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Editorial on the Research Topic

From the Fermi Scale to Cosmology

In July 2012 (Aad et al., 2012; Chatrchyan et al., 2012) the Large Hadron Collider (LHC)
experimental collaborations ATLAS and CMS announced the discovery of the Higgs boson, the
long sought elementary particle of the Standard Model (SM) of particle interactions. The discovery
crowned the SM as the most successful description of natural phenomena at the shortest distance
ever tested by humans.

The discovery left still a number of unanswered questions since the SM remains an incomplete
description of nature. In fact, it fails to account for neutrino masses, the particle nature of dark
matter (DM) and last but not the least the observed asymmetry between matter and antimatter in
the universe (BAU).

Intriguingly, some of the issues above, specifically DM and BAU, lie at the interface between
particle physics (encoded in the SM) and cosmology. This has naturally intensified the efforts to
arrive at a deeper understanding of the connection between the physics of very short distances and
the one dealing with very large ones. For example, the precise knowledge of the SM parameters
allows us to make sensible predictions in cosmology.

Of course, in order for this to be feasible the SM should be embedded in a theory of gravity.
Einstein’s theory, a.k.a General Relativity (GR), is extremely successful and able to describe gravity
and its interactions with matter from the largest scales almost down to the extremely small Planck
length lP ∼ 10−33 cm. However, when approaching lP, GR cannot be treated classically and
needs to be quantized. If we were to naively quantize GR one would discover that it is not
renormalizable, like the pion Lagrangian. This fact tells us that it is only a low energy description of
physical phenomena and that below or at around the Planck length the true elementary nature will
appear. Currently a satisfactory quantum theory of gravity is still missing and both theoretical and
experimental inputs are needed to determine its nature.

The purpose of the Research Topic “From the Fermi Scale to Cosmology” is to bring to light the
latest exciting ideas and results that are meant to elucidate the relation between the LHC collider
program and astrophysics, paying attention to their impact on cosmology.

Perhaps a natural subject along these lines is the potential cosmological role of the Higgs boson.
In Bezrukov and Shaposhnikov (2008, 2014), it was proposed that the Higgs could play the role
of the inflaton. This remains an interesting possibility and therefore Rubio provided an in depth
overview on this subject. Although this is an economical and predictive model of the early universe
its viability is intimately related to the nature of the electroweak vacuum in the SM. Its fate is
not yet sealed since it could still be absolutely stable, unstable, or metastable with a preference
for the last case according to the latest determinations of the top mass mt . It is for this reason
that in recent years much work has been devoted to understand whether the metastable case
can yield a consistent cosmology and, if so, what are the physical implications. A contribution
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by Markkanen et al. presents a comprehensive review of the
implications of the Higgs vacuum metastability for cosmology
along with a pedagogical discussion of the related theoretical
topics, including renormalization group improvement, quantum
field theory in curved spacetime and vacuum decay in
field theory.

However, it is still possible, although unlikely, that we do
not leave in a metastable vacuum, but rather in an absolutely
stable one because the uncertainty on mt is still fairly large.
Corcella, in his review on the definition and determination of
mt , discusses the main strategies to extract mt at the LHC and
the interpretation of the measurements in terms of well-posed
top-mass definitions, taking particular care about renormalon
ambiguities, progress in Monte Carlo event generators for top
physics and theoretical uncertainties.

Of course, even if we were certain about the fate of the SM
vacuum, it would still be possible (and actually likely) that new
degrees of freedom (elementary particles) with masses below the
Planck mass are present in nature. In this case, many particle
physics models of the early universe can be investigated. An
interesting possibility is that the inflaton is identified with the
radial scalar of an axion model. The axion (Weinberg, 1978;
Wilczek, 1978) is independently motivated by the strong CP
problem (Peccei and Quinn, 1977a,b) and is a viable DM
candidate. Ballesteros et al. contribute to this Research Topic
with an overview on this possibility, which, along the lines of
a previous work (Salvio, 2015), is combined with a model of
neutrino masses that is capable of accounting for BAU.

About DM, Arina explains the impact of cosmological and
astrophysical constraints on DM, focusing on simplified models.
She classifies the models that have been analyzed so far and
for each of them she reviews in detail the complementarity of
relic density, direct, and indirect searches with respect to the
LHC searches. She also discusses the capabilities of each type of
search to identify regions where individual approaches to dark
matter detection are the most relevant to constrain the model
parameter space. Finally, a critical overview on the validity of
the dark matter simplified models is provided and the caveats for
the interpretation of the experimental results extracted for these
models are discussed.

As mentioned above, besides DM, neutrino masses furnish
further evidence for BSM. One of the currently most exciting
research areas regarding neutrino masses is about their ordering.
de Salas et al. provide us with a review on the status of our
understanding of neutrino mass ordering and future prospects.
Quite interestingly the Bayesian analysis to the 2018 publicly

available oscillation and cosmological data sets provides strong
evidence for the normal neutrino mass ordering vs. the inverted
scenario, with a significance of 3.5 standard deviations.

Beyond experimental facts theoretical considerations further
motivate extending or modifying the SM and GR. For example
the lack of predictivity of GR at length scales smaller than
lP calls for new ideas to address this issue. Focusing on
scenarios that maintain the GR relativistic field theoretic
structure while remaining in four dimensions, this editorial
features two reviews [written by Eichhorn and Salvio (one of
the editors of this Research Topic)] on the recent efforts to
address the lack of GR predictibility. Both approaches essentially
require gravitational and non-gravitational interactions to flow
to a UV fixed point. Eichhorn’s review focuses on Weinberg’s
asymptotic safety (Weinberg, 1977, 1980) where an infinite
number of terms are added to the Einstein-Hilbert action to
ensure renormalizability. Only very recently asymptotic safety
has been rigorously established in four dimensions for gauge-
Yukawa theories (Litim and Sannino, 2014). A complementary
point of view is described in Salvio’s review of quadratic gravity
(adding only the terms quadratic in the curvature to the Einstein-
Hilbert action renders gravity renormalizable).

In all these scenarios, as well as in GR, non-perturbative
gravitational effects, known as gravitational instantons, can have
deep implications for both particle physics and cosmology.
A review by Hebecker et al. revisits some of the more
recent discussions of the phenomenological relevance of
gravitational instantons. In particular, these instantons are
expected to break the shift symmetries of axions or Goldstone
bosons non-perturbatively.

Clearly the subjects of SM physics and beyond, quantum
gravity and the interplay with cosmology are vast and this
Research Topic is by no mean meant as an exhaustive review.
The choice of the topics reflect partially our interests and partially
the limited time we had at our disposal for a more in depth
review. Additionally, we also wished to guide the reader through
a less dispersive choice of arguments. We sincerely hope that this
Research Topic will inspire the readers to tackle and solve many
of the exciting unsolved issues discussed by our colleagues in their
reviews. Finally, it is our pleasure to thank the colleagues that
accepted being part of this effort for their excellent contributions.
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Higgs Inflation
Javier Rubio*

Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

The properties of the recently discovered Higgs boson together with the absence of new

physics at collider experiments allows us to speculate about consistently extending the

Standard Model of particle physics all the way up to the Planck scale. In this context,

the Standard Model Higgs non-minimally coupled to gravity could be responsible for

the symmetry properties of the Universe at large scales and for the generation of the

primordial spectrum of curvature perturbations seeding structure formation. We overview

the minimalistic Higgs inflation scenario, its predictions, open issues and extensions and

discuss its interplay with the possible metastability of the Standard Model vacuum.

Keywords: higgs, inflation, higgs inflation, vacuum stability, scale-invariance

1. INTRODUCTION AND SUMMARY

Inflation is nowadays a well-established paradigm (Starobinsky, 1980; Guth, 1981; Mukhanov and
Chibisov, 1981; Albrecht and Steinhardt, 1982; Linde, 1982, 1983) able to explain the flatness,
homogeneity and isotropy of the Universe and the generation of the primordial density fluctuations
seeding structure formation (Hawking, 1982; Starobinsky, 1982; Sasaki, 1986; Mukhanov, 1988). In
spite of the phenomenological success, the inflaton’s nature remains unknown and its role could
be played by any particle physics candidate able to imitate a slowly-moving scalar field in the very
early Universe.

In spite of dedicated searches, the only outcome of the Large Hadron Collider (LHC)
experiments till date is a scalar particle with mass (Aad et al., 2012; Chatrchyan et al., 2012;
Tanabashi et al., 2018)

mH = 125.18± 0.16 GeV (1.1)

and properties similar to those of the Standard Model (SM) Higgs. The mass value (1.1) is certainly
particular since it allows to extend the SM up to the Planck scale without leaving the perturbative
regime (Shaposhnikov and Wetterich, 2010). The main limitation to this appealing scenario is
the potential instability of the electroweak vacuum at high energies. Roughly speaking, the value
of the Higgs self-coupling following from the SM renormalization group equations decreases
with energy till a given scale and starts increasing thereafter. Whether it stays positive all the
way up to the Planck scale, or turns negative at some intermediate scale µ0 depends, mainly,
on the interplay between the Higgs mass mH and the top quark Yukawa coupling yt extracted
from the reconstructed Monte-Carlo top mass in collider experiments (Butenschoen et al., 2016),
cf. Figure 1. Neglecting the effect of gravitational corrections, the critical value ycritt separating the
region of absolute stability from the metastability/instability1 regions is given by (Bezrukov and
Shaposhnikov, 2015b)

ycritt = 0.9244± 0.0012
mH/GeV− 125.7

0.4
+ 0.0012

αs(mZ)− 0.01184

0.0007
, (1.2)

1The metastability region is defined as the parameter space leading to vacuum instability at energies below the Planck scale

but with an electroweak vacuum lifetime longer than the age of the Universe.
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Rubio Higgs Inflation

FIGURE 1 | The running of the Higgs self-coupling following from the

Standard Model renormalization group equations for several values of the top

quark Yukawa coupling at the electroweak scale and a fixed Higgs boson

mass mH = 125.5 GeV (Bezrukov et al., 2015).

with αs(mZ) the strong coupling constant at the Z bosonmass.
Within the present experimental and theoretical uncertainties
(Bezrukov and Shaposhnikov, 2015b; Butenschoen et al., 2016;
Espinosa et al., 2017), the SM is compatible with vacuum
instability, metastability and absolute stability (Bezrukov et al.,
2012; Degrassi et al., 2012; Buttazzo et al., 2013; Espinosa et al.,
2015; Espinosa, 2016), with the separation among the different

cases strongly depending on the ultraviolet completion of gravity
(Branchina and Messina, 2013; Branchina et al., 2014, 2015),
cf. Figure 2.

In the absence of physics beyond the SM, it is certainly
tempting to identify the recently discovered Higgs boson with
the inflaton condensate. Unfortunately, the Higgs self-interaction
significantly exceeds the value λ ∼ 10−13 leading to a sufficiently
long inflationary period without generating an excessively large
spectrum of primordial density perturbations (Linde, 1983). The
situation is unchanged if one considers the renormalization
group enhanced potential following from the extrapolation of
the SM renormalization group equations to the inflationary scale
(Isidori et al., 2008; Fairbairn et al., 2014; Hamada et al., 2014a).
The simplest way out is to modify the Higgs field kinetic term
in the large-field regime. In Higgs inflation2 this is done by
including a direct coupling to the Ricci scalar R (Bezrukov and
Shaposhnikov, 2008), namely3

δS =

∫

d4x
√

−g
[

ξH†HR
]

, (1.3)

2An alternative possibility involving a derivative coupling among the Einstein

tensor and the Higgs kinetic term was considered in Germani and Kehagias

(2010b), Germani and Kehagias (2010a), and Fumagalli et al. (2018).
3 Prior to Bezrukov and Shaposhnikov (2008), the effect of non-minimal couplings

had been extensively studied in the literature (see for instance Minkowski, 1977;

Smolin, 1979; Zee, 1979; Spokoiny, 1984; Futamase and Maeda, 1989; Salopek

et al., 1989; Fakir and Unruh, 1990a,b; Makino and Sasaki, 1991; Fakir et al., 1992;

Cervantes-Cota andDehnen, 1995a,b; Kaiser, 1995; Komatsu and Futamase, 1998),

but never with the SM Higgs as the inflaton.

FIGURE 2 | The SM stability and metastability regions for a renormalization

point µ = 173.2 GeV in the MS scheme (Bezrukov and Shaposhnikov,

2015b). The solid red line corresponds to the critical top quark Yukawa

coupling (1.2) leading to vacuum instability at a sub-Planckian energy scale

µ0, with the dashed lines accounting for uncertainties associated with the

strong coupling constant. To the left (right) of these diagonal lines, the SM

vacuum is unstable (metastable). The filled elliptical contours account for the

1σ and 2σ experimental errors on the Higgs mass in Olive et al. (2014) and

the CMS (Monte-Carlo) top quark mass in Collaboration (2014), namely

mH = 125.7± 0.4 GeV and mt = 172.38± 0.10 (stat)± 0.66 (syst) GeV (note

that the current value of the Higgs mass is slightly lower Tanabashi et al.,

2018). The additional empty contours illustrate the shifts associated with the

theoretically ambiguous relation between the top quark Yukawa coupling and

the (Monte-Carlo) top quark mass (cf. Bezrukov and Shaposhnikov, 2015b for

details).

with H the Higgs doublet and ξ a dimensionless constant to
be fixed by observations. The inclusion of the non-minimal
coupling (1.3) can be understood as an inevitable consequence
of the quantization of the SM in a gravitational background,
where this term is indeed required for the renormalization of the
energy-momentum tensor (Callan et al., 1970; Birrell and Davies,
1984).

When written in the Einstein frame, the Higgs inflation
scenario displays two distinct regimes. At low energies, it
approximately coincides with the SM minimally coupled to
gravity. At high energies, it becomes a chiral SM with no
radial Higgs component (Dutta et al., 2008; Bezrukov and
Shaposhnikov, 2009). In this latter regime, the effective Higgs
potential becomes exponentially flat, allowing for inflation with
the usual chaotic initial conditions. The associated predictions
depend only on the number of e-folds of inflation, which is itself
related to the duration of the heating stage. As the type and
strength of the interactions among the Higgs field and other SM
particles is experimentally known, the duration of this entropy
production era can be computed in detail (Bezrukov et al., 2009a,
2011a; Garcia-Bellido et al., 2009; Repond and Rubio, 2016; Ema
et al., 2017a), leading to precise inflationary predictions in perfect
agreement with observations (Akrami et al., 2018).

The situation becomes more complicated when quantum
corrections are included. The shape of the inflationary potential
depends then on the values of the Higgs mass and top Yukawa
coupling at the inflationary scale. In addition to the plateau
already existing at tree-level (Bezrukov and Shaposhnikov, 2014;
Enckell et al., 2016; Fumagalli and Postma, 2016; Fumagalli,

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2019 | Volume 5 | Article 508

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Rubio Higgs Inflation

2017), the renormalization group enhanced potential can develop
a quasi-inflection point along the inflationary trajectory (Allison,
2014; Bezrukov and Shaposhnikov, 2014; Hamada et al., 2014b;
Bezrukov et al., 2015, 2018; Rubio, 2015; Enckell et al., 2016;
Fumagalli and Postma, 2016; Rasanen and Wahlman, 2017) or
a hilltop (Fumagalli and Postma, 2016; Rasanen and Wahlman,
2017; Enckell et al., 2018), with different cases giving rise to
different predictions.

Although a precise measurement of the inflationary
observables could be understood as an interesting consistency
check between cosmological observations and particle physics
experiments (Barvinsky et al., 2008, 2012; Espinosa et al.,
2008; Bezrukov and Shaposhnikov, 2009; Bezrukov et al.,
2009b, 2012; De Simone et al., 2009; Popa and Caramete, 2010;
Salvio, 2013), the low- to high-energy connection is subject to
unavoidable ambiguities related to the non-renormalizability
of the model (Barbon and Espinosa, 2009; Burgess et al., 2009,
2010; Bezrukov et al., 2011b, 2015, 2018; George et al., 2014,
2016; Rubio, 2015; Enckell et al., 2016; Fumagalli and Postma,
2016). In particular, the finite parts of the counterterms needed
to renormalize the tree-level action lead to localized jumps in
the SM renormalization group equations when connected to
the chiral phase of Higgs inflation. The strength of these jumps
encodes the remnants of the ultraviolet completion and cannot
be determined within effective field theory approach (Bezrukov
et al., 2011b, 2015; Burgess et al., 2014). If the finite parts are
significantly smaller than the associated coupling constants,
Higgs inflation leads to a direct connection among the SM
parameters measured at collider experiments and the large scale
properties of the Universe, provided that the former do not give
rise to vacuum instability. On the contrary, if the jumps in the
coupling constants are large, the relation between high- and
low-energy physics is lost, but Higgs inflation can surprisingly
occur even if the electroweak vacuum is not completely stable
(Bezrukov et al., 2015).

In this article we review the minimalistic Higgs inflation
scenario, its predictions, open issues and extensions, and discuss
its interplay with the potential metastability of the SM vacuum.
The paper is organized as follows:

• The general framework is introduced in section 2. To illustrate
the effect of non-minimal couplings, we consider an induced
gravity scenario in which the effective Newton constant is
completely determined by the Higgs vacuum expectation
value. Having this toy model in mind, we reformulate Higgs
inflation in the so-called Einstein frame in which the coupling
to gravity is minimal and all non-linearities appear in the scalar
sector of the theory. After emphasizing the pole structure of
the Einstein-frame kinetic term and its role in the asymptotic
flatness of the Higgs inflation potential, we compute the
tree-level inflationary observables and discuss the decoupling
properties of the SM degrees of freedom.

• The limitations of Higgs inflation as a fundamental theory
are reviewed in section 3. In particular, we present a
detailed derivation of the cutoff scales signaling the violation
of perturbative unitarity in different scattering processes
and advocate the interpretation of Higgs inflation as an
effective field theory to be supplemented by an infinite set

of higher dimensional operators. Afterwards, we adopt a
self-consistent approach to Higgs inflation and formulate
the set of assumptions leading to a controllable relation
between low- and high-energy observables. Based on the
resulting framework, we analyze the contribution of quantum
corrections to the renormalization group enhanced potential
and their impact on the inflationary observables. We finish
this section by discussing the potential issues of Higgs inflation
with the metastability of the SM vacuum.

• Some extensions and alternatives to the simplest Higgs
inflation scenario are considered in section 4. In particular,
we address the difference between the metric and Palatini
formulations of the theory and its extension to a fully scale
invariant framework (Shaposhnikov and Zenhausern, 2009;
Blas et al., 2011; Garcia-Bellido et al., 2011, 2012; Bezrukov
et al., 2013; Rubio and Shaposhnikov, 2014; Karananas and
Rubio, 2016; Trashorras et al., 2016; Casas et al., 2017, 2018).
The inflationary predictions in these models are put in one to
one correspondence with the pole structure of the Einstein-
frame kinetic term, allowing for an easy comparison with the
results of the standard Higgs inflation scenario.

Overall, we intend to complement the existing monographs
in the literature (Bezrukov, 2013; Bezrukov and Shaposhnikov,
2015a; Moss, 2015) by i) providing a further insight on the
classical formulation of Higgs inflation and by ii) focusing on
the uncertainties associated with the non-renormalizability of the
theory and their impact on model building.

2. GENERAL FRAMEWORK

The inflationary paradigm is usually formulated in terms of
conditions on the local flatness on an arbitrary potential, which
can in principle contain a large number of extrema and slopes
(Artymowski and Rubio, 2016). This flatness is usually related
to the existence of some approximate shift-symmetry, which, for
the purposes of Higgs inflation, is convenient to reformulate as a
non-linear realization of approximate scale-invariance.

2.1. Induced Gravity
Let us start by considering an induced gravity scenario

S =

∫

d4x
√

−g

[

ξh2

2
R−

1

2

(

∂h
)2

−

λ

4
h4 −

1

4
FµνF

µν

−

g2

4
h2BµB

µ
− iψ̄ /∂ψ −

y
√

2
hψ̄ψ

]

, (2.1)

involving a scalar field h, a vector field Bµ and a fermion field ψ ,
with interactions similar to those appearing in the SM of particle
physics when written in the unitary gauge H = (0, h/

√

2)T .
The quantity FµνF

µν stands for the standard Bµ kinetic term,
which for simplicity we take to be Abelian. In this toy model,
the effective Newton constant is induced by the scalar field
expectation value,

GN,eff ≡

1

8πξh2
. (2.2)
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In order for GN,eff to be well-behaved, the non-minimal coupling
ξ is restricted to take positive values. This condition is equivalent
to require the semi-positive definiteness of the scalar field kinetic
term, as can be easily seen by performing a field redefinition
h2 → h2/ξ .

An important property of the induced gravity action (2.1) is its
invariance under scale transformations

xµ → x̄µ = α xµ , ϕ(x) → ϕ̄(x̄) = α1ϕϕ(α x) . (2.3)

Here α is an arbitrary constant, ϕ(x) compactly denotes the
various fields in the model and 1ϕ ’s are their corresponding
scaling dimensions. The consequences of this dilatation
symmetry are more easily understood in a minimally-coupled
frame displaying the standard Einstein-Hilbert term. This
Einstein frame is achieved by a Weyl redefinition of the metric4

gµν → 2 gµν , 2 ≡

F2
∞

h2
, F∞ ≡

MP
√

ξ
, (2.4)

together with a Weyl rescaling of the vector and fermion fields,

Aµ → 2−1/2 Aµ , ψ → 2−3/4 ψ . (2.5)

After some trivial algebra we obtain an Einstein-frame action5

S =

∫

d4x
√

−g

[

M2
P

2
R−

1

2
M2

PK(2)(∂2)2 −
λ

4
F4
∞

−

1

4
FµνF

µν
−

g2

4
F2
∞
BµB

µ
− iψ̄ /∂ψ −

y
√

2
F∞ψ̄ψ

]

,(2.6)

containing a non-canonical term for the 2 field. The coefficient
of this kinetic term,

K(2) ≡
1

4|a|22
, (2.7)

involves a quadratic pole at2 = 0 and a constant

a ≡ −

ξ

1+ 6ξ
< 0 , (2.8)

varying between zero at ξ = 0 and −1/6 when ξ → ∞. The
2-field kinetic term can be made canonical by performing an
additional field redefinition,

2−1
= exp

(

2
√

|a|φ

MP

)

, (2.9)

4In spite of its extensive use in the literature, we avoid referring to point-wise

rescalings of the metric as “conformal transformations.” For a comprehensive

discussion on the differences between Weyl and conformal symmetries, see for

instance Karananas and Monin (2016a,b).
5In order to keep the notation as simple as possible, we will not introduce

different notations for the quantities defined in different Weyl-related frames. In

particular, the implicit Lorentz contractions in this article should be understood to

be performed with the metric of the frame under consideration.

mapping the vicinity of the pole at 2 = 0 to φ → ∞. The
resulting action

S =

∫

d4x
√

−g

[

M2
P

2
R−

1

2
(∂φ)2 −

λ

4
F4
∞

−

1

4
FµνF

µν

−

g2

4
F2
∞
BµB

µ
− iψ̄ /∂ψ +

y
√

2
F∞ψ̄ψ

]

, (2.10)

is invariant under shift transformations φ → φ + C, with
C a constant. The exponential mapping in Equation (2.9)
indicates that such translational symmetry is nothing else than
the non-linear realization of the original scale invariance we
started with in Equation (2.1) (Csaki et al., 2014). The Einstein-
frame transition in Equation (2.4) is indeed equivalent to
the spontaneous breaking of dilatations, since we implicitly
required the field h to acquire a non-zero expectation value.
The canonically normalized scalar field φ is the associated
Goldstone boson and as such it is completely decoupled
from the matter fields Bµ and ψ . The non-minimal coupling
to gravity effectively replaces h by F∞ in all dimension-4
interactions involving conformal degrees of freedom. Note,
however, that this decoupling statement does not apply to scale-
invariant extensions including additional scalar fields (Kaiser,
2010; Garcia-Bellido et al., 2011; Bezrukov et al., 2013; Kaiser
et al., 2013; Kaiser and Sfakianakis, 2014; Karananas and Rubio,
2016) or other non-conformal interactions such as R2 terms
(Starobinsky, 1980; Gorbunov and Panin, 2011, 2012; Gorbunov
and Tokareva, 2013).

2.2. Higgs Inflation From Approximate
Scale Invariance
Although the toy model presented above contains many of the
key ingredients of Higgs inflation, it is not phenomenologically
viable. In particular, the Einstein-frame potential is completely
shift-symmetric and does not allow for inflation to end. On top of
this limitation, the scalar field φ is completely decoupled from all
conformal fields, excluding the possibility of entropy production
and the eventual onset of a radiation-dominated era. All these
phenomenological limitations are intrinsically related to the
exact realization of scale invariance and as such they should be
expected to disappear once a (sizable) dimensionfull parameter
is included into the action. This is precisely what happens in
Higgs inflation. The total Higgs inflation action (Bezrukov and
Shaposhnikov, 2008)

S =

∫

d4x
√

−g

[

M2
P

2
R+ ξH†HR+ LSM

]

, (2.11)

contains two dimensionfull parameters: the reduced Planck
MP ≡ 1/

√

8πGN = 2.435 × 1018 GeV and the Higgs vacuum
expectation value vEW ≃ 250 GeV responsible for the masses
within the SM Lagrangian density LSM. Among these two scales,
the Planck mass is the most important one at the large field
values relevant for inflation. To illustrate how the inclusion of
MP modifies the results of the previous section, let us consider
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the graviscalar part of Equation (2.11) in the unitary gauge H =

(0, h/
√

2)T , namely

S =

∫

d4x
√

−g

[

M2
P + ξh

2

2
R−

1

2

(

∂h
)2

− U(h)

]

, (2.12)

with

U(h) =
λ

4
(h2 − v2EW)2 , (2.13)

the usual SM symmetry-breaking potential. As in the induced
gravity scenario, the inclusion of the non-minimal coupling to
gravity changes the strength of the gravitational interaction and
makes it dependent on the Higgs field,

GN,eff =

GN

1+ 8πξGNh2
. (2.14)

In order for the graviton propagator to be well-defined at all h
values, the non-minimal coupling ξ must be positive6. If ξ 6=

0, this requirement translates into a weakening of the effective
Newton constant at increasing Higgs values. For non-minimal
couplings in the range 1≪ ξ ≪M2

P/v
2
EW, this effect is important

in the large-field regime h ≫ MP/
√

ξ , but completely negligible
otherwise.

As we did in section 2.1, it is convenient to reformulate
Equation (2.12) in the Einstein frame by performing a Weyl
transformation gµν → 2 gµν with

2−1
= 1+

h2

F2
∞

, F∞ ≡

MP
√

ξ
. (2.15)

In the new frame, all the non-linearities associated with the non-
minimal Higgs-gravity interaction are moved to the scalar sector
of the theory,

S =

∫

d4x
√

−g

[

M2
P

2
R−

1

2
M2

PK(2) (∂2)2 − V(2)

]

, (2.16)

which contains now a non-exactly flat potential

V(2) ≡ U(2)22
=

λF4
∞

4

[

1−

(

1+
v2EW
F2
∞

)

2

]2

, (2.17)

and a non-canonical kinetic sector resulting from the rescaling
of the metric determinant and the non-homogeneous part of the
Ricci scalar transformation. The kinetic function

K(2) ≡
1

4|a|22

(

1− 6|a|2

1−2

)

, (2.18)

shares some similarities with that in Equation (2.7). In particular,
it contains two poles located respectively at 2 = 0 and 2 = 1.

6Models with negative ξ have been considered in the literature (Herranen

et al., 2014; Kamada, 2015a; Figueroa et al., 2018). In this type of scenarios

the gravitational instability at large field values can be avoided by replacing the

quadratic coupling ξh2 by a designed function ξ f (h) remaining smaller than M2
P

during the whole field regime.

The first pole is an inflationary pole, like the one appearing in the
induced gravity scenario. This pole leads to an enhanced friction
for the 2 field around 2 = 0 and allows for inflation to happen
even if the potential V(2) is not sufficiently flat. The second pole
is aMinkowski pole aroundwhich theWeyl transformation equals
one and the usual SM action is approximately recovered. To see
this explicitly, we carry out an additional field redefinition 7,

1

M2
P

(

dφ

d2

)2

= K(2) , (2.19)

to recast Equation (2.16) in terms of a canonically normalized
scalar field φ. This differential equation admits an exact solution
(Garcia-Bellido et al., 2009)

√

|a|φ

MP
= arcsinh

√

1−2

(1− 6|a|)2
−

√

6|a| arcsinh

√

6|a|(1−2)

1− 6|a|
.

(2.20)
In terms of the original field h, we can distinguish two asymptotic
regimes

φ ≃

{

h for φ < φC ,
MP

2
√

|a|
log

(

1+ h2

F2
∞

)

for φ > φC ,
(2.21)

separated by a critical value

φC ≡

2MP(1− 6|a|)
√

|a|
. (2.22)

The comparison between these approximate expressions and the
exact field redefinition in Equation (2.20) is shown in Figure 3.

FIGURE 3 | Comparison between the approximate expressions in

Equation (2.21) (dashed black and blue lines) and the exact solution (2.20)

(solid red). Below the critical scale φc, Higgs inflation coincides, up to highly

suppressed corrections, with the SM minimally coupled to gravity. Above that

scale, the Higgs field starts to decouple from the SM particles. The decoupling

becomes efficient at a scale F∞, beyond which the model can be well

approximated by a chiral SM with no radial Higgs component.

7Note that all equations till this point hold even if the non-minimal coupling ξ is

field-dependent (Ezquiaga et al., 2018; Masina, 2018).
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The large hierarchy between the transition scale φC and the
electroweak scale allows us to identify in practice the vacuum
expectation value vEW with φ = 0. In this limit, the Einstein-
frame potential (2.17) can be rewriten as

V(φ) ≃
λ

4
F4(φ) , (2.23)

with

F(φ) ≡











φ for φ < φC ,

F∞

(

1− e
−

2
√

|a|φ
MP

)
1
2

for φ > φC .
(2.24)

At φ < φC we recover the usual Higgs potential (up to highly
suppressed corrections, cf. section 3.1). At φ > φC the Einstein-
frame potential becomes exponentially stretched and approaches
the asymptotic value F∞ at φ > MP/(2

√

|a|). The presence ofMP

in Equation (2.11) modifies also the decoupling properties of the
Higgs field as compared to those in the induced gravity scenario.
In particular, the masses of the intermediate gauge bosons and
fermions in the Einstein-frame8,

m2
B(φ) ≡

g2

4
F2(φ) , mF(φ) ≡

y
√

2
F(φ) , (2.25)

coincide with the SM masses in the small field regime (φ <

φC) and evolve toward constant values proportional to F∞ in
the large-field regime (φ > MP/(2

√

|a|)). The transition to
the Einstein-frame effectively replaces h by F(φ) in all (non-
derivative) SM interactions. This behavior allows us to describe
the Einstein-frame matter sector in terms of a chiral SM with
vacuum expectation value F(φ) (Dutta et al., 2008; Bezrukov and
Shaposhnikov, 2009).

2.3. Tree-Level Inflationary Predictions
The flattening of the Einstein-frame potential (2.23) due to
the 2 = 0 pole allows for inflation with the usual slow-roll
conditions even if the potentialV(2) is not sufficiently flat. Let us
compute the inflationary observables in the corresponding region
φ > φC, where

V(φ) ≃
λF4

∞

4

(

1− e
−

2
√

|a|φ
MP

)2

. (2.26)

The statistical information of the primordial curvature
fluctuations generated by a single-field model like the one
under consideration is mainly encoded in the two-point
correlation functions of scalar and tensor perturbations, or
equivalently in their Fourier transform, the power spectra.
Following the standard approach (Mukhanov et al., 1992), we
parameterize these spectra in an almost scale-invariant form,

Ps = As

(

k

k∗

)ns−1

, Pt = At

(

k

k∗

)nt

, (2.27)

8Here we use a compact notation for the gauge boson couplings, namely g = g2
and g2 cos θw for the B = W± and Z bosons respectively, with g1 and g2 the gauge

couplings of the U(1)Y and SU(2)L SM groups and θw = tan−1(g1/g2) the weak

mixing angle. The coupling y denotes a generic Yukawa coupling.

and compute the inflationary observables

As =
1

24π2M4
P

V

ǫ
, ns = 1+ 2η− 6ǫ , r ≡

At

As
= −8nt = 16ǫ ,

(2.28)
with

ǫ ≡
M2

P

2

(

V ′

V

)2

, η ≡ M2
P

V ′′

V
, (2.29)

the first and second slow-roll parameters and the primes denoting
derivatives with respect to φ. The quantities in (2.28) should be
understood as evaluated at a field value φ∗ ≡ φ(N∗), with

N∗ =

1

MP

∫ φ∗

φE

dφ
√

2ǫ
=

1

8|a|

(

e2
√

|a|φ/MP
−

2
√

|a|φ

MP

)
∣

∣

∣

∣

φ∗

φE

(2.30)
the e-fold number at which the reference scale k∗ in
Equation (2.27) exits the horizon, i.e. k∗ = a∗H∗. Here,

φE =

MP

2
√

|a|
ln

(

1+ 2
√

2|a|
)

, (2.31)

stands for the field value at the end of inflation, which is defined,
as usual, by the condition ǫ(φE) ≡ 1. Equation (2.30) admits an
exact inversion,

e2
√

|a|φ∗/MP
= −W−1

[

−e−8|a|N̄∗

]

, (2.32)

withW−1 the lower branch of the Lambert function and

N̄∗ ≡ N∗ +

1

8|a|

(

e2
√

|a|φE/MP
−

2
√

|a|φE

MP

)

, (2.33)

a rescaled number of e-folds. Inserting Equation (2.32) into (2.28)
we get the following analytical expressions for the primordial
scalar amplitude,

As =
λ(1− 6|a|)2

12π2
|a|

(1+W−1)
4

(8|a|W−1)2
, (2.34)

its spectral tilt,

ns = 1− 16|a|
1−W−1

(1+W−1)
2
, (2.35)

and the tensor-to-scalar ratio

r =
128 |a|

(1+W−1)
2
. (2.36)

At large |a|N∗, these predictions display an interesting attractor
behavior, very similar to that appearing in α-attractor scenarios
(Ferrara et al., 2013; Kallosh et al., 2013; Galante et al.,
2015) (see also Artymowski and Rubio, 2016). Indeed, by
taking into account the lower bound on the Lambert function
(Chatzigeorgiou, 2016),

W−1[−e−8|a|N̄∗ ] > −8|a|N̄∗ −

√

2(8|a|N̄∗ − 1) , (2.37)
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we can obtain the approximate expressions9

ns ≃ 1−
2

N̄∗

, r ≃
2

|a|N̄2
∗

. (2.38)

at 8|a|N̄∗ ≫ 1. The free parameter |a| (or equivalently the non-
minimal coupling ξ ) can be fixed by combining Equation (2.34)
with the normalization of the primordial spectrum at large scales
(Akrami et al., 2018),

log(1010As) ≃ 3.094± 0.034 . (2.39)

Doing this, we get a relation

ξ ≃ 800N̄∗

√

λ , (2.40)

among the non-minimal coupling ξ , the number of e-folds N̄∗

and the Higgs self-coupling λ.
The precise value of the number of e-folds in Equations (2.38),

(2.40) depends on the whole post-inflationary expansion and, in
particular, on the duration of the heating stage. As the strength
of the interactions among the Higgs field and the SM particles
is experimentally known, the entropy production following the
end of inflation can be computed in detail (Bezrukov et al.,
2009a; Garcia-Bellido et al., 2009; Repond and Rubio, 2016)10.
The depletion of the Higgs-condensate is dominated by the non-
perturbative production of massive intermediate gauge bosons,
which, contrary to the SM fermions, can experience bosonic
amplification. Once created, the W± and Z bosons can decay
into lighter SM fermions with a decay probability proportional to
the instantaneous expectation value of the Higgs field φ(t). The
onset of the radiation-domination era is determined either by i)
the time at which the Higgs amplitude approaches the critical
value φC where the effective potential becomes quartic or by ii)
the moment at which the energy density into relativistic fermions
approaches that of the Higgs condensate; whatever happens first.
The estimates in Garcia-Bellido et al. (2009), Bezrukov et al.
(2009a), and Repond and Rubio (2016) provide a range

1013 GeV . TH . 2× 1014 GeV , (2.41)

with the lower and upper bounds associated respectively with the
cases i) and ii) above. For the upper limit of this narrow window,
we have N̄∗ ≃ N∗ ≃ 59 and we can rewrite Equation (2.40) as a
relation between ξ and λ,

ξ ≃ 47200
√

λ . (2.42)

Note that a variation of the Higgs self-coupling in this equation
can be compensated by a change of the a priori unknown non-
minimal coupling to gravity. For the tree-level value λ ∼ O(1),
the non-minimal coupling must be significantly larger than one,
but still much smaller than the value ξ ∼ M2

P/v
2
EW ∼ 1032

leading to sizable modifications of the effective Newton constant

9Note that the expressions contain N̄∗ rather than N∗.
10This allows, for instance, to distinguish Higgs inflation from R2 Starobinsky

inflation (Starobinsky, 1980; Bezrukov and Gorbunov, 2012).

at low energies. In this regime, the parameter |a| is very close to its
maximum value 1/6. This effective limit simplifies considerably
the expression for the critical scale φC separating the low- and
high-energy regimes,

φC ≃

√

2

3

MP

ξ
, (2.43)

and collapses the inflationary predictions to the attractor values
(Bezrukov and Shaposhnikov, 2008)

ns ≃ 1−
2

N̄∗

≃ 0.966 , r ≃
12

N̄2
∗

≃ 0.0034 , (2.44)

in very good agreement with the latest results of the Planck
collaboration (Akrami et al., 2018). Note that, although
computed in the Einstein frame, these predictions could have
been alternatively obtained in the non-minimally coupled
frame (2.12), provided a suitable redefinition of the slow-roll
parameters in order to account for the Weyl factor relating the
two frames (Makino and Sasaki, 1991; Fakir et al., 1992; Komatsu
and Futamase, 1999; Flanagan, 2004; Tsujikawa and Gumjudpai,
2004; Koh, 2006; Chiba and Yamaguchi, 2008, 2013;Weenink and
Prokopec, 2010; Postma and Volponi, 2014; Ren et al., 2014; Jarv
et al., 2015a,b, 2017; Burns et al., 2016; Kuusk et al., 2016; Karam
et al., 2017; Karamitsos and Pilaftsis, 2018a,b).

3. EFFECTIVE FIELD THEORY
INTERPRETATION

The presence of gravity makes Higgs inflation perturbatively
non-renormalizable (Barbon and Espinosa, 2009; Burgess et al.,
2009, 2010; Bezrukov et al., 2011b) and forbids its interpretation
as an ultraviolet complete theory. The model should be therefore
understood as an effective description valid up to a given cut-
off scale 3 (Bezrukov et al., 2011b; George et al., 2016). This
cutoff could either indicate the onset of a strongly coupled
regime to be studied within the model by non-perturbative
techniques (such as resummations, lattice simulations or
functional renormalization studies) (Aydemir et al., 2012; Calmet
and Casadio, 2014; Saltas, 2016; Escrivà and Germani, 2017) or
the appearance of new degrees of freedom beyond the initially-
assumed SM content (Giudice and Lee, 2011; Barbon et al.,
2015).

3.1. The Cutoff Scale
A priori, the cutoff scale of Higgs inflation could coincide with
the Planck scale, where gravitational effects should definitely
taken into account. Although quite natural, the identification of
these two energy scales may not be theoretically consistent, since
other interactions could lead to violations of tree-level unitarity
at a lower energy scale. An estimate11 of the cutoff scale can be
obtained by expanding the fields around their background values,

11This procedure does not take into account possible cancellations among

scattering diagrams, as those taking place, for instance, in models involving a

singlet scalar field not minimally coupled to gravity (Hertzberg, 2010).
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such that all kind of higher dimensional operators appear in the
resulting action (Bezrukov et al., 2011b; Ferrara et al., 2011).
The computation is technically simpler in the original frame
(2.11). In order to illustrate the procedure let us consider the
graviscalar sector in Equation (2.12). Expanding the fields around
their background values ḡµν and ¯h,

gµν = ḡµν + γµν , h =
¯h+ δh , (3.1)

we obtain the following quadratic Lagrangian density for the
perturbations γµν and δh

L
(2)

=

M2
P + ξ

¯h2

8

(

γ µν2γµν + 2∂νγ
µν∂ργµρ − 2∂νγ

µν∂µγ

− γ2γ
)

−

1

2
(∂µδh)

2
+ ξ ¯h

(

∂λ∂ργ
λρ

− 2γ
)

δh , (3.2)

with γ = ḡµνγµν denoting the trace of the metric excitations.
For non-vanishing ξ , the last term in this equation mixes the
trace of the metric perturbation with the scalar perturbation δh
(Barvinsky et al., 2008, 2009; De Simone et al., 2009). To identify
the different cutoff scales one must first diagonalize the kinetic
terms. This can be done by performing a redefinition of the

perturbations (γµν , δh) → (γ̂µν , δ ˆh) with

γµν =
1

√

M2
P + ξ

¯h2
γ̂µν −

2ξ ¯hḡµν
√

(M2
P + ξ

¯h2)(M2
P + (1+ 6ξ )ξ ¯h2)

δ ˆh ,

(3.3)

δh =

√

√

√

√

M2
P + ξ

¯h2

M2
P + (1+ 6ξ )ξ ¯h2

δ ˆh . (3.4)

Once Equation (3.2) has been reduced to a diagonal form, we can
proceed to read the cutoff scales. The easiest one to identify is that
associated with purely gravitational interactions,

3P(¯h) ≡

√

M2
P + ξ

¯h2 , (3.5)

which coincides with the effective Planck scale in Equation (2.12).
For scalar-graviton interactions, the leading-order higher-

dimensional operator is (δ ˆh)22γ̂ /3S(¯h), where

3S(¯h) ≡
M2

P + (1+ 6ξ )ξ ¯h2

ξ

√

M2
P + ξ

¯h2
. (3.6)

Although we have focused on the graviscalar sector of the theory,
the lack of renormalizability associated with the non-minimal
coupling to gravity permeates all SM sectors involving the Higgs
field. One could study, for instance, the scattering of intermediate
W± and Z bosons. Since we are working in the unitary gauge,
it is sufficient to consider the longitudinal polarization. The
modification of the Higgs kinetic term at large field values
changes the delicate pattern of cancellations in the SM and leads
to a tree-level unitarity violation at a scale

3G(¯h) ≡

√

M2
P + ξ (1+ 6ξ )¯h2

√

6ξ
. (3.7)

Note that the above scales depend on the background field ¯h. For
small field values (¯h . MP/ξ ), the cutoffs (3.5), (3.6) and (3.7)
coincide with those obtained by naively expanding the theory
around the electroweak scale, namely3P ≃ MP,3S ≃

√

63G ≃

MP/ξ (Barbon and Espinosa, 2009; Burgess et al., 2009, 2010;
Hertzberg, 2010; Atkins and Calmet, 2011). At large field values,
(¯h & MP/ξ ), the suppression scale depends on the particular
process under consideration. For MP/ξ ≪

¯h ≪ MP/
√

ξ the
graviscalar cutoff3S grows quadratically till ¯h ≃ MP/

√

ξ , where
it becomes linear in ¯h and traces the dynamical Planck mass in
that regime,3P ≃

√

ξ ¯h. On the other hand, the gauge cutoff3G

smoothly interpolates between 3G ∼ MP/ξ at ¯h . MP/ξ and
3G ∼ g ¯h at ¯h & MP/ξ . Note that all cutoffs scales become linear
in ¯h at ¯h & MP/ξ . This means that any operator1L constructed
out of them, the Higgs field and some Wilson coefficients cn
approaches a scale-invariant form at large field values, namely

1L ≡

∑

n

cn On[¯h]
[

3(¯h)
]n−4

≃

∑

n

cn On[¯h]

(
√

ξ ¯h)n−4
∼

∑

n

cn

(
√

ξ )n−4
h4 ,

n > 4 . (3.8)

3.2. Relation Between High- and
Low-Energy Parameters
In what follows we will assume that the ultraviolet completion
of the theory respects the original symmetries of the tree-level
action, and in particular the approximate scale invariance of
Equation (2.12) in the large-field regime and the associated
shift-symmetry of its Einstein-frame formulation. This strong
assumption forbids the generation of dangerous higher-
dimensional operators that would completely spoil the
predictivity of the model. In some sense, this requirement
is not very different from the one implicitly assumed in
other inflationary models involving trans-Planckian field
displacements.

The minimal set of higher-dimensional operators to be
included on top of the tree-level action is the one generated by
the theory itself via radiative corrections (Bezrukov et al., 2011b,
2015). The cancellation of the loop divergences stemming from
the original action requires the inclusion of an infinite set of
counterterms with a very specific structure. As in any other non-
renormalizable theory, the outcome of this subtraction procedure
depends on the renormalization scheme, with different choices
corresponding to different assumptions about the ultraviolet
completion of the theory. Among the different subtractions
setups, a dimensional regularization scheme involving a field-
dependent subtraction point (Bezrukov and Shaposhnikov, 2009)

µ2
∝ M2

P + ξh
2 , (3.9)

fits pretty well with the approximate scale-symmetry of
Equation (2.11) at large-field values12. Given this frame and

12The use of other schemes such as Pauli-Villars regularization or standard

dimensional regularization with field-independent subtraction point leads to

dilatation-symmetry breaking and the consequent bending of the Higgs inflation

plateau due to radiative corrections (see for instance Barvinsky et al., 2008, 2009,

2012; De Simone et al., 2009).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2019 | Volume 5 | Article 5014

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Rubio Higgs Inflation

scheme, the minimal set of higher-dimensional operators
generated by the theory can be computed in any Weyl-
related frame provided that all fields and dimensionfull
parameters are appropriately rescaled. The computation becomes
particularly simple in the Einstein-frame, where the Weyl-
rescaled renormalization point µ22 coincides with the standard
field-independent prescription of renormalizable field theories,
µ22∝M2

P. A general counter-term in dimensional regularization
contains a finite part δL and a divergent part in the form of a
pole in ǫ = (4 − d)/2, with d the dimension of spacetime. The
coefficient of the pole is chosen to cancel the loop divergences
stemming from the original action. Once this divergent part is
removed, we are left with the finite contribution δL. The strength
of this term encodes the remnants of a particular ultraviolet
completion and cannot be determined within the effective field
theory approach (Bezrukov et al., 2011b, 2015; Burgess et al.,
2014). From a quantitative point of view, the most relevant δL
terms are related to the Higgs and top-quark interactions. In the
Einstein-frame at one loop, they take the form (Bezrukov et al.,
2015)

δLF
1 =

[

δλa

(

F′2 +
1

3
F′′F

)2

− δλb

]

F4 ,

δL
ψ
1 =

[

δyaF
′2F + δybF

′′(F4)′′
]

ψ̄ψ , (3.10)

where the primes denote again derivatives with respect to φ. Note
that these operators differ, as expected, from those appearing
in the tree-level action. This means that, while the contribution
δλb can be removed by a self-coupling redefinition, the finite
parts δλa, δya and δyb should be promoted to new couplings
constants. Once the associated operators are added to the
tree-level action, the re-evaluation of radiative corrections will
generate additional contributions beyond the original one-loop
result. These contributions come together with new finite parts
that must be again promoted to novel couplings with their own
renormalization group equations. The iteration of this scheme
leads to a renormalized action including an infinite set of higher-
dimensional operators constructed out of the function F and
its derivatives. For small field values, the function F becomes
approximately linear (F ≈ φ, F′ = 1) and one recovers the
SM non-minimally coupled to gravity up to highly suppressed
interactions. In this limit, the coefficients of the infinite set of
counterterms can be eliminated by a redefinition of the low
energy couplings, as happens in a renormalizable theory. When
evolving toward the inflationary region, the function F becomes
approximately constant (F∞ = F∞, F′ = 0) and some of
the previously absorbed finite parts are dynamically subtracted.
The unknown finite parts modify therefore the running of the
SM couplings at the transition region φC < φ <

√

3/2MP,
such that the SM masses at the electroweak scale cannot be
unambiguously related to their inflationary counterparts without
a precise knowledge of the ultraviolet completion (Hertzberg, 2012;
Burgess et al., 2014; Bezrukov et al., 2015).

If the finite contributions are of the same order as the loops
generating them, the tower of higher dimensional operators
generated by radiative corrections can be truncated (Bezrukov

et al., 2015). In this case, the effect of the 1-loop threshold
corrections can be imitated by an effective change13 (Bezrukov
et al., 2015)

λ(µ) → λ(µ)+ δλa

[

(

F′2 +
1

3
F′′F

)2

− 1

]

,

yt(µ) → yt(µ)+ δya
[

F′2 − 1
]

, (3.11)

with λ(µ) and yt(µ) given by the SM renormalization group
equations. We emphasize, however, that the truncation of the
renormalization group equations is not essential for most of
the results presented below, since, within the self-consistent
approach to Higgs inflation, the functional form of the effective
action is almost insensitive to it (Bezrukov et al., 2011b, 2015,
2018).

3.3. Potential Scenarios and Inflationary
Predictions
To describe the impact of radiative corrections on the inflationary
predictions, we will make use of the renormalization group
enhanced potential. This is given by the one in Equation (2.26)
but with the Higgs self-coupling λ replaced by its corresponding
running value λ(φ),

V(φ) =
λ(φ)

4
F4(φ) . (3.12)

Note that we are not promoting the non-minimal coupling ξ
within F(φ) to a running coupling ξ (φ)—as done, for instance,
in Ezquiaga et al. (2018)—but rather assuming it to be constant
during inflation. This is indeed a reasonable approximation since
the one-loop beta function determining the running of ξ (Yoon
and Yoon, 1997; Bezrukov and Shaposhnikov, 2009),

βξ (µ) = µ
∂

∂µ
ξ = −

1

16π2
ξ

(

3

2
g′2 + 3g2 − 6y2t

)

, (3.13)

is rather small for realistic values of the couplings constant at the
inflationary scale, βξ ∝ O(10−2) (Bezrukov et al., 2018; Masina,
2018) (see also Salvio, 2018).

Although, strictly speaking, the renormalization group
enhanced potential is not gauge invariant, the gauge dependence
is small during slow-roll inflation, especially in the presence of
extrema (Cook et al., 2014; Espinosa et al., 2015, 2017). In the
vicinity of the minimum of λ(φ), we can use the approximation
(Bezrukov and Shaposhnikov, 2014)

λ(φ) = λ0 + b log2
(

mt(φ)

q

)

, (3.14)

with the parameters λ0, q and b depending on the inflationary
values of the Einstein-frame Higgs and top quark masses,
according to the fitting formulas (Bezrukov and Shaposhnikov,
2014)

λ0 = 0.003297
[

(m∗

H − 126.13)− 2(m∗

t − 171.5)
]

,

13This replacement implicitly neglects the running of the finite parts δλa and δya
in the transition region φC < φ <

√

3/2MP .

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2019 | Volume 5 | Article 5015

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
bhuvaneshwaran
Rectangle



Rubio Higgs Inflation

q = 0.3MP exp
[]

0.5(m∗

H − 126.13)− 0.03(m∗

t − 171.5)
]

,

b = 0.00002292− 1.12524× 10−6
[

(m∗

H − 126.13)

−1.75912(m∗

t − 171.5)
]

, (3.15)

with m∗

H and m∗

t in GeV. As seen in the last expression, the
parameter b, standing for the derivative of the beta function for λ
at the scale of inflation, is rather insensitive to the Higgs and top
quark mass values at that scale and can be well-approximated by
b ≃ 2.3× 10−5. The choice

mt(φ)

q
= α ·

yt
√

2

F(φ)

q
≡

√

ξF(φ)

κMP
, (3.16)

with α = 0.6 optimizes the convergence of perturbation
theory (Bezrukov and Shaposhnikov, 2009; Bezrukov et al.,
2009b), while respecting the asymptotic symmetry of the tree-
level action (2.12) and its non-linear shift-symmetric Einstein-
frame realization. In the second equality, we have introduced an
effective parameter κ to facilitate the numerical computation of
the inflationary observables.

A simple inspection of Equations (3.12) and (3.14) allows us
to distinguish three regimes:

i) Non-critical regime/Universal: If λ0 ≫ b/(16κ), the effective
potential (3.12) is almost independent of the radiative
logarithmic correction and can be well approximated by
its tree-level form (2.26). Consequently, the inflationary
observables retain their tree-level values (Bezrukov and
Shaposhnikov, 2014; Enckell et al., 2016; Fumagalli and
Postma, 2016; Bezrukov et al., 2018), cf. Figure 4.

ii) Critical regime: If λ0 & b/(16κ), the first two derivatives of
the potential are approximately zero, V ′

≃ V ′′
≃ 0, leading

to the appearance of a quasi-inflection point at

φI =

√

3

2
log

( √

e
√

e− 1

)

MP . (3.17)

Qualitatively, the vast majority of inflationary e-folds in this
scenario takes place in the vicinity of the inflection point φI,
while the inflationary observables depend on the form of the
potential as some value φ∗ > φI .

Given the small value of the Higgs self-coupling in this
scenario, λ0 ∼ O(10−6), the nonminimal coupling ξ can
be significantly smaller than in the universal regime, ξ ∼

O(10), while still satisfying the normalization condition
(2.39) (Allison, 2014; Bezrukov and Shaposhnikov, 2014;
Hamada et al., 2014b, 2015). This drastic decrease of the non-
minimal coupling alleviates the tree-level unitary problems
discussed in section 3.1 by raising the cutoff scale.

For small ξ values, the tensor-to-scalar ratio can be
rather large, r ∼ O(10−1) (Allison, 2014; Bezrukov and
Shaposhnikov, 2014; Hamada et al., 2014b, 2015) (see
also Masina, 2018). Note, however, that although CMB
data seems to be consistent with the primordial power
spectrum at large scales, the simple expansion in (2.27)
cannot accurately describe its global behavior since the
running of the spectral tilt αs ≡ d ln ns/d ln k and its scale
dependence βs ≡ d2 ln ns/d ln k

2 also become considerably
large, cf. Figure 5.

The non-monotonic evolution of the slow-roll parameter
ǫ in the vicinity of the inflection point leads to the
enhancement of the spectrum of primordial density
fluctuations at small and intermediate scales. It is important
to notice at this point that the standard slow-roll condition
may break down if the potential becomes extremely flat and
the inertial contribution in the equation of motion for the
inflation field is not negligible as compared with the Hubble
friction (Garcia-Bellido and Ruiz Morales, 2017; Germani
and Prokopec, 2017; Kannike et al., 2017). In this regime,
even the classical treatment is compromised since stochastic
effects can no longer be ignored (Starobinsky and Yokoyama,
1994; Vennin and Starobinsky, 2015; Pattison et al., 2017;
Ezquiaga and Garcia-Bellido, 2018).

If we restrict ourselves to situation in which the slow-
roll approximation is satisfied during the whole inflationary
trajectory (Bezrukov et al., 2018)14, the height and width of
the generated bump at fixed spectral tilt are correlated with
the tensor-to-scalar ratio r, cf. Figure 4. Contrary to some
claims in the literature (Ezquiaga et al., 2018), the maximum
amplitude of the power-spectrum compatible with the 95%
C.L Planck ns − r contours (Bezrukov et al., 2018) is well
below the critical threshold P

max
R

≃ 10−2
− 10−3 needed

for primordial black hole formation (Bird et al., 2016; Carr
et al., 2016, 2017) (see however, Ezquiaga and Garcia-
Bellido, 2018; Rasanen and Tomberg, 2018). This conclusion
is unchanged if one considers the effect of non-instantaneous
threshold corrections (Bezrukov et al., 2018), which could
potentially affect the results given the numerical proximity
of the inflection point (3.17) to the upper boundary of the
transition region, φ ≃

√

3/2MP.
iii) Hilltop regime: If λ . b/(16κ) the potential develops

a new minimum at large field values (Fumagalli, 2017;
Rasanen and Wahlman, 2017). This minimum is separated
from the electroweak minimum by a local maximum where
hilltop inflation can take place (Boubekeur and Lyth, 2005;
Barenboim et al., 2016). This scenario is highly sensitive
to the initial conditions since the inflaton field must start
on the electroweak vacuum side and close enough to the
local maximum in order to support an extended inflationary
epoch. On top of that, the fitting formulas in (3.15) may not
be accurate enough for this case, since they are based on
an optimization procedure around the λ(φ) minimum. The
tensor-to-scalar ratio in this scenario differs also from the
universal/non-critical Higgs inflation regime, but contrary to
the critical case, it is decreased to 2× 10−5 < r < 1× 10−3,
rather than increased (Fumagalli and Postma, 2016; Rasanen
and Wahlman, 2017).

3.4. Vacuum Metastability and
High-Temperature Effects
The qualitative classification of scenarios and predictions
presented in the previous section depends on the inflationary
values of the Higgs and top quark masses and holds

14The onset of the slow-roll regime prior to the arrival of the field to the inflection

point and its dependence on pre-inflationary conditions was studied in Salvio

(2018), where a robust inflationary attractor was shown to exist.
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FIGURE 4 | (Left) The tensor-to-scalar ratio r and the spectral tilt ns following from the effective potential (3.12) (Bezrukov et al., 2018). The non-minimal coupling ξ

varies between 10 and 100 along the lines of constant κ, with larger values corresponding to smaller tensor-to-scalar ratios. The star in the lower part of the plot

stands for the universal values in Equation (2.44). The blue contours indicate the latest 68 and 95% C.L. Planck constraints on the r-ns plane (Akrami et al., 2018).

(Right) The power spectrum PR as a function of the number of e-folds before the end of inflation and the associated comoving scale κ in inverse megaparsecs

(Bezrukov et al., 2018). The monotonic curve at the bottom of the plot corresponds to the universal/non-critical Higgs inflation scenario. The upper non-monotonic

curves are associated with different realizations of the critical Higgs inflation scenario. The shaded regions stand for the latest 68 and 95% C.L. constraints provided

by the Planck collaboration (Akrami et al., 2018).

FIGURE 5 | (Left) Spectral tilt running αs ≡ d ln ns/d ln k in critical Higgs inflation as a function of the tensor-to-scalar ratio r and the spectral-tilt ns (Rasanen and

Wahlman, 2017). (Right) Scale dependence of the spectral-tilt βs ≡ d2 ln ns/d ln k2 in the same case (Rasanen and Wahlman, 2017). The purple dots indicate the

universal/non-critical Higgs inflation regime. The boundaries on the right-hand side of the figures correspond to the constraint on the number of e-folds following the

heating estimates in Garcia-Bellido et al. (2009), Bezrukov et al. (2009a), and Repond and Rubio (2016). For lower heating efficiencies, the boundaries move to the

left, decreasing the spectral tilt but not significantly affecting the tensor-to-scalar ratio (Rasanen and Wahlman, 2017).

independently of the value of their electroweak counterparts.
In particular, any pair of couplings following from the SM
renormalization group equations can be connected to a well-
behaved pair of couplings in the chiral phase by a proper choice
of the unknown threshold corrections. This applies also if the SM
vacuum is not completely stable. Some examples of the 1-loop
threshold correction δλa needed to restore the universal/non-
critical Higgs inflation scenario beyond µ0 ∼ 109, 1010, and 1012

GeV are shown in Figure 6. For a detailed scan of the parameter
space, see Enckell et al. (2016); Fumagalli and Postma (2016).

The non-trivial interplay between vacuum stability and
threshold corrections generates an additional minimum at large
field values. Provided the usual chaotic initial conditions, the
Higgs field will evolve in the trans-Planckian field regime,
inflating the Universe while moving toward smaller field values.
Since the new minimum is significantly wider and deeper than
the electroweak one, it seems likely that the Higgs field will
finish its post-inflationary evolution there. Note, however, that
this conclusion is strongly dependent on the ratio of the Higgs
energy density to the secondminimumdepth. If this ratio is large,
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FIGURE 6 | (Left) Illustrative values of the 1-loop threshold corrections needed to restore the asymptotic behavior of the universal Higgs inflation potential at large

field values for electroweak SM pole masses leading to SM vacuum instability at µ0 ∼ 109, 1010, and 1012 GeV. (Right) Comparison between the potential following

from the set of parameters leading to the red line in the previous plot and the thermally-corrected effective potential accounting for the backreaction effects of the

decay products created during the heating stage. The normalization factor U0 = (10−3MP )
4 account for the typical energy density at the end of inflation.

the entropy production at the end of inflation may significantly
modify the shape of the potential, triggering its stabilization and
allowing the Higgs field to evolve toward the desired electroweak
vacuum (Bezrukov et al., 2009a).

