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Editorial on the Research Topic

Origins of the Resting-State fMRI Signal

INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI) has exponentially increased in
adoption in the past decade. It is now a part of nearly every neuroimaging-based large-scale study
of the human brain due to ease of use and versatility (Smith et al., 2013; Bookheimer et al., 2019;
Zonneveld et al., 2019; Power, 2020). This has also led to the introduction of numerous derivative
metrics. rs-fMRI is used in mapping the human-brain connectome and in understanding every
aspect of cognitive function. It is also regarded as a promising biomarker for brain diseases ranging
from dementia to traumatic brain injury to autism spectrum disorders. However, limitations on the
sensitivity and specificity of rs-fMRI (Buckner et al., 2013) are a disadvantage. As we stand on the
cusp of widespread adoption of rs-fMRI in clinical research, there is an urgent need to understand
what we do not yet know about the origins of the rs-fMRI signal. This is the driving force behind
our Research Topic, “Origins of the Resting-state fMRI Signal,” in which we strove to provide a
comprehensive update on the quest for a better understanding.

NEURONAL ORIGINS

The mechanism behind the rs-fMRI signal is the slight dissociation between the cerebral blood
flow and oxygen consumption which gives the physiological basis to blood oxygenation level
dependent (BOLD) signal (Kim and Ogawa, 2012). The hemodynamic BOLD signal fluctuations
follow the ongoing neuronal activity changes through neurovascular coupling. While this process
seems simple and straightforward it has limitations as Lu et al. describes in their mini-review,
where they coin the term “neurocentric” model. They bring attention to that the spontaneous
neuronal activities can explain only a small percentage of the variation of rs-fMRI fluctuations
indicating that more complex neuropil activities together effect the spontaneous fluctuations. In
this Research Topic two more original papers show the complex relationship between spontaneous
neuronal activity and BOLD fluctuations. Zhang X. et al. describes the relationship between local
field potentials (LFP) and simultaneously measured BOLD signal fluctuations in anesthetized
rats. This relationship can be non-linear under isoflurane and linear under dexmedetomidine
anesthesia, indicating that different brain states have real influence to the origin of rs-fMRI.
Zhang Z. et al. demonstrates that the intrinsic functional connectivity depends on the neuronal
activity patterns of different brain states. Inmonkey brains the isoflurane specific burst-suppression
activity increased the functional connectivity compared to the stable slow wave activity of the same
isoflurane anesthesia.
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VASCULAR ORIGINS

While most studies use parameters derived from rs-fMRI as
representing neuronal connectivity, it is important to realize that
the BOLD rs-fMRI signal is not a direct measure of neuronal
activity. Not only is the neuroanally-driven BOLD signal highly
sensitive to vascular modulation (Liu, 2013), the frequency range
of interest for rs-fMRI (i.e., below 0.1Hz) is known to contain
contributions from signals of non-neuronal origin. These factors
have been of increasing interest in recent years (Liu, 2013;
Golestani et al., 2016; Chu et al., 2018; Bright et al., 2020; Lewis
et al., 2020), and are examined in this Research Topic. Tong et al.,
who were the first to demonstrate the unique vascular signature
of low-frequency rs-fMRI fluctuations, present an update on
the origins of these low-frequency vascular oscillations, their
correction strategies and more interesting, ways in which they
can be used in addressing clinical needs. Furthermore, Whittaker
et al. investigate the relationship between systemic blood pressure
and the rs-fMRI signal, while demonstrating the potential for the
rs-fMRI signal to be used in tracking autoregulation.

COGNITIVE ORIGINS

If the rs-fMRI signal has a neural basis, its properties should be
affected by widespread changes in activity linked to arousal. Two
papers in this special issue address this question by examining
rs-fMRI under different vigilance levels. Yin et al. compare
awake humans to anesthetized monkeys and determine that
functional flexibility is weakened but that its spatial distribution
is somewhat preserved across species and states of consciousness.
Liu and Falahpour review existing studies that link changes
in vigilance to differences in BOLD signal amplitude and
functional connectivity. Both papers indicate that similar time-
varying patterns of activity are present in different vigilance
states, but that the properties of the activity patterns vary
with arousal.

NOISE AND ARTIFACTUAL ORIGINS

As with all biological signals, some shared variance in rs-
fMRI comes from noise. Subject motion creates noise, and
Maknojia et al. provide a detailed review of its sources,

prevention, and removal in post-processing. Physiological signals

at a higher sampling rates than rs-fMRI (e.g., respiration
and pulse) may alias, so Huotari et al. studied the effect of
under-sampling on numerous rs-fMRI metrics. While dynamic
rs-fMRI metrics were affected, rs-fMRI metrics calculated
over 5min remained stable. Yuen et al. separated rs-fMRI
signals into intrinsic mode functions (IMFs) using variational
mode decomposition (VMD). They suggest that some IMFs
corresponded to physiological/metabolic processes combined
with rs-fMRI networks, while other IMFs corresponded to
vasomotor/unknown sources and did not correspond to rs-
fMRI networks (Yuen et al.). Moradi et al. applied empirical
mode decomposition (EMD) to rs-fMRI and concluded that,
vs. regressing the whole-brain “global” signal to remove noise,
EMD provided IMFs with more spatially-specific measurements
of global effects (Moradi et al.; Yuen et al.). Altogether, these
studies suggest that the required sampling rates are dependent
upon analysis method, and data-driven decomposition methods
like VMD and EMD may provide signal decompositions that
enhance noise removal.

PERSPECTIVES ON FUTURE WORK

Despite rs-fMRI’s success as a research technique, we see
challenges in the two primary application routes: (1) for
neuroscience research, for which rs-fMRI has become a
mainstay in human studies, but the difficulty of interpreting
rs-fMRI metrics has limited application to basic science; (2)
for clinical applications, where the lack of sensitivity and
specificity has limited the adoption of rs-fMRI in assessing
diseases. This Research Topic highlights the strong influence of
arousal, vascular changes and noise contributions to rs-fMRI
metrics, questioning the general practice of interpreting any
rs-fMRI significance as being functional. For the foreseeable
future, the community is urged to invest more effort into
identifying the neuronal relevance of physiological and vascular
oscillations in rs-fMRI, and into standardizing the definition of
“resting state.”
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Emerging neuroimaging studies emphasize the dynamic organization of spontaneous
brain activity in both human and non-human primates, even under anesthesia. In a
recent study, we were able to characterize the heterogeneous architecture of intrinsic
functional flexibility in the awake, resting human brain using time-resolved analysis
and a probabilistic model. However, it is unknown whether this organizational principle
is preserved in the anesthetized monkey brain, and how anesthesia affects dynamic
and static measurements of spontaneous brain activity. To investigate these issues,
we collected resting-state functional magnetic resonance imaging (fMRI) datasets
from 178 awake humans and 11 anesthetized monkeys (all healthy). Our recently
established method, a complexity measurement (i.e., Shannon entropy) of dynamic
functional connectivity patterns of each brain region, was used to map the intrinsic
functional flexibility across the cerebral cortex. To further explore the potential effects
of anesthesia, we performed time series analysis and correlation analysis between
dynamic and static measurements within awake human and anesthetized monkey
brains, respectively. We observed a heterogeneous profile of intrinsic functional flexibility
in the anesthetized monkey brain, which showed some similarities to that of awake
humans (r = 0.30, p = 0.007). However, we found that brain activity in anesthetized
monkeys generally shifted toward random fluctuations. Moreover, there is a negative
correlation between nodal entropy for the distribution of dynamic functional connectivity
patterns and static functional connectivity strength in anesthetized monkeys, but not
in awake humans. Our findings indicate that the heterogeneous architecture of intrinsic
functional flexibility across cortex probably reflects an evolutionarily conserved aspect of
functional brain organization, which persists across levels of cognitive processing (states
of consciousness). The coupling between nodal entropy for the distribution of dynamic
functional connectivity patterns and static functional connectivity strength may serve
as a potential signature of anesthesia. This study not only offers fresh insight into the
evolution of brain functional architecture, but also advances our understanding of the
dynamics of spontaneous brain activity.

Keywords: dynamic brain organization, intrinsic functional flexibility, evolution, monkey, anesthesia,
resting-state fMRI
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INTRODUCTION

A fundamental goal of comparative neuroscience is to determine
conservation and evolution-driven changes in functional brain
organization between species. Functional magnetic resonance
imaging (fMRI), a non-invasive technique, has been utilized
to identify functionally homologous or unique areas across
primate species based on specific experimental tasks (Nakahara
et al., 2002; Vanduffel et al., 2002; Wang et al., 2015). This
technique has the advantage of providing a direct cross-species
comparison using a common physiological measurement, i.e.,
blood oxygen level-dependent (BOLD) signal. Owing to ease
of implementation and the robustness of findings, resting-state
fMRI, simply a period of recording of BOLD signal in the absence
of any explicit tasks, has become an attractive tool for studying
large-scale brain functional organization (Zhang and Raichle,
2010; Power et al., 2014). Resting-state functional connectivity
(FC) is typically used to index the interregional coherence in
spontaneous low-frequency fluctuations (e.g., 0.01∼0.1 Hz) of
BOLD signals (Biswal et al., 1995; Fox and Raichle, 2007).
Through this approach, many functional brain networks such
as the sensorimotor and default mode networks have been
identified in both human and non-human primates (Vincent
et al., 2007; Margulies et al., 2009; Hutchison et al., 2011;
Hutchison and Everling, 2012; Mantini et al., 2013; Miranda-
Dominguez et al., 2014; Neubert et al., 2014). In particular,
the patterns of resting-state FC have showed some similarities
across species and appear to transcend levels of consciousness,
being present under anesthesia, see Raichle (2015) for a review.
However, conventional resting-state FC is frequently evaluated
in a time-averaged sense, under the potential assumption of
stationary functional organization. Moreover, the origins and
functional significance of resting-state FC patterns remain to be
further understood.

Recently, emerging studies have emphasized the dynamic
organization of brain function, suggesting that understanding
brain function and dysfunction requires an integrated framework
linking brain connectivity and brain dynamics (Deco et al., 2011;
Liu and Duyn, 2013; Calhoun et al., 2014; Kopell et al., 2014;
Braun et al., 2015; Christoff et al., 2016). Therefore, dynamic
FC analysis, e.g., taking into account the temporal fluctuations
of FC in different time windows of BOLD signals, has been
proposed to characterize spontaneous brain activity (Chang and
Glover, 2010; Zalesky et al., 2014; de Pasquale et al., 2015;
Karahanoglu and Van De Ville, 2015; Chen et al., 2016). Although
a number of challenges in techniques and interpretation remain,
time-resolved analysis allows researchers to extract more in-
depth information about brain function than static FC analysis
(Jia et al., 2014; Keilholz et al., 2017; Liegeois et al., 2017;
Preti et al., 2017).

Developing new analytic tools to describe spatiotemporal
characteristics of resting-state FC patterns across species and
states may provide deeper insight into functional organization of
spontaneous brain activity. Based on dynamic FC analysis and
clustering method, many discrete, reproducible functional states
over the time of scan have been identified in both humans and
monkeys (Allen et al., 2014; Barttfeld et al., 2015), see Hutchison

et al. (2013a); Calhoun et al. (2014) for reviews. In contrast,
our recent work (Yin et al., 2016) focused on quantifying the
flexibility of the connectivity pattern for each brain region over
time, using a complexity measurement (i.e., Shannon entropy)
and probabilistic model. Consistent with task-induced functional
reconfigurations (Cole et al., 2013; Braun et al., 2015), we
revealed the heterogeneous organization of functional flexibility
in the resting human brain. However, it is unknown whether
this organizational principle is preserved in the anesthetized
monkey brain, and how it corresponds with the human brain
during wakeful rest. Although the spatiotemporal dynamics of
brain activity have been demonstrated in the anesthetic state
(Hutchison et al., 2013b; Barttfeld et al., 2015; Zhang et al., 2018),
few studies pay attention to the cross-species correspondence
of brain-wide dynamic organizational structure. Moreover,
how anesthesia affects dynamic and static measurements of
spontaneous brain activity still needs to be clarified.

To investigate these issues, we collected resting-state fMRI
datasets from 178 awake humans and 11 anesthetized monkeys
(healthy subjects). Our recently established method (Yin et al.,
2016), a complexity measurement (i.e., Shannon entropy) of
dynamic FC patterns of each brain region, was used to map the
intrinsic functional flexibility across the cerebral cortex. Brain
regions with high entropy for the distribution of dynamic FC
patterns indicate high functional flexibility, and vice versa. For
comparison, we conducted another complexity measurement
based on distribution of correlation values, which reflects the
functional complexity of a system (Zhao et al., 2010; Zamora-
Lopez et al., 2016). A temporal variability analysis as a measure
of functional flexibility was also carried out (Mueller et al.,
2013; Zhang et al., 2016). To further explore the potential effects
of anesthesia on the functional organization of spontaneous
brain activity, we performed time series analysis and correlation
analysis between dynamic and static measurements within
awake human and anesthetized monkey brains, respectively. We
hypothesized that the heterogeneous organization of intrinsic
functional flexibility in the awake human brain persists in the
anesthetized monkey brain.

MATERIALS AND METHODS

Participants
All experimental procedures for non-human primate research
in this study were approved by the Institutional Animal Care
and Use Committee at the Institute of Neuroscience and the
Biomedical Research Ethics Committee, Shanghai Institutes
for Biological Sciences, Chinese Academy of Sciences, and
conformed to National Institutes of Health guidelines for the
humane care and use of laboratory animals.

We recruited 11 wild-type monkeys (age 4.68 ± 0.46 years;
weight 3.97 ± 1.36 kg; 7 female). In addition, 178 healthy
human subjects (age 14.4 ± 3.6 years; 44 female; 35 subjects
with eyes closed and 143 subjects with eyes open) were collected
from the Autism Brain Imaging Data Exchange (ABIDE)1. We

1http://fcon_1000.projects.nitrc.org/indi/abide/
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screened the human data based on demographic and diagnostic
information provided in the ABIDE database (Di Martino et al.,
2014). The inclusion criteria in the present study are briefly
described as follows: (1) right-handedness, (2) age between 7
and 22 years, (3) a full-scale IQ score greater than 70; and time
resolution of fMRI data equal to 2 s (datasets from four sites fit
this criterion, including NYU, YALE, TRINITY, and UM).

Monkey Data Acquisition
Magnetic resonance imaging images of monkeys were acquired
at the Institute of Neuroscience on a 3T whole-body scanner
(Trio; Siemens Healthcare, Erlangen, Germany) running with
an enhanced gradient coil insert (AC88; 80 mT/m maximum
gradient strength, 800 mT/m/s maximum slew rate). A custom-
built 8-channel phased-array transceiver coil was used for
animal imaging sessions. Whole-brain resting-state fMRI data
were collected using a gradient-echo echo-planar imaging (EPI)
sequence (TR = 2000 ms; TE = 29 ms; flip angle = 77◦;
slices = 32; matrix = 64 × 64; field of view = 96 mm × 96 mm;
1.5 mm × 1.5 mm in plane resolution; slice thickness = 2.5 mm;
GRAPPA factor = 2). For each session, 5–10 runs were acquired
and each run consisted of 200 functional volumes. A pair of
gradient echo images (echo time: 4.22 and 6.68 ms) with the
same orientation and resolution as EPI images were acquired
to generate a field map for distortion correction of EPI images.
High-resolution T1-weighted anatomical images were acquired
using a MPRAGE sequence (TR = 2500 ms; TE = 3.12 ms;
inversion time = 1100 ms; flip angle = 9◦; acquisition voxel
size = 0.5 mm× 0.5 mm× 0.5 mm; 144 sagittal slices). Six whole-
brain anatomical volumes were acquired and further averaged for
better brain segmentation.

For MRI scanning, animals were prepared and maintained
in a stable brain state under light anesthesia. The animal
preparation procedure was conducted in a manner similar to
our previous work (Wang et al., 2013; Lv et al., 2016). Induction
of anesthesia was achieved by intramuscular injection with
ketamine (10 mg/kg, Gutian Pharma Co., Ltd., China) before
MRI scanning sessions, supplemented with atropine sulfate
(0.05 mg/kg, Shanghai Harvest Pharma Co., Ltd., China) to
decrease bronchial and salivary secretions. After intubation,
animals were ventilated with a mixture of isoflurane (2–2.5%,
Lunan Pharma Co., Ltd., China) and oxygen via either a standard
ventilator (CWE, Inc., Ardmore, PA, United States) outside
the scanner room or an MRI-compatible ventilator (CWE Inc.,
Weston, WI, United States) inside the scanner room. Macaques
were maintained with intermittent positive-pressure ventilation
to ensure a constant respiration rate (25–35 breaths/min).
The concentration of isoflurane was adjusted based on
continuously monitored vital signs, including blood oxygenation,
electrocardiogram (ECG), rectal temperature (Small Animal
Instruments, Inc., Stony Brook, NY, United States), respiration
rate and end-tidal CO2 (Smiths Medical ASD Inc., Dublin, OH,
United States). Oxygen saturation was kept over 95% and body
temperature was kept constant using a heated water blanket
(Gaymar Industries Inc., Orchard Park, NY, United States).
Lactated Ringer’s solution was given with a maximum rate of
10 ml/kg/h during the anesthesia process (Logothetis et al.,

1999). We removed the runs that showed erratic vital signs,
image artifacts, as well as burst suppression according to the
recordings of MRI-compatible electroencephalograph (Brain
Products GmbH, Gilching, Germany) during functional data
acquisition. In total, 99 runs were left for the final analyses.
We treated each run independently following previous studies
(Barttfeld et al., 2015; Lv et al., 2016).

Human Data Acquisition
Human MRI data were acquired from multiple sites with different
parameters of pulse sequences (see text footnote 1). In the present
study, one of the inclusion criteria was a time resolution of fMRI
data equal to 2 s, to match the monkey data. In addition, we kept
the same number of time points (i.e., 150 brain volumes) used
across different sites.

Preprocessing of Monkey and Human
fMRI Data
Functional brain images of monkey and human were
preprocessed using the same steps, including slice timing
correction, motion correction, coregistration with individual T1-
weighted image, normalization to the corresponding standard
space, resampling and spatial smoothing, regression of nuisance
signals, removal of linear drift, and temporal filtering.

Specifically, the preprocessing of the monkey data were
done using the SPM 8.0 toolbox2 and the FMRIB Software
Library toolbox (FSL3). The first 10 volumes were discarded.
The field map images of each participant were then applied to
compensate for the geometric distortion of EPI images caused
by magnetic field inhomogeneity using FSL FUGUE. After slice
timing correction and motion correction, the corrected images
were normalized to standard space of the monkey F99 atlas4

using an optimum 12-parameter affine transformation and non-
linear deformations, and then resampled to 2-mm cubic voxels
and spatially smoothed with a 4 mm full-width at half-maximum
isotropic Gaussian kernel. Six head motion parameters, ventricle,
and white matter signals were removed from the smoothed
volumes using linear regression. Linear drift of the volumes was
removed and temporal filtering (0.0025–0.05 Hz) (Vincent et al.,
2007; Barttfeld et al., 2015; Lv et al., 2016) was performed.

The preprocessing of human data was performed by
the Preprocessed Connectomes Project (PCP5) using
the Data Processing Assistant for Resting-State fMRI
(DPARSF) Toolbox (Yan and Zang, 2010). Preprocessing
steps included slice timing correction, motion correction,
spatial normalization into MNI space, resampled to
3 mm × 3 mm × 3 mm voxels and smoothing with a
Gaussian kernel (full-width at half-maximum = 6 mm).
Friston-24 parameters of head motion, white matter and
ventricle signals were regressed out, followed by linear
drift correction and temporal filtering (0.01–0.1 Hz).

2http://www.fil.ion.ucl.ac.uk/spm
3http://www.fmrib.ox.ac.uk
4http://sumsdb.wustl.edu/sums/macaque more.do
5http://preprocessed-connectomes-project.org/abide/index.html
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For more details, readers may refer to the description
in the PCP6.

Static and Dynamic FC Analysis
For both preprocessed monkey and human datasets, we first
divided the brain into different areas. For a direct cross-
species comparison, here we adopted a regional map (RM)

6http://preprocessed-connectomes-project.org/abide/dparsf.html

TABLE 1 | Brain parcellation of regional map.

Label Abbreviation Full name

1/2 TCpol Temporal polar cortex

3/4 Amyg Amygdala

5/6 PHC Parahippocampal cortex

7/8 TCi Inferior temporal cortex

9/10 TCv Ventral temporal cortex

11/12 HC Hippocampal cortex

13/14 TCc Central temporal cortex

15/16 TCs Superior temporal cortex

17/18 VACv Anterior visual cortex, ventral part

19/20 V1 Primary visual cortex

21/22 PFCoi Orbital inferior prefrontal cortex

23/24 V2 Secondary visual cortex

25/26 PFCom Orbitomedial prefrontal cortex

27/28 Ia Anterior insula

29/30 Ip Posterior insula

31/32 CCs Subgenual cingulate cortex

33/34 PMCvl Ventrolateral premotor cortex

35/36 CCp Posterior cingulate cortex

37/38 CCr Retrosplenial cingulate cortex

39/40 G Gustatory cortex

41/42 PFCol Orbitolateral prefrontal cortex

43/44 A2 Secondary auditory cortex

45/46 PFCvl Ventrolateral prefrontal cortex

47/48 A1 Primary auditory cortex

49/50 VACd Anterior visual cortex, dorsal part

51/52 S2 Secondary somatosensory cortex

53/54 PFCpol Prefrontal pole cortex

55/56 S1 Primary somatosensory cortex

57/58 PFCm Medial prefrontal cortex

59/60 PCm Medial parietal cortex

61/62 M1 Primary motor cortex

63/64 FEF Frontal eye field

65/66 CCa Anterior cingulate cortex

67/68 PFCcl Centrolateral prefrontal cortex

69/70 PCip Intraparietal cortex

71/72 PCi Inferior parietal cortex

73/74 PCs Superior parietal cortex

75/76 PFCdm Dorsomedial prefrontal cortex

77/78 PFCdl Dorsolateral prefrontal cortex

79/80 PMCdl Dorsolateral premotor cortex

81/82 PMCm Medial premotor cortex

Odd numbers denote regions in the left hemisphere, and even numbers denote
regions in right hemisphere.

parcellation (82 cortical regions) for both monkeys and humans
(Table 1), which is based on a combination of microstructural,
functional, and topographic features (Kotter and Wanke, 2005;
Bezgin et al., 2012; Reid et al., 2016). This parcellation has
the same terminology for the monkey and human brains, but
the topographic assignments originate from the monkey cortex.
Pearson’s correlation coefficients between the mean time courses
of any pair of regions over the whole scan were then calculated to
represent static FC, resulting in an 82 × 82 connectivity matrix.
Finally, Fisher’s Z-transformation was applied to the connectivity
matrix so that their distributions could better satisfy normality.

To calculate dynamic FC, we applied a commonly used sliding
window approach following our previous study (Yin et al., 2016).
Briefly, a tapered window was selected and slid 1 TR, resulting
in 168 windows for monkeys and 123 windows for humans. For
each time window, Pearson’s correlation coefficients between the
mean time courses of any pair of regions were calculated and then
a symmetric 82 × 82 connectivity matrix was generated. Thus,
dynamic FC matrices were obtained for each participant.

Mapping Intrinsic Functional Flexibility of
Brain
Based on the dynamic FC matrices of each participant, we
computed the normalized probability distribution Pi (j. . .n) for
a given brain region i as follows:

Pi (j) =
n(cij)

k × w
, j = 1, 2, . . . ,N, and j 6= i

where n(cij) denotes how many times the connection between
i and j emerged across temporal windows, k is a predefined
threshold indicating number of the strongest connections
reserved for region i at each time window, and w denotes the
number of temporal windows. Pi(j) denotes the probability of
occurrence for the connection between regions i and j across
all temporal windows. The greater the value of Pi(j), the more
frequent the interaction between region i and j across the
temporal windows, and vice versa.

Regarding the threshold k, we have justified the choice of k
for the human dataset in our previous study (Yin et al., 2016)
as follows. Taking into account that brain is organized as a
sparse and economical functional network, we first considered
a wide range of k from 1 to 10. We then calculated the
entropy (see definition below) for all brain regions for each k.
Subsequently, two parameters were calculated, including contrast
(identifying the value of k most sensitive to differences in
entropy across the whole brain) and consistency (identify the
value of k where the resulting entropy distribution is most
representative of the distributions at other thresholds). We finally
summed the two metrics, contrast and consistency, at each
threshold k, and the peak value of this total was considered as
corresponding to the optimal threshold (a peak value emerges
at k = 3 for human dataset). Considering that the optimal
threshold k may be different for different states or species, we
conducted the above analysis for the anesthetized monkeys in
this study. We found that the peak value also emerges at k = 3,
although the maximum value was at k = 1 for the anesthetized
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monkeys (Supplementary Figure S1). We therefore used the
same threshold k = 3 for both humans and monkeys.

Subsequently, Shannon entropy Ei was applied to the
probability distribution of each brain region i:

Ei = −

N∑
j=1

Pi
(
j
)
× log2 Pi

(
j
)
,

Here, Ei was used to quantify functional flexibility, which
characterizes heterogeneous connectivity between region i and
others over time. A higher value of Ei indicates greater functional
flexibility, and vice versa. Readers can see our previous study for
details regarding methodology (Yin et al., 2016).

Mapping Intrinsic Functional Complexity
of Brain
The measure of functional complexity based on the distribution
of whole-brain correlation values (for static network) without
the need for thresholding has been proposed in earlier work
(Zhao et al., 2010; Zamora-Lopez et al., 2016). Inspired by this,
we calculated complexity Ci for the distribution of correlation
values rij (for dynamical FC) of a node i. Here, we chose to define
complexity as the difference between the observed distribution
p(rij) and the uniform distribution, which is most robust to
variations in the number of bins compared with alternatives such
as entropy (Zamora-Lopez et al., 2016). The formula is as follows:

Ci = 1−
1
Cm

m∑
u=1

∣∣∣∣pu (rij
)
−

1
m

∣∣∣∣ ,
where || means the absolute value, Cm = 2∗(m-1)/m, and m
indicates number of bins (here using 50 bins). The Ci reflects
functional complexity of a node i.

Mapping Intrinsic Temporal Variability of
Brain
A recent study (Zhang et al., 2016) used temporal variability
analysis to characterize dynamic functional reconfiguration of
each brain region, which can be expressed as follows.

Vi = 1− E
[
corrcoef

(
Fi,j, Fi,k

)]
, j, k = 1, 2, 3,. . .w

where E[ ] denotes mean value, Fi,j indicates FC profile of node
i at time window j and w denotes number of temporal windows.
This linear measure does not need a threshold for FC values and
is indicative of functional flexibility.

Time Series Analysis of Brain Activity
To evaluate fluctuations of brain activity, we performed a time
series analysis. For the time series of each brain region, we first
calculated the distribution of the BOLD signal values with m
bins (here using 30 bins). Then, we used entropy to quantify
the randomness of fluctuations of brain activity. The higher the
entropy of time series, the more random the fluctuations of
brain activity. To further test the statistical significance of the
randomness, we finally compared real entropy and entropies of
1000 random time series with the same number of time points

and number of bins, and a Z-score was obtained using the
following formula.

Z =
Hreal − E [Hrand]

std (Hrand)
,

where Hreal denotes entropy of the observed time series, Hrand
denotes entropy of the random time series, and E[] indicates
mean value. If the Z-score approaches zero (theoretically Z-score
≤0), the fluctuations of brain activity tend to be random.

Coupling Between Dynamic and Static
Measurements of Spontaneous Brain
Activity
To explore the potential effects of anesthesia, we calculated
correlations between dynamic measurement (nodal entropy
E, complexity C, and temporal variability V) and static
measurement (nodal strength, i.e., sum of nodal static FC) within
anesthetized monkey and awake human brains, respectively.

Validation Analysis
To validate our results, we considered the effects of different
data processing on interspecies comparisons. Following previous
studies (Vincent et al., 2007; Barttfeld et al., 2015; Lv et al.,
2016), we used temporal filtering (0.0025–0.05 Hz) for monkeys,
which is different from that commonly used for humans (0.01–
0.1 Hz). To test the effect of different temporal filtering, we
first compared the brain map of entropy E, complexity C,
and temporal variability V between different temporal filters in
monkeys. We then performed interspecies comparisons using the
same temporal filtering (i.e., 0.01–0.1 Hz).

In our main analyses, we used a different number of time
points for monkey (n = 190) and human (n = 145) datasets. To
test the effect of a different number of time points, we performed
the interspecies comparisons using the same number of time
points (n = 145).

In the human subject sample, there are 35 subjects with eyes
closed and 143 subjects with eyes open. To consider the effect
of eye status, we first compared the brain map of entropy E,
complexity C, and temporal variability V between the two human
subgroups with different eye status. We then performed the
interspecies comparisons for both anesthetized monkeys versus
human subjects with eyes closed and anesthetized monkeys
versus human subjects with eyes open.

RESULTS

Static FC Patterns in Anesthetized
Monkey and Awake Human Brains
We calculated static, time-averaged FC for both human and
monkey datasets. We found that the FC in anesthetized monkeys
(mean ± SD = 0.25 ± 0.16) was generally weaker than in
awake humans (mean ± SD = 0.44 ± 0.13) (effect size:
Cohen’s d = −1.3). However, FC between anesthetized monkeys
and awake humans was significantly correlated (r = 0.60,
p < 0.00001) (Figure 1).
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FIGURE 1 | Mean static functional connectivity matrices for anesthetized monkeys (A) and awake humans (B); panel (C) shows distributions of static functional
connectivity for anesthetized monkeys (red) and awake humans (blue); and (D) exhibits correlation of static functional connectivity between anesthetized monkeys
and awake humans. Color bar denotes Pearson correlation coefficients.

FIGURE 2 | Brain maps of mean entropy for the distribution of dynamic functional connectivity patterns (A,B), complexity for the distribution of correlation values
(C,D), and variability for the dynamic functional connectivity patterns (E,F) for anesthetized monkeys and awake humans. Color bars denote mean values.
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Similarity of Intrinsic Functional
Flexibility Between Anesthetized Monkey
and Awake Human Brains
For the anesthetized monkeys, we found that the brain
regions with higher entropy E mainly involved the lateral
prefrontal cortex, anterior insula, and medial temporal
lobe. The brain regions that showed lower entropy
E included primary sensory areas (e.g., auditory and
somatosensory regions) and midline default mode regions
(e.g., posterior cingulate cortex/retrosplenial cingulate
cortex) (Figure 2A).

For the awake humans, we observed that brain regions
that showed higher entropy E mainly involved the
lateral prefrontal, parietal, and temporal cortex, anterior
insula, as well as supplementary motor area. The brain
regions that showed lower entropy E included primary
sensory areas (e.g., auditory, visual, and somatosensory
regions) and midline default mode regions (e.g.,
posterior cingulate cortex/retrosplenial cingulate cortex)
(Figure 2B). This result is consistent with our previous
study (Yin et al., 2016), despite the use of different brain
parcellation and dataset.

Quantitatively, we found a significant correlation of brain-
wide entropy E between anesthetized monkeys and awake
humans (r = 0.30, p = 0.007) (Figure 3A), although averaged
entropy E across the whole brain of anesthetized monkeys
(mean ± SD = 5.18 ± 0.18) was higher than that of
awake humans (mean ± SD = 4.27 ± 0.41) (effect size:
Cohen’s d = 2.9) (Figure 3B). These findings indicate that the
heterogeneous flexibility across brain regions is preserved in
anesthetized monkeys. However, there are some inconsistencies.
For example, the primary visual cortex showed relatively
higher entropy E in the anesthetized monkeys, and relatively
lower entropy E in the awake humans. In contrast, the
inferior parietal cortex exhibited relatively lower entropy
E in the anesthetized monkeys, but higher in the awake
humans. By comparing brain regions with top 30% and
bottom 30% entropy E values in anesthetized monkeys and
awake humans, we found that overlapping regions with higher
entropy E between species included the left dorsolateral
prefrontal cortex, left frontal eye field, left orbitolateral
prefrontal cortex, bilateral anterior insula, bilateral orbital
inferior prefrontal cortex, bilateral hippocampus, and bilateral
parahippocampal cortex (Figure 4A); and that overlapping
regions with lower entropy E between species included
the bilateral posterior cingulate cortex, bilateral retrosplenial
cingulate cortex, left primary auditory cortex, left secondary
auditory cortex, right anterior visual area, bilateral secondary
somatosensory cortex, bilateral medial parietal cortex, and right
posterior insula (Figure 4B).

Comparison of Functional Complexity
Measurement With Our Method
We found that overall complexity C was higher in awake
humans compared with anesthetized monkeys, and the
correlation of brain-wide complexity C between anesthetized

monkeys and awake humans was similar with that obtained
using our method (Figures 2C,D, 3C,D). However, few of
the well-known flexible cognitive control regions such as
lateral prefrontal cortex, anterior insula, and hippocampal
cortex showed higher complexity C in anesthetized monkeys
(Figure 4C). Instead, we observed unimodal regions such
as secondary somatosensory cortex, auditory cortex, and
visual cortex showed higher complexity C (Figure 4D). It
is possible that this complexity measurement C based on
the distribution of correlation values is not suitable for
quantifying the heterogeneous functional flexibility of the
brain, although it can better assess the functional complexity
of the system at different states. For instance, we found
the hippocampal cortex exhibited narrower distribution of
correlation values (lower complexity) than that of secondary
somatosensory cortex in both anesthetized monkeys and awake
humans, whereas the time-varying strongest connections of
hippocampal cortex was more uniform (higher flexibility)
across the whole brain than that of secondary somatosensory
cortex (Figure 5).

Additionally, we found right inferior parietal cortex showed
higher complexity C and primary visual cortex showed lower
complexity C in both anesthetized monkeys and awake
humans (Figures 4C,D). However, we observed that the
strongest connections of primary visual cortex were local and
stereotyped in awake humans while distributed and variable
across brain in anesthetized monkeys. Moreover, we found
inferior parietal cortex more frequently connected with local
brain regions in parietal, temporal, and visual cortices in
monkeys while more frequently connected with broad brain
regions in parietal, temporal, and frontal cortices in humans
(Figure 6).

Comparison of Time Variability
Measurement With Our Method
We found the results obtained by temporal variability
measurement V were highly consistent with that using
our method, but not complexity measurement C based on
distribution of correlation values (Figures 2E,F, 3E,F, 4E,F).
This suggests that information of spatial connectivity patterns
is more important than distribution of correlation values for
describing functional flexibility, even with k (= 3) strongest
connections at each time window.

Time Series Analysis of Brain Activity
We found the entropy H of time series to be globally higher
in anesthetized monkeys compared with awake humans. In
particular, we observed that the primary visual cortex showed the
highest entropy H in anesthetized monkeys. However, entropy
H of time series for all brain regions were remarkably lower
than that of random time series in both anesthetized monkeys
and awake humans (Figure 7). This result suggests that brain
activity in anesthetized monkeys generally shifts toward the
random fluctuations, but still differs from random fluctuations.
In addition, the effect of anesthesia on fluctuations of brain
activity is probably non-uniform across brain.
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FIGURE 3 | Correlations of mean entropy for the distribution of dynamic functional connectivity patterns (A), complexity for the distribution of correlation values (C),
and variability for the dynamic functional connectivity patterns (E) between anesthetized monkeys and awake humans. The distribution of mean entropy (B),
complexity (D), and variability (F) is also shown for anesthetized monkeys and awake humans.

FIGURE 4 | Overlapped brain regions for top 30% entropy values for the distribution of dynamic functional connectivity patterns (A), complexity values for the
distribution of correlation values (C), and variability values for the dynamic functional connectivity patterns (E) and bottom 30% entropy values for the distribution of
dynamic functional connectivity patterns (B), complexity values for the distribution of correlation values (D), and variability values for the dynamic functional
connectivity patterns (F) between anesthetized monkeys and awake humans. PFCdl, dorsolateral prefrontal cortex; FEF, frontal eye field; PFCol, orbitolateral
prefrontal cortex; Ia, anterior insula; HC, hippocampus; PHC, parahippocampal cortex; CCr, retrosplenial cingulate cortex; A1, primary auditory cortex; A2,
secondary auditory cortex; VACd, anterior visual area; S2, secondary somatosensory cortex; PCm, medial parietal cortex; Ip, posterior insula; PMCvl, ventrolateral
premotor cortex; PCi, inferior parietal cortex; PMCdl, dorsolateral premotor cortex; VACv, anterior visual cortex (ventral part); Amyg, amygdala; V1, primary visual
cortex; V2, secondary visual cortex; CCs, subgenual cingulate cortex; TCpol, temporal polar cortex; and S1, primary somatosensory cortex.
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FIGURE 5 | (A) Shows the distribution of correlation values for right HC and S2 in both anesthetized monkeys and awake humans. The distribution of correlation
values of right HC is narrower (lower complexity) than that of right S2 in both monkeys and humans. (B) Shows the probability distribution of strongest connectivity
with right HC and S2 in monkeys and humans. The distribution of strongest connectivity with right HC is more uniform (higher flexibility) across brain than that of right
S2 in both monkeys and humans. The most frequent connections with right HC and S2 are rendered in C. The patterns of most frequent connections are similar
between species for both right HC and S2. HC, hippocampal cortex and S2, secondary somatosensory cortex.
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FIGURE 6 | (A) Shows the distribution of correlation values for left V1 and PCi in both anesthetized monkeys and awake humans. The distribution of correlation
values of left V1 is narrower (lower complexity) than that of left PCi in both monkeys and humans. (B) Shows probability distribution of strongest connectivity with left
V1 and PCi in monkeys and humans. The distribution of strongest connectivity with left PCi is more uniform (higher flexibility) across brain than that of left V1 in
humans, which the opposite is seen in monkeys. The most frequent connections with left V1 and PCi are rendered in C. The patterns of most frequent connections
are different between species for both left V1 and PCi. V1, primary visual cortex and PCi, inferior parietal cortex.
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FIGURE 7 | Brain map of mean entropy of time series for anesthetized monkeys (A) and awake humans (B). Brain map of mean Z-scores for entropy of time series
are also shown for monkeys (C) and humans (D). (E) Shows global mean entropy of time series for monkeys and humans. Color bars denote mean values.

Distinct Relationships Between Dynamic
and Static Measurements Within Awake
Human and Anesthetized Monkey Brains
To explore the impacts of anesthesia, we calculated correlations
between dynamic measurement and static measurement in awake
humans and anesthetized monkeys, respectively. We found a
negative correlation (r = −0.47, p = 0.00001) between nodal
entropy E and strength in anesthetized monkeys, but not in
awake humans (r = −0.19, p = 0.085). In contrast, we found
a positive correlation (r = 0.69, p < 0.00001) between nodal
complexity C and strength in anesthetized monkeys, but not
in awake humans (r = −0.14, p = 0.22). Consistent with
our method, we found a negative correlation (r = −0.68,
p < 0.00001) between nodal temporal variability V and strength
in anesthetized monkeys, but not in awake humans (r = −0.19,
p = 0.089) (Figure 8).

Validation Analysis
Regarding the effect of temporal filtering, we found significant
correlations between two different temporal filters in monkeys
for entropy E (r = 0.97, p < 0.00001), complexity C
(r = 0.73, p < 0.00001), and variability V (r = 0.96,
p < 0.00001) (Supplementary Figure S2). Moreover, we
consistently observed significant correlations between species
for entropy E (r = 0.26, p = 0.02), complexity C (r = 0.30,
p = 0.007), and variability V (r = 0.37, p = 0.0007) with the
same time filtering (Supplementary Figure S3). However, the
interspecies correlations based on the same temporal filtering
were a little weaker than when using different temporal filtering
for entropy E and variability V, but the same for complexity
C. This result indicates that different temporal filtering
for monkeys and humans may give better correspondence
between species.

For the effect of different number of time points, we
consistently observed significant correlations between species for
entropy E (r = 0.28, p = 0.01), complexity C (r = 0.30, p = 0.005),
and variability V (r = 0.44, p = 0.00003) with the same number
of time points (Supplementary Figure S4). This result suggests
that the different number of time points used for monkeys and
humans did not significantly affect correlations between species.

For the effect of eye status, we found significant correlations
between the two human subgroups for entropy E (r = 0.96,
p < 0.00001), complexity C (r = 0.75, p < 0.00001), and
variability V (r = 0.91, p < 0.00001) with different eye status
(Supplementary Figure S5). For the interspecies comparisons,
we found the correlations were similar for the two conditions
of human subjects with different eye status (Supplementary
Figure S6). This result suggests that our main findings are not
significantly affected by eye status of human subjects during
resting-state fMRI scanning. Specifically, we observed that the
visual cortex showed lowest entropy E in the human subjects for
both closed and open eyes. This further implies that eye status
does not change the rank of functional flexibility of visual cortex
in the brain. In the anesthetized monkeys, the primary visual
cortex showed relatively high entropy E. This is probably because
anesthesia causes brain activity in primary visual cortex to shift
much more toward random fluctuations.

DISCUSSION

Although resting-state connectivity networks have been used
for decades to probe functional brain organization (Deco
et al., 2011; Raichle, 2015; Bassett and Sporns, 2017), the
origins and functional significance of resting-state connectivity
patterns require further understanding. In a recent study, we
were able to characterize the heterogeneous architecture of
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FIGURE 8 | Correlations between dynamic measurement (nodal mean entropy for the distribution of dynamic functional connectivity patterns, complexity for the
distribution of correlation values, and variability for the dynamic functional connectivity patterns) and static measurement (nodal mean FC strength) in awake humans
and anesthetized monkeys.

intrinsic functional flexibility in the awake, resting human brain
using dynamic FC analysis and a probabilistic model (Yin
et al., 2016). To further understand functional organization
of spontaneous brain activity, in this study, we performed an
interspecies comparison of intrinsic functional flexibility between
anesthetized monkeys and awake humans.

For reference, we compared conventional, static FC patterns
between anesthetized monkeys and awake humans. We found
that functional coupling between brain regions in anesthetized
monkeys was generally weaker than in awake humans; however,
brain-wide connectivity patterns were correlated between
species. Previous studies showed that patterns of static FC, such as

the default mode network, persist even after loss of consciousness
in rodents (Liang et al., 2012; Lu et al., 2012) and primates
(Vincent et al., 2007; Hutchison et al., 2011; Hutchison and
Everling, 2012). In contrast, other studies suggested a breakdown
of both within- and between-network resting-state connectivity
in the anesthetized state (Boveroux et al., 2010; Stamatakis
et al., 2010) and deep sleep state (Tagliazucchi et al., 2013).
These studies raised two hypotheses about the origins of resting-
state FC patterns: reflecting a continuous stream of ongoing
cognitive process and random fluctuations constrained by a
stable anatomical skeleton (Vincent et al., 2007; Honey et al.,
2009; Barttfeld et al., 2015; Raichle, 2015). It is possible that
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persisting static FC patterns during anesthesia can be attributed
to anatomical constraints (Vincent et al., 2007; Deco et al.,
2013). On the other hand, consciousness is probably indexed
by global integration with strong couplings between long-range
brain regions (Alkire et al., 2008).

For our dynamic analysis, we found that the brain regions
that showed higher entropy E in both anesthetized monkeys
and awake humans mainly involved the higher-order association
cortex such as the lateral prefrontal cortex, and regions that
showed lower entropy E included primary sensory areas and
midline default mode regions. This result is consistent with the
flexible hub theory: the FC patterns of frontoparietal regions shift
more than those of other regions across a variety of task states
(Cole et al., 2013). A previous study focusing on the temporal
dynamics of resting-state functional networks suggested that
wakefulness is characterized by the dynamical exploration of a
richer repertoire of functional configurations or states (Barttfeld
et al., 2015). Moreover, individuals with brain networks showing
greater dynamics perform more favorably in behavioral tasks
(Jia et al., 2014). Through comparing anesthetized monkeys with
awake humans, Hutchison and his colleagues demonstrated that
the temporal dynamics of resting-state FC are also an intrinsic
property of brain organization and not simply a consequence
of conscious or cognitive processing (Hutchison et al., 2013b).
Moreover, there is accumulating evidence that many cognitive
processes can occur in the absence of awareness (MacDonald
et al., 2015). We have demonstrated that brain regions showing
higher entropy E may represent a more flexible exploration
of functional configurations, even under anesthesia. Expanding
upon previous studies (Cole et al., 2013; Yin et al., 2016; Zhang
et al., 2016), this study reveals that heterogeneous functional
flexibility across the cortex is evolutionarily conserved and
persists across brain states.

Although there is significant correlation of brain-wide entropy
E between anesthetized monkeys and awake humans, the whole-
brain average entropy E is remarkably higher in the anesthetized
monkeys. Barttfeld et al. study indicated that anesthesia may lead
to a stable brain state that is more similar to the structure, in
which time series of brain activity resemble random fluctuations
shaped by fixed anatomical connectivity (Barttfeld et al., 2015).
Using dynamical systems modeling, a previous study further
suggested that low coupling strength between brain regions can
coexist with a single stable spontaneous connectivity pattern
(Deco et al., 2013). Because it becomes the only available attractor,
the sedated brain cannot depart from it and remains confined
to a semirandom exploration of the valley surrounding it, thus
simultaneously exhibiting interregional correlations along with
fixed anatomical connectivity and a memoryless trajectory (Deco
et al., 2013; Barttfeld et al., 2015). Consistently, through time
series analysis, we found that brain activity in anesthetized
monkeys generally shifted toward random fluctuations, but it
was still different from random fluctuations. We speculate that
the general increase in entropy E and decrease in static FC
strength in the anesthetized monkey brain is likely attributable
to anesthesia-induced random fluctuations of brain activity.

Notably, previous electrophysiological studies have suggested
that brain neuronal activity is dominant with slow oscillations

under anesthetic states as well as during deep sleep state (Isomura
et al., 2006; Alkire et al., 2008; Ni Mhuircheartaigh et al., 2013).
A remarkable feature of slow oscillation is the synchrony over
large cortical areas (Achermann and Borbely, 1997; Destexhe
et al., 1999). Breshears et al. (2010) have demonstrated that
stable functional architecture and dynamic neural activity are
concurrent during induction of anesthesia. It is possible that
the stable functional architecture, i.e., large-scale functional
networks frequently observed even in anesthesia (Vincent
et al., 2007; Hutchison and Everling, 2012), is result from
synchrony induced by slow oscillation. Regarding dynamics of
brain activity, a breakdown of long-range temporal correlations
was observed in BOLD signals during both anesthesia and
deep sleep states, suggesting that the dynamics of time series
is close to white noise (Tagliazucchi et al., 2013; Barttfeld
et al., 2015). In despite of different temporal scales, the
findings that BOLD signal appears to be more random can
provide a supplement for understanding anesthesia-induced slow
oscillations of electrophysiological activity.

Moreover, previous evidence suggests that the dynamic
complexity of the system under anesthetized state is reduced
(Barttfeld et al., 2015). Accordingly, we found an overall
reduction of functional complexity in anesthetized monkeys
based on a complexity measure C for distribution of correlation
values, but this was not the case for our method and time
variability measurement. This suggests that the complexity
measure C for distribution of correlation values is better
to quantify dynamic complexity of system. In contrast, our
method and time variability measurement are more suitable
for describing functional flexibility, because they enable the
capture of information regarding dynamical spatial connectivity
patterns of a node, while this is not the case for the complexity
measurement based on distribution of correlation values. For
instance, the hippocampal cortex exhibited narrower distribution
of correlation values (lower complexity) than the secondary
somatosensory cortex in both anesthetized monkeys and awake
humans, whereas the time-varying strongest connections of
hippocampal cortex were more uniform (higher flexibility) than
that of secondary somatosensory cortex across the whole brain.
Our findings suggest that combining different methods could
provide more complete information for in-depth understanding
of functional brain organization.

We further found a negative correlation between nodal
entropy E and strength in anesthetized monkeys, but not in
awake humans. Previous simulating and empirical data suggest
that brain dynamics may change from a single stable state
to multi-stable state, as coupling strength between brain areas
increases from the sedated to the conscious condition (Dehaene
and Changeux, 2005; Ghosh et al., 2008; Deco et al., 2011,
2013; Hudetz et al., 2015). In agreement, conscious processing
is supported by global integration with strong coupling between
long-distance brain regions as well as a diversity of cognitive
states (Alkire et al., 2008; Dehaene and Changeux, 2011). Loss of
consciousness due to anesthesia may lack both strong coupling
and a rich repertoire of cognitive states (Barttfeld et al., 2015;
Hudetz et al., 2015). A possible explanation is that the negative
correlation between nodal entropy E and strength (i.e., the
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weaker connectivity strength, the higher entropy E) is primarily
dominated by random fluctuations of brain activity induced by
anesthesia. In contrast, the wakeful condition or conscious access
with dominance of heterogeneous cognitive states may lead to
decoupling between nodal entropy E and strength.

Consistently, we observed no correlation between the
complexity measurement C for distribution of correlation values
and static connectivity strength for the awake humans, but there
was a positive correlation for the anesthetized monkeys. Zamora-
Lopez et al. (2016) reported a reverse U-shaped relationship
between functional complexity and coupling strength, with an
optimal functional organization at the peak complexity. In other
words, the functional complexity increases and then decreases
during the increase of coupling strength. We therefore speculate
that positive correlation between the complexity measurement
C and static connectivity strength in anesthetized monkeys is
attributed to the anesthesia-induced lower coupling strength (at
the left part of reverse U-shape). This result further suggests that
the coupling between dynamic and static measures may serve
as a potential signature of anesthesia, whereas the direction of
correlation is probably dependent on specific metrics.

Although brain-wide correlation exists between species, it
should be noted that there were some divergences in intrinsic
functional flexibility between the anesthetized monkey and awake
human brains. For instance, the primary visual cortex exhibited
relatively high entropy E in the anesthetized monkeys, although
it was low in the awake humans. In contrast, the inferior parietal
cortex showed relatively low entropy E in the anesthetized
monkeys, whereas it was high in the awake humans. A previous
human study indicated that anesthesia preferentially modulates
higher-order connections, but not low-level sensory connections
(Martuzzi et al., 2010). One rodent study also showed that
anesthesia profoundly impacted the dynamic resting-state FC of
neural circuits subserving higher-order functions but had less
effect on sensory systems (Liang et al., 2015). On the other hand, a
study by Hudetz et al. (2015) reported that the largest reduction of
temporal variance of BOLD signals occurred in the visual cortex
and parietal cortex in anesthetized rats. Although conflicting
conclusions were drawn in previous studies, the converging
evidence suggests a non-uniform impact of anesthesia on brain
systems. In anesthetized monkeys, we found brain activity of
primary visual cortex and sensorimotor cortex to be much
more close to random fluctuations. In addition, the strongest
connections of primary visual cortex were local and stereotyped
in awake humans, but distributed and variable across the brain
in anesthetized monkeys. It is possible the much more random
fluctuations may contribute to the difference of functional
flexibility observed in primary visual cortex between species.

Regarding inferior parietal cortex, we found it to be more
frequently connected with local brain regions in parietal,
temporal, and visual cortices in monkeys while more frequently
connected with broad brain regions in parietal, temporal, and
frontal cortices in humans. From an evolutionary perspective,
the inferior parietal cortex in the human brain mainly contains
Brodmann areas 39 and 40, but monkeys do not have a
comparable area (Kotter and Wanke, 2005; Raichle, 2015). We
speculate that the difference of functional flexibility observed

in inferior parietal cortex of monkeys and humans is likely
attributed to evolution. Although evolution may indeed result
in functional reorganization of specific brain regions, it is hard
to separate the contributions of evolution and anesthesia in
the current study. A further study with awake monkeys and
anesthetized humans may help clarify this question.

In addition, there are some limitations to this study. First,
our analysis is based on dynamic FC and is affected by the
general limits of this technique, such as temporal resolution
of fMRI (Hutchison et al., 2013a; Hindriks et al., 2016).
Using simultaneous imaging and electrophysiological recording
is helpful for interpretation of dynamic FC (Keilholz, 2014).
Second, for a direct comparison of brain network between
monkeys and humans, we used a regional map template with
the same cortical partitions. Previous studies have suggested
evolutionary differences in anatomy between monkeys and
humans (Kotter and Wanke, 2005; Raichle, 2015). Our findings
may be potentially affected by the anatomical differences
resulting from primate evolution. Finally, the human data that
was collected from multiple centers with different acquisition
parameters likely contained non-trivial variability across sites
and individuals.

SUMMARY

This study combined dynamical complexity measurements
and static connectivity strength measurement to understand
functional brain organization in anesthetized monkeys and
awake humans. Cross-species comparison suggests that the
heterogeneous brain map of intrinsic functional flexibility
persists during primate evolution and transcends levels of
consciousness, remaining present under anesthesia. Moreover,
the coupling between dynamic and static measurements can
provide a potential signature of loss of consciousness due
to anesthesia. However, each method may capture different
biological information and have its own limitation. Specifically,
our method and temporal variability approach might be more
suitable for describing functional flexibility of a node, whereas
there is a potential flaw in characterizing the changes of
system complexity induced by anesthesia. In contrast, the
complexity measurement based on distribution of correlation
values is better for evaluating functional complexity of systems
with different states or coupling strength, but is probably not
suitable for describing functional flexibility of a node due to
failure in capturing information of spatial connectivity patterns.
Combining different methods could provide more complete
information for in-depth understanding of functional brain
organization. This study not only offers fresh insight into
evolution of functional brain organization, but also advances our
understanding of dynamics of spontaneous brain activity.
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Low image sampling rates used in resting state functional magnetic resonance imaging

(rs-fMRI) may cause aliasing of the cardiorespiratory pulsations over the very low

frequency (VLF) BOLD signal fluctuations which reflects to functional connectivity (FC). In

this study, we examine the effect of sampling rate on currently used rs-fMRI FC metrics.

Ultra-fast fMRI magnetic resonance encephalography (MREG) data, sampled with TR

0.1 s, was downsampled to different subsampled repetition times (sTR, range 0.3–3 s) for

comparisons. Echo planar k-space sampling (TR 2.15 s) and interleaved slice collection

schemes were also compared against the 3D single shot trajectory at 2.2 s sTR. The

quantified connectivity metrics included stationary spatial, time, and frequency domains,

as well as dynamic analyses. Time domain methods included analyses of seed-based

functional connectivity, regional homogeneity (ReHo), coefficient of variation, and spatial

domain group level probabilistic independent component analysis (ICA). In frequency

domain analyses, we examined fractional and amplitude of low frequency fluctuations.

Aliasing effects were spatially and spectrally analyzed by comparing VLF (0.01–0.1Hz),

respiratory (0.12–0.35Hz) and cardiac power (0.9–1.3Hz) FFT maps at different sTRs.

Quasi-periodic pattern (QPP) of VLF events were analyzed for effects on dynamic

FC methods. The results in conventional time and spatial domain analyses remained

virtually unchanged by the different sampling rates. In frequency domain, the aliasing

occurred mainly in higher sTR (1–2 s) where cardiac power aliases over respiratory

power. The VLF power maps suffered minimally from increasing sTRs. Interleaved data

reconstruction induced lower ReHo compared to 3D sampling (p < 0.001). Gradient

recalled echo-planar imaging (EPI BOLD) data produced both better and worse metrics.

In QPP analyses, the repeatability of the VLF pulse detection becomes linearly reduced

with increasing sTR. In conclusion, the conventional resting state metrics (e.g., FC, ICA)

were not markedly affected by different TRs (0.1–3 s). However, cardiorespiratory signals

showed strongest aliasing in central brain regions in sTR 1–2 s. Pulsatile QPP and other

dynamic analyses benefit linearly from short TR scanning.

Keywords: resting state, magnetic resonance encephalography, aliasing, pulsations, quasi-periodic patterns
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INTRODUCTION

In 1995 Biswal and co-workers discovered functional
connectivity (FC) in resting state blood oxygen level dependent
(BOLD) signal of motor cortices by their continuous very
low frequency fluctuations (VLF < 0.1Hz) (Biswal et al.,
1995). Initially, the VLF phenomena were linked to existing

literature on low frequency physiological phenomena like

vasomotor waves (Kiviniemi et al., 2000). The current view is
that spontaneous neuronal activity avalanches synchronize brain

activity in functionally connected areas and become visible in
hemodynamic signals after a delay of few seconds (Liu and Duyn,
2013; Palva et al., 2013; Keilholz, 2014; Ma et al., 2016; Liu et al.,
2018). The spread of such avalanches can be depicted by novel
techniques such as inverse imaging (INI) andmagnetic resonance
encephalography (MREG), that sample functional magnetic
resonance imaging (fMRI) data with short repetition times (TR)
(Lin et al., 2012, 2018; Assländer et al., 2013; Rajna et al., 2015).

In addition to neuronal activity that is coupled to
hemodynamics, the BOLD signal reflects multiple other signal
sources, such as motion, physiological pulsations and technical
artifacts. The physiological factors like cardiorespiratory changes
modulate the BOLD signal and can mask the neuronally driven
VLF activity in resting state BOLD signals (Wise et al., 2004; Birn
et al., 2006). As the BOLD signal reflects blood oxygen level, also
direct effects of the cardiorespiratory pulses themselves can be
detected in fMRI data (Shmueli et al., 2007; Chang and Glover,
2009, 2010).

Previously, the research of cardiorespiratory brain pulsations
has not gained as much interest because they have been deemed
as noise. However, there is increasing evidence showing that
these physiological signals or the “noise” it produces in TR
BOLD data with long TR, can be used to measure disease-
specific changes in patient groups (Makedonov et al., 2013;
Tuovinen et al., 2017). This is strongly supported by the recent
discovery of the glymphatic brain tissue clearance mechanism
where the cardiovascular pulsations have been shown to drive the
glymphatic brain clearance (Iliff et al., 2012; Nedergaard, 2013;
Jessen et al., 2015). The short TR in 3D MREG can critically
sample the spread of cardiovascular ∼1Hz and respiratory
∼0.3Hz pulsations and separate them from VLF (<0.1Hz)
quasi-periodic patterns (QPPs) (Kiviniemi et al., 2016).

The extent to which faster physiological pulsations alias over
VLF BOLD signal, has been a prevailing uncertainty in BOLD
fMRI. Since cardiac frequencies can be faster than 2Hz, especially
in animals and children, the critical sampling rate should be
>4Hz according to the Nyquist theorem, i.e., TR < 0.25 s.
However, most often the fMRI TRs are >0.4 s and therefore the
data cannot critically sample faster cardiac signals (Liu, 2016).
Consequently, aliasing between cardiac and the VLFs occur
and may alter FC metrics. Additionally, the cardiorespiratory
rhythms and their pressure modulations and physiological
autonomic nervous system mediated counter-regulations, local
vasomotor waves induce heart rate variability, which differ
between patients and controls (van der Kooy et al., 2006; Thayer
et al., 2010) causing yet another confounding factor in measures
of FC that may require faster sampling.

Early literature on the sampling rate on FC measures usually
utilizes single slice data that suffers from out of plane motion
and other registration problems (Purdon and Weisskoff, 1998;
Peltier et al., 2003; Kiviniemi et al., 2005). Recent studies on
the fMRI sampling rate effects on resting-state FC has shown
surprisingly small effects (Golestani et al., 2017; Demetriou et al.,
2018). However, that and some other recent studies have usually
been limited to <4Hz sampling rates for whole brain coverage
(Cordes et al., 2014; Liu, 2016; Golestani et al., 2017; Chen et al.,
2019) with different type of signal simulations extending below
the critical 4 Hz limit.

However, more and more critically sampled 3D whole brain
fMRI data has started to emerge, such as 0.136 sec TR VEPI
(Posse et al., 2013), 100ms MREG (Assländer et al., 2013;
Lee et al., 2013; Kiviniemi et al., 2016; Raitamaa et al., 2018),
50ms GIN (Boyacioglu and Barth, 2013) and currently leading
25ms 3D whole brain scan INI (Chang et al., 2013b). This
critically sampled data shows robust novel phenomena of the
human brain physiology, such as propagating cardiorespiratory
pulsations that both interact andmodulate each other, depending
on their anatomical proximity to pulsation sources (Posse et al.,
2013; Kiviniemi et al., 2016; Raitamaa et al., 2018). Based
on our observations, these novel signal changes cannot be
comprehensively simulated due to their complex spatiotemporal
pattern that is dynamically changing.

Therefore, in this study we used real critically sampled
0.1 s TR 3D single shot MREG data to explore how different
sampling rates affect the results of the most commonly used
resting state fMRI analysis tools. The 0.1 s TR MREG signal was
downsampled to higher TRs ranging from 0.3 to 3 s. The use
of subsampled TR (sTR) removes the confounding factors of
imaging different TR values in separate scans and/or individuals,
enabling identical physiological status and technological noise
structure for comparing different sTRs. The single shot 3D
data sampling scheme was further compared with interleaved
slice sampling (INT) variant of the MREG data, and, with
conventional interleaved gradient recalled echo-planar BOLD
imaging (EPI BOLD).

The hypothesis was that the faster sTR produces both spatially
more accurate brain maps and more accurate time series without
aliasing of physiological pulsations. The quantified connectivity
metrics included stationary spatial, time, and frequency domains,
as well as dynamic analyses. In addition, the effects of aliasing
were evaluated.

MATERIALS AND METHODS

Participants
Ten healthy subjects (8 males, 23.8 ± 2.1 years old) were placed
in the MRI scanner and asked to lay still and keep their eyes
open and fixated on a cross on the screen while thinking of
nothing particular (eyes open, resting state). Ear plugs were
used to reduce scanner noise. Cushions were placed beside
ears to restrict movement and to further reduce scanner noise.
MREG (5min) and EPI BOLD (5min) sequences were scanned
in said order. Written informed consent was obtained from
each subject prior to scanning, in accordance with the Helsinki
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declaration. The study protocol was approved by the regional
Ethical committee of Northern Ostrobothnia Hospital District in
Oulu University Hospital.

Data Acquisition and Preprocessing
Subjects were scanned using Siemens 3T SKYRA scanner
with 32-channel head coil. Additional cardiorespiratory data
were collected using MRI-compatible multimodal neuroimaging
system (Korhonen et al., 2014). MREG is a 3D single shot
stack of spirals (SOS) sequence that under-samples k-space
to reach a sampling rate of 10Hz allowing critical imaging
of physiological pulsations (Assländer et al., 2013). The SOS
gathers k-space in 60ms with spiral in/out repeating in every
other turn continuously in positive z-direction to minimize the
air-sinus off-resonance artifact (for more details, c.f. Assländer
et al., 2013). The point spread function of the SOS-sequence
is 3mm with minimized off-resonance effects compared to
other k-space undersampling strategies like concentric shells
and spokes (Zahneisen et al., 2012; Assländer et al., 2013).
Scanning parameters (TR=100ms, TE=36ms, flip angle=5◦,
3D matrix=643, FOV=192mm) enabled scanning of the whole
brain in 10Hz with voxel size of 3 × 3 × 3 mm3. Conventional
EPI BOLD scans were collected from the same subjects (TR
= 2,150ms, TE = 28ms, flip angle = 15◦, voxel size = 3
× 3 × 3mm, matrix size 64∗64, 45 slices = 47ms in plane
readout). In both methods, we used relatively low flip angles
to minimize specific absorption rate (SAR), spin history effects,
physiological pulsations and radio frequency (RF) artifacts in
EEG in comparison to default flip angles (Gonzalez-Castillo et al.,
2011; Assländer et al., 2013).

A reference image for MREG was acquired with a multi
slice double gradient echo sequence with TR = 593ms, TE =

2.46/4.92ms, flip angle = 50◦, dwell time = 4.9 us, FOV =

192mm. The reference and raw data from the MREG sequence
were transferred offline to a computing grid and reconstructed
using the MATLAB tool provided with the sequence. The tool
allows for a choice between several parameters for regularized
reconstruction (Hugger et al., 2011); we selected L2-norm with
finite difference operator (called “Total Variation” in the tool)
and the regularization parameter was reduced to lambda=0.15
from default 0.2 in order to obtain higher signal-to-noise
ratio (SNR) images. Conjugate gradient optimization was also
performed for 35 iterations for more robust convergence of
images, c.f. Figure 1. Coil sensitivities were estimated from the
reference image with the adaptive method, and dynamic off-
resonance correction in k-space was used tominimize respiration
and other motion related off-resonance artifacts from the data
(Pfeuffer et al., 2002; Zahneisen et al., 2014). Anatomical 3D
MPRAGE (TR = 1,900ms, TE = 2.49ms, TI = 900ms, flip
angle = 9◦, FOV = 240mm, 0.9mm cubic voxel) images were
used to register both MREG and EPI BOLD data into Montreal
Neurological Institute (MNI) space.

Both, EPI BOLD and MREG data were preprocessed with
a typical FSL pipeline (Jenkinson et al., 2012). The data were
high-pass filtered with cut-off frequency of 0.008Hz (125 s).
T1-relaxation effects were minimized using dummy scans (8 s).
Motion correction was performed using FSL MCFLIRT. FSL

BET was used for brain extraction (fractional intensity = 0.25,
threshold gradient= 0.22, neck and bias-field correction). Images
were spatially smoothed with 5mm FWHM Gaussian kernel
using fslmaths. Three-dimensional 3DMPRAGE anatomical
images were used to register both the EPI BOLD and the
MREG data into 4mm MNI space prior to group ICA using
FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002).
FILM pre-whitening and data smoothness estimation was
produced automatically by FSLMELODIC (Woolrich et al., 2001;
Beckmann et al., 2006). FILM implements a robust method
of correcting for auto-correlation in fMRI time-series which is
(theoretically) independent of TR duration (Woolrich et al., 2001;
Smith et al., 2004; Demetriou et al., 2018).

The MREG (TR = 0.1 s) data was downsampled to different
sTR settings from TR 0.1 s to 0.3, 0.5, 1.0, 1.5, 1.8, 2.2, and
3.0 s, respectively by taking every nth [n = 3, 5, 10, 15, 18,
22, 30] sample from every voxel timeseries. In addition, an
interleaved variant of the MREG data were computed by taking
every 1,3,5...21; 2,4,6...22th axial slice (hence the INT sTR =

2.2 s) to emulate the interleaved EPI data gathering for comparing
single shot MREG trajectory downsampled at 2.2 s sTR data and
conventional gradient recalled EPI (TR = 2.15 s). MATLAB was
used for MREG data downsampling and interleaving. Total of
100 datasets were obtained after processing (10 sTR settings for
10 subjects).

As one of the focuses was to assess physiological signal aliasing
effects, we retained the physiological pulsations in the data as
much as possible. Therefore, cerebrospinal fluid (CSF) and white
matter were not regressed out from the datasets like they often are
in functional connectivity analyses. Global signal was analyzed
but not regressed, as the benefit of its regression is still under
debate (Murphy and Fox, 2017). Furthermore, the datasets were
not de-spiked, since there is no clear consensus yet what kind
of de-spiking is advisable to apply to ultra-short TR fMRI data,
especially since most aggressive de-spiking (AFNI 3dDespike -
NEW25) removes some of the physiological pulsations from the
data (Raitamaa et al., 2018).

Time and Spatial Domain Analysis (ICA,

CV/tSNR, DPARSF)
Group PICA was computed for all 10 sTR settings. For every
group ICA run, 70 independent components were calculated
using FSL MELODIC in default setting (Kiviniemi et al., 2009).
FSL function fslcc was used to calculate correlation values
between different PICA components calculated for every sTR
and 42 resting state network templates defined earlier (Kiviniemi
et al., 2009; Abou-Elseoud et al., 2010). Default mode network
(DMN) posterior cingulate cortex (PCC), cerebral artery, visual,
auditory, motor and ventral attention network components were
selected as interesting reference components that were visualized
to show the effect of changing sTR (Beckmann et al., 2005;
Kiviniemi et al., 2009; Smith et al., 2009).

