; Parks et al., 2016). Ultimately, these metrics will
help us make concrete predictions of how to scale up
these disturbances’ regime changes. To be able to do this
the variability within these metrics needs to be explored:
How do they change year-to-year and place-to-place? How
is this variability related to changes in weather, climate,
and characteristics of the biotic and abiotic environment?
This analysis demonstrates that interior ratio curves have
the potential to communicate unique information about
contagious processes and we encourage evaluating its utility in
future work.

Opportunities and Challenges in
Future Implementation
Implementing this spatially-implicit framework in real-world
models requires that a number of inputs be derived through
empirical analysis. First, the initial condition for adjacency,
At=0, needs to be estimated for every large-scale grid cell.
Given maps of current vegetation, this is computationally
intensive but a relatively straightforward operation either within
GIS or scripting languages with geospatial libraries (e.g., R).
Next, users need to then decide whether to forward simulate
disturbances and interior ratios based on initiation probability
and spread probability (section Simulating Disturbance Spread),
or to rely on empirically observed size distributions and
interior ratios (sections Disturbance Size Distribution and
Disturbance Interior Ratio Curves). For short-term simulations,
relying on empirically-derived statistics, such as those derived
here for Florida and Oregon, is probably the easiest way
to implement a wide range of different disturbance types.
The empirical analyses conducted here could be further
broken down using empirical covariates, such as weather, to
capture changes interannual variability in disturbance size and
shape (Hu et al., 2010). For longer-term simulation, forward
simulations have the advantage of being able to extrapolate
to new conditions. In the simplest simulations explored so
far, the initiation and spread probabilities were typically held
constant through time, for different age classes, and as a function
of disturbance size, but as discussed earlier, all of these can
be made to vary based on either mechanistic models (e.g.,
fire ignition and spread; Kitzberger et al., 2012) or empirical
observations. In these cases, there is a well-established body
of literature deriving such relationships for spatially-explicit

landscape models that should be directly translatable to
inform spatially-implicit approaches (Seidl et al., 2011;
Mann et al., 2012).

Once the concept of dynamic adjacency is in place within
large-scale models, this opens the door for improving the
representation of many other ecological processes within
large-scale models. First and foremost is probably the
addition of edge effects, such as lateral light penetration
vs. shading, as 75% of forests globally located <1 km from
an edge (Haddad et al., 2015). Depending on the default
assumption, which varies from model to model, current
approaches are either massively underestimating how bright
large disturbances are, or treating small disturbances as receiving
full sun. Edge effects are known to have large impacts on
microclimate (temperature, humidity, wind, etc.), which will
have impacts on all aspects of modeled ecosystem function
(productivity, biogeochemistry, hydrology, carbon storage,
etc.). In addition to edges, adjacency can also be used to
improve representations of dispersal limitation within large
scale models, which typically assume seed is equally available
at all points within a large grid cell, using the same approach
of iterative multiplication of an adjacency matrix that we
used here to simulate contagious spread. This could also be
particularly useful for representing invasive species in large-scale
models. Finally, adjacency could also be used to improve the
representation of other lateral fluxes, such as hydrologic or
nutrient flows.

We have argued that our size distribution and interior/total
ratio metrics describe disturbance regimes in a way that
forwards our fundamental understanding of disturbances.
However, for a metric to be useful it has to be practical
to measure. How difficult are these metrics to estimate
empirically? Potential challenges arise depending on the scale
of interest. At scales where spatial data is common (remote-
sensing products, GIS analyses) calibration is straightforward.
More work needs to be done to see how these metrics vary
with environmental variable and time to clarify exactly how
much data is required to fully characterize a disturbance
regime. However, our results suggest that these metrics capture
nuanced information about a disturbance regime. Measuring
these metrics across landscapes presents the dual opportunity
to model disturbance and probe theoretical implications of
these metrics.

CONCLUSION

In this paper we lay out a theoretical derivation for the spatially
implicit scaling of disturbances and explore the descriptive
capacity of metrics that emerge from our derivation. We
found that we were able to capture how different spread
probabilities alter a landscape, and could update adjacency
dynamically with new disturbances and stand age. We note
the implications of this technique apply widely to multiple
problems in scaling, through the improvement of ecosystem
models, development of null models and the characterization of
disturbance regimes.
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Ecological theories often encompass multiple levels of biological organization, such as

genes, individuals, populations, and communities. Despite substantial progress toward

ecological theory spanning multiple levels, ecological data rarely are connected in

this way. This is unfortunate because different types of ecological data often emerge

from the same underlying processes and, therefore, are naturally connected among

levels. Here, we describe an approach to integrate data collected at multiple levels

(e.g., individuals, populations) in a single statistical analysis. The resulting integrated

models make full use of existing data and might strengthen links between statistical

ecology and ecological models and theories that span multiple levels of organization.

Integrated models are increasingly feasible due to recent advances in computational

statistics, which allow fast calculations of multiple likelihoods that depend on complex

mechanistic models. We discuss recently developed integrated models and outline a

simple application using data on freshwater fishes in south-eastern Australia. Available

data on freshwater fishes include population survey data, mark-recapture data, and

individual growth trajectories. We use these data to estimate age-specific survival and

reproduction from size-structured data, accounting for imperfect detection of individuals.

Given that such parameter estimates would be infeasible without an integratedmodel, we

argue that integrated models will strengthen ecological theory by connecting theoretical

and mathematical models directly to empirical data. Although integrated models remain

conceptually and computationally challenging, integrating ecological data among levels

is likely to be an important step toward unifying ecology among levels.

Keywords: Bayesian statistics, ecological modeling, population ecology, community ecology, ecological

dynamics, integrated models, inverse models, individual based model

INTRODUCTION

The search for unifying principles in ecology has spawned many ecological theories (Scheiner and
Willig, 2011). These theories often span multiple levels of organization, connecting individuals to
population, communities, and ecosystems (e.g., Brown et al., 2004; Falster et al., 2017). Although
ecologists regularly translate theoretical models into mathematical frameworks (e.g., Hubbell,
2001; Brown et al., 2004; Kooijman, 2010), it has proven difficult to parameterize these complex,
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mathematical frameworks so that the resulting models are
accurate, realistic, and applicable to real-world challenges
(Marquet et al., 2014). We believe that attempts to parameterize
complex, process-explicit models have been hampered by the
isolation of data collected at different levels of organization.
Although theoretical models regularly span multiple levels of
organization, statistical models rarely connect data in this way.

Most models of ecological processes are fitted as “forward
models,” where model parameters are estimated from data
measured at the level of the parameter (e.g., individual survival
estimated from data on individuals through time) (Caswell,
2001; Tredennick et al., 2017). Although forward models usually
support unique parameter estimates, it is challenging to collect
the data required to parameterize forward models reliably
while maintaining generality (Manning and Goldberg, 2010;
Tredennick et al., 2017). Recently, several statistical advances
have enabled “inverse models,” where model parameters are
estimated from data measured at higher levels of organization
than the model parameters (e.g., Ghosh et al., 2012; González
et al., 2016). For example, inverse modeling approaches have
been used to estimate individual survival and fecundity from time
series of population abundances rather than individual recapture
histories (Ghosh et al., 2012). Inverse models make use of widely
available data on higher levels of organization (e.g., population
abundance surveys), which overcomes issues of data availability
(Ghosh et al., 2012; Ovaskainen et al., 2016). However, inverse
models often fail to identify unique parameter combinations
because observed patterns at one level of organization are often
consistent with multiple sets of parameters at lower levels of
organization, leading to problems of non-identifiability (Peng
et al., 2011; Ghosh et al., 2012).

In general, both forward and inverse models focus on a
single type of data. For example, forward models of population
dynamics typically are parameterized with data on survival
and recruitment (e.g., life tables) (Fujiwara and Diaz-Lopez,
2017). By contrast, inverse models of population dynamics often
are parameterized with data on populations (e.g., abundance
time series) (Ghosh et al., 2012). Forward and inverse models
face different challenges; a lack of data hampers forward
models whereas a lack of specificity hampers inverse models.
Importantly, these challenges are complementary, which suggests
that a potential route is to combine forward and inverse
modeling approaches to parameterize models from data collected
at multiple levels of organization (Evans, 2012; Dietze, 2017).
Connecting data collected at multiple levels—an “integrated”
modeling approach—makes full use of available data and enables
reliable parameter estimates without loss of generality (Besbeas
et al., 2002; Schaub et al., 2007; Maunder and Punt, 2013).

Integrated models potentially overcome the practical
challenge of estimating reliable, realistic parameters in complex
mathematical models, such as dynamic energy budget models
(Kooijman, 2010) or matrix population models (Caswell, 2001).
This practical benefit has implications for fundamental ecology.
For example, widespread estimates of demographic vital rates
in natural conditions might give substantial new insights into
spatial and temporal variation in life histories (e.g., McIntyre
and Hutchings, 2003). Similarly, simultaneous analysis of data

on individuals, populations, communities, and ecosystems
might support realistic, data-driven models of biodiversity
and ecosystem function (Isbell et al., 2018), and would bridge
ecological analyses across distinct spatial scales, which is critical
to the development of general ecological theory (Chave, 2013).
In the following sections, we give a general introduction to
integrated models, outline an illustrative application to real data,
and discuss several open challenges.

CONNECTING MULTIPLE DATA TYPES

WITH INTEGRATED MODELS

Integrated models connect multiple data types through a
composite likelihood function (Maunder and Punt, 2013).
Central to this approach is a core process model that connects
multiple data types through appropriate likelihoods (Besbeas
et al., 2002). With an appropriate process model, a component
likelihood can be defined for each data type:

Li = fi(process),

where the subscript i indexes different data types and the
function fi(x) is specific to the ith data type. Multiple
component likelihoods can be combined into a composite (joint)
likelihood function:

Lcomposite = g(L1,L2, . . . , Ln),

where the function g(. . . ) takes multiple component likelihoods
and returns a single value for the composite likelihood.
Commonly, component likelihoods are assumed to be
independent, in which case the function g(. . . ) is the product of
all component likelihoods:

Lcomposite = L1×L2× . . .× Ln.

The composite likelihood Lcomposite can be used
with any likelihood-based methods of inference (e.g.,
maximum likelihood, Markov chain Monte Carlo)
(Maunder and Punt, 2013).

The choice of process model is critical to an integrated model.
The process model must connect data collected at multiple levels
of organization (e.g., individuals and communities) and must
be computationally tractable. Existing applications of integrated
models have focused predominantly on population processes
(e.g., species’ occurrences, demographic models; Bird et al., 2014;
Koons et al., 2017; Lahoz-Monfort et al., 2017; Zipkin et al.,
2017), which facilitates computation while remaining relevant
to multiple levels. However, any process model that connects
multiple data types could be used (e.g., models of individual or
ecosystem dynamics). A potentially useful focus is individual-
based models, which could be connected to many data types at
the expense of increased computational demands (Grimm and
Railsback, 2005).

The primary challenge in the development of an
integrated model is computational. Integrated models
include potentially complex and dynamic process models,
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as well as multiple likelihoods that differ in complexity.
Although a composite likelihood function is suited to
many inference methods, high computational demands
mean that fully Bayesian implementations are rare (but
see Brooks et al., 2004; Zipkin et al., 2017). In addition,
many implementations are hard-coded for particular
case studies (Maunder and Punt, 2013), and generalizing
these models typically requires knowledge of software for
Bayesian hierarchical models (e.g., BUGS or AD Model
Builder; Maunder and Punt, 2013; Koons et al., 2017).
Recent advances in computational statistics and software
are enabling more flexible implementations of integrated
models, and we give an example of one such model in the
following section.

EXAMPLE: ESTIMATING FISH

POPULATION DYNAMICS FROM

MULTIPLE DATA TYPES

Background
Globally, freshwater river ecosystems are stressed by a
combination of water extraction, changes to flow regimes,
commercial and recreational fishing, the introduction of exotic
species, and chemical and thermal pollution (Nilsson et al., 2005;
Koehn et al., 2014). In many regions of the world, increased
frequency of droughts and increases in consumptive water use
have led to widespread water shortages, further exacerbating
stresses on river ecosystems (Nilsson et al., 2005). In response
to water shortages, many government agencies have invested
heavily in programs to deliver environmental flows—releases
of water to protect biological resources—often with an explicit
focus on the viability of fish populations (Beesley et al., 2014;
Koehn et al., 2014).

The Murray-Darling Basin in south-eastern Australia is
highly valued environmentally, economically, and socially.
Environmental values have been heavily affected by river
regulation, particularly through the seasonal reversal of the
timing of flows and reduced frequency andmagnitude of flooding
(Maheshwari et al., 1995). The Murray-Darling Basin supports
over 40 native fish species, many of which have experienced
substantial declines in abundance over the past century (Koehn,
2015). Here, we focus on Murray cod (Maccullochella peelii
Mitchell, 1838), a large-bodied freshwater fish species listed as
vulnerable under the Australian Commonwealth Environment
Protection and Biodiversity Conservation Act, 1999. Murray cod
are included in several state and federal conservation programs,
which aim to identify management actions that will maintain
viable populations, often with an explicit focus on environmental
flows (Koehn, 2015). A key requirement of these programs is
reliable models of population dynamics that can be used to
predict population dynamics in different locations and under
different management scenarios (Yen et al., 2013).

Data Types
We used data collected over 20 years in six rivers in the Murray-
Darling Basin: the Murray (1999–present), Ovens (2007–
present), Loddon (2007–present), Goulburn (2008–present),
Campaspe (2007–present), and Broken (2008–present). Available
data included sizes of all individuals captured in a given survey,
size-at-age data from otoliths collected from 55 individuals
from 1999–present, and mark-recapture data from 1999–2017
at several locations in the Murray River. All three data sets had
similar ranges of individual sizes and ages.

Statistical Analysis
Our aim was to parameterize an age-structured model of
population dynamics from data on size-abundance distributions,

FIGURE 1 | Overview of the integrated modeling approach used here. Different data types (in rectangles) are connected to one another through a

density-dependent Leslie matrix model (oval). Several sub-models (diamonds) incorporate density dependence, a conversion from sizes to ages, and detectability.

New data types (dashed rectangles) could be included in this model without altering the overall modeling approach. Similarly, data and sub-models could be added or

removed as needed, and the main Leslie matrix model could be replaced with an alternative process model (e.g., an integral projection model or individual-based

model).
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size-at-age data, and binary recapture histories (Figure 1). The
underlying process model was a density-dependent Leslie matrix
model with variation in vital rates among rivers (Caswell, 2001).
We used five age classes and binned size-abundance data into
eight size classes (round brackets exclude endpoints): [(0 , 200 g),
(200 , 500 g), (500 , 1000 g), (1000 , 2000 g), (2000 , 5000 g), (5000
, 10,000 g), (10,000 , 20,000 g), and (20,000 , 60,000 g)]. These
bins were chosen arbitrarily, with unequal bin widths to avoid
the majority of individuals falling into one or a few size classes.

We connected size-abundance data, size-at-age data, and
recapture histories to the underlying Leslie matrix with three
component likelihoods (Figure 1). First, we assumed size-class
abundances were independently Poisson-distributed, conditional
on a detection probability, a conversion from size classes to
age classes, and the matrix population model (i.e., dependencies
among age classes are captured in the Leslie matrix). Second,
we used binary recapture histories to estimate the probability
of detection, assuming a Cormack-Jolly-Seber model with

FIGURE 2 | Posterior distributions of survival and fecundity from age-structured population models of Murray cod. Values are shown for each of six rivers in

south-eastern Australia (black points and lines), along with independent estimates from Yen et al. (2013) (gray points and lines). Points are median values and bars

span 95% credible intervals.
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time-varying survival probabilities (Lebreton et al., 1992). Third,
we used size-at-age data to relate size-class abundances to age-
class abundances, assuming that the distribution of individuals
in a given size class among all age classes followed a multinomial
distribution. We provide a detailed description of this model,
including specification of prior distributions, in Appendix S1.

We assumed the three component likelihoods were
independent, so that the composite likelihood was the product of
all three component likelihoods:

Lcomposite = Lgrowth×Labundance× Lcapture.

Constructing models in this way is fully modular, and allows any
or all elements of a given model to be changed (Figure 1). For
example, the matrix population model could be replaced with an
integral projection model or individual-based model, data sets of
the same or different type could be added to the analysis, and data
sets could be removed to estimate parameters using a forward or
inverse modeling approach (Figure 1). The only requirement is
that the component likelihoods can be defined; all other aspects
of the modeling process are unchanged.

We used the greta R package to generate fully Bayesian
parameter estimates (Golding, 2018). We based parameter
estimates on 40000 random-walk Metropolis-Hastings Monte
Carlo iterations (four chains of 100000 iterations, retaining
every tenth sample), following a 100000 iteration warm-up and
burn-in period. We assessed model convergence through visual
inspection of chains and used Bayesian r2 values to summarize
model fit (Gabry and Goodrich, 2018). We did not use more-
rigorousmodel validation (e.g., cross validation) because our goal
was to illustrate the implementation of a simple integrated model
rather than to present a full analysis of these data. Links to model
code are in Data availability.

RESULTS AND DISCUSSION

The integrated model fitted observed abundances moderately
well in five of six rivers, with median Bayesian r2 values > 0.4
in all rivers except the Murray river (Figure S1, Table S1).
Model fit was very poor in the Murray river (median Bayesian
r2 = 0.00) (Figure S1, Table S1). Poor model fit in the Murray
river, which had the highest observed abundances, might be
due to shared priors on vital rates drawing estimates toward
those of other rivers. Fitted abundances did not always track
observed abundances closely (Figure S1), due primarily to the
constraints imposed by the matrix population model. Although
a process-explicit approach might not match observed data as
closely as alternative methods (e.g., a purely statistical regression
model), the use of an explicit process model potentially guards
against overfitting and, therefore, might be expected to yield
more-accurate long-term predictions (Cuddington et al., 2013).
We acknowledge that more-detailed model validation would be
required to test this claim.

Median survival probabilities ranged from 0.32–0.67 in one
and two year age classes, with the lowest values in the Murray
river and highest in the Loddon river (Figure 2). Median survival
probabilities of three and four year age classes was generally

between 0.5 and 0.8, with lower values in the Ovens river
(0.16 and 0.41 for three and four year age classes, respectively)
(Figure 2). Median survival probabilities of the five year old age
class were mostly between 0.4 and 0.6, with a slightly lower
value in the Loddon river (0.37) and a slightly higher value
in the Goulburn river (0.66) (Figure 2). Estimates of survival
probabilities in one, two, and four year age classes were similar
to values reported in the literature, but estimates in three and five
year age classes were generally lower than values in the literature
(Figure 2). Median fecundity estimates, which encompass egg
and larval survival, ranged from 1 to 5, with low values (<2)
in the Campaspe, Goulburn, Ovens, and Loddon rivers, and
relatively high values (>4) in the Broken and Murray rivers
(Figure 2). These higher estimates of fecundity in the Broken
and Murray rivers match closely with existing estimates in
the literature (Figure 2). Density dependence was weak in the
Murray, Ovens, Goulburn, and Broken rivers (k < 10−4) but
strong in the Campaspe (k= 0.01) and Loddon rivers (k= 0.02),
indicating relatively low carrying capacities in the Campaspe and
Loddon systems (Figure S2, Table S2).

There are several possible extensions to this model. A
relatively straightforward extension would consider temporal
variation in vital rates, particularly in response to local or
regional environmental conditions (Figure 1). Incorporating
temporal variation in this way would enable projections of
population abundances that are linked closely to contemporary
and projected future environments (e.g., Yen et al., 2013). More
challenging extensions might include size- or age-structured
models of recapture histories or spatially explicit variation in vital
rates. Although extensions such as these introduce computational
challenges, it is conceptually straightforward to incorporate new
data and models into the integrated modeling approach used
here (Figure 1).

NEXT STEPS IN THE DEVELOPMENT OF

INTEGRATED MODELS

The example presented here illustrates the use of an integrated
model to estimate the parameters of a complex, process-
explicit model. This approach enabled simultaneous estimates
of demographic vital rates, detection probabilities, and size-age
associations, which would not be possible without an integrated
modeling approach. However, this example also illustrates
several challenges. These include the computational demands
of increasingly complex model structures (e.g., individual-based
models), the development of generalizable likelihoods that
allow novel data types to be included in arbitrarily complex
model structures, and the development of more-sophisticated
composite likelihoods that incorporate dependencies among data
types. Rapid development of integrated modeling techniques
suggest that these challenges will soon be overcome, enabling
many new applications of integrated models. Two particularly
exciting applications are the use of integrated models to connect
data among many levels, and the use of integrated models to
support advances in ecological theory.
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Connecting Data Flexibly Among

Many Levels
Most integrated models have focused on data collected at
one or two levels. For example, integrated models of species
distributions use data on populations (e.g., Lahoz-Monfort
et al., 2017; Pacifici et al., 2017; Zipkin et al., 2017), while
integrated models of demography use data on individuals and
populations to estimate demographic vital rates (e.g., Brooks
et al., 2004; Schaub et al., 2007; Bird et al., 2014; Koons
et al., 2017). Few studies have moved beyond two levels to
consider data spanning many levels (but see Péron and Koons,
2012). Given that individual behavior andmovement, population
dynamics, interspecific interactions, and ecosystem processes
are all connected to the same underlying processes, it seems
plausible that an integrated model could connect data among
many levels.

Although integrated models are restricted by the
computational demands of complex process models and
likelihood functions, recent advances in computational software
and hardware are rapidly overcoming these barriers. High-
performance software libraries such as TensorFlow (Abadi et al.,
2015) are enabling rapid computation of complex, dynamic
models, supported by accessible libraries and packages in
the R and Python computing environments (e.g., Golding,
2018). In addition, increasing availability and accessibility of
high-performance computing environments is allowing non-
specialists to undertake computationally demanding analyses. A
major advance will be the development of flexible and modular
software for integrated models that include different amounts
and types of data.

Advancing Theory With Integrated Models
Integrated models have been used largely as a practical solution
to data shortages and non-identifiable models (e.g., Maunder
and Punt, 2013; Zipkin et al., 2017). However, a broader benefit
of integrated models is their capacity to link ecological data
directly with ecological processes. Ecological theory often is
quantified through a mathematical process model. Therefore,
connecting data with ecological processes supports close ties
between theory and data, with theory informing the process
models that underpin integrated data analyses. Similarly, an
inability to parameterize process models from available data
often limits the development of ecological theory. In this case,
using all available data to parameterize complex process models
has the potential to hasten the development of ecological
theory. Examples include the refinement of life-history theory
through more accurate demographic models and new insight
into biodiversity-ecosystem function theory through models
that connect population, community, and ecosystem dynamics.
Although it is not entirely clear whether ecologists should
emphasize theory developed from first principles or theory

derived from data (Marquet et al., 2014), it is likely that close
ties between theory and data will improve inferences, predictions,
and understanding of ecological processes (Marquet et al., 2014;
Rillig et al., 2015; Dietze, 2017).
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Landscape heterogeneity is a general feature of natural environments, strongly affected

by habitat fragmentation. It can affect a population’s dynamics and probability of

extinction. Fragmentation increases among-patch isolation and decreases patch size,

resulting in a reduction in available resources in smaller patches. To persist, animals

must be able to translate the variation imposed by fragmentation into adaptive energy

allocation strategies that enable populations to avoid extinction. This means that

physiological adaptations are expected to reflect changes in landscape configuration,

especially in the size of the natural habitat patches and degree of isolation among them.

We propose a novel, integrative conceptual framework in which spatial characteristics

of the environment, imposed by fragmentation, lead to specific life-history traits that

increase survival (at the individual level) and decrease the likelihood of extinction (as an

emergent property at the population level). We predict that a resource allocation trade-off

between the life-history traits of reproduction and dispersal along a fragmentation

gradient will emerge. Populations occurring in patches of different sizes and isolations

along gradients of fragmentation and productivity will exhibit differences in the strength

of the dispersal-reproduction trade-off. Emerging from this framework are several

explicit and testable hypotheses that predict that the dispersal-reproduction trade-off

will be shaped by landscape heterogeneity imposed by fragmentation. Hence, this

trade-off serves as the mechanistic link that translates environmental variation created by

fragmentation into variation in species abundances and population dynamics by lowering

local extinction probability and increasing overall population persistence.

Keywords: landscape ecology, habitat fragmentation, resource allocation tradeoff, dispersal-reproduction

tradeoff, landscape physiology, productivity gradient, fragmentation gradient

INTRODUCTION

Here, we develop a framework that integrates two disparate fields of study, landscape ecology
and evolutionary physiology; promoting an emerging new field, landscape physiology. Landscape
ecology relies on correlations among landscape and population/community parameters but usually
ignores individual-level mechanisms. Evolutionary and ecological physiology, in contrast, are
mechanistic disciplines that focus on the microhabitat and often ignore landscape-level processes.
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This framework generates explicit and testable hypotheses of
how an organism translates habitat characteristics resulting from
fragmentation per se (the condition of reduced patch size and
greater isolation among patches), through the physiological
mechanism of resource allocation strategies, into population
dynamic parameters of reproduction, survival, and abundance.
Integrating across physiology and the landscape in one unified
framework will extend our ability to understand population
extinction and persistence in light of current increases in habitat
loss and climate change.

Landscape heterogeneity is one of the general features
of natural environments. Habitats are distributed in space
(hereafter, natural patches), are of different sizes and are at
different distances. Natural patches of different size provide
individuals with variable abiotic and biotic resources and niche
opportunities and therefore may change the fitness of an
individual. Different distances between natural patches require
different dispersal efforts andmay affect the energy and resources
devoted to dispersal at the expense of energy and resources
devoted to growth and fecundity in a particular natural patch. In
the context of this paper, resources refer to nutritional and energy
resources such as from carbohydrates, lipids, and proteins.

One form of landscape heterogeneity related to human impact
is habitat fragmentation. Habitat fragmentation stresses the
linkage between spatial elements and emphasizes the challenges
organisms face in evolving strategies of resource allocation to life
history traits. In this paper, we focus on the coupling of patch
size and isolation in the context of habitat fragmentation, but also
consider cases where size and isolation are decoupled to reflect
large heterogeneous contexts.

Habitat fragmentation, a dominant feature of many
landscapes, can result from habitat loss, due to, among
others, road or city construction, and can affect a population’s
dynamics and probability of extinction (Fahrig, 2002, 2003;
Reed, 2004; Hanski et al., 2013). This is especially true in regions
where intensive use of agriculture has resulted in extensive
fragmentation of natural habitats (Belanger and Grenier, 2002;
Green et al., 2005; Millennium Ecosystem Assessment, 2005;
Giladi et al., 2011). Climate change may possibly exacerbate
the degree of fragmentation of natural habitats (Karieva
et al., 1992; Klapwijk and Lewis, 2001; Opdam and Wascher,
2004). Fragmentation has multiple effects, leading to: (i) loss
of total habitat area, (ii) reduced average habitat patch size,
and (iii) increased distances among patches (the latter two
reflect fragmentation per se effects; e.g., Gavish et al., 2012).
Intensification of habitat fragmentation may result in a decline in
species abundances and diversity, due to the differential within-
and among-patch effects of fragmentation. At the within-
patch level, small patch size leads to a reduction of suitable
habitat, lower habitat quality and fewer resources, and thus to
reduced population sizes and higher probability of extinction
(MacArthur and Wilson, 1967). At the among-patch level,
increased fragmentation may lead to greater distances among
patches (low connectivity) and, possibly, to lower recolonization
rates and a lower probability of replacement by individuals of
that species from nearby habitats (Brown and Kodric-Brown,
1977; Hanski and Gilpin, 1997; Hanski and Gaggiotto, 2004).

For a population to persist, individuals within the population
translate the abiotic and biotic variation they experience,
including those imposed by fragmentation, into energy allocation
strategies to life history traits. These life history traits in turn,
affect demographic parameters that enable the population to
avoid extinction. Life-history traits are strongly shaped by natural
selection and result in adaptive states that should increase
survival and enhance fitness (Roff, 1992; Stearns, 1992). In
particular, natural selection acting on physiological priorities of
energy allocation will result in tradeoffs in investment of limited
energy and resources that maximizes fitness (Stearns, 1989; Zera
and Harshman, 2001). A major physiological trade-off is one that
involves dispersal and fecundity. We propose that a dispersal-
reproduction trade-off serves as the physiological, mechanistic
link by which organisms translate environmental variability
experienced in fragmented habitats into life history traits that
result in population persistence within those habitats (Hughes
et al., 2003; Aguette and Schtickzelle, 2006; Guerra, 2011; King
et al., 2011; Bonte et al., 2012). Here we focus on animals, but
similar considerations are applicable to other organisms as well.

Life history evolution is largely concerned with phenotypic
traits such as reproduction and survival that directly affect
fitness (Roff, 1992; Stearns, 1992). Ecological and evolutionary
physiology seeks to understand the mechanisms underlying these
phenotypes (Garland and Carter, 1994; Feder et al., 2000; Karasov
and Martinez del Rio, 2007). For example, the life history
traits of body size and development time are regulated by eight
signaling and hormonal pathways in insects (Nijhout et al., 2013;
Gokhale and Shingleton, 2015), which result in 40,320 possible
permutations of the control of growth (Davidowitz, 2016). This
large number of possible combinations can be distilled into three
physiological traits (Davidowitz, 2016) that explain 99% and 93%
of the response of body size and development time, respectively,
to simultaneous directional selection (Davidowitz et al., 2016).
Thus, we can understand how two life history traits co-evolve, by
understanding three underlying physiological mechanisms.

The allocation of resources is of major concern in
understanding the physiology underlying life history traits:
the strategies that have evolved to allocate resources and
energy to one trait over another (Ricklefs and Wikelski,
2002). Such resource allocation strategies underlay constraints
and tradeoffs among life history traits (Zera and Harshman,
2001; Boggs, 2009; Flatt and Heyland, 2011) and that of the
landscape physiology framework presented here. Specifically,
fecundity and dispersal are the life history traits of interest in
this framework, whereas the strategies of resource allocation
are the physiological mechanism that underlies these traits.
Because this framework focuses on resource allocation strategies
imposed by landscape fragmentation, it is considered a landscape
physiology framework.

In this paper, we posit that spatial characteristics of the
environment, imposed by fragmentation, force specific adaptive
states of life-history traits to increase survival (at the individual
level) and avoid extinction (as an emergent property at the
population level). We argue that studies of life-history traits and
population dynamics should incorporate spatial characteristics of
fragmentation (e.g., landscape configuration and habitat patch
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characteristics) in order to better understand how physiology
constrains an individual’s allocation strategy. We propose
the integration of two distinct fields—landscape ecology and
evolutionary physiology—into Landscape Physiology. While the
need to integrate these two fields has been previously suggested
(Chown et al., 2004; Chown and Gaston, 2008; Bonte et al.,
2012; Ellis et al., 2012), the integration of physiology and life-
history into landscape-level processes is still extremely rare
(Ellis et al., 2012). A deep understanding of populations in a
fragmented landscape requires knowledge of population and life-
history parameters that a physiological perspective can provide
(Berwaerts et al., 1997; Templeton et al., 2001; Hanfling et al.,
2004; Bakker et al., 2010; Willi and Hoffmann, 2012; Hanski
et al., 2013). We are still lacking a clear understanding of the
physiological mechanisms by which organisms are able to cope
with the effects of fragmentation in ways that scale upwards and
reduce the probability that populations will be lost.

Below, we first provide background on dispersal-reproduction
resource allocation tradeoffs in general. We then present the
landscape physiology framework that explains how animals
translate habitat heterogeneity due to fragmentation into
resource allocation strategies to dispersal and reproduction.
Last, we describe three explicit hypotheses that emerge from
this framework.

Similar to many other trade-offs, the dispersal-reproduction
trade-off emerges because organisms have finite resources to
invest in growth, maintenance, survival and reproduction.
Allocation of resources to any one of these functions reduces
the amount available to the others (de jong, 1993). Such
resource allocation decisions directly affect fitness and therefore
underlie the evolution of traits in general and life-history
traits in particular (Stearns, 1989, 1992; Boggs, 2009). Resource
allocation strategies are influenced by the amount of available
resources: reduced nutrient availability can significantly magnify
a trade-off (increase the slope of the tradeoff), whereas
increased nutrient availability can reduce or eliminate a trade-off
(decrease the slope of the tradeoff) (Kaitala, 1987; Chippindale
et al., 1993; Nijhout and Emlen, 1998; Zera and Harshman,
2001; Harshman and Zera, 2007). Ever-changing physiological
priorities throughout ontogeny govern the relative allocation
of resources to organismal processes as a function of nutrient
input (Zera and Harshman, 2001; Boggs, 2009). For example,
under stressful conditions, allocation to storage or maintenance
can take precedence over allocation to reproduction (Perrin
et al., 1990; Rogowitz, 1996), or resources can be reallocated
from existing structures, as in the case of flight muscle
histolysis and the subsequent reallocation of these resources
to reproduction (Marden, 2000; Stjernholm et al., 2005). Such
dispersal-reproduction trade-offs are well-documented in the
context of migration in birds (Proctor and Lynch, 1998; Gill,
2006) and insects (Johnson, 1963; Rankin and Burchsted, 1992;
Dingle, 1996), where development of reproductive organs is
postponed until after migration.

Dispersal-reproduction trade-offs are also evident at smaller
geographic scales of daily dispersal and foraging patterns
(Van Dyck and Baguette, 2005; Bonte et al., 2012). In
Trinidadian guppies, Poecilia reticulate, fast-start locomotor

performance decreases with increased wet mass as pregnancy
advances (Ghalambor et al., 2004). Gravid females of the
side-blotched lizard (Uta stansburiana) display diminished
locomotory endurance relative to post-gravid females (Miles
et al., 2000), reproductive effort and locomotor performance
are inversely correlated in the garter snake, Thamnophis sirtalis
(Seigel et al., 1987), and carrying single-egg clutches significantly
affect stamina and sprint speed in brown anole lizards,
Anolis sagrei (Cox and Calsbeek, 2009). Small-scale movement-
reproduction trade-offs are well-documented in insects as well.
By far the best-studied example is that of wing dimorphic morphs
of insects (Harrison, 1980), in which wingless morphs typically
invest more resources and invest them earlier into reproduction
compared to winged morphs (Roff, 1986, 1990, 1994; Zera et al.,
1999; Zera and Brink, 2000; Zera and Larsen, 2001). Flightless
brachipterous male planthoppers, Prokelisia dolus, have a 3-
fold mating advantage over long-winged, macropterous males
(Langellotto et al., 2000). In wing monomorphic species, weight
loads associated with reproduction in the cabbage white butterfly,
Pieris brassicae, impair flight performance (Almbro and Kullberg,
2012). Range expansion in response to global warming in the
speckled wood butterfly, Pararge aegeria, has led to increased
dispersal ability associated with reduced reproductive investment
(Hughes et al., 2003). A recent review, however, showed that
flight-fecundity tradeoffs in wing monomorphic insects may
not be universal (Tigreros and Davidowitz, 2019). The trade-
off between dispersal and reproduction can be very sensitive,
as seen in the grasshopper Stenobothrus lineatus, where mean
egg laying was reduced by a rate of 0.36 eggs per day with
each meter increase in mean daily dispersal radius (Samietz and
Kohler, 2012). In the context of fragmentation—the focus of this
paper—Gibbs and Van Dyck (2010) showed that females of the
speckled wood butterfly from fragmented forest habitats that
were forced to fly decreased investment into eggs, indicating the
existence of a dispersal-reproduction trade-off.More importantly
for the argument of this paper, they showed that butterflies from
open, highly fragmented agricultural landscapes that were forced
to fly did not suffer from reduced longevity as did butterflies
from the unfragmented landscapes, suggesting that butterflies
from fragmented landscapes were physiologically better able to
cope with the increased dispersal demands relative to those from
non-fragmented landscapes (Gibbs and Van Dyck, 2010).

THE LANDSCAPE

PHYSIOLOGY FRAMEWORK

We present a novel framework that links physiological
mechanism with landscape level processes to explain how
fragmentation translates into population level persistence.
Fragmentation increases the isolation among patches (among-
patch effect) and decreases patch size (within-patch effect)
(Figure 1A). Patch size may also affect among-patch processes.
However, its major effects relate to local population dynamics
(Andren, 1994; Fahrig, 2003; Burkey and Reeds, 2006; Ewers
and Didham, 2006). Patch size decreases with fragmentation,
which results in a reduction in available resources in smaller
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FIGURE 1 | The landscape physiology framework. The effects of fragmentation on patch size (A1) and isolation (A2). The effects of patch size on investment to

reproduction. Individuals in larger patches will invest more into reproduction (B1) or, if the landscape is exactly at carrying capacity equilibrium (B2) investment into

reproduction will not change with patch size. (C) The effect of among-patch isolation on resource allocation to dispersal with higher investment to dispersal increasing

with the degree of isolation. (D) Resource investment to reproduction and dispersal along a fragmentation gradient. (E) Resource allocation tradeoff at the

physiological level (short, within patch, lines) create the landscape-level tradeoff (long line). Note that the within-patch slopes are shallower in larger patches. The

multiple lines in (A,D) indicate that the specific slope and intercept of the relationships will vary with different combinations of patches (B,C,E). The black shapes in

(B,C,E) represent patches of different shapes and sizes.

patches (MacArthur and Wilson, 1967; Rosenzweig, 1995). This
may consequently lead to two possibilities regarding the per-
capita resource availability: (i) Constant per-capita resource
availability, hence no change in density with area, due to
the match between population size and resource quantity
[e.g., Equilibrium theory (MacArthur and Wilson, 1967); and
see empirical studies in Connor et al., 2000]. Consequently,
investment to reproduction should stay constant with patch size
(Figure 1B2 and horizontal line in Figure 1D); (ii) Increased per-
capita resource availability with area. Several reviews (Bowers
and Matter, 1997; Bender et al., 1998; Debinski and Holt, 2000;
Bowman et al., 2002) suggest that in almost half of studies,
density has been shown to increase with a decrease in area,
suggesting that individuals in larger areas may benefit frommore
per-capita resources. Therefore, reproductive investment should
be higher in larger patches with more resources (Figure 1B1
and decreasing blue lines in Figure 1D) (Wheeler, 1996; Papaj,
2000), whereas increased among-patch isolation should lead
to increased allocation to dispersal ability and hence greater
investment in dispersal structures (Figure 1C) (Gibbs and Van
Dyck, 2010; Bonte et al., 2012; Stevens et al., 2012). Consequently,
as fragmentation increases, organismal investment into dispersal
should increase, whereas investment into reproduction should
decrease or remains equal (Figure 1D). Thus, both scenarios

lead to a resource allocation trade-off between reproduction and
dispersal along a fragmentation gradient (Figure 1E).

It is important to note that there are two slopes that
reflect the physiological and landscape levels of organization
(Figure 1E). The first is the among-individual-within-patch
slopes determined by the physiological processes governing
the resource allocation strategies of the individuals within a
patch (Figure 1E). The second is the slope generated among
patches within the landscape which incorporates the physiology
into landscape level processes (Figure 1E). The slope and
intercept of the within-patch tradeoff (the allocation strategy)
is context dependent and will change with any combination of
individuals within a patch and the environmental conditions they
experience (Figures 1, 2). The among patch slope and position
of each patch along it, is determined by the resource allocation
strategies of the individuals within each patch. Thus, although
we can make general predictions regarding the tradeoff within
a landscape (Figure 2), the exact position of a given patch will
be determined by the individuals and combination of patches
measured (Figure 1).

We note that this framework is concerned with the tradeoff
in the allocation of resources to dispersal vs. reproduction. We
would expect the allocation of resources to these two traits to
have cascading effects on the allocation of resources to other life
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FIGURE 2 | Predictions derived from the landscape physiology framework.

Patch isolation Black shapes represent patches of different shapes and sizes.

The strength of the tradeoff between reproduction and dispersal will increase

with patch isolation (A), decrease with patch size (B) and patch productivity

(C).

history traits as well. Such additional affects are beyond the scope
of this paper.

SPECIFIC HYPOTHESES

The landscape physiology framework offers a number of
hypotheses regarding the effect of fragmentation on the
dispersal-reproduction trade-off. We assume that the effect
of the environment on the dispersal-reproduction dynamics
is expressed by the strength of the trade-off. The strength
of a trade-off can be expressed as the negative slope of the
regression between reproduction and dispersal (however these
are measured) so that a steeper negative slope indicates a
stronger trade-off (Figure 1E), or by the strength of the (genetic)
correlation among the traits where a stronger trade-off is
indicated by a stronger negative correlation (Zera andHarshman,
2001; Roff and Fairbairn, 2007; Boggs, 2009; King et al., 2011).
The strength of a tradeoff can also be influenced by the amount
of variation about the slope, such that a higher variance (a lower
R2) indicates a weaker tradeoff. For simplicity, in this paper, we
only use the slope as a measure of the strength of the tradeoff.

We propose three specific hypotheses, which we are testing
in our ongoing research, regarding the relationship between the
effects of habitat fragmentation and the strength of the dispersal-
reproduction trade-off (Figure 2).

Hypothesis 1
Increased patch isolation leads to an increase in resource
allocation to dispersal (Figures 1C,D). This hypothesis leads to

the prediction of a positive relationship between the degree of
isolation of a patch and the strength of the dispersal-reproduction
trade-off, such that the trade-off will be stronger where isolation
is higher (Figure 2A). This prediction will result in lower
reproductive rates in the more isolated patches.

Hypothesis 2
Increased patch size leads to either a constant or an increase
in resource allocation to reproduction (Figures 1B1,D). This
hypothesis leads to the prediction of a negative relationship
between patch size and the strength of the dispersal-reproduction
trade-off, such that smaller patches will exhibit a stronger trade-
off (Figure 2B). This prediction will result in lower reproductive
rates in the smaller patches.

Hypothesis 3
An increase in patch productivity will provide enough resources
for both dispersal and reproduction. This hypothesis leads to
the prediction that the strength of the trade-off will decrease
with increased productivity, i.e., in patches with higher resource
availability (Figure 2C). This will result in lower reproductive
rates in fragmented habitats of low productivity. This is
supported by what is known of insect reproductive physiology:
reproductive output is a function of the amount of resources
acquired (Wheeler, 1996; Papaj, 2000). Resource abundance
can affect the strength of a trade-off: it can be eliminated
when resources are plentiful, or exacerbated when resources are
limited, as described above.

Under landscape fragmentation, Hypotheses 1 and 2 are
not independent, as more fragmented areas are more isolated
and have smaller patches. Hypotheses 2 and 3 propose the
same pattern, but in different spatial configurations: one along
a fragmentation gradient (i.e., change in patch size) and the
other along a productivity gradient. A landscape that includes
both gradients, varying independently, will serve as an ideal
model system to test the proposed hypotheses, as it can provide
evidence that the shared mechanism works regardless of the
spatial configuration and allows effects due to fragmentation to
be separated from effects due to productivity.

STUDY SYSTEM

The appropriate study system in which to test how the dispersal-
reproduction trade-off translates landscape fragmentation into
population-level processes must fulfill the following criteria.
First, fragments must be well-defined. Second, the fragmentation
gradient must occur over a small enough area as to minimize
abiotic variation from weather or other factors. Third, the
gradient must have existed over sufficient evolutionary time to
allow evolutionary responses in the dispersal-reproduction trade-
off to emerge. Fourth, the study organismmust be in high enough
abundance to allow population-level effects to be measured.
Finally, the fragmentation gradient must be at an appropriate
grain for the organism’s life-history (Baguette and van Dyck,
2007); the organism should be mobile enough so that dispersal
is an important component of its life-history, but not so mobile
that it can easily emigrate from the gradient.
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Our current consideration and specific examples relate to
terrestrial environments due to our own research interests.
However, our framework should be relevant to any other
environment where individuals face energy constraints and must
allocate their resources to either fecundity or movement to
another habitat patch. For example, in marine environments,
isolated coral reefs are distributed at different distances and
have different habitat quality (e.g., Belmaker et al., 2007, 2009).
Dispersal among different coral reefs (Belmaker et al., 2011)
is costly for individuals due the open-sea hostile environment,
but may allow the new arrivals to have reduced predation
pressure (Belmaker et al., 2005) and possibly an increase in
fitness. Consequently, we expect that the dispersal strategies of
individuals that are based on the heterogeneity of the coral
reef system, will result in higher fitness and their fecundity-vs.-
movement strategy will be favored by natural selection.

Although we present our framework and hypotheses in
the context of fragmentation gradients, there is no reason
this framework cannot be extended to other gradients of
environmental variation. This means, that this framework is
applicable to any natural situation where organisms have to
prioritize between investment in dispersal and investment in
fecundity to maximize their fitness. Given that in natural
systems patch size and distance are not necessarily negatively
correlated as they are along a fragmentation gradient, one can
test the proposed framework in clusters of close habitat patches
of different sizes or in clusters of similar sized patches of
different distances. This allows for separate tests of hypotheses
1 and 2 independently. Such studies can be applied to different
landscapes and taxa.

SUMMARY

The framework proposed here integrates two disparate fields,
landscape ecology and evolutionary physiology, promoting the
emerging new field of Landscape Physiology (Chown et al.,
2004; Chown and Gaston, 2008; Bonte et al., 2012; Ellis
et al., 2012). Landscape ecology relies on correlations between
landscape and population/community parameters but usually
ignores individual-level mechanisms. Evolutionary physiology,
in contrast, is a mechanistic discipline that focuses on the
microhabitat and often ignores landscape-level processes. This

framework generates explicit and testable hypotheses of how
an organism translates habitat characteristics resulting from
fragmentation, through the physiological mechanism of resource
allocation strategies, into population dynamic parameters of
reproduction, survival, and abundance. This framework allows
us to quantify and integrate both characteristics of habitat
fragmentation and the dispersal-reproduction trade-off to
produce response functions that can be used in inferring
population persistence. All components of this framework are
already well-supported in the literature of the respective fields: (a)
habitat fragmentation reduces patch size and increases isolation,
reducing species abundances and population persistence; (b)
organisms in isolated, marginal, or fragmented habitats invest
more in dispersal; and (c) dispersal-reproduction trade-offs are
generally common. Previous studies have looked at qualitative
differences among habitats (e.g., fragmented or not, (Gibbs and
Van Dyck, 2010); or old or new populations, Hanski et al., 2006;
Hanski, 2011). This framework extends beyond such studies in
that it allows for the quantification of habitat characteristics and
allocation strategies, such that we can determine the relationships
between them to test explicit ecological and physiological
predictions of resource allocation and life history strategies.
Integrating across physiology and the landscape in one unified
framework will extend our ability to understand population
extinction and persistence in light of current increases in habitat
loss and climate change.
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Unveiling the mechanisms that molds populations fluctuations is central for

understanding the dynamic of pest outbreaks, harmful algal blooms, or extinction risk.We

hypothesize that metabolic restriction to maximum population abundance shapes single

population and community fluctuations. Here, we derive a formal theoretical model linking

metabolic limits to maximum population abundance with the distribution of fluctuations

of single populations and communities. First, we show that the emergence of fat tails

in the distribution of single population fluctuations is caused by the metabolic effect on

maximum population abundance of periodic changes in resource supply or temperature.

Second, we show an explicit link between single population fluctuations and the Laplace

distribution of aggregated community fluctuations. Third, we derive a general relationship

between population variance and body mass (called variance-mass allometry; VMA).

This framework provides a theoretical mechanism to explain fat-tailed distributions of

population fluctuations. It also predicts a double exponential or Laplace distribution of

community fluctuations when the range of body size in the community is large. Finally,

it provides a generalization of the VMA model which is able to generate theoretical

predictions about patterns of variability among species lifestyles. This framework

provides specific theoretical predictions that can be benchmarked against alternative

competing models and empirical data, hence furthering our understanding about how

metabolism determines abundance fluctuations.

Keywords: metabolic theory, variancemass allometry, population fluctuations, natural variability, power laws, size

density distribution, energetic equivalence rule

INTRODUCTION

Deciphering the links between community structure and dynamics is a long-standing question
in ecology. Scaling theories are an appealing approach to unify community size structure and
population variability (Marquet et al., 2007; Cohen et al., 2012; Segura et al., 2017; Zaoli et al., 2017).
Fundamental principles driving energy and mass conversion by organisms constrain processes at
higher levels of biological organization and have therefore been useful to characterize community
structure and dynamics (Brown et al., 2004).

Four scaling functions are ubiquitous in ecology: (i) the scaling of metabolic rates (Bi) with
body mass (Mi); (Bi∞Mα

i ; generally 0.5< α < 2) (Damuth, 1981; Brown et al., 2004; DeLong
et al., 2010), (ii) the scaling of population density (Ni) with body mass (size-density relationship,
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SDR; Ni ∝ Mi
eSDR ; generally eSDR < 0) (Damuth, 1981; Agustí

et al., 1987; Blackburn and Gaston, 1997; White et al., 2007);
(iii) the Taylor’s scaling law, relating the average population
abundance (mean(N)) with population variance (var(Ni)) (TL;
var(Ni)∝ mean(Ni)

eTL ; eTL∼1–2), and (iv) the scaling of
population variance (var(Ni)) with body-mass (variance mass
allometry, VMA; Var(Ni)∝ Mi

eVMA ; generally eVMA < 0)
(Marquet, 2005; Cohen et al., 2012). Multiple mechanisms have
been proposed to explain these scaling relationships, and how
they are interrelated (Zaoli et al., 2017), but the debate is far from
being settled.

The form of the SDR varies with spatial scale and with the
method of estimating population density (Blackburn and Gaston,
1997; White et al., 2007). At regional to global scales, the SDR
often yields an exponent of approximately −α, indicating that
populations of different size can flux similar amounts of energy
per unit area (Lawton, 1989), a phenomenon referred to as energy
equivalence (Damuth, 1981). By contrast, density estimates
obtained for all species present in local communities often
produce weak triangular or polygonal (i.e., constraint envelope)
relationships with exponents shallower than −α, indicating that
that larger-bodied species flux more energy (Marquet et al., 1995;
White et al., 2007; Barneche et al., 2016). Under the hypothesis
that only the abundance of dominant species are constrained by
resource availability (Barneche et al., 2016; Ghedini et al., 2018),
it is possible to derive some general predictions about population
and community dynamics (Figure 1).

Fluctuations in abundance of single populations from time t
to time t+1 can be expressed as:

ri = log

(

Nt+1
i

Nt
i

)

(1)

The distribution of fluctuations often show departures from the
expected log-normal to fat-tailed distributions, implying reduced
predictability for population outbreaks and extinctions (Halley
and Inchausti, 2002; Lan and Chandran, 2011; Segura et al., 2013;
Anderson et al., 2017a), but a mechanistic explanation for this
phenomenon is currently lacking. At the community level, the
aggregation of fluctuations of single populations across species
(ri) often follows a double exponential or Laplace distribution
(Figure 1) which is a power law when the exponential of
fluctuations (exp(ri)=Nt+1

i /Nt
i ) are evaluated (Keitt and Stanley,

1998; Allen et al., 2001; Marquet et al., 2007; Kalyuzhny et al.,
2014; Segura et al., 2017). If the distribution of ri values is
centered on zero, it implies that an increase in one species
is compensated by the decrease in another, consistent with
zero-sum dynamics, which has important consequences for
community dynamics (Marquet, 2005; Segura et al., 2017).
Differently, VMA is a scaling law relating population variability
with body size. Its scaling exponent has been theoretically
predicted by combining the TL scaling exponent (eTL∼ 2) and
the SDR exponent (eSDR∼ −0.75) giving an exponent eVMA ∼

eTL ∗ eSDR ∼−3/2 (Marquet, 2005; Cohen et al., 2012). The VMA
was succesfully evaluated using empirical data sets (Cohen et al.,
2012; Xu, 2016) but the TL has been questioned as a statistical

result of sampling from skewed distributions (Cohen and Xu,
2015). However, the ecological mechanisms generating skewed
distributions remains unclear. Finding an expression for the
VMA without invoking the Taylor’s law would help to advance
in the understanding of mechanisms behind populations and
community variability (Figure 1).

Here, under the hypothesis that metabolic requirements
constraint the maximum abundance of dominant species in
a local community (Agustí et al., 1987; Belgrano et al., 2002;
Brown et al., 2004; Barneche et al., 2016; Ghedini et al., 2018),
we provide a formal link between body size, the distributions
of population abundance, and population and community
fluctuations in abundance. These links will help to advance our
understanding of determinants of size structure, and population
and community variability in natural communities. Based on
the influence of body size, temperature, and resource flux on
the metabolic limit to maximum population abundance, we
derive a constraint envelope model that establishes: (i) a formal
link with single-population variability that generates a fat-tailed
distribution of fluctuations, (ii) an explicit relationship with
the Laplace distribution of community fluctuations, and (iii) a
general form of variance-mass allometry which, in a particular
case, includes the VMA previously proposed by Marquet (2005)
and Cohen et al. (2012).

THE METABOLIC RESTRICTION TO
MAXIMUM POPULATION ABUNDANCE

The model is based on fundamental principles of resource
network transport and enzyme kinetics and should therefore be
applicable to many ecological systems (Brown et al., 2004). The
basal metabolic rate (Bi) scale as a power law with body size
(Mi) and have a near-exponential dependence with temperature
(T in Kelvin)

Bi = b0exp

(

−E

kT

)

Mα
i (2)

where b0 is the size and temperature independent taxon specific
constant, exp() is the exponential function, E is the activation
energy (E ∼ 0.65 eV for heterotrophs and E ∼ 0.32 eV for
autotrophs) and k is the Boltzmann constant (8.62 × 10−5

eV K−1). Ideally, the scaling of field metabolic rate should
be used, however, field metabolic data are not yet available
for many groups (Nagy, 2005) and thus the scaling of basal
metabolic rate is assumed. The allometric scaling of metabolism
(α) showed variations among major evolutionary transitions
(∼0.75–2; DeLong et al., 2010), but for the remaining of the
article we will use the prototypical value found for metazoans (α
∼ 0.75). This choice does not modify the qualitative predictions
of the theoretical model, as long as the scaling of metabolism is
larger than that of the minimum population size (see below).

Total resource use (Rtot) in a local ecosystem (e.g., light or
nutrients in case of autotrophs) is equal to the sum of the
population-level rates of resource use per unit area or volume,
Ri, across S cohabiting species (Rtot =

∑s
i=1 Ri). Ri, in turn,
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FIGURE 1 | Examples of relevant macroscopic community patterns simulated following Equations 5,6, 7, and 10. (A) The scaling of population density with body size

(SDR) where maximum popupulation density (nmax; black dashed lines) scales as the inverse of the metabolic scaling (–α = −0.75) and its intercepts increase with

increasing resources supply from Rtot = 0.1 (dashed line) to Rtot = 3 (dotted line). Remaining parameters from Equation 5 are a = 1, T = 15◦C. Minimum population

abundance (gray dashed line) is assumed to have no relationship with body size (β = 0, b = 1 in Equation 6). Examples of possible temporal changes in the SDR

space of a small sized (log(M)= 5; upper triangles) and large-sized (log(M)=17; open diamond) species. (B) The variance mass allometry (VMA) showing a decrease in

population variance with body size (Equation 10; α = 0.75, β = 0, b = 1, a = 1, Rtot = 0.1, T = 15◦C, E = 0.65). The hypothetical positions of a small sized and a

large-sized species from (A) are shown for comparison. (C) The Laplace distribution of aggregated population fluctuations. The Laplace distribution is the resulting

distribution of aggregate temporal fluctuations of single populations (Equation 1). Simulated random normal variation (gray points) has been added to the equations.

is proportional to the product of metabolic rate (Bi) and the
population density per unit area or volume (Ni),

Ri = Ni Bi (3)

Our interest is in understanding the upper limit to population
density,max(Ni). We assume that a dominant species can use no
more than a fraction γ of Rtot. For simplicity, we further assume
that this fraction is a constant independent of body size (i.e., γ ∝

M0). Given these assumptions, we can combine Equations 2 and
3, and then substituting γRtot for Ri (Belgrano et al., 2002; Deng
et al., 2012) for maximum population density:

max (Ni) = γRtotb
−1
0 exp

(

E

kT

)

M−α
i (4)

and its logarithm:

nmax = log (max (Ni)) =

[

a+ log (Rtot) +
E

kT

]

− αlog (Mi) (5)

where a= log(γ b−1
0 ). As defined, nmax represents the upper limit

for population density on the natural logarithmic scale. Similarly,
we can define the equation for the lower population abundance
bound on the logarithmic scale nmin:

nmin = b− βlog (Mi) (6)

We will assume for simplicity that nmin is independent of
body size (β = 0), and of temperature and resources (i.e., b is

constant) (Pimm, 1991; Marquet and Taper, 1998). In the present
context nmin is interpreted as the lower bound a local population
can reach before getting locally extinct. For example, in the
case of phytoplankton with asexual reproduction, the minimum
abundance is one organism (thus exp(nmin) = 1). We recall that
this is not a metabolic scaling, and later we will discuss the
qualitative effects of a different scaling exponent (β > 0) on
specific predictions.

Equations 5 and 6 allow us to set the limits on local
population abundance of a species in an ecosystem given its
body size, resource supply rate and temperature (Figure 1;
Lawton, 1989). In the following sections, we will derive a
formal theoretical model relating the metabolic rate (Equations
2, 5, and 6) to the scope for single population fluctuations,
the emergence of fat tails and the distribution of aggregated
community fluctuations. The model predicts the potential limits
of fluctuations (conditional to body size) within the boundaries
imposed by metabolic restrictions, but it does not analyze the
specificmechanisms that generates the variability (e.g., predation,
environmental perturbations).

SINGLE POPULATION
ABUNDANCE DISTRIBUTION

Because reproduction is a multiplicative process, a reasonable
assumption for the distribution of abundances (Ni) through
time for a single species in a local community is that
it follows a Lognormal distribution (Halley and Inchausti,
2002). This implies that the logarithm of abundance follows a
normal distribution with a mean µ and standard deviation σ

(MacArthur, 1955; Halley and Inchausti, 2002). Defining nmax
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FIGURE 2 | Body size dependence of population standard deviation (Equation

7) at different resource levels (Rtot = 3 upper curve and Rtot =0.1 lower

curve). Remaining parameters used to draw the curve are α = 0.75, β = 0, a

= 1, b = 0, T = 15◦C, E = 0.65.

and nmin (in Equations 5 and 6) as the expected 5th and 95th
quantiles of the size-dependent (i.e., conditional) distribution of
log abundances, the following formal relationship can be derived
using Equations 2–6:

µ =
nmax+nmin

2 =
a+log(Rtot)+

E
kT

+b

2 −
(α+β)

2 log (Mi)

σ
2 =

nmax−nmin
3.28 =

a+log(Rtot)+
E
kT

−b

3.28 −
(α−β)
3.28 log (Mi)

(7)

These equations predict that µ will be negatively related to body
size, consistent with empirical local size-abundance distributions
(Damuth, 1981; Agustí et al., 1987; Blackburn and Gaston, 1997;
Belgrano et al., 2002; White et al., 2007). If lower population
limit is independent of body size (β = 0), as observed in most
local size density relationships (Lawton, 1989; Blackburn and
Gaston, 1997), the predicted average slope would be the half of
the scaling exponent of metabolism (e.g., –α/2 ∼ −0.375) closer
to the observed average in local communities of animals (−0.25;
Blackburn and Gaston, 1997). In the particular case when there
is a strong scaling of lower population limit with body size (e.g.,
β ∼ α) (e.g., Silva and Downing, 1994), the equations recover the
energetic equivalence rule, as the predicted exponent of the SDR
is the opposite to the metabolic scaling exponent (eSDR ∼ –α)
(Brown et al., 2004; White et al., 2007; Deng et al., 2012).

A novel explicit prediction is the link between metabolic
constraints and the variance σ

2 of log-population abundance
(Figure 2). Equation 7 predicts a decreasing function of σ

2

with body size (unless the extreme case β = α), an inverse
relationship with temperature and a positive relationship with
the logarithm of resource supply. It provides the ecological
conditions to observe a linear (α = β) or a triangular (α > β)
relationship between log-size and log-abundance as has been
observed (Lawton, 1989; Marquet et al., 1995; Blackburn and

Gaston, 1997; White et al., 2007; Barneche et al., 2016). The
decrease in population variance might be related to longer
generation times in larger-sized organisms, which is closely
related to body size. Those equation combine the physiological
effect of themetabolic transport network (α, Mi) with the effect of
local ecosystem properties (temperature and resource supply; T
and Rtot) on population fluctuations. With the formal theoretical
predictions on the mean and standard deviation of population
abundance, it is possible to explore their role on populations and
community fluctuations.

EMERGENCE OF FAT TAILS IN SINGLE
POPULATION FLUCTUATIONS

The magnitudes of abundance fluctuations for a single
population can be characterized as the log of the ratio of
abundances, ri, for two successive time periods, t and t+1
(Equation 1) (Keitt and Stanley, 1998; Halley and Inchausti, 2002;
Segura et al., 2013). The ratio of two lognormal distributions is
itself a lognormal and in the long run, covariance of population
abundance between successive times is zero, thus, the mean (µri)
and variance (σ2ri) of the fluctuations (ri) are estimated as:

µri = µt+1 − µt

σ
2
ri = σ

2
t+1 + σ

2
t

(8)

If mean abundance in successive times are similar, the expected
mean of fluctuations µri is on average zero, but the variance
is the sum of the two variances (Equation 8), which amplifies
the effect of size, temperature and resources on it (from
Equation 7). The periodic changes in temperature or resources
which naturally occur in natural ecosystems will shift the
upper metabolic limit (nmax) and thus modify the scope for
fluctuations of each population (σ2ri in Equation 8 and Figure 1).
If the abundance of a single population is estimated over long
periods (relative to its generation time), the fluctuations for a
single species will follow a lognormal distribution with zero
mean, but time-varying variances. This can be described as
a mixture of lognormal distributions with different variances,
which is a mechanism able to generate fat tail distribution of
fluctuations (Halley and Inchausti, 2002; Segura et al., 2013;
Anderson et al., 2017a). This provides a plausible metabolic-
based explanations for the fat tails in the population fluctuations.
This explanation is complementary to previous explanations
based on environmentally-driven population crashes (Anderson
et al., 2017a), migration (Anderson et al., 2017b) antropogenic
disturbances (Quiroz-Martinez et al., 2012), or the long-range
propagation of interaction among species in a food web (Keitt
and Stanley, 1998; Allen et al., 2001). However, for a given
community in a particular ecosystem in a defined period of time,
present model allows to estimate quantitative predictions about
the mixture of normal distributions and the resulting “fat-tailed”
distribution for each species given their body size.

According to the present model, fat tails will be easily
detectable in small-sized highly-abundant species because of
their larger scope for fluctuations as opposed to large-sized
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species (Figure 1). If a short period of time is evaluated
or if resources or temperature present a temporal trend as
registered under antropogenic eutrophication or climate change,
asymmetric distributions of population fluctuations could result
as has been noted early (Halley and Inchausti, 2002; Segura
et al., 2013; Anderson et al., 2017a). Short datasets might
preclude detecting statistical differences between lognormal or
their fat-tailed counterparts. Moreover, the ability to detect
substantial differences would decrease with the size of the
organism as the scope for fluctuations (σ2ri) is reduced. The
patterns predicted by Equations 7 and 8 should be treated
as the extreme limits into where population dynamics could
act (Lawton, 1989). Finding deviations from the theoretically
predicted scope for fluctuations could provide interesting clues
about other ecological mechanisms reducing (e.g., predator-prey
coupling) or amplifying (e.g., fishing) population variability.

LINK WITH THE LAPLACE DISTRIBUTION
OF COMMUNITY FLUCTUATIONS

When the fluctuation (ri) of multiple populations whitin a
community spanning a large range in body sizes are aggregated,
the Laplace distribution is the expected outcome as has been
observed in empirical studies (Keitt and Stanley, 1998; Allen et al.,
2001; Kalyuzhny et al., 2014; Segura et al., 2017). The link of
single population fluctuations (Equation 8) to the community
level is straightforward. There is a proposition that states that
the aggregation of Lognormal distributions with mean zero
and stochastic variance which has an exponential distribution
generates a Laplace random variable (proposition 2.2.1 in Kotz
et al., 2001). Single population fluctuations are approximately
normal in the log space and its average is expected to be zero
(µrs = 0) and independent of body size (Equation 8) which
fullfills the former criteria. The variance of the fluctuations (σ2rs)
can be approximated as twice the variance of single population
fluctuation (Equation 8; σ2rs ∼ 2σ2) which is related to metabolic
rates and present a left skewed distribution with multiple shapes
(Figure 2). When β = 0, the variances (σ2) of populations
distributed uniformly in the log body-size space are power
laws with a scaling ∼ − α/3.28, and at the other end they
are independent of size (when α = β), and present an inverse
relationship with absolute temperature and an exponenetial
dependence on resource flux (Rtot). This distributions are
close to an average of zero and an exponential distribution
of the variances necessary to obtain a Laplace distribution of
community fluctuations (Kotz et al., 2001).

Deviations from Laplace are expected because the distribution
of variances (σ2) are not strictly exponential, but this patterns
have not been investigated yet (Kalyuzhny et al., 2014). Another
source of discrepancies from the expected Laplace could arise if
the fluctuations are estimated in a reduced period of time, where
aperiodic fluctuations in abiotic conditions caused by nutrient
pulses or systematic trends in temperature regimes modify the
variance structure of fluctuations (Equation 7). Overall, Laplace
distribution serves as a null model to test community fluctuations
in real ecosystems or to analyze deviations from theoretical

assumptions. This framework allows to generate theoretical
predictions on the specific effect of increasing temperature or
resource variability on population and community fluctuations.

A GENERAL MODEL FOR THE LINK
BETWEEN POPULATION VARIANCE AND
BODY SIZE

The variance-mass allometry has been defined theorethicaly by
combining SDR and TL (Marquet, 2005; Cohen et al., 2012) and
states that population variance (Var(N)) is a decreasing power
function of body mass (M) which was supported by empirical
tests (Cohen et al., 2012; Lagrue et al., 2015). However, the TL
has been critiziced in statistical and biological grounds (Cohen
and Xu, 2015). An alternative procedure to derive theoretical
predictions on the variance-mass relationship without relying on
fitting the Taylor’s law can be performed based on the metabolic
limits to density (Equations 5–8). The variance of population
abundance (Var(Ni)) is defined in terms of µ and σ (Equation
7) as follows:

Var (N) = e2µ+σ
2
(

eσ
2
− 1

)

(9)

Substituting Equations 7 into Equation 9 and then rearranging
for M, we obtain an explicit relationship between organisms size
and population variance as follows:

Var (N) = M−1.6α−0.4β
+ e1.6c+0.4b

−M−1.3α−0.7β
+ e1.3c+0.7b (10)

This equation includes the effect of resources and temperature
into the term c=a+ log(Rtot) + E/kT. It is a combination of
two power laws that generates a steeper slope toward large-sized
organisms (Figure 3). In the special case in which the scaling of
maximum and minimum population abundance are the same (α
= β) the Equation 10 is reduced to:

Var (N) ∝ M−2α (11)

Equivalent to the variance-mass allometry (VMA) proposed
using a different derivation by Marquet (2005) and Cohen
et al. (2012). The exponent equal to minus twice the scaling
of metabolism (e.g., −0.75∗2 = −3/2) match exactly their
predicted theoretical value (Marquet, 2005; Cohen et al., 2012).
Moreover, results showed that the metabolic limit to maximum
population abundance generates a skewed distribution of species
abundances, a necessary condition to generate TL (Cohen and
Xu, 2015) but the model (Equation 11) does not depend on
fitting Taylor’s law to empirical data (Taylor, 1961). Therefore,
our present method provides an advantage to conduct empirical
tests, because contrary to TL, it does not require time series of
population abundances to estimate temporal mean and variance.

