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Editorial on the Research Topic

Machine Learning and Decision Support in Stroke

Real-world, intelligent application of artificial intelligence (AI) for augmented stroke care has
dramatically expanded in the last several years. In this volume, we use the term AI to refer to
its popularized definition, more precisely referred to as machine learning (ML) and related to
the automatic learning of a computational model from a previously acquired labeled dataset. The
use of ML for decision support in stroke has been adopted as a key research priority in most
academic institutions while industry partners have flourished, regulatory agencies have adapted
to keep pace and clinicians across the globe look to implement these tools to improve stroke care.
The application of AI and its combination with imaging has the potential to transform how stroke
care is delivered worldwide. Over the last decade, AI has attained several technology milestones by
capitalizing on big data, providing mobile solutions, relying on cloud computing, implementing
full automation, and advanced graphical interfaces for better visualization. AI has been a priority
investment area for healthcare providers as it is expected to increase productivity, efficiency, and
geographical reach of healthcare delivery. AI may also improve the experience of stroke care
providers, accelerating decision support with imaging and enabling them to spend more time in
direct patient care. Exuberance and seeminglymiraculous applications of AI abound in stroke, from
detecting the earliest signs of ischemia on CT to delivering key metrics on perfusion or blood flow
in specific areas of the brain. This clinical perspective may be quite different from the application
of AI in radiology or pathology subspecialties, where potential existential threats abound. At
present, most advanced imaging software modules in stroke have revolutionized the use of imaging
data, yet AI is often only used in extremely limited aspects. In fact, the use of AI in imaging
has been balanced with applications to rapidly glean essential information from electronic health
records. The numerous AI methods in this volume reflect predominantly academic collaborations
that mirror the continually expanding list of novel software products available on the market.
Rapid FDA clearance has facilitated numerous commercial products in recent years, but expansive
marketing claims may have subsequently overemphasized their impact in saving lives due to stroke.
Unfortunately, there have been gaps in rigorous validation and post-marketing surveillance, with
prime emphasis on the ability to modernize and simplify clinical decision making.

The broad array of topics in this volume speak to innovation by content experts who understand
far beyond the simple or isolated imaging data. Bang et al. provide their perspective on the
development of multimodal MRI triage strategies, including obstacles and achievements along the
way. Kamal et al. provide a survey of various ML applications in imaging of acute ischemic stroke.
Novel methods to predict CT perfusion lesion growth are offered by Lucas et al.. Almost a dozen
more original research articles describe unique ways to apply AI, using innovative methods on CT,
MRI, and TCD in a wide variety of settings from around the world to potentially streamline stroke
care by advancing decision support (Chan et al.; Dhar et al.; Habegger et al.; Park et al.; Pinto et al.;
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Thorpe et al.; Ulas et al.; van Os et al.; Winzeck et al.; Wu et al.
Xiao et al.). These reports chronicle the remarkable progress
achieved in AI for stroke imaging, reflecting an early sea change
preceding the expected tsunami of AI stroke imaging tools to
flood bedside encounters in coming years.

Gaps undoubtedly remain as AI methods represent only a
fraction of these modern tools. Automation of image processing
is extremely valuable, but the ML component remains limited.
Most AI tools for stroke imaging rapidly generate an existing
variable commonly used, such as an ASPECTS score or ischemic
core lesion volume. However, the methods, definitions, and
ultimate reliability often remain remiss or ill-defined. In such
scenarios, there is not much “machine” learning or deep learning,
while clinicians will not learn unless they contrast automated
results with their own review of the images. Radiology worklists
may be quickly sorted to facilitate their priority reads, but
sensitivity and specific of these methods are both critical. From
the bedside, some clinicians have argued that an “eyeball” method
to rapidly glance at the imaging to recognize simple patterns
may be enough. The clinical context is therefore essential. For
example, standard definitions of core and penumbra on CT
perfusion generated by automated software have been developed
and validated predominantly in acute, complete occlusion of a
proximal artery such as the MCA. Such defined metrics for the
delayed perfusion of penumbra or decreased cerebral blood flow
are not applicable in more subacute strokes, in the presence of
stenoses or in other territories where the collateral flow patterns
are different. The exact volume of such lesions is also extremely
simplistic, as the topology or pattern is essential information that
is poorly captured by machine, yet readily seen by expert eyes.
The utility of imaging in stroke for decision support has always
been driven by the most subtle findings and focused around
the clinical context. For instance, recognizing FLAIR vascular
hyperintensities in the distal MCA territory may be critical
information for the patient presenting with transient or mild

hemi-neglect due to right hemispheric ischemia. Unfortunately,
machine learning must be trained by such rich data that
incorporates these critical clinical contextual data. Similarly, the
development of AI tools should be prompted to address the
most pertinent clinical questions in decision support. Clinician
input and continual development in light of this perspective
is therefore key. The papers in this volume largely reflect this
perspective from the bedside application in real-world scenarios.
Validation of nascent tools also requires human, clinical expertise
to link results with the underlying pathophysiology. As a result,
AI stroke imaging methods will inevitably retain dependence on
over-reading by experts and they cannot replicate the role of core
lab, detailed adjudications.

The future of AI or ML in decision support with imaging is
undoubtedly a key facet of modernization in the delivery of stroke
care. Modernization, however, does not equate with a complete
replacement of current practice or the role of expertise. Electricity
was discovered and harnessed to modernize many aspects of
daily life after billions of years of electromagnetic energy on our
planet. Similarly, AI of stroke imaging will require much clinical
expertise to continually modernize stroke care.
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Revascularization therapies have been established as the treatment mainstay for acute

ischemic stroke. However, a substantial number of patients are either ineligible for

revascularization therapy, or the treatment fails or is futile. At present, non-contrast

computed tomography is the first-line neuroimaging modality for patients with acute

stroke. The use of magnetic resonance imaging (MRI) to predict the response to early

revascularization therapy and to identify patients for delayed treatment is desirable. MRI

could provide information on stroke pathophysiologies, including the ischemic core,

perfusion, collaterals, clot, and blood–brain barrier status. During the past 20 years, there

have been significant advances in neuroimaging as well as in revascularization strategies

for treating patients with acute ischemic stroke. In this review, we discuss the role of

MRI and post-processing, including machine-learning techniques, and recent advances

in MRI-based triage for revascularization therapies in acute ischemic stroke.

Keywords: stroke, MRI, endovascular treatment, machine learning, triage

INTRODUCTION

Revascularization therapies, including rt-PA and EVT, have been established as the mainstay of
treatment for acute ischemic stroke. It has become clear that consideration of heterogeneity among
stroke patients is of importance in these therapies. Neuroimaging has been used as a triage tool
for revascularization therapy in patients with acute stroke. The use of magnetic resonance imaging
(MRI) for predicting the response to early revascularization therapy and for identifying patients in
whom delayed treatment is appropriate is desirable.

During the past 20 years, there have been significant advances in both neuroimaging as well as
in revascularization strategies for treating patients with acute ischemic stroke. In this review, the
role of MRI discussed and the recent advances in MRI-based triage for revascularization therapies
and in post-processing, including machine learning techniques, in these patients.

NEUROIMAGING STUDIES IN THE ACUTE STROKE

INTERVENTION FIELD: RESULTS FROM RANDOMIZED

CONTROLLED TRIALS

Previous intravenous rt-PA trials [the NINDS rt-PA (1) and ECASS-III (2) trials] have used
non-contrast computed tomography (NCCT) images. Randomized controlled trials (RCTs) of
EVT have implemented MRI or computed tomography perfusion/angiography (CTP/CTA)

7
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techniques, in addition to the NCCT Alberta Stroke Program
Early CT Score (ASPECTS). However, the results of RCTs
and the rapid evolution of neuroimaging techniques have
led to significant changes in the international guidelines for
neuroimaging in acute ischemic stroke over time (Figure 1).

Multicenter prospective MRI studies, including the DEFUSE
and EPITHET trials for intravenous rt-PA given more than
3 h post-stroke, reported a significant association between
recanalization and reduced infarct growth in patients with an
MR perfusion–diffusion mismatch (3, 4). Expert consensus on
the Acute Stroke Imaging Research (ASIR) Roadmap reported on
the methodological issues in perfusion and penumbral imaging
(5). The 2009 American Heart Association/American Stroke
Association (AHA/ASA) guidelines recommended that MRI or
CTA should be performed in conjunction with vascular and
perfusion studies for EVT (6).

The IMS III (7), MR RESCUE (8), and SYNTHESIS expansion
(9) trials were multicenter, prospective RCTs that failed to show a
benefit fromEVT for acute ischemic stroke. The potential reasons
for this failure include time delays to angiographic reperfusion
and the inclusion of patients with large core or no large vessel
occlusion. In addition, the MR RESCUE trial used an algorithm
that implements multiple diffusion-weighted imaging (DWI) and
MR perfusion (MRP) parameters, but failed to show that patients
with a favorable penumbral pattern on neuroimaging benefitted
from EVT (8). Given the lessons from these aforementioned
three RCTs, published 2013, the ASIR Roadmap II provided
guidelines for the use of imaging in stroke clinical trials (10).
In the AHA/ASA 2013 guidelines, the recommendations were
changed to “CTP and MRP may be considered” (11).

Further phase III RCTs were conducted in 2015; these
included the MR CLEAN (12), ESCAPE (13), EXTEND-IA (14),
SWIFT PRIME (15) and REVASCAT (16) trials. The findings of
these RCTs demonstrated overwhelming evidence of the benefit
of EVT for treatment of acute ischemic stroke with a small core
(as measured by the ASPECTS) and large vessel occlusion. The
ASIR Roadmap III proposed the optimal imaging profile for EVT,

Abbreviations: ASIR, acute stroke imaging research; ASPECTS, Alberta Stroke

Program Early CT score; DAWN, Diffusion-Weighted Imaging or Computerized

Tomography Perfusion Assessment with Clinical Mismatch in the Triage of

Wake-Up and Late Presenting Strokes Undergoing Neurointervention with Trevo;

DEFUSE, Diffusion and Perfusion Imaging Evaluation for Understanding Stroke

Evolution study; DWI, diffusion-weighted image; ECASS, European Cooperative

Acute Stroke Study; EPITHET, Echoplanar Imaging Thrombolytic Evaluation

Trial; ESCAPE, Endovascular treatment for Small Core and Anterior circulation

Proximal occlusion with Emphasis on minimizing CT to recanalization times;

EXTEND-IA, Extending the Time for thrombolysis in Emergency Neurological

Deficits–Intra-Arterial; FLAIR, fluid attenuation inversion recovery; HERMES,

Highly Effective Reperfusion evaluated in Multiple Endovascular Stroke; IMS-

III, Interventional Management of Stroke III; MR CLEAN, Multicenter

Randomized Clinical trial of Endothelial treatment for Acute ischemic stroke;

MRP, magnetic resonance perfusion; MR RESCUE, Mechanical Retrieval and

Recanalization of Stroke Clots Using Embolectomy; REVASCAT, Randomized

Trial of Revascularization With Solitaire FR Device vs. Best Medical Therapy

in the Treatment of Acute Stroke Due to Anterior Circulation Large-Vessel

Occlusion Presenting Within 8 h of Symptom Onset; SWIFT PRIME, Solitaire

With the Intention For Thrombectomy as Primary Endovascular treatment for

acute ischemic stroke; SYNTHESIS, intra-arterial vs. systemic thrombolysis for

acute ischemic stroke.

based on the results of these recent positive RCTs: the presence of
large vessel occlusion, a smaller core, good collaterals, and a large
penumbra (17). After the success of the ASPECTS-based RCTs of
EVT in 2015, the recommendations were again changed to “the
benefits of CTP andMRP are unknown and need further studies”
(18). For patients eligible for EVT, the 2016 AHA/ASA guidelines
require the absence of bleeding and an ASPECTS of 6 points or
more in NCCT, as well as the presence of causative occlusion
of the internal carotid artery or proximal middle cerebral artery
(18).

Very recently, the results of the phase III RCTs of EVT in
an extended time-window showed a significant and remarkable
functional recovery with EVT vs. that with medical treatment in
carefully selected patients (19, 20). EVT was initiated between
6 and 16 h after onset in patients with a target mismatch in
the DEFUSE 3 trial (20), and 6–24 h after onset in patients
with mismatch between clinical presentation and DWI/CTP
in the DAWN trial (19). In these trials, the benefits of EVT
persisted [or even increased, i.e., “late-window paradox” (21)]
across the period when patients had a small core and large
salvageable tissues. Based on these trials, the new 2018 guidelines
recommended that CTP or DWI/MRP scans be obtained if the
patient presents more than 6 h after his/her last known normal
status and has large vessel occlusion (LVO), and to perform EVT
when eligibility criteria from these trials were met (22).

IMPLICATIONS OF MRI-BASED TRIAGE

ON THE NUMBER OF PATIENTS

RECEIVING EVT

The beneficial effect of EVT has been confirmed in selected
patients with acute ischemic stroke. However, a substantial
proportion of patients are EVT ineligible (only 7–13% of acute
ischemic stroke patients are eligible for EVT) (23), have failure
of reperfusion (TICI 0–2a in 14–41% in five recent phase III
RCTs) (12–16), or have futile reperfusion (26–49% showed a poor
outcome, despite successful recanalization) (24). These findings
indicate that imaging-guided tailored treatmentmay be beneficial
in acute ischemic stroke. Although there have been significant
advances in CT techniques, the advantages of MRI techniques
make MRI more desirable for use (25, 26). The advantages and
limitations of CT-based triage for EVT as well as the recent
advances in MRI techniques are summarized in Table 1.

In EVT-eligible patients, MRI-based triage may increase the
efficacy of EVT, at the expense of decreasing the number of
patients receiving EVT by excluding patients with large lesions
on DWI (27) (DWI is superior to any CT techniques in imaging
the infarct core) (25). In contrast, MRI-based triage can also
increase EVT use in patients considered ineligible under the
current guidelines, as follows.

First, wake-up stroke occurs in one-fifth of patients with
stroke; it was estimated that 58,000 patients with wake-up
strokes presented to an emergency department in the U.S. in
2005 (3 million wake-up stroke cases worldwide) (28). In these
cases, less time might have elapsed from the onset of stroke
because circadian variation for stroke is well-known, with most
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FIGURE 1 | Major randomized controlled trials (RCTs) and corresponding guidelines in the field of acute stroke therapy. rt-PA, recombinant tissue plasminogen

activator; ASPECTS, Alberta Stroke Program Early CT Score; MRP, magnetic resonance perfusion; DWI, diffusion-weighted image; FLAIR, fluid attenuation inversion

recovery; ASIR, Acute Stroke Imaging Research; AHA/ASA, American Heart Association/American Stroke Association; DIAS-2, Desmoteplase in acute ischemic

stroke-2; RAPID, RApid postprocess for PerfusIon and Diffusion; ASL, arterial spin labeling; LVO, large vessel occlusion; EVT, endovascular therapy. Please see

Glossary for other abbreviations.

cerebrovascular events known to occur during the morning
(29). When also considering cases with an unknown time of
symptom onset, for example, non-witnessed stroke with aphasia
or disturbance of consciousness, it appears that the time of
symptom onset is unknown in 14–35% of patients with acute
stroke (28, 30–32). It is possible that some of these patients could
benefit from revascularization therapies. A population-based
study has shown that more than one-third of wake-up strokes
would have been eligible for thrombolysis if arrival time were not
a factor (28). MRI features combining fluid attenuation inversion
recovery (FLAIR) sequences with DWI have been investigated
as a surrogate marker for lesion age and a DWI-positive/FLAIR-
negative mismatch pattern was identified in patients within 4.5 h
of stroke onset in the middle cerebral artery territory, with high
predictive values (33, 34). A recent RCT (WAKE-UP) showed
that in patients with acute ischemic stroke with an unknown time
of onset, intravenous rt-PA guided by a mismatch between DWI
and FLAIR in the region of ischemia resulted in a significantly
better functional outcome than the control group (35).

Second, patients could receive EVT if they have ASPECTS
of ≥6 on NCCT and LVO on CTA, and if treatment can be
initiated within 6 h of symptom onset (18). However, a significant
proportion of patients arrived late at a comprehensive stroke
center, where EVT can be performed, and some patients may
require a longer procedural time. Data from US academic
medical centers have shown that one-third of patients arrived

more than 6 h after symptom onset (36). The ESCAPE trial
showed that EVT improved functional outcomes and reduced
mortality in patients with a small infarct core and moderate-
to-good collateral circulation, up to 12 h after symptom onset
(13). The HERMES investigators performed a meta-analysis
of individual patient data from five recent RCTs of EVT, to
test whether EVT is efficacious across a diverse population
(i.e., a lower ASPECTS or longer onset-to-groin puncture
time, etc.) (37). Patients with small cores (high ASPECTS)
had a slower decline in benefit with longer symptom onset-
to-reperfusion, than patients with larger infarct cores (38). In
addition, reperfusion is related to a positive clinical outcome only
if adequate collateralization can prevent infarction until the vessel
can be recanalized. A good collateral status could thus feasibly
extend the time-window for EVT (39–41). Patients with good
collaterals as assessed by MRI showed a favorable outcome in
terms of infarct growth at day 7 andmodified Rankin score at day
90 (42, 43). Therefore, inclusion of patients with good collaterals,
but not in those with larger cores, the time-window for EVT may
be extended. Indeed, the results of the DAWN and DEFUSE 3
trials have extended the time-window in these patients to 16–24 h
(19, 20).

Lastly, EVT is not recommended in patients with ASPECTS
of <6 points on NCCT, according to the current guidelines
(18). Data from the ECASS II study, in which 800 patients were
randomized to rt-PA or placebo within 6 h of symptom onset,
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TABLE 1 | Requirements for neuroimaging for EVT and recent advances in MRI techniques.

Imaging triages

Requirements Non-contrast CT Advanced CT (CTA, CTP) Advances in MRI

IS IT POSSIBLE?

Fast Short scan time

No need for post-processing

10–15min for complete protocol Short (6min) acquisition time

Automatic fast post-processing

Available Widely available

24-7-365

Generally greater availability Available in all comprehensive stroke

centers

Reliable

Standardization Good Parameters are being defined Surrogate markers and their threshold

and sequence are being defined

Inter-rate reliability Modest (especially in the hyperacute

phase)

Good Machine-learning is being applied

IS IT NECESSARY?

Stroke pathophysiology ASPECTS for determining the extent

of the core

Dense MCA sign

CTP for core and penumbra

CTA for collateral

CTP for BBB damage

Perfusion pattern (Expected

salvageable tissue)

Collateral status (Predict response to

treatment)

BBB damage (Avoid hemorrhagic

complications)

Clot to treat (Need for adjuvant

therapy)

Save more (proportion of extra cases)

Unclear onset (1 in 3 patients)

Delayed EVT (1 in 4 patients)

ASPECTS <6 (1 in 8 patients)

Not applicable Guided by

not applicable

CTA collaterals

CTP, CTA ASPECTS

Guided by

rFLAIR, Collateral, MRP

Collateral, MRP

DWI, Collateral, MRP

IS IT TESTED?

Confirmed in RCTs Role of ASPECTS confirmed CTP (mismatch)-based EVT

confirmed

MRI (mismatch)-based EVT confirmed

CTA, computed tomography angiography; CTP, computed tomography perfusion; MCA, middle cerebral artery; BBB, blood–brain barrier; RCT, randomized controlled trial. Please see

Glossary for other abbreviations.

showed that the median ASPECTS value was 9, and that about
one in seven patients showed ASPECTS of <6 on NCCT (44).
Interestingly, the effect of rt-PA on functional outcome was not
influenced by baseline ASPECTS, although patients with low
ASPECTS have a substantially increased risk of thrombolysis-
related parenchymal hemorrhage (44). In the DEFUSE 3 trial,
there was no difference in the effect of EVT according to the
ASPECTS score (<8 vs. ≥8) (20), which suggests that advanced
image-guided selection could be considered in patients who have
a low ASPECTS.

ADVANCES IN MRI TECHNIQUES FOR

IMAGE PROCESSING AND INDIVIDUAL

STROKE PATHOPHYSIOLOGY

There have been significant advances in MRI techniques in terms
of availability, acquisition (scanning and post-processing) time,
direct visualization of cardinal features (the 4 Cs; i.e., [tissue]-
clock, clot, collaterals, and core), and machine learning-based
algorithm implementation.

Availability
An NCCT scan is usually one of the first tests done in
the evaluation of acute stroke. MRI takes longer and is

often not available under emergency conditions, while NCCT
has advantages in terms of fast acquisition time, widespread

availability, and ease of interpretation in an emergency
setting. However, MRI is available in all comprehensive stroke

centers, where EVT can be performed. One single-center
study showed that MRI-based triage for EVT is feasible in

terms of the scan-to-groin puncture time, with acceptable

rates of poor outcome and symptomatic hemorrhage (45). A

recent randomized trial (General or Local Anesthesia in Intra

Arterial Therapy, GOLIATH) showed that MRI selection for
endovascular therapy can be accomplished rapidly and within

a similar time frame as computed tomography-based selection

(46). The door-to-MRI time can be reduced by a quality
improvement process (47). Moreover, although a comprehensive
MRI protocol can be implemented in ∼20min, a fast MRI
protocol can be implemented in about 6min, rivaling the time
of any comprehensive acute stroke CT protocol (48). This fast

MRI protocol includes DWI, FLAIR, gradient echo, and MR
angiography, and MRP. The CTP image requires additional
imaging time (2–3min) and post-processing time (5–15min)

(49).
For clinical use, automated software that allows fast

post-processing is mandatory, and is increasingly being used in
clinical trials. For example, the RApid postprocess for PerfusIon
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and Diffusion (RAPID; Rapid Software Corporation, Grapevine,
TX, USA), an automated software package for performing
quantitative evaluation of the apparent diffusion coefficient to
estimate the ischemic core and an MRP threshold of Tmax > 6 s
for defining critical hypoperfusion (50), has been used in several
RCTs. Similarly, automated software for collateral assessment, the
Fast Analysis SysTem for COLLaterals (FAST-COLL) (42), has
been developed; it requires <5min, and allows a clinical decision
to be made at the workstation or bedside, based on the collateral
grade.

Visualization of Individual Stroke

Pathophysiology
Aside from demonstrating a perfusion-diffusion mismatch
and delineating penumbral and irreversibly infarcted
regions, MRI could provide additional information on
the blood–brain barrier (BBB), collaterals, and clot. MRI
techniques for determining the age of the infarct was
mentioned above. Representative cases are presented in
Figures 2, 3.

Collateral Flow
Better collaterals are associated with improved clinical and
radiological outcomes, while poor collaterals are linked to
hemorrhagic complications and poor recanalization rates after
revascularization therapy for acute ischemic stroke (51). A
collateral flow map derived from MRP source data can be
generated by automatic post-processing (42). This study showed
good correlation between MRI-based collateral grade and
conventional angiography-based collateral grade, indicating
that pretreatment MRI-based collateral evaluation could replace
conventional angiographic evaluation in the angio-suite,
which may require >20min before EVT can be initiated.
The role of MRI-based collateral imaging (FAST-COLL) is
currently being tested in a prospective observational study
(Clinicaltrials.identifier NCT02668627), to evaluate whether
MRI-based collateral imaging is feasible and can predict the
response to EVT in a wide range of patients with acute ischemic
stroke. This study is evaluating the early infarct grow rate and
eligibility according to the DAWN and DEFUSE 3 criteria,
depending on the pretreatment MRI-based collateral grades. It
is interesting that a significant proportion of patients who are

FIGURE 2 | Collateral imaging-based delayed endovascular treatment. A 79-year-old female, with history of left MCA infarction and atrial fibrillation, presented with

left-sided weakness and neglect symptoms at 940min after symptom onset. (A) CT imaging documented right MCA occlusion, with an ASPECTS of 8. (B) MRI

showed a significant mismatch, with a small core and large hypoperfusion regions. (C) MRP-based collateral imaging showed an excellent collateral flow, i.e.,

complete and rapid collateral flow to the vascular bed in the occluded MCA territory. Contrast staining in the lesional hemisphere was absent in the arterial phase

(arrowheads), but evident in the capillary and venous phase. (D) Successful recanalization (mTICI grade 2b) was achieved and red clots were retrieved at the first

passage of a stentriever at 1,090min after the onset of symptoms. She was functionally independent and her modified Rankin score at the 90th day was 1. MCA,

middle cerebral artery; CT, computed tomography; ASPECT, Alberta stroke program early CT Score; MRI, magnetic resonance imaging; DWI, diffusion-weighted

imaging; MRP, MR perfusion; mTICI, modified treatment in cerebral ischemia.
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FIGURE 3 | MRI-based endovascular treatment of a stroke patient with unclear symptom onset time and atherosclerotic occlusion of the middle cerebral artery. An

81-year-old male presented with right-sided weakness and global aphasia, with an unclear onset time. (A) On the CT image, left MCA occlusion was documented

with an ASPECTS of 8. The patient underwent multimodal MRI using a fast (9min) MRI protocol. (B) Minimal signal change was observed on FLAIR imaging and the

probability of stroke onset within 4.5 h, based on relative FLAIR signal analysis, was high. (C) Clot analysis using GRE imaging and machine-learning techniques

showed a low possibility of atrial fibrillation as cause of the clot. (D) Whitish clots were retrieved during endovascular treatment. Successful recanalization (mTICI grade

2b) was achieved with rescue stenting after repetitive reocclusion with a stentriever. His modified Rankin score at the 90th day was 1. CT, computed tomography;

MCA, middle cerebral artery, ASPECTS, Alberta Stroke Program Early CT Score; ADC, apparent diffusion coefficient; FLAIR, fluid attenuation inversion recovery; GRE,

gradient echo; mTICI, modified treatment in cerebral ischemia.

eligible according to the DEFUSE 3 criteria did not meet the
DAWN criteria for eligibility (20, 21).

Clot Treatment
Successful reperfusion may be associated with the histopathology
of occlusive thrombi, including the existence of atheromatous
gruel and the proportion of erythrocyte components (52).
Intracranial atherosclerosis is particularly prevalent in Asians,
and is associated with frequent EVT failure. In this condition,
adjuvant therapy, such as the use of a GP IIb/IIIa inhibitor
or permanent stent placement, may be needed (53). Although
previous studies have attempted to predict the response to
revascularization therapy using CT imaging of the clot, a recent
study showed a lack of association between CT-based clot images
and the histopathology of thrombi, and stroke etiology (54).
MRI can identify clots with high specificity and can measure the
clot burden more accurately than CT images. Blooming artifacts
caused by paramagnetic materials in GRE or susceptible weighted
images have been associated with cardioembolic stroke (55, 56).

BBB Derangement
GRE images are as accurate as CT at detecting acute hemorrhage
in patients with acute stroke. BBB permeability dysfunction
often precedes hemorrhagic transformation (57). Gadolinium

contrast agents are routinely used to detect BBB disruptions
in patients with strokes or tumors. Using a simple post-
processing algorithm that employs pretreatment MRP source
data,MRI permeability images can visualize BBB dysfunction and
identify patients at risk of hemorrhagic transformation, with high
specificity (57). A multicenter study tested various MRP-derived
permeability measures in acute stroke patients and showed that
MRI permeability images may be used in clinical practice (58).
The multicenter DEFUSE 2 and MR RESCUE trials showed that
the amount of BBB disruption seen on pretreatment MRI is
associated with the severity of intracranial bleeding after EVT
(59, 60).

Machine Learning
Machine learning is an approach used to achieve artificial
intelligence goals. The field of artificial intelligence has
evolved significantly with the introduction of a number of
sophisticated algorithms, some of which are capable of self-
learning. Application of artificial intelligence in the stroke field
is increasing, and is used in the prediction of stroke [e.g.,
risk factors (61) and fine particulate matter (PM2.5) (62)] and
pervasive health monitoring, by using smart monitoring devices
embedded in the living environment (e.g., real-time monitoring
via smartphone for adherence to oral anticoagulant treatment)
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(63). It can be particularly helpful in decision-making in every
step of EVT for acute ischemic stroke: in clinical and imaging
recognition of acute ischemic stroke in the ambulance or
emergency room (64), and in predicting the outcome after EVT
(65).

Machine learning-based assessment has advantages over
simple visual estimation as follows. First, the application of
deep learning to create an algorithm for automated detection
of abnormal neuroimaging findings can improve inter-rater
correlation. For example, the NCCT ASPECTS is widely used
worldwide and there have been efforts to increase the inter-
rater reliability, including implementation of a teaching program.
However, inter-rater reliability has been reported to be low,
particularly in a hyperacute setting. One recent systematic review
showed that, in patients considered for EVT, there may be
insufficient agreement between clinicians for the ASPECTS to
be used reliably as a criterion for treatment decisions (66).
Although the agreement could be higher among stroke experts
than stroke trainees, it may still be lower than that achieved with
a machine learning-based decision algorithm developed using
various neuroimaging data. A computer algorithm that would
automatically read a brain CT scan and automatically generate
an ASPECTS (e-ASPECTS) may improve reliability in terms
of calculating the score. A multicenter trial has shown that e-
ASPECTS was non-inferior to neuroradiologists in determining
the ASPECTS score using NCCT images obtained from acute
stroke patients (67).

Second, machine-learning techniques facilitate the merging
of information from various MR sequences. Integration of
information from several MRI sequences could improve the
role of MRI-based triage for EVT. For example, although
combining DWI and FLAIR data showed high predictive values
for identifying patients within 4.5 h of symptom onset, adding
information on collaterals or perfusion improved the accuracy of
predicting the time from symptom onset within 4.5 h (68, 69).
Combining data from quantitative image analyses with other
types of data (e.g., clinical or laboratory) can provide models that
are helpful in the choice of work up, prediction of outcome or
response to treatment.

Finally, because deep learning uses numerous imaging
features that are most predictive for certain types of stroke
pathophysiology, rather than explicitly detecting clinical
features with which stroke physicians are familiar (e.g.,
conventional DWI), both physicians and patients have to trust
a “black box” to determine a disease state. With increased
numbers of MR sequences, many variables may influence
how a machine defines referable stroke pathophysiologies.
These include heterogeneous populations comprising different

races (with different stroke subtypes, along with normal

variations), heterogeneous prestroke conditions (e.g., preexisting
atherosclerotic changes, white matter changes and other age-
related changes) and novel features of specific sequences.
Because the software does not detect the implication of the
algorithm generated by the machine learning process, the stroke
neurologist and radiologist need to provide the background and
interpretation.

CONCLUSIONS AND PERSPECTIVES

CT has been the standard neuroimaging modality for
determining whether EVT should be applied due to the
limited availability and standardization and time required
for acquisition or post-processing of MRI data. However,
more information may be available within the permitted
time-windows if rapid acquisition of MRI data, automated fast
post-processing and machine learning-based decision algorithms
can be implemented. The role of imaging in EVT may shift from
“go/no go” to “how to go.” With the advances in transformative
technologies (such as machine learning and artificial intelligence)
along with a better understanding of stroke pathophysiology and
MRI physics, it is highly likely that multimodal MRI information
could guide treatment strategies for patients with acute ischemic
stroke.

As technology becomes more complex, selection of the
technology used becomes more important. Stroke physicians
will need to understand the evolution of such technology.
Appropriate RCTs are required to verify the usefulness of
imaging-based algorithms for the selection of EVT before
these techniques can be incorporated into routine clinical
practice.
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Background and Purpose: Cerebral hemorrhage is a serious potential complication

of stroke revascularization, especially in patients receiving intra-arterial tissue-type

plasminogen activator (tPA) therapy. We investigated the optimal pre-intervention delay

time (DT) of computed tomography perfusion (CTP) measurement to predict cerebral

parenchymal hematoma (PH) in acute ischemic stroke (AIS) patients after intra-arterial

tissue plasminogen activator (tPA) treatment.

Methods: The study population consisted of a series of patients with AIS who received

intra-arterial tPA treatment and had CTP and follow-up computed tomography/magnetic

resonance imaging (CT/MRI) to identify hemorrhagic transformation. The association of

increasing DT thresholds (>2, >4, >6, >8, and >10 s) with PH was examined using

receiver operating characteristic (ROC) analysis and logistic regression.

Results: Of 94 patients, 23 developed PH on follow-up imaging. Receiver operating

characteristic analysis revealed that the greatest area under the curve for predicting PH

occurred at DT > 4 s (area under the curve, 0.66). At this threshold of > 4 s, DT lesion

volume ≥ 30.85mL optimally predicted PH with 70% sensitivity and 59% specificity. DT

> 4 s volume was independently predictive of PH in a multivariate logistic regression

model (P < 0.05).

Conclusions: DT > 4 s was the parameter most strongly associated with PH. The

volume of moderate, not severe, hypo-perfusion on DT is more strongly associated and

may allow better prediction of PH after intra-arterial tPA thrombolysis.

Keywords: stroke, hemorrhage transformation, CT scan, perfusion imaging, delay time

16

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2018.00680
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2018.00680&domain=pdf&date_stamp=2018-08-21
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhugmdc@aliyun.com
mailto:wuxinhuai_beijing@163.com
https://doi.org/10.3389/fneur.2018.00680
https://www.frontiersin.org/articles/10.3389/fneur.2018.00680/full
http://loop.frontiersin.org/people/493902/overview
http://loop.frontiersin.org/people/466544/overview


Wu et al. Delay Time to Predict Parenchymal Hematoma

INTRODUCTION

While significant advances have been made regarding emergent
treatment of acute ischemic stroke (AIS), the different
therapeutic revascularization options remain associated with
an increased risk of hemorrhage. While intravenous tissue-type
plasminogen activator (tPA) is effective at reanalyzing more
distal thrombi (1, 2), endovascular reperfusion therapy in a
6 or 12 h time window, can be effective for those patients
with more proximal intracranial artery occlusion (3–6).
The revascularization increases the risk of Hemorrhagic
transformation (HT) (7–9), and HT is nearly 5 times more
common for patients receiving intravenous thrombolysis
compared to controls, and evenmore for patients receiving intra-
arterial thrombolysis (10). Symptomatic intracranial hemorrhage
(sICH) transformation or cerebral parenchymal hematoma (PH)
is the most serious complication after revascularization therapy.
The identification and possible exclusion of patients at high risk
for sICH or PH will significantly reduce the complication rate
(11).

Several clinical risk factors, such as age, diabetes mellitus,
infarct volume, and anticoagulant or antiplatelet therapy are
associated with HT. Computed tomography (CT) and magnetic
resonance imaging (MRI), including perfusion imaging, provide
detailed assessment of acute stroke pathophysiology, and has led
to the establishment of imaging predictive parameters for HT
after thrombolysis. Relative cerebral blood flow (rCBF), relative
mean transit time, cerebral blood volume (CBV), Tmax, delay
time (DT), and permeability parameters have been found to be
associated with hemorrhagic transformation (12–16). A prior
study by Yassi et al (15) showed that extremely long Tmax was
independently predictive of PH for the patient with or without
thrombolysis. However, these studies focused on patients who
received intravenous tPA, rather than on patients who received
intra-arterial tPA treatment.

In this study, we sought to identify the optimal pre-
intervention DT parameter for prediction of PH after AIS intra-
arterial tPA therapy.

METHODS

Patients
In this study, the clinical and imaging data were obtained from
3 participating institutions: the PLA Army General Hospital,
Beijing; Changhai Hospital, Shanghai; and Southwest Hospital,
Chongqing. All data contributed to the study were completely
anonymized. The institutional review boards of the three
institutions approved the study. Consecutive patients with signs
and symptoms suggesting hemispheric stroke from January 2011
to January 2014 were retrospectively identified. Inclusion criteria
were as follows: (1) AIS with occlusion of the M1 segment
of the middle cerebral artery, the internal carotid, or both;
(2) an admission National Institutes of Health Stroke Scale
(NIHSS) score between 4 and 22; (3) with CT imaging indicating
stroke, including non-contrast-CT, CT angilgraphy (CTA), and
CT perfusion (CTP), upon admission; (4) intra-arterial tPA
thrombolysis with <12 h from onset; (5) availability of MRIs or

CT scans taken within 7 days after therapy to assess HT. The
patients who received IV-tPA were not included in the study,
considering data consistency. A flow chart delineating patient
selection is shown in Figure 1. The demographic and clinical
variables were recorded as follows: age, sex, medical history,
vascular risk factors, routine blood tests, time from onset to
imaging, time from symptom onset to treatment, NIHSS score
upon admission, and modified Rankin Score (mRS) at 90 days.
The mRS was assessed in the outpatient clinic or by the telephone
and the death was coded as 6. Stroke mechanisms were subtyped
using the TOAST (Trial of Org 10172 in Acute Stroke Treatment)
classification and were diagnosed by 2 stroke neurologists (N.L.
and H.C.) in consensus.

Imaging Protocol
CTP studies were all obtained on 64-slice CT scanners. Each
CTP study involved successive gantry rotations performed in
cine mode with 45 time-points acquired each 1.33 s (total
acquisition, 60 s), with intravenous administration of 40–50mL
of iodinated contrast material (Ultravist 370; Bayer HealthCare;
Berlin, Germany) at an injection rate of 4–5 mL/s followed by a
40-mL saline push. Total CTP coverage was 40mm. Acquisition
parameters were 80 kVp and 100 mAs.

Digital subtraction angiography (DSA) was performed using
a biplane cerebral angiographic system. Images were acquired
during injection of the internal and external carotid arteries and
≥1 vertebral artery. Imaging was performed through the entire
arterial and venous phases to evaluate the collateral circulation.
All patients underwent intra-arterial tPA thrombolysis without
mechanical embolectomy at the discretion of the attending
neurologist (Y.Z, J.H., and G.Z.).

Imaging Processing
All perfusion CT data were analyzed with the commercial
software (MiStar, Apollo Medical Imaging Technology) (17, 18).
Perfusion data were processed using a single value deconvolution
algorithm with delay and dispersion correction. The actual
delay time (DT) was calculated by a modified singular value
deconvolution approach by looping through a series of DT values
(19). The cerebral blood flow and cerebral blood volume were
determined by the peak height and area under the curve of
the input residue function. Arterial input function and venous
outflow function were automatically selected by the software
from the non-stroke middle cerebral artery/anterior cerebral
artery and superior sagittal sinus, respectively. The volume of
increasing DT thresholds (2, >4, >6, >8, and >10 s), the relative
cerebral blood flow<40% within the DT >3 s, and cerebral blood
volume< 2 mL/100 g within the DT >3 s, were automatically
calculated (17).

Receiver operating characteristic (ROC) analysis was
performed using PH as the outcome variable, and the lesion
volume was defined using a particular DT, CBV, or rCBF
threshold in each individual patient. These thresholds were
iterated across the range of values present in the data to
determine the threshold for each parameter that generated the
highest area under the curve (AUC). This optimal threshold
was taken forward in the analysis to compare the sensitivity
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FIGURE 1 | Flow chart outlining patient selection and exclusion criteria. AIS indicates acute ischemic stroke; DSA, digital subtraction angiography; IA, intra-arterial; IV

tPA, intravenous tissue-type plasminogen activator; NCT, noncontrast-CT; NIHSS, National Institutes of Health Stroke Scale; CTP, computed tomography perfusion;

and Tr, treatment.

and specificity of each perfusion parameter. The Youden
Index (sensitivity+specificity−1) was then calculated for this
optimized threshold to determine the optimal volume of rCBF,
CBV, and DT to predict the development of PH.

It has previously been demonstrated that poor baseline
collaterals and successful therapeutic recanalization may result
in clinically significant hemorrhagic complications (20). The
angiographic collateral was scaled as follows: grade 0 (no
collaterals visible to the ischemic site), 1 (slow collaterals to
the periphery of the ischemic site with persistence of some of
the defects), 2 (rapid collaterals to the periphery of ischemic
site with persistence of some of the defects and to only a
portion of the ischemic territory), 3 (collaterals with slow but
complete angiographic blood flow of the ischemic bed by the
late venous phase), and 4 (complete and rapid collateral blood
flow to the vascular bed in the entire ischemic territory by
retrograde perfusion). Vascular reperfusion was graded based
on the Thrombolysis in Cerebral Infarction (TICI) classification:
0 (no perfusion), 1 (penetration with minimal perfusion), 2a
(less than 67% perfusion); 2b (more than 67% perfusion),
and 3 (complete perfusion of the affected vascular territory).
Reperfusion status was classified as ER+ (positive for early
reperfusion; TICI score 2b to 3 within 12 h of symptom onset)

or ER–. The angiographic collateral and TICI scores were rated
by consensus of a neurologist (G.Z.) and a neuroradiologist
(B.W.). The influence of collaterals and recanalization on PH was
analyzed in distinct case scenarios relative to baseline collateral
grade at angiography (0–1 vs. 2–4) and recanalization (TICI scale,
ER+ vs. ER–): (1) good collaterals and no recanalization, (2)
poor collaterals and no recanalization, (3) good collaterals and
successful recanalization, and (4) poor collaterals with successful
recanalization.

Outcome Measurement
All patients received follow-up CT or MRI as part of the routine.
However the time interval depended on the patient’s condition.
Follow-up imaging (MRI or CTwithin 7 days) was independently
assessed for hemorrhagic transformation by 2 stroke neurologists
(N.L. and H.C.), who then reached consensus using the European
Cooperative Acute Stroke Study (ECASS) scoring system (21).
This classifies hemorrhagic infarction 1 (HI1) as small petechiae
along the periphery of the infarct region, hemorrhagic infarction
2 (HI2) as confluent petechiae within the infarct, without space-
occupying effect, parenchymal hemorrhage 1 (PH1) as bleeding
≤30% of the infarcted area, with mild space-occupying effect,
and parenchymal hemorrhage 2 (PH2) as bleeding >30% of the
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infarcted area, with space-occupying effect. PH included both
PH1 and PH2. The readers of neuroradiological imaging were
blinded to all clinical data.

Statistical Analyses
Statistical analysis was performed using commercially available
IBM SPSS Statistics (version 22.0.0.0; IBM Corp, Armonk,
NY). The Mann–Whitney U–test was used to determine
the association between baseline clinical characteristics or
imaging parameters with parenchymal hemorrhage outcome.
ROC analysis was performed to determine the optimal CTP
parameter for prediction of PH. Sensitivity, specificity, positive
predictive value, negative predictive value, and likelihood ratios
were determined for each parameter at different volumetric
thresholds. The best performing CTP parameters in ROC analysis
were subsequently tested in a multivariate logistic regression
model including age, baseline NIHSS score, and poor collaterals
and recanalization. The other variables were tested in a univariate
model logistic regression. The variable would be added to
the multivariate model when it was statistically significant in
univariate model. For perfusion lesions, we divided the lesion
volumes into 4 groups according to interquartile cutoff points
of the distribution of volumes of perfusion delay. Correlation
between DT >2 s, >4 s, >6 s, >8 s, and >10 s were also analyzed
with the correlation coefficient matrix. P < 0.05 was considered
statistically significant.

RESULTS

Of 111 consecutive ischemic stroke patients imaged with multi-
modal CT and intra-arterial thrombolysis treatment, 94 were
included in the analysis. The reasons for exclusion were severely
motion-degraded perfusion data (n = 9), incomplete DSA
imaging (n = 6), and 2 patients could not be contacted during
follow-up. Follow-up MRI and CT were performed in 75 and 19
patients, respectively. PH occurred in 23 patients overall (24.5%).
Table 1 shows baseline clinical characteristics, stroke risk factors,
and time to imaging for the study patients.

Male percent, atrial fibrillation, hyperlipidemia, ASPECTS on
NCT, collateral flow score, and volume of CBV<2 mL/100 g were
significantly different among types of HT, but not associated with
PH, as shown in Table 1. The volume of DT>4 s was significantly
associated with PH.

The ROC analysis for association of PH across the range of
values in each CTP parameter identified DT>4 s as the optimal
threshold for further analysis (area under the curve = 0.657;
P = 0.024), followed by rCBF <40% (area under the
curve=0.587; P = 0.212), and CBV <2 mL/100 g (area under
the curve=0.523; P = 0.742). Mean DT>4 s volume was 27.7mL
(interquartile range [IQR], 17.0–40.0) in the no-PH group and
36.6mL (IQR, 25.3–51.7) in the PH group (P = 0.024; Mann–
Whitney U test) (Table 2).

Based on the ROC analysis and Youden Index, the optimal
volume of DT>4 s for the association with PH was ≥30.4mL.
There were 49 of 94 (52%) patients with DT>4 s volumes of
<30.4mL, of whom 7 (14.3%) patients developed PH compared
with the overall rate of 24.5%. This indicated a low risk of

TABLE 1 | Demographic parameters and other relevant information (n = 94).

Clinical and imaging

characteristics

No PH PH P-value

N = 71 N = 23

Male,% 40 (56.3) 14 (60.9) 0.8101

Age, years 68.0 (53.0–77.0) 68.0 (55.0–73.0) 0.8156

NIHSS score at admission 16.0 (11.0–19.0) 17.0 (13.0–19.0) 0.2254

Hypertension,% 44 (62.0) 14 (60.9) 0.9247

Diabetes mellitus,% 10 (14.1) 4 (17.4) 0.7398

Hyperlipidemia,% 24 (33.8) 3 (13.0) 0.0666

Atrial fibrillation,% 19 (27.1) 3 (13.0) 0.2581

CAD,% 15 (22.1) 3 (13.0) 0.5456

Current statin

administration,%

19 (26.8) 3 (13.0) 0.2587

Stroke mechanism

Cardioembolic stroke,% 23 (32.4) 5 (21.7) 0.1644

Large artery disease,% 20 (28.2) 12 (52.2)

Other type of stroke,% 10 (14.1) 1 (4.4)

Undetermined

Categories,%

18 (25.4) 5 (21.7)

Time from onset to CT

imaging, hours

5.5 (3.5–7.8) 6.0 (4.8–11.5) 0.3011

ASPECTS score on NCT 8.0 (7.0–9.0) 7.0 (6.0–9.0) 0.1003

HMCAS on NCT, % 35 (55.6) 17 (73.9) 0.1425

Collateral Flow Scores 2.0 (1.0–3.0) 2.0 (2.0–3.0) 0.3106

DT>2 s, mL 55.7 (47.0–70.7) 59.8 (46.2–70.2) 0.4442

DT>4 s, mL 27.7 (17.0–40.0) 36.6 (25.3–51.7) 0.0243*

DT>6 s, mL 11.1 (2.2–21.3) 17.6 (8.1–34.2) 0.054

DT>8 s, mL 5.1 (0.3–10.1) 6.7 (2.5–19.9) 0.0854

DT>10 s, mL 1.6 (0.0–4.6) 2.2 (0.3–10.6) 0.1157

rCBF<40%, mL 16.2 (4.3–23.4) 16.9 (6.1–30.5) 0.2132

CBV<2, mL 17.2 (3.5–32.3) 21.9 (5.1–32.5) 0.7447

Site of occlusion

ICA, % 5 (7.0) 3 (13.0) 0.2687

M1, % 53 (74.7) 13 (56.5)

ICA &M1, % 13 (18.3) 7 (30.4)

Successful recanalization

(TIMI:2-3)

57 (80.3) 19 (82.6) 0.8053

ASPECTS indicates Alberta Stroke Program Early CT Score; CAD, coronary artery

disease; CT, computed tomography; HMCAS, hyperdense middle cerebral artery sign;

NCT, noncontrast-CT; NIHSS, National Institutes of Health Stroke Scale; DT, delay time;

PH, parenchymal hematoma; rCBF, relative cerebral bold flow, CBV, cerebral blood

volume; ICA, internal carotid artery; M1, middle cerebral artery; TIMI, thrombolysis in

myocardial infarct.*P < 0.05.

PH in this group, with a negative predictive value of 0.86
(95% confidence interval, 0.73–0.94) and a negative likelihood
ratio of 0.51(0.27–0.98). For DT >4 s volumes ≥30.4mL, the
sensitivity for PH was 0.70 (0.49–0.84), the specificity was
0.59 (0.48–0.70), and the positive likelihood ratio was 1.70
(1.15–2.51).

A large area of moderate, not severe, perfusion delay
(DT >4 s) on the pretreatment CTP were independently
associated with PH; compared with patients with the lowest
DT >4 s volume quartile, those with second, third, and fourth

Frontiers in Neurology | www.frontiersin.org 4 August 2018 | Volume 9 | Article 68019

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wu et al. Delay Time to Predict Parenchymal Hematoma

TABLE 2 | Receiver operating characteristic analysis.

PH

AUC 95% CI P-value

DT>2 s 0.554 0.415 0.692 0.442

DT>4 s 0.657 0.525 0.789 0.024*

DT>6 s 0.634 0.498 0.77 0.054

DT>8 s 0.620 0.484 0.755 0.086

DT>10 s 0.608 0.47 0.747 0.120

rCBF<40% 0.587 0.446 0.728 0.212

CBV<2 0.523 0.392 0.654 0.742

DT indicates delay time; AUC, area under the curve; CI, confidence interval; rCBF, relative

cerebral bold flow, CBV, cerebral blood volume; *P < 0.05.

quartile were approximately 1.3, 3.3, and 3.6 times more likely to
develop PH, respectively.

We also found significant correlations between DT >2 s,>4 s,
>6 s, >8 s, and >10 s, with correlation coefficients ranging from
0.906 to 0.992.

In backward stepwise elimination logistic regression,
including age, baseline NIHSS score, poor collaterals and
recanalization, and DT >4 s, only the volume of DT >4 s was
independently associated with PH (odds ratio (OR) 1.04 per
1mL increase in DT >4 s volume [95% confidence interval (CI),
1.01–1.06]; P = 0.011). Table 3 shows the results of the logistic
regression models and the ORs for PH.

Two illustrative cases with areas of DTs, with subsequent
PH after intra-arterial thrombolysis corresponding to the site of
abnormal DT are shown in Figure 2.

Based on ECASS hemorrhagic transformation classification,
the Supplementary Table 1 shows baseline clinical
characteristics, stroke risk factors, and time to imaging for the
study patients. The died cases (rate) post-procedure of No HT,
HI1, HI2, PH1, and PH2 were 12(26%), 3(33%), 3(19%), 2(14%),
and 4(44%), respectively. The ROC analysis for association of any
HT across the range of values in each CTP parameter identified
rCBF <40% (area under the curve= 0.632; P = 0.027), and CBV
<2mL /100 g (area under the curve = 0.650; P = 0.012). It has
previously been demonstrated that rCBF <40% or CBV<2mL
/100 g on CTP corresponds closely to ischemic core (as shown in
Supplementary Table 2). Although rCBF <40% or CBV<2mL
/100 g could not be significantly associated with the PH in ROC
analysis, they were significantly associated with any HT.

DISCUSSION

Our study has three main findings. Firstly, moderate hypo-
perfusion (DT >4 s) predicted PH in patients with endovascular
thrombolysis better than other DT values. Secondly, DT>4 s was
better than rCBF< 40% or CBV< 2mL /100 g for PH prediction
after IA tPA thrombolysis. Thirdly, the volume of DT>4 s was
an independent factor to predict PH, which was more significant
than collateral grading and recanalization status.

Although clinical factors are useful in the decision making
process before IA tPA thrombolysis administration, in practice,

TABLE 3 | Logistic regression analysis for PH.

Variable Multivariate Model

Odds ratio (CI) P-value

NIHSS 1.09 (0.98–1.21) 0.110

Age 0.99 (0.95–1.03) 0.597

DT >4 s, mLa 1.04 (1.01–1.06) 0.011*

Poor collaterals and recanalization 1.04 (0.59–1.82) 0.901

CTP**

DT > 4 s

Q2 1.33 (0.26–6.74) 0.728

Q3 3.33 (0.76–14.66) 0.111

Q4 3.56 (0.80–15.72) 0.094

DT > 6 s

Q2 3.50 (0.63–19.54) 0.153

Q3 4.32 (0.79–23.59) 0.091

Q4 5.60 (1.04–30.20) 0.045*

DT > 8 s

Q2 2.75 (0.61–12.29) 0.187

Q3 1.75 (0.37–8.37) 0.481

Q4 3.56 (0.80–15.72) 0.094

DT > 10 s

Q2 3.50 (0.63–19.54) 0.153

Q3 4.32 (0.79–23.59) 0.091

Q4 5.60 (1.04–30.20) 0.045*

CI indicates 95% confidence interval; CTP, CT perfusion imaging; DT, delay time; and

NIHSS, National Institutes of Health Stroke Scale.
a Odds ratio (OR) given for each 1mL increase in DT >4 s volume.

*P < 0.05.

**Compared with Q1.

most of these are insufficient in isolation to predict PH. The
non-contrast CT before treatment is useful to exclude patients
with more than 1/3 of the MCA territory infarct, but of
limited value to detect patients at risk of PH in the remaining
patients who go on to receive treatment. Although MRI is not
routinely available in the acute setting, MRI-based parameters
for prediction of post-thrombolysis HT were found in many
previous studies, including diffusion-weighted imaging–based
lesion volume, severe hypoperfusion measured by high Tmax
(22), regional very low CBV (23), and increased permeability
(24–26).

CTP is widely available and rapidly accessible in most stroke
centers, and thus lends itself to the clinical decision-making
process. In this study, the reason we chose DT, instead of Tmax,
was that the Tmax value could be dependent on various factors
including arterial delay and dispersion and tissue transit time
and dispersion. To compensate for arterial delay and dispersion
effects, a vascular transport model involving an arterial transport
function with a delay time and a relative dispersion has been
proposed (19). Thus, there is marked variability in lesion volume
prediction among various deconvolution techniques (19, 27).

This study demonstrated that moderate hypo-perfusion (DT
>4 s) predicted PH in patients with endovascular thrombolysis
better than other DT values. A prior study by Yassi et al. (15),
correlating Tmax and PH, showed that extreme hypo-perfusion
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FIGURE 2 | (A,B) two cases with hemorrhagic transformation. (A) Pretreatment CTP images show a marked large area with perfusion delay. The day after

recanalization with intravenous and endovascular treatment, CT findings revealed a PH. The PH was located within the mildly and severely hypoperfused regions.

(B) Pretreatment CTP images show small areas with large mild perfusion delay and small severe perfusion delay. After recanalization with endovascular treatment, CT

and GRE findings revealed a large area of PH. The PH was located within the mildly hypoperfused regions. (C,D) The volume in the regions with baseline mild and

severe perfusion delay (DT >4 s and DT >10 s) correlated with the PH. Q1 represents the patients with the lowest quartile volume, whereas Q4 indicates patients with

the highest quartile volume.

lesion (Tmax >14 s volumes of >5mL) and thrombolysis were
both independently predictive of PH for the patient with or
without thrombolysis. OR values of the Tmax >14 s volumes
and the thrombolysis were 4.3 and 10.1, respectively. Thus,
thrombolysis hadmuchmore influence on the PH than Tmax. IA
treatment was more likely to be performed in patients with severe
neurological deficits and perfusion delay, and PH might reflect
increasing stroke severity and more aggressive treatment (22).
When all cases were treated with endovascular thrombolysis,
the influence of aggressive treatment disappeared, and this may
explain the discrepancy in findings between Yassi’s study and
our study. Secondly, the correlations between DT >2 s, >4 s,
>6 s, >8 s, and >10 s were statistically high from 0.906 to 0.992;
therefore, the results might also be much dependent on different
study populations. Moreover, although the thresholds at more
extreme reductions in CBF, CBV, Tmax, and regional very low
CBV have been previously shown to be useful in MRI, they
were to be of limited utility using CTP, mainly because of a
lack of sensitivity to very low levels of contrast in the severely
hypo-perfused region, which produces a relatively large region of
undetectable CBF and CBV.

Reperfusion of the ischemic core is an important cofactor in
the pathogenesis of hemorrhage (10, 28). The CBV <2 mL/100 g,
and CBF <40% could be equal to the ischemic core in previous
studies(17, 29). Howvere, in this study, CBF<40% and CBV
<2 mL/100 g could not be able to predict PH statistically in
ROC analysis. Poor collaterals and recanalization were also
found to correlate with HT (20), but in this study, we were
unable to conclude that the poor collateral circulation and
therapeutic recanalization had more PH. This study found
that DT >4 s may be a better predictor of PH after IA tPA
thrombolysis therapy. Therefore DT >4 s reflect perhaps both
collaterals and reperfusion, and indicate that there is still some
blood reaching the tissue, independent of the source of these
collaterals or reperfusion. Additionally, instead of having to
consider collaterals, reperfusion, and severe ischemia, now a
single parameter can be assessed: DT >4 s.

The ECASS III trial used the following definition for
symptomatic HT: any blood in the brain or intracranially
associated with a clinical deterioration 4 NIHSS points that was
identified as the predominant cause of neurological deterioration
(30). However, it is often difficult to differentiate the predominant
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cause of neurological deterioration in clinical practice (22).
The different clinical outcomes after different subtypes of HT
illustrates the difficulty in defining symptomatic HT precisely
and clearly (11, 31). Also, patients with HI often showed no
symptoms. Thus, in this study, we used the PH as the outcome
of symptomatic HT.

Limitations include the modest numbers of patients in the
cohort. Due to the retrospective nature, PH was measured
in different time intervals. There was a significantly increased
mortality rate of our cohort, especially in those patients with PH2.
It might be related to the prolonged treatment window time and
more severe state of illness as the mean NIHSS was greater than
15. Its small sample size hampers proper multivariate analysis.
Second, the patient cohort was collected from three different
hospitals retrospectively, so inconsistency on imaging parameters
may exist, although the CT scanners were all 64-slice scanners
and used the same cinemode, and the iodinated contrast material
was the same brand with similar injection methods. Also, the
whole brain was not covered in the CTP studies, as 64-slice CT
scanners were used in this study (32). And dual-energy CT was
not used in this study. Third, quantitative analysis of other values
of perfusion maps (CBF, MTT, CBV) with a range of thresholds
was not included in our study. We chose to focus on DT on
the basis of previously published data indicating its value as a
predictor of PH (15).

In conclusion, the results of this study indicate that
the moderate perfusion delay rather than severe delay
was independently associated with PH after endo-vascular
thrombolysis. Although the ischemic core on CTP is useful in the
pretreatment prediction of HT, the moderate hypo-perfusion on
DT is more strongly associated and may allow better prediction
of PH after endovascular thrombolysis. Perfusion imaging may
be significant not only for the fate of cerebral tissues, but also
for the prevention of PH. Further studies are needed for a better
understanding of the pathogenesis of PH.
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Cerebral edema contributes to neurological deterioration and death after hemispheric

stroke but there remains no effective means of preventing or accurately predicting its

occurrence. Big data approaches may provide insights into the biologic variability and

genetic contributions to severity and time course of cerebral edema. These methods

require quantitative analyses of edema severity across large cohorts of stroke patients.

We have proposed that changes in cerebrospinal fluid (CSF) volume over time may

represent a sensitive and dynamic marker of edema progression that can be measured

from routinely available CT scans. To facilitate and scale up such approaches we

have created a machine learning algorithm capable of segmenting and measuring

CSF volume from serial CT scans of stroke patients. We now present results of our

preliminary processing pipeline that was able to efficiently extract CSF volumetrics from

an initial cohort of 155 subjects enrolled in a prospective longitudinal stroke study. We

demonstrate a high degree of reproducibility in total cranial volume registration between

scans (R = 0.982) as well as a strong correlation of baseline CSF volume and patient

age (as a surrogate of brain atrophy, R = 0.725). Reduction in CSF volume from baseline

to final CT was correlated with infarct volume (R = 0.715) and degree of midline shift

(quadratic model, p < 2.2 × 10−16). We utilized generalized estimating equations (GEE)

to model CSF volumes over time (using linear and quadratic terms), adjusting for age.

This model demonstrated that CSF volume decreases over time (p < 2.2 × 10−13) and

is lower in those with cerebral edema (p = 0.0004). We are now fully automating this

pipeline to allow rapid analysis of even larger cohorts of stroke patients from multiple

sites using an XNAT (eXtensible Neuroimaging Archive Toolkit) platform. Data on kinetics

of edema across thousands of patients will facilitate precision approaches to prediction

of malignant edema as well as modeling of variability and further understanding of genetic

variants that influence edema severity.

Keywords: ischemic stroke, machine learning, cerebral edema, image analysis and processing, CT scan, CSF

volume, GEE
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INTRODUCTION

Over 10 million persons suffer a stroke each year worldwide
(1). Most of these patients have at least one brain imaging
study performed during their acute hospitalization, primarily for
diagnostic purposes on presentation (2). Follow-up scans are
often obtained to evaluate the size of infarction, degree of cerebral
edema, as well as exclude the development of hemorrhagic
transformation (3). Computed tomography (CT) is the most
frequently employed modality for acute stroke imaging due to its
widespread availability, lower cost, and greater speed of scanning,
especially important in acutely unstable patients where “time is
brain” (4). Although conventional CT does not have the ability
of magnetic resonance imaging (MRI) to detect hyper-acute
stroke, its ability to track progression of infarction and edema
after stroke are comparable while affording greater temporal
resolution with serial imaging (5). This practice means that
there is a massive global imaging dataset of stroke patients
with information on stroke location, infarct size, development of
edema, and hemorrhagic transformation.While these parameters
can be assessed by human raters, such evaluation is not
scalable when leveraging imaging data from thousands of
patients.

Cerebral edema develops around regions of brain infarction
within the first week after stroke. This pathologic increase in
brain water and hemispheric volume can lead to mass effect
and is the major cause of death and neurological worsening
after stroke (6). Development of edema is usually heralded by
abrupt mental status worsening 2 days or more after admission,
when herniation and midline shift have already developed (7).
However, this process actually begins in the first hours after
stroke and evolves continually and progressively over the first few
days. At first decreases in blood and cerebrospinal fluid (CSF)
compartments within the cranial compartment compensate for
this increase in brain volume. However, once this has been
exhausted, decompensation with worsening rapidly follows.
Current measures of edema such as midline shift (MLS) or
neurological deterioration capture only this decompensated state
and not the critical early stages of edema before worsening.
Further, assessing edema utilizing only MLS neglects the full
spectrum of edema, including those with increased brain volume
who never develop MLS. Measures of lesion volume either
requires MRI (not feasible in all stroke patients) or can be
estimated using CT; however, hypodensity on CT may be subtle
early on and represents a variable combination of infarct plus
edema. It is only the latter component that contributes to swelling
and risk of herniation, and so lesion volume (even on MRI) only
partially predicts risk of herniation (8).

We have proposed a sensitive quantitative metric of edema
severity that can be extracted from CT imaging at variable time
points after stroke (9). This leverages the reciprocal biologic

relationship between increase in brain volume due to swelling

and proportional decrease in CSF volume as compensation. CSF
is pushed out of hemispheric sulci, cerebral ventricles, and the
basal cisterns as edema develops in the hours and days after
stroke. The reduction in CSF volume precedes the development
of midline shift and clinical worsening due to edema. We

demonstrated that the volume of CSF displaced up to the time
of maximal edema closely correlated with extent of midline shift.