The one-loop finite temperature corrections to be added
on top of the Einstein-frame renormalization group enhanced
potential take the form (Linde, 1979)

1V = T
∑

i=B,F

∫

d3k

(2π)3a3
ln

[

1± exp

(

−

k2/a2 +m2
i

T

)]

,

(3.18)
with the plus and minus signs corresponding respectively to
fermions and bosons and mB,F standing for the Einstein-frame
masses in Equation (2.25). The most important contributions
in Equation (3.18) are associated with the top quark and the
electroweak bosons, with the corresponding coupling constants
yt and g evaluated at µyt = 1.8T and µg = 7T, in order to
minimize the radiative corrections (Kajantie et al., 1996).

A detailed analysis of the universal/non critical Higgs inflation
scenario reveals that the temperature of the decay products
generated during the heating stage exceeds generically the
temperature at which the unwanted secondary vacuum at large
field values disappears (Bezrukov et al., 2009a; Garcia-Bellido
et al., 2009), see Figure 615. The stabilization becomes favored

for increasing µ0 values
16. and holds even if this scale is as low

as 1010 GeV (Bezrukov et al., 2009a). The thermally-corrected
potential enables the Higgs field to relax to the SM vacuum.
After the heating stage, the temperature decreases as the Universe
expands and the secondary minimum reappears, first as a local
minimum and eventually as the global one. When that happens,
the Higgs field is already trapped in the electroweak vacuum.
Although the barrier separating the twominima prevents a direct
decay, the Higgs field could still tunnel to the global minimum.

15A detailed scan of the parameter space assuming instantaneous conversion of the

inflaton energy density into a thermal bath was performed in Enckell et al. (2016).
16The larger µ0 is, the shallower and narrower the “wrong” minimum becomes, cf.

Figure 6

The probability for this to happen is, however, very small and
the lifetime of SM vacuum significantly exceeds the life of the
Universe (Anderson, 1990; Arnold and Vokos, 1991; Espinosa
and Quiros, 1995; Espinosa et al., 2008). Universal/non-critical
Higgs inflation with a graceful exit can therefore take place for
electroweak SM pole masses leading to vacuum metastability at
energies below the inflationary scale (Bezrukov et al., 2009a).

The situation changes completely if one considers the critical
Higgs inflation scenario. In this case, the energy of the Higgs
condensate is comparable to the depth of the secondary
minimum and symmetry restoration does not take place. Unless
the initial conditions are extremely fine-tuned, theHiggs field will
relax to theminimum of the potential at Planckian values, leading
with it to the inevitably collapse of the Universe (Felder et al.,
2002). The success of critical Higgs inflation requires therefore
the absolute stability of the electroweak vacuum (Bezrukov et al.,
2009a).

4. VARIATIONS AND EXTENSIONS

Many variations and extensions of Higgs inflation have been
considered in the literature (see for instance Ben-Dayan and
Einhorn, 2010; Lerner and McDonald, 2010, 2011; Arai et al.,
2011; Giudice and Lee, 2011; Kamada et al., 2011, 2012; Einhorn
and Jones, 2012; Greenwood et al., 2013; Kanemura et al., 2013;
Steinwachs, 2013; Choudhury et al., 2014; He and Xianyu, 2014;
Oda and Tomoyose, 2014a,b; Xianyu and He, 2014; Cai et al.,
2015; Ellis et al., 2015, 2016; Kamada, 2015b; Lazarides and Pallis,
2015; Okada and Shafi, 2015; Calmet and Kuntz, 2016; Ge et al.,
2016; Takahashi and Takahashi, 2016; van de Bruck and Longden,
2016; Ema, 2017; Ema et al., 2017b; Marian et al., 2017; Okada
and Raut, 2017; Chen et al., 2018; He et al., 2018). In what
follows we will restrict ourselves to those proposals that are more
closely related to the minimalistic spirit of the original scenario.
In particular, we will address a Palatini formulation of Higgs
inflation and the embedding of themodel to a fully scale invariant
framework.
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4.1. Palatini Higgs Inflation
In the usual formulation of Higgs inflation presented in section
2.2, the action is minimized with respect to the metric. This
procedure implicitly assumes the existence of a Levi-Civita
connection depending on the metric tensor and the inclusion
of a York-Hawking-Gibbons term ensuring the cancellation
of a total derivative term with no-vanishing variation at the
boundary (York, 1972; Gibbons and Hawking, 1977). One
could alternatively consider a Palatini formulation of gravity
in which the metric tensor and the connection are treated
as independent variables and no additional boundary term is
required to obtain the equations of motion (Ferraris et al., 1982).
Roughly speaking, this formulation corresponds to assuming an
ultraviolet completion involving different gravitational degrees of
freedom.

Although the metric and Palatini formulations of General
Relativity give rise to the same equations of motion
(Ferraris et al., 1982), this is not true for scalar-tensor
theories as Higgs inflation. To see this explicitly let us
consider the Higgs inflation action in Equation (2.12) with
R = gµνRµν(Ŵ, ∂Ŵ) and Ŵ a non-Levi-Civita connection17.
Performing a Weyl rescaling of the metric gµν → 2 gµν
with 2 given by Equation (2.15) we obtain an Einstein-frame
action

S =

∫

d4x
√

−g

[

M2
P

2
gµνRµν(Ŵ)−

1

2
M2

PK(2)(∂2)2 − V(2)

]

,

(4.1)
containing a potential (2.17) and a non-canonical kinetic term
with

K(2) ≡
1

4|a|22

(

1

1−2

)

, (4.2)

and

|a| ≡ ξ . (4.3)

Note that the kinetic function (4.2) differs from that obtained
in the metric formulation, see Equation (2.18). In particular, it
does not contain the part associated with the non-homogeneous
transformation of the Ricci scalar, since R = R(Ŵ) is
now invariant under Weyl rescalings. For the purposes of
inflation, this translates into a modification of the residue of
the inflationary pole at 2 = 0 with respect to the metric case.
While the metric value of |a| in Equation (2.18) is bounded from
above [cf. Equation (2.8)], it can take positive arbitrary values in
the Palatini formulation [cf. Equation (4.3)]. Performing a field
redefinition

1

M2
P

(

dφ

d2

)2

= K(2) −→ h(φ) = F∞ sinh

(√

aφ

MP

)

,

(4.4)

17For a recent generalization built from the Higgs, the metric and the connection

and involving only up to two derivatives (see Rasanen, 2018).

to canonically normalize the h-field kinetic term, we can rewrite
the graviscalar action (4.1) at φ≫ vEW as

S =

∫

d4x
√

−g

[

M2
P

2
R−

1

2
(∂φ)2 − V(φ)

]

, (4.5)

with

V(φ) =
λ

4
F4(φ) , F(φ) ≡ F∞ tanh

(√

aφ

MP

)

. (4.6)

The comparison of the latest expression with Equation (2.24)
reveals some important differences between the metric and
Palatini formulations. In both cases, the effective Einstein-frame
potential smoothly interpolates between a low-energy quartic
potential and an asymptotically flat potential at large field values.
Note, however, that the transition in the Palatini case is rather
direct and does not involve the quadratic piece appearing in the
metric formulation. On top of that, the flatness of the asymptotic
plateau is different in the two cases, due to the effective change
in |a|. The Palatini dependence |a| = ξ has a strong impact
on the inflationary observables. In the large-field regime they
read

ns ≃ 1−
2

N̄∗

, r ≃
2

ξ N̄2
∗

, (4.7)

with

N̄∗ ≡ N∗ +

1

16|a|
cosh

(

2
√

aφE

MP

)

, (4.8)

a rescaled number of e-folds and

φE =

MP

2
√

a
arcsinh(

√

32a) , (4.9)

the inflaton value at the end of inflation (ǫ(φend) ≡ 1), with φE =
√

3/2 arcsinh(4/
√

3)MP corresponding to the ξ → ∞ limit and
φE = 2

√

2MP to the end of inflation in a minimally coupled
λφ4 theory. A relation between the non-minimal coupling ξ , the
self-coupling λ and the number of e-folds N̄∗ can be obtained
by taking into account the amplitude of the observed power
spectrum in Equation (2.39),

ξ ≃ 3.8× 106N̄2
∗
λ . (4.10)

A simple inspection of Equation (4.7) reveals that the predicted
tensor-to-scalar ratio in Palatini Higgs inflation is within the
reach of current or future experiments (Matsumura et al., 2016)
only if ξ . 10, which, assuming N̄ ≃ 59, requires a
very small coupling λ . 10−9. For a discussion of unitarity
violations in the Palatini formulation, see Bauer and Demir
(2011).

4.2. Higgs-Dilaton Model
The existence of robust predictions in (non-critical) Higgs
inflation is intimately related to the emerging dilatation
symmetry of its tree-level action at large field values. The
uplifting of Higgs inflation to a completely scale-invariant
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setting was considered in Shaposhnikov and Zenhausern
(2009), Garcia-Bellido et al. (2011), Blas et al. (2011), Bezrukov
et al. (2013), Garcia-Bellido et al. (2012), Rubio and
Shaposhnikov (2014), Trashorras et al. (2016), Karananas
and Rubio (2016), Casas et al. (2017), and Casas et al. (2018). In
the unitary gauge H = (0, h/

√

2)T , the graviscalar sector of the
Higgs-Dilaton model considered in these papers takes the form

S =

∫

d4x
√

−g

[

ξhh
2
+ ξχχ

2

2
R−

1

2
(∂h)2 −

1

2
(∂χ)2

−V(h,χ)
]

, (4.11)

with

U(h,χ) =
λ

4

(

h2 − αχ2
)2

+ βχ4 (4.12)

a scale-invariant version of the SM symmetry-breaking potential
and α,β positive dimensionless parameters. The existence of a
well-defined gravitational interactions at all field values requires
the non-minimal gravitational couplings to be positive-definite,
i.e. ξh, ξχ > 0. In the absence of gravity, the ground state of
Equation (4.11) is determined by the scale-invariant potential
(4.12). For α 6= 0 and β = 0, the vacuum manifold extends
along the flat directions h0 = ±αχ0. Any solution with χ0 6=

0 breaks scale symmetry spontaneously and induces non-zero
values for the effective Planck mass and the electroweak scale18.
The relation between these highly hierarchical scales is set by
fine-tuning α ∼ v2/M2

P ∼ 10−32. For this small value,
the flat valleys in the potential U(h,χ) are essentially aligned
and we can safely approximate α ≃ 0 for all inflationary
purposes.

To compare the inflationary predictions of this model with
those of the standard Higgs-inflation scenario, let us perform a
Weyl rescaling gµν → M2

P/(ξhh
2
+ ξχχ

2)gµν followed by a field
redefinition (Casas et al., 2017)

γ−22 ≡

(1+ 6ξh)h
2
+ (1+ 6ξχ )χ

2

ξhh2 + ξχχ2
,

exp

[

2γ8

MP

]

≡

a

ā

(1+ 6ξh)h
2
+ (1+ 6ξχ )χ

2

M2
P

, (4.13)

with

γ ≡

√

ξχ

1+ 6ξχ
, a ≡ −

ξh

1+ 6ξh
, ā ≡ a

(

1−
ξχ

ξh

)

.

(4.14)
After some algebra, we obtain a rather simple Einstein-frame
action (Karananas and Rubio, 2016; Casas et al., 2017)

S =

∫

d4x
√

−g

[

M2
P

2
R−

1

2
M2

PK(2)(∂2)2 −
1

2
2(∂8)2

−U(2)
]

, (4.15)

18 Among the possible values of β in the presence of gravity, the case β = 0 seems

also preferred (Allen and Folacci, 1987; Garcia-Bellido et al., 2011; Jalmuzna et al.,

2011, see also Antoniadis et al., 1986, 2007; Tsamis and Woodard, 1993, 1995;

Polyakov, 2010; Wetterich, 2017).

containing a potential

U(2) = U0(1−2)2 , U0 ≡
λM4

P

4

(

1+ 6ā

ā

)2

, (4.16)

and a non-canonical, albeit diagonal, kinetic sector. The kinetic
function for the2 field,

K(2) =
1

4 |ā|22

(

c

|ā|2− c
+

1− 6|ā|2

1−2

)

, (4.17)

contains two “inflationary" poles at 2 = 0 and 2 = c/|ā|
and a “Minkowski” pole at 2 = 1, where the usual SM
action is approximately recovered. As in the single field case, the
“Minkowski” pole does not play a significant role during inflation
and can be neglected for all practical purposes. Interestingly,
the field-derivative space becomes in this limit a maximally
symmetric hyperbolic manifold with Gaussian curvature a < 0
(Karananas and Rubio, 2016).

Inflation takes place in the vicinity of the inflationary poles.
During this regime, the kinetic term of the 8-field is effectively
suppressed and the dilaton rapidly approaches a constant
value 8 = 80 (Garcia-Bellido et al., 2011). This effective
freezing is an immediate consequence of scale invariance. As
in the single field case, the shift symmetry 8 → 8 + C
in Equation (4.15) allows us to interpret 8 as the dilaton or
Goldstone of dilatations. As first shown in Garcia-Bellido et al.
(2011), the equation of motion for this field coincides with
the scale-current conservation equation, effectively restricting
the evolution to constant 8 ellipsoidal trajectories in the {h,χ}
plane. Given this emergent single-field dynamics, no non-
gaussianities nor isocurvature perturbations are significantly
generated during inflation (Garcia-Bellido et al., 2011). If the
2 variable is dominated by the Higgs component (ξh ≫ ξχ ),
the spectral tilt and the tensor-to-scalar ratio take the compact
form

ns ≃ 1−8 ccoth (4cN∗) , r ≃
32 c2

|a|
csch2 (4cN∗) , (4.18)

with |a| ≃ 1/6 in order to satisfy the normalization
condition (2.39). Note that these expressions rapidly
converge to the Higgs inflation values (2.38) for 4cN∗ ≪ 1.
For increasing c and fixed N∗, the spectral tilt decreases
linearly and the tensor-to-scalar ratio approaches
zero.

5. CONCLUDING REMARKS

Before the start of the LHC, it was widely believed that we
would find a plethora of new particles and interactions that
would reduce the Standard Model to a mere description of
Nature at energies below the TeV scale. From a bottom-up
perspective, new physics was typically advocated to cure the
divergences associated with the potential growth of the Higgs
self-coupling at high energies. The finding of a relatively light
Higgs boson in the Large Hadron Collider concluded the quest
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of the Standard Model spectrum while demystifying the concept
of naturalness and the role of fundamental scalar fields in
particle physics and cosmology. The Standard Model is now
a confirmed theory that could stay valid till the Planck scale
and provide a solid theoretical basis for describing the early
Universe.

The Higgs field itself could lead to inflation if a minimalistic
coupling to the Ricci scalar is added to the Standard
Model action. The value of this coupling can be fixed by
the normalization of the spectrum of primordial density
perturbations, leaving a theory with no free parameters at tree
level. On top of that, the experimental knowledge of the Standard
Model couplings reduces the usual uncertainties associated with
the heating stage and allows us to obtain precise predictions
in excellent agreement with observations. Note, however, the
mere existence of gravity makes the theory non-renormalizable
and forces its interpretation as an effective field theory. Even
in a self-consistent approach to Higgs inflation, the finite parts
of the counterterms needed to make the theory finite obscure
the connection between low- and high-energy observables. If
these unknown coefficients are small, Higgs inflation provides an

appealing relation between the Standard Model parameters and
the properties of the Universe at large scales. If they are large,
this connection is lost but Higgs inflation can surprisingly take

place even when the Standard Model vacuum is not completely
stable.
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The current central experimental values of the parameters of the Standard Model give

rise to a striking conclusion: metastability of the electroweak vacuum is favored over

absolute stability. A metastable vacuum for the Higgs boson implies that it is possible,

and in fact inevitable, that a vacuum decay takes place with catastrophic consequences

for the Universe. The metastability of the Higgs vacuum is especially significant for

cosmology, because there are many mechanisms that could have triggered the decay of

the electroweak vacuum in the early Universe. We present a comprehensive review of the

implications from Higgs vacuum metastability for cosmology along with a pedagogical

discussion of the related theoretical topics, including renormalization group improvement,

quantum field theory in curved spacetime and vacuum decay in field theory.

Keywords: Higgs boson, vacuum stability, quantum tunneling, quantum field theory, cosmological inflation

1. INTRODUCTION

One of the most striking results of the discovery of Higgs boson (Aad et al., 2012; Chatrchyan
et al., 2012) has been that its mass lies in a regime that predicts the current vacuum state to be
a false vacuum, that is, there is a lower energy vacuum state available to which the electroweak
vacuum can decay into (Degrassi et al., 2012; Buttazzo et al., 2013). That this was a possibility in
the Standard Model (SM) has been known for a long time (Hung, 1979; Sher, 1993; Casas et al.,
1996; Isidori et al., 2001; Ellis et al., 2009; Elias-Miro et al., 2012). The precise behavior of the Higgs
potential is sensitive to the experimental inputs, in particular the physical masses for the Higgs and
the top quark and also physics beyond the SM. The current best estimates of the Higgs and top
quark masses (Tanabashi et al., 2018),

Mh = 125.18± 0.16GeV, Mt = 173.1± 0.9GeV, (1.1)

place the Standard Model squarely in the metastable region.
As in any quantum system, there are three main ways in which the vacuum decay can happen.

They are illustrated in Figure 1. If the system is initially in the false vacuum state, the transition
would take place through quantum tunneling. On the other hand, if there is sufficient energy
available, for example in a thermal equilibrium state, it may be possible for the system to move
classically over the barrier. The third way consists of quantum tunneling from an excited initial
state. This is often the dominant process if the temperature is too low for the fully classical process.
All three mechanisms can be relevant for the decay of the electroweak vacuum state, and their rates
depending on the conditions. In each of them, the transition happens initially locally in a small
volume, nucleating a small bubble of the true vacuum. The bubble then starts to expand, reaching
the speed of light very quickly, any destroying everything in its way.
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FIGURE 1 | Illustration of vacuum decay for a potential with a metastable

vacuum at the origin.

If the Universe was infinitely old, even an arbitrarily low
vacuum decay rate would be incompatible with our existence.
The implications of vacuum metastability can therefore only be
considered in the cosmological context, taking into account the
finite age and the cosmological history of the Universe. Although
the vacuum decay rate is extremely slow in the present day, that
was not necessarily the case in the early Universe. High Hubble
rates during inflation and high temperatures afterwards could
have potentially increased the rate significantly. Therefore the
fact that we still observe the Universe in its electroweak vacuum
state allows us to place constraints on the cosmological history,
for example the reheat temperature and the scale of inflation, and
on Standard Model parameters, such as particle masses and the
coupling between the Higgs field and spacetime curvature.

In this review we discuss the implications of Higgs vacuum
metastability in early Universe cosmology and describe the
current state of the literature. We also discuss all the theoretical
frameworks, with detailed derivations, that are needed for the
final results. This article complements earlier comprehensive
reviews of electroweak vacuum metastability (Sher, 1989;
Schrempp and Wimmer, 1996), which focus on the particle
physics aspects rather than the cosmological context, and the
recent introductory review (Moss, 2015) that explores the role of
the Higgs field in cosmology more generally.

In section 2 we present renormalization group improvement
in flat space by using the Yukawa theory as an example before
discussing the full SM. Section 3 contains an overview of
quantum field theory on curved backgrounds relevant for our
purposes, including the modifications to the SM. In section 4 we
go through the various ways vacuum decay can occur. In section

5 we discuss the connection to cosmology and in section 6 we
present our concluding remarks.

Our sign conventions for the metric and curvature tensors
are (−,−,−) in the classification of Misner et al. (1973) and
throughout we will use units where the reduced Planck constant,
the Boltzmann constant and the speed of light are set to unity,
h̄ ≡ kB ≡ c ≡ 1. The reduced Planck mass is given by Newton’s
constant as

MP ≡ (8πG)−1/2
≈ 2.435× 1018 GeV. (1.2)

We will use ϕ for the vacuum expectation value (VEV) of a
spectator field (usually the Higgs), φ for the inflaton and8 for the
SM Higgs doublet. The inflaton potential is U(φ) and the Higgs
potential V(ϕ). The physical Higgs and top masses read Mh and
Mt .

2. EFFECTIVE POTENTIAL IN FLAT
SPACETIME

2.1. Example: Yukawa Theory
The possibility of quantum corrections destabilizing a classically
stable vacuum has been known for quite some time (Krive and
Linde, 1976; Krasnikov, 1978; Maiani et al., 1978; Politzer and
Wolfram, 1979; Cabibbo et al., 1979; Hung, 1979). Although our
focus will be strictly on the SM, one should keep in mind that
the instability that potentially arises in the SM is only a specific
example of a more general phenomenon that could manifest
in a variety of other theories of elementary particles. For this
reason all the essential features of the vacuum instability in the
SM can be illustrated with the simple Yukawa theory, which we
will now discuss before moving on to the full Standard Model in
section 2.3.

The action containing a massless, quartically self-interacting
scalar field ϕ Yukawa-coupled to a massless Dirac fermion ψ is

S =

∫

d4x

[

1

2
∂µϕ∂

µϕ −

λ

4
ϕ4 + ψ̄∂/ψ − gϕψ̄ψ

]

. (2.1)

Classically, the potential for the scalar field is simply

Vcl(ϕ) =
λ

4
ϕ4 , (2.2)

which quite trivially has a well-defined state of lowest energy at
the origin.

When quantized the potential for the field ϕ becomes
modified by quantum corrections

V(ϕ) = Vcl(ϕ)+ quantum corrections , (2.3)

which may be investigated within the usual framework of
quantum field theory (Peskin and Schroeder, 1995). Importantly,
it has been for a long time understood that in some instances
predictions in a quantum theory can deviate significantly from
those of the classical case. A prime example of such behavior
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is radiatively induced symmetry breaking (Coleman Weinberg,
1973).

In the one-loop approximation the result for the quantum
corrected or effective potential for the Yukawamodel has the form
(see for example, Markkanen et al., 2018)

Veff(ϕ) =
λ(µ)

4
ϕ4(µ)

+

1

64π2

[

M4
ϕ(µ)

(

log
M2
ϕ(µ)

µ2
−

3

2

)

− 4M4
ψ (µ)

(

log
M2
ψ (µ)

µ2
−

3

2

)]

+ · · · , (2.4)

with

M2
ϕ(µ) ≡ 3λ(µ)ϕ2(µ) ; M2

ψ (µ) ≡ g2(µ)ϕ2(µ) . (2.5)

In the above we have explicitly denoted the dependence on
the renormalization scale µ, which is an arbitrary energy scale,
which one needs to choose in order to define the renormalized
parameters of the theory. There is also a similar dependence in
ϕ(µ) which now refers to the renormalized one-point function of
the quantized field, which is related to the bare field via the field
renormalization constant (Peskin and Schroeder, 1995)

ϕbare =
√

Z(µ)ϕ(µ) . (2.6)

In the one-loop effective potential (2.4), the contribution from
the fermionψ comes with aminus sign. For sufficient high values
of g, it can overtake the classical contribution and lead to a region
with negative potential energy. In the limit of large field values
ϕ → ∞, one may write the potential as

Veff(ϕ → ∞) → ϕ4
9λ2 − 4g4

32π2
log

(

ϕ

µ

)

+ · · · , (2.7)

implying that if

λ < λcr ≡
2g2

3
, (2.8)

the potential has a barrier and starts to decrease without bound at
high field values (Krive and Linde, 1976). When λ is larger than
the critical threshold λcr the quantum correction approaches+∞

indicating that an arbitrary small deviation from λcr leads either
to+∞ or−∞ at large enough field values.

Hence we have seen that in the Yukawa theory the low-field
vacuum will be separated by a barrier from an infinitely deep
well on the other side. Even if the barrier is very robust, after
a sufficiently long time the system initialized in the classical
vacuum must eventually make a transition to the other side of
the barrier and evolve toward the state of minimum energy.

A potential unbounded from below is a problematic concept
and it is often assumed that, perhaps due to non-perturbative
physics invisible to a loop expansion, some mechanism reverses
the behavior of the potential at very high energies. This means
that the minimum energy is in fact bounded from below, and

the effect of the quantum corrections is to generate second local
minimum beyond the barrier as depicted in Figure 1. In theories
containing U(1) gauge fields, such as the SM, the reversal of the
potential can be shown to happen and the issue of an infinitely
deep well does not arise. In the effective theory framework, which
arguably is the correct way of viewing the SM, this issue is also
not present as one will always encounter a finite scale beyond
which the calculation becomes unreliable. Indeed, gravitational
corrections are a prime example of amodification that is expected
to become significant at large field values.

From a practical point of view, whether or not the potential
is infinitely or deep of has a second or more accurately a true
minimum beyond the barrier is not important for the generic
prediction that the vacuum at the origin should eventually decay
if the potential possesses regions with lower energy than at the
origin.

However, conclusions based on the behavior of the
perturbative one-loop result (2.4) may be premature. This
is because for very large field values the logarithms become
non-pertubatively large making the loop expansion invalid:
generically one would expect higher powers of the logarithmic
contributions in the square brackets of Equation (2.7) to be
generated by higher orders in the expansion, as for example is
evident in the results of Chung et al. (1999). Concretely, for our
Yukawa theory (2.1) this requirement means that we can only
draw conclusions in the region where

4g4

64π2
log

(

g2ϕ2

µ2

)

. 1 and
9λ2

64π2
log

(

3λϕ2

µ2

)

. 1 .

(2.9)
In principle, the smaller the logarithms the more accurate the
result.

2.2. Renormalization Group Improvement
By making use of renormalization group (RG) techniques it is
possible to improve the accuracy of an existing perturbative
expression such that the issue of large logarithms may be
avoided (Kastening, 1992; Bando et al., 1993a,b; Ford et al., 1993).

Demanding that the effective potential (2.4) does not depend
on the renormalization scale µ gives rise to the Callan-Symazik
equation (Callan, 1970; Symanzik, 1970, 1971)

d

dµ
Veff(ϕ) = 0 ⇔

{

µ
∂

∂µ
+βλ

∂

∂λ
+βg

∂

∂g
−γ ϕ

∂

∂ϕ

}

Veff(ϕ) = 0 ,

(2.10)
where we have defined the beta functions and the anomalous
dimension in the usual manner

βci ≡ µ
∂ci

∂µ
, γ ≡ µ

∂ log
√

Z

∂µ
, (2.11)

with γ from the field renormalization constant in (2.6), which has
a dependence on the renormalization scale Z ≡ Z(µ). Deriving
the beta functions and the anomalous dimension for the Yukawa
theory is a well-known calculation (see for example, Bando et al.,
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1993a) and here we simply state the results

16π2βm2 = m2
(

6λ+ 4g2
)

, (2.12)

16π2βλ = 18λ2 + 8g2λ− 8g4, (2.13)

16π2βg = 5g3, (2.14)

16π2γ = 2g2 , (2.15)

where for completeness we have included the beta function also
for a mass parameter of the scalar field.

The beta functions tell us how the values of the renormalized
parameters “run,” i.e., depend on the scale choiceµ. For example,
assuming renormalized coupling value g(µ0) at some scale choice
µ0, one may solve the running of the Yukawa coupling g(µ) from
Equation (2.14),

g2(µ) =
g2(µ0)

1−
5g2(µ0)

8π2 log(µ/µ0)
. (2.16)

This shows that increasing µ leads to a larger g(µ), and that the
coupling g(µ) appears to diverge at scale

µ = µ0 exp

(

8π2

5g2(µ0)

)

, (2.17)

which is known as the Landau pole (Landau, 1955). However,
well before the Landau pole is reached, the loop expansion ceases
to be valid. For more information on the effect of running
couplings we refer the reader to more or less any textbook on
quantum field theory (for example Cheng and Li, 1984; Peskin
and Schroeder, 1995).

Even though the full effective potential Veff(ϕ) has to
be independent of the scale choice µ, for any finite-order
perturbative result that is only true up to neglected higher-order
terms. This means that some scale choices will work better than
the others, and by a judicious choice, one can improve the
accuracy of the perturbative result. In general, one would choose
the scale µ to optimize the perturbative expansion in such a way
that the loop corrections are small as indicated in Equation (2.9).
However, for the effective potential (2.7), the loop corrections
depend on the field value ϕ. Therefore each given choice of scale
would only work well over a relatively narrow range of field
values.

To ensure that Equation (2.9) remains satisfied at any field
values, one can take this approach further and make the
renormalization scale a function of the field ϕ,

µ = µ∗(ϕ), (2.18)

so that the expansion is optimized at all field values.
This procedure is generically called renormalization
group improvement (RGI)1. This way one can define the
renormalization group improved (RGI) effective potential as

VRGI(ϕ) ≡ Veff,RG(ϕ,µ∗(ϕ)). (2.19)

1In our work the improvement is understood to come from the specific step of

optimizing the expansion via a particular choice of µ. In some works, it simply

means making use of running couplings.

One should note that in this expression ϕ refers to the field
defined at the field-dependent renormalization scale, ϕ =

ϕ(µ∗(ϕ)) (for more discussion, see Markkanen et al., 2018),
and that at any finite order in perturbation theory the resulting
function VRGI(ϕ) depends on the choice of the function µ∗(ϕ).

In principle, one could choose µ∗ in such a way that the loop
correction vanishes exactly. For the one-loop potential (2.7) in
the Yukawa theory, this would give

µexact
∗

(ϕ) = e−3/4

(

3λ

g2

)
9λ2

18λ2−8g4

gϕ, (2.20)

where both the couplings g and λ and the field ϕ are renormalized
at scale µexact

∗
(ϕ), and therefore the equation defines the scale

µ∗(ϕ) implicitly. With this choice, the RGI effective potential
VRGI(ϕ) is given simply by the tree-level potential with ϕ-
dependent couplings,

VRGI(ϕ) =
1

4
λ(µexact

∗
(ϕ))ϕ4. (2.21)

In more realistic theories it is often impractical to choose µ∗(ϕ)
that cancels the loop correction exactly (Markkanen et al., 2018).
Instead, one chooses some simpler function that keeps the loop
correction sufficiently small. The most common choice in the
literature is simply

µ∗(ϕ) = ϕ . (2.22)

Because the loop correction in Equation (2.7) does not vanish
for this scale choice it should still be included in the effective
potential. It is nevertheless, fairly common to make the further
approximation of dropping it, and writing the tree-level RGI
effective potential simply as

V tree
RGI(ϕ) =

λ(ϕ)

4
ϕ4 . (2.23)

For weak couplings this is not a good approximation, though.
Equation (2.20) shows that the loop correction vanishes forµ∗ ≈

gϕ, and therefore a good approximation to RGI effective potential
is

VRGI(ϕ) ≈
1

4
λ(gϕ)ϕ4 =

1

4g4
λ(gϕ)(gϕ)4 =

1

g4
V tree
RGI(gϕ).

(2.24)
From this we can see that the use of the tree-level RGI potential
(2.23) with the scale choice (2.22) gets the barrier position wrong
by a factor of g and the barrier height by a factor of g4. Therefore
one should either keep the one-loop correction, or use a more
accurate scale choice.

From the beta function (2.13) for λ, we see that if g2 ≫ λ, λ
can become negative at high scales µ. It is conventional to define
the instability scale µ3 as the scale where this happens,

λ(µ3) = 0 . (2.25)

If µ3 < ∞, the effective potential (2.21) becomes negative at
high field values, too, implying an instability. Again, the root
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cause is a negative contribution from the fermions, this time in
the beta functions.

The solution for the running λ(µ) can be obtained
analytically, but is unfortunately quite complicated (see e.g.,
Bando et al., 1993a). However, it is easy to see that the critical
value of the coupling, below which the instability appears, is

λcr =
1+

√

145

18
g2. (2.26)

Close to this critical value one may provide relatively simple
analytical results. Suppose we have initial conditions given at
some reference scale µ0 for the running parameters g(µ0) and
λ(µ0) the latter of which we parameterize as a fixed value λcr and
a perturbation δλ as

g(µ0) ; λ(µ0) ≡ λcr − δλ . (2.27)

By solving Equations (2.13) and (2.14) explicitly one may show
that λ(µ) has the following expansion

λ(µ)

g2(µ)
=

λcr

g2(µ0)
−

δλ

g2(µ0)

(

g2(µ)

g2(µ0)

)

√

29/5

+O(δλ2) . (2.28)

From Equation (2.16) it is apparent that, because g(µ) is
a monotonically increasing function of µ, the RGI effective
potential (2.21) is unbounded from below at large field values,
for an arbitrarily small positive perturbation δλ > 0. For
comparison, the threshold (2.8) in the unimproved case was
λcr/g

2
= 2/3, somewhat lower than the RGI result (2.26).

The above makes apparent a very important generic feature:
renormalization group improvement can lead to conclusions
that are qualitatively different from the unimproved results. In
particular, sizes of couplings deemed as well-behaved and hence
giving rise to a stable potential may in fact reveal to result in an
instability by the RG improved results. This also implies that close
to the critical value the higher loop corrections become quite
important as even a small change may tilt the conclusion from
stable to unstable, or vice versa. This is also suggested by the fact
that the couplings run very gradually and the precise value of the
instability scale is very sensitive to small corrections: even a tiny
change in the initial values or the running may change µ3 by
several orders of magnitude. These features are illustrated in the
example below.

For concreteness, let us consider a numerical example
that highlights the importance of renormalization group
improvement. Specifically, we choose the Yukawa theory with a
negligible mass parameter and with the initial conditions defined
at the renormalization scale µ0 as as

g(µ0) =
1
√

2
; λ(µ0) =

1+
√

145

36
−10−2

≈ 0.352 . (2.29)

which from (2.27) can be seen to correspond to a choice that is
below the critical value by

δλ = 10−2 . (2.30)

Since Equation (2.29) satisfies λ(µ0) >
2
3 g

2(µ0) the unimproved
effective potential (2.8) implies no instability. This is however
not the case after renormalization group improvement as shown
in Figure 2. We must however make sure that the above scale
is such that all parameters remain perturbative, in particular
for the Yukawa theory we need to check that the g-coupling is
sufficiently small. For our parametrization this can be loosely
expressed as 2g2(µ3) . 4π and perturbativity is easily
demonstrated with the help of Equation (2.16). This check is
quite important since if g(µ) reaches a large value before µ3, it
will render the entire derivation inconsistent.

What is also apparent from Figure 2 that there is a clear
difference between the tree-level RGI approximation (2.23) and
the full RGI result (2.19), when using the simple non-exact
scale choice (2.22). In many applications this would result in a
non-negligible inaccuracy, but as shown in Equation (2.24), it
changes the barrier position by a factorO(g) and height byO(g4),
which can be important for vacuum stability. This sensitivity
to quantum corrections and the choice of µ∗ comes from the
fact that the instability occurs precisely at the point where the
tree-level contribution vanishes.

2.3. Effective Potential in the Standard
Model
The SM has a far richer particle content than the simple Yukawa
theory of section 2.1, but themain reason for the possible vacuum
instability remains the same: Quantum corrections from the
fermions contribute with a minus sign and if significant enough
can lead to the formation of regions with lower potential energy
than the electroweak vacuum. In the SM the effect is mostly due
to the top quark, because it is by far the heaviest and thus has
the largest Yukawa coupling. As discussed in section 4, general
field theory principles then dictate that after a sufficiently long
time has passed the system should relax into the configuration

FIGURE 2 | Behavior of the 1-loop RGI effective potential (2.19) (green), the

tree-level RGI effective potential (2.23) (blue), and the non-improved result (2.4)

(red) with the choices (2.29) at the reference scale µ0. The RGI scale choice

was µ*(ϕ) = ϕ.
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with the lowest energy resulting in the decay of the electroweak
vacuum.

Through increasing experimental accuracy and improved
analytic estimates in recent years it has become apparent that the
central values for the couplings of the SM allow extrapolation
to energy scales close to the Planck scale and that they are
in fact incompatible with the situation where the electroweak
vacuum would be the state of lowest energy. Some important
early works addressing the question of vacuum instability are
Krive and Linde (1976), Krasnikov (1978), Maiani et al. (1978),
Politzer and Wolfram (1979), Hung (1979), and Cabibbo et al.
(1979). The full body of work studying aspects of the vacuum
instability is vast (to say the least) and includes Linde (1980),
Lindner (1986), Lindner et al. (1989), Arnold (1989), Arnold
and Vokos (1991), Ellwanger and Lindner (1993), Ford et al.
(1993), Sher (1993), Altarelli and Isidori (1994), Casas et al.
(1995), Espinosa and Quiros (1995), Casas et al. (1996), Hambye
and Riesselmann (1997), Nie and Sher (1999), Frampton et al.
(2000), Isidori et al. (2001), Gonderinger et al. (2010), Ellis et al.
(2009), Holthausen et al. (2012), Elias-Miro et al. (2012), Chen
and Tang (2012), Elias-Miro et al. (2012), Rodejohann and Zhang
(2012), Bezrukov et al. (2012), Datta and Raychaudhuri (2013),
Alekhin et al. (2012), Chakrabortty et al. (2013), Anchordoqui
et al. (2013), Masina (2013), Chun et al. (2012), Chung et al.
(2013), Gonderinger et al. (2012), Degrassi et al. (2012), Buttazzo
et al. (2013), Bhupal Dev et al. (2013), Nielsen (2012), Tang
(2013), Klinkhamer (2013), He et al. (2013), Chun et al. (2013),
Jegerlehner (2014), Branchina and Messina (2013), Di Luzio
et al. (2016), Martin (2014), Gies et al. (2014), Branchina and
Messina (2017), Eichhorn et al. (2015), Antipin et al. (2013), Chao
et al. (2012), Spencer-Smith (2014), Chetyrkin and Zoller (2012),
Chetyrkin and Zoller (2013), Gabrielli et al. (2014), Branchina
et al. (2015), Bednyakov et al. (2015), Branchina et al. (2014),
Bednyakov et al. (2013), Bednyakov et al. (2013), Bednyakov
et al. (2014), Kobakhidze and Spencer-Smith (2013), Salvio et al.
(2016), Chigusa et al. (2018), Chigusa et al. (2017), Garg et al.
(2017), Khan and Rakshit (2015), Khan and Rakshit (2014),
Liu and Zhao (2013), Bambhaniya et al. (2017), Schrempp and
Wimmer (1996), Sher (1989), and Moss (2015).

The modern high precision era of vacuum instability
investigations can be thought to have been initiated by the
detailed analyses performed in Degrassi et al. (2012) and Buttazzo
et al. (2013), which presented the first complete next-to-next-to-
leading order analysis of the Standard Model Higgs potential and
the running couplings.

The current state-of-the-art calculation for the running of
Standard Model parameters uses two-loop matching conditions,
three-loop RG evolution and pure QCD corrections to four-loop
order (Bednyakov et al., 2015). The running of the Higgs self-
coupling λ is shown in Figure 3 for the central mass values (1.1),
together with bands showing the effects of the estimated errors
in the parameter values. For the central mass values (1.1), the
instability scale (2.25), defined by λ(µ3) = 0, is

µ3 = 9.92× 109 GeV. (2.31)

FIGURE 3 | RG evolution of the Higgs four-point coupling. The bands

represent uncertainties up to 3σ coming from the mass of the Higgs, the top

quark and the strong coupling constant Mh, Mt and αS, respectively, using

central values (Tanabashi et al., 2018) of Mh = 125.18± 0.16GeV,

Mt = 173.1± 0.9GeV, αS = 0.1181± 0.0011.

This depends sensitively on the top and Higgs masses: At 1σ
the range is 1.16 × 109 GeV < µ3 < 2.37 × 1011 GeV, and
the case in which λ(µ) is never negative at still included within
3σ uncertainty. Using the three-loop running, and including the
one-loop correction in the RGI effective potential with the scale
choice µ∗(ϕ) = ϕ, the top of the potential barrier lies at

ϕbar = 4.64× 1010 GeV, (2.32)

and the barrier height is

1V(ϕbar) = V(ϕbar)− V(ϕfv) = 3.46× 1038 GeV4

= (4.31× 109 GeV)4. (2.33)

For comparison, the tree-level RGI form (2.23), which means
dropping the one-loop correction and is common in the
literature, would give a significantly lower position for the
top of the potential barrier, ϕbar = 7.70 × 109 GeV. Using
the unimproved one-loop effective potential with parameters
renormalized at the electroweak scale gives as even lower value
ϕbar = 5.78 × 104 GeV. This demonstrates that, as discussed
in section 2.2, the use of renormalization group improvement
and the inclusion of at least the one-loop correction in the RGI
effective potential are both crucial for accurate results.

A slightly more formal issue that must also be kept in mind
is that the barrier position ϕbar is in fact gauge dependent and
strictly speaking has limited physical significance (Andreassen
et al., 2014; Di Luzio and Mihaila, 2014; Espinosa et al., 2017,
2016). The value of the potential at its extrema are however
gauge independent as demanded by the famous Nielsen identity
(Nielsen, 1975). In the simplest approximation the probability
of vacuum decay involves only the values of the potential at the
extrema and subtleties involving gauge dependence are evaded.
Furthermore, more precise calculations of the rate of vacuum
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decay, since it is a physical process, can be expected to always be
cast into a gauge-invariant form (Plascencia and Tamarit, 2016).

3. FIELD THEORY IN EXPANDING
UNIVERSE

3.1. Spectator Field on a Curved
Background
In the extreme conditions of the early Universe, gravity plays a
significant role. In order to investigate the consequences from
Higgs metastability we must therefore make use of an approach
that incorporates also gravitational effects. This can be achieved
in the framework of quantum field theory in a curved spacetime.
The study of quantum fields theory on curved backgrounds is
hardly a recent endeavor. For a thorough discussion on the
subject we refer the reader to the standard textbooks, such as
Birrell and Davies (1984), Mukhanov and Winitzki (2007), and
Parker and Toms (2009).

As a representative model we choose an action consisting only
of a self-interacting scalar field

S =

∫

d4x
√

|g|

[

1

2
∇µϕ∇

µϕ−
1

2
m2ϕ2 −

ξ

2
Rϕ2 −

λ

4
ϕ4
]

, (3.1)

where the curved background is visible in the metric dependence
of integration measure,

√

|g|, the covariant derivative ∇µ and
in the appearance of the non-minimal coupling ξ that connects
the field to the scalar curvature of gravity R. The necessity of an
operator∝ Rϕ2 was discovered already in Tagirov (1973), Callan
et al. (1970), and Chernikov and Tagirov (1968), the reasons for
which we will elaborate in section 3.5. It will turn out to be a key
ingredient for the implications of the vacuum (in)stability in the
early Universe.

Since our discussion assumes a classical curved background
with no fluctuations of the metric gµν some effects visible in
a complete quantum gravity approach are possibly missed. For
energy scales below the Planck threshold and for spectator fields
with a negligible effect on the evolution of the background
modifications from quantum gravity are expected to be
suppressed. For the case of a quasi de Sitter background this was
verified in detail in Markkanen et al. (2017) for the SM Higgs.
The reason why quantum gravity is not relevant for a potential
SM metastability can be understood from the simple fact that the
instability scale (see section 2.3) is significantly lower than the
Planck mass

µ3

MP
≈ 10−8 . (3.2)

3.2. Homogeneous and Isotropic
Spacetime
From the cosmological point of view it is often sufficient
to consider the special case of a homogeneous and isotropic
spacetime with the Friedmann–Lemaître–Robertson–Walker
(FLRW) line-element given in cosmic time as

ds2 = dt2 − a(t)2dx2 , (3.3)

where a(t) ≡ a is the scale factor describing cosmic acceleration.
We will furthermore assume that the energy and pressure
densities of the background, ρ and p, are connected via the
constant equation of state parameter w as

p = wρ ; ρ = T00 , p = Tii/a(t)
2 , (3.4)

where Tµν is the energy-momentum tensor of the background.
With the line-element (3.3) the Einstein equation reduces to the
Friedmann equations



















3H2M2
P = 3

(

ȧ

a

)2

M2
P = ρ

−(3H2
+ 2Ḣ)M2

P = −

[(

ȧ

a

)2

+ 2
ä

a

]

M2
P = p = wρ

,

(3.5)

which allow one to easily find expressions for the Hubble rate
H ≡ ȧ/a and the scale factor as functions of w

a =

(

t

t0

)
2

3(w+1)

, H =

2

3(w+ 1)t
, for w 6= −1

a = eHt , H = H0 , for w = −1 . (3.6)

For the purposes of this discussion the most important quantity
characterizing gravitational effects will be the scalar curvature of
gravity R, which may be written as a function of the equation of
state parameter and the Hubble rate

R = 6

[(

ȧ

a

)2

+

ä

a

]

= 3(1− 3w)H2 . (3.7)

3.3. Amplified Fluctuations
Let us then concentrate on a free quantum theory by setting
λ = 0. For this case the action (3.1) leads to the equation of
motion

(

2 +m2
+ ξR

)

ϕ̂ = 0 , (3.8)

whose solutions, as usual, can be expressed as a mode expansion

ϕ̂ =

∫

d3k eik·x
√

(2π)3a2

[

âkfk (η)+ â†

−kf
∗

k (η)
]

, (3.9)

with [âk, â
†

k′ ] = δ(3)(k − k′), [âk, âk′ ] = [â†

k, â
†

k′ ] = 0, where k
is the co-moving momentum and k ≡ |k|. In the above we have
also made use of conformal time defined as

η =

∫ t dt′

a(t′)
⇒ ds2 = a2(dη2 − dx2) . (3.10)

From Equations (3.8) and (3.9) we may write down the mode
equation

f ′′k (η)+

[

k2 + a2M2

]

fk(η) = 0 , (3.11)
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where the primes denote derivatives with respect to conformal
time and we have defined the effective mass

M
2
≡ m2

+

(

ξ −
1

6

)

R . (3.12)

Equation (3.11) may be interpreted as that of a harmonic
oscillator with a time-dependent mass. The crucial point is that
for many cosmologically relevant combinations of m, ξ and w
theM2-contribution is in fact negative. A prime example would
be a massless minimally coupled scalar field during cosmological
inflation for which m = 0, ξ = 0 and w = −1 giving M

2
=

−2H2. If M2 < 0 it is a simple matter to show that the modes
with (k/a)2+M

2 < 0 contain an exponentially growing branch,
which implies that a large field fluctuation can be generated.
This effect coming from an imaginary mass-like contribution is
sometimes called tachyonic or spinodal instability/amplification
(Felder et al., 2001). We note that even if no tachyonicity occurs,
a large fluctuation can nonetheless be generated if there is a rapid
i.e., a non-adiabatic change inM.

A more precise way of understanding the generation of a
large fluctuation is by calculating the infrared (IR) portion of
the variance i.e., a loop with a low-momentum cut-off 3IR. This
shows that in many situations that can broadly be characterized
as havingM2 . 0 the result diverges (Markkanen, 2018)2

〈ϕ̂2〉3IR ∝

∫ 3IR

0
dk k2 |fk(η)|

2 t→∞

−→ ∞; for λ = 0 . (3.13)

When the theory is not free interactions will via backreaction
prevent the generation of arbitrary large fluctuations. In practice
one may understand this as the emergence of positive mass-like
contributions from the interactions making the field heavy and
thus preventing tachyonic or non-adiabatic amplification. The
functioning of this mechanism usually allows a significant 〈ϕ̂2〉
term indicating that quite generally an IR divergence in the free
theory implies a large fluctuation when interactions are included.

This rather simple discussion leads to an important
implication in regards the vacuum instability problem in
the cosmological setting: even if in flat space the decay of a
metastable vacuum is enormously unlikely, this may not have
been the case during the earlier cosmological epochs when a
transition over the barrier can be induced by a large fluctuation
generated by the dynamics on a curved background.

3.4. Quantum Theory in de Sitter Space
Even in the simple special case of a de Sitter background it
is difficult to perform analytic calculations for an interacting
quantum theory. This is mostly due to the non-trivial infrared
behavior of quantum fields in de Sitter space (Allen, 1985;
Sasaki et al., 1993; Mukhanov et al., 1997; Abramo et al., 1997;
Prokopec et al., 2003; Onemli and Woodard, 2004; Losic and
Unruh, 2005; Enqvist et al., 2008). A manifestation of this is
the lack of a perturbative expansion based on a non-interacting
propagator due to the infrared divergence as described in
Equation (3.13). The infrared properties of de Sitter space

2For example in de Sitter space one has |fk→0(η)|
2
∝ H2k−3 form = ξ = 0.

have attracted significant attention over the years and we refer
the interested reader to the review (Seery, 2010) for more
information and references.

One popular way forward is to use techniques based on
the so-called two-particle-irreducible (2PI) diagrams, which are
essentially non-perturbative resummations of distinct classes of
Feynman diagrams. The 2PI approach is attractive in that it is
derivable via first principles from quantum field theory without
any approximations. Hence, in principle it can be used up to
arbitrary accuracy. Unfortunately, only the leading terms that
come by the Hartree approximation are analytically tractable.
Applications of 2PI techniques to de Sitter space include Riotto
and Sloth (2008), Tranberg (2008), Arai (2012), Serreau (2011),
Garbrecht et al. (2014), Herranen et al. (2014), and Gautier and
Serreau (2015).

A non-perturbative framework for calculating quantum
correlators in de Sitter space was laid out in Starobinsky
(1986) and Starobinsky and Yokoyama (1994). This technique is
generally known as the stochastic formalism and is surprisingly
straightforward calculationally. It is based on the insight that to
a good approximation in de Sitter space one may neglect the
quantum nature of the problem and devise a set-up in which
the correlators may be calculated from a classical probability
distribution P(t,ϕ). If the scalar field ϕ̂ is light, m ≪ H, coarse
graining over horizon sized patches allows one to approximate
its dynamics with a Langevin equation

ϕ̇ = −

V ′(ϕ)

3H
+ f (t) , (3.14)

whereV(ϕ) is the classical potential and f (t) is a white noise term
satisfying

〈f (t′)f (t)〉 =
H3

4π2
δ(t′ − t) . (3.15)

The reason why the “hat” notation has been dropped from ϕ is
that Equation (3.14) contains only classical stochastic quantities
i.e., the quantum features are no longer visible.

The Langevin Equation (3.14) can be cast in the form
of a Fokker-Planck equation for the probability density
P(t,ϕ) (Starobinsky and Yokoyama, 1994)

Ṗ(t,ϕ) =
1

3H

∂

∂ϕ

[

P(t,ϕ)V ′(ϕ)
]

+

H3

8π2

∂2

∂ϕ2
P(t,ϕ) . (3.16)

After a sufficiently long time has passed one would expect
that P(t,ϕ) reaches a constant equilibrium distribution. When
Ṗ(t,ϕ) = 0, Equation (3.16) has a simple analytic solution as

Peq(ϕ) = N exp

{

−

8π2V(ϕ)

3H4

}

, (3.17)

where N is a normalization factor.
As an example, for a theory with only a quartic term V(ϕ) =

(λ/4)ϕ4, which in many cases is the relevant approximation for
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the SMHiggs in the early Universe, this results in the equilibrium
probability distribution

Peq(ϕ) =

(

32π2λ

3H4

)1/4
1

Ŵ(1/4)
exp

{

−

2π2λϕ4

3H4

}

. (3.18)

The corresponding field variance becomes

〈ϕ̂2〉 =

√

3

2π2

Ŵ( 34 )

Ŵ( 14 )

H2

√

λ
≈ 0.132

H2

√

λ
. (3.19)

This means that the Higgs field develops a non-zero value ϕ ∼

λ−1/4H, which is sometimes called a condensate (Kunimitsu
and Yokoyama, 2012; Enqvist et al., 2013, 2014; Kusenko et al.,
2015; Enqvist et al., 2016; Pearce et al., 2015; Freese et al., 2018;
Hardwick, 2018).

The central assumption that leads to the stochastic description
is that the effect of the ultraviolet physics on the infrared
behavior can be described as a white noise term in the
Langevin Equation (3.14). The ultraviolet modes also contribute
to the effective potential V(ϕ) in the Fokker-Planck Equation
(3.16), as was discussed in section 2.2 in flat space. These
are two separate effects, which both need to be included
in the calculation (Markkanen et al., 2018). Especially when
investigating the vacuum stability of the SM it is therefore
imperative that the quantum corrections are incorporated in
the stochastic approach, for example by making use of the RGI
effective potential as the input in Equation (3.16).

3.5. Curvature Corrections to the Effective
Potential
It is clearly evident from the derivations of section 3.3 that a scalar
field in curved spacetime feels the curvature of the background.
It then follows that also the effective potential must receive a
contribution from curvature. In order to reliably investigate the
implications from the SM metastability in the early Universe
these contributions then must be included in a discussion of
quantum corrections to the potential.

Investigations of the effective potential on a curved
background have been performed by a number of authors
in a variety of models (Ford and Toms, 1982; Toms, 1982, 1983;
Hu and O’Connor, 1984; Buchbinder et al., 1985; Odintsov,
1991; Buchbinder et al., 1992; Elizalde and Odintsov, 1994a,
1993, 1994b; Kirsten et al., 1993; Odintsov, 1993; Elizalde and
Odintsov, 1994c; George et al., 2012; Czerwińska et al., 2015;
Bounakis and Moss, 2018). However, the derivation of the
effective potential for the full SM in curved spacetime was only
recently carried out it in Markkanen et al. (2018).

Deriving the effective potential for a quantized scalar field on
a curved background is naturally much more difficult than in
flat space: for many backgrounds even the case of a free scalar
field admits no closed form solutions for the mode equation
(Birrell and Davies, 1984). Another complication that arises is
that choosing the boundary condition i.e., the specific quantum
state in which the effective potential is calculated is far from
obvious. This is due to the fact that in curved space the concept
of a particle and hence the vacuum state is no longer well-defined

globally, but depends on the specific dynamics and perceptions
of a given particular observer (Gibbons and Hawking, 1977).

However, even on an arbitrary curved background some
things remain universal: renormalizability of a quantum field
theory imposes the requirement that all quantum states should
have coinciding divergences. From this it follows that it is
possible to derive an effective potential retaining terms only
originating from the very high ultraviolet (UV), which is a
contribution that is always present irrespective of the quantum
state one is interested in. Such an expression would then allow
one to determine all the generated operators and their respective
runnings, as RG effects are ultimately the result of UV physics.

Let us once more study the Yukawa theory of section 2.1 only
this time in curved spacetime and without neglecting the mass
parameter for the scalar. In curved spacetime the action reads

S =

∫

d4x
√

|g|

[

1

2
∇µϕ∇

µϕ −

1

2
m2ϕ2 −

ξ

2
Rϕ2 −

λ

4
ϕ4

+ψ̄∇/ψ − gϕψ̄ψ

]

. (3.20)

The most convenient way of deriving the effective potential
is the Heat Kernel method reviewed in Avramidi (2000), see
also Buchbinder et al. (1992). This approach has been known
for a long time, see Schwinger (1951), DeWitt (1964), Seeley
(1967), Gilkey (1975), Minakshisundaram and Pleijel (1949),
and Hadamard (1923) for early work. We will make use of the
resummed form of the Heat Kernel expansion derived in Parker
and Toms (1985) and Jack and Parker (1985), which for the action
(3.20) gives (for details, see Markkanen et al., 2018)

Veff(ϕ) =
1

2
m2ϕ2 +

ξ

2
Rϕ2 +

λ

4
ϕ4 + V(1)

ϕ (ϕ)+ V
(1)
ψ (ϕ) , (3.21)

where the one-loop quantum corrections from the scalar and the

fermion, V
(1)
ϕ (ϕ) and V

(1)
ψ (ϕ), read

V(1)
ϕ (ϕ) =

M
4
ϕ

64π2

[

log

(

|M
2
ϕ |

µ2

)

−

3

2

]

+

1
90

(

RµνδηR
µνδη

− RµνR
µν
)

64π2
log

(

|M
2
ϕ |

µ2

)

,(3.22)

and

V
(1)
ψ (ϕ) = −

4M4
ψ

64π2

[

log

(

|M
2
ψ |

µ2

)

−

3

2

]

+

1
90

(

(7/2)RµνδηR
µνδη

+ 4RµνR
µν
)

64π2
log

(

|M
2
ψ |

µ2

)

,

(3.23)

respectively, and the curved space effective masses M2
ϕ andM

2
ψ

are now

M
2
ϕ ≡ m2

+ 3λϕ2 + (ξ − 1/6)R ; M
2
ψ ≡ g2ϕ2 + R/12 .

(3.24)
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The Rµν and Rµναβ are the Ricci and Riemann tensors,
respectively. We have introduced the absolute values in the
logarithms to ensure that the result is never complex. A complex
effective potential in flat space can be interpreted as a finite
lifetime of the quantum state (Weinberg and Wu, 1987), but
this is ultimately an infrared effect and hence not correctly
represented in an UV expansion. Therefore, the effective
potential in curved space derived with the Heat Kernel expansion
correctly represents the local physics and can for example be
used to determine the running of parameters in curved space and
the possible generation of new operators (see the next section),
but in order to answer questions about vacuum decay one needs
additional technology, which is discussed in section 4.

What the above clearly shows is that on a curved background
a highly non-trivial dependence on the curvature emerges: A
curved spacetime leads to the generation of additional operators
that couple to the scalar field. Importantly, the non-minimal term
∝ Rϕ2 directly coupling ϕ to R is not the only one, but terms
∝ R2, RµνR

µν , and RµνδηR
µνδη are also unavoidable and they

couple to the scalar field via the logarithmic loop contributions.
These terms are not necessarily small, for example in de Sitter
space with a constant Hubble rate H the various curvature
contributions may be written as

R = 144H4 , RµνR
µν

= 36H4 , RµνδηR
µνδη

= 24H4 ,
(3.25)

and in the early Universe the Hubble rate can be several orders
of magnitude larger than any mass parameter of the SM. Simply
put, since curvature is felt by the scalar field its inclusion in the
calculation is vital for making robust predictions because the
scale provided by H often is the largest scale of the problem.

3.6. Running Couplings in Curved Space
The basic principles laid out in the flat space analysis of section
2.2 remain unchanged when the background in no longer flat:
Demanding a result independent of the renormalization scale
µ leads to the Callan-Symanzik equation from which the beta
functions may be solved given the anomalous dimension γ . Since
γ is a dimensionless number it will receive no contributions
from constants associated with the curvature of space such
as ξ . Otherwise parameters only visible in the action when
the background is curved would nonetheless influence the RG
running of, say, λ. Similar arguments imply that all beta functions
present in flat space remain unchanged when the background is
curved.

As one may see from Equations (3.21)–(3.23) operators that
are not present in the tree-level action (3.20) are generated by the
loop correction. This means that even if one renormalizes these
terms to zero, they may resurface via RG running. Ultimately,
this is the reason behind the non-minimal term ∝ Rϕ2 already
in (3.20). For the same reason in our theory we must include the
following purely gravitational action

Sg = −

∫

d4x
√

|g|

[

V3− κR+α1R
2
+α2RµνR

µν
+α3RµνδηR

µνδη

]

.

(3.26)

A straightforward application of the Callan-Symanzik
Equation (2.10) with Equation (2.15) for Equations (3.21)–(3.23)
gives the beta functions for the Yukawa theory

βξ =

(ξ − 1/6)

16π2

(

6λ+ 4g2
)

; βV3 =

m4/2

16π2
; βκ = −

m2(ξ − 1/6)

16π2
;

βα1 =

(ξ − 1/6)2/2− 1/72

16π2
; βα2 =

1/60

16π2
; βα3 =

1/40

16π2
.

(3.27)

which along with Equations (2.12)–(2.15) provide a complete set
of RG equations for the Yukawa theory in curved spacetime.

A crucial difference to the flat space case arises when
implementing renormalization group improvement. In section
2.2 we exploited the fact that the full quantum result must be
independent of the renormalization scale µ in order to optimize
the pertubative expansion. Namely, we made the choice (2.18)
in order to keep the logarithms small also at large scales. In
curved space the logarithms in the loop corrections (3.22) and
(3.23) have dependence on the scalar curvature R, and therefore
it must be included in the optimization. The one-loop calculation
shows that the exact scale choice that would fully cancel the
loop correction is not possible across the whole range of field
values (Markkanen et al., 2018). Instead, a sensible choice for the
optimized scale µ∗ is a linear combination of ϕ2 and R i.e.,

µ2
∗
(ϕ,R) = aϕ2 + bR , (3.28)

where the parameters a and b are chosen in such a way that the
logarithms remain under control.

Equation (3.28) highlights an often neglected effect arising in
curved spaces after renormalization group improvement: In a
curved background the optimal scale choice depends significantly
on curvature. This phenomenon may be characterized as
curvature induced running and was recently studied in detail
for the full SM in Markkanen et al. (2018). In situations where
the curvature of the background is significant it can give the
dominant contribution to the scale. Considering themetastability
of the SM in the early Universe this in fact is often the case as
during and after inflation one may have a Hubble rate much
larger than the instability scale, H ≫ µ3.