The explicit link with metabolic scaling presented in Equation
10 could help to explain why free-living, free-living infested,
and parasitic species exhibit different VMA relationships (Lagrue
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FIGURE 3 | General variance mass allometry (VMA) under different resource

supply concentrations (Rtot = 3 upper line and Rtot =0.1 lower line). The

special case when α = β is a straight line (dashed line) whose slope is twice

the opposite of the metabolic exponent eVMA = −2α.

et al., 2015). It is expected theoretically that both the intercept and
slope of metabolic scaling (b0 and α in Equation 2) differ between
parasites and free-living species with direct implications in the
VMA (Equation 10; Lagrue et al., 2015). Similarly, a fraction of
the metabolic power of free-living species infested with parasites
is not used to reproduce and increase population abundance, but
to feed parasites, diminishing their effective scope for fluctuations
with size as have been observed (Lagrue et al., 2015).

MODEL ASSUMPTIONS AND
ALTERNATIVE MODELS FOR THE SIZE
DEPENDENCE OF MAXIMUM
POPULATION ABUNDANCE (nmax)

There are three main assumptions required to derive specific
predictions on variability of population and community
fluctutations, namely: (i) there is a maximum to population
abundance determined by body size, and ecosystem properties
(T, Rtot), (ii) there is a lower bound to population abundance, and
(iii) the distribution of population abundances is lognormal.

An important assumption in our proposed model is the
existence of a metabolic determinant of maximum population
density. While this assumption has received empirical support
(Damuth, 1981; Belgrano et al., 2002; Deng et al., 2012)
it has also been questioned and alternative models for the
SDR have been suggested (e.g., Carbone and Gittleman, 2002;
DeLong and Vasseur, 2012; Pawar et al., 2012). How do
alternative SDR models fit into the framework propossed here?
A group of consumer-resource models whose parameters are
estimated based on scaling relationships provide quantitative
predictions on the shape of the SDR by finding the body-size

scaling of non-trivial steady-state consumer density (DeLong
and Vasseur, 2012; Pawar et al., 2012). These models assume
that the feeding processes (e.g., handling time, attack rate)
and not the internal metabolic transport network determine
the maximum population density of a consumer population.
For example, under a simplified Lotka-Volterra predator-prey
model, it was found that the SDR scaling exponent (eSDR) was
related tomaximumpopulation growth rate, attack rate efficiency
and predator-prey size scaling, with specific body size-scalings
exponents (ρ,δ,ω, respectively). A formal prediction of the body-
size density scaling relationship was constructed (eSDR = ρω −

δ) (DeLong and Vasseur, 2012). Temperature will affect the
normalization constant for each of these scaling rates, generating
potentially more complex responses than the near-exponential
response suggested in Equation 2. The quantitative predictions
of consumer-resource models about nmax and its effects on the
populations and communities fluctuations are able to be directly
incorporated into the present framework (e.g., in Equation 4) and
tested against empirical data. Any other quantitative model with
formal predictions on the distribution of the SDR (e.g., Irwin
et al., 2006; Pawar et al., 2012, among others) can be plugged
into Equation 4 to generate specific testable hypothesis about the
determinants of natural variability. However, the information on
scaling relationships of feeding proceses required is sometimes
not available and thus the metabolic approach here presented
might serve as a first aproximation.We advocate for the empirical
evaluation of alternative models on the determinants of SDR and
its effect in the variability of populations and the community.

The limit of the lower population abundance (Equation 5)
requires further exploration both in theoretical and empirical
grounds (Traill et al., 2007). There is evidence for some
groups suggesting that this pattern is flat (Marquet and
Taper, 1998; Traill et al., 2007), after accounting for trophic
group, temperature, species richness, and sampling area,
the size scaling of population abundance is negligible for
populations that are rare (Barneche et al., 2016). However,
negative scaling exponents have been found for mammals
(Silva and Downing, 1994) but the pattern is restricted to
particular groups (Nagy, 2005) and we lack a robust theoretical
framework to explain it (Lawton, 1989). As a first approximation
and without further information, we suggest assuming β is
independent of body size and temperature or resources. In
the absence of information on the scaling of b, the parameter
could be estimated by fitting a slope to the 5% quantile
of the size-abundance distribution for the community under
different resources or temperature regimes. More theoretical and
empirical evaluations on the scaling of minimum population
abundance is required to advance in the determinants of
population and community variability.

The distribution of single species abundances following a
Lognormal seems to be reasonable and have been proposed
as a simple and ecologically meaningfull distribution to model
population abundances (Halley and Inchausti, 2002). Present
results are not sensitive to departures from the Lognormal,
as long as the distribution of abundances be symetric in the
log-scale. Under any other symetric distribution, the constant
dividing standard deviation in Equation 7 will change, but will
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not qualitatively alter the results about the Laplace distribution.
It will however change the derivation of a VMA which is
based on the relationship between variance of the Lognormal
and µ and σ. However, the lognormal is a reasonable first
step and provides analytical results able to be tested with
empirical data.

FINAL REMARKS

Our model is an asymptotic time model that defines the
statistical boundaries for fluctuations in the long run and derive
predictions on the shape of the distribution of fluctuations
(conditional to body-size) at multiple ecological levels. Results
present quantitative predictions of the fluctuation of population
and community abundance with body size derived from the
metabolic limits to maximum population abundance. Larger
organisms are limited by metabolic constraints which defines
maximum population density and limit population fluctuations.
First, results showed how the metabolic constraints and the
fluctuation of resources and temperature are able to generate
fat tails in the fluctuation of single populations. Second,
we derive a model for whole community fluctuations able
to reproduce the observed double exponential or Laplace
distribution. We also derived a variance-mass allometry
independent from the fitting the Taylors’ law and that
recuperates the VMA previously proposed as a special case.
Our approach provides a general framework to mechanistically
link universal patterns observed in ecology, namely the
metabolic scaling, species density distribution, and the Variance
mass allometry.

Grounded on first principles our model provides a novel
quantitative link between size structure and variability, two
central tenets of ecological agenda. The universality of the
patterns suggests that explanations should be rooted on first
principles, and a great candidate is the scaling of the metabolic
activity (Gillooly et al., 2001; Brown et al., 2004; Savage
et al., 2004). An important aspect of our model framework
is that parameters values can be fully assigned independently
of size-variance data and have clear ecological interpretation.
While α represents the scaling of metabolic rate with size,
the relationship with temperature and resources is explicit.
Empirical test of present model and alternative formulations
for the maximum population abundance are required to
advance in the comprehension of the mechanisms determining
natural variability.
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There is increasing evidence that climate warming is impacting biodiversity by disrupting

species interactions. Trophic (consumer-resource) interactions, which comprise the

fundamental units (modules) of food webs, are of particular importance because

they have an intrinsic tendency to fluctuate in abundance, thus running to risk of

stochastic extinction during periods of low abundances. Here I present a mathematical

framework for predicting warming effects on consumer-resource interactions. This work

differs from previous theory in two ways. First, it uses delay differential equations

to realistically depict the developmental delays inherent in ectotherm life cycles, and

incorporates mechanistic descriptions of phenotypic trait responses, derived from first

principles of thermodynamics, into the dynamical delay model. Second, it tests the latest

IPCC predictions on warmer-than-average winters and hotter-than-average summers.

I investigate warming effects on three major axes: latitude (tropical vs. temperate), life

stage attacked (juvenile vs. adult), and nature of consumer-resource dynamics in the

absence of temperature variation (stable vs. complex). I report three findings. First,

consumer-resource interactions in the tropics are more at risk of species losses due

to warming while those in the temperate zone are more at risk of extreme fluctuations

in species’ abundances. Second, effects of warming are more detrimental when

the consumer attacks the adult stage of the resource and when consumer-resource

interactions exhibit complex dynamics. Third, hotter-than-average summers are more

detrimental to consumer-resource interactions than warmer-than-average winters. I

discuss implications of these results for biodiversity and biological pest control.

Keywords: ectotherm, intra-specific competition, life history, latitude, traits, temperature variation

INTRODUCTION

Trophic interactions between consumers and resources (e.g., predator-prey, plant-herbivore, host-
parasite) play a fundamental role in all communities, be they natural or managed. A unique
property that distinguishes trophic interactions from other species interactions is the conflict of
interest between species: the consumer benefits from the interaction while the resource is harmed
by it. This leads to unique dynamical outcomes such as intrinsic oscillations in abundance, and
coevolutionary arms races (Murdoch et al., 2002, 2003).

The majority of consumer-resource interactions in nature occur amongst ectotherms (e.g.,
microbes, invertebrates, fish, amphibians, and reptiles) whose body temperature depends on
the environmental temperature (Brown et al., 2004; Angilletta, 2009). It is well-known that
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temperature variation (e.g., diurnal, seasonal) has a strong
effect on consumer-resource dynamics and persistence. For
instance, differential adaptability of prey species to seasonal
temperature regimes can generate temporal refuges, which can
reduce overexploitation by predators and dampen predator-prey
oscillations (Murdoch et al., 2003); differential adaptability of
natural enemies can achieve more effective pest control through
complementary action (Takagi and Hirose, 1994; Rochat and
Gutierrez, 2001; Hunt-Joshi et al., 2005; Tuda et al., 2006).

There is increasing evidence that climate warming is
disrupting consumer-resource interactions, causing phenological
shifts and increasing the likelihood of species extinctions (Dunn
and Winkler, 1999; Walther et al., 2002; Root et al., 2003;
Parmesan, 2006; Inouye, 2008; Miller-Rushing and Primack,
2008; Post et al., 2008). This has spurred a body of theory (Vasseur
andMcCann, 2005; van deWolfshaar et al., 2008; OConnor et al.,
2011; Ohlberger et al., 2011; Binzer et al., 2012; Dell et al., 2014;
Gilbert et al., 2014; Amarasekare, 2015; Uszko et al., 2017), which
has greatly enhanced our understanding of how temperature
variation and climate warming influence the dynamics and
persistence of consumer-resource interactions. There, however,
remains two key gaps in our knowledge. The first is a biological
one. No studies to date have incorporated the key feature that
characterizes the complex life cycles of multicellular ectotherms:
time delays induced by development from egg to adult. As
we know from classical theory, developmental delays lead to
types of complex dynamics (e.g., generation cycles, delayed
feedback cycles) that are unobserved in models that do not
account for the age/stage-structure (Gurney et al., 1983; Nisbet
and Gurney, 1983; Murdoch et al., 2003). Importantly, such
dynamics emerge even in the absence of temperature variation.
A lack of knowledge on how temperature variation affects
complex dynamics arising from developmental delays is one of
the most crucial impediments to predicting how climate change
will impact consumer-resource dynamics involving multicellular
ectotherms. The second gap in our knowledge is a physical one.
Existing studies do not incorporate recent IPCC predictions
about warmer-than-average winters and hotter-than-average
summers (IPCC, 2018).

Here I take a first step toward bridging these gaps. I
develop a mathematical framework that realistically depicts the
developmental delays that characterize ectotherm life cycles,
and incorporates mechanistic descriptions of phenotypic trait
responses to temperature into dynamical models of consumer-
resource interactions. Its key feature is that it can predict
population-level effects of warming at different latitudes based
solely on trait response data, and completely independently
of population-level information. This provides a powerful
alternative to species distributionmodels that rely on population-
level data to predict the effects of climate warming.

MATHEMATICAL FRAMEWORK

Consider a consumer-resource interaction in which the resource
and consumer species each has two stages in the life cycle
(juvenile and adult), and the consumer exploits the juvenile

or adult stage of the resource species. We would expect the
resource species to experience intra-specific competition for its
own limiting factors (e.g., food, space). Such self-limitation can
occur via density-dependent fecundity or mortality. Common
examples of such interactions involve insect parasitoids attacking
nymphal/larval or adult stages of other insects, lizards and spiders
feeding on insects, and lady beetles feeding on aphids (Murdoch
et al., 2003). The dynamics of the stage-structured interaction
are given by:

dJ(t)

dt
= B

(

T(t),A(t)
)

A(t)−MJ (t)− DJ

(

T(t), J(t)
)

J(t)

− g(J(t))C(t)

dA(t)

dt
= MJ (t)− DA

(

T(t),A(t)
)

A(t)− g(A(t))C(t)

dL(t)

dt
= fg(X(t))C(t)−ML(t)− dL(T(t))L(t) X = J,A

dC(t)

dt
= ML(t)− dC(T(t))C(t)

MJ (t) = B
(

T(t − τJ (t)),A(t − τJ (t))
)

A(t − τJ (t))

mJ (T(t))

mJ (T(t − τJ (t)))
SJ (t)

ML(t) = fg(X(t − τX(t))
mL(T(t))

mL(T(t − τ (t)))
SL(t) (1)

dSJ (t)

dt
= SJ (t)

[

mJ (T(t))DJ (T(t − τJ (t), J(t − τJ (t))), J(t − τJ (t)))

mJ (T(t − τJ (t)))
− DJ (T(t), J(t))

]

dSL(t)

dt
= SL(t)

[

mL(T(t))dL(T(t − τJ (t)))

mJ (T(t − τJ (t)))
− dL(T(t))

]

dτJ (t)

dt
= 1−

mJ (T(t))

mJ (T(t − τJ (t)))

dτL(t)

dt
= 1−

mL(T(t))

mL(T(t − τL(t)))

where J and A depict juvenile and adult stages of the resource
species, and L and C, those of the consumer species. The

functions B
(

T(t),A(t)
)

and DX

(

T(t), X(t)
)

, (X = J,A) describe

the joint effects temperature and density on per capita birth and
mortality rates, g(X(t)) is the consumer’s functional response, and
dZ(t), Z = L,C depicts the density-independent mortality rates
of the juvenile and adult consumer.

We consider g to be a saturating function of resource
abundance given strong empirical evidence that saturating
functional responses are the commonest observed in
nature (Murdoch et al., 2003; Jeschke et al., 2004). Then,
g =

a(T)J(t)P(t)
1+a(T)h(T)X(t)

(X = J,A) where a(T(t)) and h(T(t))

depict, respectively, the consumer’s temperature-dependent
attack rate and handling time. The stoichiometric properties
underlying the consumer’s conversion efficiency (f ) makes it
insensitive to temperature (Peters, 1983; Custer, 2005), and there
is no empirical evidence suggesting systematic changes with
temperature (Uszko et al., 2017). Density-dependent fecundity

is typically depicted as B
(

T(t),A(t)
)

= b(T(t))e−q(T(t))A(t)

(Murdoch et al., 2003; Amarasekare and Coutinho, 2014)
where b(T(t)) is the temperature-dependent per capita
birth rate, and q(T(t)), the temperature-dependent resource
self-limitation strength. Density-dependent mortality is
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given by DX

(

T(t),X(t)
)

= dX(T(t))(1 + q(T(t))X(t))

(Amarasekare and Coutinho, 2014).
The function MY (t) (Y = J, L) is the temperature-dependent

recruitment rate, which is the product of the recruitment rate into
the juvenile stage τY (t) time units ago and the fraction of juveniles
(larvae) that survive to adulthood (SY (t)). The functionmY (T(t))
(Y = J, L) depicts variation in the per individual maturation
rate with time due to the temperature dependence of juvenile
developmental delay (τY ).

The population-level effects of climate warming we observe
is the result of temperature effects on the underlying life history
and consumption traits of consumers and resources. The first
step therefore is to understand how temperature variation affects
these traits.

TEMPERATURE RESPONSES OF LIFE
HISTORY AND CONSUMPTION TRAITS

Life history and consumption traits of ectotherms exhibit
plastic temperature responses (reaction norms, Roff, 1992) that
represent the phenotypic-level manifestations of temperature
effects on underlying biochemical processes (e.g., reaction
kinetics, hormonal regulation; Johnson and Lewin, 1946; Sharpe
and DeMichele, 1977; Schoolfield et al., 1981; Nijhout, 1994;
Van der Have and de Jong, 1996; Van der Have, 2002;
Ratkowsky et al., 2005; Kingsolver, 2009; Kingsolver et al.,
2011). Temperature effects on biochemical rate processes
(e.g., reaction kinetics and enzyme inactivation) give rise to
phenotypic-level responses that are left-skewed or monotonic
increasing/decreasing (Van der Have and de Jong, 1996; Gillooly
et al., 2001, 2002; Van der Have, 2002; Savage et al., 2004).
Mortality and maturation rates exemplify such rate-controlled
responses. This contrasts with temperature effects on on
biochemical regulatory processes (e.g., neural and hormonal
regulation; Nijhout, 1994; Hochachka and Somero, 2002; Long
and Fee, 2008), which yield phenotypic-level responses that
are symmetric unimodal (e.g., Gaussian). This is because
regulatory processes are driven by negative feedbacks that
push increasing and decreasing rate processes toward an
intermediate optimum.

Temperature Response of Mortality
Density-independent per capita mortality rate of all ectotherms
increases with temperature within the biologically relevant
temperature range (Johnson and Lewin, 1946; Sharpe and
DeMichele, 1977; Schoolfield et al., 1981; Ratkowsky et al., 2005),
i.e., the temperature range between the lower threshold below
which body fluids freeze and the upper threshold above which
proteins denature (Gillooly et al., 2001, 2002; Savage et al., 2004).
Below this range, mortality starts to increase with decreasing
temperature due to the freezing of body fluids and other related
phenomena (Van der Have and de Jong, 1996; Gillooly et al.,
2001, 2002; Savage et al., 2004; Dell et al., 2011). The complete
mortality response can be described by a modified version of the
Boltzmann-Arrhenius function (Van der Have and de Jong, 1996;

Gillooly et al., 2001, 2002; Savage et al., 2004):

d(T) = dTRe
Ad

(

1
TR

−
1
T

)

(

1+ e
AL

(

1
TL

−
1
T

)

)

(2)

where d(T) is the mortality rate at temperature T (in K),
Ad is the Arrhenius constant, which quantifies how fast
the mortality rate increases with increasing temperature, and
TR is a reference (baseline) temperature. The mortality at
this temperature, dTR , represents the species-specific intrinsic
mortality rate. The parameter TL is the temperature threshold at
which mortality starts to increase with decreasing temperature,
and AL quantifies how quickly the mortality rate decreases with
decreasing temperature. Note that Ad > 0 and AL < 0.

Temperature Response of Birth and
Consumption Rates
A large number of studies spanning a range of ectothermic
taxa show that per capita birth and consumption rates exhibit
unimodal responses to temperature (Dreyer and Baumgartner,
1996; Carriere and Boivin, 1997; Morgan et al., 2001; Dannon
et al., 2010; Hou and Weng, 2010; Jandricic et al., 2010;
Dell et al., 2011; Englund et al., 2011; Amarasekare and
Savage, 2012; Amarasekare, 2015). Both are well-described by a
Gaussian function:

a(T) = aTopte
−

(T−Topta )
2

2sa2 (3)

where Topta is the temperature at which the birth (consumption)
rate is maximal (aTopt ), and sa is a measure of the response
breadth, the temperature range over which the species can
reproduce and exploit resources.

Temperature Response of the Handling
Time
Data from a number of ectotherm taxa spanning zooplankton to
fish show that the handling time (inverse of the maximum uptake
rate) exhibits a symmetric U-shaped response (Englund et al.,
2011), which is well-described by an inverse Gaussian function:

h(T) = hTopte

(T−Topth
)2

2sh
2

(4)

where Topth is the temperature at which the handling time is
minimal (hTopt ), and sh depicts the temperature range over which
a consumer can handle its resource/prey species.

Temperature Response of the Maturation
Rate
Maturation rate of ectotherms exhibits a left-skewed temperature
response (Sharpe and DeMichele, 1977; Schoolfield et al., 1981;
Van der Have and de Jong, 1996; Van der Have, 2002; Kingsolver,
2009; Kingsolver et al., 2011) that results from the reduction
in reaction rates at low and high temperature extremes due
to enzyme inactivation. This response is well-described by a
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thermodynamic rate process model (Sharpe and DeMichele,
1977; Schoolfield et al., 1981; Ratkowsky et al., 2005):

m(T) =

mTR
T

TR
e
AmJ

(

1
TR

−
1
T

)

1+ e
AL

(

1
TL/2

−
1
T

)

+ e
AH

(

1
TH

−
1
T

) (5)

where m(T) is the maturation rate at temperature T (in K), mTR

is the maturation rate at the reference temperature TR at which
the enzyme is 100% active, AmJ (enthalpy of activation divided by
the universal gas constant R) quantifies temperature sensitivity,
TL/2 and TH/2 are, respectively, the low and high temperatures
at which the enzyme is 50% active, and AL and AH are the
enthalpy changes associated with low and high temperature
enzyme inactivation divided by R (Johnson and Lewin, 1946;
Sharpe and DeMichele, 1977; Schoolfield et al., 1981; Van der
Have and de Jong, 1996; Van der Have, 2002; Ratkowsky et al.,
2005).

Temperature Response of Resource
Self-Limitation
Self-limitation in the resource species arises from intra-specific
competition. Experiments on temperature effects on competition
in insects suggest that the temperature response of the per
capita intra-specific coefficient (q(T)) can be monotonic or
unimodal (Amarasekare and Coutinho, 2014; Amarasekare,
2015; Johnson et al., 2016). When the per individual demand
for resources increases with temperature, due to higher activity
levels at higher temperatures (Gillooly et al., 2001, 2002;
Savage et al., 2004), self-limitation strength tends to increase
monotonically with temperature. In this case, q(T) is given by the
Boltzmann-Arrhenius relationship:

q(T) = qTRe
Aq

(

1
TR

−
1
T

)

(6)

where q(T) is the self-limitation strength at temperature T,
Aq is the Arrhenius constant, which quantifies how fast the
competition strength increases with increasing temperature, and
TR is a reference (baseline) temperature.

When the per-individual demand for resources is greatest
during peak reproductive activity, which occurs at the optimal
temperature for reproduction (Amarasekare and Coutinho, 2014;
Amarasekare, 2015; Johnson et al., 2016), self-limitation strength
exhibits a unimodal response with a maximum at the optimal
temperature for reproduction. In this case q(T) is unimodal
and well-described by a Gaussian function (Equation 3). I use
the Gaussian form in our analyses because empirical evidence
(Amarasekare and Coutinho, 2014; Amarasekare, 2015; Johnson
et al., 2016; Uszko et al., 2017) suggests this to be more common
than the monotonic form.

PREDICTING WARMING EFFECTS ON
CONSUMER-RESOURCE INTERACTIONS

Several large-scale data analyses show that the qualitative nature
of phenotypic trait responses described above is conserved

across ectotherm taxa (Dell et al., 2011; Englund et al., 2011;
Kingsolver et al., 2011; Amarasekare and Savage, 2012). This
allows us to make general predictions about trait responses to
climate warming that applies across ectotherm taxa, habitat, and
latitudes. By mapping various climate warming scenarios on to
the phenotypic trait responses and comparing the result with
the species’ typical thermal regime, we can predict the effect of
warming on trait responses. We can also predict the potential
consequences of warming-induced changes in trait responses for
population dynamics and species interactions.

There are two important aspects of trait responses that allow
us to predict which traits are likely to be themost strongly affected
by warming. The first is the distinction between rate-controlled
and regulatory responses. The second is latitudinal variation in
thermal adaptation. I will discuss each on in turn.

We see from the previous section that rate-controlled
responses tend to be more skewed than regulatory responses.
Because regulatory responses are more symmetrically unimodal,
a negative deviation from the optimum (i.e., cooler temperatures)
has the same detrimental effect as a positive deviation (i.e.,
warmer temperatures). This is not the case for skewed responses.
For instance, the maturation rate exhibits a left-skewed response,
with a faster decline at temperatures above the optimum than
below it (Johnson and Lewin, 1946; Sharpe and DeMichele, 1977;
Schoolfield et al., 1981; Van der Have and de Jong, 1996; Van der
Have, 2002; Ratkowsky et al., 2005). The mortality rate exhibits
an inverted right-skewed response with mortality increasing
rapidly with decreasing temperature at the low extreme (e.g.,
below freezing temperature) and increasing exponentially with
increasing temperature above the low extreme (Johnson and
Lewin, 1946; Sharpe andDeMichele, 1977; Schoolfield et al., 1981;
Van der Have and de Jong, 1996; Gillooly et al., 2001, 2002; Savage
et al., 2004; Ratkowsky et al., 2005). This difference suggests
that warming may have more detrimental effects on maturation
and mortality than it does on the resource birth rate, and the
consumer’s attack rate and handling times.

Turning now to latitudinal differences, tropical thermal
regimes are characterized by high mean temperatures and
low-amplitude seasonal fluctuations, while temperate thermal
regimes are characterized by low mean temperatures and high-
amplitude seasonal fluctuations. As a result, tropical ectotherms
exhibit trait responses with narrow breadths and thermal optima
that coincide with themean habitat temperature, while temperate
ectotherms exhibit trait responses with wider breaths and
optima that well-exceed the mean temperature (Deutsch et al.,
2008; Tewksbury et al., 2008; Amarasekare and Johnson, 2017;
Scranton and Amarasekare, 2017).

Climate Change Scenarios
Climate warming is expected to manifest as an increase in
the mean annual temperature and/or a change in the seasonal
thermal regime with warmer winters and hotter summers (IPCC,
2018). I consider the following three scenarios:

1. Warmer winters: the minimum temperature increases faster
than the maximum temperature, resulting in an increase in
the mean temperature and a decrease in the amplitude.
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2. Hotter summers: the minimum temperature increases more
slowly than the maximum temperature, resulting in an
increase in the mean and amplitude both.

3. Warmer winters and hotter summers: the minimum and
maximum temperatures change at the same rate, resulting in
an increase in the mean while the amplitude stays the same.

By mapping these scenarios onto resource and consumer trait
responses, I obtain the following general results.

Trait-Based Predictions
First, all warming scenarios lead to an increase in the mortality
rate and a decrease in the maturation rate of both resource
and consumer species. Because the maturation response is
strongly left-skewed, the decrease in the maturation rate at high
temperatures is much greater than those of birth and attack rates
and self-limitation strength (Figure 1). This is significant because
it means that species can develop faster and emerge earlier in the
year because of warmer winter temperatures, but the decrease
in the maturation rate during the hotter summers exceeds the
increase in the maturation rate during warmer winters, resulting
in a lower average maturation rate over the year.

Second, hotter-than-average summers aremore detrimental to
both tropical and temperate species compared to warmer-than-
average winters. This is because maturation and mortality are
most negatively affected by this warming scenario.

Third, all warming scenarios cause the mean habitat
temperature to approach the physiologically optimal temperature
in temperate ectotherms, and to exceed the optimal temperature
in tropical ectotherms. Across all latitudes, this causes a decrease
in the resource species’ birth rate and self-limitation strength,
and the consumer species’ attack rate. The change in the mean
temperature affects the consumer’s handling time differentially
depending on latitude, decreasing the handling time in temperate
habitats and increasing it in tropical habitats. This is because the
handling time exhibits a U-shaped response to temperature. The
mean temperature becoming closer to the optimum in temperate
habitats pushes the handling time toward its minimum, while the
mean temperature exceeding the optimum pushes the handling
time above the minimum (Figure 1).

Population-Level Predictions
The trait-based analysis suggests that maturation and mortality
rates to be the most strongly affected by climate warming. If
so, they should have a stronger detrimental effect on consumer-
resource persistence in the face of climate warming. I explore
this possibility by investigating consumer-resource coexistence in
a constant thermal environment (i.e., the organism in question
experiences the same temperature, on average, with few or no
fluctuations around the mean), for which analytical expressions
of resource and consumer persistence criteria can be derived.

Consider first the conditions for the resource and consumer
species’ viabilities when there is no developmental delay in either
species (i.e., τJ = 0, τL = 0). When resource self-limitation
affects fecundity and the consumer attacks the adult stage of
the resource, the resource can maintain a viable population

(i.e., R⋆ > 0) provided

dC(T)

a(T)
(

f − h(T)dC(T)
) > 0, (7)

and the consumer can persist on the resource
(i.e., C⋆ > 0) provided

q(T)dC(T)

a(T)
(

f − h(T)dC(T)
) < ln

( b(T)

dA(T)

)

(8)

Note that when there are no developmental delays, the resource
species’ viability is determined by the consumer’s temperature
dependent attack and mortality rates [a(T) and dC(T)], its
temperature-dependent handling time (h(T)), and conversion
efficiency (f ). Note that the product h(T)dC(T) is the fraction
of the consumer’s life span spent in handling food items at
temperature T. The resource species’ viability requires that the
consumer species’ efficiency in converting resources to consumer
reproduction exceed the time it spends handling food items over
its lifetime. Consumers with long handling times run the risk of
driving their resources extinct.

When there are no developmental delays, the consumer
species’ viability is determined by the temperature responses
of resource birth and death rates, resource self-limitation, the
consumer’s death rate and its consumption traits (conversion
efficiency, attack rate, and handling time).

When both species exhibit developmental delays, the
conditions for resource and consumer viabilities are, respectively:

dC(T)

a(T)
(

f e−dL(T)τL(T)
) − h(T)dC(T) > 0, (9)

and

q(T)dC(T)

a(T)
(

f e−dL(T)τL(T)
) − h(T)dC(T)

)

+ dJ(T)τJ(T) < ln
( b(T)

dA(T)

)

(10)
where τX(T) =

1
mX(T)

X = J, L.

There are three key points to note. First, developmental delays
cause a significant reduction in the upper temperature limit for
viability in both resource and consumer species (Figure 2).

Second, the resource species’ developmental delay has a
stronger effect on consumer viability than the consumer’s delay
on resource viability. This is because the resource species’
developmental delay enters the consumer’s viability criterion
as an additive term, while the consumer’s delay enters the
resource species’ viability criterion only as an exponential term
(compare Equation 9 and Equation 10). The resource species’
developmental delay therefore causes a stronger reduction in
the consumer’s viability than does the consumer’s delay on
resource viability.

Third, the resource species’ developmental delay has a
stronger effect on consumer viability than the consumer’s
developmental delay. To see this, consider the consumer’s
viability criterion when the resource species’ developmental delay
is long relative to that of the consumer (i.e., τJ > 0, τL → 0):

q(T)dC(T)

a(T)
(

f − h(T)dC(T)
) + dJ(T)τJ(T) < ln

( b(T)

dA(T)

)

(11)

Frontiers in Ecology and Evolution | www.frontiersin.org 5 May 2019 | Volume 7 | Article 146131

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Amarasekare Effects of Climate Warming on Consumer-Resource Interactions

FIGURE 1 | Temperature responses of resource and consumer traits under typical seasonal variation and warming. (A–H) are for tropical ectotherms, and (I–P), for

temperate ectotherms. For each latitude, panels in the top row depict temperature responses under typical seasonal variation, and those in the bottom row,

temperature responses under the two warming scenarios: minimum temperature increases faster than the maximum (MinT > MaxT ) and minimum temperature

increases slower than the maximum (MinT < MaxT ). On panels in the bottom row for each species [(A–D) for tropical and (I–L) for temperate], the blue portion of the

response curve depicts the response under seasonal variation, the brown portion of the curve when MinT > MaxT, and the red portion of the curve, MinT < MaxT. In

each panel, the solid blue vertical line depicts the mean habitat temperature and the solid black line, the physiologically optimal temperature; the dashed vertical blue

lines depict the temperature range experienced by species under typical seasonal variation, the dashed red lines depict the range when MinT < MaxT, and the

dashed brown lines, when MinT > MaxT. For ease of comparison, increase in minimum and maximum temperature for the two scenarios are chosen such that the

mean temperature (MT ) is the same. Note that the temperature range on the x-axis is smaller in the for tropical species (297.5–303.5 K) than for the temperate

species (275–301 K). Parameter values for the tropical species are: ToptX = 300, sX = 3.0(X=b, a, h, q), TRY = 297(Y=R, C),TLZ = 296,THZ = 302 (Z=J,

L),MT = 299,AT = 1.5◦,m = 3, a = 2 when the minimum temperature increases faster than the maximum and m = 2, a = 3 when the minimum increases more

slowly than the maximum. Parameter values for the temperate species are: ToptX = 292, sX = 6.0(X=b, a, h, q), TRY = 292(Y=R, C),TL/2Z = 275,TH/2Z
= 298(Z=J,

L),MT = 285,AT = 10◦,m = 6, a = 4 when the minimum temperature increases faster than the maximum and m = 4, a = 6 when the minimum increases more

slowly than the maximum. Other parameters are: bTopt = aTopt = 1.0, hTopt = 0.05,qTopt = 0.2, f = 1.0,dYTR
= 0.1,dZTR

= 0.1,mZTR
= 0.05,AdY =

10, 000,AdZ = 10, 000,AmZ
= 10, 000,ALY = −25, 000,AL/2Z = −50, 000,AH/2Z

= 100, 000.

as opposed to when the resource species’ developmental delay is
short relative to that of the consumer (i.e., τJ → 0, τL > 0):

q(T)dC(T)

a(T)
(

f e−dL(T)τL(T) − h(T)dC(T)
) < ln

( b(T)

dA(T)

)

(12)

Comparing Equations (11) and (12) shows that the resource
species’ developmental delay has a stronger effect on consumer
viability for the same reason as above, i.e., it enters the consumer’s
viability criterion as an additive term, while the consumer’s delay
enters the its viability criterion only as an exponential term.
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FIGURE 2 | Resource and consumer species’ viabilities as a function of temperature. In each panel, the gray curve depicts the temperature range over which each

species has a positive abundance in the absence of developmental delays (Equations 7, 8), and the orange, green, and red curves, the temperature range for viability

in the presence of delays (Equations 9, 10). In (A), the green, orange, and red curves represent, respectively, the resource species viability when the consumer’s

temperature sensitivities of maturation (AmL
) and mortality (AdL ) are the same (k1 = AdL − AmL

= 0), mortality has greater temperature sensitivity than maturation

(k1 = 8, 000), and vice versa (k1 = −8, 000). In (B), the green, orange, and red curves represent, respectively, the consumer species’ viability when the resource and

consumer species’ temperature sensitivities of maturation are the same (k2 = AmJ
− AmL

= 0), resource’s maturation has lower temperature sensitivity than

consumer’s (k2 = −4, 000) and vice versa (k2 = 4, 000). In (C), the curves depict depicts consumer viability the consumer species’ viability when the resource and

consumer species’ temperature sensitivities of mortality are the same (k3 = AdJ − AdL = 0), resource’s mortality has greater temperature sensitivity than consumer’s

(k3 = 2, 000) and vice versa (k3 = −2, 000). Other parameters are as in Figure 1.

Importantly, the effect of developmental delays on viability
is mediated by the multiplicative effect of the temperature
responses of maturation and mortality rates. Differences between
the resource and consumer in their temperature sensitivities of
mortality andmaturation therefore play a key role in determining
the lower and upper thermal limits to viability. For instance, the
resource species’ viability is affected by the multiplicative effect of
the consumer’s maturation and juvenile mortality rates. As noted
in the trait-based analysis above, the maturation rate decreases
and the mortality rate increases with increasing temperature.
This leads to a steep decline in viability as temperatures increase
above the physiologically optimal range. Resource viability is
lower when the consumer’s maturation rate is more temperature-
sensitive that its mortality rate (Figure 2A). This is because lower
mortality and faster development means a larger adult consumer
population and hence greater exploitation of the resource.

As with the resource species, differential temperature
sensitivities of maturation and mortality rates have a strong
effect on consumer viability. Thermal limits to consumer viability
are narrower when the resource species’ maturation rate is
more temperature-sensitive, and mortality rate less temperature-
sensitive, than those of the consumer (Figures 2B,C). This is
because when the decrease in the resource maturation rate with
increasing temperature exceeds the increase in the mortality
rate, the resource developmental delay increases at both low
and high temperatures. This causes a reduction in the adult
resource population at temperatures below and above the
optimal temperature range, narrowing the consumer’s thermal
limits to viability.

Summary of Predictions
Taken together, the trait-based and viability analyses make three
testable predictions. First, warming has its strongest impact on
viability through its effects on maturation and mortality rates.
Second, the resource species’ developmental delay has a greater

negative effect on the consumer’s viability than the consumer’s
delay. Third, because of the conflict of interest between species,
we expect the consumer to be more susceptible to warming than
the resource. This is because the resource is negatively affected
by warming, but is positively affected by negative warming
effects on consumer, while the consumer is negatively affected by
warming and the negative effects of warming on the resource.
The next step is to test these predictions with the dynamical
model (Equation 2).

Consumer-Resource Persistence in a
Variable Thermal Environment
Equation (1) is non-autonomous (i.e., long-term outcomes are
not independent of time) and cannot yield analytical results on
long-term outcomes. I conduct numerical analyses to investigate
the consumer-resource dynamics and long-term outcomes under
both typical seasonal variation and climate warming.

Let seasonal temperature variation be depicted by the
sinusoidal function T(t) = MT + ATS(t) where t is time in days,
MT is the mean habitat temperature in K, AT is the amplitude of
seasonal fluctuations (AT =

Tmax−Tmin
2 ), and S(t) = sin 2π t

yr (or

− cos 2π t
τ
) with yr = 365 days.

The change in the seasonal thermal regime under climate
warming is given by T(t) = (MT + mt) + (AT + at)S(t) with
m = (mhigh+mhigh)/2 and a = (mhigh−mhigh)/2 depicting
respectively, the daily rate of increase in mean and amplitude.
The quantities mlow = s1/(n ∗ yr) and mhigh = s2/(n ∗

yr) where s1 and s2 are, respectively, the number of degrees
by which the minimum and maximum temperatures increase
in n years. When the minimum and maximum temperatures
increase at the same rate (s1 = s2), the mean temperature
increases over time with no net change in the amplitude. When
the minimum temperature increases faster than the maximum
(warmer-than-average winters; s1 > s2), the mean increases
over time while the amplitude decreases. When the maximum
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TABLE 1 | Temperature response parameters for tropical and temperate species.

Tropical Temperate

Seasonal temperature regime

MT 299 K 285 K

AT 1.5◦ 10◦

Resource species

Birth rate

Toptb 300 292

sb 3.0 7.0

Self-limitation strength

Toptq 300 292

sq 3.0 5.0

qTopt 0.2 0.2

Maturation rate

TR 298 292

AmJ
12,000 12,000

TL/2J 296 K 275 K

TH/2J
302 K 298 K

ALJ −75,000 −50,000

AHJ 75,000 175,000

Juvenile mortality rate

AdJ 7,000 8,000

dJTL
290 275

AdL −50,000 −25,000

Adult mortality rate

AdA 8,000 9,000

dATL
290 275

AdL −50,000 −25,000

Consumer species

Attack rate

Topta 300 K 292 K

sa 3.0 6.0

Conversion efficiency

f 1.0 1.0

Handling time

hTopt 0.05 0.05

Topth 300 K 292 K

sh 3.0 6.0

Maturation rate

TR 298 292

AmL
10,000 10,000

TL/2L 296 K 275 K

TH/2L
302 K 298 K

ALL −75,000 −50,000

AHL 75,000 175,000

Juvenile mortality rate

AdL 9,000 8,000

dLTL
290 275

AdL −50,000 −25,000

Adult mortality rate

AdC 9,000 8,000

dCTL
290 275

AdL −50,000 −25,000

temperature increases faster than the minimum (hotter-than-
average summers; s1 < s2), the mean and the amplitude
both increase over time. I incorporate warming as a liner
increase in the mean, minimum and maximum temperatures.
The formulation, however, is general and can accommodate any
form of empirically observed warming regime.

The nature of consumer-resource dynamics is an important
axis of investigation because developmental delays can lead
to complex dynamics even in the absence of temperature
variation (Gurney et al., 1983; Nisbet and Gurney, 1983). In
this case, the steady state outcomes of Equation (1) depend on
the developmental delay relative to adult longevity (Murdoch
et al., 2003). When the resource species’ developmental delay is
short relative to adult longevity but longer than the consumer’s
developmental delay, the outcome is a stable equilibrium
(Murdoch et al., 2003). When the reverse is true, the ensuing
delay in the operation of density-dependence can lead to delayed
feedback cycles. When density-dependence operates through
fecundity and the consumer attacks the juvenile stage, such
delayed feedback is manifested as single generation cycles with
a period approximately equal to the resource species’ generation
time; when the consumer attacks the adult stage, the feedback
cycles have a delay equal to the resource species’ developmental
delay (Murdoch et al., 2003).

I ran the model (Equation 1) for a period of 100 years and
recorded long-term abundances in the 101th year. I analyzed
six cases along three axes of biological relevance: resource life
stage attacked (juvenile vs. adult resource), latitudinal variation
in temperature regime (tropical vs. temperate), and nature of
consumer-resource dynamics in the absence of temperature
variation (stable vs. complex). For each case analyzed, I checked
for deterministic extinction of consumer and resource, and
calculated the variability in abundances as the coefficient of
variation (standard deviation of the time series of abundance
in the 101th year scaled by the mean abundance). I used
parameter values (Table 1) that are realistic for insect species in
tropical and temperate habitats (Sharpe and DeMichele, 1977;
Schoolfield et al., 1981; Kooijman, 1993; Van der Have and
de Jong, 1996; Amarasekare and Savage, 2012; Amarasekare and
Johnson, 2017; Scranton and Amarasekare, 2017). In accordance
with empirical findings (Gao et al., 2013; Johnson et al., 2016),
I considered the unimodal temperature response of competition
to have the same parameter values as the temperature response
of reproduction, i.e., competition is strongest at the temperature
optimal for reproduction (Toptq = Toptb ), and operates on
the same temperature range within which the species can
reproduce (sq ≤ sb).

RESULTS

Analysis of the dynamical model both confirms predictions of the
trait-based analysis and yields new insights. Three generalities
emerge. First, consumer-resource interactions in the tropics are
more at risk of species losses due to warming, while those in the
temperate zone aremore at risk of extreme fluctuations in species’
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abundances. Second, effects of warming are more detrimental
when the consumer attacks the adult stage of the resource and
when consumer-resource interactions exhibit complex dynamics.
Third, hotter-than-average summers are more detrimental
to consumer-resource interactions than warmer-than-average
winters. Below I explain these results in detail.

First, as predicted by the trait-based analysis, warming poses
a greater risk of deterministic extinction for tropical consumer-
resource interactions. The consumer goes extinct once the
minimum temperature exceeds 2◦ when the adult stage is
attacked (Figures 3B,F,J,N,R,V), and 3◦ when the juvenile stage
is attacked (Figures 4B,F,J,N,R,V); the resource goes extinct
once the minimum temperature exceeds 3 and 4◦, respectively,
in these two cases (Figures 3, 4A,E,I,M,Q,U). In contrast,
deterministic extinction of temperate resources and consumers
does not occur until the maximum temperature increases by 6◦

(Figures 3, 4C,D,K,O,S,W for resource, Figures 3, 4D,H,L,P,T,X

for consumer). However, both resource and consumer species
exhibit large fluctuations in abundance (Figure 5). Fluctuations
are more extreme when the consumer attacks the adult resource
stage and consumer-resource dynamics are complex rather than
stable (compare Figure 3 and Figure 4).

The second result involves two new insights that were not
anticipated by the trait-based and analytical viability analyses.
The first is that warming is more detrimental when the
consumer attacks the adult stage of the resource. Not only
does warming cause more extinctions when the adult stage is
attacked compared to when the juvenile stage is attacked, but it
also leads to greater variability in abundance in both resource
and consumer species (compare Figure 3 and Figure 4). These
outcomes ensue regardless of latitude or nature of consumer-
resource dynamics (Figure 5).

The second insight is that warming has a greater detrimental
effect when consumer-resource interactions exhibit complex
dynamics. As noted in the previous section, when the juvenile
developmental delay is long relative to adult longevity, delay
in the operation of density-dependence can lead to delayed
feedback cycles in the absence of temperature variation. When
consumer-resource interactions exhibiting such cycles are subject
to warming, the interplay between intrinsic non-linear dynamics
and non-linear trait temperature responses to warming can
predispose species to extinction. Indeed, when consumer-
resource dynamics are complex, we see the deterministic
extinction of resources and consumers at lower levels of warming
than when dynamics are stable (compare Figure 3 and Figure 4).
We also see greater variability in abundances (Figure 5).

The third result concerns the effect of warming scenario. As
predicted by the trait-based analysis, hotter-than-average
summers are more detrimental to consumer-resource
interactions than warmer-than-average winters. It causes a
greater number of resource and consumer extinctions across
latitudes, and leads to greater variability in abundances. Greater
variability in abundances is more clearly seen in the resource
rather than in the consumer, in tropical rather than in temperate
habitats, and when the consumer attacks the adult rather than the
juvenile stage of the resource. Of note, as the strength of warming
increases the difference between the two warming scenarios

diminishes, as can be seen by the increasing similarity in the
CVs of abundances between scenarios as warming proceeds
from 1 to 6◦. Interestingly, the effects of warming scenarios are
more apparent when one examines the temporal trajectories of
population trajectories rather than the summary measures of
variability in abundances (CV). We see that, across the board,
the dynamical effects of hotter summers alone are more similar
to the scenario with warmer winters and hotter summers,
indicating that hotter summers tend to override the effect of
warmer winters. The reason for this can be seen by looking more
closely at how phenology and population trajectories change
over the year as a result of warming. Warming causes earlier
emergence because winters are warmer. However, warming
causes summers to also be hotter, causing a reduction in birth,
attack and maturation rates and increasing mortality rates.
This in turn leads to a lowering of summer abundance. As
warming proceeds summer abundance declines further, causing
population growth to be restricted to early spring and fall. When
extinction occurs, it is because summer abundances fall too low
for species to recover from.

DISCUSSION

Evidence for the detrimental effects of climate warming on
biodiversity is rapidly accumulating (Dunn and Winkler,
1999; Walther et al., 2002; Root et al., 2003; Parmesan,
2006; Inouye, 2008; Miller-Rushing and Primack, 2008; Post
et al., 2008). An accurate gauge of these detrimental effects
requires that we understand the effects warming has on key
components of biodiversity. Consumer-resource interactions
(e.g., predator-prey, plant-herbivore, host-parasite) constitute
the fundamental building blocks of all communities. They
therefore serve as a key indicator for gauging the effects of
warming on biodiversity. Understanding how warming affects
consumer-resource dynamics and persistence is therefore a key
research priority.

Here I develop a mathematical framework for predicting
the effects of warming on consumer-resource interactions. This
framework, based on delay differential equations, realistically
captures the developmental delays that characterize the life cycles
of multicellular ectotherms. It also incorporates mechanistic
descriptions of consumer and resource trait responses to
temperature, and the latest IPCC predictions about warmer-
than-average winters and hotter-than-average summers. I use a
trait-based analysis to generate predictions about population-
level consequences of warming, which I then test with the
dynamical model. I report three key findings.

First, tropical consumer-resource interactions are more at risk
of species losses due to warming, while temperate interactions
are more at risk of extreme fluctuations. Second, warming is
more detrimental when the consumer attacks the adult stage
of the resource and when consumer-resource dynamics exhibit
complex dynamics. Third, hotter-than-average summers are
more detrimental than warmer-than-average winters.

The first finding, that tropical consumer-resource interactions
are more prone to species losses while temperate interactions
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FIGURE 3 | Consumer-resource dynamics in tropical and temperate habitats when the consumer attacks the adult stage and consumer-resource dynamics are

stable (A–L) vs. complex (M–X). In all panels, the black curves (solid for resource, dashed for consumer) depict abundances under typical seasonal variation. Yellow,

light brown, dark brown, and red curves depict progressively higher levels of warming (1–4◦C for tropical habitats, 2–6◦C for temperate habitats). For each latitude,

the top row of panels depict effects of warming when the minimum and maximum temperatures increase at the same rate (mean increases, amplitude unchanged).

The second row depicts warming effects when the maximum temperature increases faster than the minimum (mean and amplitude both increase), and the third row,

when the minimum temperature increases faster than the maximum (mean increases, amplitude decreases). Parameter values for the tropical community are:

bTopt = 5.0,mJTR
= 0.05 (τJTR

= 20),dJTR
= 0.1,dATR

= 0.05, aTopt = 1.0 for stable dynamics, and bTopt = 2.0,mJTR
= 0.07 (τJTR

= 15),

dJTR
= 0.05,dATR

= 0.01,mLTR
= 0.1 (τLTR

= 10),dLTR
= 0.1,dCTR

= 0.01, aTopt = 0.5 for complex dynamics. Parameter values for the temperate community are:

bTopt = 1.0,mJTR
= 0.04 (τJTR

= 25),dJTR
= 0.1,dCTR

= 0.1, aTopt = 0.5,mLTR
= 0.1 (τJTR

= 10),dLTR
= 0.1,dCTR

= 0.05 for stable dynamics, and

bTopt = 1.0,mJTR
= 0.05 (τJTR

= 20),dJTR
= 0.05,dRTR

= 0.01,dLTR
= 0.1,dCTR

= 0.05,mLTR
= 0.1 (τJTR

= 10) for complex dynamics. All other parameters

values are as in Table 1.
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FIGURE 4 | Consumer-resource dynamics in tropical and temperate habitats when when the consumer attacks the juvenile stage and consumer-resource dynamics

are stable (A–L) vs. complex (M–X). In all panels, the black curves (solid for resource, dashed for consumer) depict abundances under typical seasonal variation.

Yellow, light brown, dark brown, and red curves depict progressively higher levels of warming (1–4◦C for tropical habitats, 2-6◦C for temperate habitats). For each

latitude, the top row of panels depict effects of warming when the minimum and maximum temperatures increase at the same rate (mean increases, amplitude

unchanged). The second row depicts warming effects when the maximum temperature increases faster than the minimum (mean and amplitude both increase), and

the third row, when the minimum temperature increases faster than the maximum (mean increases, amplitude decreases). Parameter values for the tropical

community are: bTopt = 2.0,mJTR
= 0.07 (τJTR

= 15),dJTR
= 0.05,dATR

= 0.01, aTopt = 0.5,dLTR
= 0.1,dP1TR = 0.05,mLTR

= 0.1 (τLTR
= 10) for stable

dynamics, and bTopt = 2.0,mJTR
= 0.05 (τJTR

= 20),dJTR
= 0.05,dATR

= 0.05, aTopt = 0.5,dLTR
= 0.1,dP1TR = 0.05,mLTR

= 0.1 (τLTR
= 10). Parameter values

for the temperate community are: bTopt = 2.0,mJTR
= 0.04 (τJTR

= 25),dJTR
= 0.1,dCTR

= 0.01,dLTR
= 0.1,dCTR

= 0.05,mLTR
= 0.1 (τJTR

= 10) for stable

dynamics and bTopt = 1.0,mJTR
= 0.05 (τJTR

= 20),dJTR
= 0.05,dRTR

= 0.05,dLTR
= 0.1,dCTR

= 0.05,mLTR
= 0.07 (τJTR

= 15) for complex dynamics. Other

parameter values are as in Table 1.
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FIGURE 5 | Coefficient of variation in resource and consumer abundances in tropical and temperate habitats when the consumer attacks the adult stage (A–H)

vs. the juvenile stage (I–P). In all panels, the x-axis gives the CV in abundance under typical seasonal variation (S) and successively increasing levels of warming

(W2 · · · ,W6) where Wi (i = 1, 6) depicts a warming scenario in which the maximum temperature increases by i⋆ [e.g., W2 denotes W22 (black column), W12 (red

column), and W21 (blue column). In each panel, the black column depicts warming effects when the minimum and maximum temperatures increase at the same rate,

the red column depicts effects when the maximum increases faster than the minimum, and the blue column, when the maximum increases slower than the minimum.

In each case (juvenile vs. adult), the top row of panels depicts stable dynamics (A–D) when the adult is attacked and (I–L) when the juvenile is attacked] and the

bottom row, complex dynamics (E–H) for adult and [m-(p) for juvenile]. Cases marked with E depict warming-driven extinctions of resource and/or consumer.

Parameter values are as in Figures 3, 4 and Table 1.

are more prone to extreme fluctuations, highlights the different
challenges that climate warming poses to ectotherm communities
inhabiting different latitudes. Since tropical ectotherms exhibit
thermal optima that coincide with the mean habitat temperature
(Deutsch et al., 2008; Tewksbury et al., 2008; Amarasekare and
Savage, 2012; Amarasekare and Johnson, 2017), an increase in
the mean temperature, regardless of whether it is through an

increase in the minimum or maximum temperature, pushes
the species into a thermal realm in which birth, attack and
maturation rates decrease and mortality rates increase. The
resulting negative per capita growth rate causes deterministic
extinction. In contrast to the tropics, which see warming-induced
extinctions, temperate habitats see an increase in the fluctuations
of resource and consumer abundances. In all cases, the decrease
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in fluctuations are greater in magnitude than the increase, which
means that species are less prone to outbreak densities in the face
of warming than they are to stochastic extinction during periods
of low abundances.

The expectation based on the trait-based analysis that
warming is more detrimental to the consumer than to the
resource is borne out by the dynamical model analysis. The
tropics see more cases of consumer rather than resource
extinction, while the temperate realm sees greater declines in
consumer rather than resource abundance, and hence a greater
risk of stochastic extinction. These outcomes ensue because of
the conflict of interest between species inherent in consumer-
resource interactions. The resource species is negatively affected
by warming, but positively affected by warming effects on
the consumer, while the consumer is negatively affected both
by warming and the negative effects of warming on the
resource species.

The second finding is that warming has a greater detrimental
effect when the consumer attacks the adult stage of the
resource and when consumer-resource interactions exhibit
complex dynamics. The reason that warming has differential
effects based on the life stage attacked can be explained
as follows. Temperature affects juvenile development through
the multiplicative effect of juvenile maturation and mortality.
Warming both decreases the maturation rate and increases
the mortality of the juvenile resource stage, resulting in a
smaller adult resource population that the consumer then
overexploits. Such overexploitation can lead to increasing
consumer-resource fluctuations and eventual extinction, effects
compounded by warming-induced reduction in consumer attack
rate and increase in handling time. When the consumer
attacks the juvenile stage of the resource, the invulnerable adult
resource stage acts as a buffer (particularly when fecundity and
adult longevity are high), making the consumer less resource-
limited and reducing the tendency for extreme fluctuations and
warming-induced extinction.

The reason why warming has a greater detrimental effect
on consumer-resource interactions exhibiting complex dynamics
is because the interplay between population cycles resulting
from delayed density-dependent feedback and temperature
variation can cause resource abundances to fall to levels
at which the consumer cannot maintain itself. Even when
deterministic extinction does not occur, this interplay can lead
to large fluctuations in abundance that can predispose species to
stochastic extinction.

The third result is that hotter-than-average summers is more
detrimental to consumer-resource interactions than warmer-
than-average winters. This is an interesting finding in light of
the fact that it is the warmer-than-average winters that lead to
advanced emergence and phenological asynchrony (Dunn and
Winkler, 1999; Walther et al., 2002; Root et al., 2003; Parmesan,
2006; Inouye, 2008; Miller-Rushing and Primack, 2008; Post
et al., 2008). The crucial insight to emerge from the comparative
analysis of warming scenarios is that asynchrony in emergence is
not the issue. It is what follows that matters. While warmer-than-
average winters cause advanced emergence and higher spring
abundance due to faster maturation rates and the concomitant

reduction in juvenile mortality, hotter-than-average summers
cause a steep decline in birth and maturation rates and a steep
increase in the mortality rate. This is because maturation reaches
its lowest and mortality its highest under this warming scenario.
The population-level outcome is a large decline in abundance
during summer. The hotter the summers become, the more
difficult it is for species to recover from the large decline in
summer abundance. Since the consumer is dependent on the
resource, a large decrease in resource abundance makes recovery
from low abundances an extra challenge for the consumer.

These findings have implications for both biodiversity and
biological control. Regarding biodiversity, two general results
emerge. The first concerns life history and consumption trait
attributes that increase susceptibility to warming. Interactions
in which resource species’ maturation rate is more temperature-
sensitive (i.e., large Arrhenius constants and narrower response
breadths), and mortality rate less temperature-sensitive (smaller
Arrhenius constants), than those of the consumer are more
susceptible to the detrimental effects of warming, as are those in
which consumer’s maturation rate is more temperature-sensitive
that its mortality rate. In the former, greater susceptibility to
warming ensues because when the decrease in the resource
maturation rate with increasing temperature exceeds the increase
in the mortality rate, the resource developmental delay increases
at both low and high temperatures. This causes a reduction in the
adult resource population at temperatures below and above the
optimal temperature range, narrowing the consumer’s thermal
limits to viability. In the latter, greater susceptibility to warming
occurs because lower mortality and faster development of the
juvenile resource stage means a larger adult consumer population
and hence greater exploitation of the resource. Similarly,
interactions in which the resource species has high fecundity and
long developmental delays relative to adult longevity and the
consumer has a long developmental delay relative to that of the
resource are more at risk of extinction due to warming as are
those in which the adult resource stage is attacked.

The second general result regarding biodiversity is that
consumer-resource interactions in the tropics are more at risk
of extinction due to warming while temperate interactions
are more vulnerable to extreme fluctuations. This generates a
latitudinal difference in the nature and timing of extinctions.
Warming causes deterministic extinction of tropical resources
and consumers, leading to immediate disruption of species
interactions. In contrast, warming predisposes temperate
resource and consumers to stochastic extinction during low
abundances, which means that interaction disruptions are likely
to occur with a time delay. Such extinction debts may lead to
unexpected outcomes since it is difficult to predict a priori the
order and timing of species losses. If the consumer goes extinct
first, diversity may be recovered through natural recolonizations
or reintroduction of the consumer; if the resource goes extinct
first, the entire interaction will be lost and recovery would be
much more challenging.

Regarding biological control, warming-induced loss of natural
enemies that serve as biological control agents can cause pest
outbreaks that can compromise the supply of essential food
items, thus creating a significant threat to food security. Pests
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whose adult stages are attacked are more likely to lose their
natural enemies, particularly in tropical climates where many
important crops are grown, leading to greater pest damage. At
the same time, pests with invulnerable adult stages are likely
to benefit from warming and resist the effects of biological
control. Warming-induced failure of biological control can lead
to greater pesticide use and greater pollution, thus compounding
existing environmental problems. One key finding of this
study is that one can make predictions about population-level
outcomes of warming based solely on how temperature affects
ectotherms’ phenotypic traits. When choosing natural enemy
agents to attack a particular pest, it is crucial to compare their
maturation and mortality responses to determine whether the
enemy has greater tolerance of the high-temperature extremes
projected for the region such that its maturation-mortality
response allows for a sustainable adult population in the
face of warming.

In this study I have focused on pairwise consumer-resource
interactions, a necessary first step in developing a framework that
incorporates developmental delays and mechanistic temperature
response functions. Extending the framework to incorporate
additional tropic levels and competition between species is an
important future direction. While the results of the trait-based

and analytical viability analyses are general and can apply
across ectotherm taxa from any latitude or habitat type, the
dynamical model was analyzed using parameter values realistic
for insects and other terrestrial ectotherms. Determining whether
the latitudinal, life stage, and warming-scenario effects found for
terrestrial consumer-resource interactions generalize to aquatic
ones is a fruitful future exercise.
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Understanding constraints on consumer-resource body size-ratios is fundamentally

important from both ecological and evolutionary perspectives. By analyzing data

on 4,685 consumer-resource interactions from nine ecological communities, we

show that in spatially complex environments—where consumers can forage in

both two (2D, e.g., benthic zones) and three (3D, e.g., pelagic zones) spatial

dimensions—the resource-to-consumer body size-ratio distribution tends toward

bimodality, with different median 2D and 3D peaks. Specifically, we find that median

size-ratio in 3D is consistently smaller than in 2D both within and across communities.

Furthermore, 2D and 3D size (not size-ratio) distributions within any community are

generally indistinguishable statistically, indicating that the bimodality in size-ratios is not

driven simply by a priori size-segregation of species (and therefore, interactions) by

dimensionality, but due to other factors. We develop theory that correctly predicts the

direction and magnitude of these differences between 2D and 3D size-ratio distributions.

Our theory suggests that community-level size-ratio bimodality emerges from the

stronger scaling of consumption rate with size in 3D interactions than in 2D which both,

maximizes consumer fitness, and allows coexistence, across a larger range of size-ratios

in 3D. We also find that consumer gape-limitation can amplify differences between 2D

and 3D size-ratios, and that for either dimensionality, higher carrying capacity allows

coexistence of a wider range of size-ratios. Our results reveal new and general insights

into the size structure of ecological communities, and show that spatial complexity of the

environment can have far reaching effects on community structure and dynamics across

scales of organization.

Keywords: body size, consumer-resource dynamics, interaction dimensionality, metabolic scaling, consumption

rate, coexistence
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INTRODUCTION

For at least a century, biologists have wondered why “Spiders
do not catch elephants in their webs, nor do water scorpions prey
on geese” (Elton, 1927; Riede et al., 2011). That is, why does
only a subset of all possible resource-consumer body size ratios
exist in nature? Answering this question is important because
it could reveal general principles underlying the ecological and
evolutionary dynamics of communities (Yodzis and Innes, 1992;
Cohen et al., 1993; Brose et al., 2006a,b; Tang et al., 2014;
Pawar et al., 2015). Indeed, a prominent hypothesis for why size-
ratio distributions show strong central tendencies within and
across communities is that only certain size combinations permit
species coexistence (Emmerson et al., 2005; Brose et al., 2006a;
Otto et al., 2007; Tang et al., 2014). Also, size-ratio distributions
exhibit multiple peaks within and across communities; for
example, predators tend to be much larger than their prey in
water than on land, invertebrate predators tend to be closer in
relative size to their prey than vertebrate predators, filter feeders
may be amillion times larger than their resources, and parasitoids
and ectoparasites can be 10 or down to 1 million times smaller
than their hosts (Peters, 1986; Cohen et al., 1993; Brose et al.,
2005, 2006a). These different peaks likely reflect different regions
of feasible coexistence, population stability, or fitness, influenced
by both abiotic (e.g., spatial habitat complexity) and biotic (e.g.,
foraging strategy) factors (Brose et al., 2006a; Cohen, 2008).

Several studies have developed mathematical models to
understand how body size determines the feasibility of
consumer-resource size-ratios in specific taxa and trophic
interaction types (e.g., McArdle and Lawton, 1979; Persson
et al., 1998; Aljetlawi et al., 2004). Others have generalized such
models by incorporating metabolic scaling (Schmidt-Nielsen,
1984; Peters, 1986; Brown et al., 2004; Savage et al., 2004) into
consumer-resource interaction and life history models (Brose
et al., 2005; Weitz and Levin, 2006; Williams et al., 2007; Riede
et al., 2011; Kalinkat et al., 2013; Carbone et al., 2014). However,
studies thus far have failed to yield systematic predictions about
central tendencies or the shapes of community-level size-ratio
distributions (Brose et al., 2006a).

Arguably, the key to a more nuanced understanding of

variation in community size-ratios is to incorporate community-

and environment-specific biomechanical constraints into models
of consumer-resource interactions (Vucic-Pestic et al., 2010;
Dell et al., 2011; Pawar et al., 2012, 2015; Portalier et al.,
2019). In this paper, we investigate this possibility by including
biomechanical and physiological constraints on the components
of consumption rate—search, detection, and handling (attack,
pursuit, subjugation, and ingestion) (Figure 1). In particular,
we focus on whether interaction dimensionality combined
with other biomechanical (velocity, handling) and physiological
(metabolic rate) constraints affect consumer-resource size-ratios
in local ecological communities. Recent work suggests that the
dimensionality of trophic interactions—Euclidean dimension of
the space in which the consumer searches for resources (2D vs.
3D)—is a ubiquitous and important factor that strongly affects
consumer-resource interactions via encounter rates (McGill and
Mittelbach, 2006; Pawar et al., 2012; Carbone et al., 2014).

FIGURE 1 | An illustration of components of consumption rate and

environmental constraints on them. The parameters shown belong to our

model for size-mediated consumer-resource dynamics. Feasible body

size-ratios depend on consumer and resource body velocities (vR and vC),

reaction distance (d), attack success probability (A) following attack and

pursuit, handling time h (sum of pursuit, attack, subjugation, and ingestion

times), and interaction dimensionality (D). Our theory predicts that 3D

interactions, by allowing an additional dimension for detection (depicted here

by the largemouth bass’ search space), can allow 3D consumers to subsist on

a wider range of resource sizes (k denotes consumer-resource size ratio; see

text after Equation 3). Thus, feasible size-ratios for the fishing eagle searching

in 2D (water surface) are expected to be more strongly constrained than the

largemouth bass searching in 3D (water column), although they are both

feeding on the same resource.

Specifically, if the chance of finding a resource is roughly the
same in all directions, then increasing either the dimensionality
of resource dispersion (Ritchie, 2009) or the consumer’s detection
region will increase encounter rates (McGill and Mittelbach,
2006; Pawar et al., 2012, 2015). This leads us to hypothesize that
the size-ratio distributions of interacting species in communities
should vary systematically with spatial complexity of the habitat.
This would be driven by variation in conditions for energetically-
feasible stable coexistence of consumer-resource species pairs
within different sub-habitats (e.g., pelagic vs. benthic zones
in aquatic ecosystems). We first derive theoretical predictions
for differences in limits to feasible size-ratios in 2D vs.
3D interactions. We then use an extensive dataset of 4,685
consumer-resource interactions from nine aquatic and terrestrial
communities to test our predictions.

METHODS

Theory
We develop a mathematical model to predict the feasibility
of community-wide resource to consumer size-ratios. To this
end, we first incorporate body size constraints on components
of consumer-resource interactions—relative velocity, detection
distance, attack success, and handling time (Figure 1)—which
altogether determine per-capita biomass consumption rate.
Consumption is a fundamental rate controlling the energy
budget of an individual (net energy gain or loss) and
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population dynamics (coupled changes in consumer and
resource population biomasses or numbers) (DeLong and
Vasseur, 2012; Pawar et al., 2012, 2015; Carbone et al., 2014).
We then derive feasible size-ratios from both energetic and
population dynamical perspectives.