We have also developed an automated algorithm to segment
CSF from CT scans of stroke patients (10). This critical step
employed random forest-based machine learning (ML) trained
on manually delineated scans. Features integrated into the ML
platform include Haar-like patterns of pixels. This supervised
learning approach was able to rapidly and reliably measure CSF
volume on serial CT scans from two sites in our preliminary
testing, performing significantly better than simple threshold-
based models for CSF segmentation which were confounded by
density of infarction mimicking CSF. Correlations of automated
CSF volumes to ground-truth values exceeded 0.95, with volumes
that closely approximated actual CSF values after active contour
refinement. This automated approach facilitates the translation
of this metric to studies evaluating edema in large numbers of
stroke patients. Exploring the variability in quantifiable edema
severity between patients will not only unlock opportunities for
precise prediction of malignant edema at earlier time points but
also provide the basis for understanding the genetic basis of
cerebral edema. Such studies require thousands of stroke patients
with serial imaging to undergo CSF-based edema measurement.
We now present a proof-of-principle application of a processing
algorithm capable of handling large datasets of CT scans and
extracting CSF volumes for such analyses.

MATERIALS AND METHODS

Subjects and Data Collection
Patients with a diagnosis of ischemic stroke who were admitted
to Barnes-Jewish Hospital were screened for enrollment into
the Genetics of Neurological Instability after Ischemic Stroke
(GENISIS) study if they presented within 6 h of symptom
onset. Subjects provided informed consent for data collection,
including acute stroke imaging. Clinical data collected included
age and NIHSS at baseline. All head CT imaging performed on
subjects enrolled between 2009 and 2014 was then extracted from
the clinical radiology server. We included only those with at
least one follow-up scan performed during their hospitalization.
Figure 1 shows the steps involved in a processing pipeline
capable of uploading, evaluating, processing, and extracting CSF
volumes from these scans. All scans (including baseline CT on
presentation and each follow-up scan available) were uploaded
from the hospital’s Picture Archiving and Communication
System (PACS) server to Central Neuroimaging Data Archive
(CNDA), where they were stored in Digital Imaging and
Communications in Medicine (DICOM) format (11). All studies
were de-identified during the upload process using a standard
algorithm integrated into the upload pipeline. FU scans were
reviewed for presence of visible infarct as well as graded for
degree of cerebral edema (CED grade 0, no infarct visible; 1, focal
swelling up to 1/3 of cerebral hemisphere; 2, focal swelling of
>1/3 of cerebral hemisphere; 3, swelling with midline shift) (12).

DICOM Conversion
DICOM images were converted to NIfTI (Neuroimaging
Informatics Technology Initiative) format in bulk using the
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FIGURE 1 | Outline of image processing pipeline to analyze CSF volumes from

large cohorts of stroke patients.

dcm2niix software. Multiple DICOM-encoded brain slices from
a single scanner sequence were compiled into a single 3-
dimensional NIfTI file. The header of the newly created NIfTI
file also stores the image dimensions (e.g.,∼512× 512× 32) and
pixel dimensions (e.g., ∼0.42 × 0.42 × 5-mm). The conversion
also labels the resulting file using the subject identifier (assigned
during upload) plus date and time of each scan (extracted from

the DICOM metadata). Due to inconsistency in storing slice
thickness in CT metadata, conversion extracts pixel height not
from slice thickness and/or spacing between slices (reported
inconsistently in metadata) but by calculating the actual distance
between two consecutive slices. Conversion of CT images poses
additional unique complexities: images are often acquired with
slice axis oblique to the scanning table (13). This gantry tilt
would result in a skewed 3D stack of images if this is not
resolved using trigonometry and resampling (as is performed
during conversion). This resampling to a consistent plane is also
important for accurate co-registration of scans within a given
patient. Some CT series may also be acquired with varying slice
thicknesses, typically with thinner slices in the posterior fossa.
Such inconsistency cannot be handled by theNIfTI format, which
requires uniform slice thickness when storing imaging data.
The conversion algorithm recognizes such variable inter-slice
distances and interpolates to a uniform thickness in the resulting
NIfTI file. We also store additional metadata not captured in the
NIfTI header (such as scanner, protocol, method of conversion)
in a brain imaging data structure (BIDS) accessory file (14).

Image Selection
Each patient often has multiple series performed as part of
a single session. Derived images were excluded automatically
from conversion using the “–i y” switch in dcm2niix. However,
selection of axial brain images required some manual review of
converted NIfTI files to exclude bone windows and additional
series that were not analyzed (e.g., angiographic images).

Infarct Review
Each follow-up scan was also manually reviewed for presence
and location of visible infarcts as well as presence and degree
of midline shift (at level of the septum pellucidum). Visible
stroke-related hypodensities were outlined in MRICro and saved
as image masks. Infarct location was categorized as cortical,
subcortical, both cortical and subcortical, lacunar (subcortical
with diameter <15mm), or other.

Brain Extraction and Perimeter

Registration
Further anonymization of images was ensured by removal of
all structures external to the cranial cavity (i.e., skull stripping).
This was accomplished by k-means clustering of pixel intensities
to segregate brain, skull, and all external pixels. Skull and
external regions were then excluded to yield a mask of just the
intracranial contents. This image was then registered to a brain
template that consisted of 15 brain images of stroke patients
with manually outlined cranial perimeter to include all supra-
tentorial structures as well as basal cisterns, but specifically
excluding portions of the posterior fossa (e.g., cerebellum) on
the same slices. Each subjects baseline brain scan was registered
to each of these atlas brains using the Advanced Normalized
Toolkit (ANTS) and pixels were included if they matched to the
atlas masks in over half of the template scans. This registered
baseline scan was then registered to each follow-up scan and
non-matching brain regions were excluded.
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CSF Segmentation
The brain mask was then segmented using the CSF classifier
that we previously trained using random forest machine learning
(10). This segmentation was then refined using an active contour
method and cleaned using a manually drawn mask of the
infarct hypodensity (if present on follow-up scans). Results
are summarized in JPEG snapshots of the resulting CSF mask
overlaid onto the CT images for manual review of segmentation
accuracy on serial scans (see Figure 2 for results of CSF
segmentation in one representative subject).

Volumetric Analyses
The number of pixels in each compartment (intracranial
compartment, CSF, infarct) is extracted from each image mask.
This is then converted into volume using the pixel dimensions in
the image header. Results from each scan are compiled into an
exportable data file. This was analyzed in R (R: a language and
environment for statistical computing). CSF and infarct volumes
were analyzed in milliliters (ml) as well as a proportion of total
cranial volume (%). The maximum change in CSF volume was
calculated using the lowest measured volume as a percentage of
the baseline volume.

Dynamic CSF Volumetric Modeling
Generalized estimating equation (GEE) was used to model the
temporal CSF volume changes using the multiple CT scans from
this patient cohort. In this study, due to an irregular time interval
between the scans from different subjects, we employed aMarkov
working correlation structure, corr(yi,j, yi,k) = a|ti,j−ti,k|, where
yi,j and yi,k are CSF volumes of patient i at tij and tik. Besides
its capability to model irregular time interval between the scans,
this working correlation structure also takes the assumption that

the correlation between the measurements from the same subject
weakens with an increased time interval (0 < a < 1) (15). In this
study, the model we employed for statistical inference include
age, time from stroke onset (T), and a dichotomized cerebral
edema grade (CED grade 3 vs. grade 0, 1, 2), which is given
as E

(

yi,j
)

= b0 + b1∗ti,j + b2∗ti,j ∗ti,j + b3∗agei + b4∗cedi.
These coefficient (b0∼b4 and a) are calculated through a two
stage solutions. P-values were computed with a robust covariance
structure.

RESULTS

The cohort included 155 subjects, whose demographics are
shown in Table 1. Registration failed in two subjects, who were
excluded from segmentation and analysis. This left a total of
397 scans analyzed for cranial cavity and CSF volumes. Median
time from stroke onset to first scan was just over 1 h (IQR 0.8–
2.4 h) while time from baseline to first follow-up scan was a
median of 21 h (IQR 6–42 h); 55 subjects had three or more scans
performed serially after stroke. One hundred (66%) had one or
more scans performed at least 24 h after stroke onset. In one case
the only FU scan was over 1 week after stroke; this subject was
excluded. The majority of infarcts were cortical or both cortical
and subcortical. In those with at least 24-h follow-up, median
volume of visible infarct-related hypodensity was 73ml (IQR 5–
203). Median volume was 22ml for subcortical infarcts, 49.6ml
for cortical infarcts, and 219ml for infarcts affecting both cortical
and subcortical regions.

Swelling with midline shift (i.e., CED grade 3) was
demonstrated in 32 (32%) of those with scans beyond 24 h.
Median MLS was 6.5mm in this subgroup (IQR 4.0–9.5)
compared to 0 in other CED grades. Registration was able

FIGURE 2 | Axial brain slices from head CT (top) and results of CSF segmentation from a 82-year old woman with initial NIHSS of 18. Baseline CT (A) was performed

within 1 h of stroke onset (CSF volume 224ml). First follow-up CT (B) was performed at 20-h (CSF volume 150ml) and second follow-up CT (C) at 110-h (CSF volume

105ml).
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to extract a consistent cranial mask across serial scans; we
demonstrated a strong correlation between baseline and FU
cranial volumes (r = 0.98, p < 2 × 10−16; Figure 3). There was
also a good correlation between baseline CSF volume (as percent
of cranial volume) and age of patient (r = 0.74, p < 2 × 10−16;
Figure 4).

The maximal reduction in CSF volume (as percentage of
baseline) was associated with degree of midline shift developing
(Figure 5). In fact, there appeared to be a non-linear (quadratic)
relationship, whereby minimal midline shift developed despite
a mild-moderate CSF volume loss. Beyond the point at which
30–40% of the total baseline CSF had been lost, it appears that

TABLE 1 | Cohort of 155 stroke subjects with baseline and follow-up CT scans.

Variable

Age 67 ± 14 years

Gender, male 82 (53%)

NIHSS 11 (IQR 6–16)

Time from stroke onset to first CT 1.25 h (IQR 0.8–2.4)

Number with 2/3/4/5 serial scans 153/55/24/14

Infarct location:

Cortical only 24

Subcortical only 8

Both cortical and subcortical 42

Lacune 7

No infarct seen 12

Unable to assess (no scan beyond 24 h) 56

CED grade* 0/1/2/3 17/34/16/32

*In those with imaging at least at 24 h or beyond.

midline shift rapidly develops. Peak CSF volume loss was also
correlated with infarct volume in a linear fashion (Figure 6) and
was significantly greater in those stroke patients with infarcts
affecting both cortical and subcortical structures and minimal in
those with lacunar infarcts (Figure 7).

In the GEE model, we found that CSF volume was
independently affected by all three variables: age, time from
stroke onset and CED grade. CSF volume increases with age (b1
= 3.01 cc/year, p< 10−16) and is lower in those with CED grade 3
(b3 =−32.57 cc, p= 4× 10−4). CSF volume also decreased over
time (−22 cc/day, p = 2 × 10−13) but there was also a second-
order quadratic time factor significant in CSF evolution (p= 6×
10−10). The evolution of CSF volume over time in CED grades is
shown in Figure 8.

DISCUSSION

Here we present the initial results of a machine learning-
based pipeline to analyze large numbers of serial CT brain
images in order to quantify the progression of cerebral edema
after ischemic stroke. We applied our random forest-based
segmentation algorithm within a broader image processing
pipeline to measure CSF volumes in almost 400 CT scans, with
failure of scan registration in only two of over 150 subjects with a
variety of stroke locations and volumes. We are now working to
refine our registration parameters to deal with these rare failures,
including addition of shrink factors, smoothing parameters, and
affine registration (16). In the remainder cranial registration was
robust, with tight correlation of volumes between baseline and
repeat images.We also demonstrated a clear relationship between
proportion of the cranium comprising CSF (as a surrogate for
brain atrophy) and patient age (17).

FIGURE 3 | Strong agreement of registered cranial volumes on baseline and follow-up scans.
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FIGURE 4 | Subject’s age correlates with proportion of cranial cavity comprised by CSF on baseline head CT (gray zone represents 95% confidence interval for

predictions from the linear regression model).

FIGURE 5 | Relationship between maximal reduction in CSF volume (relative to baseline) and peak degree of midline shift (gray zone represents 95% confidence

interval for predictions from the quadratic regression model).

More importantly, we further demonstrated that our metric
of CSF volume reduction is a strong marker not only of stroke
volume but of the eventual development of midline shift. There
was more CSF volume loss in those with larger infarcts affecting
both cortical and subcortical structures. However, it appears that
midline shift only develops once some degree of compensation

afforded by CSF loss has been exhausted. Beyond this threshold,
midline shift rapidly develops, as illustrated by our quadratic
modeling.

Furthermore, we used longitudinal GEE modeling to
demonstrate that CSF volume generally decreased over time
after stroke. Even adjusting for age and time from baseline
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FIGURE 6 | Relationship between infarct volume (based on largest hypodensity measured from available head CT scans) and maximal reduction in CSF volume.

FIGURE 7 | Maximal reduction in CSF volume (as percentage of baseline) in relation to infarct location.

CT, we confirmed that those with significant CED had greater
reductions in CSF volume than those without CED. CSF
volumes do not change appreciably over time in those with
small infarcts (Figure 8) with while those with larger infarcts
(CED grades 2 and 3) appear to exhibit gradual but progressive
reductions in CSF volumes of between 25 and 50% relative

to baseline. Furthermore, those with CED grade 3 (who,
by definition, ultimately develop MLS) seem to manifest a
continued downward trajectory between 24 and 48 h after stroke.
This group appears to reach an asymptote of maximal CSF
reduction of about half baseline volume by 48 h. This volume
reduction would represent approximately one hemisphere of
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FIGURE 8 | CSF volume (as percentage of volume on baseline CT) over time in groups with CED grades 0–1, 2, and 3.

CSF, appropriate to a process that is likely to produce edema
predominantly involving the ipsilateral hemisphere. As our
analysis relating MLS with CSF volume loss suggests, there is
potential for greater decompensation (with development of
MLS) once this proportion of CSF volume has been exhausted.
As we accumulate more volumetric data across more stroke
patients, we plan to perform more sophisticated analyses that
evaluate the interaction of edema severity with rate of CSF
volume reduction, incorporating and modeling the effect of
further covariates such as NIHSS.

This study provides proof-of-principle that we can
automate brain imaging data analysis and obtain meaningful
volumetric data on large cohorts of stroke patients. Such
an approach, leveraging routinely obtained clinical imaging
data or imaging obtained in clinical trials to advance the
science of stroke is the pathway to realizing the potential
of big data in brain imaging (18). One notable challenge
of sharing brain imaging data is ensuring anonymization.
In our pipeline this is accomplished by both robust de-
identification of DICOM metadata prior to scan transmission
to our centralized repository as well as skull stripping during
brain extraction and registration. This latter process has
also been accomplished previously using similar methods
(19).

While this study demonstrates the feasibility of an imaging
pipeline to deal with large volumes of CT data, there are a number
of refinements required before it can manage big imaging
data from large multi-site repositories. In this preliminary
test application, we only utilized data from a single site with
existing upload capabilities from PACS to our analysis server.

In future we will leverage the existing resources of CNDA to
import and archive scans from multiple sites. This imposes
other challenges to imaging harmonization as scans are obtained
with various protocols under varying sequence names and
even in disparate languages. We are currently developing a
convolutional neural network (CNN) approach to intelligently
but automatically select the appropriate scan from a number
of CT series performed concurrently. Subsequent steps in
processing such as brain registration and segmentation also
need to be automated and we are working on a Docker
container-based approach to integrating processing modules
(20). We are also working to provide internal quality control
checks and means of project-level data visualization to further
refine the processing. A further challenge to full automation
is the need for manual delineation of infarct hypodensity.
We are now developing a CNN-based method of segmenting
stroke lesions from serial CT scans (21). Such refinements
will be key to successfully scaling up these processes to
thousands of CT scans and realizing the potential of big data
in stroke. With respects to cerebral edema, this will allow
us to precisely predict the course of individual patients from
early CSF changes while simultaneously utilizing this imaging-
based endophenotype (rate of edema formation) as the basis for
powerful genetic studies to develop new targeted therapies to
prevent edema.
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Bayesian network is an increasingly popular method in modeling uncertain and complex

problems, because its interpretability is often more useful than plain prediction. To

satisfy the core requirement in medical research to obtain interpretable prediction with

high accuracy, we constructed an inference engine for post-stroke outcomes based

on Bayesian network classifiers. The prediction system that was trained on data of

3,605 patients with acute stroke forecasts the functional independence at 3 months and

the mortality 1 year after stroke. Feature selection methods were applied to eliminate

less relevant and redundant features from 76 risk variables. The Bayesian network

classifiers were trained with a hill-climbing searching for the qualified network structure

and parameters measured by maximum description length. We evaluated and optimized

the proposed system to increase the area under the receiver operating characteristic

curve (AUC) while ensuring acceptable sensitivity for the class-imbalanced data. The

performance evaluation demonstrated that the Bayesian network with selected features

by wrapper-type feature selection can predict 3-month functional independence with an

AUC of 0.889 using only 19 risk variables and 1-year mortality with an AUC of 0.893

using 24 variables. The Bayesian network with 50 features filtered by information gain

can predict 3-month functional independence with an AUC of 0.875 and 1-year mortality

with an AUC of 0.895. We also built an online prediction service, Yonsei Stroke Outcome

Inference System, to substantialize the proposed solution for patients with stroke.

Keywords: stroke, bayesian network, prognostic model, machine learning classification, decision support

techniques, imbalanced data

INTRODUCTION

A stroke is the second most common cause of death in the world and a leading cause of long-
term disability. Patients with stroke have higher mortality than age- and sex-matched subjects
who have not experienced a stroke. It is also reported that strokes recur in 6–20% of patients, and
approximately two-thirds of stroke survivors continue to have functional deficits that are associated
with diminished quality of life (1). Such disability after stroke can be measured by the modified
Rankin scale that categorizes functional ability from 0 to 6 (2–4). To discriminate the effect of
clinical treatment for patients with ischemic stroke, a score on the modified Rankin scale 0–2 is
widely applied for the indication of functional independence after stroke (2).
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There are many prognostic models for the functional
outcomes and risk of death after stroke. However, an agreed set of
guidelines or reporting for the development of prognostic score
models are currently unavailable. In a recent systematic review
of clinical prediction models, the discriminative performances of
models were still unsatisfactory, with the AUC values ranging
from 0.60 to 0.72, which are similar to the predictability of
experienced clinicians (5).

The prediction of prognosis needs to employ a variety of
statistical, probabilistic, and optimization techniques to learn
patterns from large, complex, and unbalanced medical data.
This complexity challenges researchers to applymachine learning
techniques to diagnose and predict the progress of the disease (6,
7). Machine learning has been expected to dramatically improve
prognosis, and certain applications have achieved remarkable
results (7). These applications have employed various machine
learning techniques including a deep neural network (8), support
vector machine (8, 9), decision trees (10), and ensemble methods
(11, 12) to classify diseases, level of deficits, and morality.
Selecting the optimal solution for a decision problem should
consider the unique pattern of a data set and the specific
characteristics of the problem (13).

The Bayesian network, a machine learning method, predicts
and describes classification based on the Bayes theorem (14).
Bayesian networks are widely used in medical decision support
for their ability to intuitively encapsulate cause and effect
relationships between factors that are stored in medical data
(15, 16). With these characteristics of conditional probabilities,
the Bayesian network can provide interpretable classifiers by logic
inherent in a decision support (17, 18). The parameters and
their dependences with conditional probabilities of the Bayesian
network can be provided either by experts’ knowledge (16, 19) or
by automatic learning from data (20, 21). In addition, Bayesian
networks can be used to query any given node in the network
and are therefore substantially more useful in clinics compared
with classifiers built based on specific outcome variables (22).

In this study, our aim was to investigate the usefulness of
a machine learning method to forecast functional recovery for
independent activities and 1-year mortality in patients with
acute ischemic stroke. We also introduced an online inference
system for predicting functional independence at 3 months and
mortality in 1 year of patients with stroke based on the proposed
Bayesian network.

MATERIALS AND METHODS

Data Set
Subjects for this study were selected from consecutive patients
with acute ischemic stroke who had been registered in the Yonsei
Stroke Registry over a 6.5-year period (January 2007 to June
2013). The Yonsei Stroke Registry is a prospective hospital-
based registry for patients with acute ischemic stroke or transient
ischemic attack within 7 days after symptom onset (23).

During admission, all patients were thoroughly investigated
for medical history, clinical manifestations, and the presence
of vascular risk factors. Every patient was evaluated with 12-
lead electrocardiography, chest x-ray, lipid profiles, and standard

blood tests. All registered patients underwent brain imaging
studies including brain computed tomography (CT) and/or MRI.
Angiographic studies using CT angiography, magnetic resonance
angiography, or digital subtraction angiography were included in
the standard evaluation. Additional blood tests for coagulopathy
or prothrombotic conditions were performed in patients
younger than 45 years. Transesophageal echocardiography was
included in the standard evaluation, except in patients with
decreased consciousness, impending brain herniation, poor
systemic condition, inability to accept an esophageal transducer
because of swallowing difficulty or tracheal intubation, or
lack of informed consent (24). Transthoracic echocardiography,
heart CT, and Holter monitoring were also performed in
selected patients (25). When a patient was admitted more
than twice because of recurrent strokes, only data for the
first admission were used for this study. Initial stroke
severity was determined by National Institute of Health Stroke
Scale (NIHSS) scores and score tertiles were used for the
analysis.

Hypertension was defined as resting systolic blood pressure
≥140mm Hg or diastolic blood pressure ≥90mm Hg after
repeated measurements during hospitalization or currently
taking antihypertensive medication. Diabetes mellitus was
defined as fasting plasma glucose values ≥7 mmol/L or taking
an oral hypoglycemic agent or insulin. Hyperlipidemia was
diagnosed as a fasting serum total cholesterol level≥6.2 mmol/L,
low-density lipoprotein cholesterol ≥4.1 mmol/L, or currently
taking a lipid-lowering drug after a hyperlipidemia diagnosis. A
current smoker was defined as an individual who smoked at the
time of stroke or had quit smoking 1 year before treatment (26).
The collection of variables during admission including clinical,
imaging, and laboratory data were used in statistical analysis and
Bayesian network modeling.

Stroke classification was determined during weekly
conferences based on the consensus of stroke neurologists.
Data including clinical information, risk factors, imaging study
findings, laboratory analyses, and other special evaluations
were collected. Along with these data, prognosis during
hospitalization and long-term outcomes were also determined.
Data were entered into a web-based registry. Stroke subtypes
were identified according to the Trial of ORG 10172 in Acute
Stroke Treatment (TOAST) classification (27).

For target variables in classification, we collected the outcome
variables for patients who were followed in the outpatient clinic
or by a structured telephone interview at 3 months and every
year after discharge. Short-term functional outcomes at 3 months
were determined based on the modified Rankin scale. Major
disability was defined as a score on the modified Rankin scale
of 3–6, as a poor outcome at 3 months after stroke. Deaths
among subjects from January 2001 to December 31, 2013, were
confirmed by matching the information in the death records
and identification numbers assigned to the subjects at birth
(5). We obtained data for the date and causes of death from
the Korean National Statistical Office, which were identified
based on death certificates (28, 29). The institutional review
board of Severance Hospital, Yonsei University Health System,
approved this study and waived the patients’ informed consent
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because of a retrospective design and observational nature of this
study.

Bayesian Networks
The collected data set was used to construct Bayesian networks
for predicting post-stroke outcomes. We extracted a total
of 76 random variables of each instance for patient data.
A Bayesian network consists of a directed acyclic graph
whose nodes represent random variables and links express
dependences between nodes. Suppose random variables Vi ∈

V (1 ≤ i ≤ n). A Bayesian network is described as a directed
acyclic graph G = (V, A, P) with links A ⊆ V × V and P a
joint probability distribution. P, a joint probability over V, is
described as

P(V) =

∏

Vi∈ V

P(Vi

∣

∣π(Vi) ),

where π(Vi) is the set of parent nodes of Vi.
Training Bayesian network classifiers is the process of

parameter learning to find optimal Bayesian structures
estimating parameter set of P that best represents given
data set with labeled instances (13). Given a data set D with
variable Vi, the observed distribution PD is described as a
joint probability distribution over D. The learning process now
measures and compares the quality of Bayesian networks to
evaluate how well the represented distribution explains the given
data set. The log-likelihood is the basic common value used for
measuring the quality of a Bayesian network as follows:

LL (B |D ) =

∑

Vi
log(P(Vi

∣

∣πB(Vi) )),

where B is the Bayesian network over D and
∣

∣πB(Vi) is parent
nodes of Vi in B(13, 30).

Diverse quality measurement methods have been investigated
(31). The algorithm searched the best Bayesian network based
on the Bayesian information criterion (32), Bayesian Dirichlet
equivalence score (19), Akaike information criterion (AIC) (33),
and the maximum description length (MDL) scores (30, 34). In
this study, we used the MDL score to evaluate the quality of a
Bayesian network. The MDL score is described as

MDL = −LL(B |D ) +
log N

2
· |B| ,

where N is the number of instances in D, and |B| is the
number of parameters in B. The smaller the MDL score, the
better the network. The search algorithm, greedy hill-climbing
algorithm (35) in our study, selects the best Bayesian network
by calculating MDL scores of candidate networks. For the type
of Bayesian network structure, we constructed tree-augmented
network (TAN) structures that restrict the number of parents to
two nodes (36).

Prediction Process
The entire process of a Bayesian network-based prediction
system is shown in Figure 1. A total of 76 features were extracted
from the Yonsei Stroke Registry and data preparation process

filtered records with missing outcome variables and exclusion
criteria. For feasible prediction service in clinical environment,
we performed two different feature selection methods.

Feature selection or dimension reduction is the process of
reducing the number of random variables under consideration
by obtaining a set of principal variables (37, 38). Feature
selection improves the overfitting problem caused by irrelevant
or redundant variables that may strongly bias the performance
of the classifier. The definition of feature selection in formal
expression is described in Drugan and Wiering (30) and
Hruschka et al. (39). In many studies, feature selection methods
are categorized into filters, wrappers, or embedded methods
that are applied to the data set in advance of the training
learning algorithm, or to embed feature selection in the learning
process (37, 40). Filter methods select features based on a
performance measure regardless of the employed data modeling
algorithm. The filter approach selects random variables based on
information gain score, ReliefF, or correlation-based method by
ranking variables or searching subset of variables. Information
gain measures the amount of entropy as a measure of uncertainty
reduced by knowing a feature (41–43); ReliefF evaluates the
worth of an attribute by repeatedly sampling an instance and
considering the value of the given attribute for the nearest
instance of the same and the different class (44, 45); and
correlation evaluates the worth of a subset of attributes by
considering the individual predictive ability of each feature along
with the degree of redundancy between them (46, 47). Unlike
the filter approach, wrapper methods measure the usefulness
of a subset of features by actually training a model on it. We
evaluated the performance of Bayesian networks with a reduced
variable set selected by information gain and Bayesian network
algorithms that are popular in filter and wrapper methods (42,
48, 49).

First, we tested the Bayesian network classifier with features
chosen by information gain based on entropy of each feature. The
other feature selection method, considering the characteristics
of Bayesian network classifiers, reduces the variable set by
evaluating the performance of the Bayesian network classifier in
cross-validation in which a search algorithm extracts a subset
of attributes to maximize AUC in prediction (Figure 1). The
optimization for AUC is to solve the imbalance between the
number of survival and mortal subjects.

Using the reduced variables by feature selection, the system
constructed a Bayesian network prediction model to search
optimal Bayesian network structures and parameters. We
evaluated the performance of prediction algorithms using (1) a
basic tree-augmented Bayesian network, (2) a tree-augmented
Bayesian network with features filtered by information gain, and
(3) a tree-augmented Bayesian network with features filtered
by the wrapper of a Bayesian network. The performances of
all Bayesian networks and predictive models were evaluated
based on the AUC, specificity, and sensitivity of 10-fold cross-
validations (50). We also implemented an online prediction
system for post-stroke outcomes embedding the trained
classifiers. In the validation process, we bound the minimum
sensitivity as 0.50 to utilize the trained classifiers in real-world
applications with imbalanced data.

Frontiers in Neurology | www.frontiersin.org 3 September 2018 | Volume 9 | Article 69935

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Park et al. Bayesian Network Predicting Post-stroke Outcomes

FIGURE 1 | Process of a prediction system for post-stroke outcomes.

RESULTS

Statistical Characteristics
During the study period, 4,105 consecutive patients with acute
ischemic stroke or transient ischemic attack were registered to
the Yonsei Stroke Registry. Exclusion criteria of this study were
patients with the stroke subtypes other than cryptogenic stroke
including transient ischemic attack (n= 326), foreigner (n= 48),
missing data (n = 29), follow-up loss (n = 97). After exclusion,
a total of 3,605 patients were finally enrolled for this study.
The mean age was 65.9 ± 12.6 years, and 60.7% were men. A
comparison of demographic characteristics between the outcome

at 3 months and death within 1 year is shown at Table 1. Patients
with poor outcome were older, more likely to be women, not a
current smoker, frequently had old stroke, hypertension, atrial

fibrillation, congestive heart failure, peripheral artery obstructive
disease, or anemia. Thrombolysis or endovascular mechanical
thrombectomy, symptomatic intracranial hemorrhage, and

herniation are frequent in patients with poor outcome.
Laboratory data showed that patients with poor outcome showed

lower hemoglobin, hematocrit, albumin, prealbumin, body

weight and higher ESR, fibrinogen, hsCRP, and D-dimer level.
The differences of demographics of patients between survival and
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TABLE 1 | Demographic characteristics and comparison of outcome at 3 months and death within 1 year.

Total Outcome at 3 months Death within 1 year

(N = 3,605) Good outcome

(N = 2,653)

Poor outcome

(N = 952)

p No

(N = 3,171)

Yes

(N = 434)

p

Age 65.9 ± 12.6 64.0 ± 12.3 71.2 ± 11.9 <0.001 64.8 ± 12.4 73.9 ± 11.2 <0.001

Sex <0.001 0.016

F 1,416 (39.3%) 969 (36.5%) 447 (47.0%) 1,222 (38.5%) 194 (44.7%)

M 2,189 (60.7%) 1,684 (63.5%) 505 (53.0%) 1,949 (61.5%) 240 (55.3%)

Hypertension 2,675 (74.2%) 1,940 (73.1%) 735 (77.2%) 0.015 2,675 (74.2%) 1,940 (73.1%) 0.023

Diabetes 1,144 (31.7%) 827 (31.2%) 317 (33.3%) 0.243 1,144 (31.7%) 827 (31.2%) 0.282

Hypercholesterolemia 747 (20.7%) 554 (20.9%) 193 (20.3%) 0.726 685 (21.6%) 62 (14.3%) 0.001

Current smoking 856 (23.7%) 704 (26.5%) 152 (16.0%) <0.001 856 (23.7%) 704 (26.5%) <0.001

Old stroke 472 (13.1%) 301 (11.3%) 171 (18.0%) <0.001 401 (12.6%) 71 (16.4%) 0.038

Atrial fibrillation 813 (22.6%) 482 (18.2%) 331 (34.8%) <0.001 623 (19.6%) 190 (43.8%) <0.001

Coronary artery disease 811 (22.5%) 603 (22.7%) 208 (21.8%) 0.608 717 (22.6%) 94 (21.7%) 0.701

Congestive heart failure 184 (5.1%) 110 (4.1%) 74 (7.8%) <0.001 134 (4.2%) 50 (11.5%) <0.001

Peripheral artery obstructive disease 110 (3.1%) 60 (2.3%) 50 (5.3%) <0.001 85 (2.7%) 25 (5.8%) 0.001

Initial NIHSS score 5.6 ± 6.3 3.4 ± 4.0 11.5 ± 7.5 <0.001 4.8 ± 5.4 11.5 ± 8.4 <0.001

TOAST <0.001 <0.001

LAC 321 (8.9%) 285 (10.7%) 36 (3.8%) 312 (9.8%) 9 (2.1%)

LAA 741 (20.6%) 504 (19.0%) 237 (24.9%) 661 (20.8%) 80 (18.4%)

CE 991 (27.5%) 688 (25.9%) 303 (31.8%) 823 (26.0%) 168 (38.7%)

SOD 89 (2.5%) 68 (2.6%) 21 (2.2%) 80 (2.5%) 9 (2.1%)

UT 668 (18.5%) 498 (18.8%) 170 (17.9%) 587 (18.5%) 81 (18.7%)

UN 785 (21.8%) 607 (22.9%) 178 (18.7%) 703 (22.2%) 82 (18.9%)

UI 10 (0.3%) 3 (0.1%) 7 (0.7%) 5 (0.2%) 5 (1.2%)

Anemia 617 (17.1%) 361 (13.6%) 256 (26.9%) <0.001 450 (14.2%) 167 (38.5%) <0.001

Thrombolysis 485 (13.5%) 272 (10.3%) 213 (22.4%) <0.001 377 (11.9%) 108 (24.9%) <0.001

Symtomatic ICH 92 (2.6%) 10 (0.4%) 82 (8.6%) <0.001 43 (1.4%) 49 (11.3%) <0.001

Herniation 105 (2.9%) 3 (0.1%) 102 (10.7%) <0.001 38 (1.2%) 67 (15.4%) <0.001

Body weight 62.9 ± 11.1 64.0 ± 10.9 60.0 ± 11.2 <0.001 63.6 ± 11.0 57.8 ± 10.8 <0.001

hgb 13.8 ± 2.0 14.0 ± 1.9 13.3 ± 2.2 <0.001 14.0 ± 1.9 12.7 ± 2.3 <0.001

hct 40.6 ± 5.6 41.1 ± 5.3 39.3 ± 6.1 <0.001 41.0 ± 5.3 37.9 ± 6.5 <0.001

esr 23.9 ± 22.2 21.2 ± 20.1 31.3 ± 25.8 <0.001 22.1 ± 20.6 36.5 ± 28.8 <0.001

pt 1.0 ± 0.5 1.0 ± 0.3 1.0 ± 0.7 0.123 1.0 ± 0.5 1.0 ± 0.2 0.002

Albumin 4.2 ± 0.5 4.3 ± 0.4 4.0 ± 0.5 <0.001 4.3 ± 0.4 3.9 ± 0.6 <0.001

Prealbumin 223.7 ± 72.6 239.0 ± 69.9 205.6 ± 71.6 <0.001 233.3 ± 69.8 186.8 ± 71.4 <0.001

Fibrinogen 322.8 ± 94.3 316.1 ± 83.9 341.5 ± 116.8 <0.001 320.1 ± 88.5 342.5 ±

128.5

0.001

hsCRP 11.3 ± 48.4 7.5 ± 49.7 22.2 ± 42.7 <0.001 9.2 ± 48.4 27.3 ± 45.5 <0.001

D-dimer 779.0 ± 3846.1 418.4 ± 1704.4 1788.2 ±

6834.6

<0.001 464.5 ±

1759.3

3079.8 ±

9723.3

<0.001

death within 1 year were similar with functional outcome at 3
months. D-dimer levels were significantly higher in patients who
died within 1 year compared with survivors (3079.8 ± 9723.3 vs.
464.5± 1759.3, p < 0.001).

Structure and Parameters of Bayesian
Networks
As we described in Figure 1, two different feature selection
techniques were performed in our experiment: variables selected
by information gain with ranking or variables selected by a

wrapper embedding Bayesian network with greedy stepwise
subset selection in cross-validation. The top-ranked variables in
the filter by information gain and the wrapper of the Bayesian
network in forecasting functional independence at 3 months
are shown in Figures 2A,B, and variables for predicting 1-
year mortality are shown in Figures 2C,D. The most affective
factor for functional recovery prediction was Initial NIHSS,
while D-dimer ranked top in 1-year mortality prediction.
The common variables for predicting post-stroke outcomes
were Initial NIHSS, D-dimer, hsCPR, and Age. However, the
subset-searching algorithm selects a method differently from the
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FIGURE 2 | Top 15 variables in dimension reduction for post-stroke outcome prediction: (A) variables filtered by ranks of information gain for predicting functional

independence at 3 months, (B) variables selected by the wrapper of the Bayesian network classifier with greedy subset selection for predicting functional

independence at 3 months, (C) variables filtered by ranks of information gain for predicting 1-year mortality, and (D) variables selected by the wrapper of the Bayesian

network classifier with greedy subset selection for predicting 1-year mortality.

rankingmethod that evaluates the individual variables separately;
thus, certain variables were excluded from the selected subset
even though their ranks are high in individual evaluation.

Using the result of feature selection, we trained three tree-
augmented Bayesian network classifiers; (1) Tree-augmented
Bayesian network with the entire dataset, (2) tree-augmented
Bayesian network with features filtered by ranking of information
gain, and (3) tree-augmented Bayesian network with features
filtered by the wrapper of the Bayesian network classifier (see
Figure 3). The predictive performance for 3-month outcomes
is shown in Figure 3A. The classifier trained with features
chosen by the Bayesian network’s subset evaluation performs in
prediction of 3-month functional recovery with the specificity
of 0.931, accuracy of 0.643, and AUC of 0.889 (95% CI,
0.879–0.899) although the sensitivity (0.643) is slightly lower
than other algorithms. The tree-augmented Bayesian network
without feature selection achieved the AUC of 0.875 (95%
CI, 0.864–0.886), but the highest sensitivity of 0.684; and the
Bayesian network with features by ranking of information
gain obtained the AUC of 0.875 (95% CI, 0.864–0.886) and
mid-level performance between two other algorithms. The
Bayesian network classifier with feature selection achieved best
performance in most metrics except sensitivity, although it
reduced the variable set from 76 variables to 19 variables,
resulting in a great reduction in model construction time.

In prediction of 1-year mortality, AUCs of three algorithms
were not significantly different (0.892 with 95% CI, 0.872–
0.912; 0.895 with CI, 0.875–0.915; and 0.893 with CI, 0.873–
0.913). All algorithms achieved higher specificities in predicting
1-year mortality than those for the prediction of functional
independence (0.915 vs. 0.897 with a basic Bayesian network,
0.915 vs. 0.898 with a Bayesian network with features
filtered by information gain, and 0.943 vs. 0.931 with a
Bayesian network with features chosen by the wrapper
of the Bayesian network classifier). The Bayesian network
algorithm with feature selection for 1-year mortality cuts out
the entire variable set to 24 variables that curtail network
construction time. The final Bayesian networks predicting
functional recovery and 1-year mortality are shown in Figures 4,
5, respectively.

Online Interactive System for Predicting
Post-stroke Outcomes
To realize decision support using Bayesian network classifiers, we
embedded our final Bayesian networks into an online inference
system, Y-SOIS (Yonsei-Stroke Outcome Inference System,
https://www.hed.cc/?a=Yonsei_SOIS), that enables answering
post-stroke outcomes when users provide available risk variables.
Figure 6 shows the screenshots of Y-SOIS.
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FIGURE 3 | Performance evaluation of Bayesian network-based classifiers: (A) performance of classifiers forecasting 90-day functional independence and (B)

performance of classifiers for 1-year mortality prediction.

FIGURE 4 | Bayesian network for predicting functional independence at 3 months. The tree-augmented Bayesian network used 19 variables selected by the wrapper

of the Bayesian network for prediction.

DISCUSSION

Interpretability is a core requirement for machine learning
models in medicine, because both patients and physicians need
to understand the reason behind a prediction (51). This study

presents an evaluation of Bayesian networks in providing post-

stroke outcomes estimates based on the collected demographic
data, lab result, and initial neurological assessment. The stroke-

specific variables were selected from a large stroke registry,
and our experiment filtered those variables into the Bayesian

network-suitable reduced set. The trained Bayesian networks
were embedded in our online prediction system.

Strength of a Bayesian Network on Stroke
Outcome Measurements
Research on stroke outcomes is essential for both clinical
care and policy development, because approximately two-thirds
of stroke survivors continue to experience functional deficits
and approximately 1 of 10 patients died within 1 year (5).
The prediction of post-stroke outcomes thus requires high
accuracy in classification along with the understandable result
that can be explained to patients. A Bayesian network can
intuitively make connections between variables in medical data
and provide interpretable determination in medical decision
(17, 18). Therefore, Bayesian networks are well suited for
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FIGURE 5 | Bayesian network for predicting 1-year mortality. The tree-augmented Bayesian network used 24 variables selected by the wrapper of the Bayesian

network for prediction.

representing uncertainty and causality in prediction for patients
with stroke. In recent machine learning studies, a Bayesian
neural network is focused on a state of the art method which
estimates predictive uncertainty (52). In Kendall and Gal (53),
a Bayesian deep learning framework combines input-dependent
aleatoric uncertainty together with epistemic uncertainty, to
solve the black-box problem in deep learning. Constructing
Bayesian networks enables medical diagnosis or prediction with
incomplete and partially correct statistics, because it determines
causes and effects based on the conditional probability between
variables (54).

Prediction With Imbalanced Data
Often real-world data sets are predominately composed of
normal instances with only a small percentage of interesting
instances; therefore, class imbalance is one of the most important
challenges (55). Our study also has heavily unbalanced classes
in mortality prediction (3,171:434). Suppose entire positive
instances were classified into negative class; then the accuracy
is 0.880 in 1-year mortality prediction, although mortality
is not predicted at all. Most machine learning algorithms
train classifiers mainly searching for higher accuracy; therefore,
the minority class is less considered in the training process.
To challenge this imbalanced classification, a number of
techniques have been proposed (56): oversampling approaches
create minority instances by simple duplication or synthetic-
minority oversampling technique (SMOTE) (57–59); certain
classifiers with undersampling beat oversampling (60); cost-
sensitive methods weigh higher penalty on misclassification

of the minority class (61); and bagging, boosting, and hybrid
approaches utilize feedback from misclassification in previous
stages of learning (62).

In addition to the capability of interpretable prediction and
reduced uncertainty, a Bayesian network is strong machine
learning in classifying an imbalanced data set as investigated
in Drummond and Holte (60) and Monsalve-Torra et al.
(63). In Monsalve-Torra et al. (63), the Bayesian network
outperformed radial basis function and multilayer perceptron
in sensitivity. In our experiment, the learning process searched
the best Bayesian network structure and parameters for the
highest AUC while it guarantees at least 0.5 in sensitivity.
A more computation-expensive searching algorithm such as
repeated hill climbing might be helpful to increase sensitivity in
classification.

Visualized Probability of Outcomes After
Stroke
Bayesian networks can also provide a visual graph structure.
We constructed a tree-augmented Bayesian network structure
that shows an association between nodes. This visualization of
conditional probability might be helpful for clinical reasoning.
For example, a Bayesian network can provide the association
among symptomatic intracranial hemorrhage, higher initial
NIHSS score, or higher 1-year mortality with conditional
probability, as shown in Figure 5. Therefore, our prediction
model of post-stroke outcomes differs from the black-box
concept of other machine learning methods (54).
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FIGURE 6 | Screenshots of an online prediction system, Y-SOIS (Yonsei Stroke Outcome Inference System). (A) Y-SOIS forecasts the functional independence at 3

months and (B) Y-SOIS forecasting the 1-year mortality.

The reduction of dimension is also helpful to visualize
inference of prediction. The results demonstrated that the
Bayesian network classifier with a reduced variable set can adapt
the size of a network for better interpretability with a minimal or
better impact on other performance.

Predictors of Post-stroke Outcomes
In this study, the information gain analysis showed that “D-
dimer” was the highest feature in predicting 1-year mortality.
We previously reported that a high D-dimer level by itself
appeared to be associated with an increased risk of mortality

(64). D-dimer can be found to be elevated in various thrombotic
and inflammatory conditions, including ischemic heart disease,
infection, or malignancy. These conditions are frequently found
in patients with stroke and can increase the risk of mortality
(65). However, patients with comorbid diseases were frequently
excluded from the clinical trials, so there are no guidelines
and evidence whether to treat or not patients with serious
comorbid diseases in real clinical practice. In this respect,
providing information of the impact of the comorbid condition
with a Bayesian network might be helpful to predict the
outcomes.
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LIMITATIONS AND FUTURE DIRECTION

This study was conducted in a single university hospital
and focused on those of East Asian descent. To provide
generalizability on our prediction system, we will include
various cohorts including different ethnics or patients who
received thrombolysis or endovascular thrombectomy. We
have plan to apply the interpretable prediction for the
SECRET (SElection CRiteria in Endovascular thrombectomy
and Thrombolytic therapy) study, which is a nationwide
registry for hyperacute stroke. Consecutive patients who received
intravenous thrombolysis and/or endovascular thrombectomy
were registered (Clinical Trial Registration: NCT02964052).
Bayesian network analysis of this specific condition can be used to
predict outcome in patients with hyperacute stroke. We will also
enlarge our training data including data of various populations by
applying the proposed solution to global data archives. Additive
risk predictors might be selected as determinant features in a

Bayesian network, and it makes the prediction system more
applicable in a global clinical environment.

AUTHOR CONTRIBUTIONS

HN designed the study; EP analyzed the data and wrote the
manuscript; and H-jC and HN contributed to data interpretation
and revising the manuscript.

FUNDING

This research was supported by the Basic Science Research
Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education
(NRF-2017R1D1A1B03029014) and grant funded by
the Korea government (MSIP) (2016R1C1B2016028)
and the National Fire Agency, Republic of Korea
(MPSS-2015-70).

REFERENCES

1. Ko Y, Park JH, Kim WJ, Yang MH, Kwon OK, Oh CW, et al. The long-term

incidence of recurrent stroke: single hospital-based cohort study. J Korean

Neurol Assoc. (2009) 27:110–5.

2. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S,

et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion

imaging. New Engl J Med. (2018) 378:708–18. doi: 10.1056/NEJMoa1713973

3. Anderson CS, Woodward M, Chalmers J. More on low-dose versus standard-

dose intravenous alteplase in acute ischemic stroke. New Engl J Med. (2018)

378:1465–6. doi: 10.1056/NEJMc1801548

4. Banks JL, Marotta CA. Outcomes validity and reliability of the modified

Rankin scale: implications for stroke clinical trials: a literature review and

synthesis. Stroke (2007) 38:1091–6. doi: 10.1161/01.STR.0000258355.23810.c6

5. NamHS, KimHC, Kim YD, Lee HS, Kim J, Lee DH, et al. Long-termmortality

in patients with stroke of undetermined etiology. Stroke (2012) 43:2948–56.

doi: 10.1161/STROKEAHA.112.661074

6. Cruz JA, Wishart DS. Applications of machine learning in cancer

prediction and prognosis. Cancer Inf. (2006) 2:117693510600200030.

doi: 10.1177/117693510600200030

7. Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine

learning, and clinical medicine. New Engl J Med. (2016) 375:1216.

doi: 10.1056/NEJMp1606181

8. Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome

prediction of acute ischemic stroke post intra-arterial therapy. PLoS ONE

(2014) 9:e88225. doi: 10.1371/journal.pone.0088225

9. Magnin B, Mesrob L, Kinkingnéhun S, Pélégrini-Issac M, Colliot O,

Sarazin M, et al. Support vector machine-based classification of Alzheimer’s

disease from whole-brain anatomical MRI. Neuroradiology (2009) 51:73–83.

doi: 10.1007/s00234-008-0463-x

10. Tjortjis C, Saraee M, Theodoulidis B, Keane J. Using T3, an improved decision

tree classifier, for mining stroke-relatedmedical data.Methods Inf Med. (2007)

46:523–9. doi: 10.1160/ME0317

11. Ward MM, Pajevic S, Dreyfuss J, Malley JD. Short-term prediction of

mortality in patients with systemic lupus erythematosus: classification

of outcomes using random forests. Arthritis Care Res. (2006) 55:74–80.

doi: 10.1002/art.21695

12. Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of

random forests and support vector machines for microarray-based

cancer classification. BMC Bioinform. (2008) 9:319. doi: 10.1186/1471-

2105-9-319

13. Witten IH, Frank E, Hall MA, Pal CJ.DataMining: Practical Machine Learning

Tools and Techniques. Burlington, MA: Morgan Kaufmann (2016).

14. Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Mach

Learn. (1997) 29:131–63. doi: 10.1023/A:1007465528199

15. Lucas PJ, Van der Gaag LC, Abu-Hanna A. Bayesian networks in

biomedicine and health-care. Artif Intell Med. (2004) 30:201–14.

doi: 10.1016/j.artmed.2003.11.001

16. Nikovski D. Constructing Bayesian networks for medical diagnosis from

incomplete and partially correct statistics. IEEE Trans Knowl Data Eng. (2000)

12:509–16. doi: 10.1109/69.868904

17. Letham B, Rudin C, McCormick TH, Madigan D. Interpretable classifiers

using rules and bayesian analysis: building a better stroke prediction model.

Ann Appl Stat. (2015) 9:1350–71. doi: 10.1214/15-AOAS848

18. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, et al. A

Bayesian networks approach for predicting protein-protein interactions from

genomic data. Science (2003) 302:449–53. doi: 10.1126/science.1087361

19. Heckerman D, Geiger D, Chickering DM. Learning bayesian networks: the

combination of knowledge and statistical data. Mach Learn. (1995) 20:197–

243. doi: 10.1007/BF00994016

20. Uusitalo L. Advantages and challenges of Bayesian networks

in environmental modelling. Ecol Model. (2007) 203:312–8.

doi: 10.1016/j.ecolmodel.2006.11.033

21. Kononenko I. Machine learning for medical diagnosis: history,

state of the art and perspective. Artif Intell Med. (2001) 23:89–109.

doi: 10.1016/S0933-3657(01)00077-X

22. Sesen MB, Nicholson AE, Banares-Alcantara R, Kadir T, Brady M. Bayesian

networks for clinical decision support in lung cancer care. PLoS ONE (2013)

8:e82349. doi: 10.1371/journal.pone.0082349

23. Lee BI, Nam HS, Heo JH, Kim DI. Yonsei stroke registry. Cerebrovasc Dis.

(2001) 12:145–51. doi: 10.1159/000047697

24. Cho HJ, Choi HY, Kim YD, NamHS, Han SW, Ha JW, et al. Transoesophageal

echocardiography in patients with acute stroke with sinus rhythm and

no cardiac disease history. J Neurol Neurosurg Psychiatry (2010) 81:412–5.

doi: 10.1136/jnnp.2009.190322

25. Yoo J, Yang JH, Choi BW, Kim YD, Nam HS, Choi HY, et al. The frequency

and risk of preclinical coronary artery disease detected using multichannel

cardiac computed tomography in patients with ischemic stroke. Cerebrovasc

Dis. (2012) 33:286–94. doi: 10.1159/000334980

26. Song TJ, Kim J, Lee HS, Nam CM, Nam HS, Kim YD, et al. Distribution

of cerebral microbleeds determines their association with impaired kidney

function. J Clin Neurol. (2014) 10:222–8. doi: 10.3988/jcn.2014.10.3.222

27. Adams HPJr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL,

et al. Classification of subtype of acute ischemic stroke. Definitions for use

in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke

Treatment. Stroke (1993) 24:35–41. doi: 10.1161/01.STR.24.1.35

Frontiers in Neurology | www.frontiersin.org 10 September 2018 | Volume 9 | Article 69942

https://doi.org/10.1056/NEJMoa1713973
https://doi.org/10.1056/NEJMc1801548
https://doi.org/10.1161/01.STR.0000258355.23810.c6
https://doi.org/10.1161/STROKEAHA.112.661074
https://doi.org/10.1177/117693510600200030
https://doi.org/10.1056/NEJMp1606181
https://doi.org/10.1371/journal.pone.0088225
https://doi.org/10.1007/s00234-008-0463-x
https://doi.org/10.1160/ME0317
https://doi.org/10.1002/art.21695
https://doi.org/10.1186/1471-2105-9-319
https://doi.org/10.1023/A:1007465528199
https://doi.org/10.1016/j.artmed.2003.11.001
https://doi.org/10.1109/69.868904
https://doi.org/10.1214/15-AOAS848
https://doi.org/10.1126/science.1087361
https://doi.org/10.1007/BF00994016
https://doi.org/10.1016/j.ecolmodel.2006.11.033
https://doi.org/10.1016/S0933-3657(01)00077-X
https://doi.org/10.1371/journal.pone.0082349
https://doi.org/10.1159/000047697
https://doi.org/10.1136/jnnp.2009.190322
https://doi.org/10.1159/000334980
https://doi.org/10.3988/jcn.2014.10.3.222
https://doi.org/10.1161/01.STR.24.1.35
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Park et al. Bayesian Network Predicting Post-stroke Outcomes

28. Khang Y-H, Lynch JW, Kaplan GA. Health inequalities in Korea: age-and

sex-specific educational differences in the 10 leading causes of death. Int J

Epidemiol. (2004) 33:299–308. doi: 10.1093/ije/dyg244

29. Kim HC, Choi DP, Ahn SV, Nam CM, Suh I. Six-year survival and causes of

death among stroke patients in Korea. Neuroepidemiology (2009) 32:94–100.

doi: 10.1159/000177034

30. Drugan MM, Wiering MA. Feature selection for Bayesian network classifiers

using the MDL-FS score. Int J Approx Reason. (2010) 51:695–717.

doi: 10.1016/j.ijar.2010.02.001

31. Liu Z, Malone B, Yuan C. Empirical evaluation of scoring functions for

Bayesian network model selection. BMC Bioinformatics (2012) 13(Suppl.

15):S14. doi: 10.1186/1471-2105-13-S15-S14

32. Schwarz G. Estimating the dimension of a model. Ann Stat. (1978) 6:461–4.

doi: 10.1214/aos/1176344136

33. Vrieze SI. Model selection and psychological theory: a discussion of

the differences between the Akaike information criterion (AIC) and the

Bayesian information criterion (BIC). Psychol Methods (2012) 17:228.

doi: 10.1037/a0027127

34. Lam W, Bacchus F. Learning Bayesian belief networks: an approach

based on the MDL principle. Comput Intell. (1994) 10:269–93.

doi: 10.1111/j.1467-8640.1994.tb00166.x

35. Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian

network structure learning algorithm. Mach Learn. (2006) 65:31–78.

doi: 10.1007/s10994-006-6889-7

36. Chinnasamy A, Sung W-K, Mittal A. Protein structure and fold prediction

using tree-augmented naive Bayesian classifier. J Bioinform Comput Biol.

(2005) 3:803–19. doi: 10.1142/S0219720005001302

37. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach

Learn Res. (2003) 3:1157–82.

38. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear

embedding. science. (2000) 290:2323–6. doi: 10.1126/science.290.5500.2323

39. Hruschka ER, Hruschka ER, Ebecken NF. Feature selection by Bayesian

networks. In: Conference of the Canadian Society for Computational Studies

of Intelligence. London, ON: Springer (2004).
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Objectives: To investigate the relationship between imaging features derived from lesion

loads and 3 month clinical assessments in ischemic stroke patients. To support clinically

implementable predictive modeling with information from lesion-load features.

Methods: A retrospective cohort of ischemic stroke patients was studied. The dataset

was dichotomized based on revascularization treatment outcome (TICI score). Three

lesion delineations were derived from magnetic resonance imaging in each group: two

clinically implementable (threshold based and fully automatic prediction) and 90-day

follow-up as final groundtruth. Lesion load imaging features were created through overlay

of the lesion delineations on a histological brain atlas, and were correlated with the clinical

assessment (NIHSS). Significance of the correlations was assessed by constructing

confidence intervals using bootstrap sampling.

Results: Overall, high correlations between lesion loads and clinical score were

observed (up to 0.859). Delineations derived from acute imaging yielded on average

somewhat lower correlations than delineations derived from 90-day follow-up imaging.

Correlations suggest that both total lesion volume and corticospinal tract lesion load

are associated with functional outcome, and in addition highlight other potential areas

associated with poor clinical outcome, including the primary somatosensory cortex

BA3a. Fully automatic prediction was comparable to ADC threshold-based delineation

on the successfully treated cohort and superior to the Tmax threshold-based delineation

in the unsuccessfully treated cohort.

Conclusions: The confirmation of established predictors for stroke outcome (e.g.,

corticospinal tract integrity and total lesion volume) gives support to the proposed

methodology—relating acute lesion loads to 3 month outcome assessments by way

of correlation. Furthermore, the preliminary results indicate an association of further

brain regions and structures with three month NIHSS outcome assessments. Hence,
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prediction models might observe an increased accuracy when incorporating regional

(instead of global) lesion loads. Also, the results lend support to the clinical utilization of

the automatically predicted volumes from FASTER, rather than the simpler DWI and PWI

lesion delineations.

Keywords: stroke recovery, lesion load, correlation, FASTER, atlas-based regional image analysis

BACKGROUND

In 2013, 18.3 million ischemic stroke survivors were reported
world-wide. The incidence of ischemic stroke in the same year
was stated to be 6.9 million and the disease claimed 3.3 million
lives worldwide (1). The global burden of ischemic stroke has
increased with respect to incidence (37%), number of death
(21%), and DALYs lost (18%) over the last two decades (2).
Ischemic stroke has an enormous individual, socioenvironmental
and economic impact; improvements in stroke treatment and
rehabilitation may therefore be of great societal interest.

An accurate assessment of likely neurological deficits after an
acute stroke is important for various reasons, including setting
attainable treatment goals, correctly and accurately informing
patients and relatives, planning facility discharge, and assessing
impact on daily living (3). Additionally, if this assessment is
available at the acute stage, it may be possible to better stratify
patients who are eligible for mechanical thrombectomy. Total
lesion volume has been found to be an independent 90 days
predictor of neurological outcome (4), and lesion topography is
related to recovery and outcome prognosis (5–8). The Alberta
Stroke Program Early Computed Tomography Score (ASPECTS)
was created to quantify ischemic changes in ten regions along
the middle cerebral artery (9). It is linked to 3 month functional
outcome as measured by mRS (10) and values > 6 were found to
be predictive for functional independence at 3 months and 1 year
post-stroke (11). Diffusion-weighted imaging (DWI) provides an
early depiction of size and location of an ischemic lesion. DWI
lesion volume is an independent predictor of Barthel Index (BI)
quantified outcome (12) and the power of prediction models may
be increased by incorporating it as a feature (13).

Existing models predicting clinical outcome from acute
imaging have taken into account load on the corticospinal tract
(14–16) and lesion location (17, 18). In order for such a model
to be useful for treatment selection, the model must operate
within the acute time-frame. Images must be processed with
little or no human interaction, meaning that manual lesion
delineation is impossible. Systems providing fast automated
definitions of tissue-at-risk would, on the other hand, be feasible
in the acute setting. This paper investigates lesion-load features
based on three different lesion delineations to demonstrate
the plausibility of automatically linking lesion loads to clinical
outcome. First, we analyze the correlation between observed
lesion loads and outcome, as given by a manual segmentation
of 90 day follow-up imaging. Second, we analyze the correlation
between predicted lesion load at the acute stage and outcome: in

Abbreviations: NIHSS, National Institute of Health Stroke Scale; TICI,

Thrombolysis in Cerebral Infarction Scale; ADC, Apparent Diffusion Coefficient.

addition to the standard threshold-based concepts of core and
penumbra, we derive predicted lesion loads from the prediction
maps of a previously proposed in-house developed software
(19). We perform an exploratory analysis of the plausibility of
automatically linking lesion loads to clinical outcome, using a
small retrospective cohort to relate a large number of imaging
features to outcome. We conjecture that (i) a significant
relationship exists between lesion load features and clinical
assessments, where both are assessed in the chronic phase of the
disease, (ii) that (i) is still valid if the features are extracted from
an automatic lesion delineation at the acute stage, and, hence,
that the method is clinically applicable, and (iii) that the lesion
prediction maps from a previously proposed in-house developed
software (19) are superior to a simple threshold-derived lesion
delineation (i.e., Tmax > 6 s) for finding a relationship between
lesion loads at the acute phase and clinical outcome assessments.

MATERIALS AND METHODS

Study Ethics
The study is based on data from the Bernese stroke registry,
a prospectively collected database approved by the Kantonale
Ethikkomission Bern, some aspects of which have been reported
previously (20–23). All patients were treated for an acute
ischemic stroke at the University Hospital of Bern between
2005 and 2013. The study was performed according to the
ethical guidelines of the Canton of Bern with approval of our
institutional review board (Kantonale Ethikkomission Bern).

Inclusion Criteria
Patients were included in this analysis if: (i) a diagnosis
of ischemic stroke was established by MR imaging with an
identifiable lesion on DWI and perfusion imaging, (ii) a
proximal occlusion of the middle cerebral artery (M1 or M2
segment) was documented on digital subtraction angiography,
(iii) endovascular therapy was attempted, either by intra-arterial
thrombolysis (before 2010) or by mechanical thrombectomy
(since 2010), (iv) pre-treatment MRI was performed with
sufficient quality (i.e., no motion artifacts), (v) the imaging
data were recorded completely into the picture archiving and
communication system, (vi) the patients had a minimum age
of 18 years at the time of stroke. Patients were excluded if
they received only purely diagnostic angiography. Patients with
a stenosis or occlusion of the carotid artery were excluded
as well. Revascularization success was stratified retrospectively
according to the TICI score by two examiners blinded for clinical
data (24). Stroke severity for these patients was assessed at
admission according to the National Institutes of Health Stroke
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Scale (NIHSS) scale. We aimed to identify all patients with a 3-
month axial T2-weighted follow-up image in order to define the
final extent of infarction. The inclusion/exclusion criteria did not
depend on lesion location, nor was the data selected according to
predetermined impairments.

Clinical Assessment
The degree of recovery was determined with standard scores
(NIHSS and mRS) that are routinely available in clinical stroke
registries.

Dataset Splitting
After endovascular therapy, success of the intervention can be
determined via the TICI score (24). In the study at hand, patients
were dichotomized according to endovascular therapy outcome
into successful and unsuccessful revascularization. Successful
revascularization was ascribed to patients with a TICI score 2b-3
whereas the unsuccessful revascularization was assigned to TICI
scores 0-2a.

Pipeline
The processing pipeline used in this paper is depicted in Figure 1.
The individual steps are briefly discussed in the following
sections.

Image Acquisition
Imaging data were acquired on either a 1.5T (SiemensMagnetom
Avanto) or 3T MRI system (Siemens Magnetom Verio). Patients
received whole brain DWI, (24 slices, thickness 5mm, repetition
time 3,200ms, echo time 87ms, number of averages 3, matrix
256 × 256, flip angle 90) yielding images for b values
of 0 s/mm2 and 1,000 s/mm2 as well as ADC maps that
were calculated automatically. Standard dynamic susceptibility
contrast-enhanced perfusion MRI (gradient-echo echoplanar
imaging sequence, repetition time 1,410ms, echo time 30ms,
field of view 230 × 230mm, voxel size: 1.8 × 1.8 × 5.0mm,
slice thickness 5.0mm, 19 slices, 80 acquisitions, flip angle 90)
was acquired. Images were acquired during the first pass of
a standard bolus of 0.1 mmol/kg gadobutrol (Gadovist, Bayer
Healthcare). Contrast medium was injected at a rate of 5 ml/s
followed by a 20ml bolus of saline at a rate of 5 ml/s. In addition,
an axial T2-weighted turbo-spin echo sequence (TR 3760–
4100ms, TE 85–100ms, flip angle 150) and contrast-enhanced
T1-weighted sequence [1.5T system: spin-echo sequence (TR
663ms, TE 17ms, flip angle 90), 3T system: gradient-echo
sequence (TR 250ms, TE 2.67ms, flip angle 70)], a time-of-
flight angiography and a first pass Gd-MRA were acquired, with
T2-weighted imaging and TOF angiography performed before
contrast injection.

