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Editorial on the Research Topic

Metformin: Beyond Diabetes

Metformin, a member of the family of biguanides, is one of the most prescribed medications in the
US and Europe and remains the first-line treatment for type 2 Diabetes (T2D) worldwide. It is a
low cost medication, relatively well-tolerated, that has been given to millions of patients for more
than 60 years in Europe. The literature on metformin is immense and recent discoveries in basic
research place metformin on the short-list of the most promising drug for repurposing. Pioneering
mechanistic studies demonstrating thatmetformin inhibits complex I in the respiratory chain of the
mitochondria (1, 2) and the work of Zhou et al. showing that metformin activates AMP-activated
protein kinase (AMPK) by inducing its phosphorylation at Thr172 (3), opened new horizons
for maximizing clinical exploitation of metformin. Not only did they spur better understanding
of metformin’s action in T2D (4–6), but they also provided rational bases for laboratories to
study the therapeutic potential of metformin outside of the conventional management of T2D.
Twenty years on however, there still remains much debate regarding the key molecular target(s) of
metformin. In this Research Topic, the evidence regarding direct effects of metformin on complex I
of the electron transport chain and mitochondria are discussed in two focussed reviews (Fontaine;
Vial et al.). They address topical research alongside earlier studies on the mechanism of action
of metformin on mitochondrial complex I, how metformin modulates reactive oxygen species
(ROS) production to prevent mitochondrial-mediated apoptosis and how the drug protects against
permeability transition pore (PTP)-induced cell death. These effects are discussed in the context of
T2D and cancer.

Metformin is now a well-established disruptor of cellular energy supply that targets the
mitochondria [(7); Fontaine; Vial et al.]. The resulting compensatory changes on cellular
metabolism to provide alternative sources of ATP and metabolites are detailed in this Research
Topic by Andrzejewski et al.: including increased glycolysis, modifications of glutamine
metabolism, and increase in PGC-1α [amajor regulator ofmitochondrial biogenesis also implicated
in cancer (8)]. These adaptations are thought to play a central role in the resistance to metformin
in cancer cells.

Activation of AMPK has been reported to inhibit the mechanistic target of rapamycin complex
1 (mTORC1) signaling pathway frequently activated in cancer cells (9). Furthermore, the tumor
suppressor LKB1 was demonstrated to phosphorylate AMPK in response to biguanides (10). What
then are the consequences in terms of cancer incidence in patients treated with metformin for
decades? Observational evidence suggests that metformin reduces the incidence of cancer in people
with diabetes (11). In this Research Topic three articles focus on the action of metformin on cancer
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andmore specifically onmelanoma (Jaune and Rocchi), leukemia
(Biondani and Peyron), and colorectal cancer (Higurashi
and Nakajima). These reviews describe in detail the recent
advances concerning in vivo effects and the different molecular
mechanisms underlying the anti-cancer action of metformin
(AMPK dependent/independent effects, role of p53 and cellular
effects: apoptosis, autophagy, proliferation, and cell migration),
and present ongoing clinical trials for the prevention or treatment
of various types of cancer.

One of the first reported benefits of metformin in reproductive
biology was the increase of fertility in patients with polycystic
ovary syndrome (PCOS) (12). This pathology is often associated
with insulin resistance; thus, it is perhaps not surprising
in hindsight that metformin ameliorates PCOS. Likewise,
metformin has beneficial effects on obese male fertility (13).
This important aspect of metformin action is addressed in a
review that also discusses the potential epigenetic modifications
induced by metformin in this context (Faure et al.). Among
epigenetic modifications, histone acetylation/deacetylation plays
a major role in the regulation of gene expression and
metformin via AMPK was shown to regulate the expression
of Sirtuin1 (Sirt1), a member of the class III (NAD+-
dependent) histone deacetylases (HDACs) (14). An original
research article of this collection by the group of J. Menendez,
uses a computational approach to identify putative sites
of interaction between Sirt1 and metformin (Cuyàs et al.).
This is an important issue since metformin similarly to
Sirtuins has been reported to expand longevity from yeast to
mammals (15).

One of the most surprising effects of metformin found in
recent years is its action on the gut microbiota. Indeed, the
original discoverymade by Oluf Pedersen’s lab demonstrated that

metformin causes a shift in the composition of microbiota altered
during T2D (16). Two examples of the action of metformin
on gut microbiota are given in two original research papers of
the “Metformin: beyond diabetes” Research Topic (Wang et al.;
Ji et al.).

Finally, there is growing evidence showing that metformin
may have therapeutic potential in neurodegenerative disease.
Rotermund et al. contribute a comprehensive review on the topic.
In this article, evidence for effects of metformin on Alzheimer’s
disease, Parkinson’s disease, amyotrophic lateral sclerosis,
and Huntington’s disease are summarized. Metformin has a
protective action on neurons mainly because it protects from
oxidative stress and neuroinflammation through mechanisms
implicating mitochondria and glucose metabolism. Once again,
cellular metabolism is at the forefront.

There are so many pathologies that have been shown to be
impacted by metformin that it is a first-class candidate for drug
repurposing in the near future. Besides cardiovascular disease
(17, 18), tuberculosis (19) and very recently multiple sclerosis
(20) may show promise. Future investigations and large-scale
prospective clinical trials, some of them currently ongoing, will
clarify this fascinating issue.
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The Therapeutic Potential of
Metformin in Neurodegenerative
Diseases
Carola Rotermund 1, Gerrit Machetanz 2 and Julia C. Fitzgerald 1,2*

1German Centre for Neurodegenerative Diseases, Tübingen, Germany, 2Department of Neurodegenerative Diseases, Centre

of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany

The search for treatments for neurodegenerative diseases is a major concern in light

of today’s aging population and an increasing burden on individuals, families, and

society. Although great advances have been made in the last decades to understand

the underlying genetic and biological cause of these diseases, only some symptomatic

treatments are available. Metformin has long since been used to treat Type 2 Diabetes

and has been shown to be beneficial in several other conditions. Metformin is well-tested

in vitro and in vivo and an approved compound that targets diverse pathways including

mitochondrial energy production and insulin signaling. There is growing evidence for the

benefits of metformin to counteract age-related diseases such as cancer, cardiovascular

disease, and neurodegenerative diseases. We will discuss evidence showing that

certain neurodegenerative diseases and diabetes are explicitly linked and that metformin

along with other diabetes drugs can reduce neurological symptoms in some patients

and reduce disease phenotypes in animal and cell models. An interesting therapeutic

factor might be how metformin is able to balance survival and death signaling in cells

through pathways that are commonly associated with neurodegenerative diseases.

In healthy neurons, these overarching signals keep energy metabolism, oxidative

stress, and proteostasis in check, avoiding the dysfunction and neuronal death that

defines neurodegenerative disease. We will discuss the biological mechanisms involved

and the relevance of neuronal vulnerability and potential difficulties for future trials

and development of therapies.

Keywords: metformin, neurodegeneration, diabetes, Parkinson’s disease, Alzheimer’s disease, aging,

mitochondria

INTRODUCTION

The evolution of genomics has greatly advanced our understanding of the genetic contribution to
neurodegenerative diseases and provided an entry point for studying the biological cascades leading
to neuronal degeneration. The growing research areas of bioinformatics and systems medicine
have also opened up opportunities for better targeted treatments and individualized therapies.
However, even for diseases such as Alzheimer’s and Parkinson’s disease, in which much progress
has been made, a clear link between genetics, underlying pathological processes and the resulting
clinical phenotype seldom exists. Neurodegenerative diseases are currently incurable, debilitating
conditions caused by the progressive degeneration and death of nerve cells and their prevalence is
rising in today’s society (1).

7

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2018.00400
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2018.00400&domain=pdf&date_stamp=2018-07-19
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:julia.fitzgerald@uni-tuebingen.de
https://doi.org/10.3389/fendo.2018.00400
https://www.frontiersin.org/articles/10.3389/fendo.2018.00400/full
http://loop.frontiersin.org/people/532517/overview
http://loop.frontiersin.org/people/547393/overview
http://loop.frontiersin.org/people/520710/overview


Rotermund et al. Metformin in Neurodegenerative Diseases

Therefore, despite substantial advances in the development
of symptomatic treatments for Alzheimer’s disease (AD) and
Parkinson’s disease (PD) (Figure 1), there is still a major
need for novel therapeutic strategies and disease-modifying
treatments.

Given the complex and heterogeneous molecular basis of
neurodegenerative disease the task can appear overwhelming and
the previous decades have seen mostly disappointing clinical trial
outcomes and subsequent lack of financial investment.

Gallega officinalis (French lilac) contains glucose-lowering
guanidines and has been used for treatment of diabetes for
centuries. The derivate metformin is a biguanide which was
introduced in Europe in the 1950s and in the United States
in the 1990s (2, 3). Metformin has recently been reported
to decrease cardiovascular risk, restore ovarian function in
polycystic ovary syndrome, reduce hepatic lipogenesis, fatty liver
disease, and reduce oxidative stress (3, 4). The mechanisms by
which metformin exerts its effects are still not fully defined but
it is known that metformin inhibits glucose production in the
liver and increases glucose uptake in peripheral tissues thereby
lowering blood glucose levels (3, 5, 6). It is also accepted that
metformin slows mitochondrial respiration via its direct action
on complex I of the respiratory chain of mitochondria.

THE THERAPEUTIC POTENTIAL OF
METFORMIN: RATIONALE

Metformin has the potential to interfere with neuronal longevity
mechanisms and is therefore an interesting drug since it has
already been approved for human use. However, human aging
research in general has been slowed down by the lack of good
aging models that can be used in the laboratory. Retaining aging
signatures in reprogrammed neurons has been made possible by
the use of direct reprogramming protocols (7, 8) but this may not
be feasible for some research groups and time is needed for the
technologies to be established in non-expert laboratories. New,
simple and affordable methods to investigate the role of aging in
human cells are still greatly needed.

Nonetheless, data from human and animal studies regardless
of cell type have shown that dysregulation of insulin function
contributes to aging and the development of neurodegenerative
diseases (9). Insulin resistance and diabetes are increasingly
recognized as a contributor to disease development especially
in the field of dementias (10–12). Therefore, the rationale for
using metformin is its potential to slow aging processes by acting
on mitochondrial metabolism and insulin signaling. Slowing the
aging process will be beneficial because quality of life could be
improved in old age by delaying disease.

A link between diabetes and neurodegenerative diseases is for
the most part accepted, although data is not unequivocal, and the
exact mechanisms are unclear. A large body of data onmetformin
use in humans and animals with neurodegenerative diseases
exists but metformin’s therapeutic use is not yet accepted since
the results are often conflicting. These different outcomes are
dependent on disease, model system, species and the underlying
biological pathways involved, which are now briefly reviewed.

DEMENTIA

Dementia is a common neurological disease of heterogeneous
origin and the most important risk factor is aging. Dementia
affects memory and other cognitive functions, interfering with
a person’s ability to carry out routine daily activities. According
to the UN world population prospects, the number of persons
aged 60 or over on the globe is estimated to grow approximately
four times over the next 30 years (13) bringing the prediction that
diagnoses of dementia will also rise. The most common form of
dementia is AD but there are other types of dementia including
vascular dementia, mixed dementia, frontotemporal dementia,
dementia with Lewy bodies, and Parkinson’s disease dementia.

Alzheimer’s Disease
Alzheimer’s disease (AD) is themost common neurodegenerative
disease, with 45 million people worldwide affected (14). AD
is characterized by progressive memory loss and decline of
cognitive function.

Neurofibrillary tangles (NFTs, composed of abnormal tau
protein) and amyloid plaques [composed of extracellular
aggregates of amyloid-β (Aβ)] are pathological hallmarks of
the AD brain (15–17). The NFT protein tau is associated with
microtubules and is responsible for their stabilization (18).
Tau pathology and synaptic loss correlates with cognitive
impairments in AD patients (19). The amyloid plaque
component Aβ derives from the sequential cleavage of the
membrane protein APP (Amyloid precursor protein) by β-
secretase BACE1 (β-site amyloid precursor protein cleaving
enzyme 1) and the γ-secretase complex (20). Dysregulation,
abnormal modification, and build-up of these protein
structures in the brain are thought to be the major pathologies
underlying AD.

From a genetic standpoint, most forms of AD are sporadic
and of late onset but familial forms of early onset AD exist
and are commonly caused by mutations in APP or presenilin
(21–23). The underlying biological mechanisms leading to
sporadic forms of AD have still not been defined. Inflammatory
response, hormone regulation, mitochondrial dysfunction, and
lysosomal dysfunction have been implicated, to name only a few
processes. There is also growing genetic evidence for microglial
involvement (24–26). Still, the main risk factors for developing
AD are aging, genetic risk factors including being an APOE-
ε4 allele carrier, variants in TREM2, and several GWAS loci,
traumatic brain injury, cardiovascular risk factors, and several
environmental risk factors (27–31).

Diabetes and Dementia: Animal Models
Most of the rodent models used to investigate the role of insulin
and glucosemetabolism in dementia have focused on AD. Insulin
signaling and glucose tolerances are altered in APP/PS1 mice
fed a high fat diet (32, 33), in partially leptin deficient (db/+)-
APP/PS1 mice (34) and APP23-(ob/ob) mice (35). APP load
may therefore boost susceptibility to disturbances of energy
metabolism.

A high fat diet induces insulin resistance and promotes
amyloidosis and memory impairment in both the Tg2576 mouse
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FIGURE 1 | Timeline of major advances in the treatment of Parkinson’s disease and Alzheimer’s disease in the last century. AADC, Aromatic L-amino acid

decarboxylase; AChE, Acetylcholinesterase; GLP-1, Glucagone-like Peptide 1; HCL, Hydrochloride; MAO-B, Monoamine oxidase B; NMDAR, N-Methyl-D-Aspartate

Receptor.

model of AD as well as in APP transgenic mice (36, 37). High
fat diets or obesity could contribute to memory deficits even in
wild type animals. However, some studies reviewed by Agusti
and colleagues had no effect on cognition at all (38) leaving

the topic still debated because of conflicting data. Diabetic rats
show increased levels of APP, Aβ, and phosphorylated tau (39).
These data suggest that alteration of energy metabolism via
insulin signaling may contribute to Aβ generation and altered tau
phosphorylation, two well know biochemical events associated
with dementias. The modulation of insulin has been proven to
be an effective strategy to protect neurons and synapses against
toxic Aβ oligomers and to improve cognition in other AD animal
models (40, 41). For example, glucagon-like peptide-1 (GLP-1),
insulin-like growth factor 1 (IGF-1) as well as caloric restriction
have all been shown to exert neuroprotective effects (42–44).

Metformin and Dementia: Animal Models
Until now only few animal studies have assessed the effect of
metformin on cognitive decline and the results are not in line
(Table 1). There are many different ways in which researchers
can modulate energy metabolism in rodents to try to induce
cognitive impairments and perhaps this has contributed to the
variable data on metformin in this context. Some animals are
fed high fat diets, others such as the (db/db) mice have a
spontaneous mutation that cause them to be insulin resistant
and obese. In three such high fat diet studies, metformin
treatment reduces cognitive deficits (57, 58, 60), but one study
found no improvement (59). In (db/db) mice, one study
found metformin improved memory (53) whereas another study

found no effect (55). It should be noted that in one study
looking at normal aging in wild type mice, metformin had a
detrimental effect on memory impairment (61). In this study
activation of AMPK by phosphorylation was not measured and

therefore it is not clear whether the metformin diet in these
animals was optimal. More studies with proper controls are
clearly needed to understand the effect of metformin in normal
aging.

It also seems that metformin is capable of simultaneously
having both a negative and positive impact on specific
biochemical events within the same disease model. For example,
in a P301S tauopathy mouse model, metformin treatment
reduced tau phosphorylation but promoted tau aggregation
(37). The authors suggest that metformin could be beneficial
as a dephosphorylating agent but could promote protein
aggregation, the latter being unquestionably the more widely
accepted neurodegenerative disease pathology. Similarly, short
term metformin treatment again reduced tau phosphorylation
but had negative effects since it activates APP and BACE-1 (54,
56). Metformin again seems to have positive effects on reducing
total tau and tau phosphorylation at serine 236, whereas the
sulfonylurea type diabetes drug glibenclamide performed much
better in similar tests (53, 55).

Sex may also influence metformin action, which could
complicate the interpretation of animal data. Male rodents are
often favored and sometimes the sex of the animals used is either
overlooked or omitted entirely. In one metformin study already
mentioned, male mice showed impaired cognitive function while
female mice were improved after treatment (36).
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Diabetes and Dementia: Human Studies
Changes in cognition have been reported in type 2 diabetes
mellitus (T2DM) patients who have not received a diagnosis of
dementia and meta-analyses have found moderate but significant
deficits across cognitive domains (64–66). T2DM also seems to
increase the risk of conversion from mild cognitive impairment
to dementia and the conversion from amnestic mild cognitive
impairment to AD (67).

Brain imaging studies in T2DM patients have shown a
reduction of whole and regional gray matter volume including
hippocampal volume when compared to non-diabetics (68, 69).
Taken together, the clinical data mostly shows that T2DM
patients have an increased likelihood of developing dementia
(10, 70–73). The relationship between diabetes and dementia
is further strengthened by reports that reversely, AD patients
have an increased risk of developing T2DM or impaired glucose
tolerance (74–76). Furthermore, post mortem brain pathology in
AD shows decreased insulin receptors and IGF protein levels,
and insulin levels and markers of insulin signaling are altered
in the brain (77–80). Hyperglycemia and hyperinsulinemia
have also been positively correlated with AD pathology (75,
81, 82). However, it must be stated that the vast majority of
neuropathological studies did not find any association between
T2DM or indeed glucose levels and extent of AD pathology
(83–87) and two studies even suggest a negative association
(88, 89).

One explanation for the discrepancy between clinical and
neuropathological studies in AD is the influence of vascular
pathology. It is now established that concomitant pathologies in
the aging brain are rather the rule than the exception (90). The
fact that most studies show no association between T2DM and
Aβ deposition therefore seems to hint that there is no major
effect of T2DM on Alzheimer’s pathology. An additional effect
of small vessel disease on cognition in patients with T2DM and
Alzheimer’s pathology could explain the higher likelihood to
develop dementia in this group. This implies that even if T2DM
does not have a large impact on Alzheimer’s pathology the proper
management of diabetes in AD is relevant (67, 91). An interplay
between T2DM and Alzheimer’s beyond vascular pathology
should not be disregarded though especially considering evidence
on shared pathophysiological features.

Metformin and Dementia: Human Studies
Results from clinical studies assessing the effect of metformin use
on cognitive decline and AD mostly show a positive influence
(Table 2). Metformin use is associated with significantly lower
risk of cognitive impairment in T2DM (102, 107). The
incidence of dementia in general is lower in T2DM patients
receiving metformin, sulfonylurea or a combination of both
drugs compared to those not receiving oral anti-hyperglycemic
agents (96). The risk of developing AD was lower in diabetics
receiving metformin than in patients receiving sulfonylurea
or thiazolidinediones in two studies (97, 101). However, in a
single study, long-term use of metformin for T2DM (though
not sulfonylureas or thiazolidinediones) was associated with
higher risk of developing AD (103). One informative study
used latent class analysis to identify groups of men with

T2DM receiving metformin who develop different profiles of
comorbidities including dementia. They concluded that the effect
of metformin may in fact differ depending on the risk-profile of
patient receiving the drug (100).

In an interventional study, Luchsinger and colleagues
investigated the effect of metformin given daily for 12 months
compared to placebo in overweight patients with amnestic mild
cognitive impairment. There was improvement in the selective
reminding test in the group receiving metformin but not in
other cognitive or biomarker outcomes (108). The results were
only marginally significant and there was no correction for
multiple measurements which at least suggests that the observed
improvement must be confirmed in an independent trial. In
another interventional, short-termmetformin study, nondiabetic
patients with mild cognitive impairment or mild dementia due
to AD took metformin or a placebo for 8 weeks. Those taking
metformin significantly improved in a measure of executive
function but not in other cognitive tests or biomarkers. Again, a
multitude of test was performed without correction for multiple
testing (105).

Although the majority of data on metformin use in
dementia with or without T2DM is generally positive, it should
be considered that the effect of metformin likely depends
on complex underlying pathological processes and may to
some extent be related to an effect on vascular rather than
neurodegenerative processes. In some instances, metformin
could even exert detrimental effects. Prospective interventional
studies have not been able to show convincing evidence of a
positive effect ofmetformin inmild cognitive impairment ormild
Alzheimer’s dementia but were likely underpowered or of too
short duration. More, long-term, controlled metformin studies
in large, well-defined dementia cohorts are needed.

PARKINSON’S DISEASE

Background
Parkinson’s disease (PD) is a common neurodegenerative disease,
affecting over 1% of the population above the age of 60
and around 4% older than 85 (109). PD is characterized by
bradykinesia and a combination of rigidity, resting tremor,
postural instability, and a large range of non-motor symptoms
(110). Like other neurodegenerative diseases, PD is clinically and
pathologically heterogeneous, with a large variation in disease
onset and progression. Progressive loss of dopamine-containing
neurons in the substantia nigra pars compacta, located in the
mid brain, results in a deficit of dopamine in the striatum
(111, 112). Insoluble protein inclusions in neurons, termed Lewy
bodies, mainly consisting of aggregated α-synuclein (aSyn) are
the main neuropathological hallmark of PD (113). Lewy bodies
and protein aggregates are found in multiple brain regions and
spread with disease progression (114, 115). The exact biological
mechanism leading to aSyn aggregation and neuronal loss
remains unknown and currently only the symptoms of PD are
treated with dopamine-replacement therapy and in some cases
deep brain stimulation.

Approximately 5–15% of PD cases can be attributed to
disease-causing genetic variants and around 15% of patients have
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TABLE 2 | Studies evaluating the effect of metformin on incidence and progression of neurodegenerative diseases.

Study Disease Characteristics Result

(92) PD Retrospective cohort study, 800,000 individuals of whom

61,166 were diabetics, among the latter 41,003 received

OAA therapy

Higher PD incidence for patients with T2DM without (HR

2.18) and with (HR 1.30) OAA compared to controls. HR for

treatment with metformin alone was lower (0.95) than for

sulfonylurea alone (1.57) and the combination showed the

lowest HR (0.78)

(93) PD Population-based retrospective cohort study with 93,349

T2DM patients receiving metformin (FU of 657,537 patient

years) and 8,346 T2DM patients receiving glitazones with or

without metformin (FU of 69,338 patient years)

Incidence of PD significantly lower in T2DM receiving

glitazones compared to those receiving metformin (HR 0.72),

no incident PD in long-term glitazone users who were still

taking glitazones

(94) PD Population-based retrospective cohort study with 41,362

patients receiving metformin alone, 316,210 patients

receiving simvastatin alone, and 52,311 receiving both,

metformin and simvastatin

Lower incidence of PD for patients receiving simvastatin alone

(HR 0,64) or in combination with metformin (HR 0.74)

compared to metformin alone

(95) PD/Dementia Retrospective cohort study, 4,651 patients with T2DM with

metformin treatment, 4,651 patients with T2DM with

metformin treatment; >21,000 person-years of FU

Higher incidence density for PD (HR 2.27), AD (2.13), and VD

(2.30) in the metformin group compared to those in the

non-metformin group

(96) Dementia Retrospective cohort study, 127,209 dementia-free

individuals aged ≥50 years, of which 25,939 w/T2DM, 1,864

w/Metformin only, 9,257 w/Sulfonylureas + Metformin

Higher incidence of dementia in T2DM than controls, higher

incidence in T2DM wo/ OAA compared to sulfonylurea (HR

0.85), metformin (HR 0.76), or a combination of metformin

and sulfonylurea (HR 0.65)

(97) Dementia 67,731 non-demented, nondiabetic individuals aged ≥65

years observed for 5 years and observation of onset of

T2DM, antidiabetic medication and dementia

Increased risk of dementia onset for new-onset T2DM

compared to non-T2DM (HR 1.56), risk to develop dementia

was higher for thiazolidinedione users than for sulfonylurea

and metformin

(98) Dementia 189,858 individuals with 122,036 receiving metformin and

67,822 not receiving metformin, dementia incidence rate per

1,000 person-years

Patients with diabetes taking metformin had significantly lower

dementia incidence rates than those not taking metformin

(21.79 vs. 31.58 per 1,000 person-years, p < 0.001)

(99) Dementia Meta-analysis including 544,093 participants, risk of

dementia in patients with T2DM taking insulin sensitizers

Incidence of dementia reduced with metformin (RR 0.79)

compared to those not taking insulin sensitizer but not

significant (p = 0.064)

(100) Dementia Latent class analysis to identify subgroups with differential

effect of metformin on risk of age related comorbidities in

41,204 men with T2DM with 8,393 metformin users,

Identified 4 latent classes of patients who showed different

effects of metformin on risk to develop ARC including

dementia

(101) Dementia Retrospective cohort study, 17,200 new metformin users vs.

11,440 new sulfonylurea users aged ≥65 years, average FU 5

years

Individuals <75 years of age on metformin had a lower risk to

develop dementia than those on sulfonylurea (HR 0.67, 95%

CI 0.61–0.73)

(102) Cognitive

impairment

Longitudinal population-based study, 365 persons aged ≥55

years with T2DM of which 204 received metformin

Metformin use inversely associated with cognitive impairment

(OR 0.49), longer use associated with lower risk of cognitive

impairment

(103) AD Retrospective case-control study, 7,086 AD patients and

controls were compared for previous use of metformin/other

antidiabetic drugs

Higher risk to develop AD for longterm users of metformin

(AOR 1.71) but not sulfonylurea (AOR 1.01), thiazolidinediones

(AOR 0.87), or insulin (AOR 1.01) compared to non-users

(104) AD 71,433 patients newly diagnosed with diabetes and 71,311

nondiabetic controls, follow up of up to 11 years

Higher incidence of AD in diabetic patients compared to

non-diabetics (0.48 vs. 0.38%), no positive effect of

anti-hyperglycemic treatment on risk

(105) AD Randomized placebo-controlled crossover study, 20

nondiabetic patients with MCI or mild dementia and AD

received mg metformin or placebo for 8 weeks and then

switched to the other treatment for 8 weeks

Metformin was measurable in CSF, in pooled post-hoc

analysis significant increase in superior and middle

orbitofrontal CBF after 8 weeks metformin exposure in

ASL-MRI, significant improvement in Trail making test part B,

a measure of executive function

(106) HD Observational study; 4325 HD patients, of which 121 had

T2DM and received metformin

HD patients on metformin fared better in test for verbal and

executive function but not in motor assessments

AD, Alzheimer’s disease; AOR, adjusted Odds Ratio; ARC, age related comorbidities; ASL-MRI, Arterial Spin Label Magnetic Resonance Imaging; CBF, Cerebral Blood Flow; FU,

Follow-up; HD, Huntington’s disease; HR, Hazard ratio; MCI, Mild cognitive impairment; OAA, Oral anti-hyperglycemic agents; PD, Parkinson’s disease; T2DM, Type 2 Diabetes; VD,

Vascular dementia.

a first degree relative who is also affected (116). The genetic
architecture of PD has been well studied but it is complex.
23 loci and 19 genes have so far been associated with familial

forms of PD (117). Like in most neurodegenerative diseases, the
majority of cases probably result from a complex interplay of risk
modifying genetic variation, environmental factors and chance.
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Knowledge about the genes involved in PD have allowed insight
into the underlying biological pathways. Together with multiple
environmental factors and epidemiological data, the genetic data
has highlighted several cellular functions and pathways including
mitochondrial dysfunction, lysosomal function, inflammation,
build-up of aggregation-prone proteins and oxidative stress (118,
119).

Despite large investments in research for neuroprotective
compounds for PD, none have so far shown any convincing
effects in clinical trials (120).

Diabetes and PD: Animal Studies
Rodent studies have shown that there is a link between insulin
resistance and development of PD. A high fat diet enhanced
vulnerability to the neurotoxins 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA)
as measured by increased nigrostriatal neurodegeneration and
motor deficits (121, 122). Likewise, in an aSyn mouse model of
PD a high fat diet led to an accelerated development of locomotor
phenotype and earlier onset of neurodegeneration (123).

Insulin resistance can directly interfere with dopamine
signaling. Rats fed a high fat diet exhibit impaired nigrostriatal
dopamine function (124) and overweight and diabetic mice show
degeneration of dopaminergic neurons (125).

Metformin and PD: Animal Studies
Only a handful of rodent studies have so far assessed the effects
of metformin as a neuroprotective agent in PD. These studies
have focused mainly on metformin treatment in combination
with acute MPTP induced parkinsonism. Although experimental
designs in these studies are quite similar, the results are variable,
arguing against differences in modeling as the major cause of
metformin’s variable effects. However, differences in the dose and
duration of MPTP and metformin treatments may be important
(Table 1).

Most studies in rodents find that metformin reduces the
damaging effect of MPTP on dopaminergic neurons, shown
by tyrosine hydroxylase staining (a marker for dopaminergic
neurons) in the substantia nigra pars compacta (49, 50), striatum
(45), or both (48). Two studies suggest that metformin’s
protective effect may not be specific. A study by Ismaiel and
colleagues however, reported that metformin had no protective
effect against MPTP-induced neuronal loss in the SN (46) and
Bayliss reported no protective effect on dopaminergic neurons in
the SN, only in striatum (45).

Metformin’s supposed ability to protect against dopaminergic
neuronal death induced by the neurotoxin MPTP correlates in
three studies to improvements in the motor function of rodents
(48–50). Given that both, MPTP and metformin act on complex
1 of the respiratory chain, a mutual influence of the drugs on
mitochondrial survival cannot be excluded. It is possible that
in these studies metformin primarily reduced the damaging
effects of MPTP itself rather than restoring damaged neurons.
Therefore, examination of metformin’s action in transgenic
mouse models rather than acute toxin models of PD might give
better insight about its potential. An interesting first hint comes

from a study using healthy non-transgenic mice that showed that
metformin could reduce aSyn phosphorylation in the brain (51).

Diabetes and PD: Human Studies
Studies assessing the risk of developing PD in patients with
diabetes have very mixed outcomes (126–132). In one meta-
analysis comprising 14 case-control studies, PD risk was
decreased in T2DM patients (133). Conversely, Cereda and
colleagues describe an increased risk for developing PD in
diabetics in four prospective cohort studies but not a higher
prevalence of diabetes in in patients with PD in five case-control
trials (134). It has to be noted that the case-control trials with the
largest populations did consistently show a similar of even higher
prevalence of diabetes in PD compared to controls. More recently
a meta-analysis including seven population-based cohort studies
which also found an increased PD risk in patients with diabetes
(135). Taken together the meta-analyses seem to hint toward
an increased incidence of PD in T2DM. A potential pitfall is
the inclusion of vascular PD in some of the studies. T2DM
does contribute to cerebral small vessel disease and therefore
non-exclusion of patients with vascular lesions may skew the
results toward more patients with T2DM exhibiting signs of
parkinsonism. This particular problem was addressed in some
studies showing an increased incidence of PD in T2DM and
therefore cannot sufficiently explain the discrepancies. From
a neuropathological view one study describes an association
between increased blood glucose levels with increased risk of
Lewy body formation in the substantia nigra pars compacta
and locus coeruleus further supporting a role of T2DM in the
pathogenesis of PD (136).

Dementia with Lewy bodies (DLB) and Parkinson’s disease
dementia (PDD) are common causes of dementia in the elderly
(137). PD patients with T2DM are reported to have a greater
rate of cognitive decline and lower gray matter and white matter
volume, although the group was small (138). PDD patients
are more likely to show insulin resistance in an oral glucose-
tolerance-test than PD patients without dementia (139). DLB
and PDD were less common in patients with diabetes in one
study using data from the Swedish Dementia Registry (140), yet
T2DM was not significantly associated with PDD in many others
(141–144).

Metformin in PD: Human Studies
Clinical studies have not looked solely at metformin, but rather
metformin compared to, or in combination with other oral anti-
hyperglycemic agents (see Table 2). Taken together all the studies
look at different medications and are hardly comparable. There is
lack of clinical data that suggests a positive effect of metformin
on PD risk. Wahlqvist and colleagues tried to determine the
effect of sulfonylurea, metformin or a combination of both
drugs on the incidence of PD in patients with T2DM. Patients
with T2DM receiving sulfonylurea had an increased PD risk
compared to those not receiving oral anti-hyperglycemic agents.
Metformin alone or in combination with sulfonylurea had no
impact, suggesting that metformin might rescue the harmful
effect of sulfonylurea (92).
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Brakedal and colleagues compared the incidence of PD in
patients with T2DM from the Norwegian Prescription Database
(NorPD) receiving glitazones with or without metformin or
metformin alone. Patients taking glitazones had a significantly
lower incidence of PD compared to patients on metformin alone.
There was no risk reduction in past users of glitazones, indicating
the necessity of long-term or even permanent exposure to
glitazones for risk reduction (93). Looking at patients from
the NorPD receiving statins, metformin or both showed a
lower hazard ratio to develop PD for patients using statins
in combination with metformin when compared to metformin
alone and the risk was lowest in patients only taking statins
(93). The positive effect of statins may come through their anti-
inflammatory effect and a reduction of microglial inflammatory
response, which has been shown to have a positive effect on
striatal dopamine activity (145). The question why metformin
seems to have a positive effect when added to sulfonylurea
while it has a negative effect when taken together with
statins must be addressed. The combination of T2DM and
hypercholesterolemia might increase the risk of developing PD
more than hypercholesterinemia alone and this risk may not be
lowered sufficiently by a combination of statins and metformin.
The addition of metformin to sulfonylurea may result in a
better control of T2DM than the therapy with sulfonylurea
alone thereby reducing effects that promote PD risk. Also, the
complex interplay between the different drugs has to be taken
into account.

To our knowledge there is no data available on metformin use
and disease progression. It is also unclear whether metformin use
in individuals without insulin resistance may have a beneficial
effect on PD development.

OTHER NEURODEGENERATIVE DISEASES

There are to our knowledge very few or no reports of metformin
studies in other, rarer neurodegenerative diseases such as
amyotrophic lateral sclerosis (ALS), Huntington disease (HD),
motor neuron disease, or atypical parkinsonian disorders. Here
we briefly note relevant studies concerning association with
diabetes or use of drugs targeting energy metabolism.

Amyotrophic Lateral Sclerosis
ALS is a progressive neurodegenerative disease that is
characterized by degeneration of the first and second motor
neuron resulting in spasticity and muscle atrophy. Eventually
this results in difficulty speaking, swallowing, and breathing
and often leads to death within a few years after diagnosis.
Neurochemical imbalance and genetic mutations are known
to cause ALS, but most cases are sporadic and old-age is an
important risk factor. Most drugs available for ALS relieve
symptoms only, although the drug riluzole and more recently
edaravone have been shown to slow progression of the disease
(146, 147).

A protective effect of diabetes in older patients and an
increased risk of developing ALS in younger patients with
diabetes has been described which is thought to reflect differences
in association of ALS with T1DM and T2DM (148, 149). Most

studies have shown a decreased risk for developing ALS in
patients with T2DM (150, 151). However, other studies reported
no significant effect on ALS risk or progression and even a higher
risk of developing ALS in T2DM in patients below 65 years of age
(152–154). Nutritional status is negatively associated with ALS
severity (155) and hypercaloric nutrition has even been suggested
as a potential treatment option for ALS. Two trials with the
PPAR-γ agonist Pioglitazone (which reduces insulin resistance)
(156, 157) have not shown any benefit in disease progression
(158).

Huntington Disease
HD is a progressive neurodegenerative disease that causes
choreatic movements, psychiatric symptoms, and cognitive
decline. The most common form of the disease is of early onset,
usually diagnosed around 30–40 years of age. HD is caused by
defects in the gene HTT, which encodes the protein huntingtin
and the mode of inheritance is autosomal dominant. Expansion
of CAG repeats in the HTT gene leads to the production of an
abnormally long version of the huntingtin protein. This results
in the protein being broken down by the cell into small, toxic
fragments and these protein fragments aggregate and accumulate
in neurons causing the disease.

Altered glucose metabolism and increased rates of T2DM
have been reported in patients with HD (159, 160) and a high
prevalence of T2DM has been reported in a Chinese family
with HD (161). However, other studies were not able to identify
differences in oral glucose tolerance test or pancreatic tissue
between HD patients and controls (162, 163). HD patients with
T2DM receiving metformin had better cognitive test results than
HD patients without diabetes not taking metformin. This was
in stark contrast to the non-HD control group where people
with T2DM taking metformin fared worse in the cognitive test
compared to non-diabetic controls (106).

METFORMIN: MECHANISM OF ACTION IN
NEURODEGENERATIVE DISEASES

The in vivo studies conducted so far, regarding the effect of
metformin have generated conflicting results. Besides the large
differences in study design, these outcomes are probably also due
to the many biological pathways influenced by metformin. Here
we will discuss some of the biological signaling pathways and
biological mechanisms that are the most relevant for metformin’s

potential as a therapy in neurodegenerative disease (Figure 2).

Central Metabolism and Signaling
Central metabolism is tied to the overarching cell signaling
pathways involved in proliferation, stress and survival, which
are heavily implicated in human diseases including cancer
and neurodegeneration. Metformin acts on central metabolism
and several major signaling pathways including energy sensing
(glucose metabolism and AMPK signaling), mTOR signaling,
and inflammatory signaling. Mitochondrial signaling will be
addressed separately.
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FIGURE 2 | Metformin’s potential as a neuroprotective agent. Metformin can counteract protein hyperphosphorylation, oxidative stress and neuroinflammation,

processes known to drive neurodegeneration. Metformin can act on neurons, but also targets astrocytes and microglia. Consequently, metformin can influence

inflammatory status, along with glucose metabolism in the entire brain and thereby reduce neuroinflammation and act as an antioxidant, leading to protein

dephosphorylation. PPP, Pentose phosphate pathway.

Energy Sensing and Metabolism
The brain constitutes only 2% of the total body mass, but it
is one of the main energy-demanding organs in the human
body utilizing around 20% of total energy expenditure. Brain
cells incorporate (i) the neurons (70–80% of brain energy
expenditure) and (ii) glial cells, comprising oligodendrocytes,
astrocytes and microglia (accounting for the remaining 20–
30% of energy expenditure). The high energy demand of
neurons is one of several factors partially explaining the selective
vulnerability of certain neuronal subtypes in neurodegenerative
diseases. Energy metabolism has long since been thought to play
a role in the etiology of neurodegenerative diseases and here
we will briefly mention some of the related signaling pathways
and biological mechanisms that are relevant for metformin’s
therapeutic potential in neurodegeneration.

AMPK signaling
AMPK is an evolutionarily conserved sensor of cellular energy
status. AMPK is activated by increasing AMP levels in
conditions of energy deprivation and the enzyme consequently
inhibits energy consumption and stimulates catabolic pathways.
Activation of AMPK has a wide range of effects, including
inhibition of mTor and PI3K-Akt signaling (two important
pathways discussed later).

Dysregulation of AMPK is associated with insulin resistance
and T2DM (164, 165) and neuroinflammation (166–168). AMPK
signaling plays a major role in AD disease progression since
AMPK has been shown to regulate both Aβ generation and
tau phosphorylation. Inhibition of Aβ production and tau
phosphorylation in neuronal cultures is dependent on AMPK
activation (169) and activation of AMPK lowers extracellular Aβ

accumulation (170). Conversely, in neurons, AMPK activation
has been linked to tau phosphorylation as a response to Aβ

toxicity (171, 172).
Metformin inhibits complex I of the electron transport chain

needed for mitochondrial respiration, thereby leading to an
energy deficit and indirectly activating the AMPK pathway
(173–175). Thus, stimulation of AMPK can be seen as a key
consequence of metformin administration, explaining many of
the known effects of the drug (Figure 3).

However, in the context of AD especially, more studies
are needed to understand the complex role of AMPK
signaling and the action of metformin. A study conducted
in human neuronal stem cells proposed that activation of
AMPK via metformin is neuroprotective against Aβ (176)
and other in vitro studies showed that metformin is able
to reduce tau phosphorylation via mTOR/PP2A (Protein
phosphates 2A) signaling (54) and that it can reduce molecular
pathologies associated with AD (177). An additional level
of modulation via AMPK by metformin could come from
metformin’s ability to reduce BACE1 protein levels in neurons
(178). Conversely, metformin was also reported to upregulate
BACE1 in neurons and increase the generation of Aβ (179),
suggesting detrimental effects of activating AMPK in diseased
neurons.

In PD mouse models the AMPK involvement is similarly
multifarious. Administration of the neurotoxin MPTP activates
AMPK signaling (180). Interestingly, both AMPK overexpression
and AMPK inhibition have promoted survival in neurotoxin
treated PDmodels (180) but another study provided evidence for
a protective function of AMPK activation in in vivo PD models
(181).
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FIGURE 3 | Cellular targets of metformin. Metformin inhibits mitochondrial complex I, thereby increasing AMP/ATP ratio. This lack of energy leads to an activation of

AMPK, which, amongst others, inhibits mTor signaling. Furthermore, metformin can activate PP2A and inhibit neuroinflammatory processes. Results of these events

are reduced production of pro-inflammatory cytokines and reactive oxygen species (ROS), decreased oxidative stress, inhibition of protein synthesis and augmented

autophagy of toxic oligomers. Additionally, protein dephosphorylation, protein aggregation, and cell death are affected.

Overexpression of aSyn in cell culture reduced AMPK activity,
while inhibition of AMPK lowered resistance to aSyn toxicity
(182). AMPK’s subunits α1 and α2 have neuroprotective effects
against aSyn toxicity with low but continuous AMPK activity
almost completely preventing loss of dopaminergic neurons
(183). Accordingly, in rodent PD models dietary metformin
influenced neuronal function via AMPK modulated aSyn
phosphorylation status (49, 51). However, several other studies
point in a different direction. Over-active AMPK promotes aSyn
accumulation (184) and hyperactivation of AMPK leads to aSyn
binding to the GTPase PIKE-L and dopaminergic cell death (47).
These studies show that lower AMPK activity may in fact be
beneficial at least in aSyn models of PD.

As is the case in many neurodegenerative diseases, the
underlying genetic and biological causes are heterogeneous,
often causing multiple pathologies that can overlap across the
disease spectrum. The action of metformin primarily via the
mitochondria could have numerous and potentially opposite
effects on AMPK depending on the amount of involvement and
type of mitochondrial signaling in each patient or disease model
at any given moment. One important aspect to consider here
is that biological pathways are not necessarily fixed in a single
state throughout the disease course. Neurons especially have
evolved to carefully adapt to energetic needs in order to survive
since they are seldom replaced. Sophisticated compensatory
mechanisms are initiated for the purpose of mitochondrial
rejuvenation and adaption. Such complexity has made modeling

neurodegenerative diseases in human neurons challenging and
has contributed to the current situation where no causative or
“cure all” therapies are available.

Glucose metabolism
Glucose is an essential energy substrate needed to sustain
neuronal activity and is taken up via glucose transporters
expressed in the brain endothelium, astrocytes, and neurons
(185). Neurons mostly rely on glucose for energy but utilize
ketone bodies during fasting. In contrast to other cell types, in
neurons the rate limiting glycolytic enzyme Phosphofructokinase
B3 is highly turned over by the proteasome, resulting in the
preferential metabolism of glucose via the pentose phosphate
pathway (PPP) as opposed to glycolysis (119, 186).

A product of the PPP is the electron donor NADPH, which
provides reducing power for anabolic reactions and is crucial
for maintaining antioxidant potential. The PPP helps neurons to
meet high energy demands, but since neurons are predominantly
oxidative, maintaining a fine balance between glycolysis and PPP
is essential for counteracting oxidative damage and conserving
energy.

Glial cells on the other hand, predominantly metabolize
glucose via glycolysis producing lactate and have only very low
rates of mitochondrial oxidation. Glia metabolically support
axons and lactate can be shuttled across a gradient from glia
to neurons (Figure 2) (187, 188). Interestingly, in cell culture,
neurons favor lactate over glucose (189) preferring a fast supply
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of energy over metabolic efficiency. In the human brain, energy
demand must be tightly regulated to offset oxidative damage and
therefore cell culture and cell culture media effects should be
taken into consideration when considering the conflicting data
on metformin performed in situ.