We begin with a general equation for consumption rate c
(mass× time−1) (Pawar et al., 2012, 2015; Carbone et al., 2014):

c = a A xR mR f (1)

Here, xR is resource number density (individuals × m−2 or
m−3), mR is resource body mass, a is per-capita area or volume
search rate (m2 or m3 × s−1), A is probability of attack success
(conditional on an attack occurring), and f is a dimensionless
prey risk function that determines the shape of the consumer’s
functional response (Pawar et al., 2012; Dell et al., 2014). In
principle, f can be of any form, but we focus on the commonly
observed Type II form

f =
1

1+ a A h xR
(2)

where h is consumer’s handling time (s). If h is instantaneous (→
0), Equation (2) reduces to the linear Type I functional response
(f = 1). Our subsequent results about feasible size-ratios from
both energetic and population dynamical perspectives remain
qualitatively unchanged if we use a Type III functional response
(Appendix 3; Figure S2).

We now define size-dependence of the components of c. In
Appendix 3 we show that our results are robust to considerable
variation in parameterizations of the following scaling equations.
The parameterizations are listed in Table S3. First, for search rate
we use an empirically well-supported scaling model (Pawar et al.,
2012; Dell et al., 2014; Rizzuto et al., 2018):

a = a0m
pv+2pd(D−1)
C kpd(D−1) . (3)

Here, a0 is a constant that includes effects of temperature and
dimensionality, pv is the scaling exponent for consumer body
velocity, pd is the scaling exponent for reaction distance between
consumer and resource, D is interaction dimensionality defined
by the space in which the consumer can search for and detect
a resource (2D or 3D; Figure 1), and k = mR/mC is body size-
ratio. We emphasize that this simple definition of interaction
dimensionality arises because resource detection typically occurs
in Euclidean space, regardless of which sensory modality is
used. Later, we discuss how our model can be extended to
more complex definitions of dimensionality by considering non-
sensory components (such as relative velocity) of consumer-
resource interactions. As such, Equation (3) is a scaling model
for grazing (i.e., consumer searching for sessile resources) but
also well-approximates the scaling of search rate in active-capture
interactions (i.e., both consumer and resource moving actively
across the landscape) when mC > mR (Appendix 3) (Pawar
et al., 2012; Dell et al., 2014). We use just the grazing model
because our dataset is dominated by grazing and active-capture
interactions with mC > mR (Appendix 1, Table S2; see also
Table S5). Furthermore, in Appendix 3 we show that relative

to dimensionality, foraging strategy is expected to have minor
effects on feasible size-ratios.

Next, for attack success probability A, we use an empirically
supported function (Appendix 1; Figure S1),

A =
(

1+ kγ
)−1

, (4)

where γ is a constant that governs the decrease in attack success
as resources get very large relative to consumer size (mR ≫

mC). The exponent γ in Equation (4) captures biomechanical
constraints that appear at upper size-ratios (McArdle and
Lawton, 1979; Persson et al., 1998; Aljetlawi et al., 2004; Weitz
and Levin, 2006). In particular, increasing γ can emulate
increasing consumer gape-limitation, which was previously
suggested to be a bigger constraint on size-ratios in aquatic
interactions relative to terrestrial ones (Hairston and Hairston,
1993). Hairston and Hairston (1993) argue that gape limitation
is stronger in aquatic interactions because the bodies and
appendages of aquatic organisms are modified for efficient
locomotion in water, and thus are of limited use for handling
resources. As a result, aquatic consumers cannot be too close to or
smaller in size than resources (relative to terrestrial consumers).
By increasing γ , we can explore the importance of gape-
limitation relative to detection dimensionality in constraining
feasible size-ratios. Similarly, by relaxing γ we can consider
interactions where attack success and therefore consumption
rate is relatively insensitive to size-ratio, such as in the case of
ecto-parasites, which are largely limited by encounter (therefore,
search) rate, and can successfully feed on wide range of resource
sizes once they are encountered.

Substituting Equations (3, 4) into (1) and rearranging to gives
the scaling of per-capita (biomass) consumption rate:

c = a0 m
pv+2pd(D−1)+1
C kpd(D−1)+1

(

1+ kγ
)−1

xR f . (5)

Note that here the resource mass termmR from Equation (1) has
been absorbed into the size-ratio term. This equation captures
four essential features of consumption rate:

(i) For a given resource size and therefore size-ratio k,
consumption rate c increases with consumer mass mC

because larger consumers have greater body velocity,
(ii) Consumption rate c increases with size-ratio k because when

mR < mC (i.e., k < 1) search rate increases with resource
mass mR due to increasing reaction distance (and for
active-capture, also increasing relative velocity;Appendix 3,
Equation S14),

(iii) When resource mass far exceeds consumer mass (k ≫

1), c declines because resources become difficult for the
consumer to attack and handle due to the (1 + kγ )−1

term. That is, the product of per-capita search rate (a
monotonically increasing function with respect to size
and size-ratio; Equation 3) and attack success probability
A (monotonically decreasing function), aA, yields an
empirically realistic unimodal (hump-shaped) function
(McArdle and Lawton, 1979; Persson et al., 1998; Aljetlawi
et al., 2004; Brose et al., 2008) (Appendix 1; Figure S5).

(iv) Consumption rate c increases faster with consumer mass
mC and size-ratio k when consumers forage in 3D (D = 3;
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e.g., pelagic zones in lakes and oceans) than 2D (D= 2; e.g.,
benthic zones) because above a threshold consumer size, 3D
search space (m−3) allows higher detection probability than
2D search space (m−2) (Pawar et al., 2012, 2015).

Finally, for handling time we use another empirically well-
supported model (Pawar et al., 2012):

h = h0m
−βh
C mR (6)

where h0 is a constant and βh is the scaling of the metabolic
rate of a consumer during pursuit, subjugation, and ingestion
of resources.

Energetically Feasible Size-Ratios
We first derive feasible ranges of size-ratios that meet consumer
energy requirements for somatic maintenance, by setting a lower
bound on energy gain from resource consumption (Carbone
et al., 2014; Rizzuto et al., 2018):

ec > BC (7)

Here, BC is the rate of the consumer’s energy use converted to
mass units (kg/s) while resting (resting metabolic rate, RMR), e
the efficiency of conversion of resource biomass into consumer
biomass (a proportion). All other parameters are as defined
in Equations (1)–(6). Conversion efficiency e is approximately
independent of body size (Peters, 1986; DeLong et al., 2010;
Lang et al., 2017), and between 0.5 and 0.85, with carnivores
having higher values than herbivores (Yodzis and Innes, 1992;
Lang et al., 2017). Our results remain qualitatively robust to a
even wider variation in e than this (Appendix 3). Convert Bc
to mass units (like the quantity ec on the left hand size) we
assume 1 kg = 7×106 J (the combustion energy content per
unit of wet biomass) (Peters, 1986). Note that the Inequality (7)
sets a lower bound on consumption rate because BC is RMR,
which is an underestimate of maintenance energy needs because
it typically does not include the energy required for somatic
growth, producing offspring, storage, and bursts of activity (such
as during foraging). These may cause significant additions to the
energy needs of adult animals in certain periods of their lifetime
(Rizzuto et al., 2018). Therefore, we expect the coexistence
bounds to be somewhat narrower than those we predict below;
but this does not change our conclusions about the differences
in coexistence due to dimensionality. Also, assuming there are
no systematic differences in conversion efficiency in 2D vs. 3D
interactions, variation in e will have negligible effect on our
subsequent results.

We already have the size scaling of a and A, but require the
scaling of BC and biomass abundance xR mR. For BC, we use
the scaling of basal or resting metabolic rate (Peters, 1986; Nagy,
1987; Brown et al., 2004; DeLong et al., 2010):

BC = B0m
β
C (8)

where B0 is a constant that includes the effect of temperature and
converts metabolic rate units (J/s) to mass use rate units, and β

is the scaling exponent of metabolic rate. For biomass abundance
we use (Peters, 1986; Brown et al., 2004):

xRmR = x0m
1−βx
R (9)

Where x0 is a normalization constant that includes the effect
of temperature, and βx is the scaling exponent of numerical
abundance. Substituting the scaling (Equations 5, 6, 8, 9) into (7)
and solving for mR gives the bounds on resource mass mR and
therefore size-ratios that guarantee a balanced energy budget. To
obtain an exact solution for this we set h = 0 [Type I f (R)] and
solve formR, which gives:

mR > c
(

m
β−pd(D−1)−pv
C

(

1+ kγ
)−1

)
1

1+pd(D−1)−βx (10)

Where c = (B0/ea0x0)
1

1−pd(D+1)−βx . In Appendix 3 we show
that our subsequent results are qualitatively unchanged if h >

0. Substituting the values of scaling exponents (Table S3) into
Inequality (10) gives

mR > m0m
0.64
C

(

1+ kγ
)−2.22

in 2D

mR > m0m
0.14
C

(

1+ kγ
)−1.54

in 3D
(11)

where m0 = (B0/ea0x0)
2.22 in 2D and (B0/ea0x0)

1.54 in 3D.
Inequalities (10) and (11) yield three important theoretical
insights and predictions (illustrated in Figure 2):

(i) The smaller mC and k exponents for 3D compared with
2D in Equation (11) imply that size constraints weaken
as dimensionality increases. Therefore, relative to 2D, a
wider range of resource sizes become feasible for larger 3D
consumers. Conversely, 3D foraging allows an increased
range of consumer sizes on a given sized resource because
for a given size-ratio, larger consumers enjoy a greater mass-
specific search rate in 3D than in 2D [a/mC ∝ m0.04

C in 3D

butm−0.34
C in 2D, from parameterized Equation (3)].

(ii) Within either 2D or 3D, feasible size-ratios for coexistence
are predicted to be constrained by baseline resource density
(x0) through the termm0. In particular, following empirical
data (Peters, 1986; Pawar et al., 2012), if we assume baseline
abundance (x0) is about two orders of magnitude higher in
3D than 2D, the widening of energetically feasible size ratios
is magnified because then the advantage of 3D detection
dimensionality is enhanced. In this context, note that
although biomass density is expressed in per-volume units
in 3D and per-area units in 2D (Table S3), what matters is
that a greater amount of resource biomass can be packed
into a 3D space, which boosts consumption rate due to
increased detection dimensionality.

(iii) The upper bound on size ratios (where mR > mC so k
> 1) is set by the scaling of A through the exponent γ .
Therefore, all these results are qualitatively robust as long
as decline in attack success at high size-ratios is strong
enough to render consumption rate (Equation 5) unimodal
with respect to k. Values of the exponents in Equation (5)
dictate that consumption rate will be unimodal with respect
to size-ratio as long as γ > 0.2 in 2D and >0.4 in 3D
(also see Figure S4). Ourmeta-analysis (Appendix 1) shows
this condition generally holds for real interactions and is
in agreement with previous studies (Aljetlawi et al., 2004;
Brose et al., 2008).
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A

B

FIGURE 2 | Predicted effects of interaction dimensionality on consumer energetic feasibility and consumer-resource coexistence (A) and population dynamics (B). In

(A) real consumer-resource pairs (dots) from nine communities have been overlaid (n = 3,055 in 2D and 1,630 in 3D; Table 1), with dashed lines delineating predicted

coexistence regions for different baseline carrying capacities x0 (because baseline abundances tend to be higher by orders of magnitude in 3D than 2D; see main

text). In (B) dashed lines delineate population stability regimes and equilibrium abundance is represented by a heat-map of log10 number density (darker means more

abundant). These results are for h0 = 104 s (Equation 6) and γ = 2 (Equation 4; cf. Table S3). When attack success declines more weakly (γ decreases) at size-ratios

mR ≫ mC, possibly due to decrease in gape-limitation, coexistence becomes possible at those extreme ratios, illustrated by the dotted γ = 1 line (at x0 = 1, with

other parameter values remaining the same) in the 2D plot in (A).

Population-Dynamically Feasible Size-Ratios
The above theory based upon the consumer’s energetic
considerations does not account for consumer-resource
population dynamics. Therefore, we consider whether
accounting for population dynamics changes our predictions
about the effect of dimensionality on feasible size-ratios.
Using a general consumer-resource model, in Appendix 2

we show that both consumer-resource coexistence and
mutual population stability yield similar predictions as above.
Specifically, coexistence is possible only if

mR > m0

(

m
β−pd(D−1)−pv
C

(

1+ kγ
)−1

)
1

1+pd(D−1)−β
(12)

where m0 =

(

B0
ea0x0

)
1

1+pd(D−1)−β
. This is same as inequality

(10), except that β (consumer’s RMR scaling exponent) replaces

resource carrying capacity scaling exponent βx. That is, the
above predictions (i)–(iv) from the energetic model also hold
for the population dynamics model. We also show that local
asymptotic stability to small perturbations around equilibrium

abundances of consumer and resource (Equations S8–S9) differs
between 2D and 3D. Figure 2 shows that regions of cycles

over the size-combination plane coincide with regions of low
abundance (along the k = 1 line). Consistent with consumer-

resource theory, as h → 0 and the functional response becomes

Type I, regions of persistent cycles are replaced by transient

cycles (Appendix 3). Furthermore, in Appendix 3, we show

that the scaling of coexistence in Equation (11) is qualitatively
similar for Type II and III functional responses. These results
and those from the energetic model above are robust even
if decline in attack success (Equation 4) is not strictly a
power-law (Figure S6).
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Theoretical Predictions
Next, we calculated community-specific predictions about the
magnitude of difference in central tendency of 2D and 3D
size-ratio distributions to compare with the empirical data (next
section) on size ratios. For this, for each community, and for
a given K and γ (which set the lower and upper bound of the
coexistence region, respectively; Figure 2), we generated 10,000
random interactions by first generating model consumer and
resource size distributions within that community’s observed
size limits. The size distributions were generated using the
beta distribution, using the method used by Pawar (2015).
This approach allows realistic, right-skewed size distributions of
different shapes to be generated. As long as the size distribution
is right-skewed, the following results remain qualitatively robust.
We then determined what subset of size-ratios in these random
interactions allowed stable population coexistence (criteria i–
ii in Appendix 2). This is equivalent to “carving out” the
general predicted coexistence region (Figure 2) into its stable
community-specific sub-regions. Differences in the median of
these feasible and stable log10-transformed 2D and 3D size-
ratios were then the predicted difference for that community.
This difference was compared with the empirically observed
difference (see data analysis below). We use the median (log10-
transformed) size ratio of each local community as a measure of
central tendency because most communities exhibit skewed and
multimodal size-ratio distributions (Figure 3). Also, we focus on
predicted differences in medians and not the absolute values of
medians themselves, because feasible size-ratios are expected to
depend on carrying capacity [Figure 2; also see text following
Inequality (11)], which is an unknown parameter in all our
community datasets.

Empirical Data
To study size-ratio distributions and test our theoretical
predictions we compiled published data on interacting
consumer-resource pairs for nine communities (four terrestrial,
five aquatic; Table S5). If average body mass for a particular
taxon was not reported in the original study, it was estimated
using methods previously described (Dell et al., 2011, 2013,
2014). Each consumer-resource interaction was assigned a 2D
or 3D search-space dimensionality by combining information
on the consumer’s movement space and foraging strategy—
sit-and-wait, active foraging, or grazing—and the resource’s
movement space (Table S1). Classification of interactions by
dimensionality in this way requires knowing the taxonomy,
feeding behavior, body size, and foraging strategy of individual
taxa (see Table S1). Although there are many communities
with data on trophic links, few have the adequate body size and
taxonomic information required for this level of classification.
These nine communities are the available datasets for which
all these pieces of information are available or could be
obtained from the literature. The final dataset comprised 4,685
interactions between 964 taxa, comprising 3,055 2D and 1,630
3D consumer-resource interactions (Table S5).

Data Analysis
We tested whether, as predicted by our theory, 2D and 3D size-
ratio distributions had significantly different central tendencies,

both within each of the nine communities as well as the overall
dataset. A parametric approach to testing this statistically is not
appropriate because size-ratios within communities are often
not independent (multiple resources may be fed upon by the
same consumer and multiple consumers often feed on the same
resource). Furthermore, the (log10) size-ratio distributions are
often right-skewedwith long tails and/ormulti-modal (Figure 2).
Therefore, we developed the following bootstrap-like test for
significance of differences in size-ratios. For each community we
separately generated 105 lists of random 2D and 3D consumer-
resource interaction pairs by independently sampling (with
replacement) the observed pairs of consumers and resources.
Each randomly generated 2D and 3D “sub-community” was
constrained to have the same number of interaction pairs as
observed in the original 2D or 3D sub-community. We then
calculated differences in median log10-transformed size-ratios
(3D or 2D) across the 105 random lists. The distribution of these
105 differences is an approximation of the sampling distribution
of differences assuming random partitioning of the community
into 2D and 3D sub-communities. Thus, the proportion of
times the observed difference between median values of log-
transformed 2D and 3D size-ratios matches or exceeds a value
in the sampling distribution can be used as an estimate of the
one-tailed p-value of the observed difference. We also compared
each community’s predicted difference in median 2D vs. 3D
size ratios (see “Theoretical predictions” above) with its sampling
distribution of random differences in medians to test whether
these also significantly matched the observed differences in
median size-ratios.

As an even more stringent test in the face of non-independent
size-ratios, we also re-analyzed the data for differences between
2D and 3D size-ratios as described above after collapsing all the
links of a single consumer to a single size ratio by taking the
geometric average of the sizes of all its resources. After doing so,
our results about significant differences in central tendencies of
2D vs. 3D size-ratio distributions remain qualitatively the same
(Appendix 3; Table S4).

Finally, to determine whether size ranges [mC ,min, mC ,max]
and [mR ,min, mR ,max] are influenced by factors independent of
dimensionality, such as oxygen limitation, physical medium for
locomotion, and phylogenetic history (Allen et al., 2006), we also
tested for differences inmedian sizes of all 2D an 3D species using
the Wilcox test after removing consumers and resources that
were in both the sets, and also tested for differences in variances
around the median values using the Brown–Forsythe test.

RESULTS

We find strong and statistically significant empirical evidence
that median 3D size-ratios are consistently lower than 2D size-
ratios across all nine communities (Figure 3), with observed
differences in median size-ratios closely matching our theoretical
predictions (Table 1). The magnitude of difference between
2D and 3D size-ratios varies with community, ranging from
the median 3D size-ratio being about four times smaller
than 2D for the Scotch Broom community to 2.29 orders of
magnitude smaller for the Eastern Weddell Sea community.
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FIGURE 3 | Effect of interaction dimensionality on species’ log10 size-ratio and size (mass, kg) distributions across communities. All pairs of 2D (red) and 3D (blue)

distributions have been normalized by respective peak frequency to allow comparison within and between communities. In all sub-plots a darker shade of red

represents the overlap between the 2D and 3D distributions. Black vertical arrows mark locations of observed median 2D and 3D interaction size-ratios, along with

their observed and predicted (in parentheses) differences. In all communities, the range and median of log10 size in 2D and 3D are similar while median 3D size-ratios

are significantly lower than 2D as predicted by our theory (Table 1). Note that there are three pure 2D and one pure 3D community. Two real interactions are shown to

illustrate extreme size-ratios: Blue Whale eating Krill (mR≪mC; k ∼ 10−10) in the Eastern Weddell Sea, and Deer Flies on Roe Deer (mR≫mC; k ∼ 106.5) in Grand

Cariçaie Marsh.

Even in the case of pure 2D communities, size-ratios tend
to be higher than 3D ratios observed in other communities.
Similarly, in the single pure 3D community (Tuesday lake), size-
ratios are generally lower than the 2D ratios from the other
communities (Figure 3; Table 1).

We also found multimodalities in 2D size-ratio distributions
(Figure 3), one at extremely small size-ratios (mR ≪ mC)
and another at extremely large ratios (mC ≪ mR). The lower

2D peak (where mR ≪ mC) found in several communities
corresponds to grazing. Scotch Broom, UK Grasslands, and
Estero de Punta Banda also each have a peak at very high
2D size-ratios (mR ≫ mC), corresponding to macroparasites,
parasitoids, herbivores, and micropredators. Indeed, these types
of interactions are why only 87.8% of 2D interactions lie
within the predicted 2D coexistence region (the γ = 2 and
high x0 case in Figure 2), while 99.9% of 3D interactions
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TABLE 1 | Differences between 2D and 3D size-ratio distributions.

Community Median log10 (Size-ratio) Median log10 (Size) Taxa Interactions 2D/3D overlap

2D 3D 3D−2D 2D 3D All 2D 3D All 2D 3D Con Res

All communities −1.07 −3.59 −2.52* (−2.60) −4.79 −4.05 964 704 463 4685 3055 1630 0.09 0.20

Eastern Weddell Sea −1.37 −3.65 −2.28* (−2.58) −2.78 −2.51 314 137 270 979 258 721 0.11 0.30

Estero de Punta Banda −2.81 −4.60 −1.79* (−1.13) −2.48 −2.73 105 102 47 1388 1086 302 0.34 0.19

Grand Cariçaie Marsh −0.34 −1.14 −0.80* (−1.36) −5.55 −5.44 88 86 45 623 460 163 0.00 0.46

Scotch Broom −0.28 −0.91 −0.63* (−1.01) −5.44 −5.28 150 147 11 362 347 15 0.00 0.22

Skipwith Pond −0.71 −3.01 −2.3* (−0.47) −4.69 −4.55 33 31 17 321 284 37 0.78 0.23

Broadstone Stream −1.09 – – −6.71 – 28 28 0 138 138 0 – –

Gearagh Woodland −0.46 – – −5.56 – 113 113 0 370 370 0 – –

UK Grasslands 0.22 – – −5.40 – 61 61 0 112 112 0 – –

The Median log10 (Size-ratio) column shows observed medians of log10 transformed size-ratios, and their observed and predicted (in parentheses) difference in medians (3D−2D). All

observed and predicted differences are significantly different from 0 (p < 0.05; flagged with an asterisk) based upon a randomization test (see main text). Note that although median

2D and 3D size-ratios are significantly different in each community, median 2D, and 3D consumer and resource sizes are not (p > 0.05; Wilcoxon–Mann–Whitney test with shared taxa

removed). The 2D/3D overlap column shows proportion of consumers in each community feeding on both 2D and 3D resources (Jaccard index) (Con), and proportion of resources

exploited by both 2D and 3D consumers (Res). If such an overlap exists, the total number of taxa (Taxa-All) within a community will be smaller than the sum of 2D and 3D taxa.

fall within the predicted 3D coexistence region. This is not
surprising because macroparasitism, parasitoidism, herbivory,
and micropredation are likely to be more limited by search
and detection than attack success. We can account for this by
decreasing the value of γ in Equation (4) and recalculating
coexistence bounds. Doing so relaxes constraints on coexistence
at high size-ratios (k ≫ 1 or mR ≫ mC) (Figure 2, Figure S4),
and helps explain deviation of these interactions from predicted
coexistence bounds. Note that, as γ → 0, the upper coexistence
bound (Figure 2) will vanish because attack success probabilityA
becomes independent of size-ratio. We chose γ = 1 to illustrate
that a weaker decline in attack success with size-ratio can explain
feasibility and coexistence of interactions at those size-ratios.
The value of γ = 1—where A declines weakly with decreasing
size-ratio (resources get very large relative to consumers)—is
necessarily arbitrary because we have practically no information
about A at those extreme size-ratios, which future work needs
to address.

Eastern Weddell Sea, Grand Cariçaie Marsh, and Scotch
Broom also show a secondary 2D peak at very small size-
ratios (mR ≪ mC) (Figure 3), mostly corresponding to large
endothermic vertebrates feeding on arthropods—effectively
grazing interactions because of the large size difference between
consumer and resource, and therefore in their body velocities
Appendix 3; (Pawar et al., 2012; Dell et al., 2014). This is
also qualitatively consistent with our theory, which predicts
a relaxation of coexistence constraints in grazing interactions
wheremR ≪mC (Figure S3).

In communities that have both interaction dimensionalities,
median body size distributions of species in 2D and 3D
interactions are statistically indistinguishable (Figure 3; Table 1).
Body size ranges of species involved in 2D and 3D interactions
also tend to be similar, with only Eastern Weddell Sea and
Estero de Punta Banda showing significant differences in
variance of sizes (p < 0.001, Brown-Forsythe test of unequal
variances). Thus, bimodality in size-ratios is not driven simply

by different 2D and 3D size distributions. Indeed, the high
overlap between 2D and 3D size distributions supports an
assumption implicit in our theory: that size ranges of consumers
or resources are set by factors extrinsic to dimensionality. The
similarity in size distributions partly stems from the fact that
although consumers forage on completely different resources
(and therefore potentially different habitat zones) in 2D and 3D
in certain communities (i.e., EasternWeddell Sea, Skipwith pond,
and Estero de Punta Banda), a relatively constant proportion
of resources are fed upon by both 2D and 3D consumers in all
communities (compare consumer and resource 2D/3D overlap
in Table 1). An example of how the same resource can be
exploited in both 2D and 3D is shown in Figure 1. Thus, 2D
and 3D components of each community are consistently coupled
through shared resources.

DISCUSSION

By combining theory with extensive empirical data, we have
shown that interaction dimensionality strongly constrains
resource-to-consumer size ratios in ecological communities.
Specifically, 3D interactions allow a lower median size-ratio as
well as a wider range of size-ratios than 2D, with the magnitude
of observed difference in most communities similar to the
difference predicted by our theory (Table 1). This emergent
difference between 3D and 2D size-ratios arises because in 3D,
the additional dimension for resource detection usually elevates
baseline encounter rates and steepens the scaling of consumption
rate with body size (Pawar et al., 2012). As a result, communities
from spatially complex environments that can support both
2D and 3D interactions show distinct size-ratio distributions
(Figure 3). For example, bimodal size-ratio distributions exist
in the Eastern Weddell Sea, which has pelagic (mostly 3D) and
benthic (mostly 2D) zones, and in the Grand Cariçaie Marsh,
which has shallow-water (mostly 2D), grassland (mostly 2D), and
tree-dominated zones (mixture of 2D and 3D). We emphasize
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that the difference in median 2D and 3D size-ratios is repeatedly
observed across communities, despite considerable variation in
habitat (e.g., aquatic vs. terrestrial), consumer foraging behaviors
(e.g., 2D benthic vs. 2D water surface foraging), and organismal
types (e.g., vertebrates vs. invertebrates).

Our results provide an explanation for three important
empirical patterns in the body size structure of communities.
First, our theory predicts that wider ranges of size-ratios
become feasible as consumer size increases in both 2D and
3D (Figure 2). This explains why smaller consumers tend to
be restricted to a narrower range of resource sizes (Cohen
et al., 1993), and therefore why invertebrate predators tend
to be closer in size to their prey than vertebrate predators
(Peters, 1986; Brose et al., 2006a). Second, our theory predicts
that the widening of coexistence bounds with consumer size
is much more pronounced in 3D than 2D, and that this
widening occurs in the direction of lower size-ratios. That is,
consumers are able to coexist with resources much smaller
than themselves in 3D in comparison to 2D. This helps
explain why pelagic predators (3D) tend to be so much larger
than their prey in comparison to terrestrial (2D) predators
(Cohen and Fenchel, 1994; Brose et al., 2006a). Similarly,
we would also expect size-ratios in other 3D interactions,
such as those for aerial predators, to be more extreme
than in terrestrial 2D interactions. Indeed, the mean size-
ratio of terrestrial 3D interactions from real communities—
all from Grand Cariçaie Marsh, Gearagh Woodland, Scotch
Broom, or UK Grasslands—is about an order of magnitude
lower than 2D interactions (0.07 in 3D vs. 0.51 in 2D).
Third, if coexistence bounds widen with body size, it follows
that if consumer size increases systematically with trophic
level then so will size-ratios. This can explain why the
traditional Eltonian paradigm (Elton, 1927) of invariance of
size-ratios with trophic level does not always, or even typically,
hold (Cohen and Fenchel, 1994; Brose, 2010; Riede et al., 2011).

Our theory also predicts that irrespective of dimensionality,
size-ratios will be smaller in magnitude (closer to k = 1) and
show less variance (i.e., be more constrained) in resource-
poor environments (with low carrying capacity; Figure 2).
Although we could not test this directly, carrying capacity
may account for additional variation in size-ratio distributions
across communities. Furthermore, abundance of resources is
particularly important to consumer-resource coexistence in 3D
because the potential advantage of stronger scaling of search
rate from the additional dimension is not realized if resources
are not sufficiently abundant. For example, the higher encounter
of resources in 3D would not be realized if resources have the
same numbers (but not densities) in 2D and 3D habitats (e.g., 1
kg/m2 and 1 kg/m3), irrespective of whether abundance was high
or low.

Hairston and Hairston (1993) suggest that size-ratios in
aquatic interactions are more constrained than in terrestrial
environments because of gape-limitation. That is, they argue that
gape-limitation is stronger in aquatic interactions because bodies
and appendages of aquatic organisms are modified for efficient
locomotion in water, and thus are of limited use for handling
resources. As a result, aquatic consumers may be larger, but not

too close to or smaller in size compared to resources. However,
we find that size-ratios exhibit 2D-3D bimodality even within
aquatic environments, suggesting that gape-limitation may not
be the primary constraint on size-ratios.

Our theory can partly explain multimodalities found in
2D size-ratio distributions (Figure 3) in terms of foraging
strategies. The 2D peak in several communities where mR ≪

mC corresponds to grazing. Our theory predicts that grazing
allows a wider range of size-ratios (Figure S3), although observed
size-ratios peak at even more extreme values than predicted.
Similarly, by decreasing γ , which determines the strength
in decline of attack success (A) as resources become much
larger than consumers (mR ≫ mC), we are able to explain
the 2D peak in size-ratios at mR ≫ mC (corresponding to
macroparasitism, parasitoidism, herbivory and micropredation)
seen in several communities. This is also consistent with the fact
that the empirical data on consumption rates we used to obtain
estimates of γ are only from predator-prey interactions, not
macroparasitism, parasitoidism, herbivory or micropredation.
At the same time, we did not find multimodalities in 3D size-
ratio distributions. This could occur because strategies, such
as macroparasitism and micropredation are less feasible in 3D
environments than in 2D (which is possible if γ itself increases
with dimensionality), or because such interactions are simply
under-sampled in 3D. In either case, further research is needed.
This is particularly important given the important role of
parasitism in food webs (Hechinger et al., 2011). For example,
the addition of parameters that account for the biomechanics
of attack and escape (which must differ with foraging strategy)
will likely help explain some of this additional variation and
multi-modalities.

Empirical biases also need to be considered while interpreting
our results. For example, the fact that no observed species pairs lie
in the predicted feasible regions at smallest and largest consumer
sizes in 2D likely reflects a lack of sampling of interactions for
the smallest (e.g., microorganisms and microinvertebrates) and
largest (e.g., large carnivores) consumers (Brose et al., 2006a).
More importantly, sampling biases are also likely to skew the
estimate of the proportion of 2D and 3D interactions in each
community—the “pure” 2D and 3D communities likely contain
interactions with both dimensionalities and only more accurate
trophic and foraging data will resolve this issue.

Our theoretical analysis assumes that the criteria for
energy balance and stable coexistence of two-species systems
approximately hold even when these pairwise interactions are
embedded in food webs. We are encouraged by the fact that
we are able to correctly predict the differences between median
2D and 3D size ratios, even without incorporating higher-
order or indirect effects. This is consistent with the result
that community stability is most strongly determined by the
strengths of the direct coupling between consumer-resource
interactions (Pawar, 2009; Tang et al., 2014). Thus, we have
shown for the first time, that a combination of environmental,
behavioral, and biomechanical constraints on species interactions
scale up to an emergent property (the community-wide size-
ratio distribution) through a combination of natural selection
(the energetics constraint; inequality 10) and species sorting
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(the coexistence constraint; inequality 12). This scaling up
and emergence effectively results in the reorganization of
communities from more spatially complex environments into
distinct compartments (in terms of food web topology), as
evidenced by the typically low overlap in 2D and 3D consumer
and resource species and interaction identities (last two columns
of Table 1). This stems from localization or specialization of
consumers as well as resources to a specific, preferred sub-
environment (2D or 3D). Nevertheless, future extensions of
our work to multispecies interactions should account for the
stability consequences of indirect interactions and polyphagy,
and these modifications may lead to more accurate predictions
about the effect of dimensionality on size-ratio distributions in
real communities. Given the apparently ubiquitous difference in
2D and 3D size-ratios within communities, food web models
with coupled 2D and 3D sub-communities should be especially
enlightening for these questions and might explain some of the
differences between predicted and observed features of size-ratio
distributions reported here. In this respect, we were intrigued
to find that 2D and 3D sub-communities are coupled, as must
be the population dynamics, through shared resources in all the
communities we analyzed.

Our classification of interactions according to dimensionality
of the search and interaction space is appealingly simple, and
necessarily so because detection typically occurs in Euclidean
space (McGill and Mittelbach, 2006; Pawar et al., 2012).
An extension of our model would be to include more
complex habitats with non-integer dimensionality by relaxing
the assumption of random movement of the consumer and/or
resource. For example, non-random searching by consumers for
resources that are dispersed or moving in fractal dimensions
(Ritchie, 2009)—amore continuousmeasure of dimensionality—
could alter how spatial complexity influences size-ratios. Testing
these additional factors would require more detailed knowledge
of foraging behavior for specific taxa and of habitat complexity in
local communities.

In conclusion, our study helps explain a number of empirical
observations in which community size structure varies with
habitat, type of consumer-resource interaction, and foraging
strategy (Elton, 1927; Cohen et al., 1993; Brose et al., 2006a,b;

Riede et al., 2011). Our theory generalizes previous models that

incorporate body size into components of consumer-resource
interactions (McArdle and Lawton, 1979; Persson et al., 1998;
Aljetlawi et al., 2004; Weitz and Levin, 2006) to multiple
foraging strategies—active-capture, sit-and-wait, or grazing—
and interaction dimensionalities. Thus, our framework can be
used to develop models for specific organisms and habitats
by relying on estimates of body sizes, foraging strategies, and
interaction dimensionalities. Ultimately, models that explicitly
incorporate biomechanical and environmental constraints on
the components of consumer-resource interactions should form
the foundation of a general theory that can explain variation
in the structure and function of ecological communities
across environments.
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The persistence of ecological systems in changing environments requires energy,

materials, and information. Although the importance of information to ecological function

has been widely recognized, the fundamental principles of ecological science as

commonly expressed do not reflect this central role of information processing. We

articulate five fundamental principles of ecology that integrate information with energy

and material constraints across scales of organization in living systems. We show how

these principles outline new theoretical and empirical research challenges, and offer

one novel attempt to incorporate them in a theoretical model. To provide adequate

background for the principles, we review major concepts and identify common themes

and key differences in information theories spanning physics, biology and semiotics.

We structured our review around a series of questions about the role information

may play in ecological systems: (i) what is information? (ii) how is information related

to uncertainty? (iii) what is information processing? (iv) does information processing

link ecological systems across scales? We highlight two aspects of information that

capture its dual roles: syntactic information defining the processes that encode, filter and

process information stored in biological structure and semiotic information associated

with structures and their context. We argue that the principles of information in living

systems promote a unified approach to understanding living systems in terms of first

principles of biology and physics, and promote much needed theoretical and empirical

advances in ecological research to unify understanding across disciplines and scales.
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PRINCIPLES OF ECOLOGY, REVISITED

Information is fundamental to life and living systems, from
subcellular processes to the biosphere (Gatlin, 1972; Davies and
Walker, 2016; Tkačik and Bialek, 2016). Information is contained
in the improbable organization and configuration of flows of
matter and energy arising from activities and interactions of
assemblages of atoms, molecules, cells or organisms (MacArthur,
1955; Ulanowicz et al., 2009; Frank, 2012; Kempes et al., 2017). All
these structures—their composition and configuration—can be
described using information measures, but some structures also
carry, or encode, information that is interpreted and processed
(Patten, 1959; Odum, 1988; Ulanowicz et al., 2006; Harte, 2011;
Kempes et al., 2017). Information processing affects population
dynamics (Donaldson-Matasci et al., 2010; Battesti et al., 2015;
Fronhofer et al., 2017; Gil et al., 2018) and evolutionary processes
(Ulanowicz, 1997; Giraldeau and Caraco, 2000; Dall et al.,
2005; Frank, 2008; Ulanowicz et al., 2009; Schmidt et al., 2010;
Wagner, 2017), and is part of every aspect of ecological change
and human interactions with rest of the biosphere (Munday
et al., 2009; van der Sluijs et al., 2010; Rossi-Santos, 2015;
Altermatt and Ebert, 2016; Goldstein and Kopin, 2017; Gordon
et al., 2018). Therefore, ecological science has much to gain
by incorporating the fundamentals of information theories and
information processing to understand and describe our changing
world (Wicken, 1987; Schneider and Kay, 1994; Holt, 2007;
Farnsworth, 2013).

Despite evidence that information plays fundamental

roles in ecological systems, information does not yet feature
prominently in the ecological principles at the center of
our textbooks and theories (Appendix 1). This omission is

problematic and isolating for ecology from other scientific
disciplines (Schneider and Kay, 1994). Advances in other
realms of science including physics, molecular biology and

astrobiology increasingly recognize information, energy and
material as the joint pillars of living systems (Frank, 2012;
Woods and Wilson, 2013; Davies and Walker, 2016; Walker
et al., 2016; Kempes et al., 2017; Wagner, 2017). Ecology,
however, tends to emphasize organisms as fundamental
units, and traits, environmental conditions and contingencies
as fundamental concepts (Appendix 1). In expressions of
ecological principles, energy and materials play important roles
in explaining resource supply or environmental conditions,
and information is rarely mentioned. Information processing is
included by acknowledging evolution as an ecological principle
(Appendix 1), but evolution is only one of many examples of
information processing in ecological systems.

The costs of omitting something as fundamental as
information from our general, mainstream scientific models
are great. For example, ecologists have failed to anticipate
the effects of environmental change on population dynamics
mediated by disruptions in information processing. Studies
showing that environmental change (e.g., ocean acidification)
alters organisms’ abilities to sense their environment and to act
appropriately on environmental information such as cues for
the seasonal events they use to find food or mates (Munday
et al., 2009; Martín and López, 2013; Gordon et al., 2018) are

often presented as surprising. A greater acceptance of the role
information flow plays in population dynamics might lead to
ecological theory to accommodate these effects, and deepen our
understanding of the ecological consequences of disruptions of
information (Schneider and Kay, 1994; Gil et al., 2018).

Another blind spot in ecological understanding concerns the
roles of information flow in networks and organization. Social
information (Gil et al., 2018), social learning systems (Aplin
et al., 2015) and other forms of information can be central to
the organization and stability of symbioses (Davy et al., 2012),
social groups (Flack et al., 2006), and other living systems. The
stabilizing and organizing consequences of information networks
(MacArthur, 1955; Jorgensen et al., 2000; Ulanowicz et al., 2009;
Babikova et al., 2013; Sentis et al., 2015; Lee et al., 2016) would be
missed from a perspective of ecology that exclusively focuses on
energy andmaterial relations among individual organisms, or the
interaction between an organism and its environment. Human
activities may destroy the integrity of information networks
and their adaptive capacities before they are ever known to
science. Finally, biodiversity is a form of information; it is
information stored in genes, morphologies, traits and behaviors
that reflect the ecological and evolutionary history of life on earth.
Ecological science is still ill-equipped to fully understand the
consequences of this information (biodiversity) loss for future
information processing, and flows of energy andmaterials. While
concepts relating biodiversity and ecosystem functions have been
developed (Loreau), they have not yet been grounded in the more
general relationships between information and energy flows,
though similar efforts have been made in information theories
(Schneider and Kay, 1994; Ulanowicz et al., 2009; Coscieme et al.,
2013; Norton and Ulanowicz, 2017). Thus, though it is well
accepted that biodiversity is being lost at an alarming rate on
the planetary scale, we do not have first principles to guide our
understanding of the consequences of this information crisis.

We aim to fill the gap between information theories
and modern ecological thinking by articulating principles for
ecological systems that are consistent with our understanding
of the role played by information in the structure and
function of living systems (Box 1). We seek principles that
are consistent with broader scientific knowledge and might,
with additional theoretical development, allow unification of
ecological theories and concepts that share a conceptual
foundation (Margalef, 1963; Schneider and Kay, 1994; Jorgensen
et al., 2000; Scheiner and Willig, 2008; Patten et al., 2011;
Marquet et al., 2014; Patten, 2014).

Here, we review major concepts in the information theories
that lead to these ecological principles. We structured our review
around a series of questions about the role information may
play in ecological systems: (i) what is information? (ii) how
is information related to uncertainty? (iii) what is information
processing? (iv) how does information processing link ecological
systems across scales? Answers to these questions draw upon
literatures as diverse as thermodynamics to cybernetics, statistics
to evolution, behavioral ecology to semiotics (Boxes 2–4). As a
consequence of seeking common ground and intellectual themes
across such diverse literatures, we take care to define terms and
introduce concepts that might be elemental in one literature
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Box 1 | Five principles that integrate information in ecological understanding.

Drawing upon multiple research themes with domains spanning physics, information theory, ecology, evolution and semiotics, we identified a set of principles that

integrate information and information processing into our understanding of ecological systems. These principles rest on the success of many decades of scientific

knowledge development, but also represent the first step from this point forward to a more unified understanding of ecological systems. This is not an exhaustive set

of principles for ecology, we have not considered principles of energy and matter other than how they interact with information. The principles presented here address

two main concepts: the fundamental nature of information and its dual relationship with thermodynamic entropy and uncertainty (Information is Fundamental to Living

Systems), and the multiscale causes and consequences of information processing (How is Information a Dynamic Part of Living Systems?). We use the term living

system to include any energy-matter-fluxing life form, or aggregate of life forms, so it includes the smallest living organism up to the entire biosphere. It does not

assume a priori an organism-centered, perspective on ecological systems that is typical of modern Darwinian approaches, but our concept of living systems is also

not incompatible with assuming organisms are the fundamental unit of living system. These principles are not themselves a framework or research guide, but rather

the minimum set of statements about nature that are the basis for theory and knowledge gain. We illustrate how a canonical model of eco-evolutionary dynamics can

be modified to be consistent with these 5 principles (Box 5). Development of theories founded on these principles should lead to the development of hypotheses for

how ecological systems across scales of organization grow, change and persist.

Principle 1: Information is a fundamental feature of living systems, and therefore also of all ecological systems. Syntactic and semiotic information (Table 1)

constitute the two fundamental forms of information, and each is essential to the structure and function of living systems, from molecular systems to the biosphere.

Consequently, some information within ecological systems is directly related to energetics in terms of thermodynamic entropy (Uncertainty and Entropy), while other

aspects of information define sign systems that interact with energetics to produce life processes (Figure 1A).

Principle 2: Syntactic and semiotic information interact in feedbacks, with energetic processes and material cycles, to influence structure, function and organization

in ecological systems. Ecological systems use semiotic information to structure how they expend energy for work (e.g., growth, reproduction, and consumption).

(Figure 1) ecological processes are partly responsible for syntactic information (nonrandom distribution of matter on the Earth’s surface). For example, reproduction

represents the replication and transmission of information as encoded genetically within and across generations. Reproduction requires energy and resources, which

are allocated to somatic growth or reproductive effort by information processes within the organism or between the organism and its environment.

Principle 3: Information processing requires energy and materials, therefore supply of energy and materials and thermodynamic constraints can limit information

processing. The infrastructure for storing, transmitting, receiving and using information requires energy and materials (Figure 2), consequently the supply and physical

constraints on the efficiency of energy and material systems may affect how much and how quickly information may be processed. These constraints are expected

to lead to evolution of information systems that balance energetic and material efficiency, stability and durability with information processing capacity and reliability.

Principle 4: Information processing allows components of living systems to measure the environment and their own state and to measure the relationship between

their state and past and expected environments. Subsets of information processing systems (cells, organs, individuals, etc.) receive and use cues and signals in the

context of their environment (Figure 2). Organisms use evolved information processing systems to relate measurements of their current environment to expectations

of their future environment [anticipation sensu (Rosen, 1985)]. This measurement combined with processing permits goal directed agency in living systems.

Principle 5: Information processing systems are linked within and across scales of biological organization. Strong positive feedbacks in information processing can

define or reinforce levels of organization—from a cell to an individual to symbioses all the way to an ecosystem and the biosphere (Figures 1, 2). Information stored

at higher order levels of organization, such as social groups, communities or ecosystems, can be used by lower level systems, such as individual organisms and

cells. In this way, information processing occurs across scales of space and time, and can create and maintain physical or energetic structures.

but foreign to another (Table 1). We then consider briefly how
ecological science might proceed to test, refine and build upon
these principles This review and synthesis is intended to explain
and justify our proposed set of fundamental principles for
ecology (Box 1), and provide common conceptual ground for
further scientific exploration of the role information plays in
ecological systems.

INFORMATION IS FUNDAMENTAL TO
LIVING SYSTEMS

What Is Information?
A basic definition of information is the difference between
a set of realized events relative to the possible sets of those
events (Table 1; Figure 1 and Box 3). Defining “what is possible”
is not always easy, and entails a judgment by an observer.
Sometimes “possible” is considered a random state, other times,
it is considered a perfectly ordered state, or a known state (see
Reference States for more explanation of reference states). The set
of differences that constitutes information contains consequences
of historical events that shaped the arrangement of elements
in a living system. For example, the distribution, arrangement
and structure of nucleic acids in a DNA molecule differs from
a randomly assembled set (or any other arrangement) of the

same nucleic acids. The difference between the arrangement of

nucleic acids in the DNA strand and a random assemblage of the

same set of nucleic acids reflects the recent history of those
molecules and their translation within the ribosome, as well as

the longer-term history of evolutionary processes that resulted
in that particular allele’s structure. We can also consider the
information in the difference between two DNA molecules,
identical except for a single nucleic acid. Again, the difference
between the two DNA molecules reflects their shared (or
different) histories of evolution and recent synthesis. But the
consequence of the small differences for subsequent protein
synthesis and biological function may be great. These DNA
molecules, and their differences, contain syntactic information

(Table 1). Syntactic information exists in any spatial or temporal
arrangement of events or objects, including the species or
functional diversity of a set of interacting species (Pielou,
1967; Jost, 2006), the notes and rhythms in a bird’s song
(Farina and Belgrano, 2006; Sánchez-García et al., 2017), or
temporal pattern of sunrise and sunset (Edgar et al., 2012;
Kinmonth-Schultz et al., 2013).

Information contained in structure, reflecting the structure’s
history, can (but does not need to) represent signs or symbols
that convey meaning as interpreted by an observer (semantic

information, Table 1). Semiotic information is the content and
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Box 2 | Timeline of selected milestones of information science.

Concepts of thermodynamic entropy and surprise emerged in the

Twentieth century, setting the stage for later developments in concepts

of entropy and information. But it was with Schroedinger’s argument

that information is central to life, followed closely by Shannon’s

insight that information can be considered as a quantifiable capacity

for communication, that initiated a scientific revolution around

information. Information has emerged in ecological thinking across

scales since Shannon’s work and we highlight some of these

contributions to illustrate the breadth and progression of these concepts.

Year Milestone

1925 Introduction of information in statistical inference (Fisher, 1925)

1929 Information could be included in the second law of

thermodynamics (partially resolving the problem posed by

Maxwell’s demon) (Szilard, 1929; Parrondo et al., 2015)

1945 Information (negative entropy) is fundamental to life

(Schrodinger, 1944)

1948 Introduction of the concept of cybernetics and communication

control systems in biology and in machines (Wiener, 1948)

1948 Shannon information, a non-thermodynamic entropy measure,

is introduced as an expected value that expresses the

information content of a message (Shannon, 1948)

1953 First edited volume on information in biology, including attempts

to quantify information in living structures (Quastler, 1953)

1955 Shannon index introduced to ecology to estimate energy flow

among species (MacArthur, 1955)

1956 The distinction is made between information content in

structure, and the subset of information transferred in

observations; the term “negentropy” is coined (Brillouin, 1956)

1957 Maximum entropy principle (MEP) is published (Jaynes, 1957);

Information theory is connected to ecological diversity indices

and community structure (Margalef, 1957)

1959 Calls for a cybernetic approach to ecosystems; first empirical

estimate of the information flow (consumption) of Silver Springs

FL ecosystem from Odum’s 1957 work (Patten, 1959). Brillouin

derived a relationship between the energy required by Maxwell’s

Demon to acquire 1 bit of information, thereby relating

information and energy in the context of thermodynamics.

1970 Progress in biological information theory in biology is reviewed,

and qualitative information concept is proposed, along with the

idea of closed biological systems for conservation laws

(Johnson, 1970)

1972 Information theory is used to argue that “living is computing”,

and new theory for biology is introduced (Gatlin, 1972)

1972 Information is described as “a difference that makes a

difference”, and argued to be fundamental to human culture as

well as ecology (Bateson, 1972)

1981 Debate in ecology about whether ecosystems are cybernetic

systems abates, limited by methods (Patten and Odum, 1981)

1986

1987

Publication of Evolution as entropy: toward a unified theory of

biology (Brooks and Wiley, 1988) Wicken synthesizes, reviews

and critiques information and entropy concepts, bring some

semantic clarity to these terms in the literature

1997 A new perspective on ecosystem as ascendant information

systems is introduced (Ulanowicz, 1997)

2000 Calls to consider the importance of information in biology and

evolution are renewed (Maynard Smith, 2000; Szathmáry and

Smith, 2002)

2015 Renewed interest in information as fundamental to the origin of

life (Davies and Walker, 2016; Davies et al., 2017)

2017 Information theory is mainstream in molecular biology (Sherwin

et al., 2017; Wagner, 2017).

Box 3 | Information theory and statistical inference.

For many ecologists and evolutionary biologists, the most common

application of information theory is probably as a tool for statistical inference.

The Akaike Information Criterion (AIC; Akaike, 1974), Bayesian Information

Criteria (BIC; Schwarz, 1978), and related measures have become so familiar

to ecologists as model selection procedures (Burnham and Anderson, 2002)

that the philosophical and conceptual underpinnings are rarely given a second

thought. For example, we use AIC to compare the relative performance of a

candidate set of models, where we measure performance as the balance

between fit (likelihood, L, of the data given the model) and the number of

parameters k (AIC = −2 ln(L) + 2k). Rather remarkably, the AIC computed

for a model is proportional to the amount of information lost—measured as

the Kullbeck-Leibler divergence, DKL—in using a given statistical model p to

approximate the true model that actually generated the data p∗. For discrete

distributions the divergence is equal to

DKL = −
∑

i=1
p∗(xi ) log

(

p∗(xi )

p(xi )

)

Even though we do not know the true model, the AIC values from several

candidate models can be compared. Similarly maximum entropy methods

(Jaynes, 1957), which make use of information theoretic principles have been

widely used to fit Species Distribution Models to location data (Phillips et al.,

2006; Phillips and Dudik, 2008) and in the Maximum Entropy Theory of

Ecology to estimate the parameters of macroecological distributions (Harte

et al., 2008; Harte, 2011).

In one sense, the use of information theoretic principles in model selection

and estimation is deeply related to the quantities we discuss throughout

the manuscript: it is the structure inherent in ecological systems (i.e., their

information content) that allows us to make inferences about the processes

that might have generated the data we observe and predictions about

that which we have not. On the other hand, such inference requires both

an observer (i.e., us) and a theory about how the world works (i.e., a

mathematical model) and in this article, we are concerned primarily with how

information structures ecological systems, even when no one is looking.

the quality of semantic information as it is carried by signs
(Sebeok and Umiker-Sebeok, 1992; Kull, 1999; Dall et al., 2005;
Barbieri, 2008; Schmidt et al., 2010). Semiotic information is
central to interactions amongmolecules (proteins, enzymes, etc.),
cells, physiological systems and organisms, and has long been
recognized as important to ecological and evolutionary dynamics
(von Uexkull, 1992). General sign theory was developed by
Pierce (Atkin, 2006), and emphasized the triad of signs, objects
and interpretants, highlighting how meaning in information
requires not only an object and a sign that may represent
it, but also an interpretation of that sign that associates
the sign with the object (Atkin, 2006). Biosemiotic theories
of ecology (Farina, 2008, 2011; Hoffmeyer, 2009) build on
Peirce’s triadic theory of signs (Atkin, 2006). The interpretant
is often associated with an organism in which case this
topic is the purview of the fields of behavioral ecology (e.g.,
evolution of signals and communication), chemical ecology and
cognitive ecology. Biosemiotics, therefore, brings to ecology an
understanding of information as signification and representation
in ecological interactions, and its consequences are often
considered in terms of fitness. For example, predators associate
coloration with toxicity and avoid eating prey that exhibit
these signs (Stevens and Ruxton, 2011). Another example is
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Box 4 | Relationships between common information terms and concepts through a single information de�nition.

phenological cues associated with day length that many taxa
use as signs of future favorable environmental conditions; these
environmental cues have meaning because of regular variation in
the environment (Helm et al., 2013).

Semiotic information plays an important role in ecological
systems. In birdsong, the temporal structure of sounds carries
information (and energy) imparted to it by the singing individual.
The information may or may not be a reliable cue of its state;
the bird’s song also signifies semantic information to other
birds that interpret the song. The information in a bird’s song
may even signify its fitness and an expectation of its own
future—its likelihood of finding a mate or defending its territory,
perhaps. The pattern of sounds in birdsong has meaning to
other organisms, and that meaning depends on the receiver—
e.g., the species or individual—and the context (Farina and
Belgrano, 2006; Pijanowski et al., 2011). Even the aggregate
biophony—the collective sound that vocalizing animals create
in an environment—of a landscape’s acoustic diversity presents
a community-level semiotic context for the actions and ecology
of any individual bird (Farina, 2008; Pijanowski et al., 2011)
(Figure 1B). Semiotic information is important, even when signs
are interpreted by biological systems that are not organisms.

In the DNA example, the interpretant may be associated with
a ribosome or protein, as the “observer” of the sign. The
syntactic information of a gene is received by ribosomes’
structure, and ribosomes encode and transcribe the information
in a gene if the information matches what the ribosomes
can interpret.

These two concepts—syntactic and semiotic—capture the
dual nature of information (Figure 1). On the one hand,
information is defined as signals sent and received by the
individuals participating in the system. Their use of semiotic
information drives ecological and evolutionary dynamics within
the system (Patten, 1959; Gatlin, 1972; Giraldeau and Caraco,
2000; Ulanowicz et al., 2009; Gil et al., 2018) (Figure 1). On
the other hand, information influences dynamics in ways not
driven by individual organisms or mediated by communication;
some forms of information stored in biological structures
have energetic value (Parrondo et al., 2015), decay (Tkačik
and Bialek, 2016), and constrain future possible states of a
system (Shannon, 1948; Ulanowicz et al., 2009; Davies and
Walker, 2016). The difference between a set of realized events
relative to the possible sets of those events can be framed and
measured in both senses we describe here. An ecological science
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TABLE 1 | Glossary for general terms and concepts.

Term Definition and context

Information theory The study of flow, utilization and storage; also described as the study of coding and transmission of information. Often abbreviated IT.

Information The reduction in uncertainty associated with the difference between two states of a system. Example units: bits. Does not consider any

meaning or interpretation of the information. Also called: potential information (Farina and Pieretti, 2013), intrinsic information (Wiener,

1948), physical information (Farnsworth, 2013) and syntactic information (Schmidt et al., 2010). See Figure 1 for specific examples.

Functional information Many have argued that syntactic information concepts alone are insufficient to describe information in biology. Functional information is

defined by a structure’s ultimate function and probability of a set of units to achieve that function (Szostak, 2003). Others have defined

functional information as the part of a structure (e.g., a genome) that is the minimum required to reconstruct the organism (Johnson, 1970;

Jiang and Xu, 2010; Farnsworth et al., 2012). Johnson (1970) referred to it as the information that once lost cannot be regained.

Entropy The smallest possible average size of lossless encoding of messages sent from a source to a destination (Shannon, 1948). Also called:

uncertainty, equiprobability, indeterminacy, complexity.

Epistemological uncertainty Uncertainty in the knowledge of a process, due to data or model limitations.

State of a system A particular spatial or temporal arrangement of elements, for example, atoms in a molecule, individuals in a habitat, relative abundances of

species, or pathways of energy flow in a network

Cybernetics The study of biological systems with feedback.

Observer The object or system measuring the difference between the two states in the information measurement.

Reference state A benchmark state with which to compare another state, such as an observed state. Examples include: maximum entropy, full

information, thermodynamic zero; or, other observed states.

Thermodynamics The science dealing with energy and relations among different kinds of energy, and relations among energy and properties of matter.

Entropy A measure of the irreversibility of a process in the context of the number of possible processes for using energy. Example units: J/Kelvin

Information Negative entropy or organization, taking a value explicitly convertible or comparable to energy. Example unit: bits.

Observer The observer of the two states in question (see Wicken, 1987 for a critical review of observers and information in thermodynamics).

Biosemiotic theory Study of the communication of information in living organisms.

Semantic information Signs or symbols that convey meaning as interpreted by an observer.

Semiotic information The content and quality of semantic information as it is carried by signs.

Interpretant The understanding an observer has of the relationship between a sign and an object (Pierce/Atkin, 2006). Pierce and others developed

this idea further so that the interpretant is considered a translation of the original sign. Thus, the interpretant is not the observer, per se

(Atkin, 2006).

Sign Along with object and interpretant, one of the three inter-related elements of a sign in Pierce’s sign theory (a leading semiotic theory). In

ecology, we often use the word “cue” as synonymous with “sign.”

For specific models and technical definitions, see Boxes 3, 4 and Figure 2.

that fully includes information will need to integrate syntactic
and semiotic information (Bridging Syntactic and Semiotic
Information; Box 1).

For many ecologists, the vast and varied literature on
information, the related concepts of entropy, and their role
in living systems is uncharted territory. This literature dates
back at least a century in ecology and complex systems
science (Box 2). It is a rich literature in which terms such as
information and entropy are used with a plurality of definitions,
meanings, and contexts (Wicken, 1987; Schneider and Kay, 1994;
Gatenby and Frieden, 2006). To facilitate progress toward an
ecological science that more effectively integrates information,
we highlight some of the major concepts of information and
their relationships to each other (Table 1). We present a
brief review of thermodynamic entropy and information, and
then proceed with greater emphasis on information theoretic
concepts, though we highlight the continued need to bridge
these gaps.

How Is Information Measured?
In ecology, as in any science, measurements are central to howwe
learn about our subjects, and how we visualize and operationalize

theories. Measuring information and information flow in living
systems is done in several ways (Figure 1). To understand which
information measures or concepts are appropriate for a given
context, and how metrics may or may not be comparable,
we consider how information concepts are related to entropy,
energy, cues and communication (Table 1).

Information can be measured in the context of information
theory as the reduction in uncertainty of a system when
comparing two (realized vs. possible) states of that system
(Box 3, Figure 1, Table 1). We can measure information by
comparing the entropy or uncertainty of an observed state
relative to another state or states—a previous observation, a
theoretical possible state (or set of states) such as a random
state or thermodynamically dead or maximally entropic state
(Box 4). In a thermodynamic context, information can be
measured as negative entropy (Table 1), taking a value explicitly
convertible or comparable to energy (Gatenby and Frieden, 2006;
Schneider, 2010; Kempes et al., 2017). The unit of the measured
information (bit, Hartley, etc.) depends on the configuration
of the equation in Box 4, the reference states used or implied
(Reference States), the base of the logarithm and the value
of k. In the context of biosemiotics, information is measured
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FIGURE 1 | Information takes a variety of forms in ecological systems. (A) In an ecological system such as a simple aquatic food chain (center circle), information is

present as latent information, semiotic information, and information change as states change. This living system dissipates energy, and therefore has entropy. (B) In an

(Continued)
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FIGURE 1 | example aquatic system, information has been measured and reported at many levels of ecological scale, from transcription binding factors to food webs.

Examples of syntactic information ( ) contained in structures such as genes, cells, viruses, networks, and communities. Information is also contained in differences or

changes in structure. Semiotic information ( ), such as frog calls, kairomones from dragonfly larvae to daphnia, or use of cues and signals among organisms

mediates ecological and evolutionary processes. Information can be measured using theory and equations in Box 4.

in a different way, typically by comparing the results of the
information for fitness. For example, syntactic information in
the DNA and birdsong examples can be quantified using a
Shannon index for allele diversity, or spectral analysis on bird
song, and the semiotic information in these structures can be
quantified in terms of the fitness of individuals who carry the
allele or can act on the message in the song to find a fit mate
(Figure 1). Measurements of information—by a scientist, or an
organism or other participant in the ecological system—therefore
involve assumptions or specifications about signs, observers
and reference states that require consideration of fundamental
aspects of the system, such as entropy (Erill, 2012).

Uncertainty and Entropy
Information is most generally considered to be a reduction
in uncertainty. Uncertainty is sometimes used as a measure
or synonym of entropy. There are two distinct uses of
the term “entropy” in the context of information—one
associated with information theory (likened to uncertainty),
and another associated with thermodynamics (Table 1). Both
entropy concepts can be expressed with the same equation
(Box 3), though the terms and their relationships are interpreted
differently depending on whether the context is thermodynamics
or information theory (Table 1). Though the same word
“entropy” is used for these two entropy concepts, they are actually
distinct ideas and are not fully and directly interchangeable or
convertible (Wicken, 1987).

Thermodynamic entropy
Living systems take energy and process it to produce more
organized systems with lower entropy (Schrodinger, 1944;
Schneider and Kay, 1994; Jorgensen et al., 2000) (Table 1).
Understanding ecological systems in terms of thermodynamic
entropy has played an important role in theories of ecosystem
services, human-nature interactions, and systems ecology
(Odum, 1988; Jorgensen et al., 2000; Coscieme et al., 2013).
The reduction in entropy associated with processing energy
has been related to information (Patten, 1959; Margalef, 1985).
This form of information is explicitly related to the energy
required to obtain or produce the information, in a famous
solution to the physics problem of Maxwell’s daemon (Wicken,
1987; Parrondo et al., 2015). The thermodynamic concept of
entropy and information predates, and has been distinct from,
the information theoretic concepts (Wicken, 1987) (Table 1).
Work focused on understanding ecological systems in terms
of thermodynamics of non-equilibrium (living) systems has
moved away from using information in this context and instead
emphasizes self-organization and entropy reduction (Wicken,
1987; Schneider and Kay, 1994) (Table 1).

Information theoretic entropy
Information has also been defined relative to a concept of entropy
in information theory (Table 1, Box 4). This entropy is the
information theoretic entropy introduced by Shannon when the
parameter k= 1 (Box 4) (Shannon, 1948). The Shannon equation
can be used to estimate information by calculating the entropy
(H) of two states of a system (an observed state 1 and a reference
state R), and taking the difference in entropies:

I = HR −H1 (1)

Uncertainty is maximized, and information is minimized, when
the probability of the observed state of a system may be drawn
from a uniform distribution of possibilities (one in which any
state of the system is equally probable).

Though Shannon introduced his concept of syntactic
information using the term entropy, and the use of the term
entropy in this context does still persist (Jost, 2006; Sherwin et al.,
2017; Gaggiotti et al., 2018), information theoretic entropy is
not explicitly related to thermodynamic entropy (see Wicken,
1987 for an explanation of some of the core differences). Instead,
information theoretic entropy is often related to the concept of
equiprobability or disorder (without any explicit thermodynamic
value to disorder). However, somewhat conversely to the
trajectory of terminology in thermodynamics, the term entropy
in information theory has in many cases been replaced by
synonyms uncertainty (Dall et al., 2005; Gatenby and Frieden,
2006), indeterminacy (Ulanowicz et al., 2009), or complexity
(Wicken, 1987).

Reference States
Information is a reduction in uncertainty between two states of
the same system (Box 4). Central to this concept is the question,
which two states are being compared? These two states may be
defined in several ways. How they are defined influences how the
observer interprets the information measured—how it may be
related to energy, entropy and how it may be compared to other
estimates of information.

There are absolute reference states. For a change in
thermodynamic entropy, one reference state is thermodynamic
zero (no entropy) (Jorgensen et al., 2000; Kempes et al., 2017).
In early efforts, several researchers estimated the information
content in cells based on the number of binary steps required
to construct a biological structure from an unstructured
arrangement of elements. They then verified these estimates
using energetic methods, assuming that the information content
of the structure was convertible to energy content via its inverse
relationship to thermodynamic entropy. For example,Morowitz’s
estimate of 2 × 1011 bits in an Escherichia coli cell generally
matched estimates based on calorimetric analyses (Morowitz,
1955). For non-thermodynamic entropy, maximum entropy is
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another absolute reference state. Full information may also be
an absolute reference state. Full information is a known set of
all possible states of a system and their probability of occurrence
(Parrondo et al., 2015), but this one requires knowing the system.
Pioneering attempts to integrate information theory into ecology
drew on this idea of quantifying information by estimating
all binary differences in a realized biological or ecosystem
structure relative to all possible differences (Margalef, 1957, 1985;
Patten, 1959). However, it was recognized relatively early on that
knowing all possible states of an ecosystem was prohibitively
difficult (Patten and Odum, 1981), and that thermodynamic zero
is not always the most relevant reference state for comparing
information between different life forms far from equilibrium.
Approaches to estimate information in energetic terms had to
make assumptions about these probabilities (Patten, 1959).

When observers (scientists, or participants in systems) define
reference states other than absolute reference states, the accuracy
of an absolute estimate of information depends on how well
observers know (have a model) of the set of possible events
and their relative probabilities—the set of possible nucleic
acids, species, or letters in an alphabet. For entropy defined
in terms of any value of k other than the Boltzmann constant
in Equation 1 (Box 4), there is no explicit reference state to
ground comparisons of states of a system. Any reference state
can be specified by the recipient or user of the information
(Boxes 3, 4). The reference state could be another known state
of the system. For example, Jiang and Xu (2010) used the
Shannon entropy index and data on genome size to estimate the
information content of viruses and a variety of prokaryote and
eukaryotic cells by estimating all the binary differences between
their DNA structure (b = 2, Box 4), minus “junk DNA,” and the
reference state of a completely disordered arrangement of base
pairs but respecting the known probabilities of occurrence. They
calculated information values ranging between 3K and 340K
bits in viruses, 3.2 × 106 to 1.2 × 107 bits in bacteria taxa, and
1.5 × 107 to 8.4 × 108 bits in eukaryotes (Figure 1). Foraging
animals use internally defined reference states based on their
recent experiences of their environment and foraging activities
when they use Bayesian updating processes to forage or choose
mates in a dynamic environment (Dall et al., 2005; Valone, 2006).
Erill (2012) argued that evolution acts as the informed observer
for genetic information processes underlying evolution.