3.7. The Standard Model
The Standard Model particle content can be expressed with the
Lagrangian

LSM = LYM + LF + L8 + LGF + LGH . (3.29)

The first three terms in Equation (3.29) describe the
contributions coming from the gauge fields, the fermions
and the Higgs doublet 8 whose one point function we write as
〈8̂〉 ≡ ϕ, from now on dropping the hats. The “GF” and “GH”
are the gauge fixing and ghost Lagrangians, respectively. Here
we show explicitly only the Higgs contribution (for the full result
see Markkanen et al., 2018)

L8 =

(

Dµ8
)† (

Dµ8
)

+m28†8− ξR8†8− λ(8†8)2 ,
(3.30)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org December 2018 | Volume 5 | Article 4035

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Markkanen et al. Cosmological Aspects of Higgs Vacuum Metastability

with the SM covariant derivative

Dµ = ∇µ − igτ aAa
µ − ig′YAµ; τ a = σ a/2 , (3.31)

where ∇µ contains the connection appropriate for Einsteinian
gravity, g, g′ (Aa

µ andAµ) are the SU(2) andU(1) gauge couplings
(fields) τ a and Y , the corresponding generators, and σ a the Pauli
matrices.

As de Sitter space is the most important application of our
results here we show the perturbative 1-loop correction for the
SM in a spacetime with an equation of state w = −1 i.e., a
constant Hubble rate H (see section 3.2)

V
(1)
SM(ϕ,µ) =

1

64π2

31
∑

i= 1

{

niM
4
i

[

log

(

|M
2
i |

µ2

)

− di

]

+ n′iH
4 log

(

|M
2
i |

µ2

)}

, (3.32)

where the sum is over all degrees of freedom of the SM, which
may be found in Tables 1, 2. The masses are defined as

m2
h = −m2

+ 3λϕ2, m2
i =

y2i
2
ϕ2, m2

W =

g2

4
ϕ2 ,

m2
Z =

g2 + (g′)2

4
ϕ2 , m2

χ = −m2
+ λϕ2 . (3.33)

and the ζi are the gauge fixing parameters.
The flat space beta functions have of course been known for

some time, see for example Ford et al. (1993) and Buttazzo et al.
(2013). The complete set of SM beta functions to 1-loop order
was however first calculated only in Markkanen et al. (2018). The
1-loop SM beta functions for couplings associated with gravity

TABLE 1 | The 1-loop effective potential (3.32) contributions with tree-level

couplings to the Higgs.

9 i ni di n′

i
M2

i

W± 1 2 3/2 −34/15 m2
W

+ H2

2 6 5/6 −34/5 m2
W

+ H2

3 −2 3/2 4/15 m2
W

− 2H2

Z0 4 1 3/2 −17/15 m2
Z
+ H2

5 3 5/6 −17/5 m2
Z
+ H2

6 −1 3/2 2/15 m2
Z
− 2H2

q 7− 12 −12 3/2 38/5 m2
q + H2

l 13− 15 −4 3/2 38/15 m2
l
+ H2

h 16 1 3/2 −2/15 m2
h
+ 12(ξ − 1/6)H2

χW 17 2 3/2 −4/15 m2
χ + ζWm2

W
+ 12(ξ − 1/6)H2

χZ 18 1 3/2 −2/15 m2
χ + ζZm

2
Z
+ 12(ξ − 1/6)H2

cW 19 −2 3/2 4/15 ζWm2
W

− 2H2

cZ 20 −1 3/2 2/15 ζZm
2
Z
− 2H2

9 stands for W± and Z0 bosons, the 6 quarks q, the 3 charged leptons l, the Higgs h.

The Goldstone bosons are χW and χZ and ghosts cW and cZ . The masses may be found

in Equation (3.33).

coming from the action (3.26), ξ ,V3, κ ,α1,α2 and α3 can be
solved from Equation (3.32) and read

16π2βξ =

(

ξ −
1

6

)[

12λ+ 2Y2 −
3(g′)2

2
−

9g2

2

]

, (3.34)

16π2βV3 = 2m4 , (3.35)

16π2βκ = 4m2

(

ξ −
1

6

)

, (3.36)

16π2βα1 = 2ξ 2 −
2ξ

3
−

277

144
, (3.37)

16π2βα2 =
571

90
, (3.38)

16π2βα3 = −

293

720
, (3.39)

where

Y2 ≡ 3(y2u + y2c + y2t )+ 3(y2d + y2s + y2b)+ (y2e + y2µ + y2τ ) ,

(3.40)

with yi being a Yukawa coupling for a fermion type i.
Much like in the flat space case in Equation (2.19) we can

write the RGI effective potential by choosing an optimized
scale µ∗(ϕ,R) in such a way that the loop correction is
small (Markkanen et al., 2018). In curved space in addition to
the Lagrangian from Equation (3.30) we must include the purely
gravitational terms from Equation (3.26) in addition to the one
loop contributions (3.32) giving rise to

VSM
RGI(ϕ) =

ξ (µ∗)

2
Rϕ2 +

λ(µ∗)

4
ϕ4 + α1(µ∗)R

2

+ α2(µ∗)RµνR
µν

+ α3(µ∗)RµνδηR
µνδη

+ V
(1),SM
RGI (ϕ,µ∗) , (3.41)

where µ∗ generally depends on both ϕ and R, and we have
assumed |R| ≫ |m2

h
|, which is usually true for the SM Higgs in

the early Universe.

TABLE 2 | Contributions to the effective potential (3.32) with no coupling to the

Higgs at tree-level.

9 i ni di n′

i
M2

i

γ 21 1 3/2 −17/15 H2

22 3 5/6 −17/5 H2

23 −1 3/2 2/15 −2H2

g 24 8 3/2 −136/15 H2

25 24 5/6 −136/5 H2

26 −8 3/2 16/15 −2H2

ν 27− 29 −2 3/2 19/15 H2

cγ 30 −1 3/2 2/15 −2H2

cg 31 −8 3/2 16/15 −2H2

The 9 include the photon γ , the 8 gluons g, the 3 neutrinos ν and the respective ghosts

cγ and cg.
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When the Hubble rate is above electroweak scales it is
quite obvious that the highly non-trivial curvature dependence
apparent in Equation (3.32) and also in Equation (3.41) with
the optimized scale (3.28) cannot be neglected: it is just as,
if not more, important as what would have been obtained by
using only a flat space derivation. The most obvious difference
is the emergence of the direct non-minimal coupling between
the Higgs and the scalar curvature R. Due to the curvature
dependence of the optimized renormalization scale in curved
space (3.28), which can be traced back to the curvature
dependence of the one-loop correction (3.32), the generation of
the non-minimal coupling in the current cosmological paradigm
is unavoidable. It will be sourced by the changing Hubble rate H.
Furthermore, as can be read from the beta function (3.34), ξ = 0
is not a fixed point of the RG flow. Depending on the sign of ξR,
the non-minimal coupling can have a stabilizing or destabilizing
effect, which can be very significant in the early Universe.

In Figure 4 we illustrate the behavior of effective potential for
the full SM in de Sitter space including the one loop quantum
correction (3.32). We have chosen to set the renormalized non-
minimal coupling ξ to zero at the electroweak scale. We use the
field renormalized at the physical top mass

ϕcl ≡ ϕ(Mt) =

√

Z(µ∗)

Z(Mt)
ϕ(µ∗) , (3.42)

as the x-axis. It is clearly evident that in curved space the potential
may have drastically different predictions to flat space. As can be
read off from the beta function for ξ (3.34), if ξ = 0 at some low
scale, it will run to negative values at high scales. Furthermore,
since in de Sitter space R = 12H2 > 0, a negative ξ can prevent
the emergence of a potential barrier, even if robustly present on a
flat background, as visible in Figure 4.

FIGURE 4 | The one-loop RGI effective potential for the full SM in de Sitter

space with ξ = 0 at the electroweak scale, in units of the instability scale

(2.25), using the optimized scale choice (3.28). The x axis is given by the field

renormalized at the physical top mass, ϕcl ≡ ϕ(Mt ). The disappearance of the

potential barrier at large Hubble rates can be traced back to the RG running of

the non-minimal coupling ξ . Figure taken from Markkanen et al. (2018).

4. VACUUM DECAY

4.1. Quantum Tunneling and Bubble
Nucleation
The main mechanism behind vacuum decay in the Standard
Model is essentially a direct extension of ordinary quantum
tunneling to quantum field theories. In ordinary quantum
mechanics, the wave-function for particles trapped by a potential
barrier can penetrate the classically forbidden region of the
barrier, leading to a non-zero probability to be found on the other
side. The transition rate for particles of energy E incident on a
barrier described by potential W(x) can be estimated using the
WKB method (Coleman, 1985),

T = exp

(

−2

∫ x2(E)

x1(E)
dx
√

2(W(x)− E)

)

, (4.1)

where x1, x2 are the turning points of the potential. As is clear
from this expression, the tunneling rate is suppressed by wide and
tall barriers.

Although Equation (4.1) can in principle be evaluated directly,
we will follow a different approach that readily generalizes to
quantum field theories (Coleman, 1977; Brown and Weinberg,
2007). The idea is to use the equation of motion,

d2x

dt2
= −W′(x) →

1

2

(

dx

dt

)2

+W(x) = E. (4.2)

The region (x1, x2) is classically forbidden, since W(x) − E > 0
there. We can apply a trick, however, by analytically continuing
time to an imaginary value: τ = it, which gives a Euclidean
equation of motion,

d2x

dτ 2
= +W′(x) H⇒

1

2

(

dx

dτ

)2

−W(x) = −E. (4.3)

The most notable feature of these equations is that the potential
has effectively been inverted. This means that we can find a
classical solution that rolls through the barrier between the
turning points x1 and x2. If we can find this solution, it allows
us to re-express the integral in Equation (4.1) as

2

∫ x2

x1

dx
dx

dτ
= 2

∫ τ2

τ1

dτ

(

dx

dτ

)2

= 2

∫ τ2

τ1

dτ

[

1

2

(

dx

dτ

)2

+W(x)− E

]

= SE[xB(τ )]− SE[xfv(τ )], (4.4)

where SE is the Euclidean action corresponding to Equation (4.3)

SE[x(τ )] =

∫

dτ

[

1

2

(

dx

dτ

)2

+W(x)

]

, (4.5)

while xB(τ ) is a bounce solution of the Euclidean equations of
motion satisfying x′(τ1) = x′(τ2) = 0, and xfv(τ ) is a constant
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solution, sitting in the false vacuum with energy E. The “bounce”
solution is so named because we see, by energy conservation, that
it starts at x1, rolls down the inverted potential before “bouncing”
off x2 and rolling back. By finding this solution and evaluating its
action, we can compute the rate for tunneling through a barrier.

This argument generalized straightforwardly to many-body
quantum systems, where we use the action

SE[qi(τ )] =

∫

dτ

[

∑

i

1

2

(

dqi

dτ

)2

+W(qi)

]

. (4.6)

With more than one degree of freedom, however, there are
actually an infinite number of paths that qi(τ ) could take when
passing through the barrier, corresponding to an infinite number
of solutions. However, since the decay rate is exponentially
dependent on the action, Ŵ ∝ e−SE[qi], it is clear that only
the solution with smallest Euclidean action will contribute
significantly, as this will dominate the decay rate (in other words,
the tunneling takes the “path of least resistance”).

The generalization from amany body system, qi, to a quantum
field theory with scalar field ϕ(x) is then straightforward,

SE[ϕ(x)] =

∫

d4x

[

1

2
∂µϕ∂

µϕ + V(ϕ)

]

. (4.7)

The integral here is over flat four-dimensional Euclidean space,
and note that the opposite sign of the potential leads to an
opposing sign in the equations of motion,

−∇µ∇
µϕ + V ′(ϕ) = 0. (4.8)

Although it is tempting to interpret V(φ) as the potential to
be tunneled through, this is only somewhat true. The analog of
W(qi) in Equation (4.6) is a functional of the field configuration
ϕ(x), given by an integral over three-dimensional space,

U[ϕ(x)] =

∫

d3x

[

1

2
(∇ϕ)2 + V(ϕ)

]

, (4.9)

where ∇ϕ represents the spatial derivative of the field. In
the analogy with quantum mechanics, this term should be
considered part of the potential, as its many body equivalent
is a nearest-neighbor interaction between adjacent degrees of
freedom, qi, qi±1. This means, in particular, while in quantum
mechanics, the particle emerges after tunneling at a point x2 that
has the same potential energy,W(x1) = W(x2), in quantum field
theory, the field emerges lower down the potential V .

In a field theory, the analog of x2 is a field configuration,
ϕ(x), given by slicing the bounce solution at its mid-way point.
This is a nucleated “true-vacuum” bubble, whose decay rate is
determined by the Euclidean action of the bounce solution, ϕB.
As we will see in section 4.7, the dominant Euclidean solutions
haveO(4) symmetry, which means that the bubble nucleates with
O(3, 1) symmetry. This causes it to expand at near the speed
of light, resulting in the space around a nucleation point being
converted to the true vacuum, releasing energy into the bubble
wall. Apart from the destruction that this would unleash, and the

different masses of fundamental particles in the bubble interior,
the result is also gravitational collapse of the bubble (Coleman
and De Luccia, 1980), making its nucleation in our past light-
cone completely incompatible with the trivial observation that
the vacuum has not decayed (yet).

In cosmological applications, but also other areas, it is also
important to consider the effect of thermally induced fluctuations
over the barrier. Brown and Weinberg (2007) describe how
thermal effects can be included in the above argument. At non-
zero temperature, we must integrate over the possible excited
states, and the decay exponent which depends on energy,

T ∝

∫

dEe−βEe−B(E), (4.10)

where B(E) is the (energy dependent) difference in Euclidean
action between the bounce solution and the excited state of
energy E. This integral is dominated by the energy that minimizes
the exponent βE+ B(E), which is easily shown to satisfy

β = 2(τ2(E)− τ1(E)), (4.11)

where τ1, τ2 are the initial and final values in imaginary time
of the (energy dependent) bounce solution. In other words,
the bounce solution is periodic in imaginary time, with period
controlled by the temperature.

In quantum field theory, the decay rate per unit volume
and time of a metastable vacuum decays was first discussed by
Coleman (Coleman, 1977; Callan and Coleman, 1977), and is
given by

Ŵ = A exp (−B) , A =

(

B

2π

)2 ∣
∣

∣

∣

det′(S′′[ϕB])

det(S′′[ϕfv])

∣

∣

∣

∣

−
1
2

, (4.12)

where

B = S[ϕB]− S[ϕfv] (4.13)

is the difference between the Euclidean action of a so called
bounce solution ϕB of the Euclidean (Wick rotated) equations
of motion, and the action of the constant solution ϕfv which sits
in the false vacuum. S′′ denotes the second functional derivative
of the Euclidean action of a given solution, and det′ denotes
the functional determinant after extracting the four zero-mode
fluctuations which correspond to translations of the bounce
(these are responsible for the formula giving a decay rate per unit
volume). Precise calculations of the pre-factor A in the Standard
Model were performed in Isidori et al. (2001), and involve
computing the fluctuations around the bounce solution of all
fields that couple to the Higgs. This requires renormalizing the
loop corrections, and also to avoid double-counting, expanding
around the tree-level bounce, rather than the bounce in the loop
corrected potential.

In the gravitational case, the prefactor A is harder to compute.
The main issue is that it includes both Higgs and gravitational
fluctuations, and without a way of renormalizing the resulting
graviton loops, the calculation becomes much harder. Various
attempts have been made to do this using the fluctuations
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discussed in section 4.5 (see Dunne and Wang, 2006; Lee and
Weinberg, 2014; Koehn et al., 2015 for example), but a full
description, especially for the Standard Model case, is not yet
available.

In most cases, it is reasonable to estimate the prefactorA using
dimensional analysis. Because A has dimension four, one would
expect

A ∼ µ4, (4.14)

where µ the characteristic energy scale of the instanton solution.

Due to the exponential dependence on the decay exponent, B, this
will not lead to large errors, and therefore we will use this result
in the absence of more accurate estimates.

4.2. Asymptotically Flat Spacetime at Zero
Temperature
In flat Minkowski space, the bounce solution corresponds to a
saddle point of the Euclidean action,

S[ϕ] =

∫

d4x

[

1

2
∂µϕ∂

µϕ + V(ϕ)

]

, (4.15)

with one negative eigenvalue (see section 4.5). Since Equation
(4.12) depends exponentially on the bounce action, only the
lowest action bounce solutions will contribute. In flat space,
it is always the case that the lowest action solution has O(4)
symmetry (Coleman et al., 1978). This means that the equations
of motion for the bounce can be reduced to

ϕ̈ +

3

r
ϕ̇ − V ′(ϕ) = 0, (4.16)

subject to the boundary conditions ϕ̇(0) = 0 and ϕ(r → ∞) →
ϕfv. These ensure that the bounce action is finite and thus gives
non-zero contribution to the decay rate. There are always trivial
solutions corresponding to the minima of the potential V(ϕ), but
they do not contribute to vacuum decay because they have no
negative eigenvalues.

For example, in a theory with a constant negative quartic
coupling, that is,

V(ϕ) = −|λ|
ϕ4

4
, (4.17)

there exists the Lee-Weinberg or Fubini bounce (Fubini, 1976;
Lee and Weinberg, 1986). This is a solution of the form:

ϕLW(r) =

√

2

|λ|

2rB

r2B + r2
, (4.18)

where the arbitrary parameter rB characterizes the size of the
bounce (and thus the nucleated bubble). This arbitrary parameter
appears in the theory because the potential Equation (4.17) is
conformally invariant, and thus bounces of all scales contribute
equally with action

S[ϕLW] =
8π2

3|λ|
. (4.19)

In fact, similar bounces contribute approximately in the
Standard Model, where the running of the couplings breaks this
approximate conformal symmetry, so that bounces of order the
scale at which λ is most negative (which is the minimum of the
λ(µ) running curve) dominate the decay rate (Isidori et al., 2001).

The complete calculation would also include gravity, and
would therefore involve finding the corresponding saddle point
of the action

S[ϕ, gµν] =

∫

d4x

[

1

2
∇µϕ∇

µϕ + V(ϕ)−
M2

P

2
R

]

, (4.20)

where R is the Ricci scalar. The leading gravitational correction
to Equation (4.19) is Isidori et al. (2008)

1Sgravity =
256π3

45(rBMPλ)2
. (4.21)

Another approach is to solve the bounce equations numerically,
which makes it possible to use the exact field and Einstein
equations and the full effective potential. The difference is a
second order correction (Isidori et al., 2008). Using the tree-level
RGI effective potential (2.23), the full numerical result including
gravitational effects for Mt = 173.34GeV, Mh = 125.15GeV,
αS(Mz) = 0.1184 and minimal coupling ξ = 0 is Rajantie and
Stopyra (2017)

Bgrav = 1808.3. (4.22)

A non-minimal value of the Higgs curvature coupling ξ changes
the action and the shape of the bounce solution (and thus the
scale that dominates tunneling) (Isidori et al., 2008; Czerwinska
et al., 2016; Rajantie and Stopyra, 2017; Salvio et al., 2016;
Czerwinska et al., 2017). Figure 5 shows the bounce action
B as a function of ξ , computed numerically in Rajantie and
Stopyra (2017). As the plot shows, the action is smallest near the
conformal value ξ = 1/6. For ξ ≈ 1/6, the result agrees well with
the perturbative calculation (Salvio et al., 2016),

1Sgravity =
32π2(1− 6ξ )2

45(rBMPλ)2
. (4.23)

For comparison, for the same parameters, the numerically
computed decay exponent in flat space is (Rajantie and Stopyra,
2017)

Bflat = 1805.8, (4.24)

which is very close to the full gravitational result with the
conformal coupling ξ = 1/6. The analytical approximation
(4.19) using µmin = 2.79× 1017 GeV gives

S[ϕLW] = 1804.5. (4.25)

Calculations of the prefactor A show that the decay rate (4.12) is
well approximated by Isidori et al. (2001)

Ŵ ∼ µ4
mine

−B
∼ 10−716 GeV4, (4.26)
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FIGURE 5 | Plot of the decay rate for a flat false vacuum for different values of the non-minimal coupling, ξ . The minimal action is obtained close to the conformal

value ξ = 1/6, and agrees well with the flat space result (4.24). Originally published in Rajantie and Stopyra (2017).

where the numerical value corresponds to the action (4.22).
This agrees with the estimate from dimensional analysis (4.14).
Note, however, that the rate is very sensitive to the top
quark and Higgs boson masses, and also to higher-dimensional
operators (Branchina and Messina, 2013; Branchina et al., 2015).

The presence of a small black hole can catalyze vacuum decay
and make it significantly faster (Gregory et al., 2014; Burda et al.,
2015a,b, 2016; Tetradis, 2016). The action of the vacuum decay
instanton in the presence of a seed black hole is given by

B =

M2
seed

−M2
remnant

2M2
P

, (4.27)

where Mseed and Mremnant are the masses of the seed black
hole and the left over remnant black hole. For black holes
of mass Mseed . 105MP ≈ 1g the vacuum decay rate
becomes unsuppressed. This can be interpreted (Tetradis, 2016;
Mukaida and Yamada, 2017) as a thermal effect due to the black
hole temperature Tseed = M2

P/Mseed. The catalysis of vacuum
decay does not necessarily rule out cosmological scenarios with
primordial black holes, because positive values of non-minimal
coupling ξ would suppress the vacuum decay in the presence of a
black hole (Canko et al., 2018).

4.3. Non-zero Temperature
The presence of a heat bath with non-zero temperature has
a significant impact on the vacuum decay rate Ŵ (Anderson,
1990; Arnold and Vokos, 1991). On one hand, the thermal bath
modifies the effective potential of theHiggs field, and on the other
hand, as discussed in section 4.1, it modifies the process itself
because it can start from an excited state rather than the vacuum
state.

At one-loop level, the finite-temperature effective potential
can be written as Arnold and Vokos (1991)

Veff(T,ϕ) = Veff(ϕ)+ T
∑

i

ni

∫

d3k

(2π)3
ln
[

1∓ e−
√

k2+M
2
i /T
]

,

(4.28)
where ni and M

2
i are given in Table 1 (taking H = 0). In the

high-temperature limit, T ≫Mh, this can be approximated by

Veff(T,ϕ) ≈ Veff(0,ϕ)+
1

2
γ 2T2ϕ2, (4.29)

where

γ 2
≈

1

12

(

3

4
g2 +

9

4
g′
2
+ 3y2t + 6λ

)

. (4.30)

Therefore the thermal fluctuations give rise to a positive
contribution to the quadratic term. This raises the height of the
potential barrier, and therefore would appear to suppress the
decay rate.

At non-zero temperatures the decay process is described by a
periodic instanton solution with period β in the Euclidean time
direction. In the high-temperature limit, the solution becomes
independent of the Euclidean time, and has the interpretation
of a classical sphaleron configuration. The instanton action is
therefore given by

B(T) = Esph(T)/T, (4.31)

where Esph is the energy of the sphaleron, which is the
three-dimensional saddle point configuration analogous to the
Coleman bounce (4.16), and satisfies the equation

ϕ̈ +

2

r
ϕ̇ − V ′(ϕ) = 0. (4.32)
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Using the approximation of constant negative λ, the action is
Arnold and Vokos (1991)

B(T) =
Esph(T)

T
≈ 18.9

γ

|λ|
. (4.33)

Because γ ≪ 1, this is smaller than the zero-temperature action
(4.19). Therefore the net effect of the non-zero temperature
is to increase the vacuum decay rate compared to the zero-
temperature case.

More accurately, the sphaleron solutions have been calculated
numerically in Delle Rose et al. (2016) and Salvio et al. (2016). At
high temperatures T & 1016 GeV, the action is roughly

B(T & 1016 GeV) ∼ 300. (4.34)

When the temperature decreases, the action increases, so that
B(1014 GeV) ∼ 400.

Salvio et al. (2016) obtained fully four-dimensional instanton
solutions numerically, without assuming independence on the
Euclidean time, and found that the three-dimensional sphaleron
solutions have always the lowest action and are therefore the
dominant solutions. They also showed that including the two-
loop corrections to the quadratic term (4.30) or the one-loop
correction to the Higgs kinetic term gives only small correction
to the action.

Taking also the prefactor into account, the vacuum decay rate
at non-zero temperature is (Espinosa et al., 2008; Delle Rose et al.,
2016)

Ŵ(T) ≈ T4

(

B(T)

2π

)3/2

e−B(T). (4.35)

4.4. Vacuum Decay in de Sitter Space
In extending from flat space to curved space, the
theorem (Coleman et al., 1978) that guaranteesO(4) symmetry of
the bounce no longer applies. There is some evidence, however,
that in background metrics that do respect this symmetry,
O(4) symmetric solutions should still dominate (Masoumi
and Weinberg, 2012). This would include the special case
of particular interest in this review - an inflationary, or de
Sitter background3. A Wick rotated metric can be placed in a
co-ordinate system that makes the O(4) symmetry of the bounce
immediately manifest,

ds2 = dχ2
+ a2(χ)d�2

3, (4.36)

where χ is a radial variable, d�2
3 is the 3-sphere metric, and a2(χ)

is a scale factor that physically describes the radius of curvature
of a surface at constant χ . The bounce equations of motion then
take the form (Coleman and De Luccia, 1980)

ϕ̈ +

3ȧ

a
ϕ̇ − V ′(ϕ) = 0 (4.37)

ȧ2 = 1−
a2

3M2
P

(

−

˙ϕ2

2
+ V(ϕ)

)

. (4.38)

3In principle, inflation is not exact de Sitter, and so the background does not respect

exact O(4) symmetry if Euclideanised, but for slow roll inflation models, it is a

reasonable approximation to make.

Wewill consider the case in which the false vacuum has a positive
energy density, V(ϕfv) > 0, and therefore non-zero Hubble rate

H2
=

V(ϕfv)

3M2
P

. (4.39)

The boundary conditions the bounce solution must satisfy
require special attention: a(0) = 0 is required because of the
definition of a(χ) as a radius of curvature of a surface of constant
χ , while we require ϕ̇(0) = ϕ̇(χmax) = 0, where χmax > 0 is
defined by a(χmax) = 0. These boundary conditions avoid the
co-ordinate singularities at χ = 0,χmax giving infinite results,
but allow for the peculiar property that the bounces are compact,
and do not approach the false vacuum anywhere.

One way of understanding this peculiar feature was discussed
by Brown and Weinberg (2007). They considered vacuum decay
in de Sitter space, specifically the static patch co-ordinates where
the metric takes the form

dS2n = −

(

1−H2r2
)

dt2 + (1−H2r2)−1dr2 + r2d�2
n−2, (4.40)

where d�2
n−2 is the n− 2-sphere metric (in this case, n = 4). The

important feature of these co-ordinates is that they are valid only
up to the horizon at r = 1/H. The Euclidean action can then be
re-written as

SE =

∫ π
H

−
π
H

dτ

∫

d3x
√

det h

[

1

2
(1−H2r2)−

1
2

(

dϕ

dτ

)2

+

1

2
(1−H2r2)

1
2 hij∂iϕ∂jϕ + (1−H2r2)

1
2V(ϕ)

]

, (4.41)

where hij is the remaining spatial metric. Brown and Weinberg
interpreted this to mean that tunneling takes place on a compact
Euclidean space, with a curved three-dimensional geometry. This
compactness condition is reflected in the boundary conditions
ϕ̇(0) = ϕ̇(χmax), which inevitably produce a compact bounce
solution. They observed that the same effect would be seen in
considering a spatially curved universe with this same spatial
geometry, but with a non-zero temperature,

TGH =

H

2π
. (4.42)

This corresponds to the Gibbons-Hawking temperature of de
Sitter space (Gibbons and Hawking, 1977), and implies that
bounces in de Sitter space may have a thermal interpretation.

The simplest solution of Equations (4.37) and (4.38) is the
Hawking-Moss solution (Hawking and Moss, 1982). This is a
constant solution, for which ϕ = ϕbar sits at the top of the barrier
for the entire Euclidean period, and the scale factor is given by

a(χ) =
1

HHM
sin(HHMχ), H2

HM =

V(ϕbar)

3M2
P

. (4.43)

Hence χmax = π/HHM. The action difference of Equation (4.13)
is then easily computed analytically to be

BHM = 24π2M4
P

(

1

V(ϕfv)
−

1

V(ϕbar)

)

. (4.44)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org December 2018 | Volume 5 | Article 4041

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Markkanen et al. Cosmological Aspects of Higgs Vacuum Metastability

A particularly important limit is that in which 1V(ϕbar) =

V(ϕbar) − V(ϕfv) ≪ V(ϕfv). In that case, Equation (4.44) is
approximately

BHM =

8π21V(ϕbar)

3H4
, (4.45)

where H2
= V(ϕfv)/3M

2
P is the background Hubble rate. The

prefactor (4.14) in the decay rate can be expected to be at the
scale of the Hubble, and therefore the vacuum decay rate due to
the Hawking-Moss instanton can be approximated by

Ŵ(H) ∼ H4e−BHM(H) (4.46)

Equation (4.45) has a simple thermal interpretation: It is the ratio
of the energy required to excite an entire Hubble volume, 4π/3H3

from the false vacuum to the top of the barrier, divided by
the backgroundGibbons-Hawking temperature (4.42). Therefore
it can be understood as Boltzmann suppression in classical
statistical physics.

The bounce equations (4.37) and (4.38) also often have
Coleman-de Luccia (CdL) instantons, in which the field increases
monotonically from ϕ(0) < ϕbar to ϕ(χmin) > ϕbar. For low
false vacuum Hubble rates, H ≪ µmin, a CdL solution can be
found as a perturbative correction to Equation (4.18), with the
action (Shkerin and Sibiryakov, 2015)

BCdL ≈

8π2

3|λ(µmin)|

[

1+ 36

(

ξ −
1

6

)

H2

µ2
min

ln
µmin

H
,

]

. (4.47)

Numerical HM and CdL bounce solutions in the Standard
Model were found in Rajantie and Stopyra (2018) and the
corresponding actions are shown in Figure 6, for the parameters
Mh = 125.15GeV, Mt = 173.34GeV, αS = 0.1184. We can
see that at low Hubble rates, the CdL solution has a lower action
than the HM solution. For example, for the case of background
Hubble rate H = 1.1937 × 108 GeV, the numerical result is
BCdL = 1805.8 in a fixed de Sitter background metric, and
BCdL = 1808.26 including gravitational back-reaction. The CdL
action is also almost independent of the Hubble rate.

On the other hand, the Hawking-Moss action (4.44) decreases
rapidly as the Hubble rate increases. It crosses below BCdL at
Hubble rate (Rajantie and Stopyra, 2018)

Hcross = 1.931× 108 GeV. (4.48)

At Hubble rates below this, H > Hcross vacuum decay
is dominated by the Coleman-de Luccia instanton, which
describes quantum tunneling through the potential barriers,
whereas above this, H > Hcross, the dominant process
is the Hawking-Moss instanton. This is discussed further in
section 4.6.

In addition to the HM and CdL solutions, one may also find
oscillating solutions (Hackworth andWeinberg, 2005; Weinberg,
2006; Lee et al., 2015, 2017), which cross the top of the barrier
ϕbar multiple times between χ = 0 and χ = χmax, and
additional CdL-like solutions with higher action (Hackworth and
Weinberg, 2005; Rajantie and Stopyra, 2018). The latter were

found numerically in the StandardModel in Rajantie and Stopyra
(2018). Because these solution have a higher action than the
HM and CdL solutions, they are highly subdominant as vacuum
decay channels. Oscillating solutions also have more than one
negative eigenvalues (Dunne and Wang, 2006; Lavrelashvili,
2006).

4.5. Negative Eigenvalues
In order for a stationary point of the action to describe vacuum
decay, it has to have precisely one negative eigenvalue. The reason
is that the decay rate of a metastable vacuum is determined by
the imaginary part of the energy as computed by the effective
action (Callan and Coleman, 1977), and thus only solutions
that contribute an imaginary part to the vacuum energy will
contribute to metastability.

This requirement comes in via the functional determinant
which encodes the quantum corrections to the bounce solution.
This functional determinant is given by a product over the
eigenvalues for fluctuations around the relevant bounce solution.
In flat space, these all satisfy (Callan and Coleman, 1977)

−∇µ∇
µδϕ + V ′′(ϕB)δϕ = λδϕ, (4.49)

where ϕB is the solution expanded around. The O(4) symmetric
bounce solutions in flat space can be shown to have at
least one negative eigenvalue, since they possess zero modes
corresponding to translations of the bounce around the space-
time. In fact, there must only be one such eigenvalue.
Solutions with more negative eigenvalues do not contribute to
tunneling rates, because while they are stationary points of the
Euclidean action, they are not minima of the barrier penetration
integral (4.1) obtained from the WKB approximation (Coleman,
1985).

The situation is somewhat different in the gravitational case,
however, due to the fact that in addition to the scalar field, we
can also consider metric fluctuations about a bounce solution.
A quadratic action for fluctuations about a bounce in curved
space was first derived by Lavrelashvili et al. (1985) and has
been considered by several authors (Lavrelashvili, 2006; Lee
and Weinberg, 2014; Koehn et al., 2015). This takes the gauge
invariant form

L
(2)(ζl, ζ̇l) =

a3(χ)
(

1− 1
3 l(l+ 2)

)

2
(

Q−
1
3 ȧ

2l(l+ 2)
)

[

ζ̇ 2l (χ)+ f (a,φ)ζ 2l (χ)
]

,

(4.50)
where

Q = 1−
a2(χ)V(ϕ)

3M2
P

, (4.51)

and f is a complicated function of a and ϕ which can be found
in Lee and Weinberg (2014), Lavrelashvili (2006), and Koehn
et al. (2015). The analysis of this Lagrangian is complicated, but
some conclusions can be drawn. To begin with, it is possible to
argue that expanded around a CdL bounce solution, this action
always has an infinite number of negative eigenvalues. This is the
so called “negative mode problem” (Lavrelashvili, 2006; Lee and
Weinberg, 2014; Koehn et al., 2015). The argument, as expressed
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FIGURE 6 | CdL bounce decay exponent plotted against the Hawking-Moss solution in the Standard Model with Mt = 173.34GeV, Mh = 125.15

GeV,αS(MZ ) = 0.1184. The critical values Hcrit = 1.193× 108 GeV, Hcross = 1.931× 108 GeV are also plotted, along with B0, the bounce action obtained at H = 0.

in Lee and Weinberg (2014), is that we can re-write Q using
Equation (4.38) as

Q = ȧ2 −
a2ϕ̇2

3M2
P

. (4.52)

Note that the bounce always has a point satisfying ȧ = 0, which
is the largest value obtained by a(χ). Consequently, there is
always a region where Q is negative, so for the l = 0 modes
it is possible to construct a negative kinetic term in Equation
(4.50). This means that sufficiently rapidly varying fluctuations
will have their action unbounded below, so there is an infinite
tower of high frequency, rapidly oscillating fluctuations that all
have negative eigenvalues. Note that for l = 1 the quadratic
Lagrangian is zero (these are the zero-modes associated to
translations of the bounce), and for l > 1, both numerator and
denominator in Equation (4.50) are negative, thus the kinetic
terms are always positive. Since Q = 1 in flat space (obtained
by taking the MP → ∞ limit), it is clear that these “rapidly
oscillating” modes are somehow associated to the gravitational
sector.

At first, this seems concerning, however, it was pointed out in
Lee and Weinberg (2014) that these high frequency oscillations
are inherently associated with quantum gravity contributions,
and thus may not affect tunneling. If we focus on the “slowly
varying” modes, the structure of these is much more similar to
the analogous flat space bounces. The conclusion we should draw
then, is that a solution is relevant only if there is a single slowly
varying negative eigenvalue.

4.6. Hawking-Moss/Coleman-de Luccia
Transition
As discussed in section 4.4, there are two types of solutions that
contribute to vacuum decay in de Sitter space. The first is the
Hawking-Moss solution (4.43), and the second is the Coleman-de
Luccia solution, which crosses the barrier once. By considering
the negative eigenvalues of the HM solution, one gains insight
into which solutions exist and contribute to vacuum decay at a
given Hubble rate.

The eigenvalues of the Hawking-Moss solution are Lee and
Weinberg (2014)

λN =

V ′′(ϕbar)

H2
HM

+ N(N + 3), (4.53)

and their degeneracy is Rubin and Ordonez (1983)

DN(4, 0) =
(N + 1)(N + 2)(2N + 3)

6
. (4.54)

Because V ′′(ϕbar) < 0, the N = 0 mode is self evidently negative,
and has degeneracy 1. Higher modes will all be positive if and
only if

λ1 =
V ′′(ϕbar)

H2
HM

+ 4 > 0. (4.55)

This imposes a lower bound onHHM, below which the Hawking-
Moss solution hasmultiple negative eigenvalues. Hence, it cannot
contribute to vacuum decay for Hubble rates below the critical
threshold (Coleman, 1985; Brown and Weinberg, 2007). An
alternative way of expressing this is in terms of a critical Hubble
rate. If we defineH2

= V(ϕfv)/3M
2
P to be the backgroundHubble
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rate in the false vacuum, then the condition for Hawking-Moss
solutions to contribute to vacuum decay is H > Hcrit where

H2
crit = −

V ′′(ϕbar)

4
−

1V(ϕbar)

3M2
P

. (4.56)

Here, 1V(ϕ) ≡ V(ϕ) − V(ϕfv). However, the second term
generally only contributes significantly if the difference in height
between the top of the barrier and the false vacuum is comparable
to the Planck Mass. For most potentials, only the second
derivative at the top of the barrier matters.

At low Hubble rates, H < Hcrit, the Hawking-Moss solution
does not contribute to vacuum decay, but on the other hand,
a CdL solution is guaranteed to exist (Balek and Demetrian,
2004). In most potentials, the CdL solution smoothly merges into
the Hawking-Moss solution as the Hubble rate approached Hcrit

from below, and the Hawking-Moss solution becomes relevant
(Balek and Demetrian, 2005; Hackworth and Weinberg, 2005).
Close to the critical Hubble rate, H ∼ Hcrit, one can define the
quantity (Tanaka and Sasaki, 1992; Balek and Demetrian, 2005;
Joti et al., 2017)

1 ≡ −

1

14

[

V(4)(ϕbar)−
(V(3)(ϕHM))2

3V(2)(ϕbar)
−

8V(2)(ϕHM)

3M2
P

]

,

(4.57)
which divides potentials into two classes (Balek and Demetrian,
2005; Rajantie and Stopyra, 2018). Those with1 < 0 are “typical”
potentials, for which the perturbative solution only exists forH <

Hcrit (Balek and Demetrian, 2005), while those with 1 > 0 only
have perturbative solutions for H > Hcrit. When a perturbative
solution exists, its action is given by Balek and Demetrian (2005)

BCdL = BHM +

2π2(ϕ0 − ϕHM)41

15H4
HM

, (4.58)

where ϕ0 is the true vacuum side value of the bounce (which
approaches ϕHM in the H → Hcrit limit) and ϕbar is the top of
the barrier.

Hence one can see that if 1 < 0, a CdL solution with lower
action, BCdL < BHM, exists for H < Hcrit, and approaches the
Hawking-Moss solution smoothly asH → Hcrit, until it vanishes
at Hcrit. At the same point, the second eigenvalue of the HM
solution turns positive, and therefore the HM solution starts to
contribute to vacuum decay.

On the other hand, if 1 > 0, which is the case for the
Standard Model Higgs potential (Rajantie and Stopyra, 2018),
the perturbative CdL solution exists only for H > Hcrit. Below
Hcrit, the HM solution has two negative eigenvalues, whichmeans
that it does not contribute to vacuum decay. Instead, the relevant
solution is the CdL solution, which also has a lower action
(see Figure 6). When the Hubble rate is increased, a second,
perturbative CdL solution appears smoothly at H = Hcrit, at
the same as the second eigenvalue of the HM solution becomes
positive. At H > Hcrit there are, therefore, at least two distinct
CdL solutions, and in fact, numerical calculations indicate that
there are at least four (Rajantie and Stopyra, 2018). For the
parameters used in Figure 6, the critical Hubble rate is Hcrit =

1.193× 108 GeV.

4.7. Evolution of Bubbles After Nucleation
The bounce solution ϕB determines the field configuration to
which the vacuum state tunnels (Callan and Coleman, 1977;
Brown and Weinberg, 2007), and therefore sets the initial
conditions for its later evolution. It is the equivalent of the second
turning point on the true vacuum side, x2, appearing in Equation
(4.1). In ordinary quantum mechanics, a particle with energy E
emerges on the true vacuum side of the barrier at x2(E) after
tunneling. This is related to the bounce solution, which starts at
x1, rolls until reaching x2, and then bounces back to x1, thus x2
represents a slice of the bounce solution half way through.

In complete analogy, the field emerges at a configuration
corresponding to a slice half way through the bounce solution
(in Euclidean time). In flat space tunneling, the bounce is ϕB(χ)
where χ2

= τ 2 + r2, and thus touches the false vacuum at
τ → ±∞. Hence the mid-way points occurs at τ = 0 and the
solution emerges with φ(x, 0) = ϕB(r). One can then use this as
an initial condition at t = 0 for the Lorentzian field equations,

∇µ∇
µϕ + V ′(ϕ) = 0. (4.59)

However, this is not really necessary, as the O(4) symmetry of
the bounce solution carries over intoO(3, 1) solution (Callan and

Coleman, 1977), and thus the solution can be read off as

ϕ(x, t) = ϕB(
√

r2 − t2) for r > t. (4.60)

From this one can see that the bubble wall is moving outwards
asymptotically at the speed of light. The inside of the light
cone corresponds to an anti-de Sitter spacetime collapsing into
a singularity (Espinosa et al., 2008, 2015; Burda et al., 2016; East
et al., 2017).

The situation in de Sitter space is considerably more
complicated, but the conclusion is the same (Brown and
Weinberg, 2007). First, de Sitter bounces can be thought of as
bounces at finite temperature on a curved spatial background
described by constant time slices of the static patch of de Sitter
space,

ds2 = −(1−H2r2)dt2 + (1−H2r2)−1dr2 + r2d�2
2. (4.61)

The temperature in this case is the Gibbons-Hawking
temperature (4.42) of de Sitter space. Bounces at finite
temperature β = 1/kBT correspond to periodic bounces
in Euclidean space (Brown and Weinberg, 2007), with period
τperiod = β . In this case, the bounce starts at the false vacuum
at τ = −π/H, hits its mid-point at τ = 0, and returns to the
false vacuum side at τ = π/H. Thus, the τ = 0 hypersurface
describes the final state of the field after tunneling.

Analytic continuation of the metric back to real space can be
performed using the approach of Burda et al. (2016). The O(4)
symmetric Euclidean metric is of the form

ds2 = dχ2
+ a2(χ)[dψ2

+ sin2 ψd�2
2], (4.62)

where in the de Sitter case,

a(χ) =
1

H
sin(Hχ). (4.63)
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Since it is straightforward to analytically continue the flat space
metric back to real space via the transformation τ = it, then
the same thing can be done with any conformally flat metric, by
changing variables to τ̃ , r̃ such that

ds2 =
a2(χ)

f 2(χ)
[dτ̃ 2 + dr̃2 + r̃2d�2

2], (4.64)

which is achieved by choosing f (χ) such that f ′(χ) = f /a, f (0) =
0. In the de Sitter case, this means

f (χ) = C
sin(Hχ)

1+ cos(Hχ)
= C tan(Hχ/2), (4.65)

where C is an arbitrary constant - we can choose it to be 1.
This co-ordinate system is obtained from the O(4) symmetric
co-ordinates via

τ̃ = f (χ) cos(ψ), (4.66)

r̃ = f (χ) sin(ψ). (4.67)

One then transforms back to real space exactly as in flat space, via
τ̃ = it. The co-ordinate χ is then related to t̃ and r̃ via

χ = f−1(
√

r̃2 − t̃2). (4.68)

It should be noted that t̃, r̃ as defined only cover the r̃ > t̃ portion
of de Sitter space. Because the metric is manifestly conformally
flat in these co-ordinates, we can see that this corresponds to
the portion of de Sitter space outside the light-cone, which lies
at r̃ = ±t̃.

Doing this for de Sitter yields the real space metric

ds2 =
4

H2[1+ r̃2 − t̃2]2
[−dt̃2 + dr̃2 + r̃2d�2

2], (4.69)

which at first glance, is not obviously de Sitter space. However,
the transformation

t =
1

2H
log

∣

∣

∣

∣

1− r̃2 + 2t̃ + t̃2

1− r̃2 − 2t̃ + t̃2

∣

∣

∣

∣

, (4.70)

r =
2r̃

H(1+ r̃2 − t̃2)
, (4.71)

can be readily shown to yield Equation (4.61), thus this is indeed
a valid analytic continuation of the Euclidean 4-sphere back to de
Sitter space.

To describe the subsequent evolution of the bubble, it is
argued in Burda et al. (2016) that φ(r, t) = φB(χ(r, t)) matches
the symmetry of the O(4) symmetric bounce, just as in flat space,
with χ(r, t) defined by Equation (4.68). As mentioned before,
this describes only the evolution of the scalar field outside the
light-cone. For r̃ < t̃, it is necessary to solve the Euclidean
equations directly. That calculation demonstrates explicitly that
the formation of a singularity in the negative-potential region is
inevitable (Burda et al., 2016), confirming previous calculations
using the thin wall approximation in Coleman and De Luccia
(1980).

As for the evolution outside the light-cone, it can be seen
that, much as in flat space, a point of constant field value ϕ0
corresponding to χ0 where ϕ0 = ϕ(χ0), satisfies

r̃(t̃) =

√

t̃2 + f 2(χ0(φ0)), (4.72)

which means that it rapidly approaches the speed of light as
t̃ → ∞. Thus, just as in flat space, the bubble expands outwards
at the speed of light.

Even if the bubble wall moves outward at the speed of light, it
does not necessarily grow to fill the whole Universe, if it is trapped
behind an event horizon. Scenarios in which bubbles of true
vacuum form primordial black holes have been discussed (Hook
et al., 2015; Kearney et al., 2015; Espinosa et al., 2018a,b). This can
happen if inflation ends before the space inside the bubble hits
the singularity. When the Universe reheats, thermal corrections
(4.28) stabilize the Higgs potential, preventing the collapse. The
bubble then collapses into a black hole, and the primordial black
holes produced in this way could potentially constitute part or
all of the dark matter in the Universe (Espinosa et al., 2018a).
This scenario requires fine tuning to avoid the singularity or
new heavy degrees of freedom that modify the potential at high
field values (Espinosa et al., 2018b). The same scenario can
also produce potentially observable gravitational waves (Espinosa
et al., 2018).

5. COSMOLOGICAL CONSTRAINTS

5.1. Cosmological History
For the Universe to be currently in a metastable state rather than
in its true ground state, it is not enough that the decay rate is
slow today. The Universe also had to somehow end up in the
metastable electroweak-scale state, and the decay rate had to be
sufficiently slow in the past for the Universe to stay there through
the whole history of the Universe. The former requirement
depends on the initial conditions of the Universe, which are
often assumed to involve Planck-scale field values, and therefore
one needs to explain how the Higgs could have relaxed into
the electroweak-scale vacuum without getting trapped into the
negative-energy true vacuum. The latter condition, the survival of
the current metastable state through the history of the Universe,
requires that no bubbles of true vacuum were nucleated in our
past light cone (Espinosa et al., 2008). This is because, once
nucleated, a bubble of true vacuum expands at the speed of light
and destroys everything in its way. If even a single bubble had
nucleated at any time, anywhere in our past lightcone, it would
have already hit us.

To describe the history of the Universe, we approximate it
with the FLRW metric (3.3). The scale factor a(t) satisfies the
Friedmann Equation (3.5)

H2
≡

ȧ2

a2
=

ρ

3M2
P

, (5.1)

where ρ is the energy density of the Universe. When the
dominating energy forms can be described by ideal fluids, one
can write an equation of state p = wρ, which relates the pressure
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p to the energy density ρ through the equation of state parameter
w. From the first law of thermodynamics it then follows that the
energy density scales with the expansion of the Universe as

ρ ∝ a−3(1+w). (5.2)

Observations indicate the Universe currently contains three
forms of energy: radiation (w = 1/3), matter (w = 0) and
dark energy, which we assume to be a cosmological constant with
w = −1. The total energy density can be therefore written as a
function of the scale factor as

ρ(a) = ρ0tot

(

�3 +�mat

(a0

a

)3
+�rad

(a0

a

)4
)

, (5.3)

where �3 = 0.69, �mat = 0.31 and �rad = 5.4 × 10−5 are the
observed energy fractions of cosmological constant, matter and
radiation, respectively (Tanabashi et al., 2018), ρ0tot is the current
total energy density, and a0 is the current value of the scale factor.
It is common to choose a0 = 1 but we include it explicitly for
clarity. The Universe is therefore currently dominated by dark
energy, but in past it was dominated bymatter and, at even earlier
times, by radiation. Observations also show that in its very early
stages, before radiation-dominated epoch, the Universe went
through a period of accelerating expansion known as inflation,
during which the equation of state was, again, w ≈ −1.

To find the expected number of bubbles in the past lightcone,
it is convenient to write the FLRW metric in terms of the
conformal time η as in Equation (3.10). In these coordinates, light
satisfies |dEr/dη| = 1, so if we denote the current conformal time
by η0, the comoving radius of our past light cone at conformal
time η is r(η) = η0 − η.

The dependence of the scale factor on the conformal time is
determined by the Friedmann Equation (3.5), which in terms of
the conformal time is

(

da

dη

)2

=

ρa4

3M2
P

. (5.4)

Using Equation (5.3) one finds that the conformal time since the
end of inflation is

η0−ηinf =
1

H0

∫ a0

0

da
√

�3a4 +�ma
3
0a+�ra

4
0

≈ 3.21(a0H0)
−1.

(5.5)
The bubble nucleation rate Ŵ may have been very different
in different stages of the early evolution of the Universe. It
depends on the curvature of spacetime and temperature, and also
potentially on any perturbations or non-equilibrium processes
that could catalyze or trigger the decay process and therefore it
is function of the scale factor, Ŵ = Ŵ(a). This allows us to write
an expression for the expected number of bubbles 〈N 〉 in our past

lightcone (after some initial time ηini) as

〈N 〉 =

∫

past
d4x

√

−gŴ(x) =

∫ η0

ηini

dη a(η)4
4πr(η)3

3
Ŵ(a(η))

=

4π

3

∫ η0

ηini

dηa(η)4(η0 − η)
3Ŵ(a(η))

=

4π

3

∫ a0

0
da (η0 − η (a))

3 a2

H(a)
Ŵ(a). (5.6)

If this number is much greater than one, it would be unlikely
that our part of the Universe could have survived until today, and
therefore our existence requires

〈N 〉 . 1. (5.7)

5.2. Late Universe
Let us first consider the post-inflationary Universe described by
the energy density (5.3) and assume that the bubble nucleation
rate Ŵ(a) in the past was at least as high as its current Minkowski
space value Ŵ0, i.e., Ŵ(a) ≥ Ŵ0. In this case the expected number
of bubbles is

〈N 〉post ≥ Ŵ0Vpost =
4π

3
Ŵ0

∫ η0

ηinf

dη(η0−η)
3a(η)4 ≈ 0.125Ŵ0H

−4
0 .

(5.8)
Hence, the constraint on the nucleation rate Ŵ0 from the post-
inflationary era is

Ŵ0 . 8.0H4
0 . (5.9)

Using Equation (4.26) and H0 ≈ 70 km/s/Mpc, this translates to
a bound

B & 540 (5.10)

on the bounce action.
By calculating the nucleation rate Ŵ0, theories can be divided

into categories: stable,metastable and unstable. If the rate exceeds
the bound (5.9), the Universe would not have survived until the
present day, and hence the vacuum is said to be unstable. If the
rate is non-zero but satisfies Equation (5.9), the vacuum would
not have decayed by the present time but would decay in the
future, and hence it is said to be metastable. Finally, if the decay
rate is strictly zero, which is the case when the current vacuum
state is the global minimum of the potential, then the vacuum is
said to be stable.

Figure 7 shows the stability diagram of the Standard Model
based on (Rajantie and Stopyra, 2017) (see section 4.2 for
discussion), in terms of theHiggsmassMh, topmassMt , for three
different values of the non-minimal coupling ξ . The ellipses show
the 68%, 95%, and 99% contours based on the experimental and
theoretical uncertainties in the masses.

It is worth mentioning that one could invoke the anthropic
principle to evade the bound (5.9). Even if the expected number
of bubbles 〈N 〉 is large, there is always a non-zero probability
that no bubbles were nucleated. Life can obviously only exist
in those parts of the Universe that have no bubble nucleation
event in their past light cone, and therefore that is necessarily
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FIGURE 7 | Stability diagram of the Standard Model vacuum state in the pole

masses Mt, Mh of the top quark and Higgs boson, respectively. Ellipses show

the 1σ , 2σ , 3σ confidence intervals for Mt and Mh around their central values

from Tanabashi et al. (2018). In the green region, the current vacuum is

absolutely stable, in the yellow region it satisfies the bound (5.9), and in the red

region it is so unstable that it would not have survived until the present day.

The instability boundary includes gravitational backreaction (Rajantie and

Stopyra, 2017) and is shown for ξ = 0 and ξ = ±1000 of the non-minimal

curvature coupling. The blue dashed line shows the instability bound (5.62)

obtained by taking the thermal history of the Universe into account (Delle Rose

et al., 2016) and assuming a high reheat temperature TRH = 1016 GeV. For

lower reheat temperatures, the instability bound becomes weaker, and

approaches the red dotted line as TRH → 0.

what we observe, no matter how low the probability is a priori.
One can therefore argue that observations do not require 〈N 〉 .

1. However, the anthropic argument does not rule out bubbles
hitting us in the future, and therefore, if the Universe survives for
a further period of time, that imposes a bound that is not subject
to the anthropic principle. For this, the quantity that matters is
the time derivative of the expected number of bubbles,

d〈N 〉

dt
=

4π

a0
Ŵ0

∫ η0

ηini

dη a(η)4(η0 − η)
2. (5.11)

This imposes constraints that are numerically weaker but cannot
be avoided by anthropic reasoning. To be concrete, one can
carry out an experiment by waiting for a period of time texp, for
example 1 year. If, at the end of the time period, the experimenter
has not been hit by a bubble wall, this gives a constraint

texp
d〈N 〉

dt
. 1. (5.12)

For the post-inflationary Universe this is

texp
d〈N 〉

dt
= (texpH0)× 4.91Ŵ0H

−4
0 , (5.13)

and for texp = 1yr, one obtains the bound

Ŵ0 . 2.9× 1010H4
0 , or B & 520. (5.14)

This is weaker than Equation (5.9), but because of the very strong
dependence ofŴ0 on the top andHiggsmasses, it does not change
the stability constraints on them significantly.

5.3. Inflation
Although most of the spacetime volume of our past lightcone
comes from the late times, the vacuum decay rate Ŵ(a) was much
higher in the very early Universe. Depending on the cosmological
scenario, it can be high enough to violate the bound (5.7), and this
can be used to constrain theories.

The earliest stage in the evolution of the Universe that
we have evidence for is inflation, a period of accelerating
expansion, which made the Universe spatially flat, homogeneous
and isotropic and also generated the initial seeds for structure
formation. In simplest models of inflation, the energy density
driving it is in the form of the potential energy V(φ) of a
scalar field φ known as the inflaton. The inflaton field is nearly
homogeneous, and satisfies the equation of motion

φ̈ + 3Hφ̇ + V ′(φ) = 0. (5.15)

During inflation the potential satisfies the slow-roll conditions,

ǫ ≡
M2

P

2

(

V ′

V

)2

≪1, and −1≪η ≡ M2
P

(

V ′′

V

)

≪1. (5.16)

These conditions guarantee the existence of a solution in which
the first term in Equation (5.15) is subdominant, and the inflaton
field rolls slowly down the potential V(φ). As a consequence, the
energy density ρ ≈ V(φ) and the Hubble rate are approximately
constant.

The Hubble rate during inflation, Hinf, is largely unknown.
Observationally it is constrained from above by the limits
on primordial B-mode polarization in the cosmic microwave
background radiation. This gives an upper bound r < 0.09
on the tensor-to-scalar ratio (Ade et al., 2016), which implies
Hinf . 3.3 × 10−5MP ≈ 8.0 × 1013 GeV at the time when
the observable scales left the horizon. In a realistic inflationary
model, the Hubble rate decreases with time, and would therefore
be lower at the end of inflation. Although there are models in
which the Hubble rate is well below the tensor bound, it is
generally expected to be close to it, and in the simplest single-
field inflation models it even exceeds it. It is therefore considered
to be likely that the Hubble rate was significantly higher than the
Higgs massmH ≈ 125 GeV.

The minimal inflationary model is Higgs inflation (Bezrukov
et al., 2008), in which the non-minimal curvature coupling of the
Higgs field is large, ξ ∼ −49000

√

λ. This allows it to play the
role of the inflaton, without the need for a separate inflaton field.
During inflation, the Higgs field has a large value ϕ ∼ MP/|ξ |,
which means that the existence of a negative-energy minimum
would appear to pose a problem for the scenario, because if the
Higgs field gets trapped there, it would lead to a rapid collapse of
the Universe instead of inflation. However, inclusion of higher-
dimensional operators and finite temperature effects can avoid
this problem (Bezrukov et al., 2015). Of course, if the actual
top and Higgs masses lie in the stable region (see Figure 7), no
problem arises. Furthermore, if they are just below the stability
boundary, the effective Higgs potential would have an inflection
point which would allow the scenario known as critical Higgs
inflation (Bezrukov and Shaposhnikov, 2014; Hamada et al.,
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2015, 2014), in which the Higgs field values are significantly lower
than in conventional Higgs inflation. In the following our focus
will be on the conventional scenario in which the inflaton is a
separate field, and therefore we will not discuss Higgs inflation
in detail. A thorough and up-to-date review of Higgs inflation,
covering also the vacuum stability issues, is given in Rubio (2018).

Even in the scenario in which the inflaton is not the Standard
Model Higgs field, one could expect on general grounds that
the natural initial value for the Higgs field is at the Planck
scale ϕ ∼ MP (Lebedev and Westphal, 2013). In that case
the existence of a negative-energy true vacuum between the
electroweak and Planck scales would appear to be a problem, just
like in Higgs inflation. Therefore one either has to assume special
initial conditions that guarantee ϕ ≪ ϕbar everywhere, or find
a mechanism that allows the Higgs field to roll to small values
without getting trapped in the negative energy true vacuum.

In addition, even if that problem is solved, one still needs to
avoid the nucleation bubbles of true vacuum, and hence satisfy
the bound (5.7). Approximating inflation with a de Sitter space
with constant Hubble rate Hinf, the expected number of bubbles
(5.6) in our past lightcone originating from inflation is

〈N 〉 ≈ ŴinfVinf, (5.17)

where Ŵinf is the vacuum decay rate, and Vinf is the volume of the
inflationary part of our past light cone. One can write this as

Vinf ≈

4π

9

[

a3infH
3
inf(η0 − ηinf)

3
+ 3Ntot

]

H−4
inf

≈

4π

9

[

33.2×

(

ainfHinf

a0H0

)3

+ 3Ntot

]

H−4
inf

, (5.18)

where ainf is the scale factor at the end of inflation, Hinf is
the Hubble rate during inflation, and Ntot is the total number
of e-foldings of inflation. In principle, if inflation lasted for an
infinite amount of time, the volume of the inflationary past
light cone would be infinite. In practice, inflation has a finite
duration in most models, and the first term usually dominates
in Equation (5.18).

The factor (ainfHinf/a0H0) is the ratio of the comoving Hubble
lengths today and at the end of inflation. It can be expressed as

ainfHinf

a0H0
= eN , (5.19)

whereN is the number of e-foldings from the moment the largest
observable scales left the horizon during inflation, to the end of
inflation. It depends somewhat on the cosmological history, but
is approximately (Liddle and Leach, 2003)

N ≈ 60+ ln
V
1/4
inf

1016 GeV
. (5.20)

This means that the spacetime volume of the inflationary past
light cone is

Vinf ≈ 46 e3NH−4
inf

. (5.21)

From Equation (5.7), one then obtains a bound on the decay rate
during inflation

Ŵinf . 0.02 e−3NH4
inf ∼ 10−80

(

V
1/4
inf

1016 GeV

)

−3

H4
inf. (5.22)

In the literature, the vacuum stability during inflation is often
discussed in terms of the survival probability Psurvival, which can
be defined either as the fraction of volume that remains in the
metastable vacuum at the end of inflation, or as the probability
that a given Hubble volume remains in the metastable vacuum
until the end of inflation. This is related to 〈N 〉 by

〈N 〉 ≈ eN(1− Psurvival), (5.23)

and therefore the bound (5.9) can be written as

1− Psurvival . e−3N . (5.24)

One can use the bounds (5.22) or (5.24) to constrain the
Hubble rate during inflation Hinf and other parameters of the
theory. This computation can be done in two ways, either
using the instanton calculation of the tunneling rate discussed
in section 4, or using the stochastic Starobinsky-Yokoyama
approach discussed in section 3.4. The instanton calculation
includes both quantum tunneling and classical excitation, and
it can incorporate interactions and gravitational backreaction at
short distances. Because it requires analytic continuation, it only
works with constant Hubble rate Hinf, but it can still be expected
to be a good approximation when the Hubble rate is slowly
varying. In contrast, the stochastic approach can describe a time-
dependent Hubble rate and gives a more detailed picture of the
time evolution, but it includes only the classical excitation process
and does not include interactions on sub-Hubble scales.