Inhibiting the PPP and glutathione pathways causes increased
levels of oxidative stress and cell death similar to that
seen during neurodegeneration (119). Glucose hypometabolism
has been shown in PD brains (190) and deregulation of
glucose metabolism has been proposed as an early event in
the pathogenesis of PD (119). Dunn et al. proposed that
dysregulation of glucose metabolism occurs via dysregulation of
the PPP, which causes oxidative stress because of less efficient
glutathione recycling, and it is this event that underlies the
increased levels of oxidative stress observed in PD (119).

Metformin can act in these pathways by slowing oxidative
phosphorylation via inhibition of complex I in mitochondria
and by inhibiting gluconeogenesis, having the effect of further
aiding neurons to reduce their oxidative burden by minimalizing
NADH utilization.

Insulin signaling
Insulin plays an important role in the brain. It is used
as a hormonal signal to control body weight, food uptake,
and metabolic homeostasis (191–193). Insulin has also been
shown to influence expression of dopamine receptors and
concentration of dopamine (194–196). Disturbances in insulin
signaling have been implicated in several neurodegenerative
diseases including AD, PD, and HD (197–200). Insulin is
secreted in response to high blood sugar and acts in different
organs including the brain. Activation of the Phosphoinositide-
3-kinase (PI3K)—Akt pathway via insulin receptor activation
and insulin receptor substrates plays a central role in the
metabolic actions of insulin (201). Akt activation regulates
proteins such as mTOR, FOXO, and BAD. Overall, Akt
has over 100 known substrates and has diverse effects on
cellular growth, cell proliferation, glucose uptake, protein
synthesis, glycogen synthesis, and apoptosis (202). Akt is
inhibited by PP2A (203), PHLPP1/2 (204), and indirectly
by PTEN (205). Insulin resistance has been associated with
disturbances in signaling up and downstream of Akt (206–
208).

Insulin has been administered to patients to try to improve
symptoms of neurodegeneration (209, 210) and has been shown
to protect cells from Aβ induced death (211–213). The Insulin
Degrading Enzyme (IDE), originally found to play an important
role in insulin turnover (214) is involved in Aβ degradation.
IDE can degrade secreted Aβ from neurons and microglia and
mediate its clearance (215). Furthermore, IDE hypofunction can
contribute to in vivo Aβ accumulation (216). In hippocampi
of ApoE4 carriers reduced expression levels of IDE have been
measured (217) and genetic differences in IDE expression and
activity have been suggested to be involved in AD development
(218–221). Reduced levels of IDE in liver and brain have been
correlated with aging (222) and IDE can counteract damage from
oxidative stress, suggesting a neuroprotective role (223–226).

Metformin lowers blood glucose levels through inhibition
gluconeogenesis in the liver via AMPK (227, 228). AMPK inhibits
PI3K/Akt signaling, the crucial pathway downstream of the
insulin and IGF1 receptors (229).Metformin has also been shown
to act on insulin signaling independently of AMPK. Metformin
is reported to downregulate expression of insulin and IGF-1
receptors (230, 231) and reduces phosphorylation of insulin
receptors (232) including IRS-1 (230, 233).

Both acute and chronic metformin administration has been
found to increase levels of GLP-1, an incretin known to induce
insulin secretion, in humans and mice (234–236). Very recently
a randomized, double-blind, placebo-controlled trial for PD
showed that a GLP-1 agonist had positive effects on motor
symptoms in PD (237), generating a new potential mechanism
for metformin action in neurodegeneration.

mTOR Signaling
mTOR signaling is a highly conserved and central signaling
pathway integrating upstream signals such as nutrient and redox
status and then controlling downstream processes such as cellular
growth, motility, survival, and death (238). The mTor pathway is
crucial for regulating mitochondrial biogenesis and autophagy,
two processes that are defective in many neurodegenerative
diseases.

mTOR is a serine/threonine protein kinase, composed
of the protein complexes mTORC1 and mTORC2. mTOR
signaling is targeted by the PI3K/Akt pathway, the key insulin
signaling pathway (239, 240). Both PTEN (241, 242) and
AMPK (243, 244) suppress mTor signaling and rapamycin
is a well-studied inhibitor of mTORC1 (245–247). Although
mTor signaling influences many downstream events, the most
important mechanism of action is through the phosphorylation
and activation of S6K1 and 4E-BP1 and subsequent control of
RNA translation (238) (Figure 4). Interestingly, deficiency in
mTor signaling has been implicated with insulin resistance and
diabetes. Nutrient dependent stimulation of S6K1 can induce
insulin resistance (248, 249) and S6K1 deficiency protects against
high fat diet-induced insulin resistance (250).

The mTOR inhibitor rapamycin suppresses
neurodegeneration phenotypes in mice (251) and protects
against MPTP-induced loss of dopaminergic neurons (252).
Rapamycin also prevents the development of dyskinesia without
affecting the therapeutic efficacy of L-DOPA and thus, the
mTORC1 signaling cascade represents a promising target for the
design of anti-Parkinsonian therapies (253).

Elevated mTOR signaling has been found in AD patients and
is linked to diabetes and aging (254, 255). Rapamycin abolishes
cognitive deficits and reduces Aβ levels in a mouse model of
AD (256). It also ameliorates AD-related phenotypes by restoring
hippocampal gene expression signatures (257). Importantly,
mTor regulates tau phosphorylation and degradation (258),
making this pathway an interesting target for the treatment of
tauopathies.

If we compare the therapeutic potential of metformin, a well-
known inhibitor of mTOR signaling through activation of AMPK
(259) to that of rapamycin, which is more widely accepted in the
field, the obvious difference is that metformin action on mTOR is
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FIGURE 4 | The overlapping actions of metformin and rapamycin. Rapamycin acts by directly inhibiting mTOR and therefore translation regulation, which has a major

influence of highly regulated processes such as mitochondrial biogenesis and autophagy. Metformin acts indirectly on the mTOR pathway through inhibition of

complex I and activation of AMPK signaling. Metformin also reduces reactive oxygen species (ROS) via inhibitory action on complex I and NAD(P)H oxidase having an

overall effect as a redox regulator. Downstream of metformin action, low level ROS can indirectly trigger signals for mitochondrial biogenesis and turnover of organelles

and proteins via autophagy. Vice versa, maintenance of healthy mitochondrial networks involving autophagy and mitochondrial biogenesis further reduces build-up of

damaging levels of ROS.

relatively indirect. Rapamycin forms a complex with the FKBP12
binding protein which binds and specifically alters mTORC1.
Metformin acts on the mTOR pathway indirectly via multiple
routes. The AMPK independent routes include inhibition of
transcription factors (260), the PI3K/AKT pathway (261), and
induction of REDD (262). In direct contrast to this, one study
has shown that metformin can directly inhibit mTORC1 and is
dependent on Rag GTPases not AMPK (263). These data support
the view that metformin has more than one direct target and is
likely to havemanymore indirect targets, thus explaining why the
use of metformin and a research tool or treatment is less accepted
than rapamycin.

Nevertheless, the mTOR pathway links several biological
pathways underlying neurodegenerative diseases and therefore
the ability of metformin to inhibit this signaling cascade endorses
the argument that more mechanistic work using metformin and
its inclusion in clinical trials should be positively considered.

Inflammation
Neuroinflammation is considered a major driving force in the
progression of neurodegenerative diseases and the triggering of
innate immune mechanisms is emerging as a crucial component
in disease pathogenesis. Microglia and other cell types in the
brain can be activated in response to misfolded proteins or

aberrantly localized nucleic acids. This diverts microglia from
their physiological and beneficial functions, and leads to their
sustained release of pro-inflammatory mediators (264).

Intake of non-steroidal anti-inflammatory drugs (NSAIDs)
has been reported to decrease incidence of AD later in life
(265, 266) and activated microglia are found in brains of AD
patients (267, 268).

In AD, an integrated network-based approach identified gene
perturbations associated with innate immune pathways and
microglia cells in late onset forms of the disease (269). AD
patients show increased expression of inducible nitric oxide
synthase (iNOS, a product of neuroinflammation) in neurons and
glia, leading to augmented nitric oxide production (270, 271).
Activated microglia can further induce tau phosphorylation in
primary mouse neurons, activating IL1β receptor and p38MAPK
stress signaling (272).

In PD, patients show increased numbers of activatedmicroglia
and astrocytes (273, 274) and microglia activation has been
associated with disease progression (273, 275, 276). aSyn has
been found to activate microglia, enhancing neurotoxicity (277).
Activation of microglia increases nitration of aSyn, resulting in
neuronal cell death (278).

Immune signaling triggers transcriptional events, but also
changes in metabolic flux, redox balance, and metabolite balance
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via mitochondria (279). Mitochondrial dysfunction is associated
with neuroinflammation (280) and evenmoderate mitochondrial
DNA stress can trigger antiviral signaling (281).

Metformin reduces general inflammation parameters and
inhibits NF-κB signaling as well as proinflammatory cytokines in
different cell types (282–285), suggesting that metformin could
protect against neuroinflammation. Interestingly, in two MPTP-
induced PD mouse models, metformin reduced levels of the
microglia marker Iba1 as well as the pro-inflammatory cytokines
TNFα, Il-1β, IL-6, and iNOS in the substantia nigra pars compacta
(46, 49). Here, more studies are needed but metformin seems
to have a wholly positive effect against general inflammation.
Neuroinflammation is a recognized event associated with
neurodegenerative diseases and therefore metformin could be
both a useful tool and therapy.

Mitochondria
Mitochondria are crucial organelles that produce energy and
perform a plethora of other functions needed for central
metabolism and cell signaling. Mitochondrial dysfunction is a
phenomenon that traverses all neurodegenerative diseases and
forms the basis of β-cell dysfunction in T2DM (286). One
important aspect of mitochondrial dysfunction in neurological
disease is that the need for tightly controlled energy metabolism
in neurons can partially explain some of the vulnerabilities
involved in their demise.

Parkinson’s Disease
In PD, the link between mitochondrial dysfunction and disease
has been proven by the identification of environmental factors
and disease genes which critically affect mitochondria. The
outcome has been a large body of work depicting the role of
mitochondrial dysfunction in PD, yet the exact mechanisms
underlying sporadic forms of PD are less defined.

Loss of function mutations in PINK1 or parkin cause PD
(287–290) as a result of mitochondrial dysfunction and this
has been elucidated in vitro (291, 292) and in vivo (293–296).
PINK1 and parkin act in a pathway that is important for
mitophagy (removal of damaged mitochondria via the lysosome)
induced bymitochondrial depolarization. Here, PINK1 functions
upstream of parkin (295, 297). Upon mitochondrial damage,
PINK1 accumulates on the mitochondrial surface and selectively
recruits parkin to mitochondria (298, 299). Mitochondrial
substrates are ubiquitinylated, leading to the removal of damaged
mitochondria. PINK1 is now known to be a ubiquitin kinase
(300) but may have other functions yet unknown. For example,
PINK1 is not required for basal mitophagy in vivo (301,
302) and has been proposed to regulate complex I (303),
mitochondrial dynamics (304), mitochondrial proteostasis (305),
and mitochondrial metabolism via TRAP1 (306, 307).

PINK1 and parkin are upregulated under metabolic stress in
the vessel walls of obese and diabetic mice and have a protective
action by limiting reactive oxygen species (ROS) production and
mitochondrial dysfunction (308). In a diabetic mouse model,
PINK1 expression in the hippocampus was in this case reduced
following hydrogen peroxide treatment (309), further suggesting
that PINK1 plays a role as a stress sensor and functions

accordingly in diverse ways. PINK1 is generally associated with
neuroprotection since loss of function causes PD, but because
PINK1 is normally highly turned over at the mitochondrial
outer membrane and therefore overexpression and/or altered
expression might also induce unwanted downstream events. In
one study, PINK1 overexpression restrained MAPK and ROS
signaling and mitigated insulin resistance in cell models (310).
Conversely, PINK1 loss corrupts function of islet and β-cells
causing impaired glucose uptake and increased levels of plasma
insulin (311). Further evidence that PD proteins play important
roles in energy metabolism is a study showing that TP53INP1
deficient cells (TP53INP1 is a susceptibility locus in T2DM)
causes an increase in ROS that impairs mitophagy via the PINK1-
parkin pathway (312).

Parkinson’s disease mutations in aSyn are associated with
several cellular defects, including reduced mitochondrial
integrity and function. Recent work has identified a highly
neurotoxic aSyn species which induces mitochondrial damage
and mitophagy in the human and animal brain (313). However,
the consequences of thesemitochondrial changes for bioenergetic
functions remains somewhat undefined. Interestingly, aSyn
toxicity is mitigated by TRAP1 (314), a mitochondrial ATPase
that has been linked to metformin.

In this pathway, TRAP1 and themitochondrial serine protease
HtrA2 are both targets of the PD protein PINK1 (305, 306).
HtrA2 and TRAP1 genetic variants have been found in PD
patients (307, 315) but the mutations are rare and a controversial
topic (316–318). Regardless of the genetic contribution to disease,
TRAP1 at least appears to play an important regulatory role
in mitochondria that is relevant for the fine tuning of energy
metabolism. TRAP1 is well studied in cancer since TRAP1
expression is tightly regulated in tumor cells (319), TRAP1
acts as a metabolic switch (320) by targeting and inhibiting
succinate dehydrogenase (321), which is important for metabolic
re-purposing and inflammatory responses (322).

In ovarian cancer where TRAP1 expression was altered,
metformin was effective in rendering the tumor sensitive
to chemotherapy (323), suggesting that metformin might be
relevant to TRAP1 mediated signaling. On this basis, metformin
was then used to successfully rescue mitochondrial dysfunction
in a TRAP1 cell model of PD (307). In a healthy person,
fine tuning of mitochondrial energy usage via the PINK1-
HtrA2-TRAP1 pathway and other regulatory mechanisms may
allow cells to conserve energy and reduce oxidative burden.
Metformin’s ability to mimic this fine tuning role in vitro was
beneficial in one model of sporadic PD (307). However, there
are still a lot of questions that remain unanswered such as
whether metformin is beneficial in non-diseased neurons, aging
neurons and other forms of familial and sporadic PD. One
question is whether metformin could specifically target energetic
deficits in the dopaminergic neurons of the substantia nigra pars
compacta. The question is not yet answered because selective
vulnerability is still not yet fully understood. We can speculate
that oxidative or metabolic burden over time could contribute
to making these cells especially vulnerable. Many redox reactions
happen in mitochondria as a result of mitochondrial activity.
Neurons in comparison to many other cell types have a high
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energy demand and because of the autonomous pacemaking in
dopaminergic neurons of the substantia nigra (324), these cells
are thought to have a higher oxidative burden. The metabolism
of dopamine itself is highly oxidative and can form several toxic
species. Therefore, if metformin can mildly reduce the oxidative
burden at the mitochondria without interfering with normal
redox signaling and stimulate autophagy and other processes
which can become less effective over time, it could be seen
as a very useful drug to counteract neurodegenerative diseases.
Neurons have a sophisticated and unique line of quality control
defenses which allow them to compensate for stress and survive
against all odds because once they die, inflammation often ensues
and they are seldom replaced. It just depends whether metformin
treatment could be used to intervene at the right time to not
interfere with necessary compensatory responses, rather enhance
them.

Alzheimer’s Disease
The exact mitochondrial events leading to AD are less defined
than in PD, yet aging is still the greatest known risk factor.
Energy metabolism and mitochondrial dysfunction have been
proposed as a primary event in mechanisms underlying AD
such as synaptic degeneration, Aβ deposition and formation of
neurofibrillary tangles (325). There is a vast amount of evidence
that mitochondrial dysfunction occurs after the early cellular
events in AD and can contribute to the advancement of further
degeneration, but it is often unclear whether mitochondrial
dysfunction is indeed just a secondary event or whether it
might be involved in primary pathogenesis. For example, in
the case of tau, abnormal tau triggers oxidative stress and
mitochondrial defects such as mitochondrial depolarization,
impaired mitochondrial complex activities and reduced energy
output (326, 327). Tau also localizes to the microtubules, the
tracks on which mitochondria move along with the help of
adapter proteins and defective mitochondrial movement has
been shown in several models of AD (328, 329).

There is also evidence that mitochondrial metabolism is
altered in AD brains (reviewed in (330)). The tricarboxylic
acid (TCA) cycle enzymes pyruvate dehydrogenase, isocitrate
dehydrogenase, and alpha-ketoglutarate dehydrogenase are
affected in AD brain tissue and in patient-derived fibroblasts
(331). Changes in these checkpoint TCA cycle enzymes are
associated with metabolic re-wiring often in response to stress
and redox changes. In addition to matrix enzymes, deficiencies
in oxidative phosphorylation (OXPHOS) have been reported
[reviewed in (332)].

In AD research, there are few mechanistic models for
mitochondrial dysfunction, mainly due to the fact that there are
no mitochondrial causative genes for AD. The mitochondrial
mechanism of metformin action in dementia and AD is likely
similar in PD, in that metformin can act onmitochondrial quality
control via mitochondrial biogenesis and energy conservation.

The Complex I Paradox
Many of metformin’s actions are thought to be an indirect result
of complex I inhibition. The exact inhibitory mechanism of
metformin on complex I is not fully understood. The inhibitory

mechanisms of other complex I inhibitors such as MPTP
and rotenone are better known in terms of binding site and
mechanism of toxicity, especially in disease.

Complex I deficiency has long since been associated with
mitochondrial dysfunction and Parkinson’s disease risk [for a
review see (333)]. Complex I deficiencies have also been reported
in AD, HD and ALS (332). The neurotoxins MPTP and rotenone
inhibit complex I and generate toxic levels of ROS, which leads to
neuronal cell death. It is possible that sub-lethal concentrations of
mitochondrial inhibitors that do not generate ROS (or generate
less ROS) could be beneficial but little is known.

It is generally accepted that metformin does not generate
dangerous levels of ROS. Pharmacologically reducing oxidative
phosphorylation and thus the oxidative burden (at the right
moment) without generating too much ROS is certainly a
challenge. We found that sub lethal concentrations of the specific
mitochondrial complex V inhibitor oligomycin, could rescue
mitochondrial dysfunction in a TRAP1 deficient PD model to
a similar extent as metformin (307) but since metformin is an
approved compound for human consumption, we followed up
the protective effects of metformin only. It might be interesting
to assess the potential neuroprotective action and toxicity with a
titration of several respiratory chain inhibitors that act at different
sites. For example, the mitochondrial complex III inhibitor,
antimycin A is known to generate large amounts of ROS (334),
but oligomycin and other disrupters of the respiratory chain have
been shown to generate little or no ROS (335).

Aging
The main hallmarks of aging set out by Lopez-Otin are
genomic instability, telomere attrition, epigenetic alterations,
loss of proteostasis, deregulated nutrient sensing, mitochondrial
dysfunction, cellular senescence, stem cell exhaustion, and altered
intercellular communication (336). All of these hallmarks in
one way or another are associated with the pathogenesis of
neurodegenerative diseases. Here we will focus attention on
some specific aspects relating to these hallmarks that could be
the most relevant to metformin’s mechanism of action at the
mitochondria.

Mitonuclear protein imbalance
Human mitochondrial DNA (mtDNA) is bound inside nucleoid
bundles, has a high copy number, is inherited maternally
and has a high mutation rate (337). Mitochondrial damage
and/or depletion induces stress-signaling and adaptive metabolic
responses. MtDNA instability is a physiologically relevant stress
observed in many human diseases and aging (281). Mitonuclear
protein imbalance, is a stoichiometric imbalance between nuclear
and mitochondrially encoded proteins and is activated as a key
longevity response across many species (338). Alterations to
mtDNA are directly linked to respiratory chain dysfunction in
sporadic PD patients and it has been shown that complex I is
initially affected followed next by complex IV (339). It is thought
that imbalance in the stoichiometry between mitochondrially
translated proteins and nuclear encoded ones is both a cellular
signal and marker of mitochondrial adaption. The mTOR
inhibitor rapamycin is used as a tool to initiate mitonuclear
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protein imbalance (338) and metformin is capable of modulating
mitonuclear protein imbalance in human cells (307).

Oxidant stress and senescence
The production of reactive species is usually balanced by the
cell’s antioxidant defenses. An imbalance in the amount of ROS
to antioxidant defense results in oxidative stress and can cause
damage to proteins, lipids and nucleotides.

Mitochondria are a major source of ROS due to oxygen
use in energy production through the electron transport chain.
Electrons leak while they are being transferred along the
complexes of the electron transport chain. Leaked electrons
can react with molecular oxygen to form superoxide radicals.
Superoxide can react with Mn-SOD to form hydrogen peroxide,
a ROS and a signaling molecule. Hydrogen peroxide is either
broken down to form water or it can react with metals to
form the highly reactive hydroxyl radical. In mitochondria
the main leakage sites are at the transfer of four electrons to
oxygen at Complex IV, but also complex I, complex III and via
certain dehydrogenases of the TCA cycle in the mitochondrial
matrix. Consequences of oxidative stress include proliferation,
adaption, damage, senescence, or death depending on the cell
type and severity [for review see (340, 341)]. Neurons need to
counteract a great deal of ROS because of high energy bursts and
catecholamine neurotransmitter metabolism.

Oxidative damage is a major contributor to neurodegenerative
diseases [for a review see (342)]. Both oxidative stress and
oxidative damage can lead to stress adaption. One such
adaptive mechanism in mitochondria might be finely-tuned
inhibition of respiratory complexes or mitochondrial uncoupling
via uncoupling proteins. There is mounting evidence that
mitochondrial uncoupling proteins are neuroprotective [for a
review see (343)]. Cellular senescence can occur when adaptive
responses are unable to properly protect key molecules from
damage to the extent that a cell can no longer divide.

The PD protein DJ-1 provides a link between
neurodegeneration and energy metabolism. DJ-1 acts as a
chaperone and protease to stabilize mitochondria and protect
cells from oxidative stress (344). Several other cellular functions
have been attributed to DJ-1, including; binding of Ras as
a transcriptional co-activator (345), negative regulation of
the phosphoinositide-3-kinase (PI3K)/AKT signaling cascade
through inhibition of PTEN (309, 346, 347), chaperone function
(348, 349), and RNA binding (350). Although controversial, DJ-1
has also been claimed to have glyoxalase (351) and deglycase
(352) enzyme activities (353). DJ-1 also influences insulin
secretion as well as β cell viability in the pancreas and DJ-1
knockout mice show increased ROS levels in islet cells, impaired
glucose tolerance and decreased insulin secretion (354).

GAPS IN THE RESEARCH

Trials using metformin to treat or protect against
neurodegenerative diseases in humans and animals have
produced mostly conflicting results. The data shows either
positive, no or even detrimental effects of metformin on

neurodegenerative processes in cell cultures, animals and
humans.

The outcome may depend on the species, cell type or
underlying metabolic state. Two promising research areas
however are neuroinflammation and aging, yet more work is
needed. Very few studies have looked directly at the role of
metformin in neuroinflammation, but since this is a growing
research focus in the field, more metformin studies may arise.
The exact role of metformin in aging is a question that needs to
be at least partly understood before we can progress further in
understanding its potential to treat neurodegenerative diseases.
A major hurdle to this is the lack of good human aging models
mainly in vitro but also in vivo.

Another gap in the knowledge is whether there are potential
adverse effects of metformin use in non-diabetics. For example, it
has been well documented that long term metformin use leads
to vitamin B12 deficiency (355). Vitamin B12 and folate are
needed for transmethylation and hydroxylation reactions from
amino acids that are crucial for neurotransmitter biosynthesis.
How much influence could this have in a patient with disturbed
neurotransmitter metabolism and/or those receiving other
medications.

THE THERAPEUTIC POTENTIAL OF
METFORMIN: FEASIBILITY

There are several reasons why the use of metformin to treat
neurodegeneration could bring about doubt from clinicians and
scientists when considering its potential as a therapy or as a
research tool. The main point being that metformin seems to be
acting on a plethora of biological pathways, and therefore it is
very difficult to pin down mechanisms. The second point is the
controversial subject of “anti-aging” drugs in general. Since we
know very little about the biological underpinnings of aging and
know even less about how to efficiently model it in the laboratory,
the promotion of an “anti-aging” drug often conjures up more
questions than it answers. Then there are several other sticking
points among researchers, one being the fact that metformin acts
by inhibiting mitochondrial respiration, the exact effect that has
been shown by years of research in the Parkinson’s disease field
to in fact contribute development of disease.

In direct contrast, there are several arguments for metformin
being a feasible and useful drug. Firstly, glucose metabolism
is of central importance to neuronal redox status, therefore to
the long-term survival of neurons. Secondly, as a population
we are increasingly insulin resistant and therefore metformin is
particularly apt. Metformin is a cheap and safe drug with few side
effects and therefore more work in vitro, in vivo and in trials will
be welcomed.

Nir Barzilai, the director of the Institute for Aging Research at
the Albert Einstein College of Medicine suggests that metformin
and other related drugs can extend our years of healthy, disease-
free living by decades (356). Other scientists have not specifically
mentioned metformin but in his 2005 book on mitochondria,
Nick Lane suggests that if we live longer to rid ourselves of
diseases of old age we need more mitochondria and perhaps
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a more refined free-radical detection system (357). Whether
metformin is capable of modifying the detection system at the
right physiological moment without deleterious effects is at least
an exciting possibility.

FUTURE DEVELOPMENTS IN THE FIELD

There is potential that metformin could be beneficial in the task
of counteracting aging and clinical studies imply that metformin
may have positive effects on cognition in T2DMpatients. A better
understanding of how metformin works will help researchers in
the neurodegeneration field to successfully design future research
and trials. Upcoming studies such as TAME (358) will help in this
respect.

The anti-aging effects of metformin could be summarized
by its ability to interfere with the multistage process of energy
production without producing damaging amounts of ROS. This
action alone could be seen as neuroprotective and metformin
may further protect by activating other biological pathways.
For example, slowing mitochondrial energy production can also
trigger a cascade of signaling events in the liver that result
in reduced glucose and insulin. The key role of insulin in
nutrient sensing which balances growth and proliferation with
life-extending conservation, makes metformin an interesting
drug. The field of aging research is growing and in vivo and in
vitro aging models are advancing.

Probably due to the complexity of metformin action,
this drug will not likely serve as a potential treatment for

neurodegenerative diseases on the current stage because much
more work is needed to understand the role of aging in
different neurodegenerative disease forms. The greatest value of
metformin today might lie in its potential to help decipher those
mechanisms underlying neurodegeneration.
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Metformin, a widely used anti-diabetic molecule, has attracted a strong interest in the

last 10 years as a possible new anti-cancer molecule. Metformin acts by interfering

with mitochondrial respiration, leading to an activation of the AMPK tumor-suppressive

pathway to promote catabolic-energy saving reactions and block anabolic ones that

are associated with abnormal cell proliferation. Metformin also acts at the organism

level. In type 2 diabetes patients, metformin reduces hyperglycemia and increases insulin

sensitivity by enhancing insulin-stimulated glucose uptake in muscles, liver, and adipose

tissue and by reducing glucose output by the liver. Lowering insulin and insulin-like

growth factor 1 (IGF-1) levels that stimulate cancer growth could be important features

of metformin’s mode of action. Despite continuous progress in treatments with the use

of targeted therapies and now immunotherapies, acute leukemias are still of very poor

prognosis for relapse patients, demonstrating an important need for new treatments

deriving from the identification of their pathological supportive mechanisms. In the last

decade, it has been realized that if cancer cells modify and reprogram their metabolism

to feed their intense biochemical needs associated with their runaway proliferation, they

develop metabolic addictions that could represent attractive targets for new therapeutic

strategies that intend to starve and kill cancer cells. This Mini Review explores the

anti-leukemic potential of metformin and its mode of action on leukemia metabolism.

Keywords: metformin, leukemia, chemotherapy, adjuvant, AMPK pathway, metabolism and bioenergetics

METFORMIN: A TALE OF DRUG REPOSITIONING IN CANCER

Metformin is an active biguanide derivative extracted from the French Lilac (Galega officinalis),
a plant discovered during the Middle Age for its healing effects on the diabetic condition.
Metformin/Glucophage R© was first prescribed in Europe in 1979, then in the United States by 1994
and is now the first-line treatment for type 2 diabetes (T2D) as more than 120 million patients are
treated worldwide (1).

In 2001 metformin appeared on the cancer scene when it was observed that in hepatocytes it
stimulated the AMP-activated serine threonine protein kinase (AMPK) (2), a sensor of the energetic
cellular status and an important tumor suppressor pathway (3, 4).

This discovery prompted clinicians and researchers tomeasure cancer frequency in T2D patients
under metformin. It was first shown in 2005 that metformin significantly reduced cancer incidence
in a cohort of 983 T2D patients (5). Other studies confirmed that metformin was associated with a
lower risk of cancer in treated diabetic patients (6–8).

These striking results led the renowned cancer researcher Lewis Cantley to consider that
“Metformin may have saved more people from cancer deaths than any drug in history” (9).
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Numerous investigations worldwide rapidly demonstrated
direct anti-cancer effects of metformin on various models (10–
12). In vitro, metformin exhibits a strong anti-proliferative action
on cancer cell lines derived from breast, colon, ovaries, pancreas,
lung, and prostate (13–15). These results were strengthened by
pre-clinical in vivo experiments using xenografts or transgenic
mice and chemically-induced cancers. As an example, in a
tobacco-induced lung carcinogenesis mouse model, metformin
decreases tumor burden by 72% (16). Evidences show that
metformin can act through an AMPK dependent (17, 18) or
independent (19) way. However, despite metformin is widely
used in clinic, its molecular mechanism of action is still under
debate.

METFORMIN: MODE(S) OF ACTION

From the different reports it appears that metformin exerts a
double action at both organism and molecular levels.

Metformin’s Systemic Effects
Within the organism, metformin has an anti-hyperglycemic
action but as it does not decrease insulin secretion there
is no risk of hypoglycemia in normal subjects (20). In
muscles, metformin reduces hyperglycemia through different
mechanisms: by enhancing insulin-stimulated glucose uptake
and reducing hepatic glucose output (21). It lowers the
production of glucose by the liver, and increases glucose
utilization by muscles and adipocytes. This results in a decreased
insulinemia and an amelioration of insulin sensitivity, likely
counteracting the increased glucose uptake by insulin, which
facilitates tumor initiation and progression (22). It was thus
envisioned that the anti-cancer effects of metformin could be
due to its ability to reduce circulating levels of glucose and
consequently of insulin and insulin-like growth factor 1(IGF-
1) that are suspected to feed different cancers expressing the
receptors for these growth factors on their surface (23–26).

Diabetes, in particular T2D, and obesity are clearly associated
with an increased risk to develop various cancers (27).
However, no increased incidence was observed for hematologic
malignancies (28) suggesting at first that the systemic effects
of metformin may not apply to leukemia. Nevertheless, a
metabolic syndrome with insulin resistance has been reported in
leukemic patients exposed to high dose glucocorticoids (29). This
could favor a therapy-induced obesity with hyperinsulinemia
that supports leukemic cell survival and worsens patient’s
outcome. Insulin and IGF-1 receptors were found expressed
on acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML) (30, 31) and insulin stimulates in vitro the
proliferation of ALL cell lines and primary cells that were
sensitive to metformin (32). At the molecular level, an IGF1-IGF-
1R autocrine loop is responsible for activation of a leukemia-
supportive PI3K/Akt/mTOR pathway (33). Pharmacological
interference with the insulin receptor and/or IGF1R autocrine
loops affects leukemic proliferation (34) and potentiates the
apoptotic action of etoposide (31). Similarly, targeting IGF-1R
interferes with the growth of chronic lymphocytic leukemia
(CLL) (35).

If insulin/IGF-1 do not appear to be strong oncogenic drivers
for acute leukemias, they are likely trophic factors, supporting the
rational use of metformin to decrease hyperinsulinemia and to
indirectly affect leukemic cells.

Metformin’s Molecular Effects
As shown in Figure 1, metformine inhibits oxidative respiration
by acting on the complex I of the mitochondrial respiratory
chain (17, 18), leading to a drop in ATP synthesis, tilting the
AMP/ATP balance toward AMP, with the consequent stimulation
of AMPK. It is well known that the LKB1/AMPK pathway
also regulates the protein synthesis rate through the control of
mTOR. Activated AMPK stimulates tuberous sclerosis complex
1/2 (TSC1/2) through phosphorylation and its GTPase-activating
protein (GAP) function toward the small G-protein Rheb (Ras
homolog enriched in brain), thus determining the switching off
of Rheb and resulting in the inhibition of mTOR activity (36–
38). AMPK activation requires binding and phosphorylation by
the tumor suppressor liver kinase B1 (LKB1) (39, 40). Therefore,
the absence of LKB1 impedes an AMPK-negative regulation of
cancerous cell metabolism.

The AMPK pathway is a major repressor of the mTOR
pathway that uses energy and nutrients to stimulate ATP-
consuming anabolic reactions, favoring growth and proliferation
(41). Activation of the PI3K/Akt pathway, a major upstream
activator of mTOR, is restrained by the lipid phosphatase and
tumor suppressor PTEN (phosphatase and tensin homolog),
frequently inactivated in cancer (42, 43). Defects in control by
PTEN lead to a constitutive activation of the Akt pathway that is
involved in the etiology of various pathological conditions such
as diabetes, aging, and cancer (44).

The mTOR serine/threonine kinase is the active central
component of the mTORC1 and mTORC2 cellular complexes
that function to coordinately stimulate cell growth (44).
mTORC1 is crucial for the synthesis of proteins, lipids,
and nucleic acids while mTORC2 phosphorylates Akt to
stimulate proliferation and survival (45, 46). Furthermore,
AMPK promotes phosphorylation of TORC2 (transducer of
regulated CREB activity 2) to block its nuclear translocation and
association with phospho-CREB (CRE binding protein), thus
impairing the transcription of genes involved in gluconeogenesis
such as peroxisome-proliferator-activated receptor-γ co-
activator-1α (PGC-1α), glucose-6-phosphatase (G6Pase), and
phosphoenolpyruvate carboxykinase (PEPCK) (38, 47).

Through AMPK stimulation, metformin interferes with
mTORC1 activation. In addition, AMPK inhibits ATP formation
through fatty acid oxidation (FAO) (48) and stimulates glycolysis
by phosphorylation-induced activation of phosphofructo-2-
kinase (PFK2) (49). Also, AMPK modulates gene expression for
important metabolic enzymes (50) and induces a metabolic cell
cycle checkpoint through p53 activation (51). Therefore, AMPK
agonists as well as indirect activators such as metformin can be
envisioned as promising anti-cancer compounds.

AMPK-Independent Effects of Metformin
Not all actions of metformin are mediated by AMPK (19).
Metformin together with hexokinase 2 (HK2) depletion
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FIGURE 1 | The entrance of metformin is mediated by the OCT1 transporter. By blocking the mitochondrial respiratory chain complex I, metformin and phenformin

determine an increase of the AMP/ATP ratio, a condition that activates AMPK through phosphorylation by LKB1. Metformin-activated AMPK counteracts the

activation of the mTORC1 complex, impairing cell cycle progression and proliferation, angiogenesis, as well as lipid and protein syntheses. Metformin can induce

REDD1 and inhibit Rag GTPases, thus leading to the blocking of mTORC1 through an AMPK-independent way. In an AMPK-dependent way metformin promotes

TORC2 phosphorylation and blocks its nuclear translocation, its association with phospho-CREB, impairing the transcription of genes such as PGC-1α, G6Pase, and

PEPCK whose products promotes gluconeogenesis.

synergistically interferes with mTORC1 activation through
the induction of the mTORC1 inhibitor REDD1 (regulated in
development and DNA damage) in hepatocellular carcinoma
cells, even upon depletion of AMPKα1 and AMPKα2 (52).
Repression of G6Pase and of hepatic glucose production by
metformin still occurs in both AMPK and LKB1-deficient
hepatocytes (53).

In AML cells metformin can block proliferation at either
G0/G1 or S-G2/M, depending on the cell line analyzed.
Furthermore, by using a siRNA of AMPKα1/2, Scotland and
colleagues showed that metformin-induced cell death is not
dependent by AMPK activation in AML cells (54). In prostate
cancer cell lines, metformin has AMPK-independent anti-
proliferative effects through induction of REDD1 (55). In breast
cancer cells metformin interferes with purine/pyrimidine and
glutathione synthesis upstream of AMPK (56).

Metformin and resveratrol synergistically block pancreatic
cancer cell proliferation in vitro and in vivo by inhibiting vascular
endothelial growth factor B (VEGF-B) signaling pathway (57).

LEUKEMIA

Leukemia represent 2.8% of all cancers and 3.4% of deaths from
cancer worldwide, with 351,000 new cases/year. Leukemia results
from the transformation of hematopoietic stem-progenitor cells
(HSPCs). Acute lymphoid or myeloid leukemia (ALL/AML)

show an intense proliferation of immature leukemic blasts
arrested at various stages of differentiation (58, 59). Despite
important progress in treatments, the 5-year survival for T-ALL
is 70–75% for children and only 35–40% for adults (59). New
therapeutic strategies should therefore be identified to eradicate
leukemia.

Finding New Therapeutic Options for
Leukemia
Targeting the energetic metabolism of cancer cells is emerging as
an attractive option (60) as cancer/leukemic cells reprogram their
metabolism to fulfill their intensemetabolic needs. Consequently,
they develop metabolic addictions that can be used as new
targeting options to starve and kill them (60).

The PI3K/Akt/mTOR Axis Supports
Leukemic Growth
The control of the PI3K/Akt/mTOR axis by PTEN is fundamental
for the self-renewal of HSCs and PTEN knock-out generates
leukemia in mice (61). A common biochemical feature among
acute leukemia is the abnormal and constitutive activation of
the PI3K/Akt/mTOR pathway (62, 63). Separated or combined
pharmacological targeting of PI3K, Akt, or mTOR triggers
leukemic cell death in AML and ALL (64, 65). PI-103, a
dual inhibitor of PI3K and mTOR displays anti-leukemic
properties (66). Unfortunately, the immunosuppressant rapalogs
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(Temsirolimus, Everolimus) that target mTORC1 activation,
showed a limited anti-cancer activity as they failed to inhibit
mTORC2 activity and reactivated the tumor supportive Akt
pathway (41, 67, 68). Torkinibs, ATP-competitive inhibitors of
the mTOR kinase activity, target both mTOR complexes (69, 70)
and have already displayed promising anti-cancer properties on
leukemia models (71–73).

Metformin: A New Treatment for
Leukemia?
Metformin represents an interesting opportunity to target
leukemia through inhibition of constitutive mTOR, a
pathological hallmark in leukemogenesis. In 2010 metformin
was shown to interfere with AML proliferation and clonogenic
activity and to induce apoptosis in human immortalized cell
lines and primary samples while it did not affect normal CD34+
HSCs (37). Metformin, after blocking mTORC1 activation,
prevents initiation of translation, in particular of c-myc, cyclin
D1, and Bcl-xL that are crucial for cancer proliferation (37).
Metformin induces apoptosis of leukemic megakaryoblasts from
acute megakaryoblastic leukemia (AMKL) which is a rare type
of leukemia with poor prognosis (74). Metformin could be
an option for the DNA repair defective Fanconi Anemia pre-
leukemic disorder as it is toxic after inhibiting the respiratory
chain (75).

In T-ALL cells, metformin stimulates AMPK to inhibit mTOR
and trigger an autophagic response that precedes apoptosis.
By affecting protein synthesis, metformin strongly decreases c-
myc and Bcl-xL levels (76). This apoptotic action of metformin
in T-ALL also involves an AMPK-dependent activation of the
ER stress/unfolded protein response (UPR) (77). In this model,
metformin induces a compensatory, anti-apoptotic activation
of Akt and of PIM-2, that could be reversed by inhibitors,
synergizing with metformin for cell death induction.

Genetic defects in the PTEN tumor suppressor gene are
leading to the constitutive activation of the PI3K/Akt/mTOR
pathway in T-ALL (78) and are associated with a poor outcome
in pediatric T-ALL (79). Tumor cells from a mouse T-ALL
model generated by the T-cell specific deletion of PTEN display
a constitutive activation of PI3K/Akt/mTOR that could be
inhibited by metformin through AMPK activation and by
torkinibs (80). Deletion of LKB1 in mice with a PTEN+/-
background increases lymphoma incidence that appeared with a
shorter latency and were sensitive to metformin (81).

Metformin counteracted the activation of the
PI3K/Akt/mTOR pathway triggered by several oncogenes
such as the Bcr-abl fusion tyrosine kinase in CML and Phi+
T-ALL and B-ALL and the Tax oncoprotein in HTLV-1-induced
ATL (human T-lymphotropic virus type 1-induced adult-T-cell
leukemia). Through AMPK activation, metformin suppresses
proliferation and clonogenic activity of various CML lines,
including those expressing the imatinib-resistant T315I Bcr-abl
mutant (82). In ATL, LKB1/AMPK activation by metformin
inhibits leukemic proliferation by reducing Tax expression (83).
In CLL, metformin prevents cell cycle entry of leukemic cells
in vitro after engagement of a CD40-CD40L proliferative

stimulus (84). CLL cells that are sensitive to the tyrosine
kinase inhibitor dasatinib appears to be selectively killed by
metformin (85).

Leukemic stem cells (LSCs) are the rare cells at the
origin of leukemia and also of relapse because of their
intrinsic mechanisms of resistance to chemotherapies (86).
Interestingly, in T-ALL metformin targets the Hoescht 33342low

side population and the CD34+CD7-CD4- subset that are known
to be enriched in LSCs (76). Similarly, cancer stem cells (CSCs) in
different solid tumors appears to be highly sensitive to low doses
of metformin (87, 88).

Metformin in Combination Therapies
The eradication of cancer will require the combination of
multiple therapeutic strategies in a personalized manner. Anti-
cancer clinical protocols and drug cocktails would need to
be adapted to the specific genetic defects of each patient.
Nevertheless, targeting a common dysregulated cellular function
such as the reprogrammed cancer metabolism with a metabolic
disruptor such asmetformin is likely to be an interesting adjuvant
approach.

Metformin has already been associated to several classical
chemotherapeutic drugs with promising results. Metformin
shows additive effects with anthracyclines (doxorubicin,
daunorubicin) to reduce growth and survival of lymphoma cells
(80), T-ALL cells (89), and ALL (32). The use of metformin could
help to reduce the dose of doxorubicin necessary to prolong
remission (88) and consequently to reduce cardiac toxicity of
anthracyclines.

In T-ALLs metformin synergizes with dexamethasone, the
glucocorticoid used as first line treatment for acute leukemias
(80), and also potentiates the effect of the microtubule-disrupting
agent vincristine (90) and of the topoisomerase II inhibitor
etoposide (32).

All-trans retinoic acid (ATRA) is used in acute promyeloid
leukemia (APL) to overcome the differentiation block induced
by the PML-RAR fusion oncoprotein. By inducing PML-RAR
degradation, metformin synergized with ATRA to induce APL
cell death (91).

Triggering leukemia apoptosis at the mitochondrial level with
the bcl-2 inhibitor ABT-737 is a promising therapy which was
shown to be enhanced by metformin-induced mitochondrial
membrane depolarization (92). The anti-leukemic activity of
the Flt3 inhibitor sorafenib, that was developed to target poor
prognosis-ITD Flt3 AML cells, could be enhanced by metformin,
thus inducing a strong decrease in the expression of several
components of the mTOR pathway (93).

Metformin and Other Metabolic Disruptors
In several studies metformin displays strong potentiating
effects when combined with molecules affecting metabolism,
in particular glycolysis, such as ritonavir in multiple myeloma
(MM) (94) and CLL (95). In silico, metformin was predicted to
combine with an inhibitor of the Glut4 glucose transporter to
affect MM (96).