Examples of Information Measures in
Ecological Studies
The earliest major effort to take an information theoretic
perspective on ecological systems was Robert MacArthur’s
1955 paper on diversity and stability (MacArthur, 1955). He
introduced the Shannon entropy index to ecology to quantify
uncertainty in how energy might flow through a community
based on the number of possible energy flow pathways. In this
example, MacArthur was exploring the idea that uncertainty is
an attribute of the ecological system, in this case, a food web.
Within a food web, he considered a probabilistic “indeterminacy”
regarding the pathway in the network that energy might travel
between two nodes. He used the Shannon index to model p(xi)

(the central term, Box 4) as the proportion of energy flow
through a particular node in the food web (not the proportion
of individuals comprising that node, as we do today when we
apply the Shannon index to describe diversity in ecological
communities). His reference state was a uniform distribution
(maximum uncertainty). The advantage of using the concept of
entropy is that he did not need to know the exact energy flow
pathways at any given time, or even which is most probable.
He simply needed to know that the energy flow pathways are
indeterminate; that there is an entropy of the network. Stability
in a food web energy-flow network arises from indeterminacy
in energy flow (Ulanowicz, 2001), or in other words, from
uncertainty within the system about which pathway energy
will flow through. This approach considers indeterminacy is an
attribute of the network, not an attribute of an observer’s (the
scientist’s) knowledge of the network.

Since this initial pioneering use of information theory to
gain new insight in ecology, the Shannon index has been used
extensively to estimate diversity in ecological systems (Pielou,
1967; Jost, 2006). The conventional definition of Shannon
diversity (H’) based on individuals of different species in a species
assemblage is attributed to (Margalef, 1957, 1961; Ulanowicz,
2002). Estimates of diversity using Shannon or Simpson indices
are examples of the use of an information theoretic measure
of diversity, and these are applied to genetic systems or species
assemblages (Jost, 2006; Sherwin et al., 2017; Gaggiotti et al.,
2018). In fact, the development of metrics to measure diversity
as information using entropy-based measures (Hill numbers) has
played a key role in unifying understanding of diversity across
ecological and evolutionary paradigms (Gaggiotti et al., 2018).
Recent developments in the theory of using information metrics
for diversity estimates of biological systems allow comparison
of diversity across levels of an ecological system (e.g., genetic
diversity and species diversity for a single species assemblage)
(Gaggiotti et al., 2018).

Structural information has been an influential concept in
community, ecosystem, and systems ecology (Patten, 1959;
Margalef, 1985; Ulanowicz, 1997), in molecular biology (Gatenby
and Frieden, 2006; Erill, 2012; Sherwin et al., 2017), and
biodiversity science (MacArthur, 1955; Jost, 2006; Sherwin
et al., 2017). For example, research on non-equilibrium
thermodynamics has developed an understanding of ecosystem
services, and even information in human societies (Odum,
1988) that is explicitly related to thermodynamic entropy and
its related information (Jorgensen et al., 2000). Extensive work
has employed structural information concepts and theory to
understandmacrostates in biological and ecological systems (Sole
et al., 1996; Harte, 2011; Seoane and Solé, 2018).

Semiotic information is typically quantified in terms of the
outcomes of situations in which living systems are exposed to
sources of information that vary in their semantic content and
context. These procedures are common in chemical ecology,
where semiochemicals, such as pheromones and kairomones,
can elicit many direct and indirect effects on development
and survival within and among species. These effects can
cascade up to higher levels of ecological organization. For
example, predator kairomones can trigger cascading effects on
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the structure and functioning of aquatic food webs (Marino et al.,
2015), or pheromones in insect pest outbreaks affecting primary
production across large geographic areas. This information
science has advanced to application with the development
of databases of semiochemicals (http://www.pherobase.com/)
for arthropod pest management, among other uses. Other
approaches are used to assess the presence and importance
of semiotic information as it mediates behavior, demography,
and evolution (Dall et al., 2005; Schmidt et al., 2010). For
example, the empirical studies of the role semiotic information
plays in evolutionary or ecological processes have measured
the consequences of information processing for the state of a
receiving organism (Schmidt et al., 2010) such as its fitness at
individual (Mery and Kawecki, 2005; Donaldson-Matasci et al.,
2010) and population levels (Clobert et al., 2009; Fronhofer et al.,
2017; Jacob et al., 2017).

Bridging Syntactic and Semiotic
Information
Despite proliferation of information theory in several areas in
ecology, an empirical synthesis of information stocks and flows
is still elusive because different uses of information definitions
and reference states makes it impossible to compare many
estimates of entropy across systems. One issue is that the term
p(xi) can take a variety of values that impart distinct meanings
or interpretations on the resulting estimates of information.
For example, when applying Shannon information to estimate
the information contained in a genome or gene, the possible
elements (nucleic acids) are finite and known (now), and their
relative probabilities can be estimated (Jiang and Xu, 2010;
Sherwin et al., 2017). This allows for the definition of a standard
reference state for estimation of information in genetic systems
for which these probabilities are already known. For a given
species pool or sample, information theoretic methods now
allow comparison and quantification of diversity across levels
of biological organization (Gaggiotti et al., 2018). However,
even with these advances, the values of these estimates do
not constitute comparable estimates of information contained
in biodiversity, in the sense of syntactic information that we
are using here; a meta-analysis or synthetic assessment of
information contained in would be un-interpretable diverse
systems by comparing Shannon or Simpson measures. The
reason for this incomparability is that entropy measured using
the Shannon index depends on the estimate set of possible
species, and this depends on the completeness of sampling or
knowledge of the possibilities (e.g., species) in a system. Usually,
this information is lacking; the choice of possible species and
their relative probabilities is arbitrary because species pools are
difficult to establish and are scale dependent (Jost, 2006; Gaggiotti
et al., 2018). Approaches to estimating the full species pool
are rarely reported or standardized. Thus, it is rarely possible
to meaningfully compare reported values of Shannon diversity
among different communities (Jost, 2006).

Bridging the gap between modes of studying and measuring
syntactic and semiotic information also remains a major
challenge (Adams, 2003). We still lack the ecological theory to

relate the different measures and concepts of information to
each other; we cannot track or account for information stocks
and fluxes across studies or systems. For example, estimates of
Shannon diversity usingHill numbers are not clearly comparable,
in terms of information theories, to absolute references states that
might allow a test of their relationship to energetics (Ulanowicz
et al., 2009; Harte, 2011; Wagner, 2017; Hansen et al., 2018).
The two entropy concepts that underlie thermodynamic and
information theoretic definitions of information are not fully
and directly interchangeable (Wicken, 1987). We should not
view this gap to be a dead end; a similar situation occurs for
energy, which also takes a variety of forms (e.g., radiant, thermal,
chemical) that are difficult to quantify exactly and interconvert
in living systems. Yet, we use energy and energetic models
throughout ecological disciplines. As we have done with energetic
models, we must explore relationships between different forms of
information in nature. By attempting to understand the multiple
information processes in ecological systems, we may overcome
come of the challenges associated with diverse concepts and
connect information use and its consequences in living systems.

Ecological systems integrate structural and syntactic
information (Figure 1), just as they comprise multiple forms
of energy and material. In fact, the way we understand
ecological and evolutionary processes begins to bridge the gap
between semiotic and syntactic information concepts. Two of
the principles we propose for ecological knowledge explicitly
recognize information of both kinds as fundamental to ecological
systems (Box 1). We can continue to use thermodynamic,
information theoretic and biosemiotic theories to gain insight
about nature, and consistent with these principles (Box 4), do
so in research that allows us to explore relationships between
these information concepts. We believe such an approach
may lead to deeper understanding of the extent and nature
of relationships among the ways we observe and measure
information in different contexts for different reasons. To
help integrate information concepts with how we understand
ecological systems, we can consider how information flows and
accumulates in ecological systems. We refer to the flowing and
accummulation of information as “information processing.”

HOW IS INFORMATION A DYNAMIC PART
OF LIVING SYSTEMS?

What Is Information Processing?
Information is a dynamic feature of living systems because it is
stored, transmitted, received, and used (Gatenby and Frieden,
2006; Erill, 2012) (Figure 2). In other words, living systems
process information by combining semiotic and syntactic facets
of information that we have reviewed so far (Gatlin, 1972;
Maynard Smith, 2000; Farnsworth, 2013; Davies and Walker,
2016). Storage occurs in material or energy structures that
reflect the events that created those structures. Structure
stores information, thereby providing memory, about past
events. Neural networks, social structures, morphologies, and
learned behaviors are all examples of information storage,
and therefore subject to general properties and constraints
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FIGURE 2 | Four steps of information processing. (A) Information processing can occur within a closed feedback loop (a -> b -> c-> d), or by accepting information

from outside the loop (e -> a-> b -> c…) and can lead to information that is used by the processing systems outside the focal system (e.g., c -> h or c->g).

Information processing requires an observer, which often constitutes the reception and use of information. Inputs to any processing system may be information

instantiated in chemical, electrical, energetic, or material structures. (B) Coral reef fish use olfactory (Osterhinchus doederleini) (Gerlach et al., 2007) and auditory

(Gordon et al., 2018) information to relocate their home reef. The information stored in the sound or chemical patterns in the water are received by fish sensory

systems—themselves information systems—and used to guide behavioral responses such as swimming to the reef and remaining there, and the recruitment of fish to

these reefs contributes to structure at population and community levels.

of information systems. Transmission occurs when stored
information influences some informational, energetic or material
process. Reception is the decoding and integration of the
transmitted information in the receiving system or observer;
reception of semiotic information involves a decoding process
in which the state and previous information of the decoder
is relevant. Reception is the physical receipt of information
interacting with the state of the recipient. Use is the consequence

in terms of what is done with the information received.
Examples of information use include conversion of received
information to stored information (e.g., observation to memory),
and conversion of received information to work or function
(observation to use) (Gatenby and Frieden, 2006) (refs in
Figure 2). Transmission and reception are subjects of much
of information theory and the literature on their role in
communication and biology is vast (Dall et al., 2005; Chaine
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et al., 2013; Tkačik and Bialek, 2016). In this view, information
transmission occurs through “channels,” and the information
transmitted depends on the ability of the channel to transmit,
and the receiver to receive, a signal relative to noise. Information
transmission and reception can be modeled quantitatively using
equations relating the probability of information received relative
to what was possible based on a reference state (e.g., the
properties of the transmitting channel, the expectation of the
receiver, the context, etc.) (Figure 1).

When we consider information processing in living systems,
we can quantify syntactic information stored, transmitted and
received in objectively quantifiable units (Box 4). For example,
the potential information stored in the action potentials that
constitute neuronal communication (Tkačik and Bialek, 2016)
(Figure 1) and the amount transmitted by neurons in flies (de
Ruyter van Steveninck et al., 1997) has been estimated in bits,
and even compared to the amount of information encoded by
someone typing on a keyboard (Bergstrom and Rosvall, 2009).
The amount of information associated with a particular ATP-
binding phenotype is quantifiable (36.6 bits), and comparable
to the amount of information needed for any single amino acid
sequence [estimated at 345.8 bits; (Wagner, 2017)]. However,
these quantitative measures of information processing fail to
capture the content of information or the consequences of
information processing, which are more often measured in
terms of changes in the state or behavior of the user of the
information (Figure 2).

Information processing systems confer general attributes
and properties upon biological systems. These attributes
include plasticity, memory, self-regulation, amplification,
anticipation, cross-scale connections, and dependence upon
energy and materials. The same information content can
be stored in different structures and processed in different
ways at different stages of an information processing system
(Figure 2A). This property allows transfer of information among
entirely different material or energetic systems, allowing the
structure and materials of information processing systems to
be plastic without necessarily compromising information flow.
Information processing systems are typically characterized by
indeterminacy in channels, and plasticity in the particular flows
of information confer stability on the processing network (Patten
and Odum, 1981; Flack et al., 2006; Moses et al., 2016), much
as MacArthur showed in his idealized food web (MacArthur,
1955). Information processing systems can adapt to changing
conditions, often reversing structural patterns in ecological
networks (MacArthur, 1955; Ulanowicz, 2001; Flack et al., 2006;
Ulanowicz et al., 2009; Valdovinos et al., 2016). For example,
organismal processing systems such as visual or olfactory systems
allow organisms to sense their environment, and based on a
comparison of detected information with a reference state, act
on that information (Figure 2).

Information processing systems relate past experiences and
current conditions to anticipate likely future conditions so
that the processing system (e.g., an organism or physiological
system) can act accordingly (Rosen, 1985; Helm et al., 2013;
Kinmonth-Schultz et al., 2013). Plasticity allows information
processing systems to update, taking in new information

from the environment or about the state of the processing
system itself (Valone, 2006). For example, Fronhofer et al.
(2017) and Jacob et al. (2017) have recently demonstrated
experimentally that microbial organisms’ abilities to sense their
environment and select habitats where they are likely to perform
well affects movement of individuals in ways that facilitates
species’ range expansion dynamics and local adaptation, thereby
enhancing persistence in a changing environment. Many diverse
information processing systems have evolved to allow organisms
to perceive their environment and act upon that information.
These evolved systems allow organisms or groups of organisms
to use predictable environmental temporal patterns in day
length or temperature to anticipate changing environmental
conditions and to trigger developmental processes or other life
history events. The genetic underpinnings—though diverse—
of phenology and circadian rhythms constitute a memory of
past successes associated with regularly occurring environmental
conditions (Edgar et al., 2012; Kinmonth-Schultz et al., 2013).
Another example of anticipation is the case when trees release
and exchange infochemicals, often via mycorrhizal networks in
the soil, and used by other individuals to infer, for example, the
occurrence elsewhere of plant-insect interactions (especially pest
insects) to change physiologically to minimize a likely future pest
or disease attack (Barto et al., 2012).

The study of control and communication is the focus of
the field of cybernetics. Self-regulation of a system’s state
through feedbacks is another attribute characteristic of the
many information processing systems in ecology (Wiener, 1948;
Patten and Odum, 1981; Farnsworth, 2013; Krakauer et al.,
2014). For example, a self-regulating system is the physiological
maintenance of thermal homeostasis in mammals (Woods
and Wilson, 2013). Relevant to this review is the distinction
between first- and second-order cybernetics as, respectively,
the cybernetics of observed systems and the cybernetics of
observing systems (von Foerster, 1974; Scott, 2004). Self-
regulation in observing systems (e.g., organisms and their
aggregates) requires information processing and an internal
model of the world and of self to relate outputs to inputs
and maintain feedbacks among sets of distinct steps; cybernetic
systems also allow amplification of information as it is processed.
Low or trace elements of chemicals (e.g., kairomones produced
by predators) can elicit large behavioral, evolutionary and
demographic responses in prey as that information is processed
through physiological, neurological and genetic systems. Then,
indirectly, population dynamics and even trophic cascades may
be affected.

Information and the dynamics it elicits in ecological systems
result in its inter-dependence on energy and material systems.
The relationships between information and energy take a variety
of forms. Information is carried by variations in the spectra of
electromagnetic fields (e.g., light andmagnetism) that are directly
controlled by energy demanding organs of communicating
organisms. Information processing requires energy andmaterials
and is thereby subjected to physical and chemical constraints
(Odum, 1988; Laughlin et al., 1998; Parrondo et al., 2015;
Tkačik and Bialek, 2016; Kempes et al., 2017). Energy is
required to create, maintain, and operate infrastructure to
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process information. This need for energy and materials has
been considered as a “cost” of information. Information storage
infrastructure, such as a brain or a gene, can be metabolically and
materially expensive to build and maintain. The energetic and
material requirements to maintain an information processing
system may lead to changes in the network structure and
its information processing over time, particularly as the
external environment changes. Cyberneticmodels of information
highlight relationships between information processing and
system stability and energy fluxes in ways that are grounded
in first principles of physics (O’Neill et al., 1986; Parrondo
et al., 2015; Davies and Walker, 2016). In another approach,
emphasizing semiotic information, behavioral ecologists have
developed theoretical frameworks that relate use of private and
social information (Danchin et al., 2004; Gil et al., 2018) to
increased success in resource foraging and acquisition, suggesting
that energetic and material costs of information processing
systems may be balanced by resource gains. These examples
illustrate how information-energy relationships have emerged
as important in ecological studies; yet, as with other questions
concerning information and energy, fully understanding how
these different relationships fit together remains an important
challenge for research, both in ecology and in physics.

Information processing systems occur within traditional levels
of the ecological hierarchy (cells, organisms, populations), but
also across levels, thereby linking ecological and evolutionary
dynamics in what Koestler (1967) called a holarchy (Box 5).
Holarchic systems are hierarchies where there is not a strict
top-down flow of cause and effect; information flows up and
down across levels mediating the dynamics of a system (Kay,
1999). The holarchic nature of information processing networks
allows information to be stored and accessed at different levels of
organization than the level at which it used. For example, genetic
information in interaction with the environment may mediate
phenotypic variation in physiology, communication, and species’
interactions, with the emergent outcome that in turn affects
patterns of selection and evolution. Eco-evolutionary processes
are the direction expression of different modes of information
flow in holarchic structured ecosystems.

Information processing networks also have the capacity to
perform computations at the local level that have far-reaching
consequences at the macroscopic level. For example, insect
societies are able to perform complex behaviors, including
possibly computations, even though individual behaviors
are simple, and these society-level behaviors produce and
store information with emergence properties of long-range
order (Solé et al., 2016). Though many apparent examples of
information processing center on organisms and how they
receive external signals and act on them, information processing
also occurs within genetic, physiological, and neurological
systems process information using analogous processing systems
(Laughlin et al., 1998; Maynard Smith, 2000; Woods and Wilson,
2013; Tkačik and Bialek, 2016; Wagner, 2017) (Figure 2).
Information is also processed at levels of organization above
individuals (Frank, 2008) such as within social networks (Flack
et al., 2006; Aplin et al., 2015), and even in non-Darwinian
units such as communities (Gerlach et al., 2007; Farina, 2008;

Gordon et al., 2018) and ecosystems (Patten, 1959; Odum,
1988) (Figure 1B). A cybernetic perspective, in particular a
second-order perspective, challenges the heavily reductionist,
mechanistic view of ecology because it demonstrates that flows
of information among levels of organization mediate a living
system’s dynamics (Ulanowicz, 1997; Jablonka and Szathmary,
2004; Ulanowicz et al., 2006; Davies and Walker, 2016).

Are Organisms Causes or Consequences
of Information Processing?
Taking a synthetic perspective on information in ecological
systems reveals an additional duality: individual organisms are
drivers of information processing, but organisms and other
biological structures can be seen as emergent to the process
of information processing (Davies and Walker, 2016). Much of
mainstream ecological theory (e.g., Appendix 1) is predicated
on the view that organisms are the fundamental agent of
information processing and the consequences of information
processing are behavioral, fitness, and population outcomes
(Dall et al., 2005; Schmidt et al., 2010; Burns et al., 2011;
Gil et al., 2018). However, another theme in how information
theory has been used in biology, specifically to better understand
the origin of life, suggests that organisms, like other levels
of organization, may be emergent properties of information
processing systems (Schrodinger, 1944; Schneider and Kay,
1994; Kay, 1999; Krakauer et al., 2014; Marshall et al., 2017).
The information processing systems that allow organisms (or
agents) to emerge and persist are not restricted to any particular
biological scale. Therefore, there may be no reason to think that
information processing and the stability and evolvability that
comes with it are restricted to what we traditionally perceive
as an “organism,” based on physical attributes of organisms.
Indeed, recent discoveries on the holobiont (host-symbiont, host-
parasite relationships) nature of the organism blurs our notions
of individuality. There is substantial evidence for information
processing to have cross-scale consequences and connections,
and we will review these in the next section.

Together, the perspective that organisms are fundamental
units in ecological systems, combined with the view that
organisms are emergent properties of ecological information
processing systems, suggests that there are feedbacks between
information use and processing across scales of ecological
organization (Ulanowicz, 1997). This dual relationship between
information processing and the individual has been argued
to underlie major evolutionary transitions from unicellular
organisms to multicellular organisms as evolutionary units
(Szathmáry and Smith, 2002; Jablonka and Szathmary, 2004;
Jablonka and Lamb, 2005). In this way, information dynamics
and the informational, material and energetic efficiency and
stability they confer appear to have shifted the way evolutionary
biology recognizes elements of living systems as “organisms” in
recent decades. Some have extended the concepts of fundamental
units of selection even further, based on information processing
dynamics, to include kin, social groups, symbioses and even some
species associations (Ehrlich and Raven, 1964; Szathmáry and
Smith, 2002; Guimarães et al., 2011).
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Box 5 | Eco-evolutionary model of information use processing.

Here we outline a model taking into account the fitness consequences of the information acquisition, storage, communication, and use. We first introduce the maximal

information in an ecosystem accounting for the fitness of information traits of all phenotypes. In the second part of the box, we connect our maximal information

criteria into a quantitative trait dynamics model. From first principles of thermodynamics an important reference point of interest is the maximum entropy, and around

this point is a distribution of possible thermodynamic states (Table 1). For a living system defined by phenotypes with fitness, an analogously important reference

point is that all phenotypes have equal frequency and equal fitness, and we assume this holds maximal information in the ecosystem. Around this point, there is a

distribution of possible configurations of the ecosystem, with units of fitness. These distributions are intimately connected (Principle 2), but the former is abstracted

in the following model derivation of information processing.

Information processing ecosystems are comprised of traits that influence a component of fitness variation, particularly those involved in information acquisition,

storage, communication, and use (i.e., decision making) (Figure 2A). These we refer to as information processing traits, and as with other evolving traits, they are

involved in tradeoffs among one another and with traits associated with energy (e.g., metabolic traits) and materials (e.g., resource acquisition traits) (Principle 3).

The relationships among information traits, including the covariance matrix and the trait hierarchy taking into account processes across biological levels (Melián et al.,

2018), define the occurrence and nature of these tradeoffs (Jablonka and Lamb, 2005). Information processing traits have cost functions. For example, acquiring

and storing information about past environmental conditions and trait distributions could be adaptive during decision making (e.g., information usage), but there are

likely significant energy costs associated with gathering social, habitat or species interactions information (e.g. movement across a landscape) and storing it for later

use (e.g., metabolic costs of memory) (Giraldeau and Caraco, 2000).

Consider a population characterized by individuals each containing four information traits (acquisition, za, storage, zs, communication, zc, and use, zu), where the

mean trait value of the information traits contained in each individual zi at time t in site x is given by:

Ztix =
1

4
[za ← exp(caT )⊕ zs ← exp(cs9)⊕ zc ← exp(cc�)⊕ zu ← exp(cuϒ )], (1)

where ca, cs, cc, and cu represent the information cost of acquisition, storage, communication and use, respectively, and T , Ψ , �, and ϒ represent information

from past environmental conditions, storage energy cost, the cost of gathering social and habitat information, and information usage cost, respectively.

In this example, perhaps the metabolic cost of memory increases exponentially with the total amount of information stored over the lifetime of an organism, including

information acquired via movement through space and stored over time. These cost functions vary among traits, organisms types, individuals and development. Most

individuals will use information from the most recent and spatially restricted state, with the variance depending on the cost of each information trait. In the canonical

model of evolution, individuals use no information from previous states (i.e., strong costs), thus excluding adaptive strategies that involve information processing from

prior states.

We consider the fitness function of each individual as the sum of information processing traits and other traits that underlie fitness variation. We can build a fitness

functions based on these two components. For the non-information traits, fitness is often calculated from how well it matches a fitness optimum determined by

the environment, specifically an environment that is determined by trade-offs associated with energy and material traits. For the information traits there is also an

information environment, and we propose that its relationship between information processing traits, can also be a significant component of fitness variation (Principle

4). For example, individuals acquire information from their surroundings, and the canonical model does not incorporate how that information might be shared among

individuals in a way that could influence both individual and population mean fitness. The adaptive use of information might build over time in a population and become

a significant component of the fitness function (Principle 4). The fitness of individual i accounting for these two components can be expressed as:

Wt
ix =

1

2
[exp(−α(Ztix − θ tIx )

2
)+ exp(−γ (Ytix − θEx )

2
)] (2)

where Zt
ix
is the information trait value of individual i in time t and site x (Equation 1), θ t

Ix
is a measure of the optimal information content obtained from the population

at time t, Yt
ix
, is the non-information trait value of individual i in site x and θEx is the optimum determined by the environment. α and γ determine the interaction

sensitivity to deviations from the information content optimum and from the environmental optimum, respectively. The effects of information and non-information trait

correlations on fitness of each phenotype can be included by adding the covariance matrix with a multivariate fitness optimum (Melo and Marroig, 2015).

Modeling these two fitness components is a useful distinction and expansion of the canonical model. First, it adds more realism because information traits are

now explicit in the evolutionary process alongside other evolving traits (Principle 1). Second, it allows us to contrast models of evolution with and without evolving

information traits. This could also include models where the feedback between trait and the environment vary among traits. Information traits might have a more

explicit feedback or feedforward relationship with the environment than other traits. Third, it is possible that information traits are evolving differently from other traits

and experience different tradeoffs, such that modeling them separate from other traits might be a useful starting point. For example, information processing traits

likely arise from different hierarchical levels of biological organization (Principle 5). In a plant- pollinator system, for example, the interactions in a typical evolutionary

model do not incorporate the abilities of pollinator to acquire, access, and use prior foraging experience to make local decisions about which flowers to interact with.

As such, there is no variation in the population with respect to decision making based on individual memory and learning potential (Watson et al., 2016). We posit

that including such semiotic information into models of evolution will reveal new insights about natural populations, species interactions and the stability of ecological

communities. The model outlined above can be run for many generations and for each time step, the phenotypes after selection and changes driven by structural

modifications or plasticity in the information and the non-information traits can be used to update the fitness values (Melo and Marroig, 2015; DeLong and Gibert,

2016; de Andreazzi et al., 2018). Fitness will then determine the ecological dynamics and the total information content in the ecosystem. This total information content

for each scenario can be compared with our reference point with all types having both equal frequency and equal fitness (i.e., maximal information in the system).

An information theory perspective suggests that Darwinian
evolution is one fundamental form of information processing
that produces structure and persistence in living systems (Gatlin,
1972; Maynard Smith, 2000; Frank, 2012; Wagner, 2017). But,

evolution is not the only form of information processing
prevalent or necessary for ecological systems—evolution at levels
of organization other than the genetic population would be
consistent with information processing, by cellular structure and
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contents, by mixed species communities and social systems,
social learning, and thermodynamic information conversion to
energy (Margalef, 1957; Wicken, 1987; Odum, 1988; Ulanowicz,
1997; Farnsworth, 2013; Kempes et al., 2017). From the
perspective of life as non-equilibrium thermodynamic systems,
ecosystems are considered holarchic systems that grow and
accumulate information and organization over time (Schneider
and Kay, 1994; Kay, 1999; Jorgensen et al., 2000); evolution
is one mode of information accumulation, but not the only
mode. This fact has profound implications for how we
approach understanding ecology at this time becausemainstream
ecological theory is predominantly based on Darwinian models,
assumptions and concepts, resulting in a strong emphasis in
ecological theories on evolvable “Darwinian” units—individuals,
symbioses, etc. (Szathmáry and Smith, 2002; Jablonka and
Szathmary, 2004; Jablonka and Lamb, 2005). Taking the
perspective that information and information processing is
fundamental, and evolution is one manifestation of it, opens
up additional perspectives on how living systems grow, change,
and persist (Wicken, 1987; Ulanowicz, 1997; Frank, 2008;
Farnsworth, 2013).

ADVANCING THE ROLE OF INFORMATION
IN ECOLOGICAL UNDERSTANDING:
CHALLENGES AND OPPORTUNITIES

We have outlined five fundamental principles for ecological
science that integrate information and its role in living systems
(Box 1). The five principles provide a foundation upon which
new theories may be developed (or existing concepts and
theories rooted). To build a theory for how ecological systems
process information, conceptual and theoretical models need
to be articulated (we offer one such approach in Box 5), and
experiments will be needed to test their assumptions and
derived hypotheses and predictions. Building this theory is a
major challenge for ecological and evolutionary science. It will
require synthesis of existing frameworks in molecular ecology
and evolution, (semio)chemical ecology, behavioral ecology,
physiology, systems ecology, and thermodynamics (to name a
few). To inform this new direction, we can begin by drawing
upon the rich theoretical and empirical literature on the role
of information in evolution, behavioral ecology, and molecular
biology (Dall et al., 2005; Ulanowicz et al., 2009; Schmidt et al.,
2010; Farnsworth, 2013; Gil et al., 2018). We highlight two
immediate challenges here.

Develop and Employ Empirical Approaches
for Quantifying Information and Its Flow in
Ecological Systems at Multiple Scales
The five principles capture the importance of information
and its relationships with energy and materials. Yet,
studying information empirically has been extremely
difficult historically. Estimates of information content in
cells, organisms, communities, and ecosystems were in the
past severely constrained by infrastructure for measuring or
observing structural information or behaviors associated with

communication (Patten and Odum, 1981). Now, existing
approaches allow information to be estimated in quantifiable and
comparable terms (e.g., Jiang and Xu, 2010; Kempes et al., 2017)
(Figure 1). Using physics concepts and models (Kempes et al.,
2017), have recently estimated the thermodynamic information
content of the biosphere based on estimates of the information
content in cells. These approaches could be further developed
and adapted to quantify information in communities and
ecosystems, allowing tests of hypotheses related to principle 2.
Other approaches we now have that were not available until
recently were the computational and technological infrastructure
to sample sounds, colors, and chemicals in the environment, and
to analyze their possibilities and probabilities to then estimate
information. Expanding the use of these approaches to generate
estimates of information processing in living systems is an
essential next step to understanding how information processing
is driven by and changes energy and material processes as
outlined by principles 3 and 4. These can be used to quantify
information in ecological systems under different conditions
and to further develop empirical knowledge of where and when
information is processed.

An empirical, data-rich body of knowledge is essential to
produce a more general and testable theory of ecology. Theory
(Develop and Apply New Ecological Theory of Information) is
also essential, because even though it is possible to assemble more
and new kinds of data, we still face basic challenges comparing
these measurements. In some ways the capacity to measure
information (e.g., eDNA or remotely sensed observations) has
outpaced our ecological theory for how to use these observations
of information to understand ecological and evolutionary
dynamics. For example, for a freshwater planktonic food web,
it is possible estimate information content of the genomes of
Daphnia and its phytoplankton prey, of the kairomone chemical
indicator of a predator, of the interaction network and diversity
of the community (Figure 1). However, it is not yet clear how to
compare these to track information in the system over time or in
response to environmental change. Yet another challenge arises
when we consider the question, if information is defined by the
sender and receiver, how is a third party to find meaning in it?
This was precisely the problem faced by code breakers in World
War II. It was from this challenge that a solution was found to
objectively quantify information—this is was Claude Shannon’s
contribution, published in 1948. To build a more complete set
of observations of information and information processing in
ecological systems, we require newmethods and theories to guide
and interpret those methods.

Develop and Apply New Ecological Theory
of Information
Calls for the integration of information theories with ecological
theories have drawn on information concepts with distinct
historical roots: semiotic information (Barbieri, 2008; Schmidt
et al., 2010; Farina, 2011), structural information (Gatenby and
Frieden, 2006; Tkačik and Bialek, 2016) and genetic information
(Maynard Smith, 2000; Frank, 2008), and information criteria
to support inference (Harte, 2011). This duality of syntactic
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vs. semiotic is a basic dichotomy in the literature that needs
resolving if we are to develop an integrated theory of information
for ecological systems. More explicit consideration of the
interpretant—the scientist as the user of information, the
relational roles of living systems as they use information—may
bridge these information concepts (Atkin, 2006). Theories that
admit semiotic information, syntactic information and the role
of interpretants will integrate information approaches based on
entropy measures of the structure and flows in communities and
ecosystems (MacArthur, 1955; Margalef, 1957, 1985; Patten and
Odum, 1981; Ulanowicz, 1997), with approaches in behavioral
ecology and evolution (Maynard Smith, 2000; Dall et al., 2005;
Farina, 2008; Frank, 2008; Schmidt et al., 2010; Pijanowski et al.,
2011) that emphasize how organisms gather and use information
to mediate their development, and their interactions with the
environment that mediate their fitness (Holt, 2007). This joint
description of ecological information dynamics will capture
the principles outlined above and allow exploration of their
consequences for the ecological patterns and processes we study.
Resolving these gaps in information theory would then allow
other theoretical advances to model dynamics of information in
ecological systems (Gatenby and Frieden, 2006). Ultimately, this
theory will allow us to interpret information flows across scales
and how they map to fluxes of energy and materials and in so
doing connect behavioral and cognitive ecology with community
ecology and biogeography.

CONCLUSION

Ecological systems integrate information in multiple forms—
syntactic and semiotic—with diverse relationships to energy and
materials. We reviewed fundamental concepts in information
theories, distinguishing between syntactic information and
semiotic information. Information processing links these two
forms in living systems, connecting processes across scales in
holarchies. Taking this perspective on ecological systems may
advance efforts to unify understanding across scales of life by
drawing on knowledge systems related to different scientific
disciplines. This unification brings challenges—understanding
the relationships between different forms of information and
energy, and developing methods for observing, quantifying
and tracking information remain the focus of research efforts
across disciplines.

Understanding ecology in terms of information and its links
with energetic andmaterial processesmay help to bridge complex
ideas and literatures in ecology and information sciences. To
encourage such synthesis, we have articulated five principles for

ecological systems that integrate diverse concepts of information
in living systems (Box 1). Relating ecological ideas and questions
to these principles to build a more coherent understanding of life
is possible, and these principles lead to operational statements
and empirical testable hypotheses.

Scientific and philosophical thinking andwork has now placed
information firmly “as one of three elemental components of
existence (along with space/time and energy/matter)” (Atmar,
2001) in living and non-living systems, though this perspective
is only just re-emerging in ecological thinking. A synthesis
of information concepts in ecology is not that farfetched.
It is well underway and operational in molecular biology,
physiology and physics. Ecology has the opportunity to draw
from these recent advances, and see our world from a
new perspective.

A more robust and complete understanding of nature that
is not restricted to a single research paradigm or scale of
nature is not only an essential goal of science, but also critical
to understanding how our world is changing. Harries-Jones
(2009), drawing on the work of Douglas Bateson (Bateson,
1972), argued that the collapse of ecosystems follows the more
subtle collapse of communicative order. This is a plausible
hypothesis. Yet, modern ecological science is simply not
equipped—theoretically or methodologically—to even test this
hypothesis, nevermind to dismiss it. But we can remedy that,
with rapid growth in an integrated science of the dynamics
of information, energy, and materials in ecological systems. A
synthesis in ecology could begin with explorations and tests
of existing hypotheses about the role of information in living
systems. A more unified and multi-scale ecological science that
integrates information dynamics is not only possible but essential
to pursue.
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APPENDIX 1. EXISTING
ECOLOGICAL PRINCIPLES

Fundamental principles are broad statements about empirical
patterns and the processes that operate to create patterns
(Scheiner and Willig, 2008) that are central to any scientific
understanding expressed by theory. Fundamental principles are
not novel statements but instead are true and foundational
for modern accepted theories of ecology, often invoked to
understand new problems or to organize or synthesize diverse
ideas (Margalef, 1963; Allen and Gillooly, 2009; Gurevitch et al.,
2011). Here we present a few examples of recently published
principles of ecological science. These sets of principles are taken
to be uncontroversial and consistent with any basic ecological
text or training. Scheiner and Willig offer these 7 principles
as central to a general and broad theory of ecology. The
other two sets illustrate how ecological principles are typically
referenced as starting points to understand a more specific, novel
or applied subject. We find these are not foundational for an
ecological science for the future, changing world, because they
do not adequately reflect information processes that define living
systems and the relationships they mediate between information,
and energy and material flows.

7 Principles of the Theory of Ecology (Scheiner and Willig,
2008), articulated after an extensive review of recent progress in
ecological understanding:

1. Organisms are distributed in space and time in a
heterogeneous matter

2. Organisms interact with their abiotic and biotic
environment environments

3. The distributions of organisms and their interactions depend
on contingencies

4. Environmental conditions are heterogeneous in space
and time

5. Resources are finite and heterogeneous in space and time
6. All organisms are mortal
7. The ecological properties of species are the result of evolution

Principles of Conservation Biology cites these as the shared
principles with ecology (Groom et al., 2005).

1. Evolution is the basic axiom that unites all biology
2. The ecological world is dynamic and largely non-equilibrial
3. Human presence must be included in conservation planning

Three basic principles of ecology invoked to understand
ecogeoscience research (Allen et al., 2014)

1. Biological traits exist in a distribution due to species diversity
2. Biological traits are adaptable and dynamic

through time
3. Dynamically coupled relationships between species

and their environments create biotic-abiotic
feedback cycles.

Frontiers in Ecology and Evolution | www.frontiersin.org 20 June 2019 | Volume 7 | Article 219172

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


ORIGINAL RESEARCH
published: 07 August 2019

doi: 10.3389/fevo.2019.00242

Frontiers in Ecology and Evolution | www.frontiersin.org 1 August 2019 | Volume 7 | Article 242

Edited by:

Diego Barneche,

University of Exeter, United Kingdom

Reviewed by:

Daniel Padfield,

University of Exeter, United Kingdom

James ODwyer,

University of Illinois at

Urbana-Champaign, United States

Alex Brummer,

University of California, Los Angeles,

United States

Colin Olito,

Lund University, Sweden

*Correspondence:

Christopher P. Kempes

ckempes@santafe.edu

Specialty section:

This article was submitted to

Biogeography and Macroecology,

a section of the journal

Frontiers in Ecology and Evolution

Received: 24 December 2018

Accepted: 11 June 2019

Published: 07 August 2019

Citation:

Kempes CP, Koehl MAR and West GB

(2019) The Scales That Limit: The

Physical Boundaries of Evolution.

Front. Ecol. Evol. 7:242.

doi: 10.3389/fevo.2019.00242

The Scales That Limit: The Physical
Boundaries of Evolution
Christopher P. Kempes 1*, M. A. R. Koehl 2 and Geoffrey B. West 1,3

1 The Santa Fe Institute, Santa Fe, NM, United States, 2Department of Integrative Biology, University of California, Berkeley,

Berkeley, CA, United States, 3Department of Mathematics, Imperial College, London, United Kingdom

Organisms are subject to the laws of physics, so the process of evolution by genetic

variation and natural selection is constrained by these fundamental laws. Classic and

recent studies of the biophysical limits facing organisms have shown how fundamental

physical constraints can be used to predict broad-scale relationships between body

size and organismal biomechanics and physiology. These relationships often take the

form of power laws across a wide range of body sizes for organisms sharing a common

body plan. However, such biophysical perspectives have not been fully connected with

the detailed dynamics of evolution by natural selection, nor with the variation between

species around the central scaling relationships. Here we first discuss what a general

biophysical theory of evolution would require and provide a mathematical framework for

constructing such a theory. We discuss how the theory can predict not only scaling

relationships, but also of identifying the types of tradeoffs made by different species

living in particular niches. In addition, we discuss how a key higher-order requirement

of a biophysical theory of evolution is its ability to predict asymptotic behavior and the

limits of a particular body plan. We use several examples to illustrate how dominant

physical constraints can be used to predict the minimum and maximum body sizes

for a particular body plan, and we argue that prediction of these limits is essential for

identifying the dominant physical constraints for a given category of organisms. Our

general framework proposes that a major portion of fitness should be the overlay of

how all traits of a particular body plan interact with fundamental physical constraints. To

illustrate this concept, we investigate multiple physical limits on particular traits, such

as insect legs, and show how the interaction of a number of traits determines the

size limits on entire body plans, such as those of vascular plants. We use bacteria

as an example of the shifts in which physiological traits and physical constraints are

most limiting at various organism sizes. Finally, we address the effects of environmental

conditions and ecological interactions in determining which of the physical constraints

faced by organisms are most likely to affect their growth, survival, and reproduction, and

hence their fitness. We consider such ecological effects on our examples of bacteria,

insects, mammals and trees, and we nest the constraints-perspective in the broader

picture of evolutionary processes.

Keywords: biophysical constraints, allometry, metabolic scaling, safety factors, evolutionary transitions
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1. INTRODUCTION

The classic view of evolution is that individual species become
adapted to specific niches through the process of genetic
variation and natural selection, where the temporal trajectories
of particular populations are noisy and often unpredictable in
detail. From this perspective, the myriad physiological functions
performed by one species can only be fully understood through
the lens of a specific evolutionary history and the numerous
selective pressures in a particular ecological setting that lead
to selection for one physiological/morphological local optimum
(of potentially many). A contrasting perspective to focusing on
these detailed processes that lead to speciation is that evolution
occurs in the physical world, and that the consistency of
basic physical laws produces broad-ranging regularities across
biological diversity (Thompson, 1917; Rashevsky, 1944, 1960;
Brown et al., 1993; Alexander, 1996; Niklas and Hammond,
2013). A prime example of such regularities is the observation of
scaling relationships such as themetabolic power law relationship
between body size and metabolic rate noted by Kleiber (1932).
This type of systematic behavior has been shown to be the
consequence of the global optimum configuration of a trait
within a range of possibilities with respect to a particular physical
law or constraint (e.g., Brown et al., 2004). How much of
detailed evolution can we predict from such a constraints-first
perspective, and how do we reconcile such a perspective with the
detailed processes of the evolution of a particular species?

Here we review constraint-based perspectives on evolution,
and show how they are nested within the broader framework
of evolutionary biology. We discuss contexts under which
certain physical constraints are dominant and/or independent
of other constraints, thus producing scaling relationships across
diverse species. In particular, we focus on the ultimate limits of
particular categories of organisms as prime examples of where
physical constraints dominate. We define a limit as the point
where the optimal performance of a physiological function or
morphological trait is not effective enough to allow an organism
to survive. These limits set a minimum or maximum allowable
body size. Such limits are known for microbes, arthropods,
vascular plants, and mammals, each of which we will later
discuss as detailed examples. These limits illustrate how the
constraints perspective on evolution is useful, not only for
predicting regular trends within a category of organisms (such as
allometric scaling), but also for predicting higher-order features
such as the size limits of a body plan or a transition to an
alternate body plan that allows for expansion into bigger or
smaller body sizes.

Understanding or predicting such limits gives us insight

into macroevolutionary processes, including major evolutionary

transitions (e.g., DeLong et al., 2010; Kempes et al., 2016), and
is the first step in building a more detailed perspective on how
physical constraints shape microevolution. In addition, another
reason to focus on these constraints is as a test of theories
for scaling relationships. If a particular theory proposes that a
dominant constraint predicts a particular scaling relationship,
then it should also predict at what scales that constraint becomes
asymptotically limiting to organism physiology and architecture.

That is, the scaling theory should also predict the minimal and
maximal sizes for organisms that share a body plan.

2. EVOLUTION, PHYSICAL CONSTRAINTS,
AND THE BODY PLAN

One could think of evolution from the perspective of overlaying
multiple physical constraints (e.g., constraints arising from
immutable physical laws such as gravitational force). This could
be done from the perspective of evolutionary history in which
life sequentially encounters new constraints with increasing
complexity or body size, or from the perspective of distinct
physical constraints that each lead to scaling relationships, all
of which apply to an organism simultaneously. In this latter
case the overall physiology of an organism can be seen as the
overlay and interaction of multiple constraints and associated
scaling relationships (Figure 1). This combination can lead to
more complex evolutionary optimizations if many constraints are
equally consequential, as will be discussed formally below.

Studying evolution using the constraints perspective is further
complicated by the fact that, although a specific feature of
an organism is constrained by a number of physical laws
that may scale differently with size, the selection pressure
on that feature is ultimately based on how the interaction
of many such interrelated features affects the fitness of the
entire organism. The way that traits affect the fitness of an
organism depends on the physical environment in which the
organism must function and its ecological interactions with
other organisms, both of which can change over a life span.
Thus, the organism is the product of a history of adaptation
to particular physical constraints and ecological conditions,
as well as of the evolutionary constraints of its structural
components and physiological machinery. Indeed, it should be
noted that the constraints that affect organism performance
represent a subset of the overall evolutionary process. The full
picture of evolution is one in which genes are mapped into
a phenotype, that phenotype defines the performance of an
organism, and performance ultimately becomes fitness via many
interactions with a particular ecological context where factors
such as predation, likelihood of reaching reproductive maturity,
resource availability, parental nurturing, and niche construction
all play important and complicated roles (Figure 2). Classic and
well-developed models of trait evolution typically consider the
heritability, covariation, and rate of change in traits to assess how
traits affect fitness and are genetically connected (e.g., see Lynch
et al., 1998 for a broad review and Lande (1979) for an allometric
application). This traditional perspective has been successful in
predicting a wide variety of evolutionary regularities and in
uncovering genetic correlations. The overall dynamics of trait
evolution in traditional evolutionary models (such as the Price
equation) can, in principle, be partitioned into the contributions
from each of the processes described in Figure 1 (Queller, 2017).

Our focus in this paper is mainly on one such component,
the mechanistic determination of performance from the set of
physical constraints and organism traits (phenotype), without
consideration of how those traits are genetically determined
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FIGURE 1 | The impact of physical constraints on trait performance and body plan performance. Each trait is the sum of the performance costs, Pt, from individual

physical effects. It is assumed that each physical effect curve and the overall summed trait performance are all optimized. For trait 1 it can be seen that the optimal

trait performance has a maximum value at intermediate body sizes representing the best performance across all individuals of this body plan (an example of a type-2

optimum in Figure 3). Trait 1 also illustrates a minimum and maximum body size for this trait, both of which are the point at which the cost of the trait would equal

total metabolism. This figure also shows how combinations of traits combine to form overall body plans which in turn may illustrate a type-2 optimum (see Body Plan

A) along with minimum and maximum body sizes where the cost of the overall body plan exceeds total metabolism. It should be noted that this figure is

representative, and real organisms would combine an arbitrary number of traits with a wide variety of performance-curve shapes. In many cases one or two traits

could dictate the total value of P.

(including correlations between gene effects), which processes
influence inheritance, or how the performance fully interacts
with the complicated set of ecological constraints described
above. We show that physical constraints can be used to
determine the intrinsic growth rate of an individual, which
is a major component of fitness. Furthermore, we consider
cases in which particular constraints become asymptotically
challenging so that performance of an organism goes to zero,
thereby dominating fitness and predicting the ultimate limits
of a body plan, independent of other ecological considerations.

In considering these examples throughout the paper we suggest
that the constraints perspective could eventually be integrated
into a broader framework incorporating the underlying genetics,
ecological considerations, and population structure in order to
determine overall fitness and evolutionary dynamics (Figure 2).
For example, the connection between traits, physical constraints,
and fitness could be nested within adaptive dynamics models
(e.g., Abrams, 2001; McGill and Brown, 2007), which are aimed
at determining evolutionary stable strategies of complex trait
combinations within a population (e.g., see Falster and Westoby,
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FIGURE 2 | A conceptual representation of the full process of evolution, where

the gray box represents the main focus of this paper. From this perspective,

genes produce a phenotype, that phenotype defines the performance of an

organism given a set of physical constraints, performance becomes fitness

through the many features of an ecological context, and the population of

genetics evolves given this fitness and the nature of the population,

mechanisms of heredity, and mutation. It should be noted that the connection

between traits and physical constraints may become the dominant component

of fitness in particular contexts. For example, we illustrate here that in many

cases the ultimate limit of a particular body plan occurs when one physical

constraint becomes asymptotically challenging taking fitness to zero.

2003; Falster et al., 2016 for considerations of plant traits). We
also discuss the contexts in which the physical optimizations can
be performed without an explicit treatment of the evolutionary
dynamics, and why such optimizations can be, and have been,
successful in predicting allometric scaling relationships and
ultimate limits.

2.1. Abstract Formalism of Constraints and
Fitness
With the complications and caveats listed above in mind, we
provide a simple formalism for evolution in the context of
physical constraints. Below we connect this formalism to the
aspects of fitness that can be directly calculated, specifically, the
growth rate of an individual. There are a wide variety of models
for evolutionary dynamics which typically connect the rate of
change in the abundance of a gene or specific genome to its fitness
given specific assumptions about inheritance and mutation (e.g.,
Lynch et al., 1998; Nowak, 2006; Frank, 2011a,b, 2012a,b,c;
Queller, 2017). All of these frameworks rest on the ability to
quantify the fitness, fj of each genotype and/or phenotype j in the
population, and in each case we can connect a particular model to
constraints so long as we can specify the physical determinants of
fitness. A classic example of an earlier attempt to connect physical
constraints and fitness comes from McNeil Alexander, where
he formalized the evolution of safety factors using the equation
φ(s) = l(s)F + U(s), where φ(s) is the overall cost of a trait given
a safety factor s, F is the cost of failure, l(s) is the probability of
failure, and U(s) is the cost of growing, using, and maintaining
a trait as a function of the safety factor (Alexander, 1996). From
this perspective, trait evolution is the minimization of this total
cost where an increasing safety factor typically decreases the
likelihood of failure but increases the cost of production, use,

and maintenance. Our approach is to further generalize this
concept and connect it to fitness, rather than just safety factors,
by defining the interconnection between all organism traits and
physical constraints. Take tt to be the contribution of a particular
trait to overall fitness, then
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(1)

or

Et = gEp+ eEp (2)

where pp is a particular physical constraint, gt,p is the net benefit
attributed to a particular trait due to physiology interacting with
a physical constraint, and eEp is the portion of the net benefit that
strongly depends on ecological interactions in combination with
physical constraints (e.g., predator avoidance given the density
of predators; see Appendix A.1 for a more detailed treatment).
The first subscript, t, refers to the trait of interest, and the second,
p, to a particular physical constraint. Here lowercase subscripts
refer to an arbitrary element of a matrix or vector, such that tt is
an arbitrary element of Et, and uppercase subscripts refer to the
last element where P is the length of Ep, T is the length of Et, and g

is a T × Pmatrix.
It is important to note that this formalism could be setup

to address traits at various levels of organization—ranging from
detailed considerations of the functional proteins to entire
morphological features—depending on the questions of interest.
For example, the first column of the matrix g might be the
relationship that describes whether a hollow cylinder will develop
a local kink over its length. The second column might be the
relationship for how far a cylinder bends, and the third column
might be the relationship for the weight of the cylinder. In this
same matrix the rows would then describe different traits, so that
the first row could be the trait of a leg and the second the trait
of a wing. Thus, in this example, g1,1 relates to the performance
of a leg resisting kinking, and g2,1 to the performance of a wing
resisting kinking, both in combination with p1. Similarly, g1,2 and
g2,2 relate to the performance of a leg and wing, respectively,
in resisting bending, and g1,3 and g2,3 relate, respectively, to the
performance of the weight of a leg and wing.

In this formalism, performance, as described by gt,p, refers to
a net consideration of both the cost and return to fitness for a
particular trait, where gt,p could be either positive or negative
depending on a trait’s current form (e.g., the current genotype
and phenotype of an organism). Fitness is then defined as

f =

T
∑

t=1

tt . (3)

It is important to note a few features of this formalism. First, tt
is meant to represent the lifetime contribution to fitness such
that g, Ep, and e should be constructed as lifetime quantities.
Second, the main challenge of this formalism is in constructing
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the matrix g and also deciding on the level of granularity with
which to describe the traits t. For example, should one consider
all properties of a bone together or should one partition a bone
into its various sub-traits such as its of cross-sectional shape,
material composition, and dimensional ratios? Constructing the
lifetime values of e is equally challenging given a particular
ecological setting. As already emphasized, the focus of this paper
is on investigating the consequences of the physical contribution,
gEp, to fitness, ignoring ecological effects, eEp. However, it should be
noted that future efforts that attempt to systematize the variation
around scaling relationships will often need to quantify eEp.

2.2. Dominant Constraints and Scaling
Relationships
In light of the complicated dynamics of overlapping physical
and evolutionary constraints for organism evolution discussed
earlier, it is perhaps surprising that any scaling relationships
exist relating diverse organisms. For example, one can imagine
contexts in which many physiological traits are equally
consequential, and organisms with different combinations of
traits have equivalent fitness. In other contexts, ecological
processes might be more important than physiological effects
and might shift unpredictably across body size. In some cases
the interrelation of traits (e.g., due to the underlying genetics)
might produce very complicated relationships across body sizes
that cannot be easily interpreted and would include signals of
phylogenetic relatedness. In contrast, scaling relationships for
a particular trait highlight that a single constraint (or possibly
a small set of constraints) dominates over a wide range of
sizes and is consistently optimized, and/or that the optimization
of one trait to a particular physical constraint is independent
from other traits. In this paper, the term “optimization” here
has two interrelated meanings: (1) A type-1 optimum, which is
determined for one body size and is the best functionality that can
be achieved by a single trait, or set of traits, in organisms with a
particular body plan (Figure 3). We hold body size constant and
optimize across different values of the parameters that determine
the performance of that trait, or set of traits. An allometric scaling
law is the set of type-1 optima, each performed at a particular
body size. (2) A type-2 optimum, which is the best functionality
that can be achieved for a particular body plan considering all
body sizes. The procedure for finding a type-2 optimum is to
first find the type-1 optimum at each body size for a trait or
set of traits, and then to find the body size that has the best
type-1 optimum. A type-2 optimum represents the body size that
outperforms all others. The type-2 optimum would be the best
point along the relationship between body size and the type-1
optima. In the case of a power-law for the set of type-1 optima,
the type-2 optimumwould occur at the smallest or largest size. In
other cases, performance may not change with body size (i.e., the
type-1 optima are all equivalent across different body sizes for a
given measure of performance).

In the context of the formalism that we have introduced above,
the layered hierarchy of constraints that define a single species is
represented by the relative size of the entries of g (e.g., gt,p). The
existence of scaling laws indicate that a small subset of elements

FIGURE 3 | Definition of Type-1 and Type-2 optimizations with reference to a

body-size performance curve.

in g are significantly larger than all other elements across a range
of body sizes for a class of organisms. Formally, this situation can
be expressed as

∑

p,t∈s

gp,tpp ≈

P,T
∑

p,t

gp,tpp (4)

where s represents a subset of g. Ultimate limits would indicate
that a subset of entries of g become increasingly or asymptotically
large and negative at a particular scale and tt∈s → 0. In this
context the type-1 optimization has vanishingly small fitness at
a particular body size and this body size then represents either
an upper or lower bound on the possibilities for a particular
body plan.

3. APPLYING THE CONSTRAINTS
FRAMEWORK

3.1. Explicit Connections to Growth
The preceding formalism is meant to be an abstract
representation of the evolution of organism traits with body
size under a set of physical constraints considering both
physiological and ecological effects. As such we have assumed
a linear form for the determination of fitness. More generally,
we should expect that the contribution of an individual trait
to fitness should follow tt = gt(Et, Ep, Eo), where gt is a function
of fitness contribution for a particular trait given the entire
set of traits, Et, physical constraints, Ep, and other species in
the same environment, Eo, and may not be representable as a
linear combination of the form of Equation (1). This general
relationship makes it clear that there may be many traits with
fitness contributions that are contingent on the value of other
traits. Although the physiological optimization problem may not
be of the form of Equation (1), that does not mean that it cannot
be fully quantified and solved.
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To make such optimizations more explicit we should first
concretely connect traits with aspects of fitness. A variety of
recent efforts have shown that the growth curves of a variety
of organisms can be predicted from a model that considers
the budgeting of total metabolic rate, B, into growth and

maintenance purposes as B = Em
dm
dτ

+ Bmm (where Em and
Bm are the unit costs of synthesizing and maintaining biomass,
respectively, and τ is time) (West et al., 2001; Kempes et al.,
2012). Typically this model is solved by rearranging for dm/dτ
and recognizing that B scales as a power law with mass. However,
the power law of B is the result of an optimization and we can
relax this assumption and instead specify this budget in terms of
the effect of each individual organism trait

dm

dτ
(τ ) =

1

Em

[

∑

i

Bi (τ ) −
∑

i

Ci (τ )

]

(5)

where Bi (τ ) (W) is the contribution of trait i to total metabolic
power, Ci (τ ) (W) is the metabolic cost of each trait, and Em (J/g)
is the energy to synthesize biomass given all of the current traits.
Each of these terms is taken as a function of time as an organism
progresses through a life cycle. In connection with our general
framework we have that

Et (τ ) =
1

Em
(b− c) Ep (6)

and

dm

dτ
(τ ) =

∑

i

ti (τ ) (7)

where Bi (τ ) =
∑

j bi,j (τ ) pj (τ ), Ci (τ ) =
∑

j ci,j (τ ) pj (τ ),

and g = b − c in connection with the notation in Equations
(1) and (2).

As written, these equations describe the growth rate of an
organism along ontogeny. These equations are often converted
into population growth rates by first solving Equation (5) for the
growth trajectory m (τ ) and then using this to find the time to
reach reproductive maturity G (e.g., West et al., 2001; Kempes
et al., 2012). From this generation time the specific growth rate of
the population is given by µ = ln(k)/G, where k represents the
expected number of offspring produced by an adult and could
in principle be a complicated function of the traits themselves
and thus parameterize the variety of ecological features discussed
earlier (e.g., for bacteria without any mortality k = 2). In general,
one could combine our framework for the growth rate of an
individual with a complicated model for the expected offspring to
reach maturity, 〈k〉

(

Et
)

, to form a µ that represents total fitness in
an evolutionary model. Here 〈k〉 is a function of the set of current
traits, Et, and all effects from the environment and other species,
eEp. Given a body plan, our goal is to find the set of trait values that
maximize the population growth rate for each organism size, or

µopt (m) = max (µ (b, c)|m) . (8)

The optimization procedure should hold adult size fixed (type-1
optimization) and solve for the b and c that maximize population

growth rate which integrates over the full life-history. As a result,
the optimum population growth rate µopt (m) is a function of
size, and the b and c that produce this optimum will also change
with body size. Inmany cases it may bemore practical to consider
lifetime averages for all of the traits and optimize the average

individual growth rate, dm
dτ

, which is what we consider in our

examples. Note that for a fixed k optimizing dm
dτ

is equivalent to
optimizing µ. Again each of these optimization problems may
not have analytically tractable forms, but it should be possible
to perform the numerical optimization using a wide variety of
known techniques.

3.2. A Single-Cell Example
There are many cases where it is possible to concretely and
simply calculate the tradeoffs associate with investment in various
traits for an organism along with the optimization of those
traits. To illustrate how this procedure is done, along with some
of the challenges of operationalizing the conceptual framework
outlined in Equation (1), we begin with the simple example
of optimizing a single trait. Consider the case of a non-motile
spherical bacterium that is acquiring resources via diffusion
through the cellular surface followed by active transport via
membrane-bound protein structures. The total metabolic energy
available to the organism is proportional to the number of
molecules, say O2 during respiration, acquired by the cell. It
has been shown that the diffusive uptake rate is given by
4πS∞Da ns

ns+πa(1−ns2/(4a2))
where n is the number of uptake

sites, a is the radius of the cell, s is the radius of an uptake site,
and S∞ is the background concentration of the resource in the
fluid (e.g., Fiksen et al., 2013). This implies that

Bn = Y4πS∞Da
ns

ns+ πa
(

1− ns2

4a2

) (9)

where Y is the yield coefficient (Joules per mole) for the limiting
resource. We also know that each of these transporters requires
some amount of energy, βn to produce, and thus the total cost of
n transporters is

Cn = βnn. (10)

Taken together, these two relationships imply that the average

growth rate over a lifetime is given by dm
dτ

= 1/Em (Bn − Cn) and
can be rewritten in the form of our framework as

dm

dτ
=

1

Em

([

a ns

ns+πa
(

1− ns2

4a2

) 0
]

−
[

0 n
]

) [

Y4πS∞D
βn

]

(11)

=
1

Em

[

a ns

ns+πa
(

1− ns2

4a2

) −n
] [

Y4πS∞D
βn

]

. (12)

where we are considering the trait to be uptake sites and Ep to be
composed of terms related to the limits of diffusive uptake and
the costs of protein construction. Since we are only considering

a single trait, dm
dτ

is a simple scalar and already represents the
entire sum for fitness. Figure 4 gives the energetic values of each
term along with the resulting growth rate for a single cell of size
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a = 10−6 (m), and shows that as a cell adds transporters there is

an increase in dm
dτ

= B−C up to the point where uptake saturates
for any additional transporters. In fact this sum gives rise to an
optimal number of transporters which can be easily shown to be

nopt =
8πa2

(

β
−1/2
n (sYDS∞)1/2 − 1/2

)

s (4a− πs)
(13)

It can be seen in Figure 4B that for a cell of a = 10−6 m
this optimal value occurs before the entire cell is covered in
transporters. For a cell of this size the optimal solution is
achievable. However, this may not be possible for all cell sizes.
Figure 4C gives the scaling of nopt with cell size (type-1 optima)
and shows that there is a size, a = 1.14 × 10−6 (m), at which
the total surface area is entirely covered in transporters. This
represents a minimum cell size at which the optimal solution
is feasible; any smaller cells would have fewer than the optimal
number of transporters. In this example, the type-2 optimum for
the number of transporters occurs at the largest possible cell size.

We could allow for smaller cells to have suboptimal
performance by, for example, keeping a fixed fraction of the
surface area covered in transporters. However, these suboptimal
cells would run into another limitation, where the total surface
area becomes less than the area of a single transporter. The
point where the cell surface area is equal to the area of a single
transporter is given by

4πa2 = s (14)

and occurs when a = 1.95×10−9 (m). There are other limitations
facing the cell that we have not considered. For example, its entire
surface area cannot be covered in transporters both for structural
reasons and because other functions must be imbedded in the
membrane (e.g., the machinery for ATP synthesis).

In general, this single trait optimization could be interacting
with a variety of other traits. For example, we have only
considered the requirement that uptake meets the costs of the
transporters themselves, and in this scenario it is not the return
on investment of a transporter that ultimately limits the cell. For
all cell sizes we can determine the number of transporters beyond
which uptake exceeds the cost of producing those transporters
(until surface area limits at the small end). However, this analysis
does not consider the internal metabolic requirements of the
cell, where the volume to total surface area ratio is scaling
proportional to a and we would expect the transporters, even
if they cover the entire surface area, to be increasingly unable
to support larger cells. These other limitations could be added
to Equation (12) by, in the simplest case, adding a cost term
proportional to overall volume. Consequently,

Edm

dτ
=

1

Em

([

a ns

ns+πa
(

1− ns2

4a2

) 0 0

0 0 0

]
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]

)





Y4πS∞D

βn
4
3πβv



(15)

=
1

Em

[

a ns

ns+πa
(

1− ns2

4a2
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]





Y4πS∞D

βn
4
3πβv



 . (16)

where βv is the unit cost per volume of creating and maintaining
an existing unit of biomass over a lifetime (see Kempes
et al., 2016, 2017 for a more in depth accounting of cellular
composition and the costs that would form βv). In this example
the first row represents the trait of uptake while the second row
represents the trait of cytoplasmic volume.

This addition does not change the value of nopt , but will shift
the overall growth rate. In this case the added cost is negligible
for small cell sizes but eventually becomes the dominant cost
for large cells and sets an upper bound on cell size at a =

2.67 × 10−6 (m) (Figure 4D). This upper bound occurs because
the cost of the cellular volume eventually outpaces uptake and
growth goes to zero. It should be noted that in this example we
have not considered the physiological and metabolic functions
within the cellular volume that interact with the uptake of
resources to provide the metabolic power available to the cell.
Such considerations would add interconnections between the
first and second rows (e.g., how the cellular volume produces
energy given the uptake rate), adjust the structure of Ep, and

would require a more complicated optimization of dm
dτ

. Similarly,
we could add a consideration of the tradeoffs between two
traits, say the investment in the number of transporters and
investment in chemotaxis (see Appendix A.2). In this case the
two traits, swimming velocity and the number of uptake sites,
are fundamentally interconnected and must be co-optimized to

maximize dm
dτ

. However, the point is that ultimately we are trying

to optimize the linear combination that makes up dm
dτ

even if
individual terms in that sum are complicated and interrelated
functions, which should at least be numerically achievable.

This single-cell case study demonstrates how our general
framework can be applied to a specific context and explicitly
illustrates the three main features that we are interested in,
those being:

1. The change in optimal performance across many different
sizes (e.g., the maximum growth rate per unit mass increases
for larger cells Figure 4D).

2. The size at which optimal performance becomes impossible
(e.g., the optimal number of transporters exceeds the total
surface area of the cell Figure 4C).

3. The ultimate limit of size where any functionality is impossible
(e.g., a single transporter covers the entire surface area of the
cell Equation 14).

3.3. Independent Trait Optimization
The framework that we have proposed gives a general perspective

for the co-optimization of physiological constraints, appearance

of scaling relationships, and prediction of ultimate constraints.
However, constructing the complete set of physiological traits

and their interactions with physical constraints (the complete
g = b − c and Ep) is a daunting task and an important area of
future effort. Yet it is important to note that within our general
framework there can be traits that are unrelated to other traits.
In such a case optimizing a trait’s contribution to fitness can

be done in isolation. Since dm
dτ

is a linear sum, optimizing one
trait increases a portion of overall fitness so long as this trait is
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A B

C D

FIGURE 4 | (A) The relative energetic uptake and cost of transporters for a cell of size a = 10−6 (m), along with (B) the inferred growth rate of that cell. (C) The

percentage of cellular surface area devoted to nopt, the optimal number transporters from Equation (13), as a function of cell size. (D) The inferred growth rate given

the optimal number of transporters as a function of cell size. The blue curve considers only the cost of the transporters in the optimization, while the gray curve

includes the cost of the cellular volume.

not connected to other traits and thus does not have competing
consequences in the overall sum. It should also be noted that
a trait can be effectively independent of all other traits if the

contribution it makes to one dmi
dτ

= (Bi − Ci)/Em is much larger

than its influence on all other
dmj

dτ
= (Bj − Cj)/Em for j 6= i. In

general, if all of the traits are independent we have that

max

(

dm

dτ

)

= max
∑

i

dmi

dτ
=

∑

i

max

(

dmi

dτ

)

(17)

implying that each trait can be optimized individually. If we
have a mix of independent traits and traits with complicated
interdependencies, then we have that

max

(

dm

dτ

)

= max
∑ dmi

dτ
=

∑

j

max

(

dmj

dτ

)

+max
∑

k

dmk

dτ

(18)
where j represents all of the traits that are effectively independent
of other traits (and can be individually optimized), and k the
set of traits which contain interdependencies. It should be noted

that sums like
∑

k
dmk
dτ

amount to summing and combining
rows in Equation A4 (see Appendix), which then form new
“effective traits.”

These representations make it clear that if enough trait
independence exists, then single trait optimizations will

accurately predict the observed scaling of a trait with body
size. This helps explain past successes in deriving and
predicting allometric relationships by focusing on a few
dominant constraints and performing type-1 optimizations
(e.g., West et al., 1997, 1999).

3.4. Simplified Metrics of Performance and
Ultimate Limits
In light of the formalism above we can see why single-trait
optimizations often predict allometric relationships and much
past attention has already been given to these optimizations and
scaling relationships. One of our primary interests here is to
use these concepts to predict ultimate limitations, one of the
main types of higher-order behavior that we can extract from
a constraints-based perspective of evolution. These limits are
important because they predict the range of body sizes achievable
for a given body plan. We are also interested in how organism
performance shifts across this range of body sizes as this informs
aspects of selection.