CV is a standardized measure used in e.g., engineering and
physics, which describes the variability of a dataset compared
to its mean. CV was used as a metric for the variation of
physiological fluctuations in the signal. Recently, the CV of
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FIGURE 1 | Raw magnetic resonance encephalography (MREG) data with repetition time (TR = 0.1 s) and the subsampling scheme using an example arterial

signal ([−2 30 16] mm in Montreal Neurological Institutional (MNI) space). (A) Raw spatial MREG image. (B) Raw timeseries of the arterial signal. (C) Processed and

subsampled arterial signal and corresponding frequency amplitude spectra. Please note the aliased cardiac peak in the sTR 1–3 s in the amplitude spectra at ∼0.2Hz.

BOLD signal (CVBOLD) has been shown to be altered by the
disease processes (Makedonov et al., 2016; Tuovinen et al., 2017;
Kananen et al., 2018). CV was calculated for each subject and the
calculation was carried out for every voxel timeseries:

CV =
σ

µ

where µ is the standard deviation, and σ is the mean of the
voxel timeseries. Mean images of the resulting CV maps were
computed. For statistical analyses, PCC region of interest (ROI)
values were computed for every sTR individually and compared

to mean reference (TR = 0.1 s) map. In addition, temporal
signal-to-noise ratio (tSNR) values were computed for each sTR
using white matter (WM) and gray matter (GM) ROIs. The
ROI areas were obtained via FSL atlas tools using a probabilistic
threshold value of 50. Amean value from bothWMandGMwere
calculated from each subject.

DPARSF (FC, ReHo, ALFF/fALFF)
For each FSL pre-processed dataset, seed-based functional
connectivity (FC), regional homogeneity (ReHo), and amplitude
and fractional amplitude of low frequency fluctuations
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(ALFF/fALFF) were calculated using Data Processing Assistant
for Resting-State fMRI (DPARSF) V4.3_171210 MATLAB
software package (Chao-Gan and Yu-Feng, 2010). The
processing steps in DPARSF are described for each analysis
method separately below. Global signal regression or white
matter/CSF signal regressions were not used.

FC calculates seed-based correlation values between mean
timeseries of a selected ROI area and the rest of the brain voxel
timeseries. Six seed areas (5mm spherical ROI) were selected
for the analyses: DMN PCC (0 −53 26mm in MNI), cerebral
artery (0 32 16mm in MNI), visual (2 −86 16mm in MNI),
auditory (50−2−8mm in MNI), motor (2−18 60mm in MNI)
and ventral attention network (-46 18 32mm in MNI). Mean
FC maps for each sTR and ROI were computed to see whether
the changing of sTR influence the connectivity. For statistical
analyses, correlation coefficient values were calculated between
the mean ROIs (TR = 0.1 s) and other sTR settings individually
using FSL function fslcc. Additionally, sTR 2.2 s (INT) and
sTR 2.2 s were compared to test the effect of interleaving in
MREG data.

ReHo measures the degree of regional synchronization
of neighboring areas by calculating Kendall’s coefficient of
concordance (KCC) from the timeseries of every voxel and
compares the neighboring voxels (Kendall and Gibbons, 1990;
Zang et al., 2004). Cluster size of 27 voxels was used. Spatial
smoothing (FWHM: kernel size [4 4 4]) was applied after ReHo
calculations. After individual ReHo computations, mean spatial
maps were calculated. Furthermore, ReHo KCC values were
computed from the mean PCC ROI for all sTR settings.

Frequency Domain Analysis
Fast Fourier transformation (FFT) amplitude spectra from
a single subject arterial region ([−2 30 16] mm in MNI)
(Figure 1) and global image signal, venous (high respiratory
power) and arterial (high cardiac power) amplitude spectra were
analyzed to observe the impact of sTR in different physiological
frequency bands. Additionally, normal distributions curves (bin
size 5) of histogram of demeaned global signal in every sTR
were computed.

To examine, whether the change in sTR affects the VLF
content, ALFF and fALFF were computed. ALFF calculates the
sum of spontaneous low frequency activations of a selected
frequency band (Zang et al., 2007). FALFF was used to estimate
the ratio of amplitude spectrum of VLF in comparison to the
whole FFT spectrum (Zou et al., 2008). Frequency band of
0.01–0.1Hz was selected for the computations.

Furthermore, we studied how the mean FFT power of
VLF (0.01–0.1Hz), respiratory (0.12–0.35Hz) and cardiac (0.9–
1.3Hz) pulsations occur in different sTR settings. The respiratory
and cardiac frequency bands were chosen based on group-
level minimum and maximum frequencies observed from
the physiological recordings and datasets so that the band
is as limited narrow as possible while still encompassing
the cardiorespiratory frequencies of each subject. The same
frequency bands were used for each subject. Each band was
separated by a margin to minimize overlap.

Spectral maps of the frequency bands were calculated for
each dataset using AFNI 3dPeriodogram. The function outputs
a power spectrum for each voxel timeseries. The frequency
bins corresponding to VLF, respiratory and cardiac bands were
collected from the periodogram datasets based on individual
physiological monitoring. Furthermore, the collected bins were
summed and finally mean of the sums was computed for each
sTR. The cardiac bins were not calculated for sTRs > 0.5 s, as the
slower sampling rates cannot extract the cardiac frequencies.

The effect of signal aliasing was estimated in two ways: (i)
spatially, by correlating the mean cardiac and respiratory FFT
power maps to individual respiratory and VLF maps for each
sTR setting, respectively, (ii) power spectrally, by calculating the
FFT power change in the respiratory and VLF bands in the right
medial artery ROI ([46−2−8] mm in MNI) with different sTRs.
Mean 0.1 s TR MREG datasets were used as baseline maps and
compared how much the physiological power starts to overlap
per given sTR.

QPP Analysis
All datasets were bandpass filtered to VLF (0.01–0.1Hz)
band using AFNI 3dTproject. We used a modified pattern
finding algorithm to obtain quasi-periodic patterns (QPPs)
and evaluated their changes in signal intensities and pulse
propagations (Kiviniemi et al., 2016; Raitamaa et al., 2018).
Estimation of timing and length of VLF pulse (length: 105–
146 time points) for every subject was obtained from the
VLF filtered global signal from TR 0.1 s. Length and timing
were adjusted to the subsampled datasets. Subject-specific 4D
QPP maps were created for every sTR. For the analyses,
MATLAB circshift was used to ensure that QPP maps were in
same phase.

QPP strength (i.e., how closely it resembled the template) of
VLF wave for each sTR was quantified by correlation between the
average QPP pulse and the VLF pulse at the last iteration of the
QPP algorithm (Thompson et al., 2014). The mean correlation
coefficients of VLF pulses from the last iteration were extracted
from each subject and were compared as a function of sTR.

To measure the repeatability of the detected QPP maps, the
spatial correlation of subject-specific average QPP maps of sTR
> 0.1 s were compared to TR 0.1 s average QPP map using
MATLAB corrcoef. For this, each sTR QPP map was interpolated
to match the reference TR 0.1 s map.

For group mean images and videos, TR 0.1 s QPP maps were
set to length of 150 time points and other sTRs lengths were
adjusted accordingly. For every sTR, average group QPP maps
were created.

Statistical Tests
Paired sample t-tests (MATLAB ttest) were used for all statistical
testing to compare the reference MREG data (TR = 0.1 s) with
sTR results (Figures 3, 6, 7, 9A). Furthermore, sTR 2.2 s (INT)
and sTR 2.2 s were compared to test the effect of interleaving in
MREG data. In QPP repeatability analysis, linear fitting was used
as a measure of statistical significance. Statistical significances are
indicated as ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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RESULTS

As an example of the image quality of MREG 0.1 s TR data,
Figure 1A illustrates a raw spatial image of one subject in three
planes. An example of cardiovascular pulse timeseries (ROIMNI:
[-2 30 16] in mm) from the anterior cerebral artery are presented
in Figure 1B. Respective subsampling scheme is presented in
Figure 1C, in which six examples of the sTR time series are shown
to highlight the effect of changing sTR.

Commonly Used Resting State Metrics

(FC, ReHo, CV/tSNR, ICA)
Seed voxel correlation of FC analysis, ReHo and CV produced
nearly identical results as a function of sampling rate. Visually,
only small differences could be detected in the spatial functional
connectivity measures in group level maps as a function of
sampling rate in Figure 2.

Functional connectivity maps (Figure 2) showed nearly
identical spatial results, which were also highly comparable to
conventional 2.15 s TR EPI BOLD data or with interleaved
MREG 2.2 s sTR data. The quantified connectivity measures
presented no significant differences excluding INT (sTR =

2.2 s) which had significantly (p < 0.01) lower correlation
coefficients compared to TR 0.1 s and compared to sTR 2.2 s
(Figure 3A and Supplementary Figure 1). In addition, EPI scans
had marginally elevated correlation coefficients compared to
the MREG (TR= 0.1 s).

Similarly, ReHo were visually identical at different sampling
rates (Figure 2). However, with interleaved sampling of
1,3,5...,2,4,6 of axial MREG slices were collected with a final
2.2 s sampling rate, the ReHo values decreased significantly
(p < 0.001), when compared to both single shot k-space
trajectory with TR 0.1 s and sTR 2.2 s (Figure 3B). Furthermore,
conventional EPI showed significantly (p < 0.001) higher and
sTR 2.2 lower (p < 0.05) values.

CV of the image data were nearly identical with respect to the
altering sTR (Figure 2). The EPI BOLD data had significantly
(p < 0.05) lower CVs compared to MREG (TR = 0.1 s), while
downsampling or interleaved data gathering had no effect on
the CV values. The same effect can be seen from the mean
tSNR values from WM and GM ROIs where downsampling
did not show any significant change but EPI BOLD values
were significantly (p < 0.001) higher compared to MREG
(Supplementary Figure 2).

ICA detected RSNs in all sTR settings, but there was
some variability between the results (ICA in Figure 2). The
conventional EPI BOLD and interleaved data showed similar
results as well. In spatial consistency analysis of the 42 RSN
template correlations, all sTR settings produced very similar
results, except for EPI, which had significantly higher correlation
values (p < 0.01).

Mean Spectral Metrics
The group mean FFT amplitude spectra of global image signal,
respiratory and cardiac signals are presented in Figure 4. In
global signal spectra, the amplitude peaks were relatively higher
in VLF band with increasing sTR. This might occur due to

cardiorespiratory aliasing. The respiratory amplitude peaks from
sagittal sinus and cardiac amplitude peaks from right middle
cerebral artery presents multiple peaks in the spectra due to
normal variations in respiratory and cardiac rates. Please notice,
these peaks were lost as the sTR was increased >0.5 s. The same
effect was observed in the arterial signal on a single subject level
(Figure 1). EPI BOLD presented the lowest VLF amplitudes in
all images.

The global signal distribution curves illustrated the differences
in statistical power between sTR values and revealed an
exponential decay in histogram counts and widening of the
distributions per each sTR. Interestingly the 2.15 EPI BOLD
distributions are highly similar in shape with MREG 0.1 s data
but >5 times smaller.

BOLD Signal Frequency Amplitude and

Power Mapping
ALFF results indicated that the increasing sTR raised the VLF
power of the images (Figure 5). Conventional EPI data showed
lower ALFF values than MREG data, but the interleaving had
no effect. FALFF results were most clearly affected by the
increasing sTR (Figure 5). FALFF showed an increase over the
sTR values which is due to the proportional increase of the lowest
frequencies due to the reduction of the spectral coverage in higher
sTR values.

Group mean FFT amplitude and power encoding maps
(Figure 5) revealed how the cardiac, respiratory and VLF
frequency intensities changed in different sTR settings. The
cardiac power started to fade away in sTR >0.3 s and
respiratory power above 2.2 s sTR. Furthermore, the cardiac
power distributions started to overlap on top of respiratory
frequency maps as the sTR is increased>0.5 s indicating aliasing,
c.f. Figures 5–7. The conventional 2.15 s TR EPI measurement
had notably lower power (please notice different scaling for EPI
BOLD in Figure 5). Interleaved 2.2 s sTR power was also lower
compared to 2.2 s sTR single shot trajectory in VLF power images,
which agrees with ReHo and mean global signal amplitude
spectral changes.

The aliasing was quantified both spatially and in frequency
power analyses. This was evaluated by measuring how much
different frequency maps start to resemble each other spatially as
a function of sTR (Figure 6). In critically sampled 0.1 s TRMREG
data the cardiac, respiratory and VLF frequencies had a low∼0.4
mean spatial correlation. For example, the major arteries seen in
cardiac frequency maps were lacking from the respiratory maps,
while the respiratory band dominated in posterior CSF spaces
(Figure 5). However, the spatial correlation between cardiac and
respiratory power maps became increasingly more similar (p <

0.001) and started to increase as a function of the sTR until
1.0 s, after which the similarity plateaus at 0.65 level until sTR
3.0 s (Figure 6A). Furthermore, the spatial correlation between
cardiac (p < 0.001) and respiratory (p < 0.01) vs. VLF increased
steadily until sTR 1.8 s.

In frequency power analysis of a right medial artery ROI ([46
−2 −8] mm in MNI) near insula, the image signal power from
the arterial ROI started to increase significantly (p < 0.001) both
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FIGURE 2 | Different group-level resting state metrics with changing subsampled repetition times (sTR) including functional connectivity (FC), regional homogeneity

(ReHo), coefficient of variation (CV) and independent component analysis (ICA). FC and ICA analyses comprise default mode network (DMN), artery (Art), visual (Vis),

auditory (Aud), motor (Mot) and ventral attention network (VAN). For comparison, echo-planar imaging (EPI) maps below tends to show spatially more widespread FC

maps and relatively similar ICA maps depending in the RSN.

in the respiratory and VLF power band in sTR >0.3 s as a sign of
aliasing (Figure 7A). The results indicate that once the cardiac
pulsation is no longer critically sampled, the power starts to
become aliased as a “respiratory” and “VLF” power as a function
of sTR increase. When correlating the mean respiratory maps to
individual VLFmaps, the aliasing effect could also be seen in VLF
range as the correlation values increased significantly (p < 0.01)
after 0.1 s TR and almost linearly as the sTR increased. However,
the influence of the sTR had a clearly less steep effect by the
increasing sTR in the VLF. The conventional 2.15 s BOLD images
showed low spatial correlation since the cardiac power is very low
to begin with and so the spatial correlation is also low.

QPP Analysis of Spreading BOLD Waves
The power of cardiac pulsation could not be critically detected
in sampling rates >0.3 s (Figures 3–5) and therefore we did

not quantify differences in the detection of cardiac pulse
propagation like we did earlier (Raitamaa et al., 2018). Also, the
respiratory power suffered from marked aliasing in sTRs above
0.5 s (Figures 5–7). Therefore, we quantified the performance of
different sTR in detecting VLF (0.01–0.1Hz) propagating QPP
BOLD waves.

Figure 8 illustrates 15 s QPP waves captured with different
sTR and how the spatiotemporal illustration of each wave
changed as a function of sTR. The lowest sTR 0.1–0.5 s were
down-sampled from 150, 50 and 30 to 15 images for illustration
of the QPP wave spreading in axial plane. Videos of QPPs
in TR of 0.1 s and 0.5, 1.0, 2.2 and 3.0 s are shown in
Supplementary Material. As expected, much of the dynamics
were lost as a function of increasing sTR.

We also quantified the QPP strength within each subject of the
QPP VLF waves as a function of sTR (Figure 9A). The analysis
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FIGURE 3 | Resting state metrics in different subsampled repetition times (sTR) compared to reference maps (TR = 0.1 s). (A) Individual functional connectivity (FC)

values from default mode network (DMN), posterior cingulate cortex (PCC ROI) correlated to reference FC map. (B) Regional homogeneity (ReHo) Kendall’s coefficient

of concordance (KCC) values from PCC ROI compared to mean reference map (TR = 0.1 s). (C) Coefficient of variation (CV) values from PCC ROI compared to mean

reference map. (D) Correlation values between group probabilistic independent component analysis (PICA) components in different sTR settings and previously

acquired 42 resting state network ICA templates. Significant differences between TR 0.1 and other sTR settings are marked with *p < 0.05, **p < 0.01, and

***p < 0.001. Outliers are marked with �.

revealed that 0.1 s TR data had highest spatial correlation of the
detected VLF waves on average despite the largest number of
brain volumes (i.e., 150 vs. 5 volumes between highest and lowest
TR). There is a linear trend where the intra-individual detection
accuracy of the detected VLF QPP waves gave lower (0.01 < p <

0.05) values as a function in sTR > 0.3 s excluding EPI.
When comparing how similar QPP waves were detected

between subjects, the 0.1 s MREG data was used as a reference
due to highest VLF wave detection accuracy. Each sTR QPP
map was interpolated to correspond the 0.1 s MREG time
points. On average, the detected QPP waves became linearly less
correlated as a function of sTR (Figure 9B). Conventional EPI
had less robustly detected QPP waves. Interleaved timing of data
acquisition showed no effect on the wave detection accuracy nor
on repeatability of the detected QPPs.

DISCUSSION

The study analyzed the effect of 3D image sampling rate on most
popular fMRI metrics used. The time and spatial resting state

fMRI metrics (FC, CV/tSNR, spatial ICA) were not markedly
affected by sTR. In frequency domain analysis, the aliasing of
the cardiorespiratory power seemed to increase signal power as

a function of the sTR (sTR > 0.3 s). Importantly, aliasing effects

occur mostly between cardiac and respiratory power. The VLF
power increased also significantly as a function of sTR due to
aliasing but the power of aliasing was smaller. In dynamic QPP
analyses, shorter sTRs seemed to produce more stable results.

Also, to our surprise, the effect of sampling rate on non-
dynamic rs-fMRI measures was not as strong as hypothesized.
Most of the measures stayed stable within the range of sTR.
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FIGURE 4 | Group-level fast Fourier transform (FFT) amplitude and histogram

distribution analyses in different subsampled repetition times (sTRs). (A) FFT

(Continued)

FIGURE 4 | amplitude spectra of global image signal where the 0.1 TR data is

cut to 2Hz from original 5Hz. (B) FFT amplitude spectra of respiratory region

of interest (sinus sagittal, ROI, [2 −98 4] mm in Montreal Neurological Institute

(MNI) space). (C) FFT amplitude spectra of cardiac ROI (right medial artery) [46

−2 −8] mm in MNI. Due to differences in individual cardiorespiratory rates,

several frequency peaks can be detected at the group level. (D) Mean normal

distribution curves from demeaned global signal histograms show lowering

and widening of the distributions as a function of sTR.

FIGURE 5 | Mean fast Fourier transform (FFT) amplitude (ALFF/fALFF) and

power (VLF, Resp, Card) encoding maps for each subsampled repetition times

(sTRs). The cardiac power can be detected until 0.3 s and respiratory until

2.2 s sTR. However, the respiratory and cardiac power images started to

overlap in sTR > 0.5 s, increasing to sTR 1–2 s. Very low frequency (VLF)

power showed a subtle but steady increase with increasing sTR.

Golestani and co-workers found surprisingly minimal effect
on sampling rate on ReHo, ALFF and FC results that are in
full agreement with our results (Golestani et al., 2017). Several
researchers have found that higher sampling rate appears to
be beneficial for resting state fMRI measures, especially for
ICA/dual regression and our results also agree on this (Smith
et al., 2013; Preibisch et al., 2015; Golestani et al., 2017;
Demetriou et al., 2018.

Compared to MREG in general, the interleaved EPI BOLD
had statistically significantly (p < 0.001) increased ReHo

Frontiers in Neuroscience | www.frontiersin.org 9 April 2019 | Volume 13 | Article 27932

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Huotari et al. Sampling Rate Effects on fMRI

FIGURE 6 | Spatial aliasing measure using spatial correlation values. (A) The

mean MREG cardiac fast Fourier transform (FFT) power image of repetition

time (TR = 0.1 s) correlated to individual respiratory power images as a

function of sampled TR (sTR) and echo-planar imaging (EPI) scan. (B) Mean

cardiac FFT image correlated to individual very low frequency (VLF) images.

(C) Mean respiratory image correlated to individual VLF images. Significant

differences between TR 0.1 s and other sTR settings are marked with

**p < 0.01 and ***p < 0.001. Outliers are marked with �.

and tSNR. However, the f/ALFF, global signal amplitude
spectrum baseline and signal variance as measured with
CV are reduced in EPI compared to MREG. Interleaved
MREG variant (INT sTR 2.2 s) also induced significantly (p
< 0.001) lower ReHo compared to both TR 0.1 and to
single shot variant (sTR 2.2 s). The conventional interleaving
introduces TR/2 delay and interleaved multislab scanning
introduces TR/2xN delay between subsequent scans, where
N is the number of slabs. This introduces delays between
neighboring voxels in longitudinal z-direction and alters
regional similarity and frequency measures due to discontinuous
sampling of the propagating cardiorespiratory pulses that
traverse the brain repeatedly in addition to VLF pulses
(Kiviniemi et al., 2016).

Aliasing in Cortical Connectivity Analysis
The current data illustrates that while the aliasing of
cardiorespiratory pulsations is a significant factor in
frequency domain, the currently used time and spatial
domain analyses tools perform well in detecting robust
resting state connectivity. In summary, the stationary spatial
and temporal connectivity measures, whether local or long
distance, were not significantly affected by changes in sTR.

FIGURE 7 | Cardiac aliasing measure using fast Fourier transform (FFT) power

intensity values of arterial region of interest (ROI, [46 −2 −8] mm in Montreal

Neurological Institute (MNI) space). (A) Intensity values of individual respiratory

power images. (B) Intensity values of individual very low frequency (VLF) power

images. Significant differences between repetition time (TR = 0.1 s) and other

sampled TR (sTR) settings are marked with *p < 0.05, **p < 0.01, and

***p < 0.001. Outliers are marked with �.

However, interleaved slice acquisition seems to affect some of
these measures.

This study confirms the information from reduced data length
analytics (Bright and Murphy, 2015) and is consistent with
coactivation pattern (CAP) analysis (Liu and Duyn, 2013), where
the information on spatial functional connectivity of regions can
be depicted even in one single brain volume. However, the CAP
analysis for instance, requires individual voxel level thresholding
with the time domain signal mean/std.

ICA performs best with large data distributions and therefore
conventionally spatial ICA is preferred over temporal ICA,
since it offers larger distributions (Calhoun et al., 2001;
Kiviniemi et al., 2003; Beckmann et al., 2005). Spatial ICA
also uses BOLD signal’s temporal variance which induces the
non-Gaussian changes in the signal distributions, by which
the statistical independence is inferred (Calhoun et al., 2001;
Kiviniemi et al., 2003; Beckmann et al., 2005). The clear
advantage of the short TR can be seen in Figure 4, where
0.1 s TR overall signal distribution histogram has almost 5
times higher and substantially larger distribution compared to
other distributions. This is the basis of the statistical power
advantage already depicted by several groups for using short
TR measurements (Smith et al., 2013; Preibisch et al., 2015;
Golestani et al., 2017; Demetriou et al., 2018). Furthermore,
in the case of combined spatiotemporal ICA or temporal
ICA alone approaches, the 0.1 s data most likely outperforms
the slower sTRs simply due to statistically more valid signal
histograms (Figure 4D).

The physiological pulses themselves modulate the BOLD
signal (Birn et al., 2006, 2008; Chang and Glover, 2010; Chang
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FIGURE 8 | Group mean very low frequency (VLF) waves as a function of subsampled repetition time (sTR). Please notice that the first three rows are downsampled

from 150, 50, and 30 to 15 images, respectively to fit the picture.

et al., 2013a). Recently, ultra-fastMREG data was able to illustrate
how the cardiac and respiratory pulsations propagate in repeated
waves over the whole brain, giving rise to physiologically driven
and modulated variance in the data (Kiviniemi et al., 2016;
Raitamaa et al., 2018). However, most of the cardiorespiratory
power is centered within central areas near CSF ventricles
(respiratory) and major arteries and veins (cardiac). The VLF
power dominance in the brain cortex seems to enable robust
connectivity measurement despite imminent cardiorespiratory
aliasing especially in sTRs 1–2 s.

The physiological signal sources need to be separated from
the functional signals before any realistic interpretations of the
neurovascular task or connectivity data can be drawn. Through
the years, source separation tools such as the ICA have been
developed to offer robust detection of functionally connected
regions or constellations of regions, such as resting state networks
(Calhoun et al., 2001; Kiviniemi et al., 2003; Beckmann et al.,
2005; Griffanti et al., 2015; Vidaurre et al., 2017). However, in
this respect also other measures, such as FC and CV are highly
reproducible over a range of sTRs. Therefore, even though there

is significant aliasing, especially in areas near medial cerebral
artery and sagittal sinus neighborhood, the dominance in VLF
induces robust functional connectivity in the cortex.

BOLD signal stability is often measured as tSNR or CV which
is the inverse of tSNR. In this study, we calculated both. In terms
of signal observations of hemodynamically convolved neuronal
activation response, in our sampling scheme the CV or tSNR do
not change as we only downsample the MREG data instead of
scanning using different TRs. However, compared to EPI BOLD
the CV values were significantly higher (Figures 2, 3) and tSNR
values significantly lower (Supplementary Figure 2) which could
be partially caused by higher flip angle and slightly shorter TE in
EPI BOLD. In spite of all, both sequences have relatively long TEs,
which makes them T2∗ -weighted.

Recent studies indicate how the CV reflects also physiological
pulsation changes, rather than neuronally driven alterations.
Furthermore, the CV has recently been shown to have high
sensitivity to pathological condition even at individual level
(Makedonov et al., 2016; Tuovinen et al., 2017, 2018). Our
preliminary experience on disease related BOLD signal noise
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FIGURE 9 | Very low frequency (VLF) quasi-periodic pattern (QPP) stability

measurements. (A) Intra-individual QPP strength as a function of subsampled

repetition time (sTR). Significant differences between repetition time TR 0.1 s

and other sTR settings are marked with *p < 0.05 and **p < 0.01. (B)

Inter-individual correlation coefficients of QPP wave repeatability as a function

of sTR. Correlation coefficients decreased statistically significantly (p < 0.001)

by decreasing slope of sTR. Outliers are marked with �.

metrics suggests that at 1.8 s TR the BOLD signal CV can also
be highly sensitive to pathological conditions (Tuovinen et al.,
2018). Data from 0.1 s MREG CV measures seem to be at least
as sensitive in intractable epileptic patient data (Kananen et al.,
2018). This is in line with the CV results that do not alter as a
function of TR but can be sensitive to differences in sequence
parameters and k-space trajectory and other technical issues,
c.f. Figure 2.

Aliasing of Physiological Pulsations in

Central Areas
The FFT frequency power maps illustrate that the cardiac
1Hz power is mainly detectable in sTR < 0.3 s. In the most
critically sampled data, the 1Hz cardiovascular signal pulses
most prominently in the paravascular space in areas near
major cerebral arteries and somewhat in the major venous
sinuses. From the periarterial areas the cardiovascular pulses are
convected into the CSF ventricles, centerline parasagittal CSF
spaces, c.f. Figure 5. The respiratory power is nearly absent from
the periarterial spaces and dominates more on the posterior and
cortical perivenous structures and is relatively stronger in the
posterior central CSF spaces. The VLF power tends to align
mostly along the cortical gray matter without strong overlap with
the midline parasagittal area.

Above 0.3 s sTR, the cardiac power became mostly
aliased over respiratory power in central brain bordering

CSF spaces. Thus, all critical analysis of respiratory power
changes needs to be performed with data < 0.5 s TR. The
most prominent aliasing occurred in sTRs between 1 and
2 s, where the respiration is still sampled critically but the
cardiac is aliased over it; they become strongly mixed into
sTR 1–2 s signal. This type of cardiorespiratory aliasing
however seems to affect the measuring of FC on cortical
structures minimally (Figures 2–3), since the connectivity
occurs dominantly in VLF frequencies (<0.1Hz) that
dominate in the cortex to begin with. Also, the effects of
aliasing as a function of sTR on the VLF FFT power are
less severe around sTR 1–2 s but increase further in sTRs
>2.0 s (Figures 2, 5, 6).

The power of FFT amplitude spectra increased in VLF range
as a function of sTR, which is a sign of cardiorespiratory
aliasing (Kiviniemi et al., 2005; De Luca et al., 2006). The effect
was highest in sTR 3.0 s. This reduces sensitivity to changes
in physiological pulsations and furthermore does no longer
have the capability to differentiate neither cardiorespiratory
nor even different VLF fluctuation peaks as different sources.
Furthermore, physiological pulsations seen in 0.1 s TR could not
be detected on a group level global or individual voxel signal
above 0.3 s sampling rate. Also, VLF power peak features became
undetectable with vanishing power of the increased sTR.

Importantly, the f −α FFT amplitude spectrum curve became
affected by the highest sTRs (Figure 4). This has an inevitable
effect on measures of signal stationary metrics like Hurst
exponent (H) (Bullmore et al., 2001; Wink et al., 2008), fractal
dimension (Df) (Kiviniemi et al., 2005; Kiviniemi, 2008) since
the power spectral intensity f(I) = f −α, where Df = (3-α)/2 and
Df = 2-H. The f/ALFF as well as f −α metrics may then also
be sensitive to physiological pulsations. In other words, results
based on comparing patients with controls may suffer from
cardiorespiratory differences between groups. To avoid these
factors, physiological signals should be measured and FFT power
spectral analyses should be performed on as short TR data as
possible. This is our recommendation for future studies.

Dynamic Connectivity and Effect of TR
The recent discoveries of dynamic functional connectivity
analytics of fMRI data show that there are marked changes
over time (Hutchinson et al., 2012). Wavelet analyses and time
windowed approaches have suggested that the connectivity of
regions varies markedly over time (Chang and Glover, 2010;
Kiviniemi et al., 2011; Smith et al., 2012; Liu and Duyn, 2013).
Targeted averaging algorithms can detect quasi-periodic very low
frequency BOLD signal pulses that travel over the RSN and
connectivity gradient patterns (Majeed et al., 2011; Pan et al.,
2013; Keilholz, 2014; Thompson et al., 2014).

In this study we evaluated the VLF QPP maps to quantify
effects of sTR on dynamic BOLD connectivity metrics. First,
the FFT analysis indicated that the faster cardiorespiratory
pulsations could not be even evaluated as a function of sTR: the
cardiac power is not visible above 0.5 s sTR and furthermore
the cardiac power aliases over respiratory power. Secondly,
the VLF pulse analysis indicated that compared to the most
critically sampled 0.1 s TR data, both the QPP strength (i.e.,
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spatial similarity of waves) and inter-individual repeatability
of the QPPs become linearly reduced with increasing sTR. In
other words, the QPP analysis significantly lost its accuracy as
a function of sTR. Taken together, the analysis of dynamic and
physiological pulsations benefits when performed on data with
TRs < 0.3 s.

As with most of the dynamic connectivity metrics, the
problem has been the reducing statistical power of the
analysis when shorter and shorter connectivity epochs have
been attempted to be analyzed. Reducing dynamic analysis
window length reduces also the number of samples and
degrees of freedom for statistical inferences. Our results
support the use of short TR in the evaluation of dynamic
connectivity metrics as (a) for mathematical procedures, short
TR gives more time points per analyzed time window, (b) it
enables critical sampling and differentiation of physiological
pulsations, (c) it avoids aliasing of the physiological signal
over the targeted phenomena, (d) enables mapping of
modulations of the pulsations, and e) it offers markedly
more accurate signal distributions for statistical inferences,
c.f. Figure 4D.

LIMITATIONS AND STRENGTHS OF

THE STUDY

The results may not be directly comparable due to multiple
technical differences between interleaved EPI vs. MREG.
However, despite the technical differences, the results in
stationary connectivity are highly similar in a wide range
of frequencies and RSNs. This study aimed to minimize
confounding factors like intra-subject status changes
(cardiorespiratory status, vigilance, mood, etc.) as well as
technical factors (SNR, sequence parameters, sampling
trajectory, scanner model, field strength) issues by using
data from the same subjects scanned once with fast TR
that was downsampled to higher sTRs. This enables the
direct comparison of the effects of sampling rate only.
EPI data was scanned for comparing the results to a more
conventional technique.

However, the interleaved vs. single shot k-space sampling
technique is not the only difference when comparing MREG
and EPI data. As mentioned accurately by Golestani and co-
workers, comparisons of long vs. short TR measurements
need to be taken with a grain of physics, i.e., the EPI vs.
MREG also have several other technical differences. In order
to be fast, TR is very short in MREG which sensitizes the
signal more to T1 inflow and steady state precession effects
compared to conventional EPI BOLD (Liu, 2016). On the other
hand, TE is relatively long in MREG which makes it T2∗ -
weighted as is EPI BOLD. The low flip angles 5◦ vs. 15◦ in
MREG and EPI BOLD, respectively, reduces the sensitivity to
physiological pulsations on both methods as well (Gonzalez-
Castillo et al., 2011). Furthermore, the system noise changes
linearly or even quadratically with the TR due to imperfections
as the sequence is repeatedly run. All these effects need to
be considered while discerning the differences between EPI vs.

MREG results and again the direct comparison between them is
rather difficult.

According to (Glover, 2012), the spiral readout has
reduced sensitivity to motion, shortened readout times,
improved signal recovery in most frontal and parietal brain
regions, and exhibited blurring artifacts instead of ghosts
or geometric distortion. MREG combines Spiral-in/out
trajectory which further has diminished susceptibility-
induced signal dropout and increased BOLD signal. The
EPI readout trajectory is subject to ghosts from off-resonance
and gradient imperfections and is intrinsically sensitive to
cardiac-induced pulsatile motion from substantial first- and
higher order moments of the gradient waveform near the
k-space origin (Glover, 2012). So, the artifact and BOLD
sensitivity profiles are also different between EPI and MREG.
In summary, looking at the similarity of the resting state
connectivity measures with different techniques, it seems that
human brain connectivity is quite a stable phenomenon that
can be measured robustly with technically quite different
scanning approaches.

Earlier, the use of two different sampling rates scanned at
subsequent scanning sessions have been used to exclude aliasing
as a source of very low frequency fluctuations as a source of
resting state functional connectivity (Beckmann et al., 2005;
Kiviniemi et al., 2005). Theoretically, the previous data that used
different scan sessions and so the physiological pulses were not
identical between the TRs and therefore not directly comparable.
However, in studies with different sampling rate in different scan,
also there the results seem to be highly similar to our data (Smith
et al., 2013; Golestani et al., 2017).

While attempting to quantify aliasing and dynamic metrics,
we used the original 0.1 s TR MREG data as a reference.
This may in theory involve a bias since the original MREG
data can also detect modulations of cardiorespiratory pulse
amplitudes and timing variations, as seen in Figure 1. The
slower sTRs have no way of depicting these modulations
and therefore a comparison of spatial connectivity and signal
stability may be somewhat biased toward undermining the
accuracy of the fast data, since it is also sensitivity to
modulation effects.

CONCLUSION

The overall the effect of sampling rate on most commonly
used stationary rs-fMRI metrics is minimal. The dominance
of the VLF power in gray matter overpowers aliasing effects
and enables highly reproducible stationary connectivity
results. The aliasing is most dominant between cardiac
and respiratory pulsations in central structures near or
within CSF spaces. Different technical imaging approaches
(e.g., interleaved EPI vs. SOS MREG) yield differential
connectivity metrics stemming from multiple spin acquisition
differences. Despite these differences, the results from different
techniques give fairly good spatial agreement of human brain
connectivity. Interleaved scanning of slices seems to introduce
inaccuracies in some analyses due to discontinuous sampling
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of physiological signals. The analysis of dynamic connectivity
and frequency based physiological pulsation benefits most from
faster scanning.
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Video 1 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

repetition time (TR = 0.1 s).

Video 2 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=0.3 s).

Video 3 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR = 0.5 s).

Video 4 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=1.0 s).

Video 5 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=1.5 s).

Video 6 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=1.8 s).

Video 7 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=2.2 s).

Video 8 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=3.0 s).

Video 9 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

conventional echo-planar imaging (EPI) acquisition with repetition time

(TR=2.15 s).

Video 10 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

interleaved variant with subsampled repetition time (sTR=2.2 s).
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Animal functional magnetic resonance imaging (fMRI) has provided key insights into
the physiological mechanisms underlying healthy and diseased brain states. In non-
human primates, resting-state fMRI studies are commonly conducted under isoflurane
anesthesia, where anesthetic concentration is used to roughly infer anesthesia depth.
However, within the recommended isoflurane concentration range (1.00–1.50%), the
brain state can switch from moderate anesthesia characterized by stable slow
wave (SW) electroencephalogram (EEG) signals to deep anesthesia characterized by
burst suppression (BS), which is electrophysiologically distinct from the resting state.
To confirm the occurrence rate of BS activity in common setting of animal fMRI
study, we conducted simultaneous resting-state EEG and fMRI experiments on 16
monkeys anesthetized using 0.80–1.30% isoflurane, and detected BS activity in two
of them. Datasets either featured with BS or SW activity from these two monkeys
were analyzed to investigate the intrinsic functional connectivity (FC) patterns during
BS. In datasets with BS activity, we observed robust coupling between the BS
pattern (the binary alternation between burst and suppression activity in EEG signal)
and filtered BOLD signals in most brain areas, which was associated with a non-
specific enhancement in whole brain connectivity. After eliminating the BS coupling
effect by regressing out the BS pattern, we detected an overall increase in FC
with a few decreased connectivity compared to datasets with SW activity. These
affected connections were preferentially distributed within orbitofrontal cortex, between
orbitofrontal and prefrontal/cingulate/occipital cortex, and between temporal and
parietal cortex. Persistence of the default mode network and recovery of thalamocortical
connections were also detected under deep anesthesia with BS activity. Taken together,
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the observed spatially specific alterations in BS activity induced by isoflurane not only
highlight the necessity of EEG monitoring and careful data preprocessing in fMRI
studies on anesthetized animals, but also advance our understanding of the underlying
multi-phased mechanisms of anesthesia.

Keywords: burst suppression, simultaneous EEG-MRI, functional connectivity, default mode network,
thalamocortical connectivity, nonhuman primate

INTRODUCTION

Functional magnetic resonance imaging (fMRI) has become
a commonly used noninvasive technique for brain activity
research in both animals and humans. Resting-state fMRI (rs-
fMRI) measures functional connectivity (FC) between different
brain regions in the non-stimulus state and is a valuable
technique for exploring complex brain networks in different
brain states or disease models (Greicius, 2008; Van Den
Heuvel and Hulshoff Pol, 2010). Anesthesia is an effective
method to prevent head motion and physiological stress when
collecting blood oxygenation level dependent (BOLD) fMRI
signals, particularly in animal studies. On the other hand,
it is also a critical confounding factor because anesthetic
selection and dosage can affect or even inverse the intrinsic
BOLD fluctuations readout ( Hutchison and Everling, 2012;
Grandjean et al., 2014; Lv et al., 2016; Paasonen et al., 2017,
2018; Wu et al., 2017; Bukhari et al., 2018). For instance,
isoflurane, the most prevalent inhaled anesthetic for monkey
fMRI study, has a significant, concentration-dependent influence
on FC networks (Vincent et al., 2007; Nallasamy and Tsao,
2011; Grandjean et al., 2014; Hutchison et al., 2014; Bukhari
et al., 2018). A limited range of isoflurane concentration
(1.00–1.50%) is therefore recommended to obtain stable FC
in anesthetized nonhuman primate resting-state experiments
(Hutchison et al., 2014).

However, monkey fMRI studies with simultaneously
recorded electroencephalogram (EEG) signals have revealed that
relatively deep anesthesia characterized by burst suppression
(BS) occasionally occurs at the recommended dosage of
isoflurane (end-tidal concentration 1.25–1.50%) (Vincent
et al., 2007). BS is a stereotypic electrical activity pattern in
the brain that presents as continuous alternation between
two states, high-voltage waves (burst) and isoelectric epoch
(suppression), and is fundamentally different from the slow
wave (SW) activity most commonly observed in the resting
state (Steriade et al., 1994). Electrophysiological studies have
demonstrated wide synchronization and hyper-excitation
across the whole brain during BS activity (Steriade et al.,
1994). A robust coupling effect between BS pattern (the
binary alternation between burst and suppression activity
in EEG signal) and BOLD fluctuations has been revealed in
sevoflurane-anesthetized humans (Golkowski et al., 2017).
Enhanced BOLD connectivity in the somatosensory network
has also been reported in rats during isoflurane-induced
BS activity (Liu et al., 2011). Further investigation of the
same network showed that connectivity became less spatially
specific as anesthesia depth increased to BS status, evidencing

functional reorganization of the brain (Liu et al., 2013).
These findings indicate multiphasic progression from light
to deep anesthesia, suggesting a non-linear relationship
between brain activity strength and anesthesia depth
(Amzica, 2015).

Here, we aim to explore the signature of the whole-brain
functional network connectivity during the isoflurane-induced
BS activity in adult macaque monkeys. We are also concerned
with the influence of preprocessing strategy on the spatially
non-specific increase in FC reported by Liu et al. (2013). We
are particularly interested in alterations of the default mode
network (DMN) and thalamocortical connections, both of which
are sensitive to anesthesia (Alkire et al., 1999; Fiset et al.,
1999; Vogt and Laureys, 2005). Despite observed decreases
in both DMN (Greicius et al., 2008; Huang et al., 2014)
and thalamocortical connectivity (White and Alkire, 2003;
Huang et al., 2014) under anesthesia compared to the awake
state in humans, it is unknown whether or not these two
networks are present during the EEG-defined BS activity in
nonhuman primates.

MATERIALS AND METHODS

Participants
All experimental procedures for nonhuman primate research
in this study were approved by the Institutional Animal
Care and Use Committee at the Institute of Neuroscience
and the Biomedical Research Ethics Committee, Shanghai
Institutes for Biological Sciences, Chinese Academy
of Sciences, and conformed to National Institutes of
Health guidelines for the humane care and use of
laboratory animals.

The data included in this work were selected from a series
of simultaneous resting-state EEG and fMRI experiments of
16 monkeys (Macaca fascicularis, six males, 10 females, and
ages 4–5) anesthetized using a recommended concentration
range of isoflurane. After careful scrutiny of the EEG traces, BS
activity was detected in two monkeys (monkey O and monkey
T) at 0.8–1.3% isoflurane during four separated experiments,
out of which three experiments were performed on monkey
O with a minimum separation of one and half month. The
occurrence of BS was more frequent in monkey O than
monkey T (Table 1). Further analysis on FC was based
on all the data from monkey O and monkey T, including
20 runs with stable BS activity (BS group) and 8 runs with
stable slow wave activity (SW group) from monkey O, 7 and
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3 runs, respectively, from monkey T. Each run lasted 7 min
with an inter-run interval of approximately 1 min within
each experiment.

Animal Preparation
The animal preparation procedure was conducted in a similar
manner to our previous work (Wang et al., 2013; Lv et al., 2016).

TABLE 1 | Physiological information of all datasets from monkey O and monkey T.

Monkey ID Session Run Group Concentration of ISO (%) BSR(%) Heart Rate (bpm) EtCO2 (mmHg) Temperature (◦C)

O 1 1 BS 1.2 10.9 141 28 36.6

O 1 2 BS 1.2 7.7 140 28 36.6

O 1 3 BS 1.2 12.8 136 29 36.8

O 1 4 BS 1.2 11.9 135 29 36.8

O 1 5 BS 1.2 2.6 135 29 36.9

O 1 6 BS 1.2 3.8 142 29 37

O 1 8 BS 1.2 1.2 135 28 37.1

O 1 9 BS 1.2 1.6 131 28 37.2

O 2 10 BS 1.3 38.9 131 26 37.1

O 2 11 BS 1.3 23.3 134 27 37

O 2 12 BS 1.3 32.1 136 27 37

O 2 13 BS 1.3 18 139 27 37

O 2 14 BS 1.3 27.9 140 27 37

O 2 15 BS 1.3 36.7 140 27 37

O 2 16 BS 1.3 26.3 142 28 37.1

O 2 17 BS 1.3 18.4 139 28 37

O 2 18 BS 1.1 14.1 140 28 37

O 2 19 BS 1.1 11.1 142 28 37

O 2 20 BS 1.1 16.5 140 28 37

O 3 27 BS 0.8 1.5 147 27 37.7

BS 15.87 138.25 27.8 36.995

O 3 7 SW 1.2 0 157 29 37

O 3 21 SW 0.8 0 147 26 37.3

O 3 22 SW 0.8 0 148 27 37.4

O 3 23 SW 0.8 0 149 27 37.5

O 3 24 SW 0.8 0 148 27 37.5

O 3 25 SW 0.8 0 149 27 37.7

O 3 26 SW 0.8 0 146 27 37.7

O 3 28 SW 0.8 0 147 27 37.8

SW 148.875 27.125 37.4875

P-value <0.000 0.064 < 0.000

T 4 31 BS 1.2 1.72 148 27 37.0

T 4 32 BS 1.2 0.56 156 27 37.1

T 4 33 BS 1.2 2.92 157 27 37.0

T 4 34 BS 1.2 1.68 160 27 36.8

T 4 35 BS 1.2 3.10 160 27 36.4

T 4 36 BS 1.2 0.86 159 26 36.3

T 4 38 BS 1.2 1.90 159 27 36.6

BS 1.82 157 26.857 36.743

T 4 29 SW 1.2 0 146 26 36.6

T 4 30 SW 1.2 0 148 26 36.8

T 4 37 SW 1.2 0 159 27 36.3

SW 151 26.333 36.567

P-value 0.125 0.120 0.421
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Induction of anesthesia was achieved by intramuscular injection
with ketamine (10 mg/kg, Gutian Pharma Co., Ltd., China) before
data collection. After intubation, each monkey was ventilated
with a mixture of isoflurane (2–2.5%, Lunan Pharma Co.,
Ltd., China) and pure oxygen via either a standard ventilator
(CWE, Inc., Ardmore, PA, United States) in the preparation
room or an MRI-compatible ventilator (CWE Inc., Weston,
WI, United States) inside the scanner room. The monkey was
maintained with intermittent positive-pressure ventilation to
ensure a constant respiration rate (25–35 breaths/min). Vital
signs including blood oxygenation, electrocardiogram (ECG),
rectal temperature (Small Animal Instruments, Inc., Stony Brook,
New York), respiration rate and end-tidal CO2 (Smiths Medical
ASD Inc., Dublin, Ohio) were continuously monitored. Oxygen
saturation was kept at over 95% and body temperature was kept
constant using a heated water blanket (Gaymar Industries Inc.,
Orchard Park, New York). Lactated Ringer’s solution was given
with a maximum rate of 10 ml/kg/hour during the anesthesia
process (Logothetis et al., 1999).

To ensure adequate EEG data quality, we prepared the animal
scalp by shaving and thorough cleaning with abrasive gel and
alcohol swabs. A custom EEG cap made of stretchable material
was fitted over the scalp and then fastened by a chinstrap. An
ECG electrode was attached close to the heart to facilitate off-
line removal of cardio-ballistic artifacts. To increase the signal-
to-noise ratio, we injected conductive gel and ensured a low
impedance (<5 kilo-ohms) at each electrode. The electrode filling
holes were subsequently covered with medical tape to prevent
the gel from drying out during recording. After setting up the
EEG cap, the monkey was restrained within a water blanket
in a sphinx-like position with the head protruding and facing
forward. The animal’s head was secured using a custom-built
MRI-compatible stereotaxic frame after local anesthetic (5%
lidocaine cream) was applied around the ears to block peripheral
nerve stimulation.

The isoflurane concentration was initially set to 1.2–
1.3% within the recommended range in rs-fMRI research on
isoflurane-anesthetized monkeys (Vincent et al., 2007; Hutchison
et al., 2014), and adjusted by 0.05% increase or decrease
to keep the continuously monitored physiological parameters
within normal ranges (oxygen saturation: >95%; heart rate:
85–160 beats/min; temperature: 36–38◦C; respiration rate: 22–
35 breaths/min; end-tidal CO2: 24–30 mmHg) throughout
the experiment. Datasets were collected at least 15 min
after the adjustment of isoflurane level. Details of isoflurane
concentration, BS ratio and physiological parameters for all
included datasets were listed in Table 1.

Simultaneous EEG-MRI Data Acquisition
MRI images were acquired at the Institute of Neuroscience on
a 3T whole-body scanner (Trio; Siemens Healthcare, Erlangen,
Germany) running with an enhanced gradient coil insert (AC88;
80 mT/m maximum gradient strength, 800 mT/m/s maximum
slew rate) and a custom-built bird-cage volume coil with 8-
channel array receiver. Whole-brain resting-state fMRI data were
collected using a gradient echo planar sequence (TR = 2000 ms;
TE = 29 ms; flip angle = 77◦; slices = 32; matrix = 64 × 64;

field of view = 96 mm × 96 mm; 1.5 mm × 1.5 mm in plane
resolution; slice thickness = 2.5 mm; GRAPPA factor = 2). For
each session, 5–10 runs were acquired and each run consisted
of 200 functional volumes. A pair of gradient echo images
(echo time: 4.22 and 6.68 ms) with the same orientation and
resolution as EPI images were acquired to generate a field map
for distortion correction of EPI images. High-resolution T1-
weighted anatomical images were acquired using a MPRAGE
sequence (TR = 2500 ms; TE = 3.12 ms; inversion time = 1100 ms;
flip angle = 9◦; acquisition voxel size = 0.5 mm × 0.5 mm × 0.5
mm; 144 sagittal slices). Six whole-brain anatomical volumes
were acquired and further averaged for better brain segmentation
and 3D cortical reconstruction.

Simultaneous EEG scalp recordings were acquired with
BrainVision Recorder software using a BrainAmp MR amplifier
and a 28-channel EEG cap customized for macaques (Brain
Products GmbH, Gilching, Germany) with sintered Ag/AgCl ring
electrodes. EEG signals from 21 active channels were sampled at
5000 Hz with a resolution of 0.5 µV per bit and measuring range
of ±16 mV. The sampling clocks of the MR and EEG systems
were synchronized using the SyncBox (Brain Products GmbH,
Gilching, Germany), thus providing the time of fMRI volume
acquisition for later gradient artifact removal in EEG signals.

Data Analysis
MRI Data Preprocessing
Preprocessing of functional MRI images was conducted using the
SPM8 toolbox1 and the FMRIB Software Library toolbox (FSL2).
The first 10 volumes were discarded before preprocessing. The
field map images of each session were applied to compensate
for the geometric distortion of EPI images caused by magnetic
field inhomogeneity using FSL FUGUE. After slice timing
correction and motion correction, the corrected images were
normalized to standard space of the monkey F99 atlas3 using
an optimum 12-parameter affine transformation and nonlinear
deformations, and then resampled to 1.5 mm cubic voxels and
spatially smoothed with a 3 mm full-width at half-maximum
(FWHM) isotropic Gaussian kernel. Linear drift of the volumes
was removed, followed by regression of nuisance covariates (six
head motion parameters, white matter and ventricle signals) and
temporal filtering (0.01–0.1 Hz). To eliminate the BS coupling
effect, we conducted another regression using BS pattern as an
additional regressor.

EEG-MRI Coupling Analysis
We first assessed the coupling effect of BS pattern on filtered
BOLD fluctuations. For each dataset with BS activity in EEG
signal, the suppression episodes were automatically defined
by thresholding the normalized amplitude summed across all
available EEG channels. All labels of suppression onset or offset
were visually inspected by an experienced anesthesiologist. The
BS pattern was defined as a binary signal with zero indicating
suppression epochs and one indicating non-suppression epochs.

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.fmrib.ox.ac.uk
3http://sumsdb.wustl.edu/sums/macaquemore.do
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The time course of the binary BS pattern was then convoluted
with the canonical hemodynamic response function (HRF)
implemented in SPM8 as a regressor of interest. The significance
of BS coupling effect on each voxel was evaluated via one-
sample t-test. To account for the effect of repeated measure
from the same subject, binary variables indicating whether the
datasets were collected from a specific animal were included
as covariates in the SPM model. Family-wise error (FWE)
correction was applied to account for multiple comparisons with
voxel-wise P < 0.001.

Whole-Brain Functional Connectivity Analysis
For the whole-brain FC analysis, we first parcellated the
monkey brain into 82 cortical areas based on the Regional Map
template (Kotter and Wanke, 2005; Bezgin et al., 2012) and 12
subcortical areas based on the INIA19 (Rohlfing et al., 2012)
(see Supplementary Table S1 for a complete list of anatomical
labels). Pearson’s correlation coefficients between the mean time
courses of any pair of regions were calculated to represent their
FC, resulting in a 94 × 94 connectivity network matrix for
each dataset. Statistical significance of group differences were
evaluated using linear regression analysis with binary variables
of individuals as covariates in the GRETNA toolbox4. The edge-
wise threshold of the significance level was set at P = 0.001, and
cluster-level correction of P < 0.05 was applied to adjust the
multiple comparison using the network-based statistic (Zalesky
et al., 2010). Effect sizes measured via Hedges’ g values were
calculated to evaluate the extent of group difference. In addition,
we assessed the normalized distribution of disrupted edges
within and between lobes. The bias caused by the unbalanced
number of brain regions within different lobes was adjusted
using the standardized residuals (Z scores), defined as the raw
residuals (the difference between the observed edge count and
expected edge count) divided by the square root of the expected
edge count (Sheskin, 2003). The significance of the Z scores
was estimated via non-parametric permutation (5,000 times).
Specifically, the disrupted edges were randomly assigned across
the whole brain network and the standardized residuals were re-
calculated to generate the null distribution. The percentage of the
assignments with a larger or equal Z score was defined as the
P value. Bonferroni correction was applied for the correction of
multiple comparisons.

Seed-Based Functional Connectivity Analysis
As the functional connections within the DMN and
thalamocortical network are of particular interest during the
anesthesia process, we further conducted seed-based functional
network analysis. Bilateral posterior cingulate cortex (PCC)
and bilateral thalamus defined in Regional Map parcellation
were selected as seed regions, respectively. The averaged time
course of fMRI signals within the seed region was then treated
as a regressor of interest in the generalized regression model
in the SPM toolbox. The connectivity strength between each
voxel and the seed region was estimated via the beta coefficient
in the regression model and statistically tested in each group

4https://www.nitrc.org/projects/gretna

using a one-sample t-test with covariates indicating individual
animals. The group difference in voxel-wise connectivity was
tested using a one-way repeated measure ANOVA. FWE
correction was applied to account for multiple comparisons with
voxel-wise P < 0.001.

RESULTS

Brain-Wide BOLD Fluctuations Are
Coupled With BS Activity
Figure 1 shows robust coupling between the BS pattern in EEG
signals (Figure 1A) and the spontaneous fluctuations in BOLD
signals after temporal filtering (Figure 1B, Z scored) in one
typical dataset. Group analysis results indicated that the BOLD
fluctuations of most neocortex were positively correlated with
the EEG BS pattern (Figure 1C, voxel-wise P < 0.001, FWE
correction), including the prefrontal cortex, temporal cortex,
parietal cortex, somatosensory cortex, PCC, primary motor and
premotor cortex, visural cortex, as well as thalamus.

Altered Whole-Brain Functional
Connectivity During BS Activity
Compared to SW Activity
Results of whole-brain comparison based on datasets with or
without removal of BS coupling effect were presented in Figure 2
and Supplementary Figure S3, respectively. Group-averaged
connectivity networks from datasets with BS activity and stable
SW activity are presented in Figure 2A. Group difference in
each connection is represented using effect size (Hedges’ g value,
bottom-left triangle in Figure 2B). A total of 371 functional
connections showed significant differences between BS and
SW groups (cluster-level corrected P < 0.00, NBS correction
with edge-wise P < 0.001, top-right triangle in Figure 2B),
including 317 increased and 54 decreased connections in BS
group. As presented in Figure 2C, the BS group showed a
substantial increase in cortical connectivity, accompanied by
significant decrease mainly in connections between parietal
and temporal/prefrontal cortex (PFC), and between insula and
occipital/parietal cortex. The normalized distribution of altered
connections across different brain lobes is summarized in
Figure 2D (bottom-left triangle). The number of disrupted edges
between certain lobes is significantly larger than the random
distribution (P < 0.05, Bonferroni correction). The majority of
within-lobe connections are concentrated in the orbitofrontal
cortex (OFC). The majority of across-lobe connections are
concentrated between OFC and prefrontal/cingulate/occipital
cortex, and between parietal and temporal cortex.

Increased Connectivity in Default Mode
Network During BS Activity
The DMN was defined as the voxel-wise FC with bilateral
PCC. The statistical results of the connectivity strength
in BS and SW groups are presented in Figures 3A,B,
respectively (voxel-wise P < 0.001, FWE correction). The
BOLD activity in PCC was positively correlated with bilateral
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FIGURE 1 | Coupling between BOLD fluctuations and burst suppression patterns in EEG signals. (A) EEG signals with burst suppression pattern simultaneously
recorded during fMRI scanning from the central frontal electrode. The bottom and top panel show 380 and 60 s EEG, respectively. The time onset corresponds to
the acquisition of the first MRI volume. (B) Burst suppression pattern with HRF convolution and averaged BOLD signals in gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF). The dashed vertical lines in gray are aligned to the trough of the GM signal. (C) Group statistics (n = 27) shown as voxel-wise t-values of a
generalized linear model modeling burst suppression pattern as a regressor of interest were displayed in bspmview (voxel-wise P < 0.001, FWE correction).

parietal cortex, medial and centrolateral prefrontal cortex,
superior and ventral temporal cortex, primary motor and
dorsolateral premotor cortex, anterior cingulate cortex and visual
areas, and anticorrelated with secondary somatosensory and

inferior parietal cortex during SW activity (Figure 3B). In
comparison, there is an overall increase in DMN connectivity
during BS activity (Figure 3A), particularly in the superior
temporal cortex, prefrontal cortex, secondary somatosensory
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FIGURE 2 | Altered functional connections during burst suppression activity compared to stable slow wave activity after the coupling effect with burst suppression
pattern was corrected via regression. (A) Averaged functional connectivity (FC) matrices during burst suppression (BS, bottom-left) and slow wave (SW, top-right)
activity. Covariates were regressed out before temporal filtering. (B) Effect sizes (ES, Hedges’ g value) of BS versus SW (bottom-left) and corresponding P values
(top-right, P < 0.05, NBS correction with edge-wise P < 0.001). Brain nodes are organized according to the regions/lobes as listed in Supplementary Table S1.
(C) Altered functional connections represented with node information. See Supplementary Table S1 for details of brain area abbreviations. (D) Normalized spatial
distribution of disrupted connections across the brain (bottom-left) and the corresponding significance (top-right, P < 0.05, Bonferroni correction).
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FIGURE 3 | Altered functional connections across anesthesia levels in default
mode network. (A,B) Voxel-wise connectivity with bilateral posterior cingulate
cortex (indicated in black circle) in burst suppression (BS) and slow wave (SW)
states. Volume metrics were mapped to cortical surface in CARET5.
(C) Altered functional connections during BS activity compared to SW activity.
All results were corrected for multiple comparisons at a significance level of
P < 0.05 via FWE with voxel-wise P < 0.001.

cortex and auditory cortex (Figure 3C, voxel-wise P < 0.001,
FWE correction).

Increased Thalamocortical Connections
During BS Activity
Thalamocortical connections were assessed by seed-based
functional analysis with the bilateral thalamus as the seed region.
Significant connections with the thalamus were observed in
the bilateral striatum, medial prefrontal cortex, inferior parietal
cortex, superior temporal cortex, auditory cortex, somatosensory
cortex, posterior insula, visual cortex, anterior and posterior
cingulate cortex during BS activity (Figure 4A, voxel-wise
P < 0.001, FWE correction). Few thalamocortical connections
to striatum, inferior parietal cortex, superior temporal cortex,
retrosplenial and posterior cingulate cortex, somatosensory
cortex and anterior visual area were observed during SW activity
(Figure 4B, voxel-wise P < 0.001, FWE correction). The group
comparison results further confirmed the overall increase during
BS activity particularly in bilateral putamen, globus pallidus, right
visual area, and left secondary somatosensory cortex (Figure 4B,
voxel-wise P < 0.001, FWE correction).

FIGURE 4 | Altered functional connections across anesthesia levels in
thalamocortical network. (A,B) Voxel-wise connectivity with bilateral thalamus
(indicated in black circle) in burst suppression (BS) and slow wave (SW)
states. Volume metrics were mapped to cortical surface in CARET5.
(C) Altered functional connections during BS activity compared to SW activity.
All results were corrected for multiple comparisons at a significance level of
P < 0.05 via FWE with voxel-wise P < 0.001.

DISCUSSION

Robust BS Coupling Effect in the Raw
BOLD Fluctuations
In the current study, we show dramatic fluctuations in
BOLD signal co-occurring with EEG BS activity in the
isoflurane-anesthetized monkey brain. The coupling between
simultaneously recorded BOLD and EEG signals can be explained
by the highly synchronized excitability of the entire cerebral
cortex during BS activity. Convergent research has shown that
BS is associated with a hyper-excited cortical state, where bursts
can be evoked by sub-threshold stimulus or occur spontaneously
(Steriade et al., 1994; Hartikainen et al., 1995; Hudetz and
Imas, 2007; Kroeger and Amzica, 2007; Ferron et al., 2009).
Electrophysiological studies indicate that neurons in almost the
entire cerebral cortex exhibit a similar “on-off” pattern during
this state, featuring stereotyped alteration between depolarizing
events and electrical silence of the neuronal membrane (Steriade
et al., 1994). The hyper-excited burst activity was positively
correlated with the cerebral blood flow (CBF) fluctuations, which
is the base of BOLD fluctuations, as indicated in a recent

Frontiers in Neuroscience | www.frontiersin.org 8 April 2019 | Volume 13 | Article 29647

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00296 April 9, 2019 Time: 18:4 # 9

Zhang et al. Increased Connectivity During Burst Suppression

isoflurane-anesthetized rat research (Liu et al., 2011). Therefore,
the BS coupling effect on BOLD fluctuations is supported by the
physiological basis that synchronization of spontaneous high-
voltage burst activity across a large population of neurons can
result in the synchronization of hemodynamic fluctuations across
different brain regions.

Separating Specific and Non-specific
Functional Connectivity During
BS Activity
Although several lines of evidence suggest a coherent neural
activity basis of resting-state FC, whether there is a specific
FC signature that underlies the BS anesthesia depth remains
unclear. As previously mentioned, neural activity that changes
between two electrical phases with enormous disparity can lead to
radical changes in BOLD fluctuations at a large time scale, which
in turn results in an overwhelming increase in the correlation
coefficients between whole-brain BOLD signals during BS activity
(Supplementary Figure S3). This non-specific coupling effect of
BS pattern is superimposed on the potential specific functional
changes associated with anesthesia depth or consciousness loss
(Figure 2), and obscures the latter effect.

In removing regular nuisance effect, we demonstrated that
regression of WM and CSF signals before temporal filtering is
more effective (Supplementary Figure S1). This is consistent
with the previous findings in human rs-fMRI studies that
nuisance-related variability such as head motion and cardiac
artifacts can be better controlled when covariate regression is
applied before temporal filtering rather than after filtering in
the preprocessing procedure (Hallquist et al., 2013). Further
evaluation of the BS coupling effect on preprocessed images
indicated that BS related global effect as indicated in Figure 1C
cannot be fully eliminated by using either preprocessing
procedure (Supplementary Figure S2). Therefore, we added the
HRF convoluted BS pattern as an additional regressor in the
linear regression model to eliminate the global coupling effect in
fMRI datasets with BS activity.

Overall Increase in Functional
Connectivity During BS Activity
An overall increase in functional connections during BS activity
was observed compared to SW state in both whole-brain analysis
(Figure 2) and seed-based analysis (Figures 3, 4). As non-specific
increase in the correlation matrix due to BS pattern was well
controlled in preprocessing, the remaining alterations across
different anesthesia levels may largely reflect specific changes in
a subgroup of networks or brain areas. Interestingly, most of
the connectivity alterations took place within OFC, and between
OFC and other cortical areas. The role of the OFC in BS activity
or anesthesia progress merits further investigation. Reduced
connectivity strength was observed in a subset of connections
between insula and occipital-parietal cortex, suggesting the
segregation of the limbic system from the neocortex along
with the deepening of anesthesia level. Few alterations were
observed within subcortical areas, although a significant increase
from subcortical to temporal cortex, parietal cortex, OFC and

PFC was detected, which was also verified in the seed-based
analysis in thalamus.

Preservation of DMN During BS Activity
The DMN is the most robust intrinsic network of the resting-
state brain, which is associated with intrinsic processes such
as mind wandering and self-reference (Buckner et al., 2008;
Vanhaudenhuyse et al., 2011). Studies of alterations in DMN
activity corresponding with different sleep stages indicate a
potential correlation between the DMN and consciousness
in humans (Raichle et al., 2001). Disconnection between the
prefrontal cortex and the PCC has been observed during deep
sleep (Horovitz et al., 2009; Samann et al., 2011). Subjects in
sedation also exhibit a significant decrease in the default mode
activity (Greicius et al., 2008; Martuzzi et al., 2010). Taken
together, these findings suggest that the DMN may disappear
at a certain stage during loss of consciousness. Nevertheless,
preservation of the DMN connectivity under deep anesthesia
was recently reported in both anesthetized monkeys and humans
(Vincent et al., 2007; Boveroux et al., 2010; Hutchison and
Everling, 2012). Our results displayed similar DMN patterns
during both BS and SW activity as previous monkey studies
(Vincent et al., 2007; Teichert et al., 2010). The robust findings of
DMN under deep anesthesia indicate that the DMN may not be
tightly associated with consciousness level (Buckner et al., 2008).

Recovery of Thalamocortical
Connectivity and the Role of Thalamus
During BS Activity
Numerous studies have indicated the influence of anesthesia
depth on thalamocortical connections. The presence of
thalamocortical connectivity has been reported during light
anesthesia where subjects just reached unconsciousness
(Martuzzi et al., 2010; Mhuircheartaigh et al., 2010). Recent
reports show diminished but detectable thalamocortical
connectivity in anesthetized subjects associated with
unconsciousness (White and Alkire, 2003; Boveroux et al.,
2010; Liang et al., 2012). In the current study, few connections
with striatum, cingulate cortex, primary sensory areas, inferior
parietal cortex, and superior temporal cortex were observed
during SW activity. In contrast, a substantial increase of
connections to striatum, somatosensory, and visual cortex were
detected during BS activity.

The thalamus is believed to be a crucial region for the
synchronized burst activity of neocortex during the BS episodes
of EEG (Brown et al., 2010). The first study of the neuronal
mechanisms of BS (Steriade et al., 1994) confirmed a close
correspondence between neocortical and thalamic activities
through intracellular and multisite extracellular simultaneous
recordings from cortex, thalamus, and upper brainstem.
Despite the overwhelming predominance of cortical electrical
silence during EEG suppression epochs, there were still
rhythmic oscillations discharged to the cortex from a part
of the thalamus. This thalamocortical oscillation was able to
facilitate neuron firing or subthreshold depolarizing potentials
as well as the revival of EEG activity. However, other studies
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indicated that cortical hyper-excitability during BS activity is
favored by diminished cortical inhibition rather than thalamus
induced excitation (Ferron et al., 2009). In our results, high
synchronization between thalamic activity and BS pattern
(Figure 1C) was revealed. Additionally, after the removal of BS
coupling effect, there were significant connections from thalamus
to primary sensory networks, which were weaker during SW
activity. These enhanced thalamocortical connections might
underlie the phenomenon that facilitated global burst activity
could be induced by various kinds of subthreshold sensory
stimuli under deep anesthesia with BS activity (Kroeger and
Amzica, 2007). As for the role of thalamus in BS activity, further
studies are desiderated.

Anesthetic Sensitivity and the
Importance of Simultaneous
EEG Monitoring
For monitoring and defining anesthesia level, most fMRI
studies generally employ two kinds of anesthesia depth
monitoring indexes. One is behavioral endpoint, such as “loss
of responsiveness” for human or “immobility” for animals.
The other is end-tidal concentration or minimum alveolar
concentration (MAC) for volatile anesthetics, both of which
represent the anesthetic concentration level in subjects for
inhibiting noxious stimulus (Eger et al., 1965). However, these
indexes may not reflect the actual brain state (Antognini and
Carstens, 2002; Ryu et al., 2018). The improved comprehension
of EEG signals under anesthesia makes it a promising method
suitable for more accurate control of anesthesia level (Freye and
Levy, 2005; Purdon et al., 2013, 2015; Marchant et al., 2014).