Disruption of the mitochondrial respiratory complex I by
metformin is followed by a compensatory upregulation of glucose
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uptake and glycolysis (97, 98). As a consequence metformin
was shown to synergize with the non-metabolizable glucose
analog and hexokinase inhibitor 2-deoxy-glucose (2-DG) in T-
ALL (80) and in CML (99) and with the glycolysis inhibitor
sodium dichloroacetate (DCA) in B-CLL (100). Similar effects
have been observed in Flt3-positive AML when metformin was
associated with the metabolic inhibitor 6-BT (101). Cell death
induction of MM cells after disrupting protein homeostasis
with the proteasome inhibitor bortezomib can be enhanced by
metformin, preventing a protective autophagic response (102).
ALL cells display a metabolic dependency on asparagine that can
be targeted with L-asparaginase, an effect further amplified by
metformin (80).

What Is Better: Targeting the Warburg’s
Effect or Mitochondria in Leukemia?
In the 1920s, Otto Warburg and colleagues observed for the first
time that cancer tissues were taking up enormous amounts of
glucose compared to the surrounding tissue. Later, in 1956 Otto
Warburg proposed that cancer cells have defective mitochondria
because they utilize glucose through aerobic glycolysis, unlike
normal cells which use glucose to produce ATP through oxidative
phosphorylation (OXPHOS) in mitochondria (103). It was
realized a couple of years ago that despite a far less efficient
ATP production, this metabolic reprogramming represents an
adaptation to optimize the utilization of nutrients to produce
the biomass necessary for the generation of new proliferating
cancer cells (104–106). Nevertheless, cancer and leukemic
cells need active mitochondria for their fitness. Targeting the
mitochondria respiratory function by inhibiting the electron
transport chain (80), mitochondrial translation (107), or the
FAO (108), are all new efficient approaches to kill leukemic
cells. Recently, a mitochondrial transfer from stromal cells
toward leukemic AML cells provided them with a survival
advantage toward chemotherapy (109, 110). An important
metabolic plasticity appears to take place as the environment
of leukemic cells is changing (111). AML cells can become
more sensitive to metformin when cultured in low-glucose
medium or after downregulating glycolysis with 2-DG or an
Akt inhibitor (54). Similarly, pharmacological approaches to
inhibit OXPHOSmarkedly enhanced the anti-leukemic effects of
cytarabine (112).

Metformin for Cancer Patients: Dose and
Effects
There are at least two important questions pending about the use
of metformin in cancer.

First, will the ability of metformin to control hyperinsulinemia
and glycemia in T2D patients stand for non-diabetic people?
The 306 registered clinical trials on metformin and cancer

will provide important answers. In relation to this review,
metformin is tested (NCT01324180) in relapsed childhood ALL
in association with vincristine, dexamethasone, doxorubicin, and
PEG-asparaginase that are classical drugs for these leukemias.
Metformin will be evaluated as a monotherapy for untreated or
relapsed CLL patients in a phase 2 pilot study (NCT01750567).

Second, the doses of metformin that are efficient in vitro on
cancer models are in the mM range, far above those obtained in
treated T2D patients (6–30µM) (113, 114). The cellular entry
of the highly hydrophilic metformin is limited by expression
of the organic cation transporter (OCT) (115). Interesting
areas of research aim at facilitating metformin uptake through
specific encapsulation, use of nanocarriers, or after chemical
modifications. Coupling a mitochondrial vector to metformin
(MitoMet) increases its ability to interfere with OXPHOS and
consequently its efficiency to affect proliferation and to trigger
ROS-dependent apoptosis in pancreatic cancer in vitro and in
vivo, without affecting normal fibroblasts (116).

Phenformin, a hydrophobic metformin derivative is more
active than metformin (81, 117) but was rapidly withdrawn from
the market in the late 1970s because of numerous deadly cases
of lactic acidosis. We now believe that phenformin could be
worth testing as an adjuvant molecule for cancer patients with
a monitoring of lactic acidosis. A clinical trial (NCT03026517)
will evaluate phenformin in combination with dabrafenib and
trametinib for patients with BRAF-mutated melanoma.

Recently Higurashi et al demonstrated the important role
of metformin in chemoprevention of colorectal cancer (118).
Other clinical trials are ongoing for coloncancer and other
tumor types (e.g., NCT03047837; NCT02581137; NCT01312467;
NCT01579812; NCT02581137).

CONCLUSIONS AND PERSPECTIVES

Many studies support to use metformin and derivatives like
phenformin as global adjuvants for classical anti-leukemic drugs.
Improving metformin entry and access to its cellular target(s)
through chemical modifications or the use of nanocarriers could
be important means to increase the potential of this interesting
anti-metabolic molecule.
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Metformin is the most common biguanide used in the treatment of diabetes, with

120 million treated patients worldwide. Metformin decreases hyperglycemia without

inducing hypoglycemia in diabetic patients and is very well tolerated. The principal

effects of metformin are to decrease hepatic gluconeogenesis and increase glucose

absorption by skeletal muscles. These effects are primarily due to metformin’s action

on mitochondria, which requires the activation of metabolic checkpoint AMP-activated

protein kinase (AMPK). AMPK is implicated in several pathways, and following metformin

activation, it decreases protein synthesis and cell proliferation. Many studies have

examined the role of metformin in the regulation of cancer cells, particularly its effects

on cancer cell proliferation and cell death. Encouraging results have been obtained in

different types of cancers, including prostate, breast, lung, and skin cancers (melanoma).

Furthermore, many retrospective epidemiological studies in diabetes patients have

shown that metformin treatment decreased the risk of cancers compared with other

antidiabetic treatments. In this review, we will discuss the effects of metformin on

melanoma cells. Together, our novel data demonstrate the importance of developing

metformin and new biguanide-derived compounds as potential treatments against a

number of different cancers, particularly melanoma.

Keywords: biguanides, metformin, melanoma skin cancer, cancer treatment, AMPK pathway

INTRODUCTION

Biguanides are molecules derived from guanidine and are used in diabetes treatment. Guanidine
is extracted from Galega officinalis, a plant used in medicine for many years. Indeed, this plant
was used for its antidiabetic properties before its effects on glycaemia were discovered in the 1920s
(1). Since this time, many guanidine-derived compounds have been used in type 2 diabetes, such
as buformin, phenformin, and metformin. At first, metformin was not truly compared with other
guanidine-derived compounds because of its less important effects on insulin sensitivity. Other
biguanides, phenformin, and buformin were widely used in diabetic treatments starting in 1920
until their high toxicity in patients was discovered in 1930 (2). Afterwards, biguanides were no
longer used in type 2 diabetes treatment until a study by French chemist Jean Sterne in 1957, where
he showed metformin’s effects on type 2 diabetes without apparent toxicity (3). Thanks to this
study, metformin received marketing authorization in Europe in 1958 and in the USA in 1995 (2).
Currently, metformin is the most prescribed antidiabetic medication in the world, and it is used to
treat more than 120 million people (4).

After years of treatment with metformin, retrospectives studies showed that diabetes patients
had decreased cancer incidence with metformin compared to treatment with another antidiabetic
drug (5). Afterwards, studies confirmed these results (6, 7), and many groups focused their research
onmetformin’s effects on cancer cells. In this study, we will particularly focus onmetformin’s effects
on melanoma.

41

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2018.00472
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2018.00472&domain=pdf&date_stamp=2018-08-21
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:srocchi@unice.fr
https://doi.org/10.3389/fendo.2018.00472
https://www.frontiersin.org/articles/10.3389/fendo.2018.00472/full
http://loop.frontiersin.org/people/224776/overview


Jaune and Rocchi Metformin: Focus on Melanoma

Cutaneous melanoma is a malignant cancer that rises
from the transformation of melanocytes. These cells are
normally responsible for the synthesis of melanin, which is a
photoprotector pigment. Melanoma is widespread with 200,000
new cases every year and 65,000 melanoma-associated deaths.
Its incidence doubles every 10 years, and although it represents
only 10% of all skin cancers, melanoma is responsible for 80% of
skin cancer deaths, which constitutes a real public health problem
(8). Melanoma is the most aggressive skin cancer and possesses
a strong invasive capability that enables the development of
metastasis principally in the lymph node, liver, lung but also in
the central nervous system. Metastatic melanoma is one of the
deadliest cancers because of the inefficacy of current therapies.

For 15 years, targeted therapy against BRAF(mutated in 50–
60% of primary melanoma) or MEK protein has been developed,
and some of these treatments have been commercialized,
including BRAF inhibitors, such as vemurafenib (or PLX4032)
and dabrafenib, and MEK inhibitors, such as cobimetinib, or
trametinib (9). The first results with these therapies seem
promising with an increase in overall survival and shrinkage
of the primary tumor. However, after few weeks of treatment,
patients develop a strong resistance to these therapies, enabling
metastatic growth and relapse (10, 11). Furthermore, melanoma
cells have the ability to escape the immune response. Due to this
observation, current therapeutic approaches try to allow immune
system activation to kill melanoma cells (12, 13). Currently,
two different antibodies are commercialized: ipilimumab (anti-
CTLA-4) and nivolumab (anti-PD-1). ipilimumab targets CD4+
T cells, whereby its inhibition allows T-cell activation. This
treatment increases patient survival rate, but only 15–20% of
patients respond to this treatment (14). PD-1 is also expressed
on T cells, and its expression inhibits T-cell activation. Its target,
PDL-1, is widely found in melanoma cells. PD-1 treatment shows
a response in ∼30–40% of patients (15). Even if these responses
result in an objective and long-lasting response, ∼55–60% of
patients do not respond to these treatments. The identification
of new antimelanoma compounds is essential for developing new
therapies.

PRINCIPAL EFFECTS OF METFORMIN IN

TYPE 2 DIABETES TREATMENTS

In type 2 diabetes patients, metformin (N,N-dimethylbiguanide)
exerts its antidiabetic function by decreasing the insulin
resistance of glucose-intolerant patients and hepatic
gluconeogenesis. Indeed, the liver is considered to be the
principal site of action of metformin, where it can act on
gluconeogenesis, glycolysis, and glycogen synthesis. In type 2
diabetes patients, hepatic gluconeogenesis is increased relative to
healthy patients. However, under metformin treatment, glucose
absorption and general levels of glucose can decrease to 75% (16).
Furthermore, this molecule also increases the high absorption
of glucose by skeletal muscles, which improves its effects on
glucose homeostasis. In general, metformin increases glucose
absorption by increasing the plasma membrane translocation
of glucose receptors, such as glucose transporter 1 (GLUT-1),

in both hepatic cells (17) and skeletal muscle cells (18). In
addition, this compound highly increases the expression of
insulin receptor substrate 1 and 2 (IRS-1 and 2), which enhances
glucose absorption.

Interestingly, metformin also blocks the effects of glucagon,
which normally enhances gluconeogenesis, by inhibiting
essential enzymes in this process and stimulating glycolysis via
the alteration of numerous enzymes in this signaling pathway
(19).

However, we currently do not understand all the mechanisms
of actions of metformin in these patients. Interestingly, a recent
study showed the effect of metformin on the intestinal microbiota
and its impact on metabolism in obese mice (20). Indeed, type
2 diabetes seems to be impacted by the intestinal microbiota
(21), and therefore, the effects on the microbiota could be partly
responsible for metformin’s effects in type 2 diabetes patients.

METFORMIN ACTS AS AN ANTICANCER

AGENT

Retrospective Studies
Diabetic patients possess a higher risk of developing cancers
than healthy patients, which is partly due to increasing levels
of circulating growth factors, such as insulin or insulin growth
factor 1 and 2 (IGF-1 and 2) (22). In this context, many
retrospective analyses in type 2 diabetes patients have shown
that metformin possesses antitumoral proprieties (5–7). In Evans
et al. diabetic patients treated with metformin presented less
cancer than patients treated with other antidiabetics. Following
this study, many investigations have shown the antineoplastic
effects of metformin in numerous cancer types (6, 23–25).
For example, a study compared the effects of three different
treatments, metformin, insulin, or sulfonylureas, over 5 years
in ∼10,300 diabetes patients. The results showed that patients
treated withmetformin have a lower cancer-relatedmortality rate
than patients treated with other treatments (23). Inversely, the
study by Currie et al. showed that patients treated with insulin
developed more solid cancer than those treated with metformin
(25). Another study observed that 7.3% of type 2 diabetes
patients treated with metformin developed cancers compared
with 11.6% of patients treated with other antidiabetics (6). In a
more specific retrospective study, it was shown that the use of
metformin for long-term treatment in men decreased prostate
cancer development by 34% compared to patients treated with
other antidiabetic drugs (26). In women, metformin treatment
induced a 56% decrease in the breast cancer risk of diabetic
patients (24). Recently, a study in a Korean population with type
2 diabetes showed a decrease in cancer development for patients
treated with long-term metformin (5.8 years) with an incidence
of 13.2 per 1000 compared with an incidence of 21.8 per 1000 in
patients with another treatments (27).

In 2010, a short-term clinical study (1 month) performed in
non-diabetic patients showed the significant effect of metformin
on the development of rectal aberrant crypt foci (precancerous
lesions) and the proliferation of colonic epithelial cells (28).
Currently, 304 clinical trials have been registered on metformin
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treatment in different cancer types (ClinicalTrial.gov; March
2018).

Mechanisms of Action of Metformin on

Cancer Cells
Consequently, many laboratories have tried to understand the
mechanisms of action of metformin in different types of cancers,
such as lung, prostate, and ovarian cancers or melanoma. The
in vitro effects of metformin, alone or in combination with
other drugs, have been studied in many different cancers (29–
32). Moreover, numerous in vivo studies have demonstrated the
efficacy of metformin in decreasing tumoral growth (33, 34).

Indirect Effects of Metformin

In these studies, different mechanisms have been identified to
explain metformin’s effects on cancer cells. The first mechanism
is an indirect effect of metformin. Indeed, in different cancers,
such as breast, colon, or prostate cancer, hyperinsulinemia and
obesity induced by insulin and IGF1/2 are associated with poor
prognosis (35). Interestingly, metformin decreases circulating
insulin levels in patients. Indeed, the transcription of key genes
inhibits gluconeogenesis by metformin in the liver, and increased
glucose absorption in skeletal muscle cells involves a decrease
in blood glucose levels, decreasing circulating insulin levels (36).
Therefore, metformin decreases tumoral growth by its inhibition
of circulating insulin levels (Figure 1). Furthermore, in a mouse
model, metformin inhibited lung cancer cell growth induced
by hyperinsulinemia and obesity by decreasing the circulating
level of insulin and by activating the AMPK pathway (37).
Finally, in non-diabetic woman with breast cancer, a study
showed that metformin decreased circulating insulin levels by
22% and increased insulin sensitivity by 25% (38). These results
confirm that a decrease in insulin induced by metformin can be
considered a new potential mechanism in metformin inhibition
of tumorigenesis. As we described previously, metformin seems
to impact the microbiota in type 2 diabetes patients (20).
Therefore, it will be interesting to study the impact of metformin
on the microbiota in different cancer types.

Direct Effects of Metformin

However, the principal effects of metformin on cancer cells
are direct effects, which predominantly induce mammalian
target of rapamycin complex 1 (mTORC1) inhibition (Figure 1).
mTORC1 is a protein complex composed of five different
proteins: DEP domain-containing mTOR interacting protein
(DEPTOR), mammalian LST8/G-protein β-subunit like protein
(mLST8), regulatory-associated protein of mTOR (RAPTOR),
proline-rich AKT substrate of 40 kDa (PRAS40), andmammalian
target of rapamycin (mTOR). This complex is implicated inmany
cellular processes but principally in protein synthesis regulation,
which is essential for cellular growth. This complex is often
activated in cancer cells and can be associated with cancer
therapy resistance. Furthermore, mTORC1 plays a critical role
in the proliferation and growth of normal stem cells and cancer
stem cells. mTOR’s implication in cancer stem cell proliferation
has been demonstrated in various cancer types, such as colon,
pancreas, or breast cancer (39–41).

Depending on the cancer type, many different mechanisms
have been discovered to explain the inhibition of mTORC1.
The principal one induces AMPK pathway activation after
mitochondria dysregulation by metformin. Indeed, at the cellular
level, metformin principally acts on mitochondria by inhibiting
complex I of the mitochondrial respiratory chain, which disrupts
ATP production in the cell (42) and induces AMPK activation
(43). A recent study also showed that metformin dysregulates
mitochondrial functions via calcium flux release (44). Indeed,
metformin induces endoplasmic reticulum (ER) stress, which
releases calcium into the cytoplasm of the cell. This calcium
release induces higher calcium absorption by the mitochondria,
which results in mitochondrial swelling. AMPK is an energy
sensor that plays an important role in many metabolic pathways
involved in restoring energetic balance within the cell (45). In
addition, when AMPK activation is sustained, it can play an
important role in different cellular processes, such as cell growth
and proliferation, cell cycle regulation, cell polarity, apoptosis,
and autophagy (46). After metformin induction, AMPK seems
to be activated in cancer cells on threonine 172 by liver kinase B1
(LKB1) (47). LKB1 is deleted in many different tumors, such as
tumors in cervical or lung cancer, showing the link between LKB1
expression and cancer predisposition. The LKB1/AMPK pathway
inhibits mTOR expression via the activation of tuberculous
sclerosis complex 1 and 2 (TSC1 and TSC2), which induces the
dysregulation of protein synthesis, thereby inhibiting tumoral
cell proliferation. Interestingly, AMPK can also directly inhibit
RAPTOR, a positive regulator of mTOR (48).

Furthermore, metformin can inhibit mTORC1 by AMPK-
independent effects (49). Some of these effects are due to
mTORC1 inhibition via recombinant activating gene (RAG)
GTPase family protein inhibition (50). Indeed, RAG GTPases
recruit mTORC1 via RAPTOR interactions at lysosomal surfaces,
where they are activated by Ras homolog enriched in brain
(RHEB). Metformin can also directly inhibit Ragulator (51). In
prostate cancer, it has been shown that metformin can induce
cancer cell death by p53/regulation in development and DNA
damage responses 1 (REDD1) pathway activation, which induces
the inhibition of mTOR, thereby inhibiting tumor growth (52).

Metformin inhibits cancer cell proliferation by mTORC1-
independent mechanisms. Indeed, AMPK can directly
phosphorylate p53 on serine 15, which increases p21 expression
and enhances cell cycle arrest (53). It has also been described
that metformin-induced cell cycle arrest is mediated by cyclin
D1 inhibition and Rb dephosphorylation in prostate cancer
cells (29) or by an AMPK-dependent mechanism requiring the
downregulation of cyclin D1 and implication of p21 and p27
in breast cancer cells (54). A new mechanism implicating the
upregulation of micro-RNA34a in renal cancer cells has been
described to induce G0-G1 cell cycle arrest under metformin
treatment (55). Furthermore, metformin-induced G1-cell cycle
arrest has also been observed in pancreatic, glioma, endometrial,
and ovarian cancer cells (56). Recent studies in glioblastoma and
ovarian cancer cells have also shown cell cycle arrest in G2/M
induced by metformin (57, 58). In addition, metformin can
induce cell cycle arrest in the S phase in triple-negative breast
cancer (54). Metformin inhibits different genes implicated in
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FIGURE 1 | Direct and indirect mechanisms of action of metformin in cancer cells. Metformin induces antitumorigenic effects by both indirect and direct mechanisms.

In the blood circulation, metformin decreases glucose levels and therefore insulin levels; insulin can act as a growth factor in tumor cells. For direct effects, metformin

acts by AMPK-dependent and independent effects. Generally, metformin induces inhibition of the mTORC1 pathway, which involves an essential protein complex in

cellular processes, including protein synthesis and cell proliferation; this complex also promotes tumor cell resistance to therapies. Furthermore, metformin induces

cell cycle arrest by p53 activation.

cell division, such as genes encoding tubulin or histones, which
enhances cell cycle arrest (56). AMPK also inhibits protein
synthesis via the inhibition of elongation factor 2 (EF2) protein
(59). Furthermore, under AICAR stimulation, active AMPK can
decrease fatty acid synthase (FAS) expression in prostate cancer
cells (60). This enzyme is essential for fatty acid synthesis, which
is also essential for cell proliferation.

Finally, the inhibition of mTORC1 also induces cell death
mechanism activation, which induces cancer cell death. For
the autophagy process, mTORC1 inhibits the initial step of
phagophore formation. This complex also inhibits unc-51 like
autophagy activating kinase 1 (ULK1), an essential kinase
for autophagy induction (61). Activated AMPK induced by
metformin enhances autophagy initiation via inhibition of the
mTORC1 complex by phosphorylation of TSC2 on serine 1345
(62, 63). AMPK directly phosphorylates ULK1 and induces
mTOR-independent autophagy (61). For the apoptosis process
in cancer cells, it has been shown that autophagy induction
enhances caspase-dependent apoptosis (64). In adipocytes and
under AICAR stimulation, AMPK activates apoptosis processes
via eukaryotic initiation factor 2 α (eIF2α) regulation (65).
Moreover, activation of AMPK stimulates the phosphorylation
of p53 on serine 46, which is essential in apoptotic type I
programmed cell death induction (66). Different studies in the
pancreas and in endometrial cancers showed that the antitumor

effects of metformin involve the induction of AMPK-dependent
apoptosis (67). Finally, the LKB1/AMPK pathway activated by
nutrient deprivation increases cyclin-dependent kinase inhibitor
1B (p27), which enhances autophagy and apoptosis processes in
cancer cells (68).

In addition, AMPK activation by metformin induces many
different antitumor effects via the inhibition of c-MYC or
hypoxia-inducible factor-1 α (HIF-1α) (69). Metformin activates
the DNA damage reparation pathway via ataxia telangiectasia
mutated (ATM) activation, which inhibits tumor growth (70).

In each case, metformin acts as a major metabolism disruptor
in cancer cells, induces dysregulation in energetic metabolism
and protein synthesis, and activates autophagy and apoptosis
processes.

METFORMIN AND MELANOMA

Metformin can induce cancer cell death by different mechanisms.
However, what is known about metformin in melanoma cells?

As previously described, melanoma is the most aggressive
form of skin cancer, and currently, efficient treatments have
not been developed for most patients. The discovery of new
treatments for this cancer appears to be essential. In this
context, different laboratories, including ours, have shown that
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FIGURE 2 | Metformin’s effects on melanoma cells. Metformin induces melanoma cell death by both AMPK-dependent and -independent pathways. By an unknown

mechanism, metformin induces cell cycle arrest in melanoma cells, which is responsible for the activation of autophagy, and in turn, for the activation of apoptosis,

leading to melanoma cell death. In initiating melanoma cells, metformin decreased cell transformation and proliferation by inhibiting the NF-κB pathway and the

inflammatory pathway.

metformin or phenformin (another biguanide compound) can
inhibit melanoma cell proliferation (33, 71–73).

As previously discussed, metformin can inhibit cancer cell
proliferation and induce cancer cell death by many different
mechanisms. In melanoma cells, it has been shown that
metformin induces cell cycle arrest in melanoma cells in the
G0-G1 phase after 24 h of treatment at 10mM. However, the
molecular mechanism of this cell cycle arrest has not been
identified in melanoma cells. Furthermore, our laboratory has
also shown that this cell cycle arrest is responsible for autophagy
(at 72 h) and apoptosis (at 96 h) induction by metformin in
melanoma cells (71, 74). In this model, we also showed that
inhibition of AMPK (by siRNA) induces a partial restoration of
melanoma cell viability under metformin treatment, suggesting
that AMPK plays a partial role in metformin-induced melanoma
cell death. This finding also suggests that another AMPK-
independent mechanism is implicated in metformin-induced
melanoma cell death (Figure 2). Interestingly, in xenograft
mouse models, metformin decreases the tumoral volume of
melanoma cells. In addition, no cellular death has been observed
in normal human cells, such as melanocytes, even if endogenous
AMPK is expressed. Similar results have also been observed by
other laboratories (75, 76). In another study, metformin induced
autophagy activation in melanoma cells by inhibiting a new
potential therapeutic target, tribbles pseudokinase 3 (TRIB3)

(33). In this study, the authors showed that metformin attenuated
melanoma growth and metastasis by reducing TRIB3 expression
in non-diabetic and diabetic mouse models.

Interestingly, a recent study showed that metformin can
directly act not only on melanoma cells to induce cell death
but also on the tumor microenvironment, particularly in the
context of an immune response (77). This study showed that
metformin activated both autophagy and apoptosis in melanoma
cancer cells in vitro and confirmed the results in vivo in mouse
models challenged with B16 murine melanoma cells. The results
showed that metformin activity on melanoma cells was partly
due to the immune system and that the antitumor activity of
metformin was lost on immunodeficient (NSG) mice. This group
also showed that metformin interaction with the immune system
was principally associated with T cells (77). As described in the
introduction, the immune system is very important in melanoma
therapies, and current immunotherapies show very interesting
objective responses, but they occur in very few patients. This
study showed the interactions between the immune system and
metformin; thus, it will be interesting to test a combination of
metformin treatment and immunotherapies, such as anti-PD1,
to increase the effects of immunotherapies in melanoma cells.

Another study from our laboratory showed that metformin
inhibited the proliferation of melanoma cells (78). Indeed,
in this study, we showed in vitro that metformin modulates
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the expression of different proteins, such as Slug, Snail, and
matrix metalloproteinases 2 and 9 (MMP2 and 9), the latter
two of which are implicated in the epithelial-mesenchymal
transition via an AMPK- and p53-dependent mechanism.
However, even if metformin can inhibit cell invasion, it
has no effect on the migration ability of melanoma cells.
Furthermore, in vivo, we showed that metformin inhibits
melanoma metastasis development in the lung. In general, a
study on UV-induced skin cancers showed that metformin,
by an AMPK-dependent pathway, inhibited tumorigenesis in
skin cells (79). Indeed, the authors showed that AMPK was
inhibited by UVB irradiation, demonstrating its important
role as a tumor suppressor in skin cancers. This inhibition
enhanced decrease of the DNA damage response pathway
via reduction of xeroderma pigmentosum C (XPC). However,
under stimulation with AICAR and metformin, the DNA
damage response pathway was reactivated, decreasing in
cancer cell development. Therefore, the authors showed the
importance of AMPK activation by different treatments,
such as metformin, in decreasing cancer cell development
and proliferation induced by UVB, such as in melanoma
development.

Interestingly, melanoma is one of cancer that is the most
dependent on and impacted by metabolism (80). Melanoma
is a cancer that requires glycolytic metabolism, which is
mediated by mitochondrial activity (81). Moreover, resistance
to BRAF inhibitor cells have shown increased oxidative
metabolism and mitochondrial dependence for cell survival
(82). Therefore, in both sensitive and resistant to BRAF
inhibitor melanoma cells, mitochondria, and metabolism appear
to be essential, and a drug, such as metformin or another
biguanide, that alters this metabolism could be an interesting
prospect for new melanoma treatments. This information
suggests that testing a drug such as metformin, which disrupts
metabolism, in combination with other therapies, such as
targeted therapies (BRAF inhibitors) or immunotherapies
(anti-PD1) in melanoma cells, could increase objective
responses and inhibit primary or acquired resistance to
these treatments.

Studies have examined the effects of metformin in
combination with BRAF inhibitors, such as vemurafenib
(Zelboraf). Indeed, many groups have used combination
treatments with BRAF inhibitors to inhibit resistance in
melanoma cells. The combination of vemurafenib (BRAF
inhibitor) and metformin showed encouraging results with
synergistic effects for inducing melanoma cell death (76). Indeed,
in vitro experiments show synergistic antiproliferative effects,
particularly in BRAFV600E mutant cell lines. In other studies,
metformin increased the toxicity of cisplatin, a chemotherapeutic
drug, in melanoma cells (83, 84).

These results seem interesting, but further study is needed.
Indeed, in certain studies, the combination of metformin and a
BRAF inhibitor stimulated the proliferation of melanoma cells
mutated by NRAS (76). It will be interesting to observe the
metabolic characteristics of melanoma cells after a treatment
combination of metformin and BRAF inhibitors to better
understand active mechanisms.

Furthermore, metformin effects were analyzed in combination
with immunotherapies (anti-CTLA4, anti-PD-1 or anti-PD-L1).
As previously stated, immunotherapies have been developed for
melanoma treatment for a few years. These therapies, which tend
to reactivate the patient’s immune system, show very efficient
and durable responses, but they are effective in only 15–30%
of patients. Therefore, we can imagine that combinations with
another molecule, such as metformin or another biguanide can
increase the objective responses obtained with immunotherapies
and decrease resistance to these treatments. Interestingly, a recent
study showed that phenformin, another biguanide, potentiated
the effect of immunotherapy (85). In this study, the authors
showed that phenformin induced the production of reactive
oxygen species in granulocytic myeloid-derived suppressor cells,
which increased the effect of immunotherapies on melanoma
cells. Indeed, in combination with anti-PD-1, phenformin
enhanced melanoma inhibition in a BRAF V600E/PTEN-null
melanomamousemodel. In these mice, CD8+ lymphocytes were
activated, which increased melanoma cell death. In addition,
results from the study by Scharping et al. suggested that tumor
hypoxia plays a role as a barrier against immunotherapy and
that metformin, which can reduce intratumoral hypoxia, can
improve immunotherapy efficacy against melanoma cells (86).
Taken together, these results suggest that biguanides, such as
metformin, could be used in combination with targeted therapies
against BRAF or with immunotherapies to synergize treatment
effects on melanoma cells.

Finally, certain studies have examined metformin’s effects
on melanoma initiating cells (MIC). Indeed, melanoma is
a heterogenic tumor, and some studies including ours have
suggested that MIC could be responsible for the metastatic
potential of melanoma, which could be implicated in resistance
to BRAF inhibitor therapies (87, 88). These MIC constitute a
chemoresistant cell population that expresses specific markers.
However, independently of MIC numbers, characteristics, or
mechanisms that regulate the transition between MIC and
proliferative cells, it is clear that melanoma cell populations with
different tumorigenic potentials exist (89). A study has shown
that STAT3 (Signal Transducer and Activator of Transcription 3)
pathway activation is necessary to acquire “MIC properties” (90).
Furthermore, a recent study showed that a combination of stattic
and metformin decreased brain tumor initiating cells by STAT3-
dependent mechanisms (91). Interestingly, metformin blocks the
inflammatory pathway responsible for stem cell transformation
and growth due to cellular metabolism disruption (84). Finally,
our laboratory has shown that metformin can decrease MIC
populations (unpublished results) (Figure 2).

CLINICAL TRIALS OF METFORMIN ON

MELANOMA TREATMENT

In this context, 304 clinical trials have been or are currently being
performed to test the effects of metformin on different cancer
types (ClinicalTrials.gov).

In our laboratory, thanks to the in vitro and in vivo
results obtained from metformin treatment against melanoma,
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we developed a phase II clinical trial that was performed
in the dermatology department at the University Hospital
Centre in Nice. This clinical trial allowed us to determine the
efficacy ofmetformin treatment onmetastaticmelanoma patients
(92). In this study, patients were experiencing therapeutic
failure to chemotherapies and BRAF inhibitors and were not
eligible for or not responsive to immunotherapy treatment.
The study was performed on 17 patients with ages ranging
from 49 to 88 years (mean of 74 years). Metformin was
prescribed at 1,000mg three times daily. After 4 months, 11
patients showedmelanoma progression, 3 patients were deceased
due to the disease and 2 patients had to stop treatment.
After 6 months, the only patient still being treated with
metformin did not show a significant response. These results
were not very encouraging; it could have been concluded
that metformin treatment at similar doses to those in type 2
diabetes did not induce significant efficacy in this population
of metastatic melanoma patients, independently of mutational
status. However, the poor efficacy of metformin treatment
could be linked to different barriers in this study. Indeed,
treated patients were in total therapeutic failure and had
notable progression of melanoma disease. Therefore, it will
be interesting to test metformin or new biguanide-derived
compounds with better efficacy at an early stage of disease
progression.

Currently, other clinical trials are still in progress, and their
results will be truly important for understanding metformin
treatments against melanoma and continuing their use. Another

phase I/II clinical trial is currently being performed in the

United States in Louisville, and metformin’s treatment effects

in combination with vemurafenib, a BRAF inhibitor, is being
evaluated in 55 patients with BRAF-mutated melanoma
(ClinicalTrials.gov, NCT01638676). At the University of
Louisville, another clinical trial evaluating the combination of
dabrafenib/or trametinib and metformin is being evaluated. This
phase I/II clinical trial started in 2014 on 53 participants,
and no results have been published (ClinicalTrials.gov,
NCT02143050). Other clinical trials are currently in progress
to evaluate the effects of metformin in combination with
different treatments; a study of metformin combined with
pembrolizumab (immunotherapy) is being conducted in
Pittsburgh (ClinicalTrials.gov, NCT03311308), and a study on
metformin combined with dacarbazine (chemotherapy) is being
conducted in Petersburg (ClinicalTrials.gov, NCT02190838).

In conclusion, metformin, and more generally biguanides,
seem to be good candidates for the development of new
therapies against melanoma. Their impact on metabolism and
the activation of cell death mechanisms in melanoma cells could
be promising in melanoma treatment. Furthermore, studies in
which metformin, or other biguanides, is combined with current
therapies show a synergistic response in melanoma cells, and
therefore, their results could be interesting for the development
of new therapy combinations against melanoma and even other
cancer cell types.
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Metformin is one of the most commonly prescribed medications for the treatment

of type 2 diabetes. Numerous reports have suggested potential anti-cancerous and

cancer preventive properties of metformin, although these findings vary depending on

the intrinsic properties of the tumor, as well as the systemic physiology of patients.

These intriguing studies have led to a renewed interest in metformin use in the oncology

setting, and fueled research to unveil its elusive mode of action. It is now appreciated

that metformin inhibits complex I of the electron transport chain in mitochondria, causing

bioenergetic stress in cancer cells, and rendering them dependent on glycolysis for ATP

production. Understanding the mode of action of metformin and the consequences

of its use on cancer cell bioenergetics permits the identification of cancer types most

susceptible to metformin action. Such knowledge may also shed light on the varying

results to metformin usage that have been observed in clinical trials. In this review,

we discuss metabolic profiles of cancer cells that are associated with metformin

sensitivity, and rationalize combinatorial treatment options. We use the concept of

bioenergetic flexibility, which has recently emerged in the field of cancer cell metabolism,

to further understand metabolic rearrangements that occur upon metformin treatment.

Finally, we advance the notion that metabolic fitness of cancer cells increases during

progression to metastatic disease and the emergence of therapeutic resistance. As a

result, sophisticated combinatorial approaches that prevent metabolic compensatory

mechanisms will be required to effectively manage metastatic disease.

Keywords: metformin, phenformin, mitochondria, diabetes, cancer, breast cancer, metabolism, mitochondrial

drugs

METFORMIN

A Drug With a Long History
Metformin was first discovered in the 1920s by a French physician from a plant called Goat’s Rue
(1). It was found that animals grazing on this plant had low blood glucose levels [reviewed in
Witters (2)]. Subsequently, it was determined that the active compound responsible for lowering
blood glucose was a guanidine moiety. Early synthetic homologues of guanidine were created for
the treatment of diabetes, although they proved to be hepatotoxic and were rapidly discontinued.
Renewed interest in guanidine in the 1960s led to the creation of a family of biguanide compounds
[reviewed in White (3)]. Phenformin was the first biguanide family member prescribed to diabetic
patients (4); however, its use was associated with the development of lactic acidosis (5). The
biguanide metformin was better tolerated relative to phenformin by diabetic patients and was
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approved by the Food and Drug Administration (FDA) in
the 1990s for the treatment of type 2 diabetes (6). Metformin
is an extremely safe medication; rarely associated with the
development of lactic acidosis (7). Additionally, metformin has
global appeal as it is a low cost medication with generic versions
also available.

It has been reported that patients with diabetes are more
likely to develop cancer in their lifetime compared to non-
diabetic individuals (8). A retrospective report published in
2005 suggested that metformin users have lower incidences
of cancer relative to patients prescribed other type 2 diabetic
medications (9). Moreover, users of diabetic medications other
than metformin displayed increased cancer-related mortality
(10). The study by Evans et al. (9) sparked great interest in
the academic community, and metformin has been, or currently
is being investigated in 310 individual clinical trials for its
role in the prevention or treatment of various types of cancer.
However, there is currently no consensus regarding which
cancers are most likely to benefit from metformin treatment.
Completed clinical trials have varied in outcome depending on
trial design, cancer type, stage of cancer, timing of metformin
treatment, and combinatorial therapies or treatments given in
addition to metformin. Individual clinical studies have shown
that metformin is associated with increased survival of diabetic
patients with lung (11), colorectal (12), and prostate (13,
14) cancers. Moreover, metformin is associated with reduced
risk of developing pancreatic (15), breast (16), colorectal (17)
or liver (18) cancers. Recently, studies have been developed
to investigate potential anti-cancer roles of metformin in non-
diabetic patients given the increasing literature supporting
its action in cancers, as well as the fact that metformin
is associated with less hypoglycemic episodes than other
diabetic medications (19). One randomized control trial on
metformin monotherapy in advanced melanoma showed no
benefit; however, the authors propose a more effective strategy
would involve combining metformin with BRAF inhibitors and
screening for patients with p53 polymorphisms (20). Such a trial
in advanced melanoma has been completed (NCT02143050)1,
and another combining metformin with cancer immunotherapy
is ongoing (NCT03311308)2. One randomized trial of metformin
combinatorial treatment with standard of care chemotherapy
showed no benefit in advanced pancreatic cancer (21), despite
large meta-analysis showing significant survival in metformin
treated pancreatic patients (22). These studies highlight a
need for more rigorous planning of clinical trials that focus
more on potential predictive biomarkers (23). Additionally,
a randomized trial with metformin monotherapy in early
stage breast cancer is ongoing (NCT01101438)3, as well as a
trial combining metformin with neo-adjuvant chemotherapy

1NCT02143050 Study of Dabrafenib, Trametinib and Metformin for Melanoma

Patients., (https://clinicaltrials.gov/show/NCT02143050).
2NCT03311308A Trial of Pembrolizumab andMetformin Versus Pembrolizumab

Alone in Advanced Melanoma., (https://clinicaltrials.gov/show/NCT03311308).
3NCT01101438A Phase III Randomized Trial of Metformin vs Placebo in Early

Stage Breast Cancer., (https://clinicaltrials.gov/show/NCT01101438).

in HER2+ breast cancer (NCT03238495)4. These studies will
reveal whether metformin’s mode of action in cancer extends
beyond its ability to reduce blood glucose levels, as glucose
levels in healthy patients will not be affected by metformin
treatment. Overall, the current available data support continued
efforts toward examining the potential therapeutic role of
metformin in various cancers, both in diabetic and non-diabetic
patients.

Molecular Targets of Metformin
Metformin is known to act on the liver, gut and skeletal muscle
to globally lower blood glucose levels in diabetic patients with
hyperglycemia (24) (Figure 1). The first report of a direct
molecular target of metformin was in 2000 (25) showing
that metformin acts on complex I of the electron transport
chain (ETC) of mitochondria. However, the experiments in
this study were performed under harsh experimental conditions
that included incubation of mitochondria at low temperature
(8◦C) for extended periods of time (400min) in the presence
of high dose (10mM) of metformin. The conclusions were
rapidly challenged when a study showed that metformin
had no direct effect on mitochondrial complex I (26). As
a result, this controversy remained, and for over a decade
following these initial observations the molecular mechanism
of metformin was characterized as unknown or incompletely
described. Various targets have been proposed by several
groups, including complex II and IV of the ETC (27),
LKB1/AMPK (28–30), adenylate cyclase (31), AMP deaminase
(32), NADPH oxidase (33) and mitochondrial glycerophosphate
dehydrogenase (34). Elucidation of a key molecular target of
metformin came in 2014 when three groups, using differential
approaches and experimental conditions published novel and
conclusive evidence on the inhibitory properties of metformin
on complex I (35–37). This included work on permeabilized cells
and cancer cells that do not express complex I (37), isolated
mitochondria (35, 36) and purified complex I (36). It is now
generally accepted that a direct molecular target of metformin is
complex I (24, 38, 39). Many of the other proposed effects and
targets of metformin may be explained by a shift in NAD/NADH
caused by complex I inhibition, leading to decreased activity
of enzymes that depend on the fine balance of cellular
NAD/NADH. Inhibition of mitochondrial glycerophosphate
dehydrogenase could also perturb NAD/NADH (40). The
controversies surrounding the action of metformin on cells
may be partly explained by the varying concentrations used in
experimental systems (28).

Bioenergetic Stress: Metabolic Disruption
Complex I is the entry point for reduced NADH in the ETC.
Direct inhibition of complex I by metformin in cells decreases
the proton gradient and mitochondrial oxygen consumption
rate (35), diminishes tricarboxylic acid cycle (TCA) activity and
metabolites (35, 41–45) and leads to decreased cellular ATP

4NCT03238495 Randomized Trial of Neo-adjuvant Chemotherapy With or

Without Metformin for HER2 Positive Operable Breast Cancer., (https://

clinicaltrials.gov/show/NCT03238495).
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FIGURE 1 | Proposed Molecular Mechanisms of Metformin Action.

levels (25, 26, 43) (Figure 1). The inhibition of mitochondrial
respiration and ATP production by metformin results in a
compensatory increase in glycolysis (35, 43) as well as increased
activity of glycolytic enzymes. These metabolic adaptations are
engaged in an attempt to restore cellular ATP levels. However,
if the compensatory activation of glycolysis cannot meet the
cellular ATP requirements, AMPK becomes activated in order to
potentiate catabolic metabolism, and inhibit anabolic reactions
(30, 43, 46, 47). Phosphorylation and activation of AMPK leads
to phosphorylation and inactivation of ACC, one of the most
characterized targets of AMPK, causing a reduction in lipogenesis
(48, 49). Metformin increases the levels of AMP causing
inhibition of adenylate cyclase (31). Metformin also inhibits
mTORC1 signaling (50, 51). Overall, metformin treatment causes
at least a transient decrease in cellular energy status, leading to
a global decrease in ATP consuming processes. In proliferating
cells, this can elicit a cytostatic state that is associated with
reduced proliferation, explaining some clinical observations of
decreased progression of cancer cell growth. Cancer cells that
cannot eventually compensate for this reduced energy status may
undergo apoptosis (52, 53).

Metformin enters the cell via an OCT transporter; commonly
OCT1 expressed on the surface of hepatocytes. Metformin acts
directly on mitochondria to inhibit complex I of the ETC. This
causes 1) diminished NADH oxidation at complex I, resulting
in a buildup of NADH, 2) diminished TCA cycle activity due to

allosteric inhibition of enzymes in the TCA cycle from increased
NADH/NAD, 3) diminished flow of electrons throughout the
ETC, and ultimately diminished oxygen consumption and ATP
production at complex V (ATP synthase). This can lead to
decreased growth of a subset of cancers that heavily rely
on mitochondrial bioenergetics. Failure to rearrange metabolic
programs leads to decreased ATP levels. Diminished ATP levels
in the cell leads to AMPK activation. In hepatocytes, this
drop in ATP leads to a decrease in gluconeogenesis due to
allosteric inhibition of several leads to a decreased absorption
of glucose. In the muscles, this leads to increased glucose
uptake and eventually a decrease in hyperglycemia in the blood;
with reduced glucose and insulin levels. The reduction in
blood glucose and insulin levels may impair the growth of a
subset of cancers that proliferate in an environment dictated
by type 2 diabetes. At a cellular level, activation of AMPK
leads (1) to inactivation of ACC, leading to a decrease in
lipogenesis, (2) activation of p53 leading to a decrease in
cell cycle progression, (3) inactivation of mTOR leading to
decreased protein synthesis and glycolytic pathways. Inactivation
of mTOR may be useful in a subset of cancers that have RTKs
or IR activation. AMPK activation also leads to (4) decreased
transcription of gluconeogenic genes by inhibition of HDAC
and CRTC2, which is also achieved by (5) adenylate cyclase
inhibition. Furthermore, AMPK activation causes (6) a decrease
of lipogenic gene expression by inhibition of SREBP. The end
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result of metformin exposure is cellular energetic stress. If
the cancer cells are metabolically flexible, allowing them to
successfully respond to this stress by rearranging metabolic
programs, metformin has a cytostatic effect, however if cells fail
to cope, metformin has a cytotoxic effect.