In the stochastic approach, the dynamics is described by
either the Langevin Equation (3.14), or by the Fokker-Planck
Equation (3.16), which gives the time evolution of the one-point
probability distribution P(t,ϕ) of the Higgs field ϕ.

If the Higgs field is assumed to vanish initially, ϕ = 0, the
probability distribution grows initially as

P(h, t) =

√

2π

H3t
exp

(

−

2π2ϕ2

H3t

)

. (5.25)

This is obtained by ignoring the Higgs potential V(ϕ), which
should be a good approximation at early times.

After some time the potential becomes important and starts
to limit this growth. If the Hubble rate H is constant, the field
approaches asymptotically the equilibrium distribution (3.17),
and it is also a good approximation if the Hubble rate is varying
sufficiently slowly. Considering the tree-level potential V(ϕ) =

λϕ4/4 with constant λ > 0, the typical (rms) value of the field is
given by Equation (3.19) as

ϕ∗ ≈ 0.363λ−1/4H ≈ 0.605H, (5.26)

where the last expression is for the experimental value of the
Higgs self coupling λ ≈ 0.13. If H & 1010 GeV, these field
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values are beyond the position (2.32) of the maximum of the
potential. This means that for such values of the Hubble rate,
inflationary fluctuations of the Higgs field would be able to
throw the Higgs field over the potential barrier, triggering the
vacuum instability (Espinosa et al., 2008; Lebedev and Westphal,
2013; Gabrielli et al., 2014; Kobakhidze and Spencer-Smith,
2013; Bhattacharya et al., 2014; Herranen et al., 2014; Fairbairn
and Hogan, 2014; Hook et al., 2015; Kehagias and Riotto,
2014; Kobakhidze and Spencer-Smith, 2014; Enqvist et al., 2014;
Kamada, 2015; Kearney et al., 2015; Shkerin and Sibiryakov,
2015). This would place a rough upper bound on the Hubble rate,

H . 1010 GeV. (5.27)

To make the bound more precise, Espinosa et al. (2008)
solved the equation for the initial state P(0,ϕ) = δ(ϕ), with the
boundary condition P(ϕbar, t) = 0 to account for the destruction
of any Hubble volume where ϕ > ϕbar. They then defined the
survival probability of the vacuum as

Psurvival(t) =

∫ ϕbar

−ϕbar

P(h, t). (5.28)

Because of the boundary conditions, the survival probability is
not conserved but decreases with time, and from the late-time
asymptotic decay,

Psurvival ∼ e−γ t , (5.29)

one can determine the vacuum decay rate Ŵ ≈ γH3. This way,
they found the decay rate per unit time to be

Ŵ ∼

H6

32ϕ2
bar

, if H & ϕbar, (5.30)

Ŵ ∼ λ5/4ϕ3barH exp

(

−

8π2V(ϕbar)

3H4

)

, if H . ϕbar. (5.31)

One can see immediately that high Hubble rates, H & ϕbar, are
ruled out by the bound (5.22). The relevant result is therefore
Equation (5.31). Comparing with Equation (5.22) one obtains the
constraint

H .

(

8π2

9N
V(ϕbar)

)1/4

. (5.32)

The numerical value of this constraint depends on the number of
e-foldings N and, in particular, the height of the potential barrier,
which is highly dependent on the precise Higgs and top masses.
The bound on the ratio H/ϕbar is much less sensitive to the mass
values, and therefore also quote the bounds in units of ϕbar rather
than GeV. To obtain indicative bounds in physical units, one
can use the central estimate for ϕbar in Equation (2.32). Using
N = 60, the bound (5.32) becomes

H . 0.067ϕbar. (5.33)

The same result be also obtained using the instanton
approach (Kobakhidze and Spencer-Smith, 2013), which
gives the decay rate (4.46),

Ŵinf ∼ H4
infe

−B(Hinf), (5.34)

where B(Hinf) is the relevant instanton action in de Sitter space
with Hubble rate Hinf. The bound (5.22) can therefore be
expressed as

B(Hinf) & 3N + 4 ≈ 180. (5.35)

Figure 6 shows that for Hubble rates near ϕbar, the relevant
instanton solution is the Hawking-Moss instanton, whose action
(4.45) agrees with the exponent in Equation (5.31) in the
limit where the barrier height is much less than the false
vacuum energy. The instanton and Fokker-Planck calculations
are therefore in good agreement in this case.

As discussed in section 4.6, the relevant instanton for
lower Hubble rates, H < Hcross, is the Coleman-de Luccia
solution (Rajantie and Stopyra, 2018). However, this is below the
bound (5.32) and the Coleman-de Luccia action is very high,
B ∼ 1800, so that it gives a negligible decay rate, and therefore
this does not change the bound (5.32).

There has been some debate about the correct field value
used for the boundary condition (5.28) in the Fokker-Planck
calculation. Hook et al. (2015) applied the boundary condition
P(t,ϕcl) = 0 at ϕ = ϕcl, determined from the condition

− V ′(ϕcl) =
3H3

2π
. (5.36)

This condition means that at h > hcl the classical motion of the
field due to the potential gradient dominates over the quantum
noise. Therefore it allows field trajectories that cross the top of the
barrier but return to the metastable side because of the quantum
fluctuations. This leads to a slower decay rate in the case of the
high Hubble rate,

Ŵ ≈

H6

32ϕ2
cl

, for H & ϕbar. (5.37)

East et al. (2017) considered the cutoff point the value ϕsr, where

ϕsr = −

V ′(ϕsr)

3H2
. (5.38)

This is the value above which the Higgs field no longer
satisfies the slow roll condition and therefore the stochastic
approach fails. The choice of the boundary condition becomes
less important whenH≪ϕbar, and therefore it does not affect the
bound Equation (5.32) very much. By solving the Fokker-Planck
equation numerically, the authors obtained the bound

H . 0.067ϕbar, (5.39)

which coincides numerically with Equation (5.32).
There are aspects of physics that are not included in the

approximations leading to the bound (5.32), and which can
therefore provide a way to evade the bound. First, the high
spacetime curvature R = 12H2 during inflation modifies the
effective potential both at the tree level through the non-minimal
coupling ξ and through the curvature-dependence of the loop
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corrections. The non-minimal coupling gives rise to an effective
curvature-dependent mass term (3.12),

M
2
= m2

+ 12

(

ξ −
1

6

)

H2. (5.40)

If ξ is positive, it increases the potential height between the
electroweak and true vacua and helps to stabilize the electroweak
vacuum even if the Hubble rate is well above the bound
(5.32) (Espinosa et al., 2008; Kehagias and Riotto, 2014; Herranen
et al., 2014). On the other hand, negative values of ξ make the
vacuum less stable. For ξ < 0, Joti et al. (2017) obtained the
bound

H .
0.005
√

−ξ
ϕbar. (5.41)

The stabilizing effects of the non-minimal coupling have also
been discussed in Kamada (2015), Espinosa et al. (2015), Shkerin
and Sibiryakov (2015), Kohri and Matsui (2017), Kohri and
Matsui (2016), Kawasaki et al. (2016), Calmet et al. (2018), and
Markkanen et al. (2018)

The curvature dependent loop corrections mean that the

non-minimal coupling ξ runs with the renormalization scale,
and even it is zero at low energies, it runs to a negative
value ξ ≈ −0.03 at the relevant scales for the instability
µ3 ∼ 1010 GeV (Herranen et al., 2014). Curvature
contributions to the loop corrections to the rest of the
effective potential can be approximated using renormalization
group improvement (Herranen et al., 2014), by choosing the
renormalization scale as µ∗ ≈ H when H & ϕ, rather than
µ∗ ≈ ϕ which had been used previously. Using the curvature-
dependent renormalization scale, such as Equation (3.28), has
become the norm in the more recent literature (Kearney et al.,
2015; East et al., 2017; Rodriguez-Roman and Fairbairn, 2018).
Having µ∗ ∼ H means that for sufficiently high Hubble rates the
effective coupling becomes negative, λ(µ∗) < 0, and the potential
barrier disappears completely, unless ξ is sufficiently large.
Both of these effects, running ξ and the curvature-dependent
renormalization scale, tend to de-stabilize the vacuum. Taking
them into account gives the bound (Herranen et al., 2014)

ξ & 0.06 for H & ϕbar. (5.42)

The full curvature-dependent effective potential was computed
at one-loop order in Markkanen et al. (2018), and confirms this
expectation. The stability bounds as a function of the Hubble
rate H and the non-minimal coupling ξ are shown in Figure 8.
For comparison, the bound from particle collider experiments is
|ξ | . 2.6× 1015 (Atkins and Calmet, 2013).

A sufficiently large positive non-minimal coupling ξ can also
avoid the Higgs field initial condition problem. It was found in
Calmet et al. (2018) that if

ξ & H/10−4MP, (5.43)

the positive curvature contribution to the effective potential
allows the Higgs field to roll from Planck-scale values to its

electroweak minimum during inflation without getting trapped
into the negative-energy true vacuum.

The bound (5.32) also does not take into account any direct
coupling between the Higgs and the inflaton field φ. Although
a direct coupling is not radiatively generated, in general it is
possible and the precise form it would have and its effects on
vacuum stability depend on the details of the inflaton sector. The
simplest example is a coupling of the form λφhφ

2h2 in chaotic
inflation with a quadratic potential. During inflation, the inflaton
field has a high value φ & MP, and therefore the coupling
produces an effective mass term for the Higgs field,

M
2
= m2

+ λφhφ
2. (5.44)

Coupling values λφh . 10−6 would not spoil the flatness of
the inflaton potential (Lebedev and Westphal, 2013; Gross et al.,
2016), and if λφh & 10−10, it would stabilize the vacuum
during inflation and allow the Higgs field to roll to its current
small field values even if starts from a Planck-scale value at the
beginning of inflation (Lebedev and Westphal, 2013; Fairbairn
and Hogan, 2014; Gross et al., 2016). This coupling has also
been discussed in Kamada (2015). Considering the non-minimal
curvature coupling ξ and the direct Higgs-inflaton coupling λφh
together, Ema et al. (2017) finds the constraint

10−10 . λφh + 10−10ξ . 10−6, (5.45)

in the quadratic chaotic inflation model.
Other forms of the Higgs-inflaton coupling have been

considered in Bhattacharya et al. (2014), Hook et al. (2015),
Ballesteros and Tamarit (2015), and Cline and Espinosa (2018).
There are also other effects that could potentially stabilize the
vacuum state during inflation. Non-zero temperature T &

6 × 1013 GeV during inflation (Fairbairn and Hogan, 2014),
moduli fields (Ema et al., 2016), coupling to a spectator scalar
field (Gong and Kitajima, 2017; Han et al., 2018), or top quark
production (Rodriguez-Roman and Fairbairn, 2018) could all
generate an effective stabilizing term in the effective potential.

5.4. Reheating
The end of inflation can be defined as the point at which
the Universe no longer undergoes accelerated expansion, which
occurs when w = −1/3. This marks the beginning of the so-
called reheating phase during which the energy density stored as
potential energy gets converted into the hot thermal plasma of
the Big Bang. If the acceleration is sourced by a slowly rolling
inflaton φ, during reheating the slow-roll conditions seize to
hold and the inflaton will begin a phase where its (average)
kinetic energy is comparable to its potential energy. This usually
manifests as coherent oscillations around the minimum of the
potential. Reheating is said to be completed when the energy
density of the hot Big Bang overtakes that of the inflaton sector,
which often proceeds via direct couplings allowing the inflaton to
decay into SM constituents. It is however worth pointing out that
it is perfectly possible to have successful reheating without any
couplings between the inflaton and the SM sector, for examples
of such models see Figueroa and Byrnes (2017), Tenkanen and
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FIGURE 8 | Stability bounds on the non-minimal coupling ξ (renormalized at the electroweak scale) and the Hubble rate during inflation Hinf. The colored area shows

the unstable region based on the numerical results from Markkanen et al. (2018), the cross corresponds to Equation (5.32), the dashed line to Equation (5.41) and the

dash-dotted line to Equation (5.42). The bottom axis refers to units calculated using the barrier position from Equation (2.32).

Vaskonen (2016), Dimopoulos and Markkanen (2018), and Haro
(2018).

An inflaton field coherently oscillating around the minimum
of its potential may source a very potent non-perturbative
amplification of quantum modes, which takes place during
the early stages of reheating and is hence often referred to
as preheating (Kofman et al., 1994, 1997). If a phase of
preheating occurs, it does not lead to the completion of
reheating as the created particles tend to shut off any non-
perturbative behavior through backreaction and a perturbative
decay channel is often required to ensure the complete decay of
the inflaton.

From the point of view of a possible vacuum destabilization,
preheating is a crucial epoch because vacuum decay is potentially
induced by a large amplification of the Higgs field (Herranen
et al., 2015). It is important to note that at the time of preheating,
the Universe has not yet reheated to a high temperature, and
therefore the thermal effects discussed in section 4.3 cannot
stabilize the vacuum state.

Let us proceed to consider the familiar Lagrangian appropriate
for the Higgs doublet in curved space (3.30).We consider Hubble
rates well above the electroweak scale,H≫Mh, and therefore we
can neglect the tree-level mass parameter, and use the action

S =

∫

d4x
√

|g|

[

1

2
∇µϕ∇

µϕ −

ξ

2
Rϕ2 −

λ

4
ϕ4
]

. (5.46)

We also assume a single-field model of inflation with a canonical
kinetic term and the potential U(φ). The inflaton φ is taken
to dominate the energy density of the Universe completely
and because of this the Higgs field may be considered as a

subdominant spectator that can be neglected in the Einstein
equation. Using then

ρ =

1

2
φ̇2 + U(φ) ; p =

1

2
φ̇2 − U(φ) , (5.47)

in the Friedmann equations (3.5), we can solve for the Ricci scalar
R

R = 6

[(

ȧ

a

)2

+

ä

a

]

=

1

M2
P

[

4U(φ)− φ̇2
]

. (5.48)

After inflation ends, the inflaton field φ rolls down its potential,
and initially oscillates coherently about its minimum φmin, until it
eventually decays. We assume that the inflaton potential vanishes
at the minimum, U(φmin), as is usually the case. We can see from
Equation (5.48) that during every oscillation, when φ ≈ φmin,
the Ricci scalar becomes negative, R < 0. This, in turn, means
that the non-minimal term ∼ ξRϕ2 gives rise to a tachyonic
mass term (3.12) for the Higgs field. As already discussed in
section 3.3, this gives rise to significant excitation of the field. The
fact that the non-minimal term can lead to extremely efficient
particle creation during preheating was first discussed in Bassett
and Liberati (1998) and Tsujikawa et al. (1999).

Particle creation from a periodically tachyonic effective mass
was analyzed in detail in Dufaux et al. (2006) where it was named
tachyonic resonance. It is much more extreme than the resonant
effects usually taking place during preheating. Hence a dangerous
fluctuation of the Higgs field can be generated during a single
oscillation of the inflaton.
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For concreteness, we now focus on the case of a quadratic
inflaton potential

U(φ) =
1

2
m2φ2. (5.49)

Although as a complete model of inflation, this is not compatible
with observations (Akrami et al., 2018), it approximates the shape
of the potential around the minimum in general single-field
models. The behavior of the inflaton field during its coherent
oscillations can be approximately written as φ = φ0(t) cos(mt)
where φ0 is a slowly changing amplitude φ0(t) =

√

6H(t)MP/m
(Kofman et al., 1994, 1997).

We will focus only on a very brief time period immediately
after inflation, when no thermalization has yet taken place. In
cosmic time the properly normalized mode is obtained from
Equation (3.9) as f (η) → f (t)/

√

a giving the mode equation

¨f (t)+ 3H˙f (t)+

[

k2

a2
−

9

4
H2

−

3

2
Ḣ + ξR

]

f (t) = 0 . (5.50)

By using the Friedmann equations (3.5) in this approximation
the mode equation can be cast in the Mathieu form (Bassett and
Liberati, 1998; Herranen et al., 2015)

d2f (t)

dz2
+

[

Ak − 2q cos(2z)

]

f (t) = 0, z = mt , (5.51)

Ak =
k2

a2m2
+ ξ

φ20

2M2
P

, q =

3φ20
4M2

P

(

1

4
− ξ

)

.

Making use of the analysis in Dufaux et al. (2006) we can derive
an analytical result for the occupation number of the Higgs field
nk after the first oscillation

nk = e2Xk , Xk =

∫

1z
�k dz ≈

√

ξ
φ0

MP
≈

√

ξ , (5.52)

where �2
≡ −ω2. The ω2 is the term in the square brackets in

Equation (5.51) and 1z covers the time period when ω2 < 0.
Including only the IR modes k < aH, neglecting the expansion
of space, the self-interaction and furthermore assuming ξ & 1 we
can estimate the generated Higgs fluctuations at horizon scale,
〈ϕ̂2〉aH , after the first oscillation of the inflaton as Herranen et al.
(2015)

〈ϕ̂2〉aH ≈

∫ aH

0

dk k2

2π2a3
2|f (t)|2nk ≈

(

H

2π

)2 2 exp
{

√

ξ
2φ0
MP

}

3
√

3ξ
.

(5.53)
If φ0 ∼ MP, as in chaotic inflation, one can see from
Equation (5.53), that the Higgs fluctuations are exponentially
amplified if ξ & 1. The fluctuation1ϕ ∼ can become larger than
the position of the potential barrier in the SM

1ϕ ≡

√

〈|8̂|2〉aH =

√

4〈ϕ̂2〉aH & ϕbar . (5.54)

Note that a large and positive ξ gives rise to a destabilizing effect
after inflation. This is opposite to what happens during inflation

when it suppresses fluctuations by effectively making the field
heavy (see section 5.3).

In general, once a significant particle density is produced it
tends to work against any further particle production (Kofman
et al., 1997). For the Higgs the main backreaction comes from
the self-interaction term, which contributes to the effective mass
(3.12), along with the curvature terms visible in (5.50), as

M
2
= −

9

4
H2

−

3

2
Ḣ + ξR+ 6λ〈ϕ̂2〉 , (5.55)

very similarly as we derived in the 1-loop approximation for
a scalar singlet in Equation (3.24) of section 3.5. In order for
tachyonic particle creation to take place one must have ξ |R| &

6λ〈ϕ̂2〉 for ξ & 1. However, in section (3.6) it was shown that
the Hubble rate contributes to the RG scale through curvature
induced running (see Equation 3.28). If H & ϕbar, the four-
point coupling is negative, implying that the backreaction in fact
enhances the instability, and will not suppress tachyonic particle
creation even if a large variance is generated.

Backreaction also arises from the gravitational disturbance of
the generated particle density. In order to reach this threshold
one must create enough particles such that their energy density
approaches 3H2M2

P. The relevance of gravitation backreaction we
can estimate from the approximate energy density for the Higgs
(Herranen et al., 2015)

ρHiggs ≈ 24ξH2
〈ϕ̂2〉 + 6λ〈ϕ̂2〉2 . (5.56)

When ρHiggs ∼ 3H2M2
P the Higgs starts to influence the

dynamics of spacetime requiring a non-linear analysis. Below we
will assume that when the gravitational backreaction threshold is
reached the particle production will seize.

More detailed calculations of the process have been carried
out using linearized approximation (Kohri and Matsui, 2016)
and lattice field theory simulations (Ema et al., 2016; Figueroa
et al., 2018). The most detailed analysis, carried out in Figueroa
et al. (2018), used the tree-level RGI effective potential with three-
loop running, and considered different top quark masses. The
main conclusion was that the instability is triggered with high
probability for ξ & 4− 5, for a top quark massMt ≈ 173.3GeV.
This implies an upper bound on ξ in the context of quadratic
chaotic inflation.

The regions where a dangerously large fluctuation of the
Higgs is generated after a single oscillation of the inflaton
are shown in Figure 9. The rather complicated shapes are the
result of the interplay of the variance (5.53) and the constraints
coming from self interactions and gravitational backreaction. In
Figure 9 we have assumed that the amplitude of the inflaton at
the end of inflation satisfies φ0 = 0.3MP. While this is true
for the quadratic (chaotic) model of inflation, it is not true
generically. Since Equation (5.53) is exponentially dependent on
φ0 the predictions are very sensitive to the specifics of inflation.
Similarly, the duration of reheating plays a crucial role and
for prolonged reheating a possible instability may be further
enhanced. The derivation of Equation (5.53) is based on the
adiabatic approximation (Dufaux et al., 2006), which can be
shown to break down for small ξ (Postma and van de Vis, 2017).
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FIGURE 9 | Regions where the Higgs fluctuations 1ϕ generated after inflation

by a single inflaton oscillation are greater than the barrier height ϕbar for a

model with no direct couplings between the Higgs and the inflaton. The Higgs

fluctuations are given by Equation (5.53) while taking into account

backreaction effects from self-interactions and gravity. The amplitude of the

inflaton at the end of inflation is assumed to satisfy φ0 = 0.3MP and we have

used the value ϕbar = 4.64× 1010GeV from section 2.3. Regions below ξ = 5

have been cut according to the bound obtained in Figueroa et al. (2018).

Furthermore, very little particle creation is expected when close
to the (approximately) conformally invariant point ξ = 1/6. For
these reasons and the lattice results of Figueroa et al. (2018) we
have conservatively cut out regions with ξ ≤ 5.

As discussed in the previous section, the set-up in
Equation (5.46) assuming that the inflaton is decoupled from
the SM is in many ways the minimal one. Couplings between
the inflaton and the SM sector may of course be introduced or
even required by a specific reheating model. Vacuum stability
during preheating in models with no non-minimal coupling but
with direct couplings between the inflaton and the Higgs was
investigated in Ema et al. (2017), Gross et al. (2016), and Enqvist
et al. (2016). In particular, in Ema et al. (2017) it was shown that
in some cases vacuum decay during preheating may take place
also for low-scale inflation.

In Kohri and Matsui (2016), Ema et al. (2017), Ema et al.
(2017), and Ema et al. (2016) both the non-minimal coupling and
direct Higgs-inflaton couplings were considered. In a sense in this
case the Higgs fluctuations are sourced in a complicated manner
by the interplay of tachyonic resonance (Dufaux et al., 2006)
and the (usual) parametric resonance (Kofman et al., 1997). For
the precise coupling ranges where significant particle production
takes place and possible implications for instability, see Ema et al.
(2017). We also point out that particle creation resulting from
the non-adiabatic change in the background curvature when
inflation ends, already shown in Ford (1987), can be enough
to probe the unstable region of the effective Higgs potential
(Herranen et al., 2015).

5.5. Hot Big Bang
After reheating, the Universe entered a thermal
radiation-dominated state, in which vacuum decay rate

can be approximated by the thermal rate (4.35) at the
relevant temperature, and the Hubble rate was given by the
equation

H(T)2 = g∗(T)
π2

90

T4

M2
P

, (5.57)

where g∗(T) is the effective number of degrees of freedom and
has the value g∗(T) = 106.75 in the Standard Model at high
temperatures.

Using Equation (5.6) one can write the expected number
of true vacuum bubbles in our past light cone from this era
as Espinosa et al. (2008); Salvio et al. (2016)

d〈N 〉

d lnT
=

4π

3

(

g0
∗S

g∗(T)

)

(

T0

T

)3
(η0 − η (T))

3

H(T)
Ŵ(T). (5.58)

where g0
∗S = 3.94 is the effective number of entropy

degrees of freedom today. Using Equations (5.5) and (5.57) this
becomes

d〈N 〉

d lnT
≈ 1.49

MP

H3
0

(

T0

T

)3
Ŵ(T)

T2
, (5.59)

If the Universe reheated instantaneously after inflation, the reheat
temperature TRH to which the Universe equilibrate, is related to
the Hubble rate at the end of inflation Hinf through where g∗ ≥

106.75 is the effective number of degrees of freedom. Because the
rate decreases when the temperature decreases, Equation (5.59)
is dominated by high temperatures T ∼ TRH. Therefore one can
approximate

〈N 〉 ≈

MPT
3
0

H3
0

Ŵ(TRH)

T5
RH

≈

MPT
3
0

H3
0TRH

e−B(TRH). (5.60)

Requiring that 〈N 〉 ≪ 1 leads to the bound

B(TRH) & 3 ln
T0

H0
+ ln

MP

TRH
≈ 202+ ln

MP

TRH
, (5.61)

which is satisfied by the numerical result (4.34) for the current
central Higgs and topmass values, and therefore it does not imply
a bound on the reheat temperature.

As at zero temperature, the vacuum stability depends
sensitively on the top and Higgs masses. A detailed
analysis (Delle Rose et al., 2016) based on integrating
Equation (5.59) gives an upper bound on the top quark
mass,

Mt

GeV
< 0.283

(

αs − 0.1184

0.0007

)

+ 0.4612
Mh

GeV

+1.907 log10
TRH

GeV
+

1.2× 103

0.323 log10
TRH
GeV + 8.738

. (5.62)

In practice, reheating is not instantaneous, and there may
have been a period when the Standard Model degrees of
freedom were in thermal equilibrium but were not the dominant
energy component. In the scenario in which the inflaton
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field decays slowly and dominates the energy density of the
Universe for an extented period, the maximum temperature
is (Espinosa et al., 2008; Elias-Miro et al., 2012; Delle Rose et al.,
2016)

Tmax =

(

3

8

)2/5 ( 40

π2

)1/8 g
1/8
∗

(TRH)

g
1/4
∗

(Tmax)

(

MPHinfT
2
RH

)1/4
. (5.63)

Because the Universe was not radiation-dominated
Equation (5.59) does not describe the period when T & TRH.
Instead, one has

〈N 〉

d lnT
≈

MP

T2
H3
0

(

T0

TRH

)3 (TRH

T

)10

Ŵ(T). (5.64)

However, this has only a small effect on the numerical
bounds (Delle Rose et al., 2016).

In Figure 7, the blue dashed line shows the bound (5.62)
calculated with a reheat temperature TRH ∼ 1016 GeV. As can be
seen, the inclusion of the thermal history of the Universe reduces
the allowed mass range compared with the zero-temperature
bounds. The central experimental values are still allowed, but
the instability boundary lies within two standard deviations from
them.

6. CONCLUDING REMARKS

The current experimental data show that with a high
likelihood, the electroweak vacuum state of the Standard
Model is metastable. Even though the vacuum state could
be stabilized by new physics beyond the Standard Model,
and even in the Standard Model parameters corresponding
to a stable vacuum are still allowed by experimental errors,
it is important to study the implications of the possible
metastability. That allows one to understand whether
the metastability is compatible with observations, and if
so, what constraints it places on the parameters of the
theory.

If the electroweak vacuum really is metastable, then bubbles of
the true, negative-energy vacuum can be nucleated by quantum
tunneling or classical excitation, as discussed in section 4.
Once a bubble has formed, it expands at the speed of light,
destroying everything in its way. This clearly has not happened
yet in our part of the Universe, which means there has not
been a single bubble nucleation event in our whole past
light cone. In section 5, we showed how the likelihood of
this can be estimated by computing the nucleation rate and
integrating it over the past light cone. Because the past light
cone includes all of the different cosmological eras, and the
nucleation rate and its dependence on theory parameters is
different in each era, this provides a rich set of constraints
on both the cosmological history and on the Standard Model
parameters.

In this review, we have focussed on four different cosmological
eras: inflation, preheating, hot radiation-dominated phase, and
the late Universe. Vacuum stability in the late Universe one
obtains constraints on the Higgs and top masses, and they are
made tighter by considering the hot radiation-dominated phase,
as summarized in Figure 7. Survival of the vacuum through
inflation and the subsequent preheating phase constrains the
Hubble rate during inflation and the Higgs-curvature coupling
ξ (Figures 8, 9), as well as other aspects of inflationary models.
A demonstration of the power of these considerations is that
for quadratic chaotic inflation, the non-minimal coupling is
constrained to be within the range 0.06 . ξ . 5, which is
15 orders of magnitude stronger than the experimental bounds
from the Large Hadron Collider (Atkins and Calmet, 2013).
Cosmological vacuum decay has a unique connection to gravity
via the early Universe, which opens up an observational window
to particle physics well beyond what colliders can achieve.

In this work we have reviewed the, already rather significant,
body of work investigating the cosmological consequences of
the SM Higgs possessing a metastable potential. We have also
discussed the relevant theoretical frameworks required for such
studies. The multidisciplinary nature of the problem is perhaps
one of the reasons behind the ongoing significant interest as
particle physics, quantum field theory and gravity all play a
prominent role. Although the specifics of the theory behind early
Universe dynamics are not currently known what has become
quite apparent is that a metastable Higgs potential generically
leads to non-trivial constraints, which are completely invisible to
colliders.

On the other hand, despite the large number of existing
studies, much remains to be explored. For example, at the
moment very fewworks exist that go beyond the simple quadratic
model of inflation. This is equally true for the inflationary and
reheating epochs. There is also a great deal of scope for improving
calculation techniques in order to obtain more precise and
robust constraints, for example by going beyond the semiclassical
approximation or fully including gravitational effects. The work
on the cosmological aspects of Higgs vacuummetastability is only
starting.
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The top-quark mass is a parameter of paramount importance in particle physics, playing

a crucial role in the electroweak precision tests and in the stability of the Standard Model

vacuum. I will discuss the main strategies to extract the top-quark mass at the LHC

and the interpretation of the measurements in terms of well-posed top-mass definitions,

taking particular care about renormalon ambiguities, progress in Monte Carlo event

generators for top physics and theoretical uncertainties.

Keywords: colliders, heavy quarks, Monte Carlo generators, QCD calculations, standard model

1. INTRODUCTION

The mass of the top quark is a fundamental parameter of the Standard Model, since it enters in
the electroweak precision tests [1] and constrained the mass of the Higgs boson even before its
discovery at the LHC. It plays a role in Higgs inflationmodel (see [2, 3] for some recent work on the
subject), while the property of the electroweak vacuum to lie on the boundary between stability and
metastability regimes [4] does depend on the actual values and definitions of top and Higgs masses
used in the computation1. Also, in the determination of the lifetime of the Universe, undertaken in
Andreassen et al. [5], part of the uncertainty is related to the top-quark mass.

In such calculations, one typically assumes that the measured top-quark mass, whose current
world average readsmt = [173.34± 0.27(stat)± 0.71(syst)] GeV [6], corresponds to the pole mass
and eventually adds errors of the order of few hundreds MeV to account for possible deviations
from this identification. For instance, possible changes of the central value or of the uncertainty on
mt may affect the results in Degrassi et al. [4], to the point of even moving the vacuum position
inside the stability or instability regions. It is therefore of paramount importance determining mt

at the LHC with the highest possible precision, estimating reliably all sources of uncertainty and
eventually interpreting the results in terms of field-theory mass definitions.

More generally, the top-quark mass is determined by comparing experimental data with theory
predictions, so that the measured mass has to be identified with the parameter mt employed in
the calculations. From the viewpoint of the techniques used in the extraction, one usually labels as
“standard measurements” those relying on the direct reconstruction of the top-decay products by
means of the template, matrix-element or ideogram methods, and as “alternative measurements”
the top-mass determinations which use suitably defined observables, such as total production cross
section or peaks/endpoints of differential distributions. It is remarkable noticing that, up to now,
such classes of mass determinations have never been combined.

From the theory side, as most top-mass extractions use Monte Carlo shower codes, one
traditionally defines “Monte Carlo mass” the quantity which is determined. On the other hand,

1Strictly speaking the stability of the electroweak vacuum also depends on whether there is New Physics up to the Planck scale

or not. Degrassi et al. [4] assumes that the Standard Model is valid up to the Planck scale; other alternatives are discussed in

Branchina et al. [3].
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one refers to pole- or MS-mass extraction whenever a
measurement is compared with a fixed-order, possibly resummed
QCD calculation employing a given field-theory mass definition.
The distinction between Monte Carlo and well-posed mass
definitions like the pole mass has been the core of several
discussions within the top-quark physics community, as we have
authors trying to quantify the discrepancy between such masses,
finding results of the order of a few hundreds of MeV [7–11] and
others who instead present arguments against the classification
of some measurements as Monte Carlo mass determinations
[12, 13] and try to interpret them still as pole-mass extractions,
with an uncertainty which depends on the specific measurement
strategy and details of the event generation. Furthermore, as
will be discussed later, even the so-called pole or MS mass
determinations are not completely Monte Carlo independent,
since the evaluation of the experimental acceptance depends,
though quite mildly, on the shower code which is employed and
on the implemented mass parameter.

Another issue that was often used to argue against the
employment of the pole mass has been the infrared renormalon
ambiguity [14, 15], namely the factorial growth of the coefficients
of the expansion in powers of the strong coupling of the heavy-
quark self energy, whenever it is expressed in terms of the pole
mass. However, recent work on this topic [16, 17] showed that,
using the 4-loop relation between pole and (renormalon-free)MS
masses [18], the renormalon ambiguity is actually of the order at
most of 250 MeV, hence smaller than the current error on the top
mass. Furthermore, although the projections for the future high-
energy and high-luminosity runs of the LHC aim at even lower
uncertainties, it should always be reminded that the top quark is
an unstable particle with a width of the order of 1 GeV which,
as long as it is included in the computation, acts as a cutoff for
radiation off top quarks2.

In the following, I shall give an overview of the up-to-
date top-mass determinations and, above all, I will try to stress
the main points of the existing controversies concerning mass
definitions and interpretation of the LHC measurements, as well
as the sources of theory uncertainty. In section 2 I shall review
the heavy-quark mass definitions; in section 3 I will discuss
the renormalon ambiguity; in section 4 the main strategies to
measure the top mass will be presented. The interpretation
of the measurements and the theoretical uncertainties will be
investigated in section 5, while section 6 will contain some
final remarks.

2. TOP-QUARK MASS DEFINITIONS

Heavy-quark mass definitions are related to how one subtracts
the ultraviolet divergences in the renormalized heavy-quark self
energy 6R. Higher-order corrections to the self energy are
typically calculated in dimensional regularization, with d = 4 −
2ǫ dimensions. At one loop in QCD, for a heavy quark with four-
momentum p and bare mass m0, the renormalized self energy

2The latest Particle Data Group [19] quotes a top width Ŵt =
(

1.41+0.19
−0.15

)

GeV.

reads:

6R(m0, p,µ) =
iαS

4π

{[

1

ǫ
− γ + ln 4π + A(m0, p,µ)

]

/p

−

[

4

(

1

ǫ
− γ + ln 4π

)

+ B(m0, p,µ)

]

m0

}

+i[(Z2 − 1)/p− (Z2Zm − 1)m0]+O(α2S), (1)

where Z2 and Zm are the wave-function and mass
renormalization constants, respectively, γ = 0.577216 . . .
the Euler–Mascheroni constant and µ is the renormalization
scale3. The functions A and B in Equation (1) depend on p,
m0 and µ and are independent of ǫ. The bare heavy-quark
propagator is S0(p) = i/(/p − m0), while the renormalized SR

reads, in terms of the renormalized self energy:

SR(p,µ) =
i

/p−m0 − i6R(m0, p,µ)
. (2)

The on-shell renormalization scheme, leading to the pole mass,
is defined so that the self energy and its partial derivative with
respect to /p vanish whenever /p = 0:

6R
∣

∣

∣

/p=0
= 0 ;

∂6R

∂/p

∣

∣

∣

/p=0
= 0. (3)

The minimal-subtraction (MS) scheme is indeed typical of
dimensional regularization and fixes Z2 and Zm in order to
subtract just the contributions∼ 1

ǫ
− γ + ln 4π in Equation (1)4.

Since pole and MS masses are the most popular top-mass
schemes, hereafter I will devote some discussion on such
definitions. In the on-shell (o.s.) and MS schemes SR(p) can
then be expressed in terms of pole and MS masses, respectively,
as follows:

SRo.s.(p) ≃

i

/p−mpole
,

SR
MS

(p,µ) ≃

i

/p−mMS(µ)− (A− B)mMS(µ)
. (4)

From Equation (4), one can learn thatmpole is still the pole of the
propagator, even after the renormalization procedure, which is in
agreement with the intuitive notion of the mass of a free particle,
whereasmMS(µ) may be quite far from the pole. Also, unlike the

pole mass, the MS mass depends on the renormalization scale µ.
The relation between top-quark pole (mt,pole) and MS (m̄t(m̄t))

3In d dimensions, the coupling gS, related to αS via αS = g2S/(4π), gets mass

dimension ǫ, i.e., gS → gsµ
ǫ
r , µr being a regularization scale. After adding suitable

counter-terms,6R is eventually expressed in terms of the renormalization scale µ.
4Alternatively to working in d dimensions, one can use a mass regularization

scheme, giving the gluon a fictitious mass λ. The renormalized self energy with

a gluon mass λ can be obtained from Equation (1) by means of the replacement:

1/ǫ − γ + ln[(4πµ2)/m2
0] → ln(λ2/m2

0).
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masses was calculated up to four loops in Marquard et al. [18]
and reads:

mt,pole = m̄t(m̄t)
[

1+ 0.4244 αS + 0.8345 α2S + 2.375 α3S

+ (8.615± 0.017) α4S +O(α5S)
]

= [163.508+ 7.529+ 1.606+ 0.496+ (0.195± 0.0004)]

GeV. (5)

The last term in Equation (5) yields an uncertainty of about
200MeV on the pole-MS conversion. Beyond four loops, one can
find in Kataev and Molokoedov [20] the dependence of the five-
and six-loop corrections to the pole-MS relation on the number
of light flavors.

As discussed in the introduction, higher-order corrections
to the self energy, when expressed in terms of the pole mass,
lead to infrared renormalons [14], namely the factorial growth
of the coefficients of αnS : we shall discuss recent calculations on
renormalons in the next section. For the time being, I just point
out that the MS mass is renormalon-free and it is therefore a so-
called short-distance mass, well defined in the infrared regime.
However, differently from the pole mass, it is not a suitable mass
definition at threshold, as it exhibits corrections (αS/v)

k, v being
the top velocity, that are large in the threshold limit v → 0. On
the contrary, the MS mass is appropriate to describe processes
far from threshold, i.e., at scales Q ≫ mt for top quarks, since,
by setting the renormalization scale µ ≃ Q, one is capable of
resumming large logarithms ln(Q2/m2

t ) in the mass definition
itself. As will be highlighted in the next section, Equation (5),
relating the pole mass to the renormalon-free MS one, can be
used as a starting point to evaluate the renormalon ambiguity in
the top pole mass.

Another mass definition, which has been employed especially
in the framework of Soft Collinear Effective Theory (SCET), is
the so-called MSR mass, which was introduced to interpolate
between pole and MS masses [7]. Such a mass, labeled as
mMSR

t (R,µ) for top quarks, besides the renormalization scale µ,
depends on an extra scale R, in such a way that:

mMSR
t (R) → mt,pole for R → 0 and mMSR

t (R) → m̄t(m̄t) for

R → m̄t(m̄t). (6)

The MSR mass can be related to any other mass definitions, such
as the pole mass, by means of a counterterm like:

mt,pole = mMSR
t (R,µ)+ δmt(R,µ), (7)

where the µ-dependence of mMSR(R,µ) follows renormalization
group equations. As will be argued in the following, the MSR
mass has often been adopted in the literature to connect the top-
mass measurements with well-defined top-mass definitions, with
R ∼ O(1 GeV).

For the sake of generality, although the present review will
be mostly devoted to hadron-collider top-mass determinations,
I wish to remind some other top mass definitions which are
often employed in analyses on the mt extraction at future lepton
colliders. In fact, physical observables at threshold, such the tt̄

cross section in e+e− collisions at
√

s ≃ 2mt , require suitable
mass schemes. One of such definitions is the 1S mass, defined as
half the mass of a fictitiousϒ(1S) resonance, made up of a bound
tt̄ state [21]:

mt,1S =
1

2

{

m
[

ϒ(1S)
]}

. (8)

The 1S mass reads, in terms of the pole mass (Hoang et al. [22]):

mt,1S = mt,pole

(

1−1LL
−1NLL

−1NNLL
)

. (9)

The explicit expression of the 1 terms can be found in
Hoang et al. [22], where the threshold e+e− → tt̄ cross
section was computed in the next-to-next-to-leading logarithmic
approximation, and the superscripts LL, NLL and NNLL refer to
the resummation of large logarithms of the top velocity v, which
are large in the regime v ∼ αS ≪ 1 and αS ln v ∼ 1.

The potential-subtracted (PS) mass is instead constructed
in terms of the tt̄ Coulomb potential, in such a way that
contributions below a factorization scale µF are subtracted off,
as to suppress renormalons [23]:

mPS(µF) = mpole −
1

2

∫

|q|<µF

d3q

(2π)3
Ṽ(q). (10)

In Equation (10) Ṽ(q) is the transform in momentum space of
the tt̄ Coulomb potential. The PS mass is a threshold mass too,
particularly suitable to deal with tt̄ production at energies slightly
above 2mt . The relation between PS and pole top-quark masses is
given by the following equation [24]:

mt,PS(µF) = mt,pole −
4

3π
αS(µF)µF +O(α2S). (11)

More recently, the theoretical error on the possible extraction of
1S and PS masses in e+e− collisions just above the tt̄ threshold
was estimated. In detail, by using a NNLL threshold resummation
of the ratio R = σ (e+e− → tt̄)/σ (e+e− → µ+µ−), the 1S mass
can be extracted with an uncertainty about 40MeV [25], whereas,
by employing a fixed-order NNNLO calculation, the PS mass
can be determined with an error below 50 MeV [26]. It will be
of course desirable to combine such fixed-order and resummed
computations to possibly decrease further such an uncertainty.

Another threshold mass definition is the renormalon-
subtracted (RS)mass, which removes from the polemass the pure
renormalon contribution [27]. The RS mass was determined in
Pineda [27] after constructing its Borel transform and reads, in
terms of the pole mass:

mt,RS = mt,pole −

∞
∑

n=0

NmµFα
n+1
S (µF)

∞
∑

k=0

ck
Ŵ(n+ 1+ b− k)

Ŵ(1+ b− k)
,

(12)
where the expression for the coefficients Nm and ck are given
in Pineda [27] and b can be expressed in terms of the QCD β-
function as b = β1/(2β

2
0 ). Potential-, renormalon-subtracted

and 1S top-quark masses were related to the MS mass in
Marquard et al. [18] with four-loop accuracy in the conversion.
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The uncertainty in the conversion was gauged about 7, 11 and 23
11 MeV for PS, RS and 1S masses, respectively.

Finally, the so-called kinetic mass was defined in Bigi et al. [28]
for the purpose of improving the convergence of the perturbative
expansion of the semileptonic B-meson decay width. It was
constructed by subtracting from the pole mass the HQET (Heavy
Quark Effective Theory) matrix elements, denoted by 3̄(µ) in
Bigi et al. [28], expressing the shift between pole and meson
masses. The kinetic bottom-quark mass reads, up to terms
suppressed as the inverse of the quark/meson mass:

mb,kin(µF) = mB − 3̄(µF)+O

(

1

mB

)

. (13)

In Hoang et al. [24], the kinetic mass was generalized to tt̄
bound states, obtaining the following expansion in terms of the
pole mass:

mt,kin(µF) = mt,pole −
16

9π
αS(µF)µF +O(α2S). (14)

As underlined before, the 1S, PS, and RS masses are threshold
masses which, unlike the pole mass, do not exhibit the
renormalon ambiguity. Recent calculations aimed at estimating
the renormalon uncertainty in the pole mass will be the topic of
next section.

3. THE RENORMALON AMBIGUITY IN THE
TOP MASS

Problems with the renormalized heavy-quark self energy, when
expressed in terms of the pole mass, were first understood in
Beneke and Braun [14] and Beneke [15]. In fact, after including
higher-order contributions in the strong coupling constant, the
renormalized heavy-quark self energy exhibits the following
expansion in powers of αS:

6R(mpole,mpole) ≈ mpole

∑

n

αn+1
S (2b0)

n n!, (15)

where b0 is first β-function coefficient entering in the MS strong
coupling constant5. From Equation (15), one learns that the
coefficients of the expansion grow like n! at order αn+1

S .
After re-expressing αS in terms of the β function and of the

QCD scale 3, and inserting 6R in the on-shell propagator as in
Equation (4), one will get a correction to the pole mass:

1mpole ≃ O(3), (16)

which is the renowned renormalon ambiguity in mpole, i.e., an
uncertainty of the order of the QCD scale in the pole-mass
definition. This result can be related to the fact that a quark
is not a free parton, but has to be confined into a hadron: in
fact, one can prove that the renormalon uncertainty is due to

5We recall that, e.g., at LO in the MS scheme, it is αS(Q
2) = 1/[b0 ln(Q

2/32)],

3 being the QCD scale. For Q2
∼ 32 one hits the well-known Landau pole and

perturbative QCD can no longer be applied.

the gluon self coupling, while it is not present when dealing
with leptons. Therefore, the pole mass behaves like a physical
mass for electrons or muons, whereas for heavy quarks it is not
a short-distance mass, because of infrared renormalon effects,
and one should choose on a case-by-case basis whether the
pole mass or other definitions are adequate to describe a given
physical process.

In order to quantify the renormalon ambiguity in the pole
mass, one can employ the relation between pole and MS
masses, relying on the fact that the MS mass is unaffected by
renormalons. Equation (5) can be parametrized to all orders as
in Beneke et al. [16]:

mpole = m̄(µm)

[

1+

∞
∑

n=1

cn(µ,µm, m̄(µm))α
n
S (µ)

]

, (17)

with m̄(µm) being the MS mass at some scale µm and µ

the renormalization scale at which the strong coupling is
evaluated. The dominant renormalon divergence implies that the
coefficients cn in the asymptotic expansion have to satisfy the
following relation at large n:

cn(µ,µm,m(µm)) → N
µ

m(µm)
casn for n → ∞. (18)

The expression for the asymptotic coefficients casn can be found
in Beneke et al. [16] and is consistent with the fact that the
renormalon factorial growth is due to the low-momentum region
in the higher-order loop corrections to the heavy-quark self
energy. The calculation of the normalization coefficient N is non
trivial: in Beneke et al. [16]N was extracted after fitting the third-
and fourth-order coefficient in the exact four-loop MS-pole mass
conversion and amounts to N ≃ 0.976 . . . for NC = 3 number
of colors.

Furthermore, an alternative and possibly better method to
deal with factorially divergent series consists in using the Borel
transform, which, for a function f (αS) reads:

f (αS) =

∞
∑

n=0

cnα
n+1
S ; B[f ](t) =

∞
∑

n=0

cn
tn

n!
, (19)

which implies

f (αS) =

∫

∞

0
e−t/αSB[f ](t). (20)

The evaluation of the Borel integral in Equation (20) depends
on a prescription: one typically takes its principal value and,
following the so-called “Im/Pi” method, the uncertainty is
estimated as the modulus of the imaginary part, arising from
the integration above and below the singular cuts in the complex
plane, divided by π . In fact, in Beneke et al. [16] the asymptotic
expansion of the pole mass with respect to the MS one was
computed as an inverse Borel transform, by using the Im/Pi
method for the error, considering only three light flavors and
accounting for charm and bottom masses. The final result is that
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the leading renormalon ambiguity amounts to about 110MeV for
top as well as bottom and charm pole masses.

A different strategy to gauge the renormalon ambiguity was
instead tackled in Hoang et al. [17], where the MSR mass
mMSR(R) was used. In the relation betweenmpole andmMSR(R),

mpole = mMSR(R)+ R

∞
∑

n=1

an

[

αS(R)

4π

]n

, (21)

the scale R is set to the MS top mass mt(m̄t) and the series

in Equation (21) is truncated at some fixed order n. A value
nmin is determined in such a way to minimize the difference
1(n) = mpole(n) − mpole(n − 1) and a number f slightly above
unity is defined. The set {n}f is thus constructed in such a way
that 1(n) ≤ f1(nmin): the midpoint of mpole(n) within {n}f is
then chosen as the central value and half of the variation range
of mpole(n) as an estimate of the ambiguity, accounting for the
running of the renormalization scale as well. After observing that
the results depend on f rather mildly, in Hoang et al. [17] f = 5/4
was chosen, yielding an ambiguity about 253 MeV in the pole
mass. Both in Beneke et al. [16] and Hoang et al. [17], some
thorough discussion is devoted to the inclusion of charm and
bottom masses. The results of 110 and 253 MeV would go down
to 70 [16] and 180 [17] MeV if one treated charm and bottom
quarks as massless. Some attempts to relate the different methods
adopted in Beneke et al. [16] and Hoang et al. [17] were made in
Nason [13]. In fact, the result in Beneke et al. [16] can be obtained
even following the method in Hoang et al. [17], but taking as
central value half the sum of all1(n) and setting f = 1+ 1/(4π)
in the uncertainty evaluation.

In the following, no strong statement supporting the
calculation in Beneke et al. [16] or Hoang et al. [17] will be made.
I just wish to point out that, on the one hand, as long as the
uncertainties in the top-mass measurement stay around 500 GeV,
both renormalon determinations are smaller and should not play
any role in supporting the use of a given mass definition. This
may not be the case if, in future perspective, one ideally aims at
precisions about 200–300 MeV. However, as will be underlined
when dealing with Monte Carlo modeling and theoretical errors,
recent implementations of top production and decay in shower
codes include width effects [29], in such a way that the top
width, about 1.4 GeV and well above the energy range of both
renormalon estimates, acts as a cutoff for the radiation off top
quarks 6. Of course, if one considers observables relying on top
decays (t → bW), the b-quark is allowed to emit soft radiation
down to the shower cutoff and, in principle, in quantities
depending on b-jets one may have to deal with renormalons.

A careful exploration of renormalon effects in observables
depending on the top mass was carried out in Ferrario Ravasio
et al. [30]. The authors found that the MS mass is a better
definition for quantities like the total tt̄ cross section, while
using the pole mass would lead to a linear renormalon
and an ambiguity of O(100 MeV) on the mt extraction.

6This would not be the case in codes or calculations which instead neglect width

effects and interference between top-production and decay phases. In this case,

even top quarks are capable of radiating down to the infrared cutoff.

Indications in favor of such a short-distance mass were also
given whenever final-state jets are reconstructed using algorithms
with a large jet radius R. As for the reconstructed top mass
from, e.g., the b-jet+W invariant mass, in the pole-mass scheme
a linear renormalon correction is present, whose coefficient
is nevertheless pretty small if one employs a large R in the
b-jet definition. Finally, leptonic observables exhibit a linear
renormalon with both mass definitions, as long as one works
in the narrow-width approximation. On the contrary, there are
no linear renormalons if one adopts a a short-distance mass and
includes the finite top width.

4. TOP-QUARK MASS EXTRACTION AT
LHC

Top-quark mass determinations at hadron colliders are classified
as standard or alternative measurements and, according to the
decay modes of the two W’s in top decays, as measurements in
the dilepton, lepton+jet or all-hadronic channels. Standard top-
mass analyses are based on the direct reconstruction of top-decay
final states and compare observables, such as the b-jet+lepton
invariant- mass distribution, with the predictions yielded by
the Monte Carlo codes. So-called alternative measurements use
instead other observables, such as total/differential cross sections
or distribution peaks/endpoints. Since, as will be detailed in the
following, Monte Carlo codes are of paramount importance for
most top-mass analyses, I shall first sketch their main features,
and then review the experimental methods to extractmt .

4.1. Monte Carlo Generators for Top
Physics
The last couple of decades has seen a tremendous progress in
the implementation of Monte Carlo event generators, besides
the reknowned general-purpose HERWIG [31, 32] and PYTHIA
[33, 34], in such a way that several reliable programs are currently
available for the top-mass analyses. On the one hand, strategies to
match NLO calculations with parton showers were developed, on
the other one a number of so-called matrix-element generators
were released. In fact, matrix-element generators simulate multi-
leg amplitudes and are interfaced to HERWIG or PYTHIA for
shower and hadronization: besides top-quark signals, they are
very useful to simulate backgrounds with high jet multiplicities,
such as W/Z + n jets, which would be poorly described by
HERWIG or PYTHIA for n > 1.

Regarding top phenomenology, standard Monte Carlo
programs simulate both top production and decays using leading
order (LO) matrix elements, multi-parton emission in the soft
or collinear limit and the interference between top-production
and decay stages is neglected (narrow-width approximation).
HERWIG parton showers satisfy angular ordering [35, 36],
with the latest version even allowing the option of dipole-
like evolution [37]; PYTHIA cascades are instead ordered in
transverse momentum7. Matrix-element corrections to parton
showers are implemented for top decays [38, 39], but not

7The old PYTHIA 6 code also implements virtuality ordering, with the option to

veto non-angular-ordered emissions.
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for production, and the total production cross section and
top-decay width are still calculated at LO. Hadronization is
included by adopting the cluster model [40], based on color
pre-confinement, in HERWIG and the string model [41] in
PYTHIA. The underlying event used to be described assuming
soft collisions between the proton spectators and tuning the
model parameters to minimum-bias events at small transverse
momentum. Nevertheless, all modern codes implement it
through multiple scatterings strongly ordered in transverse
momentum: the underlying event is thus a secondary collision,
whose transverse momentum is much lower than the primary
hard scattering [42, 43].

Among the new generation of Monte Carlo programs,
SHERPA [44] can also be considered a multi-purpose code,
in the light of the wide spectrum of processes which it is
capable of simulating. In detail, matrix elements are computed
by means of the AMEGIC++ [45] and COMIX [46] codes,
while the interface to one-loop generators, implemented along
the lines of [47], allows one to include NLO QCD and possibly
electroweak corrections. Parton showers are then accounted
for according to the dipole formalism developed in Catani
and Seymour [48], underlying event and hadronization follow
the multiple-scattering and cluster models in PYTHIA and
HERWIG, respectively.

For the purpose of the matching of NLO matrix elements
and multi-parton cascades, NLO+shower programs, such
as MadGraph5_aMC@NLO [49, 50] and POWHEG [51],
implement NLO hard-scattering amplitudes, but still depend
on HERWIG and PYTHIA for parton cascades and non-
perturbative phenomena. The earlier versions of such
NLO+shower algorithms only included NLO corrections to
tt̄ production, while (LO) top decays and hadronization were
still handled in the parton shower approximation. The later
implementation of POWHEG [29] includes in the b¯b4ℓ code
both top production and decay at NLO, accounting for the
interference between top production and decay stages, as well
as non-resonant contributions leading to (W+b)(W− ¯b) final
states8. As for MadGraph5_aMC@NLO, strictly speaking,
top decays are still at LO, however spin correlations are
included through the MadSpin package [53] and, as discussed
in Frederix et al. [54], they account for a significant part of
the NLO corrections. For the purpose of HERWIG, it has
its own implementation of NLO+shower merging/matching
[55, 56], working for top-quark production and decay in the
narrow-width approximation [57].

Regarding matrix-element generators, suitable codes to
describe top-quark signals and backgrounds are, among others,
ALPGEN [58], MCFM [59], CalcHEP [60], HELAC [61], and
WHIZARD [62]. In particular, ALPGEN and CalcHEP simulate
multi-parton final states at LO and can be interfaced to
HERWIG or PYTHIA for shower and hadronization. HELAC
and WHIZARD have been lately provided with NLO corrections
[63, 64] and matching to shower and hadronization codes as
well. MCFM is a NLO parton-level Monte Carlo code: top

8See also Heinrich et al. [52] for an independent investigation of NLO and

top-width effects on the top-mass determination.

production and decay are handled at NLO, in the narrow-width
approximation.

Before concluding this subsection, it is worthwhile saying
a few words on the precision of the predictions yielded by
Monte Carlo codes. As observed before, parton showers simulate
multiple radiation in the soft or collinear approximation and,
in general, the accuracy of a prediction depends on the specific
observable under investigation. Although total cross sections and
widths are (N)LO, for most quantities Monte Carlo predictions
are equivalent to leading-logarithmic resummations, i.e., they
resum double soft and collinear logarithms, and include some
classes of subleading logarithms, i.e., only soft- or collinear-
enhanced9. Catani et al. [66] even proved that, in Deep Inelastic
Scattering and Drell–Yan processes at large values of the Bjorken
x, the HERWIG algorithm is capable of capturing all next-to-
leading logarithms, i.e., all single logarithms, enhanced for soft
or collinear emission, as long as one rescales the QCD scale3 to
a Monte Carlo value, labeled3MC.

10

4.2. Standard and Alternative Top-Mass
Measurements
In this subsection I shall briefly present the main strategies to
measure the top mass at hadron colliders in tt̄ events, taking
particular care about the analyses carried out at the LHC.

4.2.1. Direct Reconstruction Methods
Strategies based on the direct reconstruction of the top-decay
products, namely the template, matrix-element and ideogram
methods, have been traditionally classified as standard top-
mass determinations. As for ATLAS, the most up-to-dated
measurements are given at 8 TeV and 19.7 fb−1 in Aaboud
et al. [67–69] for dilepton, lepton+jets and all-hadronic modes,
respectively. Regarding CMS, at themoment even results at

√

s =
13 TeV and L = 35.9 fb−1 are available and are reported in
Sirunyan et al. [70] (dileptons), [71] (lepton+jets) and [72] (all
hadrons). Regarding these analyses and summing in quadrature
systematic and statistical errors, CMS quotes uncertainties about
0.73 GeV for dileptons, 0.62 GeV for leptons+jets and 0.61 GeV
for the all-hadron channel. As for ATLAS, the uncertainties are
0.84 GeV (dileptons), 0.91 GeV (lepton+jets) and 0.73 GeV (all
jets). The standard top-mass measurements have been the basis
to determine the world average [6], already presented in the
introduction, which, after summing statistical and systematic
errors in quadrature, yields an overall uncertainty about 800
MeV. Work toward an updated world average is currently under
way. The LHC collaborations have nevertheless released their
own combined measurements using 7 and 8 TeV data together:
details on such studies can be found in Aaboud et al. [69] and
Khachatryan et al. [73] for ATLAS and CMS, respectively. Both
analyses yield a total error about 0.5 GeV, hence an overall

9A notable exception is given by leading non-global logarithms, sensitive to a

limited portion of the phase space, which, as discussed in Banfi et al. [65], are

partially accounted for by the angular-ordered showers of HERWIG, while they

are mostly absent in virtuality- or transverse-momentum-ordered PYTHIA.
10With respect to 3 in the MS scheme it is 3MC = 3 exp[K/(4πb0)], with

K = NC(67/18 − π2/6) − 5Nf /9, with NC and Nf being the number of colors

and active flavors, respectively.
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precision on the top mass around 0.3%. Figure 1 summarizes
the state of the art on top-mass measurements carried out at
the LHC, including the world average, as well as ATLAS and
CMS combinations.

As discussed in the introduction, since the standard mt-
reconstruction methods rely on the use of Monte Carlo
generators, such measurements are usually quoted as “Monte
Carlo mass” and much debate has been taking place on whether
the extracted mass can be related to any well-posed definition,
with some calculable uncertainty, such as the pole mass. The
ongoing discussion on the theoretical interpretation of the
measured top mass will be the main topic of next session. Before
moving to this issue, it is worthwhile reviewing the so-called
“alternative” strategies, making use of total/differential cross
sections, endpoints or other kinematic properties of tt̄ final states.

4.2.2. Total and Differential tt̄ Cross Section
The total tt̄ cross section was calculated in QCD in the
NNLO+NNLL approximation in Czakon et al. [74] 11 and was
used to determine mt by ATLAS in Aad et al. [75] (7 and 8
TeV data) and by CMS in Khachatryan et al. [76] (7 and 8
TeV) and Sirunyan et al. [77] (13 TeV). Since the calculation in
Czakon et al. [74] employed the pole mass definition, the results
in Khachatryan et al. [73], Aad et al. [75], and Sirunyan et al.
[77] are quoted as pole mass measurements. Although to some
extent this is mostly correct, it should always be reminded that
even those analyses are not completely independent of the shower
generator, and therefore of its mass parameter, which is still
used to evaluate the acceptance. Nevertheless, it was proved that
such a sensitivity is rather mild. Overall, the errors in Aad et al.
[75], Khachatryan et al. et al. [76], and Sirunyan et al. [77] are
larger than those in the standard methods, as they are about 2.5
GeV; however, they are expected to decrease thanks to the higher
statistics foreseen in the LHC future runs. After the computation
of the total cross section, even differential distributions were
calculated at NNLO in Czakon et al. [78], still using the top
pole mass: this computation was used by the D0 Collaboration
[79] to extract the top mass at the Tevatron accelerator, namely
√

s = 1.96 TeV andL = 9.7 fb−1. The error on thismeasurement
is about 2.5 GeV, hence competitive with those obtained at the
LHC from the total production cross section.