Pre-processing
The main pre-processing step in this work was image
normalization to warp the utilized images into the MNI152
space with a 2 × 2 × 2mm resolution. This was done
in Matlab (MATLAB R2014a, The MathWorks, Inc., Natick,
Massachusetts, United States) with SPM12 (Wellcome Trust
Centre for Neuroimaging, University College London).

Lesion Delineation
We compared four lesion maps: expert manual segmentation
of 90 day T2 MRI, threshold-based manual segmentation of
acute ADC, automated threshold-based segmentation of Tmax
imaging, and machine-learning-based prediction of chronic
lesion load from acute imaging (using our in-house software tool,
FASTER).

FASTER
FASTER (19) is a recently proposed stroke lesion estimation
method. Given acute stroke imaging data, FASTER produces two
predicted lesion maps, representing successful and unsuccessful
revascularization. The required inputs to FASTER consist of
diffusion-weighted, T2 and T1w (contrast enhanced) sequences
and dynamic susceptibility contrast perfusion. FASTER provides
a threshold-independent estimation by using two machine-
learning models trained on cases with a TICI of 3 and 0,
respectively. The fully automated software makes stroke outcome
prediction feasible in any clinical setting, provided the necessary
imaging data is accessible. Using FASTER, a prediction of tissue
damage in the case of successful revascularization was calculated
for the patients with TICI 0-2a, and a prediction of tissue damage
in the case of unsuccessful revascularization was calculated for
the patients with TICI 2b-3.

Follow-Up Segmentation
Manual segmentation was performed on the T2-weighted 3
month follow-up images. Manual regions of interest were drawn
to the maximal extent of the final infarction, including areas
with hemorrhagic transformation, but excluding regions already
hyperintense on acute T2 imaging. The boundaries of the
infarctions were manually delineated for every single transversal
slice. The 3 month follow-up lesion was chosen as the definition
of final infarction, rather than the lesion in the early acute phase
of lesion evolution, since apparent lesion size in the early acute
phase is known to overestimate final lesion volume (25). T2 was
chosen as the modality for identifying the final lesion, since it
was more widely available than a FLAIR follow-up image in the
retrospective data used.

Core and Tmax > 6 s Delineations
The infarct core was manually segmented based on a threshold
of ADC < 600 ∗ 10−6 mm2/s (26). The perfusion deficit was
computed as a pre-processing step of FASTER, using a threshold
of Tmax > 6 s (27).

Lesion Load Features
Previous studies that investigated the relationship between
imaging biomarkers and clinical outcome assessments have
revealed the importance of white-matter structures (15, 16, 28,
29). Therefore, it was important to choose an atlas for feature
definition that identifies white-matter structures, especially, left
and right corticospinal tract. To this end the Juelich histological
atlas (30–32) from FSL 5.0 was selected, which encompasses 29
white-matter and 92 gray-matter regions (Figure 2).

Following normalization, the lesion segmentations and
predictions were overlaid onto the Juelich structural atlas.
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FIGURE 1 | Starting with the MRI imaging data lesion delineations were generated either manually or automatically. The former was used for proof of concept and the

latter to show the proposed clinical implementation. The lesion delineations were then dichotomized into successful and unsuccessful revascularization groups

according to the patient’s TICI scores. Image normalization was performed in a next step to make them conform to MNI152 space. With that, the lesion delineations

were superimposed onto the structural atlas and lesion loads for every region computed. Finally, the lesion loads were correlated with the 3 month mRS and NIHSS

scores.

FIGURE 2 | The images depict axial, coronal and sagittal slices of a normalized brain with the overlapped Juelich histological atlas. Both gray and white matter

structures can be seen.

After that, a load percentage was computed for every structural
region of interest. The lesion load denotes the percentage of the
region that was affected by the lesion.

Correlation Analysis
Lesion loads were created on a per-patient level for every atlas
defined region based on the lesion segmentation—i.e., 121 lesion
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loads per patient. The loads designate the percentage of the
respective region affected by the lesion.

The correlation between the 3 month clinical assessments and
the lesion load of every atlas-defined region was assessed.

The presented work rests on the premise that a linear
relationship between continuous lesion loads and continuous 3
month clinical assessment scores exists. As a result, the Pearson
correlation coefficient was selected to assess the relationship.

Correlations were also calculated between total volume and
outcome.

In a first step, we correlated lesion loads with both 3 month
NIHSS and mRS scores. The whole dataset was considered
(i.e., no grouping into successful and unsuccessful) and the lesion
loads were based on the 3 month follow-up segmentation. The
subsequent analysis was then carried out with only the superior
clinical assessment that emerged from this analysis. In a second
step, we evaluated the various lesion delineations by correlating
the respective lesion loads with the superior outcome measure
from the first step (i.e., 3 month NIHSS or mRS). For this part
of the analysis the dataset was split according to dichotomized
revascularization success. In this step, we calculated correlations
with the lesion loads as generated by manually segmented 90-day
follow-up imaging and as generated both by thresholds and by
FASTER on acute imaging in order to validate our hypotheses.

A result of having as many as 121 brain regions delineated
by the atlas is that the lesion load data is relatively sparse. Our
data thus fails to satisfy the normality assumptions of parametric
statistical tests, leading to most of the correlations we observed
being significant. To better observe the true significance of
our findings, we used the non-parametric statistical method of
bootstrap sampling (33) to construct confidence intervals (CI)
for the obtained correlation values. One thousand samples were
drawn from the original data (for every ROI, respectively) and
individually correlated with the clinical outcome scores. The
obtained correlations were then used to create a 95% confidence
interval. If the confidence interval included zero correlation
the original correlation was termed statistically insignificant
and significant otherwise. Since we consider our study an
exploratory one, examining the feasibility of linking lesion
loads to NIHSS (rather than a study to identify which regions
are linked to NIHSS), we do not perform any correction for
multiple comparisons. As a result, this study should not be
seen as identifying any individual stroke damage locations as
“significantly” related to NIHSS, but rather as providing a group
of regions which may, in a subsequent study of a larger group of
patients, be viewed as good candidate regions on which to focus.

RESULTS

We analyzed 55 patients in total: the successful revascularization
cohort contained 35 patients, whereas the unsuccessful
revascularization cohort consisted of 18 patients. The successfully
revascularized cohort entails 13 female and 23 male patients.
The mean age of the group is 61 ± 12 years; minimum and
maximum ages are 35 and 81, respectively. In the unsuccessfully
revascularized cohort the mean age is 59 ± 14 years; minimum

and maximum ages are 18 and 76, respectively. The group is
composed of 7 female and 12 male patients.

Lesion Distribution
Figure 3 depicts normalized lesion distributions grouped by
underlying lesion delineation (rows) and revascularization
outcome (columns).

Correlations Analysis
This section presents the results of the correlation between lesion
loads and 3-month clinical assessments.

Three Month NIHSS vs. mRS on Complete Dataset
The results are depicted in Figure 4 both visually and in tabular
form (only top ten regions).

A Wilcoxon signed-rank test comparing NIHSS and mRS
correlations revealed a statistically significant difference between
the two samples (p-value < 0.05).

Comparison of Lesion Delineations
Since NIHSS was found to yield significantly higher correlations
thanmRS, we used NIHSS as a measure of clinical outcome in the
remainder of our experiments.

A correlation analysis was performed with respect to the 3
month NIHSS on the split dataset. The correlations are shown
as overlay to a glass brain and in tabular form in Figure 5.
The first row depicts the normalized lesion distributions for
successful and unsuccessful revascularization based on the
follow-up segmentation, whereas the subsequent rows with
the respective tables present correlations. Lesion distributions
(already presented in Figure 3) are shown only as a guide
for interpretation. Correlations that were found significant
according to the bootstrap CI are marked with an asterisk in the
designated column of the table.

DISCUSSION

We proposed a methodology suitable for investigating a
hypothesized relationship between affected functional brain
regions and 3month clinical outcome in ischemic stroke patients.
Other studies have examined such a relationship on a voxel
based level—i.e., voxel-based lesion symptom mapping (VLSM)
for multiple sclerosis lesions (34). Another study found, through
VLSM, a specific motor pathway influence on mRS outcome and
a reflection of lateralized functions such as neglect and aphasia
(35). Although the study included 101 patients it was nevertheless
designated to be exploratory; this is a result of two limitations
associated with VLSM: generally a large number of voxels must
be considered and there is functional cross-dependence between
the voxels. These two limitations can be alleviated with a regional
approach, where voxels are grouped into functionally meaningful
regions.

We analyzed the lesion distributions of 55 stroke patients,
of which 35 were successfully revascularized (TICI 2b-3) and
18 were unsuccessfully revascularized (TICI 0-2a). As expected,
the outcome prediction maps from FASTER show strong
dissimilarities between successfully revascularized patients
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FIGURE 3 | Lesion distributions horizontally and vertically grouped by revascularization outcome and type of lesion delineation, respectively. The distributions are

normalized so that the values are confined to the range 0 (i.e., not affected by any lesion in the cohort) and 1 (i.e., affected by all lesions in the cohort).

FIGURE 4 | Lesion load correlations with 3 month mRS and NIHSS scores including the whole patient cohort. Left column: Visualization of regional lesion load

correlations with clinical assessments. Right column: Top ten correlating regions with respect to outcome scores.
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(where the prediction is based on a model trained on patients
with TICI 3) and unsuccessfully revascularized patients (where
the prediction is based on a model trained on patients with
TICI 0). The segmentation distribution displays the same
disparity between treatment outcome cohorts: this effect is less
pronounced, which can perhaps be explained by the effect of
collateral circulation preserving tissue which might otherwise
have been lost, or the effects of partial revascularization in
patients with a TICI greater than zero.

Our results show substantial differences in the revascularized
and unrevascularized cohorts, with respect to correlations
between lesion load and functional outcome, which is to be
expected. In the case of successful revascularization, the tissue
damage is mostly limited to tissue lying in the ischemic core,
which is well-identified by diffusion-weighted imaging. This
can be observed in the similarities between the loads observed
in the ischemic core, FASTER prediction and final outcome
segmentation. In this cohort, regions in the sensorimotor system
were strongly correlated with outcome, as were the three white-
matter tracts (superior longitudinal fascicle, corticospinal tract,
and callosal body) as well as the total lesion volume. For
the unrevascularized cohort, the situation is less well-defined.
First, when considering the relationship between follow-up
segmentation and NIHSS, only two of the top-ten correlated
regions were significantly correlated according to the bootstrap
confidence interval. The results arising from the Tmax and
FASTER segmentations should be viewed in this light, since we
should not expect assessments at the acute phase to be more
accurate than the final lesion volume. Nevertheless, we can
make a qualitative assessment of the most correlated regions:
these differ not only in values but also in appearing regions.
Correlations between prediction-based lesion loads and NIHSS
were in general higher than between Tmax-based lesion-loads
and NIHSS, but more correlations were found to be significant
using Tmax than using prediction. We hypothesize that the
former effect would persist in larger cohorts, and that the second
would not, but this will require analysis of larger cohorts of
unsuccessfully revascularized patients.

A major finding from our study is the difference in
relationships between atlas based lesion load mapping and the
different outcomemeasures (mRS andNIHSS). These scores have
been developed to ensure simplicity, reliability and validity in
its clinical application (36), and were tested for consistency (37)
and reliability (38). The modified Rankin scale has been found
to relate more closely to quality of life compared to the NIHSS
(39). If, however, the focus is on specific neurological, rather than
global disabilities, the NIHSS should be used (40). Our analysis
revealed a statistically significant difference between the obtained
correlation values, with correlations between lesion loads and
NIHSS being higher than with mRS. A similarity in recognizable
contours can be perceived, e.g., corticospinal tract and uncinate
fascicle. However, different regions dominate and the heatmap
as well as the tabular listing reveals that, in general, higher
correlations were achieved with the NIHSS score. This might be
an important finding for future investigations as recent studies
focused on the mRS (35, 41). Moreover, white-matter structures
dominate the top correlates with mRS. The NIHSS correlations

also exhibit the importance of white-matter structures (50%
white-matter regions in top six); the highest correlation was
achieved by the left corticospinal tract. Besides the white-
matter structures, both correlation lists exhibit the importance
of sensorimotor structures. The importance of motor regions as
well as white-matter structures with respect to outcome has been
shown (35, 42). The observed correlation values together with
the prominence of established brain areas are a strong support
for the methodology of correlating lesion loads with NIHSS
outcome assessment. The predominant white-matter tracts that
appeared in our analysis were the corticospinal tract, cingulum,
callosal body and superior longitudinal fascicle. The role of
the corticospinal tract has been investigated and its importance
with respect to stroke recovery outcome is established (14, 16,
43–47). This is consistent with the role of the corticospinal
tract as the main pathway for afferent and efferent signal
conduction between brain and limbs. The effect of an impact
on the other white-matter structures is less clearly understood
and can range from mental disorder (anterior cingulum) to
working memory impairment (posterior cingulum) and loss of
language integration ability (superior longitudinal fasciculus).
Also, the dorsal Anterior Cingulate Cortex (dACC) was found
to send task specific modulatory signals to the Supplementary
Motor Area (48), which is an indication of its involvement in
motor control.

Total acute lesion volume as measured through perfusion
or DWI imaging has been found to be positively correlated
with clinical assessments (12, 49, 50). Our results support these
findings, but suggest that total lesion volume may not be
the most important feature in predicting functional outcome:
total lesion volume was surpassed by at least four gray-
matter regions and/or white-matter structures in five out of
the six analyzed situations (only in case of the unsuccessful
segmentation result was the volume the top correlate). Total
lesion volume for the various delineations ranked 1st (0.776,
significant), 5th (0.801, significant), and 5th (0.596, unsignificant)
for segmentation unsuccessful, segmentation successful and
prediction unsuccessful, respectively. This suggests that while
lesion volume is informative and carries predictive weight,
it accounts only partially for the observed recovery. The
importance of lesion location in predicting stroke outcome
is supported in the literature, specifically in studies where
the focus is on particular structures and brain regions (e.g.,
corticospinal tract) (14–17, 28, 43, 44, 46, 47). A study including
loads on 132 cortical and subcortical regions constructed a
decision tree associating regional lesion loads with outcome;
the total lesion volume played a role in the left hemisphere,
according to the study (41). Like our study, the number of
patients precludes identifying loads in any one region as being
significantly associated with outcome.

Our results confirm the significant and intertwined role of
stroke lesion volume and location, and suggest that a number
of other gray-matter regions and white-matter structures carry
predictive information andmay have the potential to increase the
predictive accuracy.

A lateralization of the correlation values was evident in the
results, with good correlations between left-hemispheric regions
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for successful thrombectomy and right-hemispheric regions for
unsuccessful thrombectomy.

Studies have shown that the importance of regions with
respect to outcome may depend on hemispheric idiosyncrasies:
limbic, default mode and language areas in the left hemisphere,
and visuospatial and motor regions in the right hemisphere
(41). Areas of lateralized brain functions together with motor
areas were found to influence functional outcome (35). However,
we do not consider that our study has the statistical power
to conclude that the observed effect is due to any biological
reason, and assume that the lateralization is a result of the small
patient cohort and, therefore, due to randomness in the lesion
distribution with respect to laterality. This conclusion should be
investigated and confirmed on a larger dataset. Similarly, the
difference in statistical significance between unsuccessful and
successful revascularized patient cohorts is likely a reflection of
the sample sizes of the two cohorts, which was 18 and 35 for
unsuccessful and successful groups, respectively. It is important
to keep inmind themeaning of a 95% confidence interval derived
from bootstrapping: by randomly sampling repeatedly from our
available data, we simulate a large number of experiments. The
confidence interval for the correlation coefficient is defined as
the 2.5th and 97.5th percentiles of the derived correlations. Since
the lesion loads were sparse, for many of these trials no patients
with non-zero lesion load were randomly selected, and this
accounts, in the main, for the large number of non-significant
correlations. The results that the FASTER lesion predictions are
superior to simple threshold-based delineations (in particular in
case of unsuccessful revascularization) and that the predictive
value of total lesion volume is surpassed by lesion loads must
be confirmed in future investigations, ideally with substantially
larger patient cohorts. We note that there may be brain regions
not identified by this study which are nonetheless important for
predicting stroke outcome. Regions which due to cohort size were
not loaded in our dataset cannot be considered in our analysis:
this again necessitates an increased cohort size. Additionally,
lesion load on additional regions not represented in the Juelich
atlas (e.g., the basal ganglia) may also influence clinical outcome.
As a next step, atlases that encompass the deep brain nuclei, the
inferior temporal lobe and frontal lobe areas should be included
into the analysis.

The study investigated the relationship between lesion loads
and clinical outcome assessment with the Pearson correlation
coefficient. While we think the employed measure is applicable
to the data, various alternative measures might be worth
considering in future investigations.

Finally, correlations for each region were considered
individually, while the effects of loads on networks of regions
may not be adequately explained by loads on the constituent
parts of those networks. Furthermore, adjacent regions will tend
to be loaded together, and it is possible that loads on a given
region may be predictive of clinical outcome, simply by their
proximity to adjacent eloquent areas. Detailed NIHSS scores
of the 15 functional elements and supplementary quality of life
scales, providing functionality of subjects in daily life, were not
available in the cohort under investigation.

Outlook
Our analysis lays a solid foundation for exploring the relationship
between neurological assessments (mRS and NIHSS) and lesion
site and extent. This knowledge can be used to focus on and
extract from imaging a selection of important features to make
reliable predictions on neurological scores. The keywords here,
we believe, are “focus” and “selection” as only information that
is focused and manageable allows for a model that can be built
from a feasible amount of patient data. Further, it brings the
advantage of permitting a model with enough simplicity that
the prediction process can be understood and further insights
gained.

CONCLUSION

This study investigated the relationship between imaging-based
lesion loads and 3 month clinical assessments. We analyzed
various lesion delineations used for the computation of the lesion
loads. Regions known to be associated with stroke outcome
were confirmed and new potentially informative areas suggested.
The results support the clinical utilization of the automatically
predicted volumes from FASTER over the simpler DWI and PWI
lesion delineations.
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Performance of models highly depend not only on the used algorithm but also the data

set it was applied to. This makes the comparison of newly developed tools to previously

published approaches difficult. Either researchers need to implement others’ algorithms

first, to establish an adequate benchmark on their data, or a direct comparison of new

and old techniques is infeasible. The Ischemic Stroke Lesion Segmentation (ISLES)

challenge, which has ran now consecutively for 3 years, aims to address this problem of

comparability. ISLES 2016 and 2017 focused on lesion outcome prediction after ischemic

stroke: By providing a uniformly pre-processed data set, researchers from all over the

world could apply their algorithm directly. A total of nine teams participated in ISLES 2015,

and 15 teams participated in ISLES 2016. Their performance was evaluated in a fair and

transparent way to identify the state-of-the-art among all submissions. Top ranked teams

almost always employed deep learning tools, which were predominately convolutional

neural networks (CNNs). Despite the great efforts, lesion outcome prediction persists

challenging. The annotated data set remains publicly available and new approaches can

be compared directly via the online evaluation system, serving as a continuing benchmark

(www.isles-challenge.org).

Keywords: stroke, stroke outcome, machine learning, deep learning, benchmarking, datasets, MRI, prediction

models
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1. INTRODUCTION

Defining the location and extent of a stroke lesion is an
essential step toward acute stroke assessment. Of special interest
is the development of a lesion over time, as this could
provide valuable information about tissue outcome after stroke
onset. Modern magnetic resonance imaging (MRI) techniques,
including diffusion and perfusion imaging, have shown great
value to distinguish between acutely infarcted tissue (known
as “core”) and hypo-perfused tissue (known as “penumbra”).
However, available automated methods used to characterize core
and penumbra regions from MRI information lack accuracy
and cannot correctly capture the complexity of the image
information. Hence, there is a great need for advanced data
analysis techniques that identify these regions and predict tissue
outcome in a more reproducible and accurate way. Eventually,
such tools will be available to support clinicians in their decision-
making process (e.g., deciding for or against thrombolytic
therapy). In recent years machine learning methods for medical
image computing have shown unprecedented levels of progress.
The area of supervised machine learning (i.e., where computer
models are trained based on existing pre-annotated datasets)
and particular deep learning, has gained much popularity and
has shown great potential for medical applications where image
quantification and interpretation is important for the decision
making process (1). Along with this, the benchmarking of
machine learning techniques for medical image computing has
become a central area of interest at the annual Medical Image
Computing and Computer Assisted Intervention (MICCAI)
conference, where algorithms are tested and evaluated using
curated datasets and common evaluation metrics. The ISLES
challenge was created as an effort to raise the interest of the
medical image computing community to make progress on the
challenging aspects of stroke lesion characterisation from MRI
data. The work of Maier and colleagues summarizes the lessons
learned from the ISLES 2015 edition (2), where image analysis
at the subacute and acute stages provided insights as to how
accurate machine learning approaches could characterize core
and penumbra regions. In the following years the discussions
happening among interdisciplinary teams at the ISLES challenge,
allowed the community to advance toward the challenge of
stroke lesion prediction from MRI data. This is of great interest
in a clinical routine, as the responsible physician needs to
decide quickly, whether the particular stroke patient could
benefit from an interventional treatment (i.e., thrombectomy or
thrombolysis). This decision is often draw on basis of lesion
appearance, the time passed since stroke onset and the clinicians
personal experience. Objective methods that reliably predict
lesions and clinical outcome only from the acute scans would be
a powerful tool to support and accelerate decision making during
the critical phase.

1.1. Current Methods
From the literature review presented by Maier et al. (2),
summarizing the state of the art until 2016, the recent machine
learning methods for stroke lesion segmentation and outcome
prediction clearly show the transition from classic machine

learning tools [e.g., (3, 4)] to approaches based on deep learning
(5–10). Generally, the accuracy of those methods is tightly
connected to the data set they have been applied to and prevent a
direct comparison. For this reason, the development of a publicly
available benchmarking, such as ISLES is crucial to facilitate the
analysis of current machine learning technologies and leverage
research lines to improve them. The ISLES challenge held in
2016 and 2017 have hosted a total of 24 teams participating
in the lesion segmentation and outcome prediction sub-tasks.
In this article, we present the main results and findings in
benchmarking machine learning approaches presented at ISLES
2016 and 2017. The ISLES challenges feature 75 cases from two
different centers, including perfusion and diffusion imaging (Raw
Perfusion, CBF, CBV, TTP, Tmax, ADC, MTT) as well as clinical
information (time-since-stroke, time-to-treatment, TICI and
mRS scores). Through reference annotations produced by two
clinical experts, and a set of quantitative metrics and qualitative
expert evaluations, we analyse and describe common strategies
and approaches leading to best algorithmic performance. We
present the progress of these algorithms, and current challenges
that these techniques need to overcome in order to integrate them
into the time-critical clinical workflow of stroke patients.

1.2. Motivation for ISLES and Challenge
Setup
Automated methods for lesion segmentation and prediction
are part of an active research field. Since results are highly
dependent on the size and quality of the used data, comparison
of independent validation methods is challenging. In order to
compare different automated methods, researchers typically have
to reimplement algorithms presented in previous publications,
which is known to be a difficult task due to the complexity
of the algorithms, and lack of detailed description of their
implementation. Although the community is changing and
provides more frequently open source code is more frequently
provided, benchmarking remains time consuming. For these
reasons, computational challenges aim to provide a platform
allowing a fair and on going validation of various methods
tackling a predefined problem. The ISLES challenge follows
this direction by providing a stroke imaging database and
benchmarking platform that facilitates the comparisons of new
algorithms for lesion segmentation and prediction. ISLES was
launched for the first time in 2015 and was successfully continued
in the subsequent 2 years. Researchers interested in this challenge
could register online and download the imaging data via the
SICAS Medical Image Repository (SMIR) platform (11). The
training data was provided in a preprocessed format that
allowed teams to apply their algorithms directly without need
of pre-processing. Furthermore, this ensured that performance
differences are mainly driven by the prediction models, rather
than different preprocessing steps. Eventually, methods could be
directly compared and ranked on a leaderboard to discover the
most successful approach.

1.2.1. ISLES 2016
While the focus for ISLES 2015 lied on ischemic stroke lesion
segmentation (2), ISLES 2016 aimed for the outcome prediction
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TABLE 1 | Participants of ISLES 2016 (more details and main features of each

method see Appendix ISLES16-A1 to ISLES16-A7).

CH-UBE University of Bern, Switzerland

Incorporating time to reperfusion into the FASTER (3) model of stroke

tissue-at-risk

DE-UZL Institute of Medical Informatics, Universität zu Lübeck, Germany

Random forests for stroke lesion and clinical outcome prediction

HK-CUH Deptartment of Computer Science and Engineering, The Chinese

University of Hong Kong

Residual Volumetric Network for Ischemic Stroke Lesion Segmentation

KR-SUC* Department of Statistics, Seoul National University, Korea

KR-SUK* Deep Convolutional Neural Network Approach for Brain Lesion

Segmentation

KR-SUL*

PK-PNS Pakistan Institute of Nuclear Science and Technology, Islamabad,

Pakistan

Segmentation of Ischemic Stroke Lesion using Random Forests in

Multi-modal MRI Images

UK-CVI CVIP, Comp. at School of Science and Eng., University of Dundee, UK

Combination of CNN and Hand-crafted feature for Ischemic Stroke

Lesion Segmentation

US-SFT University of Southern California, Fractal Analytics, TopicIQ

A Deep-Learning Based Approach for Ischemic Stroke Lesion

Outcome Prediction

*These methods are variants of a single method.

of lesions. Therefore, multispectral MRI data from acute phase
of 35 stroke patients were provided together with lesion maps
annotated on 3–9 month follow-up scans. After a period of
several weeks, participating teams (See Table 1) were asked to
apply their algorithm to 19 unseen test data. The lesion labels
for the test data were generated by two raters independently,
and merged via the STAPLE algorithms (12) to generate a fused
ground-truth dataset. On basis of the performance on this test
data set, methods were ranked to define a winner of the challenge.
As a second task, teams were asked to predict the clinical mRS
score, which denotes the degree of disability. Upon analysis of
the results, we acknowledge that the latter task required more
data for a reliable statistical analysis, which is why they are not
presented in this paper. However, the reader is referred to the
official website for ISLES 20161 for more details.

1.2.2. ISLES 2017
Similarly to ISLES 2016, in 2017 participants were asked to
predict lesion outcome on MRI data. The data set of ISLES 2016
was expanded to a total of 43 patients for the training phase, and
32 cases for methods evaluation (see Table 3). For the additional
13 test cases, added in 2017, only one groundtruth was generated
(in contrast to the other 19 cases from ISLES 2016, for which
two annotations per cases exist). For ISLES 2017, participants
were asked to submit an abstract, describing their approach, until
August 2017. Mid August the test data was distributed and teams
had the chance to apply their models and submit their final
prediction 2 weeks later. Participating teams and their submitted

1http://www.isles-challenge.org/ISLES2016/

TABLE 2 | Participants of ISLES 2017 (more details and main characteristic of

each method see Appendix ISLES17-A1 to ISLES17-A14).

AAMC Athinoula A. Martinos Center, USA

Ensembling 3D U-Nets For Ischemic Stroke Lesion Segmentation

HKU-1 Hong Kong University of Science and Technology, China

Deep Adversarial Networks for Stroke Lesion Segmentation

HKU-2 Hong Kong University of Science and Technology, China

Stochastic Dense Network for Brain Lesion Segmentation

INESC INESC-ID, Portugal

Fully Convolutional Neural Network for 3D Stroke Lesion

Segmentation

KU Korea University, Korea

Gated Two-Stage Convolutional Neural Networks for Ischemic

Stroke Lesion Segmentation

KUL KU Leuven, Belgium

Dual-scale Fully Convolutional Neural Network for Final Infarct

Prediction

MIPT Moscow Institute of Physics and Technology, Russia

Neural Networks Stroke Lesion Segmentation

NEU NEUROPHET Inc. Seoul, South Korea

Combination of U-Net and Densely Connected Convolutional

Networks

NUS National University of Singapore, Singapore

Fully Convolutional Network with Hypercolumn Features for Brain

Lesion Segmentation

SNU-1* Seoul National University, Korea

SNU-2* Schemic Stroke Lesion Segmentation with Convolutional Neural

Networks for Small Data

SU Stanford University, USA

Multi-scale Patch-wise 3D CNN for Ischemic Stroke Lesion

Segmentation

UA Universidad de los Andes, Colombia

Volumetric Multimodality Neural Network For Ischemic Stroke

Segmentation

UL University of Luebeck, Germany

2D Multi-Scale Res-Net for Stroke Segmentation

UM Universito of Minho, Portugal

Combining Clinical Information for Stroke Lesion Outcome

Prediction using Deep Learning

*These methods are variants of a single method.

abstract titles can be found inTable 2, along withmain features of
eachmethod (detailed description ofmethodology inAppendix).

The access to the ISLES data remains open so that future
research efforts can easily be compared against the existing
benchmark.

1.3. Data and Methods
1.3.1. Data Acquisition and Pre-processing
Subjects used for the database, were patients treated for acute
ischemic stroke at the University Hospital of Bern or at the UMC
Freiburg between 2005 and 2015. Diagnosis of ischemic stroke
was performed by identification of lesions on DWI and PWI
MR imaging. Digital subtraction angiography was employed to
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document proximal occlusion of the middle cerebral artery (M1
or M2 segment).

Patient inclusion criteria considered: (I) Identification of
ischemic stroke lesions on DWI and PWI imaging, (II) proximal
occlusion of the middle cerebral artery (M1 or M2 segment)
documented on digital subtraction angiography, (III) attempt
for endovascular therapy was undertaken, either by intra-arterial
thrombolysis (before 2010) or by mechanical thrombectomy
(since 2010), (IV) no motion artifacts during pretreatment MR
imaging, and (V) patients had a minimum age of 18 years at the
time of stroke. Patients were excluded if they had undergone a
purely diagnostic angiography and if stenosis or occlusion of the
carotid artery were found.

MR imaging was performed on a 1.5T (Siemens Magnetom
Avanto), and on a 3T MRI system (Siemens Magnetom Trio).
The stroke protocol encompassed whole brain DWI, (24 slices,
thickness 5mm, repetition time 3,200ms, echo time 87ms,
number of averages 2, matrix 256 * 256) yielding isotropic
b0 and b1000 as well as apparent diffusion coefficient maps
(ADC) that were calculated automatically. Additionally, a T2
image was acquired for each case, which was not released to
participants but used later for the generation of the groundtruth
lesion outcome delineations (section 1.3.2) For PWI, the
standard dynamic-susceptibility contrast enhanced perfusion
MRI (gradient-echo echo-planar imaging sequence, repetition
time 1,410ms, echo time 30ms, field of view 230 * 230mm,
voxel size: 1.8 * 1.8 * 5.0mm, slice thickness 5.0mm, 19 slices,
80 acquisitions) was acquired. PWI images were acquired
during first pass of a standard bolus of 0.1mmol/kg gadobutrol
(Gadovist, Bayer Schering Pharma, Berlin, Germany). Contrast
medium was injected at a rate of 5ml/s followed by a 20ml
bolus of saline at a rate of 5ml/s. Perfusion maps were obtained
by block-circular singular value decomposition using the Olea-
Sphere software v2.3(Olea Medical, La Ciotat). Raw PWI images
were also released to participants in the form of a single 4D NifTI
image, to allow teams interested in using a different parametric
map reconstruction method. All PWI maps (rBF, rBV, TTP,
Tmax, MTT) were rigidly registered to the ADC image and
automatically skull-stripped (2) to extract the brain area only.
We remark, this alignment step was performed to standardize
the pre-processing step, hence, to factor out this pre-processing
step from the evaluation of results. The cohort curated in 2016
was then extended into a larger dataset for the challenge in 2017.
Table 3 summarizes the ISLES 2016 and 2017 dataset.

1.3.2. Groundtruth Lesion Outcome Segmentation
The lesion outcome status was manually segmented by a board-
certified neuroradiologist using 3D Slicer v4.5.0-1, and based

on the 90-day follow-up T2 image. Regions of maximal extent
of the final infarction, including haemorrhagic transformation
but excluding hyper-intense areas on the acute T2 image (i.e.,
infarctions due to previous CVI), were delineated on every
transversal slice. The 90-day follow-up lesion was chosen to be
delineated, since it yields a more reliable final lesion volume than
the apparent lesion volume that is observable on subacute images.
Groundtruth images were converted into the NIfTI format for
distribution to participants. For the 19 test cases of ISLES 2016,
two lesion annotations were generated by individual raters, and
subsequently merged via STAPLE algorithm (12).

1.3.3. Lesion Characteristics
We performed a correlation analysis to assess a possible
connection between clinical variables and the performance of
the automated methods. The evaluation was conducted for
ISLES 2017 submittedmethods.Table 4 summarizes the collected
information.

1.3.4. Evaluation Metrics
As quantitative evaluation metrics of the presented methods,
we calculated the Dice score as a measure of overlap between
manually outlined and automatically predicted lesions. To
further shed light on the algorithm’s effect we computed precision
and sensitivity scores. With TP, true positives; FP, false positive
and FN, false negative; the metrics were defined as followed:

Dice =
2TP

2TP + FP + FN
(1)

Precision =
TP

TP + FP
(2)

TABLE 4 | Summary of lesion characteristics for ISLES 2017 Data.

Lesion count mean [min, max] = 2.46 [1, 14]

Lesion volume mean [min, max] = 37.83ml [1.6ml, 160.4ml]

Lesion localisation in

Lobes

for all 32 cases lesions were located in more than one

lobe

Lesion localisation nsubcortical=3, ncortical=29

Involved territory nMCA=29, nMCA+PCA = 1, nmultiple=1

Midline shift not present for any of the 32 cases

Laterality nleft=16, nright=16

White matter lesions* n0=9, n1=10, n2=8, n3=5

n, number of cases with given feature; MCA, middle cerebral artery, PCA, posterior

cerebral artery.

*Fazekas Classification: 0, absent; 1, punctuate; 2, beginning confluent areas; 3, large

confluence.

TABLE 3 | Details of the ISLES 2016 & 2017 Data.

2016 2017

Number of cases 35 training and 19 testing 43 training and 32 testing

Number of expert segmentations for training and testing sets 1 (training), 2 (testing) 1 (training), 1 (testing)

MRI sequences ADC, rBF, rBV, MTT, TMAX, TTP, Raw PWI ADC, rBF, rBV, MTT, TMAX, TTP, Raw PWI
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Sensitivity =
TP

TP + FN
(3)

Alongside these, we measured the maximum surface distance
between automatically defined volume and the manually
delineated groundtruth volumes by means of the Hausdorff
distance (HD). Denoting AS and BS as the surface voxels
of groundtruth and segmentation volume, respectively, we
calculated:

HD(AS,BS) = max

{

max
aǫAS

min
bǫBS

d(a, b), max
bǫBS

min
aǫAS

d(b, a)

}

(4)

As distance measure d(·, ·) we used the Euclidean distance.
Additionally, the average symmetric surface distance (ASSD)

was computed for ISLES 2016:

ASSD(AS,BS) =
ASD(AS,BS)+ ASD(BS,AS)

2
(5)

with the average surface distance (ASD) defined as:

ASD(AS,BS) =

∑

aǫAs
minbǫBsd(a, b))

|AS|
(6)

1.3.5. Ranking Approach
In order to rank participant’s submission for ISLES 2017, we
focused on Dice score, as it combines both precision and
sensitivity into one metric, and the HD metric. First, both
measurements were computed for each patient data individually.
Then, all participants were ranked for each metric separately on
a case-wise basis such that a high Dice score and a low HD
resulted in a high rank. The mean of both ranks yielded a case
specific rank. A participant’s total rank is obtained by averaging
the ranks over all cases (see Figure 1). Ranks for ISLES 2016
were computed in the same way for both available groundtruths.
Furthermore, ASSD was included alongside Dice and HD for
ISLES 2016. In case where teams were not submitting all testing
results, the Dice scores were completed with 0 and a large
(i.e., 1e+5) value was set for HD. All unsuccessful segmentation
(Dice= 0), were always ranked last. Segmentations with the exact
same metrics received the same rank.

1.3.6. Fusion and Thresholding of Softmax Maps
Fusing the output of several classifiers has been shown to yield
better results than the single classifiers. This concept is the
foundation for ensemble learners, such as random forest (13),
and has also been shown to be beneficial for tumor lesion
segmentation (14, 15). In theory, each different model could
provide valuable, complementary information to enhance the
overall segmentation performance. All submitted methods for
ISLES 2017 were deep neuronal networks. These include by
design a final classification layer, which is commonly a softmax
function that provides voxel-wise output values between [0, 1]
(further referred to as softmax maps). This output can be
interpreted as a probability of voxel belonging to its given class
(in this case healthy or lesion tissue). To leverage potential
benefit of several submitted models, we averaged the softmax
maps of the top five and top three ranked methods for each
individual case, followed by its thresholding at the 0.5 mark.
Moreover, the softmax maps were thresholded at various levels
and subsequently binarised in order to analyse the robustness
of methods. Finally, the Dice score was computed between these
binary images and the groundtruth.

1.3.7. Statistical Analysis
To assess statistical differences between the submitted methods
we applied a Friedman test, a non-parametric, one-way analysis
of variances for repeated measurements, and post-hoc Dunn
test for multiple comparison between teams. For all tests we
used GraphPad PRISM Version 5.0.1. The levels of significant
differences are marked in plots with asterisks (*p < 0.05,
**p < 0.01, and ***p < 0.001).

2. RESULTS

2.1. ISLES 2016
2.1.1. Inter-observer Variance
The annotated volumes by rater 1 range from median [Q1,
Q3] = 16.7 [6.1, 41.6] ml, and for rater 2 from median [Q1,
Q3] = 9.0 [2.9, 36.8] ml, revealed the tendency of rater 1 having

FIGURE 1 | Ranking Scheme. The teams were sorted by their different performance metrics e.g., Dice score (DC) and assigned a rank value per case. Ranks for each

team were then separately averaged on a case-wise basis. The final team’s rank was then calculated as the mean of all its case-ranks.
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segmented more tissue as lesion than rater 2. In 18 out of
19 cases, rater 1 outlined larger lesion volumes, which holds
true especially for rather small lesions. Comparing the overlap
between manually outlined lesions of both raters yielded an
average Dice score of 0.58 ± 0.20, with median [Q1, Q3] = 0.62
[0.39, 0.77]. The relative low coherence between the experts’
annotations shows shows the difficulty of outlining the follow-up
image.

2.1.2. Leaderboard and Statistical Analysis
Table 5 shows the ranking of the submitted methods. Only
four (KR-SUC, CH-UBE, HK-CHU, PK-PNS) out of nine teams
managed to get a successful lesion prediction (Dice > 0) for
all 19 cases. The ranking reflects mostly the teams’ Dice ranks,
except for CH-UBE which was ranked on fourth place despite
the second lowest average Dice score (not shown in table). This
can be explained by the relative good HD (not shown in table) in
comparison to the last ranked teams (see Table 5 places 7–9).

Analysing the Dice scores across all methods showed
that almost all methods are superior to that of US-SFT,
which was ranked last. Only PK-PNS, which came second to
last, was not found statistically different from US-SFT. The
winning approaches (KR-SUC, KR-SUK, KR-SUL) achieved also
significantly higher Dice scores than PK-PNS. All methods
ranked in second cluster of groups(CH-UBE, DE-UZL, HK-
CUH, UK-CVI) did not show statistically significant differences
to one and another (see Figure 2).

Comparing the Dice scores directly for both manual
annotations individually, revealed a positive bias toward the
groundtruth generated by the second rater. For all teams the
average Dice for both groundtruths varied around five percentage
points (see Figure 3).

2.2. ISLES 2017
2.2.1. Leaderboard
Only one (SU) of the 15 teams was able to predict stroke lesions
(Dice > 0) consistently for all 32 cases. Examining the average
Dice and HD rank for each time separately, revealed that the

TABLE 5 | Leaderboard ISLES 2016: The rank specifies the final value to order

methods relative to each other by performance.

Place Team Rank Dice rank HD rank ASSD rank Cases

1 KR-SUL 3.03 3.37 2.79 2.92 18/19

2 KR-SUC 3.57 3.58 3.71 3.42 18/19

3 KR-SUK 3.82 3.74 4.13 3.61 19/19

4 CH-UBE 3.95 4.26 3.76 3.82 19/19

5 DE-UZL 4.21 4.21 3.82 4.61 19/19

6 UK-CVI 4.08 5.11 4.68 5.45 16/19

7 HK-CHU 5.59 5.08 5.53 6.16 19/19

8 PK-PNS 6.48 6.34 7.58 5.55 12/19

9 US-SFT 8.07 8.03 8.03 8.16 11/19

Dice, HD, and ASSD rank are the average achieved ranks for each participating team per

case. The last column gives the number of successfully (Dice > 0) predicted lesions. Best

mean values printed in bold.

second ranking team (UL) yielded a lower Dice rank than the
following two teams (i.e., HKU-1 and INESC). However, UL
achieved the best HD rank, which secured its second place (see
Table 6).

2.2.2. Dice, Precision and Sensitivity
Table 7 summarizes the participating teams’ performance,
measured by Dice score, precision and sensitivity, highlighting
the strengths of different models. Team KUL’s model was
the most precise while showing lower sensitivity. AAMC’s
model showed the highest sensitivity while lacking in precision.
Although HKU-1 achieved the highest mean Dice score, it was
ranked third seemingly due to a lower HD rank (compare
Table 6). Even top ranking models reached a low average Dice
score of around 0.3, underlining the substantial difficulty of lesion
forecasting.

Analysing the Dice score per case disclosed a wide range of
quality of lesion outcome prediction. While there are a few cases
(28–32) where the average Dice score was above 0.5, the majority
of cases turned out to be hard to predict. For 14 cases at least
one team achieved a prediction that was overlapping with the
groundtruth by 50% (Figure 5). For six cases (1–5, 9) none of the
teams reached the overall mean Dice score (0.23).

FIGURE 2 | Significant differences between the 9 submitted methods for

ISLES 2016. Each node stands for one participating team. A connection

between the nodes represents a significant difference between both lesion

prediction models. Methods at the tail side of the arrow indicate superiority to

the corresponding connected one. The stronger or weaker a model is the

more outgoing or incoming connections (#outgoing/#incoming, respectively),

are associated with a team’s node. Additionally, the node’s color saturation

indicates the strength of a method (differences in Friedman test rank sum),

with better methods appearing more saturated (i.e., darker blue). All methods,

except for PK-PNS, are significantly better than US-SFT (post-hoc Dunn test

p < 0.05).
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FIGURE 3 | Distribution of Dice scores computed between the automatic lesion predictions and both groundtruths (GT1 and GT2) individually for ISLES 2016. For all

teams the Dice scores computed with respect to rater 1 were significantly lower than those calculated with respect to the 2nd groundtruth (GT2).

TABLE 6 | Leaderboard ISLES 2017: While the rank denotes the final value used

to sort the teams performances relative to each other.

Place Team Rank Dice rank HD rank Cases

1 SNU-2 5.25 4.53 5.97 30/32

2 UL 5.42 6.16 4.69 29/32

3 HKU-1 5.55 5.09 6.00 29/32

4 INESC 5.92 5.00 6.84 31/32

5 KUL 6.03 6.19 5.88 30/32

6 SNU-1 6.47 6.25 6.69 29/32

7 UM 6.58 6.31 6.84 31/32

8 MIPT 6.72 6.34 7.09 30/32

9 SU 7.20 7.09 7.31 32/32

10 KU 8.75 10.09 7.41 28/32

11 AAMC 9.05 8.63 9.47 27/32

12 UA 9.78 9.31 10.25 29/32

13 NUS 9.95 9.50 10.41 29/32

14 NEU 10.44 11.88 9.00 16/32

15 HKU-2 11.80 12.50 11.09 14/32

Dice and HD rank are the average achieved ranks for each participating team. The cases

column denotes the number of successfully (DC > 0) predicted lesions. Best mean values

printed in bold.

2.2.3. Statistical Comparison of Team Performances
Figure 6 shows the comparison of the team’s Dice scores on the
test data set. Each method, represented as node, connects to
other methods when a statistical differences in the Dice scores
was found. Methods associated to nodes with more outgoing and
less incoming connections can be considered stronger than other
with less outgoing or more incoming connections. The nodes
for stronger models were further grouped and indicated by a
more saturated color. This visually highlights the winning team
SNU-2 that showed overall higher Dice scores for the prediction

TABLE 7 | Average Dice score, precision and sensitivity for individual teams

across all 32 cases for ISLES 2017.

Place Team Dice Precision Sensitivity

1 SNU-2 0.31 ± 0.23 0.36 ± 0.27 0.45 ± 0.31

2 UL 0.29 ± 0.21 0.34 ± 0.26 0.51 ± 0.33

3 HKU-1 0.32 ± 0.23 0.34 ± 0.27 0.39 ± 0.28

4 INESC 0.30 ± 0.22 0.34 ± 0.27 0.51 ± 0.31

5 KUL 0.27 ± 0.22 0.44 ± 0.33 0.39 ± 0.31

6 SNU-1 0.28 ± 0.23 0.36 ± 0.31 0.41 ± 0.31

7 UM 0.29 ± 0.22 0.26 ± 0.24 0.61 ± 0.28

8 MIPT 0.27 ± 0.20 0.31 ± 0.28 0.39 ± 0.29

9 SU 0.26 ± 0.21 0.28 ± 0.25 0.56 ± 0.26

10 KU 0.17 ± 0.16 0.23 ± 0.28 0.36 ± 0.33

11 AAMC 0.23 ± 0.22 0.19 ± 0.20 0.62 ± 0.37

12 UA 0.19 ± 0.16 0.27 ± 0.25 0.21 ± 0.18

13 NUS 0.19 ± 0.16 0.29 ± 0.26 0.23 ± 0.22

14 NEU 0.11 ± 0.16 0.17 ± 0.25 0.12 ± 0.17

15 HKU-2 0.05 ± 0.10 0.17 ± 0.28 0.05 ± 0.11

All evaluation measures are given in mean± standard deviation. Best mean values printed

in bold.

lesions than the other six teams, while none of the other methods
were significantly better. This is closely followed by HKU-1 and
INESC having each five outgoing edges. The two worst methods
(NEU, HKU-2) failed to predict the lesions for several subjects
completely, resulting in poor performance inferior to most teams
(9 and 10 respectively).

2.2.4. Performance of Single Models Vs. Ensembles
As mentioned in section 1.3.6 we fused the softmax maps to
create an ensemble of the top five (E5 = SNU-1, SNU-2, UL,
INESC, KUL) and top three (E3 = SNU-2, UL, INESC) ranking
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FIGURE 4 | Performance metrics for all teams of ISLES 2017. Higher ranking

teams (e.g., 1st place SNU-2) achieved Dice scores > 0.7 for some cases,

however, overall Dice scores clustered around 0.2–0.3. The two teams ranked

last (NEU and HKU-2) showed much lower Dice scores than all other teams,

which was a consequence of the low number of successful submissions. The

model of UM seemed to be most sensitive to detect lesions, but lacks in

precision.

teams2 and compared both ensembles to their individual models.
All included models had no significantly different Dice score
distributions in comparison to each other (see Figure 6).

Figure 7 shows that Dice scores of both ensembles were
very similarly distributed as the single models’ Dice scores.

2No softmax maps from team HKU-1 were made available, which is why we

include the next ranked team on the list i.e., SNU-1 for E5 and INESC for E3.

Ensemble E3 did not result in an improved performance,
although the median Dice score (0.28) was higher in comparison
to ensemble E5 (0.25) and to the winning team SNU-2 (0.26).
Likewise, its mean precision was higher (0.34), although not
statistically significant, than most single models (SNU-1, SNU-
2, UL, INESC). However, the mean sensitivity of E3 (0.51) could
be raised over the one from SNU-1 (0.44).

In contrast, ensemble E5 yielded a significantly better mean
Dice score (0.31) than UL (0.28, p < 0.05) and SNU-1 (0.26,
p < 0.01). Among the five teams, whose models were used to
build the ensemble, SNU-1was ranked the lowest, explaining why
E5 performed significantly better that SNU-1 by itself. While the
ensemble’s sensitivity was not improved, combining all softmax
maps together significantly increased the precision over four
single models (p < 0.01, INES, SNU-1, SNU-2, UL).

Figure 8 displays an example of the different participants’
softmax maps as well as the fused softmax maps of both
ensembles (E3 & E5). While softmax maps from INESC
and SNU-2 showed similar certainty values through out the
predicted lesion, the other three teams’ softmax maps appeared
to be more heterogeneous. In contrast to the smooth an
blob-like structures predicted by SNU-1, SNU-2, INESC and
KUL, UL’s model provided a greater detail for boundaries.
This is also cohesive with the findings, that UL has the
highest HD rank (see Table 6) as this metric is considering
closeness of boundaries. Dice scores of the lesion predictions
for this particular patient could not be improved by ensembles
(DiceE5 = 0.76, DiceE3 = 0.73) in comparison to the single
teams (DiceSNU−1 = 0.76, DiceSNU−2 = 0.74, DiceUL = 0.60,
DiceINESC = 0.70, DiceKUL = 0.69).

2.2.5. Analysis of Robustness of Lesiron Outcome

Prediction
We computed Dice scores between the manually outlined lesion
groundtruth and differently thresholded and binarised softmax
maps for the top five ranking teams. For four teams (SNU-2, UL,
INESC & SNU-1) the Dice scores seemed to be fairly robust and
centered around the initial threshold of 0.5. SNU-2’s and INESC’s
prediction vary only in about 1 percentage point for different
threshold values (see Appendix: Table A1). As an exception,
KUL’s softmax layer thresholded at a lower level of 0.3 resulted in
a higher Dice score (0.28) compared to the the lower Dice (0.26)
at a threshold level of 0.5. This effect is coherent with previous
findings (see Table 7 and Figure 4) that KUL’s produces highly
precise predictions with relative low sensitivity. Thresholding at
a lower level could assign more voxels to the lesion class, hence
increased the model’s sensitivity and effectively improve Dice
scores.

2.2.6. Correlation of Lesion Volumes
When comparing predicted lesion volumes with the manually
outlined lesion volumes for the top five ranked teams as
mentioned in section 2.2.4, we found a significant correlation
only for SNU-1 (Spearman coefficient r = 0.39) and for SNU-
2 (Spearman coefficient r = 0.37). All other teams submission
and the ensembles did not correlate with the human rater’s
annotations, with Spearman coefficients ranging from 0.28 (UL)
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FIGURE 5 | Achieved Dice scores for each case across all 15 participating teams sorted by mean value. The dashed line shows the overall mean Dice score of 0.23

(red) and the 0.5 mark (black). Note that the case numbers were assigned according to ascending mean Dice score.

FIGURE 6 | Significant differences between the 15 submitted methods at

ISLES 2017. Each node stands for one participating team. A connection

between two nodes represents a significant difference between both lesion

prediction models, whereas the methods at the tail side was superior. The

stronger or weaker a models the more outgoing or incoming connections

(#outgoing/#incoming), are associated with a team’s node. Additionally, the

node color saturation indicates the strength of a method, with better methods

appearing more saturated. Differences between methods were assessed via

non-parametric ANOVA with repeated measurements (Friedman test) and

subsequent, pair-wise comparison with Dunn test (p < 0.05).

to 0.35 (E5). As expected, the Dice scores of all models correlated
significantly with the lesion volumes, such that the higher the
volume the higher the Dice scores. Spearman coefficients were

highest for UL (0.72), INESC (0.71) and E3 (0.70), and lowest for
KUL (0.41) and SNU-1 (0.55). Mid-range Spearman coefficients
were found for SNU-2 (0.59) and E5 (0.68).

3. DISCUSSION

3.1. Current Performance of Stroke Lesion
Outcome Prediction Methods
In ISLES 2016, results showed that deep learning models
outperformed Random Classification Forests (RF). However, no
conclusive superiority of deep learning was found against other
machine learning approaches, as demonstrated by CNN-based
approaches also ranking in the low tier ranks. Analysing precision
and sensitivity revealed the tendency of models to yield over-
estimated lesion segmentations. The large variability within the
assessed metrics could be explained by the strong correlation
between performance and lesion sizes.

Discussions during the ISLES 2016 session led to the decision
to enrich the existing ISLES dataset to further encourage
participation of the computer science community. Especially,
data driven approaches such as deep learning algorithms could
truly benefit from larger data sets. Consequently, in ISLES 2017
the training and testing dataset were extended versions of the
training and testing sets used in ISLES 2016. For both years,
data were provided in minimally pre-processed format. This
should should allow a more direct comparison of different stroke
prediction models, without the influence of any specific pre-
processing steps. Of course advanced processing could foster
the tissue outcome prediction, however we argue that our focus
for the challenges lies on the model development. Furthermore,
the applied pre-processing steps were kept to a minimum and
are commonly accepted techniques, such as co-registration. This
did not prevent participants to further process the provided
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FIGURE 7 | Statistical comparison of lesion prediction performance of single models vs. ensembles. Left: An ensemble of five models (E5) could improve the Dice

score in comparison to the two weaker models (SNU-1 p < 0.01, UL p < 0.05). This effect was, however, not observed when building an ensemble with three models

(E3). Middle: The ensemble E5 significantly gained precision in contrast to most of the single models (SNU-1 p < 0.01, SNU-2 p < 0.05, UL p < 0.001, INESC

p < 0.01). KUL’s precision was higher or similar to that of the ensembles, showing no significant difference. Right: The ensemble E3 was found to be more sensitive

to predict lesion than SNU-1’s model. Overall the models show a fair ability to detect lesions. *p < 0.05, **p < 0.01, and ***p < 0.001.

FIGURE 8 | Example of different softmax maps of one patient. Top row: Diffusion (ADC) and perfusion (TTP) scan and the corresponding manual lesion annotation

(LABEL) and the softmax maps of the ensembles of the top five (E5) and top three (E3) ranked teams. Bottom row: Softmax maps of the top five ranking teams. Both

shape and certainty (see color bar) of the predicted lesion vary between the different participants.

data. Although teams also had partly access to raw data (i.e.,
raw perfusion data), all of them preferred to work with the
pre-processed data.

All participating teams of ISLES 2017 suggested a deep
learning approach, with top ranked methods featuring CNN
architectures. Despite the increased size of the training data,
the overall performance was surprisingly not much different
than for ISLES 2016. Top ranked models were found to operate
on a similar level, sharing similar architectures and system
characteristics. Even ensembles of different CNNs were not
strong enough to boost the performance further. These results
suggest that CNNs’ performance may have reached a plateau
on this dataset. Future investigation need to strongly focus on
improved training strategies for CNNs or on development of
new methodologies to advance stroke lesion outcome prediction.
Enhancing the performance especially for small sized lesions
and incorporating non-imaging information could bear a strong
potential for improvement.

It has been shown that ensemble approaches or fusion of
results can improve segmentation predictions (14, 15). Our

findings suggest that the ensemble approaches had a tendency
to perform better than single models. Despite the unimproved
sensitivity of the ensembles, combining all softmaxmaps together
significantly increased the precision over four single models. This
suggests a reduction of false positive predictions. However the
effect was not strong enough to result in statistical improvement
over the highest ranked single method. It was also not entirely
clear which model contributed to enhance or worsen the
performance. In fact, the submissions for ISLES 2017 included
single as well as ensembles of neural networks, but the ranking
did not reflect an overall superiority of ensemble methods.
Although the combination of several weak classifiers can cancel
out individual model’s limitations, it is nonetheless important
to build an ensemble of strong methods to leverage benefits
and justify increased computational costs of an ensemble based
approaches.

Examining each participating team’s softmax maps was
motivated to analyse their potential to describe their correctness
and certainty to perform the task. As these models are intended
to provide a prediction of stroke lesion outcome, we postulate
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that model calibration is an important aspect for future analysis
of deep learning models used for stroke lesion prediction.
Particularly, it will have to be investigated how model capacity,
regularization and normalization can affect model’s calibration,
despite apparent increases in model’s accuracy (16).

Our findings support the use of different ranking metrics and
align with the findings reported in Maier et al. (2). For example
the team UL was ranked second in ISLES 2017 thanks to its top
HD rank, despite being assigned a relative low Dice rank of 6.16,
which would equate the fourth place on the leaderboard.

Overall, the difficulty of the task is reflected by the low
Dice scores, with top methods averaging a Dice rank of 0.3.
The low Dice scores of the models can be explained by the
inherent challenges of the prediction task. Contrary to stroke
lesion segmentation, stroke lesion outcome models are trained
to predict the lesion status at a 90-days follow-up image based
on the acute imaging information. Inherently, many factors
contribute to tissue recovery or infarction, which are not
explicitly nor implicitly characterized in the imaging information
acquired at time of the stroke infarct.

3.2. Limitations and Remaining Challenges
Looking at the evolution of ISLES over the past 3 years,
a clear convergence of methodology is observable. While
for ISLES 2015 and 2016, still classic machine learning
models, such as RF were explored, all submissions of ISLES
2017 offered a variation of CNNs. With their undeniable
benefits and success, deep learning methods have set new
state-of-the-art benchmarks in many disciplines. Although at
present time, this would be the sensible direction to develop
further techniques for stroke lesion segmentation and outcome
prediction, future challenges will need to encourage exploration
of more diverse models. Particularly, we remark the importance
of designing methodologies capable of incorporating clinical
and physiological prior information on stroke infarction and
recovery.

The comparison of the automatic lesion outcome prediction
with both expert annotations separately (ISLES 2016) showed
a systematic bias toward a higher accordance with rater 2.
While this emphasizes the importance of a common database
to compare algorithms, it also unveils the general underlying
dilemma of supervised learning methods and the intrinsic inter-
rater variability observed inmedical imaging applications. In best
case, algorithms that learn solely from human annotation will
only ever be as good as the best human rater and inevitable
learn humans’ fallacy. Overcoming this limitation calls for semi-
and unsupervised learning techniques to teach the computer
to detect abnormal brain tissue more accurately, as well as
to consider inter-rater variability as source of information
during the learning process (17). Nonetheless, a fair and
consistent evaluation of such methods has yet to be established.
Furthermore, our evaluation is challenged by the different levels
of expertise in each team. Although there is a clear tendency that
CNNs provide overall better results than RF, some CNNs were
ranked lowest. This rather suggest potential deficiencies in the
training scheme than a deficiency of this model class in general.

Another challenge is the interpretability of the output of the
applied models. Although models are desired to predict lesions

with high precision and confidence level, there may lay valuable
information in a models uncertainty for clinical decision making.
Regarding lesion outcome prediction, uncertainty could give for
example a better indicator of tissue at risk of infarction (e.g.,
naively thought: high certainty means high risk of becoming
lesion tissue, while low certainty may reflect tissue likely to be
healthy in future). For future challenges we recommend to ask
teams to submit non-binary output maps (e.g., softmax maps)
that support such analysis. Most methods work indeed best
when incorporating multi-parametric information, however, the
database will need to be explored, as in Pereira et al. (18) to gain
knowledge on which MR sequences are important and to what
extent.

4. CONCLUSION

Over the past years, the ISLES team was able to build an
increasingly larger MRI database for ischemic stroke lesion
MRI. With this publicly available dataset and a continuously
open evaluation system, ISLES has the potential to serve
as a standard benchmark framework, where researchers can
test their algorithms against an existing pool of described
and compared methods (14 ISLES 2015 methods for lesion
segmentation, and 28 ISLES 2015 & 2016 and 2017 methods
for lesion outcome prediction). Despite the great efforts and
accomplishments present at ISLES, automatic segmentation
of stroke lesions, and more so lesion outcome prediction
remain challenging tasks. Deep learning approaches have
great potential to leverage clinical routine for stroke lesion
patients, but last years of progress at ISLES indicate that
further developments are needed to support clinical decision
making by incorporating imaging and readily-available non-
imaging clinical information, collateral flow modeling, and
further improve the interpretability of deep learning systems
used for the clinical decision making process of stroke
patients.
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All datasets were fully anonymised through skull-stripping
and removal of all patient informations by means of
conversion of dice files to nifty volumetric files following
the regulations of the Swiss Law for Human Research. Further
information added below for sake of completeness (In German).
Anonymisierung: Unter anonymisiertem biologischem Material
und anonymisierten gesundheitsbezogenen Daten ist die
irreversible Aufhebung des Personenbezuges zu verstehen. Eine
solche liegt dann vor, wenn Material bzw. Datenüberhaupt
nicht oder nur mit einem un-verhältnismässig grossen Aufwand
an Zeit, Kosten und Arbeitskraft der betreffenden Person
zugeordnet werden können (vgl. Art. 3 Bst. i HFG und Art.
25 Abs. 1 HFV). Wann den Anforde-rungen an eine korrekte
Anonymisierung Genüge getan ist, ist je nach Einzelfall
zu entschei-den: Die Streichung nur des Namens kann bei
einer sehr grossen Datenmenge (grosse Perso-nenpopulation)
genügen, auch wenn andere Parameter (z.B. Geburtsjahr)
verbleiben. Ist die betroffene Population jedoch sehr klein, so ist
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das Entfernen nur des Namens nicht ausreichend (vgl. Botschaft
zum HFG, S. 8096). Insbesondere unkenntlich gemacht oder
gelöscht wer-den müssen Namen, Adresse, Geburtsdatum
und eindeutig kennzeichnende Identifikati-onsnummern
(Art. 25 Abs. 2 HFV). Das im ursprünglichen Art. 14 HFG
(vgl. Botschaft zum HFG, S. 8105) vorgesehene Ver-bot der
Anonymisierung von biologischemMaterial bzw. Personendaten
bei Forschungsprojek-ten mit Bezug zu schweren Krankheiten
wurde auf Antrag der vorberatenden Kommission vom
Nationalrat gestrichen (vgl. Amtliches Bulletin des Nationalrats,
09.079, Verhandlung vom 10.03.2011). Hintergrund war
vermutungsweise das in Art. 32 Abs. 3 HFG festgelegte Informa-
tions- und Widerspruchsrecht der Patienten bei Forschung mit
anonymisiertem biologischen Material und genetischen Daten.
Dadurch sind die Patienten nämlich ausreichend geschützt,
ein zusästzliches Verbot schien vor diesem Hintergrund wohl
obsolet. Mit Streichung des ur-sprünglichen Artikels 14 HFG
ist die Forschung mit anonymisiertem biologischem Material
also auch bei Forschungsprojekten mit Bezug zu schweren
Krankheiten zulässig, sofern die betroffenen Personen vorgängig
korrekt informiert und auf ihr Widerspruchsrecht hingewiesen
wurden.
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A. APPENDIX

This following sections briefly summarizes the participants’
algorithms.

A.1. ISLES 2016
A.1.1. ISLES16-A1. CH-UBE - Incorporating Time to

Reperfusion Into the FASTER Model of Stroke

Tissue-at-Risk
Authors: Richard McKinley, Roland Wiest, and Mauricio Reyes
In a recent paper, we introduced the tool FASTER (Fully
Automated Stroke Tissue Estimation using Random Forests) (3),
which aims to give an assessment of the tissue at risk in acute
stroke beyond the usual paradigm of predefined thresholds on
single maps. The FASTER system assesses the likelihood of tissue
damage using decision forest classifiers, mapping local statistical
features of perfusion and diffusion imaging onto maps of the
tissue predicted to be lost even if reperfusion is established, and
the tissue predicted to be lost only if there is no reperfusion. These
models are trained only on extreme cases, in which reperfusion
was total and rapid (TICI 3), or completely absent (TICI 0). In
this work we attempt to go further, predicting the likely tissue
loss in the case of TICI grades 1-2b, by interpolating between the
two predictions yielded by FASTER, and incorporating the time
to revascularization.