In order to make these ideas more explicit we introduce
several systematic metrics that capture the essence of our earlier
framework but focus on a reduced set of traits and allow us
to predict ultimate limits for particular categories of organisms.
We introduce two types of common biological currency for
assessing performance and for understanding the ultimate limits
on a particular body plan, both of which were employed in our
single-cell example in section 3.2.
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For the ultimate limits of a particular body plan we are
interested in the size where growth ceases (dm/dτ = 0 in
Equation 5), which is realized when the costs of all of the traits are
equal to their metabolic return:

∑

i Bi =
∑

i Ci. In this context, a
natural metric for performance is the ratio of costs to metabolic
return,

∑

i Ci/
∑

i Bi. It is also natural to set the highest value of
performance, P, to unity, and define P = 1−

∑

i Ci/
∑

i Bi. If we
are interested in considering the constraints imposed by a single
trait, then we can simplify this metric to

P(m) = 1−
Cf (m)

B(m)
(19)

where Cf (m) is the cost of a particular trait, B(m) is the total
metabolic rate of an organism (

∑

i Bi), and where we have made
the dependence on organism mass,m, explicit for the metric and
subcomponents. This metric will either determine when one trait
would be limiting, even if other traits impose more serious limits
on organisms, or will define the ultimate limit in the case where
Cf is the most dominant constraint (e.g.,Cf ≫

∑

i6=f Ci). It should

be noted that this equation could be parameterized in terms of
othermeasures of organism size such as volume rather thanmass.

It should also be noted that an evolutionary optimization
to particular physical constraints at each scale may lead to a
scaling in both B(m) and Cf (m), implying that 1 − P(m) scales
allometrically. If Cf (m) scales in the same way as B(m), then 1 −
P(m) will be a constant implying scale-independent performance.
If Cf (m) and B(m) each scale as a power law with body size,
but with different exponents, then 1 − P(m) will be defined
by a positive or negative scaling exponent indicating decreasing
or increasing performance, respectively, as body size increases
(larger P indicates greater performance). In connection with our
earlier and more general framework, the point at which P(m∗) =
0 corresponds to fi → 0 and represents the point where the type-
1 optimum is infeasible. At this point m∗ is either the maximum
of minimum size for organisms with a particular body plan.

It is not always straightforward to calculate the energy
consumption of a particular organismal trait Cf (m), nor is
this always the most relevant indication of a limit as features
can fundamentally limit an organism without consuming
much metabolic power. For example, the construction and
maintenance of particular arteries is insubstantial compared to
overall metabolic rate, but what does matter for arteries is the
likelihood of rupture under expected forces, or the likelihood
of blockage under the normal range of physiological conditions.
While the metabolic cost of rupture could be converted into
energetic terms (e.g., pumping energy becomes infinite once
the vessel is no longer connected) it is often more meaningful
and practical to simply recognize that a rupture causes death,
and to calculate the requirements of rupture avoidance. These
are direct physical limits, and are topics with rich histories in
the biophysical literature (e.g., Currey, 1970; McMahon, 1973;
McMahon and Kronauer, 1976; Wainwright et al., 1976; Peters,
1986; Berg, 1993; Alexander, 1996; Calder, 1996;West et al., 1999;
Gere, 2003; Niklas and Spatz, 2004, 2006; Vogel, 2004; Niklas,
2007; Niklas and Hammond, 2013). Such constraints often
manifest in the dimensional and morphological requirements

of particular organism features, such as the ratios of thickness
to surface area and volume or of lengths to radii. Instead
of P(m) a more useful dimensionless metric is to consider is
M(m), which is the ratio of the minimal requirements of the
size of a feature, Sf (m), compared with maximum allowable
size S(m),

M(m) = 1−
Sf (m)

S(m)
. (20)

More specifically, Sf (m) is the size of a trait, such as a leg, that is
required to work at all in performing a defined function (e.g., not
breaking under the typical forces experienced over an organism’s
lifetime). S(m) is the space allowable for that trait given other
constraints of the physiology and geometry of the organism.
For example, if the cross-section of the leg is completely filled
by the skeleton, then this represents an extreme upper-bound
as there would be no space for muscles. More realistically, we
can define the space allowable for the skeleton based on the
space needed to accommodate the muscles that operate the leg,
which are defined by the force required to move the leg, all of
which leads to a smaller value for S(m) than the entire volume of
the leg.

It is thus clear thatM(m) allows for choices in the dimensions
of Sf (m) and S(m), which could be volumes or linear dimensions,
and where S(m) can be chosen at the feature or organism scale. As
mentioned above for P(m), when S(m) is the volume of the entire
organism, then M(m∗) represents the extreme upper bound to
an organism’s size, which often gives us intuition about which
constraints are most limiting for specific categories of organisms.

We apply these metrics to several examples for insects,
bacteria, vascular plants, and mammals, as classes of organisms
with extensive biophysical predictions for scaling relationships
and well-developed perspectives on the ultimate limits of
particular biophysical processes. Our goal is to understand how
physical constraints have shaped the ultimate limits for particular
classes of organisms. Within each class we take as a given the
known body plan and do not consider how this architecture
evolved, which is an interesting area for future research. Within
each example our focus is on the point where type-1 optima
become infeasible. In the context of the metrics that we have
developed, for an upper bound on a particular body plan this
is defined either as M(mmax) = 0, or P(mmax) = 0, and
for a lower bound we are looking for M(mmin) = 0, or
P(mmin) = 0. We will also discuss when there is a well-
defined optimum body size for a class of organisms between
the limiting sizes (e.g., a type-2 optimum), as for example at
the large end of mammals (Yeakel et al., 2018). As mentioned
above, in some cases P orM is more appropriate for highlighting
limits. For bacteria, we are able to show that P and M occur
at similar scales for particular features and the energy and
dimensional requirements are interconnected. In arthropods we
primarily rely onM in connection with the limits of exoskeletons.
In vascular plants and mammals we rely on both P and
M as metrics.
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4. EXAMPLES WITHIN GROUPS OF
ORGANISMS

4.1. Insect Biomechanics and the Interplay
of Different Physical Constraints
Insect appendages provide an example of how the structure of a
trait is phylogenetically constrained, and how the performance
of different functions by that trait is determined by physical
laws. A critical phylogenetic constraint on insects is that the
body is surrounded by an exoskeleton. Therefore, all organs and
muscles must operate inside a container of fixed dimensions.
Exoskeletons are scratched and punctured as animals move
around in natural habitats and interact with other organisms,
unlike endoskeletons that are protected from such surface
damage by the surrounding soft tissues. Furthermore, insects
must shed their exoskeleton (molt) in order to grow to larger
size. Another phylogenetic constraint that limits the mechanical
performance of insects is that the exoskeleton is composed of
chitin fibers in a protein matrix.

Insect appendages illustrate how the dimensions of a structure
(in this case an appendage is the trait) can affect different
aspects of mechanical performance (each of which is a column
in Equation 1). The motions of and forces exerted by jointed
appendages of insects (e.g., legs, wings, mouthparts, antennae,
each being a row in Equation 1) can be analyzed by treating these
structures as lever systems (Alexander, 2003). Appendages that
are short are better at exerting large forces on the environment
(e.g., for crushing prey or digging) for a given muscle force. In
contrast, appendages that are long are better at rapid motions
(e.g., running) for a given rate of muscle shortening. If we
consider the exoskeleton of a stiff segment of an insect leg
as a hollow, circular cylinder (Figure 5A), we can examine
the consequences of changes in the cylinder’s dimensions on
other aspects of mechanical performance using standard beam
theory (e.g., Currey, 1970), as described in biomechanics and
engineering textbooks (e.g., Wainwright et al., 1976; Gere, 2003;
Vogel, 2004). Some examples of how different aspects of leg
performance depend on body and leg dimensions are given
in Table A2 (Appendix). The cost to produce and move the
exoskeleton depends on its volume. However, the ability of
the leg’s exoskeleton to resist deformation (Figures 5B,C) and
breakage also depend in different ways on its length (L) as
well as its radius (R) and the radius (r) of the space inside the
exoskeleton. A hollow exoskeleton can also fail by undergoing
local buckling (kinking like a bent soda straw, Figure 5D), which
can damage the tissue inside the exoskeleton. The critical local
stress (σLcrit) to cause a kink not only depends on the dimensions
of a hollow cylinder (Table A2 in Appendix), but is much lower
if the surface is scratched, as exoskeletons are prone to be.

The mechanical properties of the material composing
the exoskeleton of an insect appendage also constrain its
performance. For example, resistance to bending, bowing, and
kinking by the exoskeleton of an appendage depends on the
stiffness (elastic modulus, E) of the material (Table A2 in
Appendix). Whether a stress (force per cross-sectional area
of material bearing a load) in the exoskeleton will cause
breakage depends on the strength (breaking stress, σbrk) of

that material. These mechanical properties of insect exoskeleton
are determined by the amount and orientation of the chitin
fibers, the degree of cross-linking (tanning) and of hydration
of the protein matrix, and the relative thickness of the heavily-
tanned outer layer (exocuticle) and the less-tanned inner layer
(endocuticle) (e.g., Wigglesworth, 1948; Wainwright et al., 1976;
Parle et al., 2017).

The radius (r) of the space within the exoskeleton limits the
force production and shortening of the muscles it contains, and
thus can limit the ability of the appendage to perform various
functions. The force that a muscle can produce depends on
its cross-sectional area normal to the long axis of the muscle
fibers. Because the r of the exoskeleton constrains muscle cross-
sectional area, r limits the maximum force that can be exerted
by a muscle; r also limits how much a contracting muscle can
bulge radially, thereby limiting the distance that the muscle can
shorten. The force exerted by a contracting muscle is a complex
function of its change in length (Rassier et al., 1999; Nishikawa
et al., 2018), so by limiting muscle shortening, r also affects force
production. These constraints are mitigated in insects because
most of their muscles are pennate, with fibers that are oriented
at an angle to the muscle’s line of action (Figure 5E). Thus,
a pennate muscle can exert higher forces, but also shortens
less (1Lmuscle, Figure 5E) than a parallel-fibered muscle (Vogel,
2003). These constraints of the exoskeleton on muscle force and
shortening can limit the performance of activities (e.g., running,
pushing) that affect the competitive success and survival of
insects in the environment, and can thus determine Sf (m) of the
trait (leg) in Equation (20).

Using these physical rules described above, the type-1 optimal
morphology for a leg can be determined for an insect of a given
size if the aspects of leg performance (e.g., rapid running, forceful
digging) can be identified that are most likely to affect the insect’s
fitness in its ecological setting. By examining the type-1 optima
for the legs of insects across a range of body sizes, the type-2
optimum can be determined, and the physical limits on body size
can be explored.

The effect of body size on different aspects of appendage
performance are illustrated in Table A2 (Appendix). In this
example, we assume for simplicity that the exoskeleton of a leg is a
hollow circular cylinder, that the insect grows isometrically, and
that the mechanical properties of the exoskeleton material and
the behavior of the muscle (force production per area normal to
muscle fibers, and maximum shortening velocity) do not change
with size. The consequences to leg mechanics of an isometric
doubling of body dimensions illustrate how different functions
vary with size. The load that a leg must bear (F) and the cost
of producing and moving the exoskeleton increase 8-fold, while
the force produced by a muscle only increases 4-fold. Relative
to the F’s that must be resisted, the maximum force exerted by
the appendage per muscle force exerted is only half of that at
the smaller size. Resistance to bending and to breaking while
bearing body weight or locomoting are also reduced by 50% if
size doubles, whereas resistance to bowing is reduced by 75% and
to kinking by 87.5%. This suggests that leg failure by kinking
may determine the maximum allowable size, S(m) in Equation
(20), for a given insect body plan. This S(m) can be increased
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FIGURE 5 | (A) Dimensions of a hollow cylindrical exoskeletal element: L = length, R = outer radius, r = inner radius, t = wall thickness. (B) Diagram of the deflection

(δ) of the free end of an exoskeletal element being bent like a cantilever by a force (F) acting laterally on the end of the of the cantilever. (C) Elastic Euler buckling of an

exoskeletal element acting like a column bearing an axial load (F ). (D) Local buckling (kinking) of an exoskeletal element acting like a column bearing an axial load (F).

(E) Diagram of a pennate muscle when relaxed (left) and after the muscle fibers have contracted (right): θ = angle between muscle fibers and the line of action of the

muscle, Lfiber = length of the muscle fibers, W = width of the muscle, 1Lmuscle = distance muscle shortened when fibers contracted. Muscle bulging is not in the

radial direction, and a greater number of shorter muscle fibers can fit into the volume of a pennate muscle than into a parallel-fibered muscle of the same size.

However, the component of the force produced by the contracting fibers (Ffibers) in a pennate muscle that acts parallel to the line of action of the muscle (Fmuscle)

depends on the angle (θ ) of the fibers (Fmuscle = Ffibers cos θ ), so Fmuscle decreases as the muscle shortens and θ becomes more oblique (Azizi et al., 2008).

by selection for allometric growth (e.g., smaller r relative to R)
or for increased stiffness and strength of the material composing
the exoskeleton.

Insects have to molt their exoskeleton to grow. The
mechanical properties of the exoskeleton material change during
this process (e.g., Wigglesworth, 1948; Parle et al., 2017). After
the old exoskeleton is shed, the new exoskeleton is thinner
(lower t) and less cross-linked (lower E and σbrk) than the older
shed exoskeleton. With time after molting, the new exoskeletal
material becomes more cross-linked and the thickness of the
wall of the exoskeleton increases as more endocuticle is secreted.
Therefore, resistance to bending and resistance to failure (by
breaking or kinking) are lower right after molting. This poor
mechanical performance of the soft, thin exoskeleton right
after molting might be the factor that limits the overall body
size of insects. Furthermore, insects are more vulnerable to
predators right after a molt because locomotory appendages
may buckle and bend too easily for effective escape maneuvers,
and the exoskeleton may be easier to break or puncture by the
predator. Therefore, while vulnerability to the predators in the
environment of an insect may set the Sf (m) required for survival,
molting reduces S(m) and the performance metricM(m).

In addition to the biomechanical constraints of an exoskelton
andmolting, other limits to the size of insects have been proposed
and debated, including the supply of oxygen via the tracheal
system, the power requirements for flight, and the effect of size

on maneuverability of flying insects after bird and bat predators
evolved (e.g., Kaiser et al., 2007; Kirkton, 2007; Okajima, 2008;
Harrison et al., 2010; Clapham and Karr, 2012). We suggest
that the approach illustrated in Figure 1 would be a fruitful
way to evaluate the body sizes at which the various proposed
mechanisms are likely to bemost important and to identify which
are most likely to constrain the size of insects.

While the exoskeleton of an insect appendage provides an
example of a trait that does a number of physical tasks whose
performance varies with size (as illustrated in the top row of
Figure 1), the physiology of bacteria provide an example of how
several traits together affect the performance of an organism as a
function of its size (bottom row of Figure 1).

4.2. Bacterial Physiology and Ultimate
Limits
Prokaryotes represent the oldest and morphologically simplest
forms of self-reproducing life, although their metabolic and
genetic diversity far exceeds the eukaryotes. We can consider
their morphology, in a first approximation, as a membrane
with embedded protein complexes enclosing a solution of
DNA, carbohydrates, RNA, and proteins of various complexity.
We are interested in how this physiology and architecture
inform the evolutionary possibilities for bacteria in terms of
the physics of both internal physiology and interaction with an
external environment.
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Considering interactions with the external environment,
bacteria live in a world characterized by a low Reynolds number.
That is, in conditions where viscous forces dominate over inertial
forces. Within this low-Reynolds world one of the most common
forms of motility is run/tumble chemotaxis, in which bacteria
swim linearly for a variable time and then perform a random
reorientation before swimming again. This form of motility is an
asymmetric process, and allows for both a random-walk search
and gradient following through biasing the random walk by
dynamically adjusting the probability of tumbling (Berg, 1993).
Within the context of motility it is also possible to calculate our
metric P. It has been shown that the minimum power required
for run-tumble chemotaxis is approximately given by

Bmot =
kTD

a2
+ 3a3 (21)

where k is the Boltzmann constant, T is absolute temperature, a is
again the cell radius, and D is the molecular diffusivity (Mitchell,
2002). This result follows from considerations of the rotational
and translational diffusion of cells, combined with the required
distance a cell must move to detect a change in the concentration
of a resource (Purcell, 1977; Mitchell, 1991, 2002; Berg, 1993).
This cost must be a fraction of the total metabolic power, which
in bacteria is known to scale with cell volume, V , according to

B = y0V
α (22)

with α = 1.76 and y0 = 3.76 × 1014(W m−α) (DeLong et al.,
2010). The ultimate limit of motility is the point where its costs
equal the total available metabolic energy, which can be found
by setting Equation (22) equal to Equation (21) and substituting
a = (3V/4π)1/3. Taking D = 5.19 × 10−10 (m2 s−1) and
T = 298.15 K, the numerical solution for this lower limit is
Vmin = 2.72×10−21 (m3). This limit can also be defined in terms
of our metric for performance, P = 1−Bmot/B, where Figure 6A
illustrates that for most of the range of bacterial sizes P ≈ 1
and Bmot is a negligible fraction of total metabolic power. This
calculation also illustrates that before reaching the ultimate limit
described above (P = 0 atVmin), P decreases sharply (Figure 6A),
thus defining an intermediate size at which motility costs become
radically more expensive, and may become selected against. This
precipitous decrease occurs as Bmot increases sharply, due to the
increasing significance of overcoming molecular diffusion.

Turning to the internal constraints of the bacterial body plan,
recent efforts have shown that there are significant changes in
the physiological processes and composition of bacterial cells
across the range of cell size (Kempes et al., 2016). Many of these
follow power-law relationships with asymptotic behavior that
arise at distinct scales. It has been shown that the partitioning
of total metabolic power between growth and maintenance
purposes predicts the scaling of population growth rate across
bacteria, including a lower-bound on cell size where maintenance
metabolism exceeds total metabolic rate. This lower bound on
size also agrees with considerations of physical space, where
the combined scaling of all cellular macromolecules entirely
fills the cell at a similar size and further constrains this lower

bound. The total macromolecular pool is dominated by DNA
and protein content at the small end of bacteria due to a
sub-linear scaling of both. This same scaling causes these two
macromolecules to be diluted in concentration with increasing
bacterial cell volume. However, other theory has shown that the
requirements for ribosomes can be predicted to scale roughly
linearly with cell volume over a large range of cell volumes, up
to a point where the requirement for ribosomes increases rapidly
and exceeds total cell volume, thus setting an upper limit of
bacterial cell sizes. This limiting behavior occurs because there
is finite-volume singularity—at a distinct cell volume an infinite
number of ribosomes are required—caused by the point where
the cell division time is faster than the time it takes a ribosome to
replicate itself.

These set of space limitations can be easily translated into
our metric M by taking S to be the total volume of a cell and
Sf to be the known scaling of protein, DNA, and ribosome
volumes (seeAppendix A.3 for the details of each of these scaling
relationships). For example, given the total protein volume in the
cell, Vp, the morphological metric is defined byMp = 1− Vp/V .
Figure 6B provides the overlay of the performance curves for
each of the three components, illustrating that at the small end of
cell size proteins and DNA causeM to go to zero, and at the large
end ribosomes have the same effect. Similar to our considerations
of motility, we observe that over a wide range of intermediate cell
sizes M ≈ 1 for considerations of the proteins and ribosomes,
up to, for example, the point where the previously described
“ribosome catastrophe” occurs.

4.3. Vascular Organisms
4.3.1. Trees

Terrestrial vascular plants are defined by a body plan that
couples photosynthesis in leaves suspended in the atmosphere to
nutrient and water acquisition from the soil. As such, the vascular
system—which transports sugars from the leaves and nutrients
from the roots to the rest of the tissues—is of central importance.
Trees are also characterized by the need to effectively fill the entire
canopy space in order to collect as much sunlight as possible and
consequently to be as tall as possible to outcompete other plants
for sunlight and avoid being shaded. These various constraints
have led to a variety of perspectives for understanding plant
allometry together with an extensive set of theories, calculations,
and measurements.

Given the competitive importance of tree height, there have
been many proposed mechanisms for determining its ultimate
limit. These mechanisms have focused on both mechanical
and hydraulic constraints. The mechanical constraints were
originally addressed quantitatively by McMahon (McMahon,
1973; McMahon and Kronauer, 1976) who pointed out that the
maximum possible height of a tree was set by the buckling limit
(small lateral displacements cause failure) of its trunk, and this
could be calculated using a formula first derived by Greenhilll
from the classic bending moment equations for solid materials:

hmax = C

(

E

ρ

)1/3

d2/3 (23)
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A B

FIGURE 6 | (A) The minimal power requirements for motility in bacteria as a function of total cell volume and given as the metric P, which is 1 minus the percentage of

total metabolic power. (B) The volume requirements for DNA, protein, and ribosomes in bacteria as a function of cell volume and given as the metric M = 1− Vc/V,

where Vc is the volume of each component.

where ρ (g m−3) is the density of wood, E (g m−1 s−2) is the
elastic modulus, d (m) is the trunk diameter, and C = 0.792 (s2/3

m−1/3) when the force is distributed over the entire column (e.g.,
this model considers a single beam with a uniform radius over
its height) (McMahon, 1973; McMahon and Kronauer, 1976).
This relationship has the same scaling between height and radius,
h ∝ d2/3, as that for trees across all sizes and is in good agreement
with data. However, using measured value of E (g m−1 s−2) ≈

1.05 × 105 (McMahon, 1973; McMahon and Kronauer, 1976),
this relationship leads to a critical height which is roughly 3
to 4 times larger than the observed scaling. Trees exist in a
region of parameter space far below this upper bound and these
mechanical constraints don’t seem to limit the tallest possible
trees at any size nor set an upper bound on the ultimate tallest
possible vascular plant.

If no other physical constraints predicted this same scaling,
then one could argue that trees have simply evolved to be a
fixed safety factor from the mechanical limit and, provided that
they conform to the h ∝ d2/3 scaling of height to diameter,
there is no upper bound on tree height. However, arguments
related to hydraulic limits and space-filling predict the same
scaling relationship between height and radius as that from the
mechanical constraints and, at the same time, set an upper bound
on the tallest possible trees as discussed below (West et al.,
1999; Niklas and Spatz, 2004, 2006; Niklas, 2007). Nevertheless,
the buckling arguments are important in the broader space
of all evolutionary possibilities. For example, these constraints
could be relevant to vascular plants with alternate body plans,
alternate evolutionary trajectories, or at earlier stages of vascular
plant evolution compared with those that seem to conform to
hydraulic limits.

There are several approaches to considering the hydraulic
limits to tree height centered either on the requirements for
conductive tissue or the feasibility of pumping fluid over the
length of a single vascular tube. For the conductive tissues
arguments there are two main perspectives. The first uses the
observations and/or assumptions that (i) annual growth scales
with leaf mass, (ii) annual growth scales with total plant mass

to the 3/4 power, (iii) the flux of water through the leaves must
match the flux through the conductive tissue so that leaf mass
scales with the hydraulically functional cross-section, and (iv) the
mass of the roots scales isometrically with the mass of the stems
which in turn is proportional to the cross-sectional area times
length. From these assumptions it can be shown that tree height,
h, is related to diameter, d, as

h = k1d
2/3

− k2 (24)

where a good fit to data is obtained with k1 = 34.64 (m1/3) and
k2 = 0.475 (m) (Niklas and Spatz, 2004, 2006; Niklas, 2007).
For large trees this relationship parallels the Euler-Greenhill
predictions, but also does a better job of capturing observed
curvature in the data away from a power law at the small
end of trees. While this relationship does not predict an upper
bound on tree size it does predict a lower bound of dmin =

(k2/k1)
3/2 = 0.0016(m) for h = 0, which is roughly the diameter

of petioles (the segment of the plant that attaches leaves to the
stem) suggesting that this smallest size agrees with the minimal
vascular plant of a single leaf and stem. This limit can also
be understood in terms of our metric M, where we can define
M
(

h
)

= 1 − dpetiole/d. Here M is defined in terms of h as
the overall measure of size, d is the required diameter, and its
ratio to the petiole diameter, dpetiole, defines performance. Given

the above relationships, M
(

h
)

= 1 −
k
3/2
1 dpetiole

(h+k2)
3/2 , which quickly

approximates unity for h > 0. The above derivation of the
equation for h shows that this lower bound is due to differences
in the observed scaling of the leaf mass and trunk diameter with
total plant mass, representing underlying hydraulic constraints.
However, since this relationship relies on several empirical
scaling relationships it is difficult to see exactly which physical
constraints are being optimized.

The second perspective on hydraulic limits uses the
assumptions of (i) canopy space filling, (ii) mechanical stability,
and (iii) hydraulic resistance minimization within a fractal-like
architecture to optimize the overall plant body plan (West et al.,
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FIGURE 7 | The fraction of trunk cross sectional area required for conductive

tissue as a function of trunk radius and represented as the metric M.

1999). The optimization is performed in terms of the various
ratios of the vessel and branch sizes and a detailed calculation
of the total resistance of the entire vascular network. Similar to
the perspective above, the results predict that h ∝ d2/3, but
also predict a maximum height where the entire trunk becomes
conductive tissue. This can be seen by choosing Sf = Act =

πnNa
2
Nr

−7/3
N r7/3, the total area of connective tissue in the trunk,

where nN is the total number of vascular tubes in a petiole, aN
is the radius of a petiole tube, and rN is the radius of the entire
petiole. If we take S to be the total area of the trunk, then we have
thatM = 1− Act/

(

πr2
)

or

M = 1− nNa
2
Nr

−7/3
N r1/3 (25)

which is plotted in Figure 7 using the typical values of nN =

200, aN = 1.0 × 10−5 (m), and rN = 0.5 × 10−3 (m)
(West et al., 1999).

The maximum trunk radius and associated height is given by
M = 0, which corresponds to Act/

(

πr2
)

= 1,

rmax = n−3
N a−6

N r7N , (26)

and

hmax = lNn
−2
N a−4

N r4N(1− n−1/3)−1 (27)

where n ≈ 2 is the number of branches at each generation and
lN ≈ 0.04 (m) is the length of a petiole. Given the values listed
above, these relationships predict rmax ≈ 1(m) and hmax ≈

100(m) in good agreement with record trees. This approach thus
predicts the fundamental limit on vascular plants, in addition
to the cross-species scaling, by co-optimizing the dominant
physical constraints of both hydraulic resistance and mechanical
stability. This is a case where the accurate prediction of the limit
corroborates that the dominant constraints of the system have
been identified.

4.3.2. Mammals

Similar to vascular plants, a theory of fractal vascular networks
regulatingmetabolic supply has been developed for the metabolic

scaling of mammals and broadly predicts a variety of observed
allometries and scaling relationships (West et al., 1997). This
theory considers transport to be the rate-limiting step for
metabolism and that optimizing the transport network by
minimizing its cost predicts overall metabolic rate and a host
of downstream effects. This theory is impressive not only in its
ability to predict interspecific scaling relationships across a wide
range of body sizes, but also for its ability to predict asymptotic
limits to the mammalian body plan. This is possible because the
theory provides a detailed description of the coupling of the body
plan to the underlying physical and geometric constraints. For
example, for very small mammals, the pulsatile waves emanating
from the heart are unable to reach the capillaries because of
the dissipation of energy due to hydraulic resistance along the
path of the branching vascular tubes. Previous work has shown
that in all mammalian vascular systems there is a point in the
network where pulsatile flow becomes laminar flow, and this
cross over occurs at r2c /lc ≈ 8ν/ρc0, where rc and lc are the
critical radius and length of a vascular segment at the branching
generation in the network where the cross over occurs, ν = 4
(g m−1 s−1) is the viscosity of blood, ρ = 106 (g m−3) is
the density of blood, and c0 = (Ew/2ρrc)

1/2 = 6 (m s−1),
where E is the modulus of elasticity of the vessel with a wall of
thickness w (West et al., 2002). As mammals become smaller the
branching generation at which this cross-over occurs decreases
and eventually becomes the aorta itself, and corresponding to a
dramatic decrease in efficiency due to an overdamped vascular
system. From this perspective, we can define the metric M in
terms of the system damping by takingM = 1−

(

r20/l0
)

/
(

r2c /lc
)

,
where r0 and l0 are the dimensions of the initial segment (aorta)
of the vascular network. The lower limit of mammal size is given
by r20/l0 = r2c /lc. Noting that the aorta allometry of r0 = a1m

3/8

and l0 = a2m
1/4, where a1 and a2 are allometric normalization

constants, the preceding equality is equivalent to
a21m

3/4

a2m1/4 =
8ν
ρc0

,

which defines the minimum size as mmin =

(

8νa2
ρc0a

2
1

)2
. Given

that a mammal of m = 10, 000 (g) has the vessel dimensions
of r0 = 0.0075 (m) and l0 = 0.2 (m), then a2/a

2
1 = 355, 556

(g m−2), and the minimum mammal size is predicted to be
mmin ≈ 3.6 (g) (West et al., 2002). This lower limit is close
to observed sizes of several species of shrew which are the
smallest mammals. Similar to many of the other analyses above,
this example illustrates that even when a type-1 physiological
optimization is performed at every body size, there will still
be a body size where even optimal performance represents an
impossible physiology.

5. DISCUSSION

We propose that it will eventually be possible to enhance
our understanding of the complex selective factors involved
in evolution by analyzing the overlay and co-optimization of
physical constraints for a particular body plan at a given size
scale. Here we have suggested that the first step is to understand
the limits of a body plan that is optimized to a particular set
of dominant constraints. Moving forward we need theories that
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establish a hierarchy of physical constraints for identified types of
body plans of organisms. We also need theories that can predict
the interconnected temporal evolution of physiology, body size,
and physical constraints.

Implicit in a full theory of evolution under constraints is the
need to identify and integrate the ecological constraints that
organisms face in addition to the phylogenetic and physical
constraints discussed above. Ecological constraints emerge, for
instance, from interactions among the set of coexisting organisms
through predator-prey dynamics, competition for overlapping
resources, and via more complicated symbioses, coevolution, and
niche construction. For example, recent theoretical work on the
population dynamics of foragers using a single shared resource
has connected basic allometric physiology with the dynamics of
resource consumption, as well as consumer starvation, growth,
and reproduction (Yeakel et al., 2018). This work shows that
Damuth’s law—the observation that the population density
(Individuals m−2) of a species is proportional to body mass to the
−3/4 power (Damuth, 1987)—is predicted as the natural steady
state of the complicated dynamics of reproduction, starvation,
and mortality, where the rate of each of these processes is
based on the underlying energetics of allometric metabolism.
More importantly for our considerations here, this model of
interacting foragers also shows that larger mammals should
outcompete smaller mammals up to a maximum mammalian
size. This maximum mammalian size occurs at a point where
the population consumes all available resources and perishes.
This limit is supported by data, where the predicted maximum
size of a mammal is roughly 3.5 times larger than the largest
observed terrestrial mammals, which are in the fossil record
(Yeakel et al., 2018). In contrast to our analyses here of single-
organism physiology, this maximum size limit emerges as an
ecological-scale interaction between an entire population and
available resources.

Environments may also introduce additional constraints

through the expected variation of conditions. For example, one
would expect selection on breaking resistance (e.g., Table A2 in
Appendix) in trees to depend not on typical wind speeds, but
rather on the probability of unusually high wind speeds over the
lifetime of a tree. Earlier we introduced the formalism presented
by McNeil Alexander in which the evolution of safety factors is
dictated by the equation φ(s) = l(s)F + U(s) (Alexander, 1996).
As noted earlier, trees seem to have a safety factor of roughly

four which has also been directly verified in detailed analyses of
bending under wind stress. A broader literature on the economy
of wood density has quantified the variation of safety factor in
response to a variety of competing evolutionary considerations
including life-history strategies for resource acquisition (e.g.,
quick growth for sunlight), adult stature, wood production cost,
and wood resistance to decay and herbivores. The effect of
decay and herbivory on the strength of the wood in trees also
varies during the lifetime of a tree. The formalism of Alexander
can thus be expanded to encapsulate all of these limits, which
goes beyond our focus on the physiology and biomechanics
of individual organisms. An important challenge of such an
approach is defining l(s) and U(s) under a complex set of species

interactions and distributions that occur under various changing
environmental conditions and stresses. In our formalism, the
challenge becomes defining the matrix g in such a way that
each entry represents an entire life-cycle value that integrates the
probabilities of various environmental and competitive effects.
Future efforts should focus on developing new, and expanding
existing, compendia of constraints for particular body plans and
integrating these into detailed evolutionary models. If this is
done, it may be possible to make ever more specific evolutionary
and ecological predictions from physical constraints.

Finally, since the framework presented here only requires the
specification of organism structure and physical constraints, it is
amenable to general considerations of life for origins of life and
astrobiology research.
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A. APPENDIX

A.1. Connection to Ecological Constraints
The full treatment of fitness considers how all traits are
constrained by the interaction of both physiological and
ecological factors with physical constraints. Ecological effects
consist of all of the features affecting the effective number of
offspring such as predation, likelihood of diseases, or starvation
risk. From this perspective fitness can be written as
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which can be rewritten as

Et = gEp+ eEp (A2)

where pp is a particular physical constraint, gt,p is a term
representing the net benefit attributed to a particular trait due
an organism’s physiology interacting with a physical constraint,
and et,p is the net benefit attributed to a particular trait due to
an ecological interaction with a physical constraint. It should be
noted that et,p will generally depend on complicated ecological
quantities such as the density of predators. In all of these cases,
lowercase subscripts refer to to an arbitrary element of a matrix
or vector, such that tt is an arbitrary element of Et, and uppercase
subscripts refer to the last element where P is the length of Ep, T is
the length of Et, and g is a T × Pmatrix.

It should be noted that the sort of linear separation performed
in Equation (A2) is only possible if there are not traits that can

TABLE A1 | Definitions for the physical constraints framework.

Definition Notes

tt Contribution of a particular

trait to overall fitness

Et = gEp

pp A particular physical

constraint

gt,p Net benefit attributed to a

particular trait due to a

physical constraint

f Fitness =
∑T

t=1 tt

Bi Contribution of trait i to

overall metabolic energy

Ci Metabolic cost of trait i

dm
dτ

Growth rate of an individual = [
∑

i Bi (τ ) −
∑

i Ci (τ )]/Em

P (m) Metabolic metric of

performance

= 1− Cf (m)/B(m) where Cf (m) is the

cost of a particular trait, B(m) is the

total metabolic rate of an organism

M (m) Morphological metric of

performance

= 1− Sf (m)/S(m), where Sf (m) is the

size of a trait, and S(m) is the

maximum allowable size

only be described in terms of functions of both gt,p and et,p
together. In addition, an implicit assumption in optimizing a
particular trait according to maximizing only

∑P
p=1 gt,ppp is that

the physiological effects on fitness are larger than the ecological
effects, or that

∑P
p=1 gt,ppp ≫

∑P
p=1 et,ppp, for a particular

trait t. It could be the case that for some other trait, t′, the
fitness effects are determined by

∑P
p=1 et′,ppp ≫

∑P
p=1 gt′ ,ppp, in

which case the ecological optimization would be most relevant
for understanding the trait and overall fitness. In some cases,
considering both terms may be required for understanding a
trait. Here we mostly focus on traits where the physiological
effects dominate.

A.2. Detailed Example of Trait
Co-optimization
The ultimate goal of the general framework is to consider the
tradeoffs amongst multiple traits in optimizing growth rate. To
illustrate this procedure we can analyze the tradeoffs between two
traits within our single-cell example. Consider the investment in
the number of transporters and investment in chemotaxis and
competing and complementary ways to increase total resource
uptake to the cell. In such a situation, we would have that
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where g (a, vs, n, S∞,D) is a complicated function parameterizing
diffusion through a boundary layer and the characteristics of the
fluid. The power output required for swimming at a particular
speed is given by 6πηav2s where vs is the swimming speed and η

is the viscosity of the fluid. In this example the first row represents
the trait of uptake through transporters and the third row the
trait of swimming. However, since these two traits must be co-
optimized given the mutual dependence on swimming speed,
vs, we could combine them into a single row representing the
combined trait of resource uptake:
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TABLE A2 | Various mechanical features are proportional to body and leg dimensions.

Mechanical feature Proportionality to body or

leg dimensions

Factor by which

feature changes if

body length doubles

Factor by which weight-bearing

performance changes if body

length doubles

Force on leg due to body weight, or when landing during locomotion (F ) L3
B

8 –

Maximum force exerted by a muscle (Fmax ) d2 4 –

Cost to produce skeleton for leg L(R2 − r2) 8 –

Weight of skeleton of leg (and thus cost to move leg) L(R2 − r2) 8 –

Force exerted by end of leg when muscle contracts with force Fmax Lm/L 4 0.5

Velocity of foot when muscle shortens at Vmax L/Lm 1 –

Resistance to bending (minimize deflection, Figure 5B) E(R2 − r2)/L3 2 0.25

Resistance to Euler buckling (maximize force required to cause elastic

bowing, Figure 5C)

E(R2 − r2)/L2 4 0.5

Resistance to local buckling (maximize critical local stress, σLcrit required

to cause kinking, Figure 5D)

E(R2 − r2)/R 1 0.125

Resistance to breaking (minimize maximum stress, σmax in skeleton) (R2 − r2)/LR 4 0.5

The mechanical performance of the exoskeleton of an insect leg is shown for the simple case of a hollow circular cylinder. The factors by which those mechanical features change if the

body of an insect doubles in length are shown in column 3. For simplicity, we assume that growth is isometric, that the mechanical properties of the material of the exoskeleton do not

change, and that the muscle properties (physiology, force production per area normal to muscle fibers, and maximum shortening velocity, Vmax ) are the same at both sizes. The factor

by which weight-bearing performance changes if body length doubles (column 4) is the ratio of the factor by which the load that the leg has to bear increases (F, row 1) to the factor by

which that feature changes. This is only calculated for aspects of performance that affect load-bearing by a leg, either when standing or during locomotion. LB = length of insect body,

d = diameter of muscle perpendicular to axis of muscle fibers, Fmax = maximum force muscle can produce, and E = elastic modulus (stiffness) and σbrk = breaking stress (strength)

of the exoskeleton material. Stress (σ ) is force per cross-sectional area of material bearing that force. All other symbols are shown in Figure 5.

The trait of resource uptake could then be optimized
independently to find the ideal combinations of n and vs
across a range of cell sizes. The cost of the cellular volume would
only matter again in terms of solving for an upper bound on cell
size where dm/dτ = 0.

It should be noted that in all of our illustrative examples, the
matrices involved can be condensed into a single row where the
summation of costs and benefits is simply the dot product of
vectors. This scenario would not be the case formore complicated
trait optimizations, and, in general, summations of the form of
Equation (5) will allow for optimizations where constructing the
matrices is not simple or useful.

A.3. Bacterial Composition
Previous efforts have characterized the scaling of the major
macromolecular components of bacteria (Kempes et al., 2016),
where the volume of the DNA follows

VDNA = d0V
βD
c (A6)

where d0 = 3.0 × 10−17 (m3 DNA ·
(

m3 Cell
)−βD ) and βD =

0.21 ± 0.03, while the volume of expressed proteins scales more
steeply with cell size following

Vp = P0V
βp , (A7)

where P0 = 3.42 × 10−7 (m3 Protein ·
(

m3 Cell
)−βp ), and βp =

0.70 ± 0.06. Taken together with the known scaling of growth
rate, defined by µ ≈ µ0V

βµ , the volume of expressed proteins
determines the required volume of ribosomes which follow

Vr ≥
vrP0V

βp l̄p

v̄p

(

ln (2)
(

µ0V
βµ
)−1

rr − l̄r

) . (A8)

TABLE A3 | Description of parameters for bacteria.

Param.Definition Value Notes

BACTERIA

S∞ Background concentration

of a resource in a fluid

0.0005 (mol m−3) Value for

glucose

n The number of uptake sites

on the cell surface

a Radius of the cell (m)

s Radius of an uptake site 3.91× 10−9 (m) (Szenk et al., 2017)

D Molecular diffusivity 6.73× 10−10 (m2 s−1) (Koch, 1996) Value for

glucose

Y Yield coefficient for a

limiting resource

2.87× 106 (J mol−1) (Tran and Unden,

1998)

Value for

glucose

βn Cost to produce one

transporter

1.09× 10−19

(W transporter−1) (Kempes et al.,

2017)

Found

over a

lifetime

βv The cost of creating and

maintaining an existing unit

of biomass over a lifetime

4.09× 105 (W m−3) (Kempes et al.,

2012, 2016, 2017)

VASCULAR PLANTS

ρ Wood density 6.18× 105 (g m−3) (McMahon, 1973)

E Elastic modulus of wood 1.05× 108 (g m−2) (McMahon, 1973;

McMahon and Kronauer, 1976)

Act Area of conductive tissue

nN Number of vascular tubes in

a petiole

200 (West et al., 1999)

aN Radius of a petiole tube 1.0× 10−5 (m) (West et al., 1999)

rN Radius of the entire petiole rN = 0.5× 10−3 (m) (West et al., 1999)

n Number of branches at

each generation

2 (West et al., 1999)

lN Length of a petiole 0.04 (m) (West et al., 1999)

MAMMALS

ν Viscosity of blood 4 (g m−1 s−1) (West et al., 2002)

ρ Density of blood 106 (g m−3) (West et al., 2002)
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where βµ ≈ 0.64, µ0 = 4 × 107 (s−1 ·
(

m3 Cell
)−βµ ),

vr = 3.04 × 10−24 m−3 is the average volume of a ribosome
(Zhu et al., 1997; Gabashvili et al., 2000), v̄p = 4.24 ×

10−26 is the average volume of a protein (Neidhardt et al.,
1996; Erickson, 2009; Phillips et al., 2012), l̄r = 4566 bp
is the average length of a the combined ribosomal protein
transcripts (Bremer et al., 1996), and rr = 63 bp s−1

is the transcript processing rate (Bremer et al., 1996), and

l̄p = 975 bp is the average length of a protein transcript
(Dill et al., 2011).

A.4. Definitions and Parameter Values
Table A1 provides a list of definitions for the main features of our
general framework,Table A2 provides definitions for insects, and
Table A3 provides parameter definitions and values for bacteria,
trees, and mammals.
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Landscapes and the ecological processes they support are inherently complex systems,

in that they have large numbers of heterogeneous components that interact in multiple

ways, and exhibit scale dependence, non-linear dynamics, and emergent properties.

The emergent properties of landscapes encompass a broad range of processes that

influence biodiversity and human environments. These properties, such as hydrologic

and biogeochemical cycling, dispersal, evolutionary adaptation of organisms to their

environments, and the focus of this article, ecological disturbance regimes (including

wildfire), operate at scales that are relevant to human societies. These scales often

tend to be the ones at which ecosystem dynamics are most difficult to understand

and predict. We identify three intrinsic limitations to progress in landscape ecology, and

ecology in general: (1) the problem of coarse-graining, or how to aggregate fine-scale

information to larger scales in a statistically unbiased manner; (2) the middle-number

problem, which describes systems with elements that are too few and too varied to

be amenable to global averaging, but too numerous and varied to be computationally

tractable; and (3) non-stationarity, in which modeled relationships or parameter choices

are valid in one environment but may not hold when projected onto future environments,

such as a warming climate. Modeling processes and interactions at the landscape

scale, including future states of biological communities and their interactions with each

other and with processes such as landscape fire, requires quantitative metrics and

algorithms that minimize error propagation across scales. We illustrate these challenges

with examples drawn from the context of landscape ecology and wildfire, and review

recent progress and paths to developing scaling laws in landscape ecology, and relatedly,

macroecology.We incorporate concepts of compression of state spaces from complexity

theory to suggest ways to overcome the problems presented by coarse-graining,

the middle-number domain, and non-stationarity.

Keywords: coarse-graining, complex systems, complexity, hierarchical organization, macroecology, middle-

number problem, non-stationarity, scaling relationships

INTRODUCTION

Landscapes and their associated ecosystems are often treated as “complex systems” (Allen and
Starr, 1982; Odum, 1983; Schreiber, 1990; Brown et al., 2002; Maurer, 2005; Moritz et al., 2005;
Falk et al., 2007; McKenzie and Kennedy, 2011; McKenzie and Perera, 2015; Littell et al., 2018).
Landscapes—and the ecological processes they support—share properties with other complex
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systems in that they contain large numbers of heterogeneous
components that interact in multiple ways, exhibit non-
linear dynamics, and have emergent properties (hereafter,
“emergence”). Ecological landscapes have feedbacks and
interactions across scales, and show scale dependence, whether
they appear to be simple or complex (Wu and David, 2002;
Figure 1). Indeed, properties such as scale dependence and
emergence are not simply features that complex systems share;
they are diagnostic attributes of them.

Although “complex” and “complicated” are often used
interchangeably in the vernacular, complex systems have
a number of important properties that go beyond mere
complication. Various definitions for complexity have been
proposed in different contexts (Kolmogorov, 1963; Gell-Mann
and Lloyd, 1996; Bialek et al., 2001; Ladyman et al., 2013), but
in general, more complex systems require more information to
describe any given state of that system (Table 1 defines and
explains bolded terms). Models of a complex system may also
be complex (Kolmogorov, 1963; Edmonds, 2000), or have simple
rules generating complexity, as in the case of fractals; and
model complexity is sometimes used as an overall measure of
relative complexity. In these ways, complexity and information
theory (Shannon, 1948) are fundamentally linked. Complexity
is sometimes associated with the physical entropy, rather than
information entropy of a system (Figure 2), and quantitative
relationships between complexity and both types of entropy have
been proposed (Wolpert, 2013).

As landscape ecology continues to develop as a field, it will
be productive to engage the knowledge and terminology that
have been developed in complexity science to define avenues
of progress. In this paper, we approach landscapes as complex
systems, and give examples of phenomena associated with
landscape-level complexity that are challenges to defining models
that cross scales of patterns and processes. We do not address
complexity per se, which is itself a subject of much theoretical
work (see Gell-Mann and Lloyd, 1996). Instead, we focus on
three features of complexity that are intrinsic limitations, or
challenges, to progress in landscape ecology. These features are:
(1) coarse-graining, or how to optimally aggregate fine-scale
processes to larger scales in a robust manner that minimizes
error (Levitt and Warshel, 1975; Turner et al., 1989; Gorban,
2006); (2) the middle-number problem, which affects systems
with enough elements to be computationally intractable, but
with elements that are too few or too varied to be amenable
to global averaging (Weinberg, 1975; O’Neill et al., 1986; Kay
and Schneider, 1995; McKenzie et al., 2011a); and (3) non-

stationarity, which refers to relationships or parameter choices
that are valid in one environment in one domain (such as species
distribution models), that no longer hold when projected onto
other environments (Cooper et al., 2014), such as future scenarios
of altered climate (Turco et al., 2018; Yates et al., 2018). Even with
expected ongoing improvements in modeling, data collection,
and data processing, these limitations are less tractable than
other types of ecological modeling problems, such asmissing data
or variables. These limitations therefore represent underlying
conceptual challenges in the field of landscape ecology. We
describe different conceptual approaches that have been applied
to modeling of scaling and complexity for landscapes, review

their limitations and potential, and suggest potentially fruitful
directions for future research in landscape ecology.

PHENOMENA ASSOCIATED WITH

COMPLEX LANDSCAPES

The study of landscapes, disturbance processes and disturbance
regimes, and anthropogenic forcing of climate change occupies
a domain in parameter space in which phenomena and the
models that describe them become “complex” (Kolmogorov,
1963; Edmonds, 2000). When a system is described as “complex,”
it means that observed phenomena are intrinsically difficult to
model due to the dependencies or interactions between their
parts (which has been referred to as “bottom-up” control on
outcomes and system variables) or between a given system
and its environment (also known as “top-down” controls on
relationships among outcomes and system variables) (Reuter
et al., 2010). Complex systems such as landscapes or general
ecological systems have characteristics such as non-linearity,
scale dependence, and emergence that make physical and
ecological phenomena difficult to parse into independent
variables, and prevent easy transference across space or time,
or to different physical scales (Wiens, 1989; Yates et al., 2018).
Simplifying assumptions about complex systems, such as not
accounting for basic physical constraints (e.g., mass balance) in
food web models, or modeling ecosystems as closed systems will
lead to unrealistic results (Loreau and Holt, 2004).

In a complex system, emergent dynamics are not explained
completely by simple reducible components, future states of
the system may be deterministic and chaotic, or may contain
stochastic components, and causal mechanisms are challenging
to identify because any given component can act as both a driver
and a response due to feedback mechanisms. Furthermore, the
issue of prediction in complex systems poses a major challenge,
because many future outcomes are possible, and these systems
have high sensitivity to initial states of the system. The global
climate system is a well-known example of a complex system
with these properties. Because outcomes will be sensitive to initial
conditions and may not be entirely deterministic, predictions
about emergent behavior will never be perfectly accurate, even
with increasing amounts of data and better computational
resources (e.g., Lorenz, 1963; Figure 2). However, despite these
limitations, reliable predictions are possible over short time
horizons and for well-delimited questions where appropriate
empirical data are available.

Landscape ecology, and particularly issues related to wildfire
(a major focus of this manuscript), exemplifies many of these
properties of complex systems. For example, in landscape fire,
we often study the interplay and feedbacks between large-
scale, top-down drivers of wildfire, such as climate and human
land-use (Gill and Taylor, 2009), and more mechanistic and
smaller-scale bottom-up drivers, such as ignitions, fuel patterns,
and local topography (Falk et al., 2011; McKenzie et al.,
2011b; Parks et al., 2012). Landscape ecology seeks to describe
the dynamic relationships between ecological patterns and
processes across spatial scales, from plot or forest-stand level
to watersheds, from local regions to ecosections, or globally.
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FIGURE 1 | Landscapes vary in complexity. Panel (A) shows a southern Arizona grassland at Las Cienegas National Conservation Area, illustrating a landscape with

low taxonomic diversity, plant functional trait diversity, and topographic complexity. Panel (B) by comparison, has higher complexity, with a clear legacy of disturbance

by wildfire, high plant functional diversity and topographic complexity, and more interactions among a higher number of species. Photo from Mount Graham, in the

Pinaleño Mountains of Arizona. Ecosystems and ecology are shaped dynamically by bottom-up factors such as local topography, spatial clustering of resources, and

stochastic events such as ignitions, as well as top-down processes and controls such as temperature, precipitation, and other climatic factors. Disturbances such as

wildfire and insect outbreaks are influenced by these factors and others, including phylogenetic history of organisms and their disturbance adaptations, physical

structure and demography of organisms, and landscape history. However, knowing all of this information perfectly is not sufficient to predict fire behavior, initial ignition

points, or extent of insect-caused mortality, because the features of emergent phenomena (such as disturbance regimes) are highly sensitive to initial conditions and

may not be deterministic. Photo credits: E.A. Newman.

Properties common to all complex systems, including self-
organization, non-linearity, feedbacks, and robustness (including
lack of central control) are reviewed in Ladyman et al. (2013) and
elsewhere (Reuter et al., 2010). In studying the landscape ecology
of wildfire, complexity is particularly expressed as emergence
(section Emergence), landscape memory (section Landscape
Memory), landscape resistance (section Landscape Resistance),
and contagion (section Contagion). As a consequence, landscape
fire ecologists inevitably confront modeling complexity, and
must grapple with these problems through choice of variables,
scale, and delimitation of a system that lacks closed boundaries.

Emergence
Emergence refers to new patterns, processes, or structures that
appear at higher levels of organization in the observation of
phenomena that are not present at lower levels of organization.
Emergent phenomena are the products of causal mechanisms
at lower levels of organization, but they are expressed primarily
in behavior of high-order components. For example, many
individual mechanical parts of a watch, when organized correctly,
can track time together, but the individual parts cannot do
this by themselves. Similarly, the functioning of social insect
colonies results from the actions of individual worker insects with
different tasks, and vehicle traffic patterns are the emergent result
of individual drivers’ choices about travel. The property of life in
organisms is itself an emergent property of the organization of
molecules and biochemical pathways. Emergent processes must
be consistent with finer-scale laws and cannot violate them; for
example, biological processes have independent dynamics not
fully explained by the laws of physics, but they are nonetheless
subject to them.

Many phenomena of landscapes result from emergence,
including community-level structure and function, disturbance

regimes, physiognomy of vegetation (forested landscapes vs.
savannas, for example) and patch formation and dynamics
(White and Pickett, 1985; Wu and Loucks, 1995; Bormann
and Likens, 2012). Landscape patch patterns are often a legacy
of many disturbance events (Cuddington, 2011; Figure 3).
Landscape patches are identifiably distinct areas of any size in
the spatial pattern of a landscape, such as the mosaic of burned
and unburned areas in a large landscape wildfire. Burn-severity
patches are the emergent result of the landscape distribution
of fuels and fuel conditions, individual plant susceptibility to
heat damage to living tissues, topographic influences on fire
spread, fine-scale patterns of wind, and combustion physics at
the submeter scale. The size distribution and spatial structure
of the post-fire patches are primary drivers of finer-scale
landscape-ecological processes such as tree regeneration, which
is constrained by seed availability and suitable recruitment
environment, and future fire spread, which can either be
constrained or accelerated by fuel availability (Collins et al.,
2017; Davis et al., 2019). Such outcomes have led to the ideas
of downward causation (Campbell, 1974), in which processes
at lower levels (here regeneration and fire spread) appear to
be responding to emergent forcings, and contextual emergence
(Atmanspacher and beim Graben, 2009), or how contingencies at
more complex, higher levels of description provide the “context”
for outcomes at lower levels (Flack, 2017).

Landscape Memory
Landscape memory or ecological memory, is a generic term for
the legacies of landscape process and pattern, including their
longevity and the strength of their influence on current landscape
dynamics (Peterson, 2002; Turner, 2005; Johnstone et al., 2016).
It also includes concepts of legacy effects of prior disturbances
and use of the landscape (Cuddington, 2011). Johnstone et al.
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TABLE 1 | Common terms in complexity science, as related to landscape complexity.

Term Explanation

Coarse-graining Any method for aggregating finer-scale processes or patterns to larger-scale summaries.

Emergence New patterns, processes, or structures that appear at higher levels of organization in the observation of phenomena

that are not present at lower levels of organization. Emergence of patterns in data is produced by coarse-graining.

Fractal A geometric relationship or mathematical curve that can be characterized by a fractional dimension. Fractals may or

may not be strictly self-similar, in which key elements will appear exactly the same when viewed at multiple scales.

Hierarchical organization A multi-level structure of entities (e.g., ecosystems or landscapes) in which higher-level structures act as constraints on

those below them, and lower-level structures act as forcings on those above them.

Information entropy Information entropy is a way of quantifying how much uncertainty there is in associating with a particular outcome with

an underlying probability distribution (Shannon, 1948).

Lacunarity An algorithmic way of characterizing the spatial configuration of gaps in the dominant components of a spatial pattern

(such as asymmetry or size variation of gaps). Lacunarity relies on a box-counting procedure and the results of the

analysis are therefore dependent on the scale chosen. Lacunarity analyses that produce power-law type relationships

are indicative of power-law (fractal) properties.

Middle-number problem Any analysis or computation for which the individual elements are too numerous to be treated singly, but too varied to

be characterized sufficiently by statistical summaries such as averages.

Non-stationarity Formally, this is a property of any stochastic process whose moments are different if sampled at different points in the

process. More broadly, and as we use it here, it refers to the defining parameters of a process or a quantitative

relationship being non-constant over space or time. An example is the coefficients of a regression fit, which may vary

with new predictor and response variables.

NP-hard problems Non-deterministic polynomial time, or NP, problems are those for which the time taken to solve them increases

exponentially (i.e., not in polynomial time) with the number of instances. NP problems belong to a complexity class of

their own. NP hard problems contain all the computational problems whose difficulty has the lower bound of at least as

hard as the hardest problems that are “in NP.” An example is the famous “Traveling Salesman” problem, whose

computational time increases exponentially with the number of cities visited. NP problems are peculiar, however, in that

if a specific solution is proposed, it can be checked for accuracy in polynomial time.

Parameter space The domain of values in which includes all possible combinations of all variables or parameters in any given

mathematical model. This domain can be represented as a multi-dimensional space. Realized values of the parameter

space will often be only a subset of the possible combinations available. This concept is distinct from phase space,

which describes only the possible initial conditions of the system.

Physical entropy A statistical measure of the disorder in a physical system. The more likely a physical state is for a given system, the

higher the physical entropy associated with that state is. This concept is distinct from information entropy, but shares

mathematical similarities.

Self-organization A process in which spontaneous order arises from a heterogeneous system, in which elements of a system interact in

a way that increases their structure or complexity. Self-organization refers to more than just the formation of patterns

(and the term may be overused in the ecological literature to characterize patterns). True self-organization requires a

repeatable cumulative process; for example, an “auto-catalytic set” of molecules whose repeated interactions build

more complex structures (Kauffman, 1986). There are few true cases of self-organization in landscape ecology

(McKenzie and Kennedy, 2012), with the possible exception of the formation of termite mounds, fairy circles, and mima

mounds (e.g., Griffon et al., 2015).

State The condition of a system at a particular moment or time, as described by all of the parameters that contain

information about that system. The state of a system does not contain information about rates, or about previous

states of that system. A snapshot will produce an estimate of a state, whereas at least two measurements are needed

for a rate. States of a system can be very difficult to estimate.

Tractable (i.e., computationally tractable) Informally, tractable problems are those which can be solved. More technically, “computationally tractable” problems

are solvable in exponential time, rather that polynomial time. That is, tractable problems are not NP-hard problems.

When fine-scale calculations are intractable, coarse-graining may sometimes be used to lower the complexity of the

problem from NP to not NP.

These terms are used throughout this paper (appearing in bold) and are discussed in more detail here.

(2016) decompose ecological memory into two forms of legacies:
informational, which derives from species life-history traits and
adaptive potential; and material, which encompasses physical
legacies such as soil and seed banks. In the context of fire regimes,
landscape memory can be short-lived and “ephemeral”; or long-
lived and “persistent,” depending on the frequency and severity
of disturbances (van Mantgem et al., 2018). A grassland with
frequent fire and rapid regrowth may have a relatively short-
term landscape memory for any particular fire event, whereas
the legacy of wildfire in a forest with long-lived tree species may

persist for multiple centuries (Figure 3). McKenzie et al. (2011b)
propose a spatio-temporal domain of landscape memory as a
function of scalable elements of fire regimes (section Energy and
Regulation Across Scales).

In wildland fire, the legacy of individual fire events and
the properties of the dominant plant community form a
dynamic system in space and time. For example, the behavior
of a wildfire (rate of spread, flame length, heat output
per unit area and time) is conditioned at each moment
of combustion by multiple properties of topography (slope,
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FIGURE 2 | Schematic relationship between entropy and complexity. Entropy

increases monotonically with increasing scales of physical systems, whereas

complexity increases from (1) the region of fundamental physical models, (2) to

the “middle-number domain,” but then decreases (3) as large systems are

described adequately by aggregate properties. In region (1), models are

deterministic and exactly solvable. In region (2), complex behavior of the

system is controlled by interacting top-down and bottom-up processes, and

models therefore will not provide perfect predictions of data. In region (3),

statistics are highly aggregated for large numbers of interacting elements, and

general laws emerge (for example, the Ideal Gas Law, the species area

relationship in macroecology, or annual wildfire burned area at subcontinental

scales).

FIGURE 3 | Relationships between landscape memory and scales of time (T)

and space (S) of landscape disturbances. The “landscape memory” of a

disturbance decreases as the ratio of disturbance interval to recovery interval

increases, and the ratio of disturbance size to patch size of the affected

landscape increases. Revised, with permission, from McKenzie et al. (2011b).

aspect, topographic position), weather (wind direction, air
temperature and humidity, precipitation, ignition sources such
as lightning), and vegetation (woody and herbaceous biomass,

three-dimensional spatial distribution, water content of live and
dead fuels). Fire behavior interacts with species’ life-history traits
and effects on soils to constrain individual survivorship and
mortality, the primary metrics of fire severity (Keeley, 2009).
Plant condition and prior fire exposure also influences post-fire
mortality (van Mantgem et al., 2013, 2018).

The behavior and effects of wildfire then set the stage for
post-fire ecological and hydrologic processes. Soil stability and
permeability strongly regulate the speed with which vegetation
can become re-established; severely burned hydrophobic soils
take longer to become plant-suitable, and some plant guilds
may be excluded initially by soil properties alone. The landscape
mosaic of burn-severity patches and residual vegetation governs
the post-fire trajectory, especially in large (>103 ha) patches with
few or no surviving trees. These areas must be recolonized by
dispersing seeds from relict tree islands or adjacent surviving
trees, which is a strongly scale-regulated process because the
effective seed dispersal radius of many species is 250m or
less, and successful seedling establishment can be limited by
the availability of safe sites and suitable climate (Stevens-
Rumann and Morgan, 2016; Davis et al., 2019; Law et al., 2019).
Recolonization of large high-severity patches can take decades or
even centuries, leaving a persistent legacy of plant age classes,
forest physiognomy, and species distributions that create the
conditions that will regulate the next fire event (Collins et al.,
2009, 2017).

Landscape Resistance
Landscape resistance is a spatially structured characteristic of
landscapes, quantifying resistance to movement with respect to
a particular agent or process. Typically, this concept is applied
to animal movement (Keeley et al., 2016), but it can also be
applied to disturbances. In the former, it is often a function
of variation in habitat suitability or topography; with fire, it
is a function of barriers or pathways to fire spread, such as
steep topography or rivers and other non-flammable elements.
Landscape resistance controls the optimal paths of fire spread
and the minimum travel time of a disturbance between locations,
primarily through the influence of topography and fuels over
landscape space (Finney, 2002). For example, Conver et al. (2018)
mapped the most parsimonious fire spread pathways in a forest-
grassland ecotone in northern New Mexico, and showed that fire
followed pathways of optimal fuel mass, moisture, and tree cover,
reflecting the physics of a spreading fire. The inverse of resistance
is connectivity, which is a combined effect of various landscape
properties that facilitates the flow ofmass or energy, and is related
to contagion. Resistance (connectivity) is an emergent landscape
property resulting from the condition and spatial distribution of
large number of individual plants, as well as their associated soils
and topographic position.

Contagion
Contagion is a property of disturbances that propagate within
a conducive medium. Contagion requires two elements:
connectivity and inertia (or “momentum”). Connectivity allows
the spread of a disturbance from one part of the medium to
another, whereas inertia represents the ability of the disturbance
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to overcome some threshold and be passed from one unit to
another. Without enough inertia or momentum, the contagion
will eventually end; but with enough momentum, a contagious
disturbance will “percolate” and affect the majority of the
elements of the community (Balcan and Vespignani, 2011).
Contagion is sometimes modeled as connectivity of networks,
with the nodes in a network representing actors in the network,
and edges representing the connections between them as the
specific interaction being modeled. Nodes may be species,
individuals, or locations; edges may represent disease or bark
beetle outbreaks. For example, infectious disease, such as root
rot in trees, is a contagious disturbance that be modeled as
an interaction network (Delmas et al., 2019). The two nodes
representing hosts or potential hosts of the disease would have
one edge between them, representing an interaction of passing
an infectious agent, if one party has infected another. Inertia
in this case may represent the disease having to overcome a
host’s immune response. Networks may also be modeled with
latency, to mimic dynamics and time-dependence of infection
and spread.

Contagion can alternately be modeled without the network
paradigm (Peterson, 2002). For example, wildfire spreads
through the medium of flammable vegetation and must cross
the threshold of ignition temperatures to initiate fuel pre-heating
and pyrolysis, which ultimately set up the chain reaction that
allows fire to spread from one flammable element to another in
space and time. Similarly, insect outbreaks propagate through
vulnerable host species of the correct age or size, overcoming
the defensive mechanisms of trees to make use of the individual
tree. In these cases, contagion is often modeled as a function
of proximity of one grid cell, representing either an area
or an agent, to another. Such disturbances are “contagious”
disturbances, whereas hurricanes, tornadoes, and other storms
are not.

With wildfire, both contagion and landscape resistance are
relevant primarily within at medium spatial and temporal scales
that have high complexity (region 2 in Figure 2), ranging from
submeter scales to tens of kilometers. For example, models of fire
spread at the degree or half-degree grid spacing of global climate
models are extrapolated outside the domain of contagion, as the
spatial variation that controls fire spread is much more finely
scaled (McKenzie et al., 2014) and the physical process of spread,
coarse-grained to that level, is unrealistic compared to fine-scale
physical models of combustion (Parsons et al., 2017). This middle
domain of spatial scales has the greatest complexity (section The
Middle-Number Problem).

CHALLENGES TO PROGRESS IN

MODELING COMPLEX LANDSCAPES

Coarse-Graining
Coarse-graining refers to processes in both the real world and
in scientific methodology, that is, both physical and statistical
processes. In both cases, coarse-graining is defined as the
way in which processes, structures, and states aggregate and
are combined into fewer larger entities to reduce modeling

FIGURE 4 | Coarse-graining leads to useful metrics at the largest scales, but

reduces the amount of event-specific information retained in each step of

statistical aggregation. In this schematic example, coarse-graining applies to

individual fires, where information such as location, perimeter, point of ignition,

severity, topography, local temperatures, and other information are known.

One first step of coarse-graining produces a fire-size distribution, where

information on number of fires and area burned are known for some time

period. At this level of coarse-graining, trends in aggregate properties of

multiple fires are detectable, but still scale-dependent. A fire-size distribution

emerges from a second step in coarse-graining, which maintains information

about area burned for comparison over large time scales or large regions, but

loses information about number of fires. The observed pattern in this second

step will also depend on the spatial extent of the data. Other forms of

coarse-graining, such as those employed in macroecology, will result in other

emergent properties, some of which may be independent of scale.

complexity (Levitt and Warshel, 1975; Gorban, 2006). In
the physical world, coarse-graining produces emergence
(section Landscape Resistance), as physical systems combine
progressively, for example, from atoms, into molecular, chemical,
biological, and then ecological systems. At each level, processes
and patterns are observable that cannot necessarily be inferred
from those below or above. Classic examples in the physical
world includes the coarse-graining of statistical mechanics to
classical thermodynamics (Jaynes, 1957), and the development of
global-scale climate dynamic general circulation models (Meehl,
1990). In ecology, classic examples are the coarse-graining of
individuals to populations, species to communities, and the
combination of biological organisms interacting with abiotic
conditions to well-defined ecosystems. In ecological modeling
specifically, we aggregate discrete processes like predation to
population cycles, sub-daily processes like photosynthesis to
annual productivity, and fine-scale processes such as fire and
bark-beetle behavior to landscape modeling of disturbance. This
results in the emergence of aggregate patterns (of patch sizes, for
example; Povak et al., 2018), that are scale specific (Figure 4).

