About this Research Topic
Biomass variability has proven a formidable challenge to the emerging biorefining industry, impeding continuous operation and reducing yields required for economical production of lignocellulosic biofuels at scale. Conventional supply systems lack the preprocessing capabilities necessary to ensure consistent biomass feedstocks with physical and chemical properties that are compatible with supply chain operations and conversion processes. Direct coupling of conventional feedstock supply systems with sophisticated conversion systems has reduced the operability of biorefining processes to less than 50%.
As the bioeconomy grows, the inherent variability of biomass resources cannot be managed by passive means alone. As such, there is a need to fully recognize the magnitude of biomass variability and uncertainty, as well as the cost of failing to design feedstock supply systems that can mitigate biomass variability and uncertainty. A paradigm shift is needed, from biorefinery designs using raw, single-resource biomass, to advanced feedstock supply systems that harness diverse biomass resources to enable supply chain resilience and development of conversion-ready feedstocks.
Blending and preprocessing (e.g., drying, sorting, sizing, fractionation, leaching, densification, etc.) can mitigate variable quality and performance in diverse resources when integrated with downstream conversion systems. Decoupling feedstock supply from biorefining provides an opportunity to manage supply risks and incorporate value-added upgrading to develop feedstocks with improved convertibility and/or market fungibility. Conversion-ready feedstocks have undergone the required preprocessing to ensure compatibility with conversion and utilization prior to delivery at the biorefinery and represent lignocellulosic biomass with physical and chemical properties that are tailored to meet the requirements of industrially-relevant handling and conversion systems.
Keywords: blending, preprocessing, mixed biomass, resource diversity, landscape design
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.