A.1.1.1. Acknowledgments
The authors acknowledge the support of the Schweizerische
Herzstiftung.

TABLE A1 | Dice score dependency of threshold for softmax maps.

Thresholds

Team 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INESC 0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

KUL 0.22 0.26 0.28 0.27 0.26 0.23 0.20 0.15 0.02

SNU-1 0.20 0.23 0.25 0.26 0.26 0.27 0.23 0.20 0.16

SNU-2 0.29 0.29 0.30 0.30 0.30 0.30 0.30 0.30 0.30

UL 0.19 0.24 0.26 0.27 0.28 0.28 0.27 0.25 0.21

TABLE A2 | Overview of methods of participants of ISLES 2016.

CH-UBE Random Forest classifier integrating time to reperfusion

DE-UZL Random Forests classifier

HK-CUH U-Net architecture; summation instead of concatenation of different

pathways

KR-SUC Ensemble of U-Net architecture and fully convolutional neural network

KR-SUK

KR-SUL

PK-PNS Random Forest classifier

UK-CVI Combination of CNN and hand-crafted features

US-SFT U-Net architecture

A.1.2. ISLES16-A2. DE-UZL - Random Forests for

Stroke Lesion and Clinical Outcome Prediction
Authors: Oskar Maier and Heinz Handels
Ischemic stroke is caused by an obstruction in the cerebral
blood supply and, if diagnosed early, part of the under-perfused
tissue can potentially be salvaged. Since the available treatment
options are not risk-free, the decision has to bemade individually,
depending on the potential gain and under great time restriction.
The prediction of the final lesion outcome in form of A binary
mask (Task I) and the prediction of the clinical outcome in form
of the modified Rankin Scale (mRS) (Task II) are therefore of
great clinical interest. The ISLES 2016 challenge offers a public
dataset and associated expert groundtruth to allow researchers
to compare their methods in these two fields directly and fairly.
Our contribution works with carefully selected features extracted
from the MR sequences and used to train a RF. The data consists
of multi-spectral (ADC, PWI maps and raw PWI 4D volumes)
scans and associated clinical measures. The final lesion outcome
as delineated in a 90 days follow-up scan (Task I) and the 90
days mRS score (Task II) serve as groundtruths. More details
on the data can be found on www.isles-challenge.org. Task I:
Lesion outcome prediction From each MR sequence we extract
the features previously presented in (32), but furthermore employ
a hemispheric difference measure to make use of the pseudo-
quantitative values provided by the PWI maps. For voxel-wise
classificationwe employ RFs. Task II: Clinical outcome prediction
Based on the segmentation results from Task I, we extract lesion
characteristics as well as local image features from the supplied
cases to train a regression forest. Applied, this yields a prediction
of the mRS score for a formerly unseen case. Our method has
been shown to provide competitive lesion segmentation results in
glimo segmentation as well as acute and semi-acute stroke in the
previous year’s edition of the ISLES challenge. The results from
this year’s challenge will show if the advantages of our flexible
design also extend to outcome prediction.

A.1.3. ISLES16-A3. HK-CUH - Residual Volumetric

Network for Ischemic Stroke Lesion Segmentation
Authors: Lequan Yu and Pheng-Ann Heng
We propose a 3D CNNs based method for lesion outcome
prediction. The proposed 3D network takes advantage of fully
convolutional architecture to perform efficient, end-to-end,
volume-to-volume training. More importantly, we introduce the
recent proposed residual learning technique into our network,
which can alleviate vanishing gradients problem and improve the
performance of our network. It employs 3D fully convolutional
architecture and is organized in a residual learning scheme. The
layers of our network are all implemented with a 3D manner
(under caffe library), thus the network can highly preserve and
deeply exploit the 3D spatial information of the input volumetric
data. We adopt small convolution kernels with size of 3×3×3
in convolutional layers. Each convolutional layer is followed
by a rectified linear unit (ReLU). Note that we also employ
batch normalization layer (BN) before each ReLU layer. The BN
layer can accelerate the training process of our network. At the
end of the network, we add a 1×1×1 convolutional layer as a
classifier to generate the segmentation results and further get
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the segmentation probability volumes after passing the softmax
layer. Note that our network might appear similar to U-Net,
but there are differences: We use summation units instead of
concatenation units when combining different paths, and thus
we can reformulate our network as residual learning scheme;
additionally, we adopt recently developed batch normalization
technique to improve our performance.

A.1.4. ISLES16-A4. KR-SUC/KR-SUK/KR-SUL - Deep

Convolutional Neural Network Approach for Brain

Lesion Segmentation
Authors: Youngwon Choi, Yongchan Kwon, Hanbyul Lee,
Myunghee Cho Paik, and Joong-Ho Won
Brain lesion segmentation is a challenging problem because the
amount of lesion area is extremely small and the size of available
training magnetic resonance images are limited. To handle this,
we exploit millions of 3D patches and 3D convolutional kernels
for our proposed model. By treating each 3D patch as training
data we capitalize on spatial information and overcome the
problem of limited medical data. Our final segmentation model
is an ensemble of two deep convolutional neural networks
inspired by fully convolutional networks and the U-Net (36).
We implement the proposed model in Python with Lasagne and
Keras.

A.1.5. ISLES16-A5. PK-PNS - Segmentation of

Ischemic Stroke Lesion Using Random Forests in

Multi-Modal MRI Images
Authors: Qaiser Mahmood and A. Basit
Multi-modal MRI can be used for detecting the ischemic stroke
lesion and can provide quantitative assessment of lesion area. It
can be established as an essential paraclinical tool for diagnosing
stroke. For a quantitative analysis of stroke lesion in MRI images,
clinical expert manual segmentation is still a common approach
and has been employed to compute the size, shape, and volume
of the stroke lesions. However, it is time-consuming, tedious,
and labor-intensive task. Moreover, manual segmentation is
prone to intra-and inter-observer variabilities. Herein, we present
an automated segmentation method for ischemic stroke lesion
segmentation in multi-modal MRI images. The method is based
on an RF ensemble learning technique called random forest,
which generates several classifiers and combines their results in
order to make decisions. In RF, we employ several meaningful
features such as intensities, entropy, gradient etc. to classify the
voxels in multi-modal MRI images. The segmentation method
is validated on training data, obtained from MICCAI ISLES-
2016 challenge dataset. The performance of the method is
evaluated relative to the manual segmentation, done by the
clinical experts. The experimental results show the robustness
of the segmentation method, and that it achieves reasonable
segmentation accuracy for segmenting the ischemic stroke lesion
in multi-modal MRI images.

A.1.6. ISLES16-A6. UK-CVI - Combination of CNN

and Hand-Crafted Feature for Ischemic Stroke Lesion

Segmentation
Authors: Haocheng Shen, Siyamalan Manivannan, Roberto
Annunziata, Ruixuan Wang and Jianguo Zhang

Convolutional neural networks can automatically learn
discriminative local features and give superior performance
than hand-crafted features in various applications such as image
classi-fication, semantic segmentation and object detection. CNN
has also been applied to MRI brain image analysis and achieved
state-of-the-art results for brain tumor region segmentation
(7, 22), stroke lesion segmentation (7), andmircobleeds detection
(28). Recently, some studies [e.g., (23)] show that hand-crafted
features may provide complementary information with CNN,
hence combining them with the features extracted from CNN
may give improved performance than only using the features
from CNN. Motived by this, we formulate the segmentation
of ischemic stroke lesion in acute MRI scans as a pixel-level
classification using a combination of CNN and hand-crafted
features. We used a CNN architecture which is similar to
(38). It is a fully convolutional neural network containing a
downsampling path and three upsampling paths. In the task of
stroke lesion segmentation, there is a large variation on the size,
location, and shape of lesions. Therefore, encoding information
at multiple scales is necessary and preferable than considering
information at only one level. The downsampling path is able
to extract the abstract information with high-level semantic
meaning, while the three upsampling paths are designed to
capture the fine details. These three upsampled feature maps are
then combined at the later stages of the CNN architecture so that
the classification layer fully make use of the information appears
at multiple scales (38). We use the following hand-crafted
features: intensity, the hemispheric intensity difference between
two symmetric pixels in the axial view, first order statistics in
a w×w volume patch, maximum response filter (MR8) (34).
At each 2D pixel location, these local features are extracted
independently from each image modality and combined together
to get a feature representation for that pixel. As there is a large
variation of lesions in the dataset, it will be beneficial to train a
pool of binary classifiers instead of one. Each binary classifier
in this pool is designed to separate the positive (lesion) features
extracted from a patient from all the negative (normal) features
extracted from the same patient. In this way we believe that
some rarely appeared lesions can be easily discriminated from
the normal tissue compared to a binary lesion classifier which
is trained using all the training data (without using patient
information). In the testing time a voting strategy (averaging the
top 3 probabilities obtained by the binary classifiers in the pool)
is used to get the prediction of an input.

A.1.7. ISLES16-A7. US-SFT - a Deep-Learning Based

Approach for Ischemic Stroke Lesion Outcome

Prediction
Authors: Ramandeep Randhawa, Ankit Modi, Parag Jain, and
Prashant Warier
The ISLES 2016 challenge aims to address two important aspects
of Ischemic stroke lesion treatment prediction. The first aspect
relates to segmenting the brain MRI to identify the areas with
lesions and the second aspect relates to predicting the actual
clinical outcome in terms of the patient’s degree of disability.
The input data consists of acute MRI scans and additional
clinical such as TICI scores, Time Since Stroke, and Time to
Treatment. To address this challenge we take a deep-learning
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based approach. In particular, we first focus on the segmentation
task and use an automatic segmentation model that consists of a
Deep Neural Network (DNN). The DNN takes as input the MRI
images and outputs the segmented image, automatically learning
the latent underlying features during the training process. The
DNN architectures we consider utilize many convolutional layers
with small kernels, e.g., 3×3. This approach requires fewer
parameters to estimate, and allows one to learn and generalize
from the somewhat limited amount of data that is provided.
One of the architectures we are currently utilizing is based on
the U-Net (36), which is an all-convolutional network. It acts
as an auto-encoder, that first “encodes” the input image by
applying combinations of convolutional and pooling operations.
This is followed by the “decoding” step that up-scales the encoded
images, while performing convolutions. The all-convolutional
architecture of the U-Net allows it to handle input images
of different dimensions as in the challenge dataset. In our
experiments, we found that this architecture yielded excellent
performance on the previous ISLES 2015 dataset. Although the
modalities in the 2016 challenge are different, our initial training
experiments have yielded promising segmentation results. Our
next steps involve addressing the regression challenge. There is
limited amount of labeled data for this task. Our approach will
be to include these outcomes as part of the segmentation training
directly. This will allow the DNN to learn latent features that can
directly help with the classification task.

A.2. ISLES 2017
A.2.1. ISLES17-A1. AAMC - Ensembling 3D U-Nets

For Ischemic Stroke Lesion Segmentation
Authors:Andrew Beers, Ken Chang, James Brown, Emmett Sartor,
Elizabeth Gerstner, Bruce Rosen, and Jayashree Kalpathy-Cramer
We propose a novel deep learning architecture based on the 3D
Convolutional U-Net, an architecture that has found success both
in ISLES 2016 and a wide array of other tissue segmentation

applications. A typical U-Net segmentation architecture operates
by convolving and downsampling input data stepwise into
a low-resolution representation, and then upsampling and
deconvolving that representation into to a categorical labelmap.
The downsampling arm of the U-Net is also concatenated at
points to the upsampling arm, resulting in a densely-connected
architecture. We improve upon previous implementations of
the 3D U-Net both by increasing the number of layers and
convolutional filters, and by adding multiple independent down-
sampling arms to the network. The motivation for this chimeric
structure is to increase accuracy by concatenating several unique
and not necessarily correlated downsampled representations,
thereby increasing the potential amount of relevant imaging
biomarkers. We apply this architecture on stacked, 16 × 16 ×

4 voxel patches of six of the seven given image maps (ADC,
CBV, CBF, MTT, TTP, Tmax) for ISLES 2017. For training,
80% of patches are drawn from the groundtruth regions, while
20% of patches are extracted from normal brain. For inference,
we predict 16 overlapping output patches per voxel, average
overlapping softmax outputs, and threshold those outputs into
binary labels. We finally post-process the binary labels by
removing small islands and applying repeated segmentation
erosions and dilations.

A.2.1.1. Acknowledgments
We would like the acknowledge the GPU computing resources
provided by the MGH and BWH Center for Clinical Data
Science.

A.2.2. ISLES17-A2. HKU-1 - Deep Adversarial

Networks for Stroke Lesion Segmentation
Tony C. W. Mok and Albert C. S. Chung
Training models that provide accurate stroke lesion
segmentation for stroke assessment is challenging. Methods
based on deep convolutional neural networks usually rely on

TABLE A3 | Overview of methods of participants of ISLES 2017.

AAMC 3D CNN U-Net architecture; increased number of layers and convolutional filter, multiple down-sampling path ways; anisotropic patch size of 16×16×4;

prediction of 16 overlapping patches per voxels, that are averaged. Morphological operations to reduce small clusters of erroneous predictions

HKU-1 U-Net architecture, including data augmentation and batch normalization, adversarial training of two deep neural networks to avoid over-fitting

HKU-2 3D CNN U-Net architecture; long short-term memory (LSTM) to capture information in 3rd dimension of MRI scans; data augmentation

INESC V-Net architecture; new loss-function: sum of standard cross-entropy loss and dice-loss

KU Hierarchy of 2 CNNs. 1st CNN discriminates lesion and healthy tissue, 2nd CNN only acts up on voxels where the 1st CNN was uncertain; auto-context

(use of probability maps from 1st CNN)

KUL U-net architecture; data augmentation via x-axis flip, Gaussian noise and small linear intensity transformations; ensemble of 4 networks; suppression of

prediction in non-dominant hemisphere

MIPT Ensemble of E-Net, DeepMedic, and two U-Nets; 2D and 3D architectures; weighted sum of models’ predictions; data augmentation: rotation, flips,

registration, and elastic co-registration to template

NEU Combination 3D U-Net and densely connected CNN; refinement with CRF

NUS PixelNet applied to lesion outcome prediction

SNU-1/SNU-2 Ensemble of three CNNs: U-Net, DeepMedic, pyramid scene parsing network; negative Dice score loss

SU 3D CNN with 2 scale pathways; data augmentation through rigid transformations, weighted ratios on positive and negative labels

UA CNN with 4 scale pathways

UL 2D U-Net with skip connections; Dice loss is added up to total loss; inversely weighted loss to tackle class imbalance

UM 2D U-Net in combination with clinical information
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large amounts of annotated data. The small lesion area and
limited size of available acute MRI data would degrade the
quality of result using such approaches due to over-fitting the
training data. To deal with this problem, we adopt two deep
neural networks with adversarial training (25). (31) shows
that this technique could generate a regularization effect and
result in less over-fitting to the training data. Our model
ensemble two deep convolutional neural networks inspired by
the U-Net (36). Other technique such as data augmentation and
batch normalization are adopted to further improve the final
results.

A.2.3. ISLES17-A3. HKU-2 - Stochastic Dense

Network for Brian Lesion Segmentation
Authors: Pei Wang and Albert C. S. Chung
The segmentation of ischemic stroke lesion in brain MRI is quite
challenging for its varying size and unknown shape. To tackle
this problem, we proposed a convolutional neural network for
an end-to-end, volume-to-volume lesion segmentation. Based on
the 3D U-Net structure, we apply dense connection to link every
two layers to well combine the low level information with the
high level one. In each layer, instead of 3D convolution, we adopt
long short-term memory (LSTM) to capture the information
of third dimension in MRI. To further reduce the over-fitting
during training process, all the dense connections between layers
are stochastically established. Due to the limited dataset, data
augmentation is applied to the training dataset.

A.2.4. ISLES17-A4. INESC - Fully Convolutional

Neural Network for 3D Stroke Lesion Segmentation
Authors:Miguel Monteiro1 and Arlindo L. Oliveira
Our approach consists of a Fully-Convolutional Neural
Network (FCNN) with a V-Net (33) architecture. The V-Net
architecture is a variation of the U-Net architecture (36)
which is commonly used for medical imaging segmentation.
This architecture consists of a contracting path and an
expanding path each made up of convolution blocks. At each
level of the contracting path, the image’s spatial dimensions
are halved and the number of channels is doubled. In the
expanding path, the opposite happens. There are skip-
connections between the contracting and expanding path
which feed high-resolution features to the expanding path.
In addition, the convolution blocks in both paths have skip
connections similar to those of the ResNet (39) which make
training faster and more robust. To address class imbalanced
(most of the voxels are labeled as 0 in the segmentation) we
proposed a novel loss function to train the network. This
loss function consisted of the sum of the standard cross-
entropy loss with the dice-loss. The dice-loss is calculated
by taking the negative dice coefficient calculated with label
probabilities instead of discrete labels which results in a
number between –1 and 0. Since the cross-entropy loss can
take any positive value up to infinity, during training, it
begins by dominating the overall loss function. As training
progresses, it tends toward 0, at this point the dice-loss
component becomes more dominant which helps fine tune the
prediction.

A.2.4.1. Acknowledgments
This work was supported by PAC - PRECISE - LISBOA-01-0145-
FEDER-016394, co-funded by FEDER through POR Lisboa 2020
- Programa Operacional Regional de Lisboa PORTUGAL 2020
and Fundação para a Ciência e a Tecnologia.

A.2.5. ISLES17-A5. KU - Gated Two-Stage

Convolutional Neural Networks for Ischemic Stroke

Lesion Segmentation
Authors: Jee-Seok Yoon, Eun-Song Kang, and Heung-Il Suk
We propose a novel framework with a gated two-stage CNN for
ischemic stroke lesion segmentation. Specifically, there are two
CNNs in our framework. The first CNN produces a probability of
being normal tissue, i.e., normal, or being ischemic stroke lesion,
i.e., lesion. Based on our observation that as for the misclassified
voxels in images, the ratio between probabilities of normal and
lesion was low. That is, when the probabilities of normal and
lesion are close to each other, it can be a good indicator of low
confidence to make a decision. In this regard, we devise a gate
function that computes the probability ratio between normal and
lesion.When the ratio is lower than a threshold, the gate function
turns on the second CNN to operate. It is noteworthy that in
our second CNN, we also utilize the probabilities obtained from
the first CNN as context information. In our experiments, we
could validate the effectiveness of the proposed two-stage CNN
architecture.

A.2.5.1. Acknowledgments
This work was supported by Institute for Information &
Communications Technology Promotion (IITP) grant funded by
the Korea government (No. 2017-0-00451).

A.2.6. ISLES17-A6. KUL - Dual-Scale Fully

Convolutional Neural Network for Final Infarct

Prediction
Authors: David Robben and Paul Suetens
We perform a voxelwise classification to predict the final infarct
using relative time-to-peak, ADC and the available metadata.
Relative time-to-peak is calculated per voxel as the time-to-
peak (TTP) minus the first quartile of the TTP within the
brain mask. The given modalities have physical units that can
be interpreted absolutely, hence we use per modality the same
linear transformation for all subjects: subtraction by the median
mean value and scaling with the median standard deviation.
The metadata are normalized similarly, after converting the TICI
score into a numerical value. Inspired by (7) we implement
using Keras a fully convolutional neural network with two
pathways, one on the original resolution and one on a lower
resolution (in plane subsampled with a factor 3). Both pathways
have five 3×3×1 kernels and five 3×3×3 kernels to account
for the anisotropy of the voxel size. Both pathways and
the metadata are subsequently fed into two fully connected
layers before the final classification is made. The network is
regularized with drop-out and l2-regularization. We augment
the training data with flips along the x-axis, Gaussian noise
and small linear intensity transformations. Hyperparameters
are chosen by evaluating the network’s performance during
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cross-validation on the training set. Training is stochastic and
at testing time we use an ensemble of four networks whose
predictions are averaged. The predictions are thresholded at
0.5 and all voxels on the non-dominant side of the brain are
suppressed.

A.2.7. ISLES17-A7. MIPT - Neural Networks

Ensembles for Ischemic Stroke Lesion Segmentation
Authors:Maxim Pisov, Mikhail Belyaev, and Egor Krivov
We use four different architectures of CNNs for image
segmentation: a modification of ENet (20), DeepMedic (7),
and two versions of U-Net (36). ISLES-2017 problem is a
challenging task because of a strong anisotropy of the data:
a typical voxel size is about 1×1×6mm3. That’s why we used
E-Net and U-Net as 2D-segmentation networks: 2D slices
along the axial plane were fed into them at both training
and inference steps, while DeepMedic was used as a 3D-
segmentation network. Based on these network architectures we
built several models with different hyper-parameters. The masks
predicted by these models had significantly variable geometrical
properties, e.g., smooth/rough edges, smaller/bigger regions.
To reduce this variability, we used a weighted sum of final
models’ predictions. As a preprocessing step, we cropped all the
brain images to their bounding boxes and rescaled them to the
shape 192×192 in the plane xOy. To overcome the dataset size
limitations, we use two different data augmentation techniques:
classical spatial transformations (e.g., random rotations, random
flips along the coronal, and sagittal planes) and a new co-
registration-based method. The main idea of the method is
to map lesions from a brain with stroke to a healthy brain
using elastic co-registration. To augment data in that way
we used the approximately age-matched brains of healthy
subjects from the Alzheimer’s Disease National Initiative dataset
(adni.loni.usc.edu) as templates and applied the co-registration
algorithm from ANTs toolkit (26).

A.2.8. ISLES17-A8. NEU - Combination of U-Net and

Densely Connected Convolutional Networks
Authors: Donghyeon Kim, Joon Ho Lee, Dongjun Jung, Jong-min
Yu, and Junkil Been
Brain lesion segmentation is an advanced challenging problem
which has been handled by only experienced clinician and could
not be localized using a single brain imaging method. Thus, it is
essential to analyze it as multi modality sense. To address this
challenge, we take convolutional neural network, specially U-
Net (36), 3D U-Net (24), and Densely Connected Convolutional
Network (35). In feature selection, first of all, we searched
the best combination of multi data sets and the best number
of convolutional neural layers considering computation cost,
accuracy, and overfitting problem. With different numbers of
image dataset combination, each different image of training data
is ensembled to learn at the front of the bridge part between
encoding (convolution layer) and decoding (deconvolution
layer) in the proposed network. Furthermore, we consider the
type of data extraction of the images (2D and 3D patch) and
refining the result such as conditional random field (CRF).

A.2.9. ISLES17-A9. NUS - Fully Convolutional

Network With Hypercolumn Features for Brain Lesion

Segmentation
Authors:Mobarakol Islam and Hongliang Ren
The segmentation of stroke lesion is very necessary for
diagnosis, planning treatment strategies and monitoring disease
progression. We propose a fully convolutional network (FCN)
with hypercolumns features and sparse pixel predictions (e.g.,
PixelNet) for automatic brain lesion segmentation. PixelNet
extracts feature from multiple layers that correspond to the same
pixel and samples a modest number of pixels across a small
number of images for each SGD (Stochastic gradient descent)
batch update. Deep Learning (DL) models like CNN requires
large training data to generalize the model where most of the
biomedical problems have small available dataset. Moreover, the
problem of label imbalance leads the CNN often converge to
the certain labels. PixelNet deals these problems by utilizing
sparse pixel prediction on a modest number of pixels. We
utilize PixelNet in ISLES (Ischemic Stroke Lesion Segmentation)
challenge 2017 and achieve 68% Dice accuracy as preliminary
result.

A.2.10. ISLES17-A10. SNU-1 & SNU-2 - Schemic

Stroke Lesion Segmentation With Convolutional

Neural Networks for Small Data
Authors: Youngwon Choi, Yongchan Kwon, Myunghee Cho Paik,
Beom Joon Kim, and Joong-Ho Won
Our approach to the ISLES 2017 challenge was to build an
ensemble of three-dimensional CNN models predicting ultimate
ischemic stroke lesions from early imaging. We employed three
types of CNNs: (I) multiscale U-net (24), (II) multiscale fully-
convolutional network (7, 37), and (III) pyramid scene parsing
network (19). Negative Dice score, binary crossentropy and
weighted binary cross-entropy (21) were used as the loss for
training. The multiscale U-net architecture trained with the
negative Dice score achieved the best performance among the
nine combinations considered. The implementation details such
as pre-processing, data augmentation, and regularization are
similar to (30), which ranked the 1st place in ISLES 2016. There
are two major improvements from our approach to the 2016
challenge. First, the model complexity is reduced by 60% without
sacrificing the prediction performance: multiscale U-net with
40,000 parameters showed comparable performance to the 2016
model with 100,000 parameters. Second, the training process
is simplified by adopting probability calibration instead of the
fine-tuning step in the multiphase training (22).

A.2.10.1. Acknowledgments
This research was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIT, NRF-2016R1C1B1012002). Joong-HoWon’s
research was partially supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIT, No. 2014R1A4A1007895). Myunghee
Cho Paik’s research was supported by the National Research
Foundation of Korea under grant NRF-2017R1A2B4008956.
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A.2.11. ISLES17-A11. SU - Multi-scale Patch-Wise 3D

CNN for Ischemic Stroke Lesion Segmentation
Authors: Yilin Niu, Enhao Gong, Junshen Xu1, John Pauly, and
Greg Zaharchuk
A deep network model was trained with 3D CNN patch-
wise approaches and multi-scale structures. A three-dimensional
CNN was implemented to utilize available spatial information
efficiently and exploit the relationship between slices. Our patch-
wise approach extracts concentric small 3D patches from multi-
contrast input volumes to emphazise local voxel information,
minimize unrelated distant features and handle various volume
dimensions. Overlapping 3D patches were sampled from brain
regions (using brain masks) at multiple scales (with 2 scale
pathways using 36x36x5 and 16x16x3 patch size in the final
implementation) to capture both local and global contextual
information simultaneously (7). Rigid transformations were used
for data augmentation and weighting ratios on positive and
negative labels were added to ensure better data balance. The
model we implemented has 7 layers, including 1 resample layer
right after the inputs, 5 convolutional layers without pooling, 1
resample layer to ensure consistent resolution of the outputs from
two scale pathways and 2 fully-connected layers to generate final
6×6 patch outputs. From the 43 cases in the training dataset, we
split labeled data into 77% for training and 23% for validation.
The Dice Score Coefficient was used as training loss and quality
metrics in validation. The model is trained using tensor-flow
framework on a Linux server with 2 NVIDIA GTX-1080TI
GPUs.

A.2.12. ISLES17-A12. UA - Volumetric Multimodality

Neural Network For Ischemic Stroke Segmentation
Authors: Laura Silvana Castillo, Laura Alexandra Daza, Luis
Carlos Rivera, and Pablo Arbeláez
High level research architectures for semantic segmentation, such
as VGG (27) and FCN (37), take advantage of multiple image
resolutions to simultaneously extract fine details and coarse
structures from the input data by using groups of convolutional
layers and non-linearities, usually Rectified Linear Units (ReLU),
followed by pooling operations. However, as the resolution of
the image is reduced, so is the accuracy in the segmentation
location. To overcome this drawback, we propose a neural
network that extracts features from different input resolutions
in a parallel and independent manner. Additionally, the use
of a patch-wise approach helps to deal with the imbalance of
the data and reduces the memory consumption. This allows
us to retrieve detailed appearance data along with accurate
semantic information simultaneously. Our method is based on
DeepMedic (7) and V-Net (33), methods that have shown state
of the art on medical image segmentation. We developed a
new architecture with four parallel pathways, each one with six
convolutional layers and two residual connections, to extract
features on specific resolution levels. All the paths receive
patches centered at the same voxel, but extracted from different
versions of the image (original and downsampled by factors
of six and eight). The patches have input sizes of 363, 203,
183, and 153 for the normal, medium and low resolution
pathways. An upsample layer is used to make the outputs of the

same size. Finally, the results are concatenated and introduced
in fully connected layers to be combined and then classified.
The classification layer is a convolution with kernel size of
13.

A.2.13. ISLES17-A13. UL - 2D Multi-Scale Res-Net for

Stroke Segmentation
Authors: Christian Lucas and Mattias P. Heinrich
U-Nets (36) have shown competitive performance in different
biomedical tasks while being capable of segmenting objects
of different scales. Ischemic strokes vary widely in location,
shape, and extend of the affected tissue. We thus propose a
fully-convolutional architecture based on U-Nets for segmenting
transversal image slices. The challenge data has been resampled to
a common resolution of 1×1×5mm and slices are zero-padded,
if required. The network is provided 42 image features as input
(7 MR sequences, 3 slices including both direct neighboring
slices, 2 hemispheric flips). In the contracting path, fine-grained
information is improved across the five scale levels of the U-Net
(from 240×240 down to 15×15) by additional skip connections:
the input of each level is concatenated channel-wise with the
activation [similar to ResNets (29) but with concatenation] before
it is downsampled and passed to the deeper level. In the upscaling
path, the Dice loss at each level is computed on softmax activation
and summed up to a total loss for training. The loss of foreground
and background is weighted with its inverse prior probability
(estimated from training data) to account for class imbalance.
To speed up training, the network parameters are optimized
using the ADAM algorithm.Moreover, each convolution (in both
paths) is followed by a batch normalization as done before in
Lucas et al. (6).

A.2.13.1. Acknowledgments
This work was supported by the Graduate School for Computing
in Medicine and Life Sciences funded by Germany’s Excellence
Initiative [DFG GSC 235/2]. We would also like to thank Nvidia
Corporation for their support by providing us with a Titan Xp
graphics card.

A.2.14. ISLES17-A14. UM - Combining Clinical

Information for Stroke Lesion Outcome Prediction

Using Deep Learning
Authors: Adriano Pinto, Richard Mckinley, Victor Alves, Roland
Wiest, Carlos A. Silva, and Mauricio Reyes
For stroke lesion outcome prediction, we propose an end-to-
end deep learning method capable of merging MRI sequences
with non-imaging clinical information, namely the thrombolysis
in cerebral infarction (TICI) scale. Since MRI images come
from different centers, as preprocessing steps we resized all MRI
sequences to 256×256×32. In addition, the Tmax sequence was
clipped to [0, 20s] and the ADC sequence was clipped within the
range of [0, 2600] × 10−6mm2/s, as values beyond these ranges
are known to be biologically meaningless (3). Afterwards, all
sequences were linearly scale to [0, 255]. Our architecture has
two main blocks, the first is based on the 2D-Unet (36), whose
output feature maps are injected in a second block composed by
two layers of Gated Recurrent Units (41). The clinical domain
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knowledge is incorporated at two levels: population and patient
levels. The population level is coded in a custom loss function
based on the Fβ − score (40), having the beta parameter modeled
by the TICI scale. To encompass this clinical knowledge into the
testing phase we added an extra input channel that contains the
TICI score. Therefore, we aim to drive the learning process of
the architecture accordingly to the success of revascularization, in
order to produce optimist predictions when the predicted lesion
shrinks, and pessimistic predictions when the predicted lesion
increases.

A.2.14.1. Acknowledgments
Adriano Pinto was supported by a scholarship from the Fundação
para a Ciência e Tecnologia (FCT), Portugal (scholarship
number PD/BD/113968/2015). This work is supported by
FCT with the reference project UID/EEA/04436/2013, by
FEDER funds through the COMPETE 2020 - Programa
Operacional Competitividade e Internacionalização (POCI)
with the reference project POCI-01-0145-FEDER-006941.
We acknowledge support from the Swiss National Science
Foundation - DACH 320030L 163363.
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Background: Endovascular treatment (EVT) is effective for stroke patients with a

large vessel occlusion (LVO) of the anterior circulation. To further improve personalized

stroke care, it is essential to accurately predict outcome after EVT. Machine learning

might outperform classical prediction methods as it is capable of addressing complex

interactions and non-linear relations between variables.

Methods: We included patients from the Multicenter Randomized Clinical Trial of

Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN)

Registry, an observational cohort of LVO patients treated with EVT. We applied the

following machine learning algorithms: Random Forests, Support Vector Machine, Neural

Network, and Super Learner and compared their predictive value with classic logistic

regression models using various variable selection methodologies. Outcome variables

were good reperfusion (post-mTICI ≥ 2b) and functional independence (modified Rankin

Scale ≤2) at 3 months using (1) only baseline variables and (2) baseline and treatment

variables. Area under the ROC-curves (AUC) and difference of mean AUC between the

models were assessed.

Results: We included 1,383 EVT patients, with good reperfusion in 531 (38%)

and functional independence in 525 (38%) patients. Machine learning and logistic

regression models all performed poorly in predicting good reperfusion (range mean

AUC: 0.53–0.57), and moderately in predicting 3-months functional independence

(range mean AUC: 0.77–0.79) using only baseline variables. All models performed well

in predicting 3-months functional independence using both baseline and treatment
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variables (range mean AUC: 0.88–0.91) with a negligible difference of mean AUC

(0.01; 95%CI: 0.00–0.01) between best performing machine learning algorithm (Random

Forests) and best performing logistic regression model (based on prior knowledge).

Conclusion: In patients with LVO machine learning algorithms did not outperform

logistic regression models in predicting reperfusion and 3-months functional

independence after endovascular treatment. For all models at time of admission

radiological outcome was more difficult to predict than clinical outcome.

Keywords: ischemic stroke, prediction, machine learning, endovascular treatment, functional outcome,

reperfusion

INTRODUCTION

Endovascular treatment (EVT) is effective for ischemic stroke
patients with a large vessel occlusion (LVO) of the anterior
circulation. EVT results in a number needed to treat of 2.6 to
reduce disability by at least one level on the modified Rankin
Scale (mRS) (1). A recent meta-analysis showed a positive
treatment effect of EVT across patient subgroups including
different age groups, varying stroke severity, sex, and stroke
localization (1). However, many clinical and imaging predictors
or their combinations were not considered in the subgroup
analysis. Moreover, the RCTs that provided the data differed in
their patient selection criteria. To further improve personalized
stroke care, it is essential to accurately predict outcome and
eventually differentiate between patients who will and will not
benefit from EVT.

Machine learning belongs to the domain of artificial
intelligence and provides a promising tool in pursuing
personalized outcome prediction, which is increasingly used
in medicine (2–7). The machine learning methodology allows
discovering empirical patterns in data through automated
algorithms. In some clinical settings machine learning
algorithms outperform classical regression models, such as
logistic regression, possibly through more efficient processing
of non-linear relationships and complex interactions between
variables (6, 8), although poorer performance has also been
observed (9).

In this study, we used multiple machine learning algorithms
and logistic regression with multiple variable selection methods
to predict radiological and clinical outcome after EVT in a cohort
of well-characterized stroke patients. We hypothesized that
machine learning algorithms outperform classic multivariable
logistic regression models in terms of discrimination between
good and poor radiological and clinical outcome.

METHODS

Patients
We included patients registered between March 2014 and
June 2016 in the Multicenter Randomized Clinical Trial of
Endovascular Treatment for Acute Ischemic Stroke in the
Netherlands (MR CLEAN) Registry. The MR CLEAN Registry
is an ongoing, national, prospective, open, multicenter,
observational monitoring study covering all 18 stroke

intervention centers that perform EVT in the Netherlands,
of which 16 participated in the MR CLEAN trial (10). The
registry is a continuation of the MR CLEAN trial collaboration
and includes all patients undergoing EVT (defined as entry into
the angiography suite and receiving arterial puncture) for acute
ischemic stroke in the anterior and posterior circulation. In the
current analysis we included those patients who adhered to the
following criteria: age 18 years and older, treatment in a center
that participated in theMRCLEAN trial, and LVO in the anterior
circulation (internal carotid artery (ICA), internal carotid artery
terminus (ICA-T), middle (M1/M2) cerebral artery, or anterior
(A1/A2) cerebral artery), shown by CT angiography (CTA) or
digital subtraction angiography (DSA) (11).

Clinical Baseline Characteristics
We assessed the following clinical characteristics at admission:
National Institutes of Health Stroke Scale (NIHSS), Glasgow
Coma Scale, medical history (TIA, ischemic stroke, intracranial
hemorrhage, subarachnoid hemorrhage, myocardial infarction,
peripheral artery disease, diabetes mellitus, hypertension,
hypercholesterolemia), smoking, laboratory tests (blood
glucose, INR, creatinine, thrombocyte count, CRP), blood
pressure, medication (thrombocyte aggregation inhibitors, oral
anticoagulant drugs, anti-hypertensive drugs, statins), modified
Rankin Score (mRS) before stroke onset, administration of
intravenous tPA (yes/no), stroke onset to groin time, transfer
from another hospital, and whether the patient was admitted
during weekend or off hours.

Radiological Baseline Parameters
All imaging in the MR CLEAN Registry was assessed by an
imaging core laboratory (11). On non-contrast CT, the size of
initial lesion in the anterior circulation was assessed by the
Alberta Stroke Program Early CT Score (ASPECTS). ASPECTS
is a 10 point quantitative topographic score representing
early ischemic change in the middle cerebral artery territory,
with a scan without ischemic changes receiving an ASPECTS
of 10 points (12). In addition, presence of leukoaraiosis
and old infarctions, hyperdense vessel sign, and hemorrhagic
transformation of the ischemic lesion were assessed on non-
contrast CT.

On CTA, the core lab determined clot burden score, clot
location, collaterals, and presence of intracranial atherosclerosis.
The clot burden score evaluates the extent of thrombus in
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the anterior circulation by location scored on a 0–10 scale.
A score of 10 is normal, implying clot absence; a score of 0
implies complete multi-segment vessel occlusion (12). Presence
of intracranial carotid artery stenosis, atherosclerotic occlusion,
floating thrombus, pseudo-occlusion, and carotid dissection were
scored on CTA of the carotid arteries. Collaterals were assessed
using a 4 point scale, with 0 for absent collaterals (0% filling
of the vascular territory downstream of the occlusion), 1 for
poor collaterals (>0% and ≤50% filling of the vascular territory
downstream of the occlusion), 2 for moderate collaterals (>50%
and <100% filling of the vascular territory downstream of the
occlusion), and 3 for excellent collaterals (100% filling of the
vascular territory downstream of the occlusion) (13).

Treatment Specific Variables
Variables collected during EVT were type of sedation during
the procedure (general or conscious), use of a balloon guiding
catheter, carotid stent placement, performed procedure (DSA
only or thrombectomy), and type of EVT-device (stent retriever,
aspiration device, or a combination of both). In addition,
data were collected on adverse events during the procedure
(perforation, dissection, distal thrombosis on DSA).

Interventional DSA parameters in our dataset were occluded
vessel segment (ICA: origin, cervical, petrous, cavernous,
supraclinoid, M1-M4, A1, A2), arterial occlusive lesion (AOL)
recanalization score before and after EVT (14), evidence of
vascular injury (i.e., perforation, or dissection, vasospasm, new
clot in different vascular territory or distal thrombus confirmed
with imaging), andmodified Thrombolysis in Cerebral Infarction
(mTICI)-score before and after EVT. ThemTICI-score grades the
following categories of cerebral reperfusion: no reperfusion of the
distal vascular territory (0), minimal flow past the occlusion but
no reperfusion (1), minor partial reperfusion (2a), major partial
reperfusion (2b), and complete reperfusion (3) (15). Further
variables analyzed were time from stroke onset to recanalization,
post-EVT stay on intensive care, high care or stroke care,
NIHSS after EVT (<48 h), delta NIHSS (pre-treatment NIHSS
subtracted from NIHSS <48 h after EVT) and hemicraniectomy
or symptomatic intracranial hemorrhage <48 h after EVT.

Outcome
The primary radiological outcome was good reperfusion defined
as modified TICI-score directly post-procedure (post-mTICI)
≥ 2b (15). The primary clinical outcome was functional
independence at 3 months after stroke (mRS ≤ 2). We excluded
patients in whom any of the main outcomes (3-months mRS and
post-mTICI) were missing.

To investigate the full potential ofMachine learning compared
with conventional methods in different settings after stroke we
defined two prediction settings:

First, we assessed the probability of good reperfusion and
good 3-months functional independence in our cohort of
patients that underwent EVT based only on variables that were
available on admission before entry into the angiography suite.
With this baseline prediction setting we are able to investigate
the added value of machine learning for models that could

potentially support future clinical decision making regarding the
performance of EVT yes or no.

Second, we tested the models for predicting 3-months
functional independence in patients after EVT was performed.
For this analysis we used all variables collected up to 48 h after
the end of the endovascular procedure (baseline and treatment
variables).

Machine Learning Algorithms
Themachine learning algorithms used in our study were Random
Forests, Artificial Neural Network and Support Vector Machine,
because they are among the algorithms that are currently most
widely and successfully used for clinical data (2–7). Each one
of them represents a different algorithm “family,” each with
radically different internal algorithm structures (16). Since it was
not known beforehand which kind of algorithm would perform
best, we chose algorithms with different internal structures to
increase the probability of good discriminative performance. We
also used Super Learner, which is an ensemble method that finds
the optimal weighted combination of predictions of the Random
Forests, Artificial Neural Network and Support Vector Machine
algorithms used in this study. Ensemble methods, such as Super
Learner have been shown to increase predictive performance by
increasing model flexibility (17). For the implementation of all
machine learning algorithms we used off-the-shelf methods in
the Python module Scikit-Learn (18).

Super Learner

Super Learner is a stacking algorithm using cross-validated
predictions of other models (i.e., a machine learning algorithm
and logistic regression) and assigning weights to these
predictions to optimize the final prediction. Super Learner’s
predictive performance has been found to surpass individual
machine learning models in various clinical studies (17, 19, 20).

Random Forests

Random Forests consists of a collection of decision tree classifiers
that are fit on random subsamples of patients and variables in
the dataset. The variation of the subsampled variables creates
a robust classifier. In the decision trees, each node represents
a variable and splits the input data into branches based on an
objective function that determines the optimal threshold for
separating the outcome classes. The predictions from each tree
are used as “votes,” and the outcome with the most votes is
considered the predicted outcome for that specific patient (6, 21).
From the Random Forests algorithm variable importances can
be derived, which are the sum of weights of nodes of the trees
containing a certain variable, averaged over all trees in the forest
(22).

Support Vector Machine

Support Vector Machine (SVM) is a kernel-based supervised
machine learning classifier which can also be used to output
probabilities. The SVM works by first mapping the input data
into a high dimensional variable space. For binary classification,
a hyperplane is subsequently determined to separate two classes
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such that the distance between the hyperplane and the closest
data points is maximized (23).

Artificial Neural Network

In this study we use the multilayer perceptron, a popular class
of artificial neural network architecture composed of one or
more interconnected layers of neurons that process data from the
input layer into predictions for the output layer. The algorithm
computes a weight for each neuron based on input activation.
These weights are updated by backpropagation and stochastic
gradient descent (24, 25).

Logistic Regression
For logistic regression, generally a set of variables has to
be selected to be included in the model. Since model
performance can rely heavily on selecting the right variables,
we tested five different variable selection methods prior
to logistic regression. We first selected variables based on
prior knowledge, a still widely used method that could be
considered “classical” (26). We selected 13 variables available at
baseline that were included in a previous study for a similar
purpose (27) (Supplementary Table Ia). In addition, from
baseline and treatment variables we selected 15 variables based
on expert opinions of vascular neurologists and radiologists
(Supplementary Table Ib).

We further considered four automated variable selection
methods: (i) backward elimination, which is also considered to be
a more classical approach (26), and three state-of-the-art variable
selection methods: (ii) least absolute shrinkage and selection
operator (LASSO) (28), (iii) Elastic Net, which is a modification
of the LASSO found to outperform the former while still having
the advantage of a similar sparsity of representation (29), and (iv)
selection based on Random Forests variable importance.

Analysis Pipeline
We imputed missing values using multiple imputations
by chained equations (MICE) (30). Variables with 25%
missing values or more were discarded from further analysis.
All remaining variables used in this study are listed in
Supplementary Tables II, III. In total, 53 baseline variables
and 30 treatment variables were used as input for machine
learning algorithms and automated variable selection methods
for logistic regression.

The ordinal clinical (NIHSS) and radiological (clot burden
and ASPECTS) scores were presented as continuous scores in
all models to increase model efficiency, and we assumed linear
trends underlying the ordinal scores.

We used nested cross-validation (CV), consisting of an outer
and an inner CV loop. In the outer CV loop we used stratified
CV with 100 repeated random splits resulting in a training set
including 80% and a test set including 20% of all patients. Each
training set was used as input for the inner CV loop, consisting
of 10-fold CV (31, 32). In the inner CV loop we selected
variables for the logistic regression models using the different
variable selection methods, and optimized hyperparameters
of all machine learning models. Hyperparameters are tuning
parameters specific to each machine learning algorithm whose
values have to be preset and cannot be directly learned from
the data. We optimized hyperparameters with the random grid
search module from Scikit-Learn (18). We selected those with
highest area under the receiver operating characteristic (AUC)
across all internal CV folds to find the best set of selected variables
and hyperparameters. Figure 1 shows a schematic representation
of our nested CV methodology.

For all Random Forests models of both prediction settings
we ranked variables by decreasing variable importance. For each
variable we assessed the frequency of being among the 15 most

FIGURE 1 | Schematic representation of nested cross-validation methodology.
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TABLE 1 | Baseline characteristics of participants.

Characteristics All patients (n = 1,383)

Mean age ± SD (years) 69.8 ± 14.4

Men, n (%) 738 (53.5)

NIHSS score, median (IQR)* 16 (11–20)

Mean systolic blood pressure ± SD (mm Hg) 150 ± 25

MEDICAL HISTORY, N (%)

Atrial fibrillation 411 (30.7)

Hypertension 697 (51.1)

Diabetes mellitus 235 (17.1)

Myocardial infarction 216 (15.9)

Peripheral artery disease 127 (9.4)

Ischaemic stroke 227 (16.5)

Hypercholesterolemia 411 (29.7)

Pre-stroke mRS > 2, n (%) 158 (11.6)

Smoking, n (%) 314 (22.9)

MEDICATION USE, N (%)

DOAC** 35 (2.6)

Coumarine 179 (13.0)

Antiplatelet 461 (33.7)

Heparin 52 (3.8)

Blood pressure medication 707 (52.1)

Statin 490 (36.2)

Intravenous alteplase treatment, n (%) 1,054 (76.2)

ASPECTS, median (IQR) 9 (7–10)

Time from stroke onset to groin in minutes, median (IQR) 210 (160–270)

Collateral score ≥ 2 764 (55)

*National Institutes of Health Stroke Scale score.

**Direct oral anticoagulant drugs.

important variables in a Random Forests model for each of the
100 external CV folds (Table 3).

Model Performance
We assessed model discrimination (the ability to differentiate
between patients with good and poor outcome) with receiver
operating characteristic (ROC) analyses. Because of our outer
CV loop with 100 repeated random splits, we obtained 100
different AUCs from every model. We computed the average
ROC-curve and mean AUC with 95% confidence intervals (CI)
for all models. We evaluated differences between mean AUCs of
the best performingmachine learningmodel and best performing
logistic regression model by computing the difference of means
including the associated 95% CI.

RESULTS

Of the 1,627 patients registered between March 2014 and June
2016, we excluded 244 patients for this analysis because of age
<18 (n = 2), posterior circulation stroke (n = 79), missing
MR CLEAN trial center (n = 20), and missing mRS or post-
mTICI (n = 143). Mean age was 69.8 years (SD ± 14.4) and
738 (54%) of the 1,383 included patients were men. In total, 531
(38%) patients had good reperfusion after EVT and 525 (38%)

were functionally independent (mRS ≤ 2) 3 months after stroke.
Baseline characteristics are shown in Table 1.

Prediction of Good Reperfusion After EVT
in Patients at Time of Admission
Discrimination between good and poor reperfusion of the
best machine learning algorithm (Support Vector Machine,
mean AUC: 0.55) and the best logistic regression model (using
backward elimination, mean AUC: 0.57) was similar (difference
of mean AUCs: 0.02; 95% CI: 0.01–0.03). Discrimination was
poor for all models, with a mean AUCs ranging from 0.53 to
0.57 (Table 2). Variable selection using LASSO or Elastic Net
was not possible likely because the signal-to-noise ratio was
insufficient (18).

Prediction of 3-Months Functional
Independence in Patients at Time of
Admission
Discrimination of good functional outcome of the best machine
learning algorithm (Super Learner, mean AUC: 0.79) and the best
logistic regression model (using LASSO, mean AUC: 0.78) was
similar (difference of mean AUCs: 0.01; 95% CI: 0.01–0.01).

Discrimination was moderate for all models, with a mean
AUCs ranging from 0.77 to 0.79.

Prediction of 3-Months Functional
Independence in Patients After
Performance of EVT
Discrimination of good functional outcome of the best machine
learning algorithm (Random Forests, mean AUC: 0.91) and the
best logistic regression model (using prior knowledge, mean
AUC: 0.90) was similar (difference of mean AUCs: 0.01; 95% CI:
0.00–0.01).

Discrimination was good for all models, with mean AUCs
ranging from 0.88 to 0.91.

We performed a post-hoc analysis in patients with good
reperfusion as defined by post-mTICI ≥ 2b, predicting 3-
months functional outcome both at time of admission and after
performance of EVT. We did not find significant differences in
performance between machine learning algorithms and logistic
regression models in this patient subset (data not shown).

InTable 3we show the top 15 variables based on the frequency
of being among the 15 most important variables in a Random
Forests model for each of the 100 external CV folds.

DISCUSSION

We found no difference in performance between best performing
machine learning algorithms and best performing logistic
regression models in predicting radiological or clinical outcome
in stroke patients treated with EVT. For prediction of good
reperfusion using variables available at baseline, all models
showed a poor discriminative performance. This could indicate
that reperfusion after EVT depends on characteristics not
present in our variables available at time of admission, such as
vascular anatomy or interventionalist related factors. Prediction
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TABLE 2 | Discrimination of machine learning algorithms and logistic regression models across the various prediction settings.

Models, AUC (95% CI)* Prediction setting (used variables: predicted outcome)

Baseline: post-mTICI Baseline: mRS All variables: mRS

Super learner 0.55 (0.54–0.56) 0.79 (0.79–0.80) 0.90 (0.90–0.91)

Random forests 0.55 (0.55–0.56) 0.79 (0.79–0.79) 0.91 (0.90–0.91)

Support vector machine 0.53 (0.53–0.54) 0.78 (0.77–0.78) 0.88 (0.88–0.89)

Neural network 0.53 (0.53–0.54) 0.77 (0.76–0.77) 0.88 (0.88–0.89)

LR: AUTOMATED SELECTION**

Random forests 0.55 (0.55–0.56) 0.78 (0.78–0.78) 0.90 (0.90–0.90)

LASSO NAU 0.78 (0.78–0.79) 0.90 (0.89–0.90)

Elastic net NAU 0.77 (0.77–0.78) 0.89 (0.88–0.89)

Backward elimination 0.57 (0.57–0.58) 0.78 (0.77–0.78) 0.90 (0.89–0.90)

LR: prior knowledge‡ 0.55 (0.55–0.58) 0.78 (0.78–0.79) 0.90 (0.90–0.90)

*Model discrimination is assessed by calculating mean Area Under the Curve (AUC) of the receiver operating characteristic across all outer cross-validation folds.

**Logistic regression using automated variable selection methods.
UVariable selection not possible, likely due to insufficient signal-to-noise ratio.
‡Logistic regression using variables based on prior knowledge.

TABLE 3 | Variable importance of Random Forests for various prediction settings (used variables: predicted outcome).

Baseline: post-mTICI Freq* Baseline: mRS Freq All variables: mRS Freq

RR systolic at admission 100 Age 100 NIHSS after 24–48 h 100

Duration stroke onset to groin 100 NIHSS at baseline 100 Delta NIHSS: follow-up minus baseline 100

RR diastolic at admission 100 Duration stroke onset to groin 100 Age 100

Thrombocyte count 100 Glasgow Coma Scale 100 NIHSS at baseline 100

Age 100 RR systolic at admission 100 Duration from onset to recanalization 100

Creatinine 100 CRP 100 Duration of procedure 100

CRP 100 Creatinine 100 Delta NIHSS ≥ 4 points higher after EVT 100

NIHSS at baseline 100 Thrombocyte count 100 Duration stroke onset to groin 100

Clot burden score 100 RR diastolic at admission 100 Glasgow Coma Scale 100

Glasgow ComaScale 100 mRS prior to stroke 100 Creatinine 100

ASPECTS score at baseline 100 ASPECTS score at baseline 100 CRP 100

Glucose 100 Glucose 100 Thrombocyte count 100

Location: proximal M1** 74 Clot burden score 99 RR systolic at admission 100

Hyperdense artery sign on NCCT 50 Presence of leukoaraiosis 96 mRS prior to stroke 91

History of atrial fibrillation 32 Collateral score 77 RR diastolic at admission 93

NCCT, non-contrast CT; CRP, C-Reactive Protein; RR, blood pressure; NIHSS, National Institutes of Health Stroke Scale score.

*Frequency of being among the 15 most important variables in a Random Forests model for each of the 100 external CV folds.

**Location of intracranial occlusion on CTA.

of 3-months functional independence using variables known
at baseline was moderate, predicting 3-months functional
independence using baseline and treatment variables resulted in
good performance.

We hypothesized that machine learning would outperform
logistic regression models due to simultaneous assessment of a
large number of variables, and more efficient processing of non-
linear relations and interactions between them. Although a large
number of variables (83 in total, see Supplementary Tables II,
III) were available for analysis in the MR CLEAN Registry
database, performance of best machine learning algorithms and
best logistic regression models were similar. This could indicate
that interactions and non-linear relationships in our dataset were
of limited importance.

To interpret our results, several methodological limitations
have to be considered. First, due to their great flexibility machine
learning algorithms are prone to overfitting, which results in
optimistic prediction performance. To account for overfitting we

used nested CV, which is considered to be an effective method for
this aim (33). Second, our outer CV loop resulted in 100 AUCs
permodel leading to relatively small confidence intervals of mean
AUCs. Although this increases the probability of statistically
significant differences between mean AUCs of various models,
the clinical relevance of these mean AUC differences is difficult
to interpret. Because in our study mean AUC differences between
models are minimal, clinical relevance of these differences is
also negligible. Third, we used data from a registry. Registries
might be prone to selection bias. However, we expect that
selection bias in our study was minimal because the MR CLEAN
Registry in principle covers all patients treated with EVT in the
Netherlands. In addition, in all centers patients were treated
according to national guidelines, and registration of treatment
was a prerequisite for reimbursement (11).

Strong points of this study include the large sample size and
standardized collection of patient data. Moreover, because of
extensive hyperparameter tuning and state-of-the art variable
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selection methods, machine learning and logistic regression
models were compared at their best performance. In several
other studies that compared machine learning algorithms with
only logistic regression methods using variables based on prior
knowledge, machine learning outperformed logistic regression
(6, 7, 34). Variable selection based on prior knowledge has the
major drawback that predictive patterns in the data may be
missed, as variable selection is strictly based on the literature
and expert opinion (26). In our study however, logistic regression
using variables based on prior knowledge performed similarly to
logistic regression using automated variable selection methods.

The distinction between machine learning and “classical”
regression methods is largely artificial. However, a clear
distinction between various machine learning algorithms and
logistic regression exists in terms of model transparency,
which could be seen as the understanding of the mechanism
by which the model works (35). Logistic regression has the
advantage of transparency at the level of individual variable
coefficients, since from these coefficients odds ratios can
be derived. However, variable importances derived from the
Random Forests algorithm also offer insight in the importance
of individual variables for prediction performance (22). These
variable importances take interaction between variables into
account and have a similar interpretation for continuous and
discrete variables, unlike odds ratios which constitute an effect
per unit change of a predictor. Hence, Random Forests could be
used as an efficient screening tool to pick up predictive patterns in
the data that could potentially lead to further hypothesis-driven
research. In Table 3 we show the top 15 variables from either
the baseline or baseline and treatment variable set, based on
Random Forests variable importance. The majority of variables
in Table 3 do not overlap with the selection of variables based on
prior knowledge, potentially providing researcher with additional
information.

In this dataset we found no clinically relevant differences in
prediction of reperfusion and 3-months functional independence
across all models. However, since it is generally not known on
beforehand which type of model will result in the best predictive
performance in a new dataset, our methodology could be of
importance in future studies. We present an analysis pipeline
with both machine learning algorithms and logistic regression
models including state-of-the-art variable selection methods.
Assessing predictive performance of all models simultaneously
enables the researcher to make the proper trade-off between
predictive performance and model transparency. As our analysis
pipeline is fully automated and input variables and outcome label
can be altered at will, it is relatively easy to reuse in future studies.
The Python code of our pipeline has beenmade publicly available

in an online repository (https://github.com/L-Ramos/MrClean_
Machine_Learning).
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Background: The current lack of effective tools for prehospital identification of Large

Vessel Occlusion (LVO) represents a significant barrier to efficient triage of stroke patients

and detriment to treatment efficacy. The validation of objective Transcranial Doppler (TCD)

metrics for LVO detection could provide first responders with requisite tools for informing

stroke transfer decisions, dramatically improving patient care.

Objective: To compare the diagnostic efficacy of two such candidate metrics: Velocity

Asymmetry Index (VAI), which quantifies disparity of blood flow velocity across the

cerebral hemispheres, and Velocity Curvature Index (VCI), a recently proposed TCD

morphological biomarker. Additionally, we investigate a simple decision tree combining

both metrics.

Methods: We retrospectively compare accuracy/sensitivity/specificity (ACC/SEN/SPE)

of each method (relative to standard CT-Angiography) in detecting LVO in a population

of 66 subjects presenting with stroke symptoms (33 with CTA-confirmed LVO), enrolled

consecutively at Erlanger Southeast Regional Stroke Center in Chattanooga, TN.

Results: Individual VCI and VAI metrics demonstrated robust performance, with area

under receiver operating characteristic curve (ROC-AUC) of 94% and 88%, respectively.

Additionally, leave-one-out cross-validation at optimal identified thresholds resulted in

88% ACC (88% SEN) for VCI, vs. 79% ACC (76% SEN) for VAI. When combined, the

resultant decision tree achieved 91% ACC (94% SEN).

Discussion: We conclude VCI to be superior to VAI for LVO detection, and provide

evidence that simple decision criteria incorporating both metrics may further optimize.

Performance: Our results suggest that machine-learning approaches to TCD

morphological analysis may soon enable robust prehospital LVO identification.

Registration: Was not required for this feasibility study.

Keywords: transcranial doppler, ultrasound, ischemic stroke, large vessel occlusion, decision tree, diagnostic

biomarker
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INTRODUCTION

Acute Ischemic Stroke (AIS) is the leading cause of long-
term disability in the United States, and fifth leading cause
of death (1). Current treatment for AIS includes the use of
intravenous tissue Plasminogen Activator, and endovascular
mechanical thrombectomy with a clot extraction or aspiration
device. Although these therapies provide effective treatment
options for Large Vessel Occlusion (LVO), their use is still
limited by short time windows from symptom onset during
which they are optimally effective (2–4). Indeed, only a small
fraction of candidate patients who could ultimately benefit
from endovascular treatment currently receive it (5). Early
LVO identification is key to enabling rapid triage and transfer
to comprehensive stroke centers, thus facilitating access to
appropriate care. Computed Tomography Angiography (CTA) is
the current gold standard for stroke diagnosis, but is limited to in-
hospital use, or a low number of prohibitively expensive mobile
stroke ambulances. Unfortunately, current prehospital stroke
assessment scales lack reliability due to training requirements and
low inherent accuracies (6, 7); causing delays in triage, transfer,
and treatment.

Transcranial Doppler (TCD) ultrasound is a reliable
diagnostic tool for assessing the presence and severity of LVO
(8–11), which has the additional advantages of being non-
invasive, inexpensive, and portable. Because it directly measures
Cerebral Blood Flow Velocity (CBFV), TCD is a strong candidate
technology for prehospital diagnosis and assessment of LVO.
Indeed, bedside TCD examinations to detect stenosed and/or
occluded intracranial vessels are routinely conducted as standard
of care at many comprehensive stroke centers (12). Numerous
studies have been published comparing TCD diagnosis of
arterial LVO with CTA imaging; reporting sensitivity (SEN) and
specificity (SPE) ranging between 79 and 98% depending on
occlusion location (13–17). A limiting factor of these studies
is the TCD operator’s ability to locate and interpret the CBFV
waveform. Such challenges have contributed to TCD being
critically underutilized for stroke assessment.

For stroke diagnosis, specialized training is required to
inspect flow velocity and morphology across multiple vessels
and depths in both cerebral hemispheres. One of the most
cited papers for stroke diagnosis using TCD was published by
Demchuk et al. (10), which instructs the operator to categorize
waveforms according to evidence of stroke-related pathology;
namely dampened, blunted, minimal, or absent signal. A number
of additional TCD exam methodologies with different criterion
for LVO assessment have been published (15, 17). Typically,
CBFV and power M-mode (PMD) waveforms are obtained
for flow through the Middle, Anterior, and Posterior Cerebral
Arteries (MCA, ACA, and PCA) in each cerebral hemisphere, as
well as the Internal Carotid Arteries (ICA). Heuristic assessments
are then made based on numerous features, including relative
velocities, collateral flow, PMD resistance signatures, and the
presence of pathological waveform morphologies.

Assessment of these categories relies heavily on qualitative
interpretation by specialists which cannot be replicated by
less formally trained personnel. The challenge of moving LVO
detection to the prehospital setting thereby obviates the need

for objective metrics by which first responders might reliably
evaluate TCD signals. An intuitive first candidate for such a
metric is CBFV asymmetry, as it is already well established
that velocity disparity, both between homologous vessels in
opposite hemispheres (10, 18) as well as adjacent vessels in
an occluded hemisphere (10, 15), can be indicative of vascular
occlusion. One promising metric for LVO detection based on
velocity disparity was published by (15); showing area under
the Receiver Operating Characteristic curve (ROC-AUC) of
92.6%. However, their metric also relied on PMD resistance
signatures as a predictive feature, which were not objectively
computed, and was limited in application to occlusions of
the MCA.

However intuitive, assessment of velocity asymmetry also
comes with the inherent concern that velocity estimates in
adjacent vessels and opposite hemispheres can be greatly
impacted by anatomical variability (incident angle of the vessel
and ultrasound beam), as well as by intrarater measurement
inconsistency (19). Moreover, reliance on mean velocity
disparity inherently discards the morphological information
currently utilized in routine stroke assessment protocols.
Such assessments incorporate morphological information
explicitly, but in a subjective manner which requires expert
interpretation. However, a number of recent studies have
observed morphological changes associated with various medical
conditions which are both objectively quantifiable (20–22),
and independent of significant changes in mean velocity (23).
Pulsatility Index is an example of a well known and widely
clinically utilized morphological TCD variable (24); one which
evidence suggests is not useful for detecting LVO (15).