Many coarse-graining methods in the physical sciences draw
on the availability of state variables at fine and coarse scales, i.e.,
microstates and macrostates. For these cases, coarse-graining has
been termed “state-space compression” (Wolpert et al., 2017)
and produces canonical algorithms to optimize its accuracy and
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FIGURE 5 | A roadmap for a rigorous approach to coarse-graining in complex systems, from Wolpert et al. (2017). The key to optimized coarse-graining is a

“compression function,” here designated as π(Y|X), which translates microstates (fine-scale information X) into macrostates (broad-scale or “landscape scale”

information Y). To ensure that the choice of compression function is optimal, we model the time evolution of the macrostates identified by π(Y|X) in parallel with

evolution of the original microstates. Some combination of π(Y|X), the computed macrostates of the system “Y,” the time evolution of macrostates by a stochastic

process ϕ, and the mapping of macrostates onto observables by some empirical relationship ρ will be optimized by a multivariate objective function. Our focus here is

on π(Y|X), to address the coarse-graining challenge, for which some choices include simple adding up, regression, simulation, and maximization of information entropy.

minimize computational costs. Wolpert et al. (2017) provide a
roadmap for this (Figure 5), which we draw on below.

Building models to analyze data requires two forms of scaling:
choosing the grain size of the data, which is the coarse-graining
procedure, and then choosing an extent that the data represent.
Grain and extent are two primary properties of scale (Turner
et al., 1989; Palmer and White, 1994; Wu, 2004). Models of
a process or structure are usually specified at a scale that is
optimal, or at least convenient, for analysis that is informative
and tractable to solve a particular problem (Levin, 1992). For
example, in GIS work, units of data may be observations and
climatic variables may be aggregated to a grain size of 1 km2, and
analyzed across an extent of a watershed, or some other landscape
unit where the extent is much larger than the grain size. As noted
by Turner et al. (1989), tracking the loss of information with
changes in grain size and extent of data explicitly may be key to
predicting and correcting for that lost information. Investigating
scaling relationships in this manner may make it possible to
correct for statistical biases introduced by coarse-graining.

We can aggregate measurements of finer-scale processes
and models to summarize measures of central tendency and
higher moments (such as variance) of their distribution. We
may also need to transform variables qualitatively while trying
to minimize error propagation across scales. With fire, for
example, heat transfer in physics-based models at sub-meter
scale (Mell et al., 2007) becomes fireline intensity at the fire
front at the meter scale, producing fire spread that depends
on external kinetic energy, such as from wind and solar
heating, and landscape connectivity at the scale of tens to
hundreds of meters. At even coarser scales in space and time,

we reach annual area burned, fire size distributions, and fire
regimes, whose nature and complexity are the domain of
landscape ecology.

In this sense, coarse-graining is a method that is used
to reduce modeling complexity by side-stepping the middle-
number problem, but the use of coarse-graining poses its
own challenges. In complex systems, coarse-graining is never
a perfect solution to the middle-number problem, because, as
demonstrated by Essex et al. (2007), “systematic modeling errors
might survive averaging over an ensemble of initial conditions,”

which can lead to the introduction of an unknown amount of

bias into any prediction, and to unpredictable “surprises.” These
surprises might consist of sudden state shifts (in the climate
system, for example) due to undetected internal dynamics.
However, in the case of mechanistic models using coarse-grained
variables, predictions that can be validated over short time
horizons or when models using these variables are transferred to
similar environments can also be used to judge the validity of that
model (Houlahan et al., 2017) (though the same may not be true
of entropy-based models; see Dewar, 2009).

With particular relevance to landscape ecology, challenges
imposed by coarse-graining include:

• Loss of important information. Physics is realized at sub-
millimeter to meter scales, and the processes of interest are
often non-linear rather than additive. In fire behavior, this is
a large source of uncertainty (Mell et al., 2007).

• Regression to the mean removes information about
heterogeneity, and may introduce statistical bias (Essex
et al., 2007). We lose measures of variability, and estimates of
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the mean, variance, and higher moments of the distributions
of random variables being measured. This is a particularly
difficult source of error when there is spatial or temporal
autocovariance (Kennedy and Prichard, 2017).

• Underrepresenting the influence of extreme events, because
aggregating controls variability (see Levin, 1992 on the
relationship between variance and window size). More
technically, because we are often forced to implement coarse-
grained processes stochastically, we can arrive at arbitrary
realizations that are difficult to validate against observations
(Lertzman and Fall, 1998; Deser et al., 2012).

The Middle-Number Problem
The middle-number problem refers to the domain of data
complexity in which neither local mechanistic models nor
generalized global relationships holds exactly, although both
local and global processes exert influence on observed patterns.
As we move from small numbers of objects or events (e.g.,
local datasets) to larger numbers (e.g., regional or global
datasets), we cross a zone of complexity known as the “middle-
number domain” (Figure 2). In this domain, systems contain
enough elements to be computationally intractable, but too
few elements, or elements that are too heterogeneous, to be
amenable to global averaging (Weaver, 1948; O’Neill et al.,
1986). The basic problem of predicting species richness in a
local region from larger averages falls into this category, as
richness may be known at the ecosystem scale, but controlled
by a huge variety of factors at smaller scales, ranging from
moisture availability and soil type, to the presence of predators
or pollution. Similarly, weather is famously hard to predict in
the long term, because of the small-scale factors that influence
it (Lorenz, 1963).

In the middle-number domain, fundamental physical models
that apply at fine scales are no longer adequate because the
systems are driven by both “lower-order” (mechanistic and
physical) and “higher-order” (context) processes. Thesemedium-
scale processes and heterogeneity prevent global models from
making completely accurate predictions over subsets of their
domains. This region is one in which self-organization occurs,
in which elements of a system interact in a way that increases
their structure or complexity, sometimes resulting in pattern
formation. Predictions about future states of a system, or
relationships between elements, are computationally intractable
in this region, in the sense that they may correspond to what are
known in computational complexity theory as NP-hard (Non-
deterministic Polynomial-time) problems (Papadimitriou, 2003).

A classic example of the middle number domain in
physics is “in between” statistical mechanics descriptions of
individual molecular motion, and classical thermodynamics,
which characterizes systems by their pressure, volume, and
temperature, which are averages of the properties of large
numbers of particles in motion. In ecological systems, individual
organisms are the analog of molecules and are described
by individual interactions and physiology models, whereas
regions or continents of ecosystems are the analog of aggregate
thermodynamics, and are well-described, for example, by

macroecology (section Macroecology). In between, on the
landscape, or watershed, there are too many elements to
constrain individually, but not enough (with manageable
heterogeneity and variance) to model with high precision in
the aggregate.

Simplifying assumptions may reduce computational
complexity, but these assumptions can backfire. Even with
the best possible information, uncertainty and bias can survive
averaging and aggregation through long-term forecasting (a
modeling error that it may or may not be possible to detect),
leading to unpredictable state changes (Essex et al., 2007). In a
fascinating report that takes on complexity issues in ecological
prediction without a specific system, Cooper et al. (2014) show
that excluded variables and interactions (or small perturbations
within the training region) can lead to arbitrarily large forecasting
errors in complex systems outside the training domain. This
reinforces how important the selection of appropriate models
is, and in the case of mechanistic models, correct predictions
provide a necessary form of validation (Houlahan et al.,
2017). This logic can be extended to better understand which
environments are suitable for model transfer, rather than
approaching the question from the side of which model may best
be used for all environments and time periods.

In landscape fire, we extend the ideas of McKenzie et al.
(2011a), from the scale at which the middle-number domain
begins (i.e., smallest spatial scale or smallest number of

interacting elements), to scales at which explicitly spatial
interactions become both numerous and relevant. For example,

post-fire recovery is dependent on the interactions among

the individual-level processes of survivorship, reproduction,
and growth, and the equivalent interactions of competition,

mutualism, and dispersal. These individual-level processes
aggregate to produce the legacy of past fires, watershed-scale

topography, and the weather associated with the subject fire.
Analogously, the middle-number domain ends (largest spatial
scale) where connectivity, or contagion, and landscape resistance
cease to be important proximate controls on fire-scale processes.
For instance, our understanding of fire regimes at the scale of
ecosections (variable in size but at least 100s of square kilometers)
comes in terms of area burned and top-down climatic regulation
(e.g., Parisien and Moritz, 2009; Moritz et al., 2011; Littell et al.,
2018), which unlike fuel models, is no longer dependent on
the characteristics of individual organisms. We can predict fire
regimes (emergent properties of multiple events in space and
time) at the scale of ecosections, and fire behavior at scales of
centimeters to tens of meters, but when we try to follow how fires
initiate and spreads contagiously over large landscapes, we have
a coarse-graining problem, and a middle-number problem, up to
the limit of the extents of the largest fires. In theory, an error-free
coarse-graining would resolve the middle-number problem for
its specific case, but error propagation with increasing scale and
level of organization is an inherent challenge.

In summary, with reference to landscape ecology, the middle-
number problem can be characterized as the following:

• Outcomes are sensitive to many variables, each of which is
distributed non-uniformly in both time and space.
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• The relative importance of variables (drivers) changes
with scale. Lower- and higher-level processes change
in both strength and heterogeneity with the scale
being examined.

• We observe and measure what is emergent (observations
are the results of these interactions), but we may not
witness the process of the interactions themselves. More
specifically, we cannot compute the outcomes of fine-scale
mechanisms at large scales and temporal extents without
simplifying assumptions.

• Important outcomes, including those most relevant for
management and policy, are often desired within the
parameter space in which complexity is greatest, and where
variation occurs at multiple scales.

• Projections of models from one region of training (one
part of the middle-number domain) to another can lead to
unbounded, or arbitrarily large errors (Cooper et al., 2014).

Non-stationarity
Non-stationarity refers to the limitations of using models with
adjustable parameters to predict future states (Wolkovich et al.,
2014; McKenzie and Littell, 2017; Turco et al., 2018). These
include most empirical statistical models and many “process-
based” models: those that use mathematical relationships
involving parameters that have been estimated from data, even
when the model is said to represent a physical or biological
mechanism. In time series and spatial statistics, stationarity
is the property that the generating function for a stochastic
process is constant. This means that the underlying probability
distribution of an observable (a physical quantity that can be
measured), typically its mean or variance but also including
its autocorrelation function, is not spatially or temporally
dependent. When we model relationships using empirical data
from current and past observations, we estimate a particular
distribution (mean model and variance/covariance matrix) from
a discrete environmental domain, such as the relationship of tree
growth to soil moisture or the relationship of soil respiration
rates to temperature. When these empirical models are used
to project into the future, it is implicitly assumed that the
distributions are stationary. That is, the mean value (or model,
and associated variance/covariance matrix) we estimate currently
for the relationship among variables, e.g., a regression coefficient,
will be the same mean value (or model) in the future, or in a
different place.

In the context of landscape fire, stationarity is often implied
with use of the historical range of variation (HRV) in fire
regimes (Morgan et al., 1994; Keane et al., 2009). Stationarity
in the HRV sense implies stability over space and time in
the statistical distribution of a variable (such as fire frequency
or fire-size distribution), including central tendency, but each
of these variables may exceed its historical distribution when
the underlying drivers go outside their historical range (Elith
and Leathwick, 2009). A more robust definition of stationarity
is stability in relationships among variables, even when a
driving variable exceeds its historical range; for example, the
relationship between maximum annual temperature and annual
area burned at large scales. In the context of current and projected

environmental change, the best practice in statistical models is
to make predictions only within the domain of the data used to
estimate the model; where the driver is projected to fall outside
the historical envelope, statistical models may be unreliable
(McKenzie and Littell, 2017; Turco et al., 2018). In that case, other
types of models, such as purely mechanistic models, or models
that rely on the functional traits of organisms (Dobrowski et al.,
2011; McDowell and Allen, 2015) must be employed.

By definition, we cannot expect stationarity to hold uniformly
in the context of current and near-future climate change, where
the distributions of climatic drivers of ecological dynamics are
and will be departing from their historical means and ranges. For
example, the strength and direction of the correlation between
annual area burned and water-balance deficit varies across the
western USA, depending on the distribution of the water deficit
(McKenzie and Littell, 2017; Littell et al., 2018). In ecophysiology,
the strength of climate-growth relationships of trees (e.g., the
correlation between annual increment and precipitation) varies
over time and broader climatic cycles, also depending on the
distribution of the climatic driver (Marcinkowski et al., 2015).
In both these cases, the adjustable parameters, or specifically the
regression coefficients in a statistical model, vary over the spatial
domain of the data, and will certainly also vary over time in a
non-constant climate.

In summary, with reference to landscape ecology, the non-
stationarity problem is that:

• Most mathematical relationships used in models include
adjustable parameters.

• In empirical studies, these parameters, and the relationships
between the parameters, change across both space and time
(Dobrowski et al., 2011).

• Projections for the future that rely on models fit from
observations therefore are fragile to expected changes in these
parameters (Yates et al., 2018).

• Important examples for fire, relevant to management and
policy, are statistical relationships between climatic drivers
and fire effects at the level of individual organisms and
associated soils, with implications for aggregate properties
such as annual area burned (Littell et al., 2018), fire-size
distributions (Reed and McKelvey, 2002), occurrence of
extreme events (Stavros et al., 2014), and spatial patterns of
fire severity (Cansler and McKenzie, 2014).

Interactions Among These Challenges
These challenges do not arise in isolation; interactions among
them will confound proposed solutions to one or more of
the challenges. For example, it has been argued that fully
mechanistic models should be a goal in landscape simulations
because they optimize adjustable parameters to be most able
to be projected into new environments (Keane et al., 2015).
In theory, fully mechanistic models avoid the non-stationarity
problem because the model will be perfectly transferable as long
as it includes all the mechanisms that affect the observables (see
Gustafson, 2013 for a landscape modeling example). There are
two problems with this claim: first, many so-called “mechanistic”
mathematical models include parameters that are fitted from
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data that do not sample the full range of conditions and
therefore cannot determine exact mechanisms. Second and
perhapsmore importantly, extrapolating fine-scale computations
(which mechanistic models invariably are, e.g., physics-based
fire models) to larger scales of interest runs into the middle-
number problem. Computations become intractable (because
they are NP-hard; for a useful discussion of this topic relevant
to biology; see Felsenstein, 2004), and the demands of data
and associated data input uncertainty increase (Kennedy and
McKenzie, 2017). A solution to this middle-number problem
therefore may lie in coarse-graining both model processes and
associated input data in a way that minimizes error, but this
encounters problems imposed by non-stationarity. In this sense,
solving the middle number problem may be possible only in
stationary systems; solving problems in non-stationary systems
will require inventive applications of coarse-graining to avoid the
middle-number problem. In landscape ecology, joint solutions
to these challenges are uncharted territory. Below, we describe
some potential paths to solutions that have particular relevance
to cross-scale analysis of landscapes as complex systems.

APPROACHES TO UNDERSTANDING

COMPLEX LANDSCAPE PHENOMENA

ACROSS SCALES

Models in landscape ecology that work well across scales,
solving the above challenges, will involve quantitative scaling
laws that combine top-down and bottom-up perspectives.
Multiple disciplines, such as physics, biology, and ecology, have
incorporated quantitative scaling relationships in an attempt
to model phenomena that cross physical scales. In landscape
ecology, the following concepts and paradigms show promise
for solving the coarse-graining, middle-number, and non-
stationarity problems. The first, Hierarchical Patch Dynamics,
involves hierarchical organization applied to discrete spatial
scales thought to be most important, whereas the next
three (lacunarity, Energy and Regulation across Scales, and
Macroecology) invoke quantitative scaling laws that are or are
nearly continuous in large systems.

Hierarchical Patch Dynamics
Hierarchical Patch Dynamics (HPD) is a proposed paradigm
shift, or new framework, for ecology, espoused by Wu and
Loucks (1995). Its goal is to resolve problems of scale and
non-equilibrium in ecological systems. This idea is similar to
contextual emergence, in the sense that the framework contains
levels of complexity, in which larger scales are more complex
than the smaller scale items that they contain. In HPD, patches
of ecosystems interact at multiple scales, and hierarchy theory
provides a means for quantifying and ordering phenomena at
multiple scales.

The major elements of HPD (Wu and Loucks, 1995) are that
(1) Ecological systems can be modeled as nested discontinuous
hierarchies of patch mosaics (see also Holling, 1992). Patches are
structural and functional units, and they are nested, meaning
larger patches contain smaller ones. A defining assumption is

that patches can be nested perfectly, and that the highest level
of organization is not contained by any of the smaller ones.
(2) System dynamics are a composite of patch dynamics. This
simplifying assumption states that individual patch changes can
be aggregated meaningfully such that overall system dynamics
are recoverable from their composite. (3) The pattern-process
scale perspective. This restates the landscape ecology paradigm
that pattern and process interact mutually and recursively at
multiple scales. (4) Non-equilibrium. Transient dynamics can
dominate at small scales, but this leads to: (5) Incorporation and
metastability. With the etymological meaning of “incorporate,”
fine-scale transient dynamics are literally swallowed up by
stabilizing forces at “meta” scales (implying the middle-number
domain), whereas at very broad scales stochastic processes
dominate again. Note that this is opposite to our view of the
middle-number problem and its domain as being the least stable,
at least in the sense of predictability.

A limitation of this paradigm is that it assumes that
coarse-graining is a straightforward outcome of aggregating the
dynamics of nested patches. We have seen (section Landscape
Resistance) that emergent properties at coarser scales are
not necessarily direct outcomes of fine-scale dynamics, and
that additive processes are only a subset of coarse-graining,
whether observed or modeled (Wolpert et al., 2017). This
conceptual framing does not directly map onto a unique way to
aggregate, or coarse-grain the middle number domain. Although
some problems of the middle number domain may be solved
through this aggregation of patches (Wu and Loucks, 1995), the
framework of HPD may simply not be mathematically rigorous
enough to solve all problems associated with the middle number
domain; indeed, not all such problems may be solvable. It is
now known that uncertainty and bias can survive averaging and
aggregation through long-term forecasting (amodeling error that
it may or may not be possible to detect) (Essex et al., 2007), and
that small perturbations or “unimportant” missing variables in a
training region of a model can lead to predictions where there
is no meaningful bound that can be placed on the error of the
model outside of its original training data (Cooper et al., 2014).
That said, HPD does offer an important framework for modeling
discrete scales in landscape dynamics, especially in the context of
non-equilibrium states.

To address our three challenges, HPD would, in theory,
assume that discrete scales in space are metastable, extending
upward through the middle-number domain. These scales are
the domain of ecosystem dynamics, sensu Holling (1992). There
is an implicit link to hierarchy theory (O’Neill et al., 1986), in
which cross-scale dynamics are clearly defined and directional.
This means that processes increasing in scale are driving, whereas
processes decreasing in scale are constraining. In theory, this
hierarchical structure entails the optimal degree of coarse-
graining. Analogously, non-stationary dynamics are subsumed
into the hierarchical patch structure.

Lacunarity
Lacunarity is way of characterizing the spatial configuration
of points or other components of a spatial pattern, such as
patches or pixels. The lacunarity algorithm is a “box counting”
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procedure that specifies a grain size over a region of interest,
and quantifies the presence or absence of a phenomenon in
each “box” (Allain and Cloitre, 1991). Specifically, lacunarity
is a dimensionless metric that estimates the roughness of a
pattern as a fractal dimension, and identifies gaps in the overall
patterns (Plotnick et al., 1996). Highly heterogeneous patterns
with low rotational and translational symmetry have high
lacunarity (and high complexity), whereas mostly homogeneous
patterns that have high rotational and translational similarity
are considered to have low lacunarity (and low complexity;
Karperien, 2013). With this metric, we can obtain a form of the
variance-to-mean ratio that is calculable and directly comparable
across scales. Lacunarity estimates may complement estimates of
fractal dimension, but provide further information in that the
shape of lacunarity curves (with increasing window size) can
illustrate departures from a self-similar or isometric character at
identifiable scales (Dale, 2000).

Lacunarity is a static property of patterns, and is generally
used to quantify properties of self-similar fractal-like patterns
to determine the fractal power that describes them. Lacunarity
has been adopted in landscape ecology for data sets that
are not necessarily self-similar, such as seedling counts along
transects and other two-dimensional patterns, like landscape
patches (Plotnick et al., 1993, 1996; Swetnam et al., 2015).
In landscape ecology, lacunarity can be seen as an aggregate
expression of processes, such as disturbance and competition,
that create landscape memory. With respect to landscape fire,
the lacunarity index at a broad scale is computed directly,
and consistently, from spatial patterns of fuels and topography.
This is demonstrated in Kennedy and McKenzie (2017), where
lacunarity is used to compare simulated and observed patterns
of fire spread in a forested landscape to evaluate a stochastic
fire model whose objective is to replicate fire-regime properties,
rather than individual fire perimeters. Lacunarity also captures
scale automatically through the specification of a grain size
and extent, which leads the way into investigations of spatial
heterogeneity and spatial statistics in landscapes (Wagner and
Fortin, 2005).

With reference to the three challenges we have posed,
lacunarity collapses scale-specific metrics into one that is
especially robust across scales, thereby using a form of coarse-
graining with minimal error. In theory, this avoids the
numerosity associated with the middle-number problem and
the need for adjustable parameters. An obvious limitation of
lacunarity is the reliance on one metric to capture what are often
noncommensurate aspects of complexity, which are measured
in different units (for example, landscape complexity associated
with succession and demography is measured in different
units than phylogenetic information). Whereas lacunarity can
adequately represent an aggregate of processes, it is not possible
to recover the ecological information lost in the aggregation
process, and it would be difficult to track error propagation
associated with this extreme level of coarse-graining.

Energy and Regulation Across Scales
Energy and Regulation across Scales (ERS) is a conceptual
framework for understanding contagious disturbance on

landscapes (McKenzie et al., 2011a), developed specifically
for modeling landscape fire. ERS aims to identify scaling
relationships that accomplish coarse-graining without some
of its most error-prone components: (1) aggregating elements
that have substantial uncertainty associated with them, and
(2) changing variables across scales with ad hoc methods. ERS
separates the important drivers of contagious disturbances
on landscapes into their fundamental elements, Energy, and
Regulation. With suitable metrics for each, they can be applied
across both spatial and temporal Scales in a way that minimizes
the coarse-graining errors associated with changes of variables.

Energy is the fundamental “currency” of wildland fire, in that
it can be measured and tracked across scales with no change of
variables. Although vegetation on a landscape is often described
in terms of stored mass or carbon, the fundamental nature of
wildfire reminds us that vegetation can also be described in terms
of its embodied energy. All biomass consists of both atomic
mass and molecular bond energy. The atomic constituents of
photosynthesis and carbon fixation (C, H, O) are organized
into more complex molecules with higher energy content. The
bond energy in these more complex molecules thus reflects
the net energy captured during photosynthesis and subsequent
carbohydrate synthesis. Energy storage on the landscape scale
is regulated by factors that govern net primary productivity
(Rasmussen et al., 2011; O’Connor et al., 2017).

Energy can be measured and calculated in the same units
(joules) at any scale. The cycling of kinetic and potential energy
(sensu Figure 1.4, McKenzie et al., 2011a) subsumes the variety
of ecological dynamics imputed to the “fire landscape,” including
fire behavior, fire effects, and vegetation succession. These latter
are fragile to changes in scales of measurement and modeling,
and have different units. Energy can be represented by a scalar
quantity, but in the landscape context it can be vectorized, for
example, as a vector field of wind containing a certain amount of
energy, that drives fire behavior.

Regulation is an umbrella concept representing constraints on
kinetic energy, and may be represented as a scalar, vector, or
even a tensor quantity. For example, humidity can be represented
as a scalar quantity, and will regulate combustion and fire
spread. Humidity could therefore be expressed theoretically in
units of reduced kinetic energy of the system. Another type
of regulation is anisotropic topographic complexity, made up
of a scalar element, representing a magnitude, and a tensor
element, incorporating direction and directional response to
interactions. If regulation can be represented as a dimensionless
and normalized scalar quantity, it could be robust to spatial
scaling. As a vector or tensor, the directional component may
be an additive quantity, scaling linearly with area. A scalable
representation of regulation in ERS will produce landscape
resistance, or reduce contagion. Its spatial variation will produce
lacunarity. Ideally, these complex attributes of the middle-
number domain can be realized with minimal error propagation
across scales.

As proposed, two problems need to be solved in order to
implement an ERS framework. First, Energy and Regulation need
to be reconciled in a way that is computationally tractable by
appropriate choices of the scales at which their interactions are
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calculated. The scaling laws that we seek will be “grounded”
at regions in scale space at which there is the most “action”
(sensu Holling, 1992). For example, in complex topography, the
obvious scales of variation of kinetic energy (e.g., wind), potential
energy (e.g., fuels for fire or hosts for insects), and the two
types of regulation will all be different. Second, the mathematical
representation of coarse-graining of some aspects of regulation
(e.g., topographic complexity) remains to be articulated so as
to avoid a middle-number problem (e.g., being overwhelmed
by numerosity).

ERS would, in theory, address all three of the fundamental
scaling challenges by (1) adoption of the two canonical
variables, Energy and Regulation, and (2) estimating the shape
of universal scaling laws, as in macroecology (Wilber et al.,
2015) by explicitly taking into account the scale of the processes
under consideration. Whether these scaling laws would be
“stationary” has not yet been addressed. It is likely that ERS
would need a “meta-stationary” framework to approximate
complex landscapes, where in the aggregate, landscapes would
have approximately stationary, non-ergodic realms that produce
aggregate patterns.

Macroecology
Macroecology is a subdiscipline of ecology that seeks to find and
be able to predict universal patterns and explicit scaling laws in
systems that are organized across multiple orders of magnitude
of space and time. Brown (1999) characterized macroecology as
“an approach to studying a certain class of complex ecological
systems” and “as a way of investigating the empirical patterns
and mechanistic processes by which the particulate components
of complex ecological systems generate emergent structures and
dynamics.” Macroecologists have long sought to explain and
predict patterns of biodiversity, including species richness over
area, abundances of species, and allometric scaling relationships
(West et al., 1997; Enquist et al., 1998; Niklas and Enquist, 2001).
By investigating patterns explicitly while controlling for the effect
of scale, macroecology becomes a form of statistical aggregation
that is a method of coarse-graining (Maurer, 2005; Storch et al.,
2008; Bertram et al., 2019). For patterns in ecosystems that
consider organisms and their physical characteristics, diversity,
and spatial distribution,macroecologymay offer themost reliable
coarse-graining approach, in that it side-steps themiddle number
problem (Figure 2) by not trying to model mechanisms that lead
to pattern formation at all scales; focusing instead on aggregate
properties of large numbers of elements. Often in ecology, these
elements are individuals, populations, or species. This idea of
macroecology as a meaningful form of statistical aggregation is
consistent with McGill’s proposed definition for macroecology
(McGill, 2019): “the study at the aggregate level of aggregate
ecological entities made up of large numbers of particles for the
purposes of pursuing generality.”

In attempting to characterize universal ecological patterns,
such as the species area relationship, the species abundance
distribution, and various metabolic relationships, some modern
forms of macroecology embrace the complex nature of
information underlying these patterns, and their predictions
are based on maximizing the information entropy of the

system. Information entropy is a way of quantifying the
uncertainty associated with a particular outcome drawn
from an underlying probability distribution (Shannon, 1948).
Maximizing information entropy (the maxent approach) is
the least biased way of determining an underlying probability
distribution, given known outcomes (Jaynes, 1957). This
approach has been applied to macroecological questions,
beginning with Shipley’s maxent (Shipley et al., 2006; Shipley,
2010). More recently, the Maximum Entropy Theory of Ecology
(METE) has used maxent in a constraint-based approach
to predicting interrelated macroecological metrics, which
requires information from the ecosystem in the form of state
variables (Harte, 2011; Harte and Newman, 2014; Brummer
and Newman, 2019). These state variables include energy
embodied in the organisms in communities being modeled
(Niklas and Enquist, 2001; Newman et al., 2014; Harte et al.,
2017; Bertram et al., 2019). Energy is therefore a uniting factor
among models, because it is irreducible and fundamental
to ecosystems. Macroecological models sometimes include
area (a 2-dimensional measure of the space being modeled),
which is also fundamental to landscape ecology models. The
potential to use macroecology in concert with other types of
landscape ecology models is obvious but not well-developed
(Newman et al., 2018).

Although various forms of macroecology are successful in
describing and predicting metrics at highest level of statistical
aggregation, not all ecological questions can be addressed
through this framework, including questions of fine-scale
processes and unusual dynamics. However, “failures” of general
macroecological patterns to describe particular data sets are
actually useful for identifying the scales at which mechanism
influences observed patterns (Wilber et al., 2017; Newman
et al., 2018). Constraint-based approaches, such as METE,
have the potential to reveal the scale at which mechanism
becomes important, and also which mechanisms matter at the
highest level of statistical aggregation. These approaches have
been applied successfully in testing mechanisms in disease
ecology (Wilber et al., 2017), and could be extended to
other systems.

Macroecological theory currently deals with all of the three
challenges posed above:

• Macroecological metrics can provide solutions to coarse-
graining and middle-number issues, because they can
contain explicit scaling laws (in the case of maxent-based
macroecology, these solutions are least-biased estimators of
the distributions in question).

• Macroecology relies on variables like area and
energy, that are fundamental to ecosystems, and
landscape models.

• Non-stationarity is not a problem in predictions of a single
state of the plot or ecosystem, because scaling parameters
and state variables are non-adjustable, but macroecology is
not yet a dynamic theory (i.e., it does not model changes
in ecological systems over time), and there have been
limited attempts to incorporate predictions of disturbed and
successional systems into the theory (Supp and Ernest, 2014;
Newman et al., 2018).
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CONCLUDING REMARKS

In this paper, we discuss key properties of landscape complexity.
We identify four phenomena of complex systems that
are common to ecological landscapes: emergence (section
Emergence), landscape memory (section Landscape Memory),
landscape resistance (section Landscape Resistance), and
contagion (section Contagion). We also review three intrinsic
problems associated with modeling complex systems, including
coarse-graining (section Coarse-graining), the middle number
problem (section The Middle-Number Problem), non-
stationarity (section Non-stationarity) and interactions
among these challenges (section Interactions Among these
Challenges). We discuss why these particular challenges and
their interactions need to be addressed in designing general
models of landscapes (Yates et al., 2018). We codify these
specific challenges as outstanding hard problems for scaling in
landscape ecology.

Complex biophysical systems present fundamental challenges
to ecological modeling and analysis. In order to make
reliable predictions with credible uncertainty bounds and
acceptable levels of precision for the complex problems of
environmental management and planning, we require methods
that simultaneously do two things. These are (1) coarse-graining
across scales without introduction of statistical bias and without
loss of relevant information, while also (2) contending with the
problems of non-stationarity and lack of transferability.

To avoid the middle-number problem we require a method
of coarse-graining that retains key information across scales, but
that adds as little additional information as possible (Jaynes,
1957). This also necessitates the identification of important
system metrics (e.g., Energy in the ERS system) for which scaling
laws are informative to those underlying dynamics (Gorban,
2006). When considering a coarse-graining method, summary
statistics applied to any quantity in a complex system should be
by default expected to be scale-dependent. Choosing a variable
that itself does not need to change over scales, such as energy
or information, may be a first step to simplifying the overall
complexity of a model, and being able to compare direction and
magnitude of statistical biases between models.

In general, a model that incorporates mechanisms (i.e., is
process-based) would be expected to be robust to problems of
non-stationarity, but a fully mechanistic cross-scale model is
not feasible for complex systems due to the middle-number
problem and associated coarse-graining challenges. Models used
to simulate complex systems should incorporate uncertainty
and variation, and avoid false precision in model prediction.
Models of ecological processes should by default have the null
expectation of non-stationarity, and scale dependence both
in the grain size and the extent of prediction (Levin, 1992).
Although perfectly accurate forecasts of ecosystem dynamics and
emergent behavior are not possible in complex systems, better
models may lead to a better understanding of thresholds and
interactions (Turner, 2005).

Given these challenges, we identify four potential approaches
at various stages of development that may improve our ability
to model complex landscapes: Hierarchical Patch Dynamics
(section Hierarchical Patch Dynamics), lacunarity (section

Lacunarity), Energy and Regulation across Scales (section
Energy and Regulation across Scales), and macroecology
(section Macroecology), where lacunarity is a metric, and the
remaining three approaches are theoretical frameworks. Each
of these approaches either identifies metrics that are potentially
scalable, or quantifies structure and relationships across scales.
Although all of these strategies have started from different
conceptualizations of the landscape in ecology, each has engaged
the problems of complexity, specifically scale dependence and
the middle-number problem, in their own ways. Some insight
can be derived from what each lacks; more mechanistic forms
of macroecology may be able to overcome some part of the
non-stationarity problem, for example, and lacunarity might
be effectively incorporated to Hierarchical Patch Dynamics
or Energy and Regulation across Scales as an effective form
of coarse-graining.

These approaches are not the only ones available to scientists
working in complex systems. A number of recent advances from
different fields may offer ways forward for similar problems in
landscape ecology. For example, problems in protein folding have
been solved via the use of coarse-graining applied to atomic to
molecular interactions (Levitt and Warshel, 1975). Evolutionary
biologists have been able to use what is termed “branch and
bound” methods to reduce the amount of probability space that
must be searched in order to infer phylogenetic trees, some
of which constitute NP-hard problems (Felsenstein, 2004). This
successful technique is a way of reducing the computational
complexity of problem solving in the middle-number domain.
Some solutions for long-term forecasting and non-stationarity
may come from recognizing the mathematical symmetries of
proposed models (Essex et al., 2007) in dealing with undetected
biases in ensemble averages. Large scale predictions with
biodiversity and disturbance models might see advances from
the field of information entropy-based macroecology, which
employs constraint-based methods and ecological state variables
(Shipley et al., 2006; Harte, 2011) to make predictions about
community structure in equilibrium conditions. As Wolpert
et al. (2017) suggest, new approaches to state-space compression,
which optimize the efficiency of a coarse-graining procedure
from microstates to macrostates, but allow for time evolution,
may be a way forward for all complex models.

The challenges imposed by coarse-graining, the middle
number problem, and non-stationarity in landscape ecology
are also handles on the overall problem of complex systems.
They may similarly be solved with innovative computational
techniques, or at least see progress on those fronts in the coming
years. However, a cross-disciplinary approach may be required,
in that many of the successes of modeling complex systems have
been developed independently in different fields, but the fastest
progress in classifying the complexity classes and computational
tractability of complex problems has been made in physics and
computational science (Arora and Barak, 2009).

We present these concepts of complex systems and their
intrinsic challenges as they apply to ecological disturbance
dynamics to highlight their important attributes, while
illustrating the limitations of our common methods of
analysis. With this review, we hope to inspire progress in
the development of quantitative methods that meet these

Frontiers in Ecology and Evolution | www.frontiersin.org 13 August 2019 | Volume 7 | Article 293205

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Newman et al. Complexity and Landscapes

challenges. Improvements to our understanding and prediction
of complex ecological systems may enable better theory
development, and in turn, better decisions in land management
that meet the needs of conservation, biodiversity, and
resource management.

AUTHOR CONTRIBUTIONS

EN and DM created the figures. All authors contributed to the
conceptualization and writing of this manuscript, and approved
the final version of the manuscript.

FUNDING

Funding for this work was provided in part by the Bridging
Biodiversity and Conservation Science program to EN, by the
USDA Forest Service to EN and DM.

ACKNOWLEDGMENTS

We thank David Hembry for discussion and edits to the
manuscript, and Carol Miller and David Wolpert for comments
and contributions to figures in the manuscript.

REFERENCES

Allain, C., and Cloitre, M. (1991). Characterizing the lacunarity of

random and deterministic fractal sets. Phys. Rev. A. 44, 552–558.

doi: 10.1103/PhysRevA.44.3552

Allen, T. F. H., and Starr, T. B. (1982). Hierarchy: Perspectives for Ecological

Complexity. Chicago, IL: University of Chicago Press.

Arora, S., and Barak, B. (2009). Computational Complexity: A Modern Approach.

Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511804090

Atmanspacher, H., and beim Graben, P. (2009). Contextual emergence.

Scholarpedia 4:7997. doi: 10.4249/scholarpedia.7997

Balcan, D., and Vespignani, A. (2011). Phase transitions in contagion

processes mediated by recurrent mobility patterns. Nat. Phys. 7, 581–586.

doi: 10.1038/nphys1944

Bertram, J., Newman, E. A., and Dewar, R. C. (2019). Maximum

information entropy models elucidate the contribution of functional

traits to macroecological patterns. Ecol. Model. 407:108720.

doi: 10.1016/j.ecolmodel.2019.108720

Bialek, W., Nemenman, I., and Tishby, N. (2001). Complexity through

nonextensivity. Phys. A. 302, 89–99. doi: 10.1016/S0378-4371(01)00444-7

Bormann, F. H., and Likens, G. E. (2012). Pattern and Process in a Forested

Ecosystem: Disturbance, Development and the Steady State Based on the

Hubbard Brook Ecosystem Study. Ann Arbor, MI: Springer Science and

Business Media.

Brown, J. H. (1999). Macroecology: progress and prospect. Oikos. 87, 3–14.

doi: 10.2307/3546991

Brown, J. H., Gupta, V. K., Li, B. L., Milne, B. T., Restrepo, C., and West, G. B.

(2002). The fractal nature of nature: power laws, ecological complexity and

biodiversity. Philos. T. R. Soc. B. 357, 619–626. doi: 10.1098/rstb.2001.0993

Brummer, A. B., and Newman, E. A. (2019). Derivations of the core

functions of the maximum entropy theory of ecology. Entropy 21:712.

doi: 10.20944/preprints201905.0078.v1

Campbell, D. (1974). “Downward causation in hierarchically organized

biological systems,” in Studies in the Philosophy of Biology, eds F.

J. Ayala and T Dobzhansky (London: Macmillan Press), 179–86.

doi: 10.1007/978-1-349-01892-5_11

Cansler, C. A., and McKenzie, D. (2014). Climate, fire size, and biophysical setting

control fire severity and spatial pattern in the northern Cascade Range, U. S. A.

Ecol. Appl. 24, 1037–1056. doi: 10.1890/13-1077.1

Collins, B. M., Miller, J. D., Thode, A. E., Kelly, M., Van Wagtendonk, J.

W., and Stephens, S. L. (2009). Interactions among wildland fires in a

long-established Sierra Nevada natural fire area. Ecosystems 12, 114–128.

doi: 10.1007/s10021-008-9211-7

Collins, B. M., Stevens, J. T., Miller, J. D., Stephens, S. L., Brown, P.

M., and North, M. P. (2017). Alternative characterization of forest fire

regimes: incorporating spatial patterns. Landscape Ecol. 32, 1543–1552.

doi: 10.1007/s10980-017-0528-5

Conver, J. L., Falk, D. A., Yool, S. R., and Parmenter, R. R. (2018). Stochastic

fire modeling of a montane grassland and ponderosa pine fire regime in the

Valles Caldera National Preserve, New Mexico, U. S. A. Fire Ecol. 14, 17–31.

doi: 10.4996/fireecology.140117031

Cooper, C. S., Bramson, A. L., and Ames, A. L. (2014). Intrinsic Uncertainties in

Modeling Complex Systems (No. SAND2014-17382). Albuquerque, NM: Sandia

National Lab. (SNL-NM). doi: 10.2172/1156599

Cuddington, K. (2011). Legacy effects: the persistent impact of ecological

interactions. Biol. Theory 6, 203–210. doi: 10.1007/s13752-012-0027-5

Dale, M. R. T. (2000). Lacunarity analysis of spatial pattern: a comparison.

Landscape Ecol. 15, 467–478. doi: 10.1023/A:1008176601940

Davis, K. T., Dobrowski, S. Z., Higuera, P. E., Holden, Z. A., Veblen, T. T., Rother,

M. T., et al. (2019). Wildfires and climate change push low-elevation forests

across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci.

U.S.A. 116, 6193–6198. doi: 10.1073/pnas.1815107116

Delmas, E., Besson, M., Brice, M. H., Burkle, L. A., Dalla Riva, G. V., Fortin, M.

J., et al. (2019). Analysing ecological networks of species interactions. Biol. Rev.

94, 16–36. doi: 10.1111/brv.12433

Deser, C., Phillips, A., Bourdette, V., and Teng, H. (2012). Uncertainty in climate

change projections: the role of internal variability. Clim. Dynam. 38, 527–546.

doi: 10.1007/s00382-010-0977-x

Dewar, R. (2009). Maximum entropy production as an inference algorithm that

translates physical assumptions into macroscopic predictions: don’t shoot the

messenger. Entropy 11, 931–944. doi: 10.3390/e11040931

Dobrowski, S. Z., Thorne, J. H., Greenberg, J. A., Safford, H. D., Mynsberge, A. R.,

Crimmins, S. M., et al. (2011). Modeling plant ranges over 75 years of climate

change in California, USA: temporal transferability and species traits. Ecol.

Monogr. 81, 241–257. doi: 10.1890/10-1325.1

Edmonds, B. (2000). Complexity and scientific modelling. Found. Sci. 5, 379–390.

doi: 10.1023/A:1011383422394

Elith, J., and Leathwick, J. R. (2009). Species distribution models: ecological

explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 40,

677–697. doi: 10.1146/annurev.ecolsys.110308.120159

Enquist, B. J., Brown, J. H., and West, G. B. (1998). Allometric scaling of plant

energetics and population density. Nature 395, 163–165. doi: 10.1038/25977

Essex, C., Ilie, S., and Corless, R. M. (2007). Broken symmetry and long-term

forecasting. J. Geophys. Res. Atmos. 112:1–9. doi: 10.1029/2007JD008563

Falk, D. A., Heyerdahl, E. K., Brown, P. M., Farris, C., Fulé, P. Z., McKenzie, D.,

et al. (2011). Multi-scale controls of historical forest-fire regimes: new insights

from fire-scar networks. Front. Ecol. Environ. 9, 446–454. doi: 10.1890/100052

Falk, D. A., Miller, C., McKenzie, D., and Black, A. E. (2007). Cross-scale analysis

of fire regimes. Ecosystems 10, 809–823. doi: 10.1007/s10021-007-9070-7

Felsenstein, J. (2004). Inferring Phylogenies. Sunderland, MA: Sinauer

associates, 59–60.

Finney, M. A. (2002). Fire growth using minimum travel time methods. Can. J.

Forest Res. 32, 1420–1424. doi: 10.1139/x02-068

Flack, J. C. (2017). Coarse-graining as a downward causation mechanism. Philos.

T. R. Soc. A 375:20160338. doi: 10.1098/rsta.2016.0338

Gell-Mann, M., and Lloyd, S. (1996). Information measures, effective complexity,

and total information. Complexity. 2, 44–52.

Gill, L., and Taylor, A. H. (2009). Top-down and bottom-up controls on

fire regimes along an elevational gradient on the east slope of the Sierra

Nevada, California, U. S. A. Fire Ecol. 5, 57–75. doi: 10.4996/fireecology.

0503057

Gorban, A. N. (2006). “Basic types of coarse-graining,” in Model Reduction and

Coarse-Graining Approaches for Multiscale Phenomena, eds A. N. Gorban, N.

Kazantzis, Y. G Kevrekidis, H. C Öttinger, and K. Theodoropoulos (Berlin;

Heidelberg: Springer), 117–176. doi: 10.1007/3-540-35888-9_7

Griffon, D., Andara, C., and Jaffe, K. (2015). Emergence, self-organization and

network efficiency in gigantic termite-nest-networks build using simple rules.

arXiv preprint arXiv:1506.01487.

Frontiers in Ecology and Evolution | www.frontiersin.org 14 August 2019 | Volume 7 | Article 293206

https://doi.org/10.1103/PhysRevA.44.3552
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.4249/scholarpedia.7997
https://doi.org/10.1038/nphys1944
https://doi.org/10.1016/j.ecolmodel.2019.108720
https://doi.org/10.1016/S0378-4371(01)00444-7
https://doi.org/10.2307/3546991
https://doi.org/10.1098/rstb.2001.0993
https://doi.org/10.20944/preprints201905.0078.v1
https://doi.org/10.1007/978-1-349-01892-5_11
https://doi.org/10.1890/13-1077.1
https://doi.org/10.1007/s10021-008-9211-7
https://doi.org/10.1007/s10980-017-0528-5
https://doi.org/10.4996/fireecology.140117031
https://doi.org/10.2172/1156599
https://doi.org/10.1007/s13752-012-0027-5
https://doi.org/10.1023/A:1008176601940
https://doi.org/10.1073/pnas.1815107116
https://doi.org/10.1111/brv.12433
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.3390/e11040931
https://doi.org/10.1890/10-1325.1
https://doi.org/10.1023/A:1011383422394
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1038/25977
https://doi.org/10.1029/2007JD008563
https://doi.org/10.1890/100052
https://doi.org/10.1007/s10021-007-9070-7
https://doi.org/10.1139/x02-068
https://doi.org/10.1098/rsta.2016.0338
https://doi.org/10.4996/fireecology.0503057
https://doi.org/10.1007/3-540-35888-9_7
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Newman et al. Complexity and Landscapes

Gustafson, E. (2013). When relationships estimated in the past cannot be

used to predict the future: using mechanistic models to predict landscape

ecological dynamics in a changing world. Landscape Ecol. 28, 1429–37.

doi: 10.1007/s10980-013-9927-4

Harte, J. (2011). Maximum Entropy and Ecology: A Theory of

Abundance, Distribution, and Energetics. Oxford: OUP Oxford.

doi: 10.1093/acprof:oso/9780199593415.001.0001

Harte, J., and Newman, E. A. (2014). Maximum information entropy:

a foundation for ecological theory. Trends Ecol. Evol. 29, 384–389.

doi: 10.1016/j.tree.2014.04.009

Harte, J., Newman, E. A., and Rominger, A. J. (2017). Metabolic partitioning

across individuals in ecological communities.Glob. Ecol. Biogeogr. 26, 993–997.

doi: 10.1111/geb.12621

Holling, C. S. (1992). Cross-scale morphology, geometry, and dynamics of

ecosystems. Ecol. Monogr. 62, 447–502. doi: 10.2307/2937313

Houlahan, J. E., McKinney, S. T., Anderson, T. M., and McGill, B. J. (2017).

The priority of prediction in ecological understanding. Oikos 126, 1–7.

doi: 10.1111/oik.03726

Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev. 106,

620–630. doi: 10.1103/PhysRev.106.620

Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P.

E., et al. (2016). Changing disturbance regimes, ecological memory, and forest

resilience. Front. Ecol. Environ. 14, 369–378. doi: 10.1002/fee.1311

Karperien, A. (2013). FracLac for ImageJ. Available online at: http://rsb.info.nih.

gov/ij/plugins/fraclac/FLHelp/Introduction.htm

Kauffman, S. A. (1986). Autocatalytic sets of proteins. J. Theor. Biol. 119, 1–24.

doi: 10.1016/S0022-5193(86)80047-9

Kay, J. J., and Schneider, E. (1995). “Embracing complexity the challenge of the

ecosystem approach,” in Perspectives on Ecological Integrity, eds L. Westra and

J. Lemons (Dordrecht : Springer), 49–59. doi: 10.1007/978-94-011-0451-7_4

Keane, R. E., Hessburg, P. F., Landres, P. B., and Swanson, F. J. (2009). The use

of historical range and variability (HRV) in landscape management. For. Ecol.

Manag. 258,1025–1037. doi: 10.1016/j.foreco.2009.05.035

Keane, R. E., McKenzie, D., Falk, D. A., Smithwick, E. A., Miller, C.,

and Kellogg, L. K. B. (2015). Representing climate, disturbance, and

vegetation interactions in landscape models. Ecol. Model. 309, 33–47.

doi: 10.1016/j.ecolmodel.2015.04.009

Keeley, A. T. H., Beier, P., and Gagnon, J. W. (2016). Estimating landscape

resistance from habitat suitability: effects of data sources and nonlinearities.

Landscape Ecol. 31, 2151–2162. doi: 10.1007/s10980-016-0387-5

Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and

suggested usage Int. J. Wildland Fire. 18, 116–126. doi: 10.1071/WF07049

Kennedy, M. C., and McKenzie, D. (2017). “Chapter 15: uncertainty

and complexity tradeoffs when integrating fire spread with

hydroecological projections,” in Natural Hazard Uncertainty Assessment:

Modeling and Decision Support, Vol. 223, eds K Riley, P Webley,

and M Thompson (Hoboken, NJ: Wiley and Sons), 231–244.

doi: 10.1002/9781119028116.ch15

Kennedy, M. C., and Prichard, S. J. (2017). Choose your neighborhood wisely:

implications of subsampling and autocorrelation structure in simultaneous

autoregression models for landscape ecology. Landscape Ecol. 32, 945–952.

doi: 10.1007/s10980-017-0499-6

Kolmogorov, A. N. (1963). On tables of random numbers. Sankhyā Indian J. Stat.
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Humans have observed the natural world and how people interact with it for millennia.

Over the past century, synthesis and expansion of that understanding has occurred

under the banner of the “new” discipline of ecology. The mechanisms considered operate

in and between many different scales—from the individual and short time frames, up

through populations, communities, land/seascapes and ecosystems. Whereas, some of

these scales have been more readily studied than others—particularly the population to

regional landscape scales—over the course of the past 20 years new unifying insights

have been possible via the application of ideas from new perspectives, such as the

fields of complexity and network theory. At any sufficiently large gathering (and with

sufficient lubrication) discussions over whether ecologists will ever uncover unifying laws

and what they may look like still persist. Any pessimism expressed tends to grow from

acknowledgment that gaping holes still exist in our understanding of the natural world

and its functioning, especially at the smallest and grandest scales. Conceptualization of

some fundamental ideas, such as evolution, are also undergoing review as global change

presents levels of directional pressure on ecosystems not previously seen in recorded

history. New sensor and monitoring technologies are opening up new data streams at

volumes that can seem overwhelming but also provide an opportunity for a profusion of

new discoveries by marrying data across scales in volumes hitherto infeasible. As with

so many aspects of science and life, now is an exciting time to be an ecologist.

Keywords: ecology, scale, modeling, anthropocene, challenges

ECOLOGICAL MODELS AND GAP FILLING

Models have many roles in ecology—from explanatory (conceptual) exploration of theoretical
hypotheses, to anticipatory predictions to guide short-term tactical decision making, or longer-
term projections to inform strategic direction setting (FAO, 2008; Mouquet et al., 2015). While
predictive capacity is important when models are being used to guide explicit decision making,
models are useful conversation starters to generate interest and discussion around a topic. Indeed, it
is the authors’ experience that more breakthrough learnings about system function have eventuated
when a model has been wrong than when it has been right (as all involved are keen to know why
it was wrong, fewer people ask when a model matches observations or expectations). All of these
roles continue a long tradition of synthesizing knowledge in generalisable and useful forms.

Humanity has been codifying its theories about the function of the world since the earliest story
tellers and religious practices, although the discipline of ecology was not formally recognized until
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TABLE 1 | Summary of the strengths, gaps and drivers for change in empirical and theoretical ecology and modeling as perceived by the authors.

Research domain Strengths Gaps New driver Next steps

Empirical ecological

studies

Direct connection to

the observable

phenomena

• Tactical integrated statistical

models: empirical validation but

minimal mechanistic understanding

• Historical observations may

become irrelevant as climate

change introduces new dynamics;

evolutionary changes; gaps in data

on previously unimportant species,

parasites etc.

Rapid, continuous,

automated data

collection possible

• New methods (e.g.. machine

learning) to make best use of the

new volumes of data available

(extracting patterns that could not

be seen in small datasets).

• Contributing to hybrid approaches

Theoretical and

mathematical ecology

Synthesize and

generalize

understanding

• Theoretical ecological models:

provide basis for general

understanding and testing

mechanisms, often limited testing

• Equilibrium based theoretical

underpinnings increasingly starting

to fail under changing climate and

changing distributions.

• Eco-evolutionary feedbacks

demonstrating need for further

testing.

• Cross-scale contributions of

diversity to functional resilience of

ecosystems not well-understood

Advances in

ecological theory.

Dramatic

improvements in

computing power.

• Focusing on dynamic theoretical

equations rather than equilibrium

formulations

• Building theories on larger scales

• Improved frameworks to compare

terrestrial and marine systems and

understand connections

• Contributing to hybrid approaches

• Expanded retrospective

assessment of existing model

projections

• New (including as yet

unrealised) approaches.

System level hybrid

models

Bring together the

strengths of different

modeling methods,

representing each facet

in the way that best

captures that

component or process.

Can be made explicitly

multi-scale and allows

for more dynamic

representations.

• Tropho-dynamic species and

trait-based models: gaps in both

empirical & theoretical

underpinnings (e.g., density

dependence, biodiversity, evolution)

• Whole of ecosystem models:

modeling gaps confounded by

need to capture broader and more

complex ecological interactions.

• Socio-economic ecosystem

models: gaps due to two-way

feedbacks between ecological,

social & economic systems

Integrating ideas

and models from

different research

fields

• Move beyond fixed

parameterisations, fixed functional

relationships and formulations.

• Adopt dynamic model structures.

• Develop multi-scale hybrid models,

cross validate with empirical

statistical models and test

emergent properties against

general theory and patterns

the late nineteenth century (Egerton, 1977) and is often still seen
as a relatively “young” science. Throughout that long history and
up to the present day ecologists have drawn upon observations
to try to summarize the world around us and the complex
interrelations contained therein (Haeckel in Egerton, 1977), to
elucidate the underlying mechanisms that shape the patterns we
see (Levin, 1992). In some instances, they have combined forces
with mathematicians to provide a more theoretical standpoint
or to create synthesis via model construction, which explicitly
involves abstracting away unnecessary detail and retaining only
the essentials required to produce observed patterns (Costanza
and Sklar, 1985; Levin, 1992; Håkanson, 1997; Fulton et al., 2003a;
Plagányi et al., 2014).

As mechanisms often occur on different scales to the patterns
they shape, this makes scale the key conceptual problem in
ecology (Levin, 1992). Ecological studies began at small scales
(Melbourne-Thomas et al., 2017), but more recently, is grappling
with more data streams, frommore disciplines, new technologies
and across broader scales, particularly as global change has
become such a dominant consideration (Chave, 2013). As
understanding has accumulated there have been numerous

attempts to unify the threads into a common framework (e.g.,
Scheiner and Willig, 2005, 2008). These exercises have had
mixed success and significant gaps remain—particularly at the
largest and smallest scales. This “modelers’ perspective” provides
a summary motivated by the authors’ experience with those
gaps, assessing which have been filled and which loom largest on
the horizon.

Our starting point was to reflect on our experience, its dead
ends asmuch as its successes, the persistent trials along withmore
recently emerging challenges. Our observations are summarized
in Table 1, which captures our collective view of the strengths,
gaps, and drivers of change across the broad research domains
of empirical ecological studies, theoretical and mathematical
ecology, and system-level hybrid models. In pondering how scale
plays into these issues we developed a set of “Stommel diagrams”
(Stommel, 1963) to frame our thinking. This series of schematic
diagrams (Figure 1) reflects the scales and dimensions that
characterize key system components and processes (terrestrial,
marine, and anthropogenic), as well as the reach of observational
methods and models in representing those features. The shading
on the diagrams highlights the extent of understanding drawn
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FIGURE 1 | Set of schematic Stommel diagrams showing: (A) key ecological processes (with the solid arrow indicating the new understanding about the scales of

action of evolution and the dashed line showing the cross scale connection ecology is realizing stems from linking processes at different scales such as parasitism,

ecosystem structure and function and large scale nutrient cycles); (B) marine phenomena (components and processes); (C) terrestrial phenomena (including the scale

of natural disasters such as fire, flood, earthquakes, and volcanoes); (D) human dimensions (including the scale of human settlements and decision making processes

and influences); (E) observational scales from illustrative major sensor platform types (noting that citizen science is significantly extending data collection beyond the

scales of the platforms shown); and (F) the scales most reliably captured by models (the solid dots indicate scales well-captured by traditional approaches, the

shaded area the growing extent of models, the small and large arrows the push for continuing development and the dashed line the push for coupling across scales;

there may be additional model types that already sit outside the shaded domain, but it is largely indicative of the scope of scales covered). Together these diagrams

create a conceptual figure highlighting the scales and disciplinary dimensions that characterize reality. The base figure for the key ecological process and marine

components is redrawn and updated from Vance and Doel (2010). For the other diagrams the scales of the key phenomena and system features also drawn from

Clark (1985b), Marquet et al. (1993), Peterson et al. (1998), Westley et al. (2002), Scholes et al. (2013), Kavanaugh et al. (2016), and Rose et al. (2017). Note for these

other diagrams (C–F), we have chosen to draw them on a flat two dimensional space as the original Stommel diagram’s third dimension may not be as relevant for

these other dimensions (but there was insufficient information to reliably try to replicate this third axis for the other properties).
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from historical ecological and modeling studies, with the arrows
in Figures 1C,F showing the likely directions of expansion for
ecological knowledge and model representations of ecological
processes (some of which has already begun).

Modern ecological modeling (represented by the shaded
area in Figure 1F) has been underpinned by both empirical
studies and mathematical explorations (Table 1). The early
efforts of observational, theoretical and mathematical ecology
were relatively simple and often confined to “local” (small)
scales (the phenomena on scales of <1–100 km and from a few
months to a few years in extent shown in Figure 1). However, the
strong relationship between time and space scales (the diagonal
patterns seen across Figures 1A–C,F) also allowed for some
researchers (e.g., Clements, 1916) to conceptualize processes on
large (landscape) scales over very large time periods (the top right
corner of Figure 1B). Since then there has been a coevolution of
empirical and conceptual/theoretical ecology. Accumulating data
streams, technological improvements (e.g., increased computing
power) and a growing understanding of the interconnected
and nested nature of ecological systems has seen all ecological
fields, but perhaps particularly modeling, which simultaneously
come under pressure to become increasingly complex while
appreciating the extensive list of things they still do not know
(continuously pushing out the shaded areas of understanding
in Figure 1). Our experience of this pressure over the past 2
decades motivates this perspective piece, which briefly explains
the historical trajectory of (theoretical and mathematical)
ecology, then summarizes more recent realizations for the field
(including insights from models and implications for their
ongoing development) and finally concludes with our thoughts
on what the future holds and what may be fruitful pathways of
enquiry.While we have tried to be even handed in our discussion,
much of our experience stems from marine ecosystems and we
acknowledge that bias. We hope that any of our unintentional
omissions are not so grievous as to detract from our intent to
start a conversation about how the scientific community can go
about broadening the cloth of modeling and ecology.

HISTORICAL TRAJECTORY OF ECOLOGY

The broad concepts that underpin ecology have been accepted
for decades—e.g., species have heterogeneous distributions
contingent on interactions with their experienced abiotic and
biotic environments; resources and life spans are finite and
realized ecological properties are shaped by a mix of behavior
and evolution (Scheiner andWillig, 2008). Nevertheless, finding a
“simple” set of rules that can be used predictively to describe those
concepts has proved more challenging. There have been many
contenders—either for a “grand unifying” concept or at least
theories that synthesize significant chunks of ecological thought,
including: island biogeography theory (MacArthur and Wilson,
1967), succession theory (Pickett et al., 1987), metapopulation
theory (Hanski, 1999), food web theory (Pimm, 1982), unified
neutral theory of biodiversity and biogeography (Hubbell, 2001),
metabolic theory of ecology (Brown et al., 2004), biodiversity
via emergent neutrality (Scheffer and van Nes, 2006), theories

of macroecosystem ecology (Rose et al., 2017), and the many
other theories listed in publications such as Marquet et al. (2015).
Indeed, so many unified theories have been proposed that there
are now pushes to unify the unified theories (McGill, 2010).
Of these many ecological concepts, cross-scale macroecological
theories (McGill and Collins, 2003) are one of the few that
explicitly address multi-scale processes—from local interactions
to large scale dynamics.

Drawing on our modeling experience, our sympathies lie
with those who see strength in diversity and see “a monolithic
unified theory of ecology is neither feasible nor desirable”
(Loreau, 2010a,b); preferring instead to deploy the wide range of
competing ideas in addressing applied ecological problems such
as resource management, conservation, or restoration (Palmer
et al., 2008). Much as with the debates over “top-down vs.
bottom-up” control of food webs (Lynam et al., 2017), “density
dependent vs. density independent” control factors (Turchin,
1995), or the relative importance of birth-death vs. movement
related processes (Kondoh et al., 2016), it has been our experience
that reproducing real world dynamics often involves a mix of
most of the concepts, with what is/isn’t important changing with
the system, the dominant conditions and most importantly the
question being asked. Reflecting on experiences from studying
multiple ecosystems has seen us realize that there are some
common features (a common “skeleton” if you will), but that,
unlike physics and chemistry, each ecological system will have
its particular idiosyncrasies (the “flesh” of the detail). General
principles and patterns do of course exist and more remain to
be found, but while we wait for those theoretical principles to be
tested, as scientists servicing applied management needs, we have
chosen to pragmatically combine concepts and tools as needed—
i.e., the hybrid approach that is beginning to gain traction in
the modeling world. This approach, highlighted in Table 1 as
a strong direction of future model development, appears to
be the best means (in terms of practicality of implementation
and level of model skill) of achieving the linking across scales
shown by the dashed arrow in Figure 1F. It has certainly been
the only means we have found of capturing or anticipating the
emergent properties that have posed the greatest challenges to
coastal resource managers. For instance, to correctly capture
the responses of reef-associated fish communities to interacting
environmental and fishing pressures along the northwest coast
of Australia, we needed to tie mean field representations of
advectable larval patches to age structured metapopulatons of
settled juveniles to individual-based representations of the adult
stages of key large fish species (Gray et al., 2006). Similarly,
in producing models of developed coastal margins (for the
purposes of envisaging potential alternative future development
and management pathways) it has been necessary to combine
a multitude of modeling methods to successfully represent the
many ecosystem components and human uses present in these
systems. For example, in a model of Patagonia developed to
assist with planning for sustainable aquaculture (Fulton et al.,
2018), it was necessary to couple time series (for environment
drivers and economic demand) with qualitative networks (of
social and ethnic aspects), statistical models (to represent the
epidemiology of farmed fish), process-based analytical models
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(e.g., age structured metapopulation models for wild fish
stocks), agent-based representations (of large marine mammals),
cellular automata (for land uses such as agriculture, forestry
and urban settlements) and stocks and flow representations
of industrial production (e.g., mining, energy production,
and manufacturing).

As the scope of the models have grown from populations to
communities to ecosystems and finally socioecological systems
(the central arc of points in Figure 1F) it has been necessary
and important to draw upon an expanding range of disciplines—
not just for directly relevant information on the processes to
be considered (expanding from ecology to biology, chemistry,
geology through to human oriented sciences like economics,
sociology, psychology, etc.), but also for the new perspectives
they bring. Without this expansion of perspective, we have found
it impossible to successfully reproduce the history of exploited
ecosystems (e.g., in south eastern Australia; Fulton et al., 2005,
Fulton and Gorton, 2014).

The value of considering the world from new points of
view is something ecology has struggled to achieve (with some
notable exceptions, such as the interchange of ideas around game
theory with economics; e.g., Riechert and Hammerstein, 1983;
Brown, 2016). Ecological observation, particularly before the
invention of modern remote or autonomous monitoring systems
was logistically difficult. Technological advances have also not
negated that observations can also be costly or protracted. These
realities led to an accidental bias in the formative ecological
studies, with the majority of the most influential tending to
come from more accessible locations—i.e., terrestrial forests
and grasslands (Elton, 1924), freshwater lakes (Tilman, 1977;
Carpenter et al., 1987), or the marine intertidal (Paine, 1969);
and were often situated in the northern hemisphere. While the
importance of scale in ecology was appreciated on similar time
scales in the marine (Smith, 1978; Steele, 1978) and terrestrial
realms (Allen and Starr, 1982), the sharing and transference
of ecological concepts between landscapes and seascapes has
often lagged. Metapopulation theory, for example, began its
development on landmore than 30 years before it was considered
in marine systems (Sale et al., 2016). There has also been a
substantial separation in the focus of work done by practically
focused ecologists working on resource management (e.g., for
forestry, fisheries or pest control), who typically began from a
population stand point (e.g., Russell, 1931; Hjort et al., 1933),
and academic ecology which had a much earlier focus on
complexity and community dynamics (e.g., Clements, 1916).
Access bias also means that critical ecological processes that
structure the harder to access marine systems may be under-
appreciated (or unrealized).The hemispherical bias has meant
that our understanding of southern hemisphere ecosystems (e.g.,
in the Southern Ocean) has faced challenges because aspects
of the ecosystem functioning are substantially different (the
northern hemisphere is dominated by continental land masses,
the southern by ocean, this influences large scale current patterns,
climate, temperature patterns, life histories, ecology (Chown
et al., 2004), as well as levels of human occupation, exploitation
and pollution (FAO, 2005; World Health Organization air
pollution database available from https://www.who.int).

There are a few common ecological principles such as
source-sink dynamics (Pulliam, 1988), that hold equally well in
marine and terrestrial realms; whereas other processes are more
obviously prominent in one context than another (e.g., habitat
selection is clearly important in terrestrial forests or coral reefs,
but its role in pelagic systems, while important, is not as well-
appreciated). Given the different properties of the essentially two-
dimensional nature of many terrestrial ecosystems vs. the three-
dimensional reality of open ocean ecosystems, it is likely that
theories developed in one perspective may not easily equate in
the other (Steele, 1985). As highlighted by Webb (2012) some
comparisons are straightforward—the same taxa in different
environments, or the same process (e.g., predation) in different
environments, consideration of community structure in similar
environments (soils and marine sediments)—while others are
less obvious [e.g., when taxa as different as whales and trees
have a similar biogeochemical role, such as carbon storage and
nutrient cycling (Ratnarajah et al., 2016)]. This need for creative
equivalence has delayed appreciation of how some ecological
properties do port between systems—as demonstrated by the
importance of size as a structuring mechanism on land and
sea (Yvon-Durocher et al., 2011) and the related fact that the
biomass equivalence rule popularized by Sheldon et al. (1972) in
the pelagic marine realm holds equally well in the 3D interstitial
realm inhabited by soil communities, something registered by
Ghilarov (1944) but not effectively recognized, even by size
spectra specialists, until recently (Polishchuk and Blanchard,
2019).