Dowling and Moch [80] explored the extraction of the top
mass by using the NNLO total tt̄ cross section and NLO
differential distributions, such as transverse momentum, rapidity
and tt̄ invariant mass, expressed in terms of pole and MS masses.
Overall, Dowling and Moch [80] found that using the running
mass yields a milder scale dependence of such observables;
nevertheless, implementing the full NNLO differential cross
section or the four-loop pole-MSmass conversion, along the lines
of Czakon et al. [78] and Marquard et al. [18], respectively, will
be obviously very useful to shed light on the scale dependence.

Still on the tt̄ total cross section, it is worthwhile pointing
out the recent work carried out to merge NNLO QCD and NLO

11At NNLO the tt̄ cross section isO(α4S ), whereas the threshold logarithms which

are resummed in Czakon et al. [74] are∼ αnS [ln
m(1− z)/(1− z)]+ , with z = m2

t /ŝ,

ŝ being the partonic center-of-mass energy andm ≤ 2n− 1.

electroweak corrections in Czakon et al. [81]. Such a computation
was then used to predict the top-quark charge asymmetry at
Tevatron and LHC and the electroweak corrections exhibited
a remarkable impact, say about 20%, on the forward-backward
asymmetry. It will be clearly very interesting determining the top
pole mass from differential distributions, along the lines of [79],
including electroweak contributions as well.

4.2.3. tt̄j Cross Section
The topmass was also extracted from themeasurement of the tt̄+
1 jet cross section, which has a stronger sensitive to mt than the
inclusive tt̄ rate. In Alioli et al. [82], the NLO tt̄j cross section was
calculated using POWHEG and its pole mass implementation,
matched to PYTHIA. Detector and shower/hadronization effects
were unfolded in order to recover the pure NLO tt̄j cross section.
From the experimental viewpoint, the approach proposed in
Alioli et al. [82] was followed in Aad et al. [83] by ATLAS (7
TeV and 5 fb−1) and by CMS in Collaboration [84] (8 TeV
and 19.7 fb−1). The error on mt extracted from the tt̄j cross
section is slightly smaller than from the inclusive tt̄ one, but still
much above the direct-reconstruction measurements. Such mass
determinations are referred to as pole mass measurements, since
this is the mass definition employed by POWHEG, while the
PYTHIA mass parameter used in the parton shower has a mild
effect in the determination of the acceptance. Fuster et al. [85]
used the running MS top mass in the calculation of the NLO tt̄j
rate and, after comparing with the cross section measurements,
obtained results which are, within the errors, in agreement with
the pole mass yielded by the approach in Alioli et al. [82].

Other so-called alternative methods to reconstruct mt rely
on the kinematic properties of top-decay final states: since they
are based on the comparison with Monte Carlo predictions, the
measured mt has to be identified with the mass parameter in the
shower code. Overall, such techniques yield uncertainties in the
mass about the order of magnitude of those relying on the total
cross section, say about 1 GeV or above.

4.2.4. Peak of the b-Jet Energy Spectrum
It was observed that the peak of the b-jet energy in top
decay at LO is independent of the boost from the top to the
laboratory frame, as well as of the production mechanism [86].
The CMS Collaboration did measure the top mass from the
b-jet energy peak data at 8 TeV and 19.7 fb−1 [87], by using
POWHEG andMadGraph to simulate top production and decay,
and PYTHIA for parton shower, hadronization and underlying
event. The resulting uncertainties are 1.17 GeV (statistics) and
2.66 GeV (systematics).

4.2.5. mbℓ, mbℓν and Stranverse Mass mT2

The b-jet+lepton invariant-mass (mbℓ) spectrum was used by
CMS to reconstruct mt in the dilepton channel in CMS
Collaboration [88], at 8 TeV and 19.7 fb−1. The data were
compared with the MadGraph+PYTHIA simulation, yielding
a measurement consistent with the world average and an
uncertainty about 1.3 GeV. In CMS Collaboration [88], for the
sake of comparison, even the NLO code MCFM was used to
predict thembℓ distribution.More recently, in Sirunyan et al. [89]
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FIGURE 1 | Summary of the top-mass analyses at the LHC, accounting for the world average and the ATLAS and CMS combinations as well.

CMS extracted mt even from the so-called stransverse mass
mT2 [90] and from mbℓν , which accounts for the neutrino
missing transverse momentum as well. The sensitivity of these
observables tomt yields an uncertainty about 180MeV (statistics)
and 900 MeV (systematics).

4.2.6. Endpoint Method
Another method to measure mt consists of using the endpoints
of distributions sensitive to mt , namely the endpoints of mbℓ,
µbb and µℓℓ, where b is a b-flavored jet, and µbb and µℓℓ
generalizations of the b¯b and ℓ+ℓ− invariant masses in the
dilepton channel, as described in Chatrchyan et al. [91] (CMS,
7 TeV and 5 fb−1). Since b-flavored jets can be calibrated
directly from data, the endpoint strategy is claimed to minimize
the Monte Carlo error on mt , which is mostly due to color
reconnection, namely the formation of a B hadron by combining
a b quark in t decay with an antiquark from t̄ decay or initial-
state radiation. Constraining the neutrino andW masses to their
world-average values, this method leads to uncertainties about
900 MeV (statistics) and 2 GeV (systematics).

4.2.7. Leptonic Observables
Purely leptonic observables in the dilepton channel, such
as the Mellin moments of lepton energies or transverse
momenta, were proposed to measure mt , since in this way

one can escape the actual reconstruction of the top quarks
[92]. However, this method still yields uncertainties due to
hadronization, production mechanism, Lorentz boost from
the top to the laboratory frame, as well as missing higher-
order corrections. Preliminary analyses have been carried out
in CMS Collaboration [93] (CMS, based on LO MadGraph)
and Aaboud et al. [68] (ATLAS, based on the MCFM
NLO parton-level code [94]) using data at 8 TeV and 19.7
fb−1 and are expected to be improved by matching NLO
amplitudes with shower/hadronization generators. For the
time being, the uncertainties quoted in Collaboration [93]
are 1.1 GeV (statistics), 0.5 GeV (experimental systematics)
and 2.5–3.1 GeV (theoretical systematics), whereas in Aaboud
et al. [68] they read 0.9, 0.8, and 1.2 GeV, respectively. CMS
Collaboration [93] also quotes an uncertainty +0.8

−0.0 GeV due
to the description of the top-quark transverse momentum. In
fact, previous CMS analyses had displayed a mismodeling of
the top pT simulated by MadGraph+PYTHIA, and therefore

CMS Collaboration [93] reweighted the transverse momentum
to match the measured one.

4.2.8. J/ψ Method
Final states with J/ψ mesons were exploited by the CMS
Collaboration in Khachatryan et al. [95] to measure mt , using
data collected at 8 TeV and a luminosity about 19.7 fb−1. In
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this work, one explores t → bW processes where b-flavored
hadrons decay into states containing a J/ψ , the J/ψ decays
according to J/ψ → µ+µ− pair and theW bosons undergo the
leptonic transition W → ℓν. The top mass is then extracted by
fitting the invariant mass distributions mµµ or mJ/ψℓ, as well as
the transverse momentum of the J/ψ . The analysis was carried
out by using the MadGraph code, interfaced with PYTHIA,
while, for the sake of estimating the theoretical error, POWHEG
and SHERPA were employed as well. Overall, the statistical
uncertainty in the investigation [95] amounts to 3 GeV, while
the systematic error to 0.9 GeV. The conclusion of Khachatryan
et al. [95] is that, since the systematic uncertainties are of different
origin from those entering in the measurements based on direct
reconstruction and given the higher statistics which are foreseen,
the J/ψ method should ultimately be worth to be included in
the combination with the extractions from matrix-element or
template strategies.

4.2.9. Final-State Charged Particles
A novel technique was presented by the CMS Collaboration in
Khachatryan et al. [96], where mt is measured by exploiting
the kinematic properties of final-state charged particles. The
observable used in this analysis is the massmsvℓ of the secondary
vertex-lepton system, namely the invariant mass of a system
made of the charged lepton in W decays and charged hadrons
in a jet originating from a common secondary vertex. Using
only charged particles, in fact, reduces the overall acceptance
uncertainty, whereas this method is obviously dependent on
the modeling of top decays and bottom hadronization. The
investigation was undertaken using MadGraph+PYTHIA to
simulate the signal, POWHEG and SHERPA to estimate
the uncertainty due to the matrix-element generation and
hadronization, respectively. The final error on the measurement
of mt from charged particles is then 200 MeV (statistics) and
+1.58
−0.97 GeV (systematics), by using data sets of 8 TeV collisions

and a luminosity of 19.7 fb−1.

4.2.10. Perspectives at High Luminosity
The perspectives for the top-mass determination at High
Luminosity (HL) LHC were debated in Azzi et al. [97], where
the HL-LHC will collide protons at 14 TeV and accumulate an
integrated luminosity of 3,000 fb−1. In the report [97] the ATLAS
Collaboration presented a projection for the accuracy onmt using
samples of events in the lepton+jets mode and J/ψ → µ+µ−

decays in the final state, along the lines of CERN [98]. The
expected statistical and systematic uncertanties amount to 0.14
and 0.48, GeV respectively. As for CMS, the potentials for the
top-mass extraction at HL-LHC are detailed in CERN [99] and
summarized in Figure 2: one can learn that all uncertainties will
tremendously decrease at HL-LHC. In particular, one expects
an error which ranges from about 0.2 GeV (0.1%) for direct
reconstruction in the lepton+jets channel to 1.2 GeV (0.7%)
from the total tt̄ NNLO cross section. It is remarkable that
the uncertainty from J/ψ final states will go down to about
0.6 TeV (0.35%).

FIGURE 2 | Projections of the uncertainty on the top-mass determination for

different strategies, according to the CMS Collaboration, as a function of the

integrated luminosity at HL-LHC.

5. INTERPRETATION OF THE TOP-MASS
MEASUREMENTS AND THEORETICAL
UNCERTAINTIES

The nature of the reconstructed top-quark mass and its possible
relations with field-theory mass definitions has lately become
the topic of a very lively debate (see, e.g., the reviews in Nason
[13], Hoang [100], and Corcella [101]). I shall first overview the
main issues concerning the mt interpretation and then discuss
the dominant sources of theoretical uncertainty.

5.1. Measured Mass Ad Theoretical
Definitions
The discussion on the identification of the measured quantity
is mostly based on the claim that Monte Carlo codes are LO,
while well-posed field-theory mass definitions need at least a
NLO computation. Although it is certainly true that, referring
to standard codes, total cross sections are LO, event shapes
and differential distributions go well beyond LO and account
for a resummation of enhanced logarithms. NLO+shower codes
like POWHEG and MC@NLO yield NLO total cross sections,
adopting the top pole mass in the computation, while the
differential spectra rely on the shower approximation and on the
modeling of hadronization and underlying event. Nevertheless,
it is indeed cumbersome interpreting the reconstructed top mass
in terms of theoretical definitions or, in other words, scrutinizing
all possible sources of uncertainties which may prevent such an
identification. As far as this controversy is concerned, one can
basically follow two mainstream viewpoints.

On the one hand, there are authors [7–11] who claim that
the measured quantity cannot be directly associated with any
field-theory mass definition and therefore one must stick to the
notion of Monte Carlo mass. Along this point of view, much
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work has been undertaken in order to relate the Monte Carlo
mass to definitions like the pole mass: the quoted discrepancies
between Monte Carlo and pole masses have through the years
ranged from few hundreds MeV to, in the most extreme case,
almost 1 GeV. If this were indeed the case, it would be an
uncertainty comparable or even larger than the current errors
on the directly reconstructed top mass. On the other hand, we
have authors [12, 13] who instead argue against the use of the
Monte Carlo mass and claim that, under given circumstances,
the reconstructed mass should actually mimic the pole mass.
According to this viewpoint, instead of constructing other mass
definitions to properly interpret the measurements, the effort
should rather be devoted to carefully estimate the theoretical
uncertainties, of both perturbative and non-perturbative nature,
in the identification of the measured quantity with the pole mass.
In the following, I will briefly review the work carried out in
this respect.

As far as I know, the pioneering work on relating themeasured
mass to the pole mass was carried out in Fleming et al. [7] and
Hoang and Stewart [8]. First, Fleming et al. [7] defined, for the
case study of e+e− → tt̄ collisions, the SCET (MSR-like) short-
distance jet massmJ(µ), associated with the collinear jet function
and corresponding to the MSR mass at a scale about the top
width, i.e., R = Ŵt . Then, mJ(µ) was related to the pole mass
by means of the following equation:

mJ(µ) = mpole −
αS(µ)CFŴt

π

(

ln
µ

Ŵt
+

3

2

)

+O(α2S). (22)

Setting, e.g., µ ≃ 1 GeV, then the jet mass differs from the
pole mass by about 200 MeV at O(αS). It is also remarkable
that the correction is of order O(αSŴt), which confirms the
intuition that the top width has to play a role in the uncertainty
in the measured mass. Later on, Hoang and Stewart [8] did
define a Monte Carlo mass and, relying on the standard shower
implementations, stated that the extracted top mass could be
interpreted as the jet mass evaluated at a scale of the order of the
shower cutoff Q0, i.e.,m

MC
t ≃ mMSR

t (Q0). Hoang and Stewart [8]
setQ0 =

(

3+6
−2

)

GeV andmMSR
t (Q0) to the value of the (Tevatron-

based) top-mass world average at that time, and got a consistent
value of the MS mass m̄t(m̄t), by using renormalization group
evolution equations.

More recently, Butenschoen et al. [9] compared PYTHIA with
a SCET computation in the NLO approximation, resumming
soft- and collinear-enhanced contributions to NLL or evenNNLL
accuracy. As in Hoang and Stewart [8], the SCET resummed
calculation employed the MSR mass mMSR

t (R), with R ∼ Ŵt
and mMSR

t (R) → mt,pole for R → 0. The PYTHIA mass
parameter was then calibrated to reproduce the SCET prediction
for the 2-jettiness τ2, after running the code for several center-
of-mass energies and a few values of the top mass. The result of
Butenschoen et al. [9] is that the PYTHIA mass is consistent,
within the errors, with the MSR mass evaluated at a scale of
1 GeV. Using instead the pole mass in the computation yields
a shift with respect to the PYTHIA mt about 600–900 MeV,
according to whether the Monte Carlo results are compared
with a NLL or NNLL resummation. The work in Butenschoen

et al. [9] was extended to pp collisions in Hoang et al. [10],
where the extraction of mt from boosted top jets with light
soft-drop grooming was proposed12. By comparing the NLL
resummation for the groomed top-jet mass with PYTHIA, the
pole mass was found about 400–700 MeV below the calibrated
Monte Carlo mass, depending on the energy of the pp collision
and non-perturbative parameters contained in the resummation.
Still on this subject, Hoang et al. [11] explores the dependence
of mt on the parton shower cutoff, referring to the HERWIG
7 angular-ordered cascade. By working in the quasi-collinear
limit, with boosted massive quarks in the NLL approximation,
the authors of Hoang et al. [11] stated that the mass parameter in
aMonte Carlo code should be identified with a cutoff-dependent,
coherent-branching (CB) mass, labeled as mCB

t (Q0). Such a
coherent-branching mass is a low-scale short-distance mass,
free from renormalon corrections, related to the pole mass by
a relation like:

mt,CB(Q0) = mt,pole −
2

3
αS(Q0)Q0 +O(α2SQ0). (23)

Expressing in Equation (23) αS in terms of theMonte Carlo QCD
scale3MC defined in Catani et al. [66] and settingQ0 = 1.25 GeV,
like the shower cutoff of HERWIG 7, the shift between pole
and CB masses amounts to about 500 MeV. Using instead the
standard MS scheme for αS yields a discrepancy of the order of
300 MeV. Concerning the calibration of the Monte Carlo mass
parameter, another approach was suggested in Kieseler et al.
[103]: one measures an observable, e.g., a total or differential
cross section, ignoring anything on the event generation, and,
by comparing the data with the simulation, calibrates both
observable and mt . The finding of Kieseler et al. [103] is
that, given the current precision on the inclusive tt̄ rate, the
uncertainty on this calibration is roughly 2 GeV.

As anticipated above, other authors, such as Nason [12, 13],
claim that it is not really necessary to introduce the Monte Carlo
mass concept to interpret measurements relying on final-state
direct reconstruction. The starting point is the observation that,
in the narrow-width approximation and assuming that one is
able to catch all final-state radiation, the invariant mass of top-
decay products in t → bWX, X being some extra radiation off
top and bottom quarks, should mimic the on-shell top mass, i.e.,
the pole mass. Effects due to the top final width, parton emission
which is not included in the reconstruction, contamination from
initial-state radiation and non-perturbative phenomena, such as
color reconnection or underlying event, clearly spoil the direct
identification of the invariant mass of top-decay final states with
the pole mass. However, in the perspective of Nason [12, 13]
rather than a genuine shift of the measured mass with respect
to the pole mass, such effects are seen as uncertainties, of either
perturbative or non-perturbative nature, in the identification of
the extracted mass as pole mass.

Although such approaches may sound pretty different, work
toward a possible compromize was carried out in Azzi et al.
[97], in such a way to guide the top-quark community and avoid

12Soft-drop grooming is a jet-substructure technique, which recursively removes

soft wide-angle radiation from a jet. See [102] for details.
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confusion or statements claiming a sort of ignorance on the
nature of the measured top-quark mass. Though starting from
different perspectives, all those papers agree that the measured
mt can be connected to the pole mass by means of a relation like:

mt = mt,pole + δmt ±1mt , (24)

where δmt is a possible shift between measured and pole masses
and 1mt is an uncertainty. According to Nason [12, 13],
which basically discourage the use of the concept of Monte
Carlo mass, the extracted mass through top-decay final-state
reconstruction mimics the pole mass, up to some computable
uncertainty. In this approach δmt ≃ 0, while 1mt is a
theoretical (Monte Carlo based) error that, in measurements
employing event generators, should be estimated, e.g., varying
shower/hadronization parameters, confronting different models
(cluster and string models for hadronization are a typical
example) or changing the analysis details (for final-state jets,
increasing/decreasing the jet radius leads to accounting for more
or less gluon radiation). In the view of Nason [12, 13], the
uncertainty 1mt in the identification of the measurements with
the pole mass should be of the order of the hadronization
scale, i.e., O(3). On the contrary, in the work carried out in
Hoang and Stewart [8], Butenschoen et al. [9], Hoang et al. [10],
and Hoang et al. [11] mt is labeled as Monte Carlo mass and
δmt is an actual discrepancy with respect to the pole mass,
typically about O[Q0αS(Q0)] as in Equation (23), while 1mt

is still an uncertainty, which one can estimate by varying the
parameters or options in the codes and computations employed
in the comparison.

Therefore, the disagreement among most authors of the
relevant literature on the interpretation of the top-mass
measurement is conceptually relevant, but in practice concerns
whether one should calculate an actual discrepancy δmt or not,
as well as the meaning of 1mt and its numerical magnitude.
In Hoang and Stewart [8], Butenschoen et al. [9], Hoang et al.
[10], and Hoang et al. [11] different values for δmt and 1mt

have been quoted, which is reasonable, since, as also advocated
in Nason [12] for the purpose of the uncertainty, any possible
relation between the pole mass and the measured quantity has
to depend on the observable which is used to extract mt , on the
details of the analysis, such as the imposed cuts, the energy of the
collider and whether it runs, e.g., e+e− or pp modes. Moreover,
since such determinations are based on a comparison between
Monte Carlo results with resummed calculations, with mt being
a tunable parameter, δmt and 1mt also depend on the accuracy
of the resummations, e.g., NLL or NNLL. As discussed above,
δmt is about 200 MeV in Hoang and Stewart [8], in the range
600-900 MeV in Butenschoen et al. [9], 400–700 MeV in Hoang
et al. [10] and 300–500MeV in Hoang et al. [11]. The uncertainty
1mt in the relation of Equation (24) was estimated to be roughly
250 MeV in Hoang et al. [11] and 280–380 MeV in Butenschoen
et al. [9]. Nason [12, 13] do not contain an explicit calculation of
1mt , but rather propose a method to compute it, e.g., by varying
Monte Carlo perturbative and non-perturbative parameters or,
in a POWHEG-like implementation, switching NLO and width
effects on or off. Of course, it will be very interesting to follow

such an approach and compare the results with the numbers
obtained in Hoang and Stewart [8], Butenschoen et al. [9], Hoang
et al. [10], and Hoang et al. [11]. One may already guess that,
since Nason [12, 13] do not account for any explicit discrepancy
δmt , one may likely get a larger uncertainty1mt when following
this approach. Furthermore, it will be crucial understanding
how much, for a given observable, any shift/uncertainty of the
measured mass with respect to the pole mass depends on the
specific shower code and, e.g., one finds an impact of the late
implementation of NLO corrections and width effects along the
lines of [29].

5.2. Theoretical Uncertainties in the Top
Mass Determination
For the sake of a precise determination of the top-quark mass,
a reliable estimate of the theoretical error is of paramount
importance. In the top-mass world-average extraction, i.e., The
ATLAS et al. [6], based on the so-called standard measurements,
the overall theory uncertainty accounts for about 540 MeV of the
total 710 MeV systematics. In particular, The ATLAS et al. [6]
distinguishes the contributions due to Monte Carlo generators,
radiation effects, color reconnection and parton distribution
functions (PDFs).

The Monte Carlo systematics is due to the differences in the
implementation of parton showers, matrix-element matching,
width effects, hadronization and underlying event in the various
programs available to describe top-quark production and decay.
There is no unique way to estimate this uncertainty, though, and
each collaboration even follows different prescription according
to the analysis. One can either compare two different generators,
which are considered appropriate for a given analysis and
have been properly tuned to some data sets, or choose one
single code and explore how its predictions fare with respect
to variations of its parameters. For example, in The ATLAS
et al. [6] CDF compares HERWIG and PYTHIA, while D0 uses
ALPGEN+PYTHIA and ALPGEN+HERWIG; both Tevatron
experiments use MC@NLO to gauge the overall impact of
NLO corrections. At the LHC, ATLAS compares MC@NLO
with POWHEG for the NLO contributions and PYTHIA with
HERWIG for shower and hadronization; CMS instead confronts
LO MadGraph with NLO POWHEG.

The radiation uncertainty gauges the effect of initial- and
final-state radiation on the top mass and is typically obtained by
varying in suitable ranges the relevant parameters in the parton-
shower generators. Concerning PDFs, there are distinct strategies
to evaluate the induced error on mt in the different experiments,
although using two different sets or a given set but with different
parametrizations are common trends. More generally, the choice
of the PDF set in analyses based on event generators has also
been the topic of several discussions: as pointed out before,
althoughMonte Carlo codes yield LO orNLO total cross sections,
differential spectra go beyond such approximations and include
the resummation of classes of enhanced logarithmic terms. An
attempt to propose some improved sets of parton distribution
functions for standard parton shower generators was presented
in Sherstnev and Thorne [104].
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Among the sources of theoretical uncertainty and possible
shifts between measured and pole masses, color reconnection
should deserve some special attention. In fact, it accounts for
about 310 MeV in the world average presented in The ATLAS
et al. [6]. Also, the very fact that, for example, a bottom
quark in top decay (t → bW) can be color-connected to an
initial-state antiquark does not have its counterpart in e+e−

annihilation and therefore its modeling in Monte Carlo event
generators may need retuning at hadron colliders. Investigations
on the impact of color reconnection on mt were undertaken
in Argyropoulos and Sjöstrand [105] and Corcella [106], in
the frameworks of PYTHIA and HERWIG, respectively. In
particular, Corcella [106] addresses this issue by simulating
fictitious top-flavored hadrons T in HERWIG and comparing
final-state distributions, such as the BW invariant mass, with
standard tt̄ events. In fact, in the top-hadron case, assuming T
decays according to the spectator model, the b quark is forced
to connect its color with the spectator or with antiquarks in its
own shower, namely b → bg, followed by g → qq̄, and color
reconnection is suppressed. The analysis in Corcella [106] is still
ongoing and, in future perspectives, it may also serve to address
the error on the identification of the measured mass with the
pole mass. In fact, in the event samples simulated in Corcella
[106] the Monte Carlo (HERWIG) mass is the mass of a heavy
hadron, which can be related to any definition of the heavy-
quark (top for T mesons) mass definition by means of lattice,
potential models or Non Relativistic QCD. In Argyropoulos and
Sjöstrand [105], color reconnection is instead investigated within
the Lund string model, tuned to charged-particle multiplicity or
transverse-momentum data. Several possible models for color
reconnection were investigated and the yielded uncertainty on
the top mass varied between 200 and 500 MeV, depending on the
chosen framework.

Another non-perturbative phenomenon which plays a role
in the theoretical error is bottom-quark fragmentation, i.e., the
hadronization of bottom quarks in top decays into b-flavored
mesons or baryons. The usual way to deal with it consists in
tuning the Monte Carlo fragmentation parameters to precise
e+e− → b¯b data and then using the best parametrizations
to describe bottom-quark hadronization in top decays. This
approach was followed, e.g., in Corcella and Drollinger [107]
and Corcella and Mescia [108], where data from DELPHI [109]
SLD [110], OPAL [111] and ALEPH [112] were employed to
tune the parameters of HERWIG [31] and PYTHIA [33]. In
particular, Corcella and Mescia [108] used such a tuning to
predict the B-hadron+lepton invariant mass mBℓ in tt̄ events
at LHC. A possible extraction of mt using this observable
exhibited a large discrepancy between the two event generators,
which was explained as due to the different quality of the
e+e− fits, with HERWIG being only marginally consistent with
the data. More recent modeling and fits, such as the so-called
Monash [113] or A14 [114], or using the dipole-like shower
implementation in Cormier et al. [57] are expected to give a better
description of bottom fragmentation in top decays. Investigations
on the uncertainties using these implementations are currently
in progress; it will be very interesting, in particular, exploring
bottom-quark fragmentation by using NLO+shower codes, such

as POWHEG and aMC@NLO, interfaced to HERWIG or
PYTHIA. In fact, it is mandatory to understand whether the
Monte Carlo default parameterizations or tunings like those in
Skands et al. [113] and Collaboration [114] work well at the
LHC even when the hard scattering is at NLO, or one would
rather need to refit the Monte Carlo parameters. In general,
although the approach followed in Corcella and Mescia [108]
relies on the universality of the hadronization transition, it is
not absolutely guaranteed that models which reproduce e+e−

data work equally well in a colored environment like tt̄ events
at the LHC, where initial-state radiation, color reconnection
and underlying event play a role. Therefore, tuning shower
and hadronization parameters to LHC data should become a
ultimate goal.

From this viewpoint, more recently, Corcella et al. [115]
reconsidered the issue of the dependence of mt on Monte Carlo
parameters, suggesting a possible in-situ calibration of the shower
codes using top events in the dilepton channel, and taking
particular care about observables sensitive to b-fragmentation in
top decays. In particular, Corcella et al. [115] extended the work
in Corcella and Mescia [108] exploring top-decay observables in
terms of B-hadrons, instead of b-jets, so that one should deal with
fragmentation uncertainties, rather thanwith the jet-energy scale.
For instance, if 〈O〉 is the average value of a given observable
O and θ a generic generator parameter, then one can write the
following relations:

dmt

mt
= 1m

O

d〈O〉

〈O〉
;

d〈O〉

〈O〉
= 1O

θ

dθ

θ
⇒

dmt

mt
= 1m

θ

dθ

θ
, (25)

where we defined 1m
θ = 1m

O 1O
θ . Therefore, if one aims at,

e.g., an error of 500 MeV on mt , namely dmt/dmt < 0.003,
one should also have 1m

θ (dθ/θ) < 0.003. Corcella et al. [115]
then identifies some so-called calibration observables, which
depend on the shower/hadronization parameters but are rather
insensitive to the top mass. Examples of such quantities are,
e.g., the ratios of B-hadron to b-jet (b) transverse momenta
pT,B/pT,b, of invariant masses mBB̄/mb¯b (

¯b being a jet containing
a B̄ hadron), the azimuthal separations and invariant opening
angles 1φ(b¯b), 1φ(BB̄), 1R(b¯b), 1R(BB̄)13. Then, imagining
that one could ideally tune the parameters to measurements
of the calibration observables, other quantities can be explored
to extract mt , such as the B-hadron energy and transverse
momentum EB and pT,B, or the invariant masses mBℓ, mℓℓ̄
and mBB̄ℓℓ̄. The conclusion of this exploration is that, in order
to achieve a 0.3% precision on the top mass, one needs to
determine the strong coupling constant at 1% accuracy and other
parameters, such as the shower cutoff, the gluon and quark
effective masses or the hadronization parameters at 10%. Overall,
Corcella et al. [115] proposes a method to tune directly Monte
Carlo generators to data from top events at the LHC, which,
whenever top-production data were to become precise enough,
should be preferable to the use of fits to e+e− data, in such a way
to avoid all uncertainties and ambiguities in the application of
e+e−-based fits to hadron collisions.

13For two particles at1φ and1η distances in azimuth and rapidity, the invariant

opening angle is defined as1R =

√

(1φ)2 + (1η)2.
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6. CONCLUSIONS

I discussed some challenging issues regarding the determination
and interpretation of the top quark mass at hadron colliders.
I reviewed the main top mass definitions, pointing out their
most notable features and taking particular care about the pole
and MS masses. I described recent calculations for the purpose
of the renormalon ambiguity in the pole mass in the infrared
regime, yielding uncertainties about 100–250 MeV, which, for
the time being, are below the current error on the top mass.
Also, such estimates are well below the top-width energy scale,
about 1.4 GeV.

The most relevant features of Monte Carlo codes for top-
quark phenomenology were then presented, stressing the late
implementation of NLO corrections and interference effects
between top-production and decay phases. Even the standard
shower codes are nevertheless beyond LO in the differential
distributions which account for classes of enhanced soft/collnear
logarithms to all orders.

The main experimental methods to measure the top mass
were discussed, pointing out the differences among the so-called
standard and alternative measurements and the magnitude of the
quoted uncertainties. For the time being, although the alternative
measurements provide an excellent ground to reconstruct mt

using the kinematic properties of the final states and, in some
cases, they are even capable of minimizing the impact of the
chosen Monte Carlo generator, the standard methods are still
those which yield the lowest uncertainty. This will also be the case
in the future LHC runs, albeit the higher statistics are expected to
decrease the errors in the alternative strategies too.

Much space was then devoted to the present debate on the
interpretation of the measurements and whether one should
relate the extracted mt to some alternative mass definition
or rather express it in terms of the pole mass, up to some
uncertainty. A common features of both attitudes is nonetheless
that there is no universal relation between the measured mass
and any field-theory definition, but it depends on the considered
observable and on the type of Monte Carlo shower code or QCD
calculation which is employed in the comparison. There have
been many investigations to relate the measured mt to short-

distance masses by comparing Monte Carlo predictions with
SCET resummed computations: the obtained shift with respect
to the pole mass was eventually derived and is of the order
of a few hundreds of MeV, depending on the specific analysis
and accuracy of the calculation. On the other hand, work is in

progress to explore the sources of errors which, on the top of the
theoretical systematics, affect the straightforward identification
of the top mass in direct-reconstruction analyses as a pole mass,
such as color reconnection. Although the starting point of such
approaches are conceptually different, a compromize can be
reached and it will be very appealing applying the ongoing work
on color-reconnection and bottom-fragmentation uncertainties
to the interpretation of the top-mass measurements in terms of
well-defined field-theory quantities.

Finally, referring in particular to the world-average analysis,
the contributions to the quoted theoretical error were debated,
along with the current work aimed at obtaining even more
reliable estimates of such uncertainties. Furthermore, it was
discussed the possibility to use top-quark events and suitable
calibration observables to fit Monte Carlo parameters, which will
probably be the way to follow in future perspectives, once the data
become precise enough to compete with e+e− experiments for
the purpose of the tuning of event generators.

In summary, top-quark phenomenology at the LHC,
especially in the high-luminosity perspective, has become
precision physics and the smallness of the current and foreseen
uncertainties in the top-mass measurement are a clear example
of such a level of accuracy. However, for the sake of a robust and
reliable top-mass determination, much work is still necessary,
in order to understand better and possibly reduce the sources
of uncertainties. In particular, progress in Monte Carlo studies
and QCD calculations for top production and decay, as well
as in theoretical work concerning top-mass definitions, should
definitely be encouraged. As pointed out many times in this
review, investigations along these lines are already in progress,
in such a way that one can feel confident that the theoretical
and experimental efforts will eventually converge to match
the precisions which are expected in the future LHC runs and
ultimately at HL-LHC.
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Measurement of the top quark mass using proton-proton data at
√

s = 7 and

8 TeV. Phys Rev D. (2016)D93:072004. doi: 10.1103/PhysRevD.93.072004

74. Czakon M, Fiedler P, Mitov A. Total Top-Quark pair-production cross

section at hadron colliders through O(α4S ). Phys Rev Lett. (2013) 110:252004.

doi: 10.1103/PhysRevLett.110.252004

75. Aad G, Abbott B, Abdallah J, Abdel Khalek S, Abdinov O, Aben R.

Measurement of the tt̄ production cross-section using eµ events with b-

tagged jets in pp collisions at
√

s = 7 and 8 TeVwith the ATLAS detector. Eur

Phys J. (2014) C74:3109. doi: 10.1140/epjc/s10052-014-3109-7

76. Khachatryan V, Sirunyan AM, Tumasyan A, AdamW, Aşılar E, Bergauer T.
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The Standard Model (SM) of particle physics is a big success. However, it lacks

explanations for cosmic inflation, the matter-anti-matter asymmetry of the Universe,

dark matter, neutrino oscillations, and the feebleness of CP violation in the strong

interactions. The latter may be explained by introducing an exotic vector-like quark

which is charged under a chiral global U(1) Peccei-Quinn (PQ) symmetry which is

spontaneously broken by the vacuum expectation value of a complex SM singlet scalar

field—the PQ field. Moreover, the pseudo Nambu-Goldstone boson of this breaking—the

axion—may play the role of the dark matter. Furthermore, the modulus of the PQ field is

a candidate for driving inflation. Furthermore, three extra SM singlet neutrinos are added

who acquire their Majorana mass from the breaking of the PQ symmetry and which

explain the small masses of the active neutrinos and their oscillations by the seesaw

mechanism. The resulting extension of the SM which has been dubbed SMASH—for

SM-Axion-Seesaw-Higgs portal inflation—solves the five aforementioned problems in

one stroke. We review how this works in SMASH and discuss its further predictions and

tests in astrophysics, cosmology, and laboratory experiments. Furthermore, we consider

and comment on variants of SMASH.

Keywords: inflation, matter anti-matter asymmetry, dark matter, neutrino masses and mixing, strong CP problem

1. INTRODUCTION

The SM is arguably the most successful theory in physics. It describes the known particles and
their interactions remarkably well. No significant deviations from the theoretical predictions
of the SM have been found so far at precision collider experiments and the like. On the
other hand, it is generally agreed that there are a number of fundamental problems in
particle physics and cosmology which require new physics beyond the SM. In fact, there is
compelling evidence that nearly 85% of the matter in the Universe is non-baryonic. This
evidence is supported by observations on many scales, ranging from the shapes of the rotation
curves of spiral galaxies to the temperature fluctuations of the cosmic microwave background
(CMB). Furthermore, the SM cannot explain the exponential expansion of the very early
Universe called inflation which is required to explain the isotropic, Gaussian and nearly scale-
invariant temperature fluctuations of the CMB. Moreover, the CP violation within the SM
is too feeble to explain the asymmetry between the fraction of the baryonic matter and
anti-matter in the Universe. Furthermore, the SM does not feature masses for the active

76
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FIGURE 1 | Particle/field content of the νMSM.

neutrinos, while the observed flavor oscillations of the active
neutrinos require tiny neutrino masses. Last, but not least, there
is the strong CP problem: the SM has no explanation for the
smallness of the θ-angle of quantum chromodynamics (QCD)
which induces CP-violation in flavor-diagonal interactions. In
fact, the non-observation of an electric dipole moment of the
neutron places a very strong upper limit on the angle, |θ | <
10−10, requiring an extreme fine-tuning which cannot even be
justified on the basis of anthropic arguments.

Three of these problems can be tackled simultaneously in the
Neutrino Minimal SM (νMSM) (Asaka, 2005; Asaka et al., 2005):
a remarkably simple extension of the SM by three right-handed
singlet neutrinos Ni (cf. Figure 1), having Dirac masses mD =

Fv/
√

2 arising from Yukawa couplings F with the Higgs (H) and
lepton (Li) doublets, as well as explicit Majorana massesM,

L ⊃ −

[

FijLiǫHNj +
1

2
MijNiNj

]

, (1)

(in Weyl spinor notation). In the seesaw limit, M ≫ mD, the
neutrino mass spectrum splits into a light set given by the
eigenvaluesm1 < m2 < m3 of the matrix

mν = −mDM
−1mT

D , (2)

with the eigenstates corresponding mainly to mixings of the
active left-handed neutrinos να , and a heavy set given by the
eigenvaluesM1 < M2 < M3 of thematrixM, with the eigenstates
corresponding to mixings of the sterile right-handed neutrinos
Ni. The neutrino mass and mixing problem is thus solved by the
usual type-I seesaw mechanism (Minkowski, 1977; Gell-Mann
et al., 1979; Yanagida, 1979; Mohapatra and Senjanovic, 1980).
Intriguingly, the baryogenesis and dark matter problems can be
solved simultaneously if M1 ∼ keV and M2 ∼ M3 ∼GeV. In
fact, in this case N2,3 create flavored lepton asymmetries from
CP-violating oscillations in the early Universe, which generate

the baryon asymmetry of the Universe via ARS leptogenesis
(Akhmedov et al., 1998). The lightest sterile neutrino N1 can
act as dark matter, with the correct relic abundance achieved
through freeze-in production, resonantly enhanced with the
MSW effect (Wolfenstein, 1978, 1979; Mikheyev and Smirnov,
1985). Moreover, it was argued in Bezrukov and Shaposhnikov
(2008) that the puzzle of inflation can be solved even in the SM
by allowing a non-minimal coupling of the Higgs field to the
Ricci scalar,

S ⊃ −

∫

d4x
√

−g ξH H†HR, (3)

which promotes the Higgs field to an inflaton candidate.
However, the viability of the νMSM as a minimal model of

particle cosmology is threatened by several facts. First of all,
recent findings in astrophysics have seriously constrained the
parameter space for N1 as a dark matter candidate (Schneider,
2016; Perez et al., 2017). Secondly, the generically large value
of the non-minimal coupling ξH ∼ 105

√

λH , where λH is the
Higgs self-coupling, required to fit the amplitude of the scalar
perturbations inferred from the cosmic microwave background
(CMB) temperature fluctuations, imply that perturbative
unitarity breaks down at the scale MP/ξH ∼ 1014 GeV, where
MP = 1/

√

8π G is the reduced Planck mass, making the
inflationary predictions unreliable (Barbon and Espinosa,
2009; Burgess et al., 2009). Even more, successful inflation
cannot happen in this context if the quartic coupling λH in the
Higgs potential:

V(H) = λH

(

H†H −

v2

2

)2

,

runs negative at large (Planckian) field values due to loop
corrections involving the top quark. In fact, the central values of
the strong gauge coupling and the Higgs and top quark masses
imply that λH becomes negative at a field value corresponding
to an energy scale 3I ∼ 1011 GeV. This is much lower than
what is required for Higgs inflation and thus inconsistent with it.
However, given the current experimental uncertainties, a definite
conclusion cannot yet be drawn (see e.g., Buttazzo et al., 2013;
Bednyakov et al., 2015).

These obstacles of the νMSM can be neatly circumvented1

in SMASH-type (Ballesteros et al., 2017a,b; Ernst et al., 2018)
extensions of the SM which are built around the axion for the
solution of the strong CP problem (Peccei and Quinn, 1977;
Weinberg, 1978; Wilczek, 1978), as well as for dark matter, and
allow inflation to be driven by (a mixture of the modulus of
the Higgs field with) the modulus of the Peccei-Quinn field –
sometimes called saxion field (Pi, 1984; Fairbairn et al., 2015).

This review is organized as follows. In section 2 we describe a
number of Peccei-Quinn-type extensions of the νMSM: bottom-
up constructions featuring KSVZ- and DFSZ-type axions (cf.
sections 2.1, 2.2, respectively) and top-down constructions based

1Higgs inflation can also be realized in supergravity extensions of the SM (see

for example Ben-Dayan and Einhorn, 2010; Choudhury et al., 2014; Pallis, 2017,

2018a,b; Pallis and Shafi, 2018).
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FIGURE 2 | Particle/field content of SMASH.

on non-supersymmetric grand unification (cf. section 2.3).

Section 3 is devoted to inflation, while stability is analyzed in
section 4. Reheating is reviewed in section 5, dark matter in
section 6, and baryogenesis in section 7. Conclusions are drawn
in section 8.

2. SMASH AND ITS VARIANTS

In this section we will describe a number of extensions of the
SMwhich exploit the Peccei-Quinn (PQ)mechanism (Peccei and
Quinn, 1977) to solve the strong CP problem and thus have the
potential to solve the big five problems of particle physics and
cosmology in one smash.

2.1. SMASH
The model with smallest field content—dubbed here and in
the following SMASH—is based on a KSVZ-type axion model
(Kim, 1979; Shifman et al., 1980): a SM-singlet complex scalar
field σ , which features a (spontaneously broken) global U(1)PQ
symmetry, and a vector-like colored Dirac fermion Q, which
transforms as2 (3, 1,−1/3) or, alternatively, as (3, 1, 2/3) under
the SM gauge group SU(3)C × SU(2)L × U(1)Y and which
transforms chirally under U(1)PQ, are added to the field content
of the νMSM (cf. Figure 2). The scalar potential, which relates
the Higgs field H to σ , is assumed to have the general form

V(H, σ ) = λH

(

H†H −

v2

2

)2

+ λσ

(

|σ |2 −
v2σ
2

)2

+ 2λHσ

(

H†H −

v2

2

)(

|σ |2 −
v2σ
2

)

, (4)

with λH , λσ > 0 and λ2Hσ < λHλσ , in order to ensure that both
the electroweak symmetry and the PQ symmetry are broken in

2These hypercharge assignments ensure that Q can mix with the right-handed

SM down-type quarks or up-quarks, respectively, allowing its decay to the latter,

thereby evading overabundance problems (Nardi and Roulet, 1990; Berezhiani

et al., 1992).

the vacuum; i.e., the minimum of the scalar potential is attained
at the vacuum expectation values (VEVs)

〈H†H〉 = v2/2, 〈|σ |2〉 = v2σ /2 , (5)

where v = 246GeV. The PQ symmetry breaking scale vσ
is assumed to be much larger than the Higgs VEV v.
Correspondingly, the particle excitation of themodulus ρ of σ , cf.

σ (x) =
1
√

2

[

vσ + ρ(x)
]

eiA(x)/vσ , (6)

gets a large mass

mρ =

√

2 λσ vσ +O

(

v

vσ

)

, (7)

while the particle excitation A of the angular degree of freedom
of σ – which is dubbed “axion" in the context of the PQ solution
of the strong CP problem (Weinberg, 1978; Wilczek, 1978)—is a
massless Nambu-Goldstone (NG) boson,mA = 0.

However, due to the assumed chiral transformation of the new
vector-like fermionQ, the U(1)PQ symmetry is broken due to the
gluonic triangle anomaly,

∂µJ
µ

U(1)PQ
⊃ −

αs

8π
Gc
µνG̃

c,µν . (8)

Under these circumstances, the NG field

θ(x) ≡
A(x)

fA
, with fA ≡ vσ , (9)

acts as a space-time dependent θ-angle in QCD. In fact, the
anomaly ensures that, at energies above the scale of QCD,3QCD,
but far below the scale of PQ symmetry breaking, vσ , that is
after integrating out the saxion ρ and the vector-like quark Q,
which also gets a large mass from its Yukawa coupling with the
PQ scalar,

mQ =

y
√

2
vσ +O

(

v

vσ

)

, (10)

the effective Lagrangian of the axion has the form

Lθ =
f 2A
2
∂µθ∂

µθ −
αs

8π
θ(x)Gc

µνG̃
c,µν . (11)

Correspondingly, the θ-angle in QCD can be eliminated by a shift
θ(x) → θ(x)− θ . At energies below3QCD, the effective potential
of the shifted field, which for convenience we again denote by
θ(x), will then coincide with the vacuum energy of QCD as a
function of θ

V(θ) ≡ −

1

V
ln

Z(θ)

Z(0)

∣

∣

∣

∣

∣

θ=θ

≃ 60 (mu +md)



1−

√

m2
u +m2

d
+ 2mumd cos θ

mu +md



 , (12)
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where V is the Euclidean space-time volume, Z(θ) is the
partition function of QCD, and 60 = −〈ūu〉 = −〈

¯dd〉 is the
chiral condensate (Vecchia and Veneziano, 1980; Leutwyler and
Smilga, 1992). Notably, CP is conserved in the vacuum, since
V(θ) has an absolute minimum at θ = 0 and thus the vacuum
expectation value of θ vanishes, 〈θ〉 = 0 (Vafa andWitten, 1984).
Expanding the potential around zero and using

m2
π =

60

f 2π
(mu +md)+O(m2), (13)

one finds the mass of the axion as the coefficient of the
quadratic term,

mA ≡

√

χ0

fA
≃

mπ fπ

fA

√

mumd

mu +md
, (14)

where χ0 is the topological susceptibility in QCD, mπ = 135
MeV the neutral pion mass, fπ ≈ 92 MeV its decay constant,
and mu, md are the masses of the lightest quarks, with ratio z =

mu/md ≈ 0.56. A recent determination in next-to-leading order
(NLO) chiral perturbation theory (Grilli di Cortona et al., 2016)
yielded χ0 = [75.5(5)MeV]4, which agrees beautifully with the
result from lattice QCD, χ0 = [75.6(1.8)(0.9)MeV]4 (Borsanyi
et al., 2016), resulting in3

mA = 57.0(7)

(

1011GeV

fA

)

µeV. (15)

Moreover, also couplings to the photon and the nuclei are
inherited from the axion’s mixing with the pion. The full low
energy Lagrangian of the axion with photons (Fµν), nucleons,
ψN = p, n, electrons (e) and active neutrinos (νi) has the
generic form

LA =

1

2
∂µA∂

µA− V(A)−
α

8π
CAγ

A

fA
Fµν F̃

µν (16)

+

1

2
CAN

∂µA

fA
ψNγ

µγ5ψN

+

1

2
CAe

∂µA

fA
ψeγ

µγ5ψe +
1

2
CAν

∂µA

fA
νiγ

µγ5νi ,

where V(A) = V(θ = A/fA). The dimensionless coupling
to photons, CAγ , involves a model-independent part from the
mixing with the pion and a model-dependent part depending
of the electric charge of Q. It is given in Table 1 for the two
variants of SMASH. Similarly, the proton and neutron have a
model-independent part and a model dependent contribution

3Very recently, Gorghetto and Villadoro (2019) improved the theoretical

prediction of χ0 by including O(α) and NNLO corrections in the chiral

expansion, resulting in χ
1/4
0 = 75.44(34) MeV, corresponding to mA =

56.91(51)µeV (1011 GeV/fA), almost coinciding with the previous NLO result.

TABLE 1 | Axion predictions for two SMASH variants exploiting distinct vector-like

quarks transforming as RQ under the SM gauge group factors

SU(3)C × SU(2)L × U(1)Y : Axion decay constant fA, coupling to the photon CAγ ,

and tree-level couplings to quarks and charged leptons CAi , i = u, ..., t, e, .., τ .

Model RQ fA CAγ CAi

SMASH(d) (3, 1, − 1
3 ) vσ

2
3− 1.92(4) 0

SMASH(u) (3, 1, + 2
3 ) vσ

8
3− 1.92(4) 0

that arises from possible axion-quark couplings of the form
(CAq/2)(∂µA/fA)ψ̄qγ

µγ5ψq in the high-energy theory

CAp = −0.47(3)+ 0.88(3)CAu − 0.39(2)CAd − 0.038(5)CAs

−0.012(5)CAc − 0.009(2)CAb − 0.0035(4)CAt ,

CAn = −0.02(3)+ 0.88(3)CAd − 0.39(2)CAu − 0.038(5)CAs

−0.012(5)CAc − 0.009(2)CAb − 0.0035(4)CAt , (17)

as found in the state-of-the-art calculation (Grilli di Cortona
et al., 2016). In SMASH, all the axion-quark and axion-charged-
lepton couplings vanish at tree level (cf. Table 1).

To avoid strong bounds from laboratory experiments and
stellar astrophysics, the axion decay constant fA has to be much
larger than the electroweak scale (Tanabashi et al., 2018), notably
fA & 108 GeV from the measured duration of the neutrino
signal of supernova 1987A (Raffelt, 2008; Fischer et al., 2016;
Chang et al., 2018).

Optionally, one may unify the PQ symmetry with a lepton
number symmetry by assigning PQ charges also to the leptons
and sterile neutrinos (Shin, 1987; Dias et al., 2014). In this
case, the latter get their Majorana masses also from PQ
symmetry breaking,

Mij =
Yij
√

2
vσ +O

(

v

vσ

)

, (18)

where Yij are Yukawa couplings, and the mass scale of the active
neutrinos is determined by the PQ scale,

mν = 0.04 eV

(

1011 GeV

vσ

)

(

−F Y−1 FT

10−4

)

. (19)

Moreover, the axion A is in this case at the same time the
majoron J: the NG boson arising from the breaking of the global
lepton number symmetry (Chikashige et al., 1981; Gelmini and
Roncadelli, 1981; Schechter and Valle, 1982). This leads to a
non-zero tree-level coupling of the A/J to the active neutrinos,
(−1/4)(∂µA/fA)ν̄iγ

µγ5νi and to possibly sizeable loop-induced
couplings to SM quarks and charged leptons from the loop
involving the sterile neutrinos Ni (Shin, 1987; Pilaftsis, 1994). To
lowest order in the seesaw limit, mD/MM ≪ 1, they are given by
Garcia-Cely and Heeck (2017)

Caq ≃
1

8π2
T
q
3 trκ , CAℓ ≃ −

1

16π2
(trκ − 2κℓℓ) , (20)
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where Td
3 = −

1
2 = −Tu

3 and the dimensionless hermitian 3 × 3
matrix κ is defined as

κ ≡

mDm
†
D

v2
=

FF†

2
. (21)

Intriguingly, a KSVZ-type axion/majoron with fA ∼ 108 GeV
may explain the ∼ 3 σ hint of an anomalously large energy loss
of helium burning stars, red giants and white dwarfs, if |κ − 2κee|
is of order unity (Giannotti et al., 2017).

2.2. 2hdSMASH
A less minimal variant of SMASH—dubbed 2hdSMASH—
exploits DFSZ-type axion models (Zhitnitsky, 1980; Dine et al.,
1981): in those the SM Higgs sector is extended by two Higgs
doublets,Hu andHd, whose vacuum expectation values vu and vd
givemasses to up-type and down-type quarks, respectively. There
are two possibilities, named 2hdSMASH(d) or 2hdSMASH(u),
according to whether leptons couple to Hd, which occurs in
familiar Grand Unified Theories (GUTs), or to Hu. The nf = 6
SM model quarks are assumed to carry PQ charges such that the
gluonic triangle anomaly arises from them alone,

∂µJ
µ

U(1)PQ
⊃ −nf

αs

8π
Gc
µνG̃

c,µν . (22)

The low-energy Lagrangian of a DFSZ-type PQ extension of the
SM is identical to that of a 2 Higgs Doublet Model (2HDM),
augmented by seesaw-generated neutrino masses (Equation 2),
and the one of a DFSZ-type axion. The DFSZ axion properties
are given in Table 2. In this case, there are tree-level couplings
to quarks and leptons. In fact, the anomalous stellar energy
losses mentioned above can be alternatively explained by a DFSZ-
type axion with fA & 108 GeV and tanβ ≡ vu/vd ∼ 1
(Giannotti et al., 2017).

Again, optionally the PQ symmetry may be unified with a
lepton number symmetry (Langacker et al., 1986; Volkas et al.,
1988; Clarke and Volkas, 2016), in which case the active neutrino
mass scale is determined by the PQ scale and the DFSZ axion is
at the same time a Majoron.

2.3. gutSMASH
As commented in the previous section, the model 2hdSMASH(d)
can be embedded into a GUT. The simplest unified group is
SU(5) (Georgi and Glashow, 1974; Georgi, 1975), with each
generation of fermions (not including right-handed neutrinos)
fitting into the representations 10F and 5̄F , with SU(5) broken
into the SM group by the VEV of a scalar in the 24H , and
with the electroweak breaking carried out by two scalars in the
5H . It was realized early on that SU(5) GUTs can accommodate
an axion with a decay constant fA tied to the unification scale
(Wise et al., 1981). However, minimal non-supersymmetric
SU(5) GUTs are incompatible with proton decay limits, because
the SU(2) and U(1) gauge couplings meet at too low a scale.
However, there are viable extensions in which particles in
additional SU(5) multiplets appropriately modify the running
of the gauge couplings so as to yield successful unification
compatible with proton decay limits. The extension proposed

TABLE 2 | DFSZ-type axion predictions: axion decay constant fA, coupling to the

photon CAγ , and tree-level couplings to quarks and charged leptons CAi ,

i = u, ..., t, e, .., τ , with tanβ ≡ vu/vd .

Model fA CAγ CAu CAd CAℓ

2hdSMASH(d) vσ /6
8
3 − 1.92(4) 1

3 cos
2 β 1

3 sin
2 β 1

3 sin
2 β

2hdSMASH(u) vσ /6
2
3 − 1.92(4) 1

3 cos
2 β 1

3 sin
2 β 1

3 cos
2 β

in Bajc and Senjanovic (2007) and further studied in Bajc et al.
(2007), Luzio and Mihaila (2013) makes use of a fermionic
multiplet in the 24F , which contains right-handed neutrinos
getting a mass from the VEV of the 24H , which breaks SU(5) into
the SM. This generates masses for the light neutrinos through a
combination of the type I and III seesaw mechanisms, and also
allows for baryogenesis from leptogenesis. When extending this
viable SU(5) model to accommodate a global PQ symmetry with
its corresponding axion (Di Luzio et al., 2018), one has a SMASH-
type construction with the complex scalar in the 24H containing
the axion and acting as a Majoron. The Lagrangian of this model,
which we will refer to as miniSU(5)PQ, contains the following
interactions (written only schematically),

L ⊃ 5̄F10F5
′∗

H + 10F10F5H + 5̄F24F5H + Tr242F24
∗

H

+5′∗H24
2
H5H + 5′∗H5HTr(24

2
H)+ h.c., (23)

which enforce the PQ charge assignments in Table 3.
The axion decay constant is related to the unification scale vU as
fA = vU/11, while the axion couplings to nucleons and leptons
are given in Table 4.

The unification scale turns out to be highly constrained and
grows with decreasing mass of the light fermion triplet contained
in 24F . This is due to the fact that increasing the unification scale
requires a larger deviation in the running of the SU(2) and U(1)
gauge couplings with respect to the SM case, which can only
achieved if the extra particles with electroweak charges in the
24F multiplet become lighter. The light electroweak triplets can
be probed by LHC searches (Arhrib et al., 2010; Sirunyan et al.,
2017), which then give upper bounds for vU ∝ fA. On the other
hand, proton decay experiments, such as Super-Kamiokande
(Abe et al., 2017) constrain the unification scale from below.
Given the relation (15) between fA and the axionmass, this results
in a remarkably constrained window of allowed values ofmA:

mA ∈ [4.8, 6.6] neV . (24)

The upper limit can be relaxed to mA < 330 neV when
allowing for fine-tuning in the flavor structure of the model
so as to close as many decay channels for the proton as
possible (Dorsner and Fileviez Perez, 2005). The above axion
mass window can be targeted in a complementary manner by
future high-energy colliders (Ruiz, 2015; Cai et al., 2018), proton
decay experiments, such as Hyper-Kamiokande (Abe et al., 2011),
as well as direct axion dark matter searches with CASPER-
Electric (Budker et al., 2014; Jackson Kimball et al., 2017) and
ABRACADABRA (Kahn et al., 2016).
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TABLE 3 | Field content and PQ charge assignments in the PQ-extended SU(5)

model of Di Luzio et al. (2018).

Model 5F 10F 24F 5H 5′

H
24H

miniSU(5)PQ 1 1 1 −2 2 2

TABLE 4 | Axion predictions in SU(5)× U(1)PQ (Di Luzio et al., 2018) and

SO(10)× U(1)PQ models (Ernst et al., 2018): axion decay constant fA, coupling to

the photon CAγ , and tree-level couplings to quarks and charged leptons CAi ,

i = u, ..., t, e, .., τ .

Model fA CAγ CAu CAd CAℓ

miniSU(5)PQ vU/11
8
3− 1.92(4) 2

11 cos
2 β 2

11 sin
2 β 2

11 sin
2 β

miniSO(10)PQ vU/3
8
3− 1.92(4) 1

3 cos
2 β 1

3 sin
2 β 1

3 sin
2 β

gutSMASH vσ /3
8
3− 1.92(4) 1

3 cos
2 β 1

3 sin
2 β 1

3 sin
2 β

In the SU(5) theory, tanβ = vH/v
′

H, while for the SO(10) models tan
2 β = ((v10u )2 +

(v126u )2 )/((v10d )2 + (v126d )2 ).

The smallness of the axion mass in this model implies that
the axion can be identified with dark matter only if the Peccei-
Quinn symmetry is broken before or during inflation and not
restored afterwards, as reviewed in section 6. On the other hand,
the large value of fA implies that inflation can source large
axionic isocurvature fluctuations which may be in conflict with
observations (cf. section 6).

Compared to SU(5) GUTs, theories based on the SO(10)
group (Fritzsch and Minkowski, 1975; Georgi, 1975) can
yield viable unification patterns without the need to either
consider supersymmetric extensions or to add additional fermion
multiplets beyond those containing the SM fermions. Moreover,
right-handed neutrinos are automatically incorporated, as these
occur automatically with the rest of the SM quarks and leptons
if one considers three spinorial representations 16F of SO(10).
The latter can have the following Yukawa couplings with scalar
Higgses in the 10H and 126H representations,

LY = 16F
(

Y1010H + Ỹ1010
∗

H + Y126126H
)

16F + h.c., (25)

which can give rise to the seesaw mechanism (Gell-Mann
et al., 1979). Moreover, a PQ symmetry, under which the fields
transform as

16F → 16Fe
iα
; 10H → 10He

−2iα
; 126H → 126He

−2iα ,
(26)

can be motivated independently from the strong CP problem: it
forbids the second term in the Yukawa interactions (25), thereby
crucially improving the economy and predictivity of the models
(Babu and Mohapatra, 1993; Bajc et al., 2006).

Adding a further Higgs representation, say 210H , the SO(10)
symmetry can be broken at the unification scaleMU by the VEV
of the 210H to the Pati-Salam gauge group SU(4)C × SU(2)L ×

SU(2)R, which is broken to the SM gauge group SU(3)C ×

SU(2)L×U(1)Y at the scale of B−L breakingMBL (which is thus

TABLE 5 | Field content and PQ charge assignments in two distinct

SO(10)× U(1)PQ models (Ernst et al., 2018).

Model 16F 126H 10H 210H σ

miniSO(10)PQ 1 −2 −2 4 –

gutSMASH 1 −2 −2 0 4

the seesaw scale) by the VEV of the 126H , which itself is broken
at the weak scaleMZ by the VEV of the 10H ,

SO(10)
MU−210H
−→ 4C 2L 2R

MBL−126H
−→ 3C 2L 1Y

MZ−10H
−→ 3C 1em .

Unfortunately, the minimal PQ symmetry (26) leads to a decay
constant fA = v/3 (Holman et al., 1983; Mohapatra and
Senjanovic, 1983; Altarelli and Meloni, 2013; Ernst et al., 2018),
which is clearly experimentally excluded. The simplest way to
remedy this problem is to associate a PQ charge also to the 210H ,

210H → 210He
4iα . (27)

We dub this model miniSO(10)PQ—for Minimal SO(10) ×

U(1)PQ model—and summarize the field content and PQ charge
assignments in the first row of Table 5. Its axion properties are
given in Table 4.