Toward the aim of quantifying TCD waveform morphology
for the purpose of LVO identification, we have recently proposed
a diagnostic biomarker termed Velocity Curvature Index (VCI)
(25, 26). Mathematically, it is a straightforward extension of
the concept of graph curvature; one which is sensitive to the
morphological structure of the pathological waveforms first
described by Demchuk et al. (10). In this work we retrospectively
compare the diagnostic utility of VCI to that of a standard
Velocity Asymmetry Index (VAI) for the detection of LVO in a
clinical subject population collected in-hospital. Additionally, we
evaluate a simple decision tree classifier designed to incorporate
complimentary information from both metrics. Decision trees
are a commonly used diagnostic methodology in several areas of
medicine (27, 28), which have previously been used with TCD
variables to screen for cervical vascular injury (29). To these
ends, we employ leave-one-out cross validation and subsequent
sensitivity analysis to assess performance as diagnostic thresholds
are weighted toward detection of true positives. Our goal is the
validation of TCD-based decision criteria which are objective,
intuitive, and easily communicated; allowing physicians
and first responders alike a common language for LVO
assessment.

MATERIALS AND METHODS

Subject Examination and Imaging
We acquired TCD waveforms from two clinical populations
enrolled consecutively at Erlanger Health System’s Southeast
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Regional Stroke Center in Chattanooga, TN, from October 2016
through September 2017. The LVO group was comprised of
patients with CTA-confirmed occlusion of the M1/M2 branches
of the MCA and/or ICA (proximal extracranial or terminal
intracranial segments); these occlusion locations being selected
since they are the large cerebral arteries most amenable to
neurovascular intervention. The In-Hospital Control group
(IHC) consisted of patients who arrived at the hospital presenting
with stroke symptoms, but were later confirmed negative for LVO
by imaging. Patients in both groups received TCD examinations
in addition to standard care (patient history, monitoring,
pharmaceuticals, and CT/A/perfusion imaging). Patients were
eligible for enrollment if a complete TCD exam was acquired
within 4 h of CTA, and none of the following exclusions applied:
(1) Head CT findings consistent with acute primary intracranial
hemorrhage, (2) Hemodynamically unstable patients requiring
pharmacological support for hypotension; (3) Subjects who
underwent partial or full craniotomy; (4) Additional intracranial
pathologies present (tumor, hydrocephalus, etc.); (5) Anticipated
insufficient time to acquire a complete set of scan as described
by the protocol; (6) Significant hemodynamic pharmacological
agent (cocaine, amphetamine, etc.); (7) Subjects who are under
arrest for a felony.

CTA examinations were performed using a GE Lightspeed
VCT 64-section multidetector scanner (GE Healthcare,
Milwaukee, WI) with a slice thickness of 0.625mm, and bolus
injection of 70–150mL of Omnipaque 350 (GE Healthcare,
Milwaukee, WI) contrast material (4.0 mL/s). CTA images
were reformatted in the coronal and sagittal plane, and 10-mm
maximum intensity projection reconstructions were rendered
and sent to PACS for review. Occlusion location was determined
by the radiologist on call, who was blinded to any results of the
TCD examination.

Complete TCD examinations included (at minimum) one pair
of left/right MCA scans at depths between 45 and 60mm, each
containing 15 or more individual beat waveforms (see Figure 1).
Subjects for whom complete examinations were not obtained
were counted as missing/indeterminate data and excluded from
analysis. Data was acquired during available intervals between
patient testing/treatment, and in no way impacted patient
care. The TCD technician was often present during initial
evaluation of the subject, and so was not entirely blinded to
all clinical information or imaging results. Sample size was
not predetermined for this feasibility study, being established
pragmatically as the maximum number of subjects attainable in
the allotted time frame. Experiment protocols were approved
by University of Tennessee College of Medicine Institutional
Review Board (ID: 16-097). Reporting in this manuscript is
structured in accordance with the Standards for Reporting of
Diagnostic Accuracy Studies [(30); see Appendix for detailed
criteria checklist].

Waveform Processing and Feature
Extraction
Recording

TCD scans were acquired by a trained technician using 2 MHz
hand-held ultrasound probes. CBFV signals associated with

the left/right MCA were identified via insonation through the
transtemporal window. CBFV envelopes were digitally sampled
at 125Hz and recorded throughout the entire exam. Once the
CBFV signal was identified and optimized at a specific depth,
waveform recordings were then made in 30-s intervals. The
technician was instructed to obtain recordings for asmany depths
as possible between 45 and 60mm in both the left/right cerebral
hemispheres. Start times for each interval were marked by the
technician using a custom event remote, which prompted a 30 s
countdown to a corresponding stop event. TCD envelopes and
event information were aligned using custom software (Python
2.7; Kivy 1.9) running on Windows 10.

Processing

Average beat waveforms from each recorded depth interval were
extracted using a combination automated beat identification
algorithm with manual checking/editing. In this procedure,
individual beats within each interval were first identified
automatically using an internally developed beat extraction tool,
and displayed to the user for manual confirmation/editing.
Detected beats which lacked clear pulsatile structure and/or
deviated anomalously from the group average (usually due
to probe displacement during recording), were excluded. The
remaining beats were then aligned and averaged, resulting in
a single representative beat waveform for each recorded depth
interval (see examples in Figure 1).

Since Doppler velocities scale with the cosine of the incident
angle between the ultrasound beam and underlying blood flow
(31), TCD waveforms for a given vessel with the highest
measured velocities are assumed tomost accurately reflect reality.
In line with this reasoning, for each subject we selected a
single bilateral (left/right) pair of average beat waveforms for
analysis consisting of those with maximal mean velocity across
all recorded depths for each hemisphere.

VCI

Curvature is a well-defined mathematical property of space
curves which quantifies the degree to which a curve deviates from
being “straight” at a given point. VCI is an application of the
curvature metric specific to TCD which quantifies the degree to
which a beat is blunted and/or dampened. Since curvature is a
nonlinear function sensitive to small inflections associated with
high frequency noise, we first smooth the average beat waveform
via convolution with the Hanning window (9ms). Moreover, we
elect to consider only curvature associated with the beat systolic
complex, where the signal-to-noise ratio is presumably greatest.
The systolic complex, or “beat canopy,” comprises the proportion
of the beat with the highest velocities and richest morphological
structure.

To compute VCI for a given TCD beat waveform, curvature
is first computed for each time point (ti) of the smoothed beat
(denoted x(ti) below) via the discretized equation for graph
curvature (equation 1) expressed in terms of finite differences.
1 and δ

2 in equation 1 denote the first order backward (equation
2) and second order central (equation 3) finite difference
equations. VCI, defined by equation 5, is computed as the sum
of curvature taken over all individual time points comprising
the beat canopy (C). The beat canopy is defined in equation 4
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FIGURE 1 | Example beat waveforms from IHC (A), and LVO (B) groups, along with associated group averages (C,D). The IHC example subject recordings shown in

A display high VCI in both hemispheres, and relatively symmetric bilateral velocities (VAI = 0.95). The LVO subject recordings depicted in B show decreased VCI which

is especially pronounced in the ipsilateral hemisphere (same side as occlusion as confirmed by CTA), as well as less symmetric velocity (VAI = 0.69). Light gray traces

in (A), and (B) depict the individual beat ensemble (recorded over 30 s) from which each average beat waveform is derived. Grand averages across average beat

waveforms for all subject recordings are shown in (C,D). The IHC grand averages shown in C exhibit similar expected velocity across left and right hemispheres,

whereas LVO grand averages (D) exhibit pronounced inter-hemisphere disparity relative to occlusion location, with markedly reduced curvature especially noticeable in

ipsilateral recordings.

as the set of time points wherein velocity exceeds one quarter
of its total diastolic-systolic range (td, and ts denoting the time
points corresponding to diastolic minimum and systolic max,
respectively). Since the hypothesized effect of occlusion on the
TCD waveform is to lower VCI in the occluded vessel, when
assessing a bilateral pair of waveforms we take VCI as the
minimum computed for each member of the pair. VCI is a
positive metric which, in principle, has no upper bound, but is
clearly bounded in practice (see Figure 2A).

k (ti) =

∣

∣δ2 [x] (ti)
∣

∣

(

1+ (1 [x] (ti))
2
)
3
2

(1)

1 [x] (ti) = x (ti) − x (ti−1) (2)

δ2 [x] (ti) = x (ti+1) − 2x (ti) + x (ti−1) (3)

C =

{

i : x (ti) > x (td) +
x (ts) − x (td)

4

}

(4)

VCI =

∑

i∈C
k (ti) (5)

VAI

Velocity Asymmetry Index is ametric which quantifies the degree
to which average CBFV observed for a vessel in a given cerebral
hemisphere differ from that observed in the corresponding vessel
in the opposite hemisphere (see LVO example in Figure 1). The
hypothesis that CBFV in an occluded vessel may be lower than
that of the corresponding unaffected hemisphere is intuitive, but

also supported by previous work (18). For a bilateral pair of
left/right average beat waveforms, denoted xL(t) (with NL total
time points), and xR(t) (with NR time points) in equations 6 and
7, respectively, VAI (defined in equation 8) is computed as the
minimum average velocity across hemispheres divided by the
corresponding maximum. By definition, VAI is a positive definite
metric bounded on the closed interval [0, 1].

µL =
1

NL

∑NL

i=1
xL (ti) (6)

µR =
1

NR

∑NR

i=1
xR (ti) (7)

VAI =
min ({µL,µR})

max ({µL,µR})
(8)

Feature Statistical Analysis
For both VCI and VAI, resultant group samples were not
normally distributed. Accordingly, we tested significance of
observed differences in group distributions for each feature using
the Mann-Whitney U test statistic. The U-statistic is directly
proportional to the common language effect size (by a factor
of the product of the group sample sizes under comparison),
which is equivalent to the area under the Receiver Operating
Characteristic curve (ROC-AUC). Additionally, we computed
ROC curves detailing separability of subject group distributions
(LVO vs. IHC) for each feature. Specifically, the ROC curves give
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FIGURE 2 | Scatter plots relating the Velocity Asymmetry Index and Velocity Curvature Index (A), along with a decision tree partitioning the two-dimensional feature

space (B).

True Positive Rate (TPR) as a function of False Positive Rate
(FPR) for each possible feature threshold. To quantify binary
classification performance, we computed SEN, SPE, and accuracy
(ACC) at the thresholds which maximized Youden’s J-statistic
(32):

J=TPR−FPR (9)

Additionally, we bootstrapped 95% confidence intervals (CI)
on group means for each feature; accomplished by iteratively
resampling each group distribution with replacement (10,000
iterations), and each time taking the mean (CI given by the 2.5th
and 97.5th percentile of the resultant empirical distribution) (33).
Statistical tests and ROC curves were computed using standard
python libraries; SciPy version 1.0, and Scikit-learn version 0.19.1
(34), respectively.

LVO Classification
Decision Tree Classifier

We sought to combine VCI and VAI into a single binary classifier
with simple and intuitive decision criteria. The approach adopted
here is to augment the bilateral VCI assessment such that
subject pairs with VCI less than some low critical threshold are
classified as LVO, whereas pairs exceeding some high critical
threshold are classified as IHC. Pairs observed to fall between
these thresholds are deemed uncertain and decided then based
on VAI. This procedure effectively partitions the 2D decision
space into two subspaces with piece-wise linear boundaries (see
Figure 2). The procedure for fitting the thresholds based on a
given set of training data were as follows. First, the low VCI
threshold (VCIMIN) was fit using all the training data. Subjects
with paired VCI below the threshold were predicted as LVO,
and set aside. Next, the high VCI threshold (VCIMAX) was fit
from the remaining data. Subjects with supra-threshold VCI were
predicted as IHC, and set aside. Finally, the remaining data was
used to fit the VAI threshold (VAICRIT), with sub/supra-threshold
subjects predicted as LVO/IHC, respectively. Specifically, each of

the three thresholds (VCIMIN , VCIMAX , and VAICRIT) were fit as
the threshold which maximized Youden’s J statistic for the data
applicable to each decision (see also the sensitivity weighted J-
statistic used to determine thresholds for sensitivity analysis in
section Sensitivity Analysis).

Model Cross-Validation

For both individual diagnostic metrics (VAI and VCI), as well
as the decision tree model, leave-one-out cross-validation was
performed to assess generalization of classification performance
near decision boundaries. In this iterative procedure, a single
subject is removed from the pooled data, and the predictive
model is derived via training (i.e., threshold optimization)
with the remaining subjects. The excluded subject’s data is
then predicted using the trained model, and this procedure is
repeated for each subject to obtain a complete set of cross-
validated predictions from which to assess binary classification
performance metrics (SEN/SPE/ACC).

Sensitivity Analysis

For many clinical problems, including LVO detection, diagnostic
net benefit is optimized by increased detection of true positives
at the cost of missing true negatives (i.e., SEN is prioritized
over SPE). However, poor diagnostics for which SEN is
maximized often have no clinical value, as SPE may plummet
and overall ACC approaches chance. In order to assess how
performance characteristics of our classifiers changed when
priority is weighted toward increased sensitivity, we performed
a sensitivity analysis wherein we iterated cross-validation of
each model, each time incrementing classification thresholds
away from the starting point of Youden’s maximal J, toward
increasing sensitivity. The procedure can be conceptualized as
simply adjusting the thresholds up along the associated ROC
curves toward increased true positive rate. Mathematically, this
was accomplished by introducing a parameter (α) to modify
the formula for Youden’s J statistic as given in formula 9,
and choosing thresholds to maximize the resultant index (Jα).
Classifier performance was assessed by cross-validating each
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model with α ranging from 0.5 (threshold equivalent to Youden’s
maximal J) to 1 (maximal sensitivity) in steps of 0.01.

Jα=αTPR− (1−α) FPR (10)

RESULTS

Subject Demographics
The current analyses included 33 LVO subjects (16 female),
and 33 IHC subjects (13 female), with average ages of 66.9
years (SD = 15.7), and 56.4 years (SD = 16.3), respectively.
A total of 156 subject screenings were attempted at Erlanger
Medical Center, of which 68 were excluded due to screening
failures (time required to complete exam, subject compliance,
etc.). Of subjects with sufficient initial screenings, 50 and 38
were initially enrolled in the LVO and IHC groups, respectively.
Of the LVO subjects, 3 were discontinued (subject either
expressed desire to discontinue, or was transferred or died
before enrollment could be completed). An additional 14 LVO
and 5 IHC subjects were subsequently excluded due to the
presence of disqualifying criteria unknown at the time of
enrollment. In the LVO group, there were 20 subjects with M1
occlusions, 3 with M2 occlusions, and 8 with ICA occlusions. An
additional subject had dual occlusions of both the M1 and ICA
(same hemisphere), and another additional subject had bilateral
occlusions of both ICA, in addition to an M2 occlusion. TCD
exams were performed an average of 33min (SD = 20) post-
CTA for IHC subjects compared to 43min (SD = 44) post-
CTA for LVO subjects (difference not significant between groups;
t = −1.15, p = 0.26). At time of admittance, LVO subjects
were more physiologically/cognitively impaired as assessed by
National Institute of Health Stroke Scale (NIHSS), with average
scores of 16.8 (SD = 6.6), compared to 1.9 (SD = 2) for IHC
(differences strongly significant between groups; t = −12.2; p
<< 0.001). No adverse events were reported for any subjects as a
result of TCD examination.

Individual Metric Statistical Comparisons
Figure 3 shows VAI and VCI metric distributions for LVO
and IHC groups (A, C), and associated ROC curves depicting
separability of group metrics (B, D). VAI means were greater
for IHC subjects (0.89, CI = 0.86–0.92) relative to LVO (0.65,
CI = 0.58–0.72). Associated ROC-AUC was observed at 88.4%,
with significant group distribution differences confirmed by
Mann-Whitney testing (p << 0.001). Similarly, VCI means
were greater for IHC subjects (4.95, CI = 4.55–5.36) relative
to LVO (2.66, CI = 2.38–2.97); with associated ROC-AUC
observed at 94.2%. Significant group distribution differences
were likewise confirmed byMann-Whitney testing (p<< 0.001).
SEN/SPE/ACC at thresholds corresponding to Youden’s maximal
J are detailed in Table 1 for both metrics.

Sensitivity Analysis
Figure 4 shows SEN, SPE, and ACC dependence on the alpha
weighting parameter using leave-one-out cross-validation for
each classifier. By definition, the sensitivity of each classifier
increases with increased alpha. Interestingly, performance

FIGURE 3 | Group feature distributions (A,C) were significantly different for

both metrics (p << 0.001). Associated ROC curves (B,D) confirm both VAI

and VCI provide diagnostically relevant information concerning the presence of

LVO, with the greater separability observed for VCI suggesting it more

information rich.

TABLE 1 | Descriptive information and performance indicators comparing LVO

and IHC groups for VAI and VCI metrics at thresholds corresponding to Youden’s

maximal J statistic.

Metric Mean (LVO,

IHC)

CI (LVO, IHC) AUC SEN SPE ACC

LVO VS. IHC GROUP METRICS

VAI 0.65, 0.89 (0.58–0.72),

(0.86–0.92)

0.88 0.82 0.82 0.82

VCI 2.66, 4.95 (2.38–2.97),

(4.55–5.36)

0.94 0.91 0.88 0.89

In column 3, CI refers to 95 percent Confidence Intervals around the respective means

given in column 2.

indicator trajectories vary substantially between the VAI classifier
and the other two (VCI and decision tree). For VAI, observed
SPE and ACC are optimal near the maximal J (alpha =

0.5), and rapidly degrade with increased prioritization of SEN
corresponding to alpha greater than 0.6. In contrast, for VCI
and the decision tree, a stable range of alpha exists away from
the maximal J for which SPE, and ACC are optimized and all
performance indicators are stable. This range, roughly 0.6–0.8, is
indicated in gray in Figure 4. Above this range, SEN increases for
VCI and decision tree are accompanied by precipitous decreases
in ACC and SPE. Together these results suggest a natural optimal
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alpha range for prioritization of sensitivity for the VCI and
decision tree classifiers.

Figure 5 shows cross-validated confusion matrices for each
classifier with alpha specified at 0.6, which represents the start
of the optimal range for the VCI and decision tree classifiers, and
the tail end of the optimal range for the VAI classifier. For VAI,
we observed an overall accuracy of 79%, with SEN/SPE of 76%,
and 82%, respectively. For VCI, we observed an overall accuracy
of 88%, with SEN/SPE of 88%, and 88%, respectively. Finally, for
the decision tree we observed an overall accuracy of 91%, with
SEN/SPE of 94%, and 88%, respectively. Together, these results
demonstrate the superiority of the VCI classifier relative to VAI.
However, within the framework of the decision tree, VAI helped
to increase SEN of LVO identification relative to VCI alone.
Figure 5 results are summarized in Table 2.

DISCUSSION

To our knowledge, this work represents the first published
LVO decision criteria based on TCD variables which can be

computed algorithmically and interpreted objectively. Results
from all classifiers fall into the range observed in previous TCD
studies using complex multi-vessel recording protocols (13, 17).
Moreover, previous studies using predictive variables amenable
to ROC analysis have not been subject to cross-validation in
the manner we have performed here. Most importantly, these
metrics substantially outperform stroke severity scales currently
in prehospital use, which recent reviews suggest are unlikely to
predict LVO with both high sensitivity and specificity (6, 7).
Specifically, (6) published performance indicators for 5 such
stroke assessment scales (RACE, 3ISS, LAMS, CPSSS, and PASS);
reporting ACC and SEN capped at 74 and 64% across all scales.
A sense of the potential for improvement upon these numbers
can be gleaned from our simple decision tree which achieved
cross-validated ACC and SEN exceeding 90%.

Previous work assessing TCD efficacy in detecting LVO align
well with our current results. Tsivgoulis et al. (17) detected
occlusions and stenoses based on the presence of the pathological
waveforms described by Demchuk et al. (10) with SEN/SPE
of 79 and 94%, respectively. A similar exam protocol was

FIGURE 4 | Cross-validated performance indicators for the VAI (A) and VCI (B) metrics as well as combined decision tree classifier (C). Sensitivity increases with the

alpha weighting parameter as specificity decreases. VAI specificity decreases rapidly with increased sensitivity, whereas VCI and the decision tree display a stable

range (indicated in gray) wherein specificity and accuracy are optimal.

FIGURE 5 | Confusion matrices at the specified threshold corresponding to alpha = 0.6 in the optimal range for VAI (A), VCI (B), and the Decision Tree Classifier (C).
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TABLE 2 | Performance indicators for leave-one-out cross-validated classifiers

comparing LVO and IHC groups, with classification thresholds specified at alpha

equal to 0.6.

Classifier SEN SPE ACC

CROSS-VALIDATED LVO CLASSIFIER PERFORMANCE METRICS

VAI 0.76 0.82 0.79

VCI 0.88 0.88 0.88

Decision tree 0.94 0.88 0.91

used by Brunser et al. (13), but with additional power M-
mode criteria also considered, which achieved SEN/SPE of 90
and 94% detecting occlusion of any non-specific artery. The
sensitivity and specificity observed for our metrics compare
reasonably well with these previous results, which is especially
encouraging considering our features were extracted from
bilateral examination of a single vessel. Reliance on the MCA
signals is pragmatic, but also represents a notable opportunity
for improvement upon our current experimental paradigm.
The MCA possesses the longest expected segment of probeable
depths, and is thus most easily insonated and reliably located,
but there is clearly more diagnostic information available
in other vessels in the form of relative morphology and
collateral flow which may improve performance in future
experiments.

It is notable that the performance indicator curves we
observed for VCI and the decision tree were extremely similar.
This is a natural consequence of the decision criteria, which
dictates that VAI is used only to decide “uncertain” subjects,
thus serving mainly to improve upon VCI sensitivity to
the degree allowable by the training data. Further work is
needed to determine if there are specific occlusion types or
patient demographics for which each metric works particularly
better or worse, which should help to optimize decision
criterion. In this configuration, VCI is doing the “heavy
lifting” in our decision tree. It is an effective diagnostic
metric because it is sensitive to the morphological structure
of Demchuk’s minimal, blunted, and dampened flows (10).
The blunted waveform, for example, possesses an inherently
smooth (i.e., low curvature) systolic complex, and is thus
readily quantified by VCI. Forthcoming work will analyze in
specific detail the manner in which VCI captures the subtle
morphological variations associated with pathological LVO
waveforms.

Some limitations of our study and directions for future work
should be noted. The primary factor which could potentially
inhibit generalisability of our results is the small sample
size of our study. Much further data is required to refine
estimates of morphological variability inherent in LVO and
clinical control patient populations. Additionally, numerous
important subgroup analyses are required to determine if/how
TCD morphology depends on demographic and clinical factors
(age, gender, occlusion type, etc). It should also be noted that
the TCD technician’s exposure to patient clinical information
represents a potential source of bias which should be mitigated in
future work bymore thorough blinding. Finally, the relationships

between curvature, heart rate, and stroke pathology require
further investigation. In our sample, LVO subjects had an average
heart rate of 87.9 (SD = 22.2) beats per minute (BPM), vs.
71.2 (SD = 11) BPM for IHC; which was significantly different
between groups (t = 3.8, p < 0.001). However, there was no
significant correlation between heart rate and curvature within
either subject group (r = −0.006, p = 0.9 for IHC; r = −0.29,
p = 0.1 for LVO). Moreover, when we use heart rate itself as a
predictor to distinguish between groups, we observe an AUC of
73%, considerably underperforming both the VAI (88% AUC),
and VCI (94% AUC) metrics. So, while it is possible that heart
rate accounts for some degree of variance between groups, it
remains unclear whether the effect is causal or correlative. It is
certainly plausible that the lack of blood supply characteristic of
LVO causes heart rate to increase; meaning heart rate is effectively
part of the diagnostic signal. Further work is needed to establish
how elevated heart rate might affect VCI when occlusion is not
present.

One strength of the current approach is simplicity of data
acquisition and communicability of decision criteria. However,
as the amount of data we acquire increases, the subtle
variations we will ultimately wish to detect will undoubtedly
require more complicated and abstracted models. Given the
efficacy of initial results, the road map to such models is
encouraging. Incorporation of depth dependent and inter-
hemispheric morphological dynamics across multiple vessels
might ultimately allow precise prehospital localization of
occlusion, and distinction between occlusive and hemorrhagic
strokes. Moreover, digital rendering of individual subject
vasculature, currently possible with emergent technologies such
as 3D MRA time of flight imaging, could facilitate ultra
rapid mapping and scanning across multiple vessels, as well
as development of anatomically realistic mathematical models
of cerebral hemodynamics. Such models could dramatically
increase our understanding of the fluid mechanics involved in
vascular occlusion, and the associated impact on morphological
biomarkers like VCI.

CONCLUSIONS

Our results suggest both VAI and VCI contain robust
information concerning the presence of intracranial occlusion.
Both are objective and real-time computable, and thus represent
promising candidate metrics for the development of TCD-based
prehospital LVO diagnostic systems. The feature distributions
and classification performance indicators we observed suggest
VCI may be superior to VAI for LVO detection, but even
simple approaches to feature combination such as the decision
tree analyzed herein may serve to further increase diagnostic
accuracy. More data is needed to determine how well these
decision criteria scale and generalize to a wider range of
subject demographics and pathologies. Nonetheless, these results
demonstrate the foundational potential for machine-learning
approaches to TCD morphological analysis to enable faster and
more widespread access to life saving medical intervention in the
future.
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Machine Learning (ML) through pattern recognition algorithms is currently becoming an

essential aid for the diagnosis, treatment, and prediction of complications and patient

outcomes in a number of neurological diseases. The evaluation and treatment of Acute

Ischemic Stroke (AIS) have experienced a significant advancement over the past few

years, increasingly requiring the use of neuroimaging for decision-making. In this review,

we offer an insight into the recent developments and applications of ML in neuroimaging

focusing on acute ischemic stroke.

Keywords: stroke, neuroimaging, machine learning (artificial intelligence), neurosciences, support vector machina

(SVM), stroke management, stroke diagnosis

Machine Learning (ML), considered a branch of artificial intelligence, is a field of computer
science and engineering that facilitates extraction of data based on pattern recognition. A computer
learns from previous mistakes after repeated analysis of data and masters tasks that were previously
considered too complex for a machine to process (1). The development of these systems to interpret
data in neuroimaging has provided valuable information for research in matters of the interaction,
structure, and mechanisms of the brain and behavior in certain neurological disorders (2, 3).

Machine learning systems are now being implemented in the clinical neurosciences to
devise imaging-based diagnostic and classification systems of neoplasms of the brain (4–6),
certain psychiatric disorders (7–11), epilepsy (12, 13), neurodegenerative disorders (14–20), and
demyelinating disorders (21–23). In this review, we discuss the present-day role of ML focusing on
acute ischemic stroke (AIS), discussing its potential and limitations.

MACHINE LEARNING IN THE CLINICAL NEUROSCIENCES

The use of neuroimaging in the evaluation of many neurological diseases such as dementia,
epilepsy, demyelinating diseases, depression, and schizophrenia has grown tremendously. This
burgeoning interest has been met with an expansion of ML algorithms in neurosciences (1, 24).

Oliveira et al. (14) evaluated an unsupervised ν-One-Class Support Vector Machine
(ν-OC-SVM) trained with neuroimaging variables, such as cortical thickness and cerebral volume
of the brain, from healthy subjects to calculate an abnormality index and compare it with patients
diagnosed with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). The method
correctly classified AD subjects as outliers with an accuracy of 84.3%, and the brain abnormality
index was directly associated with the group diagnosis, clinical data, biomarkers, and risk of future
conversion to AD.

In schizophrenia, Greenstein et al. (9) used Random Forest (RF), a machine learning algorithm,
to discriminate between childhood-onset schizophrenia and healthy patients based on brain
magnetic resonance imaging (MRI) measurements of regions of interest (ROI): left temporal
lobes, bilateral dorsolateral prefrontal regions, and left medial parietal lobes. The algorithm
correctly classified groups with 73.7% accuracy, and a greater brain-based probability of illness
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was associated with a statistically significant worse functioning
and fewer developmental delays. Machine learning can also
help distinguish between subsets of a certain disease. Bleich-
Cohen et al. (7) utilized Searchlight Based Feature Extraction
(SBFE), a data-driven multi-voxel pattern analysis (MVPA)
approach, to search for activation clusters of cognitive loads in
brain functional Magnetic Resonance Imaging (fMRI). This ML
method helped to identify the two subgroups of schizophrenic
patients with and without Obsessive-Compulsive Disorder
(OCD) with a 91% accuracy, successfully delineating between
symptom severity and a psychiatric comorbidity.

An et al. (12) compared whole-brain white matter changes
in patients with mesial temporal epilepsy and matched healthy
controls, evaluating tract-based spatial statistics and fractional
anisotropy with an ML approach. This ML-based approach
discriminated each group accurately and demonstrated high
sensitivity to changes in fractional anisotropy in mesial temporal
epilepsy patients, which may be beneficial when no lesion can
be identified on neuroimaging. Moghim et al. (13) introduced a
predictive model for seizure occurrence in a single patient. This
approach was based on a multi-class support vector machine
(SVM) and 14 selected features of an electroencephalogram
in patients with epilepsy. The predicted time of seizure
with a window between 20 and 25min was reported with
an average sensitivity of 90.15, 99.44% specificity, and 97%
accuracy.

Lesion burden estimation in traumatic brain injury (TBI),
AIS, dementia, and multiple sclerosis serves to identify the
affected regions, the extent of damage, and therefore, the
functional outcome in such patients. Kaminatas et al. (25)
proposed an approach for lesion segmentation using a multi-
modal brain MRI based on an 11-layers deep, multi-scale, 3D
Convolutional Neural Networks (CNN) called Deep Medic.
Their proposed novel training scheme is based on two main
components, a 3DCNN that produces accurate soft segmentation
maps and a connected Conditional Random Field that imposes
regularization constraints on the CNN output and produces the
final hard segmentation labels. This allows for a deeper and more
discriminative delimitation of lesion burden, with the highest
reported accuracy observed in a cohort of patients with severe
TBI.

CHALLENGES IN ACUTE ISCHEMIC
STROKE

Stroke is the leading cause of serious long-term disability and
the fifth leading cause of death in the United States, with its
prevalence increasing with advancing age in both males and
females, as each year ∼795,000 Americans experience a new
or recurrent stroke (26). This burden is coupled with a direct
medical expense of an estimated $23.6 billion according to the
last annual report of 2014 (26). With the increasing complexity
of the acute ischemic stroke therapy and the rising of per-person
costs, there is a real and urgent need for a technological solution
to aid in the streamlined care of patients and selection of the
appropriate therapeutic intervention.

Present treatments for AIS revolve around rapid reperfusion
of ischemic tissue, using intravenous (IV) thrombolytic
medications such as tissue plasminogen activator (tPA)
and/or endovascular techniques to mechanically remove the
obstruction to blood flow. Contemporary clinical trials are now
implementing a higher complexity of neuroimagingmodalities to
define treatment standards, resulting in an increased economic
as well as logistical burden on healthcare. The WAKE-UP
multicenter clinical trial (27) used magnetic resonance imaging
(MRI) in patients that presented with an unknown time of
onset of symptoms to identify brain regions that exhibited a
restricted diffusion on diffusion-weighted imaging (DWI) scan
and no T2-signal hyperintensity on fluid-attenuated inversion
recovery (FLAIR) sequence, estimating the onset of the infarct
to be <4.5 h and thus guiding stroke therapy. Previous to
this study, non-contrast head CT, an imaging modality that is
widely and readily available, was the only imaging screen used
to assess for tPA eligibility. The new, expanded tPA indication
requiring MRI poses challenges for a majority of centers, which
do not have ready access to this type of imaging emergently
and 24/7.

The growing dependence on neuroimaging in determining
treatment options for acute ischemic stroke is observed as well for
endovascular stroke therapy (EST), which has shown to improve
outcome when used in combination with standard medical care
(28). In 2015, numerous clinical trials demonstrated a clear
benefit of endovascular treatment over medical management
alone for a select group of patients with acute ischemic stroke
seen within 6 h of the onset of stroke (29–33), and relied
on imaging modalities including NCHCT, CT/MR angiography
(CTA/MRA) and CT/MRI perfusion (CTP/MRP) scans. Results
derived from these trials showed an advantage in using
advanced imagingmodalities in identifying patients with a higher
likelihood of better outcomes from EST. Two additional clinical
trials (34), DAWN and DEFUSE3, published in 2018 evaluated
a much larger population of stroke patients, those presenting up
to 24 h after their symptoms, and required the use of perfusion
imaging with CT or MRI.

This increased reliance on neuroimaging has led to a
tremendous improvement in our ability to care for patients
with AIS but has been coupled with a number of challenges.
Specifically, limited availability of these imaging modalities, a
shortage of specialists to promptly interpret these studies, as
well as inter-observer variability have limited the implementation
of the above findings. Indeed, studies evaluating inter-observer
performance on Alberta Stroke Program Early CT Score
(ASPECTS), a 10-region imaging grading system in stroke,
showed significant variability (35–39). Further adding to the
complexity of acute stroke treatment is that while the need
to perform and interpret advanced neuroimaging has recently
increased, the urgency with which such evaluation is being
performed has remained the same. For every minute that a
patient with a large vessel occlusion fails to be treated, an
estimated 1.9 million neurons and 14 billion synapses are
lost in the brain (40). Trials evaluating efforts to promptly
assess and treat patients with AIS have demonstrated superior
outcomes and decreased morbidity. In patients treated with
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intravenous thrombolysis, reducing treatment times by 15-
min was associated with reduced in-hospital mortality, reduced
incidence of symptomatic intracranial hemorrhage, and a greater
likelihood of independent ambulation at discharge (41, 42). In
patients treated with endovascular therapy, for every 15-min
reduction of onset to recanalization of the occluded artery, 34 per
1,000 treated patients had improved disability outcome (43). As
such, there is an urgent need for systems to rapidly and precisely
interpret neuroimaging data in acute ischemic stroke.

IMPLEMENTATIONS OF MACHINE
LEARNING IN ACUTE ISCHEMIC STROKE

Machine learning algorithms have been used to assist in
the diagnosis and individualized treatment decisions in acute
ischemic stroke. The implementations of machine learning
are numerous, from early identification of imaging diagnostic
findings (44), estimating time of onset (27, 45), lesion
segmentation (46), and fate of salvageable tissue (47, 48), to the
analysis of cerebral edema (49, 50), and predicting complications
(51–53) and patient outcomes (54–57) after treatment. A
summary of themost recent articles investigating the applications
of machine learning for automated diagnosis and outcome
prediction in acute ischemic stroke is given in Table 1.

One of the most relevant clinical criteria to decide if a patient
with an acute ischemic stroke is eligible for IV thrombolysis with
tPA is a time from symptom onset of <4.5 h, but in medical
practice, stroke symptom onset is usually unknown. Ho et al. (45)
developed a deep learning algorithm based on an autoencoder
architecture to extract imaging features in perfusion-weighted
images (PWI) in MRI to determine the time elapsed since stroke
onset.

Lesion estimation and identification of salvageable tissue are
essential in the acute decision making in stroke, but the expense
and resources involved present a challenge for physicians. Chen
et al. (46) used a framework with two CNNs to segment stroke
lesions using DWI in MRI. One CNN was a combination of
two DeconvNets (EDD Net), and the second CNN was a multi-
scale convolutional label evaluation net (MUSCLE Net) to help
reduce the potential false positives detected by the EDD Net. The
dataset was built with clinical acquired DWI from 741 subjects,
exhibiting a high lesion detection rate, and accuracy.

Measurement of the perfusion-diffusion mismatch and
calculation of infarction probability usingMRI-based approaches
for tissue-at-risk evaluation can be applied in stroke treatment
decisions. Bouts et al. (47) analyzed the ability of five
algorithms to depict potentially salvageable tissue using MRI
imaging from rats subjected to a right-sided MCA occlusion
without subsequent reperfusion, and with spontaneous or
thrombolysis-induced reperfusion. The highest accuracy of risk-
based identification of acutely salvageable ischemic tissue that
could recover on subsequent reperfusion was observed using a
generalized linear model (Dice’s similarity index = 0.79 ± 0.14).
Similarly, Huang et al. (48) used an SVM to predict infarct on
a pixel-by-pixel basis using acute cerebral blood flow (CBF) and
apparent diffusion coefficient (ADC) on MRI data. Serial images

were collected during the acute phase up to 3 h and again at 24 h
from 12 rats in each of the stroke groups exposed to a 30-min,
60-min, or permanent middle cerebral artery (MCA) occlusion.
The accuracy observed for this approach was high in all groups
and was enhanced by adding neighboring pixel information and
spatial infarction incidence.

Takahashi et al. (44) designed a method to identify a
hyperdenseMCA, also known as theMCA dot sign, an important
evaluation in an NCHCT as it represents a thrombus in a vessel.
The authors created ROIs around the Sylvian fissure region
and identified MCA dots based on the morphologic top-hat
transformation, and classified images using an SVM with four
features. Two hundred and ninety-seven CT images from seven
patients with anMCA dot sign were classified by an SVM system,
which exhibited amaximum sensitivity of 97.5% at a false positive
rate of 1.28 per image and 0.5 per hemisphere while assessing the
MCA dot sign.

Another application ofML inAIS is predicting factors that will
contribute to neurological deterioration and increasedmorbidity,
such as cerebral edema. Chen et al. (49) proposed a machine
learning algorithm using serial CT scans of stroke patients to
delineate and measure cerebrospinal fluid (CSF) volume over
time, as it may represent a sensitive biomarker of cerebral edema
progression. The initial cohort consisted of 155 subjects and
preliminary processing using a generalized estimating equations
(GEE) model top to calculate CSF volumes over time, adjusting
for age, demonstrated that a reduction in CSF volume from
baseline to final CT was correlated with infarct volume, the
presence of cerebral edema, and the degree of midline shift.
Comparatively, Dhar et al. (50) validated an automated technique
for intracranial CSF segmentation by an ensemble of RF-
based machine learning with a geodesic active contour (GAC)
segmentation. CSF spaces were outlined on scans performed
within 6 h of stroke onset and then closest to 24 h later in 38
patients. This method accurately tracked changes in CSF volume
with an average DSC > 0.7. Pearson correlation coefficients
between the changes in CSF and the ground truth were found to
be statistically significant. These algorithms represent a potential
for future research and may serve as a biomarker of cerebral
edema severity.

The outcome of acute ischemic stroke patients is dependent
on therapy, and risks for complications should be considered
when deciding for stroke therapy. Yu et al. (53) established
a method to predict the location and extent of hemorrhagic
transformation (HT) in stroke, the most severe complication
following reperfusion therapy. PWI and DWI of 165 patients
treated with reperfusion therapy in a stroke center were collected
and analyzed using five machine learning approaches, with
Kernel spectral regression exhibiting an accuracy of 83.7± 2.6%.
A multi-center retrospective study (52) assessed the predictive
power for hemorrhagic transformation of PWI in MRI. Dynamic
T2- weighted perfusion MR images from 263 patients from four
medical centers were collected and served as input for linear
and nonlinear predictive models, the latter having an average
accuracy >85% in predicting HT. In one study, Nielsen et al.
(54) ran a deep learning convoluted neural network (CNNdeep)
with 9 biomarkers as input to calculate lesion volume in patients
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TABLE 1 | Use of machine learning in stroke diagnosis and outcome prognosis.

References ML-based approach Feature Results*

Asadi et al. (55) Artificial neural network Prediction of Dichotomized mRS 70% accuracy

Bentley et al. (51) Supported vector machine Prediction of sICH 74.4% accuracy

Bouts et al. (47) Adaptive boosting Prediction of infarction volume 89 ± 5% accuracy

Chen et al. (46) RF + GAC Relation of CSF shifts and cerebral edema r = 0.879

Forkert et al. (56) Multi-class supported vector machine Predicted 30-day post-stroke mRS

Multi-value mRS 56% accuracy

Multi-value mRS±1 82% accuracy

Dichotomized mRS 85% accuracy

Huang et al. (48) Supported vector machine Predicted infarct penumbra volume

30-min occlusion of MCA 86 ± 2.7% accuracy

60-min occlusion of MCA 89 ± 1.4% accuracy

Permanent occlusion of MCA 93% accuracy

Scalzo et al. (52) Non-linear regression model Prediction of HT >85% accuracy

Takahashi et al. (44) Supported vector machine Detection of MCA dot sign 97.5% sensitivity

Yu et al. (53) SR-KDA Prediction of HT 83.7 ± 2.6% accuracy

Nielsen et al. (54) Deep features CNN Prediction of patient outcome after IV thrombolysis 88 ± 0.12% accuracy

*The results displayed for each article are the most accurate or relevant in matter of the machine learning approach utilized according to the author.

CNN, Convoluted Neural Network; GAC, Geodesic Active Contour; HT, Hemorrhagic transformation; MCA, Middle Cerebral Artery; mRS, modified Rankin Scale; RF, Rain Forest; sICH,

symptomatic Intracranial Hemorrhage; SR-KDA, Spectral Regression Kernel Discriminant Analysis.

treated with IV tPA. Input data from 29 untreated patients and
35 patients that received IV tPA were compared. This model
predicted final infarct volume with 88% accuracy, being superior
to other models in this study. Bentley et al. (51) predicted
the risk of symptomatic intracerebral hemorrhage (sICH) after
IV thrombolysis therapy. CT images of 116 patients who were
treated with IV tPA, 16 of which had sICH, were entered as inputs
into an SVM along with clinical severity. They found a better
prognostication of the SVM when compared to the traditional
clinician-based prognostication tools such as Hemorrhage after
thrombolysis (HAT), and Sugar, Early Infarct signs, Dense
cerebral artery sign, Age, and NIHSS scores (SEDAN).

Machine learning algorithms based on structural and
functional MR images as input may assist in predicting motor
deficits in stroke patients. Forkert et al. (56) applied 12 SVM
classification models in calculating the corresponding 30-day
mRS score of ischemic stroke patients through parameters
including lesion overlap from different brain regions, stroke
laterality, and other optional features such as infarct volume,
NIHSS at admission, and patient age. Superior mRS prediction
was observed by integrating the optional features and providing
stroke location information, with a multi-value mRS prediction
accuracy of 56%, and a dichotomized mRS (0–2 vs. 3–5)
prediction accuracy of 85%. In a study by Rondina et al. (57),
a proposed model to predict upper extremity motor deficit
in 50 stroke patients was developed from data on structural
MRI instead of functional MRI. Lesion probability images were
derived using patterns of voxels and was then compared to lesion
load per ROI in predicting outcomes, with the former providing
better results when multiple regions of interest such as a range of
cortical and subcortical motor areas and corticospinal tract were
analyzed.

CURRENT CHALLENGES AND FUTURE
DIRECTIONS IN MACHINE LEARNING FOR
ACUTE ISCHEMIC STROKE

Early promising results have demonstrated that ML techniques
may be useful as decision support tools in treatment choices
for AIS. To improve the generalizability of the findings
discussed above, however, there are a number of limitations
in currently existing architectures that need to be addressed.
The first limitation is that of sample size. Deep learning
algorithms using medical imaging often require datasets of
tremendous magnitude, the types of which may not be readily
available. For example, an ML algorithm demonstrated superior
performance at differentiating skin cancer lesions from their
benign corresponding equivalent when compared against 21
board-certified dermatologists, using a dataset of nearly 130,000
images (58). A dataset of this size in AIS for public use
does not currently exist. This shortcoming, however, has been
recognized as a problem that can and ought to be solved,
and multiple calls for the creation of such a repository
have been made (59). The obstacles in inter-institutional data
sharing, as well as a lack of funding to correctly pre-process
and curate these images, along limitations to host such a
dataset account for some of the delays in the creation of this
repository.

Another limitation encountered in neuroimaging-based ML
techniques is the need for labeling regions of interest or “gold
standard” findings on the images. That is to say, beyond collecting
the images, the images and the findings on the images would need
to be identified for the question being evaluated. For example, a
study evaluating the presence or absence of a hyperdense MCA
would need each image to be tagged with the true result, to train
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the algorithm. Without foresight, this degree of manual curating
could be required for each individual project.

CONCLUSION

Machine learning applications are expanding in the medical
field for diagnostic and therapeutic purposes, and the rapidly
expanding and increasingly neuro-imaging reliant field of
AIS is proving to be fertile ground. There is a particular
need for ML solutions in this field, which is faced with the
challenge of increasingly complex data, with limited human

expert resources. Future directions in ML for AIS may
require collaborative approaches across multiple institutions
to build a robust dataset for efficient training of ML
networks.
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21. Ion-Mărgineanu A, Kocevar G, Stamile C, Sima DM, Durand-Dubief F,

Van Huffel S, et al. Machine learning approach for classifying multiple

sclerosis courses by combining clinical data with lesion loads and

magnetic resonance metabolic features. Front. Neurosci. (2017) 11:398.

doi: 10.3389/fnins.2017.00398

22. Nedjati-Gilani GL, Schneider T, Hall MG,Wheeler-Kingshott CA, Alexander

DC.Machine learning based compartmentmodels with permeability for white

matter microstructure imaging. Med Image Comput Comput Assist Interv.

(2014) 17(Pt3):257–64. doi: 10.1007/978-3-319-10443-0_33

23. Zhao Y, Healy BC, Rotstein D, Guttmann CR, Bakshi R, Weiner

HL, et al. Exploration of machine learning techniques in predicting

multiple sclerosis disease course. PLoS ONE (2017) 12:e0174866.

doi: 10.1371/journal.pone.0174866

24. Oktar N, Oktar Y. Machine learning and neuroimaging. J Neurol Sci Turk.

(2015) 32:43.

25. Kamnitsas K, Ledig C, Newcombe VFH, Simpson JP, Kane AD, Menon

DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for

accurate brain lesion segmentation. Med Image Anal. (2017) 36:61–78.

doi: 10.1016/j.media.2016.10.004

26. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR,

Cheng S, et al. Heart disease and stroke statistics-2018 update: a report

from the American Heart Association. Circulation (2018) 137:e67–e492.

doi: 10.1161/CIR.0000000000000558

27. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B,

et al. MRI-guided thrombolysis for stroke with unknown time of onset.N Engl

J Med. (2018) 379:611–22. doi: 10.1056/NEJMoa1804355

28. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al.

Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit

and infarct. N Engl J Med. (2018) 378:11–21. doi: 10.1056/NEJMoa1706442

29. BerkhemerOA, Fransen PS, BeumerD, van den Berg LA, LingsmaHF, YooAJ,

et al. A randomized trial of intraarterial treatment for acute ischemic stroke.

N Engl J Med. (2015) 372:11–20. doi: 10.1056/NEJMoa1411587

Frontiers in Neurology | www.frontiersin.org 5 November 2018 | Volume 9 | Article 94597

https://doi.org/10.1523/JNEUROSCI.0508-17.2018
https://doi.org/10.1109/EMBC.2014.6945099.
https://doi.org/10.1109/MSP.2010.936730
https://doi.org/10.1016/j.compbiomed.2004.11.003
https://doi.org/10.1007/s11548-011-0559-3
https://doi.org/10.1002/mrm.22147
https://doi.org/10.1016/j.schres.2014.10.033
https://doi.org/10.1016/j.nicl.2014.09.009
https://doi.org/10.3389/fpsyt.2012.00053
https://doi.org/10.1097/WNR.0b013e32835a650c
https://doi.org/10.1016/j.jad.2013.05.041
https://doi.org/10.1097/WNR.0000000000000178
https://doi.org/10.1371/journal.pone.0099334
https://doi.org/10.3233/JAD-140189
https://doi.org/10.1007/s00127-017-1410-0
https://doi.org/10.1371/journal.pone.0077949
https://doi.org/10.2174/1568026611313050008
https://doi.org/10.1371/journal.pone.0064925
https://doi.org/10.1007/s00259-014-2882-8
https://doi.org/10.3233/JAD-160560
https://doi.org/10.3389/fnins.2017.00398
https://doi.org/10.1007/978-3-319-10443-0_33
https://doi.org/10.1371/journal.pone.0174866
https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.1161/CIR.0000000000000558
https://doi.org/10.1056/NEJMoa1804355
https://doi.org/10.1056/NEJMoa1706442
https://doi.org/10.1056/NEJMoa1411587
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kamal et al. ML in Acute Ischemic Stroke Neuroimaging

30. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al.

Endovascular therapy for ischemic stroke with perfusion-imaging selection.N

Engl J Med. (2015) 372:1009–18. doi: 10.1056/NEJMoa1414792

31. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J.

Randomized assessment of rapid endovascular treatment of ischemic stroke.

N Engl J Med. (2015) 372:1019–30. doi: 10.1056/NEJMoa1414905

32. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al.

Thrombectomywithin 8 hours after symptom onset in ischemic stroke.NEngl

J Med. (2015) 372:2296–306. doi: 10.1056/NEJMoa1503780

33. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-

retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke.N Engl

J Med. (2015) 372:2285–95. doi: 10.1056/NEJMoa1415061

34. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al

Thrombectomy for stroke with perfusion imaging selection at 6–16 hours. N

Engl J Med. (2018) 378:708–18. doi: 10.1056/NEJMoa1713973

35. Gupta AC, Schaefer PW, Chaudhry ZA, Leslie-Mazwi TM, Chandra RV,

González RG, et al. Interobserver reliability of baseline noncontrast CT

Alberta Stroke Program early CT score for intra-arterial stroke treatment

selection. AJNR Am J Neuroradiol. (2012) 33:1046–9. doi: 10.3174/ajnr.A2942

36. Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability

of a quantitative computed tomography score in predicting outcome of

hyperacute stroke before thrombolytic therapy. Lancet (2000) 355:1670–74.

doi: 10.1016/S0140-6736(00)02237-6

37. Coutts SB, Hill MD, Demchuk AM, Barber PA, Pexman JH, Buchan AM,

et al. Aspects reading requires training and experience. Stroke (2003) 34:e179.

doi: 10.1161/01.STR.0000092221.81498.91

38. Mak HK, Yau KK, Khong PL, Ching AS, Cheng PW, Au-Yeung PK,

et al. Hypodensity of >1/3 middle cerebral artery territory versus Alberta

Stroke Programme Early CT Score (ASPECTS): comparison of two

methods of quantitative evaluation of early CT changes in hyperacute

ischemic stroke in the community setting. Stroke (2003) 34:1194–96.

doi: 10.1161/01.STR.0000069162.64966.71

39. Wardlaw JM, Mielke O. Early signs of brain infarction at CT: observer

reliability and outcome after thrombolytic treatment–systematic review.

Radiology (2005) 235:444–53. doi: 10.1148/radiol.2352040262

40. Saver JL. Time is brain–quantified. Stroke (2006) 37:263–6.

doi: 10.1161/01.STR.0000196957.55928.ab

41. Saver JL, Fonarow GC, Smith EE, Reeves MJ, Grau-Sepulveda MV, Pan

W, et al. Time to treatment with intravenous tissue plasminogen activator

and outcome from acute ischemic stroke. JAMA (2013) 309:2480–8.

doi: 10.1001/jama.2013.6959

42. Saver JL, Gornbein J, Grotta J, Liebeskind D, Lutsep H, Schwamm L, et al.

Number needed to treat to benefit and to harm for IV tPA therapy in the 3-4.5

hour window: joint outcome table analysis of the ECASS 3 trial. Stroke (2009)

40:2433–7. doi: 10.1161/STROKEAHA.108.543561

43. Sheth SA, Jahan R, Gralla J, Pereira VM, Nogueira RG, Levy EI, et al. Time to

endovascular reperfusion and degree of disability in acute stroke. Ann Neurol.

(2015) 78:584–93. doi: 10.1002/ana.24474

44. Takahashi N, Lee Y, Tsai DY,Matsuyama E, Kinoshita T, Ishii K. An automated

detection method for the MCA dot sign of acute stroke in unenhanced CT.

Radiol Phys Technol. (2014) 7:79–88. doi: 10.1007/s12194-013-0234-1

45. Ho KC, Speier W, El-Saden S, Arnold CW. Classifying acute ischemic

stroke onset time using deep imaging features. In: AMIA Annual Symposium

Proceedings (Washington, DC) (2017). p. 892–901.

46. Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion

segmentation in DWI using convolutional neural networks. NeuroImage

(2017) 5:633–43. doi: 10.1016/j.nicl.2017.06.016

47. Bouts MJ, Tiebosch IA, van der Toorn A, Viergever MA, Wu O,

Dijkhuizen RM, et al. Early identification of potentially salvageable

tissue with MRI-based predictive algorithms after experimental ischemic

stroke. J Cereb Blood Flow Metab. (2013) 33:1075–82. doi: 10.1038/jcbfm.

2013.51

48. Huang S, Shen Q, Duong TQ. Quantitative prediction of acute ischemic

tissue fate using support vector machine. Brain Res. (2011) 1405:77–84.

doi: 10.1016/j.brainres.2011.05.066

49. Chen Y, Dhar R, Heitsch L, Ford A, Fernandez-Cadenas I, Carrera C.

Automated quantification of cerebral edema following hemispheric

infarction: application of a machine-learning algorithm to evaluate

CSF shifts on serial head CTs. NeuroImage (2016) 2:673–680.

doi: 10.1016/j.nicl.2016.09.018

50. Dhar R, Chen Y, An H, Lee JM. Application of machine learning to automated

analysis of cerebral edema in large cohorts of ischemic stroke patients. Front

Neurol. (2018) 9:687. doi: 10.3389/fneur.2018.00687

51. Bentley P, Ganesalingam J, Carlton Jones AL, Mahady K, Epton S, Rinne P,

et al. Prediction of stroke thrombolysis outcome using CT brain machine

learning. NeuroImage (2014) 4:635–40. doi: 10.1016/j.nicl.2014.02.003

52. Scalzo F, Alger JR, Hu X, Saver JL, Dani KA, Muir KW. Multi-

center prediction of hemorrhagic transformation in acute ischemic stroke

using permeability imaging features. Magn Reson Imag. (2018) 31.6:961–9.

doi: 10.1016/j.mri.2013.03.013

53. Yu Y, Guo D, Lou M, Liebeskind D, and Scalzo F. Prediction of hemorrhagic

transformation severity in acute stroke from source perfusion MRI. In: IEEE

Transactions on Biomedical Engineering. Vol 65. (2018). pp. 2058–65.

54. Nielsen A, Hansen MB, Tietze A, Mouridsen K. Prediction of tissue

outcome and assessment of treatment effect in acute ischemic stroke using

deep learning. Stroke (2018) 49:1394–401. doi: 10.1161/STROKEAHA.117.

019740

55. Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome

prediction of acute ischemic stroke post intra-arterial therapy. PLoS ONE

(2014) 9:e88225. doi: 10.1371/journal.pone.0088225

56. Forkert ND, Verleger T, Cheng B, Thomalla G, Hilgetag CC, Fiehler J, et al.

Multiclass support vector machine-based lesion mapping predicts functional

outcome in ischemic stroke patients. PLoS ONE (2015) 10:e0129569.

doi: 10.1371/journal.pone.0129569

57. Rondina JM, Filippone M, Girolami M, Ward NS. Decoding post-stroke

motor function from structural brain imaging. Neuroimage Clin. (2016)

12:372–80. doi: 10.1016/j.nicl.2016.07.014

58. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Thrun

Dermatologist-level classification of skin cancer with deep neural networks.

Nature (2017) 542:115–8. doi: 10.1038/nature21056

59. Wintermark M, Albers GW, Alexandrov AV, Alger JR, Bammer R, Baron JC,

et al. Acute stroke imaging research roadmap. AJNR Am J Neuroradiol. (2008)

39:1621–8. doi: 10.1161/STROKEAHA.107.512319

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Kamal, Lopez and Sheth. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 94598

https://doi.org/10.1056/NEJMoa1414792
https://doi.org/10.1056/NEJMoa1414905
https://doi.org/10.1056/NEJMoa1503780
https://doi.org/10.1056/NEJMoa1415061
https://doi.org/10.1056/NEJMoa1713973
https://doi.org/10.3174/ajnr.A2942
https://doi.org/10.1016/S0140-6736(00)02237-6
https://doi.org/10.1161/01.STR.0000092221.81498.91
https://doi.org/10.1161/01.STR.0000069162.64966.71
https://doi.org/10.1148/radiol.2352040262
https://doi.org/10.1161/01.STR.0000196957.55928.ab
https://doi.org/10.1001/jama.2013.6959
https://doi.org/10.1161/STROKEAHA.108.543561
https://doi.org/10.1002/ana.24474
https://doi.org/10.1007/s12194-013-0234-1
https://doi.org/10.1016/j.nicl.2017.06.016
https://doi.org/10.1038/jcbfm.2013.51
https://doi.org/10.1016/j.brainres.2011.05.066
https://doi.org/10.1016/j.nicl.2016.09.018
https://doi.org/10.3389/fneur.2018.00687
https://doi.org/10.1016/j.nicl.2014.02.003
https://doi.org/10.1016/j.mri.2013.03.013
https://doi.org/10.1161/STROKEAHA.117.019740
https://doi.org/10.1371/journal.pone.0088225
https://doi.org/10.1371/journal.pone.0129569
https://doi.org/10.1016/j.nicl.2016.07.014
https://doi.org/10.1038/nature21056
https://doi.org/10.1161/STROKEAHA.107.512319
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


METHODS
published: 26 November 2018
doi: 10.3389/fneur.2018.00989

Frontiers in Neurology | www.frontiersin.org 1 November 2018 | Volume 9 | Article 989

Edited by:

Fabien Scalzo,

University of California, Los Angeles,

United States

Reviewed by:

David Robben,

KU Leuven, Belgium

Ulas Bagci,

University of Central Florida,

United States

Aalpen A. Patel,

Geisinger Health System,

United States

*Correspondence:

Christian Lucas

lucas@imi.uni-luebeck.de

Specialty section:

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

Received: 03 May 2018

Accepted: 02 November 2018

Published: 26 November 2018

Citation:

Lucas C, Kemmling A, Bouteldja N,

Aulmann LF, Madany Mamlouk A and

Heinrich MP (2018) Learning to

Predict Ischemic Stroke Growth on

Acute CT Perfusion Data by

Interpolating Low-Dimensional Shape

Representations. Front. Neurol. 9:989.

doi: 10.3389/fneur.2018.00989

Learning to Predict Ischemic Stroke
Growth on Acute CT Perfusion Data
by Interpolating Low-Dimensional
Shape Representations
Christian Lucas 1,2*, André Kemmling 3, Nassim Bouteldja 1, Linda F. Aulmann 4,
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Cerebrovascular diseases, in particular ischemic stroke, are one of the leading global

causes of death in developed countries. Perfusion CT and/or MRI are ideal imaging

modalities for characterizing affected ischemic tissue in the hyper-acute phase. If infarct

growth over time could be predicted accurately from functional acute imaging protocols

together with advanced machine-learning based image analysis, the expected benefits

of treatment options could be better weighted against potential risks. The quality of the

outcome prediction by convolutional neural networks (CNNs) is so far limited, which

indicates that even highly complex deep learning algorithms are not fully capable of

directly learning physiological principles of tissue salvation through weak supervision due

to a lack of data (e.g., follow-up segmentation). In this work, we address these current

shortcomings by explicitly taking into account clinical expert knowledge in the form of

segmentations of the core and its surrounding penumbra in acute CT perfusion images

(CTP), that are trained to be represented in a low-dimensional non-linear shape space.

Employing a multi-scale CNN (U-Net) together with a convolutional auto-encoder, we

predict lesion tissue probabilities for new patients. The predictions are physiologically

constrained to a shape embedding that encodes a continuous progression between the

core and penumbra extents. The comparison to a simple interpolation in the original

voxel space and an unconstrained CNN shows that the use of such a shape space can

be advantageous to predict time-dependent growth of stroke lesions on acute perfusion

data, yielding a Dice score overlap of 0.46 for predictions from expert segmentations of

core and penumbra. Our interpolation method models monotone infarct growth robustly

on a linear time scale to automatically predict clinically plausible tissue outcomes that

may serve as a basis for more clinical measures such as the expected lesion volume

increase and can support the decision making on treatment options and triage.
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1. INTRODUCTION

Cerebrovascular diseases, in particular strokes, are one of the
leading global causes of death in developed countries (1). Acute
stroke, which is usually caused by the blockage of cerebral blood
flow due to a blood clot, is often diagnosed through CT or MR
perfusion imaging (beside others, such as CTA). The derived
perfusion parameter maps, e.g., Cerebral Blood Volume (CBV)
or Time To Drain (TTD), provide spatio-temporal distributions
of a contrast medium bolus within brain tissue. In contrast to
native CT or standard MR sequences, such as T2 or FLAIR,
perfusion images with their apparent functional signals enable
the delineation of the potential infarct area even in the early acute
phase and allow to visually assess the expected stroke severity,
which helps the radiologist to come to a final therapy decision as
early as possible.

In order to decide for a treatment the doctor has to weigh the
risk of a therapy such as thrombolysis or thrombectomy against
the expected outcome. For instance, (2) describe hemorrhages,
such as symptomatic intracerebral hemorrhage, as a typical risk
of intravenous thrombolysis therapy. For large vessel occlusions,
mechanical thrombectomy improves functional outcomes but is
logistically challenging. It is of major importance to consider the
immediate availability of a therapy option, since the expected
outcome strongly relies on the onset-to-treatment time (3).
Depending on the expected time until revascularization, the
radiologist has to estimate if further progression of the stroke can
be avoided so that substantial parts of the tissue-at-risk within
the penumbra could be salvaged. In the infarct core, however, as
evident by a decrease in CBV, severe tissue injury and permanent
vascular collapse have occurred.

Since stroke lesions vary widely in shape or size, and also
evolve spatially heterogeneously over time, it is challenging for
the radiologist to estimate growth or the size of the potentially
stroke-affected tissue. For this reason, it is difficult to derive a
time window in which a specific therapy path may be beneficial
over another. Deep learning with CNNs has become popular
in medical image analysis over the past recent years by clearly
exceeding the so far state-of-the-art results, potentially capable of
modeling this complex relationship.

1.1. Objective
We present a novel tool for automatic stroke tissue outcome
estimation using a CNN with a convolutional auto-encoder
(CAE) that incorporates learned stroke shapes of core and
penumbra. In a proof-of-concept, the trained model is able to
predict the stroke lesion growth for patients with successful
recanalization based on a given time-to-treatment for the
thrombectomy (Table 1) and the CTP imaging parameter maps
CBV and TTD. An evaluation of the method shows the
practicality in principle on a limited dataset and the discussion
provides pros and cons that suggest to further investigate this
approach for clinical use.

1.2. Outline
In order to gain a fundamental understanding of the method
and its design choices, we provide a methodological overview in

TABLE 1 | Inclusion criteria of the dataset for evaluation.

Inclusion criteria

Initial CT perfusion imaging

Thrombectomy

Follow-Up CT within 6–24 h

Age at least 18 years

the following section: First, a review on the established stroke
image analysis methods in clinical research literature is given;
Second, the foundations of different image representations that
can help solving higher-level tasks for image analysis as well
as machine learning methods that have been investigated for
stroke imaging are described; Third, we explain the use of
CAEs for regularization in image segmentation by learning shape
representations and how our work is based upon it. Subsequent,
a detailed description of the assumptions and components of
our method is provided—this third section also explains how to
reproduce the method, that is, how to train the shape space and
predict follow-up lesions based on noisy shape estimates. The
fourth section lists the materials for a comparative evaluation and
discusses its results, before we provide a final conclusion in the
last section.