Based on post-hoc analysis of the coherence of rs-fMRI
correlation at various anesthesia levels, a limited range of
isoflurane concentration (1.00–1.50%) is recommended to obtain
stable FC (Hutchison et al., 2014). However, as mentioned
previously, monkey fMRI studies with simultaneous EEG
monitoring have recorded BS activity at 1.25–1.5% isoflurane
(Vincent et al., 2007). In current work, we recorded BS activity
in two out of 16 monkeys even at 0.8–1.3% isoflurane. The
occurrence of BS activity at a commonly used concentration
of isoflurane in fMRI studies suggests individual variance in
anesthetic sensitivity at the brain level. Anesthetic sensitivity
can be affected by both pharmacokinetic and pharmacodynamics
factors and varies across different subjects (Chemali et al., 2015).
Even in the same subject, there are many other confounding
factors, including physiological status on the experiment day, and
sleep quality before the experiment. The etiology and mechanism
of anesthetic sensitivity in the brain merits further investigation.

Although BS activity induced by an isoflurane level as low
as 0.8% rarely happens, it makes a strong argument for the
potential occurrence of BS activity when delivering a widely-
used range of concentrations in the field. Simultaneous EEG
is necessary to monitor the actual brain state in regular rs-
fMRI studies on anesthetized animals. More importantly, BS
activity-induced changes in FC is robust. In current work,
the occurrence of BS activity was spontaneous, resulting in
inconsistent burst suppression ratio (BSR, range 0.56–38.9%).
BSR is a commonly used parameter to describe the intensity

of BS activity with larger BSR indicating higher probability of
BS occurrence and deeper anesthesia level. In current study,
robust increase of FC was observed across BS runs with different
BSR. Greater enhancement was observed under a stable BS
state with frequent and long-lasting suppression episodes than
those with occasional occurrence of BS event. Further studies
with deliberately controlled BSR are needed to investigate the
relationship between BSR and BS effect on FC.

LIMITATIONS

There are several limitations worth noting in this research. First,
in consideration of the difficulty in controlling the occurrence of
BS event and the individual variation in anesthetics sensitivity,
present finding of the notably weak thalamocortical connectivity
during SW activity could be affected by the relative small
sample size. Second, another preliminary analysis on the current
datasets suggested that the global synchronization strength
during BS activity is potentially associated with BSR, which is
not deliberately controlled in current study. Future studies with
more subjects and precise control of BSR are needed to probe the
biological underpinnings of the BOLD fluctuations at this specific
anesthesia level. Third, to explore the influence of preprocessing
procedures, we compared two conventional strategies used
in monkey fMRI data analysis (Supplementary Figure S1).
Other widely debated preprocessing steps such as global signal
regression were not included. However, Scholvinck et al. (2010)
showed that the often discarded global component of resting-
state BOLD fluctuations is tightly coupled with underlying neural
activity and may affect connectivity analysis. Fourth, there is
a great chance that the global BS coupling effect is not fully
excluded by regressing out the HRF convoluted BS pattern,
although regression is the most commonly used approach to
deal with nuisance variables with global influence. Lastly, pure
oxygen was used in current experiments, which is considered
as a probable confounding factor leading to more widespread
connectivity in rs-fMRI studies (Nasrallah et al., 2015). However,
we expect that the potential effect of hyperoxia is comparable in
both BS and SW runs, as should impose very limited influence on
the group difference in FC. Current results on specific alterations
in FC during BS activity compared to SW activity should be
interpreted with caution. However, the trend of overall increase
in intrinsic FC during BS activity is robust and worth attention
from researchers in the field.

CONCLUSION

In summary, we present evidence showing a dramatic increase
in inter-regional connectivity in fMRI network under deep
anesthesia with BS activity. The enhanced connectivity can
be explained by the coupling effect of BS pattern on whole-
brain BOLD signals. This non-specific coupling effect can
be well controlled by covariates regression conducted before
temporal filtering with the HRF convoluted BS pattern as an
additional regressor. After the coupling effect was separated
from the connectivity matrix, we detected an overall increase
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in the functional connections under deep anesthesia with
BS activity comparing to a lighter level with SW activity,
including connections in DMN and thalamocortical networks.
The orbitofrontal lobe are the most affected brain areas during
BS activity. The non-linear changes in FC from light to deep
anesthesia levels highlight the importance of future investigation
on the physiological basis underlying BS activity. This is
essential to clarify the mechanisms of anesthesia and coma
states with BS events.
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Resting-state functional magnetic resonance imaging (rs-fMRI) is a widely used
technique for mapping the brain’s functional architecture, so delineating the main
sources of variance comprising the signal is crucial. Low frequency oscillations (LFO)
that are not of neural origin, but which are driven by mechanisms related to cerebral
autoregulation (CA), are present in the blood-oxygenation-level-dependent (BOLD)
signal within the rs-fMRI frequency band. In this study we use a MR compatible
device (Caretaker, Biopac) to obtain a non-invasive estimate of beat-to-beat mean
arterial pressure (MAP) fluctuations concurrently with rs-fMRI at 3T. Healthy adult
subjects (n = 9; 5 male) completed two 20-min rs-fMRI scans. MAP fluctuations
were decomposed into different frequency scales using a discrete wavelet transform,
and oscillations at approximately 0.1 Hz show a high degree of spatially structured
correlations with matched frequency fMRI fluctuations. On average across subjects,
MAP fluctuations at this scale of the wavelet decomposition explain ∼2.2% of matched
frequency fMRI signal variance. Additionally, a simultaneous multi-slice multi-echo
acquisition was used to collect 10-min rs-fMRI at three echo times at 7T in a separate
group of healthy adults (n = 5; 5 male). Multiple echo times were used to estimate
the R2

∗ decay at every time point, and MAP was shown to strongly correlate with
this signal, which suggests a purely BOLD (i.e., blood flow related) origin. This study
demonstrates that there is a significant component of the BOLD signal that has
a systemic physiological origin, and highlights the fact that not all localized BOLD
signal changes necessarily reflect blood flow supporting local neural activity. Instead,
these data show that a proportion of BOLD signal fluctuations in rs-fMRI are due
to localized control of blood flow that is independent of local neural activity, most
likely reflecting more general systemic autoregulatory processes. Thus, fMRI is a
promising tool for studying flow changes associated with cerebral autoregulation with
high spatial resolution.
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INTRODUCTION

Functional connectivity in the brain can be assessed with blood-
oxygenation-level-dependent (BOLD) functional magnetic
resonance imaging (fMRI). The source of BOLD contrast
is the difference in magnetic susceptibility between oxy-
and deoxyhemoglobin, which has an effect on apparent
transverse relaxation (R2

∗), and thus imparts sensitivity to blood
oxygenation in the MR signal (Buxton, 2013). Neurovascular
coupling (NVC) allows brain activity to be mapped using
BOLD fMRI, because localized increases in cerebral blood flow
(CBF), which are proportionally larger than changes in oxygen
metabolism, cause increases in local venous blood oxygenation.
An implicit assumption that predicates BOLD fMRI as a tool for
mapping neural activity in the brain is that NVC related changes
in CBF are the predominant source of signal variance. There are,
however, other mechanisms besides NVC that regulate CBF, such
as arterial blood gas concentration, particularly carbon dioxide
(CO2), which is a potent vasodilator with a strong effect on CBF
(Battisti-Charbonney et al., 2011). Furthermore, systemic control
of the brain’s blood supply is governed by numerous homeostatic
mechanisms that are broadly defined as cerebral autoregulation
(CA) (Willie et al., 2014), the theoretical process that modulates
cerebrovascular resistance to ensure CBF is kept at a sufficient
level in the face of transient changes in systemic haemodynamics
(e.g., blood pressure and cardiac output).

Understanding non-neuronal sources of variance in CBF
fluctuations is especially important with regard to resting state
fMRI (rs-fMRI) paradigms for two reasons. Firstly, unlike
traditional task based paradigms for which the timing and
duration of evoked BOLD signal changes is known a priori,
the timing of spontaneous neural fluctuations can’t be assumed,
meaning non-neuronal effects can’t be mitigated as they are
in task based designs by averaging over trials. Secondly, the
low frequency range (∼0.01–0.1 Hz) over which functional
connectivity is observed overlaps with the spectrum at which
other systemic physiological effects occur (Murphy et al., 2013).
Spontaneous fluctuations in breathing cause cerebrovascular
reactivity (CVR) to CO2 to manifest as low frequency (<0.05 Hz)
oscillations in the BOLD signal (Wise et al., 2004), and
endogenous fluctuations (<0.1 Hz) in vascular tone have been
reported in various different vascular beds across multiple species
(Nilsson and Aalkjaer, 2003). Recently, low frequency oscillations
(LFO) of a systemic origin have been observed by correlating
fMRI signals with functional near-infrared spectroscopy (fNIRS)
measures of peripheral haemodynamics (Tong and Frederick,
2010; Tong et al., 2012). Intriguingly, these systemic LFOs appear
to propagate throughout the brain with spatially structured
temporal delays (Erdogan et al., 2016).

Arterial blood pressure (ABP) is dynamic over multiple
time scales, including at a beat-to-beat level, and so is
likely to contribute significantly to fluctuations in CBF.
Transcranial Doppler ultrasound (TCD) studies have consistently
demonstrated how ABP fluctuations modulate cerebral blood
flow velocity (CBFV) in large intracranial arteries (Aaslid et al.,
1989; Zhang et al., 1998), and that they account for a considerable
proportion of the total variance, approximately 60% of the

total predictive power of CBFV fluctuations in right middle
cerebral artery (MCA) (Mitsis et al., 2004). Evidence for how
blood pressure dynamics affect fMRI fluctuations is scarce,
mostly limited to animal studies on the relationship between
transient changes and evoked neural responses (Wang et al.,
2006; Qiao et al., 2007; Uchida et al., 2017). Similar to fMRI,
ABP time series have a 1/f power spectrum, but also show
distinct oscillations (∼0.1 Hz in humans) known as Mayer waves
(Mayer, 1876), which are independent of respiration and tightly
coupled to efferent sympathetic nervous activity (SNA) (Julien,
2006). Oscillations at this frequency have also been observed
in cerebral haemodynamics measured with fNIRS (Obrig et al.,
2000; Yucel et al., 2016) and intraoperative multispectral optical
intrinsic signal imaging (Rayshubskiy et al., 2014). However, the
origins of such signals are unclear, and separating the effects of
ABP fluctuations from vasomotion (which is usually regarded as
distinct) on cerebral haemodynamics is an open challenge.

Nevertheless, the TCD literature provides compelling reason
to believe that ABP fluctuations should contribute to the BOLD
fMRI signal. Measurement of the coupling between fluctuations
in ABP and CBFV in intracranial arteries has found widespread
use as a clinically useful means of assessing CA (Zhang et al.,
1998; Panerai et al., 2002; Panerai, 2008), and nonlinear modeling
estimates that ABP accounts for 60% of the predictive power of
CBFV fluctuations in the MCA (Mitsis et al., 2004). Although
TCD has been widely used to assess both CVR and CA in research
and clinical practice (Willie et al., 2011), more recently fMRI
has emerged as a powerful tool for mapping CVR across the
brain (Pillai and Mikulis, 2015), and the feasibility of obtaining
BOLD fMRI based measures of CVR from spontaneous CO2
fluctuations has also been demonstrated (Golestani et al., 2016).
So far, these advances in measuring cerebrovascular function with
fMRI have not yet extended into the domain of CA. However, the
TCD literature proves that blood pressure related spontaneous
CBFV fluctuations provide an effective means of characterizing
CA, which is promising for the development of an equivalent
whole-brain fMRI method.

In this study we explore the relationship between systemic
fluctuations in blood pressure and the resting-state fMRI
signal. We measure beat-to-beat blood pressure fluctuations
concurrently with single-echo fMRI at 3T and multi-echo fMRI at
7T, and show that widespread patterns of correlations exist in low
frequency BOLD signals, which we posit are due to fluctuations
in CBF associated with CA.

MATERIALS AND METHODS

Experimental Protocol
Magnetic Resonance Imaging Acquisition
The study consisted of two separate experiments conducted on
two different scanners. Nine healthy volunteers (age 22–37 years)
were recruited for a 3T session to collect single-echo fMRI data
(3T) and five additional healthy volunteers (age 30–41 years)
were recruited for a 7T session to collect multi-echo fMRI data
(7T-ME). All participants gave written informed consent, and
the School of Psychology Cardiff University Ethics Committee
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approved the study in accordance with the guidelines stated in
the Cardiff University Research Framework (version 4.0, 2010).

The 7T scan protocol was added to enable us to address the
origin of MAP correlated fMRI signal changes. Primarily this
was achieved by using a multi-echo acquisition, which allows us
to separate the pure BOLD component from the fMRI signal.
Furthermore, the session consisted of two scans with differing
acquisition parameters (see section “Multi-Echo Fit” below for
theoretical details).

3T
Two twenty-minute rs-fMRI runs were acquired on a 3T GE
HDx scanner (GE Healthcare, Milwaukee, WI, United States)
with an eight-channel receive head-coil using a gradient-echo EPI
readout with a single echo time (TR = 2000 ms; TE = 35 ms;
flip angle (α) = 90◦; FOV = 224 mm; 3.5 mm2 in-plane
resolution; 33 slices (3.5 + 0.5 mm gap), SENSE (GE ASSET)
acceleration factor = 2). Whole-brain T1-weighted anatomical
images were acquired using an FSPGR sequence (FOV = 256 mm,
TR = 7900 ms, TE = 3 ms, 172 contiguous sagittal slices,
1 mm3 isotropic).

7T-ME
Two ten-minute eyes-closed rs-fMRI runs were acquired on a
7T Siemens MAGNETOM scanner (Siemens Healthcare GmbH,
Erlangen, Germany) equipped with a single-channel transmit/32-
channel receive head coil (Nova Medical, Wilmington, MA,
United States). The CMRR SMS-EPI sequence (R015) (Moeller
et al., 2010) was used to acquire multi-echo multiband EPI data
with three echoes using the following parameters: Scan 1 –
[TR = 1000 ms; TE1/2/3 = 8.14/21.47/34.8 ms; flip angle (α) = 35◦;
FOV = 220 mm; 2.4 mm2 in-plane resolution; 36 slices (2.5 mm
thick); multiband factor = 4; GRAPPA acceleration factor = 2]
and Scan 2 – [TR = 500 ms; TE1/2/3 = 8.14/21.47/34.8 ms;
flip angle (α) = 90◦; FOV = 220 mm; 2.4 mm2 in-plane
resolution; six slices (2.5 mm thick); multiband factor = 1;
GRAPPA acceleration factor = 2]. Whole brain T1-weighted
anatomical images were acquired using an MPRAGE sequence
(FOV = 220 mm, TR = 2200 ms, TE = 3 ms, TI = 1050 ms, 224
contiguous sagittal slices, 0.7 mm3 isotropic).

Physiological Monitoring
Concurrent physiological traces were recorded for all runs
and sampled at 500 Hz (CED, Cambridge, United Kingdom).
This included using photoplethysmography (PPG) to measure
pulse waveforms for deriving cardiac information, a pneumatic
respiratory belt for timing and relative respiration volume
measures, capnography for measuring expired partial pressure
of end-tidal carbon dioxide (PETCO2). The CareTaker system
(Biopac) was used to measure beat-to-beat blood pressure
with a cuff attached to the first digit of the hand (thumb).
The system uses the cuff to pneumatically sensor the arterial
pressure wave, and estimates beat-to-beat systolic and diastolic
blood pressure via analysis of the timing between different
components of the pulse waveform (Baruch et al., 2011), and has
been validated against gold standard arterial line measurements
(Baruch et al., 2014).

Data Analysis
Preprocessing
Data were preprocessed and registered to a standard space
using a pipeline created with AFNI, FSL, and in-house code.
Preprocessing of 3T and 7T-ME data consisted of the same
following steps: (1) De-spiking; (2) Motion correction by
registering all volumes to the first one. For 7T-ME scans steps
1–2 were performed separately for each echo time dataset, then
a nonlinear fit was performed to create S0 and R2

∗ datasets
(see section “Multi-Echo Fit” below). Subsequent steps were
performed separately for S0 and R2

∗ datasets. (3) Nuisance
regression with pre-whitening (Bright et al., 2017) to remove
cardiac and respiratory related noise (Glover et al., 2000; Birn
et al., 2008; Chang et al., 2009), end-tidal CO2 fluctuations
(convolved with HRF), and six estimated motion parameters;
(4) Slice time correction; (5) Non-linear registration to 2 mm
MNI space; (6) De-trending and motion censoring in a single
step, with the top 5% of volumes most severely corrupted by
motion (according to framewise displacement) being censored.
Censored time points were replaced with interpolated values
calculated from neighboring (non-censored) time points (NTRP
option in 3dTproject) in order to keep to the data temporally
consistent for subsequent wavelet decomposition. A discrete
wavelet transform was then performed on the preprocessed data
(see section “Maximum Overlap Discrete Wavelet Transform”
below). Note that physiological noise correction was performed
on unfiltered data.

For each subject gray matter (GM) masks were created from
segmented T1 images, with GM voxels defined as those with a
partial volume estimate greater than 66%. GM masks were used
in subsequent parts of the analysis, and GM mask averaged time
series were calculated for 3T and 7T-ME data for estimating
the global lag with blood pressure (see section “Blood Pressure
Correlation” below).

Multi-Echo Fit
Assuming a mono-exponential decay, the signal across multiple
echo times can be described according to Eq. 1.

S (TE) = S0e−R
∗

2 TE (1)

Where S0 is spin density weighted signal intensity at zero echo
time and R2

∗ is the apparent transverse relaxation rate (inverse
of relaxation time T2

∗). S0 is modulated by changes in apparent
T1 (e.g., due to inflow) and bulk motion and related spin history
effects, whereas R2

∗ reflects magnetic field homogeneity and
thus, due to blood oxygenation induced changes in microscopic
susceptibility, the source of the BOLD effect (Buxton, 2013).
NVC related functional responses in gradient-echo fMRI are
considered to be driven almost entirely by R2

∗ changes, which
has motivated the use of multi-echo acquisitions for separating
neuronal from non-neuronal signal components (Posse, 2012;
Kundu et al., 2017), based on the rationale that non-neuronal
components (i.e., not flow related) are mostly restricted to
changes in S0. It should be noted that inflow effects on S0 are
driven by changes in flow velocity through an imaging slice, and
so may partially reflect changes in CBF, however, this effect is
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generally considered to be small in multi-slice acquisitions with
standard TRs (Gao and Liu, 2012).

However, as discussed above, there are non-neuronal
contributors to flow, whose activity in principle should manifest
primarily in the form of R2

∗ changes. Ignoring the effects of
macroscopic field inhomogeneity, more generally R2

∗ changes
are driven by CBF dynamics (via the changes in blood
oxygenation they produce), whether they are neuronally driven
or not. The motivation for collecting 7T-ME data as part of this
study is that it allows us to determine to what extent MAP-
fMRI correlations are driven by changes in R2

∗ and S0, and thus
whether or not they are related to changes in CBF. Moreover, as
S0 is determined by the steady-state longitudinal magnetization
it is intrinsically dependent on acquisition parameters like TR
and flip angle. Thus, any significant S0 fluctuations are likely
to be modulated between 7T-ME scans 1 and 2, whereas R2

∗

fluctuations will not.
For each voxel and TR, 7T-ME data were fit to the

mono-exponential signal model with a nonlinear least-squares
approach using the Levenberg-Marquardt algorithm (Galassi,
2009), creating S0 and R2

∗ datasets. In multi-echo fMRI studies
numerous physical limitations restrict the number of echo
times that can be achieved to a small number, in this case
three, which presents a challenge for accurate estimation of
relaxation rates (Gowland and Bowtell, 2007), and sample-by-
sample parameter estimates are considered to be noisy (Kundu
et al., 2012). Compared with previous studies, here we benefit
from the higher SNR afforded by 7T to improve sample-by-
sample parameter estimates, and we performed simulations to
better understand the precision with which R2

∗ and S0 can be
measured using our nonlinear fit approach (details included in
Supplementary Material). These simulations demonstrate that
across the expected range of R2

∗ values, our choice of echo times
allows us to estimate both R2

∗ and S0 parameters without bias.

Maximum Overlap Discrete Wavelet Transform
Wavelet transforms provide a way of decomposing the total
variance within a time series into different frequency scales
[see Bullmore et al. (2004) for an fMRI focused review]. They
are conceptually similar to Fourier transforms, but because
wavelets are compactly supported (i.e., transient, not extending
infinitely like sine waves), they provide sensitivity to non-
stationary features within the scales of the decomposition.
Thus, wavelet coefficients (WC) provide a “time-frequency”
representation of data, including both temporal and spectral
information, analogous to moving-window Fourier transforms.
This makes the discrete wavelet transform useful for analyzing
real-world physiological data, which are expected to be non-
stationary, and the multi-resolution analysis allows signal energy
to be decomposed into distinct frequency bands. Given that
fluctuations in MAP are expected to show more power in
certain frequency bands, likely reflecting different underlying
mechanisms, in this study we used a wavelet transform to identify
the frequency scale of interest for the relationship between MAP
and fMRI signals.

For each voxel time series the maximum overlap discrete
wavelet transform (MODWT) was used to decompose the signal

into six scales (Witcher, 2015). The MODWT used a fourth-
order Daubechies wavelet filter as has been used previously for
fMRI applications (Bullmore et al., 2001; Patel and Bullmore,
2016). The central frequency (f c) and band between lowest (f low)
and highest (f high) frequencies contained within each scale (j)
depends on the sampling rate (TR), and is given by Eqs 2 and 3.

flow − fhigh =
1

2(j+1)TR
−

1
2jTR

(2)

fc =
flow + fhigh

2
(3)

In summary, each fMRI time series consisting of N volumes was
decomposed into six frequency scales, each composed of N WCs.
For reference the scale frequency bands for the TRs used in this
study are given in Table 1 and the frequency response of the filters
at each scale are shown in Supplementary Figure 1.

Blood Pressure Correlation
Beat-to-beat systolic (SBP) and diastolic (DBP) blood pressure
time series were processed in-house with a robust outlier
removal procedure and resampled to the relevant TR. Mean
arterial pressure (MAP) was estimated according to Eq. 4
(Brzezinski, 1990).

MAP =
2
3

(DBP)+
1
3

(SBP) (4)

MAP time series were decomposed with a MODWT into the
same six frequency scales as the fMRI data. Figure 1 shows a
MAP time series and its WCs for a representative subject. For
each run the cross-correlation between the average gray matter
signal and temporally displaced MAP signals was calculated. The
raw cross-correlation functions were then fit to a set of Legendre
polynomial functions of increasing order (until R2 > 0.95, or up
to a maximum order of 10) to obtain a smooth function from
which the lag between MAP and fMRI fluctuations was obtained.
Voxelwise correlations between MAP and scale matched fMRI
WCs for all frequency scales were calculated with the globally
optimized lag. Additionally, although more susceptible to noise,
we calculated a voxelwise lag using the same procedure and then
calculated corresponding correlations between MAP and scale
matched fMRI WCs.

It should be noted that in contrast with the discrete wavelet
transform (DWT), which is orthogonal (like the discrete Fourier

TABLE 1 | Table showing the frequency range (Hz) for each scale of the MODWT.

Scale TR (s)

2 1 0.5

1 0.125–0.250 0.250–0.500 0.500–1.000

2 0.063–0.125 0.125–0.250 0.250–0.500

3 0.031–0.063 0.063–0.125 0.125–0.250

4 0.016–0.031 0.031–0.063 0.063–0.125

5 0.008–0.016 0.016–0.031 0.031–0.063

6 0.004–0.008 0.008–0.016 0.016–0.031
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FIGURE 1 | A (i) Shows the mean gray matter signal from 3TSE data in a representative subject along with corresponding mean arterial pressure trace (iii). Wavelet
coefficients at 6 scales are shown for both GM (ii) and MAP (iv). (B) Group mean cross-correlation function between MAP and GM for each scale (i–vi), with shaded
area representing SEM.

transform), the MODWT is an oversampled transform in
which there is some redundancy (i.e., coefficients are not
completely independent). This means that the effective degrees
of freedom are reduced, which impacts on statistical parameters.
Additionally, the practice of filtering time series and allowing
temporal shifts changes the null distribution of Pearson’s
correlations (Bright et al., 2017). To address these potential
confounds on statistical inference we performed a permutation
analysis to determine the correct null hypothesis. The approach,
which has been used previously (Bright et al., 2017), estimates
the null distribution with phase-randomized versions of the MAP
time series. For each subject 1000 phase-randomized MAP traces
were correlated with fMRI to get a voxel-wise estimate of the
correlation null distribution from which p-values were calculated.

Group Level Analysis
For each frequency scale, subject level MAP - fMRI WC
correlation maps were entered into an independent two-tailed
t-test, from which group-level correlation and Z-score maps were
derived. The mean GM correlation and Z-score values were
calculated as a means of identifying the scale with the strongest
MAP vs. fMRI coupling. Subsequent analyses of 7T-ME data are
restricted to the scale with the matched frequency. Test–retest
repeatability was assessed using spatial correlation between Scan
1 and Scan 2 for 3T. For 7T-ME data, Scan 2 parameters were
chosen differently from Scan 1 from a theoretical perspective to
maximize any potential inflow effect in the S0 signal (Gao and Liu,
2012). For the different sources of image contrast, R2

∗ and S0, to

assess their relative contributions to MAP – fMRI correlations,
the absolute value of average GM vs. MAP correlations were
entered into a two way repeated measures ANOVA.

Note, that although a wavelet transform was used to
decompose MAP and fMRI signals into different frequency
scales, we also looked at the effect of MAP on unfiltered data
by regressing unfiltered optimal lag MAP traces onto voxel-wise
unfiltered fMRI data (see Supplementary Figure 4).

RESULTS

3T
Global Lag
Figure 1A, shows an example taken from a representative subject
of GM and MAP traces, and their respective WCs at the six
frequency scales listed in Table 1. Figure 1B shows the group
mean cross-correlation functions between MAP and GM WC
time series for each scale of the MODWT. Scales 1–3 all show
clear maxima with a similar degree of lag (5.75, 5.50, and 5.25 s
for scales 1–3, respectively).

MAP vs. fMRI Correlation
Voxelwise group average correlations (at optimal lag) are shown
for scale 2 WCs only in Figure 2C, along with corresponding
Z-scores in Figure 2D. Figure 2A shows the mean correlation
values and Z-scores within the voxelwise group maps for all
scales (at optimal lag), and it can be seen the scale 2 has
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FIGURE 2 | 3TSE data. (A) Mean correlations and Z-scores (across voxels) from group mean statistical parameter maps for each scale. Dotted lines indicated the
p-value for give z-score vales. (B) Spatial correlation scans 1 and 2 MAP-fMRI correlation maps for each scale (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and
∗∗∗∗p < 0.0001). (C) Group mean MAP – fMRI correlation map for scale 2 WC and corresponding Z-scores. (D) Correlations are those at the optimal lag values as
shown in Figure 1.

the highest mean correlation value and highest mean Z-score
value. It can be seen by the standard deviation error bars
that the majority of voxels at scale 2 have a Z-score >3.1
(p = 0.001). Figure 2B demonstrates that the spatial correlation
between scans (i.e., within subject agreement) is also highest
for scale 2 compared with the other scales. As documented

in Table 1, the frequency band for scale 2 for 3TSE data
(TR = 2s) is 0.063–0.125 Hz, which corresponds to a central
frequency () of∼0.1 Hz.

As stated in Section “Maximum Overlap Discrete Wavelet
Transform”, permutation tests based on phase-randomized MAP
time series were used to estimate the correlation null distribution
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for each subject on a voxel-wise basis. Supplementary Figure 3A
shows the correlation null distributions estimated for each
subject, and the mean GM correlation value. For each subject
the null distribution is non-zero, as expected due to the effect of
temporal shifting, but in every case the true mean GM correlation
with MAP is more than three standard deviations removed from
the null correlation. Supplementary Figure 2 shows subject level
correlation maps along with associated threshold permutation
test p-values.

For reference, Supplementary Figure 4 shows the estimated
effect size of unfiltered MAP fluctuations on fMRI data. The
average GM effect size across subjects (±SD) is 0.01% BOLD/mm
Hg (±0.006). Across subjects the average absolute maximum
deviation in MAP is ∼12 mm Hg, which suggests fairly modest
total BOLD signal changes on the order of ∼0.12% are expected,
but given the heterogeneity evident in Supplementary Figure 4,
it is clear that in some regions this may be as large as∼0.5%.

Voxelwise Lag
Figure 3A shows group level MAP – fMRI correlations as a
function of lag with respect to MAP. It shows how a spatially
structured pattern of fMRI signal changes evolves over time in
response to MAP fluctuations. Figures 3B,C shows the maximum
correlation and the lag at which it is seen, respectively. The
lag time in cortical gray matter appears relatively uniformly
distributed at∼5 s, in good agreement with the GM signal global
lags shown in Figure 1. Interestingly, there is a correlation pattern
that emerges earlier (∼2–4 s), which appears in deep white
matter structures and in the areas bordering the lateral ventricles.
Figure 3B shows that there are widespread correlations with
MAP, albeit with different lags, extending across the whole brain.

7T
The 7T-ME data allows us to tease apart the different sources
of contrast underlying the MAP – fMRI correlations. Figure 4A
shows group level voxelwise MAP – R2

∗ and MAP – S0
correlations for Scan 1 and Scan 2. R2

∗ – MAP correlations
show a similar pattern to 3T fMRI – MAP correlations, with
well defined gray/white matter contrast and matching areas
of high magnitude correlations (e.g., in occipital cortex). Note
that negative R2

∗ – MAP correlations are equivalent to positive
MAP – fMRI (3T) correlations, as a decrease in R2

∗ corresponds
to a lengthening of T2

∗ and a positive increase in BOLD signal.
Figure 4B shows the spatial correlations between R2

∗ – MAP and
S0 – MAP correlation maps, and 3T BOLD – MAP correlation
maps. Compared with S0 – MAP correlations, R2

∗ – MAP
correlation maps are more spatially similar to 3T BOLD – MAP
correlation maps, with a Pearson’s correlation of −0.68 vs. 0.33
of S0 – MAP, which amounts to ∼4 times as much variance
explained. Note that the negative correlation in Figure 4Bi is due
to the inverse relationship between R2

∗ and the BOLD signal (a
BOLD signal increase results from less dephasing, i.e., a decrease
in relaxation rate).

Figure 4C shows the group mean GM absolute correlation
values for R2

∗ and S0 scans 1 and 2. A two-way repeated measures
ANOVA revealed a significant effect of contrast (R2

∗ > S0),
but no effect of scan. Following the rationale outlined in

Section “Multi-Echo Fit,” this would suggest that the MAP
correlated fMRI signal has a BOLD origin related to changes
in CBF. Furthermore, there appears to be minimal non-BOLD
contribution, as scan number did not significantly modulate the
MAP-S0 correlation values.

DISCUSSION

Blood Pressure Correlation
To our knowledge, this study is first to demonstrate that MAP
LFOs are positively correlated with fMRI LFOs within the
frequency band between 0.063 and 0.125 Hz. These correlations
appear highly spatially structured, with strong gray/white matter
contrast, and are repeatable between subjects with a spatial
correlation of ∼0.42. Results from the 7T-ME data suggest that
fluctuations in MAP lead to gray matter signal fluctuations
in BOLD fMRI that are primarily related to CBF, given that
they are related to changes in R2

∗ and relatively independent
of acquisition parameters. This is consistent with a large TCD
literature that shows beat-to-beat fluctuations in blood pressure
result in measurable changes in CBFV in large intracranial
arteries (Aaslid et al., 1989; Diehl et al., 1991; Blaber et al.,
1997; Kuo et al., 1998; Zhang et al., 1998), lagged by ∼2 s,
with MAP preceding cerebral blood flow velocity (CBFV).
As BOLD fMRI is sensitive to deoxygenated blood volume
compartments (i.e., capillary and venous) that are downstream
of large intracranial arteries that are insonated with TCD, one
might assume an extended delay that would allow changes
to propagate along the vasculature tree. Given the obvious
logic of this, the fact that the true results show that fMRI
precedes MAP by ∼5.5 s most likely reflects differences in
how MAP is measured in this study compared with previous
reports. Continuous non-invasive MAP measurement ismost
often done with the Finapres system. However, as this is not
MRI compatible we instead used the Caretaker system, from
which beat-to-beat blood pressure is estimated from an analysis
of the pulse wave in the periphery. Although the Caretaker
is validated against invasive arterial line measurement (Baruch
et al., 2014), and shows good agreement, this study does not
include any investigation of timing differences. However, as it
is based on Pulsewave Decomposition Analysis (PDA) of the
peripheral arterial pressure wave, transit time differences must
be considered.

Instantaneous blood pressure is an idealized concept, as in
reality local changes in pressure take time to propagate along
the vascular tree, which depends on stiffness of the different
arterial vascular beds (Chen et al., 2009). As such, all blood
pressure measurements are temporally shifted surrogates of the
true aortic value, by which MAP is usually defined. Beat-to-
beat blood pressure is predominantly regulated in response to
the activity of baroreceptors, which are located in the aortic
arch and carotid sinus. Thus, pressure changes are detected
centrally, which leads to systemic changes in the downstream
vasculature in response. The self-evident logic of cerebral
autoregulation is that cerebral hemodynamics change in response
to fluctuations MAP. Thus, although we have observed fMRI
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FIGURE 3 | 3TSE data. (A) MAP – fMRI as a function of lag with respect to MAP, in 2 s intervals. (B) The maximum correlation (i.e., arg max of cross-correlation
function) and the associated lag time (C).

signals that precede MAP signals, it seems very unlikely that
this is a causative effect. It is more likely that the lag, in which
fMRI precedes Caretaker MAP, can be explained by systemic
vascular transit time differences. Furthermore, this suggests one
should be cautious about interpreting lags between cerebral and
peripheral hemodynamics, as they likely depend on the complex
interaction of multiple factors, including stiffness of the different
arterial vascular beds, and the interplay between autonomic and
myogenic activity. Furthermore, the lag time would be expected
to account for the fact the flow changes will take time to

propagate along the vascular tree. Delayed fMRI responses to
hypercapnia challenges are frequently observed on the order of
8–15 s (Blockley et al., 2011; Murphy et al., 2011), although
potentially longer in patient groups (Duffin et al., 2015; Donahue
et al., 2016), and are presumed to contain both gas bolus transit
time and vascular reactivity information. However, untangling
the different factors that influence these timing differences could
present an interesting new avenue of research. Central (aortic)
arterial stiffness is likely to contribute greatly to the measured
lag, and so experiments that can separate these general systemic
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FIGURE 4 | 7TME data. (A) group level MAP – fMRI correlation maps for R2
∗ and S0 and scans 1 and 2, at the frequency scale corresponding to 0.063 – 0.125 Hz

(scales 3 and 4 for scans 1 and 2 respectively). (B) (i) Spatial correlation between 7TME MAP – R2
∗ correlation maps, and 3TSE MAP – fMRI correlation maps. (ii)

Spatial correlation between 7TME MAP – S0 correlation maps, and 3TSE MAP – fMRI correlation maps. (C) Bar chart showing group mean GM correlations
(absolute value) for R2

∗/S0 and scans 1 and 2 (∗p < 0.05, ∗∗p < 0.01).

effects from more specific cerebral vascular ones are desirable,
and there are novel MRI methods for quantifying aortic stiffness
would allow for this to be done within the same imaging
session (Fielden et al., 2008; Grotenhuis et al., 2009; Langham
et al., 2011). The voxelwise lag analysis shows that lag times
for white matter are shorter than gray matter. Considering the
correct directionality of the lag structure, this perhaps make
sense, as it suggests that fluctuations in gray matter are followed
by fluctuations in white matter, and finally by fluctuations in

peripheral MAP measurements. Thus, this is consistent with the
fMRI literature showing low frequency fMRI signals of systemic
origin that are delayed in white matter, as blood arrival time is
extended with respect to gray matter (van Gelderen et al., 2008).

From these data we cannot know the exact origin of these
BP correlated fMRI fluctuations. Previous fMRI studies have
found signal fluctuations that are correlated with peripheral
measures of vascular tone, such as NIRS in fingers/toes (Tong
and Frederick, 2010; Tong et al., 2012, 2013) or amplitude of
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photoplethysmography (PPG) (van Houdt et al., 2010; Ozbay
et al., 2018). These observations support the existence of
endogenous systemic LFOs, which propagate throughout the
entire cardiovascular system, appearing as synchronized, but
out of phase, oscillations at different vascular sites. A common
systemic source is one explanation for the MAP correlated
fMRI signals we have measured, and a potential candidate
for this systemic origin is SNA. The MODWT reveals that
MAP coupled fMRI LFOs are strongest in the frequency
band centered at ∼0.1 Hz, the frequency of Mayer waves,
which are defined in terms of their coherence with SNA
(Julien, 2006). SNA regulates blood pressure via modulation
of peripheral vascular tone (Fisher and Paton, 2012), but also
potentially influences cerebrovascular tone (Brassard et al.,
2017), and increases in SNA elicited by post exercise induced
ischemia have been shown to decrease compliance in the
brain’s major arteries (Warnert et al., 2016). Orthostatic
challenges such as lower body negative pressure (LBNP), which
are associated with increases in SNA, lead to considerable
reductions in MCA CBFV (Levine et al., 1994; Serrador
et al., 2000; Zhang and Levine, 2007), and reductions in
blood volume indicative of vasoconstriction in the brain’s
largest arteries (Whittaker et al., 2017). Furthermore, studies
have shown that ganglion blockade designed to dampen SNA,
significantly alter the dynamics between MAP and CBFV (Zhang
et al., 2002; Mitsis et al., 2009), suggesting autonomic neural
control cerebrovascular tone likely plays a role in beat-to-beat
CBF regulation.

Cerebral Autoregulation
The time scale of the BP correlated LFO and its basis
predominantly being changes in apparent transverse relaxation
is strongly indicative of a CBF related cause. Compared with
respiratory challenges for which the CBF response primarily
probes CVR, the observed flow response associated with
BP is likely to be related to the process of CA. Thus,
whereas CVR is a measure of localized vascular integrity,
i.e., the ability of arterial vessels to change their resistance,
measures of CA relate to the systemic orchestrated vascular
mechanisms that regulate CBF (Carrera et al., 2009). The LFO
fluctuations we have observed in this study are correlated
with BP measured in the periphery, and so are more
related to CA than CVR. Impairments in CA associated
with adverse cerebrovascular events such as ischaemic stroke
and severe head injury have been well studied (Panerai,
2008), and are increasingly thought to play a role in the
development of vascular dementia (Toth et al., 2017) and
Alzheimer’s disease (Claassen and Zhang, 2011; den Abeelen
et al., 2014). Despite the widespread clinical implications of
pathological CA, its underlying mechanisms are still relatively
poorly understood.

TCD is the most widely used modality for measuring CA,
which despite having excellent temporal resolution and high
suitability for clinical settings, is ultimately of limited value since
the measurements are restricted to only the largest intracranial
arteries. In contrast, fMRI has whole-brain sensitivity with
millimeter resolution and so is a desirable tool for better

understanding CA, and has the potential to deliver more
predictive clinical measures. For example, CA is critical for
keeping stable CBF in the penumbra region following ischemic
stroke (Xiong et al., 2017), so a method such as fMRI, which
has the spatial resolution to resolve localized alterations, is
promising as a more informative prognostic tool. In the TCD
literature the transfer function between BP and CBFV is used
to characterize CA, primarily through gain and phase shift. It is
commonly assumed that a phase shift and low gain constitutes
good cerebral autoregulation (i.e., CBFV fluctuations are delayed
with respect to BP and are dampened) (van Beek et al., 2008).
In this study we observed a lag in MAP with respect to fMRI,
i.e., fMRI precedes MAP, which may be related to the phase
shifts measured in TCD. Furthermore, although the effect-size
of MAP on fMRI measured here appears small (Supplementary
Figure 4), this may be due to the young healthy subject group. In
patient groups with less effective CA both effect-size and lag may
be modulated.

Effect on Resting-State fMRI
This study provides the first step in characterizing the
relationship between MAP and the fMRI signal, but further
work is needed to address the degree to which MAP impacts
functional connectivity measures. The estimated effect size on
unfiltered data is relatively modest (∼0.01% BOLD/mm Hg),
which across subjects on average amounts to total BOLD signal
changes on the order of ∼0.1% across all gray matter, although
total signal changes as large ∼0.5% are possible, depending
on individual subject response variability. The results of the
wavelet transformed data show that MAP fluctuations effect fMRI
within a particular frequency band, and as in practice resting-
state fMRI analyses never use raw unfiltered data, it is likely
that the effect of MAP on functional connectivity metrics will
depend on a variety of analysis choices, such as filter passband
or window length in dynamic connectivity studies. These data
also serve as a reminder that not all sources of BOLD contrast
are neuronal in origin, and so multi-echo based approaches
like ME-ICA (Kundu et al., 2012) are likely to be less effective.
An interesting avenue of future research would be look at the
effect of different echo combination and de-noising schemes to
determine their impact.

CONCLUSION

In this study we have shown that beat-to-beat fluctuations in BP
are correlated with fluctuations in the resting-state fMRI that
precede them by approximately 5.5 s, and which are strongest
at the frequency band centered at ∼0.1 Hz. Using a multi-
echo acquisition we were able to isolate the pure BOLD (R2

∗)
component of the BP correlated fMRI signal and have shown that
it is the main source of contrast. This would indicate that it is
changes in CBF that mediate this low frequency BP correlated
signal, which we hypothesize is related to the process of CA.
We propose that resting-state fMRI is a promising new tool for
assessment of dynamic CA with high spatial resolution, which
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may prove to be a useful biomarker in a range of cerebrovascular
and neurological conditions.
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A Corrigendum on

Cerebral Autoregulation Evidenced by Synchronized Low Frequency Oscillations in Blood

Pressure and Resting-State fMRI

by Whittaker, J. R., Driver, I. D., Venzi, M., Bright, M. G., and Murphy, K. (2019). Front. Neurosci.
13:433. doi: 10.3389/fnins.2019.00433

In the original article, there was an error. The article describes the lag structure between mean
arterial pressure (MAP) and the fMRI signal, both globally and at a voxelwise level. A sign error
contained within in-house analysis code led the authors to misattribute the directionality of this
lag. In the article it is implied that MAP precedes fMRI by approximately 5.5 s, whereas in fact the
fMRI signal precedes the MAP signal. There is no explicit error in the original text as it only states
that there is a lag in fMRI “with respect to MAP,” which in itself is unfortunately not completely
unambiguous, as the precise lag/lead terminology used in the literature is not standardized.
However, the authors were still laboring under a misapprehension, and thus as a result a section of
the Discussion section is misleading. This error does not alter the primary scientific conclusion of
this article, which is that low frequency fluctuations in fMRI are associated with matched frequency
fluctuations in MAP. However, the Discussion section includes a body of text which considers the
relevance of this lag and posits some speculative physiological interpretations. As these discussion
points are based on the aforementioned erroneous lag direction, they are no longer relevant to
the reported results. Furthermore, there is an erroneous sentence in the Conclusion that states
“fluctuations in the resting-state fMRI signal that are delayed by approximately 5.5 s,” as this use
of the word delay implies MAP precedes fMRI. Finally, we correct the erroneous sentence in the
Conclusion. The corrected paragraphs appear below.

The Discussion section, subsection Blood Pressure Correlations, paragraphs 1 and 2:
“To our knowledge, this study is first to demonstrate that MAP LFOs are positively correlated

with fMRI LFOs within the frequency band between 0.063 and 0.125Hz. These correlations appear
highly spatially structured, with strong gray/white matter contrast, and are repeatable between
subjects with a spatial correlation of ∼0.42. Results from the 7T-ME data suggest that fluctuations
in MAP lead to gray matter signal fluctuations in BOLD fMRI that are primarily related to CBF,
given that they are related to changes in R∗

2 and relatively independent of acquisition parameters.
This is consistent with a large TCD literature that shows beat-to-beat fluctuations in blood pressure
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https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00544
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00544&domain=pdf&date_stamp=2020-06-24
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:whittakerj3@cardiff.ac.uk
https://doi.org/10.3389/fnins.2020.00544
https://www.frontiersin.org/articles/10.3389/fnins.2020.00544/full
http://loop.frontiersin.org/people/288236/overview
http://loop.frontiersin.org/people/410221/overview
http://loop.frontiersin.org/people/671796/overview
http://loop.frontiersin.org/people/636860/overview
http://loop.frontiersin.org/people/53594/overview
https://doi.org/10.3389/fnins.2019.00433
https://doi.org/10.3389/fnins.2019.00433


Whittaker et al. Corrigendum: Cerebral Autoregulation and fMRI

result in measurable changes in CBFV in large intracranial
arteries (Aaslid et al., 1989; Diehl et al., 1991; Blaber et al., 1997;
Kuo et al., 1998; Zhang et al., 1998), lagged by ∼2 s, with MAP
preceding cerebral blood flow velocity (CBFV). As BOLD fMRI
is sensitive to deoxygenated blood volume compartments (i.e.,
capillary and venous) that are downstream of large intracranial
arteries that are insonated with TCD, one might assume an
extended delay that would allow changes to propagate along
the vasculature tree. Given the obvious logic of this, the fact
that the true results show that fMRI precedes MAP by ∼5.5 s
most likely reflects differences in how MAP is measured in
this study compared with previous reports. Continuous non-
invasive MAPmeasurement is most often done with the Finapres
system. However, as this is not MRI compatible we instead
used the Caretaker system, from which beat-to-beat blood
pressure is estimated from an analysis of the pulse wave in the
periphery. Although the Caretaker is validated against invasive
arterial line measurement (Baruch et al., 2014), and shows
good agreement, this study does not include any investigation
of timing differences. However, as it is based on Pulsewave
DecompositionAnalysis (PDA) of the peripheral arterial pressure
wave, transit time differences must be considered.

Instantaneous blood pressure is an idealized concept, as in
reality local changes in pressure take time to propagate along
the vascular tree, which depends on stiffness of the different
arterial vascular beds (Chen et al., 2009). As such, all blood
pressure measurements are temporally shifted surrogates of the
true aortic value, by which MAP is usually defined. Beat-to-
beat blood pressure is predominantly regulated in response to
the activity of baroreceptors, which are located in the aortic
arch and carotid sinus. Thus, pressure changes are detected
centrally, which leads to systemic changes in the downstream
vasculature in response. The self-evident logic of cerebral
autoregulation is that cerebral hemodynamics change in response
to fluctuations MAP. Thus, although we have observed fMRI
signals that precede MAP signals, it seems very unlikely that
this is a causative effect. It is more likely that the lag, in which
fMRI precedes Caretaker MAP, can be explained by systemic
vascular transit time differences. Furthermore, this suggests one
should be cautious about interpreting lags between cerebral and
peripheral hemodynamics, as they likely depend on the complex
interaction of multiple factors, including stiffness of the different
arterial vascular beds, and the interplay between autonomic and
myogenic activity. Furthermore, the lag time would be expected
to account for the fact the flow changes will take time to
propagate along the vascular tree. Delayed fMRI responses to
hypercapnia challenges are frequently observed on the order
of 8–15 s (Blockley et al., 2011; Murphy et al., 2011), although
potentially longer in patient groups (Duffin et al., 2015; Donahue
et al., 2016), and are presumed to contain both gas bolus transit
time and vascular reactivity information. However, untangling
the different factors that influence these timing differences could
present an interesting new avenue of research. Central (aortic)
arterial stiffness is likely to contribute greatly to the measured
lag, and so experiments that can separate these general systemic
effects from more specific cerebral vascular ones are desirable,

and there are novel MRI methods for quantifying aortic stiffness
would allow for this to be done within the same imaging
session (Fielden et al., 2008; Grotenhuis et al., 2009; Langham
et al., 2011). The voxelwise lag analysis shows that lag times
for white matter are shorter than gray matter. Considering the
correct directionality of the lag structure, this perhaps make
sense, as it suggests that fluctuations in gray matter are followed
by fluctuations in white matter, and finally by fluctuations in
peripheral MAP measurements. Thus, this is consistent with the
fMRI literature showing low frequency fMRI signals of systemic
origin that are delayed in white matter, as blood arrival time is
extended with respect to gray matter (van Gelderen et al., 2008).”

The Discussion section, subsection Cerebral Autoregulation,
paragraph 2:

“TCD is the most widely used modality for measuring
CA, which despite having excellent temporal resolution and
high suitability for clinical settings, is ultimately of limited
value since the measurements are restricted to only the largest
intracranial arteries. In contrast, fMRI has whole-brain sensitivity
with millimeter resolution and so is a desirable tool for better
understanding CA, and has the potential to deliver more
predictive clinical measures. For example, CA is critical for
keeping stable CBF in the penumbra region following ischemic
stroke (Xiong et al., 2017), so a method such as fMRI, which
has the spatial resolution to resolve localized alterations, is
promising as a more informative prognostic tool. In the TCD
literature the transfer function between BP and CBFV is used
to characterize CA, primarily through gain and phase shift. It is
commonly assumed that a phase shift and low gain constitutes
good cerebral autoregulation (i.e., CBFV fluctuations are delayed
with respect to BP and are dampened) (van Beek et al., 2008).
In this study we observed a lag in MAP with respect to fMRI,
i.e., fMRI precedes MAP, which may be related to the phase
shifts measured in TCD. Furthermore, although the effect-size
of MAP on fMRI measured here appears small (Supplementary
Figure 4), this may be due to the young healthy subject group. In
patient groups with less effective CA both effect-size and lag may
be modulated.”

The Conclusion:
“In this study we have shown that beat-to-beat fluctuations

in BP are correlated with fluctuations in the resting-state
fMRI that precede them by approximately 5.5 s, and which
are strongest at the frequency band centered at ∼0.1Hz.
Using a multi-echo acquisition we were able to isolate the
pure BOLD (R∗

2) component of the BP correlated fMRI signal
and have shown that it is the main source of contrast. This
would indicate that it is changes in CBF that mediate this
low frequency BP correlated signal, which we hypothesize
is related to the process of CA. We propose that resting-
state fMRI is a promising new tool for assessment of
dynamic CA with high spatial resolution, which may prove
to be a useful biomarker in a range of cerebrovascular and
neurological conditions.”

The authors apologize for this error and state that this does
not change the scientific conclusions of the article in any way.
The original article has been updated.
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Resting-state functional connectivity MRI (rs-fcMRI) is a common method for mapping

functional brain networks. However, estimation of these networks is affected by the

presence of a common global systemic noise, or global signal (GS). Previous studies

have shown that the common preprocessing steps of removing the GS may create

spurious correlations between brain regions. In this paper, we decompose fMRI signals

into 5 spatial and 3 temporal intrinsic mode functions (SIMF and TIMF, respectively) by

means of the empirical mode decomposition (EMD), which is an adaptive data-driven

method widely used to analyze non-linear and non-stationary phenomena. For each

SIMF, functional connectivity matrices were computed by means of Pearson correlation

between TIMFs of different brain areas. Thus, instead of a single connectivity matrix,

we obtained 5 × 3 = 15 functional connectivity matrices. Given the high correlation

and global efficiency values of the connectivity matrices related to the low spatial maps

(SIMF3, SIMF4, and SIMF5), our results suggest that these maps can be considered as

spatial global signal masks. Thus, by summing up the first two SIMFs extracted from the

fMRI signals, we have automatically excluded the GS which is now voxel-specific. We

compared the performance of our method with the conventional GS regression and to

the results when the GS was not removed. While the correlation pattern identified by the

other methods suffers from a low level of precision in identifying the correct brain network

connectivity, our approach demonstrated expected connectivity patterns for the default

mode network and task-positive network.

Keywords: resting-state functional connectivity MRI, global Signal, fMRI, empirical mode decomposition, spatial

intrinsic mode function, temporal intrinsic mode function, low-pass filtering

1. INTRODUCTION

Resting-state functional connectivity MRI (rs-fcMRI) has considerable potential for mapping
functional brain networks (Biswal et al., 1995; Kandel et al., 2000; De Luca et al., 2006; Fox et al.,
2006; Shmuel and Leopold, 2008; Friston, 2011). This mapping, which reveals the brain’s functional
architecture and operational principles (Kandel et al., 2000; Friston, 2011), can be used for early
detection of brain connectivity pathologies in neuropsychiatric patients (Erdoğan et al., 2016).
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However, the presence of broadly shared synchronous
fluctuations, termed as the global signal (GS) in Blood Oxygen
Level Dependent (BOLD) responses, is a significant problem for
fcMRI analysis. Its presence is problematic as it is of unknown
origin (Damoiseaux et al., 2006; Fox et al., 2009; Erdoğan
et al., 2016). Therefore, effective removal of GS has become an
important step in data preprocessing and must be done prior
to fcMRI analysis. GS is generally defined as the average of the
BOLD signals over the whole brain (Zarahn et al., 1997; Fox
et al., 2009; Liu et al., 2017) and can be computed from the raw
images or after some preprocessing steps (Liu et al., 2017). The
average-based GS is typically called conventional GS (or static
GS (SGS) Erdoğan et al., 2016).

Application of SGS regression (SGSR) was at first just limited
to task-related fMRI imaging (Zarahn et al., 1997; Macey et al.,
2004). More recently, SGSR usage has received more attention
in the analysis of resting-state fMRI than in task-related fMRI
studies (Liu et al., 2017). Some studies suggest that application
of SGSR improves the functional specificity of resting-state
correlation maps and helps to remove non-neuronal sources of
global variance like respiration and movement (Fox and Raichle,
2007; Fox et al., 2009; Liu et al., 2017). However, other studies
found that these improvements are limited to systems that would
exhibit only positive correlations with the specific selected seeds
(Fox et al., 2009; Weissenbacher et al., 2009). On the other hand,
many studies have shown that the common preprocessing steps
of removing GS via a general linear model can create correlations
between regions that may never have existed (Murphy et al.,
2009; Anderson et al., 2010; Saad et al., 2012; Murphy and
Fox, 2017), which results in spurious fcMRI values. Moreover,
it has been shown that SGSR do not consider the brain’s spatial
heterogeneities and biases correlations in different regions of the
brain (Saad et al., 2012). Accordingly, the extracted correlation
maps are known to present artifacts and do not reflect underlying
neurological properties (Murphy et al., 2009; Anderson et al.,
2010; Saad et al., 2012; Murphy and Fox, 2017). Therefore,
regressing out GS is under debate as its removal by applying
current approaches may introduce artifacts into the fMRI data
or cause the loss of important neuronal components (Murphy
et al., 2009; Anderson et al., 2010; Saad et al., 2012; Murphy
and Fox, 2017). These concerns about the GSR methods and the
need for accurate brain functional connectivity maps motivate
the need to develop new methods for dealing with GS. Moreover,
it has been shown that GS has a variety of sources with different
spatial distributions which are voxel-specific. Accordingly, it is
desirable to use a new method that works selectively and is
able to identify and remove the spatially specific GS for each
voxel or region (Saad et al., 2012; Tong and Frederick, 2014;
Chang et al., 2016; Power et al., 2017; Turchi et al., 2018),
and also produce known connectivity patterns in networks such
as the default mode network and task-positive network (Fox
et al., 2009; Erdoğan et al., 2016), thus avoiding the creation of
spurious correlations.

In addition to GS, in fMRI studies, BOLD signal is low-pass
filtered (<0.1 Hz) during the preprocessing procedure to be sure
that the effects of the high frequency physiological noises are
removed from the data (Boubela et al., 2013; Brooks et al., 2013;

Liu et al., 2017). This is because, physiological noises which are
mainly cardiac and respiratory, are spatially widespread and have
cycles located prominently at the frequency range of 0.1–2.5 Hz.
It is indicated that, among different noise-removal methods (such
as band-pass filtering and Independent component analysis),
EMD based methods facilitate the noise removal from fMRI
data. In EMD-based methods, IMFs with specific frequency
bands are identified and removed from fMRI data to enhance
the functional sensitivity of the data (Typically the first and
second IMFs which have the highest frequency bands among
all IMFs are considered as a noise) (Lin et al., 2016). However,
removing the whole high-frequency data from fMRI time series
is controversial, as smoothing the signals via low-pass filtering
decreases the signal to noise ratio by smoothing the peaks and
amplifying the noise (Brooks et al., 2013). In fact, it has been
shown that filtering high frequency modes may also remove the
signal of interest that contains similar frequencies. The main
reason is that the TR time for sampling fMRI data is too low to
distinguish the high frequency components and causes signal’s
frequencies being aliased that can not be separated by temporal
filtering (Brooks et al., 2013). Furthermore, even using very high
sampling rate (TR < 0.4 s) to detect the high frequency modes
may cause losing information of neuronal activation in high
frequencies by filtering high frequency modes (Tagliazucchi et al.,
2011, 2012; Boubela et al., 2013). Accordingly, in resting-state
studies, we cannot do the band-pass filtering through previous
methods as the brain dynamics in all frequency bands needs to be
investigated. Therefore, we need a method that can remove the
physiological noises more specifically from BOLD signal.

There are several signal processing methods, such as Fourier
transform (Gallagher et al., 2008), Wavelet transform (Yves,
1993), spatial and temporal Blind source separation (Comon
and Jutten, 2010), and the EMD (Huang et al., 1998). However,
all of the mentioned method except EMD require predefined
basis function or some prior knowledge to decompose the
signal. Considering the fact that real-world signals including
fMRI signals are non-linear and non-stationary data and do not
perfectly obey our assumption, EMD method would be the best
method to apply, as it does not need any basis functions and
parameters that need to be adjusted such as wavelet type in
wavelet transform or informed separation ideas in Blind source
separation method (Liutkus et al., 2013; Riffi et al., 2014; He
et al., 2017). EMD is a computationally efficient method that can
adaptively decompose any non-linear and non-stationary signals
into Intrinsic mode functions (IMF) and obtain meaningful
frequencies estimation (Huang et al., 1998; Mandic et al., 2008;
Riffi et al., 2014; He et al., 2017).

In this paper, we define an adaptive global signal regression
(AGSR) by performing a spatiotemporal decomposition of the
fMRI time series through EMD-based methods. The GS which
is computed using this method is voxel-specific and depends on
brain regions’ heterogeneity.

Additionally, we show that by applying AGSR, we do
not need the traditional low-pass filtering methods as the
proposed method exhibits the potential to adaptively remove
the physiological noises from high temporal frequency modes
of fMRI time series, that are shared in whole brain regions.
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Therefore, AGSR method, besides removing the GS, helps
to eliminate the high frequency physiological noises without
needing to perform the low-pass filtering step separately.

In AGSR method, We do not use the Multidimensional EMD
approach as it requires great runtime and cannot decompose
a multidimensional signal into multidimensional components
(Wu et al., 2009; Riffi et al., 2014; He et al., 2017). Consequently,
in this paper, two EMD-based methods are used sequentially to
decompose the fMRI signals adaptatively and voxel-specifically.
We acquired the Spatial and Temporal Intrinsic Mode Functions
(SIMF and TIMF, respectively) of fMRI data by applying
FATEMD (Riffi et al., 2014) and ICEEMDAN (Colominas et al.,
2014) methods, respectively (Huang et al., 1998; Mandic et al.,
2008). It has been shown that applying EMD-based methods on
fMRI data separate inherent brain oscillations and fundamental
modes embedded in BOLD signal. Each of these oscillations
occupies a unique frequency band and can be used to investigate
the frequency characteristics in resting-state brain networks
(McGonigle et al., 2010; Zheng et al., 2010; Niazy et al., 2011;
Song et al., 2014, 2015; Qian et al., 2015; Lin et al., 2016;
Cordes et al., 2018).

To explore the frequency characteristics of the brain networks,
first, we obtain the average functional connectivity matrices for
different TIMFs of each SIMFs over all subjects. Functional
connectivity was computed using pearsons’ coefficient between
the peak voxels of each brain regions included in the AAL 116
atlas (Tzourio-Mazoyer et al., 2002).

We then compute the efficiency (Fair et al., 2007; Rubinov and
Sporns, 2009; Cohen and D’Esposito, 2016) of the brain network
of different spatiotemporal IMFs, which is used as a measure
of integration. Integration values are used to identify the GS,
since GS is defined as a synchronous fluctuation which is shared
among all brain regions that makes it being highly integrated in
the whole brain. Given the high values of efficiency in the low
spatial maps (SIMF3, SIMF4, and SIMF5), our results suggest
that these maps can be considered as spatial global signal masks.
The performance of the proposed method is compared with the
SGSR method, and also with the results when GS is not removed.
This is done by investigating the functional connections within
an extracted peak voxel of the known network’s regions and
the selected seed region. While the correlation pattern identified
by the other methods suffers from a low level of precision,
our method demonstrates a high level of accuracy due to its
data-driven adaptive nature.

2. METHODS

2.1. fMRI Data Acquisition
The resting-state fMRI preprocessed data-set of 21 subjects
from the NIH Human Connectome Project (HCP) (https://
db.humanconnectome.org) (Essen et al., 2013) is used in this
research. Each subject was involved in 4 runs of 15 min each
using a 3 T Siemens, while their eyes were open and had a relaxed
fixation on a projected bright cross-hair on a dark background.
The data were acquired with 2.0 mm isotropic voxels for 72
slices, TR = 0.72 s, TE = 33.1 ms, 1,200 frames per run, 0.58 ms
Echo spacing, and 2,290 Hz/Px Bandwidth (Moeller et al., 2010).

Therefore, the fMRI data were acquired with a spatial resolution
of 2 × 2 × 2 mm and a temporal resolution of 0.72 s, using
multibands accelerated echo-planar imaging to generate a high
quality and the most robust fMRI data (Moeller et al., 2010).
The fMRI data were preprocessed to remove spatial artifacts
produced by head motion, B0 distortions, and gradient non-
linearities (Jovicich et al., 2006). As comparison of fMRI images
across subjects and studies is possible when the images have been
transformed from the subject’s native volume space to the MNI
space (Evans et al., 1993; Ashburner and Friston, 1999), fMRI
images were wrapped and aligned into the MNI space with FSL’s
FLIRT 12 DOF affine and then a FNIRT non-linear registration
(Jenkinson and Smith, 2001; Jenkinson et al., 2002; Jahanshad
et al., 2013). In this study, the MNI-152-2 mm atlas (Mazziotta
et al., 1995, 2001a,b) was utilized for fMRI data registration.

2.2. Estimation of the Temporal IMFs
(TIMFs)
EMD is an adaptive data-driven signal processing method,
which does not need any prior functional basis such as the
wavelet transform (Mandic et al., 2008). The basic functions are
derived adaptively from the data by the EMD sifting procedure.
The EMD method developed and established by Huang et al.
(1998) decomposes non-linear and non-stationary time series
into their fundamental oscillatory components, called Intrinsic
Mode Functions (IMFs). There are two criteria defining an IMF
during the sifting process: 1) the number of extrema and zero
crossings must be either equal or differ at most by one, and, 2) at
any instant in time, the mean value of the envelope defined by the
local maximum and the envelope of the local minimum is zero.
The EMD algorithm for estimating the IMFs of the time series
x(t) is:

1. r0(t) = x(t), j = 1.
2. For extracting the j-th IMF:

(a) h0(t) = rj(t), k = 1,
(b) Locate local maximum and minimum of hk−1(t),
(c) Identify the average envelope using cubic spline
interpolation to define upper and lower envelope of hk−1(t),
(d) Calculate the mean valuemk−1(t),
(e) Put hk(t) = hk−1(t)−mk−1(t),
(f) Check the stopping criteria. The stopping criteria
determines the number of sifting steps to decompose an
IMF Huang et al. (1998). If stopping criteria is satisfied then
hj(t) = hk(t) otherwise, go to (a) to extract next IMF with
k = k+ 1.

3. rj(t) = rj−1(t)− hj(t).
4. If at least two extrema were in the rj(t), the next IMF is

extracted otherwise the EMD algorithm is finished and rj(t)
is the residue of x(t). Accordingly, x(t) is defined as:

x(t) =

n
∑

j=1

hj(t)+ rn(t), (1)

where hj(t) is the j-th IMF, n is the number of IMFs, and rn(t)
is the residue of the signal. Thus, the EMD method adaptively
decomposes a time series into a set of IMFs and a residue
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where the first IMF (IMF1) corresponds to the fastest oscillatory
mode and the last IMF (IMFn) to the slowest one, the sum
of these components yields the original signal (Huang et al.,
1998; Hassan and John, 2005). However, frequent occurrences
of the mode-mixing phenomenon in analyzing real signals using
EMD algorithm is problematic. To address this problem and
improve the spectral separation ofmodes, the ensemble empirical
mode decomposition (EEMD) method was proposed (Wu and
Huang, 2009). This method extracts modes by performing the
decomposition over an ensemble of noisy copies of the original
signal combined with white Gaussian noises, and taking the
average of all IMFs in the ensemble (Colominas et al., 2014).

The EEMD method solves the mode mixing problem, but
certain issues remain. First, the number of IMFs extracted from
each of the noisy signal copies is different, and this creates a
problem when averaging the IMFs. The second problem is a
reconstruction error in the EEMD method (Wu and Huang,
2009; Colominas et al., 2014). To fix this error the complementary
EEMD (CEEMD) was proposed (Yeh et al., 2010). In the CEEMD
algorithm, pairs of positive and negative white noise processes
are added to the original signal to make two sets of ensemble
IMFs. Accordingly, the CEEMD effectively eliminates residual
noise in the IMFs which alleviate the reconstruction problem.
Nonetheless, the problem of the different number of modes when
averaging still persists. To overcome this problem, the CEEMD
with adaptive noise (CEEMDAN) was developed (Torres et al.,
2011; Colominas et al., 2014). In this approach, the first mode is
computed exactly as in EEMD. Then, for the next modes, IMFs
are computed by estimating the local means of the residual signal
plus different modes extracted from the white noise realizations.
CEEMDAN decomposition can create some spurious modes
with high-frequency and low-amplitude due to overlapping in
the scales. Additionally, some residual noise is still present in
the modes. As a consequence, the new optimization algorithm,
Improved Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (ICEEMDAN), was proposed (Colominas
et al., 2014).

During the sifting process using ICEEMDANmethod the local
mean of realizations is estimated, instead of using the average of
modes from the first step. This change in the algorithm reduces
the amount of noise present in the final computedmodes. To deal
with the issue of creation of spurious modes in the final results,
ICEEMDAN method proceeds differently than the EEMD and
CEEMDAN methods. In ICEEMDAN, white noise is not added
directly; instead EMD modes of white noise are added to the
original signal and to the IMFs during the sifting process (Wu
and Huang, 2009; Colominas et al., 2014). Furthermore, in this
method as in CEEMDAN, a constant coefficient is added to the
noise that makes the desired signal to noise ratio between the
added noise and the residue to which the noise is added. This
coefficient is computed based on the standard deviation of the
residue at each step of the sifting process. Therefore, the IMFs
computed with ICEEMDAN have less noise and more physical
content than IMFs obtained with other methods (Colominas
et al., 2014) (More detailed description of ICEEMDAN method
can be found at Colominas et al., 2014). The high accuracy rate,
reduction in the amount of noise contained in the modes, and

the alleviation of mode mixing phenomenon qualify this method
to effectively decompose biological signals. In this paper the
ICEEMDAN method with 300 ensembles and a level of noise
of 0.2 (Wu and Huang, 2009) is used to extract the Temporal
Intrinsic Mode Functions (TIMFs) from the fMRI data.