The photon and fermion couplings are the same as for
2hdSMASH(d), although themicroscopic origin of the parameter
β differs, as it is determined by the VEVs of four Higgses, as
opposed to two in DFSZ models. Moreover, as in miniSU(5)PQ,
the decay constant in miniSO(10)PQ is proportional to the
scale of grand unification, fA = vU/3, which is determined by
the requirement of gauge coupling unification. Therefore, this
model is more predictive in the axion sector than SMASH or
2hdSMASH, yet less predictive than miniSU(5)PQ due to the
additional freedom inherent in having a multi-step breaking of
the grand unified group—as opposed to the single-step breaking
in the SU(5) case—as well as due to the additional threshold
corrections that can arise from the greater number of particles
included in the SO(10) multiplets. Allowing for a reasonable
range of scalar threshold corrections and taking into account
constraints from black hole superradiance (Arvanitaki et al.,
2015) and proton decay, the axion decay constant and mass is
predicted to lie in the range (Ernst et al., 2018).

2.6× 1015GeV < fA < 3.0× 1017GeV,

1.9× 10−11eV < mA < 2.2× 10−9eV. (28)

As in the miniSU(5)PQ model, such light axion can only be
compatible with dark matter with a pre-inflationary breaking of
the PQ symmetry, and isocurvature constraints can be important.
In fact, a one-step breaking model analogous to miniSU(5)PQ
can also be realized in SO(10) by breaking the group at a high
scale not just with the 210H , but with the added effect of a
non-zero VEV in a 45H scalar multiplet (Boucenna et al., 2019).
In this model, successful unification with a proton lifetime in
reach of Hyper-Kamiokande is achieved by ensuring that the
octets and triplets inside the 210H remain light, in analogy with
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the light triplets in miniSU(5)PQ. The PQ charge of the 210H
is now zero, while the 45H is assigned charge 4, which still
gives a GUT-scale axion with a low mass and thus affected by
isocurvature constraints.

Such constraints can be definitely evaded in the SO(10) ×
U(1)PQ variant dubbed gutSMASH whose field content and PQ
charge assignments are specified in the second row of Table 5.
In this model the 210H has no PQ charge. Instead, it features a
further complex singlet scalar σ which is charged under the PQ
symmetry. Its VEV determines the PQ symmetry breaking scale
(see also Babu and Khan, 2015; Boucenna and Shafi, 2018) and
the axion decay constant turns out to be fA = vσ /3 (Ernst et al.,
2018) (cf. second row of Table 4), which is a free parameter of
the model.

3. INFLATION

In SMASH and its variants, introduced in the last section, there
are two or more scalar fields that in principle could have driven
primordial inflation. Let us look into this issue in some detail.

In SMASH, the modulus of the complex PQ field, ρ2 =

2 |σ |2, or a mixture of it with h, the neutral component of
the Higgs doublet in the unitary gauge, Ht

= (0 , h)/
√

2, is a
viable inflaton candidate. It was pointed out in Bezrukov and
Shaposhnikov (2008) that a non-minimal coupling of the Higgs,
H, to the Ricci scalar R [cf. Equation (3)], would allow h to
play that role, in a model that is since dubbed Higgs inflation.
Indeed, after scalar and metric field redefinitions into the so-
called Einstein frame, this kind of coupling flattens any quartic
potential, making it convex and asymptotically flat at large field
values (Salopek et al., 1989), approaching a plateau-like form
which is preferred by CMB measurements (Akrami et al., 2018).
However, as mentioned in the Introduction, a large value of the
non-minimal coupling ξH—as required to fit the amplitude of
the primordial scalar fluctuations (ξH ∼ 5 × 104

√

λH) for the
central value of the top quark mass (Tanabashi et al., 2018) (see
also Figure 14 of Aaboud et al., 2018)—implies that perturbative
unitarity breaks down at a scale MP/ξH , well below the Higgs
field values during inflation h ∼ MP/

√

ξH and comparable to
the scale given by the fourth square root of the potential (Barbon
and Espinosa, 2009; Burgess et al., 2009). See Bezrukov and
Shaposhnikov (2014) andHamada et al. (2014) for the statistically
disfavored possibility of reducing ξH by considering significantly
smaller top masses.

This problem can be eliminated in Hidden Scalar Inflation
(HSI) (Pi, 1984; Fairbairn et al., 2015; Boucenna and Shafi,
2018) or Higgs-Hidden Scalar inflation (HHSI) (Ballesteros et al.,
2017a,b), which exploit a non-minimal coupling analogous to the
previous one:

S ⊃ −

∫

d4x
√

−g ξσ σ
∗σ R . (29)

Such couplings are not ad-hoc, since they are generated
radiatively in a Friedman-Robertson-Walker background. For
negligible ξH , slow-roll inflation with a tree-level asymptotically
flat potential can thus happen along two different directions in
field space: the ρ-direction for λHσ > 0 (HSI) and the line

h/ρ =

√

−λHσ /λH for λHσ < 0 (HHSI) (cf. Figure 3). In both
cases, inflation can be described in the Einstein frame by a single
canonically normalized field χ with potential

Ṽ(χ) =
λ

4
ρ(χ)4

(

1+ ξσ
ρ(χ)2

M2
P

)−2

, (30)

where

λ ≡

{

λσ , for HSI,

λσ

(

1−
λ2Hσ
λσ λH

)

, for HHSI .
(31)

The field χ is the solution of �2 dχ/dρ ≃ (b�2
+

6 ξ 2σ ρ
2/M2

P)
1/2, with � ≃ 1 + ξσ ρ

2/M2
P being the Weyl

transformation into the Einstein frame and b = 1 (for HSI) or
b = 1 + |λHσ /λH | (for HHSI). We will see in the next section
that vacuum stability requires a small value of |λHσ | . 10−6 and
consequently b ∼ 1 in HHSI, which makes practically impossible
distinguishing between HSI andHHSI from themeasurements of
the CMB power spectra. However, even a small Higgs component
in the inflaton is a key aspect for reheating, which sets apart both
possibilities, as we will discuss later.

Figure 4 from Ballesteros et al. (2017b) shows the agreement
of the non-minimally coupled potential (30) with the CMB at the
pivot scale 0.05 Mpc−1 (Ade et al., 2016a,b), summarized in the
the amplitude of scalar perturbations As, the spectral index ns,
and the tensor-to-scalar ratio r,

As = (2.207± 0.103)× 10−9, (32)

ns = 0.969± 0.004, (33)

r < 0.07. (34)

Current constraints from the latest Planck analysis (July 2018)
are very similar to the ones quoted above (Akrami et al., 2018).
Importantly, the effective quartic coupling λ has to be small

enough, λ . 10−10, so that the required non-minimal coupling
to fit the amplitude of primordial scalar perturbations is at most
ξσ . 1 [cf. Figure 4 (up right)]. In this region of parameter space,
the perturbative consistency of HSI and HHSI is guaranteed and
superior to Higgs Inflation, which necessarily operates at large

ξH for the measured value of the top mass, since in this latter case
the value of λH as determined from the measured Higgs mass is

sizable (Ballesteros et al., 2017b). The predictions of the potential
(30) in the case λ = λσ (or b → 1 in HHSI) for the tensor-
to-scalar ratio r vs. the scalar spectral index ns are shown in
Figure 5 for various values of ξσ . The requirement of predictive
inflation, free of unitarity problems, demands r & 0.01, which
will be probed by the next generation of CMB experiments,
such as CMB-S4 (Abazajian, 2016), LiteBird (Matsumura et al.,
2014), and the Simons Observatory (Aguirre et al., 2019). Since
in SMASH and its extensions the particle content is known,
the reheating process can be computed in detail. This allows
to constrain ns and r to a narrow band, unlike for generic
inflationary potentials devoid of a connection to the SM.

The generalization of Equation (31) to the case of a
2HDM—as relevant for the 2hdSMASH model—or to even
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FIGURE 3 | Decadic log of the scalar potential (4) in the Einstein frame (ξH ≪ ξσ ), as a function of h and ρ, all in units of MP, supporting, for λHσ > 0, pure Hidden

Scalar Inflation (HSI) (left), and, for λHσ < 0, Higgs-Hidden Scalar Inflation (HHSI) (right) [taken and used with permission from Ballesteros et al. (2017b)]. Inflation

proceeds along one of the valleys. The couplings have been chosen such that the amplitude of primordial scalar perturbation is properly normalized.

more scalars—as relevant for gutSMASH—has not been worked
out yet in full generality. For the related non-minimal Higgs
Inflation in the 2HDM (see Gong et al., 2012). However,
as far as HSI inflation is concerned, i.e., as long as the
non-minimal couplings of all scalars apart from the saxion
can be neglected, it is clear that the relevant potential for
inflation is—in the Einstein frame—identical in SMASH HSI.
Correspondingly, in this case, the same inflationary predictions
as in SMASH HSI apply also for 2hdSMASH and gutSMASH
HSI.

4. STABILITY

Primordial inflation of the kind described in the previous section
is driven by a positive potential energy and Planckian field
excursions. Therefore, a consistent realization within SMASH-
type models requires a positive effective potential all the way
up to the Planck scale. Although classical dynamics during
inflation only requires a positive effective potential along the
inflationary trajectory, instabilities in other regions of field space
are dangerous because the fields can end up trapped in them as
a result of the quantum fluctuations generated during inflation.
To avoid this issue altogether we can demand a strictly positive
potential in all field directions. Such requirement of (absolute)
stability is threatened in the SM by loop corrections to the
Higgs potential due to the top quark. When capturing virtual
corrections by means of an RG-improved effective potential with
parameters that run with the field scale (µ ∝ h), an instability
arises for the preferred values of the Higgs and top masses as
a result of negative contributions to the beta function of the
Higgs quartic coupling. In SMASH(d/u) (cf. Table 1)—with a

portal interaction between the Higgs and the complex scalar σ
containing the axion– one can circumvent this problem thanks
to the threshold stabilization mechanism pointed out in Elias-
Miro et al. (2012) and Lebedev (2012). In the presence of the
Higgs portal coupling, with the σ field acquiring a large VEV, the
relation between the Higgs mass and the Higgs quartic coupling
is altered with respect to that in the SM, such that the quartic
can be larger in SMASH than in the SM. At an appropriate
matching scale µ0, the couplings in SMASH and the SM are
related as

λH(µ0) = λSMH (µ0)+ δ(µ0), δ ≡
λ2Hσ (µ0)

λσ (µ0)
. (35)

Despite the larger value of λH , stabilization is a bit subtle
because, as expected from the decoupling of the massive σ
field at low scales, the SM potential with its corresponding
quartic can always be recovered in an appropriate region of
field space. For λHσ > 0 this region is of limited extent and
can be made not to reach the SM instability scale. Then the
potential in the SM-like region can stay positive, while outside
of it the larger value of λH can ensure stability up to Planckian
scales. Stabilization is then a tree-level effect and requires a
small enough vσ (which is harder to realize in GUT models),
in order to ensure that the SM-like region does not go beyond
the scale of the SM instability. For λHσ < 0 on the other
hand the SM-like region of the potential extends to arbitrary
scales, and stabilization must crucially rely on loop effects that
correct the running of the effective quartic coupling in the SM-
like region. Stability can be achieved thanks to the positive
contributions to the beta function of λH proportional to λH
itself, which can counter-balance the negative corrections from
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FIGURE 4 | Confidence level (C.L.) contours (95% C. L.) of the parameters in the scalar potential (30), as a function of the non-minimal coupling parameter ξ = ξσ ,

yielding inflation constrained by Planck 2015 observations at the pivot scale 0.05 Mpc−1 [taken and used with permission from Ballesteros et al. (2017b)]. (Upper

left) The canonical inflaton value χI. (Upper right) The value of the quartic coupling. (Lower left) The predicted tensor-to-scalar ratio. (Lower right) The running of

the spectral index. The best fit for a given ξσ is drawn as a thin black line, while the minimum and maximum values of ns are drawn as red and blue curves,

respectively, corresponding to a redder or bluer primordial spectrum of curvature perturbations. The thicker black line displays the predictions when accounting for the

HHSI prediction of a universe expanding, immediately after inflation, according to the equation of state of radiation domination. The region ξσ > 1, where perturbative

unitarity fails in SMASH, is shaded.

the top quark: while in the SM the effect of the λH-dependent
corrections is sub-dominant, this changes in SMASH due to
the larger values of λH ensured by the modified matching in
Equation (35).

Of course, one also needs to guarantee stability in the σ
direction, which can again be endangered by fermion loops, this

time coming from the RH neutrinos and the exotic quark Q.

In this case stability can be achieved by demanding sufficiently

small Yukawas.
After accounting for the previous effects, we have found that

for the SMASH model stability in the Higgs direction can be
achieved if the threshold parameter δ in Equation (35) is roughly

between 10−3 and 10−2 (for λHσ > 0) or 10−3 and 10−1 (for
λHσ > 0), depending on the top mass. On the other hand,
stability in the σ direction restricts the Yukawa couplings of the
RH neutrinos and Q to

∑

i

Y4
ii + 6y4 .

16π2λσ

log
(

30MP
√

2λσ vσ

) , (36)

in the case that the Peccei-Quinn symmetry is extended to a
lepton symmetry. Otherwise, the contribution of the Yukawas Yii

on the left-hand side of Equation (36) is absent.
A stability analysis for 2hdSMASH and gutSMASH models is

of course more involved due to the extra scalars and has not been
done in full generality yet.

5. REHEATING

After inflation, the background scalar fields that drove the
accelerated expansion will typically oscillate around a minimum
of the potential, and throughout these oscillations they will lose
energy by producing SM particles that reheat into a plasma which
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FIGURE 5 | Predictions for the potential of Equation (30) in the r vs. ns plane with a pivot scale of 0.002 Mpc−1 [adapted and used with permission from Ballesteros

et al. (2017b)]. Contours of constant ξσ are shown as black solid lines. The SMASH prediction accounting for a consistent reheating history is given by the thick black

line, while the thin dotted lines give isocontours of the number of e-folds that ignore reheating constraints. Also shown are the 68 and 95% C.L. regions at 0.002

Mpc−1 of Ade et al. (2016b) and the projected sensitivity of CMB-S4 (Abazajian, 2016) (in green). The line labeled as “Quartic inflation” shows the prediction for a

quartic potential (corresponding to the limit ξσ → 0), while we also show a black solid line corresponding to the limit ξσ → ∞, in which the dynamics is analogous to

that in the Starobinsky (Starobinsky, 1980) and Higgs inflation (HI) (Bezrukov and Shaposhnikov, 2008) models. The HI result of Gorbunov and Tokareva (2013) is

indicated as a point on this line.

ends up dominating the energy density of the universe. This
reheating process was studied in detail in SMASH (Ballesteros
et al., 2017b), and arises from the coupled dynamics of the field
σ containing the axion, the Higgs and the weak gauge bosons.
As long as the relevant dynamics only involves Higgses and a
complex singlet, and all the other scalar fields remain heavy and
decoupled, we expect that some of the features of reheating in
SMASH may apply for other variants as well. Differences may
arise due to choosing different parameters or from the presence of
additional fields with non-trivial dynamics. For example, stability
requirements end up enforcing some kinematic blockings in
SMASH which could be lifted in other scenarios. And within
GUT models, the presence of multiple components within the
GUT multiplets containing the axion or Higgses could have
non-trivial consequences.

Within the SMASH model, slow-roll inflation ends for ρ ∼

O(MP), when the inflaton field starts undergoing Hubble-
damped oscillations in a quartic potential (for such field values
and for ξσ . 1, as required for predictive inflation, the effect of

the non-minimal gravitational coupling can be ignored). These
oscillations source a stress-energy tensor whose time-average

mimics a radiation fluid. Hence, radiation domination starts right
after inflation, and lasts through the phase of reheating in which
the oscillating fields trigger the production of SM particles and
the energy of the inflaton is transferred into the SM plasma.
This post-inflationary history in a radiation-domination era (see
Figure 6 for a summary of the cosmological history of SMASH)
fixes the relation between the scales of the matter perturbations
we observe in the Universe today and the size of the primordial
fluctuations which gave rise to them, when they outgrew the

Hubble horizon and became frozen until their later horizon re-
entry. This relation between scales determines the number of
e-folds between a perturbation’s horizon crossing and the end of
inflation, which fixes the thick black lines in Figures 4, 5 as the
prediction for the parameters in SMASH.

In order to understand the process of particle production
from the oscillating background field, one has to account for
non-perturbative parametric resonance effects (Kofman et al.,
1997; Tkachev et al., 1998). When the background field changes
slowly in time—away from successive crossings of the origin—
one can describe the fields through an adiabatic approximation
in which particle number is well-defined, and conserved.
However, during the crossings the adiabatic approximation
breaks down and the appropriately matched adiabatic solutions
separated by a crossing have different particle numbers. This
particle production is dominated by bosonic fields, and can
be understood as a resonance effect accounting for many-
body bosonic interactions. The oscillating field may be thought
of as a condensate of scalar particles with energy equal
to the oscillating frequency, which for a quartic potential
goes as

ω =

√

λφ0, (37)

with φ0 the oscillating amplitude. In SMASH, the relevant
effective quartic for the inflationary background is determined
by λσ—see Equation (31)—which is fixed to λσ . 10−10

by inflationary constraints. In turn, the inflaton condensate
couples to Higgs particles with an effective mass dominated
by background-dependent contributions, going as

√

λHσ |φ|.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2019 | Volume 6 | Article 5585

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Ballesteros et al. Several Problems in One SMASH

FIGURE 6 | Expansion and thermal history of the Universe in SMASH HHSI [taken and used with permission from Ballesteros et al. (2017b)].

Stability constraints on the δ parameter of Equation (35) typically
imply λHσ ≫ λσ , so that the background Higgs mass is on
average much larger than the energy of the particles in the
condensate, and Higgs production is blocked except during
crossings (φ = 0). Due to this, non-perturbative particle
production is dominated by the growth of perturbations of the
field σ itself, for both the real and imaginary part. This effect,
confirmed by lattice simulations (Ballesteros et al., 2017b), breaks
the coherence of the oscillating background and leads to a non-
perturbative restoration of the PQ symmetry, as the phase of
σ ends up taking random values across the Universe. The loss
of coherence of φ ends up further blocking the production
of Higgs particles, as |φ| stops having an oscillatory behavior
and the Higgs mass always remains above the frequency of
the condensate.

In HSI, the Higgs is the only field that couples directly to the
inflaton and the production of SM particles is quenched by this
effect. The energy of the inflaton gets evenly distributed between
the modulus and the phase of σ , and lattice simulations show
that the axion excitations generated in this preheating phase
are highly relativistic (Ballesteros et al., 2017b). Reheating into
SM particles only becomes possible when the σ fluctuations
redshift below the scale fA, the PQ symmetry becomes broken
and the ρ field acquires a mass that finally allows the decay into
Higgses. This late decay results in a low reheating temperature of
around T ∼ 107 GeV, while the initial production of relativistic
axions results in an unacceptable amount of dark radiation at
late times, predicting an increase in the effective number of
relativistic degrees of freedom of 1Neff

ν = O(1), which is
ruled out by the Planck constraint Neff

ν = 3.04 ± 0.18 at
68% CL (Ade et al., 2015).

In HHSI on the other hand the inflaton is an admixture
of H and σ . This mixing endows the inflaton with a tree-
level coupling to gauge bosons. Again, the gauge bosons in the
Higgs background acquire oscillating masses mW ∼ gH ∼

g
√

|λHσ |/(2λH)φ whose average is typically above the frequency
of the condensate, but which become zero at the inflaton’s
crossings of the origin. Crucially, since as argued before the
growth of Higgs perturbations is thwarted by the fast production
of σ excitations, the Higgs component of the background does
not lose coherence and continues to oscillate, which keeps the
production of electroweak gauge bosons open during crossings.
The decay rate of the gauge bosons is fast enough to essentially
deplete their population between crossings, so that the boson
production is never resonantly enhanced. Nevertheless, a thermal
feedback mechanism takes place which enhances the rate of
extraction of energy from the inflaton into the SM plasma. The
decay products of the gauge bosons quickly reach a thermal
bath, which may in turn produce gauge bosons by inverse
decays near the crossings. Away from them, the extra bosons
gain energy from the condensate as their mass grows with
increasing |φ|, and this energy is transferred into the SM
plasma when the massive gauge bosons decay. Modeling this
dynamics using Boltzmann equations and energy conservation
constraints, one can predict a reheating temperature in HHSI
near 1010 GeV. This implies a thermal restoration of the PQ
symmetry, as the critical temperature Tc for the PQ transition
goes as

Tc

vσ
≃

2
√

6λσ
√

8(λσ + λHσ )+
∑

i Y
2
ii + 6y2

, (38)

and Tc is below 1010 GeV for the preferred SMASH parameters.
Moreover, the reheating temperature is also enough to guarantee
that the axion population reaches thermal equilibrium, so that
its abundance is no longer fixed by the earlier non-perturbative
production. In this way the HSI problem with 1Neff is avoided,
and one predicts a modest amount of cosmic axion background
radiation (CAB) corresponding to △Neff

ν ≃ 0.03, which may be
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probed with future CMB and large scale structure observations
(Baumann et al., 2018).

Within GUT variants, the gutSMASH model with fA
independent of the unification scale could feature similar
dynamics as SMASH in appropriate regions of parameter space.
On the other hand, for the miniSO(10)PQ model the large
fA & 2.6 × 1015 GeV can give rise to important differences.4

For example, if the reheating temperature is comparable to that
in SMASH, the large value of fA might mean that a thermal
restoration of the PQ symmetry can be avoided, since the critical
temperature is proportional to the VEV of the PQ field [see
Equation (38)]. This can be a nice feature of the model, as for
large fA one should avoid a post-inflationary restoration of the
PQ symmetry in order to avoid overclosure of the Universe by
axion dark matter, as reviewed in the next section. However,
this still leaves open the possibility of a non-thermal restoration
of the PQ symmetry due to the preheating dynamics. Luckily,
the large value of fA can again come to the rescue. The large
growth of perturbations in the inflaton field can be hampered
for large fA because the modulus of the field can become quickly
trapped around the minimum before the fluctuations in the
angular component grow large enough so as to restore the PQ
symmetry. Once trapped in the minimum, the ρ fluctuations
become massive and can decay quickly into SM particles, so that
the growth of angular perturbations is expected to stop. With
the results of the lattice simulations in SMASH (Ballesteros et al.,
2017b), one can do a simple extrapolation to estimate the time at
which the redshifting oscillations of the field reach amaximum of
the order of a given value of fA. If the time is below the onset of the
parametric growth of the angular perturbations, one then expects
that PQ restoration will be avoided. Such estimate gives that the
PQ restoration might be avoided for fA & 4 × 1016 GeV, which
is in the allowed window of Equation (28) and raises the hope
that the miniSO(10)PQ model could have a viable parameter
space with a consistent cosmological history compatible with
pre-inflationary axion dark matter.

6. DARK MATTER

The most important prediction of SMASH is that the PQ
symmetry is broken after inflation. In the post-inflationary
scenario, dark matter is produced by the re-alignment
mechanism (Abbott and Sikivie, 1983; Dine and Fischler,
1983; Preskill et al., 1983) and the decay of topological defects
(axion strings and domain walls) (Kawasaki et al., 2015). In
models, in which the axion decay constant is an integer fraction
of the PQ symmetry breaking scale, fA = vPQ/NDW, with
NDW > 1, and in which the PQ symmetry is exact, there are
NDW degenerate CP-preserving vacua and domain walls develop
between them when the axion field becomes non-relativistic; i.e.,
when at some temperature T1 the Hubble scale becomes of the
order of the axion mass: H(T1) ∼ mA(T1). Since there is no
preferred vacuum, the system of strings and walls is predicted to
continue a scaling regime where the energy in domain-walls soon
exceeds the observations. Therefore those models have to be

4Similar considerations apply for the miniSU(5)PQ model.

discarded (Sikivie, 1982) andNDW can only be 1 in SMASH. This
is the main motivation for introducing just one extra heavy quark
in SMASH. The alternative models with larger values of NDW

[e.g., 2hdSMASH, with NDW = 6 (cf. Table 2), miniSU(5)PQ,
with NDW = 11, and miniSO(10)PQ and gutSMASH, with
NDW = 3 (cf. Table 4)] can only become viable in scenarios in
which the PQ symmetry is not exact—so that the degeneracy
of the CP-preserving vacua can be lifted, and the domain-walls
become unstable—or when the PQ symmetry is broken before
or during inflation, never to be restored afterwards. In such
a situation the energy density stored in the domain walls is
simply diluted away by the exponential expansion of the universe
during inflation.

Owing to the post-inflationary scenario, the original SMASH
model becomes extremely predictive, at least in theory. In
principle the axion DM abundance in this scenario is calculable
by performing numerical simulations of the axion-string-wall
network. The physics determining axion DM depends crucially
onmA. Uncertainties from the unknown initial conditions of the
axion field are averaged away over many causal domains. Since
there is no other cold DM candidate in the model, axions should
provide all the observed CDM abundance and the theoretical
relation �Ah

2(mA) = 0.12 allows to obtain the required value
of mA (and thus fA). Unfortunately, there is a long-standing
controversy regarding the calculation of �Ah

2
= �Ah

2(mA).
Because of the large dynamical range required (fA/H(T1) ∼

1030 from string cores to the horizon size) an extrapolation is

mandatory and different authors have argued differently on how

to perform it. Recently, a new method has been developed to

endow the strings with the physically motivated effective tension,

∝ log fA/H, (if not the energy distribution around the string) and
has lead to a very precise prediction,mA ≃ (26.2±3.4)µeV (Klaer
and Moore, 2017). The axion DM mass results so small because
much of the network energy is radiated in hard axions (which
count less for DM) and other hard quanta of the several extra
fields that need being introduced. A recent detailed study of the
string-network evolution (Gorghetto et al., 2018) has clarified
substantially the results from standard numerical simulations
and challenged the results of Kawasaki et al. (2015). The authors
disregard the effective model of Klaer and Moore (2017) and
highlight the huge uncertainty in the extrapolation to physical
string-tensions.

When SMASH was proposed, the most detailed numerical
simulations (Kawasaki et al., 2015) were pointing to mA ∼

100µeV and the uncertainties where revised to 50µeV . mA .

200µeV (Borsanyi et al., 2016; Ballesteros et al., 2017b). This
corresponded to the range 3× 1010 GeV . fA . 1.2× 1011 GeV.
According to the latest results, the lower limit on mA could be a
factor 2 smaller but the upper limit could be much greater. The
next years might be decisive in resolving this controversy as new
simulation techniques develop.

Most importantly, this axion dark matter mass window will
be probed in the upcoming decade by axion dark matter direct
detection experiments, such as ADMX (Boutan et al., 2018; Du
et al., 2018), CAPP (Chung, 2018), HAYSTAC (Zhong et al.,
2018), RADES (Melcón et al., 2018), MADMAX (Caldwell
et al., 2017; Brun et al., 2019), ORPHEUS (Morris, 1984; Rybka
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FIGURE 7 | SMASH predictions for the axion-photon coupling [adapted and

used with permission from Ballesteros et al. (2017b)]: SMASH(u,d) (thick solid

horizontal lines for hypercharge assignment of −1/3 (2/3) for Q) and

gutSMASH (red). The continuing dashed lines show plausible uncertainties.

We also show, in gray, the current bounds on axion DM [ADMX (Boutan et al.,

2018; Du et al., 2018), BRF] and, in green, prospects for next generation axion

dark matter experiments, such as ADMX (Boutan et al., 2018; Du et al., 2018),

CAPP (Chung, 2018), HAYSTAC (Zhong et al., 2018), MADMAX (Caldwell

et al., 2017; Brun et al., 2019), ORPHEUS (Morris, 1984; Rybka et al., 2015),

and the helioscope IAXO (Armengaud et al., 2014) (fiducial, extended+

sensitivities to the axion-photon channel and IAXOeγ for the

electron-photon channel).

et al., 2015), and others (cf. Figure 7). A review on axion DM
experiments can be found in Irastorza and Redondo (2018).

As anticipated earlier, non-minimal versions of SMASHwhere
the degeneracy between NDW vacua is broken are in principle
possible and can be viable. Indeed, the degeneracy breaking
generates a pressure between vacua that leads to the early collapse
of the wall network (Sikivie, 1982). Ringwald and Saikawa
(2016) studies how fundamental discrete symmetries can be
invoked to protect the PQ symmetry from too large a breaking
and estimates reasonable phenomenological parameters. This
mechanism allows to avoid the domain wall problem for
models like an extension of SMASH by further heavy quarks,
2hdSMASH and gutSMASH within a well-motivated framework.
The price is however the non-minimality of the extra fields
and the discrete symmetry. The best candidates tend to be ZN
symmetries with large N ∼ 9, 10 and point to axion masses
in the meV mass ballpark. These predictions do not include
the latest results about the string-network evolution that we
mentioned above.

If the axion mass is around the meV ballpark,
IAXO (Armengaud et al., 2014) could find the concomitant
flux of solar axions but direct DM detection will be very difficult.
The solar signal can be however used to pinpoint the axion mass
and couplings (Dafni et al., 2019; Jaeckel and Thormaehlen,
2019), thus constraining the SMASH scenario and ease the
search for DM.

The post-inflationary scenario typically favored in SMASH
has many interesting phenomenological consequences. A
large part of the DM is thought to be in the form of axion
miniclusters (Kolb and Tkachev, 1993, 1994), small DM halos
of typical radius ∼1012 cm and mass ∼10−12M⊙ that form
around matter-radiation equality with large densities ∼107

GeV/cm3. A recent study shows that smaller and denser
objects are also unavoidable and more numerous (Vaquero
et al., 2018). Axion miniclusters could be identified with
pico-, femto- (Kolb and Tkachev, 1996; Zurek et al., 2007),
and micro-lensing (Fairbairn et al., 2017, 2018, see also Katz
et al., 2018). In many cases they will develop solitonic cores,
sometimes called dilute axion stars (Visinelli et al., 2018)
when considered in isolation. Most axion miniclusters
survive until today and are so small that a direct encounter
with the Earth is very rare. However, some others are
tidally disrupted into streams whose encounters with
the Earth can be more frequent and profitable for direct
detection (Dokuchaev et al., 2017). The encounters of
axion miniclusters/axion stars with the magnetic fields of
compact objects has been speculated to be the origin of some
fast-radio-bursts (Iwazaki, 2015; Tkachev, 2015).

In general, it is unfortunately impossible to predict whether
SMASH variants will always realize the post-inflationary
scenario. There is a strong tendency for this to be the case
also in 2hdSMASH and gutSMASH if all the couplings are
small and the inflaton is related to the PQ field. The addition
of extra fields or non-minimal couplings could affect the
isocurvature constraints from Planck and the reheating
temperature. For the miniSU(5)PQ and miniSO(10)PQ
models, as commented in section 5, the large values of
fA could in principle prevent the restoration of the PQ
symmetry—as needed for the extremely light axion to
remain compatible with dark matter—but dedicated studies
are needed.

In the pre-inflationary scenario, the PQ symmetry would
not be restored and the initial condition of the axion field
would be an homogeneous local-Universe-wide value that could
be anthropically selected for a very broad range of decay
constants (Tegmark et al., 2006). For the axion to furnish all dark
matter and fA . 3× 1017 GeV, the initial mis-alignment angle θI
has to satisfy (Ballesteros et al., 2017b)

θI,c ≈ 0.0006×

(

fA

3× 1017GeV

)

−0.504

. (39)

We conclude this section discussing DM isocurvature bounds.
If the PQ scalar is responsible for inflation one expects that
the axion, its angular degree of freedom, gets its quantum
fluctuations stretched to superhorizon length scales. Since axions
constitute the DM, these fluctuations would get imprinted in
the temperature anisotropies of the CMB as an isocurvature
component, which is severely constrained by the data (Ade et al.,
2015). The isocurvature bound gets translated into an upper
bound on the Hubble expansion rate HI during inflation (and
in turn on the tensor-to-scalar ratio, r) as a function of fA.
Since there is an upper limit on r from the CMB (see section
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3), this means a maximum possible value of fA. Notice that
this bound also depends on the initial axion mis-alignment
angle, which together with fA is the relevant parameter that
determines the DM abundance in this scenario of PQ breaking
during inflation. In scenarios in which the reheating temperature
is such that the PQ symmetry becomes restored, the field
values of the axion become processed by the thermal (or non-
thermal) sub-horizon dynamics and all field perturbations end
up being determined by a unique effective temperature scale
and of the curvature type; thus, no isocurvature perturbations
are generated.

In SMASH and its variants, the energy scale of inflation
is mostly determined by the non-minimal coupling ξ , which
imposes a lower bound on r (see Figure 4). The PQ symmetry
is broken during inflation due to the time-dependent value of
ρ—the modulus of the PQ scalar—which is not at the minimum
of its potential, and thus the usual isocurvature bounds do not
apply directly (see also Fairbairn et al., 2015). The reason can
be understood by noticing that during inflation the effective fA
“seen” by the fluctuations in the direction orthogonal to the
inflationary trajectory is actually the instantaneous value of the
inflation field. Indeed, the “effective" value of fA relevant to
the isocurvature bounds is larger than the low-energy value of
fA (the one determined by the minimum of the PQ potential,
entering into the axion mass equation) thanks to the non-
minimal coupling and thus the ensuing constraints get weaker.
A detailed calculation shows that the maximum allowed value
of fA is ∼ 1014 GeV (Ballesteros et al., 2017b). This constraint,
together with the fact that the PQ symmetry is always restored
for fA . 4 × 1016 GeV, implies that the only viable SMASH
realizations are those with PQ restoration after inflation, so
that the DM abundance comes not only from oscillations of
the axion field but also from the decay of topological defects,
as discussed above.

The previous isocurvature bound in principle rules out
the viability of miniSU(5)PQ or miniSO(10)PQ, with fA tied
to the unification scale. However, there is a possibility that
the bound may be circumvented if one accounts for the fact
that the axion field is not really massless during inflation, in
contrast to what was assumed when deriving the isocurvature
bound described above. During inflation the scalar fields do
not sit at their minimum and Goldstone’s theorem does
not apply; a detailed study of the evolution of the axion
mass during and after inflation is needed. Moreover, in these
models additional fields exist, which opens the possibility
for additional paths in field space and further suppression
of the bounds.

7. BARYOGENESIS

In SMASH models, the presence of right-handed neutrinos
with masses proportional to the axion decay constant allows
to explain the baryon asymmetry of the Universe through the
mechanism of thermal leptogenesis (Fukugita and Yanagida,
1986). This relies on out-of-equilibrium, CP-violating decays of
heavy RH neutrinos, which generate a net lepton asymmetry

which is partly converted into a baryon asymmetry by non-
perturbative sphaleron processes that violate baryon plus lepton
number. In SMASH-type models in which the PQ symmetry is
restored thermally, such as the HHSI variant of SMASH, the
RH neutrinos are massless after reheating, and are expected to
acquire thermal equilibrium abundances. After the PQ phase
transition they gain a mass, and as long the latter is smaller
than the critical temperature of the transition, the massive RH
neutrinos will typically re-enter equilibrium (Shuve and Tamarit,
2017) and decay at later times, generating the asymmetry after
inverse decays become Boltzmann suppressed. This scenario is
realized in SMASH, where demanding a stabilized potential in the
σ direction, and assuming a hierarchy of Yukawas Y22 = Y33 =

κY11 and y = Y11, one has

Tc

M1
&

1

π

√

(

2+ 6κ4

7+ 2κ2

)

log

(

30MP
√

2λσ fA

)

, (40)

which follows from Equations (36) and (38) and is above 1 for
typical SMASH parameters, including the case of near degenerate
RH neutrinos with κ ≈ 1.

In SMASH realizations in which the PQ symmetry is not
restored thermally, as could be the case in models with very
large fA, such as GUT variants with fA correlated with the
unification scale, notably miniSU(5)PQ and miniSO(10)PQ5, the
RH neutrinos are massive after reheating, but a thermal initial
abundance can still be achieved for a reheating temperature above
the RHmasses. In this case the asymmetry will again be generated
during late-time decays. A thermal initial abundance might not
be achieved if the Yukawas of the RH neutrinos are very small,
but in these so-called “weak washout” scenarios one can still
produce an asymmetry from the out-of-equilibrium production
and decays of RH neutrinos.

In the vanilla realizations of thermal leptogenesis with
hierarchical RH neutrinos, the requirement of a large enough
source of CP-violation in RH neutrino decays gives a lower
bound M1 & 5 × 108 GeV (Casas and Ibarra, 2001; Giudice
et al., 2004; Buchmuller et al., 2005). However, since the RH
neutrino masses are proportional to their Yukawas with the
field σ , and since these couplings tend to generate destabilizing
corrections for the potential in the σ direction, having such
heavy RH neutrinos can be in conflict with the requirement
of stability. For example, in SMASH the stability bound in

Equation (36) for a hierarchical Ni spectrum (M3 = M2 =

3M1) requires M1 . 108 (λ/10−10)1/4(vσ /10
11GeV)GeV, which

is just borderline compatible with the leptogenesis bound.
Nevertheless, leptogenesis can occur for smaller masses with a
mild resonant enhancement (Pilaftsis and Underwood, 2004)
for a less hierarchical RH neutrino spectrum, which relaxes the
stability bound and ensures that all the RH neutrinos remain
in equilibrium after the phase transition. The estimated level of
degeneracy needed in order to reconcile leptogenesis with the
stability bound is of the order of 4%.

5Note that in order to avoid problems like monopole production, the reheating

temperature in GUTs should be below the unification scale.
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Finally, even though the RH neutrino masses are typically
expected to be heavy, as they are proportional to the axion
decay constant, fine-tuned values of the Yukawa couplings still
allow for O(GeV) masses. In such cases one recovers the νMSM
at low energies, and even though lepton number violation is
suppressed due to the small masses of the RH neutrinos, the
baryon asymmetry can arise as a result of out-of-equilibrium
oscillations of the right-handed neutrinos (Akhmedov et al.,
1998). These give rise to flavored lepton asymmetries, which may
even add up to zero initially, but as long as one flavor is out-of-
equilibrium the washout will be incomplete and a net asymmetry
will survive.

8. CONCLUSIONS

We have provided an overview of SMASHy extensions of the
Standard Model which feature a new mass scale vσ—of the order
of 1011 GeV in the simplest models, but which could also be tied
to a Grand Unification scale around 1016 GeV—and provide a
falsifiable framework that addresses the following problems in
particle physics and cosmology: inflation, baryogenesis, neutrino
masses, dark matter and the strong CP problem. In addition,
these models stabilize the electroweak vacuum. Whenever the
dynamics of the most economical model (Ballesteros et al.,
2017a,b), called SMASH in this review, is also realized in
other extensions (as may happen if the additional fields remain
decoupled during inflation and reheating), the models reviewed
here predict a tensor-to-scalar-ratio r & 0.004, a running of the
spectral index α & −8× 10−4 (see Figures 4, 5), and a deviation
in the effective number of relativistic neutrino species 1Nνeff ∼

0.03, values which can be probed in future CMB experiments,
such as CMB-S4, LiteBIRD, and the Simons Observatory. The
SMASH model predicts a lower bound on the axion mass mA &

25µeV, in the reach of future axion experiments, such as CAPP,
MADMAX, ORPHEUS, and IAXO (see Figure 7). Given that the
axion population in the model, constituting the totality of the
DM, arises from the re-alignmentmechanism and from the decay
of topological defects (due to the post-inflationary breaking of the
PQ symmetry), a large fraction of it may be in axion miniclusters,
whose abundance may be tested via lensing studies of different
astrophysical sources.

The models surveyed here revolve around the idea of
exploiting the complex scalar field that implements the PQ
symmetry and solves the strong CP problem. The axion –the
angular part of this field– dynamically relaxes the theta parameter
of QCD to a small maximum value, compatible with the upper
bounds on the neutron electric dipole moment. On the other
hand, the oscillations of the axion around the minimum of its
potential constitute a condensate that can explain the nature
of DM.

The modulus of the PQ scalar is instead the key ingredient
for successful inflation. The inflationary sector of SMASH (which
also contains a small Higgs component) predicts a primordial
spectrum in agreement with the CMB, reheats the Universe
efficiently and leads to a small relic abundance of thermal axions
which may be identified through a determination of the effective
number of relativistic species at early times. The coupling

between the Higgs doublet and the PQ scalar is instrumental
for the stabilization of the effective potential at large field values,
which in the SM is threatened by the large effect on the running
of the Higgs quartic coupling coming from the top Yukawa.
This interplay between inflation and stability set apart SMASHy
extensions of the SM from models which utilize the Higgs alone
to drive inflation (an idea that has more severe consistency issues
related to the breakdown of perturbative unitarity).

The small masses of the light neutrinos are explained via the
see-saw mechanism, adding three extra right-handed neutrinos
whose heavy masses are induced by the VEV, vσ , of the PQ
scalar, which is proportional to the axion decay constant fA.
These heavy neutrinos can also explain the matter/anti-matter
asymmetry of the Universe via thermal leptogenesis. The particle
content of SMASH is illustrated in Figure 2. In addition to the PQ
scalar and the three right handed neutrinos, the model features a
heavy vector-like quark Q which is required for the KSVZ-like
implementation of the PQ symmetry. At sufficiently low energy
themodel reduces to the SM augmented by small neutrinomasses
and the axion, A.

Possible extensions of the minimal SMASH model include
implementations in Two-Higgs-Doublet models featuring a
DFSZ axion, as well as embeddings of the latter into SU(5)
and SO(10) GUTs. As long as one of the Higgses and the extra
particles in the GUT multiplets are decoupled during inflation,
one can expect to recover the inflationary predictions in SMASH.
A similar post-inflationary history may be also recovered for an
axion decay scale as in SMASH, i.e., near 1011 GeV. However,
for GUTs with the axion scale fA tied to the unification scale,
as in the miniSU(5)PQ and miniSO(10)PQ models, there can
be important differences. First, isocurvature axion perturbations
generated during inflation might be incompatible with Planck
limits; although Ballesteros et al. (2017b) discarded fA > 1.4 ×

1014 GeV on this account, the bound neglected the non-zeromass
of the axion during inflation (arising from the fact that the scalar
field is not at its minimum), and this needs to be accounted for.
On the other hand, a large fA is only compatible with axion dark
matter in a scenario in which the PQ symmetry is not restored
after inflation. Although dedicated lattice simulations are still
lacking, there are indications that such behavior is possible, as
very large values of fA change the reheating dynamics and quench
the generation of axion perturbations.

Given the lack of compelling new physics signals at the LHC,
the idea of attempting to tackle several fundamental physics
problems together in a simple (but coordinated) manner is
appealing. Perhaps, one of the main take home messages from
the SMASHy extensions of the SM that we have reviewed here
is that the QCD axion might be a hint not only to dark matter,
but also to inflation. In our opinion, it is interesting to continue
exploring in the future possible connections between seemingly
unrelated problems in particle physics and cosmology.

There exist other recent proposals which are also inspired
by minimality and try to address simultaneously several of the
SM standing issues. We will mention some of them briefly in
the following. The model of Salvio (2015) has the same particle
content as the one proposed in Dias et al. (2014) (and the same
as in SMASH). It also attempts to address the same five problems
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of the SM as SMASH, but it differs from it mainly regarding the
heavy neutrino masses (which are not sourced by the VEV of
the PQ scalar) and, also inflation, which in this case is driven by
the Higgs and thus generically suffers from the unitarity issue.
It has been recently argued in Salvio (2019) that the model can
be safe from this problem if the top and Higgs masses are tuned
in such a way that the quartic Higgs coupling relevant at the
energies of inflation is very small. The proposal of Ema et al.
(2017) aims to explain—in addition to the issues that SMASHy
extensions of the SM deal with—the flavor structure of masses
andmixings in the SM. Themodel differs from SMASH at several
points. For example, the origin of the SU(3) anomaly of the PQ
symmetry is unspecified. A key assumption in the model is a
pole in the kinetic term of the new scalar field, which leads to
an asymptotically flat potential after canonical normalization (see
e.g., Galante et al., 2015). It has been argued that this kind of
Lagrangian also suffers from an early breakdown of perturbative
unitarity, and thus of consistency (Kehagias et al., 2014). The
same idea of using a single U(1) symmetry for the flavor and
the strong CP problems was independently proposed in Calibbi
et al. (2017), although this paper does not deal with inflation nor
with the matter/anti-matter asymmetry. A very different kind of
proposal has been recently put forward in Gupta et al. (2019).

This model aims to solve the same problems as SMASH, except
inflation, and in addition it tackles the hierarchy problem. It does
so by means of the relaxionmechanism (Graham et al., 2015) (for
the hierarchy problem) and the Barr-Nelson mechanism (Barr,
1984; Nelson, 1984) (for the strong CP problem). Baryogenesis is
triggered in this case by oscillations of the relaxion field around
its final minimum.

In summary, we are living in interesting times for particle
physics and cosmology, in which simple ideas blended together
are providing new theoretical insights and unveiling possible
connections between different problems.
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Studies of dark matter models lie at the interface of astrophysics, cosmology, nuclear

physics, and collider physics. Constraining such models entails the capability to compare

their predictions to a wide range of observations. In this review, we present the impact

of global constraints to a specific class of models, called dark matter simplified models.

Thesemodels have been adopted in the context of collider studies to classify the possible

signatures due to dark matter production, with a reduced number of free parameters. We

classify the models that have been analyzed so far and for each of them we review in

detail the complementarity of relic density, direct, and indirect searches with respect to

the LHC searches. We also discuss the capabilities of each type of search to identify

regions where individual approaches to dark matter detection are the most relevant to

constrain the model parameter space. Finally we provide a critical overview on the validity

of the dark matter simplified models and discuss the caveats for the interpretation of the

experimental results extracted for these models.

Keywords: dark matter theory, particle dark matter, direct searches of dark matter, indirect searches of dark

matter, beyond standard model physics, LHC phenomenology

1. INTRODUCTION

The presence of dark matter, postulated at the beginning of last century (Jeans, 1922; Kapteyn,
1922; Oort, 1932; Zwicky, 1933; see Bertone and Hooper, 2016; de Swart et al., 2017 for a review),
has been nowadays confirmed by several observations in cosmology and astrophysics. Besides
precision measurements on its abundance from the cosmic microwave background and large
scale structures, which state �DMh2 = 0.1198 ± 0.00015 (Planck Collaboration et al., 2016),
there is only gravitational evidence for this dark component while its nature and properties
are completely unknown. Baryons can constitute only the 4% of the total energy content of
the universe, not enough to explain the entire matter content of the universe (∼ 30%). This
fact supports a non-baryonic origin for the dark matter particles, most likely arising in models
beyond the Standard Model (SM) of particle physics, as SM neutrinos were relativistic in the early
universe. Several theoretically motivated extensions of the SM, such as supersymmetry or universal
extra-dimensions, provide dark matter candidates which fall into the category of WIMPs (Weakly
Interacting Massive Particles). These particles are usually neutral, stable at least on cosmological
scale, and with a mass in the GeV-TeV energy range. In this review we will comply with the WIMP
paradigm and use WIMPs and dark matter interchangeably, even though other possibilities exist
(see e.g., Marsh, 2016; Drewes et al., 2017) and the references therein.
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With the generic hypothesis that WIMPs interact with the
SM particles, a multitude of experimental approaches have
been undertaken to detect it. These methods range from dark
matter searches in underground detectors (Akerib et al., 2017;
Amole et al., 2017; Aprile et al., 2017a) via the scattering of
WIMPs off nuclei (direct detection), to observations of gamma
rays, cosmic rays, and neutrinos, produced by dark matter
annihilation in astrophysical environments (indirect detection)
(see e.g., Aartsen et al., 2016; Aguilar et al., 2016; Albert
et al., 2017; Ambrosi et al., 2017), and dedicated searches
for missing energy signals at colliders (see e.g., Abercrombie
et al., 2015; Boveia et al., 2016) (production). Yet, despite the
enormous experimental effort, the dark matter detection remains
a challenge and our understanding of dark matter properties
limited, henceWIMPmodels can spanmany orders ofmagnitude
in dark matter masses and interaction strengths. This makes it
difficult to efficiently study all possible scenarios and models. It is
necessary to find a strategy to combine the maximum amount of
available experimental information in the most efficient way to:
(i) carve out the dark matter models which are inconsistent with
experimental observations; (ii) to highlight the most promising
regions for discovery in the model parameter space, in the
light of the near future dark matter search program; (iii) to
highlight the complementarity among the diverse dark matter
search methods. Dark matter simplified models (DMsimps
from hereafter) represent a convenient framework where to
achieve these objectives, and will be the main focus of the
review.

In these past few years, the dark matter program at the LHC
has set the trend to follow the avenue of DMsimps (Abdallah
et al., 2015; Abercrombie et al., 2015; Boveia et al., 2016; Albert
et al., 2017a), as compared to the Effectivfe Field Theory (EFT)
approach or as compared to the study of complete dark matter
models. EFT states that the dark matter is the only accessible
particle at our experiment, while all the other states that might
characterize the dark sector are kinematically unaccessible. This
is a valid framework when the masses of all particles mediating
the interaction between the dark matter and the SM particles are
assumed to be larger than the energy scale of the process. The
limitations of this approach, at least as far as the LHC searches
are concerned (Goodman and Shepherd, 2011; March-Russell
et al., 2012; Shoemaker and Vecchi, 2012; Buchmueller et al.,
2014; Busoni et al., 2014a,b,c; Bell et al., 2015; De Simone and
Jacques, 2016), have now been recognized by the theoretical and
experimental communities. Basically as soon as the momentum
transfer of the process is near or larger than the mass of the
mediator, EFT breaks down and the micro-physics describing
the process needs to be taken into account. As far as it concerns
dark matter direct detection, the momentum transfer is about
a few MeV, hence EFT is a well-defined framework that can
be used unless the mediator mass is of the order the MeV.
Dark matter indirect detection lies in between the two cases
described above and will be discussed in details in the paper.
Notice that nowadays EFT at the LHC is a useful tool to grasp
complementary information for instance for high scale (Belyaev
et al., 2017) or for strongly interacting (Bruggisser et al., 2016)
dark matter models.

The opposite approach with respect to EFT stands in
considering UV (ultraviolet) complete theoretical models,
motivated for instance by solving the hierarchy or the little
hierarchy problems, such as supersymmetric models. These
models have been and still are being extensively investigated
in dedicated study programs, by both the theoretical and
experimental communities. The complication arising from such
models is the large number of free parameters: at present the
dark matter data have not enough constraining power (the only
measurement so far being the dark matter relic density) to select
specific values of these free parameters of the theory space, hence
it is common to end up with degeneracies among the parameters.
Conversely, complete models usually feature complex dark
sectors with interesting correlations among observables that
cannot be reproduced by the EFT or simple models.

These simple models, called DMsimps, are constituted by the
addition to the SM particle content of a dark matter candidate
which communicates with at least the SM quarks via one
mediator. This minimalistic construction consists in expanding
the EFT interaction by introducing a new state that mediates the
interactions of the dark matter (and of the dark sector1) with the
SM. Simplifiedmodels are typically characterized by three or four
free parameters: the dark matter massmDM, the WIMP-SM gDM,
and mediator-SM gSM couplings (or equivalently the coupling
WIMP-SM-mediator y) and the mediator massmmed. So far, they
have proven useful to categorize the dark matter searches at the
LHC and to set up an easy framework for comparison with direct
and indirect searches of dark matter. There are however several
caveats emerging from the use of DMsimps in relation with
LHC searches and direct/indirect dark matter searches, which
are currently driving these models, which might seem purely
phenomenological constructions, into more natural bottom-up
theoretical models (Albert et al., 2017b).

The rest of this review is organized as follows. Section 2
provides a general overview on the dark matter searches, ranging
from cosmology to collider. Section 3 presents the state of
art of current DMsimps, with respect to all the dark matter
searches presented in the previous section. A special focus
is given to the cosmological and astrophysical constraints, as
collider constraints are described in depth in many reviews
and recommendation papers (see e.g., Abdallah et al., 2015;
Abercrombie et al., 2015; Boveia et al., 2016; De Simone and
Jacques, 2016; Arcadi et al., 2017; Kahlhoefer, 2017; Morgante,
2018) and the references therein. In particular section 3.1
considers s-channel mediator models and distinguishes the case
of spin-0, spin-1, and spin-2 bosons, whereas section 3.2 reviews
the status of t-channel models. Section 4 discusses the theoretical
caveats of DMsimps, while section 5 presents potential avenues
for the future. We have tried to present the material in a self-
contained form as much as possible, so that the review might
serve as an introduction for the beginner and as a reference guide
for the practitioner.

1If the dark sector consists of more than one new mediating particle, DMsimps

take into account the effect only of the lightest state that can be produced at the

LHC.
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2. OVERVIEW ON DARK MATTER
SEARCHES

2.1. Cosmological Constraints,
Astrophysical, and Direct Searches
In this section we provide the theoretical basic ingredients to
compute cosmological, astrophysical, or scattering signals from
the DMsimps. For each type of search we discuss whether it
is pertinent to use the EFT approximation or if the micro-
physics processes should be fully taken into account. A summary
plot is provided in Figure 1. We also discuss the theoretical
assumptions and uncertainties related to each type of search, and
how these are interpreted in terms of DMsimps. Finally we briefly
review the cosmological constraints on dark matter as well as the
several astroparticle searches that are currently running. These
constraints will be used to assess the complementarity of searches
on the DMsimp parameter space in section 3.

2.1.1. Dark Matter Relic Density
In the standard scenario, dark matter is considered a non-
relativistic thermal relic in the early universe, which freezes out at
xf = T/mDM (with T being the temperature of the thermal bath).
Its relic abundance is given roughly by the following approximate
solution of the evolution equation (see e.g., Srednicki et al., 1988;
Kolb and Turner, 1990):

�DMh2 ∝
0.2× 10−9GeV

〈σv〉
, (1)

where �DM is as usual the ratio between the dark matter energy
density and the critical density of the universe, h is the reduced
Hubble parameter (h = H0/100 km s−1Mpc−1, with H0 being
the Hubble constant today), and σv is the thermally averaged
annihilation cross section. The interaction of the particles needs
to be extremely weak in order to achieve �DMh2 ∼ 0.1. To
have an idea of the size of the coupling leading to the correct
relic density, it is instructive to see what happens by considering
a coupling with the strength of the weak interaction, σv ∼

G2
Fm

2
DM ∼ 10−9GeV−2

∼ 3 × 10−26cm3/s (GF is the Fermi
constant): this is just right in the ballpark to achieve themeasured
�DMh2 for particles withmasses around 100 GeV. HenceWIMPs
have extremely small but non-vanishing interaction couplings
with the SM; the size of the couplings depend on the mass of
the WIMP and is typically of the order or smaller than the weak
interaction for dark matter particles in the GeV-TeV range2 to
account for all the relic density . This is what is intended with the
WIMP paradigm.

The inverse proportionality between �DM and the thermal
averaged cross section dictates that: (i) the stronger the
interaction rate is, the more depleted is the dark matter number
density and as a consequence its relic abundance is too low
(“under-abundant” dark matter, namely it contributes to �DMh2

2An upper bound on the WIMP mass of O(100)TeV stems from the requirement

of perturbative unitarity (Griest and Kamionkowski, 1990), while a lower bound

is much more debated and model dependent. In certain models mDM > 10 GeV

not to spoil recombination (Planck Collaboration et al., 2016), for other models

mDM > 4 GeV (Lee and Weinberg, 1977), etc.

by some %); (ii) annihilation processes for WIMPs are less
efficient, the dark matter particles freeze out at early time and at
present time have a significant abundance that matches �DMh2;
(iii) the dark matter particles are too feebly interacting, hence
they decouple too early and over-close the universe (“over-
abundant” dark matter).

If 〈σv〉 varies slowly with energy, it can be expanded in plane
waves Srednicki et al. (1988):

〈σv〉 = 〈a+ bv2 + cv4 + ...〉 = a+
3

2

b′

x
+

15

8

c

x2
+ ... , (2)

where b = 3/2b′. Typically freeze out occurs at xf ∼ 20 − 30
leading to a most probable velocity v0 of the order of 0.25c:
corrections proportional to x−1 are indeed relevant with respect
to the a term and need to be taken into account (notice that the
back of the envelop estimate in Equation (1) is valid only for a
pure s-wave 〈σv〉). Additionally, there might be selection rules at
play that make the s-wave term vanishing. This occurs for several
DMsimps, as we will discuss in the next section, which end up
having p-wave dominated annihilation cross sections.

There are circumstances in which the non-relativistic
expansion of 〈σv〉 in Equation (2) breaks down (Gondolo and
Gelmini, 1991; Griest and Seckel, 1991; Edsjo and Gondolo,
1997):

• Resonant annihilation: The annihilation cross section is not a
smooth function of the centre-of-mass-energy s in the vicinity
of an s-channel resonance. For mDM ≤ 2mmed the additional
kinetic energy provided by the thermal bath brings s on top
of the resonance and the annihilation cross section increases
drastically. Conversely, for mDM > 2mmed the additional
kinetic energy brings s even further away from the resonance,
hence the annihilation cross section decreases quickly.

• Opening of new annihilation channels: a fraction of dark
matter particles might have a kinetic energy, given by
their thermal distribution in the early universe, sufficient
to annihilate into heavier particles, which are above the
threshold. This again leads to a rapid enhancement of 〈σv〉.

• Co-annihilation: if there are one or more particles heavier
than the dark matter but close in mass (roughly speaking the
difference in mass should be at most 10% of the dark matter
mass), these are present as well in the thermal bath in the
early universe and contribute to the relic abundance of the
dark matter with annihilation processes among themselves
and with the dark matter. These processes should be taken
into account in the Boltzmann equation that leads to �DMh2

with an effective 〈σv〉, the weighted sum over all annihilation
processes (see for details Edsjo and Gondolo, 1997).

In these cases it is necessary to rely on the full computation of
the thermally averaged cross section without approximations as
well as to solve the complete Boltzmann equation to evaluate
precisely �DMh2. This is the standard procedure encoded in the
public tools for dark matter [see e.g., micrOMEGAs (Belanger
et al., 2018), DarkSUSY (Bringmann et al., 2018), and
MadDM (Ambrogi et al., 2018), etc.]. As we will see in section 3,
the model parameter space of DMsimps often features the
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FIGURE 1 | Schematic overview of the dark matter searches together with the energy scale typically involved in each of them.

correct relic density in a tuned-region mDM ∼ 2mmed, relying
on resonant annihilation, and several threshold openings are
at play in setting �DMh2. This is schematically resumed in
Figure 1.

The dark matter relic density is the only precision
measurement we have so far. As already anticipated in the
introduction, it has been measured with great accuracy by
the Planck satellite (Planck Collaboration et al., 2016). This
measurement, combined with large scale structure data, gives:
�DMh2 = 0.1198 ± 0.00015. The experimental error is at the
level of ‰, two orders of magnitude smaller than the associated
theoretical error, typically quoted aroundO(10%).

There are a certain number of caveats when considering the
relic density as a constraint for DMsimps, which have to be taken
into account in the interpretation of the complementarity of
searches:

• DMsimps provide an extension of the SM particle content into
the most minimalistic dark sector possible, constituted solely
by the dark matter and an extra mediator. If the dark/new

physics sector contains more particles, two types of processes
can alter the relic density value: (i) there are additional
mediators, opening up new annihilation channels including

resonance effects; (ii) co-annihilation (Edsjo and Gondolo,
1997), if there are particles heavier but close in mass with the

dark matter mass (1m . (O)(10%)). The region allowed by

relic density in the DMsimp set up should be considered then

as a subset of the whole allowed model parameter space.

• DMsimps focus particularly on studying and constraining the

dark matter-quark couplings, which are accessible at the LHC.

However if the dark matter couples to other SM species,
additional annihilation diagrams can have a significant impact
on the model parameter space allowed by the relic density

constraint by opening up new annihilation thresholds. Other
couplings, such as dark matter—lepton couplings, start to be

considered as well (Albert et al., 2017a) in the context of

di-lepton searches. In these cases the interpretation of the
allowed relic density regions becomes more robust (cfr. the

other caveats).
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• The constraint on �DMh2 relies on the assumption that the
dark matter is a thermal relic. Other viable assumptions to
bring �DMh2 to the observed value, are for instance: (i) the
dark matter is non-thermally produced; (ii) the cosmological
evolution of our universe is rather different than the one
described by the Standard Cosmological model. For example,
late-time entropy injection (Bramante and Unwin, 2017) can
decrease the dark matter relic density, while late gravitino
decays in supersymmetric theories can increase the neutralino
relic abundance (Allahverdi et al., 2012).

In section 3, we will discuss the combination of dark matter
searches in full generality, with and without considering the relic
density as relevant constraint. Notice that all caveats described
above spoil the model-independent approach of DMsimps, as
they rely on the specificity of the dark matter model.