2. IMAGE ANALYSIS

Classic thresholding methods for stroke image analysis have the
drawback of only modeling a single univariate hard decision
border between affected and non-affected tissue. Even when
splitting into subgroups of different admission times (4) or
distinguishing core against penumbra, the result will be a
binary map of the affected vs. unaffected tissue. Further, purely
voxel-based methods can produce irregular and physiologically
implausible shapes. Statistical models, e.g., a linear regression
model as used by Kemmling et al. (5), can cope with the variances
in the data according to the complexity of the model and proper
parameterization, while simple models will usually show a strong
bias when used for high-dimensional problems.

2.1. Representation and Spaces
In general, noisy images make it difficult to operate in image
space, for instance, to apply a threshold to images for extracting
regions that define the outcome. The input representation is
not always suitable to detect the complex input patterns that
determine the output. As known from signal processing and
analysis, transforming the input into another representation
(extract features) can oftenmake it easier to perform classification
or regression tasks. There are many transformations, e.g.,
non-linear kernel methods can bring a representation into a
higher dimensionality where it may become linear separable.
As this is a vast field that shall not be described here in
detail, we emphasize that the input image data often needs
to be fit into a regularized model or transformed to another
representation first, on which the high-level task becomes easier
to solve.
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Kolouri et al. (6) propose transport spaces based on
optimal transport theory to model biomedical problems such
as tumor growth. The idea of looking at images as mass
particle distributions is related to tissue distributions in
biology, for example, when learning the transformations of
some sample images onto a mean non-pathological image to
extract the main modes of variance ideally representing the
change from benign to pathological tissue (7). The modes
could be extracted by principle component analysis (PCA)
or other machine-learning approaches, e.g., auto-encoders
(8). The formulation of the transport space and described
applications suggest to make use of it for modeling other
biological growth processes. However, to our knowledge,
this has not yet been investigated for the cerebrovascular
domain and applicability remains unclear for stroke tissue
prediction.

While for all the above-mentioned methods their
transformations to acquire a new representation are
predefined, there are other models whose parameters can
be estimated from samples. For instance, this could be learning
a statistical distribution, like the shape and appearance of
point representations (9), where the parameterization of the
probabilistic distribution is learned from a training set. With
a suitable representation at hand, there are several ways to
machine-learn rather than fitting the input representation with
its outcome into a statistical model. This often leads to more
accurate results: Before Deep Learning has become popular in
the last years, the medical image community had investigated
Decision and Regression Forest models extensively, and they
have shown good performance over statistical linear models
or boosting approaches (10). However, these methods rely on
previously specified or separately learned feature representations
that need to be extracted from the image data first.

Opposite to the prior definition of the representations
used, one can also machine-learn the representation and
the classification (or regression) both at once using non-
linear artificial neural networks that are capable of learning
sufficiently complex models without the need of tuning the right
parameterization by hand. The review paper of Lee et al. (11)
shows that the methods used with deep learning are still new to
the field of stroke imaging and analysis. Some attempts with other
machine learning methods have been made for diagnosis and
prognosis, however, those models usually predict disease scores
or specific clinical outcomes but not tissue outcome.

2.2. Deep Learning for Stroke Imaging
Deep Learning with artificial neural networks is based on the idea
of perceptrons where the output of a perceptron is computed
by the weighted sum of its inputs x followed by an activation
function σ (e.g., rectifier as in Equation 1). The power of such
networks has been proven in the early work of Hornik et al. (12)
by the fact that even a single hidden layer perceptron network
with a proper activation function is capable of approximating
any mathematical function. However, estimating that relation
between input and output requires a lot of data and proper
regularization since we have an underdetermined system when

learning the coefficients wi (neuron weights for incoming
connections), otherwise.

z = σ (
∑

i

wixi), σ (y) = max(0, y) (1)

Although known for a long time, training and regularization of
such networks is difficult. As a consequence of this, there have
only been few attempts to utilize them for spatial data such
as medical images, e.g., as proposed by Huang et al. (13) for
predicting tissue fates of stroke on acute image data, but their
performance could not be tweaked to exceed other former state-
of-the-art approaches. For image data, the breakthrough came
with deep (i.e., many layers) CNNs automatically learned through
the back-propagation algorithm. Their layers form a feature
hierarchy of increasingly complex features detected by the single
layers through convolving the input of shared-weights kernel
neurons, which themselves can be simulated by perceptrons.
Interspersing pooling layers with spatial strides allows to learn
texture or in general global features of the input images. See
Schmidhuber (14) for an accurate explanation of these principles.

One of the first approaches modeling stroke tissue outcome
with a deep learning CNN has been presented by Stier et al.
(15). They trained a 2D-patch-based architecture with respect
to the Tmax feature from MR perfusion observed for acute
ischemic stroke patients and a follow-up segmentation on FLAIR
about 4 days later. The patch-basedmethod clearly outperformed
voxel-based approaches. As with other typical black box-like
deep learning models, there are no further hyperparameters or
constraints that can be set to control the prediction, e.g., for
estimating the effect of time.

There are two major challenges in deep learning for stroke
analysis tasks with regard to the data: First, there exists a general
lack of accessible medical (ground truth) data and, second, the
data is of irregular temporal nature. That makes it difficult to
apply regular sequence models, such as Markov chains, recurrent
neural networks, or the Long-Short-Term-Memory of Hochreiter
and Schmidhuber (16). The data is temporally scattered: The
points in time tOnset, tImaging, and tTreatment are sampled as
patients rush into the hospital’s emergency room and cannot be
collected in a regular manner.

2.2.1. U-Net Architecture
The U-Net architecture of Ronneberger et al. (17) has been
successfully and widely used for biomedical applications by
producing semantic segmentations through a fully-convolutional
CNN (18) that additionally incorporates skip connections
between the context encoding and the refining decoding path for
each scale level. The encoding-decoding pattern has established
well especially for fully-convolutional networks and is also
known from auto-encoders, as used in our proposed method
of this paper. Considering different scales is usually a good
approach to capture context and details, and this works already
well with just two pathways as in the DeepMedic architecture
of Kamnitsas et al. (19) who won the sub-acute ischemic stroke
lesion segmentation task of the first ISLES challenge in 2015 (20).
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At the 2017 edition of the ISLES challenge (21) we presented
a robust network on perfusion image data to predict an average
lesion outcome and ranked second overall for the binary
segmentation output. Many of the top-ranked methods exploited
a U-Net architecture, such as the challenge winner (22) who used
a 3D U-Net within an ensemble along with other networks and
focused on its hyperparameter optimization. In our 2D network
instead, we added further skip connections within the encoding
path to enhance sensitivity in particular for the difficult smaller
lesions in comparison to a standard U-Net (23).

We did not observe advantages when providing clinical
variables (e.g., disease scores, time points) as constant input
features along with the perfusion images to predict the follow-
up lesion, although they are known to be good predictors for
the outcome. In fact, the 2D U-Net performance on the ISLES
data could not benefit from the additional information and so we
only used spatial perfusion maps to train on. The visual results
suggested that rather the robust image features for detecting some
highly probable necrotic stroke tissue were learned (cf. also our
experiments later in this paper: Table 4, Figure 9). This makes
such a network suitable for segmenting present perfusion lesions,
but requires a new strategy to make use of clinical variables
for predicting follow-up lesions. It remains an open question in
literature, how to ideally incorporate clinical data in a U-Net-only
architecture.

2.2.2. Biomedical Shape Regularization
Auto-encoders (AE) are one of several unsupervised methods to
learn meaningful features from a data representation by typically
encoding the input data x ∈ � into a lower-dimensional
representation (bottleneck) and decoding this representation to
get the reconstruction z ∈ � of the input x (Equation 2).
This can be achieved through classical fully-connected layers
or also by shared-weights convolutional layers for image data.
In a convolutional auto-encoder (CAE) as introduced by
Masci et al. (8) encoder E(x) usually consists of a typical
convolutional feature hierarchy (akin to CNNs) that results in
a discriminative latent code y ∈ M, which could be a feature
vector or map. Decoder D(y) computes a reconstruction z back
in input space �. During training, the weights of both are
optimized such that a loss L(x, z), e.g., the mean squared error
1
n

∑

n(x − z)2 for n training samples, is minimized. If used with
volumetric segmentations, one can learn shape embeddings on
a low-dimensional manifold M (Figure 1) with its dimensions
representing some main modes of the shapes by optimizing the
CAE:

z = (D ◦ E)(x). (2)

The principle of shape-constrained segmentation learning was
proposed by Ravishankar et al. (24), whose cascaded architecture
includes a U-Net and a CAE for shape regularization. While
the U-Net follows the same encoder-decoder principle like the
convolutional auto-encoder, it does not learn local geometry and
shape but produces rather noisy predictions through its skip
connections that skip its inner bottleneck. The authors combine
both sub-tasks of segmentation and reconstruction in an overall
loss to utilize the anatomically regularizing bottleneck of the

FIGURE 1 | Interpolation of stroke shapes Ŝc and Ŝcp: The trivial linear

interpolation (gray line) in voxel space � leads to a fade-in/fade-out

appearance of the two shapes. Embedding shapes non-linearly on a manifold

M allows geodesic interpolation (red line) on M which results in a non-linear

interpolation of the shapes in voxel space (Ŝl ).

auto-encoder for completing noisy kidney segmentations, which
improves the segmentations by about 5% compared to U-Net
only.

Oktay et al. (25) presented an anatomically constrained neural
network (ACNN) approach to also incorporate shape constraints
of anatomical labels as prior knowledge. Their generic training
scheme can be applied to various image analysis tasks and
was documented for image segmentation and super-resolution.
By using a CAE that is trained on ground truth shapes, they
constrain the predicted image segmentations to lie close to the
learned latent representation of the ground truth. In the end the
decoder produces an anatomically constrained reconstruction
of the segmentation from the learned shape space, because the
segmentation has indeed been forced during training to lie close
to the anatomy shape ground truth.

2.3. Our Contribution
In this paper – based on the robust results that U-Nets achieve on
perfusion imaging data and the shape-constrained network idea
of Ravishankar et al. (24)—we present a novel methodology that:

1. Utilizes a 3D U-Net and constrains its segmentations on the
CBV and TTD maps through a 3D CAE;

2. Enables continuous interpolation within the non-linear and
low-dimensional embedding of both core and core+penumbra
segmentations according to the time-to-treatment, that results
in a shape-constrained prediction of the final lesion;

3. Empirically demonstrates—quantitatively and visually—the
feasibility of predicting the final lesion shape from core and
core+penumbra segmentations, as well as the advantage over
using an unconstrained CNN or linear interpolations in image
space.
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3. METHODS

Our idea is to estimate a time-to-treatment-dependent tissue
outcome based on CBV and TTD perfusion images. We
hypothesize that the minimum and maximum extents of the
potential final stroke lesion can be approximated by delineating
the core and penumbra area on the perfusionmaps. This includes
the following assumptions:

1. The CBV is sufficient for segmenting the core area, and TTD
for core+penumbra.

2. The final lesion extents will not exceed the area boundaries of
the tissue-at-risk outlined by the penumbra, but continuously
evolve from the necrotic parts of the core in the direction of
the outer penumbral boundary.

3. Growth over time is conducted linearly in the non-linear
shape space.

4. We set a limit of 10 h after stroke onset for the infarct
progression to reach the final size of core+penumbra. This
value is chosen by experience and technically has to contain
the maximum time-to-treatment from all training samples
(maximum in our evaluation dataset: 7 h after onset).

It should be noted that training a model normalized to
the acute stroke phase time range of 24 h is possible
(cf. results of our evaluation later in this paper: Table 3,
Figure 8) and recommended, if enough follow-up lesion data is
available to sample roughly the entire space between core (0 h)
and core+penumbra (24 h) representations to avoid areas of
uncertainty.

3.1. Architecture
The method consists of a two-phase neural network
that combines three main components for automatic
shape-constrained follow-up lesion prediction (Figure 2):

1. U-Net estimating core (Ŝc) and core+penumbra (Ŝcp) from
CBV and TTD maps.

2. CAE transforming the segmentations into a shape space and
back.

3. Linear interpolation in the shape space to predict the follow-
up lesion (Ŝl).

First, the perfusion images ICBV and ITTD are processed by a
U-Net U to compute the segmentation estimates Ŝc and Ŝcp.
Second, the encoder E of the CAE transforms each segmentation
into a low-dimensional shape embedding ŷc and ŷcp of a shape
space that must be learned beforehand. Linear interpolation
(ŷi, Equation 3) between the latent core and core+penumbra
codes ŷc and ŷcp is conducted according to the expected
tImaging→Treatment time, which must be normalized by the
remaining time to reach 10 h after onset (corresponding to the
total core+penumbra).

ŷi = ŷc + η(ŷcp − ŷc), η =
tImaging→Treatment

10− tOnset→Imaging
(3)

This linear interpolation in shape space is crucial, as it
corresponds to a non-linear interpolation of the reconstructed

shapes on the manifold (Figure 1). The decoder D of the CAE is
required to compute that reconstruction of the interpolated code
ŷi in the voxel space with a segmentation Ŝl for the final lesion as
result (Figure 3 illustrates a binarized 3D segmentation).

3.1.1. Cascading Networks for Prediction
The construction of a two-phase network targets different sub-
tasks that constrain the learning of the high-dimensional and
complex overall task of follow-up lesion prediction. When
discriminating only the final lesion binary label from background
through high-dimensional multivariate input, it makes it hard for
a machine learning algorithm to properly generalize the relation
between input and outcome. Instead of directly estimating a
follow-up segmentation from the input data, we guide the
first sub-network (U-Net) to segment core and penumbra
correctly, which is—as explained before—of major importance
for predicting final lesion tissue outcome. Once this data is
provided, the second sub-network (CAE) can learn the most
salient shape features on a rather simplified representation
with respect to the task (shape probability maps vs. different
physiological CTP parameters) along with clinical data to
estimate the follow-up lesion.

3.1.2. U-Net
Instead of taking the 2D U-Net that we have used before
at the ISLES 2017 challenge, we employ a smaller standard
3D U-Net U to reduce computational and memory demand
while it can cope well with the three-dimensional nature of
stroke volume data. Furthermore, instead of forwarding the
full 128 × 128 × 28 input CTP images the U-Net is trained
on randomly positioned cubic patches of size 64 × 64 × 28
(with additional padding of 20 voxels in each direction) and
thus needs to forward 4 patches for segmentation of one single
case. It receives patches from ICBV and ITTD as input and
estimates Ŝc, Ŝcp = U(ICBV , ITTD). The U-Net is build of double-
convolutional blocks as known from Ronneberger et al. (17),
while each 3 × 3 × 3 convolution is preceded by a batch
normalization layer of Ioffe and Szegedy (26) for data whitening.
The blocks are spread over three resolution levels (two Max-
Poolings) with 16, 32, and 64 channels, respectively. This sums
up to a total of about 355.000 network parameters.

3.1.3. Convolutional Auto-Encoder
Focusing on the subsequent CAE, we had to ensure some
minimum number of layers (Figure 4) to detect the most salient
and descriptive abstract stroke shape features while being well-
regularized in order to reconstruct a good general estimate
of the shape. This requires a bottleneck layer between E and
D to produce low-dimensional latent codes that must have a
limited but sufficient dimensionality. Consequently, only the
main modes should be represented in the code with their major
variances describing different stroke shapes without noise or
overfitting of training samples. Regarding overfitting, our linear
approach for the interpolation on the low-dimensional codes is
in principle also robust against noise in time.

The input of the CAE is forwarded akin to the U-Net through
double-convolutional blocks including batch normalization
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FIGURE 2 | Overview of proposed method, showing the U-Net for segmenting core (Ŝc) and penumbra (Ŝcp), which are forwarded to the encoder E of the CAE for

transforming them into low-dimensional shape space representations such that they can be linearly interpolated and decoded to output a follow-up estimate Ŝl .

layers. Instead of two Max-Pooling operations, three additional
2-stride convolutional layers intersperse those blocks, while the
final block is a single 3 × 3 × 3 convolution that convolves the
feature map to the 10 × 10 × 1 bottleneck size. Like for the U-
Net, 3 × 3 × 3 filter kernels throughout all convolutional layers
of the CAE, as introduced by Simonyan and Zisserman (27), are
exclusively used to decrease complexity compared to networks
with bigger kernels while the same receptive field sizes can be
reached by just stacking more layers of the smaller kernels. This
results in more non-linearities and usually generalizes better.

The decoder is a mirrored encoder, with deconvolutional
layers replacing the 2-stride convolutions. With this architecture,
a single 128×128×28 shape segmentation image can be encoded
into a low-dimensional code representation, and then decoded
back to a segmentation image. Note that although the U-Net
is fed with both CBV and TTD images as separate channels
at once, the CAE’s encoder has to forward their segmentations
independently to get two separate latent codes, which will be then
interpolated and forwarded in one step through the decoder to
get the final lesion prediction.

Since there are several global scalar predictors (time, age,
sex, clinical scores) that might be required to model the space
properly, we also tried to map the shape segmentation input
of the CAE to a vector representation (instead of spatial
feature maps) in the bottleneck by using a fully-connected or
convolutional layer with appropriate kernel size. This would have
allowed us to add an arbitrary number of scalar values directly as
additional dimensions to the latent code in the bottleneck and to
easily quantify the dimensionality of such shape representations
in the latent space. However, regularization is difficult – even
when using dropout (28)—and the reconstructions are less
accurate than with latent spatial feature map representations.
Therefore, the CAE remains convolutional-only and no clinical
variables other than the combination η of both time predictors
for the interpolation are used as per definition in Equation (3).

3.2. Training
The training is conducted in three consecutive steps (see Figure 5
for illustration of steps 2 and 3) that are characterized by different
objectives formulated in their corresponding losses:

1. Training the U-Net with a LSoftDice loss.
2. Training E1 and D to learn the shape space of the CAE from

manual segmentations (LShape)
3. Training E2 to fit automatic segmentation estimates of U into

the shape space (LPrediction)

The U-Net is initially trained beforehand using the stochastic
gradient variant ADAM of Kingma and Ba (29) for optimization.
The ground truth segmentations Sc and Scp of core and
core+penumbra are used to penalize their predictions with a
bigger loss for less overlap in the SoftDice measure, which is
defined for all voxel positions i in a segmentation A with ground
truth B and a small constant ǫ as follows:

SoftDice(A,B) =
2 ·

∑

i(AiBi)+ ǫ
∑

i(AiAi + BiBi)+ ǫ
(4)

3.2.1. Shape Space Learning
First, a low-dimensional shape space is learned that embeds the
ground truth shapes of core and core+penumbra segmentations,
Sc and Scp. This is enforced by loss LShape in Equation (5),
that consists of three parts: (1) Reconstruction Rc, Rcp, and
Rl of core, core+penumbra and final lesion shape, (2) the
property of the reconstructed core/lesion volume to still be
a subset of the core+penumbra volume, and (3) a L1 loss
for keeping the latent code yl of the lesion shape close to
the linear interpolation yi of the core and core+penumbra
codes:

LShape =
∑

s∈{c,cp}

LSoftDice(Rs, Ss)+
∑

s∈{c,l}

Lmono(Rs,Rcp)+αL1(yl, yi)

(5)
For the first 25 epochs α = 0 holds, otherwise α = 1.
We observed that this helps the non-convex optimization
function to first learn to reconstruct the shape into the correct
brain hemisphere and was found to robustly prevent the
network from getting trapped in implausible minima at the
beginning of the training. Since SoftDice ∈ [0, 1] with 0
indicating non-overlap and 1 for full overlap, we need to define
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FIGURE 3 | 3D surface illustration for the binarized reconstruction of the interpolation in shape space for a single test case from our experiments. The top image

shows the manual segmentation of core in red within a cutout of the brain volume, while the bottom image shows the ground truth segmentation of penumbra in

yellow. Three steps of the interpolation between the estimates of both manual segmentations are shown in the middle rows.
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FIGURE 4 | Representational complexity of the CAE and reduced dimensionality in the bottleneck. The numbers given top to bottom indicate: Quadratic size of the

first two spatial dimensions, size in the third spatial dimension (axial), and number of feature channels. There is one input channel for the segmentation image and one

output channel for its reconstruction.

FIGURE 5 | Overview of involved convolutional sub-networks (blue) in the two-phase training according to section 3.2 in the text. In the first phase (A) the shape

space is trained with E1 and D by using loss LShape (red) to reconstruct Rc and Rcp. In the second phase (B) E2 is trained to map segmentations from U into the

shape space via the second loss LPrediction (green). The latent code ŷi interpolated between ŷc and ŷcp is decoded with the previously trained D of phase (A) for

predicting the desired follow-up lesion Ŝl .

LSoftDice(S, Ŝ) = 1− SoftDice(S, Ŝ). To force the CAE to learn that
the interpolation is only growing when interpolating along the
(time) trajectory from core until reaching the core+penumbra
segmentation at maximum, we define a constraint Lmono for
all voxel positions i in two segmentation images A,B so
that the reconstructions of the core segmentation and the

intermediate lesion interpolation are monotone increasing to the
total core+penumbra segmentation:

Lmono(A,B) =
∑

i

max(Ai − Bi, 0) (6)
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3.2.2. Noisy Shape Interpolation
In the second training phase, the encoder and decoder weights
from the shape space learning phase before will be fixed. A second
encoder is then learned for the U-Net predictions Ŝc and Ŝcp
of core and core+penumbra to compute latent representations
ŷc and ŷcp that are located close to the shape embeddings yc
and ycp of the corresponding ground truth segmentations in
terms of L1 norm. LPrediction in Equation (7) further enforces the
monotone properties for the reconstructed segmentations and
the main goal of high overlap for the prediction Ŝl decoded from
the interpolated code ŷi to the actual follow-up ground truth Sl:

LPrediction = LSoftDice(Ŝl, Sl)+
∑

s∈{c,l}

Lmono(Ŝs, Ŝcp)+
∑

s∈{c,l,i}

L1(ŷs, ys)

(7)
This way, the decoder D of the first phase ideally decodes
an approximate representation from the shape space so
that the reconstruction of the core and core+penumbra
estimates should be close to the ground truth reconstruction
of core and core+penumbra, (D ◦ E2)(Ŝc) ≈ (D ◦ E1)(Sc) and
(D ◦ E2)(Ŝcp) ≈ (D ◦ E1)(Scp). Moreover, the main goal remains
to achieve an interpolation as close as possible to the true lesion
segmentation:

D
(

η · E2(Ŝcp)+ (1− η) · E2(Ŝc)
)

≈ (D ◦ E1)(Sl) (8)

The individual loss terms have not been weighted by further
manual parameters as we found no benefit for other than the
uniformly weighted individual loss parts for both LShape and
LPrediction. Further, we tried to apply both losses beforehand
in an alternating and joint manner but this did not let
the optimizer find proper minima; in particular, learning the
exclusive occurrence of a stroke on either hemisphere could not
be learned, which is what the network basically learns during the
first epochs of training.

4. EXPERIMENTS

We run a 5-fold test on a 29 subjects dataset, because the time
demand for a full cross-validation was too high. In order to
test each of the 5 folds, we thus had to train 5 models with
the remaining 4 folds. Four of the folds consist of 6, and 1 fold
consists of 5 cases. About one fourth of the training samples were
used as validation set, so that a training set consists of 17 or 16
cases and is validated in each epoch on 6 other cases (disjoint
with the test fold).

We prevent overfitting of the model by training until the
validation loss converges and choose the model with the lowest
validation loss. Since the model is eventually tested on a different
fold of patients not used for the training and validation, we also
avoid that the evaluation results could be tuned on the validation
loss optimum. Due to the huge number of parameters in our
3D sub-networks, the memory demand for gradient computation
increases rapidly, so a batch size of 4 had to be chosen to fit the
training data into 11 GB of GPU memory.

TABLE 2 | Characteristics for subjects with manually segmented core, penumbra

and follow-up lesion of the retrospectively collected data.

Baseline characteristics Value

Subjects n 29

Male sex, n (%) 16 (55%)

Age, years, median (IQR) 70 (63− 77)

Admission NIHSS, median (IQR) 15 (12− 16)

Core volume, ml, median (IQR) 27 (3− 86)

Penumbra vol., ml, median (IQR) 164 (149− 199)

Lesion (FU) vol., ml, median (IQR) 31 (18− 93)

tOnset→Imaging, hours, median (IQR) 1.7 (1.4− 3.4)

tImaging→Treatment, hours, median (IQR) 1.7 (1.4− 2.1)

tOnset→Treatment, hours, median (IQR) 3.9 (3.2− 4.9)

4.1. Data
We used a dataset of 29 subjects from the Neuroradiology
department at the University Hospital Schleswig-Holstein
formerly collected for the TRAVESTROKE project for which
one rater had created manual segmentations on the CT
perfusion (CTP) modalities CBV (Cerebral Blood Volume)
and TTD (Time-To-Drain) at the time of admission for core
and core+penumbra, as well as a lesion segmentation on
follow-up CT after treatment. The data was acquired with a
Siemens Somatom Definition AS 40 (Siemens Healthcare GmbH
Forchheim, Germany) and the raw data was deconvolved using
the vendor algorithm to get CT perfusion parameters such as
CBV or TTD. All patients of the dataset had been treated
successfully with thrombectomy (TICI score 2b or 3). See
baseline characteristics of the subjects included in the evaluation
in Table 2.

The dataset was pre-processed with FSL-FLIRT (30) for
affine registration to correct tilted heads and transform
them into common space. A downsampling was applied so
that input size of the CBV and TTD maps was 128 ×

128 × 28 voxels for reducing the computational demand.
Additional clinical data for each subject was given. For the
evaluation we only used the two durations tOnset→Imaging

and tImaging→Treatment, which were normalized according to
Equation (3). All shape segmentations have been elastically
deformed in each epoch to augment the limited available
training data for learning generic features of the CAE such
that the representations in shape space can be robustly
reconstructed.

4.2. Comparison
In section 2.2.1, we referred to the ISLES 2017 task of predicting
a follow-up lesion based on MR perfusion data. We participated
in this challenge with a single U-Net directly predicting the
final follow-up lesion, as many of the teams were using
unconstrained CNNs [as presented in (21)]. Since this does
not lead to accurate predictions of a progressed stroke when
facing acute image data, we compare our proposed method
with this simple U-Net approach with and without clinical time
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TABLE 3 | Reconstruction (1. training phase) results: Average Dice values on the test data for the CAE trained on core (Sc) and core+penumbra (Scp) expert

segmentations, as well as average Dice overlap of the follow-up expert lesion segmentation (Sl ) with the reconstructed interpolation from shape space (Ri ).

Method Method # Parameters Dice

Core/Penumbra Lesion (Training phase) of network Core (Rc) Core+Penumbra (Rcp) Lesion (Ri )

Expert Oracle CAE 10 h (1. phase) 4.7 · 106 0.68 0.90 0.53

Expert CAE 10 h (1.) 4.7 · 106 0.68 0.90 0.46

Expert CAE 24 h (1.) 4.7 · 106 0.70 0.90 0.44

While the first row shows an oracle prediction overlap for the theoretically best-fit per case interpolation within our model (could be before or after the true time-to-treatment), the second

row lists the result for our proposed approach using the actual time-to-treatment ground truth to predict the follow-up lesion from ground truth. The third row indicates that the effect

of choosing a different normalization value from within the time range of the acute stroke phase can rather be neglected.

TABLE 4 | Experimental results from 5-fold test data based on the U-Net’s Ŝc, Ŝcp, and lesion estimates: The average values for the Dice overlap with the ground truth

segmentations Sc, Scp, and Sl are presented.

Method Method # Parameters Dice

Core/Penumbra Lesion (Training phase) of network(s) Core Core+Penumbra Lesion

U-Net CAE (2. phase) 3.6 · 105 + 4.7 · 106 0.55 0.81 0.43 (Ŝl )

U-Net CAE (1. phase) 3.6 · 105 + 4.7 · 106 0.43 0.80 0.40 (Ŝl )

U-Net Image Interpolation 3.6 · 105 0.45 (Ŝc) 0.81 (Ŝcp) 0.36

– U-Net 2in 3.6 · 105 – – 0.34

– U-Net 4in 3.6 · 105 – – 0.22

The baseline U-Net-only approach has the same architecture as used in combination with the CAE above, but instead of predicting core and penumbra (2 channel output), it directly

predicts the follow-up lesion (1 channel output) as described in section 4.2. We input CBV and TTD maps only (2in), or additionally both tOnset→Imaging and tImaging→Treatment as constant

image channels (4in), whereas the latter performed worse coincident with our previous experience (see section 2.2.1 and Figure 9). The highest overlaps for core, core+penumbra,

and lesion are highlighted in bold.

FIGURE 6 | Two example cases with good and bad performance from the validation set at the end of the shape space learning (1. training phase) and their

interpolation at different tImaging→Treatment ∈ [0, 5] values. The first row shows an axial slice of an accurate reconstruction of core at 0h as well as of the penumbra,

and as a consequence the non-linear interpolation of both gives a reliable estimation of the true follow-up lesion at its actual tImaging→Treatment value (outlined in

purple). The second row shows a case where the temporal progression of the stroke is different, such that the final lesion was much smaller than a interpolation

between core and penumbra would suggest.

points as input. Unfortunately, the ISLES dataset consists of
MR perfusion data without appropriate core and penumbra
segmentations, so we cannot directly compare on the same
dataset.

Our sub-task of linearly interpolating along the trajectory
between core and core+penumbra requires representations of
such in a suitable non-linear shape space that has to be learned
before. In order to show the advantage of conducting this in
such a shape space, we compare with the naïve way of linearly
interpolating the shape segmentations in �. This can be simply

computed with the same η as defined before in Equation (3):

Ŝl = Ŝc + η(Ŝcp − Ŝc) (9)

5. RESULTS

The reconstruction results (Table 3) demonstrate the capability
of our learned model to make time-dependent predictions
and present the advantages of our CAE approach using core
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FIGURE 7 | Visual comparison of linear interpolation in image and shape space for an axial slice of a single case from the 5-fold test (Ground truth denoted as GT ).

Compare the predictions at 2h with the actual follow-up at 1.7h: With linear interpolation of the segmentations, the core area Ŝc remains unchanged while the huge

penumbra area is faded in. Note that for a normalization of 24h, the fading over time would progress even slower. With the CAE and its interpolation in shape space,

the shape grows non-linearly, first locally, and then quickly into the surrounding tissue-at-risk areas segmented by the U-Net in Ŝcp.

FIGURE 8 | Three example cases (as in Figure 9) from the 5-fold test data with their results for the reconstruction. The top row shows a case with fast admission and

treatment times, where the lesion appears about the same size as the initial core. The middle and bottom row are interpolated at η located one third on the trajectory

from core to core+penumbra, while one case is an early and the other is a late admission; However, the case with bigger core progresses slowly with respect to the

non-linear reconstruction compared to the smaller core case at the bottom. Reference overlays for manual segmentations Sc (red), Scp (orange), and Sl (green) are

shown as outlines. Note that models trained with a normalization of 10 or 24 h output similar predictions.
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FIGURE 9 | Three example cases (as in Figure 8) from the 5-fold test data with their results for the prediction. The top row shows a case with fast admission and

treatment times, where the lesion appears about the same size as the initial core. The middle and bottom row are interpolated at η located one third on the trajectory

from core to core+penumbra, while one case is an early and the other is a late admission; However, the case with bigger core progresses slowly with respect to the

non-linear reconstruction compared to the smaller core case at the bottom. Reference overlays for manual segmentations Sc (red), Scp (orange), and Sl (green) are

shown as outlines. Note that prediction with unconstrained U-Net-only variants with (4in) or without (2in) clinical input channels cannot reach the prediction

performance of our proposed U-Net + CAE method.

and penumbra segmentations to generalize well even from
a small training dataset to estimate non-linear follow-up
lesion interpolations. A Dice overlap of 0.46 was achieved in
comparison to a manual rater. Considering a reconstruction
Dice overlap for the CAE itself of 0.68 and 0.90 for core and
core+penumbra, respectively, this represents a good result. In
a use case, where a clinical expert manually segments core and
penumbra, this can already be a helpful estimate for assessing the
expected treatment outcome after thrombectomy.

However, even a very good reconstruction of core and
penumbra does not guarantee a good final lesion estimate
(Figure 6, bottom row). The quality and severity of the stroke in
routine clinical data is not always fully encoded in its core and
penumbra shape segmentations, and some of the follow-up lesion
segmentations are actually smaller than even their corresponding
core segmentations contrary to the definition that core should
include only necrotic tissue which cannot be recovered. Potential
reasons for this include the challenges of the manual annotations
based on CBV and TTD alone.

With our trained model we could determine an upper bound
of 0.53 for a linear interpolation-based lesion prediction oracle
(Table 3), which does not use the true time-to-treatment but

knows the correct η ∈ [0, 1] that results in the best overlap
with the ground truth lesion. Apart from non-linear growth over
time that has been observed in literature (31) and the lack of any
information from the perfusion signal, the difference between
0.46 and 0.53 could be explained by too much noise in the time
data; Especially the determination of tOnset→Imaging can often be
quite inaccurate in clinical practise. While it would be desirable
to have the best interpolation reconstructed from times as near
as possible to the true time-to-treatment, the linear approach is
quite robust against inaccurate times and monotone growth is
enforced. The doctor is essentially interested to see if there will be
much relative growth and, consequently, how much of the tissue
could be salvaged within the next hours.

Given the CAE, the second encoder E2 learns to map the
segmentations from the U-Net with a high quality into the shape
space during the second training phase (Table 4). This phase
requires only 50 epochs for a convergence of the validation
set loss, compared to 200 epochs in the first phase when
training E1 and D. Automatic core+penumbra segmentations
achieved by our U-Net model are of very high quality (Dice
score of 0.81) and close to the optimal reconstruction given
the constraints of the CAE (Dice of 0.90). The segmentation of
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the core is more challenging yielding Dice scores of only 0.45
which is improved by the second CAE to 0.55. This confirms
the results of the shape-constrained network proposed by
Ravishankar et al. (24).

Interpolating between the latent shape representations of core
and core+penumbra estimated by the U-Net is less accurate than
performing this with the latent representations of ground truth
segmentations. Nevertheless, the advantages of our proposed
U-Net + CAE architecture with a Dice score of 0.43 for
the lesion are evident as the result is close to the ground
truth interpolation (Dice 0.46). A significant improvement
is found in comparison to the two baseline methods (0.36
and 0.34). It can be visually observed in Figure 7 that our
linear interpolation in the shape space leads to a non-linear
growth of the infarct shapes: first locally, then into the outer
penumbra. Contrary to that, simply interpolating linearly on
segmentation predictions leads to implausible fading of the
entire tissue-at-risk infarct probabilities in the image voxel space,
where the rate of progression is also strictly depending on the
normalization value!

Moreover, our subdivided approach clearly reveals the sub-
tasks that need to be tuned in our method for improvement
of the final prediction, different to a closed unconstrained
model like the single U-Net. We observed that there is less
overlap for the core than for both core+penumbra. By improving
the core reconstruction from shape space, the interpolation
trajectory would be closer to the true lesion representation. Thus,
prediction for the true time-to-treatment could benefit, for both
ground truth and estimated segmentations. If furthermore the
core estimate could be more accurate, the closer will the latent
code of ŷc be located to the representation yc of the ground truth
core, and so will the trajectory in shape space be more close to the
ideal trajectory.

Compared to the results of the ISLES stroke lesion challenges
of the last 2 years onMR perfusion and diffusion data, none of the
participating groups has reached a higher overlap of the predicted
lesion outcome with the actual follow-up than a Dice of 0.32 (see
https://www.isles-challenge.org). With respect to the similar task
and comparable functional imaging modalities, the results of our
method predicting the lesion outcome on core and penumbra
estimates are promising.

6. CONCLUSION

In this work we have shown the feasibility of using interpolations
between low-dimensional shape embeddings of core and
penumbra segmentations for improving the prediction of stroke
lesion tissue outcome. First, we could show that a CAE is
able to model the main variances of volumetric stroke shapes
resulting in good reconstructions on test data. With the latent
representation at hand, one can now continuously interpolate
along robust linear trajectories in the shape space to obtain non-
linear shape growth from the core to the entire penumbral area.
Fed with an actual time-to-treatment point, this results in a
shape-constrained estimate of the expected final lesion for the
given time, making it possible to compute other measures on this

result, such as volume or density, to be of further assistance to
the radiologist. Thus, our framework facilitates the assessment of
potential infarct growth and possible salvageable tissue to support
treatment decisions and prioritization.

With our current interpolation method we have an upper
bound for the prediction Dice score of 0.53, which can be
achieved on manual expert segmentations as end points for
the linear interpolation in shape space when using a time-to-
treatment oracle. This is nearly reached with our best performing
fully-automatic model based on the actual time-to-treatment
(Dice score 0.43). To improve the overall performance for the
prediction by interpolating between the shape representations of
automated core and penumbra segmentations according to time,
we believe that time as a factor for the stroke growth will not
always be in fixed linear relationship with the interpolation. First
of all, there are other clinical variables that have an (combined)
effect on the outcome, such as age or NIHSS (National Institutes
of Health Stroke Scale) score, not yet considered in our method.
Furthermore, differences in the growth rate even for similar
early lesions could be found between patients. In future, we
would like to investigate how an integrated approach can also
learn non-linear growth over time to further close the gap
from 0.43 to 0.53. Nevertheless, our method does not only
strive for ideal overlap but rather robust growth over time in a
plausible manner.

We observed that there are still cases lowering the overall
prediction performance, where the follow-up lesion remains
smaller than the core area. This cannot only be explained
by different treatment outcomes or a decline in swelling,
and requires a review with clinical experts on the dataset
(perfusion parameters, manual segmentation protocol) as well
as our hypothesis. For instance, if manual segmentations
are not consistent throughout the dataset, rejecting data
cases, which do not fit the hypothesis and thus make it
difficult to train our proposed network according to our
preconditions, could show substantial improvements in the
results.
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In developed countries, the second leading cause of death is stroke, which has

the ischemic stroke as the most common type. The preferred diagnosis procedure

involves the acquisition of multi-modal Magnetic Resonance Imaging. Besides detecting

and locating the stroke lesion, Magnetic Resonance Imaging captures blood flow

dynamics that guides the physician in evaluating the risks and benefits of the reperfusion

procedure. However, the decision process is an intricate task due to the variability

of lesion size, shape, and location, as well as the complexity of the underlying

cerebral hemodynamic process. Therefore, an automatic method that predicts the

stroke lesion outcome, at a 3-month follow-up, would provide an important support

to the physicians’ decision process. In this work, we propose an automatic deep

learning-based method for stroke lesion outcome prediction. Our main contribution

resides in the combination of multi-modal Magnetic Resonance Imaging maps with

non-imaging clinical meta-data: the thrombolysis in cerebral infarction scale, which

categorizes the success of recanalization, achieved through mechanical thrombectomy.

In our proposal, this clinical information is considered at two levels. First, at a population

level by embedding the clinical information in a custom loss function used during training

of our deep learning architecture. Second, at a patient-level through an extra input

channel of the neural network used at testing time for a given patient case. By merging

imaging with non-imaging clinical information, we aim to obtain a model aware of the

principal and collateral blood flow dynamics for cases where there is no perfusion beyond

the point of occlusion and for cases where the perfusion is complete after the occlusion

point.

Keywords: stroke, machine learning, deep learning, MRI, prediction

1. INTRODUCTION

Stroke ranks second as leading cause of death worldwide (1), with ischemic stroke being the most
common type (2). Ischemic stroke arises from an artery occlusion caused by local thrombolysis,
hemodynamic factors or embolic causes. Due to artery occlusion, the surrounding area suddenly
suffers a blood flow reduction, leading the cells to a transient state slightly above cell death.
The hypo-perfused area concerns the tissue at risk, also known as salvageable tissue, that can
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eventually reach a non-viable point of failure even after flow
restoration (3, 4). Therefore, stroke lesion can be characterized by
a core tissue, encompassed by brain dead tissue, and a penumbra
tissue corresponding to the salvageable tissue. The temporal
evolution of a stroke lesion can be characterized into four main
phases: hyper-acute (initial event), acute (6 h after event), sub-
acute (from 24 h) and chronic phase (from 2 weeks) (5).

Neuroimaging plays an essential role in the diagnosis and
treatment of stroke, where Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI) are the preferred imaging
modalities. However, MRI provides a better detection and
assessment of potentially salvageable tissue, due to its multi-
spectral property (6). After diagnosing and evaluating the stroke
lesion through neuroimaging acquisitions, the clinicians need
to plan the treatment phase. Such phase encompasses either
mechanical thrombectomy or thrombolysis (7, 8) to revascularize
the hypo-perfused tissue, which is only viable for the sub-acute
phase. Therefore, in a short period of time, expert physicians
must carefully evaluate the associated risks and benefits of
the clinical intervention, namely the volume of hypo-perfused
tissue potentially salvageable vs. the risk of causing haemorrhage
or other complications (7, 9). If performed, the reperfusion
success is assessed via the standardized Thrombolysis in Cerebral
Infarction (TICI) scale (9).

Predicting stroke lesion outcome (i.e., at 3-month follow-
up), and the potential efficacy of the treatment according to the
nature of the lesion, has a great potential to guide the decision
making of physicians. An automatic stroke tissue outcome
prediction method would help the physician in such time-
critical decision-making process (10). In this paper, we propose
a novel end-to-end deep learning architecture that combines
imaging information with clinical meta-data, the TICI scale. Our
method incorporates clinical meta-data at two levels. First, at the
population level, which implicitly encodes expected correlations
between tissue loss and the TICI score into a custom loss function
of the network. Second, at a patient level, which explicitly encodes
the TICI score of each patient as an extra input channel of
the network. To evaluate our proposal, we used the publicly
available ISLES 2017 dataset, where we show the potential value
of incorporating imaging and clinical meta-data for stroke tissue
outcome prediction at a 3-month follow-up.

1.1. Previous Work
Several methods have been proposed for stroke lesion
segmentation (11). However, only recently approaches based on
machine learning have been proposed for ischemic stroke lesion
outcome prediction. These proposals are based on multivariate
linear regression models (12–14), decision trees (15), and
CNN-based deep learning architectures (16, 17).

Scalzo et al. (12) proposed a framework to predict stroke tissue
outcome, 4 days after clinical intervention (thrombectomy),
based on Fluid Attenuation Inversion Recovery (FLAIR) MRI
sequence, and Apparent Diffusion Coefficient (ADC) and
Time-to-Maximum (Tmax) maps, if available. Tissue outcome
prediction was achieved through a regression model that learns
the behavior of neighbouring voxels within a cuboid. Kemmling
et al. (14) used CT and MRI perfusion maps alongside clinical

information, encompassing the reperfusion success. The authors
used a generalized linear model to consider the effect of multiple
clinical variables when performing the stroke lesion outcome
prediction, however, each voxel is considered independently,
disregarding spatial context. Rose et al. (13) proposed a two-
stage approach for stroke lesion outcome prediction based on
perfusion maps, Cerebral Blood Flow (CBF), Cerebral Blood
Volume (CBV), Mean Transit Time (MTT), and Diffusion-
Weighted Imaging (DWI) maps. Initially, the method defines
a region of interest (ROI) from the intensity signal of the
perfusion and diffusion maps. Afterwards, a Gaussian mixture
model, trained in different sets of MRI maps, performs stroke
outcome prediction. McKinley et al. (15) also used a two-
stage classification, where each stage comprehends two Random
Forests (RFs). In the first stage, the method focusses on lesion
delineation, through the definition of a ROI, where each classifier
considers features extracted from different sets of MRI maps.
After defining the hypo-perfused ROI, a second set of two
RFs performs a precise prediction of the stroke lesion. These
classifiers are trained on different sets of patients. One classifier
is trained with patients with no reperfusion, to obtain worst case
scenarios, whereas a second classifier is trained in patients with
good reperfusion, therefore predicting scenarios where hypo-
perfused tissue has higher chances of being salvaged. Afterwards,
the final prediction is obtained by combining the results of both
classifiers, using a logistic regression model.

Most recent methods are based on deep learning. Choi
et al.(17) employed an ensemble of 12 deep learning methods,
divided in two different groups. One group performs voxel-wise
segmentation, based on the U-net architecture (18) adapted for
3D data, totalling four models. The other group encompasses
Fully Connected Networks architectures with different patch
sizes, to perform classification. The final prediction results from
a weighted merging.

In previous approaches, the clinical information related to the
success of reperfusion (TICI scale) has either been used within
multivariate linear regression models (14), or to dichotomize the
training data to train specific RFs models (15). Nonetheless, non-
imaging clinical information has up to our knowledge not been
integrated in deep learning architectures to predict stroke lesion
outcome.

1.2. Contributions
In this paper, we propose an automatic method for stroke lesion
outcome prediction, whose main contributions are:

1. The combination of imaging and non-imaging clinical data in
an end-to-end deep learning architecture.

2. The development of a customized loss function to incorporate
clinical information during the learning phase. Therefore,
learning relationships between imaging and non-imaging
information at a population level.

3. The inclusion of clinical information during the prediction
phase at a patient-specific level, allowing us to perform
predictions of different outcome scenarios in clinical
environment.
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The following sections are organized as follows: section 2
describes the proposed method. Section 3 details the database
used and evaluation methods. Section 4 presents the results and
its discussion. Finally, section 5 summarizes up the main aspects
of the proposal.

2. METHODS

Stroke lesion outcome prediction consists of characterizing
follow-up changes in location and extension of lesions over
time from multi-sequence MRI and clinical information. In our
proposal, to perform tissue outcome prediction, the method
assigns to each voxel of the MRI volume one out of two classes,
healthy tissue or stroke lesion. The following subsections describe
the main steps of our proposal.

2.1. Pre-processing
Our proposal uses diffusion and perfusion maps, adding up to
six MRI parametric maps: diffusion ADC map, and perfusion
relative Cerebral Blood Flow (rCBF), relative Cerebral Blood
Volume (rCBV), Mean Time to Transit (MTT), Time-to-Peak
(TTP), and Tmaxmaps. Figures 1, 2 show two cases ofMRImaps
with different TICI scores, alongside the manual segmentation
(ground truth) obtained from a T2 sequence at a 90 day follow-
up.

ISLES 2017 dataset provides MRI acquisitions from different
centers (19). So, the perfusion and diffusion maps were acquired
with different sets of configurations. Therefore, for each patient
we first resized all maps to a common volume of dimension
of 256 × 256 × 32. Afterwards, the ADC maps were clipped
between [0, 2, 600] × 10−6mm2/s and the Tmax maps were
clipped to [0, 20s], since values beyond these ranges are known to
be biologically meaningless (15). As a final step of pre-processing,
we applied a linear scaling across all maps transforming them to
the range [0, 255].

2.2. Deep Learning Architecture
Deep learning encompasses a variety of representation learning
techniques capable of automatically learning hierarchical and
complex features from the data. This property grants various
levels of abstraction, translating to higher discriminative
features, when comparing to hand-crafted features. In imaging
processing, the most common techniques of deep learning are
the Convolutional Neural Networks (CNNs) (20–22) and the
Recurrent Neural Networks (RNNs) (22, 23).

CNNs have recently achieved remarkable success in well-
known computer vision challenges (21). CNNs convolve a set
of kernels over an input (image or image patches) obtaining a
new feature space that characterizes local interactions in the input
data.

Gated RNNs, which achieved success in the biomedical
imaging field (23), provide a tighter notion of context. Initially
proposed for the analysis of discrete sequences, their architecture
contains gates that learn to store and read information from
linear units. Due to this property, Gated RNNs, namely Long-
Short Term Memory (24) and Gated Recurrent Unit (25),
can process inputs and outputs of varying lengths and retain

information over long time-steps. When applied to computer
vision, the memory capability of multi-dimensional gated RNNs
allows us to model interactions among all the input data, which
translates to a higher notion of context regardless of the receptive
field.

Our proposal is inspired by the fully convolutional U-net
architecture (18), which has proved to be competitive in many
biomedical image segmentation applications. In addition, we
combined the U-net with a 2D-dimensional Gated Recurrent
Unit (GRU) layer (25) to obtain smoother and structured
predictions. Figure 3 shows the proposed architecture. The
convolutional layers are responsible for the generation of
discriminative feature vectors. Afterwards, the feature maps are
fed into the GRU layer to enforce the spatial context of the
network. Finally, a convolutional layer of 1×1 reduces the feature
space to combine it with the clinical information.

2.3. Combining Imaging With Non-imaging
Data
Besides MRI imaging data, non-imaging clinical information is
also gathered during the acute phase of stroke, such as the Time
Since Stroke (TSS), Time to Treatment (TTT), modified Ranking
Scale (mRS) score, and TICI score. TSS and TTP are time
measures that mark the time-points when the stroke incident
was diagnosed and when clinical intervention was performed,
respectively. The mRS score characterizes the degree of disability
90 days after a stroke incidence. However, the most relevant
factor is the TICI score (9), which indicates the degree of success
of themechanical thrombectomy, based on cerebral angiography.
Low scores (TICI ∈ {0, 1}) describe cases with minimal perfusion
or no perfusion at all. Mid-range scores (TICI ∈

{

2a, 2b
}

)
characterize cases with progressively better partial perfusion.
The highest score (TICI = 3) characterizes a complete flow-
restoration (9). Consequently, it is expected that higher TICI
scores naturally lead to increased levels of tissue being salvaged,
and conversely, lower TICI scores might indicate increased levels
of tissue loss. In our proposal, we aim to incorporate this
information into a deep learning architecture, to relate imaging
(e.g., stroke location, extension) with clinical information. In our,
proposal we aim to include such knowledge during the learning
and testing phases of the system. To do so, our method considers
the TICI scale at two levels: population-level and patient-level.

2.3.1. Population-Level
Incorporating clinical information at a population-level is
achieved through a custom loss function, which drives the
learning process to solutions conditioned to the clinical TICI
score. Due to the presence or absence of perfusion beyond the
location of the occlusion, stroke lesion extension can present
changes between the TSS and the follow-up acquisitions. For
cases with no perfusion, it is expected that the lesion grows
between the two exams, while cases with existent perfusion
should present a shrinkage of the lesion volume. In our proposal,
we aim tomodel such lesion dynamics when predicting the lesion
progression from the MRI parametric maps at the first exam
to a future time. To do so, the training procedure is performed
based on the MRI sequences from the first exam and the manual
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FIGURE 1 | MRI parametric maps of a stroke patient with TICI score 0, and the respective manual segmentation. Only one class is defined, describing simultaneously

the infarct core and the penumbra regions.

FIGURE 2 | MRI parametric maps of a stroke patient with TICI score 3, and the respective manual segmentation.

FIGURE 3 | Overview of the proposed architecture. Blue feature maps result from 2D-dimensional convolutions. The green feature maps represent the

2D-dimensional GRU layer. The first dimension corresponds to the number of feature maps. The dashed line consists of a cropping step to connect the U-Net with the

GRU layer. The prediction is provided by the last layer, corresponding to a SoftMax activation.

segmentation of the lesion at the follow-up acquisition. When
the lesion shrinks, our system must learn that although the
lesion presents a larger extension in the MRI sequences, it
should produce a smaller segmentation, and when the lesion
grows, it should learn to predict a larger segmentation, although
the information provided by the MRI sequences indicates it is
smaller. We may model this dynamic by interpreting the growth
as oversegmentation, and the shrinkage as undersegmentation
in relation to the information supported by the MRI sequences
in the present time. We may interpret the oversegmentation

as an increase in false positives (FP) and the shrinkage as an
increase in false negatives (FN), since these are not supported
by the information in the MRI sequences, acquired at the first
medical exam. Such dynamic in our proposal is modeled by
the Fβ score that combines the Precision and Recall scores as
follows:

Fβ = (1+ β2)
precision× recall

(β2 × precision)+ recall
. (1)
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The Precision score, defined as Precision =
TP

TP+FP , measures
the presence of false positives (FP), while the Recall, given by
Recall = TP

TP+FN , considers the presence of false negatives (FN)
(TP corresponds to the number of true positives). As shown in
Equation (1), the relation between these two scores is controlled
by β , which in our proposal encodes the TICI score. To be
applicable to a supervised learning approach, Fβ needs to relate
the predictions with the ground truth, which is defined in the
following way:

Fβ = (1+ β2)

∑N
i pigi

∑N
i β2p2i +

∑N
i g2i

. (2)

The sum is performed for the N voxels of the patch in the
prediction, pi ∈ P, and the ground truth, gi ∈ G. The gradient
of the Fβ score for the jth voxel prediction is computed as:

δFβ

δpj
= (1+ β2)

(

gj(
∑N

i β2p2i +
∑N

i g2i )− (2β2pj)
∑N

i pigi

(
∑N

i β2p2i +
∑N

i g2i )
2

)

.

(3)

2.3.2. Patient-Level
The inclusion of the TICI score at a patient level is achieved
by an extra channel before the final layer of the architecture
(see Figure 3). By combining the feature set extracted from
imaging data and the respective TICI score, we aim to drive the
learning process to search for correlations among them.With this
approach we hypothesize that the model should be aware that
different TICI scores should predict different lesion outcomes,
during the estimation phase. Therefore, our proposal would be
capable of predicting the amount of salvageable tissue loss in the
presence and absence of recanalized perfusion.

2.4. Post-processing
As post-processing step, we performed simple morphological
filtering. Stroke lesions vary significantly in size. The post-
processing should take this variation into account to avoid the
complete removal of stroke lesions; therefore, a threshold to
remove only connected components with less than 25 voxels was
defined using cross-validation.

3. EXPERIMENTAL SETUP

We evaluated our proposal on the ISLES 2017 training and testing
datasets, where the online platform also includes an automated
evaluation of prediction results submitted to the system. In this
work, we compared the performance of our proposal with and
without using clinical meta-data.

3.1. Dataset
ISLES 2017 dataset comprises a total of 75 ischemic stroke
patients divided into two groups: training (n = 43) and testing
(n = 32), who underwent mechanical thrombectomy. For each
subject a total of six MRI acquisitions are provided: ADC,
TTP, Tmax, rCBV, and rCBF. All image modalities are already
co-registered and skull-stripped (16). Alongside the diffusion

TABLE 1 | TICI distribution for ISLES 2017 training and testing datasets.

TICI 0 TICI 1 TICI 2a TICI 2b TICI 3

Training 6 (14%) 3 (7%) 3 (7%) 11 (26%) 20 (46%)

Testing 3 (9%) 2 (6%) 4 (13%) 6 (19%) 17 (53%)

and perfusion parametric MRI maps, each patient has a lesion
outcome manually segmented by a clinician on a 90-day follow-
up T2 MRI. The ground truth was provided only for the
training dataset, since the test set is evaluated by the online
platform. Alongside the imaging information, each patient is
also characterized by the TICI score, TSS, TTT, and mRS Score.
Although other clinical information is available, only the TICI
scores were used in this study. Table 1 describes the distribution
of TICI score for each available dataset.

3.2. Evaluation
The performance of each method was evaluated using five
metrics: Dice Similarity Score (DSC), Precision, Recall, Hausdorff
Distance and Average Symmetric Surface Distance (ASSD). DSC
measures the similarity between two volumes and is defined
by DSC =

2TP
FP+2TP+FN . As for the distance metrics, Hausdorff

Distance denotes the maximum distance between two volumes
surface points, capturing outliers. It is defined as: HD(A,B) =

max{maxa∈Aminb∈B d(a, b), maxb∈Bmina∈A d(b, a)}. Finally,
ASSD describes the average distance between the volumes

surface points defined as: ASSD(A,B) =
∑

a∈A minb∈Bd(a,b)
|A| .

3.3. Setup
The validation set comprised seven cases, while the testing set
of 36 cases from ISLES 2017 training set. To assess the added
value of our contributions, we perform a 7-fold-cross-validation
scheme within the training set. We compare our proposal with
a baseline architecture, which does not encompass any clinical
meta-data. In addition, we changed the loss function to the soft
dice (26), which is a standard loss function for segmentation
tasks.

3.4. Hyper-parameters
For each subject, around 500 patches of size 88 × 88 were
extracted, using a uniform random sampling scheme. The
network was trained with ADAM optimizer (27) (learning rate
of 1 × 10−5) using a mini-batch size of 4. The implementation
was based on Keras (28) with Theano backend. All tests were
conducted on a workstation equipped with a GeForce GTX 1070
with 8 GB. For each patient, prediction took around 15s.

3.4.1. Inclusion of Clinical Information
When considering cases with low TICI score, predicting the
maximal extent of tissue loss eases the clinical decision-making
process, therefore decreasing the chances of tissue death by hypo-
perfusion. In such circumstances, with the inclusion of the TICI
score we aim to drive themodel to predict the worst-case scenario
of stroke lesion outcome. Conversely, in a case with a high
TICI score we would prefer a prediction where the recovered
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TABLE 2 | Results obtained through cross-validation in ISLES 2017 training

dataset for the baseline method and our proposal. Each metric contains the

average ± standard deviation.

Dice Hausdorff

distance

ASSD Precision Recall

Baseline 0.34 ± 0.22 35.09 ± 17.27 6.08 ± 5.27 0.37 ± 0.29 0.54 ± 0.26

Proposal 0.35 ± 0.22 31.38 ± 15.81 5.55 ± 5.00 0.41 ± 0.30 0.47 ± 0.24

hypo-perfused tissue due to reperfusion is achieved with success,
holding on the same principles as before. It is worth mentioning
that such relationship is further affected by several other clinical
and patient-specific pathophysiological aspects, such as collateral
flood, onset time of the stroke, etc.

Giving the available number of cases per TICI in ISLES 2017
dataset, we merged TICI scores, increasing the number of cases
per score. Therefore, at a population level, β in Equation (4)
encodes the TICI score as follows:

β =











2, if TICI ∈ {0, 1}

1, if TICI ∈
{

2, 2a, 2b
}

0.5, if TICI = 3

(4)

In this way, for TICI = 3 (i.e., complete perfusion) we defined
β = 0.5, so recall is weighted four times less than precision.
Hence, we drive the model to give higher importance to the
expression of false positives rather than false negatives, preferring
scenarios with low tissue loss. Conversely, for TICI ∈ {0, 1} (i.e.,
poor recanalization), we defined a β = 2, where recall is weighted
four times higher than precision. For such cases, themotivation is
to give preference to high tissue loss. Finally, for TICI ∈

{

2a, 2b
}

the value of β = 1, obtaining the Dice Score, where precision
and recall are equally taken into consideration. Such scale of β

was defined through cross-validation.

4. RESULTS AND DISCUSSION

In this section, we first evaluate the main contribution of our
proposal in the training set. Using cross-validation we compare
the performance of the baseline method without non-imaging
clinical information against our proposal. Afterwards, we present
the results obtained in ISLES 2017 testing dataset, performing a
comparison against state-of-the-art methods.

4.1. Incorporation of Non-imaging Clinical
Information
Due to the large diversity of appearance, size and shape, the tissue
outcome prediction presents as a challenging task (10). In this
study, we show the importance of having non-imaging clinical
information in a neural network, to characterize principal and
collateral blood flow hemodynamic and obtain better prediction
outcomes. The results obtained for the training set are shown in
Table 2.

When comparing with the baseline, our proposal is capable
of achieving higher DSC and lower Hausdorff Distance, showing

the added value of incorporating the TICI score into the neural
network. Considering the precision and recall metrics, our
proposal achieved higher precision but lower recall. This suggests
a higher capability to perform stroke lesion outcome prediction,
by depicting gradual changes in the hypo-perfused tissue. We
hypothesize that making the model aware to intrinsic biological
phenomena of lesion growth or shrinkage (TICI dependent) lead
to more precise predictions, which is sustained by the lower
values of distance metrics and higher DSC score.

However, in clinical practice the TICI score is only obtained
after recanalization. Being so, predicting the stroke lesion at
a 90 day follow up, during the sub-acute phase, needs to
consider different reperfusion scenarios. In our proposal, we
grant such property at patient-level domain. By adding an extra
input channel that contains the TICI score, we aim to obtain
tissue outcome predictions with successful and unsuccessful
reperfusions. When accessing both case scenarios, during the
decision-making process, our method could provide to clinicians
additional information on the salvaged tissue if mechanical
thrombectomywas performed. In Figures 4, 5we show the added
value of incorporating clinical information on two patients with
different TICI scores: one with an unsuccessful reperfusion (TICI
= 0), and one with a successful reperfusion (TICI = 3).

For each case, we present the tissue outcome predictions with
and without non-imaging clinical information. In the absence of
the TICI score, the tissue outcome prediction performs worse
than our proposal, for both cases. Our proposal is capable of
employing the TICI score to yield better predictions, which are
corroborated by higher Dice scores, but also provides a result
that physiologically is more plausible. Observing the stroke lesion
outcome predictions of our proposal against the baseline, it
is noticeable the presence of physiologically infeasible isolated
regions in the latter. Additionally, we also tested if our method
was capable of predicting different lesion outcomes by changing
the TICI score. When changing the TICI score, we obtained
different lesion outcomes for each patient. Furthermore, such
scenarios agreed with the expected outcome describe for each
TICI score (e.g., by changing from a TICI score of 3 to 0 it was
observed a larger lesion outcome volume). From the latter study,
we show that our proposal gained awareness to scenarios of no-
perfusion and complete perfusion. Such capability could provide
the clinicians useful insight on the benefits and risks associated
to the mechanical thrombectomy. Moreover, it can also be used
to forecast recovery, which is important for patient treatment
and the complete standard care associated to patient recovery. To
corroborate our qualitative analysis,Table 3 contains the ground-
truth lesion volume for each case, alongside the predicted volume
outcome for the original TICI score and for the opposite case
scenario, respectively.

On Table 3, we show the effect of the TICI score in
our proposal. When changing the TICI score we observe
different stroke lesion outcome predictions, in agreement to
the reperfusion success. When increasing the TICI score the
volume of salvaged hypo-perfused tissue becomes higher, which
corresponds to a stroke lesion shrinkage. Case 24, with TICI =

0, shows such behavior. After increasing the TICI score to
TICI = 3, we obtain a smaller stroke lesion volume. As
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FIGURE 4 | Example case of stroke lesion outcome prediction, with and without non-imaging clinical information in a patient with unsuccessful reperfusion. For sake

of description we present the ADC and Tmax maps and the GT. In the presence of clinical information, we show the two possible outcomes: unsuccessful (TICI = 0)

and successful reperfusion (TICI = 3), respectively.

FIGURE 5 | Example case of stroke lesion outcome prediction, with and without non-imaging clinical information in a patient with successful reperfusion. We also

present the ADC and Tmax maps and the GT. In the presence of clinical information, we show the two possible outcomes: successful (TICI = 3) and unsuccessful

reperfusion (TICI = 0), respectively.

TABLE 3 | Results obtained by our proposal on two patient cases with different

TICI scores, alongside the obtained result after changing the original TICI score to

its opposite (marked with a *).