2.3. Estimation of the Spatial IMFs (SIMFs)
A fast, time efficient, and effective method is essential for
processing real images that have a large size. Previous EMD-
based methods were limited to small size images as the
extrema detection, interpolation at each iteration, and the large
number of iterations make their processing time consuming and
complicated (Bhuiyan et al., 2008; Riffi et al., 2013, 2014; He
et al., 2017). Therefore, those methods were just applicable to
reduced size images, which resulted in losing some information
during their process. Fast and Adaptive Tridimensional (3D)
EMD, abbreviated as FATEMD, is a recent extension of the
EMD method to three dimensions (Riffi et al., 2014). The
FATEMD method is able to estimate volume components called
tridimensional Intrinsic Mode Functions (3D-IMFs) quickly and
accurately by limiting the number of iterations per 3D-IMF to
one, and changing the process of computing upper and lower
envelopes, which reduce the computation time for each iteration
(Bhuiyan et al., 2008; Riffi et al., 2014; He et al., 2017). In the
FATEMDmethod, the steps of extracting 3D-IMFs are almost the
same as the previous EMD basedmethods, except for the number
of iterations and the estimations of the maximum and minimum
envelopes. The steps for decomposing a volume V(m, n, p) with
dimensions m, n, and p using the FATEMD approach are as
follows (Bhuiyan et al., 2008; Riffi et al., 2014):

1. Set i = 1 and Ri(m, n, p) = V(m, n, p).
2. Determine the local maximum and minimum values by

browsing Ri(m, n, p) using a 3D window (cube) with a size
of 3 × 3 × 3 which results in an optimum extrema maps
(Mapmax(m, n, p) andMapmin(m, n, p)). These local maximum
(or minimum) values are strictly higher (or lower) than all of
their neighborhoods contained in the cube.

3. Calculate the size of the Max and the Min filters which will be
used in making extrema envelopes and their smoothness. The
maximum and minimum filters are made by computing the
nearest Euclidean distances between the maximum (dadj.max)
(minimum (dadj.min)) points. The cubic window width (wen)
then is determined by using one of the following four
formulae for both maximum and minimum filters. Here,
we used the 4-th formula as outlined below, although using
the other formulas will result in approximately the same
decomposition result:

wen = min
{

min{dadj.max}, min{dadj.min}
}

,

wen = min
{

max{dadj.max}, max{dadj.min}
}

,

wen = max
{

min{dadj.max}, min{dadj.min}
}

,

wen = max
{

max{dadj.max}, max{dadj.min}
}

. (2)

4. Create the envelopes of maxima and minima (Envmax(m, n, p)
and Envmin(m, n, p)) of size (wen).
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5. Use the mean filter to compute the smoothed envelopes:
Envmax−s(m, n, p) and Envmin−s(m, n, p).

6. Calculate themean filter by averaging the smoothed upper and
lower envelopes (EnvA(m, n, p)).

7. Calculate the i-th 3D-IMF: IMFi(m, n, p) = Ri(m, n, p) −

EnvA(m, n, p).
8. Calculate Ri+1(m, n, p) = Ri(m, n, p)− IMFi(m, n, p).
9. If Ri+1(m, n, p) contains more than two extrema then

Go to the step 2 and set i = i+ 1,
Else

The FATEMD decomposition is completed.

Therefore, FATEMD is an adaptive approach as all of the
processes for computing filters and making the maximum,
minimum, and the mean envelops are data driven. FATEMD
decomposes a volume into a set of 3D-IMFs (Riffi et al., 2014). In
general, a volume V can be reconstructed from the summation of
the K 3D-IMFs and the residue as follows:

V(m, n, p) =

K
∑

i=1

IMFi(m, n, p)+ RK+1(m, n, p). (3)

K is the number of IMFs, and R(m, n, p) is the residue of
the signal.

In this paper, we apply the FATEMD method at each
time instant to decompose the resting-state fMRI data into
tridimensional IMFs called Spatial Intrinsic Mode Functions
(SIMF). Figure 1 shows the spatial decomposition results
of a sample resting-state fMRI image. The ICEEMDAN
method is then utilized to decompose each SIMF into its
corresponding TIMFs.

2.4. Spatiotemporal Pattern Analysis of the
fMRI Data
To define an adaptive and voxel-specific GS, the spectral
information of fMRI data is investigated by constructing the
functional connectivity matrices using extracted TIMFs and
SIMFs data. To fulfill this aim, first, the SIMFs of the fMRI
data at each TR time are computed by applying the FATEMD
method, then, all spatial components are merged together in
time to construct the time series of each SIMF. Second, the peak
voxel at each region, that is, the voxel of maximal activation,
is selected by computing the Root Mean Square (RMS) for
each voxel’s signal over all time. It has been shown that peak
voxel provides the best effect of any voxel in the ROI (Sharot
et al., 2005). Additionally, the peak voxel activity correlates
better with evoked scalp electrical potentials than approaches
that average activity across the ROI. This means that the peak
voxel represents the ROI’s activity better than other choices
(Arthurs and J Boniface, 2003). The peak voxel in each region
is determined using previously published Talairach coordinates
(after conversion to MNI coordinates and using AAL 116 atlas)
(Fox et al., 2005). After determining the peak voxels of each
region, the ICEEMDAN method is applied to its time series to
compute the TIMFs. Thus, the TIMFs of all regions for each SIMF
are computed.

We then compare the predefined distinct frequency bands
presented in fMRI studies (slow5 [0.01–0.027 Hz], slow4 [0.027–
0.073 Hz], slow3 [0.073–0.198 Hz], slow2 [0.198–0.25 Hz], and
slow1 [0.5–0.75 Hz]) (Penttonen and Buzsáki, 2003; Zhan et al.,
2014), to the frequency content of the extracted TIMFs. In all
subjects, TIMFs consistently corresponded to the same frequency
bands. As seen in the Figure 2, the frequency range comprised
in TIMF1 to TIMF3 is approximately the same as the frequency
range of the sum of slow1 to slow3. The frequency range of
TIMF4 is the same as slow4, and the frequency range of the sum
of TIMF5 to TIMF9 has the same frequency range as the slow5
frequency band. Accordingly, we label the summation of TIMF1
to TIMF3 as TIMF1, TIMF4 as TIMF2, and the summation of
TIMF5 to TIMF9 as TIMF3. Figure 3 represents the pipeline used
in computing SIMFs and TIMFs for each resting-state fMRI data.
Accordingly, the functional connectivitymatrices are constructed
by computing the average of correlation coefficients between all
possible pairs of TIMFs correspond to different Spatial domains
for all brain regions comprised in the AAL 116 atlas over all
21 subjects. Consequently, instead of the classical functional
connectivity matrix, the decomposition presented here produces
5 × 3 = 15 connectivity matrices (each with size 116 × 116), 3
temporal domains and 5 spatial domains, encompassing the rich
spatiotemporal dynamics of brain activity.

2.5. Topological Properties of the Brain
Network
The GS is a synchronous fluctuation shared among all
brain regions. Consequently, the GS component in the brain
connectivity matrix should present a high integration value,
where integration is the topological property of a network
that describes how information from distributed brain regions
is combined (Fair et al., 2007; Rubinov and Sporns, 2009;
Cohen and D’Esposito, 2016). To compute the integration of
the brain network at different spatiotemporal scales we use the
global efficiency measure (Fair et al., 2007; Rubinov and Sporns,
2009). The global efficiency is computed as the average inverse
shortest path length between all the node pairs of the network
that is normalized by the maximal number of network’s links.
Therefore, the weighted global efficiency is computed via the
following equation:

Ew =
1

N(N− 1)

N
∑

j=1

N
∑

i=1,i6=j

(dij
w)

−1
, (4)

where N is the number of nodes in the network and dij is the
minimum path length between nodes i and j (Fair et al., 2007;
Rubinov and Sporns, 2009). The shortest path length is computed
by counting the smallest number of edges needed to get from
node i to node j which is inversely related to node weight.
The information needed to estimate the weight of all pairs of
brain regions are provided by functional connectivity matrices
(Rubinov and Sporns, 2009; Cohen and D’Esposito, 2016), strong
association between regions has a large weight which leads to a
shorter length. When two nodes are disconnected the length of
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FIGURE 1 | Spatial decomposition of a sample fMRI image using FATEMD method. The original fMRI image at one TR time is decomposed into 5 SIMFs (SIMF1 to

SIMF5) and a residue.

that path would be infinite and correspondingly, the efficiency
would be zero (Fair et al., 2007; Rubinov and Sporns, 2009).

3. RESULTS

3.1. Defining Adaptive Global Signal (AGS)
We computed the functional connectivity matrices between all
pairs of brain regions for different spatiotemporal domains
extracted from fMRI data for each subject. Figure 4 shows the
average connectivity matrices computed by Pearson’s coefficient
over the 21 subjects. As seen in the figures, SIMF1 and SIMF2 in
all TIMFs showed low connectivity whereas SIMF3 to SIMF5 in
all TIMFs showed high connectivity. Besides, they indicate that
the magnitude of the correlation does not significantly depend
on the TIMFs. Thus, based on the connectivity strength for
different spatiotemporal domains, the summation of the SIMF1
to SIMF2 and the SIMF3 to SIMF5 including all TIMFs, were
considered as two separate signals. We also averaged the six
connectivity matrices resulting from the summation of TIMF1 to
TIMF3 with SIMF1 and SIMF2 (Figure 4) and labeled it as AGSR
(Figure 5A), and the nine connectivity matrices resulting when

combining TIMF1 to TIMF3 with SIMF3 to SIMF5, which we
labeled as AGS (Figure 5B).

We also computed the global efficiency (Figure 6A) for
different spatial and temporal IMFs using Equation (4) and also
based on functional connectivity results. Figure 6A shows that
there are high values of efficiency in the low frequencies of spatial
domains, SIMF3, SIMF4, and SIMF5, which indicate active
shared connections between all the nodes in the brain, suggesting
the existence of GS in the low-frequency spatial domains, called
Adaptive Global Signal(AGS). Furthermore, SIMF3 to SIMF5
with high temporal frequency mode (TIMF1) which is included
in the AGS can be considered as an adaptive filter to reduce
the effects of the highly integrated physiological noises in high
frequency modes instead of applying low-pass filtering (Shmueli
et al., 2007; Boubela et al., 2013; Liu et al., 2017).

As seen in Figure 6B and Table 1, the high values of
integration of AGS (summation of SIMF3 to SIMF5 including
all TIMFs) confirm that they can be considered as a GS which
has to be removed from the fMRI data to have more accurate
brain connectivity results. In the last results’ section (represented
in Figures 8, 9) we show that, including low frequency spatial
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FIGURE 2 | Temporal IMFs and their corresponding frequency spectrum of the sample SIMF time series. (A) Sample of SIMF time series before temporal

decomposition (B) 9 decomposed TIMFs of a sample SIMF by applying the ICEEMDAN method with 300 ensembles and a level of noise of 0.2. (C) The 9

decomposed TIMFs are divided into three different frequency bands. According to slow1 to slow3 and slow5 frequency bands defined in the literature, TIMFs1 to 3

and 5 to 9 are combined, respectively. (D) Represents the frequency spectrum of the 9 TIMFs. (E) The frequency spectrum of TIMFs in part (C) that correspond to

frequency bands used in the literature for slow1 to slow5 Penttonen and Buzsáki (2003), Zhan et al. (2014). TIMF, Temporal Intrinsic Mode Function; ICEEMDAN,

Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise.

domains may cause spurious connectivity results between
brain regions.

3.2. Regressing Out the AGS and SGS
From fMRI Data
According to the definition of AGS, for each brain voxel signal,
there is a corresponding AGS while the SGS is common for the
whole brain voxels. The AGS for each voxel is computed by
summing up the SIMF3, SIMF4, and SIMF5 with all TIMFs while
the SGS is computed by taking the average of all brain voxels’ time
series. It should be noted that in computing AGS, the residues of
spatiotemporal decomposition of the fMRI data are added to the
last TIMF and SIMF. The three time courses in Figures 7A–C

correspond to the AGS, the fMRI sample time course [the peak
voxel’s time course in Medial Prefrontal cortex (MPF) ROI], and
the conventional or Static GS (SGS), respectively. Figures 7D,E
show resting-state fluctuations of the sample fMRI time series

from MPF ROI after regressing out (subtracting) the AGS and
the SGS. It also has to be mentioned that to be consistent with the
previous fMRI studies, data are conventionally low-pass filtered
except when the AGSR method is applied.

3.3. Connectivity Map of Task-Positive and
Task-Negative Networks
The default mode network or Task Negative Network (TNN) is a
state of brain activation whereby the individual is not attending
to any external cues in the environment but certain brain regions
are still activated and they are less active during task performance
rather than during the resting-state. It has been shown that (Fox
et al., 2005) the default mode network responses are significantly
activated in three of the seeded regions: the Posterior Cingulate
Cortex (PCC), Medial Prefrontal cortex (MPF), and Lateral
Parietal cortex (LP). The efficacy of our approach is examined
by computing the connectivity map. In computing functional

Frontiers in Neuroscience | www.frontiersin.org 7 July 2019 | Volume 13 | Article 73674

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Moradi et al. EMD-Based Global Signal Regression

FIGURE 3 | Pipeline for computing spatial and temporal IMFs (SIMF and TIMF) of the fMRI data. (A) A sample of fMRI data. (B) Splitting each fMRI data in time at

each TR time. (C) SIMFs at each TR time which are computed by applying FATEMD approach. (D) Shows the AAL 116 atlas used after merging SIMFs in time to

select the peak voxel of each region. (E) Time series of all brain ROIs for each SIMF. (F) The TIMFs’ time series of a sample SIMF for one ROI computed by using

ICEEMDAN approach. (G) Summation of time series of the TIMFs in (F) based on frequency bands of slow1 to slow5 defined in the literature. The summation of the

TIMF1 to TIMF3, TIMF4, and the combination of TIMF5 to TIMF9 are labeled as TIMF1, TIMF2, and TIMF3 in the rest of the paper, respectively. rfMRI, resting-state

fMRI; TIMF, Temporal Intrinsic Mode Function; SIMF, Spatial Intrinsic Mode Function; ICEEMDAN, Improved Complete Ensemble Empirical Mode Decomposition with

Adaptive Noise; FATEMD, Fast and Adaptive Empirical Mode Decomposition; ROI, Region of Interest.

connectivity maps, we computed Pearson’s correlation which
is popular in fMRI studies and also allows our findings to be
comparable with other papers to test the validity of the proposed
method. We computed the average connectivity between the
time course of the PCC region as a seed region and the main
regions of the Task Positive Network (TPN) which are theMiddle
Temporal (MT), right Frontal Eye Field (FEF), left Intraparietal
Sulcus (IPS), SupplementaryMotor Area (SMA), Inferior Parietal
Lobule (IPL), Visual regions, and the left Auditory region and the
TNN ROIs which are MPF, PCC, and left LP which includes the
Angular Gyrus, Hippocampus, and Cerebellar tonsils ROIs (Fox
et al., 2009; Erdoğan et al., 2016).

Considering the AGS definition, the combination of the
SIMF1 and SIMF2 was used to compute the functional
connectivity between PCC and TNN and TPN including visual
ROIs by using Pearson’s correlation coefficient (r), P ≤ 0.01.
Figure 8 is functional connectivity brain map for different brain

layers along the Z axis which show the mean connectivity over all
subjects between brain regions and the PCC ROI as a seed region
when the AGSR, NR, and the SGSR are performed.

Figure 9 shows expected average connectivity between the
PCC ROI and different regions of the TPN and the TNN
(positive correlation between the PCC and the TNN and negative
correlation between the PCC and TPN) applying the new
approach of GSR in resting-state fMRI data.

While the NR and SGSR (conventional GSR which is based
on averaging) are unable to identify the expected connectivity
in some regions for TPN and TNN ROIs, the AGSR approach
obtains expected functional connectivity for all regions in TNN
and TPN which confirms the effectiveness of the proposed
method for GSR (Figure 9). As AGSR is an adaptive and voxel-
specific method, we have a unique local signal for each voxel
which by being removed from fMRI data augments the precision
of the rsfc-MRI results.
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FIGURE 4 | Functional connectivity matrices of the whole brain regions using AAL 116 atlas for different spatial and temporal IMFs. Pearson’s correlation coefficient (r)

with P ≤ 0.01 is computed between all the brain regions’ spatiotemporal domains extracted from fMRI data. Spatial domains are extracted by applying FATEMD

method on fMRI signal. The three temporal domains including TIMF1, TIMF2, and TIMF3 are computed by applying ICEEMDAN on each SIMF. SIMF, Spatial Intrinsic

Mode Function; TIMF, Temporal Intrinsic Mode Function; ICEEMDAN, Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise; FATEMD,

Fast and Adaptive Empirical Mode Decomposition.

FIGURE 5 | Average functional connectivity matrices of the whole brain regions using AAL 116 atlas over all subjects. (A) Average connectivity matrix of fMRI data

applying AGSR which means the connectivity matrix of combination of SIMF1 and SIMF2 including all TIMFs of the fMRI data, (B) connectivity matrix of the AGS

which is the combination of SIMF3 to SIMF5 including all TIMFs. AGSR, Adaptive Global Signal regression; AGS, Adaptive Global Signal; SIMF, Spatial Intrinsic Mode

Function; TIMF, Temporal Intrinsic Mode Function.

4. DISCUSSION

In contrast to previous works (Zarahn et al., 1997; Fox et al., 2009;
Liu et al., 2017), the present study provides a new method for
GSR, called AGSR, that works voxel-specifically and adaptively.
It is believed that fMRI data are a superposition of the GS
and network-specific fluctuations. However, the main reason
for the controversy over the use of GSR in fMRI studies is

that the average-based GS is a mixture of signals from multiple
brain regions without considering the possibility of spatial
heterogeneity in the GS (Fox et al., 2009; Murphy et al., 2009;
Weissenbacher et al., 2009; Saad et al., 2012; Murphy and Fox,
2017). It has been shown that regressing out average-based GS
results in negative correlations that do not have a biological basis
and are artifacts in the voxels’ time series which lead to distortion
in the connectivity results or activation measures (Fox et al.,
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FIGURE 6 | Integration of the brain network at different spatiotemporal scales.

(A) Average efficiency of the whole brain network for different spatial and

temporal IMFs defined in functional connectivity. (B) Comparing the magnitude

of average efficiency of the brain network over all subjects when the AGS is

removed from the fMRI time series (the sum of SIMF3 to SIMF5 in all TIMFS

are removed and the sum of SIMF1 to SIMF2 including all TIMFs of the fMRI

signal are considered to compute the connectivity), and the average efficiency

of the AGS (summing up SIMF3 to SIMF5 in all TIMFs). High efficiency values

in the SIMF3 to SIMF5 which represent the AGS in the fMRI data are seen in

the figures. GS, Global Signal; AGS, Adaptive GS.

TABLE 1 | Integration of AGSR and AGS. The average efficiency of the brain

network over all subjects, when the AGSR are performed, and the average

efficiency of the AGS. AGS, Adaptive Global Signal; AGSR, AGS Regression.

Network

measure

Label Interpretation Value

Efficiency AGSR The brain network’s average efficiency

when AGSR is performed

0.2325±0.0480

Efficiency AGS The brain network’s average efficiency

of the AGS

0.8850±0.0417

2009; Murphy et al., 2009; Murphy and Fox, 2017). In this paper,
we showed that the AGSR method works voxel-specifically and
can compute the neuronal correlations of the brain’s networks
more accurately. This is because using the FATEMD method
in computing AGS maximizes the spatial contributions to the
GS. In other words, decomposing fMRI data in space using the
FATEMD approach, which is done by considering features of
each voxel’s neighbors, makes the computed AGS sensitive to
brain regions’ heterogeneity.

When assessing the efficiency for different spatiotemporal
domains of the fMRI data, no large differences in different
temporal IMFs at the same spatial IMF were obtained. Thus, we
concluded that the variability of efficiency is just related to the
spatial frequency domains. The high values of the efficiency in
the low spatial frequencies demonstrated the existence of the GS.
On the other hand, high spatial frequencies, SIMF1 and SIMF2,

represented the most network-specific data. Accordingly, the low
spatial frequencies, SIMF3 to SIMF5 including all TIMFs, were
considered as the AGS.

Additionally, it has been shown that motion, cardiac, and
respiratory noise components which have high frequency cycles
and are spatially coherent, cause spatially widespread fluctuations
in the BOLD signals that contribute to the global signal (Shmueli
et al., 2007; Liu et al., 2017). Conventionally, filtering the high
frequency components of the fMRI data to remove above
mentioned physiological noises and the GSR are done separately
as two preprocessing steps in fMRI studies (He and Liu, 2012;
Caballero-Gaudes and Reynolds, 2017; Liu et al., 2017), however,
common low-pass filtering methods through removing high
frequency components cause missing a considerable amount
of information on resting-state brain functional network
(Tagliazucchi et al., 2011, 2012; Boubela et al., 2013; Turchi et al.,
2018). In our proposedmethod, in addition to GSR, physiological
noise components that are common across voxels and are mainly
included in the high frequency modes are also removed from
the data by removing the SIMF3 to SIMF5 of TIMF1 through
AGSR. Thus, our proposed method, through AGSR, filters
the highly connected part of high frequency modes adaptively
without applying low-pass filter separately. It can help to provide
more informative data by involving high frequency modes
in the data.

We examined the efficacy of our method by computing
the seed-based functional connectivity for the TPN and TNN
regions. Our results in agreement with previous studies (Chang
and Glover, 2009; Fox et al., 2009; Chai et al., 2012), show that the
negative correlations are intrinsic to the brain and do not appear
just as a result of the GSR. We found that the AGSR method
identifies the connectivity between the TPN and TNN regions
according with the expected results of prior studies (Fox et al.,
2005, 2009). We compared the connectivity results of the AGSR
with the SGSR and when there is NR in the fMRI data. Despite
the connectivity results of the SGSR method and when there is
NR, applying our proposed method resulted in an enhancement
to the detection of network-specific fluctuations of the brain.
Furthermore, although the strength of the correlations is related
to cognitive function, in auditory regions, lower activity seen in
the result of applying AGSR appears to be related to the better
removal of the acoustic noise heard by subjects during fMRI. This
shows that the acoustic noise of the fMRI device which is almost
constant in all TR times and interferes with auditory system
activity can be removed better through AGSR (Ravicz et al.,
2000; Moelker and Pattynama, 2003). Thus, it is inferred from
the results that AGSR method is able to remove physiological
and remained systemic noises after preprocessing more correctly
and without introducing artifactual correlations as confirmed by
correlations between PCC and the reference regions.

In conclusion, AGS is a unique local signal for each voxel’s
BOLD signal. In the AGSR method, the first and second spatial
IMFs of each fMRI data, decomposed by FATEMD method,
are simply summed up to have a band-pass filtered fMRI data
without GS. AGSR is a reliable method that works voxel-
specifically for all subjects which leads to provide information
about brain function with more accuracy. There are some
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FIGURE 7 | AGSR and SGSR of a sample fMRI data. (A) The voxel-specific AGS of Medial Prefrontal (MPF) cortex region and (B) the original fMRI time series of the

peak voxel in MPF cortex region. (C) The SGS which is common for all region’s voxels. (D,E) Show the time series with the SGSR and AGSR, respectively. These time

series are computed by subtracting the AGS and SGS from the original time series. MPF, Medial Prefrontal cortex; AGS, Adaptive Global Signal; SGS,

Static(conventional) Global Signal; AGSR, AGS Regression; SGSR, SGS Regression.

FIGURE 8 | Comparing the average functional connectivity between the PCC ROI as a seed region and the brain ROIs using the AAL 116 atlas for fMRI data of all

subjects. The average functional connectivity applying (A) AGSR, (B) NR, and (C) SGSR. Slices shown in the maps are at Z = 09, 15, 25, 35, 45, 55, 65, 75,

respectively. AGSR, Adaptive Global Signal Regression; NR, No Regression; SGSR, Static (conventional) Global signal regression.

limitations to the methods used in this study that should be
noted. Although the FATEMD and ICEEMDAN are optimized
approaches for finding the best IMF sets, they still need
more improvement in the sifting procedure to yield better

decomposition performance. For instance, finding the optimum
values of added white noise and the ensemble number to
overcome themodemixing problem and speed up the calculation
in ICEEMDAN approach are two drawbacks of this approach.
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FIGURE 9 | The average connectivity map between the PCC as a seed region and (A) the TPN and (B) TNN ROIs for fMRI data of all subjects. Connectivity results of

applying AGSR and SGSR are shown in green and red, respectively, and the blue ones are the results of computing connectivity without applying any GSR (NR).

Connectivity map is made by computing Pearson’s correlation coefficient (r) with P ≤ 0.01 between the PCC region as a seed region and the main regions of the TPN

and TNN. PCC, Posterior Cingulate Cortex; MPF, Medial Prefrontal cortex; LP, Lateral Parietal cortex; MT, Middle Temporal; FEF, Frontal Eye Field; IPS, Intraparietal

Sulcus; SMA, Supplementary Motor Area; IPL, Inferior Parietal Lobule; ROI, Region Of Interest; NR, No Regression; AGS, Adaptive Global Signal Regression; SGS,

Static (conventional) Global Signal Regression.

We computed the GS for each region of the AAL 116 atlas
specifically, however, as this method has a “voxel-specific” nature,
it can be applied to all voxels of the brain. Computing voxel-
specific GS just needs more memory and computer power, such
as a larger computer cluster but no additional changes to the
underlying algorithm are needed. It is more feasible to compute
the AGSR for all the voxels when we are interested in some
specific regions of the brain and not the whole brain.

Therefore, the proposed method in this paper provides the
opportunity to characterize the whole brain function and reflect
the intrinsic property of the spatiotemporal nature of the fMRI
data through removing the voxel-specific GS and not removing
the whole high frequency modes. Future studies can be devoted
to the application of our proposed method to the other image
processing areas.
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Resting state functional magnetic resonance imaging (rs-fMRI) has become an
indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily
contaminated by artifacts arising from movement of the head during data collection.
The artifacts can be problematic even for motions on the millimeter scale, with complex
spatiotemporal properties that can lead to substantial errors in functional connectivity
estimates. Effective correction methods must be employed, therefore, to distinguish
true functional networks from motion-related noise. Research over the last three
decades has produced numerous correction methods, many of which must be applied
in combination to achieve satisfactory data quality. Subject instruction, training, and
mild restraints are helpful at the outset, but usually insufficient. Improvements come
from applying multiple motion correction algorithms retrospectively after rs-fMRI data
are collected, although residual artifacts can still remain in cases of elevated motion,
which are especially prevalent in patient populations. Although not commonly adopted
at present, “real-time” correction methods are emerging that can be combined with
retrospective methods and that promise better correction and increased rs-fMRI signal
sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI
research will benefit from good disclosure practices, such as: (1) reporting motion-
related quality control metrics to provide better comparison between studies; and (2)
including motion covariates in group-level analyses to limit the extent of motion-related
confounds when studying group differences.

Keywords: resting state fMRI, noise, motion artifacts, motion compensation, image processing

INTRODUCTION

Since the first report of temporal correlations between spontaneous blood oxygenation level-
dependent (BOLD) signals in the bilateral motor cortices (Biswal et al., 1995), “resting-state”
functional magnetic resonance imaging (rs-fMRI) has become an important tool to probe
functionally connected networks throughout the brain (Smith et al., 2013b). The rs-fMRI method
continues to advance the scientific understanding of brain development, aging, and disease (Woods
et al., 1998; Fair et al., 2008; Supekar et al., 2009; Bettus et al., 2010; Qin et al., 2012; Lin et al.,
2018), among other application areas, and affords a number of advantages over the original task-
based fMRI approach for recording brain activity. For example, multiple resting-state networks
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can be revealed from a single rs-fMRI study without the need
to administer one or more prescribed behavioral tasks, typically
by measuring BOLD signal correlations relative to a “seed”
region of interest, or by using multivariate component models
to identify networks based on statistical criteria. The absence of
the task(s) also removes the need for fMRI-compatible devices
to present sensory stimuli and record behavioral responses,
along with the device-related software and computer control.
Thus, the relatively straightforward acquisition of the data,
coupled with the wealth of information that is obtained, have
spurred adoption of the rs-fMRI method for research purposes.
This is especially the case for clinical neuroimaging research
involving patient populations, in which the workflow of the fMRI
experiment must be efficient and task performance may not be
possible or is confounded by impairments related to the brain
disease under study.

Although rs-fMRI is an effective tool for studying the brain
function of healthy and patient populations, the measured
BOLD signal fluctuations are caused not only by neuronal
activity, but also by multiple other confounding factors. These
include physiological effects (e.g., respiration and cardiac
pulsatility) and various imperfections in MRI system hardware
(e.g., heating of the imaging gradients during experiments).
Of all the confounding factors, however, the effects of head
motion are especially complex and troublesome. The small
amplitude of BOLD signals – typically a few percent or
less – ensures that millimeter-scale head motions may be
problematic even after various correction algorithms are applied
to fMRI data. In the case of task-based fMRI, head motion
can be temporally correlated with task performance and under
many circumstances, the resulting “motion artifacts” cannot
be distinguished from brain activity. The interpretation of the
fMRI data becomes compromised as a result (Johnstone et al.,
2006). Although prescribed behavioral tasks are not a part
of rs-fMRI, head motion still is problematic and may even
be exacerbated when imaging individuals while they are at
rest (Engelhardt et al., 2017; Huijbers et al., 2017). Numerous
effects of head motion have been reported in the rs-fMRI
literature. For example, sub-millimeter motions have been shown
to distort functional connectivity estimates from approaches
that include seed correlation analyses, graph theoretic network
modularity, dual regression independent component analysis
(ICA), and power spectrum methods (Power et al., 2012;
Satterthwaite et al., 2012; van Dijk et al., 2012). Depending
on the amplitude and spatio-temporal characteristics of the
head motion, estimates of functional connectivity can be
increased, decreased, or even driven to zero (Power et al.,
2014). Characteristic “distance” and “orientation” dependencies
of the errors have been reported in correlation-based estimates,
with decreased long-distance connectivity and increased local
connectivity (Power et al., 2012; van Dijk et al., 2012); and
increased lateral connectivity at the expense of connectivity in
the inferior–superior and anterior–posterior directions (Power
et al., 2012). The effects are especially problematic in between-
group studies of brain development and of neurological
diseases, as the groups may differ significantly in their levels
of head motion (Seto et al., 2001; Mowinckel et al., 2012;

Satterthwaite et al., 2012; Haller et al., 2014). In these cases,
it may be very difficult to decouple hypothesized effects
(Courchesne and Pierce, 2005; Andrews-Hanna et al., 2007), from
motion-related differences with the greatest effects of motion
often observed in groups with the greatest brain impairment
(Wylie et al., 2014).

Given these reports and the need to generate data with
improved quality in the long term, this focused review discusses
how head motion affects rs-fMRI data, and summarizes the
existing and emerging strategies for motion correction. The
pertinent characteristics of human head motion are first
discussed, followed by the physical principles that cause head
motion to introduce signal confounds in rs-fMRI data. The
second half of the review discusses the strengths and weaknesses
of various retrospective motion correction strategies, and the
potential benefit that “real-time” correction techniques can
provide in the future.

This focused review is not exhaustive in terms of the references
that are included. Interested readers are encouraged to seek out
other discourses that provide more in-depth discussion of topics
that are covered here (e.g., Power et al., 2015; Esteban et al.,
2019). In addition, for balance and brevity, the review focuses on
the main concepts behind various motion correction strategies
without explicitly mentioning and defining all their acronyms.
The acronyms are available in the references that are cited.

HEAD MOTION: CHARACTERISTICS

As a reasonable starting point, the head may be considered as
a rigid body that can move in space. Three dimensional (3D)
rigid body motion is usually parameterized by six degrees of
freedom (DOF), for example described in Cartesian coordinates
as translations in x- (left/right), y- (anterior/posterior), and
z-axes (inferior/superior), and rotations about the x-axis (pitch),
y-axis (yaw), and z-axis (roll). Each of the six parameters will
vary as a function of time as the head moves dynamically during
an rs-fMRI experiment (a time series data collection of images
of the brain volume, acquired with BOLD signal contrast). In
reality, the brain is not perfectly rigid, given the biomechanical
properties of its constituent tissues and the pulsatile flow of blood
within it (Dagli et al., 1999). Nevertheless, given the dynamics
of the motions involved and the millimeter spatial resolution
that is presently available on most MRI systems operating at
1.5 and 3.0 T, the rigid body approximation is very reasonable.
The rapid imaging protocols that are used in rs-fMRI [typically
echo planar imaging (EPI) or spiral k-space readouts] also ensure
that motion is effectively “frozen” during the time needed to
encode the spatial information for each image slice (∼50 ms
or less) in a typical two-dimensional (2D) multi-slice imaging
protocol. Although each slice samples the head motion at a
slightly different point in time, this issue is usually dealt with
effectively by temporal interpolation of slices to a single time
point (Parker et al., 2017).

Although head motion often varies considerably from subject
to subject, multiple studies have revealed that certain general
characteristics are common. In healthy individuals, for example,
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translations in the inferior/superior direction together with
a “nodding” rotational motion are often evident, possibly
with superposition of more rapid oscillatory motion from the
respiratory cycle (Seto et al., 2001). This pattern of motion
arises because a pivot point occurs at the back of the head
or the base of the neck while the subject lies supine in
the magnet bore, with relatively constrained motion in the
other directions. This common pattern has implications for the
extent of motion in different brain regions: anterior frontal
and orbitofrontal areas are likely to be more affected than
posterior areas such as the primary visual cortex. Furthermore,
this motion is not well represented by fluctuations in just one
DOF in Cartesian coordinates – instead, coupled translation
and rotation signals are observed that may be difficult to
resolve unambiguously.

Another characteristic feature of head motion is that the
temporal patterns of movement and associated artifacts do not
display band-limited frequency content. As such, frequency
filtering commonly applied in rs-fMRI to isolate the frequency
range of interest (∼0.01–0.1 Hz) may be ineffective for motion
correction, and can even smear motion contamination across
the entire dataset if not applied carefully (Carp, 2013). Low-
frequency, autocorrelated trends are readily apparent in rs-fMRI
data due to motion, and work initially focused on developing
methods other than frequency filters to remove these artifacts
while retaining the true fMRI signal content (Woods et al.,
1998; Lund et al., 2006). More recent work has focused on the
need for specialized methods to account for transient motions
(Satterthwaite et al., 2013), for example due to involuntary
twitches or tics, which also occur at non-trivial levels.

There is also evidence that head motion can differ across
various populations of subjects. Task-based fMRI studies show
that patient populations, older adults, and pediatric subjects
exhibit larger motions compared to young healthy adults (Seto
et al., 2001; Yuan et al., 2009; Haller et al., 2014; Graham
et al., 2016; Huijbers et al., 2017). For example, patients with
stroke, Alzheimer’s Disease, bipolar disorder and schizophrenia
move more compared to age-matched healthy subjects (Seto
et al., 2001; Haller et al., 2014; Huijbers et al., 2017). Similarly,
young children and older adults show larger motions when
compared to young adults (Seto et al., 2001; Yuan et al., 2009).
Elderly subjects show more random head motions whereas
young adults move more slowly and rhythmically (Graham
et al., 2016). Sex-related differences have also been observed,
with girls showing less tendency to move than boys during
three of four language tasks in a task-based fMRI study
(Yuan et al., 2009). Finally, less engaging task paradigms and
rs-fMRI protocols may also lead to levels of head motion
that are higher than those observed in task-related fMRI
measurements (Huijbers et al., 2017) although more research
would be useful in this area. As the amount of rs-fMRI data
increases and becomes more freely accessible throughout the
human brain mapping community, the opportunity should be
taken to evaluate the head motion characteristics in studies
with large sample size and different subject populations, as
this may help to inform motion correction and data analysis
methods in the future.

HEAD MOTION ARTIFACTS

The consequences of head motion on rs-fMRI data can be
very complex. Rather than producing a single type of image
artifact, multiple types are possible with very different physical
mechanisms. A list of the possibilities is given below. This list is
not exhaustive, and some of the possibilities are more commonly
appreciated than others.

Partial Volume Effects
Functional MRI data are almost always acquired within the static
coordinate frame of the MRI system, assuming that each voxel
represents the signal content of the same brain structure for the
entire duration of the time series data collection. However, head
motion causes the proportion of various brain tissue types in a
voxel to fluctuate over this duration, each with slightly different
MRI signal contrast properties (Stanisz et al., 2005). This is
commonly referred to as the “partial volume effect” (Hajnal et al.,
1994) and is most problematic for voxels in the vicinity of tissue
boundaries where large signal differences occur [e.g., between
gray matter (GM) and white matter (WM), and especially
between GM and cerebrospinal fluid (CSF)]. The partial volume
artifact characteristically appears as spurious correlated signal
fluctuations that rim the surface of the brain, or that occur along
the interhemispheric fissure. It is increasingly realized that as
fMRI protocols are developed with greater spatial resolution, for
example using ultra-high field systems at 7 T or beyond, the
reduction of voxel size will cause the partial volume effect to
increase (Zaitsev et al., 2017) and thus better correction strategies
will be needed (see section “Correction Strategies” below).

Spin History Effects
As mentioned above, head motion tends to have major
components that involve “nodding” and displacements in the
inferior–superior direction (Seto et al., 2001). As fMRI protocols
commonly adopt 2D multi-slice imaging with an axial or oblique-
axial slice prescription, brain tissue will inevitably move through
each slice, producing an artifact that is usually referred to
as the “spin history effect.” In an rs-fMRI experiment, the
baseline signal intensity is a function of multiple MR acquisition
parameters and MR tissue properties, but the quantities relevant
to spin history are the flip angle (θ) of radiofrequency excitation,
the repetition time (TR) determining the temporal resolution
of the rs-fMRI time series, and the longitudinal relaxation time
(T1) at a particular voxel location. At the start of any time series
data acquisition, it takes several TR intervals to establish the
steady-state baseline signal intensity, which is achieved from a
balance of how far the tissue magnetization or “spins” are flipped
toward the transverse plane, and the time allotted for T1 recovery
before the next θ pulse is applied. Ideally, the θ value should
be constant through the slice, but in reality there is significant
spatial non-uniformity. Thus, through-plane motion disturbs the
steady state magnetization of the imaged slice by introducing
spins with different excitation history. The steady state will also
be disturbed if tissues with different T1 values move in and out
of the slice – which is particularly observable for voxels that
include blood vessels.
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Spin history effects have been modeled empirically (Friston
et al., 1996; Muresan et al., 2002) and in phantom experiments
to establish the dependency on MR acquisition parameters and
tissue properties (Yancey et al., 2011). The characteristic behavior
is that a discrete through-plane displacement causes a signal
transient that may be similar in amplitude to the rs-fMRI signal
and requires several TR intervals to attenuate. In cases of slow,
smooth motion, spin-history artifacts may be quite difficult to
distinguish from the true BOLD fluctuations in rs-fMRI data.

Dynamic Geometric Distortions
Although EPI and spiral k-space readouts provide good temporal
resolution for rs-fMRI experiments, both are very sensitive to
spatial non-uniformity in the static magnetic field (Jezzard and
Clare, 1999; Glover, 2012). Automatic “shimming” procedures
are available on all clinical MRI systems and provide some
benefit, but the differences in magnetic susceptibility at interfaces
between brain tissues, bone, and air are sufficiently large that
regions of geometric distortion and signal loss remain – typically
in inferior frontal and inferior lateral temporal areas (Ojemann
et al., 1997). It is well appreciated that a constant correction for
these effects may be needed at each point in the rs-fMRI the time
series data collection, but dynamic corrections may be needed
as well (Zaitsev et al., 2017). Lung ventilation effects during the
respiratory cycle cause magnetic field fluctuations in inferior
brain regions at 3 T and above (Raj et al., 2001; Van de Moortele
et al., 2002). Furthermore, head motion causes the susceptibility-
induced field non-uniformities to fluctuate in a manner such that
the boundary conditions at each tissue interface satisfy Maxwell’s
Equations. The end result is dynamic geometric distortions that
are observable in the EPI phase-encoding direction (Wu et al.,
1997; Jezzard and Clare, 1999; Andersson et al., 2001). The
effects are non-linear with respect to motion estimates and vary
depending on the position and orientation of the tissue interfaces
relative to the main magnetic field, the amount of head motion,
and the magnetic field strength.

Coil Sensitivity
Multi-channel receiver coils are now an established part of fMRI
protocols, providing higher signal-to-noise ratio (SNR) than
previously achievable and enabling higher temporal resolution
through various parallel imaging reconstruction approaches
(Pruessmann, 2006). Channel count continues to increase, with
64-channel coils currently available from at least one major MRI
system vendor. The higher the channel count, the smaller each
individual element becomes. The associated area of sensitivity of
each element also becomes more localized, with steeper spatial
sensitivity gradients. This implies that at some point, multi-
channel receiver coils will become appreciably sensitive to head
motion, if the translation or rotation of brain tissue becomes
sufficiently large in relation to the sensitivity gradients of the
individual coil elements. Two recent reports have indicated that
this problem may be relevant for rs-fMRI at 3 T in a 16-channel
coil geometry, for a conventional EPI k-space readout (Faraji-
Dana et al., 2016a) as well as for parallel imaging reconstruction,
with worse artifacts occurring as the acceleration factor was
increased (Faraji-Dana et al., 2016b). In both cases, it was possible

to suppress these artifacts by tracking and correcting for the
relative motion between the head and the receiver coil, at each
point during the fMRI-time series data collection.

CORRECTION STRATEGIES

Given the complexity of the problem, it is not surprising that a
multifaceted approach is needed in the quest to achieve full and
robust motion correction in rs-fMRI data. A brief summary of the
available correction strategies is given below. The choices range
from simple commonsense approaches, to more sophisticated
retrospective corrections as well as “real-time” corrections.

Head Restraints and Behavioral
Intervention
At the outset, it would seem straightforward simply to restrain
individuals so that no head motion occurs during rs-fMRI.
The problem would thus be solved at the source, without
introducing artifacts into the data. Unfortunately, it is often very
difficult to achieve this goal in practice. Mild head restraint is
an essential part of all fMRI procedures: padding between the
head and the coil is commonly adopted (with other options
available such as the use of vacuum pillows, and thermoplastic
facial masks fixed to the MRI table), whereas bite bars and
even more restrictive clamping systems are used less frequently
(Bettinardi et al., 1991; Green et al., 1994; Righini et al., 1996;
Schültke et al., 2013). Although restraints decrease the extent
of head motion in cooperative subjects, in many cases the
milder forms of restraint are ineffective at eliminating some
component of motion at the sub-millimeter and millimeter level,
such as nodding. However, the stronger restraints have the
potential to increase claustrophobia, can become uncomfortable
and tiresome especially for lengthy fMRI sessions, and in some
cases can exacerbate motion as subjects try to alleviate associated
pain or pressure (Zeffiro, 1996). Brain activity is also likely to be
altered as a result, especially in very young or very old healthy
individuals. Furthermore, clinical contraindications make strong
restraints unacceptable for certain patient populations (Zeffiro,
1996; Schültke et al., 2013).

Subjects are also commonly instructed to “try to lie still
and not move” as part of setup and positioning prior to rs-
fMRI experiments. For these instructions to have the intended
effect, subjects must appreciate the small level of motion that
can be tolerated and also must remain vigilant at keeping still.
As mentioned above, pediatric and patient populations may
not be able to fulfill these requirements, with reduced rs-fMRI
data quality as a consequence. For example, children are more
prone to head motion when tasks are less engaging, making
motion correction strategies important for rs-fMRI acquisitions
(Yuan et al., 2009; Engelhardt et al., 2017). Pre-training using
“mock scanning” or “fMRI simulator” sessions may help to
reduce the need for sedation when imaging children and may
provide more runs with usable MRI data (Epstein et al., 2007;
De Bie et al., 2010; Barnea-Goraly et al., 2014), but significant
benefit of this approach is not consistently demonstrated (Thieba
et al., 2018; Li et al., 2019). Training tools and interventions
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such as watching a movie and/or motion feedback training
(visual or verbal) have shown promise in children, young adults
and stroke patients (Vanderwal et al., 2015; Graham et al.,
2016; Greene et al., 2018). In the case of the movie paradigm,
however, functional connectivity measures are contaminated
by brain activity associated with watching the movie and
cannot be considered truly “resting-state.” Collectively, these
methods require additional set-up, lengthen the duration of
the imaging session, and are not widely adopted yet, at least
partly for these reasons. Another alternative is to monitor
head motion and adjust the length of the time series data
acquisition so that enough data of sufficient quality are collected
(Dosenbach et al., 2017). Although useful, this approach is
rather open-ended and may be inefficient for patients with
moderate-to-excessive motion.

Imaging Protocol
The rapid 2D multi-slice imaging methods commonly used
in rs-fMRI not only provide adequate temporal resolution
to sample BOLD responses, but also afford some protection
against motion artifacts. In addition to the “snap-shot” imaging
capability provided by the raster scan k-space readouts used
in EPI, the spiral k-space readout intrinsically compensates for
motion in the plane of each image slice (Glover and Lai, 1998).
Researchers have also continued to develop imaging methods
with even better motion compensation (Lee et al., 2010; Krämer
et al., 2012; Graedel et al., 2017; Kecskemeti et al., 2018). The
increasingly popular alternative involves simultaneous multi-
slice acquisitions together with parallel imaging reconstruction to
provide increased temporal resolution, better snap-shot imaging
capability, and robustness to static and dynamic geometric
distortion (Feinberg et al., 2010; Setsompop et al., 2012;
Zahneisen et al., 2014b). However, this approach introduces a
different set of noise characteristics which may have implications
for rs-fMRI analysis (Golestani et al., 2018). Dual- and multi-
echo imaging methods have also been receiving attention recently
because the acquisition of two or more images of each slice
at different echo time (TE) values helps to isolate BOLD
signals from noise. This can be achieved by regressing low TE
value data (with minimal BOLD weighting plus noise) from
higher TE value data (with more optimal BOLD weighting
plus noise) (Buur et al., 2009; Bright and Murphy, 2013), or
by a more complex multivariate denoising approach relying
on signal decay properties (Kundu et al., 2013). Dual- and
multi-echo approaches must be applied judiciously, however, so
that the spatiotemporal resolution of 2D multi-slice rs-fMRI is
not compromised.

Retrospective Motion Correction
Over the years, many strategies have been developed that
help to suppress the effects of head motion after fMRI data
have been collected. These “retrospective” methods are an
essential part of processing rs-fMRI signals and are easily
implemented as part of freeware analysis packages developed
and applied by the functional neuroimaging research community
(e.g., Esteban et al., 2019).

Rigid-Body Registration
Volumetric rigid-body registration primarily corrects for partial
volume effects and is typically viewed as an essential step
of rs-fMRI analysis. Head motion parameters are estimated
iteratively with six DOF by optimizing a cost function that
quantifies the similarity between each image in the time
series and a reference image (Friston et al., 1995; Cox, 1996;
Jenkinson et al., 2002; Oakes et al., 2005). The reference image
should be chosen carefully (such as the average image over
the time series), as the error in motion parameter estimates
increases with the extent that each image must be re-aligned.
Although very useful, volumetric rigid-body registration does
have some limitations. Most implementations do not correct
for motion that occurs during multi-slice acquisition of the
entire brain volume, so slice-to-volume as well as slice-to-slice
registration approaches have been developed (Kim et al., 1999,
2008; Yeo et al., 2008; Beall and Lowe, 2014; Chen et al.,
2015; Ferrante and Paragios, 2017). The accuracy of motion
estimates also depends on the signal quality in the image slices,
which are acquired at low spatial resolution and at relatively
low SNR, with BOLD-related signal variations that can bias
motion estimates toward neural activations depending on the
choice of the cost function (Freire and Mangin, 2001). The
latter effect can be mitigated in principle by simultaneously
optimizing the registration while estimating fMRI signals,
although the approach has only been tested for task-based fMRI
thus far (Orchard et al., 2003). Furthermore, the registration
process inherently requires resampling and interpolation so
that all motion-corrected images utilize a common Cartesian
coordinate system. This can further reduce spatial resolution
and bias activation estimates (Grootoonk et al., 2000; Yuan
et al., 2016). Lastly, volumetric registration algorithms work
well for small head movements, but become less accurate or
fail completely for larger motion (Oakes et al., 2005; Morgan
et al., 2007). In particular, large motions can invalidate the
assumption of rigid-body motion as a consequence of the
geometric distortions introduced by dynamic magnetic field
inhomogeneity (Elliott et al., 2004). In such cases, complex
affine or non-linear transformation models are beneficial, as
well as use of dynamic maps of the magnetic field (Hutton
et al., 2002; Roopchansingh et al., 2003; Sutton et al.,
2004; Visser et al., 2012; Ooi et al., 2013b), although these
methods are more computationally intensive and have not been
widely adopted yet.

Linear Regression
Various linear regression strategies are also commonly adopted
to address the residual motion-related signal variance that can
arise from imperfect volumetric rigid-body registration. For
example, the six time-dependent motion parameter estimates
that are output from the registration are easily applied in
multiple linear regression to remove these “nuisance” effects
from the rs-fMRI data. The approach has been extended
further to 12 parameters (including temporal derivatives;
Power et al., 2012), 24 parameters (squares of the motion
parameters and temporal derivatives; Friston et al., 1996;
Satterthwaite et al., 2013; Yan et al., 2013) and even 36
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parameters (squares of the motion parameters, and both first
and second temporal derivatives; Power et al., 2014). Specialized
regression procedures have also been proposed for group
comparisons (Satterthwaite et al., 2012; Yan et al., 2013).
The use of higher-order regressors has demonstrated greater
reduction in motion-related variance (Lund et al., 2005) and
has been suggested for high-motion subjects (Satterthwaite
et al., 2013; Yan et al., 2013; Yuan et al., 2016), for which
low-order regression (6 or 12 parameters) has been found
less effective (Power et al., 2012; Satterthwaite et al., 2013).
However, concerns associated with overfitting and removal
of BOLD signals arise in cases where head motion is
minimal and large numbers of nuisance regressors are used.
Direct evidence of this effect has been shown in task-based
fMRI (Johnstone et al., 2006; Ollinger et al., 2009) whereas
more investigations remain to be undertaken in rs-fMRI.
Moreover, motion parameter estimates are often highly coupled
and fitting with better statistical power is achieved when
a method such as principal component analysis (PCA) is
used to reduce the dimensionality of the nuisance regressors
(Woods et al., 1998).

When considering regression approaches, it should also be
recognized that fMRI signal changes from movements can
have a latency of several seconds (due to spin history effects,
for example) (Power et al., 2014). Simple motion parameter
regression cannot completely remove such deviations and
thus more sophisticated methods are of interest, such as the
use of more nuisance regressors as indicated above. Another
approach considers that BOLD signals arise predominantly
from GM, and thus additional effects from motion and non-
neural sources can be removed by using spatially averaged
time series signals of WM and CSF (WM-CSF) as nuisance
regressors, and possibly the related derivatives (Weissenbacher
et al., 2009). To address the dimensionality concerns raised
above, a regressor from WM-CSF PCA space can be used
(Behzadi et al., 2007; Muschelli et al., 2014). Different WM
regressors can also be obtained for each GM voxel, accounting
for spatial variations in WM noise that may not be apparent in
the average regressor (Jo et al., 2010). Both the latter methods
have been shown to perform better than regression of the
average WM-CSF time series. Irrespective of how the WM-CSF
regressors are derived, however, they should be implemented
with “erosion” of the corresponding spatial masks to avoid
contamination from adjacent GM voxels – otherwise the rs-
fMRI signal can be attenuated (Jo et al., 2010). Furthermore,
when applying WM regressors, it should be recognized that
they may represent signal of functional origin (Ding et al.,
2013; Peer et al., 2017). More research on this topic will be
important in clarifying the noise or information characteristics
of WM signals.

An additional nuisance regressor of potential interest is
obtained by spatially averaging the rs-fMRI time series data
over the whole brain. This “global signal” is usually correlated
with the first PC of the whole brain time series (Carbonell
et al., 2011). The value of global signal regression (GSR) is
currently in dispute (Murphy and Fox, 2017; Xu et al., 2018).
Originally, GSR was performed assuming that any source that

modulates the global brain signal is non-neural (Desjardins
et al., 2001), but more recent studies have shown that the
global signal does contain measurable neural contributions
(Schölvinck et al., 2010; Wong et al., 2016) and even distinguishes
healthy subjects from schizophrenia patients (Hahamy et al.,
2014). Nevertheless, many studies have demonstrated the
usefulness of GSR for mitigating motion-related noise, although
with residual artifacts that depend on the distance between
functional connections (Yan et al., 2013; Power et al., 2014;
Ciric et al., 2017). Other studies report that GSR introduces
false anticorrelations (Murphy et al., 2009; Weissenbacher et al.,
2009). This discrepancy in the literature may relate to the
level of non-neural noise that has a global effect on the rs-
fMRI signal, and suggests that it may be useful to quantify the
global noise level to determine whether GSR should be adopted
(Chen et al., 2012).

Scrubbing
Involuntary head motion can produce substantial transients
in the rs-fMRI signal. The transients can be identified by
establishing a threshold for outlier signals, for example based
on relative signal difference followed by corrections such as
“spike” regression (Lemieux et al., 2007), or scrubbing/censoring
(ignoring) the erroneous data (Power et al., 2012). Both
methods are effective at removing transient motion artifacts
(Satterthwaite et al., 2013; Power et al., 2014; Ciric et al.,
2017; Parkes et al., 2018), with some notable caveats in the
latter case. Temporal interpolation or spectral decomposition
of un-scrubbed data can be used when outliers occur at
multiple adjacent time points, but this must be done carefully
to avoid residual artifacts and subtle motion bias (Power
et al., 2014). Moreover, rs-fMRI analysis can be complicated
by the variation in temporal DOF across subjects or groups
of subjects with considerable differences in head motion
(Parkes et al., 2018). Data sets with a greater number of
scrubbed spikes will have systematically reduced temporal
autocorrelation. “Trimming” each dataset to equal length
provides a simple solution, although the reliability of functional
connectivity estimates may be reduced (Birn et al., 2013;
Power et al., 2014). Subjects with high levels of motion may
need to be excluded if many points in the rs-fMRI time
series are scrubbed.

Data-Driven Methods
Various multivariate methods are useful to determine what
components, or “features,” exist in the rs-fMRI data without
imposing a mathematical model a priori for the signal and
noise properties. Such data-driven methods are advantageous
because they place less burden on the operator to identify all
types of motion artifacts and implement specific correction
methods – potentially allowing results to be replicated more
easily across studies. However, data-driven methods do require
some form of post hoc feature selection of the components
(and the number of components used) to identify the
signals of interest and remove structured noise. For example,
mutually orthogonal features are identified by PCA, which
has been used to remove motion-related signal fluctuations
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at the edge of the brain for improved temporal SNR
compared to use of motion parameter regression (Patriat
et al., 2015). In addition, ICA (Thomas et al., 2002) is
popular to identify features based on statistical independence
rather than orthogonality. Manual identification of noise-
related ICs requires detailed knowledge of the spatiotemporal
properties of the rs-fMRI signal (see Griffanti et al., 2017
for guidance) and is laborious and operator-dependent, but
multiple automatic methods have been developed that are
robust and objective (Tohka et al., 2008). These include
methods specifically focused on removing physiological noise
associated with cardiac pulsatility and respiration (Beall and
Lowe, 2007; Perlbarg et al., 2007), and more general artifact
removal methods with different processes for feature selection
(Bhaganagarapu et al., 2013; Salimi-Khorshidi et al., 2014;
Pruim et al., 2015b). Work has also been done to compare
the effectiveness of these methods, as well as in relation
to other de-noising approaches such as spike regression
and scrubbing (Pruim et al., 2015a; Parkes et al., 2018).
Additional comparisons of this type will be necessary to
establish whether one or more methods are particularly
advantageous across different populations of test subjects in
rs-fMRI studies.

Other Methods and Considerations
Briefly, it is important to make three additional comments about
retrospective correction of motion artifacts in rs-fMRI data.
First, comparative work on volumetric versus surface-based fMRI
analysis shows that the latter provides superior inter-subject
alignment and better preservation of functional regions upon
smoothing (Anticevic et al., 2008; Tucholka et al., 2012; Smith
et al., 2013a). Even so, retrospective motion correction is usually
performed as a preliminary step in the volumetric domain prior
to the projection of de-noised fMRI data onto the brain surface.
Second, artifact reduction is an intensive field of MRI research
and new correction methods are continuously being developed,
some of which may have significant merit without aligning to the
categories listed above. One example is a method called “wavelet
despike” that has been developed to identify dynamic events
occurring across various frequencies, for the removal of sudden
spikes from head motion as well as slower spin-history related
artifacts (Patel et al., 2014). This method is particularly useful for
subjects with elevated head motion and is capable of reducing or
even removing distance-dependent connectivity artifacts without
the need for scrubbing (Patel et al., 2014). Third, it is evident that
because no gold-standard protocol exists to correct artifacts in rs-
fMRI data, the data analyst is confronted with choosing from very
many rs-fMRI artifact correction methods, many of which have
multiple parameter settings. Multiple correction methods must
be selected to suppress artifacts most successfully, and the various
methods are likely to interact with one another, sometimes in an
order-dependent fashion. This state of affairs has led to multiple
studies that compare various correction methods and/or their
interaction effects, using various metrics to indicate the quality
of the rs-fMRI results (Churchill et al., 2012a,b; Carp, 2013;
Hallquist et al., 2013; Satterthwaite et al., 2013; Power et al.,
2014; Pruim et al., 2015a; Shirer et al., 2015; Ciric et al., 2017;

Vytvarová et al., 2017; Gargouri et al., 2018; Parkes et al., 2018).
Such work will continue to be necessary as MRI systems, imaging
protocols, and methods of analysis improve over time.

Real-Time Motion Correction
Although patient setup procedures, use of rapid imaging
acquisitions, and retrospective de-noising approaches are
commonly adopted in rs-fMRI experiments, another class of
correction methods described as “real-time,” “adaptive,” or
“prospective” show considerable promise and may become
essential tools in the long term. Here, the term “real-time”
is adopted for these methods, which depart from typical
rs-fMRI protocols that produce reconstructed images in a
Cartesian coordinate system that is static with respect to the
MRI system. Instead, images acquired with real-time motion
correction are reconstructed in a moving coordinate system
that is fixed to the head. In principle, images viewed in the
moving coordinate system will appear to be static, provided
that rigid body motion is a good approximation. (In reality,
effects that violate this assumption will also have to be corrected
either in real-time or retrospectively, as indicated below).
Real-time motion correction requires (a) a method to track
head motion, usually relative to an initial head position and
orientation; and (b) incorporation of the tracking data to
update MRI spatial encoding synchronously with the moving
coordinate system. The latter requirement necessitates software
modifications to the underlying image acquisition method (e.g.,
EPI). Depending on how rapidly and accurately the update
occurs, real-time approaches have the potential to account
for both partial volume effects and spin-history effects in very
convenient fashion. In cases where the real-time update is
relatively slow, prospective correction can be added to account
for the lag between motion measurement and acquisition of
the next multi-slice image dataset – using a Kalman filter, for
example (White et al., 2010). Various real-time motion correction
methods exist, categorized below based on the choice of motion
tracking strategy.

Navigator Echoes
Magnetic resonance signals that are acquired and spatially
encoded specifically for position tracking are known as “navigator
echoes” and were among the first methods of real-time motion
correction developed for fMRI (Lee et al., 1996, 1998). The main
advantage of such methods is that position tracking is achieved
without requiring custom ancillary hardware or fiducial markers
(see below). Navigator echoes have progressed from tracking
motion in 1D (Ehman and Felmlee, 1989) to full 3D capability
(Welch et al., 2002; Wastiaux et al., 2006; Tisdall et al., 2012)
based on calculations performed in k-space (Lin et al., 2010)
or image space (White et al., 2010; Hoinkiss and Porter, 2017).
However, the methods have not been widely adopted in fMRI
studies to date (Boksman et al., 2005). Possible reasons for
this include (a) insufficient position tracking accuracy for fMRI
applications, arising from sensitivity to imperfections such as
gradient non-linearity and magnetic field inhomogeneity; and (b)
potential disruption of the steady state magnetization in brain
regions where functional connectivity is of interest.
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Image-Based Methods
A more popular method for real-time motion correction involves
the use of volumetric image registration to track the change in
head position and orientation at each point in the fMRI time
series in relation to a reference volume of multi-slice images
(Thesen et al., 2000). This approach is now a standard option
on some MRI systems, and assumes that multiple effects are
negligible: head motion on the timescale of the TR interval
(typically ∼2 s); dynamic geometric distortion; and other artifacts
that violate the rigid-body assumption, such as interactions
between head motion and coil sensitivity. One or more of
these assumptions may not always be valid. For improved
functionality, a revised version of this method has recently
been implemented to take advantage of simultaneous multi-slice
fMRI for higher temporal resolution and intra-volume motion
correction (Hoinkiss et al., 2018).

Other Position Tracking Devices
Many additional methods have been investigated for real-
time motion correction that either adopt novel MRI signal
approaches for position tracking, or other MRI-compatible
sensor technologies. “Active marker” methods use at least
three non-collinear RF micro-coils, each containing an MRI-
sensitive material, as fiducials to measure rigid-body head
motion with minimal impact on temporal resolution (Erhart
et al., 1998; Krueger et al., 2006; Ooi et al., 2009, 2013a).
“Passive marker” approaches have also been explored that
use small pickup coils for position tracking based on the
voltages induced by imaging gradients (Haeberlin et al., 2014;
Aranovitch et al., 2018). As for navigator echoes and image-
based methods, active and passive MRI marker devices can also
suffer from instrumental imperfections that introduce errors in
signal localization. Nonetheless, improved image stability has
been demonstrated in standard EPI sequences (Ooi et al., 2011)
as well as increased statistical significance for fMRI (Muraskin
et al., 2013). The most recent and sophisticated work in this area
uses an inductively coupled microcoil and a series of other passive
marker components: a pickup coil, magnetometer, accelerometer
and angular rate sensor. When all the sensor measurements
are combined, position tracking with sub-millimeter accuracy is
achievable from a single fiducial device (van Niekerk et al., 2019).

Optical sensors are also attractive for their high temporal
resolution and spatial accuracy, and intrinsic MRI-compatibility.
The original work involved laser interferometry (Eviatar
et al., 1999), but was not pursued due to impracticalities in
achieving line-of-sight and mirror adjustment. Better results
are achieved using one or more optical cameras to track
reflective fiducial markers affixed to the head (Zaitsev et al.,
2006; Maclaren et al., 2012; Todd et al., 2015). These
methods enable a tracking accuracy of ∼5–100 µm with
temporal resolution of ∼20–50 ms, exceeding the capabilities of
most MRI-based methods (Eschelbach et al., 2018). However,
there are also some concerns about the practicality, cost
and robustness of these methods at present. Calibration is
required to transform optical position tracking data into
the spatial coordinates of the MRI system, which may be
time-consuming (Maclaren et al., 2018). Calibration errors

can create further artifacts (Zahneisen et al., 2014a) that
must be corrected retrospectively (Aksoy et al., 2012). The
cost of optical tracking systems tends to be high, due to
hardware considerations involving the MRI-compatibility of
the cameras, and the research and development required to
develop motion-correction capabilities with good calibration and
real-time integration in MRI systems and imaging protocols.
The camera view of markers (typically through openings in
the head coil) may be obstructed if motion is substantial,
and there is the general concern with all fiducial marker
approaches (optical and other) that movement of the skin,
for example due to frowning or facial expressions, may not
accurately reflect motion of the brain. Each of these problems
is being actively investigated and ameliorated (Singh et al.,
2015; Benjaminsen et al., 2016; Eschelbach et al., 2017; Frost
et al., 2018). Notably, optical motion correction has been
shown to improve temporal SNR of both resting state and
task-based 3D EPI acquisitions (Todd et al., 2015), with
demonstrated benefits for increased significance and sensitivity of
connectivity measures (Chu et al., 2018). Based on the promising
outcomes of this collective work, optical tracking devices are
also available for MRI applications commercially through third-
party vendors, and are starting to be offered by MRI system
vendors themselves.

One final comment is required about real-time motion
correction methods for rs-fMRI. The existing literature in
this area predominantly relies on the assumption of rigid-
body head motion and, as emphasized earlier, this is likely
insufficient for full suppression of motion artifacts. For example,
residual geometric distortions will likely be present due to
motion-induced dynamic magnetic field inhomogeneities, which
can be resolved by real-time shim updates or by distortion
corrections from time-dependent field maps (Ooi et al., 2013b;
Rotenberg et al., 2013). Corrections for the interaction between
head motion and multi-channel coil sensitivity can also be
included (Faraji-Dana et al., 2016a,b). More research is needed
to establish what combinations of retrospective and real-time
corrections are most appropriate for rs-fMRI analyses, with the
promise of more robust methodology and improved detection
sensitivity in the future.

CONCLUSION

Despite its utility in neuroscience, rs-fMRI is confounded by
the effects of head motion during data collection, which may
result in complex spatial-temporal patterns of artifact. Diverse
and efficacious methods are now available that can be combined
to correct for these artifacts. Much progress has been made
to improve rs-fMRI data quality, but the existing methods
are not yet sufficiently robust to provide full control for
motion-related confounds. Real-time correction methods show
considerable promise toward reaching this goal in the future.
At present, however, the following recommendations represent
our view of how to address the potential for confounds in rs-
fMRI experiments due to motion artifacts – reasonably, and
transparently. Neuroimaging data analysts should:
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• report summary statistics of the head motion characteristics
for the group(s) under study, including whether group
differences in head motion are statistically significant;

• report and justify the methods used in the research to
correct for motion artifact;

• include statistical corrections in group level comparisons
to ensure that, as much as is reasonably possible, motion
artifacts to do not introduce confounds in the interpretation
of rs-fMRI results; and

• survey the fMRI literature for ongoing improvements
in motion artifact correction methods, and evaluate and
incorporate new methods as appropriate to maintain state-
of-the-art capabilities.

These practices will help to advance the neuroscientific
research that can be conducted using rs-fMRI, as will the

continued focus on technical developments to ensure that motion
artifacts become less of a problem in rs-fMRI data.
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Advances in functional magnetic resonance imaging (fMRI) acquisition have improved
signal to noise to the point where the physiology of the subject is the dominant
noise source in resting state fMRI data (rsfMRI). Among these systemic, non-neuronal
physiological signals, respiration and to some degree cardiac fluctuations can be
removed through modeling, or in the case of newer, faster acquisitions such as
simultaneous multislice acquisition, simple spectral filtering. However, significant low
frequency physiological oscillation (∼0.01–0.15 Hz) remains in the signal. This is
problematic, as it is the precise frequency band occupied by the neuronally modulated
hemodynamic responses used to study brain connectivity, precluding its removal by
spectral filtering. The source of this signal, and its method of production and propagation
in the body, have not been conclusively determined. Here, we summarize the defining
characteristics of the systemic low frequency noise signal, and review some current
theories about the signal source and the evidence supporting them. The strength and
distribution of the systemic LFO signal make characterizing and removing it essential
for accurate quantification, especially for resting state connectivity, when no stimulation
can be compared with the signal. Widespread correlated non-neuronal signals obscure
and distort the more localized patterns of neuronal correlations between interacting
brain regions; they may even cause apparent connectivity between regions with no
neuronal interaction. Here, we discuss a simple method we have developed to parse
the global, moving, blood-borne signal from the stationary, neuronal connectivity signals,
substantially reducing the negative correlations that result from global signal regression.
Finally, we will discuss some of the uses to which the moving systemic low frequency
oscillation can be put if we consider it a “signal” carrying information, rather than simply
“noise” complicating the interpretation of resting state connectivity. Properly utilizing this
signal may offer insights into subtle hemodynamic alterations that can be used as early
indicators of circulatory dysfunction in a number of neuropsychiatric conditions, such as
prodromal stroke, moyamoya, and Alzheimer’s disease.

Keywords: low frequency oscillation, noise modeling, denoising, vascular mapping, cerebrovascular reactivity,
physiological noise, physiological noise modeling
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INTRODUCTION

Resting state functional magnetic resonance imaging (rsfMRI)
seeks to elucidate neuronal connectivity throughout the brain by
examining of fMRI signal correlations between regions during
scans when the brain is not performing any specific task (it
is “at rest”). However, the BOLD signal does not measure
neuronal activation directly. It is a composite measurement of
hemodynamic properties of blood flow, volume, and oxygenation
changes in response to neuronal activity (Buxton et al., 1998)
(i.e., neurovascular coupling). In short, increased neuronal firing
leads to an increase in regional blood flow, which brings an
oversupply of oxygenated blood (Fox and Raichle, 1986). The
increase in blood flow and oxygenation leads to an elevation
of the BOLD signal. As a result, the observable BOLD signal
(blood-related) is much slower (∼s) than neuronal firing (∼ms)
(Logothetis et al., 2001) and cannot reflect fast changes of the
field potential of neuronal firings. In mathematical terms, the
BOLD signal is the result of the convolution of the fast neuronal
signals with the slow hemodynamic functions. Therefore, the
frequencies of “neuronal” BOLD signals are generally below
0.15 Hz (Josephs and Henson, 1999).

