Core cell cycle regulators, including cyclin-dependent kinases (CDKs), cyclins, and cyclin-dependent kinase inhibitors (CKIs), are known for their well-characterized roles in cell division. Several recent studies have shed light on the roles of these proteins in immune modulation. The development and activation of cells in the immune system take place not only during embryonic development but throughout the life of a multicellular organism. Cell cycle regulators are involved in the development of immune cells, partly as the machinery controlling the expansion and differentiation of the populations of immune cells. In addition, these proteins serve non-cell cycle functions. In this review, we summarize the emerging roles of cell cycle regulators in modulating functions of the immune system and discuss how they may be exploited as therapeutic targets.
CDK8 and its paralog, CDK19, collectively termed ‘Mediator Kinase,’ are cyclin-dependent kinases that have been implicated as key rheostats in cellular homeostasis and developmental programming. CDK8 and CDK19 are incorporated, in a mutually exclusive manner, as part of a 4-protein complex called the Mediator kinase module. This module reversibly associates with the Mediator, a 26 subunit protein complex that regulates RNA Polymerase II mediated gene expression. As part of this complex, the Mediator kinases have been implicated in diverse process such as developmental signaling, metabolic homeostasis and in innate immunity. In recent years, dysregulation of Mediator kinase module proteins, including CDK8/19, has been implicated in the development of different human diseases, and in particular cancer. This has led to intense efforts to understand how CDK8/19 regulate diverse biological outputs and develop Mediator kinase inhibitors that can be exploited therapeutically. Herein, we review both context and function of the Mediator kinases at a molecular, cellular and animal level. In so doing, we illuminate emerging concepts underpinning Mediator kinase biology and highlight certain aspects that remain unsolved.
Cyclin-dependent kinases (CDKs) are the central regulators of the eukaryotic cell cycle, and are conserved across eukaryotes. Their main and well-studied function lies in the regulation and the time-keeping of cell cycle entry and progression. Additionally, more and more non canonical functions of CDKs are being uncovered. One fairly recently discovered role of CDKs is the coordination of carbon and energy metabolism with proliferation. Evidence from different model organisms is accumulating that CDKs can directly and indirectly control fluxes through metabolism, for example by phosphorylating metabolic enzymes. In this mini-review, we summarize the emerging role of CDKs in regulating carbon and energy metabolism and discuss examples in different models from yeast to cancer cells.