OCT1: organic transporter 1, TCA: tricarboxylic acid
cycle, AMPK: 5′ adenosine monophosphate- activated protein
kinase, IR: insulin receptor ACC acetyl-CoA carboxylase:
mTOR: mammalian target of rapamycin, RTKs: receptor
tyrosine kinases. cAMP:Cyclic adenosinemonophosphate,AKT:
protein kinase B, SREBP: Sterol regulatory element binding
protein, HDAC: histone deacetylase, CRTC2: CREB-regulated
transcription coactivator 2.

METFORMIN: BIOENERGETIC MEDICINE

Bioenergetic Medicine
Metformin is now classified as a bioenergetic disruptor and such
drugs represent an exciting strategy to treat metabolic disorders,
including cancer. Bioenergetic drugs affect ATP generating
pathways, namely glycolysis, and oxidative phosphorylation.
Bioenergetics is undeniably coupled to the proliferative potential
of cancer cells. The focus of bioenergetic medicine (54) is
not solely to impact ATP production, but also to disrupt
biosynthetic pathways that rely on precursor metabolites found
in ATP generating pathways for cancer cell proliferation. For
example, glucose metabolism has been targeted using glycolysis
inhibitors, such as 2-deoxyglucose (2-DG), a non-metabolizable
glucose analog, which has been employed in clinical trials for
various cancer types. Although many in vitro or murine studies
demonstrate profound effects of 2-DG treatment on the growth
of various cancer cell models (55–57), many clinical trials with
2-DG have been terminated early due to lack of early clinical
efficacy as well as side effects, notably extreme exhaustion and
cardiac arrhythmias in patients (NCT00633087)5. A completed
study investigating an optimal dosage of 2-DG for solid tumors
in combination with docetaxel treatment noted only moderate
effects on stabilizing disease (58). However, significant side
effects, including fatigue and nausea, were noted in many of
patients (58).

In addition to glucose, many cancers are dependent on
glutamine for their growth and are said to suffer from
glutamine “addiction” (59). The expression of glutaminase is
also up regulated in various cancer types (60–62). Murine
tumor xenografts show promising anti-growth responses to
inhibition of glutamine (glutaminase) metabolism (63, 64), and
clinical trials are currently ongoing to test the efficacy of
inhibiting glutaminase using a small molecule inhibitor (CB-
839, Calithera Biosciences) in multiple types and stages of
cancer (NCT020718626; NCT020718887; NCT03163667)8. It has

5NCT00633087A Phase I/II Trial of 2-Deoxyglucose (2DG) for the Treatment of

Advanced Cancer and Hormone Refractory Prostate Cancer. (https://clinicaltrials.

gov/show/NCT00633087).
6NCT02071862 Study of the Glutaminase Inhibitor CB-839 in Solid Tumors.
7NCT02071888 Study of the Glutaminase Inhibitor CB-839 in Hematological

Tumors.
8NCT03163667 CB-839 With Everolimus vs. Placebo With Everolimus in Patients

With RCC.

also been suggested that metastatic progression is accompanied
by increased glutamine utilization, and thus more aggressive
prostate cancer cells were more sensitive to the glutaminase
inhibitor CB-839 (65). However, to date, there are no glutaminase
inhibitors approved for usage in cancer treatment.

Sensitivity to Metformin: A Metabolic
Profile
Performing clinical trials in patients to determine which cancer
type will benefit most from metformin treatment is undeniably
important to understand the potential of this drug in oncology.
With recent advancements, especially the identification of a
molecular target ofmetformin, an alternative strategy to elucidate
metformin’s potential in oncology is to establish a “metformin
sensitivity” profile at the cellular level to identify those cancer
cell types most sensitive to its effects (Figure 2). This entails
(1) understanding the metabolic changes that occur upon
metformin treatment, (2) determining the cancer cell types most
susceptible to these changes, (3) identifying those patients that
would best benefit from metformin treatment and lastly, 4)
defining combinatorial therapies that work best with metformin
treatment in order to prevent compensatory mechanisms. This
approach represents a rational and streamlined method to
identify patients who would be most responsive to metformin
treatment. However, it is difficult to predict whether the effects
observed at the cellular level will translate in vivo. Therefore, the
comparisons of the results obtained in vitro, in vivo and in clinical
trials are necessary to reveal the full potential of metformin in the
oncology setting.

To identify cancer cells most susceptible to metformin,
we first need to recognize its mechanism of action and
identify the internal cellular changes that occur upon treatment.
Metformin inhibits complex I of the ETC in mitochondria,
leading to perturbation in NAD/NADH and decreased oxygen
consumption. This leads to diminished TCA activity and
metabolite levels, as well as potential energetic stress leading
to AMPK activation. Cells compensate for these metformin-
mediated effects by increasing glucose uptake and glycolysis, and
switching to glutamine utilization, as a way of refueling the TCA
and providing biosynthetic intermediates for lipid production
required to synthesize membranes (35, 42, 43, 66, 67). Hence,
cancer cells exposed to metformin need to rearrange and reroute
metabolic flux. It is increasingly evident that metformin alters
substrate utilization in the mitochondria (45). As a result, cancer
cells that would be most susceptible to metformin’s action would
have a high reliance on OXPHOS as a source of ATP and
lack metabolic flexibility to efficiently engage glycolysis. For
example, cancer cells with defective mitochondria may not be
able to successfully switch mitochondrial substrate utilization
due to mutations or defects in these metabolic pathways.
As a result, cells with defective mitochondria could be more
sensitive to metformin treatment due to their inability to alter
mitochondrial substrate utilization. In support of this point,
complex I mutations have been shown to predict sensitivity
to phenformin (68). It is possible that cancer cells with
oxidative phosphorylation deficits may thus be more sensitive to
biguanides than normal tissues.
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FIGURE 2 | Schematic depicting the effects of Metformin on cellular

metabolism and adaptations needed to support cancer cell survival.

It is becoming more apparent that numerous metabolic
programs and adaptations in cancer cells are mediated by the
metabolic regulator PGC-1α (69). We predict that cancer cells
expressing low PGC-1α levels, or that fail to upregulate PGC-
1α in the presence of metformin, would be more sensitive as
they may not efficiently engage adaptive programs to promote
survival. Additionally, cancer cells with inactive or impaired
AMPK signaling may be more sensitive to metformin treatment,
as AMPK is the main energy sensor in the cell, and AMPK
activation upon exposure to metformin contributes significantly
to the upregulation of PGC-1α and its adaptive programs (70).
Although previously controversial, AMPK is not required for
metformin action; however, AMPK signaling is advantageous as
an adaptive response to cope with energetic stress (71).

Metformin causes energetic stress in cells by inhibiting
complex I of the electron transport chain in mitochondria.
This causes a decrease in NADH oxidation, decreased TCA
flux, leading to low levels of TCA metabolites. This causes
a temporarily low ATP/AMP ratio. Cells react by rewiring
metabolic flux. This includes up regulating pathways to
support increased glycolysis, increased glutamine utilization
to provide alternative sources of ATP as well as metabolites.
Cells that fail to metabolically adapt to this stress will
undergo cell death. After longer exposure to metformin, cells

will adapt by stably increasing enzymes needed to maintain
these metabolic pathways, partially by upregulating PGC-1α
expression (Figure 2).

Metabolic Flexibility: Targeting Metformin
Resistance
It has recently been shown that chronic exposure to metformin
in cancer cells ultimately leads to drug resistance and that this is
linked to increased PGC-1α levels (41). Metformin resistant cells
are metabolically flexible and able to switch fuel sources from
oxidative metabolism to glycolysis and glutamine metabolism
in the context of metformin-mediated inhibition of oxidative
phosphorylation. Although at first it may seem counterintuitive
to increase the level of PGC-1α, a key regulator of OXPHOS
and mitochondrial biogenesis, upon inhibition of OXPHOS
by metformin, it is now appreciated that PGC-1α clearly has
functions outside of its classic role in mitochondrial metabolism.
We argue that PGC-1α supports metabolic flexibility upon
bioenergetic stresses. Elevated PGC-1α levels in the presence
of metformin reprograms cellular metabolism and creates a
new metabolic state that promotes an alternate source of ATP
production through stimulation of glycolysis as well as facilitating
anabolic metabolism by diverting mitochondrial metabolites
that would normally be used for ATP production for use in
anabolic reactions. In support of this point, PGC-1α controls
numerous metabolic programs in cancer, notably glucose (41,
72), glutamine (73), fat (74), and one carbon metabolism (70).
This ability of PGC-1α to support numerous metabolic programs
in breast cancer cells allows for an enhanced fuel flexibility to
cope with bioenergetic stressors such as metformin (41).

After developing a greater understanding of the metabolic
rearrangements that occur upon metformin treatment
(Figure 2), rational combinatorial treatments can be devised to
combat adaptive mechanisms (Figure 3). The most immediate
strategy would be to combine metformin with glycolysis
inhibitors to prevent the adaptive glycolytic activity seen with
metformin treatment alone. Blocking oxidative phosphorylation
and glycolysis would stop the two main sources of ATP
production, ultimately leading to cell death. Indeed, when
breast cancer cells treated with metformin are deprived of
glucose, this results in almost 100% cell death in just 72 h, even
in the presence of glutamine (35). Additionally, it has been
shown that cells with mutations leading to either impaired
glucose utilization or mitochondrial DNA mutations are more
sensitive to the effects of biguanides (68). Other reports have
shown similar results by combining metformin with inhibitors
of glycolysis and thus preventing ATP production (75, 76).
One concern is that all cells are capable of engaging glycolysis
and OXPHOS for ATP production, although their degree of
dependence on either pathway can vary. Rapidly proliferating
cells require much more ATP than differentiated cells, thus
targeting ATP producing pathways could prove beneficial, as
this rationale has been the basis of chemotherapy for decades.
Another potential metabolic combination therapy could be
the targeting of regulators of metabolic flexibility, notably
PGC-1α. A small molecule compound was recently found to
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FIGURE 3 | Concepts for metformin sensitivity, resistance, and combinatorial treatment options.

reduce PGC-1α-dependent gluconeogenic activity in the liver
by increasing PGC-1α acetylation, leading to an amelioration
of glucose homeostasis in a murine model of diabetes (77).
However, the role of PGC-1α in gluconeogenesis is far more
developed than in cancer, and cancer specific post-translational
modifications on PGC-1α are far less understood.

In addition, metformin is currently used in clinical trials
as a combinational therapy with already established treatment
options, such as chemotherapy. It has been suggested that
combinatorial treatment of metformin with chemotherapy
may sensitize cancer cells to chemotherapy treatment,
leading to improved treatment efficacy and lower doses of
administered chemotherapy (78–82). In murine models,
combinatorial metformin treatment with the chemotherapeutic
agent doxorubicin led to reduced mammary tumor mass
and relapse compared to either drug alone when performing
xenograft experiments (83, 84). There is also data showing that
metformin has synergistic effects with various chemotherapy
agents, including Pemetrexed in cell lines of non-small cell
lung cancer (NSCLC), (85) EGFR-TKI in patients with NSCLC
(86), Trichostatin in osteosarcoma cell lines (87), Simvastatin in
animal models of metastatic prostate cancer (88) and Nelfinavir
in cervical cancer xenografts (89). It has also been suggested
that metformin may lead to a re-sensitization of cancer cells
that have become resistance to chemotherapy, the predominant
cause of treatment failure in patients undergoing treatment
(45, 84, 90, 91). One study showed that metformin reduces the

differences in metabolism between chemotherapy resistant and

sensitive cells (92). Furthermore, metformin was shown to target

metabolic programs that chemoresistant cancer cells become

reliant on, including OXPHOS and glutamine metabolism (92).
Overall, metabolic flexibility is required to adapt to

bioenergetic stress, such as metformin exposure. Additionally,
cancer cells treated with chemotherapeutic agents display

vast metabolic arrangements enabling them to become
resistant. Targeting this flexibility by inhibiting compensatory
metabolic shifts, such as using inhibitors of glycolysis or
glutamine metabolism, may prove useful. It is becoming
clear that attacking only one aspect of cellular growth or
one metabolic pathway will ultimately lead to metabolic
rearrangements and the emergence of resistance. Targeting
both cellular proliferation and metabolism could prove to be
a more efficacious strategy. Another approach could be to
overload the compensatory metabolic pathways by drastically
increasing ATP demand through the use of chemotherapeutic
agents.

The features of cancer cells that would make them most
sensitive to metformin treatment are described. Cells become
resistant to chronic exposure to metformin by increasing
glucose uptake as well as glycolysis, increasing glutamine
utilization as a vital metabolite precursor for biosynthetic
needs, as well as increase in PGC-1α expression, which
has been shown to increase metabolic flexibility that is
needed to overcome metformin-mediated bioenergetic stress.
To prevent compensatory mechanisms by cells exposed to
metformin, this drug can be combined with glycolysis inhibitors
that prevent metabolism of glucose to lactate, or glutamine
metabolism inhibitors, which prevent glutamine utilization.
There is also data suggesting thatmetformin has synergetic effects
with certain chemotherapies and may re-sensitize cancer cells
that have become resistant to chemotherapy.

FUTURE OF METFORMIN IN ONCOLOGY

Development of Novel Complex I Inhibitors
in Oncology
In addition to metformin, various mitochondrial drugs are
being developed for potential uses in oncology, and have been
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shown to alter mitochondrial metabolism. These include: (1)
small molecule BAY 87-2242 that was developed as a complex
I inhibitor, leading to a reduction of melanoma tumor growth
in murine models (93), (2) Xanthohumol that leads to the
overproduction of ROS and eventual apoptosis in cancer cells
(94), (3) Canagliflozin, a proposed inhibitor of complex I and
mitochondrial glutamate dehydrogenase (95), which reduces the
proliferation of prostate and lung cancer cells (96), 4] Fenofibrate,
another proposed complex I inhibitor, that depletes cellular
ATP and induces cytotoxicity in glioblastoma (97) and 5) small
molecule inhibitor JC1-20679 developed to inhibit complex I,
slowing the growth of a panel of cancer cell lines (98). These
results highlight the importance of mitochondrial metabolism
in cancer and support the notion of targeting mitochondria for
cancer therapeutic purposes. At this stage, it is unknown whether
some of these molecules will be approved for usage in clinical
trials, as toxicity in humans has not yet been demonstrated for
all these drugs. However, Canaglifozin is already used for the

treatment of type 2 diabetes; but the FDA has recently added

additionalWarning and Precautions stating that this drug causes

increased ketoacidosis, decreased bone density, and increased

risk of leg and foot amputations (99, 100). Developing an effective

drug for oncology is clearly not as simple as just synthesizing

potent mitochondrial inhibitors. It is important to appreciate

that complex I inhibitors, like rotenone or MPTP, can induce

neurodegeneration in murine models (101, 102). However,

metformin intake has been associated with better cognitive

function in patients with Huntington’s Disease (103). Indeed,

it has been shown that metformin confers protection against

mutant Huntingtin by modulating mitochondrial dynamics and
activating AMPK (104).

In addition to metformin, phenformin is being revisited
for usage in cancer therapy. Phenformin, like metformin, is
a complex I inhibitor (36); however, it is transported with a
greater affinity and kinetics into cells (105). For this reason,
phenformin rapidly accumulates in cancer cells. Additionally,
phenformin uptake will not depend on the genetic variation of
transporters (OCT family), which have been shown to influence

metformin uptake and efficacy due to individual polymorphisms
(106). Phenformin is currently in a few clinical trials including a
phase I clinical trial to determine optimal dosage for combined
treatment with small molecule targeted therapies (Dabrafenib
and Trametinib) for patients with BRAF mutated melanoma
(NCT03026517)9. It is being examined whether phenformin can
reduce melanoma resistance to traditional targeted therapies. It
is possible that phenformin will become more rapidly used in
future clinical trials; however, accurate dosage, which is effective
yet minimizes side effects, has always been an issue, and is a key
reason for its rapid discontinued use in diabetes (107). Therefore,
there is still a need to determine optimal doses of phenformin
for oncology application, while minimizing side effects such as
lactic acidosis and gastrointestinal distress. With optimal dosage
of phenformin, it may even be possible to decrease the dosage of
chemotherapeutic agents.

Lastly, an emerging field in cancer metabolism is the
development of organelle targeted therapeutics (108), which

could be utilized to specifically localize and compartmentalize
therapies to potentially minimize adverse effects. This
notion could be used to reduce administered doses of
therapy, while maximizing dose in the compartmentalized
region, although this research area needs to be developed
further.
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Colorectal Cancer (CRC) is one of the most frequently encountered neoplasms in

humans. The incidence of CRC has been increasing and new strategies for prevention,

including chemoprevention, are required to lower its incidence and associated mortality.

Metformin is a biguanide compound commonly used for the treatment of diabetes

mellitus. Many recent basic research, epidemiological and clinical trial studies have

indicated that metformin has benefits not only in diabetes treatment, but also in lowering

the risk of developing cancer (including CRC). These studies indicate that metformin

may be a candidate chemoprevention agent for CRC. This review article shall discuss

the present evidence of metformin treatment and CRC, as well as outline our challenge

in the investigation of metformin use in chemoprevention therapy for colorectal tumors.

Keywords: metfromin, colorectal cancer, chemoprevention, epidemiology, basic research, review, clinical trials

INTRODUCTION

Colorectal Cancer (CRC) is one of the most frequently encountered neoplasms across the world.
The incidence of CRC has rising in many low- and middle-income countries, and some highly-
developed countries (1). Despite great advances in cancer treatment over the last two decades,
such as the development of more effective drugs with improved safety and more precise molecular
targeting, unwanted adverse effects remain a major problem. New cancer treatments are also
extremely expensive. The prevention or reduced incidence of cancer would help lower rising
medical costs (2), providing a cheaper and more effective strategy of decreasing cancer mortality.
The resection of colorectal polyps lowers the risk of future development of advanced adenoma
and CRC (3). Yet patients with polyps (adenomas and/or hyperplastic polyps) remain at high
risk for the development of future colorectal polyps and CRC (4). This ongoing risk highlights
the need for a conceptual change, from surveillance and detection of adenomas and cancer (the
former often being treated by endoscopic resection) to new strategies for prevention, including
chemoprevention, to lower the incidence and associated mortality of CRC.

A number of agents have been reported to have a chemopreventive effect against colorectal
carcinogenesis. In regard to epidemiology, the 2011 World Cancer Research Fund and American
Institute for Cancer Research reported beneficial food and nutrition for decreasing the incidence
of CRC (5) (Table 1). However, effective clinical trials have been limited. Nonsteroidal anti-
inflammatory drugs (NSAIDs), notably cyclooxygenase-2 (COX-2) inhibitors, used either alone
or in combination with other agents, have offered the most potential for lowering the risk of
CRC. Unfortunately, there is an elevated risk of serious cardiovascular events associated with the
administration of COX-2 inhibitors (6, 7). Considering these cardiovascular side effects and the lack
of demonstrable efficacy of other drugs that initially showed potential in this setting, novel agents
are required that are clinically effective and safe for CRC prevention. An increased incidence of
CRC in adults is also associated with obesity and diabetes mellitus (8, 9). Therefore, we predicted
that these conditions may provide novel targets for the chemoprevention of CRC.
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TABLE 1 | Foods and nutrients with supporting findings in epidemiological

studies.

Convincing None

Probable Food containing dietary fiber

Garlic

Milk

Calcium

Limited-suggestive Non-starch vegetables

Fruits

Food containing folate

Fish

Food containing selenium

Food containing vitamin D

Selenium

Many recent reports, including basic research,
epidemiological and clinical trial studies, suggested that
metformin also lowered the risk of developing malignant disease,
such as CRC. Accumulating data indicates that metformin
may be a candidate chemoprevention agent for CRC. We shall
discuss the current evidence of metformin administration and
CRC risk and outline our challenge of using metformin for the
chemoprevention of colorectal tumors.

METFORMIN AND COLORECTAL CANCER

Epidemiological Research
The first report of a relationship between metformin
administration and the risk of CRC was published in 2004
(10). Subsequently, many population-based and case-control
cohort studies, and associated meta-analysis, have evaluated
metformin use and the risk of CRC. Different studies reported a
decreased risk (11–17), no association (18–21), or an increased
risk of CRC (22, 23). The reason for different conclusions
between certain studies may be related to time-related biases,
which were proposed to account for some of the inverse
associations observed between metformin administration and
cancer risk reported in epidemiologic studies (24, 25). These
include immortal time bias when unexposed time is misclassified,
as in cohort studies, time-window bias when the time window
for capturing exposure differs between cases and controls in
case/control studies, or time-lag bias when treatment differs
across stages of the disease (with disease stage also associated
with the outcome risk). A recent cohort study that minimized
these biases concluded there was an inverse association between
long-term administration of metformin and CRC risk (26).
Further studies and detailed analyses are needed to clarify the
potential clinical benefits of metformin upon the incidence and
associated mortality of CRC.

Basic Research
In preclinical research, metformin suppressed cell proliferation,
increased apoptosis, caused cell cycle arrest, and suppressed the
incidence and growth of experimental tumors in vitro and in vivo
(27–29). The underlying molecular mechanism of metformin

action was shown to involve liver kinase B1 (LKB-1)-dependent
activation of AMP-activated protein kinase (AMPK) (30, 31).
Molecularmechanisms ofmetformin actions weremostly studied
in adipose and liver tissue in relation to glucose homeostasis
and insulin actions. Recent studies reported involvement of the
AMPK/mammalian target of rapamycin (mTOR) pathway in
the induction of various cancers (32, 33). Downstream targets
of mTOR signaling include proteins that control translational
machinery, including the ribosomal protein S6 kinases (S6K) that
regulate the initiation and elongation phases of translation (34).
The upstream regulation of mTOR involves signaling pathways
of several oncoproteins or tumor suppressors, including AMPK,
phosphatidyl inositol 3-kinase and phosphatase and tensin
homolog (35). In particular, upregulation of AMPK directly
suppresses mTOR, resulting in the inhibition of cell proliferation
(36). In addition, in vitro analysis demonstrated that the
metformin-induced suppression of the growth of breast cancer
cells was associated with decreased activation of mTOR and S6
kinase (37).

The above findings indicated that metformin was effective at
reducing carcinogenesis in vitro. We will now focus on reported
in vivo experiments and our study of colon carcinogenesis
using several animals models. The first report of phenformin
that inhibit metabolic immunodepression in rats 1977 (38).
From then, several reports showed that biguanide prevent
colon carcinogenesis. Experimental rodent models of CRC can
be broadly separated into genetic (such as ApcMin/+ mice, a
murinemodel of familial adenomatous polyposis coli (APC)) and
chemical carcinogen-induced (such as azoxymethane (AOM)-
induced) sporadic models. Many studies of chemoprevention
have used both rodent models of CRC, however, some studies
reported that candidate agents had consistent preventive effects
in both models, whereas other studies reported inconsistent
and contradictory results (39). Therefore, it is important to
investigate the ability of candidate chemoprevention agents
to suppress tumorigenesis in both the genetic and sporadic
cancer models. First, we examined the effect of metformin
on intestinal polyp growth in ApcMin/+ mice. Nine-week-
old ApcMin/+ mice were split into two groups: one received
metformin (250 mg/kg per day in the diet) treatment, the other
received a normal diet without metformin, and the number
and size of polyps were analyzed in both groups after 10
weeks. Administration of metformin significantly suppressed the
number of intestinal large polyps formed in ApcMin/+ mice
(40). Second, we investigated a carcinogen-induced sporadic
colorectal cancermodel. Seven-week-oldmice were administered
AOM by intraperitoneal injection and then treated with or
without metformin for 6 weeks (to investigate aberrant crypt foci
(ACF) formation) or 32 weeks (for tumor formation). Metformin
treatment significantly inhibited ACF and polyp formation.
Furthermore, western blot analysis showed that metformin
treatment stimulated AMPK phosphorylation, and significantly
inhibited the phosphorylation of mTOR, S6K and S6 proteins.
It was proposed that metformin suppressed colonic mucosal
proliferation via activation of AMPK and then the downstream
suppression of the mTOR pathway (41). In other animal model,
it has been shown that metformin dosedependently inhibits the
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development of colon tumors induced by 1,2dimethylhydrazine
(DMH) in rats (42, 43). In this way, many reports showed that
metformin is effective for colorectal carcinogenesis both in vivo
and in vitro.

Clinical Trials
Previous basic research and epidemiological studies indicated
that metformin had a chemopreventive effect upon CRC.
However, confirmation of metformin efficacy required a
prospective interventional trial. In chemoprevention trials
targeting CRC, the incidence of adenomas or the cancer itself
was generally used as the main endpoint. While the occurrence
of CRC is a clear endpoint, its low incidence in the general
population, and the required long-term observational period
make this endpoint unsuitable for chemoprevention trials (44).
The use of surrogate biomarkers for cancer detection may allow
evaluation of drug efficacy in a shorter timeframe. Aberrant
crypt foci are very small lesions that develop in the earliest
stage of colorectal carcinogenesis, and consist of large, thick
crypts that can be detected by dense methylene blue staining
(45–47), as shown in Figure 1. The ACF were reported to be
precursor lesions for human colorectal carcinogenesis (48), and
were proposed as a surrogate endpoint in chemoprevention
trials for CRC. Several studies have examined the correlation
between the presence and number of ACF and use of candidate
chemopreventive agents for CRC in humans. The presence
and number of ACF were found to be suppressed by certain
chemopreventive agents (49, 50). There are several advantages
to using colorectal ACF as the primary endpoint in CRC
chemoprevention trials. First, a long-term observational period
is not needed to evaluate agent effects; thus avoiding long-
term trials, which require considerable effort and may expose
trial participants to an increased risk of carcinoma occurrence.
Second, ACF can be estimated quantitatively. In 2010, there were
no reported prospective metformin chemoprevention trials, so
we implemented a pilot prospective clinical trial to examine
the efficacy and safety of metformin use and its effects upon
ACF formation. We prospectively randomized 26 participants
with colorectal ACF to receive treatment with metformin (250
mg/d) or no treatment, followed by evaluation of the number
of ACF. Magnifying colonoscopy was used to determine the
number of rectal ACF and other laboratory endpoints (using
blind analysis) in each patient at baseline and after 1 month
of treatment. Prior to treatment, there were no significant
differences in the number of rectal ACF and other baseline
clinical characteristics between the two groups. At 1 month,
the mean number of ACF per patient was significantly reduced
in the metformin group (8.78 ± 6.45 before treatment vs.
5.11 ± 4.99 at 1 month, P = 0.007), whereas the mean ACF
number was unchanged in the control group (7.23 ± 6.65 vs.
7.56 ± 6.75, P = 0.609). This initial trial provided preliminary
data suggesting that metformin inhibited human rectal ACF
formation (51). However, this prospective trial had some
limitations. First, the trial duration was only 1 month. Second,
although ACFwere considered a convenient surrogate biomarker
of colorectal carcinogenesis (48), their biological significance
remains controversial. Generally, the occurrence of CRC would

FIGURE 1 | Endoscopic features of Aberrant Crypt Foci (ACF).

be the most reliable endpoint in chemoprevention trials for CRC.
However, there would be serious ethical issues in withholding
endoscopic removal when resectable lesions (that develop into
cancer) were detected in annual colonoscopies. In previous CRC
chemoprevention trials, such as those investigating NSAIDs and
aspirin, detection of the metachronous adenoma was set as the
primary endpoint. Therefore, we used metachronous colorectal
adenomas/polyps as the endpoint in our subsequent metformin
chemoprevention trial. Previous CRC chemoprevention trials
also involved initial short-term trials to establish safety and
efficacy, followed by expanded trials of longer duration. Long-
term trials require a large amount of resources and may
expose the study participants to the risk of cancer. There
have been no reported randomized control trials for CRC
chemoprevention using metformin, and the safety of subjects
would need careful attention in the design and execution of
such a trial. Considering these issues, we designed a 1-year
clinical trial to evaluate the safety and chemopreventive effect of
metformin on sporadic CRC in patients at high risk of adenoma
recurrence, as a preliminary study before considering long-term
CRC chemoprevention trials. The trial protocol was previously
published (52).

In all, 498 subjects were screened for eligibility, and 347
subjects were excluded for the reasons shown in Figure 1.
Of these participants, 183 cases were excluded owing to
inadequate colon cleaning, such as an incompletely cleaned
polypectomy, poor bowel preparation, short observation time or
lack of insertion to caecum (the major reason was incomplete
polypectomy). The 151 eligible patients were randomly allocated
into two groups; 79 and 72 in the metformin and placebo
groups, respectively (Figure 2). Of these 151 patients, five were
lost to follow-up (three in the metformin group, two in placebo
the group) and 13 withdrew their informed consent during
the follow-up period. The remaining 133 patients (71 and 62
in the metformin and placebo groups, respectively) received
a 1-year follow-up colonoscopy. Table 2 shows the baseline
characteristics of the subjects. There were no diabetes mellitus
patients in either group (exclusion criteria). In both groups,
the proportion of subjects with advanced adenoma (including
early carcinoma) and multiple adenomas was approximately
70%. The incidence of total polyps (adenomas plus hyperplastic
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FIGURE 2 | Trial profile. This figure is reproduced from (53) with permission.

polyps) in the metformin group was significantly lower than
that in the placebo group [metformin group had 27/71, 38.0%
(95% confidence interval (CI), 26.7–49.3) vs. the placebo group
with 35/62, 56.5% (95% CI, 44.1–68.8); p = 0.034]. The risk
ratio (RR) was 0.674: 95% CI, 0.466–0.974. The incidence
of adenomas in the metformin group was also significantly
lower than that in the placebo group [metformin group
had 22/71, 30.6% (95% CI, 19.9–41.2) vs. the placebo group
with 32/62, 51.6% (95% CI, 39.2–64.1), p = 0.016]. The
RR was 0.600 (95% CI, 0.393–0.916; Table 3). The incidence
of adverse events was approximately 10% and equivalent
between the two groups (Table 4). All adverse events were
considered very mild, such as abdominal pain, diarrhea, and
exanthema.

This study was the first clinical trial to examine
the chemoprevention effect of low-dose metformin on
metachronous colorectal adenoma/polyp formation. Metformin
was shown to suppress metachronous colorectal adenoma/polyp
formation (53). This clinical trial had possible limitations. First,
the follow-up colonoscopy at 1 year may be too soon, because
many chemoprevention trials for metachronous adenoma
formation had used study durations of 3 years to 5 years.
However, no previous metformin chemoprevention trials were
reported, and a trial longer than 1 year may present ethical
concerns. In an attempt to overcome these issues, we choose
participants who were at high risk of adenoma and cancer
occurrence. Patients who have had multiple and advanced

TABLE 2 | Baseline characteristics of the subjects.

Metformin Placebo

No of subject 71 62

Age, (mean ± SD), y 63.1 ± 8.5 63.5 ± 10.2

Sex (M/F) 54/17 49/13

BMI 23.1 ± 2.6 23.9 ± 3.5

Family history of CRC 8 (11%) 10 (16%)

Current smoker 23 (32%) 25 (40%)

History of Diabetes 0 0

History of Hyperlipidemia 15 (21%) 7 (11%)

History of Hypertension 20 (28%) 20 (32%)

Finding of baseline CS

Multiple & Advanced adenoma + early carcinoma 51 (72%) 43 (69%)

This table is reproduced from (53) with permission.

CS, colonoscopy; Multiple, more than 3 adenomas; Advanced adenomas, high-grade

dysplasia, large size (>10mm), or villous features.

adenomas (high-grade dysplasia, large adenomas >10mm,
and villous features) are known to be at high risk of CRC (3),
and surveillance after endoscopic resection is recommended
for up to 3 years (54). In the current trial, almost 70% of
subjects in each group had previously exhibited advanced
adenoma (including early carcinoma) or multiple adenomas.
However, long-term observation of post-polypectomy patients,
a high-risk group for CRC, may entail ethical problems. Placebo
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TABLE 3 | Incidence of total polyps and adenomas 1 year after the start of

treatment.

Metformin Placebo p-value

Incidence of total polyp

(95%CI)

Risk ratio (95%CI)

27/71 (38.0%)

(26.7–49.3)

0.674

(0.466–0.974)

35/62 (56.5%)

(44.1–68.8)

1(reference)

0.034

Incidence of total

adenomas (95%CI)

Risk ratio (95%CI)

22/71 (30.6%)

(19.9–41.2)

0.600

(0.393–0.916)

32/62 (51.6%)

(39.2–64.1)

1 (reference)

0.016

This table is reproduced from (53) with permission.

CI, confidence interval; IQR, interquartile range.

TABLE 4 | Adverse events in the metformin and placebo groups.

Adverse events Metformin Placebo

Abdominal pain 0 1

Diarrhea 1 4

Rash 2 0

Constipation 3 3

Alopecia 0 1

Total 6 9

This table is reproduced from (53) with permission.

All adverse events were NCI-CTCAE grade 1.

group subjects who received resection of advanced or multiple
adenomas showed a high rate (30/43, 70%) of recurrence,
and this rate was a little higher than that found in previous
chemoprevention trials for adenoma recurrence. However, there
was no CRC detected in any subjects in the 1 year follow-up
colonoscopy. To validate the efficacy of metformin for the
prevention of CRC, further long-term studies are needed.
The second limitation is that the trial did not study dose–
response effects of metformin on metachronous colorectal
adenomas/polyps. Previous trials of metformin for cancer
prevention and adjuvant treatment have been conducted using
high-doses of metformin (500–2,000 mg/day). Unfortunately,
high-dose metformin is associated with an increased risk of
developing lactic acidosis and adverse gastrointestinal effects,
such as diarrhea. Gontier et al. reported a PET/CT trial in
which subjects received medication with anti-diabetic drugs,
including metformin, and exhibited high and diffuse intestinal
uptake of 18F-fluorodeoxyglucose (55). This finding indicates
that AMPK is abundant in intestinal mucosa and that activation
of AMPK by metformin up-regulates the expression of glucose
transporters. Therefore, metformin-induced chemoprevention
in the colorectum appears to be a reasonable strategy targeting
key molecular pathways. In a previous study, we found that
oral low-dose metformin (250 mg/day) was safe and inhibited
human colorectal ACF and metachronous adenoma formation
(51, 53). We predict that oral low-dose metformin also has
clinical efficacy for CRC chemoprevention. The third limitation
of this study was that many participants in this trial were

at high risk of adenoma and cancer recurrence. Around
70% of participants had advanced and multiple adenomas
(or early carcinoma). This proportion was high compared
with other chemoprevention trials. However, because of the
randomization process, there was no internal bias in the
groups. Nevertheless, our trial did not directly determine the
efficacy of metformin for patients with an average risk of CRC
(external validity). Finally, this trial was conducted in a small
region of Japan and the sample size was small. Many previous
adenoma prevention trials, including that of celecoxib, were
carried out in Western countries. Future well-designed clinical
chemoprevention trails are required that include larger sample
sizes and involve many multinational institutions and more
ethnic groups.

CONCLUSION AND FUTURE

PERSPECTIVE

A practical chemoprevention agent generally requires the
following attributes: safety, good compliance, cost effectiveness,
and a clear mechanism. Metformin meets these criteria. To
date, NSAIDs, especially COX-2 inhibitors, have provided the
most reliable risk reduction for CRC, but they also confer an
increased risk of severe cardiovascular events (6, 7). Metformin,
first synthesized in the 1920s, has been used worldwide for
treating diabetes mellitus, metabolic syndrome and polycystic
ovary syndrome (56). In the present clinical study, the use of low-
dose metformin for 1 year caused few adverse events, which were
all very mild. These findings indicate that low-dose metformin is
safe. In addition, metformin is an inexpensive medicine suitable
for daily use. Generally, patients need chemopreventive agents as
a long term therapy. Metformin is suitable in these conditions.
Finally, the mechanism of action has been well elucidated for
metformin. Metformin is known to activate AMPK, which
inhibits the mTOR pathway that plays an important role in
cellular translational processes and progression (30). Although
more than 100 randomized controlled trials of metformin and
cancer are currently registered at ClinicalTrials.gov, the vast
majority are testing the effect of metformin in cancer treatment
rather than prevention. This situation perhaps underscores the
inherent challenge of doing chemoprevention trials with cancer
endpoints, which mandate follow-up of many individuals over
many years. As an efficient and feasible alternative, trials designed
to examine the effect of metformin on cancer biomarkers
or surrogate endpoints over a shorter time horizon are an
important next step before embarking on expensive larger scale
trials (57). For colorectal cancer prevention specifically, a large-
scale randomized controlled trial of metformin (perhaps in
combination with aspirin, an established chemopreventive agent)
for adenoma recurrence in a population with a broader risk
profile appears warranted (58).

In conclusion, metformin has the potential to provide a novel
chemoprevention therapy for CRC. However, to fully clarify the
chemopreventive effect of metformin on CRC, further large-
sample size and long-term clinical trials are required.
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Purpose:Metformin and Houttuynia cordata are representative anti-diabetic therapeutic

agents in western and oriental medicinal fields, respectively. The present study examined

the therapeutic effects of houttuynia cordata extract (HCE) and metformin in combination

in a dysmetabolic mouse model.

Methods: Metabolic disorders were induced in C57BL/6J mice by high fat diet (HFD)

for 14 weeks.

Results: Combination of metformin and HCE significantly lowered body weight,

abdominal fat, perirenal fat, liver and kidney weights, but did not change epididymal fat in

HFD-fed animals. Metformin + HCE treatment markedly attenuated the elevated serum

levels of TG, TC, AST, ALT, and endotoxin and restored the depleted HDL level. Both

HCE and metformin + HCE treatment ameliorated glucose tolerance and high level of

fasting blood glucose in association with AMPK activation. Moreover, treatment with HCE

+ metformin dramatically suppressed inflammation in HFD-fed animals via inhibition of

proinflammatory cytokines (MCP-1 and IL-6) and LPS receptor (TLR4). Histopathological

findings showed that exposure of HFD-treated animals to metformin + HCE ameliorated

fatty liver, shrinkage of intestinal villi and adipocytes enlargement. Furthermore,

HCE and metformin + HCE treatments markedly modulated the abundance of gut

Gram-negative bacteria, including Escherichia coli and Bacteriodetes fragilis, but not

universal Gram-positive bacteria.

Conclusions: Overall, HCE and metformin cooperatively exert their therapeutic effects

via modulation of gut microbiota, especially reduction of Gram-negative bacteria,

resulting in alleviation of endotoxemia.

Keywords: Houttuynia cordata, type 2 diabetes, high fat diet, gut microbiota, endotoxin
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INTRODUCTION

Metabolism is an essential biochemical event in the body that
keeps one alive and healthy. However, morbidity due to
metabolic diseases such as obesity and diabetes have been
continuously increasing and epidemics of these conditions are
occurring in both developed and developing countries (1). Many
factors, main including genetic and environmental conditions,
can disrupt the normal physiological homeostasis, resulting in
metabolic disorders (2). Excessive consumption of high-fat-
diet (HFD) is one of the main factors that leads to metabolic
disorders (3); however, energy imbalance and hereditary reasons
do not completely account for the current epidemic status.
Recently, increasing studies have reported that the genetic
background determines the predisposition of metabolic disorders
(4). Metabolic disorders are widely viewed as chronic systemic
diseases because they sustain low-grade inflammation due to
gut microbial dysbiosis (5). Therefore, intestinal commensal
microbiota become another vital factor during the development
of metabolic disorders, especially obesity and type 2 diabetes.
HFD-altered gut microbiota obviously improve obesity and
inflammation via the toll-like receptor 4 signaling pathway (6).
In addition, HFD increases intestinal permeability, which leads
to elevated serum lipopolysaccharide (LPS) levels because of gut
microbiota dysbiosis (5).

Houttuynia cordata (HC) is a medicinal and edible herb
with an aromatic smell that has long been used in Asia to
treat pneumonia, hypertension, constipation, and hyperglycemia
via detoxification, reduction of heat and diuretic action. There
is accumulating evidence of multiple pharmaceutical effects of
HC, such as anti-cancer (7), anaphylactic inhibitory (8), anti-
mutagenic (9), anti-inflammatory (10), anti-allergic (11), anti-
oxidative (12), anti-viral (13), anti-bacterial (14), anti-obesity
(15), and anti-diabetic (16) activities. Moreover, metformin, a
well-known biguanide antidiabetic agent that has been used for
more than 60 years, exerts multiple-properties such as inhibition
of hepatic gluconeogenesis, enhancement of insulin sensitivity
and augmentation of peripheral glucose uptake (17, 18). Despite
its beneficial impacts, metformin produces a large number of
side effects, such as diarrhea, nausea, cramps, vomiting, bloating,

lactic acidosis, and abdominal pain, which usually occur in
clinics (19). The best-known mechanism of action of metformin

is regulation of AMP-activated protein kinase (AMPK) and its
downstream signaling pathway (20). Metformin has also been
found to reduce hepatic gluconeogenesis and hyperglycemia

independently of the AMPK pathway (21). Moreover, metformin
induced augmentation of Akkermansia muciniphila was shown
to improve glucose homeostasis in a HFD induced obese model
(22). Although both HC and metformin have beneficial impacts
onmetabolic disorders, their combination has not been evaluated
to date. Therefore, we examined an innovative agent that was
formulated by combining HC with metformin to synergistically
enhance the therapeutic efficacy and/or decrease side effects
relative to HC or metformin alone. Specifically, the therapeutic
effects of Houttuynia cordata extract (HCE) and metformin
in combination were investigated using high-fat-diet (HFD)
induced metabolic dysfunction of mice model. We also explored

the corresponding potential mechanisms, especially regarding
alteration of gut microbiota and systemic endotoxemia.

MATERIALS AND METHODS

Houttuynia Cordata Extract (HCE) and
Metformin
Houttuynia cordatawas obtained from the pharmacy of Dongguk
University Ilsan International Hospital (Goyang, South Korea).
After grinding, powder of Houttuynia cordata was extracted

by 5 L ethanol recycling reflux for 4 h. The extract was then
filtered and vacuum lyophilized at −70◦C, which gave a 5.82%
yield. The HCE contained 3.63% quercitrin, 0.45% quercetin
and 0.99% of isoquercitrin (23). Metformin was purchased from
Sigma-Aldrich (St. Louis, MO, USA).

Animals and Experimental Schedule
The animal study was approved by the Institutional Animal Care
and Use Committee (IACUC-2015-037) of Dongguk University
and conducted in accordance with the Guide for the Care and
Use of Laboratory Animals (Institute of Laboratory Animal
Resources, Commission on Life Sciences, National Research
Council, USA; National Academy Press:WashingtonD.C., 1996).
Specific-pathogen-free (SPF) C57BL/6j male mice were obtained
from Koatech (Gyeonggi-do, South Korea). After 1 week of
acclimatization, 40 mice were equally divided into five groups
by average body weight. The normal group was fed a control
diet (Table S1) (AIN-93G diet) for 14 weeks, while the other
four groups were continuously fed 60% calorie high fat diet
(HFD) (Table S1) for 14 weeks (Figure 1A). From week five to
14, among the HFD-fed mice, eight were treated with metformin
(100 mg/kg/day; metformin group), eight with HCE (400
mg/kg/day), eight were treated with a combination of metformin
(50 mg/kg/day) and HCE (200 mg/kg/day) and the remaining
eight were administrated distilled water as a negative control
group. The experimental doses of metformin and HCE were
determined based on their clinical dosages and the Guidance for
Industry (2005). On the last experimental day, fresh stool samples
were collected, and after 12 h of fasting all the animals were
weighed and anesthetized using Zoletil (tiletamine-zolazepam,
Virbac, Carros, France) and Rompun (xylazine-hydrochloride,
Bayer, Leverkusen, Germany) in a 1:1 v/v combination. Bloodwas
then collected from the ventral aorta and rapidly transferred into
a BD Vacutainer (Franklin Lakes, NJ, USA) for serum separation.
Liver, intestine and fat tissues were removed, weighed and rapidly
stored in liquid nitrogen for future analysis.