However, neuronal activations are not the only contributors
to BOLD signals in the low frequency band. Advances in
fMRI acquisition techniques and hardware have improved signal
to noise to the point where the physiology of the subject
being studied is the dominant noise source in rsfMRI data. In
addition to neuronal BOLD, there are systemic, non-neuronal
fluctuations in brain hemodynamics due to heartbeat, respiration,
and so-called “low frequency oscillations” (LFOs). These signals
are unavoidable, and taken together can account for 20–70%
of the BOLD signal variance (see Figure 1), depending on
acquisition, and locations of the voxels (Liu, 2017). Numerous
processing strategies have been devised to mitigate them. Recent
improvements in hardware and pulse sequences (specifically
simultaneous multislice acquisition protocols) have pushed the
temporal resolution of fMRI high enough that respiration, and
to some degree cardiac fluctuations (see Figure 1) can be
removed through simple spectral filtering, or through more
advanced modeling methods when these signals are aliased
(Glover et al., 2000; Birn et al., 2006, 2008; Behzadi et al., 2007;
Chang et al., 2009, 2013). These methods are well described
elsewhere and are not the focus of this manuscript. However,
significant signal power remains in the “low frequency oscillation
band,” a loosely defined region from ∼0.01–0.15 Hz. Non-
neuronal signal in this frequency band accounts for at least
30% of the signal variance in gray matter (Frederick et al.,
2012a). This is problematic as it is the precise frequency
band occupied by the neuronally modulated hemodynamic
responses used to study brain connectivity, precluding its
removal by filtering.

The strength and distribution of the systemic LFO signal
make characterizing and removing it essential for accurate
quantification of neuronal connectivity. Moreover, these signals
might not be “noise” after all. Understanding their origins
and characteristics will help to develop novel methods to
assess brain physiology which could greatly compliment the
functional findings.

CHARACTERISTICS OF LOW
FREQUENCY OSCILLATIONS

LFOs in BOLD fMRI have been found and studied extensively,
but as noted above, there are numerous potential explanations for
this signal, and even some variation in what in particular should
be considered a “low frequency oscillation.” For the remainder
of this paper, we will apply two criteria to our discussions of
LFOs; the frequency band of the signal, and whether the signal
is stationary, or moves with the blood.

Frequency Content
The first criterion is simply a definition. LFOs are signals that
occur in the brain (and in some cases throughout the body)
that have frequencies between ∼0.009 and 0.2 Hz. The exact
endpoints of this band are extremely variable in the literature.
Biswal’s original paper on resting state connectivity used 0.01–
0.1 Hz (Biswal et al., 1995), but later papers expanded this range;
for the purpose of this discussion, we will use the range of 0.01–
0.15. 0.15 Hz has a particular significance as the top of the range,
as this is the highest expected frequency in neuronally generated
hemodynamic signals (based on the shape of the canonical
hemodynamic response function) (Josephs and Henson, 1999),
so this defines the frequency range where spectral filtering cannot
be used to remove non-neuronal signal. The frequency content of
a typical BOLD signal is shown in Figure 1.

Dynamic Versus Stationary Noise Signals
The second defining characteristic of LFOs is less commonly
considered. Our research into low frequency physiological noise
in fMRI has established that a significant fraction of the low
frequency variance in fMRI data can be modeled quite effectively
as a single low frequency signal with varying delay times across
the brain. Moreover, the pattern of relative delay times in
different regions of the brain is consistent with the delays
that would be expected if the signal were moving through
the brain with blood as it flowed through the vasculature.
We refer to this dynamic signal as “systemic low frequency
oscillations” (sLFOs) (Tong et al., 2015). The realization that
a significant fraction of the low frequency “noise” in fMRI
appears to be moving has important implications for how to
identify, remove, or even utilize this signal (Tong and Frederick,
2010, 2012, 2014b; Tong et al., 2011b,c, 2013, 2014, 2017, 2018;
Frederick et al., 2012b).

Temporal Pattern – sLFOs Propagate on
a Hemodynamic Timescale
Our research on sLFOs strongly suggest that the underlying
oscillations propagate on hemodynamic, physiological, rather
than on neuronal, timescales, taking several seconds to
fully transit the brain rather than milliseconds. Circulatory
measurements of the traversal of a Tc99 tracer through the
brain vasculature (from the carotid, to the internal brain arteries,
through the parenchyma, to the superior sagittal sinus) showed
that the transit time of blood from the anterior and middle
cerebral arteries to the superior sagittal sinus takes ∼6.7 s in
healthy middle-aged controls (Crandell et al., 1973), timing

Frontiers in Neuroscience | www.frontiersin.org 2 August 2019 | Volume 13 | Article 78796

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00787 August 13, 2019 Time: 16:0 # 3

Tong et al. Low Frequency Systemic Hemodynamic “Noise”

consistent with results found by other imaging methods. For
example, using echo contrast-enhanced ultrasound, delays of
7.5 ± 1.8 s from the carotids to the jugulars were found
in 64 healthy subjects (Schreiber et al., 2002). Similar, but
smaller delays (4.9–6.4 s) were found in other ultrasound studies
(Schreiber et al., 2005). Direct evidence can also be found in
digital subtraction angiography (DSA), where an x-ray contrast
bolus was injected directly into the ICA and followed as it passed
through the brain (Monti et al., 2015; Jann et al., 2016).

Spatial Pattern – sLFOs Travel Along the
Vasculature
The patterns of the delays of the sLFO signal clearly suggest
that this signal is related to blood flow, evolving in a pattern
that reflects the vasculature – the sLFO signal appears first in
the center of the brain, propagates out through the parenchyma,
and ends up in the superior sagittal sinus, with a range of
delays of ∼6.5 s (Tong and Frederick, 2010), a pattern we have
seen consistently in many subsequent studies over several years
(Tong et al., 2011a,b,c, 2013, 2014, 2015; Frederick et al., 2012a;
Tong and Frederick, 2012, 2014a). In our most recent studies we
have directly confirmed the association between the sLFO delay
pattern and blood flow, first by performing sLFO analysis and
time resolved dynamic susceptibility imaging in the same scan
session (Tong et al., 2017), and more recently by following the
sLFO signal all the way from the internal carotid arteries through
the draining veins (Tong et al., 2018).

Origin – sLFOs Seem to Originate
Outside the Brain
The sLFO BOLD signal identified from the carotids preceded
the signal found in any voxel of the brain. Indeed, the same
sLFO signal can be found throughout the body (measured in
the periphery using NIRS) (Frederick and Tong, 2010; Tong and
Frederick, 2010; Li et al., 2018). The delays in the periphery are
symmetric across the midline of the body, and the arrival time of
the sLFO signal found in the fingers and toes precede the arrival
in many brain voxels (Tong et al., 2012). While it is possible that
some process in the brain is the ultimate source of this moving
signal, there is no evidence whatsoever in the fMRI data that this
is the case – to the contrary the implication is that the signal does
not originate in the brain.

Summary
From the growing body of evidence from our group and
others we can summarize that the sLFO BOLD signal: (1) is a
spontaneous physiological oscillation, (2) travels with the blood,
and (3) has an extracerebral origin. Given the large amount of
LFO signal variance that is clearly attributable to the moving
component (at least 30% of the low frequency signal variance in
gray matter, Frederick et al., 2012a), we believe this constitutes the
majority of the physiological LFO signal power. In addition, these
qualities provide the key to isolating the signal from the neuronal
signals of interest.

In contrast, there may also be non-neuronal LFOs which do
not propagate. However, because of the difficulty in separating
these signals from putative neuronal signals, they are far harder

to characterize. Certain mechanisms (detailed below) such as the
Mayer wave, are thought to be synchronous throughout the body,
and therefore stationary. Isolating the contribution of stationary
LFOs to the resting state signal would require as yet undeveloped
processing strategies, which is why we will discuss these possible
sources, however we will focus primarily on the dynamic portion
of the signal during the remainder of the paper.

POTENTIAL CAUSES OF THE LOW
FREQUENCY OSCILLATION

The source of LFO signal, and its mechanism of production and
propagation in the body, have not been conclusively determined –
LFOs have been variously attributed to alterations in sympathetic
nervous system tone, partial pressure of carbon dioxide (paCO2)
fluctuations modulated by respiration, blood pressure regulation,
low frequency neuronal “waves,” and even gastric motility. It may
in fact be a combination of multiple, independent signals with
distinct sources. We will review these current theories about the
signal source and the evidence supporting them. This section is
summarized in Table 1.

Variations in Heart Rate and Respiratory
Volumes
One major potential source of LFOs comes from variations of
the heart rate and respiration. For example respiration volume
per time (RVT) (Birn et al., 2006) and respiration variation
(convolved with the respiratory response function, Birn et al.,
2008; Chang et al., 2009) are two methods to model fluctuations
from CO2 concentration. In specific, the former model describes
the depth of the respiration, whereas the latter reflects the
variation in respiration. Previously, these methods have been
shown to explain additive variation in data with longer TRs
between 9 and 11% (Birn et al., 2006, 2008; Chang et al., 2009)
in the voxels affected. From the same group a model taking the
variation in heart rate into account was developed (Chang et al.,
2009), explaining 3% more variance in the affected voxels. The
underlying mechanism of this change is still not well understood,
but was proposed to relate to neuronal activity linked with
changes in levels of arousal (Chang et al., 2009). These models
typically incorporate a delay of several seconds to best match the
modeled noise waveforms with the fMRI data, suggesting that
these signals are in the moving category (although the standard
implementations of these methods do not account for regional
delays within the brain).

Carbon Dioxide
Carbon dioxide changes are closely related to the previous topic,
and they partially share the same mechanism, namely induced
changes in cerebral blood flow and volume due to CO2 induced
vasodilation. However, here we discuss the direct effects of paCO2
by comparing BOLD fMRI to measured fluctuations in the partial
pressure of end-tidal carbon dioxide, especially in the lower range
of the LF band, namely 0–0.05 Hz (Wise et al., 2004; Sassaroli
et al., 2012), rather than the indirect estimation of this effect from
the respiratory and/or cardiac waveforms.
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TABLE 1 | Summary of the common explanations for low frequency physiological noise.

Source Description Properties Cerebral origin? Causes sLFO?

Mayer wave Mayer waves are spontaneous
LFOs at around 0.1 Hz.

Highly synchronous within the
brain – it seems unlikely that it
would appear to move.

Yes? Not likely

Vasomotion Vasomotion is a spontaneous
oscillation (0.01∼0.3 Hz) in the
vascular tone, which is independent
of respiration, pulsation and
neuronal activity.

The induced vascular variations
could propagate with the blood,
resulting in a mix of stationary and
moving signal.

Unclear Possible

CO2 Carbon dioxide is a potent vassal
dilator. It can travel with the blood
and induce changes in cerebral
blood flow and volume.

Clearly a moving signal – the CO2

travels in the blood.
No Possible

Variations in heart rate
and respiratory volumes

The variations of the heart rate and
respiration, including the depth of
the respiration, are in the low
frequency range.

Depth of respiration and heart rate
variation can alter blood volume
(through CO2 and pressure
changes), and the effects should
move with the blood.

No Possible

Gastric oscillations The electrogastrogram signal (i.e.,
synchronized gut motions at
∼0.05 Hz) significant correlates
with BOLD fMRI data with time
delays.

May be controlled neuronally, but
the effects seem to originate in the
gut and move with blood.

Mostly no Possible

Aliased signals of
cardiac and respiration

Aliased signals of cardiac and
respiration due to long TR are in the
low frequency range.

These signals are in the right
frequency range and can travel with
blood, but are not highly correlated
with the sLFO signal when tested
by fMRI data with very short TR or
fNIRS.

No Not likely

FIGURE 1 | Power spectrum (left) and time domain data (right) presented in different spectral bands, from a voxel in a resting state data (TR = 0.4 s) of one
participant. Three distinct spectral ranges corresponding to different physiological processes were marked. The spectral area captured by various TR values is also
depicted on the power spectrum. The right hand panel shows a BOLD timecourse from a resting state fMRI scan (TR = 0.4 s) without filtration (A, in red) and its
band-passed versions in panel (B) 0.01–0.2 Hz; (C) 0.3–0.4 Hz; and (D) 0.8–1.0 Hz (in blue) (Figure adapted from Tong and Frederick, 2014a).

Wise et al. (2004) found that paCO2 levels measured with end
tidal CO2 in the 0–0.05 Hz band were significantly correlated
with both increased middle cerebral artery blood velocity and
increased BOLD fMRI signal in gray and white matter. This is
attributed to the vasodilatory effect of CO2 – increased CO2

leads to increased arterial diameter and blood volume. As a
consequence, this signal can be clearly placed in the group of
sLFOs that move with the blood. Wise found up to 28% of the low
frequency signal variance in the BOLD signal was attributable to
the paCO2. This is likely the lower limit, because while the peak
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correlation delays between the BOLD and paCO2 timecourses
were between 3 and 13 s, only a single delay of 6.3 s was used
for all voxels, which would reduce the apparent correlation.

Mayer Waves
Mayer waves are spontaneous LFOs at around 0.1 Hz (Julien,
2006) and are associated with variations in mean arterial pressure,
and have been associated with a sympathetic autoregulation
mechanism (Tsuji et al., 2000), in particular below 0.1 Hz
(Obrig et al., 2000; van Beek et al., 2008; Sassaroli et al., 2012).
These studies connected mean arterial blood pressure to cerebral
intravascular oxygenation when monitoring cerebral circulation
and blood flow with NIRS. However, a characteristic of Mayer
waves is their largely synchronous nature within the brain
(Sassaroli et al., 2012), differing from the sLFOs, which have
differing delays across the brain (Tong and Frederick, 2010;
Tong et al., 2011b). We would therefore classify Mayer waves as
stationary LFO signals.

Vasomotion From Oscillations in the
Vascular Tone
Vasomotion is a spontaneous oscillation (0.01∼0.3 Hz) in the
vascular tone, which is independent of respiration, pulsation
and neuronal activity (Hundley et al., 1988; Mayhew et al.,
1996; Rivadulla et al., 2011). These oscillations of the lumen
diameter modify blood flow in a corresponding fashion resulting
in periodic oscillations in the blood flow (Aalkjær et al., 2011).
Another LF signal is attributed to vasomotion, referring to
the oscillations in the vascular tone, thought to be generated
movement within the vessel walls (Zhang et al., 1998; Aalkjær
et al., 2011; Sassaroli et al., 2012; Müller and Österreich, 2014).
These changes are highly localized and have been linked to
oscillatory intracellular calcium (Aalkjær et al., 2011). This
would give the signals a local, stationary nature, however the
vascular variations induced would then propagate with the blood,
resulting in a mix of stationary and moving signal.

Aliased Signals of Cardiac and
Respiration
Because fMRI is usually not sampled fast enough to resolve
cardiac or respiratory waveforms, some fraction of the energy in
these signals will be aliased to the low frequency band. In order to
determine the significance of this component of the signal, we
evaluated sLFOs in a dataset with high temporal resolution in
which the respiration and cardiac waveforms are fully sampled
(Hocke et al., 2016). We found that even with fully sampled data,
in which the respiration and cardiac bands can be isolated with
spectral filters, the purely non-neuronal sLFOs (as determined
by time-delayed correlation with a peripheral NIRS signal) still
account for over 13% of the total BOLD signal variance across all
frequency bands.

Gastric Oscillations
A somewhat more recent theory for the cause of sLFOs
is proposed by Rebollo et al. (2018) who found significant
correlations between electrogastrogram signals (which measure

synchronized gut motions at ∼0.05 Hz) and BOLD fMRI data.
Unfortunately, the technique used was unable to determine
directionality. However, the authors found delays between
the earliest (somatosensory cortices) and the latest (dorsal
precuneous and extrastriate body area) nodes of the proposed
“gastric network” were about 3.3 s. These later regions lie
in close proximity to the superior sagittal and transverse
sinuses, respectively, vessels at the end of the vascular
path through the brain. While Rebollo’s analysis could not
ascertain directionality – this observation is consistent with a
hemodynamic perturbation generated in the stomach which then
propagated through the cerebral vasculature, which suggests that
gastric signals likely contribute to the “moving signal” category.

This finding is in good agreement with previous work
by Yacin et al. (2011) which showed a strong relationship
between gastric activity and systemic LFOs in the periphery.
Yacin was able to reconstruct the gastric slow wave signal
from a fingertip photoplethysmogram, using a deep learning
approach. The reconstructed signal correlated with the measured
electrogastrogram slow wave with R >= 0.9, clearly establishing
that the gastric signal contributed a significant portion of the
sLFO variance observable in the periphery.

IMPLICATIONS FOR RESTING STATE
ANALYSIS

As mentioned previously, BOLD fMRI infers neuronal activation
indirectly through neurovascular coupling. As a result, the
neuronal activation will appear in the low frequency range
(∼0.01–0.15 Hz) of BOLD signal in both resting state and task
fMRI studies. This frequency range significantly overlaps with
that of sLFO. Therefore, the presence of sLFO in the BOLD
signal will confound the results of fMRI analyses, especially in
resting state studies, as the neuronal firing is also spontaneous
and of unknown timecourse (like sLFO), unlike task activation
which can be modeled.

Pure Physiological sLFOs in Resting
State Networks
In the following, we describe a previously published study
demonstrating the confounding effect of sLFO to the resting state
network analysis in both simulation as well as using concurrent
fMRI/fNIRS data (Tong et al., 2013). The signals measured
by NIRS (concentration changes in oxyhemoglobin and deoxy-
hemoglobin: 1[HbO] and 1[Hb]) are, like BOLD fMRI signal,
blood-related measures. High consistency between these NIRS
and fMRI signals has been demonstrated in concurrent studies
(Strangman et al., 2002; Sassaroli et al., 2006; Cui et al., 2011).
In this particular concurrent study, 1[HbO] and 1[Hb] were
measured in the periphery (i.e., on finger and toes) using NIRS,
instead of the brain. We found that the LFO band component
of 1[HbO] in the periphery was highly correlated with the
sLFOs of the BOLD signal in the brain, with a time delay.
Most importantly, since the data was recorded in the periphery,
the sLFOs measured here represented “pure” physiological
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fluctuations that were clearly not contaminated by the neuronal
LFO as they would be in the brain.

We used this pure signal to assess the physiological influence
of sLFOs on each resting state network. In detail, each subject’s
connectivity networks were identified from rsfMRI data using
ICA (Melodic and FSL), from which, the signature BOLD signals
of each network were extracted. To assess the sLFO signal’s
influence, we correlated each network’s signature BOLD signal
with the subject’s own concurrent peripheral data (i.e., 1[HbO]
of the fingertip). The networks with high correlations are the
ones being significantly influenced by the sLFOs. The results
showed that in addition to clearly vascular components, such as
the superior sagittal sinus, several sensory networks (i.e., visual,
auditory, etc.) are strongly affected by the sLFOs (Figure 2).

The Dynamic Nature of sLFOs in Resting
State Networks
With this in mind, we sought to determine if the dynamic
nature of the sLFO signal in BOLD could, on its own, lead to
artifactual connectivity in “Can apparent network patterns be
generated by the moving physiological sLFO signal alone?” (Tong
et al., 2015). First, we performed a simple test on simulated data,
which consisted of a sinusoidal wave with gradually increased
time delay along the traveling direction (Figure 3a, the direction
of the arrows), representing the traveling sLFO BOLD signal in
the brain, additive noise, and a constant offset (see Figure 3).
We then applied a standard resting state analysis methodology,
namely ICA. The result showed that multiple “networks” along
the traveling direction were identified, even though the only
difference between the time series of these networks is the
time delay (see Figure 3c). This simulation demonstrated that
methods like ICA are prone to being confounded by time delayed
versions of identical signals in different voxels.

FIGURE 2 | Independent components (1–7) from a group analysis of 10
subjects’ resting state data that have high, significant positive correlations with
simultaneously recorded peripheral NIRS data (Figure adapted from Tong
et al., 2015).

We then performed this test on data much closer to real
rsfMRI data. Initially, we calculated the delay between every brain
voxel and the peripheral NIRS signal using the subjects’ real
sLFO BOLD data as described above (Tong et al., 2013). Then, a
sinusoidal signal, adjusted with these delays (the real delays of the
subjects resting state data) replaced the real BOLD signal at each
voxel (i.e., the voxel-specific time delay was decided by the delay
value of that voxel). After that, we applied ICA on these simulated
fMRI data with identical time series at each voxel differing only by
the time delay. As a result, several “resting state networks” (RSNs)
were identified (see Figure 4), some of which closely matched
standard networks described in the literature. Finally, we applied
seed analysis on the same simulated data and were able to identify
“RSNs” as well (it is known that seed analysis is sensitive to
time delays). This study demonstrated that physiological noise
signals, depending only on vascular time delays can generate
network patterns similar to well-known RSNs through common
analytical procedures.

While clearly worrisome, these results should not be
interpreted as suggesting that RSNs are nothing but a vascular
artifact. There is extensive evidence for the existence of neuronal
RSNs, from both animal and human studies, with a range of
imaging technologies (Martinez-Montes et al., 2004; Hillman
et al., 2007; Brookes et al., 2011; Ma et al., 2016). Moreover, while
we have shown that up to 30% of the low frequency gray matter
variance (13% of the total variance across all frequency bands,
Hocke et al., 2016) is due to non-neuronal sLFOs (Frederick et al.,
2012a), this means, necessarily, that 70% of the variance is not
due to sLFOs, and likely represents neuronal signal. However, it
is clear that there are both vascular and neuronal “connectivity”
networks, with significant spatial overlap.

In order to support the metabolic demands of neurons,
vascular networks are formed according to various factors,
such as neuron density and metabolic demand. Areas of the
brain which routinely coactivate likely develop similar vascular
supplies, at similar times. This could lead to overlapping of
both networks. It is also possible that, despite being a map
of sLFO arrival time, the delay map may nevertheless contain
some neuronal information. We hypothesize that elevated
neuronal activation within a network will increase the blood flow
locally, minimizing the time delays within the network. These
subtle differences could be identified by ICA. Nevertheless, we
demonstrated that sLFO signals will confound the quantification
of some RSNs, in both the spatial and temporal domains, unless
some steps are taken to disentangle these signals.

MITIGATION STRATEGIES

As discussed, these widespread, correlated, non-neuronal
sLFOs obscure and distort the more localized patterns of
neuronal correlations between interacting brain regions, and
may even cause apparent connectivity between regions with
no neuronal interaction – numerous vascular “networks” are
commonly seen in data driven connectivity analyses. Standard
mitigation methods such as global signal regression (GSR) have
serious drawbacks, and may in fact induce artifactual negative
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FIGURE 3 | Synthetic data consisting of progressively delayed sum of sinusoids was placed inside two identical blocks (a). The red arrows indicate the direction of
the moving wave (increasing time delay). The examples of moving waves at the circles (1–3) are shown in panel (b). Six independent components resulting from ICA
are shown in panel (c) with the corresponding color bars (Figure adapted from Tong et al., 2015).
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BA

FIGURE 4 | Results from group ICA on 11 subjects’ real BOLD data were shown in panel (A). Results from group ICA on 11 subjects’ synthetic data were shown in
panel (B). The value in each result showed the spatial correlation coefficient calculated between that component and the corresponding RSN from the template
(Beckmann et al., 2005). The two components in the red block are the same (Figure adapted from Tong et al., 2015).

correlations between brain regions. Newer methods such as
CompCor (Behzadi et al., 2007) avoid some of these problems,
but may not fully remove the sLFO signal. By examining the
structure of temporal cross-correlations with non-zero time
delays throughout the brain (or by making simultaneous,
independent measurements in the periphery), it is possible to
parse the global, moving, blood-borne signal from the stationary,
neuronal connectivity signals. In the following we describe
a simple method to remove this signal, leaving the neuronal
connectivity intact, while substantially reducing the negative
(potentially spurious) correlations that result from global
signal regression.

We have conducted continuous research on isolating,
characterizing, and separating the neuronal LFO and sLFO in
the resting state BOLD fMRI during the past 8 years (Tong and

Frederick, 2010, 2012, 2014a,b; Tong et al., 2011a,b,c, 2012, 2013,
2014, 2015, 2016, 2017, 2018; Frederick et al., 2012a; Erdogan
et al., 2016; Hocke et al., 2016). The methods developed utilized
the key differences between these two oscillations, part of which
are discussed in “Characteristics of LFOs”: (1) neuronal LFO
is regional, while sLFO is global; (2) the neuronal LFO signal
does not “propagate” in space, while sLFO does (sLFOs are
dynamic), traversing the brain on the time scale of seconds; (3)
while neuronal LFO should be found largely in the capillary
bed (it is known to biased toward veins), sLFO BOLD is also
detected near/in the large blood vessels, especially veins as well
as capillaries; (4) neuronal LFO originates in the brain, while
sLFO has extracerebral origins and propagates into and through
the brain with the blood. These differences do allow us to
effectively parse the sLFO and neuronal components of the low
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frequency BOLD signal, and examine them separately using a
technique we call Regressor Interpolation at Progressive Time
Delays (RIPTiDe) which is described in more detail below.

Regressor Interpolation at Progressive
Time Delays (RIPTiDe)
The RIPTiDe procedure has been described in detail previously
(Frederick et al., 2012a). Initially, we developed a method to
determine relative blood arrival times in the voxels of a resting
state fMRI (rsfMRI) dataset by using simultaneous NIRS to
estimate the non-neuronal, systemic signal. We use a cross-
correlation procedure to determine the delay time between this
peripheral signal and the timecourse of each voxel in the fMRI
dataset. Determination of the precise arrival time of blood-borne
signal at every brain voxel also allows correct determination of the
fraction of that voxel’s signal that is accounted for by the moving
blood signal, which depends on the voxel’s relative cerebral blood
volume (rCBV) and the oxygenation of blood in the voxel (Tong
et al., 2018). We have used this NIRS based method to remove
non-neuronal signal from BOLD data (Frederick et al., 2012a),
as a probe to study physiological signal partitioning in brain
(Tong and Frederick, 2012, 2014a; Tong et al., 2012, 2013), and
to measure cerebrovascular reserve (Tong et al., 2011a).

Our previous time-delay image analysis work focused closely
on two physiological inputs – endogenous hemodynamic
fluctuations in normal controls measured directly and
concurrently with scanning using NIRS, and exogenous
hemodynamic fluctuations (caused by a carbogen gas challenge)
extracted post hoc from BOLD imaging data collected in
symptomatic IC stenosis patients undergoing CVR experiments
(Donahue et al., 2016). However, we have determined that in
many cases, the signal can be extracted from the fMRI data itself,
either from a region rich in venous blood (such as in the superior
sagittal sinus) (Tong et al., 2016), or more simply from the global
mean average of the data (Erdogan et al., 2016).

Using the global mean data has a number of advantages
relative to other methods, the most obvious being that it requires
nothing other than the fMRI data itself – no external recordings –
and processing is extremely simple, as there is no need to
define anatomic regions a priori. Moreover, we showed in our
recent study (Tong et al., 2018) that the global mean signal
is highly correlated with the BOLD signal extracted from the
SSS (i.e., maximum cross-correlation values are 0.81 ± 0.1),
which indicates that essential components of global mean overlap
with those of large veins (with little neuronal contamination).
The drawback is that the global mean signal is essentially
a temporally “blurred” version of the physiological regressor,
because it contains contributions from voxels over a range of
delay values. Moreover, each voxel contains fluctuations caused
by local neuronal activity (which in this case are considered
noise). To overcome these drawbacks, we have developed
bootstrap sharpening method to recover the source signal, which
is diagrammed in Figure 5. We have released an open source
software package, “rapidtide”1, to perform this fitting procedure

1https://github.com/bbfrederick/rapidtide

and isolate and remove the sLFO signal from resting state (or
task) fMRI data.

One of the most widespread methods of preprocessing rsfMRI
to remove low frequency physiological noise is GSR. In this
procedure, the mean signal of all voxels over time is regressed out
of all of the BOLD time series prior to resting state analysis. While
this does remove a significant amount of physiological signal,
it has a serious drawback – the creation of spurious, negative
correlations between brain regions (Carbonell et al., 2011). This
is an unavoidable consequence of simple regression. The global
mean signal is a summation of many copies of the sLFO signal
with a range of delays reflecting the blood arrival time throughout
the brain. Because the sLFO signal is low frequency (below 0.1–
0.15 Hz), when copies of the signal over the range of delays found
in the brain are summed, the signal strongly resembles the driving
sLFO signal. However, this signal is not properly aligned in time
in the vast majority of the voxels of the brain – it is shifted forward
or backward relative to each voxels’ signal, but the correlation
with each voxel is generally high. Regressing out a delayed
version of the driving signal at the wrong time delay unavoidably
results in a lower amplitude, inverted version of the global
signal being added to the voxel at the correct time delay. This
will necessarily create artifactual negative correlations in GSR
processed data, as shown by Erdogan in both real and simulated
data (see Figure 6, reproduced from Erdogan et al., 2016). In
a detailed comparison of static global signal regresson (sGSR)
with the dynamic global signal regression (dGSR) performed
by rapidtide, we found that by regressing the sLFO signal out
of each voxel at the proper time delays, the efficacy of noise
removal was improved. More importantly, we demonstrated that
by removing the sLFO dynamically, negative correlations, which
were present in the results of sGSR processing, were substantially
attenuated (Erdogan et al., 2016). We would argue that many
of these negative correlations are potentially spurious, being
generated by the removal process itself, but this has yet to be
confirmed. Aso et al. (2017) have found that an analogous noise
removal procedure yield similar improvements in task based
analyses, and also showed significant increases in reproducibility
of analyses over time.

We also compared sLFOs derived from peripheral NIRS
1[HbO] with other LFO models (Hocke et al., 2016), namely
the model-based methods for respiration and cardiac listed
above in “Potential causes of the low frequency oscillation.”
With high temporal resolution (TR of 400 ms), we found only
small contributions (1–5%) of explained variance by the models
considering respiration and cardiac variation. We also found
that sLFO explained significantly more variance (up to 16%)
when aliased respiration or cardiac signals do not play a critical
role when fully sampled and filtered. In addition, sLFO was
also substantially different from the variation models with very
little temporal and spatial overlap (Hocke et al., 2016), even
though NIRS 1[HbO] is closely related to modulations in CO2
concentration. This study showed that sLFO is not an artificial
signal created by suboptimal acquisition parameters, but a real
and pervasive physiological signal accounting for a substantial
amount of the variance in the BOLD LFO, and which is not
accounted of by previous methods. It should be noted that
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FIGURE 5 | A schematic representation of the RIPTiDe regressor refinement procedure (Figure reproduced from Erdogan et al., 2016).

this procedure cannot remove stationary non-neuronal signal.
However, this type of noise, should it exist, could be removed
using ICA techniques, which are well suited to detecting (and
removing) spatial patterns of synchronized signals.

Significance Determination
Because RIPTiDe analysis relies on the cross-correlation of
low pass filtered signals, there is some concern that the
correlations derived by the method may be spurious. Until
recently, determination of the statistical significance of RIPTiDe
metrics has been problematic. As the method is based on the
cross-correlation of time series, it is tempting to use standard
formulae, which determine significance based on number of
degrees of freedom and the correlation coefficient. However,
this greatly overestimates the statistical significance of the data
obtained through our procedure, for two reasons. The first is
that both our test regressor and the fMRI data are bandpass
filtered to select the LFO component prior to correlation, which
effectively reduces the degrees of freedom in the correlation. One
method proposed to correct for this, specifically for the case
of fMRI data, is to apply a correction factor to the degrees of
freedom based on the portion of the spectrum retained by the
filtering procedure (Davey et al., 2013). While this improves the
estimation of significance in filtered correlations, to be strictly
correct, both the exact transfer function of the filter function and
the spectrum of the data being filtered must be known a priori and
included in the calculation of the correction factor. In practice,
the power spectra of fMRI data in general and the systemic
low frequency oscillation signal in particular are not white (see
section “Limitations” for further discussion on this topic), even
over the limited frequency band of the sLFO, and vary in space.
This second condition makes this procedure cumbersome.

The second, and more difficult aspect of the analysis to
address, is that the peak correlation value within a range is
selected to determine the “optimal” time lag, which necessarily
serves to inflate the correlation value, and bias it toward more
positive values. Proper application of correction for multiple
comparisons requires accounting for the smoothness of the
correlation function, which in turn is determined by the
factors listed above. There are analytical methods for doing
this (Olden and Neff, 2001), however they too are somewhat
intractable for fMRI data.

While analytical calculation of the significance is difficult,
there are two straightforward numerical methods to achieve this
goal. The first, and simplest, method is to perform mismatched
correlations. In this case the voxel timecourses are correlated with
an sLFO signal from a different subject (or from the same subject
at an extremely large time delay of several minutes). In this
case any correlations between the timecourses are known to be
spurious; a distribution of spurious correlations can be calculated
to find various significance thresholds. We have employed this
method in many of our analyses where the data permits (most
recently here, Yao et al., 2019).

However, in cases where datasets are small, or time delayed
sLFO signals are not available, there is a more general method
which is also quite straightforward – we can estimate the
distribution of null correlations using a Monte Carlo approach
(Hocke et al., 2016). The probe regressor is permuted by
randomizing the time indices, preserving the distribution of
intensity values but destroying any temporal correlations, and
the RIPTiDe procedure (filtering, cross-correlation, and peak
finding) is performed on this timecourse with the unpermuted
regressor. The procedure is repeated a sufficient number of
times that the null distribution of correlation coefficients can be

Frontiers in Neuroscience | www.frontiersin.org 10 August 2019 | Volume 13 | Article 787104

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00787 August 13, 2019 Time: 16:0 # 11

Tong et al. Low Frequency Systemic Hemodynamic “Noise”

FIGURE 6 | The effect of static and dynamic global signal regression on group level connectivity strengths from a posterior cingulate cortex (PCC) seed to ROIs in
panel (A) major default mode network (DMN) ROIs (task negative regions), (B) Task positive network (TPN) ROIs, (C) and reference regions thought not to be
involved in either network. L, left hemisphere; R, right hemisphere; VIS, visual cortex ROI. Both static and dynamic global signal regression remove spurious
connectivity within the DMN (panel A), while preserving the expected anticorrelations with regions of the task positive network (panel B). Spurious positive
correlations with unrelated reference regions were eliminated with both types of regression; however this came at the cost of large, significant spurious
anticorrelations using static GSR, but not with dGSR (panel C) (Figure reproduced from Erdogan et al., 2016).

estimated, so the p-Values of different correlation coefficients can
be directly determined. This procedure is rapid – our analysis
software estimates this distribution from 10000 iterations at
the beginning of each refinement cycle for each subject’s data
in under 25 s. By default, the results presented by rapidtide
are thresholded to the p < 0.05% level. This is probably too
stringent in general, as there will be many voxels with true, lower
correlation due to low rCBV. In practice for high quality data
though, this is not too much of a problem.

It is important to note that for autocorrelated data, such as
fMRI, one should only permute samples within exchangeability
blocks to maintain the autocorrelation – time index shuffling
is not generally correct. A better (but significantly slower)
procedure is to randomize the phase of the Fourier transform
of the data, which preserves the autocorrelation structure
(Handwerker et al., 2012). However, in the case of RIPTiDe
processing, both the regressor and shuffled data are filtered to the
LFO band after shuffling, and the effect of this filter dominates
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the autocorrelation properties of the inputs to the correlation,
so time shuffling performs well. This was verified in the HCP
data, where we estimated the p < 0.05 correlation level both
by the shuffling procedure described, and with the mismatched
correlation method. The results were in close agreement, with an
average spurious correlation threshold of 0.2.

APPLICATIONS OF THE sLFO SIGNAL

Up to now we have discussed the moving sLFO as a noise signal
contaminating rsfMRI. But whether the moving signal is noise
or signal is simply a matter of perspective. If we reframe the
moving, blood-borne variance as a “signal” carrying information,
rather than simply a nuisance complicating the interpretation
of resting state connectivity, we can use it as a sensitive
measure of hemodynamic function. The relative arrival time
and strength of this signal as it propagates through the cerebral
vasculature carries information regarding the distribution and
timing of blood flow in the brain. We propose that the moving
hemodynamic signal is a unique contrast mechanism in its own
right, which provides information not currently available to
other techniques. It may offer insights into subtle hemodynamic
alterations that can be used as early indicators of circulatory
dysfunction in a number of neuropsychiatric conditions, such
as prodromal stroke, moyamoya, and Alzheimer’s disease.
Characterization of the sLFO signal throughout the brain allows
for continuous monitoring of blood arrival time delay without a
dedicated acquisition, with high sensitivity, and over a wide range
of delay times, without any externally administered contrast.

Cerebrovascular Reactivity (CVR)
Mapping
The moving sLFO signal can be used to determine
cerebrovascular reactivity (CVR) to CO2 changes both for
clinical evaluation and to calibrate the BOLD response. CVR
is typically measured using a hypercapnic challenge (either
exogenously applied gas or breathhold) (Heyn et al., 2010; Bright
and Murphy, 2013; Hare et al., 2013; Donahue et al., 2014).
Accounting for the particular dynamics of the sLFO signal can
give more accurate estimates of the regional response (Tong et al.,
2011a). Golestani et al. (2016a,b) fully exploited the effect of the
moving paCO2 sLFO waveform on voxel wise BOLD to perform
quantitative CVR mapping throughout the brain using only
resting state data. By correcting for time delay and correlating
the end-tidal CO2 (a proxy for paCO2) with the BOLD signal
(with additional noise removal and modeling), they were able
to determine the local BOLD response per percent change in
paCO2 simply from the resting state signal fluctuations.

Quantitative Blood Flow Imaging
In addition to assessing CVR, sLFO signals can be used
to track blood throughout the brain to reveal both normal
circulation patterns, and circulatory alterations in response to
tasks, pharmacological challenges, or pathology. The temporal
resolution of delay measured using cross-correlation depends on
the length of the input signals, rather than the signal repetition

time, so very fine delay distinctions are possible with normal
fMRI data. Furthermore, because the delay measurement relies
on a pattern of pseudorandom signal fluctuations over the
entire timecourse, rather than a single tag, such as that used in
arterial spin labeling (ASL), extremely long delay times can be
measured. Newer ASL techniques, such as multidelay ASL offer
some information on arrival time, but are still limited by the
short lifetime of the ASL tag (under 3 s). Velocity-selective ASL
does remove the restrictions on tag lifetime, and has been used
for delays over 6 s (Qiu et al., 2012), however, the ability to
quantify delay over a range of 10 to 100 s of seconds has not been
demonstrated, and this does require another scan in addition to
the resting state.

Healthy Circulation
We have used RIPTiDe analysis extensively in healthy subjects
to quantify typical blood flow patterns, have validated these
measurements against gold standard dynamic susceptibility
contrast (DSC) imaging data (see Figure 7) collected in the same
session (Tong et al., 2017), as shown in Figure 7, and have
followed signal through the head from the inflowing carotid
arteries to the exiting jugular veins (Tong et al., 2018) to establish
that the sLFO signal does indeed move with the blood.

Because the bootstrap RIPTiDe analysis requires only fMRI
data to assess hemodynamic parameters, it can be applied
retrospectively to existing data [as in the myconnectome analysis
described above (Tong et al., 2017), and a wider analysis of
myconnectome, ABCD, and HCP data (Yao et al., 2019)]. We
have also applied this technique to the resting state data from the
Human Connectome Project (Frederick et al., 2017), and were
able to produce very detailed maps of average time delay and
correlation strength throughout the brain (shown in Figure 8).
This can provide a standard comparison dataset for young
healthy controls.

It is important to note that the time delay measurement is
always relative. Our standard is to set “zero time” at the peak of
the histogram of delay values. As a result, there are necessarily
always positive and negative delay times – positive delays tend to
be in the later parts of the vascular tree – large draining veins, etc.,
while negative delays correspond to parts of the brain close to the
source arteries (so they get blood before most other regions). This
is a somewhat arbitrary choice – we could (and have) used an
anatomical reference region such as the cerebellum as the delay
time origin (Donahue et al., 2016) depending on the application.

We note that we consistently observe higher positive delay
values in white matter (by a few seconds) than in the cortex;
presumably this is because gray matter circulation is prioritized.
This observation has been confirmed with DSC imaging, the gold
standard MR technique for perfusion measurement.

Circulatory Pathology
This technique is not limited to studying healthy circulation,
however. Compromised circulation due to arterial occlusion
from to atherosclerosis, moyamoya disease, or stroke, can
lead to extremely long delay times (up to 10 s of seconds)
which are not quantifiable using conventional methods such
as ASL or CT angiography. We demonstrated that time delay
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FIGURE 7 | Blood arrival time delay values (in seconds) obtained from
rapidtide analysis of (A) resting state fMRI data and from (B) dynamic
susceptibility contrast imaging during the same imaging session in healthy
controls (N = 8) (Figure adapted from Tong et al., 2017).

imaging with exogenous CO2 manipulation can reveal and
accurately quantitate extremely long delays in vivo (Frederick
et al., 2013; Donahue et al., 2016). However, the exogenous
CO2 manipulation is not necessary – the hemodynamic delays
arising from moyamoya disease can also be quantified using the
endogenous sLFO signal from rsfMRI alone as a probe (Christen
et al., 2014). Others have used the endogenous sLFO in a number
of clinical applications.

Stroke
There have been several studies using global signal correlation
delays to investigate hypoperfusion acutely and longterm after
strokes. Lv et al. (2013) showed that “significant delay in
BOLD signal corresponded to areas of hypoperfusion identified

by contrast-based perfusion MRI” in 11 subjects acutely
after ischemic stroke. Amemiya et al. (2014) found similar
agreement in the results of BOLD delay and contrast perfusion
measurements in five patients with chronic hypoperfusion
and six with acute stroke. In 2016, Siegel assessed 130
subjects 2 weeks, and 3 and 12 months post-stroke onset
(and 30 controls), and showed that increased BOLD lag
delay was strongly correlated with decreased blood flow
assessed with ASL. Furthermore, they found that removing the
delayed hemodynamic signal somewhat normalized functional
connectivity measurements (which were distorted by delayed
hemodynamics) (Siegel et al., 2016). Khalil et al. (2017) assessed
delay changes of sLFO BOLD signals among acute stroke patients
in two separate studies. In one study, they found the delay
maps were highly correlated with the time-to-peak maps derived
from DSC-MRI in ischemic stroke. In another longitudinal
study, they found the sizes of the extended-delay regions and
the corresponding delay values changed according to the vessel
conditions (Khalil et al., 2018). Recently, Nishida et al. (2018)
has found the delay maps from patients with the arterial
occlusive disease were correlated with the CVR maps from
SPECT. These multimodal studies validated the method of BOLD
delay and showed its great potential in perfusion assessment of
cerebrovascular disease.

Other Conditions
Christen et al. (2014) were able to quantify delayed blood flow
in moyamoya disease using a cross-correlation technique. In
addition, Yan et al. (2018) have successfully detected perfusion
deficits (from BOLD delay) in patients with Alzheimer’s disease
and mild cognitive impairment.

LIMITATIONS

There are two rather significant factors that can complicate
the crosscorrelation method for tracking sLFO’s – unfortunate

FIGURE 8 | Averaged correlation parameters (lag time of maximum correlation and maximum correlation value) for 487 subjects from the 500 subjects release of the
Human Connectome Project data. Each subject had four scans (LR and RL phase encode in two sessions, REST1 and REST2) (Figure adapted from Frederick et al.,
2017).
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spectral characteristics of the sLFO signal, and initializing the
proper regressor to perform the calculation. These factors are
discussed below.

Spectral Characteristics
The first problem is the random nature of the sLFO signal itself.
Usually this benefits us in that it allows us to find the signal
throughout the brain despite whatever local signal variations are
present, and to determine its time delay – the cross-correlation
of the sLFO with any other random variation (such as neuronal
signals) is, in general, low, and the correlation with delayed copies
of itself is high and strongly peaked at the appropriate time delay.
The spurious correlation threshold can be determined through
permutation or comparison of correlations between subjects, as
discussed above, so we can decide when correlation is “real.”

However, all of this rests on the assumption that that sLFO
signal is (1) truly random, or at least not determined by factors
that will influence other noise signals found in the brain, and that
(2) the signal is sufficiently “white” within the band of interest.
While the first condition seems to be satisfied in general, the
second frequently is not. The random nature of the signal means
that by chance it sometimes has undesirable spectral properties
which make it less suitable for our purposes. This leads to two
problems – pseudoperiodicity and non-uniform spectra. The first
is a special case of the second, but is common enough to be
discussed on its own.

Pseudoperiodicity
The first uncontrolled quantity is pseudoperiodicity. From time
to time, signal energy in the 0.09–0.15 Hz band will be strongly
concentrated in one or more spectral peaks. Whether this is
completely random, or due to some pathological or congenital
condition that affects circulation is not known – it seems for the
most part to be purely by chance, as it is occasionally seen when
looking at multiple runs in the same subject, where one run is
pseudoperiodic while the rest are not.

The effect of this is to cause the crosscorrelation between
the probe signal and voxel timecourses to have more than
one strong correlation peak. This means that in the presence
of noise, or extreme spectral concentration of the sLFO, the
wrong crosscorrelation peak can appear larger, leading to an
incorrect delay estimation. This is particularly problematic if
the pseudoperiod is shorter than the reciprocal of the search
window (for example, if the search window for correlation peaks
is between −5 and +5 s, and the sLFO has a strong spectral
component at 0.1 Hz or higher, more than one correlation peak
will occur within the search window). As the width of the search
range increases, the spectral range of potentially confounding
spectral peaks covers more of the sLFO frequency band.

Implications of pseudoperiodicity
The extent to which pseudoperiodicity is a problem depends on
the application. In the case of noise removal, where the goal is to
remove the global sLFO signal, and leave the local or networked
neuronal signal variance, it turns out not to be much of a problem
at all. If the sLFO signal in given voxel is sufficiently periodic
that that the correctly delayed signal is indistinguishable from the

signal one or more periods away, then it doesn’t matter which
signal is removed – the resulting denoised signal is the same.

Mitigation of pseudoperiodicity
While we continue to work on fully resolving this issue, we have a
number of ways of dealing with this. First of all, spectral analysis
of the sLFO signal allows us to determine if the signal may
be problematic. Rapidtide checks the autocorrelation function
of the sLFO signal for large sidelobes with periods within the
delay search window and issues a warning when these signals
are present. Then after delay maps are calculated, they are
processed with an iterative despeckling process analogous to
phase unwrapping. The delay of each voxel is compared to
the median delay of its neighbors. If the voxel delay differs by
the period of an identified problematic sidelobe, the delay is
constrained to “correct” value and refit. This procedure greatly
attenuates, but does not completely solve, the problem of bad
sidelobes. A more general solution to the problem of non-
uniform spectra will likely improve the correction.

Non-uniform Spectra
As noted before, the pseudoperiodicity is a special case of
non-uniformity within the sLFO spectral region. In addition
to peaks in the power spectrum, there can be gaps, which are
also problematic.

Implications of non-uniform spectra due to spectral gaps
Non-uniform spectra will tend to distort the crosscorrelation
between the sLFO and any given voxel signal. In addition
to sidelobes which lead to the periodic correlation functions
discussed above, gaps in the spectrum, especially in the higher
frequency regions, can lead to blurry correlation functions.
Our method relies on identifying peaks in the crosscorrelation
waveform – the sharpness of these peaks depends on the higher
frequency portion of the sLFO power spectrum. If the energy
of the sLFO is concentrated in the lower frequency portion of
the LFO band, the crosscorrelation peaks become broad, which
makes the estimation of the peak location less accurate in the
presence of noise. This makes delay maps less accurate, and
will tend to lower the correlation values closer to the spurious
correlation threshold.

Mitigation of non-uniform spectra
The most straightforward solution to non-uniform spectra is to
prewhiten the sLFO and voxel signals (effectively flattening the
peaks and troughs of the magnitude spectrum, while preserving
phase) prior to performing the correlation; there are numerous
variants of this procedure, known as generalized crosscorrelation
(Knapp and Carter, 1976; Liang et al., 2015). The methods
require some tuning to determine thresholds for magnitude
recovery to avoid inflating noise, but are included as options in
rapidtide. However, when using the generalize crosscorrelation,
the resulting maximum correlation magnitudes are difficult to
interpret, as they no longer directly represent the amount of
variance explained by the sLFO regressor.
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Inhomogeneous Time Delays
Finally, there is the problem of obtaining the sLFO regressor
to begin with. In subjects with healthy circulation, the majority
of the brain has delays which are relatively tightly clustered
over a range of a few seconds; in this case the global mean
is a good starting regressor. After multiple refinement passes,
the regressor will converge on a stable candidate sLFO signal.
However, pathology can lead to significant volumes of brain
tissue with a large delay relative to the rest of the brain, but with
a small spread of values around that delay. This can result in a
global mean regressor which includes one or more “echoes” –
strong, delayed copies of the true driving regressor.

Implications of Inhomogenous Delays and Mitigation
Having a regressor with multiple delayed copies of the driving
sLFO signal will lead to ambiguous delay values, and will
keep the refinement process from converging. While it may be
possible to clean the signal using a technique analogous to echo
cancelation, it is generally easier to avoid the situation to begin
with by starting from a region of homogenous delay values.
A number of the cited studies in pathology have used regressors
derived from the superior sagittal sinus, which is easy to locate
and clearly homogenous. However, its location at the end of
the vascular tree means that blood in that region may have
traversed multiple distinct paths to get there, which could result
in multiple delay components. Our current thinking is to use a
cerebellar ROI to derive the starting sLFO regressor, as circulation
in that region is undisturbed in a wide range of pathologies
(Donahue et al., 2016).

Stationarity
One assumption that has been made throughout these
discussions is that the time delay in a region is constant over time,
or “stationary.” While convenient, this is clearly a simplification.
We know that these delays are not, in fact, completely constant
over time. There are slight variations in delay time within HCP
subjects between runs on the same day, and larger variations
between days. There is no reason to suspect that there are not
variations within runs as well – the correlation delays presented
are averaged over the entire run. Moreover, when we calculate the
delay maps from the HCP motor task data, we consistently see a
regional, average 0.5 s decrease in the blood arrival time in the
motor cortex relative to the values from the resting state scans,
consistent with increased blood flow due to neuronal load – this is
presumably an average change between the active and non-active
periods leading to a shorter average delay time. This is a potential
interesting area of research that as of yet, does not seem to have
been explored. We have experimented some with a windowed
version of RIPITiDe analysis analogous to dynamic connectivity

studies, but have not worked out whether there is sufficient SNR
to do this routinely.

CONCLUSION

Low frequency oscillations contribute significantly to the rsfMRI
signal. The signal is defined by its characteristics rather than by
its origins – in specific, a low frequency range of ∼0.01–0.15 Hz.
In fact, there are likely many sources of signals in this spectral
region. We have discussed a number of theories for the origin of
LFOs; it is important to note that these theories do not conflict –
power in this frequency band is likely due to some combination of
the sources we describe. Because of this, it is more useful to talk
about how the low frequency contamination in the fMRI signal
behaves, and what can be done about and with it.

Unlike other physiological signals, such as respiration and
cardiac contamination, LFOs cannot be separated from neuronal
signals through spectral filtering – they must be modeled. We
have observed that up to 30% of the low frequency signal power
in the gray matter moves through the vasculature, and is carried
with the blood into and through the brain. This portion of
the signal is therefore amenable to detection, quantitation, and
removal using cross-correlation techniques, which perform well
at the task of noise removal, without introducing the significant
artifacts seen with other methods, such as global signal regression.

Finally, we and others have demonstrated that this moving
signal can be used as a probe to quantitate cerebral hemodynamic
parameters, over a wide range of conditions, without the use
of contrast or specialized imaging techniques, making this an
ideal method for inferring hemodynamic information both in
new studies and in retrospective analysis of existing datasets. Half
of these studies have been in the last 2 years, demonstrating the
increasing interest in the broad clinical application of the method.
As large-scale public databases such as the Human Connectome
Project and the UK Biobank become available, we expect the use
of these techniques to continue to expand into new research areas.
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The frequency characteristics of the resting-state BOLD fMRI (rs-fMRI) signal are
of increasing scientific interest, as we discover more frequency-specific biological
interpretations. In this work, we use variational mode decomposition (VMD) to precisely
decompose the rs-fMRI time series into its intrinsic mode functions (IMFs) in a data-
driven manner. The accuracy of the VMD decomposition of constituent IMFs is verified
through simulations, with higher reconstruction accuracy and much-reduced mode
mixing relative to previous methods. Furthermore, we examine the relative contribution
of the VMD-derived modes (frequencies) to the rs-fMRI signal as well as functional
connectivity measurements. Our primary findings are: (1) The rs-fMRI signal within
the 0.01–0.25 Hz range can be consistently characterized by four intrinsic frequency
clusters, centered at 0.028 Hz (IMF4), 0.080 Hz (IMF3), 0.15 Hz (IMF2) and 0.22 Hz
(IMF1); (2) these frequency clusters were highly reproducible, and independent of
rs-fMRI data sampling rate; (3) not all frequencies were associated with equivalent
network topology, in contrast to previous findings. In fact, while IMF4 is most likely
associated with physiological fluctuations due to respiration and pulse, IMF3 is most
likely associated with metabolic processes, and IMF2 with vasomotor activity. Both
IMF3 and IMF4 could produce the brain-network topology typically observed in
fMRI, whereas IMF1 and IMF2 could not. These findings provide initial evidence of
feasibility in decomposing the rs-fMRI signal into its intrinsic oscillatory frequencies in
a reproducible manner.

Keywords: resting-state fMRI, resting state functional connectivity, intrinsic mode function, frequency
dependence characteristics, variational modal decomposition, empirical mode decomposed, physiological
origins

INTRODUCTION

The frequency characteristics of the resting-state BOLD fMRI (rs-fMRI) signal are of increasing
scientific interest (Salvador et al., 2005; Niazy et al., 2011; Kalcher et al., 2014), as we discover more
frequency-specific biological interpretations within the conventional data-acquisition bandwidth
of 0–0.25 Hz (Golestani et al., 2015; Hocke et al., 2016). In particular, specific spectral content have
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been associated with physiological and vascular processes (Birn
et al., 2008; Golestani et al., 2015; Mark et al., 2015; Hocke et al.,
2016) and with the resulting brain-network measures (Nikolaou
et al., 2016). Thus, spectral analysis of the rs-fMRI signal appears
to be a compelling approach to achieving a better appreciation of
how much neurally relevant information is conveyed by rs-fMRI.
To that end, band-pass filtering has been used in the initial efforts
(Kalcher et al., 2014). However, in theory, the rs-fMRI signal does
not lend itself to conventional band-pass filtering approaches, as
it is not stationary and cannot be defined by a few frequencies in
Fourier domain. The band-pass filtering approach is inadequate
for studying non-stationary signals, as the frequency content of
such signals changes with time, while a filter bank is limited
by assumptions regarding frequency, bandwidths and the type
of filter design.

Previous studies examining the frequency characteristics of
the resting-state BOLD fMRI (rs-fMRI) signal were largely based
on the decomposition of the rs-fMRI signal into its intrinsic
mode functions (IMFs). Existing studies (Niazy et al., 2011; Song
et al., 2014) have used empirical mode decomposition (EMD)
(Huang et al., 1998) and later used complementary ensemble
empirical mode decomposition (CEEMD) (Wu and Huang, 2009;
Yeh et al., 2012; Qian et al., 2015). At the core of EMD and
CEEMD is a simple workflow. Signal local minima and maxima
are recursively detected, based on which an upper and lower
envelope are obtained through interpolation; subsequently, the
midline of the resultant envelope is removed and the high-
frequency component becomes the IMF. The same process is
then performed on the signal composed of the low-frequency
midline. Thus, each IMF can be expressed as a combination
of a low-frequency amplitude-modulated and a high-frequency
frequency-modulated signal Eq. (1),

m(t) = A(t)cos(∅(t)) (1)

Where ∅(t)modulates the carrier frequency. The total bandwidth
of this signal is described by Eq. (2),

BWIMF = 2(1f + fFM + fAM) (2)

where1f is the total deviation from the instantaneous frequency
of the IMF, while f FM represents the maximum rate of the change
of the instantaneous frequency, and f AM represent the highest
frequency of the envelope modulating the frequency-modulated
signal. The IMF frequency estimate could be dominated by either
of these, depending on noise conditions.

Previous works using EMD and CEEMD have both found
that the rs-fMRI can be approximated by 4 to 5 IMFs
covering the entire sampling bandwidth (Niazy et al., 2011;
Qian et al., 2015), and that all IMFs can be used to reproduce
similar network topologies. A fundamental assumption of EMD
and its derivatives is that each IMF occupies a well-defined
frequency range (Huang et al., 1998). In theory, the IMF-based
representation is insensitive to non-stationarity and non-linearity
in the original signal. EMD-type approaches are known to
have difficulty separating tones of similar frequencies. Moreover,
high levels of non-white noise can interfere with the accurate
identification of the instantaneous frequency, and cause the

frequency to appear to shift in a non-linear fashion, leading to
mode mixing between IMFs (Wu and Huang, 2009) as well as the
same mode to be spread across multiple IMFs. In addition, EMD-
derived methods have a tendency to attribute wider bandwidths
to IMFs occupying higher frequencies. This is likely a result of
the recursions, which present the highest degree of uncertainty to
the first (highest-frequency) IMFs, and not allowing for backward
error correction after subsequent IMFs have been extracted.
Indeed, when applied to rs-fMRI data, CEEMD resulted in visible
modal widening as frequency increased (Qian et al., 2015).

Our study incorporates the usage of the recently
proposed variational mode decomposition (VMD) method
(Dragomiretskiy and Zosso, 2014) to decompose the BOLD
rs-fMRI time series into its IMFs. Recently, the VMD method has
recently found application in the analysis of geological signals
(Liu et al., 2016; Xiao et al., 2016) and electrocardiographic data
(Lahmiri, 2014; Mert, 2016; Tripathy et al., 2016). The theory of
VMD has been described in detail elsewhere (Dragomiretskiy
and Zosso, 2014), and will not be repeated here. We will simply
point out that unlike its predecessors, VMD is non-recursive,
and can reconstruct all modes simultaneously, controlled by
a convergence criterion. The variational model assesses the
bandwidth of the modes by minimizing the Gaussian-regularized
mean-square error between the signal and its representation as a
series of Wiener filters, with the modal instantaneous frequency
being determined as the center of mass of the power-spectral
density function of each IMF. This approach increases the
robustness of the model to estimation uncertainties. VMD
provides error checking, as the VMD solution is be updated
by minimizing the mean-squared residual of all IMFs against
the estimate of any given IMF. Lastly, the VMD convergence
depends on a series of iterative optimizations, during which
the balance between overfitting and signal-estimation accuracy
can be adjusted, for instance, based on a priori knowledge
about the signal.

In this work, we hypothesize that VMD is able to more
precisely extract frequency bands from the rs-fMRI signal,
reducing the issue of mode mixing and mode spreading
demonstrated in the previous work. To verify this hypothesis, we
tested the EMD, CEEMD, and VMD techniques through a Monte
Carlo simulation. Furthermore, although prior work (using
EMD and CEEMD) have suggested that resting-state networks
(RSNs) measured through rs-fMRI are frequency independent,
we hypothesize that existing results are affected by modal mixing
and limited frequency precision as described herein. To address
this hypothesis, we re-examine the frequency dependence of
functional connectivity of RSNs using VMD.

MATERIALS AND METHODS

VMD Optimization
As documented in the original paper, the VMD technique follows
three steps: (1) estimate individual IMFs by computing the
Hilbert transform of the original signal f ; (2) shift each mode to
its base frequency using heterodyne demodulation; (3) estimate
the bandwidth of each mode as the H1 Gaussian smoothness of
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the demodulated signal. The target for the decomposition should
be that ∑

k

uk = f (3)

where k is the number of IMFs. If the signal f is
smooth, the solution could be obtained through Tikhonov
regularized minimization,

minf

{∣∣∣∣f-f0
∣∣∣∣2

2 + α
∣∣∣∣∂tf

∣∣∣∣2
2

}
(4)

where f0 is the measured signal, f is the original (clean) signal,
and α is the regularization parameter. From this, we obtained the
Euler-Lagrange equation:

f − f0 = α∂2
t f (5)

where (δtt is the partial derivative with respect to time and is the
frequency in radians.

The minimization target of the VMD algorithm can be
summarized by Eq. 6, which describes the inverse of the Gaussian
smoothness of the demodulated signal,

min
uk,wk

{∣∣∣∣∣∣∣∣∂t

[(
δ(t)+

j
π t

)
. uk(t)

]
e−jwkt

∣∣∣∣∣∣∣∣2
2

}
(6)

where (δ(t) is Dirac’s delta function, ||22 is the Euclidean norm
squared,and j ( =(v−1. This is solved using the augmented
Lagrangian:

L (uk,wk, λ) = a+ b+ c (7)

where

a = α
∑

k

∣∣∣∣∣∣∣∣∂t

[(
δ (t)+

j
π t

)
. uk (t)

]
e−jwkt

∣∣∣∣∣∣∣∣2
2

(8)

b =
∣∣∣∣∣∣∣∣f −∑

k

uk

∣∣∣∣∣∣∣∣2
2

(9)

c =

〈
λ, f −

∑
k

uk

〉
(10)

where (λ is the Langragian multiplier, b is the quadratic penalty
term (squared residual) and c is the inner product of and the
residual. The solution to the original variational problem is solved
as the saddle point of the augmented Lagrangian. Each IMF is
updated iteratively (by solving the VMD problem with respect to
u and to ω until convergence is reached. In this way, all modes
are extracted and optimized concurrently instead of sequentially.

In this study, we explicitly optimized the value of the
regularization parameter α to balance the bandwidths of the
spectral bands and the reconstruction error between the sum of
the bands and the original signal. This parameter was chosen to
minimize the overlap between the spectral bands in the Fourier
domain while keeping the parameter as low as possible to retain
reconstruction fidelity.

Simulated Data
To compare the performance of the VMD method in relation
to EMD and CEEMD methods, we performed a Monte Carlo
simulation involving a known, “ground-truth” signal. First, we
generated a signal composed of equal power contributions from
four frequencies (0.03, 0.08, 0.15, and 0.23 Hz). This signal was
sampled at 0. 25 Hz to emulate the typical sampling rate of
rs-fMRI data (TR = 2 s), and the constituent frequencies were
informed in part by those previously reported (Niazy et al., 2011;
Qian et al., 2015). We then generated 200 variants of signal-noise
mixtures, in which 200 different realizations of white noise time
series were added to the signal to achieve a signal-to-noise ratio
(SNR) of ∼1.2. This is representative of the lower end of the
realistic SNR range in rs-fMRI data, particularly to accommodate
the fact that the spectral signature of noise in real rs-fMRI data is
imprecise and non-stationary. All three decomposition methods
were then applied to extract the original frequencies. To quantify
the performances of the different algorithms, we computed the
fractional inter-modal overlap (mode mixing) for each, defined
as the amount of spectral power in the neighboring IMFs as a
fraction of the total spectral power of each “ground-truth” IMF.

MRI Data Acquisition
MRI data were collected from 8 healthy adults (mean
age 30 ± 6.7 years) on a 3T Siemens TIM Trio scanner
and a 32-channel head coil. Specifically, whole-brain
resting-state fMRI (rs-fMRI) data were acquired using
single-shot gradient-echo EPI. The conventional-TR scans
are later referred as “long-TR” scans: 26 slices, TR = 2 s,
flip angle = 70◦, FOV = 220 mm × 200 mm, voxel
size = 3.4 mm × 3.4 mm × 4.6 mm in 240 frames. To
enable assessment of reproducibility of our methods, the rs-fMRI
scan was performed twice for each subject (two trials per
subject) within the same session. On a subset of seven subjects,
we also acquired rs-fMRI data using simultaneous multi-slice
(SMS) acceleration on the gradient-echo EPI (Feinberg et al.,
2010) (TR = 323 ms, TE = 30 ms, flip angle = 40◦, 15 slices,
3.44 mm × 3.44 mm × mm, 2230 time points, acceleration
factor = 3, phase encoding shift factor = 2, slices ascending). The
brain coverage of these “short-TR” scans was matched to that of
the “long-TR” scans, and we only used 1486 frames of the short-
TR scans for comparison with the long-TR scan results. This
would permit us to assess the dependence of our results to fMRI
sampling rate. A 3D T1-weighted anatomical scan was acquired
using MPRAGE, with resolution 1 × 1 × 1 mm, repetition
time (TR) = 2400 ms, inversion time (TI) = 1000 ms, echo time
(TE) = 2.43 ms, flip angle = 8, field of view × 256 × 256 mm
(sagittal), matrix size = 256 × 256, 192 slices (ascending order),
bandwidth = 180 Hz/pixel, and GRAPPA acceleration factor = 2.

Image Preprocessing
The rs-fMRI data were preprocessed using FSL FEAT version
5.0.8 (Jenkinson et al., 2002). Functional data had the first 10
volumes removed and skull stripped using the Brain Extraction
Tool (BET). Data were corrected for motion (reference being
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the middle frame of each data set) and slice time then band-
pass filtered to be between 0.01 and 0.25 Hz (using fslmaths,
which implements a Gaussian filter). The cut-off of 0.25 Hz was
chosen to represent the maximum detectable frequency in typical
rs-fMRI acquisitions (i.e., TR = 2 s). Similar to prior work of
a similar nature (Niazy et al., 2011; Tong et al., 2011), we did
not actively correct physiological artifacts. The VMD technique
was then used to decompose the preprocessed BOLD signal, and
the results were compared to those obtained using the EMD
and CEEMD methods.

The T1 anatomical scans were used in defining noise regions
of interest (ROIs) for further analysis. Specifically, we used
FMRIB Automated Segmentation Tool (FAST) for segmentation
of gray matter, white matter, and cerebrospinal fluid ROIs. The
FSL-FAST segmentation routine is based on a Hidden Markov
Random Field model that is optimized using the expectation-
maximization algorithm (Zhang et al., 2001). The ROI masks
are then aligned with the fMRI data using anatomical-to-fMRI
transformation matrices determined using FSL Flirt (Jenkinson
and Smith, 2001; Jenkinson et al., 2002).

Furthermore, we performed cortical-surface reconstruction
using FreeSurfer1. The procedure includes removal of non-brain
tissue using a hybrid watershed/surface deformation procedure
(Segonne et al., 2004), automated transformation into the
MNI152 standard space, intensity normalization (Sled et al.,
1998), tessellation of the gray matter white matter boundary,
automated topology correction (Segonne et al., 2007), and surface
deformation following intensity gradients to optimally place
the gray/white and gray/CSF borders at the location where the
greatest shift in intensity defines the transition to the other tissue
class (Fischl and Dale, 2000). The subsequent segmentation of
the cortex and subcortical gray matter volumetric structures were
performed for each subject based on probabilistic models of tissue
magnetic resonance parameters and of anatomical locations
(Fischl et al., 2004). The resultant cortical models permitted
surface inflation (Fischl et al., 1999) and registration to a spherical
atlas, whereby individual cortical folding patterns were used to
match cortical geometry across subjects (Fischl et al., 1999).

IMF Clustering and Spectral Analysis
VMD was used decompose each voxel in the rs-fMRI data into
a specified number of IMFs. For each IMF in each voxel, the
frequency associated with the center of mass of the power spectral
density function of each IMF was used to define the dominant
frequency of said IMF. After this procedure was repeated for
each voxel, one challenge remained – as each voxel is associated
with a slightly different set of IMF frequencies, it was difficult to
identify any generalizable findings regarding frequency content.
To overcome this, we identified the existence of whole brain “IMF
frequency clusters” by plotting the histograms of IMF frequencies
including all IMFs of all voxels of each tissue type. In plotting
the histogram, each IMF is weighted by its normalized power
contribution (normalized by total spectral power at each voxel).