THE MODELING TRAJECTORY

Models have played a beneficial role in taking ideas between the
different realms; they have also built off ecological observations
and theory to provide feedback that helps advance all the
disciplines. Early mathematical analyses of ecological systems
established many of the basic concepts that underlie ecology
(Pacala, 1994)—such as competition (Ekschmitt and Breckling,
1994)—even when empirical evidence has been hard to source
(e.g., Allee effects; Courchamp et al., 2008). Anderson and May
(1979), for instance, not only usedmodels to describe phenomena
such as disease outbreaks but to emphasize how these analyses
could function as a test bed for theories of spatial ecology
(Ferguson et al., 1997). Marine (typically fisheries inspired)
modeling has played a significant role in advancing population
(e.g., as summarized in Allen, 1975) and ecosystem modeling
(see review in Fulton, 2010) as well as bio-economic modeling
(e.g., Clark, 1985a). Marine work has also inspired inclusion of
socio-cultural aspects in models (van Putten et al., 2013) and
contributed to some of the earliest work on epidemiological
modeling (e.g., Anderson and May, 1978).

Initial simplistic concepts such as the Lotka-Volterra
representation of interactions (Volterra, 1926; Lotka, 1932)
have been refined—for example via the foraging arena
concept (Ahrens et al., 2012) or the explicit relation of
physiological/metabolic processes to body size. Allometric
approaches, now widely used to explain ecological processes
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on land and sea, grew from early attempts to find simple
relationships using mean body size (Yodzis and Innes, 1992).
Attempts to push ecological models to new scales and embed
them in larger models representing entire socioecological
systems (linking with social, economic and climate components)
has highlighted entirely new gaps in our understanding of
system connections and feedbacks (Levin et al., 2013). Examples
include how human exploitation can influence evolutionary
processes on ecologically relevant timeframes (Audzijonyte
et al., 2013) and how changing social-ecological conditions
need to be accounted for to understand and manage regional
resilience of terrestrial protected areas (Cumming et al., 2015).
This has helped drive the desire to share ideas from other
research fields, to help close some of these gaps—for example
bringing together ecologists, economists and others to capture
iterative interactions between human actions and natural system
responses in fisheries (e.g., Fulton et al., 2014; Weber et al.,
2019), catchments (e.g., Voinov et al., 1999) and agricultural
landscapes (e.g., Münier et al., 2004; Crepin and Lindahl,
2009).

Different Modeling Focus for Land and Sea
Marine modeling has maintained a relatively steady focus on
population modeling (as discussed in 2015 special issue of
ICES Journal of Marine Science), biogeochemical modeling
(e.g., Franks, 2002), multispecies or ecosystem modeling (e.g.,
Plagányi et al., 2014), as well as habitat, species, and community
distributions (e.g., Cheung et al., 2009; Dunstan and Foster,
2011; Pitcher et al., 2018). Terrestrial modelers have similar
interests and some shared methods, but have tended to
have a different methodological focus to their efforts. For
instance, statistical methods appear to have played a much
larger role in some areas of terrestrial ecology, perhaps due
to access to larger data sets than are often available in the
ocean. Structural equation modeling, a multivariate technique
useful for evaluating multivariate causal relationships, has
been used to explore ecosystem responses (e.g., to climate
change or human disturbance) and processes (Fan et al.,
2016). Bayesian hierarchical models have also been used to
great effect, not only to look at species distributions (e.g.,
Diez and Pulliam, 2007; Stewart-Koster et al., 2013), but
also to look at ecological impacts and responses to human
activities (such as to altered environmental flows; de Little
et al., 2013) and to allow for the integration of experimental
ecology and mechanistic (or process-based) modeling (e.g.,
Ogle, 2009). Bayesian Belief Networks (BBNs) have been
used in both marine and terrestrial circumstances, but have
perhaps had more attention in terrestrial systems. These
models graphically represent probabilistic influence networks
and correlative and causal relationships among variables and
have been used to look at the implications of alternative
management approaches (McCann et al., 2006). Some of the
most substantial efforts in terrestrial ecological modeling have
gone into the modeling of terrestrial biosphere (Fisher et al.,
2014), including biogeochemical cycles, soil and vegetation (e.g.,
Rastetter et al., 1991), or landcover and associated properties—
such as state and transition models of rangeland management

(Bestelmeyer et al., 2017) and semi-mechanistic models of
community-level biodiversity and its responses to climate shifts
(Mokany and Ferrier, 2011). More recently there have been a
growing number of efforts to breach the divide and share lessons
between the terrestrial and marine domains (Milner-Gulland
et al., 2010).

Complexity Theory Has Helped Structure
Crossing Scales
Looking across both land and sea over the last 20 years, as the
scope and the number of scales included in ecological studies
and models expanded, two particularly useful additions to
the ecological lexicon were complexity theory and network
theory. Complexity theory is an interdisciplinary approach
that integrates concepts from a broad range of disciplines
(including chaos theory, computer science, mathematics,
fuzzy logic, statistical physics information theory, non-
linear dynamics, evolutionary biology, cognitive psychology,
behavioral economics, anthropology, and general systems
theory) which attempts to explain the behavior and evolution
of common properties of complex systems such as embedding,
the importance of diversity and interconnections, contextual
dependence, emergent properties, and distributed control.
Complexity theory brings together methods to tackle the
behavior of systems (e.g., ecosystems displaying non-linear
and dynamically adaptive responses) that had eluded more
traditional, often equilibrium, approaches (Hastings et al., 2018).
We have found this to be a particularly useful framework for
dealing with the hierarchy of interactions within and across the
14 orders of magnitude in spatial scales (and the similarly large
number of temporal scales) that contribute to ecosystems—
from the bacterial to basin and global scales (Figure 1).
Metapopulation concepts took the first step, recognizing within
and between patch processes (Levin, 1992), but complexity
theory went further and ecosystems are now clearly seen
to be complex adaptive systems characterized by: feedbacks
between processes occurring at different scales, amplification of
responses to minor (noisy) variations, and emergent patterns
(Levin, 1998; Anand et al., 2010). A powerful example of this
is ecosystem patterns that are driven by ecological interactions
that are themselves mediated by metabolically determined
chemical signaling (Chave, 2013). The value of complexity
theory as a means of solving issues of mismatches in scales
of modeling biophysical systems, anthropogenic drivers,
and socio-economic dynamics has been given considerable
attention in the terrestrial modeling literature. For example,
Parker et al. (2008) summarized the complexity of modeling
land-use systems due to direct and indirect interactions and
the mismatch of scales of human actions and their impacts,
specifically dealing with: harmonizing models and data sets
with vastly different resolutions in space and time; using expert
knowledge to constrain modeled transitions; and carefully
considering the level of coupling required of the biophysical
and socioeconomic components—whether it is “one-way” or
“fully coupled” and whether it considers only direct or also
indirect links.
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Network Theory—Finding Patterns and
Connections
Network theory (whereby key system components and their
interactions are represented by a set of “nodes” connected by
“links” of varying strength) has also been particularly useful for
understanding ecology from local to regional scales—allowing
for characterization of trophic and habitat interactions and
key player identification (Jordán et al., 2006; Bascompte, 2009;
Thébault and Fontaine, 2010), as well as to predict management
outcomes for interacting threats (Marzloff et al., 2016b; Baker
et al., 2018; Tulloch et al., 2018), or distributed patches, such
as networks of aquaculture leases (Mardones et al., 2011).
Network theory has also supplied science with a powerful
means of integrating information sources (e.g., by allowing for
explicit connection of observations from different disciplines
and with traditional knowledge) to provide new insights into
system functioning (e.g., Dambacher et al., 2003). Furthermore,
network theory has provided the capacity to deal with multilayer
networks (spanning multiple spatiotemporal scales and other
forms of ecological complexity such as ontogenetic shifts).
This, in turn, has enabled analysis of interactions between
the processes that operate within and between scales and the
evolution of networks through space and time (Pilosof et al.,
2017). Network analysis is also allowing for the identification
of universal properties that govern multi-scale system behavior.
Gao et al. (2016) demonstrate that the resilience of multi-
dimensional complex systems are strongly influenced by the
topological properties of density, heterogeneity and symmetry.
This capacity to highlight common properties of multi-scale
behaviors, integrating ecological and management aspects and
their associated feedbacks, means that network theory is helping
to fill the gaps in the diagonal spine of the diagrams in Figure 1.
We have found network-based representations of systems (using
loop analysis) such a useful means of characterizing conceptual
understanding of ecosystem form and function that it is now
routinely used as the first step in our modeling work.

RECENT ECOLOGICAL REALIZATIONS

The Significance of System Specificity
Whereas, finding universal (cross-scale) properties of structure
and function is a comforting anchor for those trying to
understand, conserve or manage the world around us, the
reality is that contingent dynamics of complex systems is
the recurrent theme and challenge of the new generation of
ecological problems. The first step in tackling this situation has
been to accept the system specificity (contextual dependence) of
the outcome of some processes (e.g., evolution and food web
structure; Eklöf and Stouffer, 2016) and the resulting implications
for human use and management—such as the performance of
ecological indicators (e.g., Dale and Beyeler, 2001; Shin et al.,
2018) or natural vs. artificial marine substrata (Ferrario et al.,
2016). This has also led to the realization that whereas there
are core ecological properties that are universal (and codified in
general modeling frameworks), system idiosyncrasies will often
demand bespoke model modifications if the applied models are

to faithfully capture the observed dynamics of the system in
question (Fulton et al., 2004). Care must be taken to restrict
this to necessary processes and guard against unnecessary over-
fitting, but experience has shown that the extent to which
this is an issue depends on the use of the model (whether
it is for strategic or tactical questions) and the interpretation
of outputs.

Systems Are Moving Beyond the
Immediate Observation Record
Another step in improving the veracity of ecological models in
our rapidly changing world is to understand the limitation of
the observational record. One of the most commonly discussed
reasons for the patchy reliability of projections based on statistical
relationships is that empirical correlations often fail when
moving into conditions outside the observed range (Levin, 1992;
Mokany et al., 2016). Even when using increasingly sophisticated
statistical approaches to ease computation demands there is
still the need to build from assumptions (or preferably robust
mechanistic understanding) of the phenomena being considered
(Mouquet et al., 2015). Taking a theory-based approach can
extend the envelope of reliability, while simultaneously assisting
in the accumulation of knowledge and the reduction of
uncertainty (Thuiller et al., 2013). In principle, ecology could
draw on historical analogs to inform ideas and models of future
change. Unfortunately, such efforts are sparse, particularly in the
marine realm, as they often draw on paleontological time frames
rather than simply observations from recorded history, as the
degree of future environmental change may shift ecosystems into
states that are governed by previously unobserved variables and
interactions. Where available, fossil records have already given
insights into the changing role of functional diversity, species
composition and network structure with shifting pressures on
ancient ecosystems and how a weakening of functional diversity
exacerbated responses to later pressures (e.g., Yasuhara et al.,
2008; Mitchell et al., 2012; Dunne et al., 2014; Roopnarine
and Angielczyk, 2015; Pimiento et al., 2017; Lowery et al.,
2018). Work on paleontological patterns of extinction underline
that areas with high intrinsic risk of extinction (due the
geographic range and taxonomic identity of species found
there) coincide today with areas of rapid climate shifts and
elevated human impacts (Finnegan et al., 2015; Pimiento et al.,
2017). Paleoecological proxies—such as the examination of
pollen patterns or tree ring records (Birks and Birks, 2003),
or diatoms in seabed cores (Mackay et al., 2003)—can allow
for reconstruction of the dynamics of ecosystems beyond the
immediate observational record on to scales of 1000s of years
(in particular over the Holocene), meaning they include a greater
overlap with the species alive today. Models can then be tested
against these proxies to see the veracity of the model’s capacity
to effectively capture dynamics of these species and ecosystems
beyond the modern period. Iglesias et al. (2015), for example,
describe how linking sedimentary charcoal data and ecological
models has been used to reconstruct past fire regimes and the
implications of climate-vegetation-fire linkages and drivers at
different spatial and temporal scales. While such proxy-based
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data sets are typically sparser than modern observations, they are
a lot less sparse than the fossil record.

The field of ecology will be faced with a fast-paced race
to update models and understanding in an attempt to keep
pace with rapid observational corrections to prior predictions.
In attempting to anticipate this modeling arms race, modelers
have begun to look at the inclusion of fine scale processes that
influence species’ responses and adaptation. Unfortunately, this
is where ecological modelers encounter a number of significant
challenges. It is not a simple process to incorporate sub-grid scale
processes, fine-scale behaviors and phenology into ecological
models; particularly those models attempting to capture the
dynamics of entire ecosystems (Griffith and Fulton, 2014). It is
computationally infeasible to explicitly represent the small spatial
and short time scales involved (Hastings et al., 2018). Advances
can be made by clever use of statistical characterizations or
abstractions which influence the mechanistic model dynamics
and modify outcomes on the explicitly modeled scales (Ellis
and Pantus, 2001; Moorcroft et al., 2001) or to use agent-
based approaches which see the “emergence” of the desired
phenomena (DeAngelis and Mooij, 2005). However, even then
ecology can fall short in terms of providing suitable mechanistic
understanding. Environmental data is currently too coarsely
resolved to support fine-grained processes (Mouquet et al.,
2015). Moreover, not all ecological processes have received
equal attention—mutualism, amensalism, and facilitation have
received a tiny fraction of the attention garnered by predator-prey
interactions (Martorell and Freckleton, 2014); and mixotrophy,
which has an important part to play in marine planktonic
systems, has rarely been included in models to date (Berge et al.,
2017).

Both macroecological relationships (Brown et al., 2004;
Cabral et al., 2017) and trait based approaches (McGill et al.,
2006) appear to have strong potential as means of connecting
the arrows along the spines of Figures 1C,F—simultaneously
synthesizing cross scale processes, helping bridge the divide
between models of ecosystem composition and function, and
delivering larger scale patterns without requiring crippling
complexity, or unreasonable computational and data loads
(Blanchard et al., 2017). Even then, caution is required due to
the scale-dependent role of traits (Suárez-Castro et al., 2018),
the significant variation that exists around macroecological
relationships (Gaston and Blackburn, 1999) and knowledge that
the relationships can change dynamically (Supp et al., 2012).
These very factors may help explain phenotypic responses and
range edge effects (Chuang and Peterson, 2016), as well as
species-specific responses to processes such as ocean acidification
(Vargas et al., 2017) and localized variation in adaptation and
adaptive capacity (Bennett et al., 2015). Nonetheless, they are also
likely to have important implications for spatiotemporal patterns
in the diversity and functioning of ecosystems and our capacity
to model those patterns (Mokany et al., 2016).

Gaps in Fundamental Ecological
Understanding
All of these issues act to highlight additional ecological gaps.
There is still limited understanding of how ecosystem structure
changes through time and space—and how the processes concur

or differ between land and sea (e.g., many of the well-studied
features at smaller spatial scales appear to span longer time
periods on land than at sea—compare Figure 1A and Figure 1B).
Nevertheless, recent advances in process-based macroecology
(Cabral et al., 2017; Connolly et al., 2017) and trait-based
approaches (Kiørboe et al., 2018) are making advances in terms
of dynamic prediction of macroecological patterns, including
across scales. Isotopic methods are helping bridge the trophic
gaps at larger spatial and temporal scales (Hobson et al., 2010;
Quillfeldt et al., 2010) and new metagenomic methods are being
used to generate new ecosystem scale maps of active processes
and biodiversity (Raes et al., 2018). As we outline above, nested
network approaches are also helping to link understanding of
interactions and connectivity across processes, space, and time
(Pilosof et al., 2017). As an example, to support management of
the deleterious impacts of crown of thorns starfish on Australia’s
Great Barrier Reef coral communities, ecological models are
being integrated across a range of scales accounting for fine-
scale Allee effects (Rogers et al., 2017) through to embedding
an ecological model in a meta-community reef network model
incorporating large scale processes such as cyclone and terrestrial
runoff from agriculture practices (Condie et al., 2018).

Unfortunately, it remains the case that there is little empirical
understanding of the true natural structure and interactions in
many systems (Griffith and Fulton, 2014). Science often likes
to begin from a “no effects” case and then build incrementally
from there, but in ecology that is proving exceptionally difficult
to do given humanity’s pervasive footprint (Halpern et al., 2015).
Palaeoecological studies (that aim to reconstruct ancient webs
prior to human influence) are making advances (Mitchell et al.,
2012; Yeakel et al., 2013), but few systems have survived a human
signature (Yeakel et al., 2014). This means we are starting from
partial information when trying to decipher what are healthy
system structures, how humans may impact those and what to
expect as we either degrade or endeavor to recover ecosystems.

Socioecology Makes Ecology Look
Straightforward in Comparison
The challenges above are compounded further when we move
from strict ecological to socio-ecological responses. Many key
processes in socioecological systems, such as those driving
institutional change, have gone unrecorded and the footprint
of human activities and settlements push into the combinations
of time and space scales with low predictability (see the area
marking out the scale of settlements in Figure 1D). This creates
new challenges for ecology and modeling. For instance, the
question of how to manage the novel ecosystems arising as a
result of climate associated range shifts now bedevils resource
managers, especially where valuable stocks move from one
country’s jurisdiction to another or where new interaction effects
emerge (Pinksy et al., 2018). Recovering marine mammal stocks
are causing significant issues in a number of marine systems.
This is via predation pressure that may be beyond what the
current human perturbed ecosystem states can support (Estes
et al., 2009; Chasco et al., 2017), or are at least beyond what
human users are used to or (in some cases) willing to accept,
leading to tensions with local fisheries and other users (as
reported in the popular media of Australia, Canada, USA, and
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Chile). Moreover, contextual dependency of complex systems
also means we cannot simply rewind the clock—reintroductions
fail (e.g., Barkai and McQuaid, 1988) or strong hysteresis create
blockages (Marzloff et al., 2016a). Key to addressing these
challenges are quantitative modeling methods that can predict
the consequences for the recipient ecosystem. Fortunately,
significant advances have already been made on these issues in
terrestrial systems (e.g., Baker et al., 2017).

Processes and Interactions—At New
Scales and Cross Scale
Work with more complex and dynamic systems has also allowed
ecologists to appreciate that some of the ideas fundamental
to ecology, such as evolution, need expansion or revision to
correctly connect their expression at the scales now being
observed (see the arrow pushing to smaller scales in Figure 1C).
For example, 20–30 years ago it was standard practice to
teach evolution as a process that was irrelevant on less than
effectively geological scales (disease resistance dynamics being
one of the few exceptions). Ecological modelers were comfortable
ignoring evolutionary drivers (i.e., those developing models
for the bottom left of the diagrams in Figure 1 typically did
not bother with processes in the upper right). Suggestions
that processes on ecological scales could drive observable
change were strongly contested (e.g., the debate around fisheries
induced evolution; Audzijonyte et al., 2013; Eikeset et al., 2016).
Now, as human activity provides strong directional pressure at
multiple scales, variants of Gould and Eldredge’s (1977) idea of
punctuated equilibrium seem to be a dynamically experienced
event and there is frequent discussion of phenotypic variation,
eco-evolutionary processes (Pelletier et al., 2009; Chave, 2013;
Gillman and Wright, 2014; Laland et al., 2015; Watson et al.,
2016;Weiss-Lehman et al., 2016), and epigenetic effects (Danchin
et al., 2011; Bonduriansky, 2012; Ryu et al., 2018). Hence
ecologists are realizing that their models are missing key
processes. Fulton and Gorton (2014) found that to reliably
reproduce recent observed ecosystem shifts in their models of
south east Australia, evolution and acclimation processes (along
with modification of coastlines by human activities) were needed.
When those models were projected forward they led to vastly
different projections of future system state than models that used
only fixed parameters. In trying to validate the rate of expression
of these additional approaches it was soon clear that this is one
of many cases illustrating that our understanding of how the
natural world operates is not as complete as we had thought.
We may have had a credible grasp of the functioning of systems
within certain limits and configurations, but the Anthropocene
is moving our world beyond those limits, which is highlighting
new or underappreciated processes and species roles (Hobbs
et al., 2009). This new reality drives home that ecology lacks
a universally solid foundation from which to extend existing
theories and modeling approaches to easily absorb the many
interacting components and scales. Moreover, for modelers it
is highlighting how many of the abstractions that underpin the
representation of the more complex ecological interactions and
processes are unvalidated, impossible to measure directly and

based on equilibrium concepts that are not compatible with the
dynamically transient nature of changing ecosystems influenced
by both human use and environmental shifts.

A good example of where this realization hits home is in our
capacity to reliably model the changing distribution of species.
There is no denying that the science has come a long way
and can capture large scale observable patterns on land and in
the oceans (Follows et al., 2009; Olsen et al., 2016). This has
been made possible in part because modern tracking technology
means we can now track animal movements to a degree unheard
of only 5 years ago (Kays et al., 2015; Klein et al., 2019; Lowerre-
Barbieri et al., 2019). However, research is still struggling to
link physiological tolerances tomultivariate habitat dependencies
(Bozinovic and Naya, 2015), life-history and ecological traits
(dispersal capability; Bates et al., 2014) and species co-occurrence
(Cazelles et al., 2016) in order to reliably predict range shifts,
habitat contraction or expansion and the role of adaptation in
these processes. For example, while zooplankton assemblages
in the North Atlantic have conserved their thermal niches and
tracked isotherms poleward (e.g., Chust et al., 2013), spatial
distributions of Southern Ocean mesozooplankton communities
have not advanced polewards, despite surface layer warming in
the Atlantic sector over at least the past six decades (Tarling et al.,
2017), contrary to the assumptions of species distribution models
(e.g., Mackey et al., 2012). In addition, global models often do
not perform well for the poles in particular, but can also require
tailoring (in downscaling efforts) to particular regions—where
the system specificity proves particularly strong (e.g., Bryndum-
Buchholz et al., 2018).

Some issues of scale mismatch and interconnection have been
solved within terrestrial environments, with methods developed
that scale-up individual-based models of fine-scale physiological
and ecological processes and dynamics to global ecosystem
scales (Moorcroft et al., 2001), including embedding fine-scale
vegetation demography within Earth SystemsModels (e.g., Fisher
et al., 2018) to account for changing climatic conditions. Integral
projection models (e.g., those developed by Coulson, 2012)
actively try to address the interplay of population ecology and
evolution (quantitative genetics). These models clearly show that
phenotypes and life histories (and thus parameters in ecological
models) will change as adaptation occurs, leading in turn to
changing population dynamics (Coulson et al., 2015) and likely
ecosystem interactions (Forestier et al., in press). The modeling
approach is being extended to cope with novel environmental
conditions by linking it with dynamic energy budget models
(Smallegange et al., 2017).

Advancing ecological modeling means acknowledging the gap
in understanding around cross-scale processes and interactions
(represented by the dashed line in Figure 1C), which are
only beginning to be appreciated (e.g., Donadi et al., 2017).
Traditionally, ecological questions tackled by experimentation
have gained tractability by simplifying the circumstances,
focusing on single taxa or functional roles, or limited spatial
scales. However, recent studies are finding multitrophic richness
and abundance strongly influence ecosystem functioning
(Soliveres et al., 2016; Ushio et al., 2018). This has likely meant
there has been an under-appreciation of the role of diversity
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in ecosystem functioning (Soliveres et al., 2016), slowing
the merging of the composition and functional modeling
communities. Similarly, there has been an under-appreciation
of the functional role of cross-scale contributions of diversity to
functional resilience of ecosystems. For example, there has been
much discussion around algal-coral dynamics and resilience
to disturbance in tropical reefs (e.g., Hughes et al., 2007), but
it wasn’t until 2016 that cross-scale processes were considered
explicitly (Nash et al., 2015). That study provided empirical
support for resilience as a result of the combined effects of
cross-scale and functional redundancy—whereby multiple
species within a functional group perform a functional role at
different spatial scales (cross-scale redundancy) and respond to
disturbance in different ways (i.e., functional redundancy via
response diversity). Appreciating this involves understanding the
contributions of trait diversity (e.g., in dispersal at different life
history stages), the implications for the species scale of operation,
and how that affects ecosystem properties (Massol et al.,
2016). Furthermore, when trying to understand the outcomes
of perturbations and predict ecosystem responses there is
the simultaneous need to consider the spatial and temporal
dimensions of disturbances (i.e., what scales they cross) and how
that interacts with these multifaceted forms of redundancy—
e.g., can dispersal act as a rescue mechanism or does patch
fragmentation or even a regime shift occur (Zelnik et al.,
2018)? Bartlett et al. (2016), for example, found that ecosystem
responses (both in terms of abundance and compositional
structure) were mediated by synergistic interactions between
habitat loss and fragmentation; the relative sensitivity of fauna
(e.g., large-sized animals) to fragmentation (as this influenced
top-down processes within the trophic webs) also played in an
important role.

If the contributions of such cross-scale process are to be
understood, however, there is the need to be collecting data
at the appropriate scales to understand what is going on (and
at scales appropriate for addressing the management needs).
Unfortunately, as highlighted by a number of recent meta-
analyses, many ecological studies have not included a wide
enough range of scales to accurately estimate the true scales
of effect for particular processes and the resulting inferred
ecological-environmental relationships (Jackson and Fahrig,
2015; Martin, 2018). Coming to terms with all of this complexity
and avoiding mis-steps due to misplaced focus would likely
benefit from a healthier marriage of experimental, theoretical,
applied and model-based studies (Essington et al., 2017; see also
Table 1). This is particularly important as ecology is not so much
about identifying “one true scale” of operation, but recognizing
dynamic change is occurring simultaneously across multiple
scales due to multiple interacting phenomena (Levin, 1992), thus
requiring multiple approaches to elucidate the true dynamics.
While integration of multiple lines of evidence (e.g., field
studies and ecosystem modeling) is becoming more common
there is still a tendency (often due to logistical constraints)
for one or the other to feel an unequal partner—ultimately
short changing the effective value that can be gained from an
even handed combination of the constituent players; such as
where field data could provide models with information on

how the relationship between predators and prey varies with
environmental conditions through space and time (Griffith and
Fulton, 2014).

Having worked on a number of large multi-faceted projects
over the last 20 years, it is a common pattern in our experience
that models are seen as an integrating factor, but that time
to develop and deliver that work is concertinaed in terms
of time and available resources due to delays in delivery of
data or logistical hiccups. This is not about laying blame, but
recognizing the plans/intent vs. reality of execution. In areas
with greater funding streams, later projects can alleviate this
outcome by allowing time to be made up in subsequent rounds
of research. This is not the case in economically constrained
nations (including Australia in terms of being able to service its
entire marine estate given its relatively small human population).
This means modelers have to rely on rapid and easily deployable
“starting steps” (e.g., loop analysis) so that they can make the
most of data as it comes along and have much of the preparatory
work done ahead of polishing the final product during later stages
of the project work. It also means that integration of input from
multiple disciplines must be a very intentional action or “later
steps” will be lost. This is often the case if human dimensions
are addressed sequentially after biophysical aspects have been
addressed and a model includes very simplistic representations
that fall short of the dynamic richness seen in the other facets of
themodel. If these pitfalls can be avoided via intentional efforts to
integrate “early and often” then model potential is maximized (as
has been the experience in oceanographic models or earth system
models, e.g., Medlyn et al., 2016), and it becomes more of an issue
of sharing learnings back out to the broader group interested
in that system. It is often the case that a modeler more than
any other ends up with the completest view of system content,
structure and function.

IMPLICATIONS AND CHALLENGES FOR
ECOLOGICAL MODELING

While recognizing these shortfalls is important for going forward
from an informed position, to target future steps to reduce
uncertainty and improve reliability of predictions, we are not
advocating a blanket increase in model complexity. There
are many circumstances where building complex models is
simply infeasible. Moreover, there is a significant body of work
indicating that increasingly complex models are not immediately
more reliable (and can often degrade in performance; Ludwig
and Walters, 1985; Fulton et al., 2003a; Evans et al., 2013; Collie
et al., 2016). Overly simplistic models are error prone (due to the
omission of key dynamics), but highly complex models typically
lead to poorer decision making—due to accumulated biases,
errors and difficulty in interpreting outputs (Ludwig andWalters,
1985; Fulton et al., 2003a). A lot of intuitive insight is sacrificed
when models become too complicated. Model performance is
often greatest when using a minimum realistic (Butterworth
and Harwood, 1991), intermediate level of complexity (Plagányi
et al., 2014) that captures the essence of the main interactions
(this philosophy holds even when building system models, and
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including or excluding components with care). In practice this
means it is important to think about how we might go about
capturing the essence of the cross scale connections without
adding undue complexity; how to modify existing approaches
or take entirely new model development directions to address
the identified shortcomings of existing modeling platforms and
successfully tackle cross-scale issues (Table 1).

Creating Credible Operational Scale
Models
Operational (tactical) scale models face some of the steepest
hurdles when it comes to cross-scale considerations. These
models need to be tractably and transparently executed on short
time scales and often with limited data sets consistent with what is
available to management bodies. Yet they are being increasingly
asked to address ecosystem considerations (Plagányi et al., 2014,
2018), such as the implications of the exploitation of prey
species for predators or competitors (e.g., Punt et al., 2016). In
terrestrial systems there have been some successes in automated
near real time process-based models, but the experience in the
marine realm (which typically deals with substantially more
trophic levels and processes) has been quite different. Growing
from the concept of including only the key interactions and
processes needed to reproduce the dynamics of the phenomena
of interest (Levin, 1992), “Models of Intermediate Complexity
for Ecosystem assessments” (MICE) have tackled this marine
systems operational challenge by employing simple formulations
that are statistically fit to available data, but applied across
ecological-environmental-anthropogenic dimensions, to explain
the dynamics of small groups of interconnected species (Plagányi
et al., 2014). This approach advances tactical management
efforts to incorporate and address considerations such as climate
effects (Tulloch et al., 2019), moving the modeling more and
more into the scales most relevant to resource management
interests (Figure 1F). However, hurdles remain around how to
provide guidance on ecosystem structural concerns rather than
stock status. The ecological and spatiotemporal coverage of
these kinds of models is also being expanded by new ways of
approaching ecological modeling—such as moving away from
population oriented representations to size and trait based
models (Blanchard et al., 2017) or equation-free mechanistic
empirical dynamic models (Sugihara et al., 2012; Yea et al., 2015;
Ye and Sugihara, 2016; Ushio et al., 2018).

Model Fitting and Model Performance
(Skill)
As ecological models mature there has been a greater focus
on the inter-related topics of parameter fitting (Kramer-Schadt
et al., 2007), sensitivity analysis and model uncertainty (Pantus,
2006), model-data fusion (Kuppel et al., 2014), model skill
reporting (Olsen et al., 2016), and statistical ensemble modeling
(Spence et al., 2018). It is now routinely expected that at least
some, if not all, of these will be provided or discussed when
documenting model content and outcomes. This is however
raising the issue of having sufficient data available to follow
through on all aspects of the model. More typically the model

is fit to the limited number of available time series (usually
only available for exploited or conservation species and often
patchy spatially), meaning that model reliability varies across
components; which may become problematic if the relative role
of the more uncertain components increases under the kinds
of disturbance of interest. One underutilized means of checking
ecological model skill is retrospective assessment of performance,
where model projections are revisited and checked against how
the system actually evolved. Given the hundreds of published
and applied models it is surprising how rarely this is done (often
due to the dictates of shifting funding and focus which does
not provide for revisiting old sites and topics). If more is to be
made of this potential reservoir of model learning—whether it is
used directly to improve mechanistic models or simply to help
train machine learning-based emulators—then more needs to
be done in terms of having standardized protocols and making
models publicly available in repositories (Melbourne-Thomas
et al., 2017), much like the push for large publicly available data
stores for observational data (Mouquet et al., 2015).

A closer evaluation of model skill will no doubt highlight
some model shortcomings. However, when addressing cross-
scale issues modelers have already identified and begun to act
on some pressing issues. One long-standing aspect of multi-
scale effects that has been of prime concern to modelers
is the issue of appropriately capturing lags and inertia in
ecological and ecosystem models (Fulton et al., 2003a). This
has become even more challenging as models have grown
to couple physical and socioecological processes (Österblom
et al., 2013; Plagányi et al., 2014; Fulton et al., 2015). Even
when just constraining the focus to lags in the ecological
components, success requires considerable effort. This is because
the many interacting processes within ecosystems that dictate
biodiversity and ecosystem function operate on and feedback
across different scales; necessitating frameworks that explicitly
allow for elucidation of the mechanisms and circumstances
contributing to cumulative lagged responses (Essl et al., 2015).
The need for clear conceptual frameworks to support clear
thinking around cumulative, non-linear and interacting effects
grows larger once the dimensions (and scales) of the cumulative
effects are expanded. This is evident in the growing interest in
a pragmatic means of assessing cumulative impacts of human
activities and other stressors on ecosystems (Giakoumi et al.,
2015; Holsman et al., 2017; Jones et al., 2018; Stelzenmüller
et al., 2018). Despite these limitations, the importance of linking
human and ecological processes to predict future dynamics has
been recognized for some time—e.g., in urban and agricultural
systems (Alberti, 2008)—with advances achieved using agent-
based models that couple socio-demographic, ecological, and
biophysical models (e.g., Filatova et al., 2013; Fulton et al., 2015).

Non-static Model Representations
Another aspect of models that is getting much more explicit
consideration is dynamic change and variability. In the
past the available data and ambient conditions most often
meant simplification to single parameterizations were sufficient
rather than recognizing individual-level variability (such as the
pioneering work by Clark et al., 2003). The directed pressures
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that characterize our world and expanded available observational
data sets mean we now appreciate that heterogeneity is often
important and can no longer be safely abstracted away. The
resulting move to represent variability and dynamic change
in models has come in multiple forms—from recognition of
intraspecific variation within existing modeling frameworks
(Moran et al., 2006; Melbourne-Thomas et al., 2011; Fulton
et al., 2019), to the explicit representation of functional influences
of biodiversity, acclimation, adaptation, and eco-evolutionary
feedbacks (Table 1). In their simplest forms these processes
may be included via allowing for dynamic parameterisations
(Jørgensen et al., 2016). In contrast, in terrestrial dynamic
global vegetation models fundamental adaptive processes (e.g.,
acclimation, plasticity, migration, selection, and evolution),
are now being accounted for to allow for an exploration of
their potential to mitigate effects of climate extremes (Scheiter
et al., 2013). Some modeling frameworks are also beginning to
explicitly represent evolution and its implications for ecological
processes (Grimm and Berger, 2016), such as predation pressure
and trait expression (Forestier et al., in press; Romero-Mujalli
et al., 2019). This can create new tensions in modeling—
what is the effective benefit of replacing one set of fixed
parameters (e.g., around growth) with others (e.g., around rates
of evolution). Modelers will, most likely, need to ponder this
on a case by case basis, at least until alternative means of
dealing with the representation of dynamic ecological processes
are more mainstream (e.g., potentially leveraging off the model
morphing approaches of Gray andWotherspoon, 2015 discussed
more below).

New Approaches to Modeling Ecosystem
Structure and Function
There have also been calls to find a new form of ecosystem
modeling that explicitly combines species/functional
composition properties with ecosystem process representation
(Griffith and Fulton, 2014; Mokany et al., 2016). The intent is to
better capture how simultaneous alterations to environmental
drivers and compositional diversity (e.g., via exploitation) could
interact with significant consequences for ecosystem function
(Loreau, 2010a; Durance et al., 2016). Existing composition- and
function-based modeling approaches are individually inadequate
for a number of reasons (as outlined in Mokany et al., 2016):
(i) correlative compositional (biodiversity) models fail to reflect
the dynamic outcome of key ecological processes; (ii) trait-based
methods are hampered by insufficient information; and (iii)
hybrid models that are functionally oriented (i.e., that combine
models of key individual species with coarser functional groups)
are incapable of tractably representing the high biodiversity
present in the majority of systems (Mokany et al., 2016). How
to tractably address all of these shortfalls is not yet clear as it
will involve developing methods that allow for emergence of
the desired phenomena, not all of which are well-understood.
Some steps down this road may well have been taken—witness
the number of ecological properties related to size (metabolic
rate, clearance rate, swimming speed, sensory range, trophic
strategy, sensory mode, body shape, and reproductive strategy),

feeding mode and “jellyness” (Andersen et al., 2016). Avoiding
hardwiring desired behaviors is important however. This is
a hard learnt lesson by many marine trophic modelers and
is why current food web models allow for the expression of
shifts in dominant pathways (Shin et al., 2010). Successfully
representing the interactions between system function, fine scale
species composition and the implications of different forms
of biodiversity within dynamic frameworks will likely involve
a fresh take on ecosystem modeling and the development of
customized models that integrate processes and scales relevant
to both ecosystem composition and function (Mokany et al.,
2016; Grimm et al., 2017). In turn, this is likely to require cross
fertilization from across many modeling lineages and scientific
disciplines. The value of such cross discipline inspiration is being
realized in many complex system relevant domains currently,
witness the burgeoning of interdisciplinary science (Nature’s
2015 special volume, 525, on interdisciplinarity; McDonald et al.,
2018).

WHERE TO FROM HERE

Dealing With New Sources of Data
As we have discussed above some of the key challenges facing
modeling and ecology are embracing new modeling approaches,
spanning more dimensions (covering more and more of the grid
in Figure 1E) and allowing for dynamic and evolving model
parameterizations and structures. Multiple nagging concerns
are associated with all of these, specifically: (a) how to
achieve valuable improvements without being overwhelmed with
additional complexity and (b) having sufficient data at multiple
scales to usefully inform and constrain the models (Mouquet
et al., 2015), with the handling of uncertainty a part of this
conundrum. This latter concern, of insufficient data, is not new
when looking at barriers to advancing ecology—being expressed
for instance by the early ecosystem modelers in the 1970s
(Gurney et al., 1994; Pacala, 1994; Scheffer and Beets, 1994). In
the first instance the use of cross scale models themselves will
help ease the data burden.Where data are unavailable at one scale
(e.g., the individual or regional scale), data can be used to assess
model performance at another scale (e.g., global). This approach
is being exploited in global models (e.g., see Harfoot et al., 2014
or Fisher et al., 2018).

New data sources will also help, though they will come
with their own challenges. Technological advances—in terms
of automation, sensor capacity, and new monitoring methods
(from biochemical tracers, genomics and environmental DNA
through to high resolution remote sensing)—are providing data
in quantities that can overwhelm traditional methods, driving
searches for new approaches that maximize utilization of these
valuable resources. Learning to use this data wealth well is a
key step (Durden et al., 2017), continuing the demand for the
development of new methods. The ecological value of taking the
time to do this cannot be overemphasized, as evidenced by the
blossoming of discoveries derived from having sufficient volumes
of data to deconstruct complex patterns and by marrying data
across scales (Chave, 2013; Mouquet et al., 2015). Examples
such as the development of close-kin mark recapture methods

Frontiers in Ecology and Evolution | www.frontiersin.org 12 November 2019 | Volume 7 | Article 424220

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Fulton et al. Where Ecological Gaps Remain

(Bravington et al., 2016) showcase how new data streams can
revolutionize ecological data collection on large scales and
provide precision far beyond what was possible for earlier
generations of ecologists. The complementary use of multiple
data sources—gut contents, biochemical and isotopic tracers, and
DNA—are also revolutionizing our understanding of foodweb
connections (Pethybridge et al., 2018; McCormack et al., 2019)
and changes through time (Young et al., 2015). This kind of
utilization is important, as models (conceptual or mathematical)
play a key role in bringing many data streams together; the
emergence of frameworks to facilitate access and synthesis (e.g.,
statistical methods, data portals etc.) is beneficial to ecology
more broadly.

Expanding the Scope of Models
The broader range of available datasets is also expanding the
scales and processes modelers can consider (pushing out the
boundary of the area marked in Figure 1F). Due to data
constraints models have typically been constructed and tested at
levels where the most detailed information exists—an approach
known as the “middle-out” (Noble, 2003) or rhomboid approach
(deYoung et al., 2004). Whereas this modeling approach can
be an intentional developmental decision it is also often an
accident of available information—meaning models have focused
on the more well-understood scales and processes and missed
components at the extremes (see the location of the solid
dots in Figure 1F). In the last few years, there has been a
growing appreciation of the true influence of pathogens and
parasites on ecosystems (e.g., Weitz et al., 2015; Guerrero and
Berlanga, 2016; Jephcott et al., 2016; Mischler et al., 2016;
Preston et al., 2016; Médoc et al., 2017; Trivedi et al., 2017).
It is now understood that predation and parasitism have non-
additive effects within food webs (Banerji et al., 2015) and that
the collective actions of metabolic processes within aggregate
biofilms can have a profound influence on individual, community
and ecosystem properties (Guerrero and Berlanga, 2016). Fungal
and microbial communities (e.g., in soils) can interactively shape
ecosystems at regional to continental scales and mediate energy
and material flows at multiple temporal scales (Dighton, 2016;
Trivedi et al., 2017). This means that (along with other flora
and fauna) microbes play essential roles within biogeochemical
cycles of water, carbon, nutrients (Schmitz et al., 2010, 2018),
and trace elements (Weitz et al., 2015; Preston et al., 2016);
and influence fluxes of both biomass and energy (Mischler
et al., 2016), ultimately influencing temporal ecosystem dynamics
and disturbance, succession, and stability relevant processes
(Preston et al., 2016). Appropriately recognizing the role of
the smallest denizens of ecosystems, which also have the most
rapid expression of adaptive capacity, will likely be extremely
important as we consider the implications of global change
for ecosystems.

Bringing together the disparate fields necessary to realize
these and other mechanisms behind ecological feedbacks in the
earth system is likely to be a key focus of the activities of
Earth system groups over the next few years and of the coming
UN Decade of Ocean Science. The effort to link changes in
energy flow through food webs to carbon uptake and climate

regulation will likely involve giving more consideration to
mechanisms previously accorded marginal attention—such as
the role of consumers, including top predators, in mediating
productivity (Estes et al., 2011), either directly via contributions
to nutrient cycles (Pastor et al., 2006; Nicol et al., 2010) and
physical mixing in the ocean (Katija and Dabiri, 2009), or
indirectly via the “ecology of fear” (where signs of predators
in an area can modify prey behavior even in the absence
of direct attacks; Wirsing and Ripple, 2011). It may even
involve the exploration of small scale interactions between
seemingly unconnected processes—such as the potential for
fisheries (which can have cascading effects down to the plankton,
Reid et al., 2000) to influence local atmospheric processes
via plankton-mediated processes. Examples include dimethyl
sulfide production and the influence on cloud formation
(Malin et al., 1992), or the carbon cycle (Monroe et al.,
2018). Model coupling—interactively joining models of different
types and scales (physical, biogeochemical, trophic, habitat,
human use)—will likely also be a strong feature of the
coordinated work across disciplines, as already seen in some
terrestrial modeling (e.g., Alberti, 2008) and in earth system
modeling efforts to date (Prinn, 2012; Fisher et al., 2014,
2018).The evolution of ecosystem modeling has already been
marked with a shift from one-way coupled drivers influencing
small groups of species to more systematic representations of
interaction networks characterized by multiple pathways and
processes (Shin et al., 2010), allowing for significant growth in
modeling capacity.

Handling Uncertainty
This increase in capacity has seen models used in an increasing
number of roles—not just academic, but as decision support
(Condie et al., 2005; Plagányi et al., 2014) and as a means of
inputting advice to international initiatives, such as the IPCC
(e.g., Hartmann et al., 2013). This has put the effective handling
of uncertainty front and center. A full review of how that
field is developing is beyond the scope of this paper, but it
is worth noting that recognition of structural uncertainty (i.e.,
uncertainty pertaining to the model assumptions, formulation,
and internal connections) has been a key part of these modeling
efforts. The use of Bayesian approaches and model ensembles
to provide ranges of possible outcomes across model types is
now becoming more common (e.g., Gharbia et al., 2016). The
first use of model ensembles was in economics (Bates and
Granger, 1969) but has now become a staple of many fields—
economics, systematics, meteorology, and climatology—and is
often now used when considering shifting species distributions
(e.g., Araújo and New, 2007) or terrestrial ecosystem impacts
(Baker et al., 2019). Model intercomparison projects (MIPs; e.g.,
Warszawski et al., 2014; Lotze et al., 2019) are also bringing
together the world’s modeling community to share outcomes,
lessons and understanding, accelerating model improvements
and rigor. This kind of multi-model approach has been relatively
easily accepted, as it is a logical outgrowth of the even more
familiar parameter variation form of sensitivity testing and
uncertainty analysis.
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New Dynamic and Hybrid Modeling
Approaches
By comparison, the future development of multi-scale and hybrid
approaches (Table 1) will require ecology to move well beyond its
current “comfort zone.” Most disciplines begin with simplifying
assumptions as a foundation to build from and ecology has
been no exception—note the simplicity of the Lotka-Volterra
assumptions for predators and prey. Indeed, the vast majority
of extant ecological and ecosystem models still assume fixed
parameterisations and even for those that don’t (e.g., Jørgensen,
2012) they most often assume fixed functional relationships
and formulations. This means, as touched on above, that more
remains to be done in terms of representing appropriate levels of
variability and dynamic change. Under perturbation, ecological
systems can exhibit significant structural reorganization and
shifts in the dominance of species and processes. Modeling
techniques attempting to appropriately represent this magnitude
of response may well require not just changing parameters
but dynamically changing structural components (the network
connections) and process expression (e.g., functional forms),
and potentially even shifting model scales as the simulated
systems evolve.

In terms of the approaches that can facilitate the
representation of fully dynamic structural properties of models
and ecosystems, both allometric food web models (Curtsdotter
et al., 2017; Reum et al., 2019) and network approaches show
promise. Experimentation with dynamic network approaches
is allowing for the representation of dynamic restructuring
behavior (Bryden et al., 2012), reflecting changes in the
properties of system components (e.g., individuals or species)
and the effect that has on interactions. These approaches (and
other model types that allow for shifting food web links) have the
potential to capture some of the ecological surprises that arise
in changing ecosystems; such as context-dependent reversal of
predator-prey roles, as has occurred between sprat and cod in
the Baltic (Köster and Möllmann, 2000) as well as lobsters and
whelks on Marcus Island in South Africa (Barkai and McQuaid,
1988).

One approach to spanning ecological scales is to explicitly
link models that resolve processes and function at different
resolutions (Walpole et al., 2013). A number of ecosystem
models already do this to differing degrees and the approach has
significant potential—at least up to a point. While it is possible
to follow a common formulation regime to resolve neighboring
scales, it becomes more difficult as the number of scales grows.
The kinds of challenges to continuing those approaches as we
move to the smallest and largest scales have already been touched
on in previous sections. A promising alternative approach for
tackling multiple scales and dynamic ecological phenomena is
the hybrid modeling approach (Table 1). This modeling method
sees modelers create ecological systems models by combining
multiple modeling approaches from multiple disciplines (e.g.,
system models, process-based representations, Markov chains,
Bayesian networks, cellular automata or other agent/individual
based approaches, statistical models (including multivariate
and Bayesian methods discussed previously), partial differential
equation based physical or biogeochemical models, geographic

information systems and approaches from artificial intelligence,
or machine learning algorithms). This approach has been a
very useful step toward grappling with multi-scale complexity
of ecosystems or broader socioecological systems (McDonald
et al., 2008; Parrott, 2011). Use of suchmixedmodel formulations
has matured over the past 20 years, where it started from the
humble beginnings of using empirically derived functional forms
or correlative statistical approaches to represent more poorly
known system components or ecological processes (Fulton et al.,
2003a). This combined approach is being advocated strongly
as additional scales and processes are embraced in ecological
models—for example in implementing integrated models of
ecosystem composition and function (Mokany et al., 2016) or
considering socioecological systems (Melbourne-Thomas et al.,
2017). Taking a hybrid approach allows for the synthesis of many
kinds of data from many different sources (Cressie et al., 2009),
thereby fostering greater understanding (Mouquet et al., 2015)
by providing an interface across disparate scales, phenomena and
disciplines (Levin, 1992).

This flexible hybrid approach allows for the selective
representation of each component of a system in the “currency”
(spatiotemporal scales, units, complexity of detail) that best
captures that component and maximizes the overall model
utility (Gray and Wotherspoon, 2015). New mathematical
breakthroughs have shown that it is possible to go still
further, to allow for truly dynamic model structures that
shift in representational form as the dominant components
and processes operating in the system change (Gray and
Wotherspoon, 2015). These new approaches allow sub-models to
change their form (e.g., from differential equations to individual
based) conditional on their own state and the states of the
other system components that they are directly or indirectly
interacting with. For example, moving from a population
level representation to an individual-based model and back as
migrating animals encounter a contaminant plume (Gray and
Wotherspoon, 2012), or any other event where heterogeneity
in a process may be important for the system level outcome.
The results of these early efforts indicate that allowing for
such switching forms is not only feasible but beneficial in
terms of fidelity to observed real world dynamics and the
computational efficiency. Fine scale detail is only retained
when it is needed, when fine scale phenomena dominate,
with the statistical summaries saving that detail in a useful
state during periods when coarser representations are sufficient
as dominant processes are occurring at higher scales. While
the tree-based mathematics and coding languages required
to develop such models are still under active development,
the potential seems vast for addressing more scales while
keeping model complexity tractable. In addition, marrying such
methods with the growing fields of artificial intelligence and
neurocomputing could see fluidly self-mutating model structures
that allow ecologists to delve seamlessly into and across all
the spatiotemporal scales. This push for new methods is not
to say simpler models should be universally abandoned, but
that new approaches should be added to the suite of tools
available to expand our capacity to look at questions from all
relevant angles.
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CONCLUSIONS

All of the roles that models have traditionally had in ecology—
explanatory and predictive—will be just as important going
forward. The utility of models as thinking tools will be needed
for interpreting new and novel situations, where the magnitude
of disturbance potentially highlights how strong the links
between scales can really be. In addition, it is already clear
that models will be central aids for navigating adaptation and
equitable, sustainable societal outcomes. In our experience, the
changing tenor of the questions being asked of (socio)ecological
models over the course of the last 20–30 years clearly shows
that global change is already presenting decision makers with
increasingly complex and fraught decisions. The volume of the
safe operating space is being squeezed (Steffen et al., 2015)
and models are needed to help understand how to navigate
a world where transient dynamics rather than equilibrium
assumptions are most relevant. Hence, we posit that some of the
key challenges facing modeling and ecology involve embracing
new modeling approaches and data streams, spanning more
dimensions, filling the gaps at the smallest and grandest scales,
and allowing for dynamic and evolving model parameterizations
and structures (Table 1).

Ecology has been built by generations of scientists concerned
with the dynamics of ecosystems and the mechanisms shaping
the spatial and temporal patterns that characterize them (Levin,
1992). Now the scales considered are expanding, complementing
traditional foci with an interest in new scales (large and small),
new processes, and new analytical and modeling methods, may
also require rethinking the goalposts of progress in ecological
science (Currie, 2019). We’ve come a long way, but as we
outline in the sub-sections above, there is still a long way
to go, especially given growing anthropogenic pressures and
the resultant rates of change in socioecological systems. We

summarize gaps in fundamental ecological understanding that

widen further when considering socio-ecological responses as
well as emerging needs to handle uncertainty. Moreover, large
gaps are evident in ecological understanding of entire fields of
research, such as the influence of pathogens and parasites on
ecosystems. Most of the competing extant model formulations
overlap and equally explain the bulk of conditions, but the devil
has been in the detail at the extremes (Fulton et al., 2003b).
Unfortunately, we are increasingly living in a world where
we are pushing toward extremes. Closing the gaps in future
ecological work will necessitate understanding mechanisms
behind ecological feedbacks in the earth system. Consequently,
in the coming decades, ecology will be spending a lot of time
weaving those new scales and new lessons into its lexicon
of understanding.
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A well-known parable is that of the blind men studying an elephant each of which
assert the elephant is the part they first hold in their hands, e.g., “rope!” says the
tail holder while the leg holder asserts “tree!” The various subdisciplines of ecology
appear similar in that we each engage in our enthusiastic but at least somewhat myopic
study with remarkably limited agreement or even discussion about the overall system
which we all study. Allometric trophic network (ATN) theory offers a path out of this
dilemma by integrating across scales, taxa, habitats and organizational levels from
physiology to ecosystems based on consumer-resource interactions among co-existing
organisms. The network architecture and the metabolic and behavioral processes that
determine the structure and dynamics of these interactions form the first principles
of ATN theory, which in turn provides a synthetic overview and powerfully predictive
framework for ecology from organisms to ecosystems. Beyond ecology, ATN theory
also synthesizes eco-evolutionary and socio-ecological research still largely based on
consumer-resource mechanisms but respectively integrated with different processes
including natural selection and market mechanisms. This paper briefly describes
foundations, advances, and future directions of ATN theory including predicting an
ecosystem’s phenotype from its community’s genotype in order to accelerate more
predictive and unified understanding of the complex systems studied by ecologists and
other environmental scientists.

Keywords: ecological networks, synthesis, prediction, consumer resource dynamics, allometry, food webs,
mutualistic networks, stability

INTRODUCTION

The parable of the blind men and the elephant (Saxe, 2016) describes one of the most compelling
and widely known metaphors for scientific unification (e.g., Himmelfarb et al., 2002; Cohen
et al., 2003). The millennia-old parable ridicules the different religions that adamantly maintained
disparate theologies about a single god on the Indian subcontinent. Probably the most famous
English version of the parable is the poem written by J. G. Sax in the mid 1800’s (Figure 1) that
concludes “And so these men of Indostan disputed loud and long, . . .though each was partly in
the right, and all were in the wrong!” Ecology and its many subdisciplines share disconcertingly
many similarities with this parable. Perhaps most strikingly is the lack of explicit discussion among
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FIGURE 1 | Blind people “seeing” the elephant (reproduced with permission
from Himmelfarb et al., 2002).

subdisciplines of how different subdomains of ecology fit together
to form a more unified concept of ecological systems. Allometric
Trophic Network (ATN) theory (Brose et al., 2006b; Martinez
et al., 2006; Otto et al., 2007; Berlow et al., 2009; Boit et al.,
2012) helps fill this void by providing a synthetic mechanistic
description of ecological systems that integrates the physiology
and behavior of organisms with their interactions among other
organisms scaled up to the many species and interactions
that determine the behavior of complex communities and
ecosystems (Figure 2).

ATN theory (Figure 3 and Box A) pursues such advances
by building upon the metabolic theory of ecology and its
emphasis on unification across scales (Brown et al., 2004).
ATN theory does this by integrating metabolic theory with a
theory of trophic networks comprised of organisms consuming
resources produced by other organisms (e.g., food) and, in
case of autotrophs, the environment (e.g., sunlight, water and
inorganic chemicals). This theory holds that organisms’ existence,
abundance and dynamics critically depend on these same
properties of their consumers and resources. ATN theory also
embraces the importance of metabolic rates in determining
the rates of organismal activity and the central tendency of
mass-specific metabolic and production rates to consistently
scale with body size over 20 orders of magnitude (Brown
et al., 2004). This range includes practically all the organisms
disparately studied by subdisciplines separated according to
taxonomy (e.g., microbial, plant, animal etc.), habitat (terrestrial,
freshwater, marine, etc.) and geography (temperate, tropical,
montane, etc.). However, in contrast to its name, the metabolic
theory of ecology appears to be primarily a theory of organismal
physiology controversially based on how nutrients and waste
are transported within organisms (Price et al., 2012). Though
metabolism closely relates to many phenomena from organismal
locomotion to the global carbon cycle (Marquet et al., 2004;

Allen et al., 2005; Schramski et al., 2015), the role of the
metabolic theory of ecology in the ‘elephant’ (Figure 1)
that is ecology (Figure 2) deserves more active and explicit
attention. A description of what the science of ecology is and
its need for scientific unification provides important context
for such attention.

ECOLOGY AND SCIENTIFIC
UNIFICATION

A straightforward definition of ecology is a biological science
focused on the study of organisms interacting within their
environment (Odum, 1969). This defines ecology and its focus on
interacting organisms much like cellular and molecular biologists
define their discipline as the study of biological cells and their
molecules and physiology defines itself as the study of organisms
and their parts. While including environment in definitions of
ecology may seem gratuitous, such inclusion emphasizes that
ecology’s focal entities, i.e., organisms, appear more exposed
to, and driven by, the spatial and temporal variation in their
abiotic environment than are organisms’ physiological and
molecular components whose biotic environment helps buffer
these components from such variation. The influential Cary
Institute extends ecology’s focus to this abiotic variability by
defining ecology as: “The scientific study of the processes
influencing the distribution and abundance of organisms, the
interactions among organisms, and the interactions between
organisms and the transformation and flux of energy and
matter” (Cary Institute Definition of Ecology, 2019). While
this broad definition usefully emphasizes abiotic processes
such as climate and hydrological mechanisms, ATN theory
focuses on the biological core of ecology involving interacting
organisms and then considers abiotic and other mechanisms
beyond simple forcing functions as interdisciplinary extensions
beyond this core.

However defined, few see ecology as scientifically unified
(Scheiner and Willig, 2008) and instead many see ecology
as “a mess” (Lawton, 1999; Vellend, 2010) with only a
“few fuzzy generalizations” (Simberloff, 2004). To some, this
suggests that ecologists should embrace the “elegant chaos”
of ecological systems along with the “non-predictive side of
their science” (Anonymous, 2014) that purportedly achieves
understanding without the power to successfully predict
(Pickett et al., 2010). Such perspectives effectively set ecology,
especially community ecology, not only apart from other
biological disciplines but also apart from natural sciences
in general and what distinguishes science from other social
activities (Evans et al., 2012). Eschewing such exceptionalism,
ecology needs scientific synthesis and predictive success simply
because it is our mission as scientists to create and test
generally predictive theory about the entities we study (Evans
et al., 2013; Marquet et al., 2014). Physics achieved it with
Newton’s laws of motion. Chemistry achieved it with the
periodic table of elements. Molecular biology achieved it
with the transcription and translation paradigm. Evolutionary
biology achieved it with Darwin’s theory of natural selection.
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FIGURE 2 | A food web labeled with terms describing different components and aspects of the network. Nodes of the network are vertically arranged according to
trophic level with autotrophs at the bottom and upper level carnivores at the top. Links between nodes represent feeding relationships. The various terms
characteristic of ecology’s various subdisciplines that point to the parts of the ecological network emphasize that ecological subdisciplines study very similar entities
from different perspectives. ATN theory helps synthesize these subdisciplines by focusing on the structure (Figure 3) and dynamics (Box A) of ecological networks
such as that of Little Rock Lake (Martinez, 1991) visualized (Yoon et al., 2004) and figuratively labeled here.

In each of these cases, an evolving theoretical core has
been identified that synthesizes and clarifies the nature of
vast swaths of the entities each discipline studies and the
mechanisms responsible for the behavior of these entities.
Such rigor and understanding allows these disciplines to
generally understand and precisely predict phenomena within
their domains from the creation of the universe to healing
humans from inherited diseases. Few would claim that ecology
has achieved such scientific success but a good first step
may be more fully acknowledging the success it has achieved
(Scheiner and Willig, 2008).

Scientific unification is perhaps best indicated by theory
that achieves both broad and precise predictive power within
a discipline’s domain (Kitcher, 1989). Given this perspective,
humans have already achieved much ecological understanding
as indicated by the incredible success of humans in becoming
the most abundant and widely distributed animal species
on the planet (Bar-On et al., 2018). We have achieved this
by developing an increasingly powerful theory of consumer-
resource interactions among organisms within many different
environments. Indeed, we define our earliest societies in
terms of these interactions as hunter-gatherers. These societies
developed sophisticated understanding of interactions among
organisms and the environment that determine the distribution
and abundance of organisms that they consumed and were
consumed by. This understanding critically included creating
and manipulating fire as a means of increasing the variety
and palatability of humans’ food and of protecting humans
from predation. Early human societies also used fire as
a means of increasing the abundance of their food by
burning forests and grasslands in order to provide more

resources for our prey and clear habitats of hiding places
for our predators. Our understanding of consumer-resource
theory continued to progress through the development of
agriculture and the green revolution through to current
advances in epidemiology, vaccines and other medicines
that help prevent our microbial consumers from decimating
our populations.

This is all to say that purported limits to ecological
understanding appear unduly limited (Scheiner and Willig,
2008) by a myopic and somewhat narcissistic focus on the
last century or less of what western science explicitly labels as
“ecology” but exclusive of much of that within its defined domain
of organisms interacting within the environment. While our
understanding lacks much of the rigor and general precision that
theory has achieved in other physical and biological sciences,
our perhaps excessive fitness suggests that what ecology may
not lack is basic understanding of which mechanisms are
responsible for the structure and function of ecological systems
including the distribution and abundance of organisms. Such
basic understanding of physics was held by farmers before
Newton who knew the force of two horses could carry a cart
up a hill faster than one horse. Similarly, humans centuries
ago knew well how interacting organisms maintain themselves
within their environment and accurately predicted the behavior
of organisms based on mechanistic understanding of consumers
and their resources. Beyond this broad and somewhat imprecise
yet powerful understanding of the critical need for organisms to
consume essential resources, the lack of a rigorous theory that
formalizes consumer-resource or other mechanisms into a more
general and precisely predictive framework is what distinguishes
ecology from more unified sciences.
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FIGURE 3 | Diagram of the niche model from Williams and Martinez (2000).
This model formalizes the theory that the primary mechanisms responsible for
food-web structure are the bioenergetic processes that create a trophic
hierarchy based on autotrophs from herbivory through omnivory and carnivory
and biophysical processes that constrain consumers to feed on species within
a contiguous section of this hierarchical niche space. The one-dimensional
axis from 0 to 1 represents this community niche space. The model’s two
input parameters are the number of species (S) and complexity in terms of
directed connectance (C = # of links/S2). Each of S species (e.g., S = 6, each
shown as ∇) is assigned a random “niche value” (ni ) drawn uniformly from the
interval [0,1]. Species higher on axis tend to be at higher trophic levels than
species lower on the axis because species i consumes all species within a
range (ri ) that is placed by uniformly drawing the center of the range (ci ) from
ri/2 to the lesser of ni or 1- ri/2. This placement keeps all of ri on the niche
axis and permits looping and cannibalism by allowing up to half ri to include
values ≥ ni . Species lower (higher) on the axis tend to be more specialized
(general) because the size of ri is assigned by using a beta function to
randomly draw values from [0,1] whose expected value is 2C and then
multiplying that value by ni , expected E(ni ) = 0.5, to obtain the desired C.
A beta distribution with α = 1 has the form f (x| 1,β) = β(1-x)β−1, 0 < x < 1, 0
otherwise, and E(X ) = 1/(1 + β). In this case, x = 1-(1-y)1/β is a random
variable from the beta distribution if y is a uniform random variable and β is
chosen to obtain the desired expected value. This form was chosen for of its
simplicity and ease of calculation and it provides for a large number of
different network structures similar to the number expected due to maximizing
entropy (Williams, 2010). The fundamental generality of species i is measured
by ri . The number of species falling within ri measures realized generality. The
species with the lowest niche value and other species who happen to have no
species that fall within their feeding range are assigned to the first trophic
level. Assuming species tend to be larger than their resource species, the
niche model gives rise to allometric degree distributions where larger bodied
species tend to be at higher trophic levels, more generalized, and have fewer
consumer species than species at lower trophic levels. Such degree
distributions have been found to be highly stabilizing which allows for
coexistence for many more species than food webs without such degree
distributions (Brose et al., 2006b; Otto et al., 2007; Kartascheff et al., 2010;
Digel et al., 2011; Yan et al., 2017). Overall, the niche model has been widely
used to generate realistically structured and dynamically stable food webs
while developing and testing allometric trophic network theory.

ALLOMETRIC TROPHIC NETWORK
THEORY TO THE RESCUE?