Case GT volume

(voxels)

TICI Dice Precision Recall Predicted

volume (voxels)

24 21,310 0 0.48 0.87 0.33 8170

3* 0.44 0.90 0.29 6840

42 288 3 0.43 0.59 0.33 163

0* 0.24 0.17 0.39 651

for case 42 with TICI = 3, when we decrease the TICI
score from TICI = 3 to TICI = 0 the prediction volume
characterized the opposite phenomena. With TICI = 0 there
is higher hypo-perfused tissue loss, and the tissue outcome
prediction volume is larger. From both case scenarios, the
observed changes in the tissue outcome prediction volume
shows that the TICI score was capable of driving the tissue
outcome prediction scenario, and simultaneously grant a lesion
growth or shrinkage in accordance with the physiological
dynamics of each TICI score and without infeasible isolated
regions.

4.2. ISLES 2017 Testing Set
In Table 4, we compare our proposal with methods from ISLES
2017 testing dataset, evaluated by the online platform (29) and
ordered decreasingly by the DSC score. To reinforce our analysis,
we also included the baseline method.

Incorporating clinical information through the proposed
custom loss function and the extra TICI channel resulted in
a higher performance, in comparison to the baseline. Our
proposal was able extract information from non-imaging data
and to drive its training and testing phases toward better
predictions. Therefore, the simultaneous incorporation of the
reperfusion status, as an additional feature and in the loss
function, improved performance of the classifier. In addition,
we show the higher generalization capability of our proposal,
since the performance metrics or our proposal for both datasets
present less variation.

Although a previous work (15) had investigated the use
of non-imaging clinical information to conduct the training
of machine learning methods, such information has not
been evaluated directly in the context of deep learning
methods. The results on the ISLES2017 indicate the benefits
of incorporating non-imaging clinical information in deep
learning architectures implicitly during the training phase,
and explicitly by extra channels, incorporating patient-specific
information.
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TABLE 4 | Results of ISLES 2017 testing dataset, alongside our baseline method and proposal. Each metric contains the average ± standard deviation.

Dice Hausdorff distance ASSD Precision Recall

C
h
a
lle
n
g
e

Mok et al. * 0.32 ± 0.23 40.74 ± 27.23 8.97 ± 9.52 0.34 ± 0.27 0.39 ± 0.27

Kwon et al. * 0.31 ± 0.23 45.26 ± 21.04 7.91 ± 7.31 0.36 ± 0.27 0.45 ± 0.30

Bertels et al. * 0.30 ± 0.21 33.85 ± 16.82 6.81 ± 7.18 0.34 ± 0.26 0.51 ± 0.32

Monteiro et al. * 0.30 ± 0.22 46.60 ± 17.50 6.31 ± 4.05 0.34 ± 0.27 0.51 ± 0.30

Lucas et al. * 0.29 ± 0.21 33.85 ± 16.82 6.81 ± 7.18 0.34 ± 0.26 0.51 ± 0.32

Choi et al. * 0.28 ± 0.22 43.89 ± 20.70 8.88 ± 8.19 0.36 ± 0.31 0.41 ± 0.31

Robben et al. * 0.27 ± 0.22 37.84 ± 17.75 6.72 ± 4.10 0.44 ± 0.32 0.39 ± 0.31

Pisov et al. * 0.27 ± 0.20 49.24 ± 32.15 9.49 ± 10.56 0.31 ± 0.27 0.39 ± 029

Niu et al. * 0.26 ± 0.20 48.88 ± 11.20 6.26 ± 3.02 0.28 ± 0.25 0.56 ± 0.26

Sedlar et al. * 0.20 ± 0.19 58.30 ± 20.02 11.19 ± 9.10 0.23 ± 0.24 0.40 ± 0.29

Rivera et al. * 0.19 ± 0.16 63.58 ± 18.58 11.13 ± 7.89 0.27 ± 0.25 0.21 ± 0.17

Islam et al. * 0.19 ± 0.18 64.15 ± 28.51 14.17 ± 15.80 0.29 ± 0.28 0.25 ± 0.25

Chengwei et al. * 0.18 ± 0.17 65.95 ± 25.94 9.22 ± 6.99 0.37 ± 0.30 0.21 ± 0.23

Yoon et al. * 0.17 ± 0.16 45.23 ± 19.14 12.43 ± 11.01 0.23 ± 0.27 0.36 ± 0.32

Baseline 0.24 ± 0.20 53.29 ± 26.95 10.59 ± 4.98 0.27 ± 0.27 0.50 ± 0.35

Proposal 0.29 ± 0.22 47.17 ± 22.13 7.20 ± 4.14 0.26 ± 0.23 0.61 ± 0.28

* Static results in Ischemic Stroke Lesion Segmentation Challenge (29).

FIGURE 6 | Hausdorff Distance vs. Dice score from methods of ISLES 2017 in the testing database. Note that closer to the horizontal axis and further away from the

origin is better (i.e., high Dice and low Hausdorff). Ensemble methods are marked with a purple plus.

When comparing to the state-of-the-art methods, our
proposal can reach competitive results, being placed among
top scoring methods. With single model method, our proposal
yields results within the top five methods, alongside ensemble
approaches [e.g., Choi et al. (17)]. In the same group, our method
achieved the highest recall metric, with lower precision score. As
for the distance metrics, our proposal can provide competitive
ASSD score, with low standard deviation, and a Hausdorff
Distance among of top methods. We emphasize that, as post-
processing step, our method only applies a simple morphological
removal of small connected components. Therefore, elaborate
schemes of post-processing such as Conditional Random Fields
or evenweighted schemes of ensemble can boost the performance
of such approaches. Even in such cases, our approach provides
a good robustness and precision in stroke lesion outcome

delineation. To enforce such analysis in Figure 6, we show the
average DSC score and the Hausdorff Distance obtained by each
state-of-the-art method in ISLES 2017 testing dataset. Besides our
proposal, we included the baseline method.

From Figure 6, we can observe the performance boost of our
proposal over the baseline method, placing it within the group of
top scoring methods.

5. CONCLUSIONS

Prediction of stroke lesion outcome has the potential to assist
interventionists when assessing the risks and benefits associated
to mechanical thrombectomy. Therefore, having such tool can
provide useful information during the clinical decision process.
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In this work, we propose a novel deep learning architecture
that beyond previously proposed architectures incorporates
clinical information in a principled way. To do so, our proposal
integrates clinical information at two different levels of the
architecture. The first level considers the population domain-
knowledge, achieved through the development of a custom loss
function, to depict relationships between the TICI score and
the tissue outcome prediction. The second level considers the
patient-specific domain, where the TICI is encoded into an
input channel of the architecture. From the latter level, we
showed that our proposal was able to characterize different
outcome scenarios of successful and unsuccessful reperfusion.
Such methodology presents itself as a ground-breaking tool
with potential to access the risks and benefits associated to
the mechanical thrombectomy. The evaluation of our proposal
was conducted on the publicly available ISLES 2017 dataset.
We observe that the proposed method has benefited from
the combination of imaging and non-imaging information. In
addition, when comparing to the state-of-the-art methods, we
observed that a single architecture with fewer parameters, such
as ours, yields competitive performance metrics similar to more
elaborate and/or ensemble methods.

However, there is still room from improvement since none of
the current state-of-the-art methods, provides the robustness and
accuracy needed for clinical practice, and are currently bellow
the inter-rater performance of expert radiologists (DSC=0.58)
(19). In the future, we would like to investigate on adding
other clinical information, such as TTT and TSS. We esteem
that the proposed approach can be further applied to other
diseases where clinical information complements imaging
information.
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Background and Purpose: The T1-weighted dynamic contrast enhanced (DCE)-MRI

is an imaging technique that provides a quantitative measure of pharmacokinetic (PK)

parameters characterizingmicrovasculature of tissues. For the present study, we propose

a new machine learning (ML) based approach to directly estimate the PK parameters

from the acquired DCE-MRI image-time series that is both more robust and faster than

conventional model fitting.

Materials and Methods: We specifically utilize deep convolutional neural networks

(CNNs) to learn the mapping between the image-time series and corresponding PK

parameters. DCE-MRI datasets acquired from 15 patients with clinically evident mild

ischaemic stroke were used in the experiments. Training and testing were carried out

based on leave-one-patient-out cross- validation. The parameter estimates obtained by

the proposed CNN model were compared against the two tracer kinetic models: (1)

Patlak model, (2) Extended Tofts model, where the estimation of model parameters is

done via voxelwise linear and nonlinear least squares fitting respectively.

Results: The trained CNN model is able to yield PK parameters which can better

discriminate different brain tissues, including stroke regions. The results also demonstrate

that the model generalizes well to new cases even if a subject specific arterial input

function (AIF) is not available for the new data.

Conclusion: A ML-based model can be used for direct inference of the PK parameters

from DCE image series. This method may allow fast and robust parameter inference in

population DCE studies. Parameter inference on a 3D volume-time series takes only a

few seconds on a GPU machine, which is significantly faster compared to conventional

non-linear least squares fitting.

Keywords: dynamic contrast enhanced MRI, pharmacokinetic parameter inference, convolutional neural

networks, ischaemic stroke, tracer kinetic modeling, contrast agent concentration, loss function
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1. INTRODUCTION

Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is an effective dynamic imaging technique that can be
used to study microvascular structure in vivo by tracking the
diffusion of a paramagnetic contrast agent such as gadopentate
dimeglumine (Gd-DTPA) over time (1). By collecting a series
of T1-weighted MR images at intervals of a few seconds, the
uptake and washout of the administered contrast agent can
be observed in the imaged tissue, resulting in characteristic
intensity-time curves across different tissues (2). Vascular and
cellular regularities in human body usually have a strong impact
on the local vascular perfusion and permeability. To this end,
DCE imaging has been used as a promising tool for clinical
diagnostics of brain tumors, multiple sclerosis lesions, and several
neurological disorders that lead to disruption and breakdown
of blood-brain barrier (BBB) (3–6). In DCE-MRI, changes in
contrast agent concentration are determined from changes in
signal intensity over time, and then regressed through the use
of tracer kinetic (TK) models to estimate pharmacokinetic (PK)
parameters which characterizes the vascular permeability and
tissue perfusion (7, 8).

One of the key limitations of TK modeling methods is

that they are simply based on the fitting of voxelwise PK
parameters to contrast agent concentration-time curves (9). The
fitting is usually performed using a nonlinear least squares
(NLS) approach. However, the acquired voxelwise concentration-
time curves are generally very noisy and involve only a small
number of sampling points, hence the model fitting may yield
parameter estimates with large variance as well as considerable
bias (see Figure 1 for an exemplary representation of this
limitation). Moreover, an iterative NLS solver may converge to

erroneous solutions since the NLS objective is not convex and
can have multiple local minima (10). Another major drawback is
that the voxelwise model fitting is computationally demanding
considering the thousands of voxels in a single MR slice (11).
More sophisticated approaches (10, 12) were also proposed
based on Bayesian theory of statistical inference of the DCE
parameters for the fitting of nonlinear models. Unlike the
standard NLS regression, these approaches exploit the spatial
information of the neighboring voxels and provide reduce
variability of parameters in local homogeneous regions. However,

the bottleneck is their drastically increased computation time,
usually taking hours for the estimation of parameters on a single
DCE scan.

Machine learning (ML) methods have been extensively used
in the medical imaging community for several tasks (13) such
as parameter estimation, disease classification, segmentation, so
on. Recently, a random forest regression based method (14)
was proposed to estimate accurate spectral parameters in MR
spectroscopy. Deep learning methods (15–17) have recently
gained large popularity and achieved predominantly state-of-
the-art results in the medical imaging field including various
image-to-image translation tasks (18–20). A deep neural network
based approach for perfusion parameter estimation (21) was first
proposed for dynamic susceptibility contrast (DSC)MRI without
requiring a standard deconvolution process.

To alleviate the aforementioned limitations in DCE-MRI,
we present a direct and fast PK parameter estimation method
which introduces several concepts from machine learning. Our
proposed approach can directly infer the PK parameters from
the observed signal intensity over time. In order to achieve this,
we first train a deep convolutional neural network (CNN) to
learn the underlying mapping – or relation – between intensity
image-time series and PK parameters using a large training data
consisting of millions of voxels taken from the brain DCE dataset.
In our method, the target PK parameters used in training step
can be either estimated by any existing tracer kinetic models,
or can be defined with reference values depending on a specific
biomarker or disease that has been built on one specific type
of model. Our method can intrinsically provide the following
advantages over the conventional model fitting based parameter
estimation approaches:

• The proposed method can directly estimate the corresponding
physiological perfusion parameters when only observed
signal intensities over time given, which eliminates several
intermediate computation steps of the conventional pipeline
as illustrated in Figure 2.

• Ourmethod serves as a high-level parameter estimationmodel
such that we can train a network from which we expect to
yield parameter estimates as close as the target values that are
obtained using any optimization approach, e.g., standard NLS
fitting, regularized Bayesian estimation methods, etc.

• Due to its strong generalization ability, this method shows
increased robustness to signal noise and outliers, and it
can significantly mitigate the effect of irregularity and
discontinuity problem which is quite apparent in the
parameter maps estimated by conventional NLS fitting.

• The parameter estimates obtained by the proposed approach
yields improved statistically significant differences between
different tissue types, which can ultimately allow better
discrimination of normal and pathological regions in stroke
analysis.

• Compared to conventional fitting methods, the PK parameter
inference with our ML based approach is computationally
faster, taking only seconds on an entire 3D DCE-MRI volume.

2. MATERIALS AND METHODS

2.1. Dataset and Preprocessing
2.1.1. Patients
Fifteen patients were recruited for this study. The patient cohort
presents first clinically evident mild (i.e., expected to be non-
disabling) ischaemic stroke from the local stroke service. The
patients were over 18 years old and had a definite diagnosis of
ischaemic stroke. They were able to consent themselves, had an
MRI scan at diagnosis and weremedically stable enough to return
for a DCE-MRI scan at between 1 and 3months post-stroke and a
follow-up after 1 year. All patients underwent clinical assessment
by a stroke physician, diagnostic MR imaging and cognitive
testing at presentation. An expert panel of stroke physicians and
neuro-radiologists assessed each case in order to confirm the
diagnosis of ischaemic stroke and classify the ischaemic stroke

Frontiers in Neurology | www.frontiersin.org 2 January 2019 | Volume 9 | Article 1147125

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ulas et al. CNNs for Pharmacokinetic Parameter Inference in DCE-MRI

FIGURE 1 | Effect of signal noise on the resulting parameters with conventional fitting models. (A) an examplary DCE image (left) displaying two neighboring voxels

(marked by red and blue circles) in the stroke region, and the corresponding Ktrans maps (right), (B) resulting fitted contrast agent concentration curves for these two

voxels using Extended Tofts model. Although the neighboring voxels are spatially very close to each other (only 1-pixel away), the observed concentration data are

different due to the excessive signal noise. Eventually, there is a substantial difference in the fitted concentration curves and parameter values

(Ktrans
= 6.18× 10−3 min−1 for voxel 1, and Ktrans

= 2.48× 10−3 min−1 for voxel 2).

FIGURE 2 | The conventional pipeline of pharmacokinetic parameters for DCE-MRI. Our proposed machine learning (ML) model allows to directly infer the parameters

from the acquired DCE image time series. To this end, the intermediate computational steps—i.e., conversion to contrast concentration, extraction of AIF, and fitting to

a tracer kinetic (TK) model—can be eliminated when applied on a test data. We note that in our approach a specific TK model can be still used to estimate target

parameter values during training.

subtype. DCE-MRI was performed a minimum of 1 month after
the stroke in order to avoid acute effects of the stroke on the
local BBB (22). This study was approved by the Lothian Ethics of
Medical Research Committee (REC 09/81101/54) and the NHS
Lothian R + D Office (2009/W/NEU/14), and all patients gave
written informed consent.

2.1.2. MRI Acquisition
MR imaging was performed on a 1.5 T MRI scanner (Signa
HDxt, General Electric (GE), Milwaukee,WI) using an 8-channel

phased-array coil. Structural MR images for diagnostic purpose
were acquired at first including axial T2-weighted (T2W; TR/TE
= 6000/90 ms, FoV = 240 × 240 mm, acquisition matrix =
384 × 384, 1.5 averages, 28 × 5 mm slices, 1 mm slice gap),
and axial fluid-attenuated inversion recovery (FLAIR; TR/TE/TI
= 9000/153/2200 ms, FoV= 240× 240 mm, acquisition matrix =
384× 224, 28× 5 mm slices, 1 mm slice gap).

DCE image series were acquired using a 3D T1W spoiled
gradient echo sequence (TR/TE = 8.24/3.1 ms, flip angle = 12◦,
FoV = 240 × 240 mm, acquisition matrix = 256 × 192, slice
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FIGURE 3 | A representative MRI image and corresponding tissue

segmentations. FLAIR image (left) and tissue masks superimposed on FLAIR

image (right). NAWM, normal-appearing white matter; WMH, white matter

hyperintensities; DGM, deep gray matter; RSL, recent stroke lesion.

thickness = 4 mm, 42 slices). Two pre-contrast acquisitions were
carried out at flip angles of 2◦ and 12◦ to calculate pre-contrast
longitudinal relaxation times (T10). An intravenous bolus
injection of 0.1 mmol/kg of gadoterate meglumine (Gd-DOTA,
Dotarem, Guerbet, France) was administered simultaneously
with the start of 20 acquisitions with 12◦ flip angle and a temporal
resolution of 73 seconds. The total acquisition time for DCE-MRI
was approximately 24 minutes.

2.1.3. Image Processing
For image preprocessing, we mainly followed the steps described
in Heye et al. (22). First, all structural and DCE MR images
were coregistered to the 12◦ pre-contrast image using rigid-
body registration to correct for bulk patient movement. All
small vessel features were determined according to agreed
STRIVE standards (23). We employed a multispectral MRI
data fusion and minimum variance quantization method
(24) for the segmentation of white matter hyperintensities
(WMH) and normal-appearing white matter (NAWM), and the
resulting masks were manually refined. We used the “Region of
Interest” tool of Analyze 11.0TM (AnalyzeDirect, KS) to semi-
automatically outline the old stroke lesions and recent stroke
lesion (RSL) boundaries separately. Stroke lesion masks were
checked for precision by a neuroradiologist; all other tissue
masks were checked visually for accuracy and manually edited
by an expert if necessary. Moreover, subcortical/deep gray matter
(DGM) masks were generated automatically using a software
pipeline as described in Heye et al. (22). In order to minimize
any residual contamination of the DGM, the resulting mask was
eroded by one voxel. Figure 3 depicts a representative FLAIR
image and corresponding tissue segmentation.

2.2. DCE-MRI Analysis
Data collected at multiple flip angles were first used to calculate
the T10 map based on the variable flip angle method proposed in
Brookes et al. (25), given by

1

T10
=

1

TR
ln

(

SRsinαbcosαa − sinαacosαb

SRsinαb − sinαa

)

, (1)

where SR = Sa/Sb with Sa and Sb denoting the signal intensities
of the two pre-contrast acquisitions with flip angles αa = 2◦ and
αb = 12◦, and TR is the repetition time.

Dynamic DCE image series S(t) are converted to contrast
agent concentration Ct(t) through the steady-state spoiled
gradient echo (SGPR) signal equation (26),

S(t) =
M0sinαb(1− e−(K+L))

1− cosαbe−(K+L)
+

(

S(0)−
M0sinαb(1− e−K)

1− cosαbe−K

)

,

(2)
where K = TR/T10, L = r1Ct(t)TR, r1 is the contrast agent
relaxivity taken as 4.2 s−1mM−1, S(0) is the baseline (pre-
contrast) image intensity, and T10 andM0 are respectively the T1

relaxation and equilibrium longitudinal magnetization that are
calculated from a pre-contrast T1 mapping acquisition.

For each subject, we extracted a vascular input function
(VIF) from a region located on the superior sagittal sinus (SS)
because partial volume effects and inflow artifact were reduced
at this location compared to obtaining the arterial input function
(AIF) from a feeding artery (22); the delay between arterial and
venous responses is expected to be very small compared with
the temporal resolution of our acquired data. Instead of selecting
only a single voxel, we determined a 3 × 3 patch inside the
SS region and estimated the VIF by averaging the time-signal
intensities over the voxels within the patch. This enabled us to
obtain more smooth variations in the DCE-MRI time course.
We converted the whole-blood concentration Cb(t) measured
in the SS to plasma concentration using the formula Cp(t) =

Cb(t)/(1 − Hct) where Hct is the blood hematocrit measured in
large arteries and assumed to be Hct = 0.45 as previously used in
literature (22, 26, 27).

2.2.1. Tracer Kinetic Models
Tracer kinetic modeling (28) is applied in DCE-MRI to provide
a link between the contrast agent concentration and the
physiological or so-called pharmacokinetic parameters, including
the fractional plasma volume (vp), the fractional interstitial
volume (ve), the volume transfer rate (Ktrans) at which contrast
agent (CA) is delivered to the extravascular extracellular space
(EES) from plasma space.

In this study, we fitted the following two models to the tissue
concentration curves Ct(t): (i) the extended Tofts model, (ii) the
Patlak model. A schematic overview of the two models and their
relationship is illustrated in Figure 4.

The extended Tofts (eTofts) model (29) mainly describes a
highly perfused (Fp = ∞) two- compartment tissue model
considering bidirectional transport between the blood plasma
and EES. The concentration of contrast agent in the tissue is
determined by,

Ct(t) = vpCp(t)+ Ktrans

∫ t

0
Cp(τ )e

−kep(t−τ )dτ , (3)
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FIGURE 4 | Illustration of two tracer kinetic models: Extended Tofts (left) and Patlak (right) model. Target parameters of DCE-MRI modeling are the contrast agent

transfer rate from plasma space to tissue space Ktrans, the fractional plasma volume vp, the fractional interstitial volume ve, and transfer constant from the tissue

space to the blood plasma kep. Patlak model is related to Extended Tofts model through the assumption Cp >> Ce such that the backflux from the EES into the

plasma space is negligible.

where kep = Ktrans/ve represents the transfer constant from the
EES back to the blood plasma. For the fitting of eTofts model, we
used limited-memory Broyden-Fletcher Goldfarb-Shannon (l-
BFGS) method for nonlinear minimization of the sum of squared
residuals. The algorithm was run till convergence for a maximum
of 30 iterations.

The Patlak Model (30) can be considered as a special case of
the eTofts model, where the backflux from the EES into the blood
plasma compartment is negligible. To this end, this model only
allows measurement of the two parameters Ktrans and vp given
by,

Ct(t) = vpCp(t)+ Ktrans

∫ t

0
Cp(τ )dτ , (4)

An attractive feature of Patlak model is that the model equation
in (4) is linear and model parameters can be fitted using linear
least squares which has a closed-form solution, hence parameter
estimation is fast (9).

2.3. Deep Learning for Pharmacokinetic
Parameter Estimation
In this study, we consider the PK parameter inference in DCE-
MRI as a mapping problem between intensity image-time series
and parameter maps where the underlying mapping can be
efficiently learned using deep CNNs. The proposed CNN aims
at learning data-driven features with the use of convolutional
feature filters to effectively detect the local spatio-temporal
characteristics of the DCE time series. The extracted spatio-
temporal features are desired to represent the underlying relation
between the input and output of the network as much as possible.

Specifically, our CNN is trained to learn a mapping between
S(t) and θ to output an estimate of PK maps θ̃ ; θ̃ = f(S(t)|w),
where f denotes the forward mapping of the CNN with the
learned set of filter weights w. We note that set of parameters
are represented by θ = {Ktrans, vp} for Patlak model and θ =

{Ktrans, kep, vp} for eTofts model.

2.3.1. Loss Function
To learn the network weights (w) during training, we need to
define an objective function (or loss function) to be minimized.
In addition to the standard mean squared error (MSE) loss
between the true PK parameter values θ and the estimated
values θ̃ which enforces high fidelity in parameter reconstruction,
we simultaneously seek the fitted contrast agent concentrations
of the PK parameters to be sufficiently close to the observed
concentrations, Ct(t). To this end, we formulate a new loss
function which jointly incorporates these two loss criteria. Given
a large number of training samples D of input-output pairs
(S(t), θ), we train a CNNmodel that minimizes the following loss,

L(w) =
∑

(S(t),θ)∈D

(

‖θ − θ̃‖22 + ‖Ct(t)− ftk(θ̃)‖
2
2

)

, (5)

where ftk is the tracer kinetic model equation of either eTofts
or Patlak model as formulated by Equation (3) or Equation (4),
respectively.

2.3.2. Network Architecture
We illustrate the network structure used in this study in Figure 5.
The network takes DCE image-time series as input with a
patch size of 24 × 24 × 21, where time frames are stacked as
input channels. The first convolutional layer applies 2D filters to
each channel individually to extract low-level temporal features
which are aggregated over frames via learned filter weights to
produce a single output per voxel. Inspired by the work on
brain segmentation (31) and denoising in arterial spin labeling
(32), our network consists of parallel dual pathways to efficiently
capture multi-scale information after the first layer. The local
pathway focuses on extracting details from the local image
regions while the global pathway is designed to incorporate
more contextual global information. The global pathway consists
of 3 dilated convolutional layers with dilation factors of 2, 4,
and 8, indicating increased receptive field sizes. Zero-padding is
applied before every convolution operation to keep the spatial
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dimensions of the output equal to the input. The filter size of
each convolutional layer including dilated convolutions is chosen
as 4 × 4. The rectified linear units (ReLU) activation function
(f (x) = max(0, x)) is applied after each convolution to introduce
non-linearity into the mapping. Local and global pathways are
then concatenated to form a multi-scale feature set. Following
this, two fully-connected layers of 256 and 128 hidden nodes
are used to determine the best possible feature combination that
can accurately map the input to output of the network. Finally,
the last fully-connected layer outputs the parameter estimates
of a patch size 24 × 24 × n, where n is the number of kinetic
model parameters. We emphasize that as our proposed network
was structured to estimate outputs for every single voxel of the
input patch, it is essential to keep the spatial dimensions of the
input and output same throughout the network. Therefore, in
our network we can consider a fully-connected (FCN) layer as
a convolutional (CONV) layer with 1× 1 convolutions.

2.3.3. Network Training
Among all the follow-up scans we only selected one DCE-MRI
scan per subject in our experiments. All these scans were acquired
at between 1-3 months post-stroke. For each patients data, we
neglected the first and last 5 image slices due to insufficient
brain coverage. Among the remaining slices of each patient we
randomly selected 20 slices to be considered in analysis. We
note that these are the central 20 slices that contain most of
the brain regions in overall. Following to this, each 2D DCE
image slice was divided into overlapping patches of size 24 × 24
voxels with step size of 6 voxels. This resulted in a collection
of approximately 12, 000 patches for every patients data. We
applied the same procedure on contrast agent concentration
data and target parameter maps required for network
training.

All experiments were performed in a leave-one-subject-out
fashion, i.e., 30 different networks were trained in total based
on both Patlak and eTofts model parameters. Randomly chosen
10, 000 overlapping patches of each subject were split into
training (80%) and validation (20%) sets. The networks were
trained using the Adam optimizer with a learning rate of 10−3

and a decay rate of 10−4 for maximum number of 200 epochs
and a mini-batch size of 1000 patches. Early stopping was applied
to prevent poor generalization performance when the validation
loss stopped improving within consecutive 15 epochs. In Figure 6
we provide two exemplary plots depicting the changes in training
and validation loss over epochs for CNN trained on Patlak and
eTofts models. Both losses show a decreasing trend and converge
to a minimum. We implemented our code using Keras library
with TensorFlow (33) backend, and experiments were run on a
NVIDIA GeForce Titan Xp GPU with 12 GB RAM.

2.3.4. Testing
Once the network is trained and network parameters are learned,
DCE image-time series data of a test subject can be fed into
the network to directly predict the PK parameters. Since the
predictions are processed in a patch-wise manner, all overlapping
16 predictions of a neighborhood are averaged to obtain a final
value for every individual voxel.

3. RESULTS

3.1. Comparison of Pharmacokinetic Maps
We compare the qualitative PK parameter maps obtained by
Patlak model fitting, eTofts model fitting and CNN model
trained by either Patlak or eTofts model. Figures 7B,C shows
PK parameter maps of an exemplary slice of a patients data.
In overall, the parameter maps by CNN model looks very
similar with the Patlak model fitting. However, the CNN
model produces higher estimates of Ktrans in especially small
RSL region as marked on the DCE image in Figure 7A.
Moreover, the RSL region is more distinctive and can be
discriminated well with respect to other tissues in both the
parameter maps of CNN model. For numerical evaluation
of output parameter maps, we used two evaluation metrics
calculated within the entire brain region: Structural similarity
index (SSIM) and normalized root mean square error (nRMSE).
These values were calculated by considering the output maps
of Patlak model as reference, shown in Figures 7B,C. For
Ktrans, we obtain a high SSIM of 0.991 and a low nRMSE
of 0.0144. For vp, SSIM is calculated as 0.973 and nRMSE is
0.0168.

Figures 8B,C demonstrates PK parameter maps of an
exemplary slice of an another patients data fitted by eTofts model.
The parameter estimates significantly match each other (for CNN
and eTofts) in many of the tissue regions except NAWM as
depicted on theDCE image in Figure 8A. As shown in Figure 8C,
CNN model yields lower vp values in comparison to eTofts
model in NAWM. Hence, the discrimination of the NAWM
with respect to WMH is more prominent. Quantitatively,
when compared against the parameter maps obtained by eTofts
model, CNN maps yield a SSIM score of 0.998 and 0.961
for Ktrans and vp, respectively, while nRMSE is 0.0073 and
0.0156.

3.2. Fitting to the Observed
Concentration -Time Series
We evaluate the accuracy of the fitting to the observed
concentration-time series data. The fitted contrast agent
concentration-time series were estimated via (3) and (4) by using
the parameter estimates of Patlak, eTofts, and CNN models
separately.

Table 1 demonstrates the quantitative comparison of the
fitting to the observed contrast agent concentration time series
data for different models in terms of nRMSE and SSIM. The
metric values were calculated for every 2D slice of a subject’s
volume, and statistical values (mean ± std) were obtained
using all 15 subject’s data. The results indicate that standard
Patlak and eTofts model can fit the data better compared
to the CNN model trained with these models separately.
However, the difference is not substantial that CNN model still
achieves high accuracy with less than an average %2 fitting
error.

Figures 9A,B shows the fitting of contrast concentration
(in mM) for the NAWM and RSL regions in a single
patient data. In general, the CNN model trained by either
Patlak or eTofts model parameters can fit the data similarly
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FIGURE 5 | Illustration of the deep learning architecture used for the estimation of PK parameter maps given the DCE image patch-time series as input. All

convolutional layers except concatenation layer learn 32 filters whereas concatenation layer learns 64 filters. Every convolutional layer involves a filter size of 4× 4.

ReLU is used as a non-linear activation function after each convolutional and fully connected layer. The size of the outputs from each layer operation [e.g., input,

convolution and full connection (FCN)] are also displayed at the bottom of each layer.

FIGURE 6 | Training and validation loss over epochs obtained by training a CNN model using (A) Patlak and (B) eTofts model parameters. Gradual decrease in the

loss indicates the efficiency of the network for learning useful representations related to the underlying mapping between the input and output.

well when compared with Patlak and eTofts model. An
interesting observation in Figure 9B is that the eTofts model

does not fit the observed data well whereas the fitting

obtained by CNN model trained on eTofts parameters is more

accurate.

3.3. Statistical Analysis of PK Parameter
Estimation
We perform statistical analysis of the parameter estimates on
different tissues. A comparison between tissue types is shown
in Figure 10. We assessed the statistical significance of the
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FIGURE 7 | Comparison of qualitative PK parameter maps from a slice of a stroke patient data. (A) a DCE image slice on which the tissue masks are superimposed

(WMH: green, RSL: red), (B) Ktrans and (C) vp parameter maps obtained by CNN model and Patlak fitting.

FIGURE 8 | Comparison of qualitative PK parameter maps from a slice of a patient data with white matter hyperintensities. (A) a DCE image slice on which the tissue

masks are superimposed (NAWM: blue, WMH: green, DGM: yellow), (B) Ktrans and (C) vp parameter maps obtained by CNN model and eTofts fitting. We remark that

WMH represents the WM tissue associated with increased risk of dementia and cognitive decline.

Frontiers in Neurology | www.frontiersin.org 8 January 2019 | Volume 9 | Article 1147131

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ulas et al. CNNs for Pharmacokinetic Parameter Inference in DCE-MRI

TABLE 1 | nRMSE (%) and SSIM statistics (mean ± std) obtained from concentration-time series data fitting. The SSIM value can vary between –1 and 1, where 1

indicates perfect similarity.

Models

Metric Patlak eTofts CNN: Patlak trained CNN: eTofts trained

nRMSE (%) 1.1200 ± 0.5225 1.0575 ± 0.5744 1.6398 ± 0.6878 1.7360 ± 0.7408

SSIM 0.9812 ± 0.0141 0.9835 ± 0.0127 0.9750 ± 0.0138 0.9719 ± 0.0162

differences using the paired Wilcoxon signed rank test. For
Patlak and eTofts model, all differences between tissue types were
significant (p < 0.001) except for Ktrans in DGM andWMH, and
vp in WMH and RSL. For CNN model trained on Patlak model
parameters, all differences of Ktrans between tissue types were
significant including the difference between WMH and DGM
(p = 3.4 × 10−4). The difference between WMH and RSL for
vp is again statistically significant with p = 1.6× 10−5. The CNN
model trained on Patlak generally tends to overestimate theKtrans

and vp parameters compared to either Patlak or eTofts model.
The difference between them are significant with p < 0.001,
and this is valid for all tissue types except DGM (p = 0.021
for Ktrans). On the other hand, the CNN model trained with
eTofts parameters yield underestimated Ktrans and overestimated
vp values when compared against either Patlak or eTofts model.
The underestimation of Ktrans by CNN is statistically significant
for all tissue types except WMH (p = 0.317). The overestimation
of vp by CNN is significant for all tissue types (p < 0.001).

Figure 11 depicts the Bland-Altman plots of Ktrans values
in three different tissues (DGM, WMH, RSL) obtained from a
patient’s data. As can be observed in Figure 11A, when compared
against the Patlak model, CNN model trained with Patlak tends
to slightly underestimate the Ktrans in DGM and overestimate the
values in WMH and RSL. Figure 11B indicates that Ktrans are
underestimated by CNN trained with eTofts in DGM and RSL.
The values in WMH highly match with Patlak fitting showing
no systematic difference. In general, the results in Bland-Altman
plots agree with the statistical results as shown in Figure 10,
meaning that systematic differences are observable between
the estimates of CNN and model fitting although concordance
correlation coefficients (CCCs) indicate a strong agreement.

4. DISCUSSION

The results of this study show that a CNN based ML model can
yield PK parameter estimates that are comparable to traditional
model fitting. As depicted in Figures 7, 8, the qualitative
parameter maps estimated by CNN models match highly with
the ones obtained by conventional TK model fitting methods.
Moreover, ML based models can enable better discrimination of
different brain tissues. As can be seen in Figure 7, small stroke
lesion is more visible with higher Ktrans values assigned to this
region. In addition to this, the discontinuities of parameter values
arising especially at highly perfused regions (i.e., vessels) can be
mitigated by CNN model, and more smoother local areas are
produced in these regions as shown in Figures 7, 8.

Statistical analysis in Figure 10 indicate that significant
differences between tissue types can be achieved by CNN model
whereas both Patlak and eTofts model fail in quantitatively
differentiating some of the tissues pairwise including WMH-
DGM. Especially higher Ktrans values are generally assigned to
stroke regions i.e., RSL, allowing better discrimination of these
areas against non-stroke regions. To this end, the proposed ML
model can be an appropriate parameter inference model for
quantification of subtle BBB disruption where measuring low-
level BBB permeability is vital in several diseases, including
cerebral small vessel disease, lacunar stroke and vascular
dementia. Another interesting observation is that the plasma
volume vp values estimated by CNN model in WMH are
considerably greater than in normal-appearing WM areas. This
may result in improved identification of the hyperintensity
areas from the surrounding normal appearing WM tissue. WM
hyperintensities are usually regarded as surrogates of small vessel
disease and frequently seen in elderly people (34).

The major advantage of ML based model is that the parameter
inference of a voxel belonging to a specific tissue type is
performed by taking into account many other training samples,
or voxels, of the same tissue type. Therefore, if the signal time
series of a target voxel is subject to high noise, it is likely that
a parameter value associated with the voxels that show similar
signal trends and located in the same tissue type can be assigned
to the target voxel. One example relevant to this observation
can be seen in Figure 9B, where the fitted concentration time
curves are provided for a ROI inside the RSL region of a patients
data. Here, the eTofts model does not provide a good fit to
the measured signal and the fitted concentration-time curve
describes more a vascular region (i.e., blood vessel). However,
the fit of the CNN model trained with eTofts model parameters
can produce significantly better fit to the observed data, and
the fit resembles more an RSL region, which is highly similar
with the fits by Patlak and CNN model trained by Patlak model
parameters. These findings reveal better generalization ability
of ML models (35) which can extract and learn important
tissue specific features from a large cohort of training examples.
However, it should be noted that the correction of misfit of
concentration time curves in Figure 9B does not point out an
unique feature of our CNN based approach, but rather shows a
specific case. The avoidance of a misfit with the CNN network
primarily depends upon the model and optimization approach
on which the network is trained.

Another observation from Figure 11 also signifies the
tendency of CNN model to produce parameter estimates
close to a mean value of parameter distribution learned from
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FIGURE 9 | Comparison of model fits to the observed patient data. Exemplary concentration-time curves for tissue regions (A) NAWM and (B) RSL. In general, the

CNN model trained by either Patlak or eTofts model parameters can fit the data similarly well when compared with fitted Patlak model. More interestingly, the CNN

model trained by eTofts is in better alignment with observed data while the fitted eTofts is not sufficient to describe the data.

FIGURE 10 | Comparison of fitted and estimated PK parameters between tissue types obtained from all subjects data. Box plots shows the distribution of (A) Ktrans

and (B) vp in NAWM, WMH, DGM, and RSL. Box plots depict the median with a colored horizontal line for every method in comparison. Remarkably, CNN model

trained on Patlak model results in Ktrans and vp values which show statistically significant differences between tissue types.

many training voxels within in a specific tissue. Here, when
compared to the standard Patlak model parameters, we observe
overestimated values in especially WMH and RSL region
where the Ktrans usually has higher values. The overestimation
in some of the voxels within these tissues is presumably
caused by the relatively lower parameter values estimated by

Patlak model due to significant signal noise and fitting to the
local minima. In this regard, systematic differences between
CNN model estimates and standard NLS fitting are inevitable
because the parameter estimates by NLS fitting is not optimal
and usually produces a parameter distribution from a high
range of values within the voxels of a specific tissue, as it

Frontiers in Neurology | www.frontiersin.org 10 January 2019 | Volume 9 | Article 1147133

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ulas et al. CNNs for Pharmacokinetic Parameter Inference in DCE-MRI

FIGURE 11 | Bland-Altman plots of permeability Ktrans parameters in different tissues, DGM (left), WMH (middle), RSL (right). Difference (y-axis) in Ktrans values

between CNN model and (A) Patlak, and, (B) eTofts fitting is plotted against the mean values of the two (x-axis). Solid gray line indicates mean difference (mdiff ). Top

and bottom gray dashed lines correspond to upper and lower margins of 95% limits of agreement estimated by mdiff ±1.96× SD, SD = standard deviation. Units for

horizontal and vertical axes are in min−1. The computed Lin’s concordance correlation coefficient (CCC) values are displayed at top-right corner of each plot.

can be seen in Figure 10. We anticipate that more accurate
evaluation of systematic differences can be obtained using the
synthetic DCE dataset where the ground truth parameters are
known.

Asmentioned before, one of the key advantages of ourmethod
is its utility to avoid intermediate computation steps of parameter
inference in DCE-MRI by replacing it with a direct inference
model. Although we use two existing TK models to estimate the
reference parameters, based on the specific DCE application, one
can use different TK models in literature (9) to infer the PK
parameters to be used during training of the CNN network. If
available, the network can be also trained using ground truth
parameter values. In addition to this, as previously done in
Banerji et al. (36) and Bosca and Jackson (37), synthetic DCE
phantom data can be generated by simulating the signal equation

and TK model equations with the PK parameters estimated from
real patient’s data, and a CNN model can be trained based on
the synthetic data and corresponding parameter maps. With this
approach, more realistic synthetic DCE datasets can be generated
by taking into account the acquisition noise and motion artifacts.
The generated synthetic datasets may be utilized to train a
network which can be later tested on in vivo DCE dataset to
obtain less noise-sensitive parameter estimates.

In conventional DCE-MRI analysis pipeline, subject-specific
AIF extraction from a ROI of a feeding artery is one of the
essential steps for the estimation of kinetic parameters (28, 38).
In this study, we demonstrate that CNN based ML model can
estimate PK parameters by no need of subject-specific AIF of
the test subject without introducing any significant bias in the
parameter estimation. Although this can be seen as one of the
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FIGURE 12 | Examplary subject specific vascular input functions (VIFs)

extracted from averaging a few voxels located on the superior sagittal sinus

(SS). Although the VIFs appear to have similar shapes, the peaks and steady

state signal can have varying magnitude (contrast agent concentration).

benefits of our model, we should remark that the data used in
this work is a part of a population study where the temporal
resolution and other parameters related to DCE acquisition
and contrast injection are fixed in all subjects. However, as
can be clearly seen in Figure 12, the subject-specific AIFs
of our dataset usually have varying magnitudes of the peak
and steady-state signal even though the time point where the
signal reaches the peak is similar for all subjects. The signal
pattern of the AIF curves are directly related to signal time
intensities through Equation (2), hence the trained network
can intrinsically learn the relation between the AIF and target
parameters via the mapping between the input and output of
the network and the designed loss function which takes into
account the underlying TK model through its equation. On the
other hand, the performance of proposed model on a mixed
data—ideally involving DCE image series acquired with different
acquisition parameters and protocols—can be subject to further
investigation. For parameter estimation with a model trained on
a mixed data, we anticipate that a bi-CNN input model similar
to as proposed for DSC-MRI (21) might be a good approach to
avoid bias and error in parameter estimation. In that setting,
the DCE image time series and other acquisition parameters—
including AIF—of both training and test subjects can be given to
the network as two separate inputs.

We emphasize that our CNN model is not trained on a entire
brain basis, but on individual time series. Out of the 15 patient
datasets we extract more than 160 million training samples,
i.e., number of total voxels in the training dataset. Moreover,
our network architecture is not very deep and we demonstrate
that this huge number of training samples is sufficient to
train a network that generalizes well, where the inability to

generate reproducible results is not an issue. Nevertheless, a
wider sampling of pathological cases andMRI artifacts in training
data is highly desirable and is one of the major direction for
improvements of the proposed approach. The proposed model
can—even should—be updated accordingly when applied to a
larger pool of patient datasets. In general, based on the literature
in ML, we anticipate that CNN-based ML models perform
better when there is a high correlation and similarity between
the training and test data. The dataset used in this study for
both training and testing involve voxels from different type
of tissues, e.g., healthy and pathological tissues, containing a
good mixture of different tissue characteristics. There is a high
similarity between the temporal profiles of training and test
image patches, hence, the performance of CNN is very stable and
robust. However, a poor generalization issue may usually arise in
a scenario that the training data only consists of healthy tissue
voxels whereas the unseen test data with pathological tissues is
tested using the trained model. In this scenario, since the model
is not trained with sufficient number of pathological samples, it
is quite likely that the CNN model shows a poor performance on
these test data comprised of non-healthy tissues. In principle, in
order to obtain a stable CNN model, it is necessary to constitute
a training data pool according to the demands or expectation
from such a prediction model in our specific clinical applications.
For instance, if we aim to discriminate well the acute/post-acute
stroke regions, our training data should contain high number of
voxels from both stroke and non-stroke regions.

Nevertheless, we should discuss the several limitations of
this study. First, although ML based methods can have strong
generalization ability, the bias is also inevitable when tested
on an unseen data because the model is always trained using
other subject’s data without any access to test data. Second, the
performance of our method may be improved depending on
the input patch size and filter size of the network. Moreover,
we only considered 2D convolution operations, however, 3D
convolutions may produce better results when more spatial
context information are extracted. Third, further investigation
on synthetic data is required to perform accurate assessment
of error and bias when the ground truth parameter values are
known. Lastly, our current approach is sensitive to variation
in acquisition parameters, especially temporal resolution, i.e.,
number of time points in DCE data. One feasible solution to
the variations in temporal resolution across multiple datasets is
to apply interpolation on time. In practice, we may interpolate
all training data acquired with various temporal resolutions to a
common temporal resolution so that a test data with completely
different temporal resolution can be also fed into the trained
network to produce parameter estimates.

In conclusion, this study shows that a ML based direct
inference approach can estimate PK parameters that are
comparable to the conventional model fitting in DCE-MRI.
Our results, based on a sample of mild ischaemic stroke
patients, demonstrate the efficiency of CNN model to enable
better discrimination of brain tissue types. Specifically, our
proposed ML based method has the potential to improve
the current quantitative analysis of DCE-MRI studies due
to its increased robustness to noise. Significant difference of
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permeability parameters between stroke and non-stroke regions
may ultimately effect the stroke medical decision process.
Finally, parameter inference of the proposed model on a 3D
brain volume is considerably faster than the standard NLS
fitting, demonstrating the applicability of such models in clinical
practice. Considering such faster computation time, clinical
experts may perform parameter inference using various TK
models in parallel to benefit from making more detailed analysis
between different models.
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Background and Purpose: The risk of recurrent stroke following a transient ischemic

attack (TIA) or minor stroke is high, despite of a significant reduction in the past decade.

In this study, we investigated the feasibility of using artificial neural network (ANN) for risk

stratification of TIA or minor stroke patients.

Methods: Consecutive patients with acute TIA or minor ischemic stroke presenting at

a tertiary hospital during a 2-year period were recruited. We collected demographics,

clinical and imaging data at baseline. The primary outcome was recurrent ischemic

stroke within 1 year. We developed ANN models to predict the primary outcome. We

randomly down-sampled patients without a primary outcome to 1:1 match with those

with a primary outcome to mitigate data imbalance. We used a 5-fold cross-validation

approach to train and test the ANN models to avoid overfitting. We employed 19

independent variables at baseline as the input neurons in the ANN models, using a

learning algorithm based on backpropagation to minimize the loss function. We obtained

the sensitivity, specificity, accuracy and the c statistic of each ANN model from the 5

rounds of cross-validation and compared that of support vector machine (SVM) and

Naïve Bayes classifier in risk stratification of the patients.

Results: A total of 451 acute TIA or minor stroke patients were enrolled. Forty (8.9%)

patients had a recurrent ischemic stroke within 1 year. Another 40 patients were randomly

selected from those with no recurrent stroke, so that data from 80 patients in total

were used for 5 rounds of training and testing of ANN models. The median sensitivity,

specificity, accuracy and c statistic of the ANN models to predict recurrent stroke at 1

year was 75%, 75%, 75%, and 0.77, respectively. ANN model outperformed SVM and

Naïve Bayes classifier in our dataset for predicting relapse after TIA or minor stroke.

Conclusion: This pilot study indicated that ANN may yield a novel and effective method

in risk stratification of TIA and minor stroke. Further studies are warranted for verification

and improvement of the current ANN model.

Keywords: transient ischemic attack, minor stroke, artificial neural network, risk stratification, prognosis
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INTRODUCTION

The prevalence of transienti ischemic attack (TIA) is estimated to
be 103.3 per 100,000 in the Chinese population (1). Although TIA
may be regarded as a “benign” cerebrovascular event, subsequent
stroke could be disabling. Studies conducted over 15 years ago
reported that 12–20% of TIA or minor stroke patients would
have a recurrent stroke within 3 months (2). The risk of stroke
recurrence in such patients has been declining over the past
decade partly due to advances in the stroke service system−5.1%
of TIA or minor stroke patients in hospitals with dedicated
TIA/minor stroke service systems had a recurrent stroke within
1 year in the recently published TIAregistry.org Project, but
there have been concerns that the recurrent rate is probably
higher in routine clinical practice (3). In the Clopidogrel in
High-Risk Patients with Acute Nondisabling Cerebrovascular
Events (CHANCE) trial, 10.0% of 5,170 minor stroke patients
or TIA patients with an ABCD2 score≥ 4 recruited from 114
hospitals of different levels in China had a recurrent stroke at
3 months, despite of early-initiated dual or mono antiplatelet
treatment (4).

A few risk scores have been developed to identify high-
risk TIA or minor stroke patients, for instance, the ABCD2

score, which has been commonly used in research and in
clinical practice. Patients with an ABCD2 score≥4 are generally
considered as high-risk patients (5, 6). However, recent studies
indicated that ABCD2 score may not reliably differentiate TIA
or minor stroke with mimics, or those at high or low risk of
recurrent stroke (7).Moreover, those with a ABCD2 score<4 and
≥4 could have similar risks of recurrent stroke at 3 months (8).
Other factors have been considered to supplement the ABCD2

score, for instance, presence of new infarct(s) and carotid arterial
stenosis and dual TIA, to form the ABCD3-I score (9). These new
scoring systems have been well validated in other populations,
reporting the c-statistics of 0.60–0.64 in predicting the recurrent
stroke within 3 month following TIA. However, new scores
such as ABCD3-I score have not been recommended for risk
stratification in such patients by the guidelines by far (10, 11).

In the current study, we aimed to use a novel method

to predict the risk of stroke recurrence in TIA or minor
stroke patients, which was the artificial neural network (ANN)

technique. It is a commonly used machine learning algorithm

to form a diagnostic or risk prediction model, which typically
consists of three layers of neurons, an input layer of independent
variables, a hidden layer with no real-worldmeaning but allowing
nonlinear interactions among the input variables, and an output
layer for the probability of an outcome (Figure 1). Advantages
of ANN over conventional statistical methods in forming a risk
prediction model lie in that it detects interactions between the
input variables that commonly exist in clinical studies, and that
it takes into account the weights of input variables in their
correlations with the outcome (12, 13).

Previous studies have used ANN to diagnose acute myocardial
infarction and stroke, and to predict mortality in ischemic stroke,
intracerebral hemorrhage, traumatic brain injury, etc., which
demonstrates improved accuracy against conventional methods
in most circumstances (14–18). However, to our knowledge,

ANN had not been applied in predicting the risk of recurrence
following a TIA or minor stroke. Therefore, in this pilot study,
we developed and tested ANN models for risk stratification of
TIA or minor stroke. In addition, other algorithms for machine
learning such as Support VectorMachine (SVM) andNaïve Bayes
classifiers (NBC) have also been utilized in medical research
(19, 20). For instance, SVM has been extensively applied in
diagnosis of a disease or classification of groups with certain
features based on imaging data (20). The NBC algorithmwas able
to diagnose carpel tunnel syndrome with the highest detection
rate among four machine learning methods (21). Thus, in the
current cohort, we also compared the performance of ANN
with SVM and NBC in risk stratification of TIA and minor
stroke patients.

MATERIALS AND METHODS

Study Design and Subjects
Consecutive patients with acute TIA or minor ischemic stroke
presenting at a tertiary hospital between January 2004 and
December 2005 were recruited. TIA was defined as a transient
episode of neurological dysfunction caused by focal brain
ischemia, which completely resolved within 24 h. A minor
ischemic stroke was diagnosed as sudden onset of neurological
deficits caused by brain ischemia lasting longer than 24 h,
with admission NIHSS score of 0–3. Diagnosis of TIA and
minor ischemic stroke was made by the neurologists in charge.
Stroke or TIA mimics such as toxic metabolic syndrome,
seizure, migraine, demyelinating disorders, drug ingestion were
excluded (22). We collected patients’ characteristics at baseline
as detailed below, including well-established factors readily
available in clinical practice that might be associated with
stroke recurrence. TIA and minor stroke patients were regularly
followed up at the outpatient clinic, when recurrent cerebral
ischemic events and other events were recorded. The primary
outcome was defined as recurrent ischemic stroke within 1
year, as confirmed with CT or MR imaging, or diagnosed
by the neurologist in charge. We developed and tested ANN
models based on patients’ characteristics to predict the primary
outcome. We also conducted conventional statistical analyses for
independent predictors for the primary outcome. The study was
approved by the Joint Chinese University of Hong Kong–New
Territories East Cluster Clinical Research Ethics Committee (The
Joint CUHK-NTEC CREC).

Data Collection
We collected demographic characteristics (sex, age) and
vascular risk factors (smoking, hypertension, diabetes mellitus,
dyslipidemia, prior TIA or ischemic stroke, atrial fibrillation,
ischemic heart disease) at baseline. We also collected certain
clinical characteristics including systolic and diastolic blood
pressure at admission, National Institutes of Health Stroke
Scale (NIHSS) score at admission, premorbid modified Rankin
Scale (mRS) score, symptom duration (for transient deficits)
and symptom type (unilateral weakness and slurring speech).
We also gathered medications prescribed at discharge, such
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FIGURE 1 | The three-layer perceptron artificial neural network model showing input, hidden and output layers and nodes with feed forward links. P(outcome) refers

to the probability of an outcome.

as antiplatelets, antihypertensive, anticoagulants, antidiabetics
and statins.

We also collected neuroimaging features including new
infarct(s) on brain CT or magnetic resonance imaging (MRI),
and findings by cerebrovascular workup including presence of
extra-/intra-cranial arterial stenosis. Extracranial arterial stenosis
was defined as at least 50% narrowing of the internal carotid
artery or vertebral artery lumen on carotid duplex ultrasound, CT
or MR angiography, or digital subtraction angiography, by the
NASCET method (23). Intracranial artery stenosis was defined
as at least 50% narrowing of middle cerebral artery, anterior
cerebral artery, posterior cerebral artery, intracranial segment of
internal carotid artery and vertebrobasilar arteries in transcranial
Doppler, cerebral CT or MR angiography, or digital subtraction
angiography, usingWASIDmethod (24). We defined large artery
stenosis as either extracranial arterial stenosis or intracranial
arterial stenosis.

Training and Testing in ANN
We employed a three-layer multilayer perceptron (MLP)
model in this study, a most common type of ANN. It was
composed of an input layer of 19 independent variables
(Supplemental Table S1), a hidden layer with a certain number
of neurons that were adjusted through training, and an output
layer representing the probability of the primary outcome
(Figure 1). A backpropagation algorithm was used to minimize
the loss function by iteratively updating the weights between the
neurons and thus maximize the predictive power of the ANN
model for the primary outcome. Loss function represented the
inconsistency between the predictive and actual values. Within
each iteration of the backpropagation algorithm, the partial
derivatives of the loss function with respect to each weight were
propagated backward from the output layer and passed through

the hidden layer, which eventually adjusted all the weights back
to the input neurons.

The study cohort was imbalanced in the numbers of patients
with or without a primary outcome. This may cause biased
prediction toward the no-recurrence group. Therefore, we
randomly selected the same number of patients without a
primary outcome as patients with a primary outcome for the
training and testing (1:1 matched). In view of the relatively small
sample size, we used a 5-fold cross-validation approach to train
and test the ANN models (Figure 2), to avoid overfitting of the
models (25, 26). The dataset was randomly partitioned into 5
folds, and we performed 5 rounds of training and testing of
the ANN models. In each round of the experiments, 4 folds
were the training subsets and the remaining subset was retained
to test the ANN model. Each of the 5 subsets was only used
once as the testing set in the 5-fold cross-validation process. We
implemented the training and testing procedures for the ANN
models in Matlab. We trained and tested ANN models with
4, 6, 8, 10, and 12 hidden neurons, respectively, and finalized
the number of hidden neurons when the ANN model reached
a minimal loss function in each round of the cross-validation
experiments. We repeated such cross-validation procedures for
10 times (10 Experiments, Figure 2), each time with a new group
of randomly selected patients without a primary outcome 1:1
matched with patients with a primary outcome.

For continuous independent variables, data normalizationwas
required to speed up the gradient, thus to find the optimal
solution. Shapiro-Wilk test was performed to determine whether
a continuous independent variable was normally distributed.
If not normally distributed, we scaled the data to a range
of 0–1 before entering an ANN model. To be efficient in
achieving the minimization of the loss function, we employed
an adaptive moment estimation (Adam) rate rather than the
constant learning rate. In addition, we assigned a weight between
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FIGURE 2 | Schematic representation of 10 experiments with 5-fold cross-validation.

−1 and+1 for the independent variables to speed up the learning
process and escape local minima. We obtained the sensitivity,
specificity, accuracy, and the c statistic of the ANN models
developed in each of the 5 rounds of training and testing, in
each of the 10 cross-validation experiments; we then computed
the overall medians (interquartile range, IQR) of sensitivity,
specificity, accuracy and c statistic of the models in all of the 50
rounds of training and testing.

Training and Testing in SVM and NBC
For training the SVM models, we tried a few standard kernel
functions, such as sigmoid, Gaussian, polynomial and linear
kernel, and adjusted different values of the parameter C in the
range of 0.1–10. We finally determined the kernel function and
the value of the parameter C by the highest accuracy in predicting
the test set.

Additionally, using the Naïve Bayesian equation to calculate
the posterior probability for each class, we first computed the
prior probability of each class P(c), of each predictor P(x),
and the likelihood which is the probability of predictor given
class P(x|c). The outcome of prediction was the class with the
highest posterior probability, using the Maximum A Posteriori
(MAP) estimation.

In accordance with the ANN, we also applied the 5-fold cross-
validation approach for both SVM and NBC and repeated it
for 10 times with randomly selected patients without a primary
outcome to 1:1 match the patients with a primary outcome. The
overall medians (IQR) of sensitivity, specificity, accuracy and c
statistic were also calculated for SVMmodels and NBC. We used
Kruskal–Wallis test to compare the overall medians of sensitivity,
specificity, accuracy and c statistic among the three machine
learning algorithms and post-hoc comparisons between any two
of these algorithms.

Other Statistical Analyses
In addition, we also conducted conventional statistical analyses
for predictors for the primary outcome in the study cohort.
Continuous variables were presented as medians (interquartile
range [IQR]), whilst categorical variables were presented as
numbers (percentage). For univariate comparisons between
patients with and without the primary outcome, continuous
variables were analyzed with independent t-tests or Mann–
Whitney U-test, whilst categorical variables were analyzed with
χ
2-test or Fisher’s exact test. To identify factors independently

associated with the primary outcome, variables with p < 0.1
in univariate analyses were entered in a multivariate logistic
regression model for further analysis. Odds ratio (OR) and
95% confidence interval (CI) were calculated. P < 0.05 were
considered statistically significant. All the conventional statistical
analyses were conducted in IBM SPSS Statistics version 22.0
(SPSS Inc., Chicago, IL, United States).

RESULTS

In total, 451 patients were recruited; 201 (44.6%) patients had
a TIA and the remaining had a minor stroke as an index
ischemic event. The median NIHSS was 1 (IQR 0–2). Forty
(8.9%) patients had the primary outcome of recurrent ischemic
stroke within 1 year. Twelve patients died within 1 year, three
of which developed recurrent ischemic stroke before death; and
the remaining nine patients died from other reasons. More
of the patients with a primary outcome had a history of TIA
(15 vs. 5.4%, p = 0.038), and extra- and/or intra-cranial large
artery stenosis (62.5 vs. 35.8%, p = 0.001), compared with
patients without a primary outcome event (Table 1). Other
baseline characteristics or medications prescribed at discharge
were not significantly different between those with and without
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TABLE 1 | Characteristics of patients with or without recurrent ischemic stroke

within 1 year.

Variables Recurrence

(n = 40)

No

recurrence

(n = 411)

P-value

Age, years 71 (60–74) 65 (55–73) 0.116

Male 20 (50.0) 231 (56.2) 0.451

History of hypertension 29 (72.5) 256 (62.3) 0.201

History of diabetes mellitus 13 (32.5) 123 (29.9) 0.735

History of dyslipidemia 21 (52.5) 252 (61.3) 0.276

History of AF 7 (17.5) 37 (8.9) 0.084

History of ischemic stroke 10 (25.0) 68 (16.5) 0.177

History of TIA 6 (15.0) 22 (5.4) 0.038

History of ischemic heart

disease

4 (10.0) 39 (9.5) 0.916

Smoker 8 (20.0) 142 (34.5) 0.062

Unilateral weakness 25 (62.5) 226 (55.0) 0.213

Slurring speech 15 (37.5) 107 (26.0) 0.361

Symptom duration 0.355

≤10min 3 (7.5) 63 (15.3)

11–60min 4 (10) 50 (12.2)

>60min 33 (82.5) 298 (72.5)

Systolic blood pressure,

mmHg

166

(146–182)

160

(143–180)

0.453

Diastolic blood pressure,

mmHg

80 (71–97) 83 (74–94) 0.949

NIHSS at admission 1 (0.25–2) 1 (0–2) 0.893

Premorbid mRS 0 (0–0) 0 (0–0) 0.125

Large artery stenosis 25 (62.5) 147 (35.8) 0.001

New infarct 11 (27.5) 102 (24.8) 0.709

Antiplatelet(s) 29 (72.5%) 320 (77.9%) 0.916

Anticoagulant 0 (0.0%) 9 (2.2%) 1.000

Antihypertensives 19 (47.5%) 209 (50.9%) 0.851

Antidiabetics 6 (15.0%) 92 (22.4%) 0.409

Statins 16 (40.0%) 182 (44.3%) 0.984

AF indicates atrial fibrillation; TIA indicates transient ischemic attack; NIHSS indicates

National Institute of Health Stroke Scale; mRS indicates modified Rankin Scale.

a primary outcome in the study cohort (Table 1). History of
TIA, large artery stenosis, atrial fibrillation and smoking were
further analyzed in multivariate logistic regression to predict the
primary outcome. Only presence of large artery stenosis (OR:
2.87; 95% CI: 1.45–5.67; p = 0.002) was significantly associated
with recurrent ischemic stroke within 1 year following a TIA or
minor stroke in multivariate analysis.

In each of the 10 experiments of developing and testing
the ANN models with 5-fold cross-validation, 40 patients were
randomly selected from those without a primary outcome to 1:1
match with the 40 patients with a primary outcome (Figure 2).
The number of neurons in the hidden layer was finalized as
10, after testing 4, 6, 8, 10, and 12 hidden neurons in the
models. The median sensitivity, specificity and accuracy of the
ANN models was 75% (63.3–83.3%), 75% (62.5–83.3%), and
75% (68.8–76.6%), respectively. The median c statistic was 0.77
(0.68–0.84) (Table 2).

After testing several kernel functions and values of parameter
C, we found that the SVM model with the linear kernel

and parameter C equaling to 1 was optimal among all the
others. The median sensitivity, specificity and accuracy of the
SVM models was 62.5% (50–62.5%), 75% (50–87.5%), and
62.5% (56.3–68.8%).

Moreover, we also calculated the posterior probability
for each class based on the Naïve Bayesian equation, and
selected the outcome with highest probability. The median
sensitivity, specificity and accuracy of the NBC was 62.5%
(50–75%), 75% (62.5–75%), and 62.5% (56.3–68.8%). The
performance of ANN models in identifying patients with
recurrent ischemic stroke was better than that of SVM and NBC
algorithm (Table 2).