Oral Glucose Tolerance Test (OGTT)
In the last week of the animal experiment, rats were fasted for
12 h, and then orally dosed with glucose solution (2 g/kg, Sigma-
Aldrich, St. Louis, MO, USA). The blood glucose levels were
then measured by ACCU-CHEK Active (Mannheim, Germany)
using blood collected from the tail vain at 0, 30, 60, 90, 120min
post-glucose dosing. The OGTT results were also expressed as
areas under the curves (AUC) to evaluate the degree of glucose
tolerance impairment.
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FIGURE 1 | Animal experimental schedule and body mass. The experimental design is illustrated intuitively (A) and body weight of mice were recorded at the start

(B), week 4 (C) and week 14 of the experiment (D). Data were expressed as the means ± SD and evaluated using one-way ANOVA followed by the LSD post-hoc

test. ##P < 0.01 compared to the normal group; *P < 0.05 compared to the HFD group; **P < 0.01 compared to the HFD group (n = 7). “ns” means none statistic

significant.

Serum Biochemical Analysis
Blood collected from the ventral aorta was centrifuged at 3,000
× g for 15min to separate the serum. The serum levels of
triglyceride (TG), total cholesterol (TC), high density lipoprotein
(HDL), aspartate transaminase (AST), and alanine transaminase
(ALT) were subsequently determined using commercial
enzymatic assay kits (Asan Pharmaceutical Co., Seoul, Korea)
according to the manufacturer’s instructions.

Serum Endotoxin Analysis
Serum endotoxin levels was measured using a Limulus
Amebocyte Lysate (LAL) kit (ENDOSAFE, SC, USA) according
to the kit manufacturer’s instructions. Briefly, 10× dilutions of
mice serum samples were added to the kit supplied plate andwells
were spiked with 5 EU/mL standard. Following the addition of
100µL of LAL reagent, the kinetic absorbance of the mixture was
measured at 405 nm and the reaction onset times of the samples
were compared to the standard curve.

Oil Red O and H&E Staining
Liver, jejunum and adipose tissues were embedded in FSC 22
frozen section compound (Leica Biosystems, Richmond, IL,
USA), then frozen and sectioned at 5mm using a Leica CM1860
Cryostat (Leica Microsystems, Nussloch, Germany). Sections
were then stained with oil red O solution or hematoxylin and
eosin (Cayman chemical, USA), after which they were mounted
on silicone-coated slides (Leica, USA) and examined using an
Olympus BX61 microscope (Tokyo, Japan) and photographed
using an Olympus DP70 digital camera (Tokyo, Japan).

Real-Time PCR for Analyzing Gene
Expression in Liver Tissue
Total RNA was isolated from liver tissues using TRIsureTM

(BIOLINE, MA, USA). cDNA was synthesized using an
AccuPower RT premix kit (Bioneer, Daejeon, Korea) and real-
time PCR amplification reactions were conducted with the
corresponding primers (Table S2) using a LightCycler R© FastStart
DNA Master SYBR Green kit and a LightCycler instrument

(Roche Applied Science, Indianapolis, ID, USA). The reaction
was conducted in a total reaction volume of 20 µl consisting of
PCR mix, 1 µl of cDNA, and gene-specific primers (10 pmol
each). The relative gene expression was represented by 2−1Ct

using β-actin as a housekeeping gene for normalization, where
Ct is the crossing threshold value and 1Ct = Ct (target gene) -
Ct (β-actin).

Western Blot Analysis
Mice liver tissues were homogenized in RIPA buffer (Abcam,
USA) containing protease and phosphatase inhibitors (Abcam,
USA). The supernatant was isolated, and total protein
concentrations was measured using a BCA kit (Thermo
Scientific, USA). Denatured proteins were separated in 10% SDS-
PAGE gel, then transferred to polyvinylidene fluoride (PVDF)
membrane (GE Healthcare Life Science, Germany) using the
Mini-PROTEAN Tetra Cell System (BioRad Laboratories Inc.,
CA, USA). The membranes were blocked by 5% skim milk with
TBST and Tris-buffered saline, then washed with Tween 20 for
1 h and treated with primary antibody (1:10,000) overnight at
4◦C. Samples were subsequently incubated with horseradish
peroxidase-conjugated secondary antibodies (1:2,000, beta actin
manufactured by Santa Cruz, USA; AMPK, phosphorylated-
AMPK and GLUT2 manufactured by Cell Signaling, USA) for
1 h. Detailed information regarding the antibodies is shown in
Table S3. Finally, the band on membranes were detected using
SUPEX ECL solution and photographed using a FUJIFILM
LAS3000 Image Analyzer (FUJI, Japan).

Fecal Microbial Analysis Using RFLP
(Restriction Fragment Length
Polymorphism) and Real-Time PCR
Fecal genomic DNA was isolated using a QIAamp DNA
Stool Mini Kit (Qiagen, CA, USA) for RFLP and real-
time PCR analyses. The 16S rRNA genes were PCR
amplified using the universal bacterial primers 27F (5′-
AGAGTTTGATCCTGGCTCAG-3′), which were 5′ end-labeled
with 5-FAM and 1492R (5′-GGTTACCTTGTTACGACTT-3′).
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PCR amplification was conducted using an initial denaturation
step at 94◦C for 3min, followed by 30 cycles of 1min at 94◦C,
45 s at 53◦C and 2min at 72◦C. The reaction was completed
with a final primer elongation step at 72◦C for 10min. Following
confirmation by agarose gel electrophoresis, PCR products were
digested with the MspI restriction enzyme (TaKaRa, Shiga,
Japan). The DNA samples containing the extension products
were then added to Hi-Di formamide (Applied Biosystems) and
GeneScanTM 1200 LIZ R© Size Standard (Applied Biosystems,
Foster City, CA, USA). The mixture was subsequently incubated
at 95◦C for 5min, placed on ice for 5min, then analyzed using
a 3730XL DNA analyzer (Applied Biosystems, Foster City, CA,
USA). Next, T-RFLP electropherograms were imaged using
GeneMapper R© v5.0 and the Peak Scanner 2 software (Applied
Biosystems). The relative peak areas of each terminal restriction
fragment (TRF) were determined by dividing the area of the
peak of interest by the total area of peaks within the following
threshold values: lower threshold = 50 bp; upper threshold =

500 bp. Data were normalized by applying a threshold value for
relative abundance at 0.5% and only TRFs with higher relative
abundances were included in the remaining analyses.

Roche LightCycler FastStart DNA Master SYBR Green was
used to conduct real-time PCR using the LightCycler 480
system (Roche Applied Science, Indianapolis, IN, USA). The
primer sequences targeting the 16S rRNA gene of the bacteria
are listed in Table S2. The standard conditions for the PCR
amplification reactions were applied as previously described (23).
The relative quantification of bacterial abundance is shown by
2−Ct calculations (Ct, threshold cycle). The final results are
expressed as normalized fold values relative to the normal group.

Cells Culture and Viability Assay
All cell lines were cultured in an incubator at 37◦C in presence
of humidified air of 5% CO2. Mouse myoblasts (C2C12; Korea
Cell Line Bank, Seoul, Korea) were cultured in DMEM or RPMI-
1640 (GIBCO, Carlsbad, CA, USA) supplemented with 10%
fetal bovine serum (FBS, GIBCO, CA, USA), 2mM L-glutamine
(GIBCO, Carlsbad, CA, USA), 100 U/ml penicillin (GIBCO,
Carlsbad, CA, USA), and 100µg/ml streptomycin (GIBCO,
Carlsbad, CA, USA). The cell viability was determined using
an EZ-cytox enhanced cell viability assay kit (DOGEN, Seoul,
Korea). Briefly, after achieving approximately 80% confluency,
the cells were treated for 24 h with quercitrin or quercetin (Sigma,
USA) at 1, 5, 10, 20, 50, or 100µM concentrations. EZ-Cytox was
added to the cells 2 h prior to the end of the treatment schedule.
Following completion of the reaction, the culture media were
transferred to a fresh 96-well microplate. The absorbance of the
wells was then read at 450 nm (650 nm as a reference wavelength)
(Spectramax Plus, Molecular Devices, CA, USA). The viability of
the control cells, in terms of their absorbance, was set to 100%.

Determination of Glucose Uptake in vitro
The C2C12 cells were seeded at 1 × 104 cells per well
in 96-well black, clear bottom culture plates (Greiner Bio-
One, Frickenhausen, Germany) together with 10% FBS/DMEM
(GIBCO, Carlsbad, CA, USA) plus antibiotics (GIBCO, Carlsbad,
CA, USA) for 24 h at 37◦C in presence of humidified air of

5% CO2. The cells were then incubated in glucose-free DMEM
supplemented with 2% horse serum for 96 h until more than
90% differentiation was achieved (approximately 96 h). Next,
cells were treated with 10mM glucosamine (Sigma-Aldrich, MO,
USA) and/or 200 nM insulin (Sigma, USA) for 4 h. Finally, cells
were treated with metformin (750µM) alone or in combination
with HCE (100µg/mL), quercitrin (8µM) or quercetin (2µM)
for 12 h and subsequently treated with 75µg/mL of 2-deoxy-2-
[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG,
Life Technologies, CA, USA) for 2 h. Eventually, the uptake of
2-NBDG by the cells was measured by fluorescence microscopy
(Olympus BX-61, Tokyo, Japan) and determined using a
SpectraMax M3 fluorescence reader (Molecular Devices, CA,
USA) with excitation and emission wavelengths of 475 and
515 nm, respectively.

Statistical Analysis
All experimental data were analyzed by one-way ANOVA
followed by the LSD (least significant difference) post-hoc test
using SPSS 17.0 (Chicago, IL, USA). The results were expressed
as the means ± standard deviations (SD) and a P < 0.05 was
considered statistically significant.

RESULTS

Reduction of Body, Organ, and Fat Weights
Following termination of the experimental schedule at week
14, the body, fat, liver, and kidney weights of HFD-fed mice
were significantly higher compared to animals fed normal diet
treatment, as expected. Treatment of HFD-fed animals with
both HCE and metformin + HCE markedly reduced the body,
fat, liver and kidney weights. Moreover, exposure of HFD-
fed mice to metformin reduced the abdominal fat weight,
but less significantly than the HCE and metformin + HCE
treatments (Figures 1B–D, Table 1). Furthermore, metformin
treatment did not produce any significant effect on body,
perirenal, epididymal or total fat of HFD-fed animals. Although
not statistically significant, combination of metformin and HCE
showed greater anti-obesity effects than either compound alone
(Table 1).

Amelioration of Serum Lipid Parameters
and Hepatic Transaminases
As expected, treatment with HFD significantly increased the
levels of serum TG, TC, AST and ALT, and markedly decreased
the levels of serum HDL. Combined metformin and HCE
treatment significantly attenuated the levels of TG, TC, AST and
ALT, and significantly increased the levels of serum HDL in
the HFD group. Metformin treatment alone only significantly
lowered the level of serum ALT, while HCE treatment alone
markedly lowered the levels of serum TC and ALT relative
to the HFD group. Overall, combination of metformin and
HCE group ameliorated the serum lipid profile and liver
transaminases to a greater extent than metformin or HCE alone
(Table 2).
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TABLE 1 | Comparison of body, fat and organ weights.

Groups normal HFD metformin metformin + HCE HCE

Body weight gain

(g/week)

0.48 ± 0.07 1.62 ± 0.22## 1.40 ± 0.23 1.04 ± 0.46** 1.22 ± 0.37*

Food intake

(g/week)

16.9 ± 0.8 17.4 ± 0.8 15.6 ± 0.8** 16.5 ± 0.8* 16.4 ± 0.7*

Food efficiency

ratio

0.028 0.094 0.085 0.059 0.072

Abdominal fat (g) 0.29 ± 0.05 1.51 ± 0.09## 1.23 ± 0.31* 0.74 ± 0.36** 1.12 ± 0.23**

Perirenal fat (g) 0.29 ± 0.11 0.99 ± 0.09## 0.98 ± 0.14 0.80 ± 0.15* 0.83 ± 0.14*

Epididymal fat (g) 0.86 ± 0.21 1.93 ± 0.29 2.31 ± 0.46 2.20 ± 0.38 2.20 ± 0.43

Total fat (g) 1.49 ± 0.37 4.40 ± 0.38# 4.52 ± 0.47 3.76 ± 0.80* 4.14 ± 0.53

Liver weight (g) 0.93 ± 0.08 1.86 ± 0.15## 1.40 ± 0.28** 1.16 ± 0.33** 1.24 ± 0.21**

Kidney weight (g) 0.32 ± 0.02 0.39 ± 0.03## 0.34 ± 0.03** 0.36 ± 0.02* 0.34 ± 0.03**

TC, total cholesterol; HDL, high density lipoprotein; TG, triglyceride. Data were expressed as Mean ± SD, different letters indicate significantly different at measured by One-Way ANOVA

followed by LSD (P < 0.05, n = 8). #P < 0.05, ##P < 0.01 compared to the normal group; *P < 0.05, **P < 0.01 compared to the HFD group.

TABLE 2 | Comparison of serum biochemistry parameters.

Groups normal HFD metformin metformin + HCE HCE

TG (mg/dL) 159 ± 38 182 ± 28 195 ± 26 154 ± 18* 176 ± 32

TC (mg/dL) 128 ± 15 187 ± 24## 177 ± 11 155 ± 21** 173 ± 33*

HDL (mg/dL) 27.19 ± 4.72 18.67 ± 2.29## 20.42 ± 1.45 22.95 ± 2.04** 17.66 ± 1.99

AST 24.88 ± 8.62 35.87 ± 6.29# 32.24 ± 7.96 22.87 ± 4.81** 28.49 ± 7.42

ALT 6.43 ± 3.15 23.73 ± 4.90## 14.56 ± 9.19* 6.39 ± 3.97** 9.82 ± 5.78**

TC, total cholesterol; HDL, high density lipoprotein; TG, triglyceride. Data were expressed as Mean ± SD, different letters indicate significantly different at measured by One-Way ANOVA

followed by LSD (P < 0.05, n = 7). #P < 0.05, ##P < 0.01 compared to the normal group; *P < 0.05, **P < 0.01 compared to the HFD group

Improvement of Hyperglycemia and
Glucose Tolerance in vivo and Glucose
Uptake in vitro
As anticipated, HFD treatment significantly increased the fasting
glucose relative to the normal group. Both metformin and HCE
alone and in combination notably lowered the high fasting blood
glucose (FBG) relative to HFD treatment. Combined treatment
with metformin and HCE showed more efficient reduction of
hyperglycemia than treatment with metformin and HCE alone.
In addition, OGTT (AUC) was markedly increased by HFD
treatment relative to the normal group, while HCE and HCE
+ metformin treatment significantly reduced the OGTT (AUC)
relative to HFD treatment. Finally, HCE +metformin treatment
showed more effective amelioration of glucose tolerance than
HCE alone (Figures 2A–C, Table S4).

The in vitro results showed that treatment of C2C12
cells with either metformin alone or metformin + HCE
remarkably elevated the glucose uptake. Interestingly, metformin
in combination with quercitrin plus quercetin treatment, but
not metformin + quercitrin or quercetin, exhibited a similar
ability for glucose uptake in HepG2 cells as metformin + HCE
treatment (Figure 2D).

Alleviation of Systemic Endotoxin
Serum endotoxin level was significantly elevated in the HFD
group relative to the normal group. However, the metformin

+ HCE group more significantly reduced the serum endotoxin
concentration than HCE or metformin alone relative to the HFD
group.

Histopathological Alteration
Staining of hepatic tissue with oil red o revealed that
HFD treatment induced lipid droplet deposition in the liver
(Figure 3A). Additionally, HFD treatment markedly decreased
the length and volume of intestinal villi and obviously
reduced the size of adipocytes relative to the normal group
(Figures 3B–E). However, these alterations were recovered
in all of the medicine-treated groups. Indeed, the hepatic
lipid accumulation, intestinal villi atrophy, and adipocytes
enlargement in the HFD-fed animals were more prominently
ameliorated by metformin + HCE treatment than metformin or
HCE treatment alone.

Activation of AMPK and GLUT2
Treatment of HFD-fed animals with metformin + HCE,
but not metformin or HCE alone, resulted in a significant
increase in hepatic gene expression of AMPK. Moreover,
treatment of HFD-fed animals with metformin+HCE enhanced
the pAMPK/AMPK ratio. However, treatment of HFD-fed
animals with metformin or HCE led to less enhancement of
the pAMPK/AMPK ratio than their combination. Moreover,
exposure of HFD-fed animals to all treatments significantly
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FIGURE 2 | Glucose related parameters in vivo and in vitro. Impact of metformin either alone or in combination with HCE on insulin sensitivity and glucose tolerance in

OLETF rats. Oral glucose tolerance tests (OGTTs) (A) of the animals were conducted in the last week and the areas under the curves (AUCs) (B) were constructed as

described in the Materials and Methods section. Fasting blood glucose (C) was also recorded on the last day of the in vivo experiment. The glucose uptake ability

(D) of metformin (750µM), HCE (100µg/mL) and its main compounds (8µM of quercitrin, 2µM of quercetin) were assessed in C2C12 cells. Data were expressed as

the means ± SD and evaluated using one-way ANOVA followed by the LSD post-hoc test. (B) ##P < 0.01 compared to the normal group; *P < 0.05 compared to

the HFD group (n = 5). (C) ##P < 0.01 compared to the normal group; **P < 0.01 compared to the HFD group (n = 7). (D) #P < 0.05 compared to the control

group; ##P < 0.01 compared to the control group (n = 14).

elevated hepatic gene expression of GLUT2 and markedly
increased the hepatic GLUT2 protein level (Figure 4).

Attenuation of Inflammation
AS expected, HFD treatment significantly up-regulated gene
expression of the TLR4 and downstream signaling proteins, such
as IL-6 and MCP-1, relative to the normal group. Nevertheless,
HCE + metformin treatment showed greater inhibition of the
TLR4 and MCP-1 expression than HFD treatment rather relative
to metformin or HCE alone (Figure 5).

Modification of Gut Microbial Distribution
PCoA analysis of RFLP data revealed unique characteristics
of the gut microbial community in normal, HFD, metformin
and HCE groups. More specifically, the distribution pattern
of the gut microbial community in the metformin + HCE
group had more similarity with the metformin alone group
than with other groups (Figure 6). Exposure to HFD resulted
in a significant increase in the abundance of Gram-negative

bacteria in the animals. Additionally, treatment with HFD-fed
animals withmetformin+HCE, but neithermetformin norHCE
alone, significantly decreased the population of universal Gram-
negative bacteria. Conversely, exposure of HFD-fed animals
to all three medicines significantly reduced the population of
Escherichia coli. No significant differences in the abundance of
universal Gram-positive bacteria were observed among groups.
However, exposure of HFD-fed animals to metformin + HCE,
but neithermetformin norHCE alone, significantly decreased the
population ofClostridium leptum. In contrast, treatment of HFD-
fed animals with metformin or HCE alone resulted in a greater
increase in Bacteriodetes fragilis abundance when compared to
HFD-fed animals treated with metformin+HCE (Figure 7).

DISCUSSION

Although substantial studies have shown that HC andmetformin
individually could improve metabolic activities (24, 25), to the
best of our knowledge, this is the first report to evaluate the

Frontiers in Endocrinology | www.frontiersin.org 6 October 2018 | Volume 9 | Article 62072

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Wang et al. Pharmacotherapeutics of Metformin Plus Houttuynia cordata

FIGURE 3 | Histopathological analysis. On the final experimental day, the liver (A), jejunum (B) and adipose tissue (C) were removed rapidly, after which tissue

sections were prepared and stained with oil red O or hematoxylin and eosin. Histological examination of the tissue sections was conducted under a light microscope

(200× magnification). Calculated length (D) and volume (E) of the intestinal villi are shown. Data were expressed as the means ± SD and evaluated using one-way

ANOVA followed by the LSD post-hoc test. ##P < 0.01 compared to the normal group; *P < 0.05 compared to the HFD group; **P < 0.01 compared to the HFD

group (n = 3).

impact of combined treatment with metformin and HCE in a
dysmetabolic animal model induced by HFD. More specifically,
the major goal of this study was to examine whether the
edible formulation of the medicinal herb HC can exert certain
synergic effects on the activity of metformin or relieve the
side effects of this antidiabetic drug, as well as to elucidate
the underlying mechanism of any overserved effects. Based on
the actual clinical dosage calculated by a conversion formula
from FDA guidance (26), we selected 100 mg/kg of metformin,
400 mg/kg of HCE and half of this dose of metformin (50
mg/kg) together with half the dose of HCE (200 mg/kg)
for this investigation. As a representative anti-hyperglycemia
agent, metformin significantly ameliorated the FBG in HFD-
treated animals. Similarly, HCE treatment significantly reduced
the FBG level in HFD-fed animals; however, combination of
the metformin and HCE more effectively lowered the FBG
than metformin or HCE alone at their higher doses. OGTT,
the most widely used procedure for evaluating whole body
glucose tolerance, has often been employed to assess insulin
sensitivity (27, 28). Indeed, since last 20 years, various indices
of insulin sensitivity/resistance using the data from OGTT are
documented (29). In the present study, treatment of HFD-fed
animals with metformin and HCE in combination led to a
greater improvement in OGTT parameters than higher doses of
metformin or HCE alone, suggesting the synergistic beneficial
impact of these two therapeutic agents on glucose tolerance as

well as insulin sensitivity/resistance. Furthermore, in a previous
study, using relevant in vitro and in vivo models, we showed
that treatment with metformin + HCE was more beneficial than
metformin alone in the improvement of glucose uptake, insulin
secretion, glucose metabolism and insulin sensitivity (23).

Our results revealed that the level of quercetin and quercitrin
in its glycoside form in HCE were 0.363 and 0.045 mg/g,
respectively. These two compounds are active pharmaceutical
ingredients of HCE known to have potential antioxidant and
anti-inflammatory activities (30). Quercetin shares a common
mechanism with metformin in elevating glucose uptake, which
is mediated via AMPK activation and upregulation of GLUT
expression (31). Our results indicated that HCE assisted
metformin in further phosphorylation and gene expression
of AMPK. Exposure of HFD-fed animals to all treatments
significantly elevated glucose uptake ability via an increase in
gene expression of GLUT2 as well as the hepatic level of
transporter protein. Thus, our in vitro and in vivo findings
indicate that the combination of metformin and HCE may
ameliorate hyperglycemia and glucose tolerance via cooperative
augmentation of glucose uptake. It is worth noting that HCE
boosts these effects, which is likely because of the collaborative
action of quercetin and quercitrin rather than other components.

As expected, obesity, fatty liver, and fatty kidney
pathophysiological states were induced in animals in response to
long-term HFD feeding as supported by a noteworthy increase in
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FIGURE 4 | Activation of AMPK and GLUT2. Impact of metformin and HCE alone or combination on the activation of hepatic AMPK and GLUT2 as valued by Western

blotting (A) and real-time PCR (B). #P < 0.05 compared to the normal group; *P < 0.05 compared to the HFD group; **P < 0.01 compared to the HFD group (n = 7).

FIGURE 5 | Suppression of inflammatory cytokines. The gene expression of the TLR4 (A), IL-6 (B) and MCP-1 (C) were analyzed using real-time PCR in liver tissue.

Data were expressed as the means ± SD and statistically evaluated using one-way ANOVA followed by the LSD post-hoc test. #P < 0.05 compared to the normal

group; ##P < 0.01 compared to the normal group; *P < 0.05 compared to the HFD group; **P < 0.01 compared to the HFD group (n = 7).

body, fat, liver and kidney weights. In parallel, histopathological
evidence, such as marked hepatic lipid accumulation and
increased adipocyte population in the adipose tissue of HFD-
fed animals also indicated that HFD generates grievous lipid
dysmetabolism. As in previous studies (23), treatment with
either HCE or metformin ameliorated the symptoms of obesity
and fatty liver in the present investigation. Meanwhile, HFD
destroyed the morphology of intestinal villus; however, these
effects were obviously ameliorated by HCE and/or metformin

treatment. Interestingly, treatment of HFD-fed animals with
HCE andmetformin in combination at their half doses was found
to be more effective at reducing the body weight, liver weight and
fat weight, especially the weight of abdominal and perinephric
fats, than treatment with HCE or metformin alone at their
original doses. Notably, none of the aforementioned treatments
altered the epididymal fat content of HFD-fed animals.

As circulating lipid markers, the levels of serum TG, TC,
and HDL indicate the status of holistic lipid metabolism.
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FIGURE 6 | RFLP and PCoA analysis of mice feces. (A) Before sacrifice, the mice fecal samples were collected and the microbial communities were analyzed by

restriction fragment length polymorphism (RFLP) as described in the Materials and Methods section. (B) PCoA analysis of the RFLP data was conducted and

diagramed using XLSTAT to further evaluate the similarities between bacterial communities.

FIGURE 7 | Quantitative determination of systemic endotoxins and relative abundance of gut microbiota. On the final experimental day, blood was collected from the

animals and the serum endotoxin level (A) was determined as described in the Materials and methods. Stool samples were collected and the abundance of the 16S

rRNA gene of the bacterial strains (B–F) was determined as described in the Materials and Methods section. The results are expressed as normalized fold values

relative to the normal group. Data were expressed as the means ± SD and evaluated using one-way ANOVA followed by the LSD post-hoc test. #P < 0.05

compared to the normal group; ##P < 0.01 compared to the normal group; *P < 0.05 compared to the HFD group; **P < 0.01 compared to the HFD group (n = 7).

“ns” means none statistic significant.

Chronic consumption of HFD induces dyslipidemia and the
development of fatty liver (32). Previous reports demonstrated

that treatment of HFD-fed rats with metformin or HC alone

depleted the increased serum levels of TG and TC, and that
this was accompanied with increased serum HDL levels (33, 34).

Interestingly, in the present study, HCE + metformin treatment
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more effectively restored the dysregulated lipid metabolism than
HCE or metformin alone in HFD-fed animals. Additionally, as
expected, the serum levels of both hepatic transaminases AST and
ALT, the sensitive indicators of various liver injuries including
fatty liver, were found to be significantly higher in the HFD group
than the normal group, which was in keeping with the aberrated
histological architecture of the liver in the former group. Overall,
our results revealed that treatment of HFD-fed animals with
HCE+metformin was more effective than treatment with either
compound alone at restoring liver morphology and reducing the
serum levels of AST and ALT.

Lipopolysaccharides (LPS), which are also known as
endotoxins, exists in the outer membrane of Gram-negative
bacteria, where they trigger entotoxemia (5). Metabolic
endotoxemia-induced chronic low-grade inflammation has been
deemed a vital hallmark of metabolic diseases such as obesity
and type 2 diabetes (35). Previous reports have shown that
both metformin and HC possess anti-inflammatory activities
(36, 37). Furthermore, metformin prevents a number of diseases
that are associated with endotoxin insult of Gram-negative
bacteria (38–40). In our study, combination of metformin and
HCE more significantly attenuated the level of endotoxin in the
circulatory system of HFD-fed animals than either compound
alone. This is further supported by our findings regarding the
significant reduction in abundance of fecal universal Gram-
negative bacteria without any modulation in the population
of fecal universal Gram-positive bacteria in HFD-fed mice
in response to treatment with metformin + HCE, but not
with metformin or HCE alone. The significant suppression
of gene expression of both proinflammatory cytokine IL-6
and inflammatory chemokine MCP-1, as well as the potent
inhibition of TLR4 in HFD-fed mice by metformin + HCE
also indicates a feasible mechanism for the cooperative effects
of this combination on the anti-inflammatory action against
endotoxemia.

For the last few years, the relationship between various
diseases and gut commensal microbiota has been widely
investigated worldwide (41). Gut microbial composition, which
can be altered by HFD (42), plays a vital role in the development
of metabolic diseases through regulation of host energy
homeostasis and redundancy in fat accumulation (43). Therefore,
gut microbial modulation is regarded as a feasible strategy for
ameliorating metabolic diseases. Indeed, previous studies have
revealed that bothmetformin andmedicinal herbs can ameliorate
obesity and related endotoxemia, probably via alteration of the
distribution of gut microbiota (22, 44). According to our RFLP
analysis, exposure of HFD-fed animals to metformin + HCE

caused a more pronounced modulation of the gut microbial
population than other treatments. The more similar profile of
gut microbiota between the metformin + HCE group and the
metformin alone group indicates that metformin potentially
restrained the HCE-induced gut microbiota shift. Interestingly,
similar to dietary fiber (45), combination of metformin and HCE
notably improved glycemia and reduced Clostridium leptum in
HFD-induced obese animals. Therefore, it is conceivable that
HCE together with metformin may exert prebiotic effects leading
to significant reduction in the population of gut Gram-negative
bacteria, including Escherichia coli.

Taken together, our findings suggest that HCE assists
metformin in the improvement of obesity, glucose tolerance,
hyperglycemia, and hyperlipidemia. This is more likely mediated
by reduction of endotoxin and inflammatory stress through
regulation of the gut microbial community, particularly
Clostridium leptum and Gram-negative bacteria including
Escherichia coli. Thus, it is conceivable that combined treatment
with Houttuynia cordata and metformin may provide a more
efficient strategy for the treatment of patients with metabolic
syndrome, particularly T2D and hyperlipidemia. The gut
microbiota responsible for contributing the synergistic effects of
Houttuynia cordata on metformin need to be further explored in
future studies.
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Metformin has been proposed to operate as an agonist of SIRT1, a nicotinamide

adenine dinucleotide (NAD+)-dependent deacetylase that mimics most of the metabolic

responses to calorie restriction. Herein, we present an in silico analysis focusing on

the molecular docking and dynamic simulation of the putative interactions between

metformin and SIRT1. Using eight different crystal structures of human SIRT1 protein,

our computational approach was able to delineate the putative binding modes of

metformin to several pockets inside and outside the central deacetylase catalytic domain.

First, metformin was predicted to interact with the very same allosteric site occupied

by resveratrol and other sirtuin-activating compounds (STATCs) at the amino-terminal

activation domain of SIRT1. Second, metformin was predicted to interact with the NAD+

binding site in a manner slightly different to that of SIRT1 inhibitors containing an indole

ring. Third, metformin was predicted to interact with the C-terminal regulatory segment

of SIRT1 bound to the NAD+ hydrolysis product ADP-ribose, a “C-pocket”-related

mechanism that appears to be essential for mechanism-based activation of SIRT1.

Enzymatic assays confirmed that the net biochemical effect of metformin and other

biguanides such as a phenformin was to improve the catalytic efficiency of SIRT1

operating in conditions of low NAD+ in vitro. Forthcoming studies should confirm the

mechanistic relevance of our computational insights into how the putative binding modes

of metformin to SIRT1 could explain its ability to operate as a direct SIRT1-activating

compound. These findings might have important implications for understanding how

metformin might confer health benefits viamaintenance of SIRT1 activity during the aging

process when NAD+ levels decline.
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79

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2018.00657
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2018.00657&domain=pdf&date_stamp=2018-11-06
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jmenendez@iconcologia.net
mailto:jmenendez@idibgi.org
https://doi.org/10.3389/fendo.2018.00657
https://www.frontiersin.org/articles/10.3389/fendo.2018.00657/full
http://loop.frontiersin.org/people/600218/overview
http://loop.frontiersin.org/people/584563/overview
http://loop.frontiersin.org/people/175802/overview


Cuyàs et al. Metformin and SIRT1

INTRODUCTION

A small molecule capable of targeting aging and delaying

the onset of aging-related multimorbidity has the potential
to radically amend the way we understand (and practice)
modern medicine (1). One such molecule is the biguanide
metformin, which, 60 years after its introduction in Europe

as a first-line therapeutic for type 2 diabetes (2), could have
the potential to prevent multiple aging-related disorders (3–
5). Against this background, the TAME (Targeting Aging with

Metformin) clinical trial has been designed to evaluate the
healthspan-promoting effects of metformin by enrolling patients
aged 65–79 years diagnosed with one single age-associated

condition, and then assessing the global impact of metformin
on a composite outcome including cardiovascular events, cancer,
dementia, mortality, and other functional and geriatric endpoints
(6). Although the current consensus is that metformin has the
ability to target multiple pathways of aging, it is still unclear
whether such a capacity reflects downstream consequences of a
primary action on a single mechanism or whether it involves
direct effects on aging regulators (6).

Metformin has been proposed to exert indirect pleiotropy
on core metabolic hallmarks of aging such as the insulin/IGF-
1 and AMPK/mTOR signaling pathways (4) downstream of its
primary inhibitory action on mitochondrial respiratory complex
I. Alternatively, but not mutually exclusive, its capacity to
operate as a poly-therapeutic anti-aging agent might involve
the direct targeting of the biologic machinery of aging per
se. A systematic chemoinformatics approach established to
computationally predict metformin targets recently revealed that
the salutary effects of metformin on human cellular aging might
involve its direct binding to core chromatin modifiers of the
aging epigenome (7, 8), such as the H3K27me3 demethylase
KDM6A/UTX (9–11). The ability of metformin to directly
interact with TGF-β1, thereby blocking its binding to TβRII
and resulting in impaired downstream signaling (12), is another
example of how metformin might exert pleiotropic effects on
numerous (TGF-β1 hyperfunction-associated) aging diseases
such as organ fibrosis and cancer, without necessarily involving
changes in cellular bioenergetics.

SIRT1 is a member of the class III (NAD+-dependent)
histone deacetylases (HDACs) that mimics most of the metabolic
responses to calorie restriction and contributes to enhanced
healthy aging, including a reduced incidence of cardiovascular
and metabolic diseases, cancer, and neurodegeneration (13–
17). The regulation of SIRT1 by metformin is an archetypal
example of its ability to indirectly and directly impact the
aging process. Because of its enzymatic requirement for NAD+,
SIRT1 is commonly viewed as a unique energy sensor that
couples its function to the NAD+/NADH ratio of the cell or
organism (18–20). Accordingly, metformin-induced metabolic
stress has been shown to induce SIRT1 expression and activity
as a downstream consequence of AMPK activation-induced
augmentation of cellular NAD+ levels (21–24). Although the
striking similarity between the pleiotropic effects of metformin
and the physiological consequences of SIRT1 activation might
merely represent the overlapping metabolic effects of SIRT1

and AMPK activators (25, 26), we are beginning to uncover
evidence on the occurrence of energy crisis (i.e., AMPK/mTOR)-
independent agonist effects of metformin on SIRT1 activity (27–
31). Nonetheless, both the putative molecular interactions on the
atomic scale between metformin and SIRT1 and the mechanism
of action of metformin as a direct modulator of SIRT1 activity
remain elusive.

Here, we performed an in silico docking and molecular
dynamics (MD) simulation study of the SIRT1-metformin
complex coupled to laboratory-based experimental validation,
aiming to interrogate the ability of metformin to directly enhance
NAD+-dependent SIRT1 activity. Our findings present a first-in-
class structural basis to understand the behavior of metformin as
a direct SIRT1-activating compound.

MATERIALS AND METHODS

Computational Modeling of the Human

SIRT1 Protein
To provide in silico insights into the binding pattern of
metformin with SIRT1, we employed eight different crystal
structures of the human SIRT1 protein, namely 4KXQ, 4IF6,
4ZZJ, 4ZZI, 4ZZH, 4I5I, 5BTR, and 4IG9. 4KXQ, and
4IF6 represent the heterodimeric (chains A and B), closed
conformation of SIRT1 bound to adenosine-5-diphosphoribose
(APR) (32). 4ZZJ represents the heterodimeric (chains A –
SIRT1 and B –p53), open conformation of SIRT1 bound to
small molecule sirtuin-activating compounds (STATCs) such
as the non-hydrolyzable NAD+ analog carbaNAD (carba
nicotinamide adenine dinucleotide) or to the carboxamide SIRT1
inhibitor 4TQ (33). 4ZZI represents the monomeric (chain
A), open conformation of SIRT1 bound to the carboxamide
SIRT1 inhibitors 4TQ and 1NS, whereas 4ZZH represents the
monomeric (chain A), open conformation of SIRT1 bound to
the carboxamide SIRT1 inhibitor 4TO (33). 4I5I represents the
dimeric (chains A and B) conformation of SIRT1 bound to NAD
or, alternatively, to the carboxamide SIRT1 inhibitor 4I5 (34).
5BTR represents the heterotrimeric (chains A, B, and C –SIRT1
and D, E, and F –p53), closed conformation of SIRT1 bound to
resveratrol (35). Finally, 4IG9 represents a quaternary complex
of SIRT1 with no bound ligand (32).

Docking Calculations
All docking calculations were performed using Itzamna and Kin
(www.mindthebyte.com), classical docking and blind-docking
software tools. The above mentioned protein structures from
RCSB Protein Data Bank (https://www.rcsb.org) were directly
employed for docking calculations using the cavities defined by
crystallographic ligands where available. Two runs were carried
out for each calculation to avoid false positives.

Molecular Dynamics Simulations
Docking post-processing allowing conformational
selections/induced fit events to optimize the interactions
were performed via short (1 ns) MD simulations using NAMD
version 2.10 over the best-docked complexes, which were selected
based on the interaction energy. The Ambers99SB-ILDN and the
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GAFF forcefield set of parameters were employed for SIRT1 and
metformin, respectively. The GAFF parameters were obtained
using Acpype software, whereas the SIRT1 structures were
modeled using the leap module of Amber Tools. Simulations
were carried out in explicit solvent using the TIP3P water
model with the imposition of periodic boundary conditions
via a cubic box. Electrostatic interactions were calculated by
the particle-mesh Ewald method using constant pressure and
temperature conditions. Each complex was solvated with a
minimum distance of 10 Å from the surface of the complex
to the edge of the simulation box; Na+ or Cl− ions were also
added to the simulation to neutralize the overall charge of
the systems. The temperature was maintained at 300K using
a Langevin thermostat, and the pressure was maintained at 1
atm using a Langevin Piston barostat. The time step employed
was 2 fs. Bond lengths to hydrogens were constrained with
the SHAKE algorithm. Before production runs, the structure
was energy minimized followed by a slow heating-up phase
using harmonic position restraints on the heavy atoms of the
protein. Subsequently, the system was energy minimized until
volume equilibration, followed by the production run without
any position restraints.

Binding Free Energy Analysis
Molecular Mechanics/Generalized Borne Surface Area
(MM/GBSA) calculations were performed to calculate the
alchemical binding free energy (1Gbind) of metformin
against SIRT1. MM/GBSA rescoring was performed using
the MMPBSA.py algorithm within AmberTools. The snapshots
generated in the 1 ns MD simulation were imputed into the
post-simulation MM/GBSA calculations of binding free energy.
Graphical representations were prepared using PyMOL program
and PLIP version 1.3.0.

Interaction Analysis
The predicted binding site residues of metformin to SIRT1
were defined using evidence-based interaction analyses of known
SIRT1 activators/ inhibitors with well-defined binding residues.

SIRT1 Enzymatic Assay
The effects of metformin on SIRT1 activity were assessed
using the SIRTaintyTM Class III HDAC Assay (Cat. #17-
10090, Millipore) and the EpigenaseTM Universal SIRT1
Activity/Inhibition Assay Kit (Cat. # P-4027, Epigentek), as
per the manufacturers’ instructions. In the former assay,
purified SIRT1 enzyme, β-NAD, acetylated peptide substrate,
metformin, and nicotinamidase enzyme were combined and
incubated for 30min. During this time the acetylated peptide
substrate is deacetylated by SIRT1 and produces nicotinamide.
In a secondary reaction, the nicotinamidase enzyme converts
nicotinamide into nicotinic acid and free ammonia (NH+

3 ). To
generate a signal for readout, a proprietary developer reagent
is added and the signal is read (420ex/460em nm) using a
fluorescent plate reader. In the latter assay, an acetylated histone
SIRT1 substrate is stably coated onto microplate wells; active
SIRT1 binds to the substrate and removes acetyl groups from the
substrate and the amount of SIRT1-deacetylated products, which
is proportional to the enzyme activity, can be measured using a

specific antibody. The ratio or amount of deacetylated product,
which is proportional to the enzyme activity, is fluorometrically
measured by reading the fluorescence at 530ex/590em nm.
Metformin, phenformin, and buformin (Sigma-Aldrich Ltd.)
were added from aqueous stock solutions, and proguanil
(Sigma-Aldrich Ltd.) from stock solutions in DMSO.

RESULTS

Molecular Docking and Molecular

Dynamics Simulation Analyses of

Metformin With SIRT1
First, rigid docking calculations were performed over the cavities
defined by the crystallographic ligands in the 4KXQ, 4IF6, 4ZZJ,
4ZZI, 4ZZH, 4I5I, and 5BTR structures (Figures 1, 2). In the
case of the ligandless 4IG9 structure, we performed blind docking
calculations involving cavity searching and docking calculations
over the found cavities. After simulations, we selected more than
one model conformation of metformin to cover all the possible
binding models within the crystallographic binding poses of the
ligands.

The binding energies obtained from the rigid docking
calculations, which were run twice to avoid false positives, are
summarized in Table 1. This approach predicted the ability of
silibinin to directly bind all the above crystal structures of human
SIRT1, with binding energy values up to −5.0 kcal/mol for
the crystal structure 4I5I. It should be acknowledged that the
predicted in silico capacity of metformin to poorly interact with
SIRT1, with rather high binding energies, could be explained
by the small size of metformin and by docking calculations
performed against cavities that, in most cases, are biased toward
the ligand to which the target structure is co-crystallized. To
add protein flexibility to the analysis and to test the stability of
the selected metformin-target complexes, we carried out short
MD simulations of 1 ns to filter out poorly interacting poses.
We then performed MM/GBSA calculations (36) to estimate
the free energy of the binding of metformin to biological
macromolecules such as SIRT1. This estimation of ligand-
binding affinities takes into consideration the dynamic nature of
SIRT1 and it is therefore more reliable to provide a realistic view
of metformin binding affinity than rigid docking estimations
(Figures 3, 4). The energies obtained following MM/GBSA
rescoring calculations over MD simulations are summarized in
Table 1, with the best model highlighted in green. From 30
models of metformin-SIRT1 interactions, 11 of them (which are
highlighted in green in Table 1) were found to maintain their
predicted interacting residues in their corresponding docking
poses.

Analysis of the Binding Mode of Metformin

to SIRT1
The best binding energies of metformin to SIRT1 using rigid
docking calculations were predicted to occur when employing
the model 1 in the 4KXQ and 4IF6 crystal structures, which
highly resemble each other. A detailed analysis of the metformin-
binding mode to 4KXQ and 4IF6 predicted the interaction
of metformin with the same group of amino acids in both
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FIGURE 1 | Rigid docking study of the metformin-binding mode to the APR, CNA, NAD+, and 4I5 binding pockets of SIRT1. Figure shows in sticks all the

pharmacophoric interaction residues involved in the in silico binding of metformin to the APR, CNA, NAD+, and 4I5 binding pockets of SIRT1, using PLIP. The main

residues involved in silibinin interaction with the protein backbone are shown in black; the residue numbers shown correspond to the original PDB file numbering.

FIGURE 2 | Rigid docking study of the metformin-binding mode to the resveratrol (RESV) binding pocket of SIRT1. Figure shows in sticks all the pharmacophoric

interaction residues involved in the in silico binding of metformin to the RESV binding pocket of SIRT1, using PLIP. The main residues involved in silibinin interaction

with the protein backbone are shown in black; the residue numbers shown correspond to the original PDB file numbering.
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TABLE 1 | Docking binding energies and MM/GBSA-based energy rescoring

calculations over MD simulations of metformin against SIRT1.