Allometric trophic network (ATN) theory pursues such rigor
and synthesis by asserting that the mechanisms responsible for
the basic structure (Figures 2, 3) and dynamics (Box A) of
ecological networks concerning trophic hierarchy from plants
through carnivores and their feeding niches can be described
in terms of “simple rules [that] yield complex food webs”
(Williams and Martinez, 2000). A theory of network dynamics
was built upon this simple theory of network architecture
(Williams and Martinez, 2004b) by pursuing the strategy of
a relatively simple bioenergetic theory whose “ultimate goal
is to use these consumer-resource models as building blocks

. . . for more complicated systems involving many interacting
species” (Yodzis and Innes, 1992, p. 1152). This strategy
was pursued both theoretically (Williams and Martinez, 2000;
Brose et al., 2006b; Martinez et al., 2006; Otto et al., 2007;
Schneider et al., 2016) and empirically (Dunne et al., 2008,
2013; Berlow et al., 2009; Boit et al., 2012; Banks et al., 2017;
Jonsson et al., 2018; Curtsdotter et al., 2019). Theoretically, it
built upon broader mechanistic consumer-resource theory of
few interacting populations (Rosenzweig and MacArthur, 1963;
Yodzis and Innes, 1992; Holland and DeAngelis, 2010; Lafferty
et al., 2015) by scaling up such interactions to many species
within whole systems represented as complex networks (Pascual
and Dunne, 2006; Thompson et al., 2012). This formalizes
relationships among diverse populations and different ecological
subdisciplines while describing an overall vision of the ‘elephant’
that unifies the different parts studied by different ecologists
(Figure 2). This vision is, given the essential metabolic
requirements for life, that a network of the consumer-resource
relationships forms a more general and precisely predictive
framework for understanding organisms interacting within
their environment. Philosophically, this vision holds that “The
key to prediction and understanding lies in the elucidation
of mechanisms underlying observed patterns” (Levin, 1992,
p. 1943). Conceptually, ATN mechanisms involve networks with
more or less contiguous diets hierarchically structured according
to trophic level (Williams and Martinez, 2008) and body-size
(Dunne et al., 2013; Brose et al., 2019a) whose consumer-resource
interactions proceed largely at metabolically determined rates
with consumption rates saturating at high levels of resource
abundance (Yodzis and Innes, 1992; Williams et al., 2007). The
tractability and empirical base of this vision rests on the major
efforts ecologists focus on identifying organisms along with
their body sizes and interactions within practically all habitats
ecologists study. Broad agreement among ecologists about
organisms and their interactions facilitates frequent and relatively
consistent collection of these data. For example, ecologists
generally aggregate organisms into functionally or taxonomically
identified populations (Martinez, 1991), record their body
size and type (e.g., vascular plant, vertebrate endotherm,
etc.), and typically link these aggregates according to their
consumer-resource interactions. The links most often document
direct feeding interactions (McCann, 2011) between prey and
their predators, plants and their herbivores and mutualistic
partners (Bascompte and Jordano, 2013), and other biophysical
consumer-resource interactions responsible for negative (Tilman,
1982; McPeek, 2019) and positive (Bruno et al., 2003; Holland
and DeAngelis, 2010) effects species have on one another. Such
general agreement about the nodes and links increases the rigor
of quantitative comparison of ecological networks among almost
all habitats (Figure 2) by increasing methodological consistency
among the data compared. A major challenge to the completeness
of such data involves the “dark matter” of biodiversity comprised
of microbes that are invisible to the naked eye and feed without
engulfing (Purdy et al., 2010; Weitz et al., 2015). Still, this is a
unifying challenge, at least methodologically, due to the presence
of microbes in all habitat types and the ability of tools such as
protein sequencers to similarly address the challenges among
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BOX A | Allometric trophic network (ATN) theory’s master equations.
ATN theory asserts that population size is primarily determined by balancing losses to consumers and metabolic costs with gains from autotrophic production and
heterotrophic food consumption. As such, the architecture of consumer-resource interactions among species and their rates of resource consumption and
production are the central focus of ATN theory. This core theory is formalized as a set of ordinary differential equations (ODEs) originally developed and applied to a
2-species food chain (Yodzis and Innes, 1992), and later extended to n-species (Williams and Martinez, 2004a; Williams et al., 2007), plant nutrient dynamics (Brose
et al., 2005a,b), and then further extended to include age-structured populations (Kuparinen et al., 2016), nutrient recycling through detritus (Boit et al., 2012),
growth inefficiencies (Boit et al., 2012; Kath et al., 2018), and pollinator’s reproductive services to plants (Hale et al., 2020). The following ATN equations and
description was developed for fisheries applications (Kuparinen et al., 2016) and lacks the explicit dynamics of plant nutrients. These equations and several key
parameter values are presented to describe their basic structure as well as their flexibility in being developed for different applications e.g., the addition of population
structure needed for modeling fishing pressure on adults within populations. These three ODEs model the dynamics of (1) producers, (2) consumers, and (3) detritus:

dBi

dt′
=

gain from producer growth︷ ︸︸ ︷
riBiGi (B) (1− si) −

∑
j

loss to consumer j︷ ︸︸ ︷
xjyjiBjFji(B)

eji
(1)

dBi

dt′
= −

maintenace loss︷ ︸︸ ︷
fmxiBi +

gain from resource j︷ ︸︸ ︷
faxiBi

∑
j

yijFij(B)−

loss to consumer j︷ ︸︸ ︷∑
j

xjyjiBjFji(B)

eji
−

loss to fishing︷ ︸︸ ︷
FmaxSageBi (2)

dD
dt′
=

∑
i

[

ingestion of resource j by consumer i︷ ︸︸ ︷∑
j

xiyijBiFij (B)

eij

egestion︷ ︸︸ ︷(
1− eij

)
] +

∑
i

exudation by producer i︷ ︸︸ ︷
riBiGi (B) si −

loss to detritivore j︷ ︸︸ ︷∑
j

xjyjiBjFji (B)

eji
(3)

where B refers to the matrix of all biomasses, Bi is the biomass of species i; ri is intrinsic growth rate of producer i, Gi (B) is logistic growth [1− (
∑

j=producers Bj)/K]
where carrying capacity K is shared by all autotrophs; si is the fraction of exudation and/or exfoliation; xi is the mass-specific metabolic rate of consumer i usually
estimated by allometric scaling; yij is the maximum consumption rate of species i feeding on j; and eji is the assimilation efficiency describing the fraction of ingested
biomass that is actually assimilated; fm is the fraction of assimilated carbon respired for the maintenance of basic bodily functions; and fa is the fraction of assimilated
carbon that comprises consumers’ net biomass production (1- fa is respired). Fij (B) in Eqn. 3 is the consumers’ normalized functional response

Fij(B) =
ωijB

qij
j

B0
qij
ij +

∑
k=consumers dkjpikBkB0kj +

∑
l=resources ωilBl

qil
(4)

where ωij is the relative prey preference of consumer species i feeding on resource species j; qij = 1.2 which forms a relatively stable functional response intermediate
between the Holling Type-II and Type-III functional responses (Williams and Martinez, 2004b); B0ij is the half saturation constant of resource species j at which
consumer species i achieves half its maximum feeding rate on species j; dkj is the coefficient of feeding interference of species k with i while feeding on species j;
pik = the fraction of resource species shared between species i and k. dkj also accounts for prey resistance to consumption that may increase with increasing
abundance of consumers of species j.

The fishing mortality of the fully selected individuals (Fmax ) depends on age-specific fishing selectivity (Sage). For fish juveniles (age = 1) and larvae (age = 0) as well
as all the organisms that are not fished, Sage = 0. For fish 2 years or older (age > 1), selectivity varies logistically according to Sage = 1/[1 + e-2(age-ageF50)] (Sage is
0.12, 0.50, and 0.88 for age-classes 2, 3, and 4 years and older, respectively), where ageF50 is the age at which 50% of individuals each year are caught and was
set to 3 years for two fish species (Kuparinen et al., 2016). This selectivity scenario was chosen to mimic the standard attempt of fisheries management (and gear
regulations) to set targets for fishing pressure so that fish may adequately reproduce prior to being caught. See Kuparinen et al. (2016) and Bland et al. (2019) for
treatment of intraspecific variation among different life stages of fishes.

these different environments (Purdy et al., 2010; Pompanon et al.,
2012; Nielsen et al., 2018).

Based on such broad insights and consistencies among
ecologists and ecological systems, food webs, the most iconic
of ecological networks which depict organisms’ roles within
the architecture of feeding relationships relative to primary
producers, have long formed a fundamental cornerstone of
ecological thought (Dunne, 2006). From their embrace in one of
the first texts in ecology (Elton, 1927) which emphasized trophic
levels and pyramids throughout the development of ecology
including its current resurgence as complex ecological networks
integrated with metabolic ecology (Humphries and McCann,
2014) and engagement with network science (Dunne et al.,
2002a; Newman, 2010; Barabási, 2012), the trophic relationships
that comprise food webs have been central to addressing major
ecological questions. These questions addressed diversity and

stability (May, 1973; McCann, 2000; Brose et al., 2006b; Stouffer
and Bascompte, 2010, Stouffer and Bascompte, 2011), top–
down vs. bottom–up control (Power, 1992; Schneider et al.,
2016), trophic levels (Cousins, 1987; Williams and Martinez,
2004a), trophic cascades (Polis and Strong, 1996; Wang and
Brose, 2018), keystone species (Paine, 1966; Power et al., 1996;
Brose et al., 2005b), biodiversity-ecosystem function (Naeem
et al., 1994; Martinez, 1996; Loreau, 2010; Cardinale et al., 2012;
Thompson et al., 2012; Miele et al., 2019), and tipping points
(Barnosky et al., 2012).

Food webs play such central roles largely because the first
principles and foci embraced by food-web research are also
central to the major subdisciplines of ecology (Box B). Two
of these principles are: (1) organisms require energetic and
other resources to live, grow and reproduce and, in fulfillment
of these needs, (2) organisms consume other organisms and
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BOX B | Organizational levels integrated with ecological networks.

Levels and their associated subdiscipline of ecology Subdisciplinary foci quantitatively integrated by Allometric Trophic Network Theory
Physiological Ecology Metabolic rates, assimilation efficiency, diet, heat effects, prey defense

Behavioral Ecology Search and handling times, adaptive and optimal foraging, functional responses, predator interference
and avoidance, heat-dependent movement, interference competition

Population Ecology Growth and reproduction rates, carrying capacity, non-linear dynamics, age and size structure, loss to
starvation, predation, parasites and biotic diseases

Community Ecology Intra- and inter-specific interactions, diversity-complexity-stability, coexistence, consumer-resource
interactions, mutualism, resource and apparent competition

Ecosystem Ecology Energy and nutrient stocks and flows and cycling among producers, consumers and decomposers,
biodiversity and ecosystem function, carbon dynamics and sequestration, energetic processing and
efficiency

their products. Organisms’ physiology, behavior, and abundance
largely determine rates of consumption and population growth.
In order to specify these rates, the metabolic theory of ecology
(Brown et al., 2004; Humphries and McCann, 2014) has been
integrated with trophic network theory by using body size to
assign metabolic maintenance costs and maximum consumption
and production rates to populations within the networks. ATN
theory multiplies these rates by the biomass (Brose et al., 2006b)
or numerical abundance (Schneider et al., 2016) of species’
populations processing and interacting at these rates in order to
generate a systems-level predictive understanding of population,
energetic, and nutrient dynamics within ecosystems (Lindeman,
1942; Chapin et al., 2011; Boit et al., 2012).

The central concepts and principles involving feeding
interactions and food webs have motivated a synthesis of network
and consumer-resource theory (Martinez, 1995; Thompson et al.,
2012) that integrates organismal (Holland and Deangelis, 2009),
population (Turchin, 2003), community (Bascompte, 2009) and
ecosystem ecology (Getz, 2011, Box B). The synthesis also
integrates subdisciplines focused on trophic interactions within
different aquatic and terrestrial habitats and among different
organisms involving plant-animal, predator-prey, parasite-host,
and pathogen-host interactions and also involving symbiotic
relationships such as those between plants and fungi and between
plants and pollinators (Martinez, 1995; Hale et al., 2020). Such
synthetic integration is achieved in no small part by quantitative
comparison of the architecture of trophic interactions in terms
of network properties (e.g., Cohen, 1978; Bascompte et al., 2003;
Dunne et al., 2013) that describe distributions of specialists
and generalists, food chain lengths, degrees of separation,
relative prevalence of motifs, along with the flows within this
network structure (Shurin et al., 2006) that can be surprisingly
well estimated from network structure alone (Williams and
Martinez, 2004b; Carscallen et al., 2012). Beyond this pervasive
core including virtually all types of organisms within all
types of habitats, research on ecological networks extends
consideration of consumer-resource interactions to evolutionary
scales (Martinez, 2006; Dunne et al., 2008; Allhoff and Drossel,
2013, 2016; Allhoff et al., 2015a; Edger et al., 2015; Romanuk et al.,
2019) and plant-nutrient (Brose et al., 2005a), reproductive (Hale
et al., 2020), and other non-feeding interactions (Kéfi et al., 2012).

ATN theory builds upon major advances in ecology over
the last half century that, in contrast to much of that progress
that has led to increasingly disparate subdisciplines (Martinez,

1995; Loreau, 2010), weaves the disparate threads back together
into a more coherent fabric (Thompson et al., 2012). This
fabric illustrates, for example, how fisheries dynamics, infectious
disease epidemics, competition and mutualism among plants and
animals may be understood as different parameterizations and
functional forms of consumer-resource interactions (Holland
and DeAngelis, 2010; Lafferty et al., 2015) that comprise food
webs and their more broadly powerful offspring; ecological
networks (Pascual and Dunne, 2006) that also include non-
feeding interactions such as plant nutrient consumption (Brose
et al., 2005b), ecosystem engineering (Kéfi et al., 2012), and
reproductive services (Hale et al., 2020). Such research has shown
how scientific feats once thought difficult or impossible have
been achieved (Box C). For example, the unlikely stability of
many species coexisting within complex ecosystems appears
largely due to allometric degree distributions (Brose et al.,
2006b; Otto et al., 2007; Gross et al., 2009) where species’
generality (number of species eaten) increases and vulnerability
(number of consumer species) decreases with increasing body
size and trophic level (Figure 3) combined with non-linearities
in feeding behavior (Williams and Martinez, 2004a; Hale et al.,
2020) from which increases in highly stabilizing intraspecific
competition (Chesson, 2000; Chesson and Kuang, 2008) emerge
(Kartascheff et al., 2010). Also, while ecologists have argued that
even a field guide to which species may strongly interact with
others may be permanently out of reach (Power et al., 1996),
ATN theory has gone much further by accurately predicting
interaction strength (Paine, 1992) including how much the
experimental removal of a species alters the abundance of
other species in field (Berlow et al., 2009) and lab (Jonsson
et al., 2018; Curtsdotter et al., 2019) experiments. For example,
ATN theory accurately predicted that the effects of removing
a species on the abundance of a species remaining a field
experiment is a simple function of biomass of the two species
and the body mass of the removed species (Berlow et al.,
2009). ATN theory has also shown how verbal theory describing
the classic seasonal population dynamics of complex lake
ecosystems as well as their component populations (Sommer
et al., 2012) may be surprisingly well quantified and forecasted
(Boit et al., 2012). This paves the way for direct application
to ecosystem management of fisheries (Martinez et al., 2012;
Gilarranz et al., 2016; Kuparinen et al., 2016). Important steps
in this direction includes disentangling different ecological,
evolutionary and economic causes of the destabilization of
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BOX B | Allometric trophic network milestones.

Year Milestones
1992 Transformed established scaling of complexity with diversity (Martinez, 1992, 1993b)

Allometrically scaled bioenergetic theory of two species established (Yodzis and Innes, 1992)

1993 Scale-dependent food webs overturn “scale-invariant” webs (Martinez, 1993a,b, 1994)

1998 Bioenergetic theory of two species extended to three species and omnivory (McCann et al., 1998)

2000 Widely accepted theory of food web structure established (Williams and Martinez, 2000, 2008; Stouffer et al., 2005)

2002 Structural robustness of food webs to species loss elucidated (Dunne et al., 2002b)

2004 Bioenergetics of few interacting species scaled up to complex networks (Williams and Martinez, 2004a; Williams, 2008)

Unified theory of spatial scaling of species and trophic links developed (Brose et al., 2004)

2005 Plant nutrients integrated with food-web dynamics (Brose et al., 2005b)

2006 Allometric trophic network (ATN) theory introduced (Brose et al., 2006b)

2008 Architecture of Cambrian food webs successfully predicted (Dunne et al., 2008)

2009 Experimentally determined interaction strengths successfully predicted (Berlow et al., 2009) Corroborated patterns in invasion success
predicted (Romanuk et al., 2009, 2017)

2010 Stabilizing influences of empirically prevalent feeding motifs illuminated (Stouffer and Bascompte, 2010)

2011 Stabilizing influences of compartmentalization illuminated (Stouffer and Bascompte, 2011)

2012 Seasonal dynamics of a complex ecosystem simulated (Boit et al., 2012), Nutrient recycling through detritus integrated (Boit et al., 2012),
anabolic costs of biomass production incorporated (Boit et al., 2012; Kath et al., 2018), and economic supply and demand mechanisms
integrated (Martinez et al., 2012)

2013 Inclusion of parasites found consistent food-web theory (Dunne et al., 2013)

2015 Evolutionary processes construct realistic food webs (Allhoff et al., 2015a)

2016 Dynamics and degradation of fisheries elucidated (Gilarranz et al., 2016; Kuparinen et al., 2016)

Intraspecific variation and ontogenetic niche shifts integrated (Kuparinen et al., 2016; Bland et al., 2019)

Mechanisms linking multi-trophic biodiversity to ecosystem function elucidated (Schneider et al., 2016; Wang and Brose, 2018)

Impacts of warming and eutrophication elucidated (Binzer et al., 2016)

Humans explicitly integrated into food webs (Dunne et al., 2016; Kuparinen et al., 2016)

2019 Big data on consumer-resource body-size ratios and patterns published (Brose et al., 2019a)

2020 Mutualistic consumer-resource interactions enhance ecosystem stability and function (Hale et al., 2020)

fished populations and their ecosystems by fishing (Gilarranz
et al., 2016; Kuparinen et al., 2016) as well has how thermal
stress and (Gilarranz et al., 2016) and environmental noise
(Kuparinen et al., 2018) affects fishery and other ecosystems.
Finally, consumer-resource network theory has helped resolve
prominent debates regarding the implications of observed
network architecture for the stability of mutualistic networks
(Valdovinos et al., 2016) and ecosystems (Hale et al., 2020) while
successfully predicting novel foraging behavior of pollinators
in the field (Valdovinos et al., 2016). This suggests that,
well beyond agreement about the centrality of a conceptual
framework, a substantial body of evolving theory is steadily
advancing toward a simultaneously general, accurate and precise
understanding and prediction of the structure and function
of complex ecological systems. The following discussion of
the foundations, current status, and future directions of ATN
theory helps illuminate these claims further and the basis
for making them.

ALLOMETRIC TROPHIC NETWORK
THEORY, PAST AND PRESENT

Conceptual Foundations
Allometric trophic network (ATN) theory asserts that that
the behavior of ecological systems is primarily determined
by the organismal production and consumption of resources

that provide the energy organisms require to live, grow
and reproduce. Central to this theory is the network
structure of consumer-resource interactions, especially the
feeding interactions needed to supply organisms’ metabolic
requirements, that form food webs. This focus on the production
and consumption of food forms a more narrow conceptual
core than do other broad theories of ecology (Reiners, 1986;
Scheiner and Willig, 2008; Vellend, 2010) while also answering
Reiners’s (1986) call for a theory of causal networks of population
interactions to complement energy and matter theories of
ecosystems. Extending beyond this core are other often limiting
resources such as various services that organisms produce. These
include services consumed by plants such as the reproductive
services of pollinators and seed dispersers as well as nutrient
provisioning services produced by mycorrhizal fungi and other
detritivores (Hale et al., 2020). Other services consumed by a
fuller range of organisms include habitat provisioning services
produced by ecosystem engineers such as beavers, coral, and trees
(Jones et al., 1994; Kéfi et al., 2012). The emerging broad interest
in multiplex networks in the general field of network science
may contribute much to understanding how diversity types of
links affect ecological networks (Kéfi et al., 2017; Pilosof et al.,
2017; Barner et al., 2018) and continue the practice of network
science (Barabási, 2012) of contributing to, and benefiting from,
research on ecological networks (Dunne et al., 2002a; Williams
et al., 2002) including their controllability (Liu et al., 2011; Li
et al., 2017; Jiang and Lai, 2019) and resilience (Gao et al., 2016).
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Whereas the network architecture of consumer-resource
interactions constitutes much of the structure of ecological
systems formalized by ATN theory (Figure 3), the function of
these networks is largely determined by the dynamics of the
closely related rates of metabolism, production and consumption
of organisms engaged in the consumer-resource interactions
depicted by the network’s structure (Figures 2, 3). Given the
diversity and complexity of these networks, ‘allometric’ merely
refers to role of body size in constraining feeding relations
such as those among predators and prey (Brose et al., 2019a)
and hosts and parasites (Dunne et al., 2013) and the tactical
decision to embrace the metabolic theory of ecology (Brown
et al., 2004) by using organismal traits including body size
and type (e.g., invertebrate) as the most general, powerful, and
efficient way of estimating metabolic rates in lieu of more direct
measurements when unavailable or inconvenient. Similarly, the
niche model (Figure 3) is typically used to estimate realistic
food web architectures (e.g., Domínguez-García et al., 2019) in
lieu of more direct observations of particular food webs (Boit
et al., 2012) and food web patterns (Riede et al., 2010). Several
prominent variants of the niche model with different strengths
and weaknesses (Martinez and Cushing, 2006; Williams and
Martinez, 2008) have also been created that elucidate roles of
body size (Beckerman et al., 2006; Petchey et al., 2008; Williams
et al., 2010; Allhoff et al., 2015a; Schneider et al., 2016), phylogeny
(Cattin et al., 2004; Stouffer et al., 2012; Allhoff et al., 2015a)
and the contiguity of feeding niches (Stouffer et al., 2005, 2011;
Allesina et al., 2008; Williams and Martinez, 2008; Williams
et al., 2010) in generating empirically observed food webs. While
the genesis of ATN theory began with allometrically scaled
metabolism and feeding operating within networks structured
according to the niche model, ATN theory is not restricted to
these simple origins and continues to develop well beyond them.

Key to such development is the basis of ATN theory
on the two previously mentioned principles of biology that
provide a mechanistic foundation for integrating the several
scales and organizational levels from organisms to ecosystems.
Those principles include organisms’ need for energy and
other resources and the production of those resources by
organisms. These two principles locate a basic foundation of
ATN theory primarily at the physiological level of metabolism
as determined by fundamental biochemical reactions such as
photosynthesis and the Krebs cycle which create biochemical
energy and controls the ability of organisms to live and
the rates that they can function. These functions include
consumption, production, movement, and reproduction. While
the physiology of metabolism both enables and constrains the
basic ability for these functions to occur, organismal behavior
mediates this potential by largely determining how much of the
potential is realized. Compared to physiology, behavior also more
clearly drives the production of services such as reproductive
services performed by pollinators (Hale et al., 2020) and habitat
modification performed by ecosystem engineers (Jones et al.,
1994). By aggregating organismal behaviors among organisms,
ATN theory scales up physiological and organismal behaviors to
the population level in order to determine population dynamics
and abundance. By focusing on consumer-resource relationships

between populations coexisting within a habitat, ATN theory
scales up populations and their interactions to the community
and ecosystem levels. Whereas community ecology often focuses
on the diversity and nature of interactions among populations,
ecosystem ecology focuses on the stocks and flows of energy
and nutrients involved in these interactions (Loreau, 2010). ATN
theory scales up population ecology to both community and
ecosystem levels by focusing on the biomass of populations
typically measured in units of carbon that can be simply
converted into the number of organisms in a population
using the distribution of body sizes of organisms within a
population (Thompson et al., 2012). While these distributions
are typically characterized by the mean body size of adults,
more sophisticated measures that account for the abundance
of immature individuals may also be used. Populations of
different organisms may be aggregated or otherwise summed at
will to match the functional foci of ecosystem ecologists (e.g.,
plant, herbivore, omnivore, carnivore, decomposer, etc.) and
phylogenetic foci of community ecologists (e.g., species, family,
order, etc.) as well as combinations of these foci (e.g., bacterial
decomposers, insect pollinators, fungal symbionts, etc.). The
seamless integration of community and ecosystem ecology based
on physiological, behavioral, and population mechanisms forms
one of the most powerful contributions of ATN theory (Reiners,
1986; Thompson et al., 2012).

Antecedents and Chronology of ATN
Theory
ATN theory has its beginning over a half century ago in theory
about the structure and dynamics of food webs that were first
described at least a century ago (Dunne, 2006). Early theory
held that more links stabilized these networks by providing more
options for resources to reach consumers if a particular species
within a food chain was disrupted by drastically decreasing in
abundance or going extinct (MacArthur, 1955). Later theory
held that additional links increases the probability of positive
feedback loops which would destabilize ecological networks such
as food webs (May, 1972). Key to such considerations is the
scaling of links with species diversity within such networks.
Large increases of links with increased diversity increases niche
overlap in consumer-resource networks. As Darwin (1859)
and then Gause (Hardin, 1960) articulated, increased overlap
could increase resource competition which could cause less fit
species to go extinct. Such theory motivated the search for
how linkage patterns in food webs within compilations of food
webs from different habitats might alleviate such risks (Cohen,
1978). A key finding among these data was a constant “scale-
invariant” ratio of the number of links per species in terms
of feeding links per network node (Pimm et al., 1991). Such
constancy causes network complexity in terms of the faction of
all possible links or directed “connectance” (links per species2,
Martinez, 1992) to hyperbolically decrease as the number of
species increases. This decrease helps to avoid destabilizing effects
of increasing links with the number of species on ecological
networks (May, 1972). This pattern also inspired an elegant
theory of food web structure that proposed a trophic hierarchy

Frontiers in Ecology and Evolution | www.frontiersin.org 8 May 2020 | Volume 8 | Article 92238

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-00092 May 22, 2020 Time: 20:4 # 9

Martinez Ecological Network Theory of Ecosystems

of species where species on average ate a fixed number of
species below them on the hierarchy (Cohen et al., 1990). As
such, a first generation (Dunne, 2006) of mechanistic theory
was established by which the dynamic processes of population
variability and trophic energy transfer led to a food-web pattern
that avoided destabilizing effects of positive feedbacks and
competitive exclusion and allowed complex ecosystems with
many species to persist (Pimm et al., 1991).

This initial generation of food-web research led to a new
generation first of food-web data and then of food-web theory
(Dunne, 2006). The new and improved data exhibited more
complexity with new “scale-dependent” theory being generated
to better explain and predict this complexity (Martinez, 1994).
Perhaps most significantly, the second generation data exhibited
much more rapid increases of links as species richness increases
leading to the “constant connectance hypothesis” (Martinez,
1992) which challenged the first generation’s “link-species
scaling law” (Pimm et al., 1991) by asserting links increased
approximately as the square of species diversity. This new
pattern and others motivated new generation of theory asserting
a trophic hierarchy that was more relaxed than the earlier
one (Cohen et al., 1990) where species on average ate a fixed
fraction of species within a contiguous range (Cohen, 1978)
of the hierarchy that were on average below the consumer
(Williams and Martinez, 2000). The relaxation accommodated
previously excluded processes such as cannibalism and loops in
food chains while the contiguity added mechanisms associated
with physiological constraints such as digestive capabilities or
gape size which forces species to consume resources within a
contiguous range of trophic levels or body sizes, respectively
(Figure 3). This second generation “niche model” (Figure 3)
much more precisely predicted a much wider range of network
properties in improved second generation food-web data
(Dunne, 2006; Williams and Martinez, 2008). These data include
ancient food webs over a half billion years old back in the
Cambrian (Dunne et al., 2008) and other food webs including the
many parasite species typically excluded from earlier data (Dunne
et al., 2013). While this second-generation theory based on the
mechanisms of trophic transfer and physiological constraints
greatly increased the precision and generality over that of the first
generation, the conflict between the dynamical considerations
of the first-generation theory and the complexity of second-
generation data had yet to be addressed.

Much of the first generation theory of ecological network
dynamics (May, 1973) was based on representing direct and
indirect interactions between two species as interspecific effects.
For example, direct effects of a predator on a prey are typically
negative and that of a prey on a predator are positive while
indirect interactions such as competition between two species
consuming a common resource are often considered direct
negative effects both species have on each other (McPeek,
2019). A second generation of network dynamics emerged from
avoiding such phenomenological representations and instead
focusing on more easily measured and estimated processes
such as consumer-resource interactions (Yodzis and Innes,
1992) between predators and prey from which intraspecific
and interspecific effects emerge. This later generation scaled up

these consumer-resource interactions into complex networks to
discover the stabilizing effects of realistic foraging behaviors
(Williams and Martinez, 2004a), network structure (Martinez
et al., 2006), and body-size ratios between consumer and resource
species (Brose et al., 2006a, 2019a). Rather than stability emerging
from limiting niche overlap by decreasing connectance while
increasing diversity (Pimm et al., 1991), second generation theory
found that allometric degree distributions stabilized networks
with high niche overlap (Williams and Martinez, 2000, 2008),
complexity, and diversity (Brose et al., 2006b; Otto et al., 2007).
These large overlaps in trophic niches and degree distributions
where larger bodied species at higher trophic levels had fewer
consumer species and more resource species than smaller bodied
species at lower trophic levels (Cohen et al., 2003) emerge
(Figure 3) from the constraints of hierarchy and contiguity in
the niche model (Williams and Martinez, 2000, Williams and
Martinez, 2008; Stouffer et al., 2011). Highly but not completely
contiguous feeding niches that enhance overlap also enhance
stability (Yan et al., 2017; Romanuk et al., 2019). Rather than
achieving stability by simply limiting the number of interactions,
ATN theory arranges many more interactions in more precisely
described locations among species with varying body sizes
which explains the remarkable stability of realistically structured
networks over more randomly structured networks (Brose et al.,
2006b; Martinez et al., 2006; Kartascheff et al., 2010).

Compared to the difficulty of measuring competition
coefficients (Hart et al., 2018; Ellner et al., 2019), the relative ease
of measuring consumer-resource interactions such as metabolic
and consumption rates (Brose et al., 2008; Vucic-Pestic et al.,
2010; Marx et al., 2019) and the even easier estimation of the
rates of these interactions based on body size (Brose et al.,
2006b, 2019a; Otto et al., 2007) opened up a wide range of
ecological research to be addressed by ATN theory (Box C). Key
to this increased breadth is parameterizing maximum feeding
rates as a multiple of metabolic rate which appears surprisingly
constant among organisms within metabolic groups such as
invertebrates and ectotherm and endotherm vertebrates (Yodzis
and Innes, 1992; Williams et al., 2007). Such rates indicate,
e.g., that invertebrates may generally consume a maximum
of eight times their metabolic rate over the long term while
ectotherm vertebrates are limited to consuming only four times
their metabolic rate (Brose et al., 2006b). Basing ATN theory
on metabolic rates enables ATN theory to leverage the chief
focus of the metabolic theory of ecology (Brown et al., 2004)
i.e., the relationship between body size and metabolic rate, to
vastly reduce the parameter space and focus it more specifically
on complex networks of consumer-resource interactions found in
nature (Hudson and Reuman, 2013). A key fulcrum of this lever
is the observed body-size ratios between consumer and resource
species (Brose et al., 2019a) broadly suggesting regularities such
as invertebrate predators being an order of magnitude larger
than their prey while vertebrates tend to be two orders of
magnitude larger (Brose et al., 2006a,b, 2019a). Once the body
size and type and therefore the metabolic rate of species at
the base of the food web are set, combining these ratios and
their huge variability (Brose et al., 2019a) with the structure
of the food web generates fully and realistically parameterized
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networks for further research. Computational experiments that
removed species from these networks enabled ATN theory to
elucidate how traits of species generally affect the impacts of
their loss (Brose et al., 2017), and more specifically predict the
population dynamics (Curtsdotter et al., 2019) and quantitative
effects of species removal experiments observed in the field
(Berlow et al., 2009) and the lab (Jonsson et al., 2018) as well as
help develop less empirically demanding methods for predicting
such effects (Eklöf et al., 2013). Similarly, ATN species-invasion
experiments helped generate empirically corroborated theory
predicting generalists with few predators more effectively invade
ecological networks and that low-connectance networks are more
susceptible to species invasions while high-connectance networks
experience larger extinction cascades resulting from the invasions
(Romanuk et al., 2009, 2017) as well as other predictions of
how temperature and species’ traits affect food web assembly
(Gounand et al., 2016).

Other key advances in ecological theory build upon ATN
theory’s synthesis of community and ecosystem ecology by
elucidating effects of biodiversity on ecosystem function
(Schneider et al., 2016; Miele et al., 2019). Having largely been
confined to a single trophic level in terrestrial systems, primarily
vascular plants (Hector and Bagchi, 2007), ATN theory has
advanced such early research on biodiversity and ecosystem
function to a much fuller range of organisms at many trophic
levels (Schneider et al., 2016; Miele et al., 2019). Such advances
emphasize that the way ecological systems function is determined
much more by how their parts interact than the number of types
of parts they have. That is, while many correlations between
the number of nodes in a network and the network’s function
are evident, the mechanisms responsible for the correlation
intimately involve the interactions among the nodes rather than
the mere existence of the nodes (Cardinale et al., 2012).

Early biodiversity and ecosystem function research
embraced this mechanistic premise by explaining positive
biodiversity-ecosystem function correlations as a result of the
complementarity of resource use that may occur when more
plant species with different resource needs and consumption
strategies inhabit an ecosystem (Cardinale et al., 2012). However,
such interactions involve a very limited albeit critical part of the
much larger networks that comprise complex natural ecosystems.
Classic theory about plant communities asserts the species best
able to consume the most limiting shared resource out competes
other species and therefore excludes them from the community
(Tilman, 1982). Higher trophic levels could prevent such loses of
biodiversity by preferentially feeding on competitive dominants
(Paine, 1969) or, more generally, if the dominants exchanged
their high growth rates for increased vulnerability to consumers
(Chase et al., 2002). However, such preferences and tradeoffs
proved unnecessary to maintain coexistence in ATN networks
(Brose, 2008). Instead, preference-free consumers of resource
species free of growth-vulnerability tradeoffs are sufficient to
maintain coexistence within realistically structured food webs
(Brose, 2008). A broad density-dependent dynamic emerges
whereby abundance is its own enemy and rarity is its own refuge
respectively due to “kill-the-winner” dynamics among abundant
organisms (Thingstad, 2000) and “ignore-the-scraps” dynamics

among consumers of rare species very few of which are single
species specialists (Srinivasan et al., 2007). Such insights and
dynamics allow ATN theory to more simply and rigorously
address biodiversity and ecosystem function of a much larger
proportion of ecological diversity without parameterizing or
even asserting preferences or tradeoffs (Schneider et al., 2016).
Recent advances in ATN theory employing these insights
find support for a “vertical diversity hypothesis” that asserts
increasing the trophic levels of species along with maximum
body sizes given observed consumer-resource body-size ratios
increases primary productivity within ecological networks
subjected to constant inputs of plant nutrients (Wang and Brose,
2018). Such research suggests that broadly focusing on energy
flux across trophic levels illuminates general consumer-resource
mechanisms by which biodiversity may determine ecosystem
function (Barnes et al., 2018).

Other more applied advances of ATN theory involve the
structure, function, and ecosystem management of fisheries.
These advances build upon some of the firmest foundations of
ATN theory, especially aquatic food-web structure (Martinez,
1991, 1993b) that appears more tightly constrained by size
structure due to gape limited feeding than above-ground
terrestrial systems (Cohen et al., 2003, 2005; Brose, 2010; Brose
et al., 2019a). Another important contribution to such work
is the sociological factor of aquatic ecologists synergistically
focusing on particular systems such as certain lakes or ocean
areas explored by large research vessels. Terrestrial researchers
appear more able and willing to diffuse their focus among many
geographically dispersed systems due to their relative ease of
access. This distinction results in more holistic empirical and
theoretical research on particular aquatic ecosystems including
viruses to vertebrates compared to terrestrial research. Systems
such as Lake Constance north of the European Alps illustrate
this phenomenon well. For example, study by the lake’s
phytoplankton, zooplankton, and fish ecologists have resulted in
multiple decade-long time series of the population abundances
of dozens of these species observed every 2 weeks or less
(Boit and Gaedke, 2014). An ATN model parameterized by
the observed network structure and allometrically estimated
metabolic rates of the organisms successfully simulates the
overall seasonal dynamics of species’ abundance and production
within the lake’s complex food web (Boit et al., 2012).
Further development of this model to include ontogenetic
size structure of fishes enabled ATN theory to illuminate
how evolutionary and other mechanisms may be responsible
for the increased variability of fished populations as well as
the destabilization and degradation of fishery ecosystems due
to fishing (Kuparinen et al., 2016; Bland et al., 2019) and
how food webs buffer environmental variability (Kuparinen
et al., 2018). This work shows how widely observed decreases
in body size of fished populations may cause losses of
ecosystem function and services that persist centuries after
fishing has ceased (Kuparinen et al., 2016). Similar findings
emerged from other similarly parameterized ATN analyses
where fishing pressure and thermal stress decrease persistence
among hundreds of simulated fisheries throughout the Caribbean
(Gilarranz et al., 2016).
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Extensions of ATN theory to fishery ecosystems is one
of several approaches that incorporate humans into complex
ecological networks. Research on a fuller range of species
consumed by indigenous humans found that humans were
“super generalists” in that they consumed more species than
almost any other species within their food web (Dunne et al.,
2016). Simulated invasions of ecological networks found that
generalists were especially successful invaders that caused the
most extinctions in food webs (Romanuk et al., 2009). Similar
ATN studies of human-like species found reducing the fraction
of super generalists’ many links to resource species that were
strong links greatly reduced the number of extinctions caused
by their presence in the food web (Dunne et al., 2016). This may
explain traditions of seasonally restricting harvests to few of the
many species that indigenous peoples consume as a management
strategy to prevent such destructive extinction cascades to
occur (Dunne et al., 2016). Given that current consumption
of species is often driven much more by economics than
human demographics, work has begun to incorporate market
mechanisms into ATN models in order to better understand
human effects on ecological networks and how economic policies
can better manage extractive exploitation of coupled human-
natural networks (Martinez et al., 2012). Initial results suggest
that fished populations go extinct beyond tipping points at levels
of fishing effort near levels predicted to be optimal by the logistic
growth theory underlying most fisheries management and that
increasing costs of fishing could cause much higher yields and
revenue than predicted by logistic theory to be realized with much
lower effort (Martinez et al., 2012).

Such integration of social sciences including anthropology
and economics extends ATN theory to the socio-ecosystem level.
This extension empowers ATN theory to mechanistically address
the sustainability of socio-ecosystems where their dynamics
critically depend on how human consumption and other human
behaviors depend on price and the price elasticity that indicates
how readily people substitute one item, e.g., hamburger, for
another, e.g., salmon (Martinez et al., 2012). While ATN theory
emerged from a focus on mechanisms involving biotic and abiotic
material and energy, this extension to socio-ecosystems firmly
integrates mechanisms involving price, capital and markets
which represents information (O’Connor et al., 2019) much more
than these quantities represent material or energy. As such, ATN
theory incorporates a full breath of processes from biochemical
reactions within cells to information about cultural predilections
of human societies. Formalization of these mechanisms as
complex dynamic networks enables ATN theory to effectively
advance our ability to understand, predict, and potentially
manage a full range of ecological phenomenon determining the
ability of species including humans to thrive or whither or, more
dramatically, persist or perish.

Changes in the global environment involve less direct
anthropogenic impacts than the extirpation and exploitation
of species due to habitat loss and fishing but these changes
form perhaps the most significant threat to the sustainability of
humans and other species on the planet. This threat includes
both early and more recently recognized changes such as
eutrophication caused by the deposition of plant nutrients in

aquatic and terrestrial ecosystems and warming caused by the
deposition of greenhouse gasses into the atmosphere. One of the
more powerful applications of ATN theory has been to examine
how these two changes, both separate and in combination,
impact ecosystems. The first of such applications leveraged
ATN theory’s explicit consideration of nutrient dynamics to
find that eutrophication may increase interaction strength by
increasing the maximum abundances of species responding
to the loss of keystone predators from simple and complex
food webs (Brose et al., 2005b). Higher maximum abundances
enable larger changes in abundance to occur due to disturbances
which often extirpate species. Later research leveraged the
acceleration of metabolism by heat (Gillooly et al., 2001; Brown
et al., 2004; Vasseur and McCann, 2005) to find that, while
warming could conceivably just accelerate metabolism and
behavior and largely leave ecosystems otherwise unaffected (Zhou
et al., 2011), warming may instead decrease the efficiency of
predation by increasing metabolism more than consumption
(Vucic-Pestic et al., 2011) and stabilize population dynamics
by increasing intraspecific interference (Lang et al., 2012). This
leads to a rich range of predictions on the combined effects
of eutrophication and warming depending on nutrient status
and organisms involved (Binzer et al., 2016). For example,
Binzer et al. (2016) found that warming may increase diversity
in eutrophic systems while decreasing diversity in oligotrophic
systems. They also found that body-size effects can cause
warming to stabilize parasitoid-host systems while destabilizing
predator-prey networks (Fussmann et al., 2014; Binzer et al.,
2016). The sophistication and mechanistic bases of such ATN
predictions of responses to novel environments greatly benefit
from theoretically and empirically robust estimates of the effects
of warming on network complexity (Petchey et al., 2010), body
size (Sheridan and Bickford, 2011; Forster et al., 2012) and
interactions of different rates such as nutrient supply and plant
growth (Marx et al., 2019) and heat supply and feeding rates (Rall
et al., 2012; Fussmann et al., 2014).

Beyond elucidating effects of separate and combined
perturbations of biotic and abiotic components of ecosystems,
ATN theory has elucidated system-level effects of perturbations
more generally. For example, dozens of widely used measures
of stability against episodic and sustained disturbances of
ecosystems were recently found to map onto three largely
independent dimensions of stability including “early response to
pulse, sensitivities to press, and distance to threshold” dimensions
(Domínguez-García et al., 2019). Such work illuminates a more
integrated notion of ecological stability in general that articulates
how different stability measures complement and contrast
with each other when describing broader and more focused
aspects of ecological responses to change. Combined with earlier
investigations of how the more inherent stability of ecological
networks’ ability to maintain their integrity in the absence of
disturbance depends on their architecture (Brose et al., 2006b;
Martinez et al., 2006), functional responses (Williams and
Martinez, 2004b) and body sizes (Brose et al., 2006b; Otto et al.,
2007), ATN theory provides a relatively comprehensive overview
of how complex ecosystems manage to dynamically persist or
not in constant and more variable environments.
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One of the most significant recent advances in ATN theory
has been the integration of evolutionary mechanisms into
the structure and dynamics of ecological networks (Martinez,
2006; Dunne et al., 2008; Brännström et al., 2012; Ritterskamp
et al., 2016b). Early work in this area employed somewhat
arbitrary network structures that emerged from stochastically
adding species to communities and focused on which dynamical
equations and rules resulted more realistic networks structures
(McKane, 2004; McKane and Drossel, 2005; Rossberg et al.,
2006). More recent work (Allhoff et al., 2015a) employed ATN
theory by structuring food webs according to body size and
rules of the niche model (Williams and Martinez, 2000, 2008)
and simulating the non-linear dynamics of the network using
allometrically parameterized differential equations to calculate
bioenergetic stocks and flows within the network (Brose et al.,
2006b). This work formalizes phylogenetic niche conservation
of trophic interactions (Cattin et al., 2004; Stouffer et al., 2012)
by stochastically varying or “mutating” each species’ location
and diet represented by the niche model’s three parameters
describing each species’ fundamental trophic niche (Figure 3).
Such work found that speciation events representing evolving
species traits such as body size, metabolic rate and diet results
in large realistically structured networks (Romanuk et al., 2019)
with continuous turnover of species (Allhoff et al., 2015a) but
little long-term changes in ecosystem function despite larger
changes in functional diversity (Allhoff and Drossel, 2016). More
specifically, ATN investigations (Romanuk et al., 2019) recently
found that speciation results in surprisingly stable and complex
networks with species sharing tightly packed feeding niches
similar to empirical observations (Morlon et al., 2014; Romanuk
et al., 2019) but unexpected based on competition (Ponisio et al.,
2019) and more neutral (Morlon et al., 2014) theory.

Explorations of more subtle eco-evolutionary dynamics found
fishing-induced evolution toward smaller and earlier maturing
fishes degrades fishery yields and destabilize fished populations
and their ecosystems (Kuparinen et al., 2016). Other explorations
attempting to look for more dramatic changes in food webs over
deep time found that food-web architecture changed relatively
little over the half billion years recognizably complex ecosystems
have been present on Earth (Dunne et al., 2008, 2014). Such
research demonstrates the ability of ATN theory to integrate a
range of evolutionary mechanisms including natural selection
from seasonal (Yoshida et al., 2003; Boit et al., 2012; Hiltunen
et al., 2014) to decadal (Kuparinen et al., 2016, 2018) to geologic
(Dunne et al., 2008, 2014) time scales into the structure and
dynamics of ecological networks.

FUTURE DIRECTIONS

While ATN theory has developed a relatively comprehensive
framework for addressing complex ecological systems, much
research needs to further test its predictions in order to
understand and extend the limits of the framework along with
its applications to pressing issues such as ecosystem management
and the sustainability of human-natural systems. Key to these
advances is a rich dialogue between theory and empiricism

to better understand: (1) fundamental factors such as levels
of network complexity (Petchey et al., 2010), metabolic rates
(Kath et al., 2018; Quévreux and Brose, 2019), and consumer-
resource body-size ratios (Brose et al., 2019a), (2) more nuanced
behaviors such as migration and functional responses (Williams
and Martinez, 2004a; Martinez et al., 2006; Williams, 2008;
Heckmann et al., 2012; Rall et al., 2012; Pawar et al., 2019),
and (3) more holistic comparisons between ATN models of
ecosystems in computers and biological models of ecosystems
in the lab (Jonsson et al., 2018; Blasius et al., 2020) and field
(Berlow et al., 2009; Boit et al., 2012; Curtsdotter et al., 2019).
Longer term observations of food web dynamics in the lab
(Yoshida et al., 2003, 2007; Meyer et al., 2006; Blasius et al.,
2020), mesocosms, and the field (Boit and Gaedke, 2014) are
particularly needed. Such work helps illuminate whether and
how ATN theory can effectively forecast ecosystem behaviors
further into the future (Petchey et al., 2015; Brose et al., 2019b).
Other important work includes refining the representation of the
physiology of metabolism (Kath et al., 2018) and its sensitivity
to abiotic and biotic environmental variation such as that in
temperature (Vucic-Pestic et al., 2010, 2011; Rall et al., 2012)
associated with climate change or the presence of predators
associated with the ecology of fear (Sih, 1980; Ho et al., 2019).
For example, accounting for anabolic efficiencies of biomass
production appear critical to the ability to forecast complex
ecological dynamics (Boit et al., 2012; Kath et al., 2018) and to
predict positive effects of mutualism on the diversity, stability and
functions of complex ecosystems (Hale et al., 2020). A particularly
fascinating opportunity to study this may be to apply the systems
biology of seagrass metabolism and production (Kumar and
Ralph, 2017; Malandrakis et al., 2017) toward understanding
the costs and benefits of rewarding animal pollinators (Hale
et al., 2020) within these critically important marine ecosystems
(Van Tussenbroek et al., 2016).

The important frontier of functional responses includes
developing and testing models of how consumptive behaviors
vary with the densities of resources (Gentleman et al., 2003;
Vallina et al., 2014; Flynn and Mitra, 2016; Rosenbaum and
Rall, 2018) and consumers of those resources (Skalski and
Gilliam, 2001) as well as predators of the consumers (Sih,
1980; Schmitz and Suttle, 2001; Skalski and Gilliam, 2002)
against individual based models (Katz et al., 2011) and empirical
observations (Rall et al., 2009, 2012) of such behaviors. Such
work helps to ensure the critically important functional responses
within ATN models (Williams and Martinez, 2004b) accurately
scale up the consumptive behaviors of individuals to behaviors
of populations. This scaling would strongly benefit from
incorporating recent advances in the allometry of organismal
movement (Hirt et al., 2017, 2018) along with the preference for
(Williams, 2008; Heckmann et al., 2012), searching for (Pawar
et al., 2012, 2019), and handling of prey (Pawar et al., 2012,
2019) and other resources (Brose, 2010). Key to improving
ATN theory in general and functional responses in specific is
discovering when processes are better represented as functions,
such as those representing adaptive foraging (Valdovinos et al.,
2010, 2016; Heckmann et al., 2012), rather than constants. For
example, ATN theory typically employs functional responses that
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assume constant search efficiency and handling times relative
to metabolic rate whereas each process depends on temperature
(Vasseur and McCann, 2005), allometry (Kalinkat et al., 2013)
and whether the interactions occur in 3D environments such as
pelagic and aerial habitats or 2D environments such as benthic
habitats (Pawar et al., 2012, 2019). Such improvements may be
unnecessary where e.g., temperature varies little, or critical e.g.,
when considering responses to climate warming (Binzer et al.,
2016). For example, much ATN research employs logistically
growing plants with a community level carrying capacity (Box
A) due to its simplicity and qualitatively similar behavior to
networks based on more sophisticated models of plant growth
based on dynamically varying nutrient pools (Huisman and
Welssing, 1999; Brose et al., 2005b). Deciding between simpler
and more sophisticated theoretical treatments critically depends
on the specific goal of applying all theory (e.g., Bauer et al., 2015)
and ATN theory is no exception.

Further work scaling populations to communities involves the
inclusion of more species and interactions in the architecture of
consumer-resource interactions (Williams and Martinez, 2008).
While earlier work has advanced the empirical basis of these
networks from inclusion of tens of species to including hundreds
of species (Jacob et al., 2011), molecular analyses of DNA in
the environment and within organisms are leading to even
more dramatic increases of biodiversity within food-web data
(Pompanon et al., 2012; Roslin et al., 2016; Nielsen et al., 2018).
A vast number of cryptic species and interactions including
parasitic, symbiotic, and other interactions within organisms’
microbiomes are sure to challenge ATN and food-web theory
in the near future. Initial progress in this direction includes
research on incidental predation upon parasites by predators of
their hosts which appears to mount relatively subtle challenges to
structural food-web theory (Dunne et al., 2013). More dramatic
challenges may emerge from including incidental predation on
species’ entire microbiomes (Dunne et al., 2013) and the function
of microbiomes within species. For example, a substantial
amount of biomass consumed by purportedly herbivorous
ungulates is produced by microbes within their multi-chambered
gut system (Russell and Rychlik, 2001). Recognition of these
ungulates as omnivores and quantification of their consumption
of plant and microbial biomass could significantly revise
understanding of major energy fluxes through food webs. Further
attention on nursing by mammals including ungulates elucidates
cannibalistic interactions, the feeding upon biomass of other
individuals belonging to one’s own species, among all mammals.
Cannibalistic, predatory, and mutualistic feeding among plants
emerge from the increasing realization that plant individuals
exchange energetic resources through their roots with other
plants (Klein et al., 2016). The recognition of such feeding among
plants challenges the long-assumed generalization that the base
of food webs is composed of autotrophic species that do not feed
upon other species. The recognition of more widely occurring
cannibalism among many more species suggests pursuing further
research on how cannibalism generally affects the structure and
dynamics of ecological networks (Holt and Polis, 1997). For
example, density-dependent cannibalism could buffer population
oscillations and increase cannibals’ persistence by converting

biomass from an energy sink into an energy supply when
cannibals are abundant and their other resources are rare.

Another key frontier in ecological network research at
the community level is the continued addition of non-
feeding interactions to food webs (Kéfi et al., 2012). Early
advances in this area involve the consumption of abiotic
nutrients by plants (Brose et al., 2005b; Brose, 2008), nutrient
recycling (Boit et al., 2012), bioaccumulation of toxics (Garay-
Narváez et al., 2013, 2014), and the effects of environmental
variability on the productivity of autotrophs (Boit et al.,
2012; Kuparinen et al., 2018). More recent progress includes
intraspecific variation addressed via links between age classes
representing maturation and ontogenetic niche shifts in
structured populations (Kuparinen et al., 2016, 2018; Bland
et al., 2019). Other recent advances involve explicit consideration
of facilitation (Kéfi et al., 2012; Valdovinos et al., 2016; Hale
et al., 2020) and habitat modification also known as ecosystem
engineering (Jones et al., 1994; Kéfi et al., 2012). Initial results
show that the structure of these non-feeding interactions is
highly predictable in terms of the overall architecture of these
networks (Thébault and Fontaine, 2010) and more specifically,
which subset of species within a community are involved
different types of interactions (Kéfi et al., 2015). Further research
shows how these non-feeding consumer-resource interactions
can help stabilize the dynamics (Kéfi et al., 2016) and increase
the positive effect of species diversity on ecosystem function
(Miele et al., 2019) within ATN models of multiplex networks
containing both feeding and non-feeding relationships. A key
consideration in such extensions involves distinguishing feeding
from non-feeding mechanisms occurring within an interspecific
link. For example, pollination involves pollinators feeding
on floral rewards produced by plants and plants consuming
reproductive services produced by pollinators (Valdovinos
et al., 2013). Explicit consideration of both interaction types
as consumer-resource processes enabled ecological network
theory to help resolve debate regarding whether the nestedness
of mutualistic networks stabilizes (Bascompte et al., 2006)
or destabilizes (James et al., 2012; Staniczenko et al., 2013)
pollination networks (Valdovinos et al., 2016). The resolution
holds that nestedness alone appears to destabilize mutualistic
networks while also stabilizing these networks in the presence
of adaptive foraging by pollinators who prefer partners with
more floral rewards. The power of this resolution is perhaps
best evidenced by its prediction that generalist pollinators
prefer feeding on plants with fewer pollinator species to the
same degree as such differential preferences are observed in the
field (Valdovinos et al., 2016). Further progress in ATN theory
involves incorporating such mutualistic mechanisms more
broadly by including the production of plant rewards (floral
rewards, nectaries, root exudate, etc.) and products of plant
partners such as pollinators, seed dispersers, and mycorrhizal
fungi providing reproductive and nutrient transport services
in exchange for those rewards (Hale et al., 2020). Even broader
advances may incorporate mutualistic and non-mutualistic
facilitation such as those provided by coral polyps, shade plants,
and barnacles that maintain the diversity and function of
ecosystems as different as deserts are from the marine benthos.

Frontiers in Ecology and Evolution | www.frontiersin.org 13 May 2020 | Volume 8 | Article 92243

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-00092 May 22, 2020 Time: 20:4 # 14

Martinez Ecological Network Theory of Ecosystems

In each of these advances, classic notions of antagonistic,
competitive, mutualistic, etc. effects species have on each other
would be replaced by focusing on more empirically tractable and
successfully predictive mechanisms that dynamically generate
these effects (Hale et al., 2020).

A final frontier of ATN theory discussed here involves
more explicit consideration of space (Holt, 1996, 2002). Early
considerations addressed effects of spatial extent on food web
architecture in terms of connectance and found this measure
of network complexity decreases as area increases such that
populations’ spatial niches within habitats do not all overlap
(Brose et al., 2004). This reduction in spatial co-occurrence
prevents some species from directly interacting. Adding a
spatial dimension (Ritterskamp et al., 2016a) to the trophic
dimension of niche space (Williams and Martinez, 2000, Williams
and Martinez, 2008) can address such effects on food-web
architecture. Further research has incorporated environmental
gradients (Tylianakis and Morris, 2017; Pellissier et al., 2018;
Baiser et al., 2019; Gravel et al., 2019) along with experimental
(Piechnik et al., 2008; Piechnik, 2013) and theoretical (Holt
et al., 1999; Gravel et al., 2019) effects of island biogeography
on food-web structure. While such work elucidates key aspects
(e.g., species-area relationships, community assembly, etc.) of the
architectural framework for ATN theory, dynamical aspects have
also been explored examining effects of spatial configurations of
ATN models coupled by migration between the models (Allhoff
et al., 2015b). This research paves the way for ATN-based meta-
ecosystem models (Loreau et al., 2003; Gravel et al., 2010) of
large landscapes with many interacting species analogous to
global circulation models where the dynamics within a bounded
area are determined by ATN theory coupled to neighboring
areas by migration either due to random or bounded diffusion
(Allhoff et al., 2015b; Ritterskamp et al., 2016a) or more realistic
considerations of higher migration rates of relatively large-
bodied species at high trophic levels due to resource quality
and quantity (Hawn et al., 2018) that help stabilize coupled
networks (McCann et al., 2005; Rooney et al., 2006, 2008). Global
circulation models of atmospheric (e.g., weather) and aquatic
(e.g., ocean circulation) dynamics similarly contain highly
parameterized cells representing particular geographic areas
where thermodynamic and other forces determine dynamics
within each cell and Navier-Stokes equations model the migration
of air and water among neighboring cells (Chassignet et al.,
2014; Bauer et al., 2015). Navier-Stokes equations may also
model plankton movement in aquatic systems supplemented by
models of more mobile organisms migrating among neighboring
ecological networks (McCann et al., 2005; Rooney et al.,
2006, 2008) whose internal dynamics behave according to the
bioenergetic equations of ATN theory (Yodzis and Innes, 1992;
Williams and Martinez, 2004a; Williams et al., 2007). Such
similarities suggest that research on spatial network ecology in
aquatic and terrestrial systems could gain much from similar but
much more advanced research in the earth sciences (Chassignet
et al., 2014; Bauer et al., 2015).

An exciting and perhaps more immediate alternative to
extending ATN theory by coupling networks in a spatially explicit
manner is coupling ATN and macroecological theory. Whether
assembled by evolution, migration or invasion (Rominger et al.,

2016) or disassembled by eliminating certain species (Dunne
et al., 2002b; Srinivasan et al., 2007) or simply failing to maintain
densities above an extinction threshold (Brose et al., 2006b),
ATN theory predicts the numbers, biomass, and metabolism of
coexisting organisms and species within complex ecosystems.
These outputs (e.g., total amounts of biomass and metabolism of
all organisms and the total numbers of organisms and species)
of ATN theory are the input or “state” variables for the recently
developed Maximum Entropy theory of ecology (METE). METE
successfully predicts a remarkable variety of empirically observed
spatial and non-spatial macroecological patterns such as species-
area and species-abundance relationships based on asserting
that that organisms will be distributed in space and among
species in the least biased way possible (Harte et al., 2008;
Harte, 2011). Highly biased distributions occur, for example,
when organisms are perfectly evenly distributed in space and
among all species and if all but one species had only one
organism with all remaining organisms belonging to one species
restricted to one small area within a landscape. Instead of these
biased distributions, METE predicts organisms are arranged
into the distributions that are most likely given the constraints
defined the theory’s input variables. By analogy, if one rolls
two six-sided dice, Max-Ent predicts from these inputs that
the most likely sum of a roll is 7 because the largest number
of combinations (6) out of the 36 possible combinations add
to 7 compared to, for example, only 1 combination that adds
to 2 or 12, the least likely sums to be observed. Of course,
calculating the number of combinations that a certain number
of organisms or amount of metabolism are distributed among
a certain number of species and within a certain amount of
area is much more involved, but it is still conceptually quite
similar to the dice example. The remarkable ability of METE to
unify and successfully predict patterns as different as species-area
relationships are from species-abundance distributions based on
constraints provided by the values of its state variables could
extend local ATN predictions to macroecological scales from
regions to continents. In contrast to the biological mechanisms
underpinning ATN theory, this extension would be based
on statistical and information theory (O’Connor et al., 2019)
that essentially describes the most probable macroecological
patterns to be observed given the constraints provided by ATN
theory (Harte, 2011). Beyond enabling the predictions of spatial
patterns based on ATN model outputs, the species-abundance
distributions emerging from both theories can be tested against
each other and the data such as those from simulating Lake
Constance (Boit et al., 2012; Boit and Gaedke, 2014). Similar
to testing ATN theory’s functional responses of feeding against
individual-based models of resource consumption, such tests of
ATN theory’s species-abundance distributions could help build
and improve bridges among ecological subdisciplines as well as
improve the subdisciplines themselves.

Predicting Ecosystem Phenotype From
Community Genotype: A Grand
Challenge for Network Ecology
To the skeptic, the many directions described here could
suggest a Quixotic pursuit of scientific exactitude as parodied
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by Jorge Luis Borges’ “life size map” subsequently reprised
by Lewis Carroll as a cartographer’s fantasy that was built
but abandoned because the map was too big to ever be
unfolded. Despite the freedom of computational science
from such spatial constraints, the cautionary tale deserves
consideration. Systems biology faced similar skepticism
when proposing the simulation of the overall behavior of a
whole cell involving the detailed functioning of the genome,
proteome, transcriptome and metabolome as a grand challenge
of the 21st century (Tomita, 2001). This grand challenge was
largely met a decade later with a computational model that
predicted phenotype from genotype of a human pathogen
(Karr et al., 2012). This achievement not only illustrates the
tractability of a highly complex project based on computationally
synthesizing different types of biological networks (Palsson,
2006), it also provides strategies and tactics for meeting
similar challenges (Palsson, 2015). Central among these
strategies are “the enumeration of network components, the
reconstruction of networks, the mathematical representation of
networks and their mathematical interrogation to assess their
properties, and experiments to verify or refute computational
predictions” (Palsson, 2004). Tactics to achieve this include
developing software standards (Hucka et al., 2003; Waltemath
et al., 2016) and integrating Boolean network modeling
and constraint-based modeling with ordinary differential
equations to reduce the need for parameter estimation (Karr
et al., 2012). ATN researchers have already started adopting
such tactics by developing software packages to make ATN
research easier to conduct and reproduce (Delmas et al., 2017;
Gauzens et al., 2017).

Continuing further on a similar path could embrace predicting
ecosystem phenotype from community genotype as a grand
challenge to advance environmental biology. Meeting this grand
challenge would develop the understanding of how the overall
behavior of a complex ecological system emerges from the
genetic potential of organisms within nominal environments
in the lab and eventually less controlled environments in the
field. Such work would extend research on biodiversity and
ecosystem function to a more comprehensive assessment of
diversity for which all taxa surveys (Lawton et al., 1998)
and population diversity (Luck et al., 2003) form important
starts toward more comprehensive metagenomes of specific
habitats (Leray et al., 2012; McCliment et al., 2012). This
challenge also integrates the study of ecosystem function beyond
material and energy flows to include quantitative effects of
species loss (Brose et al., 2005b; Berlow et al., 2009; Brose,
2011) and invasions (Romanuk et al., 2009, 2017) as well
and environmental and anthropogenic impacts (Kuparinen
et al., 2016) on much finer measures of function such as the
ecological and evolutionary fates of individual populations. ATN
theory embraces much of the conceptual foundation of systems
biology including mechanistic first principles scaled up into
data driven networks formalized as empirically parameterized
ordinary differential equations empowered by ecoinformatics
and computation. ATN theory bases research at different
scales upon such foundations (Box A). Instead of metabolic
networks linking different biochemical species, ATN theory links

metabolic energy exchanged among taxonomic species (Brose
et al., 2006b). And instead of biochemical species emerging
from signaling among networks of genes, ecological species
emerge from evolution among phylogenetic networks of taxa
(Allhoff et al., 2015a). Integrating a full range of empirically
informed ecological and evolutionary processes and interactions
in this way could do much to advance a more comprehensive
and predictive understanding of environmental biology focused
on the structure, function, and evolution of multi-organismic
systems in nature (Martinez, 1995, 1996).

Many less grand but no less scientifically important challenges
to ATN theory need to be addressed to more broadly test
and extend ATN theory. For example, more generic forms
of stochasticity often employed in ATN studies need to
better focus on specific forms known to greatly affect the
structure, functional and evolution of ecological systems. The
generic forms mimic the variability among systems found
in nature and the disturbances they experience (Domínguez-
García et al., 2019) such as species loss (Dunne and Williams,
2009) and invasion (Romanuk et al., 2009, 2017). More
specific forms of stochasticity include prominent cases such
as marine larval dispersal (Cowen and Sponaugle, 2009) and
tree masting (Koenig and Knops, 2005). Initial advances
in this direction integrated environmental stochasticity into
ATN’s deterministic equations via primary producers’ carrying
capacity and found that such stochasticity is dampened in
realistically parameterized ecological networks, especially at
higher trophic levels (Kuparinen et al., 2018). Further progress
may be achieved similarly by characterizing the magnitudes
and frequencies of the specific forms of stochasticity and
applying it to the components directly affected in order to
evaluate how such stochasticity propagates through ecological
systems and determine its ecological consequences. In contrast
to such specificity, ATN studies more often deemphasize
stochasticity by focusing on mean behaviors among replicates of
experiments conducted within restricted time periods (Berlow
et al., 2009) or temporal replicates within long time periods
(Boit et al., 2012). For example, Boit et al. (2012) averaged
decades of time series to create a mean seasonal progression
of a temperate lake for ATN forecasts to be tested against.
Such averaging helps minimize effects such as stochastic year-to-
year variations in weather. A straightforward extension toward
focusing on individual years would help illuminate how ATN
theory could integrate annual stochasticity in temperature, light,
and wind in order to better forecast complex dynamics for
individual years. Another broad challenge is more precisely
parameterizing ATN equations (Banks et al., 2017). While
strong systematic trends and variability about these trends in
metabolic rates with body size enable ATN theory to elucidate
broad generalities that can be applied to specific systems,
more precise parameterization would enable ATN theory to be
more specifically and powerfully tested. While this could be
achieved by more directly measuring rather than estimating
metabolic and functional response parameters, for example in
laboratory feeding trials of relatively few species (Rall et al.,
2011), the discovery of systematic variations among different
taxa (Rall et al., 2011), interaction types (Dunne et al., 2013),
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and habitat types (Digel et al., 2011) could provide more
precise estimates of key parameters with much less effort
(Brose et al., 2019a). Such efforts need to be expanded to
better understand the capabilities of ATN theory and its limits
(Williams and Martinez, 2008).

CONCLUSION

Food-web theory has been developing at least as long as
ecology has formally developed as science and forms a
key conceptual core of ecology. ATN theory (Brose et al.,
2006b; Otto et al., 2007; Berlow et al., 2009) has emerged
out of that core based on the architecture (Williams and
Martinez, 2000, 2008) and non-linear dynamics (Yodzis and
Innes, 1992; Williams and Martinez, 2004a) of organisms
consuming primarily food but also other critical resources
such as abiotic nutrients (Brose et al., 2005a,b) and services
(Kéfi et al., 2012; Hale et al., 2020) produced by other
organisms. Metabolism controls the rates of these dynamics
by determining the costs of maintaining and building biomass
and speed at which resources can be produced and consumed.
While ATN theory often embraces the niche model (Figure 3)
and the metabolic theory of ecology (Brown et al., 2004)
to generally explore the consequences of the structure and
rates of these interactions, more direct measures of structure
and rates can facilitate application of ATN theory, especially
with respect to specific ecosystems (Boit et al., 2012) and
types of ecosystems (Digel et al., 2014; Brose et al., 2019a).
ATN theory has advanced well beyond answering broad
qualitative questions about stability (Dunne et al., 2005;
Martinez et al., 2006; Stouffer and Bascompte, 2010, 2011),
species coexistence (Brose, 2008; Kartascheff et al., 2010), and
functioning (Kuparinen et al., 2016; Schneider et al., 2016;
Miele et al., 2019) of complex ecosystems to the accurate
and detailed quantitative prediction (Dunne et al., 2008;
Berlow et al., 2009) and forecasting (Boit et al., 2012) of
the structure and dynamics of specific systems in nature.
Mechanisms other than consumer-resource interactions such as
evolution, migration, maturation, and economics are increasingly
integrated into ATN research. As such, this body of theory
forms a rigorous example and mechanistic framework for
multi-scale predictive understanding of ecological systems from
physiological to socio-ecological scales. A particularly intriguing
example is the ability to mechanistically bridge the physiological
and behavioral understanding of organisms to continental
scales of macroecological species-area and species-abundance
distributions. Such sub-disciplinary and disciplinary bridge
building combines detailed mechanistic understanding and a
holistic vision of the proverbial elephant (Figure 1), parts
of which are studied by ecological subdisciplines in specific
(Figure 2) and even more parts of which are studied by
sustainability scientists in general.

Overall, ATN theory helps unify ecology by integrating
diverse perspectives into a successfully predictive whole that
ecologists from virtually all subdisciplines studying all organisms
in all habitats at all scales from molecules to the biosphere

have contributed to (Figure 2). The many active frontiers
of ecology in general and ATN theory in specific ensure
that these synergisms will continue well into the future.
Much ATN research pursues a data-rich form of theory
more similar to systems biology (Purdy et al., 2010; Evans
et al., 2013) than to physics from which several of the most
prominent theoretical ecologists have emerged. This suggests
that future ATN research may be more like Darwin’s extensive
natural history expeditions and systems biologists’ expansive
characterization of DNA, genetic signaling networks, and kinetic
coefficients of enzymes than Netwon’s contemplation of a
falling apple or Einstein imagining riding on a beam of
light. In contrast to such brilliant advances in the physical
sciences, the biological focus of ATN theory suggests ecologists
attend more to spectacular advances and grand challenges
of systems biology achieved by computational approaches
(Holland, 2012) to integrating big data and diverse mechanisms
using networks as a central organizing principle (Palsson,
2006) as have many other non-biological sciences (Barabási,
2012). Such work could well transform the theoretical core of
ecology concerned with effects species have on one another to
formalizing the mechanisms from which such effects emerge
(Hale et al., 2020). Such a paradigm shift could result in future
ecologists viewing our current preoccupation with antagonism,
competition, mutualism and facilitation similar to alchemists’
preoccupation with earth, air, fire, and water. Ecologist’s ability
to explain much but predict relatively little invoking these effects
may share remarkably many similarities with the alchemists
of old. Most hopefully, moving to a more mechanistic and
data-rich focus would provide a much firmer foundation for
sustainability science to help solve several of humanity’s most
pressing problems.
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