We then modeled the peaks in the histograms as Gaussian
functions (Qian et al., 2015) and identified the widths of the
IMF frequency clusters as including 95% of the areas of the fitted

1http://surfer.nmr.mgh.harvard.edu

Gaussians. Using these cluster definitions, we classified each IMF
from each voxel as belonging to an IMF cluster (named IMF 1–
4), each associated with a distinct frequency range. We repeated
this for all eight subjects, and assessed the reproducibility of
these frequency ranges in gray and white matter using the intra-
class correlation coefficient (ICC). For this purpose, each IMF
map was further masked to include only white or only gray
matter (FSL 5.0.8).

In this work, in order to arrive at the best number of IMFs
to use, we compared IMF- frequency clusters resulting from
assuming 2 IMFs, 4 IMFs, 5 IMFs and 8 IMFs. Sample IMF
histograms are shown in Appendix Figure A1. The comparison
metrics are precision and reproducibility. The precision metrics
include: (1) the group-wise standard deviation of the frequency-
cluster locations; (2) the group-wise standard deviation of the
frequency-cluster widths. The reproducibility metrics include:
(1) the percentage of subjects manifesting a particular frequency
cluster; (2) the correlation between frequency-cluster locations
estimated from 2 runs of each subject. The results are detailed
in the (Appendix Figure A2), and indicate the choice of 4 IMFs
produced the most precise and reproducible frequency-cluster
estimates. Note that there was no direct link between the number
of IMFs targeted for at the VMD stage and the number of IMF
frequency clusters detected at the clustering stage.

Note that for the short-TR data set, we first low-pass
filtered the data at 0.25 Hz in order to emulate the sampling
rate of conventional rs-fMRI. The main difference between
the data acquired at 0.25 Hz and the filtered short-TR data
is that the latter is associated with reduced aliasing in the
0–0.25 Hz range.

Amplitude Analysis
For both long- and short-TR data sets, we also computed
the fractional IMF amplitude. This is computed at each voxel
as the fractional contribution of the spectral power of each
IMF (as defined by its associated IMF cluster) to the total
spectral power of all IMFs (as defined by the remaining
IMF clusters). This parameter was defined to overcome the
limitation that the raw spectral powers of IMFs from different
subjects and different acquisitions are not directly comparable
(Zou et al., 2008), given variability in factors such as scanner
tuning and analog-to-digital conversion range. To demonstrate
the spatial distribution of the fractional IMF amplitude, we
transformed each subject’s fractional amplitude map into
MNI152 space using FSL flirt (Jenkinson et al., 2002). The
reference image for the registration was the middle frame
of the original fMRI data, and the resulting transformation
matrix was applied to the IMF amplitude and frequency
maps. Subsequently, we overlaid the group-mean fractional
amplitude map onto a cortical-surface model using FreeSurfer
(Fischl et al., 1999).

Functional Connectivity Matrices
As the fMRI data were registered with MNI152 space, we used the
automated anatomical labeling (AAL) (Tzourio-Mazoyer et al.,
2002)to divide the brain into 116 anatomical regions of interest
(ROIs), including both the cortex and the cerebellum. These
ROIs are listed in Table 1. For each subject, we averaged all
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TABLE 1 | List of regions of interest (ROIs) used when computing correlation matrices.

Index Region of Interest Index Region of Interest Index Region of Interest

1 Precentral_L 40 ParaHippocampal_R 79 Heschl_L

2 Precentral_R 41 Amygdala_L 80 Heschl_R

3 Frontal_Sup_L 42 Amygdala_R 81 Temporal_Sup_L

4 Frontal_Sup_R 43 Calcarine_L 82 Temporal_Sup_R

5 Frontal_Sup_Orb_L 44 Calcarine_R 83 Temporal_Pole_Sup_L

6 Frontal_Sup_Orb_R 45 Cuneus_L 84 Temporal_Pole_Sup_R

7 Frontal_Mid_L 46 Cuneus_R 85 Temporal_Mid_L

8 Frontal_Mid_R 47 Lingual_L 86 Temporal_Mid_R

9 Frontal_Mid_Orb_L 48 Lingual_R 87 Temporal_Pole_Mid_L

10 Frontal_Mid_Orb_R 49 Occipital_Sup_L 88 Temporal_Pole_Mid_R

11 Frontal_Inf_Oper_L 50 Occipital_Sup_R 89 Temporal_Inf_L

12 Frontal_Inf_Oper_R 51 Occipital_Mid_L 90 Temporal_Inf_R

13 Frontal_Inf_Tri_L 52 Occipital_Mid_R 91 Cerebellum_Crus1_L

14 Frontal_Inf_Tri_R 53 Occipital_Inf_L 92 Cerebellum_Crus1_R

15 Frontal_Inf_Orb_L 54 Occipital_Inf_R 93 Cerebellum_Crus2_L

16 Frontal_Inf_Orb_R 55 Fusiform_L 94 Cerebellum_Crus2_R

17 Rolandic_Oper_L 56 Fusiform_R 95 Cerebellum_3_L

18 Rolandic_Oper_R 57 Postcentral_L 96 Cerebellum_3_R

19 Supp_Motor_Area_L 58 Postcentral_R 97 Cerebellum_4_5_L

20 Supp_Motor_Area_R 59 Parietal_Sup_L 98 Cerebellum_4_5_R

21 Olfactory_L 60 Parietal_Sup_R 99 Cerebellum_6_L

22 Olfactory_R 61 Parietal_Inf_L 100 Cerebellum_6_R

23 Frontal_Sup_Medial_L 62 Parietal_Inf_R 101 Cerebellum_7b_L

24 Frontal_Sup_Medial_R 63 SupraMarginal_L 102 Cerebellum_7b_R

25 Frontal_Med_Orb_L 64 SupraMarginal_R 103 Cerebellum_8_L

26 Frontal_Med_Orb_R 65 Angular_L 104 Cerebellum_8_R

27 Rectus_L 66 Angular_R 105 Cerebellum_9_L

28 Rectus_R 67 Precuneus_L 106 Cerebellum_9_R

29 Insula_L 68 Precuneus_R 107 Cerebellum_10_L

30 Insula_R 69 Paracentral_Lobule_L 108 Cerebellum_10_R

31 Cingulum_Ant_L 70 Paracentral_Lobule_R 109 Vermis_1_2

32 Cingulum_Ant_R 71 Caudate_L 110 Vermis_3

33 Cingulum_Mid_L 72 Caudate_R 111 Vermis_4_5

34 Cingulum_Mid_R 73 Putamen_L 112 Vermis_6

35 Cingulum_Post_L 74 Putamen_R 113 Vermis_7

36 Cingulum_Post_R 75 Pallidum_L 114 Vermis_8

37 Hippocampus_L 76 Pallidum_R 115 Vermis_9

38 Hippocampus_R 77 Thalamus_L 116 Vermis_10

39 ParaHippocampal_L 78 Thalamus_R

Sup, superior; Mid, middle; Inf, inferior; L, left; R, right.

IMFs within each IMF-cluster frequency range in each ROI.
We then generated matrices of Pearson correlation coefficients
between the IMF time series of all pairs of ROIs. These
were then averaged across subjects to provide an overview of
RSN organization.

For comparison with the literature, we created an additional
set of correlation matrices using the band-pass filtered data (at
0.01–0.08 Hz) for each subject. This is the frequency range typical
of rs-fMRI analyses. Furthermore, to help explain the spectral
makeup of this reference correlation matrix, we also generated
correlation matrices using signals band-pass filtered into the
frequency ranges corresponding to the IMFs. These were also
averaged across subjects.

Statistical Comparisons
In this work, comparison between IMF clusters and tissue types
is performed using the Student’s t-test, and linear correlation is
used as the similarity index.

RESULTS

The average results of the Monte Carlo simulation are shown
in Figure 1. While the noiseless signal was successfully
reconstructed using all three algorithms (not shown), they
performed very differently when noise was introduced. It is
evident that IMF1 derived using EMD (Figure 1B) contains two
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FIGURE 1 | Comparison of performance for EMD, CEEMD and VMD on simulated data: The Fourier spectrum of the original noiseless signal (A) is compared to the
average spectra obtained by EMD (B), CEEMD (C) and VMD (D) on the noisy version if the signal, averaged across all iterations of the Monte Carlo simulation.
Gaussian noise was simulated in this case, with the SNR of the simulated noisy signals was approximately 1.2, approximated by the total power of the noise over the
total power of the signal. In EMD and CEEMD, the 4 IMFs with highest powers are displayed.
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distinct modes that would ideally have been attributed to two
different IMFs. This is the manifestation of modal spreading,
which is also seen in the CEEMD results (Figure 1C). Due to
the existence of substantial modal spreading, inter-modal mixing
(overlapping between IMFs in the frequency domain) is also
found. Compared to EMD and CEEMD, VMD was able to
identify the 4 IMFs of the original simulated signal with the
least mode spreading and mode mixing (Figure 1D), with the
noise component being split across the 4 IMFs. These simulation
results confirm the theory-based hypothesis of increased IMF-
estimation precision using VMD.

Intrinsic Frequencies of the rs-fMRI
Signal
Sample results from human rs-fMRI data are shown in Figure 2.
VMD was able to extract IMFs from all data sets with high
consistency and the lowest reconstruction error compared to
both EMD and CEEMD. Based on results similar to these,
IMFs were estimated for all voxels for each rs-fMRI data
set. The corresponding IMF frequencies were organized into
histograms for gray and white matter. A sample histogram of
IMF frequencies is shown in Figure 3. Note that not all voxels
returned 4 IMFs. Yet, when aggregated, the histograms revealed 4
clusters of IMF frequencies. This was common across all subjects,
and across tissue types. Based on these clusters, IMF frequency
ranges were identified for each subject in the group. We noted
regional variability in the location of IMF clusters, with IMF4
being the most stable across brain regions and IMF2 being the
least (Appendix Figure A3).

The group-average VMD-decomposed peak frequencies in
both gray and white matter are shown in Figure 4. Using the IMF-
frequency clustering procedure described earlier, we identified
4 robust IMF-cluster frequency ranges. This was the case for
all subjects and common to both gray and white matter. The
frequency ranges of the 4 VMD IMF-frequency clusters are
(mean frequency±mean width/2):

• VMD IMF1: 0.20–0.24 Hz
• VMD IMF2: 0.13–0.17 Hz
• VMD IMF3: 0.063–0.098 Hz
• VMD IMF4: 0.021–0.036 Hz

These frequencies were evenly distributed across the majority
of voxels (both gray and white matter), with no specific spatial
features. Thus, we do not show spatial maps of the frequency
distributions. Also, these frequencies were highly reproducible
based on the long-TR acquisitions (Figure 4), with an ICC of
0.99 for both gray and white matter. This was confirmed by the
absence of significant difference between IMF peak frequencies
across each trial in either tissue type (p > 0.21). Henceforth, all
IMFs associated with actual rs-fMRI data will be identified by
their cluster numbers (i.e., IMF1-4 refer to IMF cluster 1–4).

The IMF frequency clusters obtained from long-TR and short-
TR data acquisitions are highly similar, as shown by the frequency
groupings identified in Figures 5A,B – at a group level, there
were no significant differences between the two TRs for any of the
IMFs. However, the fractional IMF amplitudes are less consistent

across different TRs, as shown in Figures 5C,D. In particular,
IMF4 (the frequency cluster with the lowest mean frequency)
is a consistently greater contributor to total spectral power in
short-TR data sets. However, once again, the differences are not
statistically significant.

In Figure 6, we show the spatial distribution of the fractional
contributions of each VMD-derived IMF to the total spectral
power of the rs-fMRI signal. The equivalent maps are shown for
CEEMD-based IMFs as well. Note that for CEEMD as well, 4
IMF clusters were identified within the range of 0.01–0.25 Hz,
confirming previous findings by Qian et al. (2015). However,
due to the aforementioned decreasing spectral resolution with
increasing IMF frequency exhibited by CEEMD, the frequency
ranges of the CEEMD IMF clusters, listed below, are not directly
comparable to those of VMD.

• CEEMD IMF1: 0.12–0.23 Hz
• CEEMD IMF2: 0.05–0.12 Hz
• CEEMD IMF3: 0.025–0.05 Hz
• CEEMD IMF4: 0.01–0.025 Hz

For both VMD and CEEMD results, maps of fractional
spectral power were averaged across all subjects for each IMF,
and overlaid on a cortical surface. IMF4, which is associated
with the lowest frequency, is markedly elevated in the occipital
lobe, as reflected by VMD results (Figure 6b). This is consistent
with the CEEMD results (Figure 6a). IMF1 and 2, associated
with the highest frequencies, were elevated in the temporal lobe
and the frontal/limbic cortices, respectively. These are not clearly
seen in CEEMD-derived IMFs. It is important to note that the
CEEMD-derived IMF frequency ranges were as follows: IMF1:
0.12–0.23 Hz, IMF2: 0.05–0.10 Hz, IMF3: 0.025–0.05 Hz, IMF4:
0.01–0.025 Hz. These 4 IMF groupings were chosen to best match
those of the VMD groupings.

Frequency Dependence of Network
Organization
In Figure 7, we show strong RSN correlation patterns in areas
that are part of the motor and control networks (indices 1–20),
visual network (indices 43–60) and the medial-temporal network
(indices 80–90). These results, based on the conventionally band-
pass filtered rs-fMRI signal (to 0.01–0.08 Hz), are consistent with
existing literature (Zhang and Li, 2014; Qian et al., 2015).

In Figure 8, we compare the RSN topology derived from
VMD with those based on the 4 IMFs in comparable frequency
ranges obtained using CEEMD. We can see that the highest
correlations are found using IMF4, followed by IMF3, while no
strong patterns were seen for IMFs 1 and 2. Moreover, IMFs 3 and
4 were associated with correlation matrices that most resemble
that of the conventionally band-pass filtered signal (Figure 7),
but not in IMF 1 and 2. Even in IMFs 3 and 4, the values of the
correlations are much lower than those from band-pass filtering.
However, the values are comparable to those obtained based on
CEEMD. In fact, we note that the highest agreement between
VMD and CEEMD results can be seen in IMF 4 (Figure 8B,
r = 0.79), and secondarily in IMF 1 (Figure 8H, r = 0.58), the
lowest and highest frequencies, respectively.
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FIGURE 2 | Comparison of reconstruction accuracy of rs-fMRI time series: The reconstruction errors are indicated for each algorithm: (A) EMD; (B) CEEMD;
(C) VMD.

In Figure 9, we repeat the comparison, substituting CEEMD
with band-pass filtered versions of the rs-fMRI data, with each
band-pass filter range determined based on VMD derivations

of IMF frequency ranges. The conventional RSN topology can
be observed across all band-passed frequencies (the top-left,
middle and bottom-right areas of the matrix corresponding to
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FIGURE 3 | IMF frequency cluster distributions computed for a representative subject. Gray matter (A) and white matter (B) are shown to exhibit similar frequency
clusters. Note that there is no direct link between the number of IMFs targeted for at the VMD stage and the number of IMF frequency clusters detected at the
clustering stage.

FIGURE 4 | Between-session reproducibility of IMF frequency estimations. These frequencies were highly reproducible, with a ICC of 0.99 for both gray (A) and
white matter (B). The error bars indicate the standard deviations across all subjects.
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FIGURE 5 | Comparison of IMF frequency (A,B) and fractional amplitude estimates (C,D) across different sampling rates. The IMF frequency groupings obtained
from long-TR and short-TR data acquisitions are highly similar, although the fractional IMF amplitudes are less consistent across different TRs. There are no
significant differences between the estimates obtained from the two data sets. The error bars indicate the standard deviations across all subjects.

the sensorimotor, visual and default-mode network, respectively),
although it is most prominent at the lowest frequency. While
this trend of decreasing correlation with increasing frequency
is consistent with findings from VMD, the strengths of the
correlations in VMD are markedly lower than those found
using band-pass filtering. We also notice that the similarities
(Figures 9B,D,F,H) are lower than observed between VMD
and CEEMD results.

DISCUSSION

In studying the spectral properties of the rs-fMRI signal, there
is an increasing desire to use data-driven methods rather than
band-pass filtering to decipher frequency content (Niazy et al.,
2011; Qian et al., 2015). The main differences between methods
based intrinsic-modal decomposition and those based on band-
pass filtering are: (1) results and interpretations of band-pass
filtering are sensitive to the shape of the band-pass filter; (2)
band-pass filtering is sensitive to non-linearity in the signal, such
as introduced when the signal is non-stationary. The latter is
particularly the case in rs-fMRI, affecting the oscillatory validity
of band-pass filtered rs-fMRI signal components.

Our work is novel in the following aspects: (1) instead
of relying on the assumption that our data-driven method
accurately decomposes the modes of the signal, we test this

accuracy using rs-fMRI-informed simulations; (2) we not only
compared the findings from short-TR acquisitions with those
based on conventional acquisitions (TR = 2 s), but also
assessed the reproducibility of these results for both scenarios;
(3) instead of defining the rs-fMRI spectral information by
broad frequency ranges (up to >1 Hz), we specifically target
the frequency range typically used in functional-connectivity
analyses (<0.25 Hz).

Our primary findings are: (1) the rs-fMRI signal within
the 0.01–0.25 Hz range can be consistently characterized by
four intrinsic modal clusters (frequency clusters), centered at
0.028, 0.080, 0.15, and 0.22 Hz, respectively; (2) these frequency
clusters were highly reproducible, and independent of rs-fMRI
data sampling rate; (3) not all frequencies were associated with
equivalent RSN topology, in contrast to previous findings.

Intrinsic Frequencies of the rs-fMRI
Signal
In this work, we demonstrate that as expected, compared to the
previously used EMD and CEEMD techniques, VMD resulted
in less inter-modal mixing as well as minimal modal spreading
(Figure 1). When applied to rs-fMRI data, we demonstrate
high reconstruction accuracy when using VMD-derived IMFs
relative to the alternatives (EMD and CEEMD). We also see
that VMD is able to decompose fMRI signals in a reproducible
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FIGURE 6 | Spatial distribution of the fractional contributions of each IMF to the total spectral power of the rs-fMRI signal. The maps were averaged across all
subjects for each IMF, and overlaid on a cortical surface. IMF4, which is associated with the lowest frequency, is markedly elevated in the occipital lobe, as reflected
by VMD results (b). This is consistent with the CEEMD results (a). IMF1 and 2, associated with the highest frequencies, are elevated in the temporal lobe and the
frontal/limbic cortices, respectively. These are not clearly seen in CEEMD-derived IMFs.

manner, given the small variability associated with each IMF
frequency across 8 subjects. Interestingly, we found that both
gray and white matter of the healthy brain are characterized
by IMF clusters centered at the frequencies of 0.028, 0.080,
0.15, and 0.23 Hz, identifiable in all of our subjects. While all
brain voxels exhibited these frequencies, the contribution of
each to the total signal power varied spatially (Figure 6). In
the literature, a similar clustering of IMF frequencies across
brain voxels has been observed previously using EMD (Song
et al., 2014) and CEEMD (Qian et al., 2015), although the
previously reported center frequencies were 0.02, 0.04, 0.08, and
0.17 Hz, respectively. This difference is likely driven by the higher
degree of mode spreading in the higher-frequency IMFs that is
inherent in CEEMD, as described in the sections “Introduction”
and “Results.”

When we used short-TR acquisitions (TR on the scale of
300 ms) (Niazy et al., 2011; Kalcher et al., 2014) to reduce
respiratory and cardiac aliasing in the frequency range of
interest, our findings of these IMF cluster frequencies did
not change. Moreover, we acquired two trials of rs-fMRI
data per subject, within the same scan session. To our best
knowledge, no previous study has examined the reproducibility
of intrinsic mode functions derived from rs-fMRI data, nor did
any study examine the TR sensitivity of the decompositions.

The frequency clusters we identified were highly reproducible
across fMRI trials, and insensitive to the TR used (Figure 5),
strengthening our confidence in the potential biological relevance
of our findings.

Possible Interpretations of Intrinsic
rs-fMRI Frequencies
Our current data do not permit us to conclusively pinpoint
the physiological source(s) of these frequencies, although
we may refer to independent evidence of physiological
oscillatory signatures.

IMF4, being at the lowest frequency, contributed the most
to the overall signal power. This is in general agreement with
findings by Kalcher et al. (2014), who nonetheless examined a
different set of frequency bands (i.e., < 0.1 Hz, 0.1–0.25 Hz,
0.25–0.75 Hz, and 0.75–1.4 Hz). It has been well established that
within the 0.01–0.25 Hz frequency range, low-frequency cardiac-
rate variations and respiratory-volume variations are observable
near 0.01 Hz and 0.036 Hz in fMRI data, respectively. Therefore,
it is probable that IMF4 (range: 0.021–0.031 Hz) is associated
with these phenomena. Indeed, the high power contribution of
IMF4 to the occipital region (Figure 6) is consistent with previous
reports on the amplitude of rs-fMRI BOLD signal modulation
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FIGURE 7 | Typical correlation matrix based on the rs-fMRI signal within 0.001–0.08 Hz.

by respiratory variability (Chang and Glover, 2009a; Tong et al.,
2011; Golestani et al., 2015). Moreover, the contribution of IMF4
to the overall power is the only fraction that is lower in white
matter than in gray matter (Figures 5C,D), in agreement with
recent findings by Tong et al. (2016), although the difference is
not statistically significant. However, the effects of these different
physiological variances could not be distinguished from one
another, potentially due to oscillatory variations across different
tissue locations (Chang and Glover, 2009a; Golestani et al., 2015).
Moreover, while we may expect the short-TR data to exhibit
lower IMF4 amplitude than long-TR data due to the enhanced
ability for physiological nose removal, it is unclear which IMF the
physiological signal would be aliased into in the long-TR data. At
the maximum sampling frequency of 0.25 Hz, such noise sources
could equally alias into IMF3. Indeed, such is the case in the
gray matter, albeit the difference between short- and long-TR not
statistically significant.

The frequency ranges of IMF3 (0.063–0.098 Hz, peaking at
0.080 Hz) and IMF2 (0.13–0.17 Hz, peaking at 0.15 Hz) have
both been associated with low-frequency vascular oscillations
(Tong and Frederick, 2014; Hocke et al., 2016; Tong et al.,
2016). A major source of these vascular oscillations is vasomotion
(Intaglietta, 1990; Rivadulla et al., 2011). Vasomotion has long
been observed in the BOLD signal (Kiviniemi et al., 2000;
Cordes et al., 2001), and refers to a spontaneous oscillation in
the diameter of primarily pre-capillary vessels (Cooper et al.,
1966) that propagates through the entire vasculature but does
not influence cognitive processes. Vasomotion is associated with
oscillations in red blood-cell velocity (Biswal and Hudetz, 1996)

and modulates local blood flow (Morita et al., 1994; Biswal
and Hudetz, 1996; Aalkjaer et al., 2011). In particular, initially
observed in superficial blood vessels at around 0.1 Hz (Mayhew
et al., 1996; Meyer et al., 2003; Murphy et al., 2013), vasomotion’s
main frequency signature has been consistent between the animal
(Mayhew et al., 1996; Bernardi, 1997; Haddock et al., 2002;
Meyer et al., 2003) and human subcutaneous endothelium
(Kvernmo et al., 1999, 1998).

The origins of vasomotion observed in fMRI could be caused
by oscillations in both vascular diameter (Intaglietta, 1990;
Biswal and Hudetz, 1996) and blood oxygenation (Biswal and
Hudetz, 1996; Nikulin et al., 2014). Until recently, there have
not been fMRI-based measurements of vasomotion in the human
brain. Rayshubskiy et al. (2014) were able to measure sinusoids
at (∼0.1 Hz near using intraoperative optical intrinsic-signal
imaging and preoperative fMRI near the same pial veins of
awake humans. However, an added challenge of in vivo isolation
of vasomotion is that vasomotion frequency may in fact be
dependent on vascular size, increasing with decrease vessel size
(Intaglietta, 1990; Harrison and Cai, 2003). This, coupled with
the fact that frequencies below 0.1 Hz (clusters IMF3 and IMF4)
have typically revealed robust brain-network patterns, suggests
that the effects of vasomotion may be embodied in IMF2. In
support of the closer neuronal relevance of IMF3, we note
that the regions of the highest fractional power distribution
by IMF3 are the superior parietal, posterior cingulate and
precuneus regions (Figure 6), coinciding with regions of high
resting neuronal activity determined using positron-emission
tomography (Raichle, 2011).
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FIGURE 8 | Comparison of VMD with CEEMD RSN-matrix topology. IMFs 4, 3, 2, and 1 are represented in (A), (B), (C), and (D), respectively. The VMD and CEEMD
IMFs are in comparable frequency ranges. The highest agreement between VMD and CEEMD results are seen in IMF 4 (r = 0.79), and secondarily in IMF 1 (r = 0.58),
the lowest and highest frequencies, respectively. Note that the maximum displayed correlations value has been reduced from 1 to 0.8 for display purposes.

At very high frequencies (IMF1), the fractional spectral
power is second only to the contribution of IMF4 (very low
frequencies), as shown in Figure 5. This frequency band (0.20–
0.24 Hz, peaking at 0.21 Hz) has previously been associated
with head motion (Razavi et al., 2008). Although motion was
corrected in the preprocessing pipeline, the effect of motion
cannot be completely removed (Faraji-Dana et al., 2016a,b).
In the case of the long-TR data, this frequency may also
be associated with aliased cardiac pulsations, although this
theory is refuted by the fact that IMF1 is equally strong in
short-TR and long-TR data sets. The functional significance of
IMF1 will need to be interpreted in the context of network-
related features.

Frequency Dependence of Network
Organization
We found that the functional connectivity patterns of RSNs
are dependent on frequency and that not all IMFs reveal

the same connectivity patterns, contrary to previous reports
(Niazy et al., 2011; Qian et al., 2015). The connectivity-matrix
patterns found in IMF 3 and 4 (Figure 7) were most similar
to those from the 0.01–0.08 Hz band-passed signal (Figure 8),
and were not seen in the higher frequency range (IMF 1
and 2). This is expected and is likely to reflect differences in
biological significance of high- and low-frequency signals as
described earlier.

Our findings echo those of Song et al. (2014), who found
cortical RSNs to be best represented in low-frequency
oscillations (<0.05 Hz). While both IMF clusters 3 and
4 demonstrated visible RSN connectivity-matrix patterns
(Figures 8A,B), IMF4 was associated with the highest
signal power and highest correlation. The fact that IMF4
is also most likely to contain low-frequency physiological
contributions supports previous findings that physiological
processes are stable (Birn, 2012) and can equally generate
highly robust connectivity-matrix patterns (Chang and
Glover, 2009b). This is an important point to consider in
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FIGURE 9 | Comparison of VMD RSN-matrix topology with results of band-pass filtering. IMFs 4, 3, 2, and 1 are represented in (A), (B), (C), and (D), respectively.
Each band-pass filter range determined based on VMD derivations of IMF frequency ranges. The conventional RSN topology can be observed across all
band-passed frequencies, although it is most prominent at the lowest frequency. While this trend of decreasing correlation with increasing frequency is consistent
with findings from VMD, the strengths of the correlations in VMD are markedly lower than those found using band-pass filtering.

interpreting the quality of RSN results based on strength and
reproducibility alone.

However, our findings contrast previous findings that RSNs
are a broadband phenomenon (Niazy et al., 2011; Qian et al.,
2015). These previous findings are in line with band-pass
filtering results (Figure 9), whereby similar connectivity patterns
are observed across all frequency bands. Nonetheless, previous
work has also demonstrated the frequency dependence of task-
fMRI-based brain networks (Baria et al., 2011). Moreover, our
results are also corroborated by near-infrared optical connectivity
measures in the resting state (Sasai et al., 2011), whereby
long-range and local connections were associated with distinct
frequencies within the 0.009–0.1 Hz range.

As, we demonstrated significant mode mixing using EMD
and CEEMD (Figure 1), we argue this effect could have

resulted in the similarities between IMFs that were previously
reported. The same logic may explain why band-pass filtered
maps were similar across frequency bands, as IMFs are
difficult to isolate using such filtering methods. Notwithstanding,
the similarity of the IMF1 connectivity matrices obtained
through VMD and CEEMD (Figure 8A) despite their different
frequency bands, serves to cross validate previous findings
against our findings at low frequencies. Lastly, we are
unclear as to the reason the correlations values corresponding
to VMD are much lower than those based on band-pass
filtering (Figure 9).

On average (across the group), the functional connectivity
values found with the VMD and CEEMD are lower than found
with conventional bandpass filtering. This is to be expected, signal
bands produced by BPF always have the same frequency ranges,
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but IMFs do not always have the same frequency ranges, and
can vary from subject to subject in that regard. This variability
can reflect in inter-subject variations in connectivity strength, as
exemplified in the Appendix Figure A4.

Limitations
In this work, we focused on the use of the empirical model
decomposition (EMD) family of methods, and more specifically,
on the use of the VMD method to provide estimates of
intrinsic modes while avoiding mode mixing. In general,
EMD has long been used for investigating the frequency
composition of biological signals that are non-stationary.
Compared to prevalent techniques such as independent-
component analysis (ICA), EMD has the advantage of being
able to operate on individual signals instead relying on
multiple measurements. Furthermore, the focus on EMD
is “intrinsic frequencies” instead of statistical independence,
more directly addressing our main focus. Nevertheless, a
combination of EMD and ICA may be investigated in
our future work.

In adopting VMD, the main thrust of our work is to
reduce the spectral overlapping in previous works. Our choice
of IMFs is driven by precision and reproducibility, which
may be a strength and a limitation, depending on whether
the intrinsic modes are expected to be reproducible. Such
assumptions have been used broadly in the rs-fMRI field, but
requires further dissection. While the motivation for using
VMD (and EMD in general) is the non-stationarity of the rs-
fMRI signal, the ground-truth testing was done using simulated
stationary signals. As it was unclear what alternative noise
model would be appropriate for such a simulation (where
the ground truth signal vs. noise distributions are unknown
in rs-fMRI data), we used white noise. While this may be a
limitation, such an approach provided us with a clear way
to evaluate the techniques – if a given technique could not
faithfully reconstruct a stationary signal, its performance on
a non-stationary signal could be no better than presented.
Although we have identified the frequency cluster IMF3 as most
representative of neutrally relevant BOLD, both by frequency and
by spatial contribution, we are not able, in the current study,
to provide direct experimental verification. Likewise, we are
unable to determine the amount of physiological contributions
to IMF4, which is deemed most representative of respiratory
and cardiac effects using the current data. In future studies,
we will involve physiological monitoring during the rs-fMRI
sessions. This will be augmented by the use of simultaneous
EEG-fMRI to capture neural fluctuations as well as blood-
oxygenation effects, ideally in the presence of stimuli that can
modulate baseline cerebral metabolism. Furthermore, the use
phase locking is also an effective tool for estimating the sources
of the IMFs and their interplay (Pfurtscheller et al., 2017),
given sufficient SNR.

Furthermore, while we determined that the cluster
IMF2 is most likely associated with low-frequency vascular
oscillations (or vasomotion), the central frequency of IMF2
is 0.15 Hz, deviating from the typically reported to be
0.1 Hz in surface vessels. Furthermore, we did not find any

observable vascular networks based on specific frequencies
in the fMRI signal. While we have evidence to believe
the frequency of vasomotion increases with decreasing
diameter (Intaglietta, 1990), our ability to isolate smaller
blood vessels is limited by the spatial resolution of the fMRI
acquisition and by the BOLD effect itself. One possibility
for targeting this issue is to repeat these measurements in
conjunction with independent monitoring of subcutaneous
vasomotion as well as vascular stimuli that can modulate
vasomotion amplitude.

Finally, in this study, we do not examine network properties
such as the differences between local and long-range connections
in our study of RSN frequency dependence. The intention of our
current work is to establish the validity of our decomposition
procedure, and a comprehensive examination of the frequency
dependence of multiple network metrics will be part of
our future work.
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Resting-state functional connectivity (rsFC) is emerging as a research tool for systems
and clinical neuroscience. The mechanism underlying resting-state functional MRI
(rsfMRI) signal, however, remains incompletely understood. A widely held assumption is
that the spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal
reflect ongoing neuronal processes (herein called “neurocentric” model). In support of
this model, evidence from human and animal studies collectively reveals that the spatial
synchrony of spontaneously occurring electrophysiological signal recapitulates BOLD
rsFC networks. Two recent experiments from independent labs designed to specifically
examine neuronal origins of rsFC, however, suggest that spontaneously occurring
neuronal events, as assessed by multiunit activity or local field potential (LFP), although
statistically significant, explain only a small portion (∼10%) of variance in resting-state
BOLD fluctuations. These two studies, although each with its own limitations, suggest
that the spontaneous fluctuations in rsfMRI, may have complex cellular origins, and the
“neurocentric” model may not apply to all brain regions.

Keywords: resting-state MRI, functional connectivity, MUA, LFP, BOLD

INTRODUCTION

Noise exists in all measurements. The significance of spatially coherent “noise” in blood
oxygenation level-dependent (BOLD) signal was appreciated in a seminal paper by Biswal et al.
(1995), who revealed temporal synchrony in human sensorimotor system. As similar results
accumulated for other brain systems (Greicius et al., 2003; Beckmann et al., 2005; Fox et al., 2005;
Seeley et al., 2007; Habas et al., 2009; Raichle, 2011), in particular the discovery of the “default
mode network (DMN) (Raichle et al., 2001; Greicius et al., 2003),” a concept emerged suggesting
that the persistent, correlated spontaneous activity between brain regions [functional connectivity
(FC)], initially thought to be noise (i.e., random error) in BOLD measurements, is in fact a
meaningful source of information, reflecting a fundamental feature of brain functional organization
(Raichle, 2009). Further supporting this view, a recent study defined depression subtypes based on
FC patterns; the resulting biotypes predicted individuals’ responsiveness to transcranial magnetic
stimulation (TMS) therapy, pointing to clinical potentials of resting-state functional connectivity
(rsFC) (Greicius, 2008).
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A cornerstone assumption in rsFC is that the ongoing,
spontaneously occurring synchrony among brain areas reflects
the inherent functional organization of the neural network.
The definition of “neural network” in the context of resting-
state functional MRI (rsfMRI), however, remains vague. Data
accumulated over the past decade, more or less, lend support
to the hypothesis that synchronized neuronal activity underlies
the BOLD FC. Recent animal studies from two independent
labs designed to directly test this hypothesis, however, suggest
cautious interpretation of the data (see below). As rsFC becomes
increasingly used as a research tool for basic and clinical
neuroscience, a thorough understanding of its physiological basis
and origin becomes essential and critical.

In the spirit of stimulating scientific debate, in this opinionated
mini-review, we will start with methodological considerations
that we deem important in elucidating the physiological basis of
BOLD fluctuations, followed by critical review of recent evidence
that supports neuronal origin of the rsfMRI signal, herein we will
call it “neurocentric” model; we will then present several lines of
recent evidence that appear divergent from this concept. Finally,
we will bring forward testable hypotheses from a perspective of
BOLD signal transduction. Extensive review of this subject can be
found elsewhere (Leopold and Maier, 2012; Lu and Stein, 2013).
We will focus on progress in the past 5 years.

METHODOLOGICAL CONSIDERATIONS

Brain’s electrical signals can be measured at different scales, from
intra- and extra-cellular recording, local field potential (LFP)
to electroencephalogram and magnetoencephalography (Buzsáki
et al., 2012). The LFP signal has been shown to be correlated with
BOLD response to a task (e.g., visual stimulation) (Lauritzen,
2001; Logothetis et al., 2001). By extension, LFP is often used to
investigate the electrophysiological correlate of the rsfMRI signal
(Lu et al., 2007; Mantini et al., 2007; He et al., 2008; Shmuel and
Leopold, 2008; de Pasquale et al., 2010; Schölvinck et al., 2010;
Pan et al., 2011; Wang et al., 2012; Hutchison et al., 2015; Shi
et al., 2019). The underlying assumption is that BOLD fluctuation
in the resting-state and the evoked BOLD response to a task
manipulation share the same signal transduction mechanism. As
will be discussed later in this article, this assumption may require
a careful assessment.

On the other hand, BOLD signal results from the mismatch
between blood flow and oxygen metabolism (Fox and Raichle,
1986; Kim and Ogawa, 2012), indirectly reflecting neuronal
activity. Thus, LFP and BOLD signals are two fundamentally
different readouts of brain activity. We have previously argued
that (Lu and Stein, 2013), in order for the fMRI signal to be
considered as a surrogate of a specific neuronal physiological
measure, at a minimum, the following criteria should be met:
(i) the temporal fluctuations of the electrical and the BOLD
signals should remain correlated, and such correlation should
be persistent across brain states; (ii) the spatially correlated
patterns from electrical signal should recapitulate that from
BOLD signal across brain states; and (iii) each pattern should
be unique to each network. To meet the above three criteria,

it would appear necessary that both types of signals should be
recorded simultaneously on the same subject. Due to substantial
technical difficulties and for practical reasons, to the best of
our knowledge, most published studies employed experimental
designs that partially meet these criteria, and thus should be
considered critically.

SPATIALLY CORRELATED PATTERNS OF
THE ELECTRICAL SIGNAL
RECAPITULATE BOLD RSFC

Perhaps the most intuitive evidence to support the “neurocentric”
model is the distinct spatial patterns of the electrical signal,
which bear remarkable similarity to BOLD FC (Fukushima et al.,
2012; Liu et al., 2015; Hacker et al., 2017; Kucyi et al., 2018; Shi
et al., 2019). Data from voltage sensitive dye (VSD) fluorescent
imaging appear particularly compelling (Mohajerani et al.,
2010). Conventional electrophysiological recording necessitates
reference and ground electrodes; and there is more or less
“volume conduction effect” (Kajikawa and Schroeder, 2011).
Confounds from these technical aspects lead to certain degrees
of ambiguity in terms of spatial localization of the electrical
signal. This could potentially introduce artifactual inter-regional
correlation. VSD imaging measures membrane potential changes,
avoiding these confounds entirely.

In a mouse model with a large craniotomy preparation,
Mohajerani et al. (2010) simultaneously recorded VSD signals
in both hemispheres. Strong oscillations exist in spontaneous
ongoing VSD signals, which mirror LFP signal in the low
frequency band (3–6 Hz). The oscillations in homotopic cortical
regions were correlated; discrete peaks characterized each
region. Awake and urethane anesthetized mice showed similar
inter-hemispheric synchrony. Furthermore, they found that, in
genetically acallosal mice, the interhemispheric synchrony was
significantly reduced, a finding similar to rsFC studies in humans
(Lowe et al., 1997; Quigley et al., 2003; Johnston et al., 2008).
The localized synchrony patterns in homotopic cortical regions
recorded using VSD are strikingly similar to rsFC reported in
rodent fMRI literature (Lu et al., 2007, 2012; Pawela et al., 2008;
Zhao et al., 2008; Hutchison et al., 2010; Liang et al., 2011;
Magnuson et al., 2014; Gozzi and Schwarz, 2016), including
sensory networks in the forelimb region, whisker cortex, motor
cortex etc. Notably, the retrosplenial cortex, a major component
of the DMN (Lu et al., 2012), was also depicted in the VSD data.

Spatially correlated patterns between electrophysiological
signals recorded in areas of classic FC networks were also
observed in humans (He et al., 2008; Hacker et al., 2017; Kucyi
et al., 2018). In these studies, patients underwent neurosurgical
electrocorticography (ECoG) electrode implantation. Based on
clinical needs, each study had a unique cohort of patients
with electrodes covering specific brain regions. Taken together,
the electrodes covered sensory motor network (SMN), dorsal
attention network (DAN), DMN, and frontoparietal control
system (FPC). In general, these studies found a higher within
network correlation than between network correlation, and
there is a spatial correspondence between ECoG and BOLD FC
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patterns. Less consistent was which frequency band contributes
the most to the within and between network correlations. For
example, Hacker et al. (2017) showed that the correspondence
appeared to be frequency band-specific: theta (4–8 Hz) band-
limited power (BLP) correspondence appeared stronger in the
DMN and FPC, while theta (8–12 Hz) BLP correspondence was
stronger in the SMN and DAN. They also found that gamma BLP
correspondence was commonly observed throughout the brain.
Kucyi et al. (2018) reported that correlation patterns in high
frequency broadband (70–170 Hz) power were consistent during
wakeful rest and sleep; although similar correlation pattern exist
in lower-frequency (1–70 Hz) power, but the spatial specificity
and temporal consistency were inferior to higher frequency
broadband power.

A recent study by Shi et al. (2019) recorded ECoG signal
from the primary somatosensory cortex (areas 3b and 1) of
anesthetized monkeys, and found that spontaneous fluctuations
in low frequency LFP signal was the major contributor to
resting-state LFP coherence. Furthermore, they reported that the
temporal dynamics in BOLD FC behaved most similarly to the
low frequency LFP coherence. These results are generally in line
with the conclusions from studies in anesthetized rats (Lu et al.,
2007, 2014; Pan et al., 2010; Magnuson et al., 2014). It is not clear
whether the use of anesthesia in rats and monkeys played a role
in the discrepancy mentioned above.

In summary, evidence from animals and humans collectively
suggests a high degree of correspondence in spatial correlation
patterns derived from electrophysiological recording and
BOLD rsFC, it would appear tempting to conclude that the
electrophysiological signal underlies BOLD rsFC. However,
making this leap requires correspondence in temporal
behavior of these two types of brain readouts, which
necessitates simultaneous measurement of both types of signals.
Unfortunately, two lines of evidence from simultaneously
recorded electrophysiological and hemodynamic signals seem
difficult to reconcile with the “neurocentric” model.

LFP–BOLD CORRELATION IS WEAK

We developed a simultaneous fMRI–electrophysiological
recording technique (Jaime et al., 2018), and performed chronic
repetitive recordings in rat striatum. The electrophysiological
recording and BOLD data acquisition were coupled with
pharmacological modulation of the well-defined dopaminergic
pathway (Figure 1A). We found three distinct BOLD rsFC
networks using the independent component analysis. These
three networks are consistent with well-known three functional
domains in rat striatum (Voorn et al., 2004). We thus implanted
silicon-based microelectrode array (16 contacts) that covered
the dorsolateral to ventral medial striatum (Figures 1B,C). With
microinjection of alpha-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid (AMPA) receptor agonist into the ventral
tegmental area (VTA), we systematically modulated dopamine
release and neuronal activity in the striatum, to which VTA
dopamine neurons project most densely. As shown in Figure 1D,
both the amplitude and the frequency of the striatal LFP signal

were modulated. VTA AMPA microinjection significantly
modulated FC only in the ventral striatum (nucleus accumbens)
(Figures 1E,F), consistent with known neuroanatomy.

Concurrent LFP and BOLD signal recording allowed us
to directly interrogate the temporal relationship of these two
types of brain readouts. Perhaps the most unexpected finding
is the low correlation between LFP and BOLD signal: although
the LFP-BOLD time courses were statistically correlated, the
average LFP-BOLD correlation was below 0.1 (Figure 1G). The
correlation between gamma LFP and the fMRI signal was similar
but opposite in sign (Jaime et al., 2017). These data suggest that
spontaneous LFP fluctuations explain only a small portion of
variance in BOLD fluctuations (Sumiyoshi et al., 2019).

The above observation by Jaime et al. (2017) is corroborated
by a recent optical imaging study (Winder et al., 2017). In this
study, Winder et al. (2017) applied intrinsic optical imaging to
measure hemodynamic signal [total hemoglobin signal, reflecting
cerebral blood volume (CBV)] while at the same time recording
neuronal activity in the whisker barrel cortex of the awake,
head-fixed mice. What made this study especially unique in the
context of spontaneous brain activity was that they carefully
monitored whisker and body movements. They found that
spontaneous CBV changes in the absence of experimenter-
delivered sensory input were largely driven by volitional whisker
and body movements. During periods of “rest” when there was no
experimenter-delivered sensory stimulation, volitional whisker
and body movements, CBV signal was only weakly correlated
with neural activity assessed with either gamma band LFP or
multiunit activity (with an R2 of about 0.1, Figure 2). They
performed pharmacological manipulations to block local neural
spiking, glutamatergic input and noradrenergic receptors, and
found that spontaneous fluctuations in CBV and vessel diameter
persisted, indicating that spontaneous CBV fluctuations may
have a non-neuronal origin.

The results reported by Winder et al. (2017) are divergent
from several recent optical studies (Matsui et al., 2011; Ma
et al., 2016; Mateo et al., 2017). For example, Ma et al. (2016)
reported that spontaneous CBV fluctuations highly correlated
with ongoing neuronal activity as measured with GCaMP optical
imaging. The reasons for this discrepancy are unknown, but
one might speculate that the differential definition of “resting-
state” may have played a role, an issue particularly relevant in
studies employing awake animals. Ma et al. (2016) stated in their
paper: “Awake mice were imaged head-fixed but positioned on a
saucer wheel and were free to run during imaging. The motion
of the wheel was monitored throughout imaging using a webcam
synchronized with image acquisition. All periods of running were
removed, and ‘resting-state’ epochs were defined as periods of at
least 30 s of continuous rest.” Over a duration of 30 s or more, a
head-fixed awake mouse likely whisks volitionally (Winder et al.,
2017). Ma et al. (2016) did not specifically state whether they
had taken whisking behavior or fidgeting into account in their
definition of the “resting-state.”

Whisking is an important, albeit subtle, behavior in rodents.
As pointed out by Sofroniew and Svoboda (2015): “rodents use
their mechanosensitive whiskers for a diverse range of tactile
behaviors such as navigation, object recognition, and social
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FIGURE 1 | MRI-compatible linear electrode array was implanted into the rat striatum covering the dorsolateral and ventrolateral domains (A–C). These domains
were identified based on the three bilateral rsFC network in rat striatum that correspond to the three functional domains of the rat striatum (B).
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was injected into the ventral tegmental area (VTA) via a guide cannula to enhance the activity of
VTA dopaminergic neurons, which project primarily to the ventral striatum, modulating striatal local field potential (LFP) signal (D). The waveforms before and after
AMPA injection were derived from the blue and red boxes, respectively. (E,F) The main effect of AMPA on BOLD functional connectivity (FC). (G) The effects of VTA
AMPA microinjections LFP–BOLD correlation (corr.). Note the low correlation value in LFP–BOLD correlation, indicated by red dashed line in panel (G). All maps are
thresholded at p < 0.05 after correction for multiple comparisons. DA, dopamine; D. Striatum, dorsal striatum; V. Striatum, ventral striatum (nucleus accumbens);
GABA, gamma-aminobutyric acid; Glut, glutamate; Hipp, hippocampus; NAcc, nucleus accumbens core; and PFC, prefrontal cortex (adapted with permission from
the authors).

interactions. These animals move their whiskers in a purposive
manner to locations of interest.” Furthermore, whisking triggers
cortical dynamics in many brain regions including S1, S2, M1,
M2, PPC, thalamus, etc. (O’Connor et al., 2010; Sofroniew
et al., 2015; Helmchen et al., 2018). Thus, the individual
moments when a mouse volitionally whisks and fidgets should
be treated as individual task events; both GCaMP and CBV
recordings during these periods should be excluded for analyzing
neuronal correlates of resting-state hemodynamic signal. Winder
et al. (2017) showed that auditory, whisker stimulation and
some volitional whisking events induced distinct hemodynamic
responses – an observation appears compelling. Furthermore,
Winder et al. (2017) showed that the high correlation between
electrophysiological signal (MUA and LFP) was largely driven by
these events, a point that warrants further exploration (see section
“Technical Limitations”). Additionally, certain transgenic mouse
lines are known to have aberrant firing patterns (Steinmetz et al.,
2017); it is unknown whether the mouse line used by Ma et al.
(2016) had normal basal cortical activity.

The neurophysiological basis of rsFC has been under debate
for more than a decade. The debate has been framed in the
context of “neurocentric” model. In support of this view, in the
spatial domain, converging evidence from animals and human
suggests that the interregional correlation patterns derived from
electrophysiological recording recapitulate BOLD rsFC (Hacker
et al., 2017; Kucyi et al., 2018).

Experiments designed to specifically test the “neurocentric”
model only appeared in recent years (Matsui et al., 2011; Ma
et al., 2016; Jaime et al., 2017; Mateo et al., 2017; Winder et al.,
2017). The two independent studies (Jaime et al., 2017; Winder
et al., 2017) employed concurrent electrophysiological recording
and hemodynamic measurement, and found weak LFP–BOLD
correlation. In particular, the study by Winder et al. (2017)
suggests that hemodynamic signal may reflect a combination of
potential sources, including behavior, local neural activity, and
putatively non-neural processes, calling for careful definition of
the “resting-state.” This may be especially relevant in studies
using animal models.
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FIGURE 2 | Weak correlation between electrophysiological and hemodynamic signal during periods of “rest.” (Left) Schematic of the experimental setup for optical
imaging of intrinsic signal (the isosbestic point green light measures total hemoglobin signal, reflecting CBV). Animal’s behavior and movement were dynamically
monitored. (Right) Predictions of ongoing CBV for a single trial. (Top) Predictions by gamma-band (teal blue, R2 = 0.29) and MUA-derived (gray, R2 = 0.20) HRFs.
(Bottom) Goodness-of-fit (R2) for 8-s sliding windows. Colored triangles indicate sensory stimuli. Orange tick marks indicate volitional whisking events. Note that R2

was low during the “rest.” Here, the “rest” was defined as the periods absent of experimenter-delivered stimulation, fidgeting, and volitional whisking events (adapted
with permission from the authors).

TECHNICAL LIMITATIONS

The weak correlation between ongoing neuronal activity and
hemodynamic signals during the resting-state is somewhat
unexpected, and is not in line with the “neurocentric” doctrine
of rsfMRI. Several technical issues must be critically reviewed
when interpreting this finding. Jaime et al. (2017) performed
LFP and rsfMRI recordings in the striatum of anesthetized rats.
The anesthetic regime, a combination of low dose isoflurane and
dexmedetomdine, has been shown to preserve brain networks
(Lu et al., 2012; Brynildsen et al., 2016). But LFP signals
recorded with this regime are dominated by low frequency
(delta) activity. It is unknown how the use of anesthetics
affects neurovascular coupling, particularly in the resting-state.
Additionally, the longitudinally implanted microelectrode array
unavoidably degrades the quality of rsfMRI signal in voxels
around the electrodes. Cytoarchitectonically, inhibitory medium
spiny neurons represent 95% of neuronal cells in rat striatum,
as opposed to in the neocortex where a majority of neurons are
excitatory glutamatergic neurons (Kreitzer and Malenka, 2008).
Several studies reported differential neurovascular coupling in
the striatum than in the neocortex (Shih et al., 2009, 2012).
Specifically, Shih et al. documented bilateral CBV decreases
associated with enhanced neuronal activity in the caudate–
putamen induced by unilateral noxious electrical stimulation,
and that the activation of dopamine D2 receptor played a
role in this process (Chen et al., 2005). It is thus possible
that finding in the striatum may not be generalizable to
other brain regions.

The study by Winder et al. (2017) was performed in the
neocortex of awake mice, and thus avoided the confounding

effects from anesthesia. Nevertheless, they inserted Teflon-
coated tungsten-wire stereotrode into the barrel cortex, which
necessitated an invasive cranial window preparation, and in
some experiments, a cannula was chronically implanted for
pharmacological manipulations. Since an acute cranial window
preparation likely causes certain degree of tissue insult, it is
unknown whether the tissue insult arising from this procedure
might have affected neurovascular coupling in the resting-state,
although they were able to record robust hemodynamic response
to whisker stimulation. In support of this argument, Hudetz
et al. (1998) pointed out that spontaneous fluctuation in cerebral
blood flow requires the preservation of the flow control system.
The fluctuations are absent in focally ischemic cortical territories
when the ischemia is severe.

POTENTIAL ROLES OF ASTROCYTE IN
rsfMRI SIGNAL

The potential roles of astrocytes in rsfMRI have been
largely ignored. Neurons and associated astrocytes are
organized in large-scale synaptic and astrocytic networks.
Complex signaling within and between these networks causes
fluctuations in cerebral metabolic rate of oxygen (CMRO2)
and hemodynamic response (Attwell and Iadecola, 2002).
The BOLD signal is vascular in origin, and ultimately
relies on vasoactive substance release. Neuronal activity
is known to cause the release of many vasoactive agents,
including H+, K+, adenosine, arachidonic acid metabolites,
nitric oxide (NO) etc. (Iadecola and Nedergaard, 2007).
On the other hand, astrocytes are strategically positioned
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between neuronal and vascular systems: astrocytes forms end-
feet on capillaries and arterioles while having contacts with
synapses (Mishra, 2017). Importantly, astrocytes are known
to express many ion channels, receptors, transporters, and
vesicles (Verkhratsky and Nedergaard, 2018). Indeed, astrocytic
Ca2+ signaling has been shown to play an role in regulating
neurovascular coupling (Zonta et al., 2003) and in controlling
vessel tone (Rosenegger et al., 2015). Furthermore, several lines
of evidence suggest that alterations in parenchymal vascular
tone influence astrocytic Ca2+ activity and potentially neuronal
activity as well, such that the “hemo-neural” hypothesis has been
proposed (Moore and Cao, 2008; Kim et al., 2016). Modeling
studies suggest that cyclic neuron-astrocyte cross talk could
produce slow oscillations in BOLD signal (DiNuzzo et al.,
2011; DiNuzzo, 2015). Thus, in addition to the “neurocentral”
model, an alternative testable hypothesis could be that the
spontaneous BOLD fluctuation is at least partially caused
by spontaneous astrocyte activity. Additionally, the role of
spontaneous vasomotion in spontaneous BOLD fluctuation may
warrant further investigation.

Imaging of astrocytic activity has traditionally relied on
fluorescent dyes (Mulligan and MacVicar, 2004; Scemes and
Giaume, 2006; Schulz et al., 2012; Otsu et al., 2015). The
development of transgenic mouse lines, viral vector targeting
strategies and genetically encode Ca2+ indicators has made
astrocyte-specific recording and manipulation more readily

available (Biesecker et al., 2016; Poskanzer and Yuste, 2016;
Takata et al., 2018). For example, using transgenic approaches,
Takata et al. (2018) generated mice expressing channelrhodopsin
specifically in neurons or in astrocytes, and measured BOLD
response to astrocyte-specific optogenetic stimulation. They
reported that optogenetic activation of astrocytes, in the absence
of apparent neuronal modulation, evoked BOLD response.
It is thus conceivable that spontaneous activity in astrocyte
may cause spontaneous vasodilation and vasoconstriction,
leading to variations in BOLD signal that are decoupled from
spontaneous neural activity. Future experiments that combine
optical readouts of neuronal and astrocytic calcium activities
with hemodynamic measurement may shed light on the origins
of rsfMRI signal.
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Functional magnetic resonance imaging (fMRI) is currently one of the most important

neuroimaging methods in neuroscience. The image contrast in fMRI relies on the

blood-oxygenation-level dependent (BOLD) signal, which indirectly reflects neural activity

through neurovascular coupling. Because the mechanism that links the BOLD signal to

neural activities involves multiple complicated processes, where neural activity, regional

metabolism, hemodynamics, and the BOLD signal are all inter-connected, understanding

the quantitative relationship between the BOLD signal and the underlying neural activities

is crucial for interpreting fMRI data. Simultaneous local field potential (LFP) and fMRI

recordings provide a method to study neurovascular coupling. There were a few

studies that have shown non-linearities in stimulus related responses, but whether

there is any non-linearity in LFP—BOLD relationship at rest has not been specifically

quantified. In this study, we analyzed the simultaneous LFP and resting state-fMRI

data acquired from rodents, and found that the relationship between LFP and BOLD is

non-linear under isoflurane (ISO) anesthesia, but linear under dexmedetomidine (DMED)

anesthesia. Subsequent analysis suggests that such non-linearity may come from the

non-Gaussian distribution of LFP power and switching from LFP power to LFP amplitude

can alleviate the problem to a degree. We also confirmed that, despite the non-linearity

in the mean LFP—BOLD curve, the Pearson correlation between the two signals is

relatively unaffected.

Keywords: local field potentials, BOLD, electrophysiology, fMRI, non-linearity, neurovascular coupling, correlation

INTRODUCTION

After its inception in the early 1990s (Ogawa et al., 1990, 1992; Belliveau et al., 1991), functional
magnetic resonance imaging (fMRI) quickly became the dominant method to study brain activity.
Later on, Biswal et al. (1995) found that the fMRI acquired without a task reveals synchronous
fluctuations in different brain regions, which reflects the functional connectivity.Whether the fMRI
is performed with task-rest block design, or is performed at rest without any explicit task, ultimately
all fMRI studies rely on a contrast mechanism called blood oxygenation level-dependent (BOLD),
in order to non-invasively detect the relative neural activity. The image contrast in BOLD fMRI
comes from the fact that deoxyhemoglobin is strongly paramagnetic, whereas oxyhemoglobin is
diamagnetic. The presence of paramagnetic deoxyhemoglobin distorts the local magnetic fields,
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and such distortion results in intravoxel dephasing of MRI
signal (T2∗ weighting), which reduces the signal intensity in
that region (Thulborn et al., 1982; Silvennoinen et al., 2003).
Since the brain does not store oxygen, an increase of neural
activity will demand more oxygen, and through a process called
neurovascular coupling, the regional cerebral blood flow (CBF)
will increase to fulfill the demand (Fox and Raichle, 1986). This
brings more oxygenated blood to this region and lowers the
relative concentration of deoxygenated hemoglobin, increasing
the BOLD signal. It can be seen that the coupling between neural
activity and BOLD signal changes involves multiple processes,
and that neural activity, regional metabolism, hemodynamics,
and the BOLD signal are all inter-connected via signaling
pathways that are not completely understood. The fact that the
BOLD signal is only an indirect measurement of neural activity
makes the interpretation of fMRI studies difficult (Bandettini and
Ungerleider, 2001; Arthurs and Boniface, 2002; Heeger and Ress,
2002; Logothetis, 2008).

To better understand the relationship between BOLD
and neural activity, it is necessary to utilize modalities
that can directly measure neural activity simultaneously with
fMRI. Logothetis et al. (2001) pioneered the development of
simultaneous acquisition of local field potentials (LFP) and fMRI
data in primates. Their study showed that both LFPs and multi-
unit activity (MUA) are correlated with the BOLD response,
LFPs showed higher correlation than MUA. This outstanding
work not only provided invaluable insights into the relationship
between neural activity and the BOLD signal, but also established
a feasible method for recording fMRI signal and neural activity
simultaneously (Bandettini and Ungerleider, 2001; Arthurs and
Boniface, 2002; Heeger and Ress, 2002). As a result, an increasing
number of studies have employed simultaneous LFP and fMRI
data acquisition (Shmuel et al., 2006; Huttunen et al., 2008;
Shmuel and Leopold, 2008; Murayama et al., 2010; Mishra et al.,
2011; Pan et al., 2011, 2013; Devonshire et al., 2012; Magri
et al., 2012), improving our understanding of the underlying
mechanisms that link the BOLD signal to neural activity.

Most studies that analyze the LFP-BOLD relationship, either
implicitly (Shmuel et al., 2006; Huttunen et al., 2008; Murayama
et al., 2010; Pan et al., 2011, 2013) or explicitly (Logothetis et al.,
2001), assume a linear relationship between LFP and BOLD.
For example, the Pearson correlation coefficient, the most widely
used metric, implicitly assumes a linear dependency. However,
the linear model may sometimes be overly simplified, and its
applicability remains a topic of debate (Liu et al., 2010).

Logothetis et al. (2001) found that the root mean square
value of LFP gamma vs. BOLD relationship is roughly linear.
But when the LFP or BOLD is compared to the stimulus, the
relationship is non-linear (Heeger and Ress, 2002). Huttunen
et al. (2008) also found that the LFP/BOLD response, as a
function of stimulus frequencies, is non-linear, but the LFP vs.
BOLD relationship is quite linear. Devonshire et al. (2012) found
that a non-linearity exists in sub-cortical regions but not in
the cortex. Sanganahalli et al. (2009) found that both LFP and
MUA show a linear relationship with hyperemic component
[BOLD, cerebral blood volume (CBV), CBF] from the cortex in
rats during forepaw stimulation with low frequency stimulation

(1.5–3Hz). The same group also showed that the relationship
among LFP, MUA, and BOLD might be different in the cortex
and sub-cortical regions in a recent study (Sanganahalli et al.,
2016), but did not specifically quantify whether the relationship
is linear. Magri et al. (2012) proposed to use mutual information
to study the relationship between LFP band limited power and
BOLD, which takes any non-linearity into account, however, they
did not specifically measure how much non-linearity was present
in the LFP-BOLD relationship.

To the best of our knowledge, there has not been a study
specifically focusing on non-linearity in the relationship between
spontaneous LFPs and BOLD in the cortex. So far, any non-
linearities discovered in cortex seem to refer to the LFP vs. input
stimulus, or BOLD vs. input stimulus relationship, but not the
LFP and BOLD relationship. However, there have been some
studies revealing the non-linearity between the BOLD signal and
neural activity measured by methods other than LFP recordings
(Devor et al., 2003; Jones et al., 2004; Sheth et al., 2004; Hewson-
Stoate et al., 2005; Hoffmeyer et al., 2007; de Zwart et al., 2009;
Liu et al., 2010). Since these studies suggests that there might
be a non-linearity between BOLD and neural activity, it is worth
trying to quantify if there is any non-linearity in the LFP-BOLD
relationship. Please note that the linear relationship discussed
in this paper refers to the simple y = kx + b relationship, and
the aim of this paper is to discuss whether this holds true for
LFP-BOLD relationship, and if not, how the Pearson correlation
is affected.

In our study, we took advantage of the previously acquired
data with simultaneous LFP and fMRI acquisition in rodents.
Using data-driven approaches, we found a non-linear
relationship existing between LFP power and BOLD under
isoflurane (ISO) anesthesia but not under dexmedetomidine
(DMED) anesthesia. This non-linearity seems to come from the
non-Gaussian distribution of LFP power under ISO anesthesia.
Subsequent studies show that ultimately, the non-linearity may
come from the intrinsic properties in LFP power, and LFP
amplitude might be more desirable if the non-linearity is a
concern. Despite the existence of non-linearity, we also found
that it is not usually substantial enough to influence traditional
Pearson correlation-based analysis.

MATERIALS AND METHODS

Simultaneous fMRI Imaging and LFP
Recording
All animal experiments were performed in compliance with
NIH guidelines and were approved by the Emory University
Institutional Animal Care and Use Committee. Previously
acquired data from 36 Sprague–Dawley rats (male, 200–300 g,
Charles River) were used in this study. For each rat, first the
surgery was performed to implant the glass electrodes in bilateral
S1FL (primary somatosensory of forelimb) areas under 2%
isoflurane (ISO) anesthesia (Figure 1 shows the EPI image of a
typical subject with the locations of the electrodes, as well as
the LFP vs. BOLD cross-correlation map). Then, simultaneous
resting state-fMRI scans and LFP recordings were acquired,
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FIGURE 1 | EPI image (A) and cross-correlation (B) between the LFP

recorded from left S1 area and the BOLD signal. The location of the electrodes

was indicated by the triangles overlaid on the EPI image. It can be seen that

for this subject, the LFP recorded from left S1 area shows significant localized

correlation with the BOLD signal near the electrodes on both hemispheres.

The colormap for the correlation is shown on the right.

first under a variety of ISO concentrations ranging from 1.2
to 2% (ISO, 96 sessions), and later under dexmedetomidine
(DMED, 219 sessions). For DMED studies, a bolus of 0.025mg/kg
dexmedetomidine was injected subcutaneously. Isoflurane was
disconnected 10min afterwards, and a continuous subcutaneous
infusion of dexmedetomidine (0.05 mg/kg/h) began. The dose
was increased by a factor of three (0.15 mg/kg/h) after ∼1.5 h,
following the protocol for prolonged sedation described in
Pawela et al. (2009). The DMED scans were conducted >3 h after
switching from ISO to avoid any residual ISO effects (Magnuson
et al., 2014). Each session is 500 s long. A full description of the
methods is given in previous publications (Pan et al., 2010, 2011).
All physiological parameters were monitored and maintained
within normal ranges, including rectal temperature, respiration
rate, oxygen saturation and cardiac rate. The animals were
euthanized at the end of the experiment.

Single slice gradient echo EPI scans were obtained on a
9.4T small animal MRI system (Bruker, Billerica, MA) with
scan parameters: TR/TE = 500/15ms, voxel size = 0.3 × 0.3
× 2mm, matrix size = 64 × 64, FOV = 1.92 × 1.92 cm,
number of repetitions = 1,000, number of dummy scans = 20.
To improve the homogeneity of the magnetic field, the volume
of interest (6 mm3) was shimmed using FASTMAP (Gruetter,
1993). Manual shimming adjustment was then applied when
necessary to improve the field homogeneity of the selected slice.
The imaging slice was set to the coronal plane that covers
bilateral S1FL areas, where the glass recording electrode tips
were implanted.

Because the whole dataset was acquired over a period of
several years, there were two different sets of LFP recording
parameters: (1) ×500 amplified, 0–100Hz bandpass-filtered,
60Hz notch-filtered, 12 kHz sampling rate, and ∼10min
acquisition length (Pan et al., 2011), and (2)×1,000 amplified, 0.1
Hz−5 kHz bandpass-filtered, 60Hz notch-filtered, and 12 kHz
sampling rate, and ∼14min acquisition length (Pan et al., 2013).
However, these differences in the recording parameters are
eliminated in the LFP pre-processing, where the LFP was band-
pass filtered to 1–100Hz, the amplitude was normalized so that
the LFP broadband power (1–100Hz) in each scan session has

zero mean and unit variance, and the excessive LFP segments
were truncated to match the length of fMRI data.

LFP Data Pre-processing
The gradient switching that occurs during EPI acquisition
induces voltage changes in the recorded LFP due to Faraday’s
law of induction. Such gradient-induced artifacts were removed
following establishedmethods, The denoised LFP signal was then
low pass filtered to 100Hz using to remove any residual artifacts,
and down-sampled from 12KHz to 500Hz to reduce file size and
computation cost. A 10 TR-long segment of raw LFP trace and
the denoised LFP trace of a typical subject (same as the one shown
in Figure 1) were shown in Figures S1A,B.

To obtain the LFP power time course, first a 1 s long sliding
window was applied, then within the window, the power spectral
density (PSD) function was estimated using Welch’s method
(four segments, 50% overlap). The PSD was integrated over a
range of frequency bands (delta 1–4Hz, theta 4–8Hz, alpha
8–12Hz, low frequency beta 12–25Hz, high frequency beta
25–40Hz, and gamma 40–100Hz) to produce the LFP band-
limited power (BLP) time courses. The sliding window has
an overlap of 50%, meaning it moves 0.5 s at each step to
match with the fMRI temporal resolution. The LFP BLP time
courses were then band-pass filtered (0.01–0.1Hz for ISO and
0.01–0.25Hz for DMED). We chose these cut-off frequencies
because a previous study (Pan et al., 2013) has demonstrated that
frequencies below 0.1Hz in ISO data or below 0.25Hz in DMED
data exhibited higher BOLD/BLP coherences, when compared
to higher frequencies. Finally, the BLP time courses from the
same scan were normalized by a common scaling factor, such
that the standard deviation of the broadband power is equal to
1, which makes the datasets with various amplitudes comparable
with each other.

FMRI Data Pre-processing
First the fMRI data was corrected for motion using SPM 12.
The motion-corrected image series were then spatially smoothed
using a Gaussian kernel with a FWHM of 2.8 voxel (2.8 × 0.3
= 0.84mm). Finally, global signal and linear drift regression, as
well as band-pass filtering (0.01–0.1Hz for ISO and 0.01–0.25Hz
for DMED) were performed voxel-wisely. All data processing was
performed on Matlab 2018b (The MathWorks, Natick, MA). The
data will be available upon request.