PDB ID Ligand Model Binding Energy MM/GBSA energy

(kcal/mol) (kcal/mol)b

R0/R1a

4KXQ APR 1 −4.0/−4.6 −18.6175

2 −3.9/−3.8 −14.6640

3 −3.3/−2.5 −13.8421

4 −3.1/−2.0 −4.6926

4IF6 APR 1 −4.2/−4.2 −14.3340

2 −4.4/−3.8 −12.7689

3 −3.7/−3.8 −10.4075

4 −3.1/−2.1 −13.2829

4ZZJ 4TQ 1 −2.3/−2.0 −0.8082

CNA 2 −3.6/−3.4 −17.8281

3 −3.5/−4.0 −25.1540

4 −3.4/−3.4 −21.7529

4ZZI 4TQ 1 −2.1/−2.2 −2.2537

1NS 2 −4.6/−3.2 −19.0828

4ZZH 4TO 1 −2.1/−1.7 −4.1866

4I5I NAD 1 −5.0/−5.0 −13.4730

2 −4.9/−4.9 −5.9833

3 −4.4/−4.3 −14.8859

4I5 4 −4.6/−3.7 −16.9806

5BTR STL-A 1 −3.6/−3.6 −20.8897

STL-B 2 −3.2/−3.1 −11.2383

3 −2.9/−2.5 −26.9390

STL-C 4 −3.2/−3.0 −11.0961

5 −3.1/−3.2 −16.5834

STL-D 6 −3.5/−3.7 −10.7575

7 −3.5/−3.5 −23.6198

STL-E 8 −3.4/−3.2 −25.0726

STL-F 9 −3.4/−3.4 −18.9041

4IG9 1 −3.9/−3.9 −2.7150

2 −4.4/−4.4 −8.3935

The more negative the binding energy, the more plausible the interaction.
aEach docking calculation was performed twice (R0 and R1) to avoid false positives.
bEnergy obtained after MM/GBSA calculations.

Green, best model per target; Yellow, models better maintaining the binding mode in

docking and MD studies.

SIRT1 crystal structures, namely D272, G440, S442, N465, and
E467.

When evaluating the binding mode of metformin to the
open conformation of the heterodimer 4ZZJ, which has two
crystallographic ligands (carbaNAD and 4TQ), we observed
that metformin was predicted to share one interacting residue
(G263) with those predicted in the 4KXQ crystal structure. It is
noteworthy that the carbaNAD structure exhibits a reasonable
similarity to APR, which is the crystallographic ligand present
in 4KXQ and 4IF6. Even though there were no other matching
residues, the other predicted interactions suggested a common
binding site for 4KXQ and 4IF6, which can be explained in terms
of the large size of the cavity in which the interaction could take

place, the small size of metformin as a ligand, and the dynamic
nature of the protein. When focusing on the crystallographic
ligand 4TQ, which is placed at the N-terminal domain (NTD)
of 4ZZJ, we predicted a very low interaction energy following
MM/GBSA analyses, which can be explained in terms of the
exposure of the NTD region and the lack of predicted interacting
residues nearby. Therefore, metformin is not predicted to bind
the NTD region in the open state of SIRT1.

The monomeric 4ZZI and 4ZZH crystallographic structures
contain the ligands 4TQ and 4TO, respectively, at the NTD
region of SIRT1. As above predicted for 4ZZJ, we failed to
predict any putative interaction of metformin at the NTD region.
However, it should be noted that good binding energies were
predicted for the crystallographic ligand 1NS, which is placed
in a position that is opposed to the cavity occupied by 4TQ
and 4TO and, accordingly, we predicted some residues with
which metformin could interact with at the 1NS cavity. To better
understand this difference, we performed an alignment using 4I5I
as a template, finding that 1NS was placed near the terminal
benzene ring of the SIRT1 cofactor NAD and the 4I5 cavity. This a
region where metformin is predicted to correctly bind according
to the results obtained when employing the 4I5I crystallographic
structure (see below).

The monomeric conformation of 4I5I contains NAD and 4I5
as crystallographic ligands. When focusing on the NAD binding
site, the model 1 predicted a binding mode equivalent to that
predicted by the model 1 in 4KXQ and 4IF6, with a good
binding energy. Indeed, the predicted interacting residues were
shared with those predicted in the model 1 of 4KXQ and 4IF6,
namely D272, G440, N465, and E467. When focusing on the 4I5-
binding site, it should be noted that the mechanism of action
of 4I5 involves a displacement of NAD from its natural site, as
it places near the terminal benzene ring of NAD. Interestingly,
the predicted interacting residues of metformin were different
to those predicted when employing 4KXQ and 4IF6, but similar
to those predicted when evaluating metformin binding to the
1NS cavity at 4ZZI. Moreover, the MM/GBSA-based energy
binding of metformin at the 4I5 site was reasonably good
(−16.9806 kcal/mol), similar to that for 1NS (−19.0828 kcal/mol;
Table 1).

The closed conformation of SIRT1 represented by 5BTR with
resveratrol as a crystallographic ligand also contains p53 peptides,
as in the case of 4ZZJ. Following a detailed analysis of the
putative binding modes and predicted residues interactions, we
concluded that metformin models 1 for chain A, model 3 for
chain B, and model 5 for chain C were placed over the same
binding pocket of resveratrol and, importantly, exhibited good
binding energies (−20.9987, −26.9390, and −16.5834 kcal/mol,
respectively; Table 1). It should be noted that in the case of
the model 1 for chain A, an extra resveratrol ligand appears
and interacts with metformin, as resveratrol was another residue
within the cavity. Good interaction energies were also predicted
for chains D (model 7, −23.6198 kcal/mol) and E (model
8, −25.0726 kcal/mol), which represent the same resveratrol
ligand. A detailed evaluation of the binding mode of metformin
predicted a shared interaction in both models involving N226,
E230, and K3 (a residue from p53), thereby suggesting that
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FIGURE 3 | Self-docking poses under molecular dynamics simulations modeling the metformin binding mode to the APR, CNA, NAD+, and 4I5 binding pockets of

SIRT1. Overall structure and views of the interaction between metformin and the APR, CNA, NAD+, and 4I5 binding pockets of SIRT1. The coordinating residues are

numbered.
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FIGURE 4 | Self-docking poses under molecular dynamics simulations modeling the metformin binding mode to the resveratrol (RESV) binding pocket of SIRT1.

Overall structure and views of the interaction between metformin and the RESV binding pockets of SIRT1. The coordinating residues are numbered.
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FIGURE 5 | Effects of metformin on the enzymatic activity of SIRT1. (A) Dose-response analyses of the effects of graded concentrations of metformin on the activity

of SIRT1 using the SIRTainty assay. Columns and error bars represent mean values and S.D., respectively. Comparisons of means were performed by ANOVA;

P < 0.01 were considered to be statistically significant (denoted as *). Data points are presented as mean ± SD; three technical replicates per n; n = 2 biochemical

replicates (B) Left. Human recombinant SIRT1 enzyme was incubated with graded concentrations of NAD+ and indicated metformin concentrations in a cell-free

system using the EpigenaseTM Universal SIRT1 Activity/Inhibition Assay Kit (Fluorometric). Data points are presented as mean ± SD; three technical replicates per n; n

= 2 biochemical replicates. Points are connected by best-fit lines using the Michaelis-Menten model (GrahPad Prism software). Right. NAD+ concentrations needed

to achieve 75% of the maximal SIRT1 activity in the absence or presence of graded concentrations of metformin. (C) Left. Structural formulas of the compounds with

the biguanide moiety highlighted in red. Right. Human recombinant SIRT1 enzyme was incubated with 10 µmol/L NAD+ in the absence or presence of graded

concentrations of biguanides as in (B). Data points are presented as mean ± SD; three technical replicates per n; n = 2 biochemical replicates.

metformin might bind the closed conformation of SIRT1 at the
resveratrol-binding cavity.

The binding mode of metformin to the 4IG9 crystal
structure of SIRT1 required a careful and detailed analysis.
Following the blind docking calculations, we selected the two
models that seemed to better place in the NAD-binding site,
which was identified upon structural overlapping. Despite the
low interaction energies predicted by MM/GBSA (Table 1), a
comprehensive analysis of the interacting residues confirmed
the accuracy of the selected cavities and models. Metformin
was predicted to move from the docking binding area to a
better position near the NAD+-binding site. Interestingly, at
the end of each MD simulation, metformin was predicted
to interact with those residues that seemed to be relevant
for defining the binding mode of metformin to SIRT1. The
model 1 predicted that the interacting residues after blind
docking were R274, F297, and V412. However, following the
MD simulation, the residues predicted to be involved in the
metformin-binding mode were D292, Q294, and F414. It should
be noted that the interacting residues D292 and Q294 were
shared also with the binding mode of metformin on the chain
C of 5BTR, with D292 emerging as a key residue involved
in the metformin-binding mode to the 5BTR crystal. In the
model 2 of 4IG9, the sole interacting residue predicted after
blind docking was D348. Following MD simulation, however,
the residues predicted to be involved in the metformin-binding
mode were A262, P271, D272, and F273, with D272 as a key
residue involved in the metformin-binding mode to 4KXQ, 4IF6,
and 4I5I. Once again, this suggests metformin’s capacity to bind

not only the inhibitor pocket but also the cofactor cavity of
SIRT1.

The displacement of metformin observed when using the
ligandless 4IG9 crystal structure of SIRT1 was found to take
place also in the model 3 of the 4KXQ crystal, in which the
predicted interacting residues in the metformin-binding mode
after blind docking were A262, R274, Q345, H363, G440, and
S441. By contrast, after MD simulation, the predicted residues
were D272, G440, N465, and E467 (i.e., the same group of
residues predicted to be involved in themodel 1 of 4KXQ crystal).
The fact that three of the models that fail to maintain the pose
(i.e., model 3 in the 4KXQ crystal, andmodels 1 and 2 in the 4IG9
crystal) finally move to a better binding site seems to validate
the binding modes of metformin observed in other SIRT1 crystal
structures.

Metformin Directly Enhances SIRT1

Enzymatic Activity
To confirm the ability of metformin to directly enhance
SIRT1 activity, we first used the SIRTaintyTM Class III
HDAC Assay, which employs nicotinamidase to measure
nicotinamide generated upon cleavage of NAD+ during
SIRT1-mediated substrate deacetylation, and provides a
direct assessment of SIRT1 activity. The production of
nicotinamide during the 30min that the acetylated peptide
substrate is acted on by SIRT1 was dose-dependently
increased by the concomitant presence of graded
concentrations of metformin until a saturating plateau
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TABLE 2 | Docking binding energies of metformin-related biguanides against

SIRT1.

PDB ID Ligand Biguanide Binding Energy (kcal/mol) R0/R1a

4KXQ APR Proguanil −6.8/−6.7

Cycloguanil –

Buformin −5.5/−5.6

Phenformin −7.2/−7.2

NorMitoMet −5.6/−5.0

4IF6 APR Proguanil −6.2/−6.2

Cycloguanil −5.3/−5.3

Buformin −5.7/−5.7

Phenformin −7.1/−6.9

NorMitoMet −5.6/−4.6

4ZZI 4TQ Proguanil −3.7/−3.7

Cycloguanil −4.7/−4.7

Buformin −2.5/−2.6

Phenformin −4.5/−4.4

NorMitoMet −5.2/−3.8

4ZZI 1NS Proguanil −6.9/−6.9

Cycloguanil −7.7/−7.7

Buformin −5.7/−5.5

Phenformin −7.4/−7.2

NorMitoMet −9.0/−8.4

4I5I 4I51 Proguanil −7.3/−6.5

Cycloguanil −7.8/−7.3

Buformin −6.2/−6.2

Phenformin −6.9/−6.8

NorMitoMet 1.2/1.1

4I51 NAD Proguanil −7.3/−6.2

Cycloguanil −7.8/−7.4

Buformin −6.2/−5.7

Phenformin −6.4/−6.4

NorMitoMet −3.8/−3.6

4ZZJ 4TQ Proguanil −3.9/−3.1

Cycloguanil −4.2/−4.0

Buformin −2.8/−2.2

Phenformin −2.7/−1.9

NorMitoMet −5.1/−4.9

4ZZJ CNA Proguanil −7.4/−7.4

Cycloguanil −7.3/−7.3

Buformin −5.5/−5.6

Phenformin −6.9/−6.0

NorMitoMet −8.5/−7.5

4ZZH 4TO Proguanil −4.1/−4.0

Cycloguanil −4.0/−4.1

Buformin −3.4/−3.4

Phenformin −3.7/−3.7

NorMitoMet −3.7/−3.5

4IG9 – Proguanil −5.0/−4.9

Cycloguanil −5.7/−5.7

Buformin −4.3/−4.3

Phenformin −5.5/−5.5

NorMitoMet −1.4/−1.2

(Continued)

TABLE 2 | Continued

PDB ID Ligand Biguanide Binding Energy (kcal/mol) R0/R1a

5BTR STL-A Proguanil −6.9/−6.9

Cycloguanil −6.9/−6.9

Buformin −5.4/−5.5

Phenformin −7.2/−7.1

NorMitoMet −7.3/−7.3

5BTR STL-B Proguanil −7.3/−6.8

Cycloguanil −7.3/−7.3

Buformin −5.3/−5.3

Phenformin −7.3/−7.3

NorMitoMet −6.8/−6.9

5BTR STL-C Proguanil −6.9/−6.9

Cycloguanil −7.6/−7.6

Buformin −4.8/−4.8

Phenformin −7.0/−6.5

NorMitoMet −7.3/−7.6

5BTR STL-D Proguanil −7.5/−7.5

Cycloguanil −7.5/−7.5

Buformin −5.5/−4.9

Phenformin −6.9/−6.4

NorMitoMet −7.1/−6.9

5BTR STL-E Proguanil −8.5/−8.6

Cycloguanil −6.3/−6.3

Buformin −5.6/−5.6

Phenformin −8.0/−8.0

NorMitoMet 6.5/4.2

The more negative the binding energy, the more plausible the interaction.
aEach docking calculation was performed twice (R0 and R1) to avoid false positives.

level of SIRT1 activity was reached at 1 mmol/L metformin
(Figure 5A).

To characterize further how metformin might directly
regulate SIRT1 functioning under different NAD+

concentrations in a cell-free system, we used the EpigenaseTM

Universal SIRT Activity/Inhibition Assay Kit. The activation
curves of recombinant SIRT1 functioning under different NAD+

concentrations in the absence or presence of metformin are
shown in Figure 5B. Treatment with graded concentrations
of metformin significantly reduced the KM for NAD+ while
the Vmax of SIRT1 was slightly increased (up to 30%) in the
presence of the highest concentration of metformin tested
(10 mmol/L). The metformin-induced leftward-shift of the
SIRT1 activation curve, was more evident when evaluating the
concentration of NAD+ (in terms of relative KM) required
to achieve ¾ of the maximal SIRT1 activity in the presence
of metformin, which was increased by 70-fold—from 8.5
µmol/L NAD+ in the presence of 10 mmol/L metformin
to >500 µmol/L in the absence of metformin (Figure 5B).
Perhaps more importantly, the ability of metformin to
enhance the capacity of SIRT1 to operate at lower NAD+

concentrations similarly occurred at physiological/therapeutic
concentrations of metformin; thus, metformin concentrations
as low as 1 µmol/L were sufficient to reduce by 7-fold the
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FIGURE 6 | Binding modes of metformin to SIRT1. Global view of the human SIRT1 structure showing the location of the metformin binding sites: (1) metformin poses

(4KXQ, 4IF6, 4I5I, and 4ZZJ) at the NAD+ binding site, specifically the indole nucleus; (2) metformin poses (4ZZI) at a cavity between the NAD+ binding site and the

one occupied by the indole derivative (SIRT1 inhibitor) 4I5; and (3) metformin pose at the resveratrol binding pocket at the amino-terminal activation domain of SIRT1.

amount of NAD+ required to allow a near-maximal activity of
SIRT1.

To evaluate whether pharmacologically relevant biguanides
might be viewed as a new family of pharmacologically active
SIRT1 activators, we re-evaluated the docking binding energies
of several metformin-related biguanides including the anti-
malarial biguanides proguanil and cycloguanil, the anti-diabetic
biguanides phenformin and buformin, as well as norMitoMet,
a novel metformin derivative tagged with the mitochondrial
vector triphenylphosphonium (TPP+) (37) (Table 2). The open
conformations of SIRT1 bound to SIRT1 inhibitors (i.e., 4ZZI-
4TQ, 4ZZJ-4TQ, and 4ZZH-4TO) yielded the worst energy
binding predictions for all the biguanides. The predicted binding
behavior of buformin and proguanil was relatively similar
across all the cavities, with the exception of 5BTR (STL-
E), which appeared as the preferred one for proguanil. Our
molecular docking approach was incapable of predicting the
binding energy of cycloguanil to cofactor cavity 4KXQ-APR;
very poor energy binding energies were also predicted for
norMitoMet and the 4I5I-4I5, 4IG9, 5BTR (STL-E), and 5BTR

(STL-F), most likely because of its large size. Phenformin
emerged as a good SIRT1-interacting candidate among all the
biguanides, exhibiting relatively high binding energies across all
the SIRT1 cavities tested, especially against those representing

the closed conformation of SIRT1 binding. We then selected
proguanil, buformin, and phenformin to experimentally validate
the computational predictions. Figure 5C shows that SIRT1
activity was augmented in a dose-dependent manner in the
presence of different biguanides, with 1 mmol/L phenformin
being capable of enhancing the catalytic activity of SIRT1 by
90% when forced to operate at a NAD+ concentration as low as
10 µmol/L.

DISCUSSION

We performed a first-in-class computational study aimed to
disentangle the putative binding modes of metformin to the
SIRT1 enzyme. Our approach reveals that, whereas metformin
is predicted to interact with several pockets of SIRT1 inside
and outside the central deacetylase catalytic domain (Figure 6),
the net biochemical effect is to improve the catalytic efficiency
of SIRT1 when it operates at low NAD+ conditions in vitro
(Figure 7). These findings altogether appear to confirm the ability
of metformin to operate as a direct SIRT1-activating compound.

When used at low-millimolar concentrations that are
incapable of activating the energy-sensing AMPK/mTOR
pathway, metformin was previously shown to operate as a
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bona fide SIRT1 agonist to block Th17 cell differentiation,
similar to well-known SIRT1 activators such as resveratrol and
SRT1720 (27). The capacity of metformin to operate as a direct
pharmacological SIRT1 activator, which was defined by the
selective targeting of SIRT1 and not the AMPK/mTOR pathway
in vitro and in vivo by therapeutic doses in mice and humans
(27, 38), has been further bolstered by the finding that the
combination metformin and leucine allows SIRT1 to operate at
lower NAD+ concentrations in cell-free systems (28–31). Thus,
some of the effects of metformin on SIRT1 activation have been
proposed to occur via its actions as a direct activator of SIRT1,
capable of reducing the KM for NAD+. We here confirm that
physiological/therapeutic concentrations of metformin mimic
the effects of calorie restriction by directly promoting an optimal
use of NAD+ and improving the reaction speed of SIRT1.
Importantly, our computational characterization of the putative
binding modes of metformin to the regulatory and catalytic
pockets of SIRT1 provides new insights into how metformin
might directly enhance NAD+-dependent SIRT1 deacetylation
activity.

Resveratrol and other STACs have been found to facilitate
SIRT1 activation by establishing key molecular interactions
within a specific STAC-binding allosteric site located at
the NTD of SIRT1 (33, 39, 40). Mutagenesis screenings
and crystallographic structure studies have provided some
information of the interface governing the allosteric binding
of STACs. This includes glutamic acid 230 (E230), which
appears to be critical for allosteric stimulation of SIRT1 activity
by chemically diverse STACs including resveratrol (40) via
formation or stabilization of the activated conformation of SIRT1
(33). In addition, asparagine 226 (N226) and aspartate 292
(D292) appear to directly interact with resveratrol and are crucial
for the resveratrol-stimulated SIRT1 activity on the substrate
(33, 35). It is noteworthy that some of the best SIRT1-metformin
complex conformations and SIRT1-metformin binding sites, in
terms of binding energies, took place outside of the active
site of SIRT1 but involved those residues ostensibly controlling
the common mechanism of SIRT1 regulation by allosteric
activators, such as E230, N226, andD292. Our biochemical assays
showed that metformin sensitizes SIRT1 activity by left-shifting
the response of SIRT1 to NAD+, which is characteristic of
positive allosteric modulators. Besides sensitization, metformin
also produces a small but consistent increase in the maximum
response of SIRT1 at saturating doses of NAD+, which resembles
the estimated intracellular content of NAD+ in mammals [200–
500 µmol/L, (41–44)]. It is therefore tempting to suggest that a
concerted allosteric change might occur between the activation
domain and the catalytic domain in SIRT1 bound to metformin,
thereby allowing SIRT1 to operate at low NAD+ concentrations,
which mirrors the NAD+ deficits occurring during aging [(45–
47); Figure 7]. The unforeseen capacity of metformin to interact
with the STAC-binding allosteric site of SIRT1, which was
predicted to solely occur at the substrate-bound closed state,
together with the sensitized NAD+-SIRT1 activity curve shifting
leftwards in the presence of metformin, strongly suggests an
allosteric behavior of metformin toward SIRT1. Nevertheless,
we acknowledge that our study did not directly evaluate how

FIGURE 7 | Metformin as a direct SIRT1-activating compound: A new

anti-aging role of metformin by modulating NAD+-sensing enzymes. SIRT1

activity often declines during aging for reasons other than substrate depletion,

namely NAD+ decrements. NAD+ levels have been described to decrease

during aging, mostly due to changes in metabolic pathways leading to NAD+

synthesis. Such NAD+ deficit is beginning to be viewed as a central

mechanism connecting aging and aging-related diseases, including cancer.

However, nearly all known STACs target SIRT1 and operate with a limited

number of substrates by binding outside of the activate/catalytic site to an

allosteric domain of SIRT1 that is not shared with the other sirtuin family

members (SIRT2–7) (48). This substrate-dependent, allosteric activation of

SIRT1 exerted by the vast majority of STACs cannot compensate for the

reduction in NAD+ levels. Accordingly, a variety of physiological and

pharmacological strategies aimed to boost NAD+ levels or inhibit NAD+

consumption is being rapidly pursued for nutraceutical and pharmaceutical

development to control SIRT1 activity and thereby achieve healthy benefits

(44–46, 49). Given the valuable physiological effects of improving the catalytic

efficiency of SIRT1 under NAD+ depletion in a substrate-independent manner,

a preferred general strategy for activation of sirtuins including SIRT1 would be

to lower the Km for NAD+. Km, which would have a similar activating effect to

that of NAD+ supplementation, could provide specific activation of sirtuin

isoforms, and might be achievable without the need to alter the binding affinity

of NAD+ (50). Our molecular study of the SIRT1-metformin complex coupled

to laboratory-based experimental validation strongly suggests that metformin

would functionally mimic NAD+ boosters by operating as a direct

SIRT1-activating compound that ensures health quality during aging via

sensitization of SIRT1 to NAD+.

the binding of metformin to the very same binding pocket
of resveratrol at the amino-terminal activation domain might
increase NAD+-dependent deacetylation of specific substrates.
A model of assisted allosteric activation of SIRT1 activation
has been proposed, in which STATCs increased the binding
affinity for the substrate and vice versa (48, 51). Accordingly, it
will be interesting to test whether the activation mechanism by
metformin is analogous to that of STATCs, lowering the Km for
the substrate and requiring the region around E230. The use of
primary cells reconstituted with activation-defective SIRT1might
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clarify whether metformin directly activates SIRT1 through an
allosteric mechanism capable of decreasing the dissociation
constant for specific substrates, which is a common mode of
action of other chemically diverse STACs.

Our in vitro discovery that metformin allows SIRT1 to operate
efficiently at low concentrations of NAD+ might alternatively
suggest that metformin operates as a mechanism-based enzyme
activating compound (MB-STAC) by targeting (and accelerating)
the unique NAD+-dependent deacetylation turnover mechanism
of SIRT1. Although some information is available regarding
mechanism-based sirtuin inhibitors (MB-SI) such as Ex-527 and
Sir-Real2 (52–54), very little is known about the mechanistic
functioning of putative MB-STACs. It has been postulated that
a prerequisite for a given modulator to operate as a MB-STAC
is the requirement for co-binding with the SIRT1 substrates
NAD+ and acetylated peptide. Accordingly, crystal structures
of SIRT1:MB-SI complexes have shown that MB-SI occupy
the nicotinamide site and a neighboring pocket to contact

the ribose of NAD+ or of the coproduct 2
′

-O-acetyl-ADP
ribose. Interestingly, whereas metformin was predicted to bind
the SIRT1 cofactor/inhibitor catalytic regions regardless of
the conformational status of SIRT1, it remains to be clarified
whether the predicted interacting residues might alter the
binding and orientation of the NAD+ cofactor, catalytically
required to extract a proton from the activated NAD+, or are
involved in the capture of the released nicotinamide from NAD+

(32). Indeed, it should be acknowledged that metformin was
predicted to establish interactions with F414, a residue that has
been suggested to interact with NAD+ (34) and mediate the
interaction of the SIRT1 active site with the substrate peptide
(32, 33); with N465, a residue that seems to participate in the
establishment of an inhibitor-extended conformation of NAD+

that sterically prevents productive binding of substrate (34); and
also with F273, a key residue involved in the steric blockade
of the binding of NAD+ in the active conformation of SIRT1
(34). Perhaps more importantly, metformin was predicted to
interact with the C-terminal regulatory segment of SIRT1 bound
to the NAD+ hydrolysis product APR, a “C-pocket”-related
mechanism that appears to be essential for MB activation
(55, 56). All these elements could be taken to suggest that at low,
therapeutic concentrations, metformin might partially mimic
the behavior of MB-SI (e.g., by satisfying the requirement of
co-binding with substrates) but possessing additional critical
attributes necessary to operate as an MB-STAC, including the
ability to modulate the local degrees of freedom of the NAD+

cofactor and various intermediates and products in the active
site. Correspondingly, it could positively alter the balance
of productive vs. non-productive SIRT1:NAD+ complexes.
Conversely, supraphysiological concentrations of metformin
might be predicted to force the NAD+ cofactor to adopt
an inactive binding mode and/or sterically block substrate
binding, thereby behaving as a MB-SI. In this vein, metformin
concentrations >50 mmol/L were found to significantly reduce
SIRT1 enzymatic activity (data not shown). Moreover, our

discovery that other metformin-related compounds containing
the biguanide functional group (i.e., two guanidiniums joined
by common nitrogen) could enhance also SIRT1 activity
highlight the importance of considering the biguanides as a
new molecular family of weak to moderate direct activators
of SIRT1. An enhanced understanding of the molecular
pharmacology and mechanisms of biguanide-SIRT1 interactions
might enable the design and investigation of novel, more
potent metformin-related compounds as direct SIRT1
activators. Nonetheless, our findings provide mechanistic
support for recent clinical initiatives conducted to evaluate
advantage of the direct activation of SIRT1 by metformin
(28–31, 57).

Future studies should confirm the mechanistic relevance of
our in silico insights into how the putative binding modes
of metformin to SIRT1 could explain its ability to operate
as a direct SIRT1-activating compound (Figure 7). These
findings might have important implications in understanding
how metformin could confer health benefits via maintenance
of SIRT1 when NAD+ levels decline during the aging
process.
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Initially produced in Europe in 1958, metformin is still one of the most widely prescribed

drugs to treat type II diabetes and other comorbidities associated with insulin resistance.

Metformin has been shown to improve fertility outcomes in females with insulin resistance

associated with polycystic ovary syndrome (PCOS) and in obese males with reduced

fertility. Metformin treatment reinstates menstrual cyclicity, decreases the incidence of

cesareans, and limits the number of premature births. Notably, metformin reduces steroid

levels in conditions associated with hyperandrogenism (e.g., PCOS and precocious

puberty) in females and improves fertility of adult men with metabolic syndrome

through increased testosterone production. While the therapeutical use of metformin is

considered to be safe, in the last 10 years some epidemiological studies have described

phenotypic differences after prenatal exposure to metformin. The goals of this review

are to briefly summarize the current knowledge on metformin focusing on its effects on

the female and male reproductive organs, safety concerns, including the potential for

modulating fetal imprinting via epigenetics.

Keywords: testis, ovary, metformin, oocytes, spermatogenesis

INTRODUCTION

Brief History of Metformin
The insulin-response sensitizer metformin (N,N-dimethylbiguanide) has been an important
drug for the treatment of diabetes since the 1950’s, being one of the most widely prescribed
anti-hyperglycemic compounds. Metformin belongs to the biguanide family of anti-diabetic
compounds that are related to galegine, a guanidine derivative from the French lilac (Galga
officinalis). In the beginning of the twentieth century, a chemical study of active molecules
contained in Galga officinalis demonstrated anti-hyperglycemic properties in diabetic patients (1).
Metformin synthesized in 1958, showed similarities with galegine and lowered blood glucose in
initial tests on animals (2, 3). Metformin decreases the glycemia through a reduction in hepatic
gluconeogenesis and intestinal glucose absorption, with a general improvement in tissue insulin
sensitivity and peripheral glucose uptake (4). It is a stable, low molecular weight hydrophilic
compound, which upon administration to patients, it reaches numerous tissues including muscle,
liver, pancreas, adipose tissue, hypothalamus, pituitary, and the gonads.
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Cellular Targets of Metformin
The exact molecular mechanism of metformin’s action remains
unclear. In the first publications, metformin’s actions at the
cellular level have been attributed to inhibition of Complex
I of the mitochondrial respiratory chain, albeit at relatively
high concentrations (mM) (5–10). This inhibition results in a
decline in ATP production by mitochondria and an increase in
the [adenosine monophosphate to ATP ratio ([AMP]/[ATP])
leading to the activation of the AMP-activated protein kinase
(AMPK) complex (11). AMPK is a critical cellular energy
sensor that maintains cellular energy homeostasis. Following
its activation, AMPK initiates energy-producing catabolic
pathways including facilitation of cellular glucose uptake
and stimulation of glucose transporter expression, glycolysis,
fatty acid beta-oxidation, oxidative phosphorylation and
mitochondrial biogenesis. This compensatory mechanism aims
at restoring sufficient energy to maintain cellular homeostasis
(12–15) Figure 1. AMPK activity often counteracts the actions
of the mammalian target of rapamycin (mTOR), a central
cell-growth factor controlled by extracellular growth triggers and
nutrients.

However, the metformin-dependent mitochondrial Complex
I inhibition can not account for all of metformin’s effects
suggesting that metformin may act in an AMPK-independent
manner (12–14, 16–20). For instance, it has been described
that metformin inhibits the mitochondrial redox shuttle
glycerophosphate dehydrogenase. The limited conversion of
lactate and glycerol to glucose results in lower hepatic
gluconeogenesis (21, 22) (Figure 2). Other studies identified
H3K27me3 demethylase, KDM6A/UTX as a metformin target
based on a structure- and ligand-based bioinformatic analysis
(23). Some of the antidiabetic effects of metformin seem
to be mediated in part to changes in gut microbiota,
thereby promoting the growth of short chain fatty acid-
producing bacteria (24, 25). Other studies reported the effect
of metformin on the mitochndrial permeability transition
pore (26) whereas others on the effects of this drug on cell
death (27).

ABSORPTION AND DISTRIBUTION OF
METFORMIN

Metformin is used at daily doses of 30–50 mg/kg body weight
to treat type II diabetes, reaching serum levels of 10–40µM
(28, 29). It is absorbed through the small intestine, with peak
concentrations 1–2 h after oral administration. Its plasma half-
life is about 1–6 h. No metabolites of metformin have been
identified, and is excreted as such in the urine within 12 h (29).

Species-specific differences show that mice are ∼10 times
less sensitive to metformin than humans (20, 29, 30). In
mice, after daily administrations at 50 mg/kg body weight,
the serum concentrations of metformin are 1.5 and 30µM for
500 mg/kg (30, 31). In human, 10–40µM in blood level is
reached with 30–50mg metformin/kg (28, 29). As such, daily
administrations of 250–300 mg/kg of metformin to diabetic
mice are significantly higher than those used in humans in

order to obtain similar therapeutic benefits (30). These species-
specific metformin examples are relevant, not only when doses
are compared across species but also when interpreting potential
effects and targets.

Once in plasma/serum, metformin reaches the intracellular
milieu via a limited passive diffusion, while other studies
indicated that cationic transporters (Organic Cation Transporter
1: OCT1, OCT2, and MATE1) are able to transport metformin
intracellularly (32). It has been claimed that genetic
polymorphisms in the genes coding for these transporters
may alter the tissue distribution and pharmacological effect of
metformin (33).

METFORMIN’S POTENTIAL IMPACT ON
INFERTILITY

The bioenergetic, metabolic processes indicated above are critical
to sustain a physiological function of the male and female
gonads, therefore, in the following sections, we summarize the
current knowledge on metformin in regard to its effects on the
reproductive processes of males and females in humans and
across species. We also discuss the safety of metformin and its
potential epigenetic consequences for fetal imprinting.

Clinical and Molecular Impact of Metformin
in the Female Reproductive System
Since polycystic ovary syndrome (PCOS) is often associated
with obesity, metabolic syndrome, gestational diabetes, and
T2DM and cardiovascular risk factors, it is not surprising that
PCOS patients with insulin resistance and hyperandrogenism are
treated with metformin. PCOS is a major health issue affecting
∼5–20% of reproductive age women, representing the most
common ovarian pathology in the world. Based on the criteria
of the 2003 Rotterdam Consensus, PCOS is characterized by at
least two of the following three criteria: (a) oligo- or anovulation,
(b) clinical and/or biochemical signs of hyperandrogenism, (c)
presence of 12 or more follicles in each ovary measuring 2–9mm
in diameter and/or increased ovarian volume (>10ml) and the
exclusion of other etiologies (34, 35). The immediate and short-
term effects of metformin in women affected with PCOS are
in general beneficial. Metformin’s treatment improves ovarian
cyclicity and reduces gestational diabetes with no impact on the
incidence of cesareans or premature births (36–38). While in
some countries, metformin is prescribed during pregnancy to
women suffering PCOS and gestational diabetes (39–41), the US
Food and Drug Administration (FDA) indicated that the safety
of metformin during pregnancy is still unclear (28, 42).

However, metformin’s efficacy on ovulation and birth rate
alone or in combination with clomiphene citrate, compared
to clomiphene citrate treatment alone, is still a matter of
debate (43–46). For example, an analysis of nine randomized
trials including 816 women with PCOS has shown that
metformin increased clinical pregnancy rates and decreased
the risk of ovarian hyperstimulation syndrome, although
there was no clear beneficial evidence for increased rates
of live births (47, 48) or increasing the risk for birth
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FIGURE 1 | Metformin-induced inhibition of mitochondrial Complex I. The direct inhibition of Complex I by metformin decreases the production of ATP ensuing in

increases in AMP. The increase in the [AMP] to [ATP] ratio signals energy resulting in inhibition of high-energy demanding gluconeogenesis process. This ratio leads to

the activation of the AMPK complex leading to a decrease in lipogenesis, increase in fatty acid beta-oxidation with an improvement in insulin sensitivity which allows

the restoration of gluconeogenesis. The inhibition of metformin on mGDP prevents the use of lactate or glycerol for gluconeogenesis. OCT1: Organic Cation

Ttransporter 1; LKB1: Liver Kinase B1; Glut2: GLUcose Transporter 2. mGPD: mitochondrial glycerophosphate dehydrogenase. Adapted from (20).

FIGURE 2 | Metformin effect on AMPK. Indirectly metformin activates AMPK. This activation results in mitochondrial biogenesis and glycolysis.

defects (49). The premature birth incidence was higher under
metformin therapy (45). A recent meta-analysis described that
ovulation rate was significantly higher under a combination

of metformin and letrozole treatments than with other
treatments (metformin alone, letrozole alone, metformin and
clomiphene citrate, FSH, laparoscopic ovarian drilling) in
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females affected with PCOS resistant to clomiphene citrate
treatment (50).

At the cellular level, metformin has been observed to
regulate oocyte maturation. During bovine and porcine oocyte
maturation, metformin is able to impede meiotic progression
(51, 52). In the bovine oocyte, meiotic arrest was associated with
an increase in AMPK activity, a reduction in MAPK ERK1/2
phosphorylation in both oocytes and cumulus cells, and the
latency of ribosomal protein 6 and EEF2 (Eukaryotic elongation
factor 2), two critical factors regulating protein synthesis in
oocytes. Moreover, these effects were only evident in cumulus-
oocyte complexes and not in oocytes that had the cumulus
compartment removed, indicating that at least in the bovine,
cumulus cells are key for metformin to access the oocyte (52).

In a mouse model of PCOS, metformin treatment was
explored to alleviate the negative influence of hyperandrogenism
on oocyte quality (53). Metformin treatment of PCOS-affected
dams was also able to partially reverse ovulatory dysfunction and
improve oocyte quality and embryo development outcomes (53).
These metformin-mediated improvements were associated with
a reduction in oocyte lipid content and reactive oxygen species
content, and improved mitochondrial function and glutathione
levels (53), consistent with the effect of metformin on the oocyte-
specific AMPK knockout mouse model (50). While AMPK is
expressed in all ovarian compartments across different species
(cow, goat, ewe, sow, hen, rat) including women, deletion of
the AMPKα1 subunit specifically in oocytes of mice results in
a 27% reduction in litter size (54), highlighting the importance
of the AMPK complex to oocyte developmental competence
and fertility. Moreover, following in vitro fertilization of oocyte-
specific AMPK KO mice, a 68% reduction in the number
of embryos passing the 2-cell stage was observed (54). This
decrease in fertility could be partly explained to defective
mitochondrial morphology and ATP synthesis (54). These results
suggest that metformin could reverse the negative effects of
hyperandrogenism on oocytes in PCOS individuals.

Mouse embryos exposed to metformin from the 2-cell to
the blastocyst stage in vitro are smaller in size with lower cell
numbers (55). The cell-to cell contact with trophectoderm was
also altered because of an increase in tight junction permeability
(55). In vivo, metformin reduced apoptosis in blastocysts of obese
mice (56) possibly through an increase in NAMPT expression,
but induced early bovine embryo arrest (57). Taken together,
these studies demonstrate metformin’s important contribution in
the cross-talk between somatic cells and oocytes for the normal
development of high-quality female germ cells and embryo
developmental competence.

Metformin and Male Reproductive Biology
In males, metformin is prescribed for the treatment of T2DM.
It is well-known that T2DM alters spermatogenesis in males,
decreasing both sperm number and quality (58–60), resulting in
reduced fertility. Furthermore, in utero exposure to metformin
reduces fetal testicular size and the population of Sertoli
cells (SC) (61). It is possible that these processes are driven
by metformin-mediated increase in lactate production with
a decrease in testosterone secretion (61). Metformin impacts

the cell cycle by decreasing FSH-induced proliferation and
increasing Cyclin-Dependent Kinase Inhibitor (CDKI) and
inhibiting cyclin D in primary cultures of mouse Sertoli cells (62)
(see Figure 3).

However, administration of metformin (for 4 or 8 weeks at
doses of 100 or 500 mg/kg) to adult, non-obese rats did not
impact sperm number, sperm motility, or the percentage of
abnormal spermatozoa (63) (see Table 1). In contrast, obesity
induced an increase in the number of sperm abnormalities and
a decrease in the spermatozoa concentration and motility which
was rescued by metformin administration (63). In obese patients,
metformin treatment improves sperm concentration andmotility
in the same way as observed in obese rats (63–66) as judged
by the decreased number of morphological defects, with higher
concentration and motility of sperm (64). In humans, it appears
that a treatment for several months with metformin (850 mg/day
during the first week, 1,700 mg/day during the second week,
and 2,550 mg/day until the end of 6 months of treatment)
can increase the serum testosterone and LH pulsatility of obese
individuals (64). This suggests that metformin can modulate
and improve pituitary LH pulsatility and regulate Leydig cell
steroidogenesis in testis. Recently, it has been shown that
metformin decreases sperm motility in pigs (67), correlated with
an increase in the viability of the spermatozoa after 24 h storage
(see Table 1). In a model of testicular ischemia—stress-triggered
apoptosis—metformin pre-treatment reduced both oxidative
stress and the loss of germ cells, thereby limiting injury on
sperm production, suggesting that metformin has cytoprotective
effects (68).

Other studies have exposed rodents (rat, rabbit) to metformin
in different metabolic models. Either diabetes or obesity induced
by fatty acid-rich diet have shown that metformin could
limit the decrease in testicular weight, and the thickness of
the seminiferous epithelium (66, 69, 70). Depending on the
report, the testosterone concentrations and sperm concentrations
were improved following the treatment (63, 65, 66, 71). In
rabbit, the metformin treatment showed a negative effect
on concentration, mobility and number of morphological
abnormalities of spermatozoa (71).

In birds, metformin (1mM) treatment increased viability,
mobility and acrosomal response of chicken sperm (72). During
chicken seminiferous tubule culture, 48 h ofmetformin treatment
(5mM) induced a decrease in the rate of proliferative germ cells
number (73). This effect was opposite to that observed in equines.
Metformin (up to 10mM) did not induce any effects on viability
and mobility of sperm or phosphorylation of AMPK in horses
(74).

In regards to the mechanism leading to decreased male
fertility, and considering that in mice both the AMPK α1
and α2 subunits are expressed in Leydig, Sertoli and male
germ cells (75) with a predominant expression of α1 subunit
over α2 (75 vs. 25%) (76), it is possible that metformin
impacts spermatogenesis and steroidogenesis in the testes partly
through the AMPK pathway. It has been shown that AMPK
activation by metformin in rat cultured Sertoli cells induces an
increase in lactate production without changes in LDH (lactate
dehydrogenase) activity. However, a decrease in the expression
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FIGURE 3 | Interaction network between AMPK and proteins expressed in Sertoli cells. The network was created using the Elsevier Pathway Studio program. Green

arrows indicate activation while red arrows indicate inhibition.

of MCT4 (monocarboxylate transporter 4), GLUT1, GLUT3 and
an increase in the concentrations of alanine and acetate were
also reported (77) suggesting activation of glycolysis without
concomitant increase in mitochondrial bioenergetics.

Collectively, these studies suggested that obesity (or the
metabolic changes associated with this condition) or a high fat
diet may set the basis of an increased susceptibility to infertility
issues. Metformin (in a dose, biological sample, and species-
specific manner) treatment has the potential to activate targets
resulting in an overall improvement of fertility.

METFORMIN AND STEROIDOGENESIS

In females, the impact of metformin on androgen synthesis
is controversial (78–80). It is argued that metformin may
reduce androgen levels indirectly through the resumption of
ovulation. Several studies have shown that treatment with
metformin induces a reduction in the hyperinsulinemia and
hyperandrogenism that is associated with PCOS in obese and
non-obese patients (81, 82). It has been suggested that metformin
reduces hyperandrogenism through its ability to modulate both
ovarian and adrenal androgen output, reducing LH secretion and
increasing in some cases, sex hormone binding globulin. The
ability of metformin to reduce the androgen levels seems to be
variable according to the studies (83, 84).

Metformin has been shown to regulate steroidogenesis
through a number of different mechanisms and cell types.
Culture of luteinized granulosa cells exposed to the pre-ovulatory
LH surge and with metformin lowers progesterone and estradiol
syntheses in the same manner as non-luteinized granulosa cells
exposed to either FSH or insulin (85). Rice et al. and Fuhrmeister
et al. have demonstrated, that metformin induces a decrease in
estradiol synthesis via the inhibition of aromatase expression

by the MAPK signaling pathway (86, 87). However, metformin
also induces activation of insulin-dependent AMPK pathways
involved in lactate production by human granulosa cells (88, 89).
Incubation of a human theca cell line with metformin induces
a decline in androstenedione synthesis (90), possibly via the
activation of AMPK.

In males, Tartarin et al. demonstrated that exposure of mice
and human fetal testes to metformin decreases testosterone

production. In vivo, administration of metformin resulted
in a decrease in testosterone secretion, however, this effect

was reversed when metformin administration was stopped

(61). Conversely in humans, it appears that several months
of treatment with metformin (850 mg/day during the first
week, 1,700 mg/day during the second week, and 2,550

mg/day until the end of treatment period at 6 months)
can increase the serum testosterone and LH levels of obese
individuals.