2.1.2. Dark Matter Direct Detection
As the dark matter particles move in the Milky Way halo, it is
worthwhile to explore the possibility to detect them. This can
be done directly in underground terrestrial detectors, sensitive
to the nuclear recoil caused by the passing wind of dark matter
particles. From a theoretical point of view, in direct detection,
the crucial quantity is the scattering cross section of dark matter
particles off a nucleon, in a deeply non-relativistic regime. Indeed
the momentum transfer in the collision is of the order of a few
to tens of MeV, as the speed of the incoming WIMP is of the
order of v ∼ 10−3c. As a consequence, direct detection can be
safely treated in term of EFT3, except when the mediator mass
connecting the dark matter and the SM quarks becomes of the
order of the momentum transfer (m2

med
∼ q2 ∼ (O)(10MeV)),

as resumed in Figure 1.
It has been shown that the scattering process between the

dark and ordinary matter can be expressed in terms of a limited
number of relativistic degrees of freedom, which give rise to a
basis of non-relativistic operators. As a matter of fact, any process
of elastic scattering between the dark matter and the nucleon
can be expressed as a combination of this basis in a unique way,
irrespective of the details of the high-energy dark matter model.
This basis is constituted by 12 operators, here we report the
most relevant for the discussion of section 3 using the notation
of (Cirelli et al., 2013):

O
NR
1 = 1 , O

NR
4 = sDM · sN ,

O
NR
6 = (sDM · q)(sN · q) , O

NR
8 = sDM · v⊥ ,

O
NR
9 = i sDM · (sN × q) , (3)

Starting from the DMsimp Lagrangian, which describes the
interaction of the dark matter with the quarks, it is necessary
first to determine the dark matter-nucleon effective Lagrangian.
Secondly, the elastic scattering occurs with the whole nucleus,
due to the small WIMP speed in the galactic halo. Therefore,
one needs to properly take into account the composite structure
of the nucleus which results in the appearance of nuclear form
factors in the cross section. Nuclear form factors parametrize

3This approximation is satisfied by the DMsimp framework, which typically

features mediators heavier than GeV.

TABLE 1 | List of direct detection EFT operators WIMP-nuclei for fermionic and

scalar dark matter arising from the DMsimp high-energy interaction Lagrangians

discussed in the paper.

Dark matter candidate EFT operator Matching

Fermionic ¯XX ¯NN 4mDMmNO
NR
1

i ¯Xγ5X
¯NN − 4mNO

NR
11

i ¯XX ¯Nγ5N 4mDMO
NR
10

i ¯Xγ5Xi
¯Nγ5N 4ONR

6
¯XγµX ¯NγµN 8mDM(mNO

NR
8 +O

NR
9 )

i ¯Xγµγ5X
¯NγµN 8mN (−mDMO

NR
8 +O

NR
9 )

i ¯XγµX ¯Nγµγ5N −16mDMmNO
NR
4

i ¯Xγµγ5Xi
¯Nγµγ5N 32mDMmNO

NR
4

Scalar 8*8 ¯NN 2mDMO
NR
1

i 8*8 ¯Nγ5N 2ONR
10

We provide the matching between these EFT operators and the non-relativistic (NR)

operators in the third column. The WIMP-parton coefficients and the transformations from

parton level to nuclear EFT operators can be found in e.g., Del Nobile et al. (2013). The

dark matter particle is denoted by X if fermionic and by Φ if scalar, while the nucleus is

denoted by N and has a mass mN . For both Majorana fermions and real scalars the vector

operators vanish, reducing the list of relevant relativistic operators.

the loss of coherence in the scattering with increasing exchanged
momentum. In Table 1, we provide the list of non-relativistic
operators relevant for the DMsimps presented in section 3 and
their matching with the matrix element involving the whole
nucleus. We refer to Cirigliano et al. (2012), Cirelli et al. (2013),
Fitzpatrick et al. (2013), and De Simone and Jacques (2016) for
the rigorous definition of the non-relativistic operator basis and
for the detailed direct detection analyses4.

Concerning the experimental state of art for direct detection, a
huge experimental effort has been deployed in the past years, that
features nowadays more than 10 different experiments currently
running toward unprecedented sensitivities. Several orders of
magnitude in the WIMP-nucleus elastic interaction have been
constrained by past and current experiments. As far as it concerns
spin-independent elastic scattering, which occurs when the dark
matter interacts with all the nucleons (it is proportional to the
atomic number of the nucleus,A2), the most notable experiments
are XENON1T (Aprile et al., 2017a), LUX (Akerib et al., 2017),
and PANDAX-II (Fu et al., 2017) for intermediateWIMPmasses,
CDMSLite (SuperCDMSCollaboration et al., 2018) and CRESST-
II (Angloher et al., 2016) at low WIMP masses. XENON1T
excludes at 90% confidence level (CL) WIMP-nucleon cross
sections of about 8 × 10−47cm2 for dark matter masses of
30 GeV. The usual spin-independent scattering cross section
corresponds to the operator O

NR
1 of Table 1. If present in the

underlying particle physics model, this operator dominates over
all other non-relativistic operators. Spin-dependent scattering
occurs when the dark matter interacts with the spin of the
unpaired proton or neutron of the nucleus. PICO 60 Amole et al.
(2017) detains the most constraining bound for spin-dependent

4On a side note, except for (Cirelli et al., 2013), the publicly available dark matter

numerical tools do not use the general description of direct detection in terms of

non-relativistic operators, at the best of our knowledge at the time of writing.
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scattering on proton so far. Only a few experiments are sensitive
to the spin-dependent interaction on neutron (mostly dual phase
xenon or nobel liquid/gas detectors) and the strongest exclusion
bound is held by the LUX LUX Collaboration et al. (2017)
experiment. The spin-dependent operator currently considered
by the experimental collaborations is ONR

4 . Exclusion limits for
the other operators are provided in Cirelli et al. (2013), even
thought at present these exclusion bounds are a bit outdated.
On the experimental side, the XENON collaboration has started
to use the non-relativistic operator description and has released
exclusion limits based on the XENON100 data (Aprile et al.,
2017b).

Direct detection is affected by several astrophysical
uncertainties related for instance to the description of the
dark matter velocity distribution at the Sun position and to the
local dark matter density. There are two different approaches
to deal with these uncertainties: either perform a likelihood
analysis and marginalize or profile over them (see e.g., Strigari
and Trotta, 2009; Arina et al., 2011; Bertone et al., 2012; Arina,
2014), either use the so-called halo-independent method (see
e.g., Fox et al., 2011; Gondolo and Gelmini, 2012; Del Nobile
et al., 2013). In most of the analyses described in section 3,
astrophysical uncertainties are not taken into account, hence we
will not consider this matter any further.

2.1.3. Dark Matter Indirect Detection
Dark matter indirect detection relies on the principle that dark
matter particles in galactic halos annihilate into SM particles.
These SM particles subsequently undergo decays, showering and
hadronization and lead to a continuum flux of cosmic rays,
gamma rays, and neutrinos. In the case where the dark matter
annihilates via loop-induced processes into a pair of photons
or a photon and a boson, the signal is characterized by a
sharp spectral feature such as a gamma-ray line. Dark matter
annihilation takes place in several astrophysical environments
and at different epochs in the evolution of the universe, from
cosmological down to solar system scales. As dark matter indirect
detection encompasses a large variety of searches, in this review
we describe only the searches that have been directly used as
complementary probes together with LHC dark matter searches
and/or direct detection to constrain DMsimps. Those involve
mainly gamma rays, neutrinos and anti-protons at galactic scales.
For a detailed review on dark matter indirect detection we refer
the reader to (e.g., Cirelli, 2015; Gaskins, 2016; Slatyer, 2017).

Before going into the details of the specific searches and
theoretical predictions, let us mention two generic features
concerning the flux of particles produced by dark matter
annihilation. This quantity is proportional to

1. 〈σv〉0. This is defined as the velocity averaged annihilation
cross section computed at present time. Annihilation in
galactic halos occurs in a highly non-relativistic regime with
an centre-of-mass-energy provided by

√

s = 2mDM as the
typical mean velocities characterizing the dark matter halo
are negligible. For instance in the Milky Way the most
probable velocity of dark matter particles is v0 ∼ 10−3c ∼

230 km/s (Schoenrich et al., 2010), while it is even lower

in dwarf Spheroidal galaxies (dSphs), v0 ∼ 10−5c ∼

8 km/s (Bonnivard et al., 2015), hence in indirect searches the
non-relativistic expansion of 〈σv〉0 in plane waves is a fairly
good approximation. The dominant term that is in the reach
of current astrophysical probe is the s-wave: 〈σv〉0 ≃ a. If this
term is absent due to some selection rule, the model is most
likely unconstrained from indirect detection. Notice that the
EFT approach remains valid and can be used formDM≪mmed.
This is summarized in Figure 1.

2. dNf /dEf ≡

∑

i BidN
i
f
/dEf . This is defined as the energy

spectrum of the particle species f (with f = γ , νl, e
+, p̄, and

l is the neutrino flavor, l = e,µ, τ ) at production where
annihilation occurred. The index i runs over all possible
annihilation final states of the dark matter model, each of
them with a branching ratio Bi. The final states are typically
SM pairs of particles, however new particles beyond the SM
can appear as well, which will subsequently decay into SM
particles. We will see in section 3 that this option is realized
in several DMsimps.
Typically the experimental searches present the limits in
a model-independent way, supposing a branching ratio of
100% into one species of SM particles and assuming that
�DMh2 matches the observed value. To compare a specific
dark matter model with the experimental exclusion limits,
the most rigorous procedure is to recompute the upper
bound for that particular model by means of the experimental
likelihoods. If this is not possible, one can combine the
experimental exclusion bounds after having rescaled them
by the appropriate branching ratio. This procedure should
be a good approximation provided the energy spectrum of
the specific model does not differ too much from the energy
spectrum for which each respective upper bound has been
computed. The micrOMEGAs and DarkSUSY numerical
tools rely on tabulated energy spectra for all possible SM
final states and for dark matter masses ranging from 5 to
100 TeV. The MadDM tool (Ambrogi et al., 2018) allows to
generate the energy spectrum in both model-independent and
model-dependent ways for any possible dark matter mass.

Similarly to direct detection, indirect detection is affected by
astrophysical uncertainties related to the dark matter density
distribution in galactic halos, by the propagation parameters
for cosmic rays, etc. Whenever relevant, we will discuss the
comparison between different dark matter searches and the
indirect detection limits based on different assumptions on the
astrophysics.

Gamma-ray searches
The gamma-ray flux from dark matter annihilation from a
direction ψ in the sky, averaged over an opening angle 1ψ , is
given by:

d8

dEγ
(Eγ ,ψ) =

〈σv〉0

2m2
χ

∑

i

Bi
dNi

γ

dEγ

1

4π

∫

ψ

d�

1ψ

∫

los
ρ2(ψ , l) dl .

(4)
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For dark matter particles with distinct particle and antiparticle
Equation (4) is multiplied by an additional factor of 1/2. The
two integrals, over the angle and the line of sight (los), define

the astrophysical J factor
(

J ≡

∫

ψ
d�/1ψ

∫

los ρ
2(ψ , l) dl

)

.

The J factor encodes the information about the astrophysical
environment (experimental window) where annihilation occurs
(is sought) and the dark matter density profile.

We start by illustrating the gamma-ray constraints from
dSphs, which are dark matter dominated objects (Mateo, 1998;
Weisz et al., 2011; Brown et al., 2012; Coureau et al., 2014). The
Fermi-LAT satellite looks for a gamma-ray emission from these
Milky Way satellite galaxies, and so far, no excess in gamma rays
has been observed.5 Hence the Fermi-LAT collaboration has set
upper bounds at 95% CL on the continuum prompt photon flux
produced by dark matter annihilation (Ackermann et al., 2015a;
Albert et al., 2017). From these bounds, it has publicly released
upper limits for the annihilation rate into b¯b and τ+τ− final
states as a function of the dark matter mass. The b¯b channel
is an example of “soft” channel that produces photons mostly
from the decay of neutral pions produced in hadronisation, while
the τ+τ− is a “hard” channel that generates photons from final
state radiation, scaling as E−1, on top of the photons coming
from π0 decays. The Fermi-LAT team has performed a stacked
likelihood analysis for 45 dSphs. The resulting profile function
for each dSph has been released publicly and can be used to
compare for instance DMsimps with dSphs data from the 6
years Fermi-LAT data (Pass 8 event reconstruction algorithm)6.
These likelihood functions have been implemented in the last
MadDM version (see Ambrogi et al., 2018) for details, and can be
used for any generic dark matter model. Gamma-ray constraints
from dSPhs are subject to astrophysical uncertainties mostly
related to the determination of the J factor. These uncertainties
are particularly large in the case of the latest dSPhs discovered,
which are ultra-faint dwarf galaxies ,for details (see Bonnivard
et al., 2015). In addition to the prompt photon flux, there are
also contribution from inverse Compton scattering generated by
charged propagating particles. These are often neglected while
computing the exclusion limits on the dark matter annihilation
rate, however could have an impact for mDM ≥ 100 GeV. Hence
the exclusion bounds for large dark matter masses should be
regarded as conservative.

Another search, used in the complementarity framework of
DMsimps, looks for gamma-ray spectral features toward the
Galactic Centre. These spectral features encompass gamma-ray
lines, narrow boxes (see e.g., Ibarra et al., 2015a) and sharp
edges in the prompt photon energy spectrum coming for instance
from internal bremsstrahlung processes (see e.g., Giacchino
et al., 2013; Toma, 2013). The most constraining exclusion
limits on the dark matter annihilation rate into gamma-ray

5There are four dSphs recently discovered by DES (Abbott et al., 2005), which,

taken individually, show a slight excess over the background, of the order of

2σ . Other analyses (see e.g., Geringer-Sameth et al., 2015; Hooper and Linden,

2015) have pointed out similarly a possible excess over the background. The excess

disappears once the data are stacked with the other dSph data.
6Dataset (2015). Available online at: https://www-glast.stanford.edu/pub_data/

1203/.

lines are provided by the Fermi-LAT satellite (Ackermann et al.,
2015b) for mDM < 500 GeV and the HESS telescope for
dark matter masses up to 25 TeV (Abramowski et al., 2013;
Abdalla et al., 2016). These searches suffer of large astrophysical
uncertainties related to the dark matter density profile, included
in the J factor, and to the background modeling of the Galactic
Centre 7.

Neutrino searches
If dark matter particles scatter in heavy astrophysical bodies such
as the Sun, they can lose enough energy to become gravitationally
trapped inside it. Dark matter particles start to accumulate in
the center of these celestial bodies, where subsequently dark
matter annihilation sets in (see e.g., Steigman et al., 1978;
Press and Spergel, 1985; Silk et al., 1985; Gould, 1987; Ritz
and Seckel, 1988; Kamionkowski, 1991; Jungman et al., 1996;
Bergstrom et al., 1997; Gondolo et al., 2004; Blennow et al., 2008;
Peter, 2009; Sivertsson and Edsjo, 2012). In the Sun, constituted

primarily by hydrogen, the dark matter capture occurs mainly
by spin-dependent elastic scattering [even thought the spin-
independent scattering on nucleons, σ SI

n , can also play a role,
as it is enhanced by the A2 term for heavy nuclei (Gondolo
et al., 2004)]. The Sun is opaque to all dark matter annihilation
products but neutrinos, which can escape the Sun surface and
be detected by Earth based telescopes such as IceCube and
Super-Kamiokande (Choi et al., 2015). The annihilation rate
can become large enough to lead to an equilibrium between
dark matter capture and annihilation. In this case 〈σv〉0 and
the elastic cross section on proton, σ SD

p , become two related
quantities that can be trade one for the other. This assumption is
used for computing experimentally the exclusion bounds on the
WIMP-nucleon elastic cross section. The IceCube collaboration
has set stringent upper limits, competitive with those of direct
detection searches for spin-dependent scattering (Aartsen et al.,
2013, 2016), by the non observation of GeV-TeV scale neutrinos
coming from the Sun direction. The exclusion bounds publicly
released, at 90% CL, are based on IceCube data with 79 strings
including DeepCore and are given for the following final states,
“hard”channels (W+W−, τ+τ−, ZZ, νν̄) and “soft” channels (b¯b,
tt̄, gg and hh).

The equilibrium assumption helps in the interpretation and
comparison of dark matter exclusion limits coming from direct
and indirect detection in terms of WIMP-quark coupling; this
is particularly appreciable for DMsimp models, which often do
include only these couplings. There is however an emergent
caveat: direct detection experiments have pushed the upper
bound on the spin-independent and spin-dependent cross-
section to lower and lower values for which the equilibrium
assumption starts to break down (Arina et al., 2017). Depending
then on the size of 〈σv〉0 and σ

SI,SD
n , the useful representation of

exclusion bounds in terms of elastic scattering might not provide
anymore a correct physical interpretation.

7In this review we do not consider the Galactic Center excess at low dark matter

masses. For details, we refer the reader to (e.g., Gaskins, 2016) and the references

therein.
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Anti-proton searches
Searches for dark matter annihilation products in local charged
cosmic-ray fluxes can be highly sensitive, especially due to the low
backgrounds for antimatter produced by astrophysical processes.
A major challenge for these searches is the identification of the
locations of the sources of cosmic rays due to their propagation
throughout the Milky Way, conversely to the case of gamma rays
and neutrinos, which do not diffuse and trace their source. Anti-
protons have been recognized as important messengers not only
for cosmic ray physics but constitute one of the primary channels
in the dark matter searches (Silk and Srednicki, 1984; Silk et al.,
2010). This idea has been further reinforced by the data released
recently by the AMS 02 satellite (Aguilar et al., 2016), which have
an amazing statistical precision and extend up to 450 GeV. The
authors of (Giesen et al., 2015) and (Cuoco et al., 2018) have
provided an analysis of these data in terms of exclusion limits
for the dark matter velocity averaged annihilation cross section
as a function of mDM at 95% CL for the b¯b, gg, qq̄, tt̄, µ+µ−,
W+W−, hh, and γ γ final states. These bounds (especially b¯b) are
used to assess the constraining power of anti-proton searches for
DMsimps in some of the analyses presented in section 3.

The exclusion limits on the dark matter annihilation rate from
anti-protons suffer of very large astrophysical uncertainties. The
exclusion limits can fluctuate upwards or downwards by one
order of magnitude at low dark matter masses, mainly because
of uncertainties in the propagation parameters in our galaxy and
of solar modulation. The choice of the dark matter density profile
is not the main cause of the lack of precision. For details we refer
to Cirelli (2015), Giesen et al. (2015), Cuoco et al. (2018) and the
references therein.

2.2. LHC Dark Matter Searches
In this section we summarize very briefly the main dark matter
searches pursued by the LHC experimental collaborations. For a
detailed information, we refer the reader to (e.g., Abercrombie
et al., 2015; De Simone and Jacques, 2016; Albert et al., 2017a;
Kahlhoefer, 2017; Morgante, 2018) and the references therein.

During the LHC Run 2, ATLAS and CMS have gone
the avenue of dark matter simplified models to classify and
categorize all possible final states arising in the darkmatter search
program. This method has been validated by the Dark Matter
forum (Abercrombie et al., 2015) and further supported by the
LHC Dark Matter Working Group, established as the successor
of the Dark Matter Forum8.

The main bulk of dark matter searches at colliders is
constituted by signatures with missing transverse energy (/ET) in
the final state, due to the pair-produced dark matter particles
which elusively leave the detector with no trace. The mediator,
produced by Drell-Yan or gluon fusion and decaying invisibly
into a pair of dark matter particles, can be looked for by tagging
an energetic jet, coming typically from initial state radiation,
which balances the missing energy from the final state. These
are the most relevant searches for DMsimps undertook so far

8We chose not to provide any reference here for the specific searches conducted by

ATLAS and CMS, and to provide the references in the next section, referring to the

data sets actually used in the analyses discussed in this review.

by the ATLAS and CMS collaborations and are called mono-
X + /ET searches, where X stems for a jet, a photon, a vector
boson, a Higgs, and multi-jets (from 2 to 6 jets) + /ET . All these
searches require 2mDM << mmed and possible that the mediator
has a large branching ratio into dark matter and SM particles
(large gDM and especially large gSM). Once these conditions are
met, the searches are not very sensitive to the actual mass of
the dark matter particle. This is the reason why LHC searches
are more sensitive to very light dark matter masses, close the
O(1) GeV with respect to direct detection searches (Boveia
et al., 2016). Additionally to mono-X + /ET searches, a certain
number of DMsimps can be constrained by recasting searches in
supersymmetric simplified models or by tt̄ + /ET searches.

Both the experimental and theoretical communities have
recognized that resonance searches for the mediator can be
as powerful as the /ET signals in DMsimps, or in some case
be even more constraining (see e.g., Arina et al., 2016; Albert
et al., 2017a). These searches are based on the principle that,
after its production by proton collisions, the mediator does not
necessarily decay into dark matter particles but can decay back
into SM final states. This is always the case for mmed < 2mDM,
as the invisible decay channel is closed; it is also satisfied for
gSM > gDM, condition that leads to a small branching ratio
into dark matter particles and a large branching ratio into visible
SM species. Besides the two requirements above these searches
as well are not very sensitive to the dark matter exact mass
value. In general themost relevant resonance searches, depending
on the specific of the DMsimp, are tt̄, 4 tops, di-photons, di-
leptons, and di-jets. The sensitivity of each search depends on
the specificity of the DMsimp under investigation. For instance,
di-jet signals are irrelevant for scalar mediators, while tt̄ pair
production and di-photons reveal very useful (Arina et al., 2016).
Conversely spin-1 mediators are easily probed via di-jets and
mono-X signatures (Chala et al., 2015; du Pree et al., 2016).

Notice that the discovery of an anomalous signals in a mono-
X + /ET search at the LHC would not imply the discovery of
dark matter, contrary to the case of direct and indirect detection
searches. Hence a potential discovery at colliders needs to be
supported by further evidence in direct or indirect searches, in
order to fully identify the dark matter candidate. On the other
hand, in case of new findings, LHC is able to provide an accurate
characterization of the new mediator particle, while direct and
indirect detection are more loosely sensitive to it.

3. CURRENT STATUS OF DARK MATTER
SIMPLIFIED MODELS

Since the start of the LHC Run 2 and the publication of the
DM forum recommendations (Abercrombie et al., 2015), the
number of works studying DMsimps has increased exponentially.
DMsimps have been adopted for their minimalistic structure to
provide the SM with a dark matter particle, in the sense that they
represent the minimal extension of the EFT approach used in the
LHC Run 1 dark matter searches. The EFT operators are opened
up by introducing a particle mediating the interaction between
the dark matter and the SM particles (the so-called mediator).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org September 2018 | Volume 5 | Article 30102

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Arina Constraining Dark Matter Simplified Models

They are simple enough to allow the LHC experimental
collaborations to categorize all possible dark matter signals they
can give rise to. A general classification stems from the class
of vertices that characterize the model: Lagrangians featuring
WIMP-WIMP-mediator and SM-SM-mediator type interactions
identify models with an s-channel mediator, while Lagrangians
characterized by WIMP-SM-mediator interactions define a t-
channel mediator. In s-channel models, the mediator is always a
color singlet, while in t-channel models it can be either a colored
particle or a color singlet (even though this second possibility,
is less appealing for the collider phenomenology). Nonetheless,
the definition of DMsimp is not unique, especially as far as it
concerns the mediator nature. Some works consider Higgs portal
models as part of the DMsimp category (see e.g., Abdallah et al.,
2015; De Simone and Jacques, 2016), while others do not include
the SM Higgs boson in this context (Abercrombie et al., 2015;
Boveia et al., 2016). For the rest of the section we will use the
definition of DMsimp as provided in Abercrombie et al. (2015)
and Boveia et al. (2016):

• There can be only one new mediator at a time that defines
the interaction between the dark matter and the SM quarks.
Namely the dark matter and the mediator are the only particle
accessible by current experiments. The presence of additional
new particles in the dark sector is assumed not to modify

sensibly the physics described by DMsimps. This assumption

allows to introduce a very limited set of new free parameters
(typically four). The mediator can have spin-0, spin-1/2, spin-

1, and spin-2. The category of scalar mediators, however,
does not include the Higgs boson (and no mixing with it
is considered). We will comment on Higgs portal models in

section 4.
• The new interaction should not violate the exact and

approximate accidental global symmetries of the SM.
For instance this means that baryon and lepton number

conservation of the SM should be preserved by this
interaction. Additionally, the new mediating particle can
produce large flavor violating effects. By enforcing that the

flavor structure of the couplings between the dark matter
and the ordinary particles follows the same structure as in
the SM, it is ensured that DMsimps do not violate flavor
constraints. This assumption is called Minimal Flavor
Violation (MFV) (D’Ambrosio et al., 2002), for a detailed
discussion (see e.g., Abdallah et al., 2015).

• Another recommendation concerns the nature of the dark
matter particle. It is suggested to consider Dirac fermionic
candidates only, because LHC searches are rather insensitive
to the spin of the dark matter particles. As the /ET searches
are based on cut-and-count analyses, minor changes in the
kinematic distributions of the visible particle are expected
to have little effect on these analyses, besides the fact the
Majorana particles forbid some processes allowed for Dirac
particles. However, whenever possible, we will review cases
that go beyond the Dirac fermionic dark matter assumption,
as the dark matter annihilation and elastic scattering cross
sections do depend on the darkmatter spin. Different selection
rules are at play depending whether the dark matter is a

real scalar, a complex scalar, a Dirac or Majorana fermion,
leading to suppressions or enhancements of direct or indirect
detection signals. These selection rules change drastically the
complementarity picture of dark matter searches and need
to be considered and investigated further. Table 2 provides a
summary of the sensitivity of each dark matter search as a
function of the DMsimp and of the spin of the dark matter
particle, considered in this review.

Most of DMsimps considered in this review have been
implemented in FeynRules (Alloul et al., 2014) and are
publicly available for download in the repository of the DMsimp
framework9. DMsimps for s-channel mediators include three
different choices for the spin of the WIMP (Dirac fermion,
real scalar and complex scalar for spin-0 and spin-1 mediators,
and real scalar, Dirac fermion and vector dark matter for spin-
2 mediators). Typically, the numerical tools used to compute
the dark matter relic density and astrophysical constraints are
micrOMEGAs (Belanger et al., 2018) and MadDM (Ambrogi
et al., 2018). In the MadGraph_aMC@NLO platform (Alwall
et al., 2011, 2014), one-loop and NLO (next-to-leading order)
computations in QCD and EW interactions can be automatically
performed in models beyond the SM. This framework allows to
compute accurate and precise predictions for production cross
sections and distributions of dark matter particles produced at
the LHC in association for instance with a mono-jet, mono-
photon, mono-Z or mono-Higgs (see e.g., Backović et al.,
2015; Mattelaer and Vryonidou, 2015; Arina et al., 2016; Das
et al., 2017). It is known that higher order QCD corrections
impact not only the production rate but also the shape of
the distributions. Most of s-channel DMsimps do include NLO
corrections to the matrix elements and parton shower matching
and merging. Indeed these higher order terms pertain only
to the initial state and originate only from SM processes,
hence they can be factorized with respect to the leading
order (LO) process accounting for the production of the
uncolored mediator and dark matter particles. Conversely the
implementation of NLO corrections into t-channel DMsimp
is much more involved, due to the colored nature of the
mediator, which do not allow anymore to factorize initial
and final state corrections. Typically t-channel DMsimps are
LO models, unless stated otherwise. The NLO DMsimps
[implemented with NloCT (Degrande, 2015)] are also available
at the DMsimp framework webpage9. As far as it concerns
the DMsimp predictions for relic density, direct and indirect
detection, NLO corrections are typically not considered. The
automatization of loop-induced, one-loop and NLO processes
is currently under development in a future release of MadDM,
which is now a MadGraph_aMC@NLO plugin and hence
inherits all its features, including the capabilities of automatically
generate the above-mentioned processes for dark matter
observables.

As the literature about DMsimps is vast, we consider and
discuss only a few selected representative papers, whereas we
try to be as exhaustive as possible with the references. In the

9Dataset (2015). Available online at: http://feynrules.irmp.ucl.ac.be/wiki/DMsimp.
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TABLE 2 | Schematic summary of the complementarity of dark matter searches for the DMsimps, taking into account the spins and nature of both mediator and dark

matter particles.

Y Spin DM spin DD ID 〈σv〉0 LHC searches

SI SD s-channel t-channel /ET Resonance

S S OK NO helicity suppressed s-wave large gDM, gSM OK

∝ m2
f

D OK NO p-wave p-wave large gDM, gSM OK

P D NO NO s-wave p-wave large gDM, gSM OK

S-P D OK NO p-wave s-wave large gDM, gSM OK

(if gSM is large)

V S OK NO p-wave / OK OK

D OK NO s-wave p-wave OK OK

A D OK OK helicity suppressed s-wave OK OK

M NO OK helicity suppressed s-wave OK OK

2 S NA NO s-wave s-wave large gDM, gSM OK

F NA NA p-wave s-wave large gDM, gSM OK

V NA NA s-wave s-wave large gDM, gSM OK

In the table, S, scalar; P, pseudo-scalar; V, vector; A, axial-vector; F, fermion; D, Dirac; M, Majorana; DM, dark matter; Y, mediator; DD, direct detection; SI, spin-independent; SD,

spin-dependent; ID, indirect detection. OK means that the corresponding signal is in the reach of current and near future experiments, while NO means that the predictions are far below

the experimental sensitivities, and NA means that there are no actual studies to assess the experimental reach, to the best of our knowledge. The analytic expressions for the annihilation

and scattering cross sections can be found (e.g., Lee et al., 2014a; De Simone and Jacques, 2016; Albert et al., 2017a). For each DMsimp, the minimal model is considered, which

entitles only couplings between the mediator and the SM quarks, as described in section 3 of this review. The only exception is the spin-2 model, where the mediator communicates

with all SM fields.

following sections we provide the interaction Lagrangian for
DMsimps we consider and the relevant details for the analyses
we review. We take into consideration in general only mediator-
quark couplings; couplings to leptons or other SM particles are
switched on whenever relevant.

3.1. s-Channel Mediator Models
3.1.1. Spin-0 Mediator
The material presented in this section is based on these
selected reference papers (Haisch and Re, 2015; Arina et al.,
2016; Banerjee et al., 2017), as they nicely exemplify the main
features of scalar and pseudo-scalar mediators in the s-channel
by performing comprehensive studies of the model, including
astrophysical and cosmological dark matter searches.

We focus on the case of Dirac dark matter (X), with spin-
0 mediator (Y0) coupling to the matter fields of the SM (the
dependence on the dark matter spin is briefly summarized in
Table 2). The interaction Lagrangians is defined as:

L
Y0
X = X̄(gSDM + igPDMγ5)X Y0 , (5)

and

L
Y0
SM =

∑

i,j

[

¯di
ydij
√

2
(gSdij + igPdijγ5)dj + ūi

yuij
√

2
(gSuij + igPuijγ5)uj

]

Y0 ,

(6)
where d and u denote down- and up-type quarks, respectively,

(i, j=1,2,3) are flavor indices, g
S/P
DM are the scalar/pseudo-scalar

WIMP-Y0 couplings. Following the prescriptions of MFV, the
couplings of the mediator to the SM particles are proportional to
the particle masses and normalized to the SM Yukawa couplings,

y
f
ii =

√

2mf /v and v being the Higgs vacuum expectation value,
and all flavor off-diagonal couplings are set to zero. This choice of
couplings ensures that: (i) the structure of flavor changing neutral
current processes of the SM is preserved by the introduction of
new physics; (ii) that all flavor violating transitions are governed
by the Cabibbo-Kobayashi-Maskawa matrix.

The pure scalar and pure pseudo-scalar mediator scenarios,
which we will review in the rest of the section, are given by setting
the parameters in the Lagrangians (5) and (6) to:

gSDM ≡ gDM and gPDM = 0 , (7)

gSuii = gSdii ≡ gSM and gPuii = gPdii = 0 , (8)

and

gSDM = 0 and gPDM ≡ gDM , (9)

gSuii = gSdii = 0 and gPuii = gPdii ≡ gSM , (10)

respectively. With the simplification of a single universal
coupling for the SM-Y0 interactions, the model has only four
independent parameters, i.e., two couplings and two masses:

{gSM, gDM, mDM, mmed} . (11)

The MFV assumption implies that we can even further neglect
the contributions of all quarks but the top-quark in the model, as
it has the largest Yukawa coupling. This is certainly an optimal
approximation for LHC studies, while dark matter searches are
sensitive to all quark flavors. The assumption however that gSM ≡

g
S/A
u33 provides a good description of the phenomenology of the
model, as the inclusion of all other quark flavors has the effect of

Frontiers in Astronomy and Space Sciences | www.frontiersin.org September 2018 | Volume 5 | Article 30104

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Arina Constraining Dark Matter Simplified Models

globally decreasing the value of gSM needed to achieve the same
cross section.

The Lagrangians of Equations (5) and (6) induce dimension-
five couplings of the mediator to gluons and photons via top-
quark loop diagrams. These loop-induced operators are relevant
for both astrophysical and collider searches for dark matter. For
a scalar Y0, the couplings of the mediator to gluons and photons
are given, at the leading order, by the effective operators:

L
Y0
g = −

1

4

gg(Q
2)

v
Ga
µνG

a,µνY0 and L
Y0
γ = −

1

4

gγ (Q
2)

v
FµνF

µνY0 ,

(12)
with the effective couplings being

gg(Q
2) = gSM

αs

3π

3

2
FS

(4m2
t

Q2

)

and gγ (Q
2) = gSM

8αe

9π

3

2
FS

(4m2
t

Q2

)

,

(13)
where Q2 denotes the virtuality of the s-channel resonance, while
FS is the one-loop form factor

FS(x) = x
[

1+ (1− x) arctan2
( 1
√

x− 1

)]

. (14)

Similar expressions can be retrieved for the pseudo-scalar case
(see e.g., Haisch and Re, 2015; Arina et al., 2017). Because of the
hierarchy between the strong and the electromagnetic couplings
(α2s /α

2
e ∼ 100), the Y0 partial width into a pair of gluons is always

larger than the one into a pair of photons. The expressions for tree
level and loop-induced partial widths are provided in Arina et al.
(2016).

Let us first discuss the case of pure scalar Y0 and summarize
briefly all the relevant LHC and dark matter searches to constrain
its parameter space:

• LHC /ET searches. As this DMsimp features Yukawa-type
couplings, the most relevant tree-level process at the LHC
is dark matter pair production associated with a top-
quark pair (CMS Collaboration, 2014). Similarly to Higgs
production, at one loop, gluon fusion gives rise to /ET + jet
signatures (Khachatryan et al., 2015a), mono-Z (Khachatryan
et al., 2016) and mono-h (Aad et al., 2016), which are
phenomenologically relevant.

• LHC mediator searches. The mediator is produced in
association with top-quark pairs (Aad et al., 2015a), or via the
loop-induced gluon fusion process. These searches are relevant
for mediators produced on-shell, or close to on-shell, which
decay back into top pairs if kinematically allowed, or a pair of
jets (CMS, 2015) or photons (Khachatryan et al., 2015b). For
the heavy mediator case, the four-top final state (Khachatryan
et al., 2014) can be also relevant.

• Relic density. The dark matter achieves the correct relic
density in three separated regions. If mDM > mmed the relic
density is set by the t-channel annihilation into a pair of
mediators. Above the top threshold, resonant annihilation into
top-quark pairs is efficient enough to lead to the correct value
for �DMh2. For mDM < mt the resonant annihilation into a
pairs of gluon leads to the correct relic density for a very fine
tuned part of the parameter space. This is due to the very small
decay width into gluons.

• Indirect detection. All annihilation processes are p-wave
suppressed, hence all fluxes of gamma rays, cosmic rays and
neutrinos produced by this model are well below the present
and future reach of indirect detection probes.

• Direct detection. The interaction Lagrangians in
Equations (5) and (6), after some manipulations to express
it in terms of nucleus instead of nucleons, reduces to the
operator X̄XN̄N. This is equivalent to the O

NR
1 operator (see

Table 1), which corresponds to the usual spin-independent
interaction. The scalar DMsimp is hence highly constrained
by the XENON1T and LUX experimental upper bounds.

All the leading order relevant diagrams for Y0 and dark matter
production at the LHC and dark matter annihilation/scattering
in astroparticle experiments are summarized in
Figures 2, 3.

The result of the comprehensive studies are presented in
Figures 4–6, from Haisch and Re (2015), Arina et al. (2016), and

Ambrogi et al. (2018), assuming a narrow width approximation.
Figure 4 illustrates the mono-jet + /ET constraints on fixed slices

of the model parameter space (red regions). It is clear that mono-
jets + /ET searches constrain the model parameter space for large

values of the Y0-SM coupling, gSM ≥ 3.5. The same couplings
contribute to the direct detection signal, σ SI

n ∝ g2SMg2DM/m
4
med

,

and lead to large elastic scattering cross sections, already excluded

by LUX (blue solid line). Also shown is the EFT limit, which sets
in for heavy mediators. Notice that mono-jets (and mono-X) +
/ET searches are sensitive to the region mmed > 2mDM, where

typically the dark matter over-closes the universe, if considered
as a pure thermal relic. Figure 5A, illustrates the reach of the

tt̄ + /ET search at 8 TeV, where NLO simulations, that reduce
the theoretical errors, are used. Similarly to the case of mono-
jets + /ET , the mediator should be heavier than twice the dark
matter mass, in order to be able to decay into invisible states;
and the constraints are sensitive to large gSM couplings. In
Figure 5B we show the behavior of the relic density calculation
for a 2D scan over the mass parameters and couplings fixed

at 1 [this is one of the benchmark point recommended by
the LHC DM working group (Boveia et al., 2016)]. The black

line represents the values of masses that achieve the correct
�DMh2, the blue region denotes under-abundant dark matter
(mostly leaving in the region mDM > mmed and dominated by
the t-channel annihilation into mediator pairs), while the gray
region stands for over-abundant dark matter (mostly covering
the region mmed > 2mDM, where /ET searches are relevant).
Figure 6 illustrates a comprehensive parameter space sampling
of the model, with the assumption that the dark matter is a
thermal relic and constitutes 100% of the matter content of
the universe. Couplings are freely varied in between 10−4 and
π . The relic density measurement rules out completely the
region sensitive to /ET searches, while direct detection disfavors
at 90% CL regions with a light mediator for a wide range of
mDM. Resonance searches are relevant and constrain the region
mDM > mt . Di-photons are sensitive to the parameter space
mmed < 2mt , while the tt̄ and 4 top searches are sensitive to
mmed > 2mt . A summary of the search sensitivities is provided
in Table 2.
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FIGURE 2 | Summary of the leading diagrams contributing to dark matter astrophysical and cosmological searches in the s-channel DMsimps. Color code: red lines

denote the dark matter particles, black lines are for SM fermions, purple lines for SM vector bosons, blue lines for gluons and green lines (dashed for the scalar

mediator) for the mediator. The spin-1 and spin-2 cases are obtained simply by replacing Y0 with the spin-1 and spin-2 mediators, except for the case of direct

detection, where the first diagram contributes to SI and SD for spin-0 and spin-1, while the second diagram is for the spin-2 case in the minimalistic model. GC stands

for Galactic Centre.

Moving on to the pure pseudo-scalar case (Banerjee et al.,
2017), the relevant LHC and dark matter searches are:

• LHC /ET searches. These are the same as for the scalar
case.

• LHC mediator searches. These are the same as for the
scalar case. By switching on the couplings to leptons,

an additional relevant search is the production via gluon
fusion or in association with a pair of bottom-quarks, of
the mediator decaying into a pair of τ leptons (A →

τ+τ−) (CMS Collaboration, 2016d). This holds for a scalar Y0

as well.
• Indirect detection. The annihilation channels with Y0

exchanged in the s-channel are s-wave dominated (i.e., XX̄ →

gg, tt̄), hence the pseudo-scalar mediator model can be

constrained by gamma-ray and cosmic-ray searches.
• Direct detection. Direct detection is not sensitive to pseudo-

scalarmediators. This can be understood by looking atTable 1:
the high-energy Lagrangians of the pure pseudo-scalar case are
mapped intoO

NR
6 . This non-relativistic operator is suppressed

by the momentum transfer to the fourth power, hence the
current direct detection experiments are insensitive to it,

unless the mediator is of the order of the MeV Arina et al.
(2015).

The result of the analysis are illustrated in Figure 7 from Banerjee
et al. (2017). Figure 7A shows all astrophysical and cosmological

constraints for the dark matter: Fermi-LAT exclusion limits from
dSphs are more stringent than both anti-proton bounds (as
well as more robust in terms of astrophysical uncertainties) and
gamma-ray line searches. Figure 7B shows the most stringent
dark matter constraints combined with the LHC searches. A
thermal relic scenario lives in the narrow band in between the
black and the red solid lines. It is a narrow region because it
is dominated by resonant s-channel annihilation, which is fine
tuned however occurs in all dark matter models featuring an
s-channel mediator. /ET searches probe a region which is already
challenged by the Fermi-LAT dSph constraints. On the other

hand, di-photons, tt̄ and τ leptons can probe the mediator mass
as low as 100 GeV and challenge the left-hand side region where
dark matter is a viable thermal relic. The projection for the

exclusion bounds coming from the Fermi-LAT satellite after

15 years of operation (red dashed line) shows that these data
can basically probe the whole parameter space of the model
(everything on the left hand side of the curve is excluded). Notice

that additional dark states and mediators can affect the relic
density and indirect detection regions. However the changes are

supposed to go both in the same directions, hence the region

allowed by Planck and Fermi-LAT will remain narrow. LHC
bounds formmed < 2mt can change sensibly if additional scalars

are introduced, as new decay channels will become available;
conversely the constraints for mmed > 2mt are robust and will

be qualitatively unaltered.
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FIGURE 3 | Schematic of leading order diagrams contributing to dark matter and mediator searches at the LHC in the s-channel DMsimps. MET stands for missing

transverse energy. The color code is as in Figure 2.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org September 2018 | Volume 5 | Article 30107

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Arina Constraining Dark Matter Simplified Models

FIGURE 4 | DMsimp: s-channel spin-0 scalar mediator and Dirac dark matter. (A) Present mono-jet exclusion region at 95% CL (red contour and region within) for

scalar mediators in a 2D scan of the parameter space in the {gSDM, gS
SM

}-plane. The fixed values of the two parameters over which the scan is not performed are

indicated in each panel. For comparison, we show the region ŴS > MS (brown, with ŴS being the mediator width), the LUX 90% CL exclusion limits on σSIn (solid blue

curve, excludes above and on the right of the curve), the parameter space for under-abundant dark matter (�DMh
2 < 0.11, dot-dashed purple line), the EFT limit (red

dashed line) and the region for which MS > 2mχ (black dotted line). (B) Same as (A) in the {mχ ,MS}-plane. Figures taken from Haisch and Re (2015). The reader

can identify gSDM = gDM, gS
SM

= gSM, mχ = mDM and MS = mmed with respect to the convention used in the review. Haisch and Re (2015) is distributed under the

terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s)

and source are credited.

FIGURE 5 | DMsimp: s-channel spin-0 scalar mediator and Dirac dark matter. (A) Constraints from the CMS 8TeV tt̄+ /ET analysis in the {mX ,mY }-plane. The top

and dark matter couplings to the mediator are set to 4, as labeled. The next to leading order (NLO) exclusions are shown. Figure taken from Arina et al. (2016). The

reader can identify mX = mDM and mY = mmed with respect to the convention used in the review. (B) Dark matter relic density in the {mDM,mmed}-plane. The gray

region denotes over-abundant dark matter, while the light blue region is for under-abundant dark matter. The black solid line/dark blue points denote the parameter

space for which the dark matter has the correct relic density. The orange dashed lines stand for mmed = mDM and mmed = 2mDM, as labeled. The couplings are

fixed at the values labeled in the plot. Figure taken from Ambrogi et al. (2018). The reader can identify gq = gSM with respect to the convention used in the review.

Arina et al. (2016) is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any

medium, provided the original author(s) and source are credited, while (Ambrogi et al., 2018) is distributed with a non-exclusive arXiv license.

Other studies of the spin-0 case are for instance (Buckley et al.,
2015; Harris et al., 2015; Dolan et al., 2016; du Pree et al., 2016),
while details on loop-induced process for mono-jet + MET can
be found in Haisch et al. (2013), Buckley et al. (2015), Harris

et al. (2015), Haisch and Re (2015), and Backović et al. (2015).
Leptonic couplings have been introduced in e.g., Albert et al.
(2017a). Similarly, Y0 couplings to the SM gauge bosons are
discussed in Neubert et al. (2015).
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FIGURE 6 | DMsimp: s-channel spin-0 scalar mediator and Dirac dark matter.

Results of a 4D parameter sampling projected onto the {mX ,mY }-plane,

assuming a scenario of thermal dark matter. All gray points satisfy the relic

density, narrow width assumption and direct detection constraints. The white

region with mX < mY is excluded by relic density constraints (over-closure of

the universe), while in the left upper corner the white region is excluded by the

LUX and CDMSLite upper limits at 90% CL. LHC constraints are imposed by

the colored points, as labeled. The green points are excluded by the di-photon

searches, the red points are excluded by tt̄ searches and the blue points by

the four-top search. Figure taken from Arina et al. (2016). The reader can

identify mX = mDM and mY = mmed with respect to the convention used in

the review. Arina et al. (2016) is distributed under the terms of the Creative

Commons Attribution License (CC-BY 4.0), which permits any use, distribution

and reproduction in any medium, provided the original author(s) and source

are credited.

3.1.2. Spin-1 Mediator
The material discussed in this section is based on these
selected (Chala et al., 2015; Carpenter et al., 2016; Heisig
et al., 2016; Albert et al., 2017a), that exhaustively exemplify
the main features of vector and axial-vector mediators in
the s-channel and perform comprehensive studies of the
model, including astrophysical and cosmological dark matter
searches.

The interaction Lagrangian of a spin-1 mediator (Y1) with a
Dirac fermion dark matter particle (X) is given by:

L
Y1
X = X̄γµ(g

V
DM + gADMγ5)X Y

µ
1 , (15)

and with quarks by:

L
Y1
SM =

∑

i,j

[

¯diγµ(g
V
dij

+ gAdijγ5)dj + ūiγµ(g
V
uij

+ gAuijγ5)uj

]

Y
µ
1 ,

(16)
where g

V/A
DM and g

V/A
u/dij

are the vector/axial-vector couplings of the

dark matter and quarks with Y1. For a Majorana dark matter
candidate the vector coupling is not allowed.

The pure vector and pure axial-vector mediator scenarios are
obtained by setting the parameters in the Lagrangians (15) and
(16) to

gVX ≡ gDM and gAX = 0 , (17)

gVuii = gV
dii

≡ gSM and gAuii = gA
dii

= 0 (18)

and

gVX = 0 and gAXD
≡ gDM , (19)

gVuii = gV
dii

= 0 and gAuii = gA
dii

≡ gSM , (20)

respectively, where we assume quark couplings to the mediator
to be flavor universal and set all flavor off-diagonal couplings
to zero. Similarly to the case of spin-0 mediator, this model
has only four free parameters, defined as in Equation (28). The
universality assumption of the couplings is also justified by gauge
invariance, which sets very tight constraints on the relation
among couplings (see e.g., Bell et al., 2015). Even though the
Lagrangians presented above do not preserve gauge invariance,
the assumption of having different couplings to up- and down-
type quarks, as e.g., in Chala et al. (2015), can lead to artificial
enhanced cross sections which are not representative of gauge

invariant theories.
In this model the couplings to leptons are not considered,

hence it can be seen as a lepto-phobic Z′ model (see e.g., Duerr
and Fileviez Perez, 2015). Leptonic couplings are indeed very
tightly constrained by di-lepton resonant searches (Dudas
et al., 2009; Arcadi et al., 2014; Lebedev and Mambrini,
2014) and can be switched off to allow to have large quark
couplings.

Let us first discuss the complementarity of searches for the

case of a pure vectorial Z′ model, hence the darkmatter candidate
can only be a Dirac fermion (Chala et al., 2015; Carpenter et al.,
2016; du Pree et al., 2016).

• LHC /ET searches. ATLAS and CMS searches for jets in
association with /ET (due to initial state radiation of a gluon)

place strong constraints on this model (Aad et al., 2015b;

Khachatryan et al., 2015a).
• LHC mediator searches. The di-jet final state is a very

important complementary channel, as it has been pointed
out in Chala et al. (2015). Di-jets can be produced via Y1

Drell-Yan process or via associated production. Stringent
bounds for di-jet invariant mass above 1 TeV are provided by
ATLAS (ATLAS Collaboration , 2013; Aad et al., 2015c) and
CMS (Khachatryan et al., 2015c), while complementary and

equally tight bounds for smaller masses are provided by the
UA2 (Alitti et al., 1993) experiment and the Tevatron CDF
experiment (Aaltonen et al., 2009).

• Relic density. The dark matter achieves the correct relic

density in a small narrow band for fixed couplings. If
mDM > mmed the relic density is set by the t-channel
annihilation into a pair of mediators, which is an s-wave
process proportional to g4DM. For gDM ∼ 1 this cross section

is small and the dark matter is under-abundant. For the

benchmark points chosen by the LHC Dark matter working
group (Albert et al., 2017a), the correct relic density is
achieved by the exchange in the s-channel of a Y1, leading to
resonant annihilation into quark pairs, which is also s-wave. Of

course, the introduction of leptonic couplings can change this

classification.
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FIGURE 7 | DMsimp: s-channel spin-0 pseudo-scalar mediator and Dirac dark matter. (A) Dark matter constraints on the model parameter space in the

{yχ ,mχ }-plane. The other parameters are fixed as labeled. Below the black line the universe is over-closed, while the region above the red solid line is excluded by the

Fermi-LAT dSph gamma-ray searches. The region above the dotted blue line is disfavored by AMS 02 anti-proton measurements, whereas the region above the

yellow dot-dashed line is excluded at 95% CL by gamma-ray line searches from the Galactic Center. The red dashed curve denotes the expected sensitivity of the

Fermi-LAT searches in dSPhs after 15 years of data. (B) Dark matter and collider searches presented in the {mχ ,mA}-plane. The other parameters are fixed as

labeled. If considered as thermal relic the dark matter allowed region is contained in between the red and black solid lines. The shaded regions are excluded by LHC

searches at 95% CL: mono-jet (hatched green), A → τ+τ− (gray), di-photons (blue), and tt̄ (hatched gray). Figures taken from Banerjee et al. (2017). The reader can

identify mχ = mDM and mA = mmed, cu = cd = gSM and yχ = gDM with respect to the convention used in the review. Banerjee et al. (2017) is distributed under the

terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s)

and source are credited.

FIGURE 8 | DMsimp: s-channel spin-1 vector (A) and axial-vector (B) mediator and Dirac dark matter. (A) Combined constraints at 95% CL from the LUX experiment

(orange dotted line and orange shaded region), from mono-jet searches (green dashed line and green shaded region) and di-jets (blue dot-dashed line and region in

between) in the {MR,mχ }-plane for fixed couplings, as labeled. We also show the region that over-closes the universe (red) and the region excluded by perturbativity

(gray). (B) Same as (A). The reader can identify mχ = mDM and MR = mmed, g
V/A
χ = gDM, and g

V/A
q = gSM with respect to the convention used in the review.

Figures taken from Chala et al. (2015), distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and

reproduction in any medium, provided the original author(s) and source are credited.

• Indirect detection. 〈σv〉0 receives contributions from the
same channels that fix the relic density. For the details on

the annihilation cross section we refer to Albert et al. (2017a).
However in the literature, at the best of our knowledge, there

are no results on constraints from Fermi-LAT dSph gamma-
ray searches that include the t-channel term.

• Direct detection. The interaction Lagrangians in
Equations (15) and (16) are equivalent to O

NR
1 , see Table 1.

This non-relativistic operator describes the usual spin-
independent elastic scattering off nuclei. The vector model
is hence highly constrained by the XENON1T and LUX
experimental upper bounds.
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FIGURE 9 | DMsimp: s-channel spin-1 axial-vector mediator and Majorana dark matter. (A) Combined constraints in the {MV ,mχ }-plane for fixed couplings and for a

narrow mediator width ŴV = 0.01MV , as labeled. We show the region disfavored by mono-jet searches from ATLAS (blue solid line including the region below and on

the left) and CMS (red solid line including the region below and on the left), both at 95% CL, the LUX exclusion bound (purple solid line and region below) and by

IceCube searches (green solid line and region below it), both at 90% CL.The light gray region stands for over-abundant dark matter, while the gray band denotes the

region where the dark matter relic density matches the observed one. The blue region does not allow for a consistent solution of ŴV in terms of Mv, mχ and
√

gχgq

within this DMsimp. (B): Same as (A) for a large mediator width ŴV = 0.5MV . The orange region denotes the constraint from di-jets searches. Figures taken

from Heisig et al. (2016). The reader can identify mχ = mDM and MV = mmed, gq = gSM and gχ = gDM with respect to the convention used in the review.

Permission to reuse the figures from Heisig et al. (2016) have been granted under the license RNP/18/004002.

The leading order relevant diagrams for Y1 and dark matter
production at the LHC and dark matter annihilation/scattering
in astroparticle experiments are summarized in Figures 2, 3 (the
same holds for the pure axial-vector mediator).

Figure 8A, from Chala et al. (2015), shows the
complementarity of collider, cosmological and direct detection
searches, with fixed couplings gSM = gDM = 1. Basically the
whole parameter space of the model is strongly disfavored by
the current limits of direct detection experiments. Di-jets and
mono-jets have a rather smaller impact on the model parameter
space. Notice however that, contrary to the case of spin-0
mediator, collider searches are sensitive to smaller values of gSM,
even of the order of O(0.1). Mono-X searches are more sensitive
to the region for which mmed > 2mDM, in which the DMsimp
features over-abundant dark matter. This assumption can be
circumvented by invoking for instance dark matter non thermal
production or entropy injection. Conversely, di-jet constraints
are rather independent of the dark matter mass and cover
all dark matter regions. Constraints from Fermi-LAT dSphs
have been discussed in Carpenter et al. (2016): the parameter
space of the model is most restricted for mmed ∼ 2mDM,
because of the enhancement in 〈σv〉0 due to the resonance. If
the vector mediator is much heavier than the dark matter, the
total annihilation cross section drops and the parameter space
becomes suddenly less constrained. This can be understood by
the fact that annihilation occurs far away from the resonance,
hence 〈σv〉0 decreases quickly.

Moving to the axial-vector case, the dark matter can be either
Dirac or Majorana. The most relevant dark matter searches
are (Chala et al., 2015; du Pree et al., 2016; Heisig et al., 2016):

• LHC /ET searches and mediator searches. These are exactly
the same as in the pure vector case described above.

• Relic density. The s-channel process is helicity suppressed if
gVDM = 0, namely it is proportional to m2

q, while the t-channel
is s-wave, taken properly into account in the analysis in Albert
et al. (2017a).

• Indirect detection. In the analyses performed so far there
are no bounds from gamma-ray or cosmic-ray searches
because the t-channel process has not been properly taken
into account. However, relevant constraints for the model

parameter space arise from the IceCube upper limits on σ SD
p ,

where all annihilation processes contributing to 〈σv〉0 have
been properly taken into account.

• Direct detection. Spin-independent elastic scattering is

superseded by the ordinary spin-dependent elastic scattering
(corresponding to O

NR
4 in Table 1). This operator is less

constrained by direct detection experiments with respect to
O

NR
1 . The most constraining experiment is LUX for σ SD

n .

The right panel of Figure 8 from Chala et al. (2015), describes the

complementarity of collider, cosmological and direct detection
searches, with fixed couplings gSM = gDM = 1, for the axial-
vector model. The impact of the LUX exclusion limit is rather
reduced with respect to the pure vector case. Hence collider
bounds have a nice degree of complementarity for this model,
disfavoring the majority of the viable parameter space. The
gray region is excluded by the perturbativity bound, obtained
by imposing mmed > g4DMmDM

√

4π , which comes from the
requirement that the annihilation cross section remains well-

behaved at large dark matter masses. Figure 9, from Heisig et al.
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(2016), shows the impact of the IceCube bounds on the model
parameter space for fixed product of the couplings and for a
narrow Y1 width (Figure 9A) and for a large mediator width
(Figure 9B), as ŴY1 ≡ ŴV is taken as a free parameter. In the very
narrow width approximation, di-jet constraints are irrelevant,
while mono-jet + /ET searches are much less affected by changes
in the mediator width. The exclusion bound stemming from
LUX does not depend on the mediator width, and remains
unchanged in the two cases and constrain the DMsimp parameter
space where dark matter is either a thermal relic or under-
abundant. The IceCube exclusion limit has a subtle dependence
on the mediator width, as the annihilation rate is sensitive
to both the s-channel process, which depends on gSM × gDM,
and on the t-channel process, which depends only on gDM, for
mDM ≥ mmed

10. In Figure 9A, IceCube and LUX probe a
complementary region, in which mDM > mmed, with respect
to LHC searches. LUX constraints are relevant at intermediate
dark matter masses, while IceCube lower limits overtake all
other constraints at large dark matter masses. In case of a
large mediator width, the IceCube bound overlaps with the di-
jet constraints. From a refined analysis on di-jets in Fairbairn
et al. (2016), it has been shown that for mmed < 3 TeV and
ŴY1 > 0.25mmed, the collider constraints disfavor the possibility
that the WIMP-quark interactions are responsible for setting the
dark matter relic density. A summary of the search sensitivities
and their dependency on the dark matter nature is provided in
Table 2.

The LHC Dark Matter working group has suggested to
consider leptonic couplings as well (Albert et al., 2017a). These
should be however at least one order of magnitude smaller than
the mediator-quark couplings, to not completely exclude the
model. Interestingly couplings to neutrinos would also be present
because of gauge invariance requirements; these couplings will
supply an additional /ET channel with the consequences of
enhancing certain mono-X + /ET signals.

Other studies of the spin-1 DMsimps are for
instance (Buchmueller et al., 2015; Harris et al., 2015; Jacques
and Nordstrom, 2015; Bell et al., 2016a; Brennan et al., 2016;
du Pree et al., 2016; Fairbairn et al., 2016; Jacques et al., 2016).
The latter papers in the list already consider a gauge invariant
completion of the Z′ model, instead of the DMsimp Lagangrians
in Equations (15) and (16). This issue will be discussed in
section 4.

3.1.3. Spin-2 Mediator
The material presented in this section is based on these selected
(Lee et al., 2014a; Kraml et al., 2017; Zhang et al., 2017), as they
exemplify the main features of a spin-2 mediator in the s-channel
as compared with LHC searches and indirect detection searches.
The literature on spin-2 mediator is rather reduced with respect
to the spin-0 and spin-1 cases. Relevant works are provided by
these (Garcia-Cely and Heeck, 2016; Dillon and Sanz, 2017;

10The exclusion bounds are not rescaled, as the authors assume that the dark

matter makes up 100% of the matter content of the universe in the white region.

Thermal production is then supplemented by some other mechanism to achieve

the observed value of�DMh2.

Dillon et al., 2017; Rueter et al., 2017; Zhu and Zhang, 2017; Yang
and Li, 2018).

Even though the exchange of a graviton in the s-channel is
not considered in the recommendations of the LHC Dark Matter
working group (Boveia et al., 2016), it entails several features in
common with the DMsimp philosophy. It is possible to build
a dark matter simplified model out of a gravity-mediated dark
matter model proposed in Lee et al. (2014b), even though it
requires a dedicated validation work, as such model is, in general,
not renormalizable. This type of models have as well driven a lot
of attention at the time of the 750 GeV excess in the di-photon
channel (see e.g., Han et al., 2016; Martini et al., 2016; Arun and
Saha, 2017) and the references therein.

The definition of the model follows the approach of DMsimps.
We consider dark matter particles which interact with the
SM particles via an s-channel spin-2 mediator. The interaction
Lagrangian of a spin-2 mediator (Y2) with the dark matter (X) is
given by Lee et al. (2014b):

L
Y2
X = −

1

3
gTX TX

µνY
µν
2 , (21)

where 3 is the scale parameter of the theory, gTX is the

coupling between Y2 and the dark matter, and TX
µν is the

energy–momentum tensor of the dark matter field. The energy–
momentum tensors of the dark matter are:

T
XR
µν = −

1
2 gµν (∂ρXR∂

ρXR −m2
XX

2
R)+ ∂µXR∂νXR , (22)

T
XD
µν = −gµν (XDiγρ∂

ρXD −mXXDXD)+
1
2 gµν∂ρ (XDiγ

ρXD)+
1
2

XDi(γµ∂ν + γν∂µ)XD −
1
4 ∂µ(XDiγνXD)−

1
4 ∂ν (XDiγµXD) , (23)

T
XV
µν = −gµν (−

1
4Fρσ F

ρσ
+

m2
X
2 XVρX

ρ
V )+ FµρF

ρ
ν +m2

XXVµXVν ,(24)

where Fµν is the field strength tensor. We consider three dark
matter spins: a real scalar (XR), a Dirac fermion (XD), and a vector
(XV ). The interaction Lagrangian with the SM particles is:

L
Y2
SM = −

1

3

∑

i

gTi Ti
µνY

µν
2 , (25)

where i denotes the SM fields: the Higgs doublet (H), quarks
(q), leptons (ℓ), and SU(3)C, SU(2)L and U(1)Y gauge bosons
(g,W,B). Following (Ellis et al., 2013; Englert et al., 2013), the
phenomenological coupling parameters are defined as:

gTi = {gTH , g
T
q , g

T
ℓ , g

T
g , g

T
W , gTB } (26)

without assuming any UV complete model. Notice that the
interaction Lagrangian in Equation (25) defines couplings of the
graviton with all SM fields. This hypothesis is more generic with
respect to the standard assumptions of the DMsimps, where
the mediator interacts only with the quark sector. The energy-
momentum tensors of the SM fields are similar to Equation (22)
and their explicit expression is provided in e.g., Das et al. (2017).