ROI Selecting and Quality Assurance
As a quality assurance step, the cross-correlation map of LFP
bandlimited power vs. BOLD is calculated at the lag when the
correlation is expected to reach the maximum (4 s for ISO and
2.5 s for DMED). If there were high cross-correlations near the
electrodes, the dataset was selected as high-quality dataset. Please
note that the initial data pool (315 scan sessions) includes all
saved data, including those with substantial noises, motions,
and/or unstable physiological conditions. Most of them were
not suitable for further study and were excluded. We have used
several metrics to assess the quality of the data, including the
noise in LFP and BOLD, the residue motion, image distortion,
and function connectivity in bilateral S1 areas. All of the metrics
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were manually inspected and labeled as “good,” “fair” or poor
(the guideline of how the metrics were labeled can be found
in Table 1). Any scan must have at most one “fair” metric, in
order to be selected as usable data. By these criteria, 82 scans
under ISO and 160 scans under DMED were selected out of the
initial 315-scan data pool. The correlation between LFP power
and BOLD were inspected, and if a scan session has a LFP-
BOLD correlation higher than 0.2 and the correlation map is
well-localized to sites surrounding electrodes, it is selected as
high-quality data for further analysis. By this criterion, 22 scans
under DMED were selected out of 219 scans, and 32 scans under
ISO selected out of 96 scans. A 3 × 3 ROI was manually chosen
from the cross-correlation map, and centered at the electrodes,
where the correlations are the highest. Finally, the BOLD signal
averaged over the ROI was normalized so that the BOLD time
course in each scan session has zeromean and unit variance, thus,
the BOLD signal is comparable with other fMRI scans. The LFP
broadband power time course and the BOLD signal within the
ROI of a typical subject (same as the one shown in Figure 1) were
shown in Figure S1C.

RESULTS

LFP Power vs. BOLD Relationship Shows
Non-linearity Under ISO
Figure 2 shows the relationship between LFP power and BOLD
using a scatter plot. The x-axis shows the BOLD value measured
in units of standard deviation of BOLD and the y-axis shows

the LFP band limited power (BLP) values measured in units of
standard deviation of LFP broadband power, at a lead of 4 s under
ISO and a lead of 2.5 s under DMED.

Besides the scatter plot, there is also a line plot showing
the mean LFP power vs. spontaneous BOLD relationship. It
is obtained by evenly dividing the data into 10 groups based
on the BOLD values, and then calculating the average LFP
power within each BOLD group. Since this curve is based on
the actual bivariate relationship, we call it “experimental LFP
vs. spontaneous BOLD relationship.” It is evident that the LFP
vs. spontaneous BOLD relationship is non-linear under ISO
(panel A), whereas under DMED it is almost linear (panel B).
In addition, while the scale of each plot is different (because
the energy in each frequency band is different), the degree of
non-linearity under ISO appears very consistent, suggesting that
an underlying mechanism independent of the frequency bands
induces the non-linearity. The degree of linearity under DMED
also appears very consistent, except in high frequency bands,
especially in gamma band. The correlation between gamma band
under DMED and BOLD is only 0.0450, suggesting that they
are only very weakly correlated. The reason why the correlation
between high frequency band and BOLD under DMED is so
small compared to the other frequency bands, is because the
“signal-to-noise ratios” in these bands are small (The “signal”
is the change in BOLD that is caused by LFP power changes,
whereas the “noise” is the change in BOLD attributed to random
fluctuations), which makes the LFP vs. spontaneous BOLD curve
so flat. Under DMED anesthesia, there is little energy in these

TABLE 1 | Guidelines of data quality metrics.

Good Fair Poor

LFP

Number of gradient induced artifact =1,020a 6= 1,020

Residual noise in LFP No large spike in de-noised LFP More than one large spike in

de-noised LFP

BOLD

Trajectory of center of massb abs(1x) ≤ 0.05 pixel and

abs(1y) ≤ 0.05 pixel

abs(1x) ≤ 0.1 pixel and

abs(1y) ≤ 0.1 pixel and either

abs(1x) ≥ 0.05 pixel or

abs(1y) ≥ 0.05 pixel

abs(1x) ≥ 0.1 pixel or

abs(1y) ≥ 0.1 pixel

DVARSc DVARS ≤ 0.5% 0.5% ≤ DVARS ≤ 1%

and the number of small spikes is fewer than

5

Either DVARS ≥ 1% (large spikes) or

the number of small spikes is more

than 5

Image distortion No noticeable image distortion or signal

loss

Noticeable image distortion or signal

loss

Function connectivity (correlation

between bilateral S1 areas)

Correlation ≥ 0.3 and the correlation map

is localizedd to somatosensory network

Correlation ≥ 0.15 and either correlation ≤

0.3 or the correlation map is not completely

localized

Correlation ≤ 0.15 or unlocalized

correlation

LFP-BOLD correlation Correlation ≥ 0.2 for both S1 areas and

the correlation map is well-localized to

sites surrounding electrodes

Correlation ≥ 0.1

and either correlation ≤ 0.2 or the correlation

map is not completely localized

Correlation ≤ 0.1 or unlocalized

correlation

aSince there are 1,000 TRs and 20 dummy scans, the number of gradient artifacts identified should equal 1,020. If not, it usually indicates high noise level or missing segments. Also

the correct identification of gradient artifacts is crucial to register the timing.
bCenter of mass shows if there is any shifting in x-y plane.
cDVARS is calculated based on Power et al. (2012). It is also an indicator of motion.
dThe reason why localized high correlation is needed as a metric is because some scan session exhibit high correlation over a huge area of the brain, which is not normal and may be

attributed to motion. The threshold for the correlation is not a “hard” threshold, but rather it is roughly the range of correlation we observed in the scan sessions that show localized

correlation map. It is intended to provide a general idea of the correlation in such dataset. So if the correlation between bilateral S1 areas ≥ 0.3, the correlation map is not necessarily

localized. But on the other hand, if the correlation map is localized, most of the time the correlation in S1 areas we observed is roughly in the range that is larger than 0.3.
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FIGURE 2 | Scatter plot of LFP power vs. BOLD and the centroids of each category under ISO (A) and DMED (B). The 10 BOLD categories are color-coded (Red for

high BOLD value and Blue for low BOLD value). Each dot in the figure represents a time point with its BOLD value and LFP power value. In total there are 32,000

points under ISO, and 22,000 points under DMED, since each scan session has exact 1,000 time points. The cross-correlation between LFP power and BOLD is

shown for each LFP band. The BOLD value and the LFP power value were expressed in units of standard deviation [S.D.]. Both BOLD and LFP power were

normalized so that the standard deviation of BOLD is 1, and the standard deviation of LFP broadband power is also 1. For the individual LFP frequency bands, the

summation of the power in the six bands at any given time points equals to the LFP broadband power (so any individual band will have a standard deviation lower

than 1 standard deviation of LFP broadband power. Note that the display scale of different frequency bands may be different.
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high frequency bands, whereas under ISO anesthesia, the energy
in these bands is considerably higher. We have included the
energy distribution of LFP power in the Figure S2.

We also found that this non-linearity can be well-modeled by
a simple second order polynomial function, shown in Figure 3.
Let xi and yi,j be the averaged BOLD and LFP power of the i-th
percentile group (i = 1, 2, . . . 10) in the j-th frequency band (j
= 1, 2, . . . 6, 7, representing delta, theta, alpha, low-frequency
beta, high-frequency beta, gamma, and broadband, respectively).
The collection of [xi, yi,j] corresponds to the line plot in Figure 2.
It appears that the non-linear relationship can be modeled as a
quadratic function. To test that, we can predict the BOLD value
ŷ1i, j using the polynomials of the LFP power xi:

ŷ1i, j = f (xi) = ajxi
2
+ bjxi + cj = β

T
j Xi, (1)

where βj =
[

aj, bj, cj
]T

and Xi =
[

xi
2, xi, 1

]T
. We included

a superscript in ŷ1i, j because, in next section, we will introduce

another model to predict the BOLD value. For each frequency
band j, an optimal parameter set βj can be found using the least
squares method, such that the sum of squared error between the
predicted BOLD and the actual BOLD is minimized:

βj = argmin
βj

10
∑

i=1

(

ŷ1i, j − yi,j

)2

= argmin
βj

10
∑

i=1

(

ajxi
2
+ bjxi + cj − yi,j

)2
(2)

FIGURE 3 | Quadratic Fitting of LFP power vs. BOLD response under ISO (A)

and DMED (B). The quadratic fitting captures the shape of the LFP power vs.

BOLD response well. Under ISO the LFP power-BOLD relationship is much

more non-linear than under DMED. Under ISO, the fitted coefficients a, b, c,

are 0.0713, 0.4344, −0.0696, respectively. The p-values are 2.06e-05,

2.13e-10, 0.00029, respectively. The 95% confidence intervals are [0.0546,

0.0881], [0.4151, 0.4536], [−0.0944, −0.0449], respectively. Under DMED,

the fitted coefficients a, b, c, are 0.0124, 0.2606, −0.0130, respectively. The

p-values are 0.0122, 8.06e-11, 0.0465, respectively. The 95% confidence

intervals are [0.0036, 0.0211], [0.2505, 0.2706], [–0.0258, −0.0003],

respectively. Both ISO and DMED have a second order coefficient still

significantly different from zero (p = 2.06e-05 < 0.05 under ISO, p = 0.0122 <

0.05 under DMED), however under ISO the magnitude of the coefficient is

much larger, which is why we can visually see a curvature. The non-linearity,

measured by the ratio between the second order term and the first order term,

is also shown in the figure.

The estimated parameters for the broadband power, their p-
values, and 95% confidence interval can be found in the caption
of Figure 3. The goodness of the fit can be measured by the root-
mean-square-error (RMSE), and R2. Under ISO, the RMSE and
R2 of the linear model are 0.0927 and 0.9639; the RMSE and
R2 of the quadratic model are 0.0252 and 0.9977. It is evident
that the quadratic model has a smaller RMSE and higher R2.
Given that the second order coefficient also has a 95% confidence
interval not overlapping with zero (0.0546, 0.0881), and the p-
value is very small (2.06e-05), it can be concluded that there is
substantial non-linearity in the LFP-BOLD relationship under
ISO, and the quadratic model is more precise than the linear
model. To quantitatively measure the non-linearity, naturally we
would use the second order term, but the value of the second
order term is also determined by the overall scale of the function.
To normalize this effect, we propose to use the ratio of the second
order term to the first order term as a measurement of how
non-linear the function is. Recall Equation (1):

ŷ1j = f (x) = ajx
2
+ bjx+ cj (3)

To measure the non-linearity, we picked two points: the furthest
point along the positive x-axis (denoted by

[

x1, y1
]

), and the
origin (denoted by

[

x0, y0
]

). Taking the Taylor expansion at the
origin, we have

f (x) = f (x0) + f
′

(x0) (x− x0) +
f
′′

(x0)

2
(x− x0)

2 (4)

The change along y-axis 1y = y1 − y0 is determined by the
change along x-axis 1x = x1 − x0 (note that x0 = 0):

1y = f (x1) − f (x0)

= f
′

(x0) (x1 − x0) +
f
′′

(x0)

2
(x1 − x0)

2

=
(

2ajx0 + bj
)

1x+
2aj

2
1x2 = aj1x2 + bj1x, (5)

which consists of the first order term and the second order
term. Since the BOLD distribution is approximately Gaussian,
if we assess the non-linearity using the furthest point along the
positive x-axis, which is the group mean of 90–100% BOLD,
then 1x would be 1.819. The non-linearity in the LFP—BOLD
relationship in the j-th frequency band, denoted as ηj, can be
calculated using the following equation:

ηj =
2nd order term

1st order term
=

aj1x2

bj1x
(6)

Using this formula, the non-linearity in LFP broadband power
vs. BOLD relationship is 0.2923 and 0.0862 under ISO and
DMED, respectively.

The Non-linearity Might Be Induced by the
Non-gaussian Distribution of LFP Power
It is also worth noting that in Figure 2, the scatter plot reaches
further along the positive y-axis, especially for the 90–100%
BOLD group, which makes the LFP vs. spontaneous BOLD
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relationship appear as a curve. Therefore, the asymmetry along
y-axis, or in another word, the skewed distribution of LFP power,
might be the reason why the LFP—BOLD relationship is non-
linear. Figure 4 shows the distributions of LFP power and BOLD,
where it can be seen that the LFP power under ISO is right
tailed. This can be quantitatively confirmed by the skewness (a
skewness >1 is often considered as highly skewed). Together
with a kurtosis of 5.3575, which is much higher than 3 (Gaussian
distributions always have a kurtosis of 3), it can be concluded that
the LFP power under ISO is substantially non-Gaussian.

The skewness and kurtosis were calculated using the
following equations:

Skew[X] = E

[

(

X − µ

σ

)3
]

, (7)

Kurt[X] = E

[

(

X − µ

σ

)4
]

, (8)

where X is the random variable, µ is the mean value of X,
σ is the standard deviation. The skewness and kurtosis of the
distributions were shown in Table 2.

The LFP power under DMED also has a kurtosis larger than
3, but it is relatively Gaussian when compared to LFP power
under ISO. The BOLD signal, on the other hand, is approximately
Gaussian-distributed, regardless of the anesthetizing agent,
because the skewness is near 0 and the kurtosis is near 3.

It is apparent from the histogram, as well as from the
skewness and kurtosis that the LFP power under ISO is the

FIGURE 4 | Histogram of LFP broadband power, BOLD under ISO (A) and

DMED (B). It can be seen that the LFP power under ISO is non-Gaussian

distributed.

TABLE 2 | Skewness and kurtosis of LFP power and BOLD under ISO and DMED

anesthesia.

LFP ISO LFP DMED BOLD ISO BOLD DMED

Skewness 1.0473 0.2235 0.1191 0.1802

Kurtosis 5.3575 4.1773 3.0987 3.1723

The skewness or kurtosis that deviates from a Gaussian distribution were highlighted

in bold.

most non-Gaussian signal. Given the fact that the LFP power
vs. spontaneous BOLD relationship under ISO is also the one
showing substantial non-linearity, we hypothesized that these
two findings are linked together, and the non-linearity may come
from the non-Gaussian distribution of LFP power.

Least Square Fitting of LFP vs.
Spontaneous BOLD Relationship
To validate this hypothesis, we propose to obtain a theoretical
LFP power vs. spontaneous BOLD relationship by making some
assumptions, and then determine if the experimental curve
matches the theoretical one.

A natural assumption would be that a positive spontaneous
BOLD event is evoked by higher than average LFP power,
and negative spontaneous BOLD event is evoked by lower
than average LFP power. If there was a purely deterministic
relationship between the two, we would see 90% percentile BOLD
corresponds to 90% percentile LFP power. The relationship is
stochastic, so the final observation is contaminated by random
noise. But the mean value of BOLD within a certain percentile
range should still correspond to the mean value of LFP power
within the same percentile range even in the presence of noise.
For example, the mean effect of LFP power with 90–100%
percentile value should, on average, evoke a spontaneous BOLD
event with 90–100% percentile value. The assumption made here
is weaker than the assumption of linearity. In a special case
where both LFP and BOLD follow Gaussian distributions, it is
equivalent to the linear assumption; but in general, if any of
the distributions are non-Gaussian, such an assumption should
still faithfully reflect the averaged relationship between LFP
and BOLD.

Figure 5 illustrates how the theoretical LFP vs. spontaneous
BOLD relationship was obtained. First, the distributions of both
LFP and BOLD were evenly divided into 10 groups, which
is shown in the color-coded histograms. Next, the mean LFP
power in a percentile group (y-axis value) was mapped to
the mean BOLD in the corresponding percentile group (x-
axis value). It is worth noting that the theoretical curve solely
depends on the overall distributions of LFP power and BOLD,
whereas the experimental curve was obtained from the one-to-
one relationship in the data points.

Since the LFP-BOLD relationship seems consistent across
all frequency bands, for the sake of robustness, we used the
LFP broadband power to derive a single theoretical LFP vs.
spontaneous BOLD curve. A least square fitting was then
performed to find the optimal scaling factor for each frequency
band, which minimizes the summed squared difference between
the scaled theoretical curve and the experimental curve. Let x̃i
and ỹi,j be the BOLD and LFP broadband power of the i-th point
in the j-th frequency band in the theoretical curve (Figure 5),
respectively. Since it is hypothesized that the non-linearity comes
from the non-Gaussian distributions, which have been taken
into account in the theoretical curve, the predicted LFP-BOLD
relationship [x̂i, ŷ2i, j] in each frequency band is then a scaled

version of the theoretical curve in the LFP broadband power:

[x̂i, ŷ
2
i, j] = [x̃i, θjỹi,7], (9)
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FIGURE 5 | Histograms of LFP, BOLD, and the derived theoretical LFP vs. BOLD response under ISO (A) and DMED (B). For any given point in the LFP vs. BOLD

response, the x-axis shows the averaged BOLD value of the BOLD group, while the y-axis shows the averaged LFP broadband power value of the corresponding LFP

group.

where θj is the scaling factor for jth frequency band. Note that
xi = x̃i = x̂i (because they all represent the averaged BOLD
within the [10 × (i− 1)%, 10 × i%] percentile group). The
optimal scaling factor θj was found such that the sum of squared
error between the predicted curve and the experimental curve
is minimized:

θj = argmin
θj

10
∑

i=1

(

ŷ2i, j − yi,j

)2

= argmin
θj

10
∑

i=1

(

θjỹi,7 − yi,j
)2

(10)

It can be seen from Figure 6 that the derived theoretical LFP vs.
spontaneous BOLD curvematch fairly well with the experimental
ones, suggesting that the non-linearity may come from the non-
Gaussian distribution of LFP power, although the experimental
curves do deviate from the theoretical ones in low frequency
beta, high frequency beta, and gamma bands under DMED. The
reason again is the “Signal-to-noise” ratios mentioned earlier are
very small in these bands, making them very sensitive to random
noise, or fluctuations in BOLD that is not caused by LFP changes.
We also increased the number of groups from 10 to 40 to get the
fitting in finer grid. The fitting results (Figure S3) were consistent
with the one obtained using 10 groups.

The Ultimate Source of Non-linearity
We have shown that the LFP power vs. BOLD relationship is
non-linear, and that such non-linearity may come from the non-
Gaussian distribution of LFP power. But there are still a few
questions remaining. (1) What exactly makes LFP power under
ISO non-Gaussian? (2) Why can the linearity be modeled by
a simple second order polynomial fit? (3) And why does this
non-linearity seem to exist only under ISO anesthesia?

We hypothesized that the ultimate reason for the non-linearity
is that taking the power of LFP induces a second order non-
linearity. So alternatively, we can look at the LFP amplitude—
BOLD relationship. [The “amplitude” we use here is simply the
square root of the LFP power. For a narrow band like alpha band,
gamma band, this is closer to the amplitude of the signal, whereas
for the broadband signal (1–100Hz), it is more like a root-mean-
square (r.m.s.) values in a 1 s time window]. The reasoning for
the hypothesis is the following.

Suppose LFP amplitude follows a Gaussian distribution, so
the LFP amplitude—BOLD relationship is linear. The LFP
power is the square of LFP amplitude, which transforms the
original Gaussian distribution into a non-Gaussian one and, as a
consequence, makes the LFP power—BOLD relationship become
a quadratic curve. Since the LFP amplitude–BOLD relationship is
assumed to be linear, any non-linearity observed in LFP power—
BOLD relationship is equivalent to the non-linearity in LFP
power–LFP amplitude relationship. For a fixed curve, like y = x2

in the LFP amplitude—LFP power relationship, the non-linearity
depends on the baseline (mean value) of the signal. In the case
where the LFP amplitude has a very high baseline, like the one
under DMED anesthesia, the non-linearity η, which is the ratio
of the second order change to the first order change, become
relatively small, while in the case where the LFP amplitude
has a very low baseline, like the one under ISO anesthesia, the
non-linearity η becomes relatively large. To illustrate this effect,
we applied low pass filtering (0.1Hz under ISO and 0.25Hz
under DMED) instead of band pass filtering, so that the direct
current (DC) component, or the mean value of the signal can be
preserved. Each scan sessions were again normalized using the
same scaling factor from the band pass filtered signal, so that the
alternating current (AC) component (0.01–0.1Hz under ISO and
0.01–0.25Hz under DMED) of the broadband signal (1–100Hz)
has a standard deviation of 1. Figure 7 shows the distribution
of the low pass filtered LFP broadband (1–100Hz) amplitude
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FIGURE 6 | Least square fitting of experimental and theoretical LFP vs. BOLD responses under ISO (A) and DMED (B). The fitting is good across all frequency bands

and both anesthesia conditions. The scaling factor shows the amount of amplification needed by the experimental response to match with the theoretical one.

time courses (with panel A shows five randomly selected scan
sessions under ISO, and panel B shows the overall distributions
under ISO and DMED). It is evident that the LFP amplitude
has a significantly higher baseline under DMED when compared
to under ISO. Figure 8 shows the Monte Carlo simulation of

how hypothetically four Gaussian distributions with different
mean values (representing the LFP amplitude with different
baseline) will transform into non-Gaussian ones by taking the
power of two. The range of the mean values were selected to
cover the distributions of LFP amplitude. It can be seen that
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FIGURE 7 | Histograms of low pass filtered LFP broadband amplitude. (A) Shows five randomly selected scan sessions under ISO to illustrate the variety in their

mean value. (B) Shows the overall distribution of low pass filtered (under 0.1Hz under ISO and under 0.25HZ under DMED) LFP broadband amplitude obtained from

the entire dataset (N = 32 for ISO, N = 22 for DMED). Since low pass filtering preserves the direct current component, it can be seen that the LFP amplitude under

ISO actually has a much lower baseline (mean value) when compared to under DMED. The unit in the figure is 1 standard deviation (S.D.) of the band pass filtered

(0.01–0.1Hz under ISO and 0.01–0.25Hz under DMED) LFP broadband amplitude. So the scale of the signal is the same as the ones shown in previous figures, with

the only difference being the superposition of the direct current component preserved by switching band pass filtering to low pass filtering.

FIGURE 8 | Illustration of how Gaussian distributions can transform to non-Gaussian ones by taking the power of two, and the degree of non-linearity is influenced by

the mean value (baseline) of the original distribution. (A) Shows four different distributions of a hypothetical variable x, representing the LFP amplitude. The histograms

were obtained by Monte Carlo simulation of 100,000 points for each distribution. The four distributions have the same standard deviation (σ = 1σx ) but different mean

values (µ = 4σx , 8σx , 12σx , 16σx , respectively). (B) Shows the distributions of variable x2. The unit in panel B is σ
2
x . It can be clearly seen that the one with the lowest

mean value (blue), become much more non-Gaussian after taking the power of two, whereas the one with the highest mean value (purple) still remains approximately

Gaussian. This suggests that the non-Gaussian distribution of LFP power under ISO (shown in Figure 4) may partly come from taking the power of two.
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for the one with the lowest mean value (blue), the transformed
distribution clearly became non-Gaussian (to be more specific,
positively skewed or right-tailed, just like the distribution of LFP
power under ISO), whereas the one with the highest mean value
(purple) still remains approximately Gaussian after taking the
power of two. These suggest that the non-Gaussian distribution
may come from taking the power of two, and since under ISO
the baseline is lower, the non-linearity becomes greatly amplified.
The hypothesis that the non-linearity comes from the nature of
power might answer all of the questions at the same time, so it is
very worthwhile to test whether this hypothesis is true or not.

Figure 9 shows the LFP amplitude vs. BOLD scatter plot.
The settings are identical to Figure 3, except the LFP amplitude
is substituted for LFP power. The histogram of LFP amplitude
and BOLD are shown in Figure 10. While it appears that the

FIGURE 9 | Quadratic Fitting of LFP amplitude vs. BOLD response under ISO

(A) and DMED (B). It can be seen that, under ISO, the non-linearity in LFP

amplitude–BOLD relationship is smaller than the one in LFP power—BOLD

relationship, although the remaining non-linearity is still considerably larger

than the one under DMED. Under ISO, the fitted coefficients a, b, c, are,

0.0570, 0.4386, −0.0606, respectively. The p-values are, 7.24e-6, 1.39e-11,

6.35e-5, respectively. The 95% confidence intervals are [0.0456, 0.0685],

[0.4255, 0.4518], [−0.0775, −0.0437], respectively. Under DMED, the fitted

coefficients a, b, c, are 0.0098, 0.2584, −0.0099, respectively. The p-values

are 0.0321, 8.09e-11, 0.1085, respectively. The 95% confidence intervals are

[0.0011, 0.0184], [0.2484, 0.2684], [−0.0226, 0.0028], respectively.

FIGURE 10 | Histogram of LFP broadband amplitude, BOLD under ISO (A)

and DMED (B). It can be seen that the LFP amplitude under ISO is less

skewed than LFP power, but is still non-Gaussian distributed.

LFP amplitude-BOLD relationship is still non-linear and the
LFP amplitude is non-Gaussian, the non-linearity, measured by
the ratio of second order term to first order term, does show
a decrease when switched from LFP power to LFP amplitude
(from 0.2923 to 0.2314). Table 3 also shows that, the skewness
of LFP amplitude is closer to 0 compared to LFP power. The

kurtosis also became smaller, thereby the LFP amplitude is more
Gaussian than LFP power. Using LFP amplitude does make the

LFP–BOLD relationship a little bit more linear, although there
are still other unknown factors that account for the remaining
non-linearity.

The Non-linearity Does Not Greatly
Influence Pearson Correlation
We have shown that the LFP power–BOLD relationship
is non-linear, and such non-linearity may come from the
non-Gaussian distribution of LFP power. A further question
is how this non-linearity will influence the data analysis,
namely the correlation between LFP and BOLD. Theoretically,
Pearson correlation coefficient only measures linear dependency.
In the case that the relationship is extremely non-linear,
more generalized analysis methods that do not assume linear
relationship (e.g., mutual information) are desirable. We
corrected the non-linearity of the LFP power—BOLD data
by mapping the LFP-power distribution back to a Gaussian
distribution using the inverse of the theoretical LFP-BOLD
curve. From Figure 11, we can see that the non-linearity is
reduced, judging by the non-linearity metric defined by Equation
(6). However, the Pearson correlation is not significantly
changed [the mean value of the Pearson correlation before
and after correction were 0.4416 and 0.4411, respectively.
The 95% confidence intervals of the Pearson correlation
before and after correction were (0.4327, 0.4505), (0.4321,
0.4500), respectively].

DISCUSSIONS

LFP—BOLD Relationship Can Be
Non-linear
Simultaneous LFP and fMRI data acquisition is an essential
tool for understanding the connection between neural activity
and the BOLD signal contrast. So far there is not a lot
of detailed discussion about the non-linearity between LFP
and BOLD recorded in the cortex. Logothetis et al. (2001)
first described the relationship between LFP amplitude (more
precisely, the root-mean-square value of gamma band LFP

TABLE 3 | Skewness and kurtosis of LFP amplitude and BOLD under ISO and

DMED anesthesia.

LFP ISO LFP DMED BOLD ISO BOLD DMED

Skewness 0.5870 0.0170 0.0920 0.1753

Kurtosis 3.8742 3.4888 3.0895 3.0853

The skewness or kurtosis that deviates from a Gaussian distribution were highlighted

in bold.

Frontiers in Neuroscience | www.frontiersin.org 11 October 2019 | Volume 13 | Article 1126148

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. Non-linear LFP-BOLD Relationship

FIGURE 11 | The correlation coefficient is not improved after the non-linear

correction. The correlation coefficient before and after non-linearity correction

was shown in (A) and (B), respectively. The experimental LFP power vs. BOLD

relationship is more linear after the non-linear correction, but there is little

change in the correlation coefficient.

time course) and BOLD as roughly linear. However, later in a
review paper (Heeger and Ress, 2002), it was stated that their
relationship is monotonic but non-linear, because a 12% stimulus
contrast evoked about half the maximum fMRI response, but
much less than half the maximum LFP and MUA (this does
not actually contradict what Logothetis et al. found, because
the non-linearity here is in the LFP/BOLD as a response to
the stimulus, whereas the LFP directly plotted against BOLD
is still roughly linear). Huttunen et al. (2008) performed a
simultaneous LFP and BOLD recording under controlled fore
paw stimulus with different frequencies. It is worth mentioning
that, although many papers cited (Huttunen et al., 2008) as one
revealing non-linearity in neural–hemodynamic coupling, the
non-linearity was in the BOLD/LFP response as a function of
stimulus frequencies. In terms of the LFP-BOLD relationship,
which is the main focus of our paper, they discovered a
strikingly high Pearson correlation between LFP and BOLD (r
= 0.97 under urethane and r = 0.89 under alpha-chloralose).
This correlation-based analysis suggests that the relationship
between LFP and BOLD is actually quite linear under these
anesthesia conditions. (Magri et al., 2012) proposed to use
mutual information to study the relationship between LFP band
limited power and BOLD in resting-state. Mutual information
is the most general measure of the statistical dependency, and
thus takes into account any non-linearity, which is superior to
Pearson correlation in the presence of considerable non-linearity.
However, they did not specifically measure how much non-
linearity is present in the LFP-BOLD relationship. Devonshire
et al. (2012) have found a non-linear relationship between
the LFP responses and the BOLD responses (summed in a
40 s time window after stimulus) in sub-cortical regions, which
manifests itself in a power law curve. In the meantime, they
also found that the LFP-BOLD relationship was linear in S1
region. In our work, we proposed a method to quantify the
non-linearity that is tailored for extremely noisy data like LFP
and BOLD. The correlation between LFP and BOLD is 0.441
± 0.124 under ISO, n = 32, and 0.267 ± 0.115 under DMED,
n = 22. Given this range of correlation, it is not possible

to provide a deterministic prediction for one variable if the
other is known. By dividing the data into several subgroups
based on BOLD values, and then averaging the LFP power
within each BOLD subgroup, we obtained a LFP—BOLD
relationship in which a non-linearity can be visually observed
under ISO anesthesia. The group average is more robust to
the randomness in the data, which enables the quantification
of non-linearity.

From the 32 scan sessions under ISO, we observed a
substantial non-linearity independent of the frequency band, in
the form of second order polynomial fit. The consistency here
suggests that the curved shape response is not a coincidence,
but an actual phenomenon that is hiding under the noisy LFP—
BOLD data. In contrast, the relationship is found to be linear
in the 22 scan sessions under DMED, which suggests that such
non-linearity is subject to the type of anesthesia. Isoflurane
is commonly used to induce anesthesia, perform surgical
procedures, and maintain a deep level of unconsciousness in
rodents during setup for fMRI. At high isoflurane doses (>1.8%),
widespread cortical neural burst suppression (Rehberg et al.,
1996) results in reduced cortical excitation and reduced spatial
sensitivity of functional connectivity, therefore, anesthesia is
typically switched to an agent that is less suppressive of neural
activity for during fMRI acquisition. However, at lower dosages
(<1.5%), functional activity and connectivity remain fairly intact
so there have been some studies using isoflurane during imaging
as well (Guilfoyle et al., 2013; Kalthoff et al., 2013; Liu et al.,
2013). In addition to the burst-suppression, isoflurane is also a
vasodilator, which affects the cerebral blood flow (CBF), and thus
will affect the BOLD signal. On the other hand, dexmedetomidine
is less suppressive to neural activity, and induces a neural
state very similar to natural sleep, while simultaneously causing
muscular relaxation (Nelson et al., 2003). Dexmedetomidine
is therefore more preferable in functional MRI in terms of
the alterations of neural activity. However, dexmedetomidine
is a vasoconstrictor, which also affects the CBF. We believe
that comparing the data obtained under ISO and DMED can
provide results that are more generalizable than using only
one anesthetic agent. Thus, far, many studies performed with
different anesthetic agents seem to conclude different frequency
bands in LFP that best correlate with BOLD. From the ISO
and DMED data presented here, it is possible that the apparent
discrepancy is caused by the energy distribution under the
specific anesthetic state. For example, the delta band might best
correlate with BOLD if the anesthesia shifts the energy toward
lower frequency bands. Further studies need to be performed on
other anesthetic agents to support this hypothesis.

Non-linearity in LFP vs. BOLD Under ISO
Anesthesia May Reflect the Non-gaussian
Distribution of LFP Power
We proposed that the non-linearity may come from the
highly skewed, non-Gaussian distribution of LFP power. We
derived a theoretical LFP—BOLD curve solely from the overall
distributions of LFP power and BOLD, without knowing any
LFP-BOLD dynamics for any specific data points. The goodness
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of the fit over all the frequency bands under both ISO and
DMED suggests that the non-linearity in the LFP vs. BOLD
relationship could come from the non-Gaussian distribution of
LFP power.

Ultimately, the non-linearity may come from the LFP power
itself, which has an intrinsic non-linear property when compared
to the LFP amplitude. It is still questionable whether the LFP
amplitude itself is linear vs. BOLD, and the observed non-
linearity in LFP power may not come solely from taking
the square. Nevertheless, the skewness, kurtosis, and the non-
linearity measured by the second order/first order ratio are
all smaller in LFP amplitude than in LFP power, suggesting
the former one is relatively more linear. In addition, such
hypothesis theoretically answered the three questions at the
same time, making it quite reasonable, although it is still
not fully confirmed. It appears that the non-linearity depends
on the type of anesthesia, given the fact that in most
studies the LFP—BOLD relationship is considered to be linear
with the use of many different anesthetic agents, the non-
linearity observed here might originated from something specific
under ISO. One possible explanation is the burst-suppression,
because the constant switching from “on” and “off” states,
combined with a smoothing effect from the low pass filtering,
does seem quite non-linear, and it is worth investigating in
the future.

Implication for Future Studies
First, this study confirms that under some specific conditions,
the LFP—BOLD relationship during spontaneous activity can
be non-linear. Therefore, caution should be taken whenever
analyzing simultaneous LFP and fMRI data, because apparently,
depending on the animal model and the anesthetic agent
used, there might be unexpected non-linearity present in the
data. Mathematically, it is not accurate to use the Pearson
correlation coefficient to describe the dependency between two
variables when one variable is Gaussian distributed and the
other is not Gaussian distributed (or the dependence is non-
linear). The extent to which the accuracy is compromised
depends on how much the distribution deviates from
Gaussian distribution.

Secondly, we have evidence supporting the idea that the
intrinsic properties of LFP power might contribute to some of
the non-linearity between LFP power and BOLD. It is worth
noting that, the LFP power is widely used because most studies
involve the band limited LFP power in some specific frequency
bands. Since the integration over a frequency band yield the
LFP power in that band, naturally the LFP power would become
the first option. If the LFP power does induce non-linearity, it
might be worthwhile to think twice about whether to use LFP
power or LFP amplitude, or at least to check the linearity when
using LFP power. Currently, the most common ways to get LFP
amplitude are wavelet transform or Fourier transform, Hilbert
transformation, and direct band pass filtering. Other than the one
obtained from Fourier transform, the different LFP amplitude
components in different frequency bands are not orthogonal,
and it is somewhat difficult to get back to the original form
of signal.

Despite the fact that the LFP power—BOLD relationship is
substantially non-linear, the correction of non-linearity between
the two only slightly changes the correlation coefficient (from
0.4416 to 0.4411, not statistically significant). This leads to the
conclusion that, in the presence of substantial non-linearity
in this specific situation under ISO, the Pearson correlation
coefficient is still a valid measurement of the dependency
between LFP and BOLD, and in other cases where non-
linearity is usually not detectable, Pearson correlation is a
reasonable metric.

Technical Limitations
It is worth mentioning that the dataset for LFP—BOLD
relationship analysis was deliberately chosen to have high
cross-correlation between LFP power and BOLD around S1FL
areas. While this ensures the overall quality of data, it
may induce some bias as well. Only a very small portion
of the dataset is usable for the analysis (32 scans out
of 96 scans under ISO, and 22 scans out of 219 scans
under DMED). Right now, the reason why the correlation
coefficient can vary drastically in adjacent scans in the same
rat, even with almost identical physiological conditions, is
still unknown. Further studies are needed to understand
the underlying mechanism to improve the utilization of the
datasets, as well as to avoid the bias introduced by deliberately
choosing datasets.

We would like to point out that there could be other
ways to define non-linearity metrics, and the method we
proposed here is not necessarily superior to any of these. For
example, Emancipator and Kroll (1993) proposed a generic
way to measure non-linearity by using the integral of the
deviation (L2 norm) of the function from an ideal straight
line. However, in this special case (quadratic model), the non-
linearity measured using Equation (6) is relatively simple and
intuitive. We would also like to mention that it is difficult
to calculate statistical significance for the non-linearity term
(defined as the ratio of the second order term to the first
order term). It is relatively easy to test for differences between
the first order coefficients or the second order coefficients
alone, but much harder for the ratio, which has a non-
Gaussian distribution. Although this is a drawback in our
method, defining non-linearity in other ways e.g., using the
method Emancipator and Kroll (1993), does not necessarily solve
this problem.

CONCLUSION

We examined the simultaneous LFP and BOLD recording data
and found that the relationship between LFP and BOLD can
be non-linear, depending on the type of anesthesia. Under ISO,
there is clear evidence not only showing the relationship is
non-linear, but also suggesting such non-linearity may come
from the non-Gaussian distribution of LFP power. The effect
of taking the square to obtain power does not explain all of
the non-linearity observed under ISO. Considering the “burst-
suppression” phenomenon, which is unique in ISO anesthesia,
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the switching from “on” and “off” state may induce some non-
linearity through a mechanism that is not yet fully understood.
This implies that in the future, more generalized methods that
do not assume linear dependency might be more desirable than
Pearson correlation-based analysis, although, in this particular
situation under ISO, the non-linearity has little impact on the
Pearson correlation coefficient.
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Measures of resting-state functional magnetic resonance imaging (rsfMRI) activity have

been shown to be sensitive to cognitive function and disease state. However, there

is growing evidence that variations in vigilance can lead to pronounced and spatially

widespread differences in resting-state brain activity. Unless properly accounted for,

differences in vigilance can give rise to changes in resting-state activity that can be

misinterpreted as primary cognitive or disease-related effects. In this paper, we examine

in detail the link between vigilance and rsfMRI measures, such as signal variance and

functional connectivity. We consider how state changes due to factors such as caffeine

and sleep deprivation affect both vigilance and rsfMRI measures and review emerging

approaches and methodological challenges for the estimation and interpretation of

vigilance effects.

Keywords: vigilance, arousal, wakefulness, fMRI, EEG, functional connectivity

1. INTRODUCTION

Resting-state fMRI (rsfMRI) is a widely used method to characterize the functional organization of
the brain at rest. A commonly used rsfMRI measure is the correlation coefficient between the blood
oxygenation level dependent (BOLD) time series observed in different brain regions. This measure
of functional connectivity (FC) has been shown to be sensitive to cognitive function and disease
state (Greicius, 2008; Hampson et al., 2010). Other rsfMRI measures may also have diagnostic
potential, such as the use of the variance of the rsfMRI global brain signal (defined as the mean of all
BOLD signals in the brain) to distinguish schizophrenic patients from healthy controls (Yang et al.,
2014). Because they do not require the subject to perform a task, rsfMRI measures are attractive for
both research and clinical applications.

Despite the widespread use of rsfMRI-based methods, the origins of the underlying signals are
still not well understood. However, there is growing evidence that fluctuations in vigilance can
have a profound effect on the rsfMRI signal and derived metrics. In contrast to task-based fMRI
studies in which there is an explicit task, rsfMRI studies are especially prone to vigilance effects
due to the absence of an engaging task. Subjects often report difficulty in maintaining a constant
level of vigilance or wakefulness during resting state scans. In a study that used data from over
1,100 subjects scanned by research groups across the world, Tagliazucchi and Laufs (2014) reported
that about a third of participants lost wakefulness within the first 3 min of a resting-state scan
and that half of the participants lost wakefulness after 10 min. In addition to vigilance fluctuations
within a scan, there can be pronounced differences in the mean vigilance levels between subjects
and scans, due to factors such as medication use, disease state, and anxiety levels. Unless properly
accounted for, differences in vigilance can give rise to changes in resting-state activity that can be
misinterpreted as primary disease-related effects. Most rsfMRI studies currently make the implicit
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assumption that all participants are in similar states of
wakefulness or vigilance, but the validity of this assumption is
rarely evaluated. A better understanding of potential vigilance
effects is critical to the correct interpretation of both past and
future rsfMRI studies.

Our goal in this paper is to critically review the relevant
findings regarding the link between vigilance and the rsfMRI
signal. We will examine the evidence relating variations in
vigilance to the amplitude of the rsfMRI signal and derived
metrics such as measures of both static and dynamic functional
connectivity. We will also consider how state changes due
to factors such as caffeine and sleep deprivation affects both
vigilance and rsfMRI measures. Finally, we will review emerging
methods for the estimation of vigilance effects and conclude
with a consideration of methodological concerns, potential
mechanisms, and future avenues of research.

2. VIGILANCE METRICS

In this work, we will primarily use the term vigilance but will
also use related terms such as arousal and wakefulness. The
term vigilance has been employed in a number of prior studies
(Matejcek, 1982; Jobert et al., 1994; Oken et al., 2006; Olbrich
et al., 2009). Additional related terms in the literature include
cortical arousal, sustained attention, and tonic alertness (Oken
et al., 2006; Sadaghiani et al., 2010; Olbrich et al., 2011).

In considering vigilance effects in rsfMRI studies, we will
find it useful to consider independent measures of vigilance that
are applicable to the resting-state. Most metrics of resting-state
vigilance are based on EEG measures that have emerged from a
wide range of scientific studies over the past century (Oken et al.,
2006; Olbrich et al., 2009; Knaut et al., 2019). Other measures
include pupilometry and percent eyelid closure. However, these
metrics are only applicable to studies in which the subjects are
instructed to keep their eyes open.

2.1. EEG-Based Metrics
For differentiating wakefulness from sleep and characterizing
different sleep stages, EEG-based metrics have been standardized
by the American Academy of Sleep Medicine (AASM, 2009),
with a sleep stage score assigned to each 30 s epoch. In contrast,
there is not currently a standard metric for characterizing the
temporal fluctuations in arousal and vigilance that occur between
wakefulness (W) and the first stage (N1) of non-REM sleep.
Table 1 summarizes various EEG-based metrics that have been
proposed over the past several decades. Although they differ in
specific details, the metrics are generally related to the ratio of the
power inmiddle frequency bands (e.g., α and β bands) associated
with increased wakefulness to the power in lower frequency
bands (e.g., δ and θ) associated with decreased wakefulness
(Klimesch, 1999; Oken et al., 2006). In contrast to the 30 s epochs
used for the standard sleep stage scores, these metrics have been
used with temporal intervals as short as 1.8 s. In Jobert et al.
(1994), Larson-Prior et al. (2009), and Wong et al. (2013), the
proposed metrics have the form of either the ratio of the power
in the alpha band to the power in the delta and theta bands
or the square root of this ratio. Horovitz et al. (2008) used the

inverse of the square root of the ratio as an inverse index of
wakefulness. Olbrich et al. (2009) used the ratio of the power in
the alpha band to the power in the delta, theta, and alpha bands.
More recently, Knaut et al. (2019) proposed an EEG wakefulness
index that is a ratio of powers that depends on both the EEG
frequency band and topography.Table 1 also includes two related
metrics recently utilized by Chang et al. (2016) for non-human
primate studies.

2.2. Other Metrics
In rsfMRI studies where subjects are instructed to keep their eyes
open, measures of pupil or eyelid closure can be used to assess
vigilance and arousal levels. For example a number of studies
have used measures of eye closure to assess drowsiness and the
presence of microsleeps (Poudel et al., 2014; Chang et al., 2016;
Wang et al., 2016). Similarly, pupil diameter has been used to
assess vigilance states during resting-state scans (Yellin et al.,
2015; Schneider et al., 2016; Breeden et al., 2017).

3. RESTING-STATE BOLD SIGNAL
AMPLITUDE AND VIGILANCE

In considering the relationship between BOLD signal amplitude
and vigilance, investigators have considered (1) the mean
amplitude of the BOLD signal in different brain regions of
interest and (2) the amplitude of the global mean signal, defined
as the average of the BOLD signals in either the entire brain or
gray matter regions. Note that for rsfMRI signals the amplitude
was defined in early studies as the standard deviation of the time
course of interest (Fukunaga et al., 2006; Horovitz et al., 2008),
a definition that has been adopted by a number of subsequent
studies (Wong et al., 2012, 2013; Cordani et al., 2018). This is
in contrast to the definition used in task-based fMRI for which
the term amplitude typically refers to the difference between
the BOLD signals measured in baseline and activation states.
In addition to the use of the standard deviation, other metrics
that are related to the amplitude have been used, including
the variance of the rsfMRI signal (Jao et al., 2013; Yang et al.,
2014) and the spectral power of the rsfMRI signal in a specified
frequency band (Kiviniemi et al., 2005; Larson-Prior et al., 2009;
Cordani et al., 2018). On the other hand, some studies have
regressed the rsfMRI signal onto measures of vigilance state and
examined the amplitudes of the regression fit coefficients as a
function of state (Olbrich et al., 2009; Poudel et al., 2018). For
these studies, the amplitudes can be interpreted as in a task-based
fMRI study, with the fit coefficients providing information about
the difference in BOLD signals between vigilance states.

3.1. Wakefulness to Light Sleep
The use of long duration (e.g., 30 min) resting-state scans has
facilitated the study of the rsfMRI signal as subjects fluctuate
between wakefulness and light sleep. In general, these studies
have found that the amplitude of the BOLD signal increases with
decreases in wakefulness. Fukunaga et al. (2006) reported that
the mean BOLD signal amplitude in the visual cortex increased
during early sleep stages, with amplitudes that were comparable
to those observed with visual stimulation. In a follow-up
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TABLE 1 | Vigilance metrics.

Name Description Electrodes Period References

Inverse index of wakefulness

√

Pδ,θ :[2−7 Hz]

Pα :[8−12 Hz]
C3,4; P3,4 120 s Horovitz et al., 2008

Alpha slow wave index (1)
Pα :[8−11.5 Hz]

Pδ,θ :[2−8 Hz]
Cz 30 s Jobert et al., 1994

Alpha slow wave index (2)
Pα :[8−12 Hz]

Pδ,θ :[1−8 Hz]
C3 30 s Larson-Prior et al., 2009

EEG vigilance (1)
Pα :[8−12 Hz]

Pδ,θ ,α :[2−12 Hz]
F3,4; O1,2 3 s Olbrich et al., 2009

EEG vigilance (2)

√

Pα :[7−13 Hz]

Pδ,θ :[1−7 Hz]
All 1.8 s Wong et al., 2013

EEG wakefulness index
Pθf ,αo ,σo ,βf :[4−30 Hz]

Pδf ,θo ,αf ,σc ,βf :[0.5−30 Hz]
F3,4; O1,2; C3,4 2 s Knaut et al., 2019

LFP arousal index

√

Pβ :[15−25 Hz]

Pθ :[3−7 Hz]
Intracranial: V1,V2, F, P 2.6 s Chang et al., 2016

Pupillometry Pupil diameter NA > 20 ms Schwalm and Rosales Jubal, 2017

Behavioral arousal index % Eyelid opening NA 2.6s Chang et al., 2016

The notation Pδ,θ :[f1−f2 Hz] indicates the power in the indicated EEG frequency bands (e.g., δ and θ bands), as well as the minimum f1 and maximum f2 frequencies covered by the

collection of indicated bands.

EEG electrode locations are specified with the standard notation of F, O, C, and P for frontal, occipital, central, and parietal regions, respectively. For metrics where the band powers in

the definition are limited to certain regions, these constraints are indicated as subscripts, with the subscripts f, o, and c referring to frontal, occipital, and central regions, respectively.

For example θf indicates θ band power from the frontal region. With the exception of the Inverse Index of Wakefulness, all of the metrics are designed to increase with vigilance. For the

vigilance metric proposed by Olbrich et al. (2009) the expression provided in the table is used to define two major stages of vigilance, each of which has three sub-stages as defined

in the cited paper. In the work of Wong et al. (2013), variants of the EEG vigilance metric defined using regional subsets of electrodes were also used. For the metrics in Chang et al.

(2016) the electrode locations refer to the placement of intracranial electrodes.

study using simultaneous EEG-fMRI, Horovitz et al. (2008)
confirmed the prior findings of Fukunaga et al. (2006) and further
demonstrated a significant correlation between the BOLD signal
amplitude and an Inverse Index of Wakefulness (see Table 1)
in multiple brain regions, including the visual cortex, auditory
cortex, and precuneus. Larson-Prior et al. (2009) found that the
global signal spectral power significantly increased during light
sleep as compared with awake states, with a general trend toward
significance in individual regions of interest. Using a measure
of vigilance stages, Olbrich et al. (2009) found that decreases in
vigilance were associated with an increase in the BOLD signal
amplitude in the occipital cortex, the anterior cingulate, the
frontal cortex, the parietal cortices, and the temporal cortices and
a decrease in BOLD signal amplitude in the thalamus and frontal
regions. McAvoy et al. (2018) demonstrated that the amplitude
of the global mean signal increased with sleep depth. They
concluded that the increase in global signal amplitude reflected
a proportionally greater decrease in oxygen consumption with
sleep as compared to the sleep-related decrease in blood flow.

3.2. Variations Across Subject Scans and
States
The relation between BOLD signal amplitude and vigilance can
also be examined by considering variations in the two quantities
across scans and experimental conditions. Wong et al. (2013)
looked at the amplitude of the resting-state global signal and
EEG vigilance measures across scans and found a strong and
significant negative correlation between the two quantities when
subjects were studied in the eyes-closed condition, with a weaker
and nearly significant correlation observed in the eyes-open
condition. Thus, scans for which the subjects exhibited relatively
higher vigilance levels had lower global signal amplitudes, while
scans with relatively lower vigilance levels were associated with
higher global signal amplitudes.

Wong et al. (2013) also considered the effects of caffeine on
vigilance and global signal amplitude and found that increases
in vigilance due to caffeine were significantly correlated with
decreases in the amplitude of the resting-state global signal. In
contrast, in a study using the sedative midazolam, Kiviniemi et al.
(2005) found an increase in the spectral power of low frequency
BOLD fluctuations. Similarly, Esposito et al. (2010) found that
the depressant alcohol increased spontaneous BOLD fluctuations
in the visual cortex. These pharmacological studies further
support the notion of an inverse relation between vigilance and
the amplitude of resting-state BOLD fluctuations.

A number of studies have examined differences in resting-
state fMRI activity between the eyes-closed (EC) and eyes-open
(EO) conditions (Yang et al., 2007; McAvoy et al., 2008, 2012;
Bianciardi et al., 2009; Yan et al., 2009; Zou et al., 2009; Jao
et al., 2013; Patriat et al., 2013; Xu et al., 2014; Yuan et al.,
2014). In general, these studies have found that the amplitude
of the resting-state BOLD signal is decreased in the eyes-open
condition as compared to the eyes-closed condition. For example,
Jao et al. (2013) found that the average variance of the BOLD
signal was significantly lower in the eyes-open condition. There
is some diversity in the findings, with regional resting-state
activity sometimes found to be higher in the EO condition, with
the differences most likely reflecting variations in processing
approaches, such as the use of global signal regression and
physiological noise reduction in some studies and not others.

Using simultaneous EEG fMRI, Wong et al. (2015)
demonstrated an overall increase in EEG vigilance in the EO
state as compared to the EC state and found that these increases
in vigilance were negatively correlated with the differences in
global signal amplitude between the two states. Interestingly, the
slope between the changes in vigilance and differences in global
signal amplitude was similar to the slope found in Wong et al.
(2013) relating the caffeine-induced changes in vigilance and
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global signal amplitude. The similarity between the relationships
observed for the EO-EC changes and the caffeine-related changes
suggest that the basic mechanisms underlying the vigilance and
global signal amplitude relationship may to some extent be
independent of the experimental manipulation.

Cordani et al. (2018) found that the resting-state BOLD
signal amplitude in the sensory cortices decreases at times
corresponding to dawn and dusk, possibly reflecting an
anticipatorymechanism in which spontaneous activity is reduced
in order to improve visual perception during times associated
with low light levels. Yeo et al. (2015) reported that the amplitude
of the global signal increased with sleep deprivation. Similarly,
Poudel et al. (2018) observed spatially widespread increases in
the BOLD signal associated with microsleeps after both normal
rest and sleep deprivation conditions.

4. TEMPORAL FLUCTUATIONS IN
VIGILANCE DURING A SCAN

The various studies reviewed in the prior section largely support
the overall conclusion that the amplitude of the resting-state
BOLD signal over a given time period is inversely proportional to
the average vigilance level of the subject during that period. Over
the course of scan, there are also moment to moment variations
in arousal and vigilance. Their effect on rsfMRI data can be
assessed by looking at the correlation between the rsfMRI signal
and a vigilance-associated time course. Using simultaneous EEG
fMRI, a number of studies have established that EEG alpha power
is negatively correlated with fMRI signals in widespread regions
of the brain, including the visual and fronto-parietal cortices
(Goldman et al., 2002; Laufs et al., 2003a,b; Moosmann et al.,
2003). Positive correlations have been reported for the thalamus,
insula, and anterior cingulate (Goldman et al., 2002; Moosmann
et al., 2003; Feige et al., 2005; Difrancesco et al., 2008; Sadaghiani
et al., 2010). Using the metric of EEG vigilance from Wong et al.
(2013), Falahpour et al. (2018a) found similar spatial patterns of
correlation, which is expected given the close link between the
vigilance metric and alpha power.

It has also been shown that there is a significant negative
correlation between the rsfMRI global signal and EEG vigilance
time courses (Falahpour et al., 2016, 2018a). Figure 1 shows
an example of this negative correlation, where the plot in the
middle row shows the vigilance time series in blue and the
global signal (inverted for display) in red. The top row shows
the rsfMRI images obtained by averaging over time points
corresponding to the top 10% of vigilance values. Consistent
with prior observations, these show positive signal values in the
thalamus and negative values in sensory areas. In the bottom row,
images obtained by averaging over time points with the lowest
10% of vigilance values shows the opposite pattern, with negative
signal values in the thalamus and positive values in sensory areas.

Han et al. (2019) have recently put forth the hypothesis that
the observed correlations between the EEG and rsfMRI signals
are due to stereotypical electrophysiological events, first observed
in the global signal of large-scale electrocorticography (ECoG)
recordings from monkeys by Liu et al. (2015). These sequential
spectral transition (SST) events were found to last for 10–20 s

and consisted of a decrease in mid-band (alpha and beta; 8–30
Hz) activity followed by an increase in low frequency (delta and
theta;< 30 Hz) activity and a burst of high-frequency broadband
gamma activity (>30 Hz). The SST events were later shown to
be coupled with peaks in the rsfMRI global signal (Liu et al.,
2018), roughly consistent with the aforementioned findings of a
significant negative correlation between the rsfMRI global signal
and EEG vigilance time series. As further evidence for the role of
transient activity in EEG-BOLD correlations, Poudel et al. (2014)
observed transient changes in BOLD activity associated with
microsleeps. Furthermore, in subjects who exhibited a higher
occurrence of microsleeps, the authors found that post-central
EEG theta power was positively correlated with the BOLD signal
in the thalamus, basal forebrain, visual, posterior parietal, and
prefrontal cortices.

Using pupilometry, Schneider et al. (2016) found that
spontaneous pupil dilations were associated with increased
BOLD activity in the salience network, thalamus, and
frontoparietal regions, whereas spontaneous pupil constrictions
were associated with increased BOLD activity in the visual and
sensoriomotor areas. Similarly, several studies have reported a
positive correlation between pupil size and the rsfMRI BOLD
signal in regions comprising cingulo-opercular, default mode,
and fronto-parietal networks and a negative correlation in the
visual and sensorimotor regions (Yellin et al., 2015; Breeden et al.,
2017; DiNuzzo et al., 2019). To first order, the spatial pattern of
correlations observed with pupilometry are roughly consistent
with those reported using simultaneous EEG fMRI studies. In
addition, a positive correlation has been demonstrated between
pupil size and BOLD activity in the locus coeruleus (Murphy
et al., 2014; DiNuzzo et al., 2019), a nucleus in the brainstem that
contains norepinephrine neurons that are thought to modulate
pupil size (Joshi et al., 2016).

5. FUNCTIONAL CONNECTIVITY AND
VIGILANCE

Complementing the work relating vigilance to BOLD amplitude,
the connection between vigilance and rsfMRI FC has also been
explored by a number of investigators. The main investigative
approaches include examining (1) differences in FC across sleep
stages, (2) temporal variations in FC as a function of alpha
power or a related time-varying measure of vigilance, and (3)
FC changes associated with induced changes in state. A recent
extensive review of the relation between FC and sleep has
been provided by Tagliazucchi and Van Someren (2017). The
effects of sleep deprivation have been recently reviewed by
Chee and Zhou (2019).

5.1. Functional Connectivity and Sleep
Stages
Both Larson-Prior et al. (2011) and Sämann et al. (2011) reported
decreases in the extent of anti-correlations between the default
mode network (DMN) and the task positive network (TPN)
during the transition to light sleep. Tagliazucchi et al. (2012a)
demonstrated that FC measures and nonlinear support vector
machines could be used to classify sleep stages and later used
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FIGURE 1 | Patterns associated with high and low vigilance and relation between vigilance and the global signal. (Top) Average rsfMRI image from the time points

corresponding to the top 10% of vigilance values. (Middle) Vigilance time course in blue and the global signal (inverted for display) in red, with a correlation of r =

−0.33. (Bottom) Average rsfMRI image from the time points corresponding to the lowest 10% of vigilance values.

this relation to characterize wakefulness levels across a large
collection of rsfMRI studies (Tagliazucchi and Laufs, 2014).
Subsequently, Altmann et al. (2016) found that linear support
vector machines could also be used to predict sleep stages from
FC measures.

Haimovici et al. (2017) found that dynamic functional
connectivity states obtained through clustering algorithms were
similar to the average FC state found in each sleep stage,
suggesting that variations in dynamic functional connectivity
states are associated with fluctuations in wakefulness. Zou et al.
(2019) later reported similar findings. Using a Hidden Markov
model (HMM) approach, Stevner et al. (2019) identified multiple
FC states associated with each sleep stage and characterized the
transition between states within and between stages. Laumann
et al. (2017) showed that a multivariate measure of kurtosis was
significantly correlated with an index of sleep and argued that
this was evidence for a sleep-related increase in the temporal
variability of FC measures.

5.2. Alpha Power and FC
In examining dynamic fluctuations in FC across the duration
of a scan, Tagliazucchi et al. (2012b) found that time-varying
increases in alpha power were correlated with decreases

in functional connectivity as measured in awake subjects.
As increased alpha power is proportional to vigilance (see
EEG metrics), this finding suggests that time-varying FC
decreases with increased vigilance in a manner that is
largely consistent with the reductions in FC observed across
an entire scan when mean vigilance increases (e.g., with
caffeine). Similarly, Scheeringa et al. (2012) reported that
increases in alpha power were associated with a decrease of
FC within the visual system and also a diminishing of the
negative relation between the visual cortex and thalamus. In
related work, Chang et al. (2013) observed that the time-
varying strength of connectivity between the DMN and default
attention network (DAN) was inversely proportional to the
alpha power measured within the same time window (40 s
window length).

Allen et al. (2018) noted that certain dynamic FC (DFC) states
were found more frequently in the EO condition while other
DFC states were found predominantly in the EC condition. They
identified a DFC state related to increased drowsiness (lower
alpha and higher delta and theta power) in which there were
high levels of FC in the sensorimotor and visual regions and the
increased presence of anti-correlations between the thalamus and
these regions.
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5.3. Induced State Changes
Caffeine has been shown to lead to spatially widespread decreases
in rsfMRI FC measures (Wong et al., 2012). Using the same
sample of subjects, Tal et al. (2013) employed source-localized
magnetoencephalography (MEG) to demonstrate similar
decreases in MEG-based measures of resting-state connectivity.
In a follow-up study, Wong et al. (2013) reported that caffeine-
induced increases in EEG vigilance were significantly correlated
with increases in the anti-correlation between nodes of the DMN
and TPN. Taking into account the observation that caffeine also
reduces the amplitude of the global signal, the authors concluded
that the increased presence of anti-correlations could be largely
attributed to the reduction in global rsfMRI activity (Wong
et al., 2012, 2013). In addition, the caffeine-induced increases
in anti-correlation were consistent with the aforementioned
decreases in anti-correlations observed in the transition to light
sleep (Larson-Prior et al., 2011; Sämann et al., 2011).

In studies with the sedative midazolam, Kiviniemi et al.
(2005) found increased FC within the sensory-motor network,
consistent with the observed increase in the amplitude of
BOLD signal fluctuations. Further evidence for this increase was
presented by Greicius et al. (2008), who observed a midazolam-
related increase in FC in the sensory-motor network, but
reported a decrease in FC in the DMN. In a study using
the sedative zolpidem, Licata et al. (2013) reported a drug-
related increase in FC in a number of sensory, motor, and
limbic networks.

As discussed in section 3.2, vigilance is higher and the global
signal amplitude is lower in the EO versus the EC state. It has
also been found that functional connectivity is generally lower in
the EO state as compared to the EC state (McAvoy et al., 2008;
Bianciardi et al., 2009; Zou et al., 2009; Xu et al., 2014). This
decreased connectivity is consistent with the decreased global
activity and increased vigilance in the EO state. Furthermore,
these decreases in global signal amplitude and increases in
vigilance may account for the increased reliability of connectivity
measures obtained in the EO condition as compared to the EC
state (Patriat et al., 2013).

In reviewing prior studies that have observed state-based
changes in functional connectivity, it is important to note that
there can be some variability in the reporting of connectivity
changes, especially when there are both positive and negative
correlation values. As an example, for the studies reporting
reduced connectivity in the EO state as compared to the
EC state, the findings can be divided into three groups: (1)
both EO and EC correlation values are positive, and the
EO values are less positive (i.e., smaller numerical value)
(McAvoy et al., 2008; Bianciardi et al., 2009), (2) the EO
and EC correlation values are either both positive or both
negative, and the EO values are either less positive or less
negative, respectively (i.e., absolute magnitude of the EO
correlation values are smaller independent of the sign) (Zou
et al., 2009), or (3) EC values are positive, and EO values
are either less positive or negative (i.e., the EC values are
greater than the EO values, with the possibility that a negative
EO value could have a larger magnitude than a positive
EC value) (Xu et al., 2014). Paying attention to the sign of

the correlation values is especially important when examining
studies that use global signal regression, since this preprocessing
step has been shown to introduce negative correlation values
(Murphy et al., 2009).

5.4. Sleep Deprivation
De Havas et al. (2012) found that sleep deprivation led to
reductions in both DMN functional connectivity and the degree
of anticorrelation between the DMN and other regions. These
findings were supported by a follow-up study by Yeo et al. (2015),
who reported that subjects who exhibited less vigilance declines
after sleep deprivation showed stronger anti-correlations among
several networks. These results were obtained with global signal
regression.WhenGSRwas not applied, Yeo et al. (2015) observed
a spatially widespread increase in functional connectivity with
sleep deprivation. Wirsich et al. (2018) also reported widespread
increases in FC with sleep deprivation. Zhang et al. (2019)
found that sleep deprivation lead to decreases in FC between the
cerebellum and a number of brain regions and an increase in FC
between the cerebellum and bilateral caudate.

Ong et al. (2015) examined spontaneous eye closures in
sleep deprived subjects and reported additional reductions in the
FC in the DMN and DAN beyond what had been previously
observed for sleep deprivation. In a related study, Wang et al.
(2016) went on to identify a low arousal DFC state associated
with spontaneous eye closures and another high arousal state
associated with periods of the eyes remaining wide open.
Patanaik et al. (2018) found that subjects with a greater fraction
of high arousal states showed higher levels of vigilance, working
memory, and processing speed after sleep restriction.

Kaufmann et al. (2016) reported that sleep deprivation led
to significant alterations in several resting-state FC networks,
including the dorsal attention, default mode, and hippocampal
networks, with an overall increase in FC values with sleep
deprivation. Furthermore, they found differences in FC between
morning and evening measures with a return to morning FC
patterns after a night of sleep. They used partial correlation
instead of global signal regression. Tüshaus et al. (2017)
observed that sleep pressure led to significant changes in the FC
between resting-state networks as determined using independent
components analysis. Yang et al. (2018) reported that sleep
deprivation led to decreases in FC density (FCD) in brain regions
including the posterior cingulate cortex and precuneus and
increases in sensory integration and arousal regulating areas,
such as thalamus.

6. fMRI-BASED VIGILANCE ESTIMATES

As discussed above, EEG and measures of eye closure or
pupil size can be used to assess vigilance during rsfMRI
studies. However, the additional acquisition and analysis efforts
associated with these measures have precluded their widespread
use in rsfMRI studies. Simultaneous EEG-fMRI scans are
technically challenging and require specialized equipment and
substantial set-up time (with current technologies). Pupilometry
poses less of a logistical challenge, but the equipment costs, set-up
time, and analysis requirements can still complicate its adoption
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for many studies. Video-based measures of eye closure are more
readily implemented and demand relatively little setup-time, but
still require additional effort to analyze the images. Nevertheless,
more rsfMRI studies should probably consider regular video
monitoring of eye state given the relative ease of use and the
potential benefit of the information.

Vigilance estimates based on the fMRI data alone can serve
as a useful alternative to external measures, especially in studies
where there is limited time available for additional set-up
procedures. As noted in prior sections, Tagliazucchi et al. (2012a)
and Altmann et al. (2016) used windowed rsfMRI connectivity
estimates to estimate sleep stages in 30 s epochs. To provide
estimates on a finer time scale, Chang et al. (2016) introduced an
fMRI template-based approach to estimate arousal fluctuations
in awake monkeys sitting in complete darkness. In this approach,
a spatial template was first formed, where the value of each voxel
in the template reflected the strength of the correlation between
the fMRI data and an eye-based metric of arousal. Correlation of
this spatial template with each volume of an independent fMRI
dataset was then used to form an estimate of arousal for each
timepoint in the test dataset.

Falahpour et al. (2018a) subsequently applied the template-
based approach to simultaneous EEG-fMRI data acquired in
humans and demonstrated the ability to predict EEG-based
measures of vigilance fluctuations, supporting the generalizability
of the approach from macaques to humans. They also
demonstrated that the performance of the method was related
to the overall amount of variability in a subject’s vigilance state
and that the approach could be used to estimate the variability
across scans in the amplitude of the vigilance fluctuations. In
a recent preprint, Gu et al. (2019) used a global co-activation
map (Liu et al., 2018) as a template and found that the resulting
estimates were similar to those derived using the template in
Falahpour et al. (2018a). A graphical summary of the template-
based approach is provided in Figure 2.

7. METHODOLOGICAL CONSIDERATIONS

One of the challenges in understanding vigilance effects in rsfMRI
stems from the presence of noise components (both BOLD and
non-BOLD weighted) such as system-related instabilities, subject
motion, and physiological fluctuations. While there have been
considerable efforts to characterize and mitigate the effects of
these components in BOLD fMRI time series (Birn, 2012; Greve
et al., 2013; Murphy et al., 2013; Power et al., 2015), the choice
of methods varies widely between rsfMRI studies. This lack of
uniformity makes it difficult to compare results across studies.
For studies of vigilance, the problem is further complicated by the
connection between vigilance and several of the primary noise
confounds, such as the global signal, motion, and respiratory
activity (Yuan et al., 2013; Liu et al., 2017; Patanaik et al., 2018).
For example, Yuan et al. (2013) reported that the correlation
between EEG alpha power and rsfMRI signal was reduced after
respiratory and cardiac nuisance regressors were projected out
of the rsfMRI data. Similarly, Patanaik et al. (2018) found that

FIGURE 2 | Graphical summary of the template-based approach for

prediction of vigilance fluctuations as described in Chang et al. (2016). The

vigilance template is obtained by correlating the fMRI data with an estimate of

EEG vigilance measure as described in Falahpour et al. (2018a), using data

originally acquired for a prior study (Wong et al., 2013). This vigilance template

was then applied to an independent simultaneous EEG-fMRI dataset. For each

timepoint in the fMRI data, the spatial correlation between the template and

the fMRI volume is computed to form an estimate of vigilance (red line). This

estimate is highly correlated (r = 0.51) with the EEG-based measure of

vigilance (blue line).

the relation between vigilance and the global signal was reduced
when motion was used as a covariate.