In vitro studies have demonstrated that metformin
significantly perturbs both androstenedione and testosterone
syntheses in theca cells (90). Incubation of primary cultures of rat
Leydig cells in the presence of an activator of AMPK, resveratrol,
decreases hCG-induced testosterone synthesis by inhibition of
P450c17 and StAR (91). Moreover, it have been demonstrated
that metformin decreases the capacity of Leydig cells to secrete
progesterone (92). In rats and cows, the incubation of granulosa
cells with metformin also induces a decline in steroid synthesis
that is correlated with an increase in AMPK phosphorylation.
It appears that progesterone synthesis falls in the presence of
metformin alone, but also during stimulation with FSH, IGF-1,
or both (93, 94). This decrease can be explained by a decrease
in the expression of some steroidogenic enzymes (3-β HSD in
the rat and 3-β HSD, CYP11A1, and StAR in the cow), an effect
which is not observed in rats (95).
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In human primary breast adipose tissue, consequences of
metformin exposure revealed a significant decrease in the
forskolin/phorbol ester induced aromatase expression (96).

Thus, based on the available literature, metformin acting via a
number of mechanisms has the ability to modulate steroid levels
both in vivo and in vitro.

In utero EXPOSURE AND GONADAL
DEVELOPMENT

Metformin is the treatment of choice in cases of pregnancy
disorders, such as gestational diabetes mellitus or preeclampsia
(97). One hypothesis is that metformin regulates preeclampsia
via mitochondrial function especially in the placenta and
expression of antiangiogenic factors (97). However, the
maternal administration of metformin reaches the fetus
with umbilical cord concentrations (on average 457 ± 335
µg/L, equivalent to 3µM) similar to those found in the
maternal circulation (730 ± 440 µg/L, equivalent to 5µM)
(98, 99). Salomaki et al. reported serum concentrations of only
0.174 and 0.130µM in the mother and fetus, respectively,
at 24 h post-administration of daily doses of 300 mg/kg
throughout pregnancy (100), suggesting that metformin may
accumulate in certain tissues at higher concentrations than in
plasma (101).

Considering that there are no reports of metformin inducing
teratogenicity, the long-term health consequences of in utero
metformin exposure remains elusive, primarily due to limited
study designs (102, 103). In uterometformin-exposure resulted in
children that were heavier, and with larger head size at 18m of age
(104). Recently, Hanem et al. demonstrated that in utero exposure
to metformin resulted in children with a higher body mass
index (BMI) and increased prevalence of overweight/obesity
at 4 years of age compared to children of the placebo group
(105), indicating that in humans, metformin administered during
pregnancy has the ability to alter anthropometrics in the
offspring.

But what is known on the effects of metformin on gonadal
development during in utero exposure? Very limited studies exist,
focusing mainly on the effects of metformin on male offspring.
From these, no effect on testicular size was reported for young
boys between 2.5 and 7 years of age born to mothers affected
with gestational diabetes treated with either insulin or metformin
and insulin (106). However, testicular size was not compared
to boys born from placebo mothers and to individuals that had
not yet reached the age of puberty. Tartarin et al. observed
that embryonic exposure of mice to metformin during the first
half of pregnancy had a negative impact on the testicular size
of young mice and number of Sertoli cells (at 16.5 dpc and
1 dpp) (61). At 16.5 dpc, a decrease in testicular testosterone
concentration and Leydig cell count was also observed but was
no longer found at birth. This suggests that while metformin is
able to modulate mammalian testis development, some plasticity
in the ability for the testis to recover exists during perinatal
periods. Nonetheless, the long-term effects on fertility are yet to
be determined.

In females with early symptoms of precocious puberty
associated with hyperinsulinemia, metformin administration has
been shown to delay the onset of clinical puberty and the
pubertal increase in IGF1 levels (107, 108). Moreover, there
was also a metformin-associated delay of menarche (108). The
mode of action whereby metformin is able to delay pubertal
onset and progression in girls remains to be understood. The
observed delay of menarche appeared to be associated with falls
in adiposity and insulin, leptin and IGF1 concentrations (107),
suggesting that the effects of metformin on the ovary seemed to
be indirect.

While exposure to metformin is usually through therapeutical
administration, in the last decade, due to the increased use
of metformin, accumulation of this drug has been reported
in wastewater, drinking water and cosmetics, making it one
of the 14 most active pharmacological molecules in the
environment (109–111) with concentration reaching between 10
and 100 µg/L (1µM) (112). Thus, it is possible that ingestion
of metformin-containing water and/or use of metformin-
containing cosmetics may elicit unwanted effects on humans
as well as aquatic species exposed to metformin. Indeed, a
360-days long exposure of male fish (Pimephales promelas) to
metformin (40 µg/l) leads to the appearance of an “intersex”
gonads (113), with no intersex phenotype observed in mammals
(61, 106). Gonadal estrogen and aromatase function play an
important role in the gonad determinism in fish and avian
species, thus, disruption of steroid production could lead to
modification on gonadal development in these species. However,
the exposure of cyp19a1b-GFP zebrafish model (GFP-driven
promoter of aromatase in the central nervous system) to
metformin (0.3–30µM) or its derivative guanylurea (0.08–7µM)
did not result in changes in GFP expression suggesting a specific
regulation of different aromatase transcripts by metformin
depending on the promoter and tissue (gonad vs. central
nervous system).

METFORMIN AND EPIGENETICS

In uterometformin exposure has been described safe for the fetus.
Some evidence suggests that the beneficial effects of metformin
are partly AMPK-dependent to counteract stress (114). However,
it is important to follow the development of the offspring until
adulthood to evaluate the risk to develop metabolic disorders
through epigenetic information (114). Thus, if metformin is
provided with a high-fat diet, then a significant increase in
visceral fat depot of the offspring is observed during adulthood
(99). In rodents, prenatal exposure to metformin modifies the
hepatic fetal imprinting resulting in changes in the expression of
several genes involved in the metabolism of cholesterol, lipids,
fatty acids and steroids. Moreover, it decreases the expression
of insulin-sensitive glucose transporter, GLUT4, in epididymal
adipose tissue suggesting long-term effects, such as glucose
intolerance in the testis (99). In a follow-up study of metformin
in a gestational diabetes trial showed that prenatal exposure had
a change in the pattern of fat distribution in children at 2 years-
old (same body fat mass but more subcutaneous fat (102). Taken

Frontiers in Endocrinology | www.frontiersin.org 7 November 2018 | Volume 9 | Article 67599

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Faure et al. Modulation of Gonadal Function by Metformin

together these studies point to a putative epigenetic effect of
metformin which could be exerted during perinatal periods.

As possible mechanisms involved in epigenetics, indicated
the section of Cellular Targets of Metformin, metformin directly
targets the H3K27me3 demethylase KDM6A/UTX resulting
in global augmentation of H3K27me3 levels in cultured cells
in vitro and in vivo (23). Moreover, several studies reported
DNA hypermethylation following metformin treatment via
its effect on one-carbon metabolism (115, 116). This increase
in DNA methylation is probably due to an increase in the
activity of S-adenosylhomocysteine hydrolase (SAHH). This
enzyme hydrolyzes S-adenosylhomocysteine (SAH), a strong
feedback inhibitor of S-adenosyl-L-methionine-dependent
methyltransferases including DNAmethyltransferases (DNMTs).
Treating endometrial or ovarian cancer cells with metformin
results in a decrease of the histone H19 levels and enables
DNMT3B to increase DNA methylation (115). However, no
statistically significant effect of metformin was observed in
plasma homocysteine (metabolite that plays a critical role
in DNA methylation) concentrations in PCOS patients with
or without metformin treatment (117). A subgroup analyses
suggested that metformin might induce Hcy accumulation
when administered without folic acid or B-group vitamins
supplementation (117). Further studies are warranted at
demonstrating the links amongst metformin, B-group vitamins,
and DNA methylation in patients with PCOS or infertility.

Alternatively, metformin could regulate epigenetic
reprogramming through the activation of AMPK. A recent
review reported the different mechanisms involved in the histone
modifications in response to metformin-induced activation of
AMPK phosphorylation of HATs (histone acetyltransferases),
increased SIRT1 activity, and inhibition of class II HDACs
(histone deacetylases) (118–120). AMPK has been shown to
phosphorylate histone H2B by regulating HDAC in mouse
embryonic fibroblasts (121). Metformin was shown to inhibit
ovarian cancer via decreasing H3K27 trimethylation in an
AMPK-dependent manner (122). Studies on Sertoli cells lacking
AMPKα1 have highlighted the role of the α1 subunit of AMPK
(123) metabolic activity and the secretion of many metabolites,
such as glycine, malonate, succinate and alanine, which may act

on the enzymes modifying epigenetic marks. Oocytes lacking
α1AMPK, a hyperacetylation of histone H3 and a decrease in
the activity of SIRT1 is detected (123). Interestingly, the effects
of metformin on HDACs are dissimilar because it increases the
expression and/or activity of the class III HDAC SIRT1 (124–127)
and pharmacological doses of metformin in the cryopreservation
media of mouse sperm induced SIRT1 activity (128).

Taken together, while these studies show a link between
metformin and DNAmethylation status, many precise aspects of
this link still need to be clarified.

CONCLUSION

After half a century, metformin has established itself as a first
defense against insulin-dependent morbidities and undoubtedly
has become a useful drug for improving fertility outcomes in both

male and female patients. Metformin can modify testis and ovary
function directly through AMPK-dependent and independent
mechanisms. Its effects include improved sperm function and
fertilization rates, oocyte quality and embryo development and
reduction in miscarriage rates. The general consensus in the
literature is that metformin is considered safe to use during
pregnancy in regards to perinatal outcomes. However, adverse
effects of metformin in the germ cell populations of offsprings
exposed in utero and those on subsequent generations are less
clear. While our understanding of the effects of metformin is
continually progressing, further research is needed to have amore
complete understanding of metformin’s impact on fertility.
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Complex I Inhibition: Facts,
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Metformin is the most widely prescribed drug to treat patients with type II diabetes, for

whom retrospective studies suggest that metformin may have anticancer properties.

However, in experiments performed with isolated cells, authors have reported both

pro- and anti-apoptotic effects of metformin. The exact molecular mechanism of action

of metformin remains partly unknown despite its use for over 60 years and more

than 17,000 articles in PubMed. Among the various widely recognized or recently

proposed targets, it has been reported consistently that metformin is capable of inhibiting

mitochondrial respiratory chain Complex I. Since most of the effects of metformin

have been replicated by other inhibitors of Complex I, it has been suggested that

the mechanism of action of metformin involved the inhibition of Complex I. However,

compared to conventional Complex I inhibitors, the metformin-induced inhibition of

Complex I has unique characteristics. Among these, the most original one is that the

concentrations of metformin required to inhibit Complex I are lower in intact cells than

in isolated mitochondria. Experiments with isolated mitochondria or Complex I were

generally performed using millimolar concentrations of metformin, while plasma levels

remain in the micromolar range in both human and animal studies, highlighting that

metformin concentration is an important issue. In order to explain the effects in animals

based on observations in cells and mitochondria, some authors proposed a direct effect

of the drug on Complex I involving an accumulation of metformin inside the mitochondria

while others proposed an indirect effect (the drug no longer having to diffuse into the

mitochondria). This brief review attempts to: gather arguments for and against each

hypothesis concerning the mechanism by which metformin inhibits Complex I and to

highlight remaining questions about the toxicity mechanism of metformin for certain

cancer cells.

Keywords: metformin, mitochondria, Complex I, pharmacokinetic, cell death, cancer, permeability transition

INTRODUCTION

Metformin is a drug with pleiotropic effects. It takes part in glucose homeostasis, mainly by
inhibiting liver glucose production (1). It also modifies the production of reactive oxygen species
and affects cell death processes (2, 3). Most of these effects have been traced to the inhibition
of mitochondrial respiratory chain Complex I for two main reasons: First, over the past 20
years, different laboratories have reproducibly observed that metformin inhibits mitochondrial
respiratory chain Complex I (4–20). Second, these pleiotropic effects have been reproduced by well
identified Complex I inhibitors [gluconeogenesis (21, 22), cell death (18, 23–28)].
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However, the mechanism by which metformin affects the
activity of Complex I remains debated. In order to clarify
whether the different conclusions found in the literature may
be due to methodological differences, this review compares
results obtained in vivo or with intact cells, to results obtained
with isolated mitochondria or isolated Complex I. In this last
case, authors tend to assume that metformin accumulates in
mitochondria, here we will discuss evidence supporting or not
this assumption. Finally, since pro- and anti-apoptotic effects of
metformin are observed in intact cells, we will examine the role of
metformin concentrations as a potential cause of these conflicting
observations.

METFORMIN PHARMACOKINETICS

Metformin is a hydrophilic compound charged positively at
physiological pH. Its hydrophilicity limits its permeability
through lipid membranes. Metformin enters and leaves cells by
the presence of several transporters including Organic Cation
Transporters (OCTs) andmultidrug and toxin extrusion (MATE)
transporters (29). This leads to a steady-state concentration
of metformin inside cells, depending on both the amount
and activity of such transporters as well as metformin plasma
concentration.

The pharmacological inhibition or the genetic ablation of
OCTs reduce the distribution of metformin to the liver, small
intestine and kidney (30–32) while the overexpression of OCT1
in HEK293 and CHO cells increases metformin uptake (30, 33).
The pharmacological inhibition or the genetic ablation ofMATE1
cause hepatic and kidney accumulation of metformin (32, 34).
In humans, the genomic variations of metformin transporters
can affect its pharmacokinetics (concentration, clearance, volume
of distribution) (35, 36) suggesting that such genomic variations
affect metformin concentration in tissues.

Whether the activities of the metformin transporters (i.e., the
metformin concentration in tissues) affect the metabolic effects
of metformin is not systematically reported in the literature. On
the one hand, metformin failed to reduce fasting plasma glucose
concentration in OCT1-knockout mice submitted to a high-
fat diet for 8 weeks and failed to suppress glucagon-stimulated
glucose production in OCT1−/− hepatocytes (30). On the other
hand, the effect of metformin on glucose tolerance tests was
similar in animal controls and OCT1/2-knockout animals (31).
A broad variation in clinical efficacy of metformin has long
been recognized as well as a reduced function polymorphism of
OCT1 in humans. However, if some authors reported a decreased
effect of metformin in type-2 diabetes patients carrying reduced
function polymorphism of OCT1 (30, 36), others did not observe
such a correlation (37, 38).

To the best of my knowledge, no study correlating metformin
concentration in tissue (or cells) and metformin-induced
Complex I inhibition was ever published.

Drugs that are extensively sequestered in organelles have a
very large apparent volume of distribution and a prolonged half-
life in vivo (39). Metformin is not metabolized and is secreted by
the kidneys with a half-life of 1.74–7.3 h in humans depending on

the studies (35, 40–42). With a volume of distribution of 1.12 ±

0.08 L/kg in healthy volunteers (40), metformin is not supposed
to accumulate dramatically in tissues. The amount of metformin
in the liver ranges from 2 to 5 times that of plasma -depending on
the studies (32, 35, 42, 43)- and increases up to 10 times that of
plasma in small intestinal walls (32).

Thus, the pharmacokinetic studies indicate that metformin
enters but does not accumulate in large amounts in cells.Whether
its metabolic activity depends on its diffusion inside the cells is
supported by several but not all studies.

Once in the cell, as metformin inhibits Complex I it
is tempting to speculate that metformin penetrates the
mitochondria. The composition of the mitochondrial matrix
(the space delimited by the inner mitochondrial membrane)
is different from that of the cytosol. In order to maintain such
a different metabolite composition, the inner membrane is
impermeable to almost all hydrophilic molecules which enter or
leave the mitochondria through specific transporters. Among the
numerous recognized mitochondrial carriers, no specific carrier
for metformin has been identified yet.

Despite this, many authors have hypothesized that metformin
accumulates in mitochondria (5, 13, 15, 44). This scenario
may reconcile the observation that millimolar concentrations
of metformin are necessary to inhibit Complex I in isolated
mitochondria (see below) while, when used at the therapeutic
dose, the plasma metformin concentration remains in the
micromolar range in both humans and animals (31, 36, 42).

From a theoretical point of view, this hypothesis is
plausible. Indeed, because the mitochondrial respiratory chain
transfers protons from the matrix to the intermembrane space,
mitochondria build up and maintain an electrical mitochondrial
membrane potential that drives the accumulation of positively
charged molecules into mitochondria, provided the molecule
crosses the membrane. In these conditions, Nernst equation
indicates that for a physiological mitochondrial membrane
potential of−180mV the thermodynamic equilibrium is reached
after a 1,000-fold accumulation of a positively charged molecule
if the molecule has one charge. Since metformin is a positively
charged molecule and assuming the presence of a still unknown
carrier for metformin in the inner membrane, its mitochondrial
concentration could reach the millimolar range despite a
cytosolic concentration within the micromolar range (see
Figure 1). In addition, assuming a plasma membrane potential
of −36mV and the absence of kinetic constraints on metformin
transporters (OCT and MATE), the cytosolic concentration of
metformin would be 4 times that of plasma.

However, the hypothesis that metformin accumulates in
mitochondria contradicts several observations.

First of all, the accumulation of numerous positive charges in
the matrix compensated by proton extrusion by the respiratory
chain, should lead to a collapse of mitochondrial membrane
potential associated with an increase in delta pH. However, note
that metformin did not depolarize isolated mitochondria (8).

Secondly, assuming that the total mitochondrial volume
represents approximately 20% of hepatocytes, a 1,000-fold
accumulation ofmetformin insidemitochondria would represent
an approximately 200-fold accumulation of metformin in liver
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FIGURE 1 | Mechanism of action of metformin on complex I: the direct hypothesis and the indirect hypothesis. Metformin enters cells via Organic Cation Transporters

(OCTs) and leaves cells via multidrug and toxin extrusion (MATE) transporters. Assuming a plasma membrane potential of 35mV and a passive mechanism of OCTs

and MATE, the cytosolic metformin concentration is expected to be 4 times that of the plasma concentration. In the direct hypothesis (left), metformin is supposed to

enter mitochondria via a hypothetical carrier reaching a matrix concentration 1,000 times that of the cytosol for mitochondrial membrane potential of 180mV. In the

indirect hypothesis (right), metformin does not enter mitochondria but stimulates a hypothetical signaling pathway that eventually modifies Complex I conformation,

making it less active.

(without accounting for accumulation in the cytosol). Such an
accumulation is 2 orders of magnitude higher than that measured
by several groups (32, 35, 42, 43).

Thirdly, a large mitochondrial accumulation is not compatible
with the low volume of distribution of metformin and its short
half-live (see above).

Fourthly, using radioactive [14C] metformin, the radioactivity
was not found to accumulate in liver mitochondria of rats
treated orally with metformin (45) and no radioactivity was
measured inside mitochondria when Xenopus laevis oocytes were
exposed to concentrations of metformin that led to Complex
I inhibition (6). Importantly, Complex I remained inhibited
after mitochondrial isolation. Although this result does not
definitively exclude a possible accumulation of metformin in
mitochondria as a cause of Complex I inhibition (accumulated
metformin may diffuse during the isolation procedure), it rules
out the hypothesis that the inhibition of Complex I by metformin
requires metformin inside mitochondria.

In summary, unlike the less hydrophilic biguanides (46),
the accumulation of metformin inside the mitochondria is not
supported by direct measurements, is not consistent with the
pharmacokinetic data, and would require a transporter that has
not yet been discovered.

Derivatives combining a molecule of metformin at different
alkyl chain lengths containing a triphenylphosphonium cation
(a liposoluble cation known to accumulate in mitochondria
according to membrane potential) have been synthesized (47,
48) in order to increase the anti-cancer effect of metformin
(see below). These different compounds accumulate in cells
(47), depolarize mitochondria (48) and inhibit Complex I with
an IC50 in the micromolar range (47, 48), which according
to Nernst equation is consistent with the accumulation of

compounds in the mitochondrial matrix at a concentration in
the millimolar range. If metformin accumulated spontaneously
in the mitochondria, the addition of molecules targeting the
mitochondria would be unnecessary, which is clearly not the case.

CHARACTERISTICS OF COMPLEX I

INHIBITION ACCORDING TO THE MODELS

USED

Although this may seem odd, it has been reported by
several different laboratories that the concentrations required to
inhibit Complex I are lower for intact cells than for isolated
mitochondria (4–6, 13, 19). Note however that the characteristics
of Complex I inhibition reveals some differences depending on
whether metformin acts on intact cells (animal models, infused
organs, isolated cells) or directly on isolated mitochondria or
isolated Complex I (see Table 1).

The incubation of isolated Complex I or submitochondrial
particles in the presence of millimolar concentrations of
metformin leads to an inhibition of Complex I that can be
complete (13) with an IC50 ranging from 19 to 79mM depending
on laboratories (5, 9, 13). It should be noted that there is no
membrane potential in these particular conditions of incubation,
thus no possibility of metformin accumulation. In other words,
the concentrations tested are the actual concentrations to which
Complex I is exposed.

The incubation of isolated mitochondria in the presence
of millimolar concentrations of metformin leads to a rather
fast (within a few minutes) inhibition of Complex I with an
“apparent” IC50 also in the millimolar range (5).
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TABLE 1 | Main differences in the characteristics of Complex I inhibition according to the model used.

Live animal, perfused organ, intact cells Isolated mitochondria, isolated Complex I

References References

Speed of inhibition Time dependent (4) (5) Immediate (minutes) (14) (13)

Type of inhibition Partial (4) (5) (18) Total (13)

Affinity Apparent IC50 approximately 1mM after

30min in isolated rat hepatocytes

Apparent IC50 250µM and 330µM after

6 h incubation in 143B and HepG2 cells

respectively

(4)

(13)

Apparent IC50 15mM in isolated

mitochondria

IC50 79mM in sub-mitochondrial particles

IC50 66mM in immunocaptured Complex I

IC50 19mM in isolated Complex I

(5)

(5)

(9)

(13)

Inhibition in State-3? Yes (5) (11) (12)

(14) (15)

Yes (5) (8) (9) (10)

(12) (14) (15)

Inhibition in State-4? Yes (4) (7) (14) No (4) (8) (10) (15)

Inhibition after

uncoupling

Yes (4) (7) (11) (14)

(19)

No (4) (15) (19)

Inhibition after the

removal of metformin

Yes (4) (14) (20) No for metformin concentration ≤ 2mM (13)

NADH/NAD+ Increases (4) (5) (18) Decreases (19)

This observation is not easily reconcilable with the
proposal that metformin accumulates in mitochondria.
Indeed, assuming that metformin did accumulate in
mitochondria, Complex I inhibition would have been observed
at micromolar concentrations of metformin (corresponding
to millimolar concentrations inside mitochondria), which
has not been reported. One could argue that at millimolar
concentrations of metformin, the inhibition of Complex
I would depolarize mitochondria, preventing metformin
accumulation. However, it has been shown that millimolar
concentrations of metformin did not depolarize isolated
mitochondria (8).

In these particular conditions of incubation (isolated
mitochondria exposed to millimolar concentrations of
metformin), it has to be noted that the inhibition of Complex I
is observed almost exclusively during ATP synthesis (also called
State 3) and disappears when mitochondria are depolarized
(uncoupled State) or at rest (also called State 4) (4, 8, 15). Such
behavior is not observed with rotenone (the reference inhibitor
of Complex I) but is typical of biguanide-induced inhibition of
Complex I in isolated mitochondria (49).

It has been proposed that the reason why the inhibition is
not observed after uncoupling might be due to the fact that the
driving force for metformin accumulation within mitochondria
disappears in these particular conditions. Although, as stated
above, the accumulation of metformin in mitochondria is not
supported by any evidence, this hypothesis does not explain the
lack of inhibition in State 4, a situation in which the driving force
(the membrane potential) is higher than in State 3.

Curiously, it has been reported that the inhibition of oxygen
consumption in isolatedmitochondria is accompanied by NADH
oxidation (19). This observation is not expected in case of a
simple Complex I inhibition, suggesting an uncoupling effect of
metformin in this particular condition.

The incubation of intact cells in the presence of metformin
leads to a slower inhibition of Complex I depending on

metformin concentration (hours are required for micromolar
concentrations of metformin) (5, 50). Contrary to what is
observed in isolated Complex I, the inhibition is not total and
plateaus at approximately 40% of the Vmax (4). Consistent with
a pure effect on Complex I, the inhibition leads to an increase in
the NADH/NAD+ ratio (as assessed by the Lactate/pyruvate and
3-hydroxybutyrate/ acetoacetate ratios) (4, 5). Importantly, once
cells are permeabilized (i.e., once mitochondria can be studied as
if they were isolated) the inhibition is observed in State 3, but
also in State 4 and after uncoupling (4, 11, 19). Finally, Complex
I remains inhibited in mitochondria isolated from either rat
exposed to metformin or liver perfused with metformin, even
after uncoupling (4, 14) or when NADH:quinone oxidoreductase
activity (i.e., Complex I activity) is studied directly using broken
mitochondria (4). Note that the isolation procedure removes
most of (if not all) the free metformin, while uncoupling (either
chemical or after inner membrane rupture) would release the
putative accumulated metformin. Although these results do
not exclude a possible binding of metformin in mitochondrial
membrane, they rule out the hypothesis that the inhibition of
Complex I by metformin could depend on membrane potential.

OTHER MITOCHONDRIAL EFFECTS OF

METFORMIN

In intact cells the inhibition of oxygen consumption is strictly
located on Complex I. This conclusion comes from the
observation thatmetformin has no effect on oxygen consumption
when electrons feed the respiratory chain downstream Complex
I (using succinate for example) regardless of the respiratory State
(3, 4 and uncoupled) (4).

On the contrary, using isolated mitochondria and millimolar
concentrations of metformin, some authors reported inhibitory
effects on complexes III and IV (16). High concentrations of
metformin have been reported to inhibit ATP hydrolysis but not
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ATP synthesis (13), suggesting an unconventional effect on the
ATP synthase.

Some evidence suggests that Complex I can interact with
ATP synthase (51). So we may infer that in this particular
condition of incubation (isolated mitochondria exposed to
millimolar concentrations of metformin), ATP synthesis possibly
sensitizes Complex I to metformin. Although speculative, this
personal suggestion could account for the observation that
millimolar concentrations of metformin inhibit Complex I
almost exclusively in State 3.

In summary, on intact cells metformin acts slowly but the
effect is visible at micromolar concentrations. The inhibition
affects only Complex I in all the respiratory states and does
not depend on mitochondrial membrane potential. On isolated
mitochondria (or isolated Complex I), metformin acts rapidly
but the effect requires millimolar concentrations. The inhibition
does not only affect Complex I and Complex I inhibition is not
observed in all the respiratory states.

WHERE DOES METFORMIN ACT ON

COMPLEX I?

The respiratory chain is a sequence of redox reactions which
couple an electron flux with a vectorial transfer of protons.
Mammalian respiratory chain complex I is a large protein
complex with at least 45 subunits. It includes a hydrophobic part
embedded in the inner membrane involved in proton transfer
and a hydrophilic part protruding into the matrix in which
electrons pass from NADH to ubiquinone via a succession of
redox reactions. Complex I inhibitors rotenone and piericidin
bind at, or close to, the ubiquinone binding site, inhibiting
both electron flux and proton extrusion. Using artificial electron
acceptors, a rotenone-insensitive NADH oxidation which is not
coupled with proton pumping (i.e., a non-physiological pathway)
can occur in Complex I.

Using isolated Complex I and millimolar concentrations of
metformin, it has been shown that metformin does not inhibit
NADH oxidation due to artificial electron acceptors, behaves
as a non-competitive inhibitor of the physiological electron
pathway and preferentially binds Complex I when the enzyme
is in its “deactive” conformation (13). However, the exact
localization where metformin acts in this condition of incubation
remains unknown. Moreover, the exact mechanism leading to
the inhibition of Complex I in intact cells using micromolar
concentrations of metformin and where exactly it inhibits the
electron flux in Complex I has not been reported.

HYPOTHETICAL MECHANISMS OF

ACTION

To account for the fact that the concentration of metformin
required to observe the inhibition of Complex I on whole cells is
lower than the concentration required to observe the inhibition
on mitochondria, two hypotheses have been proposed in the
literature (see Figure 1).

The first one (in chronological order, but second in
popularity) proposes that in vivo and in intact cells, metformin
triggers a signaling pathway that in turn induces the inhibition
of Complex I (4). Although such a signaling pathway is
yet unknown, it has been reported that Complex I exists
in two different functional conformations (active and
inactive) (52), while reactive thiols of several Complex I
subunits have been identified as targets for post-translational
modifications (53, 54). However, whether metformin
affects reactive thiols in Complex I has not been published
yet.

The second hypothesis necessarily involves an accumulation
of metformin in the mitochondria that would be driven by
mitochondrial membrane potential. Although proposed by
several authors, this hypothesis is not yet supported by any
evidence (see above).

EFFECTS OF METFORMIN-INDUCED

COMPLEX I INHIBITION ON CELL DEATH

PROCESSES

Apparently contradictory effects are found in the literature
regarding the effects of metformin on cell death. Some authors
have put forward its protective effects against cell death (3) while
others have reported its induction of cell death especially in
cancer cells (2). Yet, all of them have concluded that the observed
effects are due to the inhibition of Complex I (see below).

METFORMIN PREVENTS CELL DEATH

WHEN IT IS DUE TO PTP OPENING

The permeability transition pore (PTP) is a channel located
in the inner membrane normally closed in order to maintain
a high mitochondrial membrane potential required for ATP
synthesis. Once permanently opened, the membrane potential
collapses (55), leading to a drastic inhibition of ATP synthesis.
Beyond this uncoupling effect, PTP opening has many other
effects: It allows the thermodynamic equilibrium of the
mitochondrial and cytosolic redox potentials, leading to an
increase in cytosolic NAD(P)H concentration (56). It partly
inhibits Complex I (57), reallocating the electron flux for the
production of reactive oxygen species (58). Finally, it leads to the
release of mitochondrial pro-apoptotic proteins both in isolated
mitochondria (secondary to mitochondrial swelling leading to
the rupture of the outer membrane) (59) and in intact cells (most
probably by a distinct but still unknownmechanism) (56, 60–62).

As there are several signaling pathways involved in cell
death, there are many factors activating these pathways. To
discriminate whether a given condition leading to cell death
involves PTP opening or not, experiments are performed in the
presence or absence of a recognized PTP inhibitor (generally
cyclosporine A, but not exclusively). Using this approach,
it has been reproducibly observed that PTP opening occurs
when cell death is triggered by calcium overload or oxidative
stress (63).
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The molecular nature of the PTP has long been a subject
of dispute but recent and compelling data from different
laboratories suggest that the PTP might involve ATP synthase
(51, 64). Surprisingly, the reference Complex I inhibitor rotenone
has been shown to inhibit PTP opening in all the tested cells and
tissues (either spontaneously or in the presence of cyclosporine
A) (23, 65). Although rotenone induces an energetic stress, it
also prevents cell death in the same models as cyclosporine
A (23) and does inhibit Complex I and PTP opening with a
similar concentration dependence (65). Piericidin, another well
recognized Complex I inhibitor also inhibits PTP opening (23).
Thus, the activity of Complex I can be said to be a regulator of
PTP opening. Moreover, several ubiquinone analogs (known to
bind with Complex I among others) have been proved to regulate
PTP opening and cell death (57, 66–69).

Knowing that metformin partly inhibits Complex I, we tested
whether it also inhibited PTP opening and related cell death. We
found that, metformin was less potent than rotenone but also
inhibited PTP opening (50). Suggesting a common mechanism
of action with rotenone, the effect of metformin was not additive
with that of rotenone, whereas it was additive with that of
cyclosporine A (65). At present, metformin has been shown
to prevent PTP opening in endothelial cells (50), KB cells
(7), INS-1 insulinoma cells (61), HeLa cells (65), LNCaP cells
(70), A375 cells (70), primary cortical neurons (71) and kidney
mitochondria (72). Accordingly, metformin prevents cell death
induced by oxidative stress in endothelial cells (50) and KB cells
(7), etoposide in primary neurons (71), gentamicin in kidneys
(72), hyperglycemia in endothelial (50) and INS-1 cells (61),
hyperfructosemia in INS-1 cells (61) and ischemia reperfusion in
INS-1 cells (73). Many other works have found a protective effect
of metformin (particularly during oxidative stress or ischemia
reperfusion injury) without having studied the role of the PTP
(18, 74–77).

ANTI-NEOPLASTIC EFFECTS OF

METFORMIN

Although PTP opening irremediably leads to cell death, PTP
opening is not mandatory to kill cells as cells can die with a closed
PTP. Although Complex I inhibition prevents PTP opening-
related cell death (see above), it can also induce cell death in
several models. Indeed, it has been repetitively reported that
rotenone (25) or biguanides (including metformin) can induce
cell death, especially in cancer cells (15, 17, 20, 78).

Cancer cells are known to be generally highly glycolytic
(Warburg effect) and are thus not supposed to be very sensitive
to mitochondrial poison. But is it so simple? As soon as cells
consume oxygen at the mitochondrial level, they are supposed
to produce mitochondrial ATP. Thus, even if the proportion of
mitochondrial ATP production is reduced in cancer cells, this
mitochondrial ATP production exists and its reduction could
be toxic. Supporting this proposal, it has been reported that
metformin inhibits the proliferation of HCT116 p53−/− cancer
cells in the presence of glucose, while it induces cell death in case
of glucose deprivation (15). Moreover, the effect of metformin is

totally prevented by the overexpression of a metformin-resistant
Saccharomyces cerevisiae NADH dehydrogenase NDI1 (15), very
elegantly demonstrating that the toxicity of metformin is due to
its effect on Complex I.

The suggestion that metformin’s toxicity is related to an
energetic stress raises several questions: Why is metformin
less toxic in non-cancer cells that are yet more dependent on
mitochondrial ATP production? How can metformin protect
against PTP-induced cell death despite its effect on ATP
production? In other words, what triggers that a same inhibition
of Complex I either prevents or induces cell death?

Again, part of the answer could be found in the comparison
of metformin concentrations. While millimolar concentrations
of metformin are generally used to induce cell death in
vitro, micromolar concentrations are sufficient to prevent PTP-
opening induced cell death. Although it has been shown that
cellular energy status is inversely correlated with metformin
concentrations (11, 79), a 24-h incubation with 100µM
metformin did not affect the AMP/ATP ratio in primary cultured
hepatocytes (11). This suggests that the metformin concentration
used to prevent PTP opening (100µM, overnight) was not
sufficient to induce a lethal decrease in energy status. On the
contrary, this confirms that the concentrations used to kill cells
dramatically affect the energy status. Note however that some
authors have reported an anti-apoptotic effect even at millimolar
concentrations of metformin, suggesting that some cells are able
to overcome energy stress (75, 80).

However, if the mechanism by which metformin kills
isolated cells can be traced to a collapse in energy status, the
concentrations that prevent cancer growth in animal models are
in the micromolar range. The practical assumption of metformin
accumulation in mitochondria has obviously been retained, but
one can wonder: why are normal cells preserved? Alternative
or complementary explanations must exist. Among them, it has
been proposed that the effect of metformin in animal models
is indirect (for example due to a decrease in blood insulin
concentration) (2). It is also possible that the accumulation of
metformin or the sensitivity of Complex I to metformin is higher
in cancer cells than in normal tissues (personal hypothesis). As
far as I know, these assumptions have not yet been tested.

CONCLUSIONS AND PROPOSAL

As explained several times in this manuscript, the concentration
with which experiments were conducted is the main misleading
point regarding the effect of metformin on Complex I.
On the one hand, it is obvious that the assumption that
metformin accumulates in mitochondria suits many authors.
This hypothesis can bridge the gap between concentrations
measured in vivo and those used in vitro. On the other
hand, two different laboratories that attempted to measure such
an accumulation put forward a total absence of metformin
accumulation in mitochondria (6, 45) in which Complex
I was nevertheless inhibited (6). Furthermore, although the
pharmacokinetic data are indirect evidence, they are not
compatible with an accumulation of metformin in mitochondria.
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Facing the facts, one must admit that there is either a technical
mistake in the studies that did not find metformin accumulation
in mitochondria or there is absolutely no experiment performed
at millimolar concentrations of metformin that reflect what
occurs in vivo. This includes a lot of articles both on
its antidiabetic role and on its anticancer effect. There
is an urgent need to solve this problem for good, and
this could be performed easily by fast cell fractionation
coupled to mass spectrometry (or other technics to detect
metformin) in order to confirm if metformin is found in
large amount in mitochondria of cells exposed to metformin.
Currently, the published evidence does not support the

generally accepted hypothesis of metformin accumulation in
mitochondria.
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Metformin is a drug from the biguanide family that is used for decades as the

first-line therapeutic choice for the treatment of type 2 diabetes. Despite its worldwide

democratization, owing to its clinical efficacy, high safety profile and cheap cost, the exact

mechanism(s) of action of this anti-hyperglycemic molecule with pleiotropic properties

still remains to be fully elucidated. The concept that metformin would exert some of its

actions though modulation of the mitochondrial bioenergetics was initially forged in the

50s but undeniably revived at the beginning of the twenty-first century when it was shown

to induce a weak but specific inhibition of the mitochondrial respiratory-chain complex

1. Furthermore, metformin has been reported to reduce generation of reactive oxygen

species at the complex 1 and to prevent mitochondrial-mediated apoptosis, suggesting

that it can protect against oxidative stress-induced cell death. Nevertheless, despite

some recent progress and the demonstration of its key role in the inhibition of hepatic

gluconeogenesis, the exact nature of the mitochondrial interaction between the drug and

the complex 1 is still poorly characterized. Recent studies reported that metformin may

also have anti-neoplastic properties by inhibiting cancer cell growth and proliferation, at

least partly through its mitochondrial action. As such, many trials are currently conducted

for exploring the repositioning of metformin as a potential drug for cancer therapy. In this

mini-review, we discuss both historical andmore recent findings on the central role played

by the interaction between metformin and the mitochondria in its cellular mechanism

of action.

Keywords: biguanides, respiratory-chain complex 1, bioenergetics, AMPK, cancer

INTRODUCTION

Historically, the origins of metformin (dimethylbiguanide) came from the Middle Age where
medieval doctors used extract from the French Lilac Galega officinalis to treat various diseases
(1). At the beginning of the twentieth century, the plant was found to be rich in guanidine, an
active ingredient that was later reported to have potent anti-hyperglycemic properties. Guanidine
derivatives gave rise to the biguanide family, among which metformin is currently the only
therapeutic survivor for the treatment of type 2 diabetes. Indeed, after withdrawal of buformin
and phenformin at the end of the 70′s, metformin hydrochloride gradually became the most
widely prescribed oral antidiabetic agent, due to its efficient glucose-lowering effect, weight-neutral
characteristic, high safety profile associated with low risk of hypoglycemia, and cost-effectiveness as
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a generic drug (2). Since then, metformin is well recognized for
its ability to lower hyperglycemia by decreasing hepatic glucose
production while reducing glucotoxicity in different tissues, a
feature that might explain some of its cardioprotective benefits
(2, 3). However, despite its worldwide democratization, the
exact mechanism(s) of action of this molecule with apparent
pleiotropic properties still remains to be fully elucidated. As
many drugs, the cellular effects of metformin rely on its
unique physicochemical characteristics, which include a high
hydrophilicity, some metal-binding properties and a pKa within
the physiological pH range, implying that the molecule exists
solely in its positively charged cationic form (4). Due to its
poor lipophilicity, metformin does not cross cell membranes by
simple passive diffusion and its bio-distribution relies on tissue-
specific transporters, including plasma membrane monoamine
transporter (PMAT) in the intestine, organic cation transporter
1 (OCT1) in the liver, and both organic cation transporter
2 (OCT2) and multidrug and toxin extruder (MATE)1/2 in
the kidneys (4, 5). By contrast, phenformin exhibits a higher
lipophilicity than metformin, owing to its larger phenylethyl side
chain, and is therefore crossing more easily lipid membrane
bilayer, a property that might explain their differences in terms
of selectivity and potency. Various underlying mechanisms
have been suggested for metformin throughout the six decades
following its first commercialization but a consensus only started
to emerge during the last years, placing mitochondria at the heart
of metformin’s cellular actions.

THE MITOCHONDRIAL

RESPIRATORY-CHAIN COMPLEX 1 AS

PRIMARY TARGET OF METFORMIN

At the beginning of 2000, the group of Xavier Leverve was
the first to report that metformin selectively inhibits the
mitochondrial respiratory-chain complex 1 and, as a result,
decreases NADH oxidation, reduces proton gradient across
the inner mitochondrial membrane, and decreases oxygen
consumption rate (6) (Figure 1). This major breakthrough was
rapidly complemented by a supportive study from Halestrap’s
group published couple of months later (7). Although the
inhibitory effect of metformin on complex 1 was first evidenced
in rat hepatocytes in these two seminal studies, it was thereafter
confirmed in various species and plenty of biological models,
including lately in cancer cells (Table 1). Importantly, metformin
only exerts a weak and reversible selective inhibition of complex
1 (IC50 ∼20mM), making it a peculiar type of inhibitor
that does not resemble the canonical ones like rotenone and
piericidin A (IC50 ∼2µM), which are both uncharged and
highly hydrophobic molecules (24). It is worth mentioning that,
although the discovery of complex 1 inhibition by metformin
undoubtedly constituted amajor advance in the understanding of
its cellular mode of action, some inhibitory effects of biguanides
on mitochondrial oxidative phosphorylation (OXPHOS) were
already reported by Gunnar Hollunger, a Swedish scientist at the
University of Lund, as early as 1955 (25), and by the German
biochemist Günter Schäfer in the 60’s (26).

Targeting the Mitochondria for Selective

Inhibition of Mitochondrial Complex 1
How exactly metformin gets into the mitochondria and whether
it inhibits complex 1 directly or not remains unclear and
is still a matter of debate (27). Very high concentrations
of metformin (20–100mM) were reported to directly inhibit
complex 1 activity in isolated mitochondria or in inside-out
structured sub-mitochondrial particles (SMPs) whereas clinically
relevant drug concentrations (<100µM) did not (Table 1). By
contrast, micromolar concentrations of the drug are sufficient
to achieve a dose- and time-dependent in situ inhibition
of mitochondrial complex 1 in various cell types (6, 10,
15, 28, 29) or in vivo in skeletal muscle from healthy and
diabetic rats (30). Among the possible explanations, the positive
charge of metformin was proposed to account for its slow
accumulation within the matrix of energized mitochondria of
intact cells, driven by their transmembrane electrochemical
potential (19) (7, 14). Indeed, according to thermodynamic
laws and the Nernst equation, a ∼1,000-fold accumulation
of a positively charged molecule might theoretically occur in
energized mitochondria with a physiologically relevant 19 ,
suggesting that metformin could reach millimolar concentration
in the organelle despite a cytoplasmic level within themicromolar
range (27). Furthermore, a 19-driven mitochondrial import of
the biguanide might also provide an explanation for its weak
inhibitory effect on complex 1, the reduction in mitochondrial
membrane potential induced by the drug limiting its subsequent
buildup. However, no accumulation of radioactively-labeled
metformin was observed in mitochondria isolated from Xenopus
laevis oocytes and exposed to concentrations of the drug that
inhibit complex 1 (10). Therefore, even if a direct effect of
metformin on complex 1 turns out possible, it seems to be
highly facilitated in intact cells regardless of the exact mechanism
involved in this process. Although the low accumulation of
metformin into mitochondria could primarily be explained by
the slow permeation of the drug across the plasma membrane,
some studies have also suggested the existence of a specific
transport system mediating its mitochondrial import. As such,
the observation that the inhibitory effect of metformin on
complex 1 was temperature-dependent in intact Xenopus laevis
oocytes and that low concentration (50µM) was able to
directly inhibit complex 1 activity in isolated mitochondria when
delivered as a liposomal-encapsulated form that can eventually
fuse with the organelle led to the hypothesis of an endocytic
vesicular routing of the drug from the plasma membrane to
the mitochondria (10). However, the molecular components
involved in this putative process still remain obscure and
would deserve extensive investigation, including in mammalian
cells. On the other hand, it has also been reported that intra-
mitochondrial accumulation of phenformin, another biguanide,
could at least partly be mediated by the mitochondrial organic
cation/carnitine transporter 1 (OCTN1) (31). More recently, a
protein-mediated mitochondrial import of the biguanide was
also suggested based on the fact that direct conjugation of a
phenyl group and bis-substitution of the biguanide moiety on
themolecule prevent its uptake intomitochondria, irrespective of
the compound hydrophobicity (32). However, whether this could
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FIGURE 1 | Mitochondrial mechanisms of action of metformin. After cellular uptake, mainly through OCT1 in hepatocytes, the mitochondria is the primary target of

metformin which exerts specific inhibition on the respiratory-chain complex 1, presumably through direct interaction with the ND3 core subunit, and on mitochondrial

glycerophosphate dehydrogenase (mGPDH ). The inhibition of complex 1 decreases NADH oxidation, proton pumping across the inner mitochondrial membrane and

oxygen consumption rate, resulting in lower proton gradient (1ψ) and reduction of proton-driven ATP synthesis from ADP and inorganic phosphate (Pi). The inhibition

of mGPDH modulates cytosolic and mitochondrial redox state resulting in increased cytosolic NADH. FBP1, fructose-1,6-bisphosphatase-1. AC, adenylate cyclase.

also occur for metformin was not assessed and remains therefore
to be investigated.