DISCUSSION

This pilot study demonstrated the feasibility of using ANN to
predict the risk of recurrent stroke within 1 year after a TIA or
minor stroke, based on parameters that are readily available in
clinical practice. With a relatively small sample size and a smaller
number of the primary outcome event, conventional univariate
and multivariate analyses only identified the presence of cervico-
cerebral large artery stenosis as an independent predictor for
stroke recurrence within 1 year. However, the ANN models
developed based on this study cohort showed moderate-to-
good accuracy in predicting the primary outcome in comparison
with SVM model and Naïve Bayes classifier, which suggested
ANN as an alternative or even more effective approach for risk
stratification of TIA or minor stroke.

Despite of the small sample size, presence of extra-
and/or intra-cranial large artery stenosis was identified as an
independent risk factor of recurrent stroke in the current
study. This was consistent with relevant findings in the
TIAregistry.org project and other previous studies. For instance,
in the TIAregistry.org project, major brain imaging findings,
including ≥1 acute ischemic lesion and ≥1 intra- and/or extra-
cranial stenosis >50%, were associated with increased risk
of stroke recurrence at 3 months or 1 year after a TIA or
minor stroke (3). Particularly in subjects recruited from Asia
in the TIAregistry.org project, presence of intracranial stenosis
tended to increase the 1-year stroke risk, independent of other
confounding factors (p= 0.09) (27). Therefore, the current study
reinforced intracranial stenosis as a strong risk factor for stroke
recurrence in Asians.

ANN models developed in the current study showed
moderate-to-good accuracy in predicting the primary outcome,
while we used a 5-fold cross-validation approach to avoid
overfitting of the models. Previous studies also found ANN
models accurate and effective in differentiating cerebral ischemia
from stroke mimics, and in predicting mortality in patients with
intracerebral hemorrhage, etc. (14, 17). As mentioned above,
ANN possessed advantages over conventional statistical methods
in forming a risk prediction or diagnostic model. ANN could
detect complex nonlinear relationships between independent
and dependent variables and assign weights to the independent
variables in their associations with the outcome, thus enhancing
the model fit as compared with logistic regression methods (13).
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TABLE 2 | Predictive perfrmance of ANN, SVM and NBC models.

Statistics* ANN SVM P-value (ANN

vs. SVM)

Naïve Bayes P-value (ANN vs.

NBC)

P-value (overall

comparison)

Sensitivity 75% (63.3–83.3%) 62.5% (50–62.5%) <0.001 62.5% (50–75%) 0.001 <0.001

Specificity 75% (62.5–83.3%) 75% (50–87.5%) 0.081 75% (62.5–75%) 0.121 0.151

Accuracy 75% (68.8–76.6%) 62.5% (56.3–68.8%) <0.001 62.5% (56.3–68.8%) <0.001 <0.001

C statistic 0.77 (0.68–0.84) 0.63 (0.56–0.69) <0.001 0.63 (0.56–0.69) <0.001 <0.001

*presented with medians (IQR).

ANN indicates artificial neural network; SVM indicates support vector machine; NBC indaictaes Naïve Bayes classifier.

ANN could also take into account possibly complex interactions
between the independent variables, (28) which commonly exist
in clinical scenarios, e.g., interactions between age and presence
of the vascular risk factors. Moreover, in the era of precision
medicine, simple dichotomization of a factor as a continuous
variable in nature (e.g., age and blood pressure) in conventional
scoring systems may not accurately reflect the effects of these
variables in determining the risk of stroke recurrence, while the
ANN approach could accommodate variables as they are in the
risk prediction models.

Our results showed that the ANN outperformed the SVM
and NBC. For the SVM, we tested the standard kernel functions
and the best accuracy was achieved with merely 62.5% by a
linear kernel. This suggests that the standard nonlinear kernel
functions we tested might not be appropriate for projecting
the data into a space where they can be classified by an SVM.
Finding a better kernel function for this particular problem is
however not intuitive and is not in the scope of this study.
In contrast, the major advantage of the proposed ANN is that
projecting the data into a space for classification is driven
by the data. Thus, there is no need to pre-define a kernel
function. For the NBC, the assumption of independence between
the input variables might not be well satisfied for this study.
This can negatively affect the accuracy of the NBC. Though
this can possibly be improved by carefully selecting the input
variables, we however did not try this procedure in order to
show the ANN is an end-to-end approach that does not require
data pre-selection.

The present study had several limitations. It was a
retrospective single-center study with data collected years
ago, but this pilot study indicated potential application of
ANN in risk stratification of TIA and minor stroke patients.
In addition, the study cohort was inevitably imbalanced in
view of the numbers of patients with and without the primary
outcome. We mitigated the imbalance between the two groups
by randomly down-sampling the no-recurrence cases. However,
useful information may be discarded by such resampling, and
the cases randomly selected may not represent accurately the
rest of the patients. We are currently collecting recent data with
a larger sample size to further validate and improve the current
models. Last but not least, in the current ANN models, we only
employed clinical factors that are readily available in clinical
practice and imaging features that could be reliably identified
with routine imaging exams, while subsequent relevant studies
could accommodate more clinical and imaging factors that

might influence the risk of recurrence in TIA and minor stroke
patients. Automatic image analysis and image feature extraction
by methods such as convolutional neural networks would help
in establishing more intelligent models for risk stratification of
such patients.

CONCLUSION

Under the modern stroke service system, timely attention and
management for TIA and minor stroke patients are becoming
more readily available, which has significantly reduced the
risk of stroke relapse in these patients. However, certain
subgroups of patients are still at a high risk of subsequent
disabling stroke, who may not be accurately identified with
conventional risk predicting scores. Therefore, a more accurate
and intelligent risk prediction strategy is needed. The ANN
approach has advantages over conventional statistical methods
or risk prediction scores that it could account for relationships
between the independent variables, reflect complex relationships
between continuous and categorical independent variables and
the outcome, and quantify the weights of independent variables
regarding their impact upon the outcome. The current pilot study
indicated that ANN may yield a novel and effective method
in risk stratification of TIA or minor stroke patients. Further
studies are warranted for verification and improvement of
such ANNmodels.
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Computed Tomography Perfusion (CTP) imaging is a cost-effective and fast approach to

provide diagnostic images for acute stroke treatment. Its cine scanning mode allows

the visualization of anatomic brain structures and blood flow; however, it requires

contrast agent injection and continuous CT scanning over an extended time. In fact, the

accumulative radiation dose to patients will increase health risks such as skin irritation,

hair loss, cataract formation, and even cancer. Solutions for reducing radiation exposure

include reducing the tube current and/or shortening the X-ray radiation exposure time.

However, images scanned at lower tube currents are usually accompanied by higher

levels of noise and artifacts. On the other hand, shorter X-ray radiation exposure time with

longer scanning intervals will lead to image information that is insufficient to capture the

blood flow dynamics between frames. Thus, it is critical for us to seek a solution that can

preserve the image quality when the tube current and the temporal frequency are both

low. We propose STIR-Net in this paper, an end-to-end spatial-temporal convolutional

neural network structure, which exploits multi-directional automatic feature extraction

and image reconstruction schema to recover high-quality CT slices effectively. With

the inputs of low-dose and low-resolution patches at different cross-sections of the

spatio-temporal data, STIR-Net blends the features from both spatial and temporal

domains to reconstruct high-quality CT volumes. In this study, we finalize extensive

experiments to appraise the image restoration performance at different levels of tube

current and spatial and temporal resolution scales.The results demonstrate the capability

of our STIR-Net to restore high-quality scans at as low as 11% of absorbed radiation dose

of the current imaging protocol, yielding an average of 10% improvement for perfusion

maps compared to the patch-based log likelihood method.

Keywords: CT perfusion image, radiation reduction, image restoration, deep learning, brain hemodynamics
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1. INTRODUCTION

Acute stroke has high mortality and severe long-term disability
rates worldwide. In the United States, more than 795,000 people
have a stroke annually, and about 140,000 of them lose their lives,
accounting for 5% of all deaths (1). Someone develops a stroke
approximately every 40 s, and nearly every 4 min, someone loses
he or her life because of stroke. Stroke can occur at any age, and
it increases in likelihood with age. In 2009, two-thirds of people
who had been hospitalized for stroke were older than 65 years
old (2). The estimated cost related to stroke in the United States
is about 34 billion dollars each year (3).

Acute stroke is an emergency, and successful patient outcomes
require accurate diagnosis and prompt treatment. It is critical for
someone to receive treatments for stroke within three hours from
when he or she presents initial symptoms, as the disability rate
measured three months after the stroke is generally high in those
who did not receive timely treatments (4). There are two types
of stroke: hemorrhagic and ischemic stroke. Hemorrhagic stroke
occurs when a fragile blood vessel ruptures, while ischemic stroke
is caused by thrombosis or embolism. Due to different etiologies
and therapies, it is essential for patients to get timely diagnoses
and treatments.

Computed Tomography (CT) scanning is a widely used
imaging modality for rapid and detailed evaluation of the brain
and cerebral vasculature; it is particularly valuable in the triage
of acute stroke patients. CT can provide a rapid diagnosis of
ischemic or hemorrhage stroke. It is clinically meaningful as
rapid diagnosis enables clinicians to initiate optimized treatment
for each of these two major categories of stroke. Patients with
ischemic stroke often benefit from further characterization of
brain tissue hemodynamics, and as such, often go through CT
Perfusion (CTP) for further diagnosis and to guide treatment
planning such as thrombolytic therapy. As CTP imaging can
promptly offer an active view of cerebrovascular physiology,
doctors can acquire CTP to evaluate cerebral blood flow status.

Obtaining a comprehensive visualization of blood flow
dynamics and a clear brain anatomic structure requires contrast
dose injection and repeated CT scanning. Under the acute
stroke protocol, X-ray radiation from a 40-s CTP scan is
comparable to a year’s worth of radiation exposure from natural
surroundings (5, 6). The CTP/CT Angiography (CTA) data
acquisition process on a whole brain has a mean dose level
of 6.8 mSv (7), which is two times more than that from
natural background radiation sources; in comparison, the annual
radiation exposure from the natural background is around 2.4
mSv (8). Moreover, repetitively scanning brain regions leads to
accumulative radiation exposure to patients that may increase
health risks such as skin irritation/erythema, hair loss/epilation
(9), cataract formation (10), and even the induction of cancer (11,
12). In the US, about 80million CT scans are performed annually.
Therefore, seeking solutions to reduce the radiation dose that is
associated with CT scans draws many researchers’ attention.

Many researchers have attempted to seek practical solutions
for radiation dose reduction in CT imaging. Solutions for
reducing radiation exposure include two primary directions:
optimizing CT systems and reducing contrast dose. Typical

optimization of CT systems comprises shortening temporal
sampling frequency and reducing radiation sources such as the
tube current/voltage and the number of beams and receptors.
However, a simple reduction by the methods above will increase
image noise and artifacts. In order to reduce CTP radiation
exposure and maintain high diagnostic image quality, we
integrate a deep learning approach with CT imaging to carry out
this study.

In this paper, we propose an end-to-end Spatial-Temporal
Image Restoration Net (STIR-Net) for CTP image restoration.
This structure consists of two main components: Super-
Resolution Denoising Nets (SRDNs) and a multi-directional
conjunction layer which addresses image super-resolution (SR)
and denoising in both spatial and temporal cross-sections. The
contributions of this work are five-fold:

1) SRDN’s patch representation layer extracts features from both
the spatial and temporal dimensions of the CTP volume as
cross-sections, which allows our model to present spatial-
temporal details at the same time.

2) SRDN has the ability to perform image SR and denoising
individually and simultaneously. It also can handle multi-level
noise and multi-scale resolution and sampling.

3) We integrate multiple SRDNs based on different cross-
sections into a multi-directional network, which can boost the
performance further than individual cross-sections.

4) The results of the experiments demonstrate the effectiveness
of STIR in the recovery of low radiation dose CTP images.
STIR-Net can provide practical solutions for radiation dose
reduction from three aspects (low tube current, decreased
temporal sampling rate, and poor spatial resolution) with
comparable image quality to the standard dose protocol.

5) We also provide the comparisons of Cerebral Blood Flow
(CBF) and Cerebral Blood Volume (CBV), these maps attest
that our proposed method can provide comparable results to
the existing methods.

It is important to point out that no work has addressed low
tube current, decreased temporal sampling rate, and poor spatial
resolution simultaneously with a single deep learning structure.
Through extensive experiments, our results demonstrate that
STIR-Net has the capability of image restoration from these three
types of data limitations simultaneously. Compared to low-dose
scans using conventional methods, our network yields an average
of 21% improvement of peak signal-to-noise ratio (PSNR) at
around 21% to 42% low tube currents for the CTP sequences
and an average of 10% improvement for the calculated perfusion
maps. Hence, STIR-Net is a promising method for reducing
radiation exposure in CTP imaging.

2. RELATED WORK

It is necessary to develop low-dose CTP protocols to reduce
the risks associated with excessive X-ray radiation exposure.
Different acquisition parameters such as tube current, temporal
sampling frequency, and the spatial resolution are meticulously
related to the quality of the reconstructed CTP images,
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especially for generating perfusion maps that will be directly
used by doctors to make treatment decisions. Related work
includes radiation dose reduction approaches with respect to
image processing strategies, deep learning approaches, image
SR methods, and denoising methods. The previous work of
our spatio-temporal architecture is introduced at the end of
this section.

2.1. Radiation Dose Reduction Approaches
Radiation dose reduction approaches include reducing tube
current, temporal sampling frequency, and beam number. There
is a linear relationship between radiation dose and the tube
current. For example, lowering 50% of the tube current will
lead to a 50% reduction in radiation dose. However, image
noise and the square root of tube current have an inverse
proportional relationship. Simply reducing the tube current will
deteriorate the CTP image quality with increased noise and
artifacts. Current simulation studies demonstrate the possibility
and the effectiveness of maintaining image quality at reduced
tube current (13, 14). Reducing temporal sampling frequency is
the same as the increment of time intervals between acquiring
two CTP slices in the same CT study. Similar to the decrement of
the tube current, the reduction in temporal sampling frequency
will reduce radiation correspondingly, as the total amount of
scanning period is fixed and the time interval has been increased.
However, current research (15–17) shows that the reductions in
sampling interval yield little advantages when the time intervals
are greater than 1 s.

2.2. Image-Based Radiation Dose
Reduction Approaches
Acquiring CT scans at low-dose and long scanning intervals
will result in noisy and low-resolution (LR) images, with
insufficient hemodynamic information. It is important to obtain
higher quality CT images from limited data. Therefore, we
address this problem of CT radiation reduction as image-
based dose reduction. Recent work shows that an image-based
dose reduction approach is a promising way for CT radiation
reduction. For example in Yu et al. (18), a study of pediatric
abdomen, pelvis, and chest CT examinations demonstrate that
a 50% dose reduction can still maintain diagnostic quality.
The image-based approaches include iterative reconstruction
algorithm, sparse representation and dictionary learning, and
example-based restoration methods. We review the relevant
work as follows.

The iterative reconstruction (IR) algorithm is a promising
approach for dose reduction. It produces a set of synthesized
projections by meticulously modeling the data acquisition
process in CT imaging. For example, adaptive statistical iterative
reconstruction (ASIR) algorithm (19) was the first IR algorithm
to be used in the clinic. By modeling the noise distribution
of the acquired data, ASIR can provide clinically acceptable
image quality at reduced doses. Many CT systems apply ASIR
as an assuring radiation dose reduction approach because it can
reduce image noise and provide dose-reduced clinical images
with preserved diagnostic value (20). Another IR algorithm
is called model-based iterative reconstruction, which is more

complicated and accurate than ASIR, as it models photons and
system optics jointly.

Sparse representation and dictionary learning describe data
as linear combinations of several fundamental elements from
a predefined collection called a dictionary. In the computer
vision andmedical image analysis domains, sparse representation
and dictionary learning have shown promising results in
various image restoration applications. Such applications include
sparsity-based simultaneous denoising and interpolation (21) for
optical coherence tomography images reconstruction, dictionary
learning with group sparsity and graph regularization (22) for
medical image denoising and fusion, and (23) for magnetic
resonance image reconstruction.

The example-based restoration approach is another popular
method for image restoration. It extracts and stores patch
pairs from both low-quality images and high-quality images
in a database as prior knowledge. At the restoring phase, it
learns a model that can synthesize high-quality images by
searching the best-matched paired patches. Applications in image
restoration (24–26) show the promising performance by using
prior knowledge.

2.3. Deep Learning
In recent years, deep learning methods have emerged in various
computer vision tasks, including image classification (27) and
object detection (28), and have dramatically improved the
performance of these systems. These approaches have also
achieved significant improvement in image restoration (29, 30),
super-resolution (31), and optical flow (32). The reason for
the significant performance is due to the advanced modeling
capabilities of the deep structure and the corresponding non-
linearity combined with discriminative learning on large datasets.

Convolutional Neural Network (CNN), as one of the most
renowned deep learning architectures, shows promising results
for image-based problems. CNN structures are usually composed
of several convolutional layers with activation layers, followed
by one or more fully connected layers. The CNN architecture
design utilizes image structures via local connections, weights
sharing, and non-linearity. Another benefit of CNN is that they
are easier to train and have fewer parameters than fully connected
networks with the same number of hidden units. CNN structures
allow automatic feature extraction and learning from limited
information to reconstruct high-quality images.

2.4. Image Super-Resolution
Image super-resolution aims at restoring HR images from the
observed LR images. SR methods use different portions of LR
images, or separate images, to approximate the HR image.
There are two types of SR algorithms: frequency domain-based
and spatial domain-based. Initially, SR methods were mostly
for problems in the frequency domain (33, 34). Algorithms
addressed in the frequency domain using a simple theoretical
basis for observing the relationships between HR and LR
images. Though these algorithms show high computational
efficiency, they are limited due to sensitivity to model errors
and difficulty in managing complex motion models. Algorithms
for the spatial domain then became the main trend by
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overcoming the drawbacks of the frequency domain algorithms
(35). Predominate spatial domain methods include non-uniform
interpolation (36), iterative back-projection (37), projection onto
convex sets (38), regularized methods (39), and a number of
hybrid algorithms (40).

Deep learning is a popular approach for image SR problems,
and it has achieved significant performance (31, 41–43).
However, most SR frameworks focus on 2D images, as involving
the temporal dimension is more challenging, especially in CTP
imaging. In this work, we propose to overcome the difficulties
involving spatial dimension and to prove the feasibility of our
framework in cerebral CTP image restoration.

2.5. Image Denoising
Image denoising tasks aim at recovering a clean image from an
observed noisy image, whereas the observed image is intruded by
additive Gaussian noise. One of the main challenges for image
denoising is to accurately identify the noise and remove it from
the observed image. Based on the image properties being used,
existing methods can be classified as prior-based (44), sparse
coding based (25), low-rank-based (45), filter-based (46), and
deep learning based (47, 48). The filter-based approach (46)
methods are classical and fundamental, and many subsequent
studies are developed from it (49).

Numerous works have reconstructed clean CT images that can
preserve the image quality of perfusion maps successfully; these
works include methods such as bilateral filtering, non-local mean
(50), nonlinear diffusion filter (51), and wavelet-based methods
(52). The oscillatory nature of the truncated singular value
decomposition (TSVD)-based method has initiated research that
incorporates different regularization methods to stabilize the
deconvolution. This research has shown varying degrees of
success in stabilizing the residue functions by enforcing both
temporal and spatial regularization on the residue function
(53, 54). However, prior studies have focused exclusively on
regularizing the noisy low-dose CTP, without considering the
corpus of high-dose CTP data and the multi-dimensional data
properties of CT images.

Recently, deep learning based methods (47, 48) have shown
many advantages in learning the mapping of the observed low-
quality images to the high-quality ones. These methods use CNN
models that are trained on tens of thousands of samples; however,
paired training data is usually scarce in the medical field. Hence,
an effective learning based model is desired. In this work, we
utilize data extracted from different cross-sections of the CTP
volume to achieve better performance in image SR and denoising.
The experiment result shows that the proposed network can
handle various noise and image degradation levels.

2.6. Spatial-Temporal Architecture
In our previous work, we proposed Spatio-Temporal
Architecture for Super-Resolution (STAR) (55) for low-dose
CTP image super-resolution. It is an end-to-end spatio-temporal
architecture that preserves image quality at reduced scanning
time and radiation that has been reduced to one-third of its
original level. This is an image-based dose reduction approach
that focuses on super-resolution only. STAR is inspired by the

work in Kim et al. (31) and is extended to three-dimensional
volumes by conjoining multiple cross-sections. Through this
work, we found that features extracted from both spatial and
temporal directions are helpful to improve SR performance.
The integration of multiple single-directional networks (SDNs)
can boost the performance of SR for the spatio-temporal CTP
data. The experimental results show that the proposed basic
model of SDN improves both spatial and temporal resolution,
while the multi-directional conjoint network further enhances
the SR results—comparing favorably with only temporal or only
spatial SR. However, this work only addresses low spatial and
temporal resolution; it misses the important noise issue in low
dose CTP.

In this paper, we propose STIR-Net, an end-to-end spatial-
temporal image restoration net for CTP radiation reduction.
We compose and integrate several SRDNs instead of SDNs
at different cross-sections for both image super-resolution and
denoising simultaneously. The STIR-Net structure is explained in
section 3. In section 4, we provide the experiment platform setup
and describe the data acquisition method and the preprocessing
procedures. In section 5, we detail the experiments and results.
Finally, section 6 concludes the paper.

3. METHODOLOGY

In this section, we first introduce the patch representation schema
for generating 2D spatio-temporal input patches for STIR-Net.
Then, we describe how to synthesize the multi-directional spatio-
temporal image restoration network by joint super-resolution
and denoising at various cross-sections.

3.1. Patch Representation
Three types of patches serve as inputs in this work, consisting
of the following: patches for image SR tasks, for denoising tasks,
and for conjoint SR and denoising tasks. All the 2D LR patches
are generated from the 3D CTP volumes. We use X × Y × T to
indicate the three dimensions of the volume, where X and Y are
spatial dimensions and T is the temporal dimension. We extract
2D patches along the X × Y direction as well as along one of the
spatial directions with temporal T dimension: X × T and Y × T.
We create 2D LR patches by down-sampling the cross-sectional
images in the spatial direction, temporal direction, or both spatial
and temporal directions. For instance, using X × T and Y × T
cross-sections, we remove every other pixel along the T direction
to simulate scanning intervals which are two times longer. This
corresponds to two times less X-ray radiation exposure in the
resulting images. For the denoising task, we simulate the low tube
current images by adding spectrum Gaussian noise on the entire
CTP volume, with more details in section 4.3. The 2D patches
for denoising are generated based on the noisy volumes along
the X × T, Y × T, and X × Y cross-sections. For joint SR and
denoising tasks, we apply the same scaling strategies that we use
to create LR patches, but we apply them on top of noisy volumes.
After feeding these LR and/or noisy patches with their labels
(the patches extracted from the standard dose) into convolution
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layers for learning the spatio-temporal details, HR and/or de-
noised outputs will be generated in the testing stage based on the
captured features.

3.2. STIR-Net: Spatial-Temporal Image
Restoration Net
Our proposed STIR-Net is a CNN-based end-to-end spatial-
temporal architecture for image restoration. To begin, we
describe the fundamental SRDN structure—super-resolution
denoising networks for cross-section images. Then, we explain
in detail the composition of STIR-Net.

3.2.1. SRDN: Super-Resolution Denoising Structure
The usage of kernel combination strategy in GoogLeNet (56)
shows that a creative structuring of layers can lead to improved
performance and computationally efficiency. Inception modules
place various sizes of kernels in parallel. This can extract fine-
gain details in volume, while the broader kernel can cover a large
receptive field of the input. Extracting diverse information can
help with the prediction in classification tasks; however, image
denoising poises different challenges.

SRDN is an end-to-end structure that learns from pair-wise
LR/noisy patches with their original clean images and outputs
high-quality CT images based on low-quality input images while
testing. The structure of SRDN is shown in Figure 1. The main
functional part of SRDN is built by stacking four modularized
Kernel Regulation Blocks (KR-Block). KR-Blocks are inspired
by GoogLeNet (56), which has a combination of kernels of
varying sizes. Specifically, each block comprises of two 1 × 1
convolutional layers, one 7 × 7 convolutional layer, and one
3 × 3 convolutional layer for regulating the features extracted
by the 7 × 7 convolutional layer. The combination of large and
small filters is to balance extraction of subtle and edge features.
Moreover, each block is embedded with a skip-connection, which
allows reference to the feature mapping from previous layers and
boosts the network performance.

• Serial connections. Image classification needs to summarize
diverse information to a linear classifier. On the contrary,
image denoising needs to find the most prominent features
for a progressive transformation. Therefore, we adopt three
kernel sizes (e.g., 1 × 1, 3 × 3, and 7 × 7) in the KR-block
module. Kernels of each size are placed in series to allow the
small kernels to regulate the features extracted by the large one.

• Small behind large. Large kernels (e.g., 7 × 7) can extract
certain features by observing a local region with more
statistical pixel information. The small kernels (e.g., 3 × 3)
are primarily used for exploiting deeper prior information
from the underlying feature-maps obtained by large preceding
kernels. The subtle textures are especially highlighted during
this regularization procedure. Large kernels excel in noise
removal but may also smooth the whole image irrespective
of its edges or details. Small kernels can preserve subtle
textures, but noise pixels may detract from the information
attained. Therefore, placing a small kernel behind the
large one is a straightforward strategy to enhance the
denoiser regularization.

• Feature blending. The features extracted by large kernels
contain both actual pixel values and noise, whereas the small
kernel can capture real pixels while simultaneously ignoring
much of the noise. At the end of a KR-block, features
captured by small kernels are blended with the features
extracted from large kernels. To allow the locally highlighted
features to be shared across neighboring KR-blocks, feature-
blending is processed by pixel-wise summation (see Figure 1-
top) rather than concatenation (e.g., in GoogLeNet). This
helps with finding the most prominent features for a forward
transformation. Eventually, the output of a KR-block contains
more accurate pixel information with less noise.

• 1 × 1 convolution. The special usage of 1 × 1 convolution in
KR-block is for two purposes: first, it reduces the dimensions
inside KR-block modules, such as the first 1 × 1 convolution
layer; second, it adds more non-linearity by having PReLU
immediately after every 1×1 convolution and suffers less from
over-fitting due to smaller kernel size.

3.2.2. SRDN Architecture
Convolutional networks learn a mapping function between a
corrupted image input and a corresponding noise-free image.
The network contains L convolution layers (Conv), each of
which implements a feature extraction procedure. To ensure our
network has rich feature representations, we use a considerable
amount of large filters in the first two convolutional layers (57) to
extract diverse and representative features for feature mapping
and spatial transformation. We define densely convolutional
features extracted from the lth layer as

xl = Conv(yl, fl, nl, cl)f≥7×7,n≥128 (1)

where l = 1...L indexes the layer, yl, fl, nl, and cl represent
the l’s input, the filter size, filter number, and channel number,
respectively. xl are the feature maps extracted from yl by
Conv(·), which denotes convolution. As the top and bottom
layers have different functional attentions (57), the network can
be decomposed into three parts (the bottom part is shown in
Figure 1): feature extraction, feature regulation and mapping,
and image reconstruction. In the proposed SRDN, the first two
layers have the same volume: (fl, nl, cl) = (7, 128, 1).

Several KR-blocks are cascaded to perform feature regulation,
mapping, and transformation. Also, residual learning is
performed here by skip-connection, which connects the outputs
of two adjacent KR-blocks. The use of skip connection between
KR-blocks leads to faster and more stable training. The purpose
of using a shortcut between the input and the end of the
network is to incorporate more information from the original
input into image reconstruction. This strategy helps relax the
network interference difficulty because input data contains much
real pixel information that can be taken as a prior. To make
SRDN more compact, we introduce two 1 × 1 composite units,
referred as “Shrinking” and “Expanding,” shown in Figure 1.
After densely convolutional feature-extraction layers, we reduce
the number of feature maps by “Shrinking.” After feature
regulation and mapping, we expand feature maps such that there
are sufficient various features that can be provided for image
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FIGURE 1 | (Top) A kernel regulation block (KR-block) with a massive of convolution computations (128 × 7 × 7) comprises two 1 × 1 convolution components for

computation reduction and one 3 × 3 convolution module for regularizing the features extracted by the preceding large size kernels. The number of dark-gray blocks

indicates the quantity of kernels in the current convolutional layers, and the size of dark-gray blocks represents the size of kernels and the density of convolution. The

color arrows represent the quantity of feature-map outputs. (Bottom) SRDN is consisted of feature extraction, shrinking, regulation and mapping, expanding, and

image reconstruction. Four KR-blocks are embedded in the proposed SRDN.

reconstruction. The convolutional layer before the last layer has
the volume: (fl, nl, cl) = (3, 128, 1). We utilize a deconvolutional
layer with the volume: (fl, nl, cl) = (3, 1, 1) as our last layer.

3.2.3. STIR-Net Structure
The combination of the various features extracted from multi-
directional data enhances the network’s capability for inference
and generality. Since multi-directional inputs provide different
perspectives of the 3D volume data, they cannot merely be
regarded as feeding more training data into multi-networks.
Instead, they complement each other nicely to encode the sparse
features through the network.

Dense convolutions and kernel regulation strategy ensure
diverse features from multi-directional brain CT images, which
can be encoded as network representations. In this paper, we
adopt three SRDNs to cope with three directional extracted data
respectively: Y × T, X × T, and X × Y to form our STIR-Net.
The structure of STIR-Net is shown in Figure 2. During training,
the input and output layers are matched with pair-wise noisy and
label patches. The label here refers to the patches extracted from
the original high radiation dose CTP volume (X × Y × T). Each
SRDN contains 4 KR-blocks that can fully encode the features
from each directional data without overfitting. For the testing
stage, the outputs of the three SRDNnets assemble into a conjoint
learning layer. This layer blends various features from all SRDN
nets together to be one spatio-temporal volume by calculating the
mean of the three outputs.

4. PLATFORM AND DATA ACQUISITION

4.1. Computational Platform
We use the deep learning framework Caffe (58) for constructing
the proposed STIR-Net. All experiments are conducted by a GPU
workstation that contains four NVIDIA PASCAL xp GPUs. For

data preprocessing and post analysis, we use MATLAB (Version
R2016b) as it is an efficient programming language for matrix-
based image processing.

4.2. Datasets
We evaluate the proposed method on 23 stroke patients’ CTP
sequences. All CTP sequences are scanned using the same acute
stroke protocol for patients from August 2007 to June 2010 using
GE Lightspeed or Pro-16 scanners (General Electric Medical
Systems, Milwaukee, WI). The scanners are in cine 4i scanning
mode and perform 45 s acquisitions at one rotation per second
using 80 kVp and 190 mAs. Approximately 45 mL of non-ionic
iodinated contrast was administered intravenously at 5 mL/s
using a power injector with a 5 s delay. The thickness of the
brain region at the z-axis is 20 mm for each sequence, and each
sequence has four slices along the z-axis where each slice is 5 mm
thick (cross-plane resolution). The brain region has 0.43 spatial
resolution (in-plane resolution) on the xy-plane. The slices within
one CTP sequence are intensity normalized and co-registered
over time. The entire volume size of one patient is 512× 512× 4
× 119, where 512 is the height and width of each CT slice, 4 is the
number of slices on the z-axis, and 119 is the number of frames
in the CTP sequence. In this paper, we only select one slice along
the z-axis, thus the size of resulting the CTP volume is 512× 512
× 119, denoted as X × Y × T.

We randomly split the patients into three groups: 12 patients
for training, four patients for validation, and seven patients for
testing. As each patient has 119 slices, the training, validation,
and testing set resulted in 1,428, 476, and 833 images in XY cross-
section (the spatial direction), respectfully. We only maintain
brain regions in the images for the other two cross-sections, XT
and YT, or about 300 pixels for the X and the Y directions.
Therefore for these cross-sections, we estimate that we have 3,600
images for training, 1,200 for validation, and 2,100 for testing.
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FIGURE 2 | STIR-Net Architecture. STIR-Net takes low-dose inputs from three cross-sections: XY, XT, and YT. Each cross-section go through one SRDN, and the

outputs of SRDNs meet in a conjoint layer, which calculates the mean of the three output volumes form SRDNs to provide the final results of STIR-Net.

We use the patch-based method in this paper, so the images are
further cropped into patches of size 41 × 41 with a stride of 21.
This resulted in 822,528 and 274,176 patches in XY cross-section,
75,600 patches in XT cross-section, and 25,200 patches in YT
cross-section, respectively for training and validation.

4.3. Low Radiation Dose Simulation and
Data Preprocessing
To simulate low radiation dose CTP images, we address three
generation approaches: reducing the tube current, shortening X-
ray radiation exposure time, and lowering spatial resolution. We
detail each criterion as below.

• Low Tube Current. We followed the same steps described
in Britten et al. (59) to simulate the low-dose CT images by
adding spatially correlated statistical noise (spectrumGaussian
noise). The generated noise is directly added on the original
high-dose images, where the high-dose volumes are scanned
at tube current I0 = 190mAs. Based on Britten et al. (59),
the noise model is built on the inverse relationship between
the tube current I and the noise standard deviation σ in CT
images. The noise level σ (the standard deviation of Gaussian
noise that we want to add to the original images) is adjusted
based on tube current I that we want to simulate according
to equation

σ = K ×

√

1

I
−

1

I0
(2)

where K = 103.09mA
1
2 is computed based on phantom

studies. We simulate four levels of noisy images in this paper
at different tube currents: 20, 40, 60, and 80 mAs.

• Low Temporal Sampling Rate. To reduce the temporal
sampling rate for shorter X-ray radiation exposure time,
we simulate longer scanning intervals by removing frames
between specific time intervals. For example, we remove every

other frame from the CTP volume to generate the down-
sampled volume that is two times shorter on the temporal
dimension than the original length. In this way, we skip frames
with two scales Si: two times shorter S2 and three times S3
shorter than the original time.We also keep the original length
S1 for comparison. For all down-sampled volumes, we scale
them back to the original size via bicubic interpolation for deep
learning experiments.

• LowSpatial SamplingRate.We lower the CT spatial sampling
rate to mimic the low spatial resolution images that are
produced by a limited amount of beams and receptors. For
instance, we create the down-sampled images by skipping
every other pixel (scaling rate of two) along the X and
Y directions in the original high radiation dose images
respectively (so-called grid-wise). We simulate the LR images
by skipping pixels grid-wise with two scales Si: two times
down-sampled S2, and three times down-sampled S3. We set
S1 as no down-sampling for comparison. Then, we interpolate
the down-sampled images by the bicubic method to scale them
back to the original image size.

Based on different patch representations that are described in
section 3.1, we preprocess the data subsequently. We have
three combinations of directional cross-sections XY, XT, and
YT for STIR-Net. For each individual denoising and super-
resolution case, we add Gaussian noise to the high-dose images
and apply spatio/temporal down-sampling, respectively. For
the combination of super-resolution and de-noising, we add
the noise first and then apply spatial/temporal down-sampling
depending on different scaling factors.

5. EXPERIMENTS AND RESULTS

The experiments of this work are carried out in three steps: image
super-resolution, image denoising, and image super-resolution
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with denoising. In the first two steps, we want to show that
the proposed STIR-Net is capable of different image restoration
tasks independently. Further, in the third step, we want to
demonstrate that our STIR-Net can tackle super-resolution and
denoising simultaneously. We train the STIR-Net structure from
scratch using low-quality images from different cross-sections,
then we test each of the cross-sections as spatial-only, temporal-
only, and spatial and temporal combined. The performance is
computed based on the average result form seven patients’ 119
slices. As cross-sections (XT and YT) are trained and tested in
a 2D circumstance that combined temporal dimension with one
spatial dimension, we concatenate the resulted 2D images into 3D
volumes and recalculate the performance based on XY direction.

5.1. Evaluation Metrics
The experiment performance is evaluated based on two
evaluation metrics: structural similarity (SSIM) index and PSNR.
SSIM is used for measuring the similarity between two images
based on the computation of luminance term l(x, y), the contrast
term c(x, y), and the structural term s(x, y), where x and y are two
images. We calculate SSIM based on the following equations

SSIM(x, y) = [l(x, y) · c(x, y) · s(x, y)] (3)

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
, c(x, y) =

2σxσy + c2

σ 2
x + σ 2

y + c2
,

s(x, y) =
2σxy+ c3

σ 2
x + σ 2

y + c3
(4)

whereµx,µy, σx, σy, σxy are the local means, standard deviations,
and cross-covariance for images x and y. The value of c1, c2, and
c3 are set as 6.5025, 58.5225, and 29.26125, where the values are
calculated based on the dynamic range L of the pixel-values (here
is 255) in function c1 = (0.01∗L)2, c2 = (0.03∗L)2, and c3 = c2/2.
PSNR defines the ratio between the maximum intensity value in
the ground truth image Imax and the power of corrupting noise σ

(root mean square error between the ground truth and enhanced
image) that affects representation fidelity.

PSNR = 20 log10
Imax

σ
(5)

5.2. Image Super-Resolution
The first experiment is image super-resolution, which is
independently conducted on three cross-sections (Y × T, X × T,
and X × Y) at two sampling rates (S2: down-sampling to 1/2,
S3: down-sampling to 1/3). We want to evaluate whether the
proposed STIR-Net is capable of achieving a stable performance
in different cross-sections at different levels of scaling. For the
XY cross-section, we down-sample along the spatial directions
to create low-resolution images. For the XT and YT cross-
sections, we down-sample on the temporal direction only to
simulate scanning in a shorter X-ray radiation exposure time.
The experimental results of STIR-Net are shown in Table 1. We
calculate SSIM and PSNR values for LR inputs, SR outputs, and
the improvements of SR from LR. The greatest improvements

for both SSIM and PSNR are in the XY direction, while the XT
and YT directions have achieved similar improvements. When
the sampling rate is high, the improvements compared to the
lower sampling rate are higher in almost all cross-sections. The
improvements of SSIM and PSNR are highly stable and follow
the same trend in different conditions. A one-tailed paired t-
test was conducted to compare the performance improvements
of PSNR and SSIM values. There was a significant difference in
the scores for PSNR (Mean = 37.623, SD = 10.955) and SSIM
(Mean = 0.950, SD = 0.001) before and after using the proposed
method; where p = 0.0003 for PSNR and p = 0.0004 for SSIM
show that the improvements are significant as p < 0.05. These
results suggest that PSNR and SSIM do improve significantly
after applying our model in this experiment. This experiment
indicates that STIR-Net has the potential to address low spatial
and temporal resolution in CTP image volumes.

5.3. Image Denoising
In this experiment, we explore different levels of low tube current
for training STIR-Net. We added the spectrum Gaussian noise to
simulate four low tube currents: 20, 40, 60, and 80mAs, which are
11, 21, 32, and 42% of the original 190mAs tube current.We train
the proposed STIR-Net by mixing together the different tube
currents - it is more difficult to restore high-dose images at lower
tube current, as shown in Table 2. This table shows that the SSIM
and PSNR performances for the XY direction when STIR-Net is
trained and tested with mixed levels of tube currents, which are at
a fixed spatial/temporal sampling rate of S2. The improvement of
SSIM increases as tube currents decrease, while the improvement
of PSNR remains in a similar range. We show that STIR-Net
is a general solution for different tube currents, as the PSNR
improvements for different test cases are all higher than 5 dB.
In this experiment, we demonstrate that STIR-Net can tackle
denoising problems as well, even for mixed noise levels. The
improvements are very stable for different tube current levels.

5.4. Spatial-Temporal Super-Resolution
and Denoising
In addition to the encouraging individual experiment results for
image super-resolution and denoising, the experiment results
in both spatial and temporal super-resolution with denoising
have also achieved great enhancements. We evaluate the resulted
images based on two aspects in this section: the analysis on
the resulted CTP sequence and the analysis on the generated
perfusion maps.

5.4.1. CTP Sequence Analysis
Table 3 shows the PSNR comparison of the resulted CTP
sequence among Multi-Scale Expected Patch Log Likelihood
(MS-EPLL) (60)method, our previously proposedmethod STAR,
and the current method STIR-Net. The test results are displayed
as an average value over seven test patients’ 833 slices output.
The STAR and STIR-Net methods both contain three scenarios:
spatial SR only, temporal SR only, and joint spatial and temporal
SR. In bothmethods, the temporal SR includes two cross-sections
(the XT and YT directions).
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TABLE 1 | Average SSIM and PSNR (dB) performance of seven patients’ 833 CTP slices between different sampling scales for STIR-Net image super-resolution at

different spatio-temporal cross-sections.

Direction Scale
SSIM PSNR

LR STIR-Net Improvement LR STIR-Net Improvement

XY
S2 0.954 0.987 0.033 32.348 43.195 10.846

S3 0.855 0.929 0.074 26.958 35.317 8.359

YT
S2 0.939 0.971 0.032 33.354 38.961 5.607

S3 0.887 0.929 0.042 29.240 35.167 5.926

XT
S2 0.929 0.967 0.038 32.965 38.580 5.615

S3 0.866 0.915 0.048 28.831 34.513 5.681

TABLE 2 | Average SSIM and PSNR (dB) performance of seven patients’ 833 slices for XY direction when STIR-Net is trained and tested with mix levels of tube currents,

where at a fixed spatial/temporal sampling scale S2.

mAs
SSIM PSNR

LR STIR-Net Improvement LR STIR-Net Improvement

20 0.778 0.859 0.080 25.227 30.445 5.217

40 0.830 0.896 0.065 26.663 32.349 5.686

60 0.860 0.909 0.049 27.323 33.062 5.739

80 0.879 0.915 0.036 27.702 33.409 5.706

We show that STIR-Net is a general solution for different tube currents as the PSNR improvements for different test cases are all higher than 5 dB. mAs is the unit for tube current-time

product.

TABLE 3 | Average PSNR comparison of seven patients’ 833 CTP slices for different conditions.

mAs Scale LR
MS-EPLL STAR STIR-Net

Spatial Spatial Temporal Conjoint Spatial Temporal Conjoint

20

S1 23.438 28.566 31.734 32.550 33.273 31.856 32.456 33.189

S2 23.032 26.022 28.705 31.006 31.017 28.847 30.774 30.919

S3 21.993 22.517 26.636 29.990 29.682 26.861 30.405 30.096

40

S1 26.764 31.176 33.763 34.511 35.452 33.848 34.685 35.402

S2 24.698 27.357 29.899 31.841 32.214 30.092 32.471 32.659

S3 23.246 23.576 27.289 31.020 30.609 27.555 31.272 30.909

60

S1 29.079 33.030 35.336 36.145 37.254 35.415 36.064 37.195

S2 25.498 28.161 30.705 33.269 33.489 30.956 33.544 33.913

S3 23.801 24.689 27.694 31.673 31.207 27.785 31.867 31.450

80

S1 31.025 34.607 36.769 37.664 38.967 36.854 36.724 38.469

S2 25.971 28.608 31.505 34.123 34.464 31.719 34.324 34.728

S3 24.116 24.658 28.027 32.268 31.706 27.688 32.438 31.687

Avg 25.222 27.748* 30.672*⋆ 33.005*⋆ 33.278*⋆ 30.790*⋆ 33.086*⋆ 33.385*⋆

In this table, three methods are compared: MS-EPLL, STAR, and STIR-Net. The conditions include four types of tube current (20, 40, 60, and 80 mAs) and three kinds of SR scales

(S1: no down-sampling, S2: down-sampling to 1/2, and S3: down-sampling to 1/3). LR means the PSNR value for the noise image after down-sampling. S1 is image denoising only.

The best values are highlighted for different scenarios. The average value is listed at the bottom of the table. The asterisk symbol denotes the result of the current method achieves

significant higher PSNR value than the LR images at α = 0.05 when performing the one-tailed paired t-tests, and the star symbol denotes the comparison between MS-EPLL method.

Table 3 focuses on the comparison of four levels of tube
current (20, 40, 60, 80 mAs) and three SR scales (S1: no
down-sampling, S2: down-sampling to 1/2, S3: down-sampling
to 1/3). The down-sample rates are applied based on different
methods: spatial-only models are scaled down on the spatial
dimensions, temporal-only models are scaled down on the
temporal dimension, and the conjoint models are scaled down

on both spatial and temporal dimensions (depending on different
cross-sections). In this table, LR refers to the PSNR value for the
noise image after down-sampling. We highlighted the best values
for different scenarios. From this table, we can see STAR achieves
higher PSNR for denoising than STIR-Net, while STIR-Net
performs better for mixed noise and down-sampling scenarios.
Moreover, both STAR and STIR-Net methods outperform the
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MS-EPLL method. For all tube currents, the PSNR value
follows the trend of better image restoration results at higher
tube currents. Similarly, a lower down-sampling rate leads to
better reconstruction performance. The conjoint of spatial and
temporal directions of STAR gives the best results for all four
tube current levels. When the low dose CT images have poor
spatial or temporal resolutions, it is usually more difficult to
tackle both denoising and SR problems; however, our STIR-Net
net is more favorable for these situations. Its conjoint model
gives us an average 32% improvement from the LR inputs. The
experiment results indicate that most mixed low dose and low-
resolution scenarios can achieve the best performances, especially
for the temporal directions. This means that for the temporal
directions, there is more related information that can be used
for reconstructing CT frames that are nearby the down-sampled
slices. The average performance improvement for STIR-Net net
is about 8.08 dB from the LR inputs and around 4 dB compared
to the MS-EPLL method. We perform one-tailed paired t-
tests in Table 3 to compare PSNR values at different mAs and
super-resolution scales using alpha = 0.05. All three types of
STIR-Net perform significantly better than LR and MS-EPLL,
especially the conjoint model achieves the best performance
among all methods.

5.4.2. Perfusion Maps Analysis
We compare the perfusion maps (CBF and CBV) based on which
physicians make the clinical decision, as the perfusion maps
can show the hemodynamic changes of blood flow. Therefore,
achieving higher accuracy in restoration in perfusion maps is
critical for clinical diagnosis.

Visual Comparison: The visual comparisons of the generated
perfusion maps (CBF and CBV) are presented in Figures 3–6
for patient # 18, # 19, and # 21 in the case of scale level S2
and S3 with 40 mAs. We enlarge the region of interest for each
image to check the details, and we highlight the details by using
white arrows. From these figures, the edges in the LR images are
distorted compared to the original images, andMS-EPLL restores
the detail information incorrectly. The resulting images of the
STIR-Net models are much closer to the ground truth images
compare to MS-EPLL and STAR. The boundaries and details
of the features in STIR-Net results are well-preserved, and the
figures are less blurry than other methods. In sum, the proposed
STIR-Net gives us much accurate perfusion maps compare to
MS-EPLL and STAR methods as it restores the edge information
much closer to the ground truth images.

Quantitative Comparison: We calculate the CBF and CBV
values based on the CTP sequences resulted from different
methods. Then, we use PSNR and SSIM as evaluation metrics. As
the proposed method STIR-Net is designed for CTP image super-
resolution and denoising simultaneously, we show the results of
40mAs at the down-sample scale of S2 and S3.Tables 4, 5 provide
the PSNR and SSIM comparisons of CBF and CBV maps in the
case of scale level S2 with 40mAs andTables 6, 7 are for scale level
S3. In general, STIR-Net models achieve the best performance,
and the temporal model is usually the top performer.

We perform one-tailed paired t-tests for each table to
compare PSNR and SSIM of the restored images with LR images

and restored images using MS-EPLL and STAR models. The
hypothesis for all t-tests is: after using the proposed method,
we can achieve significant improvements in PSNR and SSIM
values from the images of LR, MS-EPLL method, or STAR
models. The results show that our proposed STIR-Net models
not only significantly improve the PSNR and SSIM values from
the LR images but also achieves significantly higher PSNR
and SSIM values than the MS-EPLL method, especially for
the temporal models and the conjoint models. For comparison
with STAR model, Table 4 shows that at S2 and 40 mAs,
CBF’s SSIM values using the STIR-Net temporal model is
significantly (p = 0.002067) better than the STAR temporal
model, similar for CBV (p = 0.01554). STIR-Net’s conjoint
model is also significantly better than the STAR conjoint model
(p = 0.00994) in terms of SSIM. In Table 7, for the case
of S3 and 40 mAs, similar observations are made. STIR-Net
temporal model is significantly (p = 0.03521) better than the
STAR temporal model and conjoint model in terms of both
PSNR and SSIM.

Overall, the test results demonstrate the advantage of our
STIR-Net to restore high-quality scans at as low as 11% of
absorbed radiation dose of the current imaging protocol, yielding
an average of 17% improvement in PSNR and SSIM values
for perfusion maps including CBF and CBV compared to LR
images and 10% improvements compared to MS-EPLL method.
For the comparison of STIR-Net and STAR, we calculate the
improvements by averaging out all three models including
the spatial model, temporal model, and the conjoint model.
Our proposed STIR-Net method achieves an average of 0.2%
improvements in PSNR and SSIM values for perfusionmaps than
STAR models.

6. CONCLUSION

This paper presents a novel deep learning-based multi-
directional spatio-temporal framework to recover the low
radiation dose CTP images of acute stroke patients by addressing
both denoising and super-resolution problems simultaneously.
Our proposed framework, called STIR-Net, is an end-to-end
image restoration network that is capable of recovering images
scanned at low tube current, short X-ray radiation exposure
time, and low spatial resolution jointly. We emphasize the
characteristic of our proposed STIR-Net in CTP image super-
resolution and denoising jointly, which directs prior and data
fidelity terms with two insights: First, a well-trained CNN-
based denoiser can be regarded as a sequence of filter-based
denoisers. Second, each component of a CNN-based denoiser
has the capacity of jointly dealing with image denoising and
super-resolution problems. By combining the cross-sectional
features in the spatio-temporal domain, our STIR-Net achieves
to better reconstruction results, especially for mixed low-
resolution and noise cases. After inputting low dose and low-
resolution patches at different cross-sections of the spatio-
temporal data simultaneously, STIR-Net blends the features
from both spatial and temporal domains to reconstruct high-
quality CT volumes. The experimental results indicate that
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FIGURE 3 | Visual comparison of CBF for three test patients: #18, #19, and #21, when reducing the tube current to 40 mAs with a down-sample ratio of two (two

times low spatial and two time low temporal resolutions). The notation for each column is: GT, Ground truth image; LR, Low-Resolution input; MS-EPLL, MS-EPLL

restoration result; STAR-Spat, STAR reconstruction result (spatial only); STAR-Temp, STAR reconstruction result (temporal only); STAR-Conj, STAR reconstruction

result (spatial + temporal); STIR-Spat, STIR-Net reconstruction result (spatial only); STIR-Temp, STIR-Net reconstruction result (temporal only); STIR-Conj, STIR-Net

reconstruction result (spatial + temporal). All figures are displayed by using the same colormap and the color range for each patient is shown in the colorbar on the

rightmost of each row. We use white arrows to compare the details in the region of interests.

FIGURE 4 | Visual comparison of CBV for three test patients: #18, #19, and #21, when reducing the tube current to 40 mAs with a down-sample ratio of two (two

times low spatial and two time low temporal resolutions). The notation for each column is: GT, Ground truth image; LR, Low-Resolution input; MS-EPLL, MS-EPLL

restoration result; STAR-Spat, STAR reconstruction result (spatial only); STAR-Temp, STAR reconstruction result (temporal only); STAR-Conj, STAR reconstruction

result (spatial + temporal); STIR-Spat, STIR-Net reconstruction result (spatial only); STIR-Temp, STIR-Net reconstruction result (temporal only); STIR-Conj, STIR-Net

reconstruction result (spatial + temporal). All figures are displayed by using the same colormap and the color range for each patient is shown in the colorbar on the

rightmost of each row. We use white arrows to compare the details in the region of interests.
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FIGURE 5 | Visual comparison of CBF for three test patients: #18, #19, and #21, when reducing the tube current to 40 mAs with a down-sample ratio of three (three

times low spatial and two time low temporal resolutions). The notation for each column is: GT, Ground truth image; LR, Low-Resolution input; MS-EPLL, MS-EPLL

restoration result; STAR-Spat, STAR reconstruction result (spatial only); STAR-Temp, STAR reconstruction result (temporal only); STAR-Conj, STAR reconstruction

result (spatial + temporal); STIR-Spat, STIR-Net reconstruction result (spatial only); STIR-Temp, STIR-Net reconstruction result (temporal only); STIR-Conj, STIR-Net

reconstruction result (spatial + temporal). All figures are displayed by using the same colormap and the color range for each patient is shown in the colorbar on the

rightmost of each row. We use white arrows to compare the details in the region of interests.

FIGURE 6 | Visual comparison of CBV for three test patients: #18, #19, and #21, when reducing the tube current to 40 mAs with a down-sample ratio of three (three

times low spatial and two time low temporal resolutions). The notation for each column is: GT, Ground truth image; LR, Low-Resolution input; MS-EPLL, MS-EPLL

restoration result; STAR-Spat, STAR reconstruction result (spatial only); STAR-Temp, STAR reconstruction result (temporal only); STAR-Conj, STAR reconstruction

result (spatial + temporal); STIR-Spat, STIR-Net reconstruction result (spatial only); STIR-Temp, STIR-Net reconstruction result (temporal only); STIR-Conj, STIR-Net

reconstruction result (spatial + temporal). All figures are displayed by using the same colormap and the color range for each patient is shown in the colorbar on the

rightmost of each row. We use white arrows to compare the details in the region of interests.
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TABLE 4 | PSNR and SSIM value comparison of seven patients’ CBF maps calculated at scale S2 with tube current 40 mAs.

CBF Patient LR
MS-EPLL STAR STIR

Spatial Spatial Temporal Conjoint Spatial Temporal Conjoint

PSNR

#18 24.57 25.74 27.83 30.54 31.30 28.06 29.07 29.79

#19 23.87 25.18 26.31 28.91 28.81 26.25 27.83 27.84

#20 23.07 26.09 29.30 30.94 31.63 24.16 32.02 32.31

#21 25.34 26.64 28.02 31.70 31.59 27.86 31.26 30.70

#22 23.25 26.13 27.90 30.46 30.86 28.26 30.24 31.14

#23 23.84 25.16 27.37 27.26 28.99 27.87 26.24 27.11

#24 18.23 21.59 23.55 26.62 26.61 24.68 25.89 26.30

Avg 23.15 25.21* 27.18*⋆ 29.49*⋆ 29.97*⋆ 26.73*⋆ 28.94*⋆ 29.31*⋆

Var 5.28 2.80 3.34 3.77 3.59 2.95 5.74 5.09

SSIM

#18 0.84 0.85 0.88 0.93 0.93 0.88 0.94 0.93

#19 0.77 0.80 0.82 0.89 0.89 0.81 0.90 0.90

#20 0.75 0.84 0.86 0.91 0.92 0.78 0.94 0.93

#21 0.78 0.82 0.83 0.90 0.91 0.83 0.92 0.91

#22 0.78 0.83 0.86 0.92 0.92 0.86 0.93 0.93

#23 0.82 0.84 0.86 0.89 0.92 0.87 0.89 0.89

#24 0.72 0.77 0.80 0.88 0.89 0.82 0.90 0.89

Avg 0.78 0.82* 0.84*⋆ 0.90*⋆ 0.91*⋆ 0.83* 0.92*⋆ 0.91*⋆

Var 0.0016 0.0008 0.0008 0.0003 0.0002 0.0014 0.0004 0.0004

In this table, three methods are compared: MS-EPLL, STAR, and STIR-Net. LR means the PSNR value for the noise image after down-sampling. The best values are highlighted for

different patients. The average value and the variance are listed at the bottom of the table. The asterisk symbol denotes the result of the current method achieves significant higher

PSNR value than the LR images at α = 0.05 when performing the one-tailed paired t-tests, and the star symbol denotes the result is significantly higher than MS-EPLL method.

TABLE 5 | PSNR and SSIM value comparison of seven patients’ CBV maps calculated at scale S2 with tube current 40 mAs.

CBV Patient LR
MS-EPLL STAR STIR

Spatial Spatial Temporal Conjoint Spatial Temporal Conjoint

PSNR

#18 28.00 28.62 31.78 34.24 35.22 31.68 34.66 34.17

#19 32.32 34.05 33.79 37.52 38.11 35.15 38.75 38.63

#20 30.62 32.83 37.53 38.30 39.69 34.80 40.15 39.77

#21 32.20 33.38 34.95 37.67 37.98 35.09 38.07 38.27

#22 31.60 32.76 32.70 37.80 37.57 33.15 38.94 38.50

#23 30.55 31.51 32.03 35.87 36.46 34.76 35.37 35.97

#24 26.42 29.37 31.37 32.53 33.28 30.74 35.37 33.55

Avg 30.22 31.76* 33.44*⋆ 36.26*⋆ 36.89*⋆ 33.60*⋆ 37.08*⋆ 36.97*⋆

Var 4.87 4.16 4.77 4.67 4.47 3.18 6.11 5.82

SSIM

#18 0.86 0.87 0.90 0.94 0.94 0.90 0.95 0.94

#19 0.84 0.87 0.87 0.92 0.93 0.88 0.94 0.94

#20 0.89 0.92 0.93 0.96 0.96 0.93 0.97 0.97

#21 0.84 0.88 0.89 0.92 0.93 0.89 0.94 0.93

#22 0.85 0.88 0.89 0.93 0.94 0.89 0.95 0.95

#23 0.85 0.88 0.89 0.92 0.93 0.90 0.93 0.93

#24 0.77 0.82 0.84 0.88 0.89 0.84 0.90 0.90

Avg 0.84 0.88* 0.89*⋆ 0.93*⋆ 0.93*⋆ 0.89*⋆ 0.94*⋆ 0.94*⋆

Var 0.0015 0.0008 0.0008 0.0005 0.0004 0.0007 0.0004 0.0004

In this table, three methods are compared: MS-EPLL, STAR, and STIR-Net. LR means the PSNR value for the noise image after down-sampling. The best values are highlighted for

different patients. The average value and the variance are listed at the bottom of the table. The asterisk symbol denotes the result of the current method achieves significant higher

PSNR value than the LR images at α = 0.05 when performing the one-tailed paired t-tests, and the star symbol denotes the result is significantly higher than MS-EPLL method.
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TABLE 6 | PSNR and SSIM comparison of seven patients’ CBF maps calculated at scale S3 with tube current 40 mAs.

CBF Patient LR
MS-EPLL STAR STIR

Spatial Spatial Temporal Conjoint Spatial Temporal Conjoint

PSNR

#18 21.68 23.89 24.92 27.88 27.30 24.64 28.09 27.92

#19 19.95 20.55 23.39 26.51 26.60 23.71 27.09 26.59

#20 22.41 26.23 25.57 29.84 29.62 26.14 29.51 29.04

#21 23.35 24.85 25.11 28.10 27.54 23.18 29.36 27.77

#22 21.97 23.95 24.23 23.97 28.04 24.83 28.54 28.29

#23 22.50 24.03 23.95 26.05 26.35 23.85 24.85 25.84

#24 17.21 21.45 20.66 24.53 23.91 20.91 24.04 23.49

Avg 21.29 23.56* 23.97* 26.70*⋆ 27.05*⋆ 23.89* 27.35*⋆ 26.99*⋆

Var 4.30 3.77 2.67 4.31 3.07 2.66 4.66 3.51

SSIM

#18 0.74 0.75 0.77 0.88 0.87 0.79 0.88 0.88

#19 0.64 0.69 0.71 0.83 0.83 0.71 0.83 0.82

#20 0.70 0.76 0.73 0.87 0.87 0.77 0.87 0.86

#21 0.68 0.70 0.73 0.82 0.82 0.70 0.85 0.84

#22 0.69 0.75 0.76 0.83 0.87 0.77 0.87 0.87

#23 0.73 0.74 0.76 0.85 0.85 0.76 0.84 0.85

#24 0.63 0.68 0.69 0.82 0.82 0.69 0.82 0.81

Avg 0.69 0.72* 0.74*⋆ 0.85*⋆ 0.85*⋆ 0.74*⋆ 0.85*⋆ 0.85*⋆

Var 0.0016 0.0009 0.0008 0.0006 0.0007 0.0015 0.0005 0.0006

In this table, three methods are compared: MS-EPLL, STAR, and STIR-Net. LR means the PSNR value for the noise image after down-sampling. The best values are highlighted for

different patients. The average value and the variance are listed at the bottom of the table. The asterisk symbol denotes the result of the current method achieves significant higher

PSNR value than the LR images at α = 0.05 when performing the one-tailed paired t-tests, and the star symbol denotes the result is significantly higher than MS-EPLL method.

TABLE 7 | PSNR and SSIM comparison of seven patients’ CBV maps calculated at scale S3 with tube current 40 mAs.

CBV Patient LR
MS-EPLL STAR STIR

Spatial Spatial Temporal Conjoint Spatial Temporal Conjoint

PSNR

#18 24.94 27.53 29.48 32.33 31.44 27.43 34.13 31.43

#19 30.71 26.58 28.50 36.15 35.01 29.86 36.39 35.48

#20 28.40 34.42 31.90 37.98 38.11 34.22 38.49 38.17

#21 30.45 31.87 32.83 35.86 35.52 31.36 35.97 34.87

#22 29.28 30.51 29.96 36.00 35.83 28.05 36.00 35.77

#23 28.83 31.31 29.08 35.08 33.86 27.33 34.35 34.23

#24 24.96 27.44 28.68 30.22 30.76 28.53 30.87 31.01

Avg 28.21 29.93 30.03 * 34.80*⋆ 34.35*⋆ 29.52 35.16*⋆ 34.42*⋆

Var 5.60 8.15 2.61 6.93 6.59 6.25 5.67 6.30

SSIM

#18 0.77 0.81 0.83 0.90 0.90 0.83 0.91 0.90

#19 0.77 0.76 0.77 0.89 0.89 0.78 0.90 0.89

#20 0.81 0.89 0.85 0.94 0.94 0.89 0.94 0.94

#21 0.77 0.84 0.85 0.90 0.90 0.83 0.90 0.89

#22 0.76 0.82 0.82 0.91 0.91 0.80 0.91 0.91

#23 0.76 0.84 0.83 0.90 0.90 0.82 0.90 0.90

#24 0.69 0.76 0.77 0.84 0.85 0.77 0.85 0.85

Avg 0.76 0.82* 0.82* 0.90*⋆ 0.90*⋆ 0.82* 0.90*⋆ 0.90*⋆

Var 0.0013 0.0022 0.0012 0.0009 0.0008 0.0016 0.0007 0.0008

In this table, three methods are compared: MS-EPLL, STAR, and STIR-Net. LR means the PSNR value for the noise image after down-sampling. The best values are highlighted for

different patients. The average value and the variance are listed at the bottom of the table. The asterisk symbol denotes the result of the current method achieves significant higher

PSNR value than the LR images at α = 0.05 when performing the one-tailed paired t-tests, and the star symbol denotes the result is significantly higher than MS-EPLL method.
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our framework has the potential to maintain the diagnostic
image quality not only for reducing the tube current down
to 11% of the commercial standard but also for 1/3 X-ray
radiation exposure time and 1/3 spatial resolution. Hence,
our approach is an efficient and effective solution for radiation
dose reduction in CTP imaging. In the future, we will extend
the work into multimodal imaging radiation dose reduction
by combining low-dose non-contrast CT, CTA, and CTP
images holistically.
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