In the case of the global signal, there is still an ongoing
debate as to whether the global signal should be regressed out
prior to the analysis of rsfMRI data (Liu et al., 2017). Due to
the relation between the global signal and vigilance, the use
of global signal regression (GSR) can have a significant effect
on findings regarding the connection between vigilance and
the rsfMRI signal. As an example, Falahpour et al. (2018b)
noted that prior studies that did not use GSR generally found a
negative correlation between EEG alpha power (or vigilance) and
the BOLD signal in widespread regions of the brain, including
the lingual gyrus, posterior cingulate, cuneus, and precuneus
(Goldman et al., 2002; Laufs et al., 2003b; Falahpour et al., 2018a).
In contrast, a study that used GSR found positive correlations
in additional areas not reported in prior studies, including the
dorsal anterior cingulate cortex, the anterior insula, and the
anterior prefrontal cortex (Sadaghiani et al., 2010). Falahpour
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et al. (2018b) went on to demonstrate that GSR induced a
positive shift in the correlation between EEG vigilance and the
rsfMRI signal, roughly consistent with the discrepancy in the
prior findings.

To address themethodological challenges, the support and use
of open multimodal neuroimaging databases and standardized
processing approaches (Poldrack et al., 2017; Babayan et al.,
2019) will become increasingly important. These resources will
facilitate the comparison of various methods and studies and
enable researchers to better understand the relation between
rsfMRI and vigilance measures.

8. VIGILANCE AND DISEASE

There is growing evidence that disregulation of arousal is
associated with a variety of mental disorders such as depression,
autism, and schizophrenia (Boutros et al., 2008; Razavi et al.,
2013; Sander et al., 2016; Jawinski et al., 2019). In a genome-
wise association study, Jawinski et al. (2019) found an association
between resting-state vigilance levels (as assessed with EEG) and
genetic markers for major depressive disorder, autism spectrum
disorder, and Alzheimer’s disease. In parallel, there has been
widespread use of rsfMRI to study disease-related alterations in
resting-state brain activity and connectivity. For example, rsfMRI
studies of schizophrenia have reported disease-related differences
in functional connectivity and signal variance (Calhoun et al.,
2011; Yang et al., 2014; Wang et al., 2015). Given the link between
rsfMRI measures and vigilance and prior findings indicating a
decrease in EEG vigilance with schizophrenia (Boutros et al.,
2008; Razavi et al., 2013), it is likely that disease-related vigilance
effects contributed to the observed differences. Yang et al. (2014)
reported that the variance of the global signal was significantly
higher in patients with schizophrenia as compared to normal
controls and concluded that the differences reflected an increase
in neural coupling. However, the authors acknowledged that
the potential confound of vigilance differences between groups
would need to be carefully considered in follow-up work.

9. POTENTIAL MECHANISMS

Although the mechanisms underlying the relationship between
vigilance fluctuations and the rsfMRI signal are not well
understood, the evidence from prior observational studies (see
section 4) suggests a link with activity in brain regions related
to arousal, such as the basal forebrain and the locus coeruleus.
Recent studies involving invasive neuromodulation in animal
models support this view. Turchi et al. (2018) observed reduced
global signal fluctuations in macaques with inactivation of
the nucleus basalis of Meynert, a group of neurons in the
basal forebrain with widespread arousal-related modulatory
projections to the cortex. Using chemogenetic activation of the
locus coeruleus in a mouse model, Zerbi et al. (2019) found an
increase in functional connectivity in several networks, including
the salience network, consistent with the relation between
increased rsfMRI activity and pupil size discussed in section 4.

FIGURE 3 | Overview of the relationship between vigilance and rsfMRI signal

amplitude and functional connectivity. In general, vigilance is negatively

correlated with rsfMRI signal amplitude, with higher vigilance levels

corresponding to global reductions in fMRI activity and functional connectivity.

These reductions are associated with a greater presence of anti-correlations in

functional connectivity maps at higher vigilance levels. The functional

connectivity maps were obtained using a seed signal from the posterior

cingulate cortex and acquired before (left) and after (right) the administration of

caffeine (Wong et al., 2012). The bottom plot shows representative EEG

spectra for low, medium, and high vigilance levels (Wong et al., 2013).

As the rsfMRI signal is a complex reflection of neural,
metabolic, and vascular factors (Liu, 2013), a better
understanding of the link between vigilance and the rsfMRI
signal requires deeper insight into the relative contribution of
these factors. Using data from all-night EEG-fMRI sleep studies,
Özbay et al. (2019) demonstrated a tight relationship between
the occurrence of K-complexes, episodic drops in finger skin
vascular tone, and widespread decreases in the rsfMRI signal.
The authors argued that the findings were consistent with
a picture in which increased sympathetic activity associated
with K-complexes resulted in vasoconstriction of the cerebral
vasculature and a concomitant decrease in the rsfMRI signal.
As this study focused on activity during NREM Stage 2 sleep,
additional studies will be needed to further elucidate the role
of arousal-related sympathetic activity in rsfMRI studies during
which the subjects are largely awake.

10. CONCLUSION

There is now substantial evidence indicating that vigilance effects
play a significant role in resting-state fMRI studies. The first
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order effects are summarized in Figure 3. In general, there
is a negative correlation between vigilance and global rsfMRI
activity, with higher vigilance levels leading to global reductions
in signal variance and functional connectivity and an increase
in the presence of anti-correlations in functional connectivity
maps. However, the details of the observed effects vary between
studies and conditions. While part of this variation may reflect
differences in processing and analysis approaches, it is likely that
a significant part of the remaining variation reflects different
underlying causes for the vigilance changes and variability. A
better understanding of the mechanisms linking vigilance and
resting-state brain activity will be helpful for understanding these
variations and their impact on the interpretation of rsfMRI
studies. Toward that end, invasive studies in animal models
(Turchi et al., 2018; Zerbi et al., 2019) can provide insights
not readily attainable in human studies. Finally, differences

in vigilance can give rise to changes in resting-state activity
that can be misinterpreted as primary disease-related effects.
The further development of approaches to better estimate and
account for vigilance effects will play a critical role in the
improved interpretation of rsfMRI data in both clinical and
research settings.
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Dexmedetomidine – Commonly Used
in Functional Imaging Studies –
Increases Susceptibility to Seizures
in Rats But Not in Wild Type Mice
Aleksandra Bortel1,2* , Roland Pilgram1,2, Ze Shan Yao1,3 and Amir Shmuel1,2,3*

1 Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada, 2 Department of
Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, 3 Department of Biomedical Engineering, McGill
University, Montreal, QC, Canada

Functional MRI (fMRI) utilizes changes in metabolic and hemodynamic signals to
indirectly infer the underlying local changes in neuronal activity. To investigate the
mechanisms of fMRI responses, spontaneous fluctuations, and functional connectivity
in the resting-state, it is important to pursue fMRI in animal models. Animal studies
commonly use dexmedetomidine sedation. It has been demonstrated that potent
sensory stimuli administered under dexmedetomidine are prone to inducing seizures
in Sprague-Dawley (SD) rats. Here we combined optical imaging of intrinsic signals
and cerebral blood flow with neurophysiological recordings to measure responses in
rat area S1FL to electrical forepaw stimulation administered at 8 Hz. We show that the
increased susceptibility to seizures starts no later than 1 h and ends no sooner than
3 h after initiating a continuous administration of dexmedetomidine. By administering
different combinations of anesthetic and sedative agents, we demonstrate that
dexmedetomidine is the sole agent necessary for the increased susceptibility to seizures.
The increased susceptibility to seizures prevails under a combination of 0.3–0.5%
isoflurane and dexmedetomidine anesthesia. The blood-oxygenation and cerebral blood
flow responses to seizures induced by forepaw stimulation have a higher amplitude
and a larger spatial extent relative to physiological responses to the same stimuli.
The epileptic activity and the associated blood oxygenation and cerebral blood flow
responses stretched beyond the stimulation period. We observed seizures in response
to forepaw stimulation with 1–2 mA pulses administered at 8 Hz. In contrast, responses
to stimuli administered at 4 Hz were seizure-free. We demonstrate that such seizures
are generated not only in SD rats but also in Long-Evans rats, but not in C57BL6 mice
stimulated with similar potent stimuli under dexmedetomidine sedation. We conclude
that high-amplitude hemodynamic functional imaging responses evoked by peripheral
stimulation in rats sedated with dexmedetomidine are possibly due to the induction of
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epileptic activity. Therefore, caution should be practiced in experiments that combine the
administration of potent stimuli with dexmedetomidine sedation. We propose stimulation
paradigms that elicit seizure-free, well detectable neurophysiological and hemodynamic
responses in rats. We further conclude that the increased susceptibility to seizures under
dexmedetomidine sedation is species dependent.

Keywords: dexmedetomidine, medetomidine, seizures, hemodynamic response, neurovascular coupling,
cerebral blood flow, blood oxygenation level-dependent functional MRI, forepaw electrical stimulation

INTRODUCTION

Functional connectivity (FC) refers to the temporal correlation
between spatially remote neurophysiological events (Friston
et al., 1993). FC analysis based on functional magnetic resonance
imaging (fMRI) makes it possible to obtain an approximation of
the pattern of thalamocortical and cortico-cortical connections
non-invasively; thus, it is readily usable on human subjects.
FC analysis can be pursued using data obtained during subject
stimulation, task performance, or in the resting-state. In addition
to shedding light on the pattern of connections, FC carries
information that can be used to detecting a malfunction of the
brain in disease (Fox and Greicius, 2010).

fMRI of the resting-state utilizes spontaneous fluctuations
in metabolic and hemodynamic signals to infer the underlying
local changes in neuronal activity (Shmuel and Leopold, 2008).
Thus, the fMRI signal is an indirect measure of changes
in neuronal activity. Therefore, for correct interpretation
of spontaneous fluctuations and FC in the resting-state, it
is important to characterize the neuronal mechanisms of
these phenomena by combining fMRI and neurophysiology
in animal models.

Animal studies of the resting-state and neurovascular coupling
in general commonly use dexmedetomidine. Dexmedetomidine
has been the sedative of choice for long functional imaging and
neurophysiology studies in rats (Pawela et al., 2008; Zhao et al.,
2008; Sotero et al., 2010; Nasrallah et al., 2012; Fukuda et al.,
2013) and mice (Adamczak et al., 2010; Bukhari et al., 2017). It
was previously reported that medetomidine sedation does not
affect seizure vulnerability, nor does it affect LFP and BOLD
responses during seizures evoked by systemic administration
of kainic acid in rats (Airaksinen et al., 2010, 2012). In
contrast, Fukuda et al. (2013) demonstrated that sedation
induced by intravenous administration of dexmedetomidine for
more than 2 h changes seizure susceptibility in rats. Forelimb
stimulation elicited seizure- like responses accompanied by
changes in cerebral blood flow (CBF) in Sprague-Dawley (SD)
rats (Fukuda et al., 2013). These results have been corroborated
by Bortel et al. (2019) who showed that seizures can be
elicited not only with forelimb stimulation but also with
the less-potent digit stimulation and that they propagated
from the onset zone to adjacent cortical areas. Bortel et al.
(2019) observed high-amplitude, high-frequency oscillations
prior to and during the seizures, and demonstrated that the
seizures are not induced by damage caused by inserting the
electrodes into the cortex. To elicit the seizure, Fukuda et al.
(2013) and Bortel et al. (2019) stimulated the forelimb or

digit over 10 s long blocks. In contrast, short (e.g., 1 s)
stimulation blocks of SD rats under dexmedetomidine sedation
are not sufficient for inducing epileptiform activity (Sotero
et al., 2015). Therefore, electrical stimuli administered at
8 Hz over a long duration under dexmedetomidine sedation
elicit seizures.

Such potent forepaw stimulation – in the range of 9–
12 Hz – are commonly used for imaging under medetomidine,
isoflurane, or urethane anesthesia as these frequencies elicit the
strongest BOLD response (Masamoto et al., 2007; Huttunen
et al., 2008; Zhao et al., 2008; Kim et al., 2010; Krautwald
and Angenstein, 2012; Paasonen et al., 2017; Albers et al.,
2018; Nunes et al., 2019; Lambers et al., 2020). Therefore, it
is important to test whether these stimuli induce seizures that
could influence the hemodynamic responses. Moreover, mice
sedated with dexmedetomidine are commonly used for studying
the mechanisms underlying neurovascular coupling and resting-
state fMRI. However, whether dexmedetomidine increases the
susceptibility to seizures in mice remains unknown.

Here we demonstrate that the seizures induced by forepaws
stimulation in SD rats are accompanied by spatially extended
cerebral blood flow and blood oxygenation responses. We show
that the increased susceptibility to seizures starts no later than
1 h after initiating the dexmedetomidine administration and lasts
for at least 2 h. We demonstrate that the seizure susceptibility
depends on the stimulation parameters and anesthesia regime.
We propose reliable anesthesia regimes along with forepaw
stimulation parameters that do not induce seizures but do
generate well detectable hemodynamic responses. We further
show that dexmedetomidine sedation increases the susceptibility
to seizures not only in SD rats but also in Long-Evans (LE)
rats. In contrast, C57BL6 (C57) wild type mice do not show
susceptibility to seizures under the same anesthesia regime
and stimulation protocol. We conclude that dexmedetomidine
sedation increases the susceptibility to seizures accompanied by
extended hemodynamic responses in SD and LE rats but not
in wild type mice.

MATERIALS AND METHODS

Animals, Surgical Procedures, and Anesthesia
All procedures were approved by the animal care committees
of the Montreal Neurological Institute and McGill University
and were carried out in accordance with the guidelines of
the Canadian Council on Animal Care. Here we report on
experiments performed on 19 adult (100– 107 days old) male

Frontiers in Neuroscience | www.frontiersin.org 2 October 2020 | Volume 14 | Article 832165

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00832 October 25, 2020 Time: 13:46 # 3

Bortel et al. Dexmedetomidine Increases Seizure Susceptibility in Rats

SD rats weighing 440–560 g, 5 adult (100–109 days old) male
LE rats weighing 475–495 g, and 5 age-matched adult C57
mice weighing 30–37 g. In Table 1 which summarizes the
conditions under which we observed seizures – we include
results obtained from 6 additional 100–107 days old male SD
rats, on which we reported in detail in Bortel et al. (2019).
All 25 SD rats, 5 LE rats, and 5 C57 mice were stimulated
with electrical forepaw stimulation. The rats and mice were
housed under the same controlled environmental conditions at
22 ±·2◦C with a 12 h light/12 h dark cycle (lights on from
7:00 a.m. to 7:00 p.m.) and received food and water ad libitum.
A brief description of the surgical procedures is included below.
All procedures carried out for experiments in SD rats are
described in detail in Bortel et al. (2019). The procedures applied
for experiments in LE rats were identical to those used for
experiments in SD rats.

The rats were first injected with the anti-inflammatory
drug carprofen (5 mg/kg SC; Zoetis, Canada) and anesthetized
with a solution of xylazine (10 mg/kg IP; Bayer Inc.,
Canada) and ketamine (50 mg/kg IP; Wyeth, Canada). They
were then intubated and placed in a stereotaxic frame. The
surgical procedure was performed under ventilation with 100%
oxygen and anesthesia with isoflurane (0.6–2%; Benson Medical
Industries Inc., Canada). The scalp was incised to expose the
skull covering the primary somatosensory cortex (S1) of the
left hemisphere. One stainless steel screw (2.4 mm in length) –
used as a ground and reference – was fixed to the skull
above the visual cortex of the right hemisphere. The part of
the skull overlying S1 was thinned until soft and transparent.
We then performed an approximate 4 mm wide square-
shaped craniotomy, centered on the forelimb representation
in area S1FL based on a stereotaxic atlas (AP 0.00 mm,
ML ± 4.50 mm, DV –2.5 mm; Paxinos and Watson, 2005). The
dura mater within the craniotomy was resected. At the end of
the surgical procedure, a silicon chamber was created around
the craniotomy and filled with Hank’s Balanced Salt Solution
(Invitrogen, Canada).

Following the surgery, prior to starting the recordings, we
changed the ventilation of the animal to a mixture of 20%
oxygen and 80% medical air. At the same time, we injected a
single dose of buprenorphine (0.04 mg/kg, SC; Schering-Plough,
United Kingdom) and started administering dexmedetomidine
that we kept running continuously throughout the recordings
(0.075 mg/kg/h, SC; Pfizer Inc., Canada). The isoflurane
administration was stopped following the administration of
dexmedetomidine and buprenorphine. To examine the effect
of anesthesia on the epileptic activity, we performed three
additional experiments on SD rats without using ketamine before
the intubation. To further examine the effect of anesthesia, we
performed seven additional experiments on SD rats anesthetized
with a combination of dexmedetomidine (0.075 mg/kg/h,
SC) and simultaneous administration of isoflurane (0.3–0.5%),
without administering buprenorphine.

The forepaw representation of area S1FL was delineated by
optical imaging of the cerebral blood volume (CBV) response
to forepaw stimulation. Then, a linear multi-contact probe was
inserted into the forepaw region, in an approximately orthogonal

orientation relative to the local surface. To determine the effect of
dexmedetomidine on seizure susceptibility in a different animal
species, we performed similar procedures and the same type of
forepaw stimulation in five age-matched mice.

Before the surgery, the mice were injected with the anti-
inflammatory drug carprofen (4 mg/kg SC; Zoetis, Canada).
The surgical procedure was performed under anesthesia with
a solution of ketamine (100 mg/kg IP; Wyeth, Canada) and
xylazine (10 mg/kg IP; Bayer Inc., Canada) injected before
the surgery, with the addition of isoflurane (0.6–1%; Benson
Medical Industries Inc., Canada). The core temperature and
heart rate were monitored. The primary somatosensory cortex
(S1) of the left hemisphere was exposed, by performing a
craniotomy, centered on the forelimb representation in area
S1 (S1FL) based on a mouse stereotaxic atlas (AP −0.30 mm,
ML ± 2.20 mm, DV –1.3 mm; Franklin and Paxinos, 2007).
Following the surgery, prior to starting the recordings, the
mice were injected with a single dose of buprenorphine
(0.1 mg/kg, SC; Schering-Plough, United Kingdom). We then
started a continuous administration of dexmedetomidine
(0.05 mg/kg/h, SC; Pfizer Inc., Canada). Following the
administration of dexmedetomidine and buprenorphine,
we stopped administering isoflurane.

Then, a linear multi-contact probe was inserted into area
S1FL. To maintain the sedation throughout the experiment, we
infused dexmedetomidine continuously at a rate of 0.05 mg/kg/h
SC. We assessed the depth of sedation by continuously
monitoring the vital signs of the animal and by monitoring
whether the animal stayed still or performed any movement.
In case this monitoring showed that additional sedation was
required, we increased the rate of the dexmedetomidine infusion
to 0.1 mg/kg/h SC.

Electrical Stimulation of the Forepaw
Electrical stimuli were generated using a stimulator/isolator
(A365, WPI, Sarasota, FL, United States) and delivered through
two needle electrodes inserted into the web spaces of digits 2/3
and 4/5 of the rat or mouse forepaw. With rats and mice, we
began our experiments with optical imaging of area S1FL, in
order to guide the insertion of the neurophysiology probe to
the forepaw representation. Runs for eliciting CBV-based optical
imaging responses consisted of ten 4 s long stimulation blocks
of 1 ms long, 1 mA electrical current pulses delivered at a
frequency of 8 Hz. Following the insertion of the probe, we
obtained data for the main experiment, including LFP, HbO, and
CBF responses to electrical stimuli delivered to the forepaw. In
rats, 8 runs were performed, each consisting of ten 35 s long
stimulation trials, separated by ten 55 s long trials in which no
stimulus was delivered (see time course in Figure 1A). Each
stimulation trial started with 5 s recordings of baseline activity,
followed by 10 s of stimulation and 20 s of baseline activity.
In thirteen SD rats and five LE rats, each 10 s stimulation
block consisted of a train of 1 ms long, 2 mA electrical pulses
delivered at a frequency of 8 Hz. In three SD rats, 8 runs were
performed with two different stimulus frequencies (4 and 8 Hz)
and two different currents (1 and 2 mA). In runs 1–2, 3–4, 5–
6, and 7–8 we administered 1 mA at 4 Hz, 2 mA at 4 Hz,
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TABLE 1 | Average number of rats and mice with seizures and average number of seizures per run according to anesthesia regime and stimulation parameters.

Species
and

Stimulation
Type

Anesthesia
Regime

Stimulation parameters

4 Hz 6 Hz 8 Hz

1 mA 1.5 mA 2 mA 2 mA 1 mA 2 mA

Animals
with

seizures

No. of
seizures
per run

Animals
with

seizures

No. of
seizures
per run

Animals
with

seizures

No. of
seizures
per run

Animals
with

seizures

No. of
seizures
per run

Animals
with

seizures

No. of
seizures
per run

Animals
with

seizures

No. of
seizures
per run

SD Rats
Forepaw

stim

Dex and
Bup

0/3 – 0/3 – 3/3 1.50± 0.81 7/9 2.14± 0.40

Dex and
Bup
measured
with ECoG

5/6 3.04± 0.42

Dex and
Bup
without
Ketamine

3/3 2.37± 0.35

Dex and Iso
without
Bup

0/3 – 2/4 1.88± 0.44

LE Rats
Forepaw

stim

Dex and
Bup

5/5 3.73± 0.50

C57 Mice
Forepaw

stim

Dex and
Bup

0/5 – 0/5 – 0/5 –

The first column presents the species and strain (SD rats, LE rats or C57 mice) and the type of stimulation, i.e., forepaw stimulation. The second column presents the anesthesia regime, i.e., dexmedetomidine with
buprenorphine sedation (Dex and Bup), dexmedetomidine with buprenorphine sedation without ketamine (Dex and Bup without Ketamine), and dexmedetomidine with isoflurane without buprenorphine (Dex and Iso
without Bup). All neurophysiology data were recorded using a linear probe, except for the data presented in the second row labeled ‘Dex and Bup measured with ECoG‘ which were recorded using electrocorticography
arrays. The experiments in this row, whose anesthesia regime is labeled in red font were presented in detail in Bortel et al. (2019). The 3rd, 5th, 7th, 9th, 11th, and 13th columns present the number of rats/mice
with seizures and the 4th, 6th, 8th, 10th, 12th, and 14th columns present the average number of seizures per run (including all runs in rats and mice that had or did not have seizures). Results are expressed as
a mean ± SEM.
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FIGURE 1 | Forepaw stimulation induces epileptic activity in rat area S1FL. (A) LFP recordings of ten trials, each with 10 s-long stimulation. The stimulation periods
are marked by black rectangles. Each 10 s stimulus consisted of a train of electrical pulses delivered at 8 Hz to the forepaw. Note that during the first, fourth, and
seventh trials, the stimulation evoked a seizure. (B) Top: The LFP (mean averaged over electrode contacts spanning the cortical depth) demonstrates a
normal-evoked response in trial #3. Bottom: The corresponding spectrogram (power as a function of frequency and time) computed for the same trial. (C) Top: LFP
(mean averaged over electrode contacts spanning the cortical depth) showing a seizure pattern in trial #4. The red and green arrows indicate the onset and
termination, respectively, of a seizure induced by forepaw stimulation. Bottom: The corresponding spectrogram, computed for the same seizure. (D) The number of
evoked seizures per rat as a function of time shows that seizures were induced already during the first or the second run, only one hour after initiating the
dexmedetomidine administration.
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1 mA at 8 Hz, and 2 mA at 8 Hz, respectively. In mice, 9
similar runs were performed, except that three different stimulus
frequencies (4, 6, and 8 Hz) were applied. The recordings were
performed in runs with increasing (3 mice) or decreasing (2
mice) stimulation frequency. The duration and intensity of
all electrical pulses delivered to mice were 1 ms and 2 mA,
respectively. In all experiments in rats and mice, the polarity of
stimulation was switched in each pulse relative to the polarity of
the preceding pulse.

Optical Imaging of Intrinsic Signals
All procedures applied for optical imaging of intrinsic signals
(OIS) (Grinvald et al., 1999) are described in detail by Bortel
et al. (2019). The ROI we imaged was centered on the atlas
coordinates of area S1FL in the left hemisphere in rats (AP
0.00 mm, ML ± 4.50 mm, DV –2.5 mm; Paxinos and Watson,
2005) and mice (AP −0.30 mm, ML ± 2.20 mm, DV –1.3 mm;
Franklin and Paxinos, 2007). We imaged the hemodynamic
responses to forepaw stimulation at a frame rate of 30 Hz under
the illumination of a green and orange LED light with a center
wavelength of 530 nm (isosbestic point) and 617 nm, respectively.
We computed percent change maps for oxyhemoglobin (HbO)
using the modified Beer–Lambert law (Dunn et al., 2003). We
applied a correction to adjust for the differential path length
through the gray matter at different wavelengths.

Laser Speckle Flowmetry
One laser Speckle diode (Sharp LTO25MD = 798 nm, 30 mW;
Thorlabs, Newton, NJ, United States) was coupled into a 600-
µm diameter silica optical fiber (Thorlabs FT600-EMT) with a
collimating lens (f = 8 mm, C240-TM; Thorlabs) connected to
the distal end of the fiber. The lens was placed approximately
10 cm above the cortical ROI. It was adjusted to provide
even illumination over an area with 8 mm diameter on the
exposed cortical surface. The coherence length of the laser was
approximately 1 cm. The speckle pattern was imaged using a
CCD camera (Teledyne Dalsa, Waterloo, ON, Canada), which
made it possible to obtain 2D maps of CBF at high spatial
and temporal resolution. To this end, we quantified the spatial
blurring of the speckle pattern that results from blood flow
(Boas and Dunn, 2010). Conversion of the raw speckle images
to blood flow maps was done using custom-written software that
computed the speckle contrast and correlation time values at each
pixel (Dunn et al., 2001).

Electrophysiological Data
Pre-processing and Seizure Analysis
The methods used for the pre-processing of electrophysiological
data and seizure analysis are specified in detail in Bortel et al.
(2019).

Statistical Evaluation
We used the Levene’s test to examine whether the variances of
two or more compared groups were equal. In the cases where
equal variances were verified, a Student’s t-test was performed
to test a difference between the means of two groups. If there

was evidence to support non-equal variances, a Mann–Whitney
or post hoc Tamhane’s test was applied to evaluate statistical
differences between two or more groups, respectively. A non-
parametric Wilcoxon test was applied to groups of paired data
variables. Results are presented as a mean ± SEM. Differences
with p < 0.05 were considered statistically significant (IBM
SPSS Statistics).

RESULTS

Characterization of Normal Evoked
Responses and Epileptic Responses
Typical LFP patterns recorded during normal evoked responses
in area S1FL of an SD rat are presented in Figure 1A (trials
2, 3, 5, 6, 8, 9, and 10) and Figure 1B. The normal evoked
responses were confined within the 10 s period of stimulation.
As illustrated in Figure 1B, the LFP amplitudes in response to
electrical stimulation pulses were higher than the spontaneous
LFP amplitudes. In four of six rats, we detected seizures induced
by somatosensory stimulation of the forepaw. Figure 1A (trials
1, 4, and 7) and 1C present seizures induced by the forepaw
stimulation. As can be observed in Figure 1C, the onset of the
seizure (marked by a red arrow) consisted of high-frequency
negative or positive-going deflections of the mean extracellular
field potential.

The seizures typically extended for several seconds longer
than the stimulation period. Before they terminated, the seizures
consisted of low-frequency, high amplitude deflections of the
field potential, extending above or below the baseline (Figure 1C;
the seizure end is marked by a green arrow). The LFP and the
corresponding spectrograms were used to estimate the seizure
onset and termination times, relative to the first stimulation
pulse. All seizures evoked in our rats were brief, lasting less than
1 min. The average duration of seizures was 31.50 ± 1.83 s.
The seizures were followed by another seizure (55 cases out of
113 seizures), or a refractory period (40 refractory periods out
of 113 seizures) or a normal response (14 normal responses out
of 113 seizures).

The first recording run was performed 15 min after the
isoflurane administration was stopped, thus 30 min following
the administration of dexmedetomidine and buprenorphine.
In the first 10-min run, we stimulated the forepaw for
eliciting CBV-based optical imaging responses (4 s stimulation
blocks, administering 1 mA pulses at 8 Hz). We did not
observe any epileptic activity during this first stimulation
run. Approximately 40 min following the administration of
dexmedetomidine and buprenorphine, prior to the stimulation
runs, we acquired two 10 min long runs of spontaneous
activity. We did not observe any epileptic activity during these
runs. These findings indicate that dexmedetomidine alone does
not induce seizures: for generating seizures, potent stimuli
are required too.

Seizures were observed already after 1 h of dexmedetomidine
administration, during the first or the second run in which we
applied the potent stimulation: 10 s stimulation blocks of 2 mA
pulses at 8 Hz (Figure 1D). In SD rats, the average number of
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observed seizures during the period of 60–120 min following
the initiation of dexmedetomidine administration (14.3 ± 5.9,
median equal 11.5) was larger than the corresponding number
observed during the period of 120–180 min following this
initiation (4.5 ± 2.8, median equal 0.5, n = 6 rats; p = 0.07,
Wilcoxon test; non- significant trend).

The seizures induced in rats by electrical forepaw stimulation
were exclusively electrographic seizures. We did not observe any
epileptic behavior.

Seizures Induced by Forepaw
Stimulation Under Dexmedetomidine
Sedation Are Associated With Extended
Cerebral Blood Oxygenation and Flow
Responses
To test how the seizures induced by forepaw stimulation
under dexmedetomidine sedation influence hemodynamic
responses, we analyzed the spatial extent of the hemodynamic
responses elicited during normal evoked responses and seizures.
Figures 2A,B, 3A,B present the spatial HbO and CBF responses,
respectively, 1 s before the stimulus onset (1), 10 s after the
stimulus onset (2), and 10 s after the cessation of the stimulus
(3), for normal evoked response and seizure recorded in a single
trial in one animal.

The spatial extent of the cerebrovascular hemodynamic
responses 10 s following the onset of stimulation was slightly
larger during a seizure (Figures 2B, 3B, panel 2) than during
a normal response (Figures 2A, 3A, panel 2). The spatial
extent of the responding region 10 s following the cessation
of the stimulus was substantially larger during a seizure
(Figures 2B, 3B, panel 3) than during a normal response
(Figures 2A, 3A, panel 3). The time-courses of the HbO
and CBF changes during a normal evoked response and an
induced seizure response are presented on the right panels of
Figures 2A,B, 3A,B, respectively. The two different colored lines
correspond to the two brain regions marked in Figure 2C.
At any time-point following the onset of the stimulus, the
HbO and CBF amplitudes during the seizure (Figures 2B,
3B) were higher than the corresponding amplitudes during the
normal evoked response (Figures 2A, 3A). The bar plot in
Figure 3C presents the spatial extent of the CBF responses
averaged over six animals, during normal responses, seizures,
and refractory periods, respectively. During the period of 5–
10 s relative to the onset of the stimulus, the spatial extent
of the cerebrovascular hemodynamic responses during seizures
was larger than during normal refractory periods (Figure 3C;
∗∗p < 0.001, Tamhane’s test). For each of the periods of 10–
15 s, and 15–20 s relative to the onset of the stimulus, the
spatial extent of the cerebrovascular hemodynamic responses
during seizures was larger than during normal evoked responses
and refractory periods (Figure 3C; ∗p < 0.05, ∗∗p < 0.001,
Tamhane’s test). Note that these two periods – namely 10–
15 s and 15–20 s relative to the onset of the stimulus –
are part of the post-stimulation period in which the seizures
persist with no sensory stimulation. Interestingly, not only the
average spatial extent of the seizures was larger than that of

normal responses obtained during the same period following the
cessation of the stimulus, also the seizure’s spatial extent post-
stimulation was larger than that observed in normal responses
during stimulation (Figures 3C; p < 0.001, Tamhane’s test).
Thus, the hemodynamic responses elicited by the seizures
propagated beyond the spatial extent of the normal responses to
forepaw stimulation.

The Increased Susceptibility to Seizures
Does Not Depend on Using Ketamine,
Buprenorphine, or Combining Isoflurane
With Dexmedetomidine
To evaluate the dependence of seizure generation on the
anesthesia regime, we first performed three experiments under
dexmedetomidine and buprenorphine sedation but without
using the anesthetic ketamine before the intubation and surgery.
All three rats had seizures in response to forepaw stimulation of
8 Hz and 2 mA (Figures 4A–D).

Previous studies reported that isoflurane protects against
seizures and that combining dexmedetomidine with isoflurane
anesthesia prevents seizures in response to forepaw stimulation.
To test these assertions, we performed four additional
experiments using SD rats anesthetized with a combination
of dexmedetomidine and 0.3–0.5% isoflurane, without
administering buprenorphine. In response to forepaw stimuli of
2 mA administered at 8 Hz, we observed seizures in 50% of these
rats (2 out of 4; Figures 5A–D). We concluded that ketamine
and buprenorphine are not necessary for the effect of increasing
susceptibility to seizures. We also concluded that combining
isoflurane with dexmedetomidine does not eliminate the effect of
increased susceptibility to seizures.

The Susceptibility to Seizures Depends
on the Stimulation Paradigm:
Seizures-Free Stimulation Parameters
Our results show that under dexmedetomidine sedation,
forepaw stimulation with pulses of 2 mA administered at
8 Hz generates seizures. To test the dependence of the
seizure generation on the electrical stimulation parameters, we
administered forepaw stimuli with different currents (1 and
2 mA) and frequencies (4 and 8 Hz) in 3 SD rats under
dexmedetomidine and buprenorphine sedation. Forepaw stimuli
of 1 and 2 mA administered at 4 Hz did not generate seizures
(Figures 6A,B). In contrast, administering electrical pulses of
1 and 2 mA at 8 Hz induced seizures in 2 out of 3 and all
3 rats, respectively (Figures 7A–C). Decreasing the stimulation
current and frequency made it possible to obtain seizure-free
response to forepaw stimulation under dexmedetomidine and
buprenorphine sedation (Figure 6). This indicates that similar
decreases may result in seizure-free forepaw responses under
dexmedetomidine and isoflurane too. We, therefore, aimed
to find a seizure-free forepaw stimulation paradigm under
dexmedetomidine and isoflurane sedation. To this end, we
performed experiments in 3 additional SD rats whose forepaw
was stimulated with 1.5 mA electrical pulses administered
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FIGURE 2 | Cerebral blood oxygenation responses evoked by forepaw stimulation. (A) Cerebral blood oxygenation response evoked by stimulation of the
contralateral forepaw. To the left, the spatial responses before (the 1 s before stimulus onset), during (9–10 s following stimulus onset), and after (9–10 s following the
cessation of the stimulus) the 10 s-long forepaw stimulation period. The reference for obtaining these responses was imaged between 3 and 1 seconds before
stimulus onset. Note that positive responses are indicated in indexed yellow and red colors, representing increases in blood oxygenation. To the right are two
time-courses presenting the corresponding temporal responses from two regions (blue and red ROIs in panel C) within the activated area. The stimulation period
between 0 and 10 seconds is marked by a dark bar. (B) Maps of the blood oxygenation changes during a response that evoked a seizure, from before, during, and
after the 10 s-long forepaw stimulation period (exact time periods are as in A). To the right are two time-courses presenting the corresponding temporal responses
from two regions (blue and red ROIs in panel C) within the activated area. (C) The imaged cortical surface with the two ROIs used for sampling the time-courses
presented in A and B.
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FIGURE 3 | Cerebral blood flow responses evoked by forepaw stimulation. (A) Cerebral blood flow response evoked by stimulation of the contralateral forepaw. To
the left, the spatial responses before (the 1 s before stimulus onset), during (9–10 s following stimulus onset), and after (9–10 s following the cessation of the
stimulus) the 10 s-long forepaw stimulation period. The reference for obtaining these responses was imaged between 3 and 1 seconds before stimulus onset. Note
that positive responses indicated in indexed yellow and red colors represent increases in blood flow. To the right are two time-courses presenting the corresponding
temporal responses from two regions (blue and red ROIs in Figure 2C) within the activated area. The stimulation period between 0 and 10 seconds is marked by a
dark bar. (B) Maps of the blood flow changes during a response that evoked a seizure, from before, during, and after the 10 s-long forepaw stimulation period (exact
time periods are as in A). To the right are two time-courses presenting the corresponding temporal responses from the same ROIs as described in (A). (C) A bar
graph showing the spatial extent of the CBF response calculated for the epochs of 5–10 s, 10–15 s, and 15–20 s relative to the onset of the stimulus during normal
evoked responses (n = 21), seizure responses (n = 20) and refractory periods (n = 14; *p < 0.05, **p < 0.001; Tamhane’s test).
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FIGURE 4 | The increased susceptibility to seizures in SD rats under dexmedetomidine and buprenorphine does not depend on ketamine. The data presented in this
figure were obtained from 3 rats under dexmedetomidine and buprenorphine sedation with no administration of ketamine. The format of the presentation is similar to
that used in Figure 1. (A) A time-course of LFP (averaged over electrode contacts spanning the cortical depth) recorded during ten trials, each with 10 s-long
stimulation. The stimulation periods are marked by black rectangles. Note the seizures induced by the stimulus in the first, fourth, and eighth trials. (B) A
normal-evoked LFP response recorded in trial #6. (C) A seizure pattern recorded in trial #4. The red and green arrows indicate the onset and termination of the
seizure, respectively. (D) The number of seizures recorded in each of the 3 rats as a function of time after the initiation of the dexmedetomidine administration.

at 4 Hz. Under this condition, we did not observe any
seizure (Figure 8).

Hemodynamic Responses Associated
With the Seizure-Free Forepaw
Stimulation Paradigms
To compare and evaluate the detectability of the hemodynamic
responses associated with the three seizure-free paradigms
we have demonstrated (Figures 6A,B, 8), we first analyzed
the CBV responses obtained in single-trials under these
paradigms. Figures 9A,B compare the spatial extent and time

courses obtained under dexmedetomidine and buprenorphine
in response to stimulation at 4 Hz with 1 mA and 2 mA
pulses, respectively. Figure 9C presents the spatial extent and
time courses obtained under dexmedetomidine and isoflurane
in response to 1.5 mA pulses administered at 4 Hz. All three
paradigms generated single-trial hemodynamic responses that
were well detectable.

The CBV responses obtained under dexmedetomidine and
buprenorphine were higher in response to 2 mA pulses than to
1 mA pulses (p < 0.001, Tamhane’s test; Figure 10). They were
also higher than the responses to 1.5 mA pulses obtained under
dexmedetomidine and isoflurane sedation (p< 0.001; Figure 10).
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FIGURE 5 | Potent forepaw stimulation induces seizures in SD rats under dexmedetomidine and isoflurane anesthesia. The data presented in this figure were
obtained from 4 rats under dexmedetomidine and isoflurane anesthesia. (A) LFP recordings of ten trials, each with 10 s-long stimulation. Note the seizures induced
by the stimulus in the second and eighth trials. (B) A normal-evoked LFP response recorded in trial #6. (C) A seizure pattern recorded in trial #2. (D) The number of
seizures recorded in each of the 4 rats as a function of time after the initiation of the dexmedetomidine administration. Seizures were induced already during the
second run, less than 90 min after initiating the dexmedetomidine administration.

Long Evans Rats Under
Dexmedetomidine Sedation Are
Susceptible to Seizures; Wild Type Mice
Are Not
The susceptibility of the brain to seizure generation is known to
depend on animal species (Schauwecker, 2002). In addition to
SD rats, Long-Evans (LE) rats and mice of different strains are

commonly used for studying the resting-state and neurovascular
coupling. To test the susceptibility of these strains to seizure
generation under dexmedetomidine sedation, we pursued similar
experiments using LE rats and C57BL6 wild type mice.

Forepaw stimulation with current of 2 mA administered
at 8 Hz elicited seizures in all 5 LE rats we tested under
dexmedetomidine and buprenorphine sedation. The LFP
characteristics of seizures evoked in LE rats were similar to those
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FIGURE 6 | Normal LFP responses to forepaw stimulation administered at 4 Hz in SD rats under dexmedetomidine and buprenorphine. The data presented in this
figure were obtained from 3 rats under dexmedetomidine and buprenorphine sedation. (A) Top: Normal LFP responses obtained from area S1FL, in response to
4 Hz & 1 mA forepaw stimulation. The panel shows ten trials, each with 10 s-long stimulation. Bottom: A magnification of the normal evoked response from the ninth
trial. (B) Top: Normal LFP responses to 4 Hz & 2 mA forepaw stimulation. Bottom: A magnification of the normal evoked response from the ninth trial.

evoked in SD rats (Figures 11A–D). Seizures induced in LE
rats were observed as soon as 1 h after the dexmedetomidine
administration, during the first or second stimulation run
(Figure 11D). The average number of seizures during the period
of 60- 120 min following the initiation of dexmedetomidine
administration (15.8± 5.6, median equal 17) was not statistically
different than the corresponding number observed during the
period of 120–180 min following this initiation (14.0 ± 5.2,
median equal 20; p = 0.34 Wilcoxon test). The seizures were
followed by another seizure (72 cases out of 149 seizures), or a
normal response (60 normal responses out of 149 seizures), or
a refractory period (16 refractory periods out of 149 seizures;
Figures 11A–C). Lastly, 100% of LE rats had seizures, in
comparison to 67% of the SD rats from which we obtained data
from 8 runs. We observed a non-statistically significant trend of
a higher number of seizures in LE rats (29.8 ± 10.7 per animal)

than the corresponding number observed in SD rats (18.8 ± 8.5
per animal; p = 0.43, Mann–Whitney’s test).

In pilot experiments in two mice, we did not observe seizures
and not even high-amplitude LFP responses to stimuli of 2 mA
administered at 8 Hz, identical to those that elicited high-
amplitude responses in SD and LE rats. We hypothesized that
the reason for the lack of high-amplitude responses was that
the inhibition elicited by the response in mice remains effective
for a longer duration than it does in rats. In addition, lower
frequency 6 Hz, 3 s corneal stimulation previously produced
‘psychomotor’ seizures in mice (Barton et al., 2001; Esneault
et al., 2017). Based on these observations, we decided to
administer forepaw stimuli to five age-matched mice using
three different frequencies of stimulation: 4, 6, and 8 Hz.
Figures 12A,B present normal responses obtained with 4
and 6 Hz stimulation, respectively. Note that the normal
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FIGURE 7 | Forepaw stimulation administered at 8Hz induces epileptic activity in SD rats under dexmedetomidine and buprenorphine. The data presented in this
figure were obtained from the same 3 rats whose responses to forepaw stimulation with different parameters are presented in Figure 6. (A) Top: LFP responses to
8 Hz & 1 mA forepaw stimulation. Note the seizures induced by the stimulus in the first and third trials. Bottom: A magnified view of the seizure recorded in the third
trial. (B) Top: LFP responses to 8 Hz & 2 mA forepaw stimulation. Note the seizures induced by the stimulus in the first, fourth, and seventh trials. Bottom: A
magnified view of the seizure recorded in the fourth trial. (C) The number of seizures recorded in each of the 3 rats whose responses to forepaw stimulation are
presented in Figures 6 and 7. The number of seizures is presented as a function of time after the initiation of the dexmedetomidine administration. The stimulation
parameters used for each pair of consecutive blocks are presented at the upper part of the panel.
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FIGURE 8 | A paradigm for seizure-free forepaw stimulation under dexmedetomidine and isoflurane. The data presented in this figure were obtained from 3 rats
under dexmedetomidine and isoflurane anesthesia. Forepaw stimuli of 1.5 mA were administered at a rate of 4 Hz. (A) Top: Normal LFP responses to 10 s-long
stimulation blocks obtained from area S1FL. Bottom: A magnification of the normal evoked response from the fourth trial. (B) The number of seizures (none)
recorded in each of the 3 rats as a function of time shows that forepaw stimuli of 1.5 mA administered at 4 Hz do not induce seizures in SD rats under
dexmedetomidine and isoflurane anesthesia.

responses to stimuli are noticeable with the 4 Hz – the
lowest stimulation frequency – and are substantially weaker
with 6 Hz stimulation. The LFP responses to forepaw stimuli
administered at 8 Hz were virtually undetectable (Figure 12C).
As illustrated in Figures 12A–C, we did not evoke any seizure
with any of the stimulation frequencies we administered to
any of the mice under dexmedetomidine and buprenorphine.
In conclusion, seizures were observed in SD and LE rats, but
not in C57 mice.

DISCUSSION

Dexmedetomidine Sedation Increases
Susceptibility to Seizures
We have demonstrated that under sedation or anesthesia that
involve dexmedetomidine, long (10 s), potent (1 or 2 mA),
repetitive and frequent (8 Hz) peripheral electrical stimuli evoke
seizures (Figures 1–5, 7A–C). Epileptic activity induced in our
rats consisted of brief and focal electrographic seizures; the
animals did not show any epileptic behavior.

To identify the compound that causes the increased
susceptibility to seizures, we managed several sedation and
anesthetic regimes by administering different combinations
of the following compounds: ketamine, xylazine, carprofen,
dexmedetomidine, buprenorphine, isoflurane, and urethane (we
used the latter in Bortel et al., 2019).

To test whether ketamine could be the compound
that increases the susceptibility to seizures, we
performed three experiments under dexmedetomidine
and buprenorphine but without administering
ketamine before the surgery. Our main stimulation
paradigm (2 mA pulses administered at 8 Hz) induced
seizures in all three SD rats (Figure 4), confirming
that ketamine is not necessary for increasing the
susceptibility to seizures.

We then used a combination of dexmedetomidine
and isoflurane without buprenorphine, and we observed
seizures response to our main stimulation paradigm in 2
out of 4 rats (Figure 5). This makes it possible to exclude
buprenorphine as an agent necessary for increasing the observed
susceptibility to seizures.
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FIGURE 9 | Cerebral blood volume responses associated with seizure-free responses to 4 Hz forepaw stimulation under different anesthesia regimes. (A) A cerebral
blood volume response to a 10 s-long block of forepaw stimuli of 1 mA administered at 4 Hz under dexmedetomidine and buprenorphine sedation. To the left, the
imaged cortical surface. The 3 maps presented in color show the spatial responses before (the 1 s before stimulus onset), during (4–5 s following stimulus onset),
and after (9–10 s following the cessation of the stimulus) the 10 s-long forepaw stimulation period. The reference for obtaining these responses was imaged between
3 and 1 seconds before stimulus onset. Note that negative responses indicated in indexed blue colors represent increases in blood volume. To the right are two
time-courses presenting the corresponding temporal responses from two regions (blue and red ROIs in the left panel) within the activated area. The stimulation
period between 0 and 10 seconds is marked by a dark bar. (B) Cerebral blood volume response evoked by 4 Hz and 2 mA forepaw stimulation under
dexmedetomidine and buprenorphine sedation. The format of the presentation is identical to that used in panel A. (C) Cerebral blood volume response evoked by
4 Hz and 1.5 A forepaw stimulation under dexmedetomidine and isoflurane anesthesia. The format of the presentation is identical to that used in panel A.
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Isoflurane has anticonvulsant properties: it suppresses drug-
induced convulsions (Kofke et al., 1987) and terminates status
epilepticus in patients when administered at concentrations
of 0.5%- 3.0% (Kofke et al., 1985; Ropper et al., 1986). This
makes it unlikely that isoflurane increases the susceptibility
to seizures. In addition, we obtained seizures in rats under
dexmedetomidine and buprenorphine sedation, without
administrating isoflurane, showing that isoflurane is not
necessary for the seizure generation.

In Bortel et al. (2019) we applied a similar stimulation
paradigm – although we stimulated a single digit, not the entire
forepaw. Under dexmedetomidine and buprenorphine sedation,
we observed seizures in response to digit stimulation in 6/10
rats. Under urethane anesthesia, with no administration of
buprenorphine, we did not observe any seizures.

The only other compounds which we administered in all
experiments – those with seizures and those without seizures –
are xylazine, which we injected just before the intubation, and
carprofen, which we injected approximately at the same time,
before the surgical procedures. Similar to dexmedetomidine,
xylazine belongs to the α2-adrenoceptor agonists that exert
sedation and have additional muscle-relaxant and analgesic
properties. A single standard dose of xylazine produces sedation
of 30–40 min duration, and its elimination half-life is 30 min
(Pawson, 2008). With such elimination half-life, it is very unlikely
that xylazine is the compound that increases the susceptibility
to seizures in our experiments, because we observed seizures
during the time frame of 1–3 h following the initiation of
the dexmedetomidine, which is equivalent to 11/2 to 31/2 hours
after injecting xylazine. Carprofen is a non-steroidal anti-
inflammatory drug (NSAID) that has non-narcotic analgesic and
antipyretic activity. The mechanism of action of carprofen, like
that of other NSAIDs, involves inhibition of cyclooxygenase
(COX-2) activity (Rubio et al., 1980). COX-2 is known to play
an important role in the early inflammatory response to an
insult and in post-seizure inflammation and hyper-excitability
of the brain. It was shown that pretreatment of animals with a
selective COX-2 inhibitor before applying a convulsant stimulus
weakens seizure intensity (Rojas et al., 2014). Therefore, it is
unlikely that carprofen increases the susceptibility to seizures
in our experiments; in fact, we expect that it decreases this
susceptibility. Lastly, we did administer xylazine and carprofen
before the surgeries of the experiments we ran with urethane,
in which we did not observe any seizures (Bortel et al., 2019).
This means that neither xylazine nor carprofen can be the agent
causing the seizures.

The results summarized above leave dexmedetomidine as the
sole agent that could increase the susceptibility to seizures.

Adding Isoflurane to Dexmedetomidine
Does Not Prevent the Increased
Susceptibility to Seizures
It is widely accepted that anesthetics modify the balance between
excitation and inhibition toward increased relative inhibition,
and consequently, they modulate evoked neuronal responses
(Franceschini et al., 2010). Isoflurane is a general anesthetic

FIGURE 10 | The amplitudes of cerebral blood volume responses associated
with seizure-free responses to 4 Hz forepaw stimulation under different
anesthesia regimes. A bar graph showing the peak amplitude of CBV normal
responses sampled from the gray matter region that showed the highest
response. The white bar to the left shows the amplitude of response to stimuli
of 1.5 mA administered at 4 Hz under dexmedetomidine and isoflurane
anesthesia (Dex + Iso; mean ± SEM, n = 60 trials from 3 SD rats). The gray
and black bars show the amplitudes of responses to stimuli of 1.0 mA and
2.0 mA, respectively, administered at 4 Hz under dexmedetomidine and
buprenorphine sedation (Dex + Bup; n = 60 trials from the same 3 SD rats).
**p < 0.001; Tamhane’s test.

that affects many neurotransmitter systems; it acts on GABA,
NMDA, and glycine receptors (Grasshoff and Antkowiak, 2006).
Although isoflurane reduces neuronal excitation and cerebral
metabolism, it is commonly used in electrophysiology studies.
However, at higher doses (≥1.6%) isoflurane increases the
baseline cerebral blood flow (CBF) (Eger, 1984; Franceschini
et al., 2010) and for this reason, it is no longer the anesthetics
of choice for hemodynamics-based functional studies.

However, fMRI studies often use a combination of
dexmedetomidine and low-percentage of isoflurane in rats
(Fukuda et al., 2013; Paasonen et al., 2018) and mouse models
(Grandjean et al., 2014; Bukhari et al., 2017). Combining
dexmedetomidine with isoflurane constitutes an attractive
anesthesia regime for fMRI studies because both cortical and
striatal functional connectivity can be reliably detected with no
adverse side effects. Moreover, with dexmedetomidine alone,
the sedation effect lasts 60–90 min even if the administration
is continuous, thus forcing short imaging sessions (Pawela
et al., 2009). When adding low- percentage isoflurane
to dexmedetomidine, the anesthesia effects of isoflurane
make it possible to run longer experiments. Importantly,
dexmedetomidine and isoflurane provide a synergistic effect
as they exert opposing effects on the cerebrovascular system.
Whereas isoflurane acts as a vasodilator (Eger, 1984; Franceschini
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et al., 2010), dexmedetomidine induces cerebral vasoconstriction
(Jonckers et al., 2015).

As described in the previous section, isoflurane has
anticonvulsant properties (Kofke et al., 1985, 1987; Ropper
et al., 1986). Therefore, isoflurane could be expected to suppress
seizure generation when combined with dexmedetomidine.
Under dexmedetomidine combined with 0.3–0.5% isoflurane
anesthesia, Fukuda et al. (2013) obtained seizure-free responses
to 10 s-long blocks of 1 ms long pulses of 1.5 mA administered
at 8 Hz. In contrast, we observed seizures in response to our
main stimulation paradigm (2 mA pulses administered at
8 Hz) in 2 out of 4 rats anesthetized with dexmedetomidine
combined with 0.3–0.5% isoflurane. We, therefore, conclude
that adding low-percentage isoflurane to dexmedetomidine
does not prevent the increased susceptibility to seizures
caused by dexmedetomidine. In the next section, we propose
stimulation parameters for obtaining seizure-free responses
under three anesthesia regimes, including the combination of
dexmedetomidine and low-percentage isoflurane.

Blood-Oxygenation and Cerebral Blood
Flow Responses to Seizures
The blood-oxygenation and cerebral blood flow responses to
seizures induced by forepaw stimulation have a higher amplitude
and a larger spatial extent relative to physiological responses to
the same stimuli (Figures 2, 3). It is generally accepted that
epileptic events consist of synchronous, rhythmic firing of a
population of pathologically interconnected neurons capable of
generating high-frequency oscillations (Bragin et al., 2002; Shariff
et al., 2006). Each physiological increase in neuronal activity
increases the cerebral metabolic rate of oxygen consumption,
leading to an increase in CBF and CBV as the brain attempts
to perfuse sufficiently the active neurons with oxygenated
hemoglobin (Schwartz and Bonhoeffer, 2001; Shariff et al., 2006;
Zhao et al., 2008). The signaling molecules such as adenosine
and nitric oxide are released by the firing neurons, causing
nearby pial arterioles to dilate (Haglund and Hochman, 2007).
Consequently, seizures elicit a large focal increase in metabolism
and utilization of oxygen and glucose, resulting in an enormous
increase in blood volume and flow to the ictal focus to provide
adequate oxygenation (Engel et al., 1982; Patel et al., 2013;
Harris et al., 2018). It was demonstrated that during pilocarpine-
induced status epilepticus a compensation phase lasting up to
30 min is observed with an acute increase in CBF, followed by a
decompensation phase with CBF decrease (Lothman, 1990; Choy
et al., 2010; Reddy and Kuruba, 2013). There is a preferential
distribution of blood flow to certain regions of the brain during
seizures. The degree of perfusion change in the cortex is greater
than in the thalamus, and the hippocampus is hypo-perfused
when compared to the cortex (Choy et al., 2010). In the present
experiment, an increase in cerebral hemodynamics is observed
during seizures simultaneously with an increase in neuronal
activity, extending beyond the period and spatial extent of normal
responses to sensory stimulation.

The findings reported here are in agreement with previous
studies that characterized the cerebral hemodynamics

during seizures: partial seizures have widespread effects on
cortical function and cerebral perfusion (Zhao et al., 2007;
Harris et al., 2014).

Seizure-Free Stimulation Paradigms and
Anesthesia Regimes for Functional
Imaging in Rats
Dexmedetomidine alone and dexmedetomidine combined with
low-percentage isoflurane are two commonly used anesthesia
regimes for functional imaging. However, our results show that
these anesthesia regimes increase the susceptibility to seizures in
rats. We observed seizures when applying forepaw stimulation of
10 s blocks with 1 ms long pulses of 1.0–2.0 mA administered at
8 Hz (Figures 1–5).

Similar potent peripheral stimulation paradigms in the range
of 8–12 Hz and 1–2 mA are commonly used to elicit BOLD
responses in dexmedetomidine sedated rats (Kim et al., 2010;
Huttunen et al., 2011; Schulz et al., 2012; Paasonen et al., 2017;
Nunes et al., 2019). These studies likely induced seizures and
interpreted fMRI responses to seizures as normal responses.

We, therefore, conducted experiments to determine the
stimulation parameters for seizure-free experiments under these
anesthesia regimes. Our results show that when using relatively
long stimulations blocks of 10 s – that are required for
fMRI block paradigms – forepaw stimulation with 1 ms long
pulses of 1.5–2.0 mA at 4 Hz elicits seizure-free responses
(Figures 6, 9). Importantly, these stimulation parameters elicit
hemodynamic responses that can be clearly detected in single
trials (Figures 9, 10). Therefore, we propose these paradigms for
safe stimulation that does not induce seizures but still generates
well detectable hemodynamic responses.

Another possibility is to use urethane anesthesia, in studies
that do not require recovery of the animal following the
neurophysiology and/or functional imaging experiment.
Urethane has modest effects on both the inhibitory and
excitatory systems and does not affect the noradrenergic
system (Hara and Harris, 2002). The changes it exerts on
multiple neurotransmitter-gated ion channels are much
smaller than those seen with anesthetics more selective for one
neurotransmitter system, such as ketamine. Therefore, urethane
is suitable for maintaining anesthesia during electrophysiological
recording and functional imaging (Hara and Harris, 2002). As
we demonstrated previously (Bortel et al., 2019), under urethane
anesthesia, 10 s blocks of digit stimulation with 1 ms long pulses
of 2 mA administered at 8 Hz elicited seizure-free, well detectable
neurophysiological and hemodynamic responses.

Mechanisms of Stimulation-Induced
Seizures Under Dexmedetomidine
Sedation
Both sedation and general anesthesia suppress the central
nervous system, but only general anesthesia results in
unconsciousness and lack of sensation (Turner and Knapp, 1995;
Young-McCaughan and Miaskowski, 2001; Miller, 2010). Under
general anesthesia, the activity of the thalamic and midbrain
reticular formation nuclei is suppressed. The suppression of
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FIGURE 11 | Forepaw stimulation induces epileptic activity in LE rat. (A) LFP recordings of ten trials, each with 10 s-long stimulation. The stimulation periods are
marked by black rectangles. Note that during the first, third, fifth, sixth, eighth, and ninth trials, the stimulation induced a seizure. (B) Top: The LFP (mean averaged
over electrode contacts spanning the cortical depth) demonstrates a normal-evoked response in trial #7. Bottom: The corresponding spectrogram (power as a
function of frequency and time) computed for the same trial. (C) Top: LFP (mean averaged over electrode contacts spanning the cortical depth) showing a seizure
pattern in trial #9. The red and green arrows indicate the onset and termination, respectively, of a seizure induced by forepaw stimulation. Bottom: The
corresponding spectrogram, computed for the same seizure. (D) The number of evoked seizures per rat as a function of time shows that seizures are induced
already during the first or the third run, only one hour after initiating the dexmedetomidine administration.
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FIGURE 12 | Absence of seizures in the C57BL6 mouse strain. (A) Top: Normal LFP responses obtained from area S1FL, in response to 4 Hz forepaw stimulation.
The panel shows ten trials, each with 10 s-long stimulation. The stimulation blocks are marked by black rectangles. Bottom: A magnification of the normal evoked
response from the first trial. (B) Top: Normal LFP responses to 6 Hz forepaw stimulation. Bottom: A magnification of the normal evoked response from the first trial.
(C) Top: A typical activity pattern of evoked responses to 8 Hz forepaw stimulation. Bottom: A magnification of the normal evoked response from the third trial.
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the thalamic information transfer disrupts the somatosensory
input from reaching higher cortical areas (Miller, 2010).
Dexmedetomidine has sedative properties, and buprenorphine
is an opioid with analgesic properties. It is possible that the
combination of dexmedetomidine and buprenorphine modifies
the anesthesia regime from sedation (with dexmedetomidine
alone) closer to anesthesia (with dexmedetomidine and
buprenorphine). However, since this is unclear, here we use the
term ‘sedation’ when describing the effect of dexmedetomidine
and buprenorphine. In contrast, given that isoflurane is a general
anesthetic, we use the term ‘anesthesia’ when referring to the
effect of combining dexmedetomidine and isoflurane.

Dexmedetomidine is an α2-adrenergic agonist with sedative
properties, predominantly acting on presynaptic receptors in
the locus coeruleus. It regulates the central adrenergic function
and in consequence induces cerebral vasoconstriction mediated
by direct agonist binding to receptors on the cerebral vessels,
resulting in a reduced baseline of CBF and CBV (Weber
et al., 2006; Pawela et al., 2009; Adamczak et al., 2010;
Jonckers et al., 2015; Paasonen et al., 2018). The degree of
vasoconstriction depends on the dose and delivery method
(topical vs. systemic) (Jonckers et al., 2015). Dexmedetomidine
decreases noradrenaline release (Gertler et al., 2001), which in
turn decreases seizure threshold (Oishi and Suenaga, 1982).

There have been several conflicting reports on the influence
of dexmedetomidine on seizure generation. It was shown that
the seizure frequency and onset time evoked by kainic acid
(Airaksinen et al., 2010, 2012) or pilocarpine (Choy et al.,
2010) are similar in the awake and medetomidine-sedated
rats. Halonen et al. (1995) demonstrated that rat convulsions
induced by kainic acid are prevented by the administration
of medetomidine. Similarly, it was shown that rat seizures
induced by the administration of cocaine were suppressed by
medetomidine sedation (Whittington et al., 2002). Furthermore,
high doses (100 µg/kg or higher) of dexmedetomidine effectively
decreases the number and cumulative time of repeated seizures
evoked by prolonged intracranial electrical stimulation of the
amygdala (Kan et al., 2013). In contrast, it was shown that
dexmedetomidine increases the epileptiform activity in epileptic
patients (Chaitanya et al., 2015). In addition, dexmedetomidine
exerts a significant proconvulsant action in the pentylenetetrazol
seizure animal model. The proconvulsant effect is dose-
dependent and stereospecific. It can be blocked by the selective
α2-adrenergic antagonist atipamezole (Mirski et al., 1994).
Likewise, Fukuda et al. (2013) demonstrated that epileptic activity
could be induced in rats by electrical stimulation of the forelimb
after 2 h-long continuous IV infusion of dexmedetomidine
(Fukuda et al., 2013).

In line with the findings by Whittington et al. (2002) and
Airaksinen et al. (2012) we did not observe any seizure-
like responses to short and weak forelimb stimuli (1 s-
long, 0.6–0.8 mA current pulses delivered at 8 Hz) under
dexmedetomidine sedation (Sotero et al., 2015). Here, we did
not observe seizures with 10 s-long stimulation with either
1 or 2 mA pulses delivered at 4 Hz (Figures 6A,B), as
was also shown by Fukuda et al. (2013). Nevertheless, under
the same sedation regime, long (10 s), potent (1 or 2 mA),

repetitive and frequent (8 Hz) peripheral electrical stimuli evoke
seizures (Figures 1–5, 7A–C), as was also demonstrated by
Bortel et al. (2019). Therefore, dexmedetomidine increases the
susceptibility to seizures. However, potent stimuli are necessary,
too, for inducing seizures by peripheral stimulation under such
increased susceptibility.

We did not perform systematic experiments to test the
effect of dexmedetomidine dose on the susceptibility to
seizure. Therefore, we cannot rule out the possibility that the
susceptibility to the generation of seizures depends on the dose of
dexmedetomidine. However, we obtained data that indicate that
the lack of seizures in C57 mice did not depend on the dose. To
maintain proper sedation in three of the mouse experiments, we
had to increase the rate of dexmedetomidine from 0.05 mg/kg/h
to 0.1 mg/kg/h approximately 80 min after the infusion started.
However, no seizures were observed in these mice or the other
mice. These results are consistent with Fukuda et al. (2013)
findings that increasing the dexmedetomidine IV infusion rate
from 0.05 mg/kg/h to 0.15 mg/kg/h in SD rats does not change
the susceptibility to seizure generation.

The trigger to the epileptic activity in our animals is
repetitive electrical somatosensory stimulation. Therefore, these
seizures are reflex seizures. Reflex seizures are defined as
seizures triggered by repetitive, 5–20 s long sensory stimulations
(Kanemoto et al., 2001; Panayiotopoulos(ed.), 2005; Striano et al.,
2012; Sala-Padro et al., 2015; Wolf, 2015). Epileptic activity
induced in our rats consisted of brief and focal electrographic
seizures; the animals did not show any epileptic behavior.
Similar to our observation in rats, touch induced seizures in
humans manifest as focal, brief seizures that may have only an
electrographic display without any overt clinical manifestations
(Panayiotopoulos(ed.), 2005).

Dexmedetomidine Sedation Increases
Susceptibility to Seizures in Rats but Not
in Wild-Type Mice
We have shown that dexmedetomidine increases susceptibility
to seizures in SD and LE rats, but not in C57 mice. Previous
works have demonstrated that the rat and mouse strains show
diverse susceptibility to seizure-induction (Ferraro et al., 1995;
Golden et al., 1995; McKhann et al., 2003). Wistar-Furth rats are
more sensitive to the convulsant effects of kainic acid (KA) than
Sprague- Dawley and Long-Evans Hooded rats (Golden et al.,
1991, 1995). It was shown that the C57BL6 mouse strain has
lower seizure sensitivity than several strains reported as sensitive
to seizures, including the SWR/J, FVB/NJ, CBA/J, DBA/1, and
DBA/2 strains (Frankel et al., 2001). Indeed, DBA/2J mice exhibit
a higher susceptibility to maximal electroshock and KA-induced
seizures relative to C57BL/6J mice (Ferraro et al., 1995, 2002).
Similarly, McKhann et al. (2003) showed that C57BL/6J and
C3HeB/FeJ mice are more resistant to seizures than 129/SvEms
mice. Our results support the assertion that C57 mice have low
susceptibility to seizures. More in general, our findings support
the concept that seizure susceptibility depends on the animal’s
species and strain.
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Our findings demonstrate the lack of significant, sustained
LFP responses to 8 Hz — and only reduced LFP responses to
6 Hz — relative to responses to 4 Hz forepaw stimulation in
mice (Figures 12A–C). The maintenance of the proper balance
between excitation and inhibition is critical for the normal
function of cortical circuits (Turrigiano, 2011). This continuum
of changes in response amplitude suggests that changes in the
balance between excitation and inhibition take place as a function
of the stimulation frequency. We propose that the inhibitory
tone is overall enhanced at higher stimulation frequencies,
possibly because the inhibitory response following a stimulus
is still in effect when the next stimulus is administered in a
train of stimulation at 8 Hz but not at 4 Hz. Indeed, one of
the explanations proposed by Wang et al. (2013) is that the
effect of inhibition remains longer than that of the excitation,
and therefore the subsequent excitation in a train overlaps the
inhibition. It was also shown that a decrease in the firing of
neurons to high-frequency stimuli is a consequence of an altered
balance in excitatory and inhibitory cortical activity (Li et al.,
2009; House et al., 2011).

Our findings in mice experiments differ from Fukuda
et al. (2013) findings and our findings (Figures 6, 7) in SD
rat experiments. Fukuda et al. (2013) reported that under
dexmedetomidine sedation (with the addition of pancuronium
bromide) the evoked LFP responses to forepaw stimulation
were larger at a frequency of 8–10 Hz than those elicited by
4, 6, and 12 Hz stimulation. The difference in the stimulus
frequency dependence of the LFP responses between mice
and SD rats suggests that the effect of stimulus frequency on
the balance between excitation and inhibition is different for
these two species.

CONCLUSION

Our findings demonstrate that hemodynamic responses to potent
stimuli in rats sedated with dexmedetomidine or anesthetized
with dexmedetomidine and isoflurane are possibly due to
induced seizures. We ruled out the possibility that the increased
susceptibility to seizures in our experiments was caused by any
agent other than dexmedetomidine. The induction of seizures in
experiments that use dexmedetomidine depends on stimulation
strength. To obtain physiological yet detectable neuronal and
hemodynamic responses, we propose stimulation parameters that

ensure seizure-free responses under dexmedetomidine sedation
or dexmedetomidine and isoflurane anesthesia. By definition,
obtaining spontaneous activity for the study of the resting-
state condition does not involve administering stimuli. Indeed,
we did not observe any seizures during spontaneous activity
(data not shown).

Our results reveal that dexmedetomidine increases
susceptibility to seizures in the 2 rat strains we tested, SD and
LE rats, but not in wild type C57 mice. More in general, our
findings support the concept that seizure susceptibility depends
on the animal’s species.
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