Molecular Interaction Between Metformin

and the Respiratory-Chain Complex 1
The mammalian respiratory-chain complex 1
(NADH:ubiquinone oxidoreductase) is a large L-shaped
membrane-bound redox enzyme composed of at least 45
different subunits that couples the transfer of electrons from
NADH to the ubiquinone pool with a transfer of protons from
the mitochondrial matrix toward the intermembrane space (33).
The complex 1 exists in two distinct forms: a fully competent
active one and a so-called “deactive” D-form where the enzyme is
catalytically incompetent but can be activated by a slow reaction
of NADH oxidation coupled to ubiquinone reduction (34). As
metformin inhibits NADH oxidation by complex 1 in isolated
mitochondria from bovine heart, yeast Pichia pastoris, bacterium
Escherichia coli (14, 32), as well as from C. elegans (35), it is
likely that the molecule binds to some of the phylogenetically
conserved “core” subunits of the complex rather than to
mammalian-specific accessory ones (33). While it has been
shown that metformin did not alter the structural integrity of the
whole complex (14), the exact molecular interactions between
the drug and the complex 1 remain to be elucidated. In order to
investigate how metformin, and other biguanides, could interact
with complex 1 for regulating its activity, the group of Judy
Hirst has elegantly dissected the effects of the drug at different
levels of the catalytic cycle of the enzyme. They demonstrated
that metformin is a reversible non-competitive inhibitor that
probably binds to some amphipathic regions of the enzyme,

i.e., where some hydrophilic and hydrophobic amino acids are
in close proximity, and inhibits a rate-limiting step coupled
to ubiquinone reduction, but does not competitively bind to
the ubiquinone-binding site on complex 1 (14). Moreover,
metformin rather stimulates the NADH:FeCN oxidoreduction
reaction and does not alter the thermal stability of the flavin site,
except at extremely high non-relevant concentration (200mM),
indicating that NADH oxidation occurring at the flavin site
is probably not involved in the inhibition of complex 1 by
the drug. Similarly, metformin does not modulate the FeS
cluster of the NADH-reduced complex 1, suggesting that the
intramolecular electron transfer is not impaired (14). However,
using SMPs, the authors showed that inhibition of NADH
oxidation by metformin is immediate when the drug is added
prior to the initiation of catalysis but is delayed once catalysis
has already started (14). Altogether, this strongly suggests
that the inhibition depends on the catalytic status of complex
1, occurring primarily when the enzyme is in its “deactive”
conformation with redox and proton transfer domains no
longer efficiently coupled (14). Ultimately, the authors proposed
that the Cys39-containing matrix loop of subunit ND3 located
within the amphipathic region between the redox and proton-
transfer domains might be the binding site for metformin on
complex 1, stabilizing the enzyme in an open-loop deactive
conformation state (14). It is worth mentioning that most of
the above-mentioned mechanistic studies were performed using
isolated organelles and high concentrations of the drug and
that such experimental in vitro conditions might not always
reflect the physiological in situ environment. For instance,
complex 1 forms respiratory-chain supercomplexes together
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with complexes 3 and 4 (36), a supramolecular organization
that is lost in SMPs and may affect the interaction of metformin
with complex 1 and/or the regulatory effect of the drug on
mitochondrial OXPHOS.

Modulation of ROS Production at Complex

1 by Metformin
Besides their central role in cellular energy homeostasis,
mitochondria are also the main source of reactive oxygen
species (ROS) which, on top of potentially causing oxidative
damages, could also play a key role as signaling molecules
in various pathways (37). Superoxide anions are primarily
generated by the mitochondria, mostly at complexes 1 and
3 of the electron transfer chain (ETC) where electrons are
leaking and could react with oxygen. It is now well recognized
that complex 1 can produce superoxide by both forward
(site IF) and reverse electron (site IQ) fluxes, depending on
substrates used to fuel the ETC (38). As such, rotenone can
either increase or decrease mitochondrial ROS production at
complex 1, depending on whether glutamate-malate (forward) or
succinate (reverse) are provided as respiratory-chain substrates,
respectively. By contrast, it has been shown that metformin
specifically decreases the ROS production driven by the reverse
electron transfer (RET) but without increasing ROS generation
through the forward direction (39). Interestingly, a similar
lowering effect on ROS production at the complex 1 than
the one observed with metformin was also recently reported
for imeglimin, a molecule belonging to the tetrahydrotriazine-
containing novel class of oral glucose-lowering agents (40),
suggesting that inhibition of this RET-mediated ROS production
may play a role in the mechanisms of action of the two
antidiabetic drugs, notably by conferring protection against
oxidative stress-related cell death (15, 28, 29). In line with
this, a new generation of oxidative stress inhibitors that
specifically neutralize ROS produced via RET at the IQ
site within complex 1 has been shown to lower oxidative
damage, inhibit cellular stress signaling and protect against
ischemia-reperfusion heart injury (41). Furthermore, it has
also been suggested that some of the anti-inflammatory effect
of metformin observed in lipopolysaccharide-stimulated bone-
marrow derived macrophages could result from the specific
inhibition of RET-derived ROS production at the complex 1
(42). Taken together, these findings suggest that targeting RET-
linked ROS occurring at the mitochondrial respiratory-chain
complex 1 using metformin or metformin-like molecules might
be therapeutically relevant in the context of both cardiometabolic
and inflammatory diseases.

MITOCHONDRIAL EFFECTS OF

METFORMIN AND REGULATION OF

HEPATIC GLUCONEOGENESIS

Metformin exerts its anti-hyperglycemic action primarily
through reduction of hepatic glucose production (3). A major
breakthrough occurred in 2001 when Zhou and colleagues

reported that metformin increased the AMP-activated protein
kinase (AMPK) activity in hepatocytes, a feature associated
with inhibition of gluconeogenesis (43). AMPK is a protein
kinase that functions as energy gauge which constantly senses
the cellular energy status by monitoring AMP, ADP, and
ATP levels (44, 45). Once activated in response to decrease
in ATP and concomitant rise in intracellular ADP and AMP
levels, AMPK inhibits ATP-consuming anabolic processes
and promotes ATP-generating catabolic pathways by direct
phosphorylation of a broad range of downstream effectors that
are involved in the regulation of various metabolic processes,
ultimately leading to restoration of cellular energy balance (44).
It took a decade of controversy before the general acceptance
that AMPK activation by metformin results from increased
ADP:ATP and AMP:ATP ratios secondary to inhibition of
the mitochondrial respiratory-chain complex 1 (3). Of note,
only biguanides with physicochemical characteristics allowing
them to enter the mitochondria and to inhibit complex 1 were
shown to activate AMPK (32). However, using liver-specific
AMPK knockout mice, Foretz and colleagues demonstrated that
metformin lowers gluconeogenesis by an AMPK-independent
mechanism involving a decrease in cellular energy state, a
strong correlation being observed between the increase in
cellular [AMP]:[ATP] and the inhibition of gluconeogenesis
(46). Altogether, although metformin can activate AMPK,
it is therefore neither necessary nor sufficient for inducing
acute inhibition of gluconeogenesis (Figure 1). In line with
this, two other studies also demonstrated that metformin can
inhibit hepatic glucose production through AMPK-independent
mechanisms: one by AMP-mediated inhibition of adenylate
cyclase and subsequent reduction in glucagon-increased cyclic
adenosine monophosphate (cAMP) levels (47); the other one
through modulation of cytosolic redox state via direct inhibition
of the mitochondrial glycerol-3-phosphate dehydrogenase
(mGPDH) (8) (Figure 1). mGPDH is a flavin-linked respiratory-
chain dehydrogenase belonging to the glycerol phosphate
shuttle that couples the oxidation of glycerol-3-phosphate to
dihydroxyacetone with reduction of FAD to FADH2 and the
transfer of electrons to coenzyme Q of the ETC, contributing as
such to the maintenance of the redox potential across the inner
mitochondrial membrane (48). Remarkably, Shulman’s group
reported that metformin exerts an in vitro non-competitive
inhibition of the enzyme, with a Ki value (∼40µM) within the
clinical range of drug concentrations, leading to increased hepatic
cytosolic NADH/NAD+ ratio and impaired gluconeogenesis
from redox-dependent substrates, such as lactate and glycerol,
in rats (8). In a recent follow-up study, they showed that
both acute and chronic treatment with metformin also inhibit
hepatic gluconeogenesis in a redox-dependent manner in
diabetic rats, without apparent changes in mitochondrial citrate
synthase flux and hepatic nucleotide concentrations (49). By
contrast, Sakamoto’s group recently provided new supportive
elements strengthening the key role of mitochondria-mediated
modulation of cellular energy homeostasis in the inhibition of
hepatic gluconeogenesis by metformin. Indeed, in an elegant
study using knock-in mice, the authors demonstrated that a
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TABLE 1 | Ex vivo and in vitro mitochondrial effects of metformin.

Cell type Metformin

(mM)

Duration Effects Reference

Healthy cells/organelles Primary rat hepatocytes 0.1–10 45min Inhibition of JO2

Inhibition of C1-linked mJO2

(6)

0.05 2 h Non-competitive inhibition of mGPDH activity

Inhibition of mGPDH-linked JO2

(8)

Mouse hepatocytes 5 30min Inhibition of JO2

Inhibition of C1-linked mJO2

(9)

Human hepatocytes 5 30min Inhibition of JO2

Inhibition of C1-linked mJO2

(9)

Xenopus laevis oocytes 0.05 4–18 h Inhibition of C1 (10)

10 0.5–3 h Inhibition of C1 (10)

Rat liver mitochondria 0.5–5 1min No effect (11)

5–20 ? Inhibition of C1-linked JO2 (8)

8–10 1min Inhibition of JO2 and RCR

Decrease in 19m

(11)

10 30min No effect (6)

2–11 5min Inhibition of C1-linked JO2

Decrease in NADH oxidation

(12)

>10 5min No effect (7)

1–10 4h (cold) Inhibition of JO2

Inhibition of C1-linked JO2

(7)

Mouse muscle mitochondria 2–5 30min Inhibition of C1-linked JO2

Inhibition of TCA cycle activity

(13)

Xenopus laevis mitochondria 0.05–10 3 h No effect (10)

Rat/liver heart SMPs 5–50 Immediate Inhibition of C1 activity (7)

Bovine heart SMPs 100 Immediate Inhibition of NADH oxidation (14)

Cancer cells Rat hepatoma H4IIE cells 0.05–0.1 24–60 h Inhibition of C1-linked mJO2 (7)

2 2 h30 Inhibition of JO2 (12)

Mouse breast NT2196 cells 0.5–5 24–48 h Inhibition of JO2

Increase in uncoupled JO2

(13)

Human liver hepatoma HepG2 cells 2 0.5–8 h Inhibition of JO2 (14)

Human oral squamous carcinoma KB cells 0.1–10 0.5–24 h Inhibition of JO2

Inhibition of C1-linked mJO2 Inhibition of

isolated C1 activity

(15)

Human colorectal HCT116, prostate LNCaP,

squamous SCC-74B and colon POP-092S

carcinoma cells

0.2–10 1–8 h Inhibition of JO2 (16)

Human breast MCF7 cells 0.5–5 24 h Inhibition of JO2

Increase in uncoupled JO2 Inhibition of TCA

cycle activity

(13)

2.5–5 5 h No effect on JO2

Inhibition of CYP3A4 AA

Epoxygenase activity

(17)

Human thyroid FTC133 and BCAP

carcinoma cells

5 48 h Inhibition of JO2

Lower mGPDH expression

(18)

1–5 10min Inhibition of mGPDH activity (18)

Human lung A549 and cervical HeLa

carcinoma cells

1 5–10min Inhibition of C1-linked mJO2

No effect on mG3PDH-linked mJO2

(19)

Human pancreatic PDAC stem cells 3–10 1 h Inhibition of JO2 Inhibition of C1-linked mJO2 (20)

Human HCT116 p53−/− colorectal

carcinoma cells

0.25–1 24 h Inhibition of JO2

Inhibition of C1-linked mJO2

(21)

Human pancreatic PANC-1 carcinoma cells 0.5–10 48 h Inhibition of C1-linked mJO2 (22)

1–10 24 h Inhibition of JO2

Inhibition of C1-linked mJO2

(23)

Human pancreatic MiaPaCa-2 carcinoma

cells

1–10 24 h Inhibition of JO2

Inhibition of C1-linked mJO2

(23)

C1, mitochondrial respiratory-chain complex 1; mG3PDH,mitochondrial glycerol-3-phosphate dehydrogenase; JO2, oxygen consumption rate; mJO2, mitochondrial oxygen consumption

rate; RCR, respiratory control ratio; ROS, reactive oxygen species; TCA, tricarboxylic acid; SMPs, sub-mitochondrial particles.
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point mutation in the gluconeogenic enzyme fructose-1,6-
bisphosphatase-1 (F1BP) which impairs its allosteric inhibition
by AMP reduced the anti-hyperglycemic effect of metformin
in diabetic mice (50). Altogether, this strongly suggests that
the transient rise in intracellular AMP levels resulting from
the weak and reversible inhibition of the respiratory-chain
complex 1 by metformin is crucial for inhibiting hepatic
gluconeogenesis, either by modulating adenylate cyclase or FBP1
activity (Figure 1).

INHIBITION OF COMPLEX 1 BY

METFORMIN AND METABOLIC

REPROGRAMMING IN CANCER CELLS

A growing body of epidemiological and clinical studies reported
that metformin reduces cancer risk in patients with type 2
diabetes and improves survival outcome of cancer patients with
breast, ovarian, liver and colorectal tumors (51). Although an
extensive overview on this topic can be found elsewhere [for
recent reviews see (51–54)], it is striking that the mitochondrial
effect of metformin could again play a crucial role in the anti-
tumorigenic effect of the drug. Indeed, the inhibition of complex
1 was observed inmany cancer cells (Table 1) and usually leads to
reduced mitochondrial OXPHOS and ATP depletion, ultimately
resulting in AMPK-mediated activation of catabolic pathways
and inhibition of anabolic processes through its regulation of
mechanistic target of rapamycin complex 1 (mTORC1) (54).
While some AMPK- and mTORC1-independent mechanisms
can also co-exist (55), this metabolic reprogramming lowers
growth and proliferation of cancer cells, at least partly due to
inhibition of protein and lipid synthesis. It also promotes cell
cycle arrest and apoptosis in cells that cannot cope with the
energetic stress (54). Wheaton and colleagues clearly showed that
the reduction of tumor growth by metformin was prevented in
cancer cells expressing NDI1, a metformin-resistant yeast analog
of complex 1, highlighting the central role played by inhibition
of this mitochondrial target in the antineoplastic effect of the
drug (21). This is also consistent with another study showing
that phenformin exerts its anti-tumorigenic effects by inhibiting
complex 1 (56). Nevertheless, most of the effects of metformin
were generally observed at supratherapeutic concentrations and

the drug bioavailability in cancer cells is still questionable.
Interestingly, more lipophilic derivatives of metformin targeting
the mitochondria are currently under investigation with the aim
of developing analogs with higher bioavailability and antitumor
activity than metformin. Remarkably, some of these newly
synthetized molecules were recently reported to be nearly 1,000-
fold more potent than metformin in inhibiting mitochondrial
complex 1 activity and to exert both anti-proliferative and
radiosensitizing effects in pancreatic cancer cells (23). Altogether,
developing such kind of mitochondria-targeted metformin-
like drugs could pave the way for promising new therapeutic
strategies thatmight also be relevant for various other pathologies
than cancer (57).

CONCLUDING REMARKS

Although the interest around metformin has been significantly
revived during the last years, principally due to the potential
repositioning of this antidiabetic drug for the treatment
of cancer, it still remains crucial to better decipher
the mechanism by which it inhibits the mitochondrial
respiratory-chain complex 1, notably the exact nature of
their interaction. Elucidating this aspect may advance
our understanding of how metformin regulates cellular
energetics and be decisive for optimizing future drug
development and therapeutic interventions, notably for
cancer patients.
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The pathogenic factors of the complex epidemic disorder–obesity, have expanded

from genetic background, endocrine factors, abnormal feeding behaviors, and direct

neural control of adipose tissue physiology. As a chronic metabolic disease, it is

important to find new potential therapeutic targets and locate a sensitive time window for

intervention. In this study, we focus on the early stage of a high-fat diet mouse model: a

short-term 3-week treatment. Our results showed that this short-term 3-week HFD can

already induce significant body weight gain, increased adipocyte size and surprisingly,

anxiety-like behavior of the animals. Then we tried the early intervention with metformin,

already reported for its effects in long-term HFD induced obesity. For a short-term

3-week co-treatment, metformin alleviated the HFD-induced increase in body weight,

the increase in adipocyte size and furthermore, the anxiety-like behavior. Differences were

noted among the normal diet (ND), HFD, and HFD with metformin co-treatment groups

in gut microbiota, including its composition and diversity. The possible involvement of

gut microbiota cannot be ruled out. Intense phospho-AMPK staining was found in the

metformin treatment group in the habenular nuclei, hippocampus and basal ganglia of the

brain compared with the HFD group, implying that the anxiolytic effect of metformin could

be due to the direct activation of the AMPK pathway in the anxiety-related brain nuclei.

Keywords: high-fat diet, metformin, anxiety, gut microbiota, obesity

INTRODUCTION

The rising epidemic of obesity calls for increased effort to identify new therapeutic targets/strategies
for the treatment of this metabolic disorder. The pathogenic factors of obesity have expanded from
genetic background and endocrine factors to central nervous control, including abnormal feeding
behaviors and direct neural control of adipose tissue physiology (1, 2). Considerable progress has
been made over the past few decades; however, more research is needed to solve the questions
surrounding this disorder.
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Metformin (dimethylbiguanide) has become a first-line oral
blood glucose-lowering agent for patients with type 2 diabetes
mellitus (T2DM) (3, 4). In patients with T2DM, who are also
obese, metformin also plays a clinical role in obesity (5, 6). The
detailed functional mechanism of its action in obesity needs
further investigation. Metformin is derived from galegine, a
natural product from amedieval European herbal medicine plant
Galega officinalis. Established as a safe and effective therapy,
metformin has multiple modes of actions and its molecular
mechanisms are not fully deciphered, despite its clinical usage
for over 60 years (3, 4, 7). One of the major molecular
targets of metformin is the cellular energy sensor Adenosine
monophosphate (AMP)-activated protein kinase (AMPK) (7,
8). Besides hepatic gluconeogenesis, accumulating tissue/organ
targets were found for metformin, including white and brown
adipose tissue (9), lung (10), and the central nervous system (11).

Although it is known to have a background in genetic and
environmental factors, one direct cause of obesity remains an
imbalance between caloric intake and expenditure.In this study,
a high-fat diet (HFD) mouse model was used. For its chronic
characteristics and the complexity of energy expenditure, we
focused on the early phase of HFD feeding in relation to body
weight gain. Thus, the HFD treatment lasted for 3 weeks.
Considering the current implications of the alteration of gut
bacteria in both obesity (12) and metformin-treated diabetes
(13), the changes in gut microbiota under the short-term HFD
and metformin co-treatment was also investigated. In addition,
possible central nervous effects of the HFD were evaluated by a
free-moving behavioral test in the Elevated plus maze (EPM) and
the Open field test (OFT). Considering the reported activation
of the AMPK pathway by metformin, the immunostaining of
phospho-AMPK was carried out in WAT and the brain.

MATERIALS AND METHODS

Mice
Adult (6 weeks) male C57BL/6J mice (Beijing Vital River
Laboratory Animal Technology Co., Ltd. China) were group-
housed, given access to food pellets and water ad libitum, and
maintained on a 12:12-h light/dark cycle. All husbandry and
experimental procedures in this study were approved by the
Animal Care and Use Committees of the Shenzhen Institute
of Advanced Technology (SIAT), Chinese Academy of Sciences
(CAS), China.

High-Fat Diet (HFD), Normal Diet (ND), and
Metformin Treatment
Three groups of mice were subjected to different treatments: one
group received the normal diet (ND); one group received the
high-fat diet (HFD); and a third group received the HFD diet and
co-treatment with metformin via oral gavage (300 mg/kg/day,
Sigma-Aldrich, BP227, St. Louis, MO). Saline was administered
to the ND and HFD groups via oral gavage. For HFD, 60% of
the energy was derived from fat, while in the ND, 10% of the
energy was derived from fat (Trophic Animal Feed High-Tech,
China; TP23300 for HFD, TP23302 for ND). The formula for

the HFD was as follows: casein (267 g/kg), maltodextrin (157
g/kg), sucrose (89 g/kg), soybean oil (33 g/kg), lard oil (301 g/kg),
cellulose (67 g/kg), mineral mix M1020 (66 g/kg), vitamin mix
V1010 (13 g/kg), L-cystine (4 g/kg), choline bitartrate (3 g/kg),
TNHQ (0.067 g/kg).

All treatments lasted for 3 weeks. Body weight gain was
recorded for each mouse daily until day 21. On the morning of
day 21, body weights of mice were recorded, fecal samples were
collected and then the mice were subjected to Elevated plus maze
test (EPM). On day 22, Open field test (OFT) was performed,
then the mice were deep anesthetized and sacrificed. Epididymal
white adipose tissues and the brain from three mice of each group
were subjected for further histological study. Fecal samples of
the mice were collected into sterile tubes, snap-frozen, and then
stored at−80◦C until the day of analysis.

Histological Study
While under deep anesthesia, mice were transcardially perfused
with 4% paraformaldehyde (PFA) in PBS, epididymal white
adipose tissues (WAT) and the brain were harvested and posted-
fixed in 4% PFA. The WAT tissue samples were embedded
in paraffin, and 4µm sections were cut on a microtome. The
sections were subjected to hematoxylin and eosin (H&E) staining
for morphological examination and immune fluorescent staining
for phospho-AMPK (pAMPK). For adipocyte size analysis, the
longer diameter of each adipocyte was measured. To avoid
clustered analysis, the readings from one mouse were first
averaged and used its mean as a single value for further
comparison between different treatment groups. To evaluate the
adipocyte enlargement, the mean of all adipocytes counted were
calculated and adipocyte with a larger diameter than the mean
of all cells measured in the ND group was defined as “Large
adipocyte.” The number and the percentage of Large adipocyte
were calculated as a parameter of adipocyte enlargement.

Also, brains harvested were post-fixed with 4% PFA,
cryoprotected in 30% sucrose in PBS and cut on a cryostat
in 30µm slices. Immunohistochemistry was performed to map
the pAMPK expression in the brain. Antibody staining was
performed on single-well floating tissue sections. Sections were
incubated for 24 h in primary antibodies at 4◦C followed by
overnight incubation with secondary antibodies at 4◦C. The
primary antibody used was rabbit anti-pAMPK (#2535, Cell
Signaling Technology;1:50). Suitable secondary antibodies were
chosen to reveal different fluorescent colors. For counterstaining,
sections were incubated for 10min with 40, 6-diamidin-2-
phenylindol (DAPI, 0.4 mg/mL, Sigma). All the images were
captured with a Zesis LSM 880 confocal microscope or an
Olympus VS120 virtual microscopy slide scanning system.

DNA Extraction, 16S Ribosome RNA V4
Region Sequencing and Analysis
DNA extraction was carried out according to the manufacturer’s
instructions–MOBIO PowerSoil R© DNA Isolation Kit 12888-
100. DNA was stored at −80◦C in Tris-EDTA buffer
solution. To enable amplification of the V4 region of the
16S rRNA gene and add barcode sequences, unique fusion
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primers were designed based on the universal primer set,
515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACNVGGGTWTCTAAT-3′), along with barcode
sequences. PCR mixtures contained 1 µL of each forward and
reverse primers (10µM), 1 µL of template DNA, 4 µL of dNTPs
(2.5mM), 5 µL of 10 × EasyPfu Buffer, 1 µL of Easy Pfu DNA
Polymerase (2.5 U/µL), and 1 µL of double-distilled water in a
total 50 µL reaction volume. Thermal cycling consisted of an
initial denaturation step at 95◦C for 5min, followed by 30 cycles
of denaturation at 94◦C for 30 s, annealing at 60◦C for 30 s, and
extension at 72◦C for 40 s, with a final extension step at 72◦C
for 4min. The expected band size for 515f-806r is ∼300–350
bp checked by agarose gel. Quantify amplicons with Quant-iT
PicoGreen dsDNA Assay Kit (ThermoFisher/Invitrogen cat. no.
P11496). The amplicon library for high-throughput sequencing
on the Illumina MiSeq platform by Promegene, China was
combined an equal amount and subsequently quantified (KAPA
Library Quantification Kit KK4824) according to manufacturer’s
instructions. Using the Quantitative Insights into Microbial
Ecology (QIIME) 1.8.0 pipeline 1, the raw sequences were
processed to concatenate reads into tags according to the
overlapping relationship, then, reads belonging to each sample
were separated with barcodes and low-quality reads were
removed. The processed tags were clustered into the operational
taxonomic units (OTUs) at the commonly used 97% similarity
threshold. The OTUs were assigned to taxa by matching to
the Greengenes database (Release 13.8). A phylogenetic tree of
representative sequences was built. Alpha and beta diversity
analyses were performed. Distances were calculated with R
(3.3.1, flexmix package).

Elevated Plus Maze (EPM) and Behavioral
Analysis
Mice were placed on a four-arm plus maze with two open arms
and two closed arms (white PVC, 30 cm in length per arm ×

5 cm in width), which was raised 50 cm above the ground for a
15min session. The EPM was cleaned between mice with 20%
ethanol solution. The number of entries to the open arms, time
spent in the open arms, and distance traveled in the open arms
were recorded and analyzed by Anymaze R© software (Stoelting
Co., IL, USA).

Open Field Test (OFT) and Behavioral
Analysis
An open field arena (50 cm × 50 cm × 50 cm) made of white
PVC was used to assess both locomotor activity and anxiety-
like behavior of the animals. The entries to the Center, the time
in the Center, the distance traveled in the Center, total distance
traveled in the OF, average speed in the OF for a 5min session
were recorded and then analyzed by the Anymaze R©software
(Stoelting). The open field was cleaned between mice with 20%
ethanol solution.

Statistical Analysis
Data were expressed as mean ± SEM (Figures 1–3) and Box
and Whiskers (Figure 5). Statistical significance was set at p

< 0.05 (∗p < 0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.0001) and power
analysis (Cohen’s d) was carried out. All n values represent the
number of mice used in each experiment. One-way analysis of
variance (ANOVA) with Tukey’s multiple comparisons test or
permutation test was used as appropriate.

RESULTS

Three-Week High-Fat Diet (HFD) Induced
Significant Body Weight Gain and an
Increase in the Adipocyte Size, Which Were
Alleviated by Metformin Co-treatment
Three groups of mice were subjected to different treatments: one
group to the normal diet (ND + saline); one group to the high-
fat diet (HFD + saline); and a third group to the HFD diet and
co-treatment with metformin (HFD + Met) via oral gavage. All
treatments lasted 3 weeks. Body weight gain was recorded daily
until day 21 (Figure 1A). The average body weight of animals in
each group showed no significant differences before treatment on
day 0 (20.20 ± 0.45 g of the ND group, 20.59 ± 0.36 g of HFD
group, 21.31± 0.39 g for HFD+Met group; n=5 for each group,
One-way ANOVA with Tukey’s test, ND vs. HFD, p = 0.776,
Cohen’s d = 0.48; HFD vs. HFD + Met, p = 0.429, Cohen’s d
= 1.25). At the end of 3 weeks, mice in the HFD group showed
an increase in body weight gain, compared to the ND group,
whereas this increase was alleviated by metformin co-treatment
(Figures 1B–D, n = 5 for each group, each dot represents one
animal, data presented as body weight gain/original body weight;

Figure 1B, ND vs. HFD, p> 0.05, Cohen’s d= 0.43; HFD vs. HFD
+Met, p < 0.01, Cohen’s d = 3.09; Figure 1C, ND vs. HFD, p <

0.05, Cohen’s d=1.85; HFD vs. HFD + Met, p < 0.01, Cohen’s
d = 2.75; Figure 1D, ND vs. HFD, p < 0.05, Cohen’s d = 1.94;
HFD vs. HFD + Met, p < 0.01, Cohen’s d = 2.93). Besides, the
difference between HFD and HFD+Met was significant already
as early as day 7, suggesting the early onset of metformin’s effect
on body weight gain.

Representative images of epididymal white adipose tissue
(WAT) stained with H&E (Figure 2A) showed that the changes
in bodyweight gain were accompanied bymorphological changes
in the adipocytes, with enlarged adipocytes in the HFD group,
compared to the ND group and HFD + Met group. The longer
diameter of each adipocyte was measured to quantify the change
in adipocyte size. The result showed that HFD group had a larger
averaged adipocyte size compared with ND, which was rescued
by metformin co-treatment (Figure 2B, n = 5 for each group,
each dot represents one animal, for ND vs. HFD, p < 0.05,
Cohen’s d = 1.90, for HFD vs. HFD + Met, p < 0.01, Cohen’s
d = 2.38). Defining “Large adipocyte” as cells with a diameter
larger than the mean of all cell measured in ND group, we found
that HFD group had more Large adipocyte cell number and cell
percentage than ND, which were also rescued by metformin co-
treatment (n= 5 for each group, each dot represents one animal,
Figure 2C, for ND vs. HFD, p < 0.01, Cohen’s d = 3.05, for HFD
vs. HFD + Met, p < 0.01, Cohen’s d = 2.81; Figure 2D, for ND
vs. HFD, p < 0.01, Cohen’s d = 3.26, for HFD vs. HFD +Met, p
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FIGURE 1 | High-Fat Diet (HFD) for 3 weeks induced significant body weight gain compared with Normal Diet (ND) group, which was rescued by metformin

co-treatment. (A) Three groups of mice were subjected to different treatments, one group for normal diet (ND + saline), one group for high fat diet (HFD + saline) and

a third group for HFD diet with oral garage co-treatment of metformin (HFD + Met), the gain of body weight as percentage of original body weight were demonstrated;

(B) on day 7, HFD + Met group showed a low body weight gain compared with HFD group; (C,D) on day 14 and day 21, HFD group showed higher body weight gain

compared with ND, which was rescued by metformin co-treatment. For (A–D), data were presented as mean ± SEM, n = 5 per group, each dot represents one

mouse; One-way ANOVA with Tukey’s test, *p < 0.05, **p < 0.01.

< 0.01 Cohen’s d = 3.79). These data suggest that metformin co-
treatment had a suppressive effect on HFD-induced body weight
gain and adipocyte enlargement.

Three-Week HFD Induced Anxiety-Like
Behaviors, Which Were Alleviated by
Metformin Co-treatment; Metformin
Increased pAMPK Levels in the WAT and in
the Habenular Nuclei, Hippocampus and
Basal Ganglia of the Brain
Considering clinical reports about the interaction between
obesity and anxiety (14), we further evaluated the possible
variance in anxiety-like behavior in OPT and EPM. In OPT, the
entries to the Center, the time in the Center and the distance in
the Center all indicated that HFD induced anxiety-like behaviors.
There was a trend for metformin to rescue this effect, but not
significant (Figure 3B, n = 5 for each group, each dot represents
one animal; for Entries to Center, ND vs. HFD, p < 0.05, Cohen’s
d = 2.45, HFD vs. HFD + Met, p > 0.05, Cohen’s d = 0.83;

for Time in Center, ND vs. HFD, p < 0.05, Cohen’s d = 2.84,
HFD vs. HFD+Met, p > 0.05, Cohen’s d = 1.36; for Distance in
Center, ND vs. HFD, p < 0.01, Cohen’s d = 3.43, HFD vs. HFD
+ Met, p > 0.05, Cohen’s d = 1.11). In EPM, the HFD showed
its effect in inducing anxiety like behavior and rescued by the
metformin co-treatment. The distance traveled in the open arm
decreased in HFD compared with ND, which was alleviated by
metformin co-treatment (Figure 3C, n = 5 for each group, each
dot represents one animal; ND vs. HFD, p < 0.05, Cohen’s d =

2.10, HFD vs. HFD + Met, p < 0.05, Cohen’s d = 2.21). The
locomotor of the animal was not affected by the 3-week HFD
treatment or HFD-Met treatment (Figure 3A, n = 5 for each
group, each dot represents one animal; for total activity, ps >

0.05, Cohen’s ds = 0.52 and 0.86; for average speed, ps > 0.05,
Cohen’s ds = 0.53 and 0.87). Though there was no correlation
between the body weight changes on day 21 and the parameters
of OFT and EPM tests (all R squared <0.26, all ps > 0.05), while
the parameters of OFT and EPM tests were strongly correlated
(for Distance in Open Arms of EPM vs. Distance in Center of
OFT, R squared= 0.43, p < 0.01).
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FIGURE 2 | Three-week HFD induced morphological change in white adipose tissue (WAT) and adipocyte size increase, which were alleviated by metformin

co-treatment. (A) Representative H&E staining figures show that the changes in gain of body weight was accompanied by morphological change in the adipocytes of

WAT (arrow heads indicate enlarged adipocytes; scale bars, 200 and 50µm, respectively); (B) HFD group had a larger averaged adipocyte size compared with ND,

which was rescued by metformin co-treatment; (C,D) for large adipocytes (defined as cells with a diameter larger than the mean of all cells in ND group), HFD group

showed higher value in cell number and percentage of large adipocytes. This increase was also rescued by metformin co-treatment. For (A–D), n = 5 per group; for

(B–D), data were presented as mean ± SEM, each dot represents one mouse; One-way ANOVA with Tukey’s test, *p < 0.05, **p < 0.01.

We next want to know whether the anxiolytic effect of
metformin could be partially due to its direct action in the
brain. As metformin is a well-known AMPK activator and
has been reported for its central function in the brain (15)
and AMPK is a primary sensor of cellular energy states and
regulates cellular energy metabolism, we examined the possible
activation of AMPK pathway by metformin treatment. Stronger

pAMPK immunostaining was found in the metformin co-
treatment group, not only in the WAT (Figure 4A), but also
in the brain, located in the habenular nuclei, hippocampus and

basal ganglia, compared with the HFD group (Figures 4B–D).

Habenular nuclei, especially lateral habenular nucleus (LHb),
hippocampus, and basal ganglia are all involved with anxiety-

related disorders (16–21). Our data suggested that the anxiolytic

effect of metformin co-treatment could be due to the direct

activation of the AMPK pathway in the anxiety-related

brain nuclei.

The HFD and HFD + Metformin Treatments
Changed Microbiota Diversity and Altered
Its Composition
The close association between altered gut microbiota and obesity
(12) or long-term high-fat diet (22, 23) has been established.
Considering the significant effect of metformin in rescuing the
3-week HFD-induced body weight gain, we accessed the impact
of HFD and HFD + Met on the gut microbiota through 16S
rRNA gene sequencing of the fecal contents of the animals
(Figures 5A–H, n = 5 for each group). The bacterial abundance
of each group varied at genus levels (Figure 5A). With Firmicutes
and Bacteroidetes dominant at phylum level, the top dominant
species included Lactobacillus, Allobaculum, Streptococcus,
Oscillospira, Bifidobacterium, Lactococcus, Ruminococcus,
Leuconostoc, Prevotella, among which Streptococcus, Oscillospira,
Ruminococcus, Leuconostoc and Prevotella showed significant
difference between groups (Figure 5B, all Cohen’s ds > 0.8). Beta
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FIGURE 3 | Three-week HFD induced anxiety-like behavior, which were alleviated by metformin co-treatment. (A) The total activity and average speed of the animals

were not affected by HFD or HFD + Met in the open field; (B) in the Open field test (OFT), Entries to Center, Time in Center, and Distance in Center decreased in HFD

group compared with ND group; the difference between HFD vs. HFD + Met was not significant; (C) in the Elevated plus maze test (EPM), Distance in Open arm

decreased in HFD compared with ND, which was alleviated by metformin co-treatment. For (A–C), data were presented as mean ± SEM, n = 5 per group, each dot

represents one mouse; One-way ANOVA with Tukey’s test, *p < 0.05, **p < 0.01.

diversity analysis showed significant difference between groups
after Bray-curtis dissimilarity (Figure 5C), unweighted UniFrac
(Figure 5D) and weighted UniFrac analysis (Figure 5E, p <

0.0001 for all tests), though no significant difference was shown
by alpha diversity analysis, either by evenness or Shannon’s index
(Figures 5F,G). The difference in gut bacteria composition was
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FIGURE 4 | Metformin co-treatments showed stronger pAMPK immunostaining in the WAT and in the habenular nuclei, hippocampus and basal ganglia of the brain.

Compared with HFD group, HFD + Met group showed stronger pAMPK staining in the adipocytes (A; red, pAMPK, blue, DAPI; scale bars, 50µm) and in the

habenular nuclei, hippocampus and basal ganglia [for (B–D), green, pAMPK, blue, DAPI, scale bars, 100 and 20µm, respectively; MHb, medial habenula nucleus;

LHb, lateral habenular nucleus; DG, dentate gyrus; LGP, lateral globus pallidus; for (A–D), n = 3 per group].
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FIGURE 5 | The HFD and HFD + metformin treatments changed microbiota diversity and altered its composition. (A,B) The abundance of species varied among ND,

HFD, and HFD + Met group with significant difference for Streptococcus, Oscillospira, Ruminococcus, Leuconostoc, and Prevotella; (C–E) beta diversity analysis

showed significant difference between groups after Bray-curtis dissimilarity, unweighted UniFracand weighted UniFrac analysis (****p < 0.0001); (F,G) no significant

difference was shown by alpha diversity analysis of Shannon’s index or evenness; (H) Principal Co-ordinates Analysis (PCoA) revealed the difference in gut bacteria

composition in the three distinct groups. For (A-H), n = 5 for each group, box and whiskers was plotted; One-way ANOVA with permutation test, *p < 0.05,

**p < 0.01, ****p < 0.0001, n.s. not significant.
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revealed by Principal Co-ordinates Analysis (PCoA) plotted
into three distinct groups (Figure 5H). Though no species was
identified by LEfSe with LDA larger than 2, when comparison
was made at species level, the Enterococcus, Leuconostoc,
Lactococcus, Streptococcus, Blautia, Coprococcus, Oscillospira,
Anaerovorax, and Flexispira were significant different between
ND and HFD groups (Supplementary Table 1A, ND vs. HFD,
all ps < 0.05). Among all the above species modified by HFD, the
Enterococcus, Lactococcus, Streptococcus demonstrated difference
after metformin co-treatment (Supplementary Table 1B, HFD
vs. HFD+Met, all ps < 0.05). The presence of Akkermansia was
reported to inversely correlates with body weight in rodents and
humans (24). Interestingly, we found that though the level of
Species Akkermansia was not influenced by HFD diet compared
with ND (ND vs. HFD, p = 0.438, Cohen’s d = 0.27), it was
different after metformin treatment (HFD vs. HFD + Met, p <

0.05, Cohen’s d = 0.34).

DISCUSSION

Obesity is associated with an increased risk ofmetabolic disorders
and cardiovascular diseases, as well as emotional disorders (14,
25–28). In addition, mice fed on HFD displayed learning and
memory impairment (29), as well as emotional related disorders,
such as depressive-like (30–35) and anxiety-like behavior (36–
38). However, the previous all focused on the related effects after
long-term HFD treatment, such as 12–18 weeks (30, 31, 33–
37, 39, 40), or even 24 weeks (38). As a chronic metabolic

disease, it is important to find new potential therapeutic targets
and locate a sensitive time window for intervention. In this
study, we focus on the early stage of an HFD model: a short-
term 3-week treatment. We found that even short-term 3-week-
HFD treatment caused significant body weight gain, increased
adipocyte size and induced anxiety-like behavior in the animals.
This is indicative of a quicker onset of the effects of dietary
change on emotional states, which had not been revealed by
previous studies. The anti-obesity role of metformin in the
HFD model usually adopt a longer treatment period too, for
example, 10-week metformin treatment in a 28-week HFD-
induced obesity model (41). In our study, the rescue effect of
metformin was proved at 3-week period, evident already on day
7 of co-treatment, suggesting the early on-set of the beneficial
drug effect.

It is also exciting to find out that 3-week metformin
co-treatment can already alleviated not only the metabolic
body weight gain effect of HFD, but also the emotional
aspect of anxiety-like behavior. Actually, the central roles of
metformin have been reported, which includes the promotion
of neurogenesis through the atypical protein kinase C-CREB-
binding protein (PKC-CBP) pathway (15), learning and memory
improvement in association with glucagon-like peptide-1 (42)
and AMPK dependent autophagic pathway in an ischemia model
(34). Current results imply that the model adopted in the present
study could be a candidate animal model for further study of the
central effects of metformin in diet-induced anxiety disorders.

In our study, we found that pAMPK levels in anxiety-related
brain regions like LHb (16, 17), hippocampus (18, 19), and basal
ganglia (20, 21) were increased compared with the HFD group.
This anxiolytic effect of metformin through the AMPK pathway
was in line with a previous model of transient forebrain ischemia
model (34).

The association between gut microbiota and obesity has been
intensively studied in both clinical and animal studies (12, 24,
43). The effects of metformin in improving T2DM (13) and
obesity (41) have been proposed to be partially mediated by
modifications in the gut microbiota. Here, we showed that the
short-term HFD-induced body weight gain is associated with a
shift in the composition of microbiota and increased anxiety.
Considering the emerging evidence of the connection between
gut microbiota and mental disorders, including autism (44–
46), depression (47–49), and anxiety disorders (50, 51), and the
impact of HFD and HFD-Met on the anxiety-like behavior of the
animals, we also studied the changes in gut microbiota under the
short-term HFD and metformin co-treatment. Our data showed
that differences were noted among the normal diet (ND), HFD,
andHFDwithmetformin co-treatment groups in gutmicrobiota,
including its composition and diversity. We found that the level
of Akkermansia increased after metformin treatment in our
study, which was in line with previous reports (52, 53). A recent
study demonstrated beneficial outcomes from the administration
of Akkermansia in overweight/obese insulin-resistant volunteers
(54). Considering that, it is intriguing to study the detailed action
and pathways of Akkermansia in the rescue of body weight gain
of HFD by metformin, especially at the early stage of the process
in the future study.

The beneficial effect of metformin is evident at an early stage
of HFD-induced obesity development in aspects of white adipose
tissue cellular morphology, the anxiety level of the animals. Also,
the possible involvement of gut microbiota cannot be ruled out.
And the anxiolytic effect of metformin co-treatment could be due
to the direct activation of the AMPK pathway in the anxiety-
related brain nuclei. Deciphering further details regarding the
gut-brain-axis would foster a better understanding of the
mechanisms associated with HFD and anxiety-like behaviors.
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