Complying with the DMsimp idea, it is instructive to consider
universal couplings between the spin-2 mediator and the SM
particles:

gTH = gTq = gTℓ = gTg = gTW = gTB ≡ gSM . (27)
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With this simplification, the model has only four independent
parameters11, two masses and two couplings, as for the other
DMsimps considered so far:

{mX , mY , gDM/3, gSM/3} . (28)

This scenario with a universal coupling to SM particles is
realized, e.g., in the original Randall–Sundrum model of
localized gravity (Randall and Sundrum, 1999). With this choice
of couplings the mediator decays mainly into gluons and
light quarks, while the di-photon branching ratio is only ∼

5%. The decay into top-quarks or vector bosons is relevant
when kinematically allowed. As already discussed in the case
of spin-1 mediator, the Y2-neutrino coupling leads to /ET
signals that are independent of the decays into dark matter
particles and provide additional /ET channels for the mono-X
signals.

In the following, to exemplify the complementarity
of dark matter searches, we will focus on vectorial dark
matter.

• LHC /ET searches. The Y2 production is mostly initiated
by gluon fusion at low masses, which suppresses mono-
photon, mono-Z and mono-W signals, as they can occur only
in quark initiated processes. Hence the most constraining
missing energy searches for the spin-2 model are a single
mono-jet + /ET (ATLAS Aaboud et al., 2016a) and 2–6 jets +
/ET (ATLAS Aaboud et al., 2016b).

• LHC mediator searches. Resonance searches from LHC Run
2 data [ATLAS (ATLAS Collaboration, 2016a,b,c,d,e,f; CMS
Collaboration, 2016a) and CMS (CMS Collaboration, 2015,
2016b,c; Khachatryan et al., 2017a,b; Sirunyan et al., 2017a)]
give strong constraints on the graviton mass in between few
hundreds of GeV and several TeV. The considered final states
are jj, ll, γ γ ,W+W−,ZZ, hh, b¯b, tt̄.

• Relic density. The dark matter can achieve the correct relic
density via the s-channel exchange of a graviton, especially in
the region mmed ∼ 2mmed, and via t-channel annihilation
into a pairs of Y2, which subsequently decay into SM particles,
in the region mDM < mmed. Both annihilation channels
are s-wave in the case of vectorial dark matter. The analytic
expression for these channels are provided in Lee et al. (2014a).

• Indirect detection. Annihilation via s-channel into SM
particles with Y2 exchange can produce both a continuum
photon spectrum and gamma-ray lines. Both signals can be
constrained by Fermi-LAT and HESS spectral feature searches
at the Galactic Centre and by Fermi-LAT dSph exclusion
limits. Additionally the t-channel annihilation process can
give rise to box-shaped gamma-ray signatures (see e.g., Ibarra
et al., 2015a), which are however only poorly constrained by
Fermi-LAT searches for spectral features toward the Galactic
Centre (Lee et al., 2014a).

• Direct detection. The WIMP-gluon interaction is relevant
for direct searches: this coupling generates a twist-2 operator
which induces a spin-independent cross-section dark matter-
nucleon. This cross section can be in tension with the

11We have dropped the superscript T for simplicity.

XENON1T for dark matter masses below roughly 400 GeV
(see Chu et al., 2012; Lee et al., 2014b) for the case of
scalar dark matter. However, we couldn’t find a dedicated
analysis illustrating how direct detection impacts the whole
DMsimp spin-2 parameter space. The elastic cross section
WIMP-nuclei can receive additional contributions in non
minimalistic models (Lee et al., 2014a).

The diagrams for dark matter annihilation are illustrated in
Figure 1, while the mediator production at the LHC is shown in
Figure 3.

At present, to the best of our knowledge, there are actually no
comprehensive studies of spin-2 models, which encompass both
LHC and dark matter searches, except for Zhang et al. (2017).
We however refrain from using their results to illustrate the main
features of this model, as they perform a random scan of the
full parameter space. While this is certainly instructive, it is not
necessarily the most optimal pedagogical approach to begin with.
For the sake of the discussion, we choose to show 2D parameter
scans, even though they do not show the complementarity of
searches.

Figure 10, from Lee et al. (2014a); Kraml et al. (2017),
resumes the constraints on slices of the DMsimp parameter space
stemming from LHC searches for amassive graviton, Figure 10A,
and the dark matter gamma-ray searches, Figure 10B. From
Figure 10A, we clearly see that the di-photon and the di-lepton
resonance searches provide the most stringent limit in the
whole mediator mass range, constraining 3/gSM > 100 TeV
for graviton masses below 1 TeV. These searches are rather
independent on the exact dark matter mass value. Mono-jets +
/ET searches become competitive for large values of gSM and, if the
Y2 decays into γ γ and ll, are heavily suppressed. In Figure 10B,
we show the impact of gamma-ray searches. For mDM < mmed,
the exclusion limits from gamma-ray lines provided by Fermi-
LAT disfavor at 95% CL the model parameter space compatible
with the thermal relic assumptions, as the dark matter annihilates
mainly into gg and γ γ . For mDM > mmed the thermal relic
scenario is compatible with Fermi-LAT dSph upper limits and
with the HESS gamma-ray line searches, which are the most
sensitive constraints for large dark matter masses.

Fermionic and scalar dark matter particles are more loosely
constrained by current gamma-ray searches with respect to
vectorial dark matter particles, as 〈σv〉0 is suppressed by p-wave
or d-wave respectively. LHC constraints are less sensitive to the
dark matter spin. The sensitivity to the dark matter particle
nature depends on the hierarchy between gDM and gSM: for
gDM ∼ gSM only jets + /ET searches can differentiate among the
spin of the dark matter candidate; for gSM >> gDM all searches
become sensitive to the dark matter nature. It turns out that the
vectorial case is the most constrained model, while the scalar
DMsimp is the less constrained and the fermionic case lies in
between.

3.2. t-Channel Mediator Models
In this section we discuss the phenomenology of t-channel
DMsimps and their current state of art with respect to the
experimental situation. t-channel models couple directly the dark
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FIGURE 10 | DMsimp: s-channel spin-2 mediator. (A): Summary of the 13 TeV LHC constraints in the {3/gSM,mY }-plane. The other parameters are fixed as labeled.

The differences among the different dark matter spins is not visible in the limits from the resonance searches (as labeled in the plots), conversely to the case of jets +
/ET searches (red lines as labeled). Regions below each lines are disfavored at 95% CL. Information on the mediator width-to-mass ratio is provided by the gray dotted

lines. Figure taken from Kraml et al. (2017). The reader can identify mY = mmed, gX = gDM and mX = mDM with respect to the convention used in the review.

(B): Gamma-ray bounds from Fermi-LAT (d.G., line, G.C.) and HESS telescope (lines) are shown in case of vector dark matter in the {mG/3,MX }-plane, for a fixed

graviton mass as labeled. Couplings are not universal, but fixed at gX = 1, gV = gg = gγ = 0.3 and gh = 0, and mG/3 corresponds to the Y2-WIMP coupling gDM.

The green line corresponds to the region of parameter space achieving the correct �DMh
2. Figure taken from Lee et al. (2014a). The reader can identify MX = mDM

and mG = mmed with respect to the convention used in the review, while d.G. and G.C. stand for dSphs and Galactic Center respectively. Both Kraml et al. (2017)

and Lee et al. (2014a) are distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction

in any medium, provided the original author(s) and source are credited.

matter sector with the SM fermions (primarily quarks), leading
to a different phenomenology with respect to s-channel models.
The fields in the dark sector are both odd under a Z2 symmetry
to ensure the stability of the dark matter candidate, while in
s-channel models the mediator is usually assumed to be even
under the Z2 symmetry12. As a consequence, LHC searches are
always characterized by /ET signals, as the mediator is produced
each time in combination with a dark matter particle. In order
to connect the dark matter via t-channel with SM quarks there
are two main possibilities: scalar dark matter and fermionic
mediator, or fermionic dark matter and scalar mediator. The
dark matter cannot have color charge, hence the mediator
has to be colored. Additionally, to comply to MFV, either the
mediator or the dark matter should have a flavor index. Here we
assume to be the former case. For uncolored mediator models
see (Garny et al., 2015), while for flavored dark matter we refer
to Agrawal et al. (2012, 2014); Kile (2013). From the point of
view of QCD corrections, the t-channel and s-channel models
are very different, as in the former the mediator can be either
neutral or colored, rendering more involved the treatment of
NLO corrections. This has not been yet fully investigated in the
literature, due to its complexity.

Among the vast literature on t-channel models (see

e.g., Blumlein et al., 1997; Cao et al., 2009; Bell et al., 2011,
2012, 2016b; Barger et al., 2012; Bai and Berger, 2013, 2014;
Garny et al., 2013, 2014, 2018; Giacchino et al., 2013, 2014,
2016; Toma, 2013; An et al., 2014; Chang et al., 2014a,b; Ibarra

12In DMsimp s-channel models, the mediator cannot be odd under the Z2
otherwise formmed < mDM it would be playing the role of dark matter candidate.

et al., 2014, 2015b; Papucci et al., 2014; Yu, 2014; Abdallah et al.,
2015; Abercrombie et al., 2015; Brennan et al., 2016; Bringmann
et al., 2016; Carpenter et al., 2016; De Simone and Jacques,
2016; Goyal and Kumar, 2016; El Hedri et al., 2017), we choose
to present the results obtained in Colucci et al. (2018) for the

case of scalar dark matter and fermionic mediator, which is the
most updated analysis at the time of writing. For the case of
fermionic dark matter and scalar mediator we discuss the results
presented in Garny et al. (2015), which is a comprehensive
review paper focusing on t-channel simplified models alike the
supersymmetric one.

Let us first discuss the case of scalar dark matter candidate
S and a vector-like fermionic mediator T. We assume that
the dark matter is a SU(2)L singlet, hence it cannot couple at
tree level with the weak gauge bosons. Consequently the dark
matter hyper-charge is zero, in order to obtain an electrically
neutral particle. The dark matter can couple to either right-
handed or left-handed SM fermions. Here we assume a couplings
with right-handed quarks, in particular only with the third
generation. The main reason is dictated by the fact that right-
handed couplings to quarks play a major role for the LHC and
direct detection phenomenology and the Yukawa of the top is
the largest coupling. The mediator T should be a color triplet,
have opposite hyper-charge with respect to the right-handed
quarks and be a singlet under SU(2)L. The interaction Lagrangian
betweenWIMPs and the SM quarks is then given by Colucci et al.
(2018):

L
T
S = yS ¯TPRt + h.c. , (29)
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where PR is the right-handed chirality projector, and we have
neglected the quartic term connecting the dark matter particle
with the SMHiggs doublet, in the spirit of DMsimp construction.
With these assumptions themodel has only three free parameters:

{mDM, mmed, y} . (30)

This model considers top-philic dark matter, which might
seem more ad- hoc than a generic framework where the dark
matter couples to all generations. However, this is enough to
comprehend all the relevant phenomenology, as in the limit
mDM > mt , the results are strictly equivalent as for the case
in which the dark matter couples to the light quark (or lepton)
generations only. Moreover, at energies comparable with the top
mass, the computation of QCD and bremsstrahlung corrections
are much more involved than in the chiral limit, hence it is
relevant to have the most general framework where to treat
them. We are not providing any detail on this part and refer

to (Bringmann et al., 2017; Colucci et al., 2018) the interested
reader. Notice that if the dark matter was coupled to all three
quark generations with three different vector-like fermionic

mediators, MFV requirements would enforce the three mediator
masses to be equal, as well as their couplings with WIMPs and
quarks.

The dark matter constraints for this model are:

• LHC searches with /ET . There are two types of searches
particularly relevant for this model: (i) supersymmetric
searches of scalar top partners [LEP (Abbiendi et al., 2002)

and LHC (CMS Collaboration, 2017; Sirunyan et al., 2018)],
recasted to constrain the vector-like fermionic mediator of
the model, which is strongly interacting and leads to mainly
tt̄+/ET signals; (ii) the usual darkmatter searches characterized

by a mono-jet + /ET (Aaboud et al., 2016a, 2018; Sirunyan
et al., 2017b,c) (actually the most updated mono-j searches

do include more than one hard jet). NLO QCD corrections
and matching with the parton showers have been taken into
account, in order to comply with the state-of-art modeling of

the LHC signals for the s-channel case.
• Relic density. There are several annihilation processes

contributing to �DMh2, depending on the model parameter

space region. For mDM >> mt the chiral limit is valid
and virtual internal bremsstrahlung (VIB) adds a significative
contribution to the tree level leading order t-channel diagram,
which is helicity suppressed and the first non-zero term
depends on v4 (d-wave). Decreasing mDM just above the top
threshold, the tree level t-channel diagram, which is s-wave, is
the leading contribution to 〈σv〉0. Below the top mass, loop-
induced processes into γ γ and gg can play a role (similarly to
the spin-0 top-philic dark matter presented in section 3.1.1),
while, for mDM . mt the off-shell decay t

∗
→ Wb is relevant.

Additionally, if the dark matter and the mediator masses are
close in mass (within 10%) co-annihilation between S and T is
also relevant, as well as T annihilations.

• Indirect detection. For mDM < mt , annihilation via the
loop induced process into pairs of gluons dominates. This
leads to a prompt photon spectrum. The γ γ final state is

subdominant with respect to the gg final state as already
discussed in section 3.1.1, however it gives rise to box-shaped
gamma-ray signals (the width of the box depends on the mass
hierarchy between S and T: if they are quasi degenerate the
box is very narrow, otherwise it is a wide box). FormDM ∼ mt ,
the dominant annihilation channel is the tree level t-channel,
SS → tt̄, which leads to a continuum spectrum of prompt
photons, detectable by the Fermi-LAT dSph searches. The
same process can be constrained with the anti-proton data
released by AMS 02. VIB with the emission of a photon, a
gluon or a weak boson, has been demonstrated to be the
dominant contribution in the chiral limit (mDM >> mt)
(see e.g., Bell et al., 2011; Giacchino et al., 2013, 2014, 2016;
Bringmann et al., 2016, 2017). The emission of an additional
vector boson lifts the helicity suppression and gives rise to
sizeable 〈σv〉0. If S and T are nearly degenerate in mass, the
SS → tt̄γ process dominates the VIB contribution. This
photon emission gives rise to a sharp spectral feature, that
can be constrained with current gamma-ray line searches.
Indeed, the present telescope resolution does not allow to
discriminate among the sharp edge due to VIB or a true
gamma-ray line (Garny et al., 2015). Direct annihilation of
the dark matter into photon pairs via box diagram is on
the same foot as VIB. On the other hand the annihilation
process SS → tt̄g contributes to the continuum photon
spectrum.

• Direct detection. An effective coupling WIMP-gluons
generates a spin-independent contribution to the elastic
scattering cross section, which is, for mDM < mt , in tension
with the XENON1T bound. Conversely for mDM > mt , σ

SI
n is

negligible and below the neutrino background (Billard et al.,
2014).

The relevant diagrams contributing to all dark matter searches in
this DMsimp are shown in Figure 11, while the dependency on
the dark matter spin is summarized in Table 2.

The results of the comprehensive dark matter study are

illustrated in Figure 12A. Under the assumption that the dark
matter is a thermal relic, the complementarity of dark matter

searches is clearly shown in the plot. Direct detection experiments

probe the region for mDM < mt , while Fermi-LAT, HESS

and AMS 02 are sensitive to a mass range from roughly mt

up to 500 GeV. This shows that anti-matter constraints can

be competitive with gamma-ray searches, modulo the larger
astrophysical uncertainties. LEP searches constrain the most
lightest values of mDM, while CMS searches cover a parameter
space orthogonal to indirect detection. In particular multi-jets
+ /ET searches loose quickly sensitivity with the increase of the
dark matter mass, however the tt̄ + /ET searches are effective in
the regime where the decay T → St happens far from threshold.
Notice that if the decay channel T → St is closed, the mediator
becomes long-lived. This case requires further dedicated studies.

The Majorana dark matter DMsimp exhibits only few

differences with respect to the scalar dark matter model

presented above. We summarize here the most important. Under

the same assumptions made for the fermionic mediator, the
interaction Lagrangian with only a single generation of light
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FIGURE 11 | Schematic of leading order diagrams contributing to all dark matter searches in the t-channel DMsimps with scalar dark matter and fermionic mediator.

The diagrams contributing to LHC searches are specifically drawn for the case of the top-philic model discussed in section 3.2 [for generic fermionic mediator the

reader is referred to De Simone and Jacques (2016) and the references therein]. The case of Majorana dark matter and scalar mediator is easily obtained from the

above diagrams. For fermionic dark matter there is an additional spin-dependent contribution to the direct detection elastic scattering cross section. MET stands for

missing transverse energy. The color code is as in Figure 2.

quark (considering the model in Garny et al., 2015) is given by:

L
T
S = y ˜T∗X̄PRq+ h.c. , (31)

where now the dark matter field is denoted by X and the
mediator by ˜T and q is the light quark, which we assume to

be the u flavor for concreteness for the rest of the section. This

Majorana model is very close to the simplified model considered

in supersymmetric searches at the LHC, as it is implemented in
the Minimal Supersymmetric Model with only light quarks and
the neutralino, except that the coupling y is not fixed at the weak
scale but can be varied freely.
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FIGURE 12 | DMsimp: t-channel. (A) Combined constraints from direct and indirect detection and collider searches in the {(mT /mS − 1),mS}-plane. The gray regions

stand for either under-abundant or for over-abundant dark matter for fermionic mediator and scalar WIMPs. The red region is excluded at 90% CL by XENON1T, while

the red dashed line indicates the region of parameter above the neutrino floor hence detectable by direct detection. The green regions are excluded by Fermi-LAT

dSph constraints on gamma rays and by anti-protons (Cuoco et al., 2018). The orange region denotes the expected sensitivity of 15 years of data taking by

Fermi-LAT. The magenta and blue regions show constraints on scalar top production at LEP and at the LHC, while mono-X + /ET searches disfavor the dark blue

region at 95% CL. Figure taken from Colucci et al. (2018). The reader can identify mT = mmed and mS = mDM with respect to the convention used in the review.

(B) Same as (A) for Majorana dark matter and scalar mediator. The color code is: gray regions denote under- and over-abundant dark matter, while the green regions

are disfavored at 95% CL by jet(s) searches + /ET . The red regions are excluded by XENON100 and LUX at 90% CL. The blue contour levels show the ratio between

the excluded annihilation cross section and the thermal cross section. The regions inside these contour lines are disfavored if the gamma-ray flux from dark matter

annihilation is enhanced relative to the Einasto profile (Einasto and Haud, 1989) by the corresponding factor (more cuspy profiles or presence of substructures). Figure

taken from Garny et al. (2015). The reader can identify mχ = mDM and mη = mmed with respect to the convention used in the review. Both Colucci et al. (2018)

and Garny et al. (2015) are distributed under the non-exclusive arXiv license.

• LHC searches with /ET . As for the fermionic dark matter case,
themost stringent searches are given by jets + /ET andmono-jet
+ /ET . The first arises from the direct production of the colored
mediator that further decays into the dark matter and light
quarks. The latter stems from the loop-induced production of
a dark matter pair that recoils against a jet.

• Relic density. The annihilation processes contributing to the
dark matter relic density are analogous to the case of scalar
dark matter in the chiral limit. In this limit, the XX → uRuR
process is p-wave suppressed.

• Indirect detection. This is completely analogous to the scalar
dark matter case in the chiral limit, except that the t-channel
tree level annihilation diagram is still helicity suppressed and
the first non zero term in the chiral limit is p-wave. The authors
in Garny et al. (2015) consider as well the exclusion limits on
σ SD
p stemming from IceCube. The vector boson generating the

neutrino flux from the Sun arises from VIB: XX → uRuRV
and subsequently V = W,Z, h shower and hadronise and
produce a continuum spectrum for the neutrinos. The IceCube
bounds are less performant that direct detection searches to
constrain the model parameter space, hence are not shown in
the following.

• Direct detection. With respect to the diagrams shown in
Figure 11, the elastic cross section off nucleus receives an
additional contribution from the s-channel exchange of ˜T,
which is not present in the scalar dark matter case. There
is a small contribution from the spin-independent operator,
while the leading contributions to the elastic cross section are
proportional to a combination of ONR

4 , ONR
8 , and O

NR
9 , which

are spin-dependent operators. Still the most constraining
bounds on the model come from spin-independent
limits from the LUX experiment, as these are orders of
magnitude more sensitive than the spin-dependent upper
bounds.

The results of the comprehensive darkmatter study are illustrated

in Figure 12B. The picture is rather similar to the case of

scalar dark matter, assuming a thermal dark matter scenario.
Constraints from jets + /ET are relevant for large mass splitting

between X and ˜T, because after its production the mediator has

a larger phase space for its decay into the dark matter and the

light quark, leading to harder jets. Direct detection is sensitive to
smaller mass splitting, while mono-jet +/ET searches are sensitive

to the quasi degenerate region. Gamma rays probe the model
parameter space in the intermediatemDM mass range.

TheDirac darkmatter DMsimp is different from theMajorana

case reported above, as far as it concerns the dark matter

studies. The elastic scattering cross section is dominated by
spin-independent because of the contribution from vectorial

currents, which are null in case of Majorana fermions. Hence,
thermal Dirac dark matter models get strongly constrained by

current direct detection experiments, which combined with LHC
searches, completely disfavor the thermal hypothesis for such
model (see De Simone and Jacques, 2016) for details.

As a concluding remark, in general a colored t-channel
mediator scenario will be probed to a large extent by
next generation experiments, assuming thermal dark matter
production and perturbativity of the coupling.
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4. CAVEATS OF DARK MATTER
SIMPLIFIED MODELS

DMsimps represent an improvement with respect to the use
of EFT for collider dark matter searches during LHC Run
1. However, most of them are still considered not the ideal
benchmark models over which categorize the dark matter
searches and their complementarity. The main reason of concern
is related to the fact that most of the DMsimps are not gauge
invariant, thus not renormalisable (see e.g., Bell et al., 2015,
2016a,b, 2017a; Englert et al., 2016; Haisch et al., 2016; Kahlhoefer
et al., 2016). The most striking example is provided by the
spin-1 mediator with axial-vector couplings to fermions. The
interaction Lagrangians provided in section 3.1.2 are not gauge
invariant unless a dark Higgs is introduced to give mass to the Z′

mediator, and hence to unitarise its longitudinal component. As a
consequence, the most minimalistic self consistent model would
feature two mediators, an additional scalar along with the Z′. The
presence of a secondmediator would change the phenomenology
of the model, which is not anymore well described by the single
mediator assumption.

The s-channel scalar mediator case is not gauge invariant
unless Y0 mixes with the Higgs boson, because the dark matter
is a singlet under the SM gauge symmetries (see e.g., Lopez-
Val and Robens, 2014; Khoze et al., 2015; Baek et al., 2016;
Costa et al., 2016; Dupuis, 2016; Robens and Stefaniak, 2016;
Wang et al., 2016; Balazs et al., 2017). The mixing with the
Higgs boson introduces a major modification in the building
of the next generation of DMsimps, as the model parameter
space then becomes constrained by measurements of the Higgs
properties. This has motivated two types of scenarios: (i) models
that communicate with the SM via the Higgs portal through the
mixing parameters, or even models for which the scalar mediator
is the Higgs itself; (ii) to avoid the tight constraints stemming
from Higgs physics, Y0 mixes with an additional doublet
similarly to a two Higgs doublet model. Likewise, pseudo-scalar
DMsimps (Goncalves et al., 2017) can be made theoretically
consistent by promoting them to double mediator models. Two
Higgs doublet models are well motivated theoretically, arising
in several UV complete models such as supersymmetry, or
other extensions of the SM (see e.g., Fayet, 1976; Gunion and
Haber, 1986; Amaldi et al., 1991; Carena et al., 1996; Branco
et al., 2012; Bhattacharyya and Das, 2016) and the references
therein.

We will not discuss more in details here these issues and the
proposed solutions. There is already a quite vast literature along
the lines of the two Higgs doublet models and Higgs portals.
The interested reader is referred to e.g., (Boveia et al., 2016;
De Simone and Jacques, 2016; Duerr et al., 2016; Albert et al.,
2017b; Baek et al., 2017; Bauer et al., 2017; Bell et al., 2017b; Ellis
et al., 2017; Ko et al., 2017).

5. FUTURE PROSPECTS

The focus of this review has been to describe the state-of-
art of dark matter simplified models, as defined by the LHC

Dark Matter Working group, with respect to the current dark
matter searches. In particular we have discussed the degree of
complementarity of LHC searches (mono-jet + /ET , jets + /ET ,
resonance searches), dark matter direct and indirect detection
searches (gamma-ray, anti-matter, and neutrino searches) in
several scenarios: s-channel mediator with spin-0 and spin-1 and
Dirac dark matter, s-channel mediator with spin-2 and vectorial
dark matter, t-channel mediator with either scalar dark matter
and fermionic mediator or vice-versa. DMsimps provide a simple
framework where to define, categorize, and compare the current
reach of dark matter searches, as well as the expected sensitivity
of forthcoming experiments. These comprehensive analyses are
a powerful tool to understand the dynamics underlying the
various dark matter searches, modulo their interpretation being
subject to the caveats described in the previous section. Keeping
in mind the main assumption that the dark matter and the
mediator are the only particles of the dark sector accessible at
current and future experiments, we can formulate few general
statements from the global analyses presented in this review,
after having presented the forthcoming particles and astroparticle
probes.

Experimentally, the close future is quite promising as there
is a rich program expected to start soon and produce results
in the next decade or so. Concerning the future of direct
detection, starting from 2019, there are several experiments
planned able to probe WIMP-nucleon cross section of the
order of the neutrino floor (σ SI

n ∼ 10−48cm2 for mDM ∼

30 GeV), see XENONnT (Aprile et al., 2016), LZ (Mount
et al., 2017), and DARWIN (Aalbers et al., 2016). At low
WIMP mass, around 3-4 GeV, exciting progresses are expected
by SuperCDMS SNOLAB (Agnese et al., 2017), by CRESST
III (Strauss et al., 2016), and by EDELWEISS-III (Arnaud
et al., 2018), which can probe elastic spin-independent cross
sections as low as 10−44cm2. Concerning indirect detection,
the Cherenkov Telescope Array (Acharya et al., 2013) (CTA)
is one of the major advancements in the gamma-ray searches
as it will be sensitive to the energy range in between 20 and
300 TeV. Starting from 2022, while operating, it will provide
unprecedented complementary results to direct detection and
LHC searches, as it will be sensitive to dark matter masses up
to 100 TeV. These future probes, together with the LHC Run
3 foreseen for 2021, can vastly extend the coverage of the dark
matter parameter space of simplified models (see e.g., Balazs
et al., 2017; Baum et al., 2017; Bertone et al., 2017). More
precisely:

• s-channel scalar mediator: The spin-0 odd mediator can be
probed either by direct detection, which is actually the most
promising dark matter search for this model, either by LHC.
Indirect detection searches are insensitive to this model, as
〈σv〉 is p-wave suppressed. XENONnT, with one year of
exposure, can probe most of the dark matter region from 10
GeV up to roughly 200 GeV, with couplings gDM×gSM > 10−3

(see Arina et al., 2016). Mono-X + missing energy searches
can probe the region where the dark matter achieves the relic
density by resonant annihilation up to mediator masses of 1
TeV and dark matter masses up to 500 GeV, for couplings of
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order 1. More promising are LHC resonant searches, that can
probe much higher mediator masses (see e.g., Balazs et al.,
2017; Banerjee et al., 2017; Baum et al., 2017; Bertone et al.,
2017.

This case is an example of how LHC searches for
dark matter with mono-X and missing energy, direct dark
matter searches and indirect dark matter searches in general

probe regions of the model parameter space which are
complementary to each other. Direct detection has better
sensitivity than LHC searches in the intermediate dark

matter mass range, while LHC performs better in the small

dark matter range, where however the dark matter is often
not viable as thermal relic (it is either over-abundant or
under-abundant, depending on the model). The relic density

constraint can be avoided by assuming for instance a non
thermal dark matter scenario. Because of the complementarity
of searches, for instance a non-detection in direct detection
does not preclude a positive detection at the LHC or at gamma-
ray telescopes.

• s-channel pseudoscalar mediator: This case has the same
phenomenology as the scalar mediator, as far as it concerns
the LHC searches. On the contrary of the scalar mediator
case, it is completely elusive for direct detection searches but
con be probed by indirect detection (Banerjee et al., 2017).
Indirect dark matter searches extend to heavier dark matter
masses with respect to LHC and direct detection exploring
TeV candidates. The searches for gamma-rays from dSph

galaxies after 15 years will cover basically all the parameter
space where the dark matter has the correct relic density,
except for the region where �DMh2 is obtained via resonant

annihilation.
• s-channel vector mediator: This model, with Majorana dark

matter, is an example of models that are already disfavoured as

thermal relic by the combination of LHC and direct detection
searches (Fairbairn et al., 2016). By reversing the argument, we
can assert that if a signal is seen in the mono-X + /ET searches,
the thermal dark matter hypothesis is under test. This can be

solved: (i) by invoking a more complex dark sector, where co-
annihilation and new annihilation channels can open up the
thermal relic parameter space; (ii) dark matter is produced
via additional non-thermal mechanisms to dilute/increase its

relic abundance down/up to the observed value. If we do
not consider the thermal relic hypothesis, the most LHC
promising searches are dijets, that can probe vector mediator
masses up to few TeV (Fairbairn et al., 2016) and dark matter
direct detection. Conversely gamma-ray searches are poorly
sensitive to the mode, the CTA telescope can probe regions
of the model that are already excluded by the combination of
di-jets searches and XENON1T (Balázs et al., 2017).

• s-channel spin-2 mediator: The spin-2 mediator model has
been poorly investigated so far and deserves future careful
comprehensive analyses. The literature available so far suggests
that vectorial dark matter candidates in the TeV range can
give rise to gamma-ray line signals partly in the reach of
CTA (Zhang et al., 2017), if 〈σv〉γ γ > 5×10−28cm3/s. Current
constraints seem to suggest that diphoton and dilepton

searches are potentially the best way to hunt for gravitons in
DMsimps at the LHC (Kraml et al., 2017).

• t-channel mediator: The t-channel model parameter
space, under the hypothesis of thermal dark matter,
will be almost entirely probed by future generation
experiments. XENONnT can almost entirely probe the
dark matter region for mediator masses below the top-
quark mass, while the gamma-ray searches in dSphs
performed by Fermi-LAT in 15 years can probe the
model for mediator masses in between the top-quark
mass and roughly 500 GeV. Larger mediator masses can be
probed by mono-X searches of LHC Run 3 (Colucci et al.,
2018).

It is crucial to keep looking for dark matter with a
comprehensive approach relying in simplified bottom-up
scenarios. Some theoretical shrewdnesses are in place. The
use of gauge invariant models certainly constitutes a must,
however theoretical predictions can be improved along
other directions, which are often neglected. For instance, the
wide separation of scales involved in constraining WIMP
models, from the LHC to indirect detection and to direct
detection, is often neglected. The authors in (D’Eramo
and Procura, 2015) have shown that the running of EFT
operators from the mediator mass scale to the nuclear scales
probed by direct searches via one-loop Renormalisation
Group Equations (RGEs) has an impact for models that
would in generally not be constrained by direct detection
searches because suppressed by the momentum transfer or
by the WIMP velocity. These models can be excluded as a
consequence of spin-independent couplings induced by SM
loops.

In case of a positive signal at the LHC in a SM + /ET
channel, the identification of the dark matter is non-trivial,
as opposed to the characterization of the mediator. Luckily
all dark matter searches, even though they feature a certain
degree of complementarity, also probe common regions of the
parameter space. In an optimistic scenario, a signal can be
detected in multiple experiments allowing to pin point both
the nature of the dark matter and the characteristics of the
model.

Lastly, the Sun has been recently proposed as target
to constrain a specific class of DMsimps, in which the
mediator is light (MeV range) and long-lived (Arina et al.,
2017; Leane et al., 2017). LHC searches are insensitive to
this type of mediators, which can however be observed
in gamma rays. The Sun is opaque to all dark matter
annihilation products but neutrinos and the neutral and
weakly interacting mediators (the mechanism that produces
the mediators inside the Sun is the same as for the neutrino
signal). If these mediators are long-lived enough to decay
outside the Sun, they could lead to characteristic gamma-ray
signatures detectable within 10 years of Fermi-LAT mission,
and in 1 year of full exposure of ground water Cherenkov
telescopes (HAWC Abeysekara et al., 2013 and LHAASO Zhen,
2014; He, 2016). Models with long-lived MeV mediators are
actually very constrained by beam dump experiments and
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cosmology (Arina et al., 2017). Their entire parameter space
can be probed by next generation of intensity experiments,
such as NA62 (Doebrich, 2017) and SHiP (Alekhin et al.,
2016). Hence dark matter simplified models not only serve as
benchmark for high-energy studies but they can be exploited
as a bridge relying the high-energy frontiers with the intensity
frontiers.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
approved it for publication.

FUNDING

This review article has been supported by the Innoviris grant
ATTRACT Brains for Brussels 2015 (BECAP 2015-BB2B-4).

ACKNOWLEDGMENTS

The author would like to acknowledge Fabio Maltoni, Luca
Mantani, and Kentarou Mawatari for useful discussions about
various aspects of the dark matter simplified models. She is also
grateful to Jan Heisig for a careful reading of the manuscript and
for providing useful comments.

REFERENCES

Aaboud, M., Aad, G., Abbott, B., Abdallah, J., Abdinov, O., Abeloos, B., et al.

(2016a). Search for new phenomena in final states with an energetic jet and

large missing transverse momentum in pp collisions at
√

s = 13TeV using the

ATLAS detector. Phys. Rev. D94:032005. doi: 10.1103/PhysRevD.94.032005

Aaboud, M., Aad, G., Abbott, B., Abdallah, J., Abdinov, O., Abeloos, B., et al.

(2016b). Search for squarks and gluinos in final states with jets and missing

transverse momentum at
√

s = 13 TeV with the ATLAS detector. Eur. Phys. J.

C76:392. doi: 10.1140/epjc/s10052-016-4184-8

Aaboud,M., Aad, G., Abbott, B., Abdallah, J., Abdinov, O., Abeloos, B., et al. (2018).

Search for dark matter and other new phenomena in events with an energetic

jet and large missing transverse momentum using the ATLAS detector. J. High

Energy Phys. 1:126. doi: 10.1007/JHEP01(2018)126

Aad, G., Abbott, B., Abdallah, J., Abdel Khalek, S., Abdinov, O., Aben, R., et al.

(2015b). Search for new phenomena in final states with an energetic jet and

large missing transverse momentum in pp collisions at
√

s =8 TeV with the

ATLAS detector. Eur. Phys. J. C75:299. doi: 10.1140/epjc/s10052-015-3639-7

Aad, G., Abbott, B., Abdallah, J., Abdel Khalek, S., Abdinov, O., Aben, R., et al.

(2015c). Search for new phenomena in the dijet mass distribution using p − p

collision data at
√

s = 8 TeV with the ATLAS detector. Phys. Rev. D91:052007.

doi: 10.1103/PhysRevD.91.052007

Aad, G., Abbott, B., Abdallah, J., Abdinov, O., Aben, R., Abolins, M., et al. (2015a).

A search for tt resonances using lepton-plus-jets events in proton-proton

collisions at
√

s = 8 TeV with the ATLAS detector. J. High Energy Phys. 8:148.

doi: 10.1007/JHEP08(2015)148

Aad, G., Abbott, B., Abdallah, J., Abdinov, O., Aben, R., Abolins, M., et al. (2016).

Search for dark matter produced in association with a Higgs boson decaying to

two bottom quarks in pp collisions at
√

s = 8 TeV with the ATLAS detector.

Phys. Rev. D93:072007. doi: 10.1103/PhysRevD.93.072007

Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Amsler, C., Aprile, E., et al.

(2016). DARWIN: towards the ultimate dark matter detector. J. Cosmol.

Astropart. Phys. 1611:017. doi: 10.1088/1475-7516/2016/11/017

Aaltonen, T., Adelman, J., Akimoto, T., Álvarez González, B., Amerio, S.,

Amidei, D., et al. (2009). Search for new particles decaying into dijets in

proton-antiproton collisions at s**(1/2) = 1.96-TeV. Phys. Rev. D79:112002.

doi: 10.1103/PhysRevD.79.112002

Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar,

J. A., et al. (2013). Search for dark matter annihilations in the Sun

with the 79-string IceCube detector. Phys. Rev. Lett. 110:131302.

doi: 10.1103/PhysRevLett.110.131302

Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers,

M., et al. (2016). Improved limits on dark matter annihilation in the Sun

with the 79-string IceCube detector and implications for supersymmetry. JCAP

1604:022. doi: 10.1088/1475-7516/2016/04/022

Abbiendi, G., Ainsley, C., Akesson, P., Alexander, G., Allison, J., Amaral, P., et al.

(2002). Search for scalar top and scalar bottom quarks at LEP. Phys. Lett. B545,

272–284. doi: 10.1016/S0370-2693(02)02808-3

Abbott T, Abdalla, F. B., Aleksic, J., Allam, S., Amara, A., Bacon, D., et al. (2005).

The dark energy survey. arXiv: astro-ph/0510346.

Abdalla, H., Abramowski, A., Aharonian, F., Ait Benkhali, F., Akhperjanian, A. G.,

Andersson, T., et al. (2016). H.E.S.S. limits on linelike dark matter signatures in

the 100 GeV to 2 TeV energy range close to the Galactic Center. Phys. Rev. Lett.

117:151302. doi: 10.1103/PhysRevLett.117.151302

Abdallah, J., Araujo, H., Arbey, A., Ashkenazi, A., Belyaev, A., Berger, J., et al.

(2015). Simplifiedmodels for darkmatter searches at the LHC. Phys. Dark Univ.

9–10, 8–23. doi: 10.1016/j.dark.2015.08.001

Abercrombie, D., Akchurin, N., Akilli, E., Alcaraz Maestre, J., Allen, B.,

Alvarez Gonzalez, B., et al. (2015). Dark Matter Benchmark Models for Early

LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum .

Abeysekara, A. U., Alfaro, R., Alvarez, C., Álvarez, J. D., Arceo, R., Arteaga-

Velázquez, J. C., et al. (2013). Sensitivity of the high altitude water cherenkov

detector to sources of multi-TeV gamma rays. Astropart. Phys. 50–52, 26–32.

doi: 10.1016/j.astropartphys.2013.08.002

Abramowski, A., Acero, F., Aharonian, F., Akhperjanian, A. G., Anton,

G., Balenderan, S., et al. (2013). Search for photon-linelike signatures

from dark matter annihilations with H.E.S.S. Phys. Rev. Lett. 110:041301.

doi: 10.1103/PhysRevLett.110.041301

Acharya, B. S. A. M., Croston, J. H., Granot, J., and Hardcastle, M.J.

(2013). Introducing the CTA concept. Astropart. Phys. 43, 3–18.

doi: 10.1016/j.astropartphys.2013.01.007

Ackermann, M., Ajello, M., Albert, A., Anderson, B., Atwood, W. B., Baldini, L.,

et al. (2015b). Updated search for spectral lines from Galactic dark matter

interactions with pass 8 data from the Fermi Large Area Telescope. Phys. Rev.

D91:122002. doi: 10.1103/PhysRevD.91.122002

Ackermann, M., Albert, A., Anderson, B., Atwood, W. B., Baldini, L., Barbiellini,

G., et al. (2015a). Searching for dark matter annihilation from milky way dwarf

spheroidal galaxies with six years of Fermi Large Area Telescope Data. Phys.

Rev. Lett. 115:231301. doi: 10.1103/PhysRevLett.115.231301

Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., et al.

(2017). Projected Sensitivity of the SuperCDMS SNOLAB experiment. Phys.

Rev. D95:082002. doi: 10.1103/PhysRevD.95.082002

Agrawal, P., Batell, B., Hooper, D., and Lin, T. (2014). Flavored dark

matter and the galactic center gamma-ray excess. Phys. Rev. D90:063512.

doi: 10.1103/PhysRevD.90.063512

Agrawal, P., Blanchet, S., Chacko, Z., and Kilic, C. (2012). Flavored Dark Matter,

and its implications for direct detection and colliders. Phys. Rev. D86:055002.

doi: 10.1103/PhysRevD.86.055002

Aguilar, M., Ali Cavasonza, L., Alpat, B., Ambrosi, G., Arruda, L., Attig, N., et al.

(2016). Antiproton flux, antiproton-to-proton flux ratio, and properties of

elementary particle fluxes in primary cosmic rays measured with the alpha

magnetic spectrometer on the international space station. Phys. Rev. Lett.

117:091103. doi: 10.1103/PhysRevLett.117.091103

Akerib, D. S., Alsum, S., Araújo, H.M., Bai, X., Bailey, A. J., Balajthy, J., et al. (2017).

Results from a search for dark matter in the complete LUX exposure. Phys. Rev.

Lett. 118:021303. doi: 10.1103/PhysRevLett.118.021303

Albert, A., Anderson, B., Bechtol, K., Drlica-Wagner, A., Meyer, M., Sánchez-

Conde, M., et al. (2017). Searching for dark matter annihilation in recently

discovered milky way satellites with Fermi-LAT. Astrophys. J. 834:110.

doi: 10.3847/1538-4357/834/2/110

Frontiers in Astronomy and Space Sciences | www.frontiersin.org September 2018 | Volume 5 | Article 30120

https://doi.org/10.1103/PhysRevD.94.032005
https://doi.org/10.1140/epjc/s10052-016-4184-8
https://doi.org/10.1007/JHEP01(2018)126
https://doi.org/10.1140/epjc/s10052-015-3639-7
https://doi.org/10.1103/PhysRevD.91.052007
https://doi.org/10.1007/JHEP08(2015)148
https://doi.org/10.1103/PhysRevD.93.072007
https://doi.org/10.1088/1475-7516/2016/11/017
https://doi.org/10.1103/PhysRevD.79.112002
https://doi.org/10.1103/PhysRevLett.110.131302
https://doi.org/10.1088/1475-7516/2016/04/022
https://doi.org/10.1016/S0370-2693(02)02808-3
https://doi.org/10.1103/PhysRevLett.117.151302
https://doi.org/10.1016/j.dark.2015.08.001
https://doi.org/10.1016/j.astropartphys.2013.08.002
https://doi.org/10.1103/PhysRevLett.110.041301
https://doi.org/10.1016/j.astropartphys.2013.01.007
https://doi.org/10.1103/PhysRevD.91.122002
https://doi.org/10.1103/PhysRevLett.115.231301
https://doi.org/10.1103/PhysRevD.95.082002
https://doi.org/10.1103/PhysRevD.90.063512
https://doi.org/10.1103/PhysRevD.86.055002
https://doi.org/10.1103/PhysRevLett.117.091103
https://doi.org/10.1103/PhysRevLett.118.021303
https://doi.org/10.3847/1538-4357/834/2/110
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Arina Constraining Dark Matter Simplified Models

Albert, A., Backovié, M., Boveia, A., Buchmueller, O., Busoni, G., De Roeck, A.,

et al. (2017a). Recommendations of the LHC Dark Matter Working Group:

comparing LHC searches for heavy mediators of dark matter production in

visible and invisible decay channels. arXiv:1703.05703.

Albert, A., Bauer, M., Brooke, J., Buchmueller, O., Cerdeno, D. G., Citron, M., et al.

(2017b). Towards the next generation of simplified Dark Matter models. Phys.

Dark Univ. 16, 49–70. doi: 10.1016/j.dark.2017.02.002

Alekhin, S., Altmannshofer, W., Asaka, T., Batell, B., Bezrukov, F., Bondarenko, K.,

et al. (2016). A facility to Search for Hidden Particles at the CERN SPS: the SHiP

physics case. Rept. Prog. Phys. 79:124201. doi: 10.1088/0034-4885/79/12/124201

Alitti, J., Ambrosini, G., Ansari, R., Autiero, D., Bareyre, P., Bertram, I. A.,

et al. (1993). A Search for new intermediate vector mesons and excited

quarks decaying to two jets at the CERN p̄p collider. Nucl. Phys. B400, 3–24.

doi: 10.1016/0550-3213(93)90395-6

Allahverdi, R., Dutta, B., and Sinha, K. (2012). Non-thermal higgsino dark matter:

cosmological motivations and implications for a 125 GeV Higgs. Phys. Rev.

D86:095016. doi: 10.1103/PhysRevD.86.095016

Alloul, A., Christensen, N. D., Degrande, C., Duhr, C., and Fuks, B. (2014).

FeynRules 2.0 - A complete toolbox for tree-level phenomenology. Comput.

Phys. Commun. 185, 2250–2300. doi: 10.1016/j.cpc.2014.04.012

Alwall, J., Frederix, R., Frixione, S., Hirschi, V., Maltoni, F., Mattelaer, O., et al.

(2014). The automated computation of tree-level and next-to-leading order

differential cross sections, and their matching to parton shower simulations.

J. High Energy Phys. 7:079. doi: 10.1007/JHEP07(2014)079

Alwall, J., Herquet, M., Maltoni, F., Mattelaer, O., and Stelzer, T. (2011). MadGraph

5 : going beyond. J. High Energy Phys. 6:128. doi: 10.1007/JHEP06(2011)128

Amaldi, U., de Boer, W., and Furstenau, H. (1991). Comparison of grand unified

theories with electroweak and strong coupling constants measured at LEP.

Phys. Lett. B260, 447–455. doi: 10.1016/0370-2693(91)91641-8

Ambrogi, F., Arina, C., Backovic, M., Heisig, J., Maltoni, F., Mantani, L., et al.

(2018).MadDM v.3.0: A Comprehensive Tool for Dark Matter Studies.

Ambrosi, G., An, Q., Asfandiyarov, R., Azzarello, P., Bernardini, P., Bertucci,

B., et al. (2017). Direct detection of a break in the teraelectronvolt

cosmic-ray spectrum of electrons and positrons. Nature 552, 63–66.

doi: 10.1038/nature24475

Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., et al.

(2017). Dark Matter search results from the PICO-60 C3F8 bubble chamber.

Phys. Rev. Lett. 118:251301. doi: 10.1103/PhysRevLett.118.251301

An, H., Wang, L. T., and Zhang, H. (2014). Dark matter with t-channel

mediator: a simple step beyond contact interaction. Phys. Rev. D89:115014.

doi: 10.1103/PhysRevD.89.115014

Angloher, G., Bento, A., Bucci, C., Canonica, L., Defay, X., Erb, A., et al. (2016).

Results on light dark matter particles with a low-threshold CRESST-II detector.

Eur. Phys. J. C76:25. doi: 10.1140/epjc/s10052-016-3877-3

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Anthony, M., et al.

(2016). Physics reach of the XENON1T dark matter experiment. J. Cosmol.

Astropart. Phys. 1604:027. doi: 10.1088/1475-7516/2016/04/027

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Anthony, M., et al.

(2017a). First Dark Matter Search Results from the XENON1T Experiment.

Phys. Rev. Lett. 119:181301. doi: 10.1103/PhysRevLett.119.181301

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Anthony,

M., et al. (2017b). Effective field theory search for high-energy nuclear

recoils using the XENON100 dark matter detector. Phys. Rev. D96:042004.

doi: 10.1103/PhysRevD.96.042004

Arcadi, G., Dutra, M., Ghosh, P., Lindner, M., Mambrini, Y., Pierre, M., et

al. (2017). The waning of the WIMP? A review of models, searches, and

constraints. arXiv: 1703.07364.

Arcadi, G., Mambrini, Y., Tytgat, M. H. G., and Zaldivar, B. (2014). Invisible

Z′ and dark matter: LHC vs LUX constraints. J. High Energy Phys. 3:134.

doi: 10.1007/JHEP03(2014)134

Arina, C. (2014). Bayesian analysis of multiple direct detection experiments. Phys.

Dark Univ. 5–6, 1–17. doi: 10.1016/j.dark.2014.03.003
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Neutrino Mass Ordering From
Oscillations and Beyond: 2018 Status
and Future Prospects
Pablo F. de Salas, Stefano Gariazzo, Olga Mena*, Christoph A. Ternes and Mariam Tórtola

Instituto de Física Corpuscular, CSIC-Universitat de València, Valencia, Spain

The ordering of the neutrino masses is a crucial input for a deep understanding of

flavor physics, and its determination may provide the key to establish the relationship

among the lepton masses and mixings and their analogous properties in the quark

sector. The extraction of the neutrino mass ordering is a data-driven field expected

to evolve very rapidly in the next decade. In this review, we both analyse the present

status and describe the physics of subsequent prospects. Firstly, the different current

available tools to measure the neutrino mass ordering are described. Namely, reactor,

long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for

beta and neutrinoless double beta decays and observations of the cosmic background

radiation and the large scale structure of the universe are carefully reviewed. Secondly,

the results from an up-to-date comprehensive global fit are reported: the Bayesian

analysis to the 2018 publicly available oscillation and cosmological data sets provides

strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a

significance of 3.5 standard deviations. This preference for the normal neutrino mass

ordering is mostly due to neutrino oscillation measurements. Finally, we shall also

emphasize the future perspectives for unveiling the neutrino mass ordering. In this regard,

apart from describing the expectations from the aforementioned probes, we also focus

on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse

supernova neutrinos and the direct detection of relic neutrinos.

Keywords: neutrino mass ordering, neutrino oscillations, neutrinoless double beta (0vββ) decay, large scale

structure formation, cosmic microwave Background (CMB), neutrino masses and flavor mixing

1. INTRODUCTION

The Royal Swedish Academy of Sciences decided to award the 2015 Nobel Prize in Physics to
Takaaki Kajita and Arthur B. McDonald “for the discovery of neutrino oscillations, which shows that
neutrinos have mass. [. . . ] New discoveries about the deepest neutrino secrets are expected to change
our current understanding of the history, structure and future fate of the Universe” (see Fukuda et al.,
1998; Ahmad et al., 2001, 2002; Eguchi et al., 2003; Abe et al., 2011a; An et al., 2012) for essential
publications. These discoveries robustly established that neutrinos are massive particles. However,
neutrinos are massless particles in the Standard Model (SM) of particle physics: in the absence of
any direct indication for their mass available at the time, they were introduced as fermions for
which no gauge invariant renormalizable mass term can be constructed. As a consequence, in the
SM there is neither mixing nor CP violation in the lepton sector. Therefore, neutrino oscillations
and masses imply the first known departure from the SM of particle physics.
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Despite the good precision that neutrino experiments have
reached in the recent years, still many neutrino properties
remain unknown. Among them, the neutrino character, Dirac
vs. Majorana, the existence of CP violation in the leptonic
sector, the absolute scale of neutrino masses, and the type of
the neutrino mass spectrum. Future laboratory, accelerator and
reactor, astrophysical and cosmological probes will address all
these open questions, that may further reinforce the evidence for
physics beyond the SM. Themain focus of this review is, however,
the last of the aforementioned unknowns. We will discuss what
we know and how we could improve our current knowledge of
the neutrino mass ordering.

Neutrino oscillation physics is only sensitive to the squared
mass differences (1m2

ij = m2
i − m2

j ). Current oscillation data

can be remarkably well-fitted in terms of two squared mass
differences, dubbed as the solar mass splitting (1m2

21 ≃ 7.6 ×

10−5 eV2) and the atmospheric mass splitting (|1m2
31| ≃ 2.5 ×

10−3 eV2) (de Salas et al., 2018)1. Thanks to matter effects in
the Sun, we know that 1m2

21 > 02. Since the atmospheric
mass splitting 1m2

31 is essentially measured only via neutrino
oscillations in vacuum, which exclusively depend on its absolute
value, its sign is unknown at the moment. As a consequence, we
have two possibilities for the ordering of neutrino masses: normal
ordering (NO, 1m2

31 > 0) or inverted ordering (IO, 1m2
31 < 0).

The situation for the mass ordering has changed a lot in
the last few months. The 2017 analyses dealing with global
oscillation neutrino data have only shown a mild preference
for the normal ordering. Namely, the authors of Capozzi
et al. (2017), by means of a frequentist analysis, found χ2

IO −

χ2
NO = 3.6 from all the oscillation data considered in their

analyses. Very similar results were reported in the first version
of de Salas et al. (2018)3, where a value of χ2

IO − χ2
NO = 4.3

was quoted4 (nufit)5 Furthermore, in Gariazzo et al. (2018a),

the authors verified that the use of a Bayesian approach and the
introduction of cosmological or neutrinoless double beta decay
data did not alter the main result, which was a weak-to-moderate
evidence for the normal neutrino mass ordering according to
the Jeffreys’ scale (see Table 2). The most recent global fit
to neutrino oscillation data, however, reported a strengthened
preference for normal ordering that is mainly due to the new data
from the Super-Kamiokande Abe et al. (2018a), T2K Hartz
(2017), and NOνA Radovic (2018) experiments. The inclusion of
these new data in both the analyses of Capozzi et al. (2018a)
and the 2018 update of de Salas et al. (2018)1 increases the
preference for normal ordering, which now lies mildly above
the 3σ level. In this review we will comment these new results
(see section 2) and use them to perform an updated global

1Valencia-Globalfit, 2018; Available online at: http://globalfit.astroparticles.es/.
2Note that the observation of matter effects in the Sun constrains the product

1m2
21 cos 2θ12 to be positive. Therefore, depending on the convention chosen to

describe solar neutrino oscillations, matter effects either fix the sign of the solar

mass splitting 1m2
21 or the octant of the solar angle θ12, with 1m2

21 positive by

definition.
3See the “July 2017” version in1.
4A somewhat milder preference in favor of normal mass ordering was obtained in

the corresponding version of the analysis in Refs. Esteban et al. (2017)
5NuFIT v3.2, http://www.nu-fit.org/.

FIGURE 1 | Probability of finding the α neutrino flavor in the i-th neutrino mass

eigenstate as the CP-violating phase, δCP, is varied. Inspired by Mena and

Parke (2004).

analysis, following the method of Gariazzo et al. (2018a) (see
section 5).

The two possible hierarchical6 neutrino mass scenarios are
shown in Figure 1, inspired by Mena and Parke (2004), which
provides a graphical representation of the neutrino flavor content
of each of the neutrino mass eigenstates given the current
preferred values of the oscillation parameters de Salas et al.
(2018), see section 2. At present, even if the current preferred
value of δCP for both normal and inverted mass orderings lies
close to 3π/2 de Salas et al. (2018), the precise value of the
CP violating phase in the leptonic sector remains unknown.
Consequently, in Figure 1, we have varied δCP within its entire
range, ranging from 0 to 2π .

Given the two known mass splittings that oscillation
experiments provide us, we are sure that at least two neutrinos

have a mass above
√

1m2
21 ≃ 8 meV and that at least one of

these two neutrinos has a mass larger than
√

|1m2
31| ≃ 50 meV.

For the same reason, we also know that there exists a lower
bound on the sum of the three active neutrino masses (

∑

mν =

m1 +m2 +m3):

∑

mNO
ν = m1 +

√

m2
1 + 1m2

21 +

√

m2
1 + 1m2

31 , (1)

∑

mIO
ν = m3 +

√

m2
3 + |1m2

31| +

√

m2
3 + |1m2

31| + 1m2
21 ,

where the lightest neutrino mass eigenstate corresponds to m1

(m3) in the normal (inverted) ordering. Using the best-fit values
for the neutrino mass splittings in Table 1 one finds that

∑

mν &

0.06 eV in normal ordering, while
∑

mν & 0.10 eV in inverted

6A clarification about the use of “hierarchy” and “ordering” is mandatory. One

talks about “hierarchy” when referring to the absolute scales of neutrino masses,

in the sense that neutrino masses can be distinguished and ranked from lower to

higher. This does not include the possibility that the lightest neutrinomass is much

larger than the mass splittings obtained by neutrino oscillation measurements,

since in this case the neutrino masses are degenerate. On the other hand, the mass

“ordering” is basically defined by the sign of 1m2
31, or by the fact that the lightest

neutrino is the most (least) coupled to the electron neutrino flavor in the normal

(inverted) case.
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TABLE 1 | Neutrino oscillation parameters summary determined from the global

analysis.

parameter Best-fit ± 1σ 2σ range 3σ range

1m2
21 [10−5eV2] 7.55+0.20

−0.16 7.20–7.94 7.05–8.14

|1m2
31| [10

−3eV2] (NO) 2.50 ± 0.03 2.44–2.57 2.41–2.60

|1m2
31| [10

−3eV2] (IO) 2.42+0.03
−0.04 2.34–2.47 2.31–2.51

sin2 θ12/10−1 3.20+0.20
−0.16 2.89–3.59 2.73–3.79

sin2 θ23/10−1 (NO) 5.47+0.20
−0.30 4.67–5.83 4.45–5.99

sin2 θ23/10−1 (IO) 5.51+0.18
−0.30 4.91–5.84 4.53–5.98

sin2 θ13/10−2 (NO) 2.160+0.083
−0.069 2.03–2.34 1.96–2.41

sin2 θ13/10−2 (IO) 2.220+0.074
−0.076 2.07–2.36 1.99–2.44

δCP/π (NO) 1.32+0.21
−0.15 1.01–1.75 0.87–1.94

δCP/π (IO) 1.56+0.13
−0.15 1.27–1.82 1.12–1.94

The results for inverted mass ordering were calculated with respect to this mass ordering.

FIGURE 2 | The sum of the neutrino masses
∑

mν as a function of the mass

of the lightest neutrino, m1 (m3) for the normal (inverted) ordering, in red (blue)

respectively. The (indistinguishable) width of the lines represents the present

3σ uncertainties in the neutrino mass splittings from the global fit to neutrino

oscillation data (de Salas et al., 2018). The horizontal bands illustrate two

distinct 95% Confidence Level (CL) limits on
∑

mν from cosmology, see the

text for details.

ordering. Figure 2 illustrates the values of
∑

mν as a function
of the lightest neutrino mass for the two possible ordering
schemes. We also show the two representative bounds on the
sum of the neutrino masses from cosmology (discussed later in
section 4) which is currently providing the strongest limits on
∑

mν thanks to the fact that neutrinos affect both the evolution
of the cosmological background and perturbation quantities (see
e.g., the excellent detailed reviews of Lesgourgues and Pastor,
2006, 2012, 2014; Lesgourgues et al., 2013; Lattanzi and Gerbino,
2018).

The state-of-knowledge of cosmological observations Ade
et al. (2016b) points to a flat Universe whose mass-energy density
includes 5% of ordinary matter (baryons), 22% non-baryonic
dark matter, and that is dominated by the dark energy, identified
as the motor for the accelerated expansion. This is the so-
called 3CDM Universe, which fits extremely well the Cosmic

Microwave Background (CMB) fluctuations, distant Supernovae
Ia and galaxy clustering data.

Using the known neutrino oscillation parameters and the
standard cosmological evolution, it is possible to compute the
thermalization and the decoupling of neutrinos in the early
universe (see e.g., Mangano et al., 2005; de Salas and Pastor,
2016). While neutrinos decoupled as ultra-relativistic particles,
currently at least two out of the three neutrino mass eigenstates
are non-relativistic. Neutrinos constitute the first and only
known form of dark matter so far. Indeed, neutrinos behave
as hot dark matter particles, possessing large thermal velocities,
clustering only at scales below their free streaming scale,
modifying the evolution of matter overdensities and suppressing
structure formation at small scales. The CMB is also affected
by the presence of massive neutrinos, as these particles may
turn non-relativistic around the decoupling period. However,
the strong degeneracy between the Hubble constant and the
total neutrino mass requires additional constraints (from Baryon
Acoustic Oscillations, Supernovae Ia luminosity distance data
and/or direct measurements of the Hubble constant) to be added
in the global analyses. In this regard, CMB lensing is also
helpful and improves the CMB temperature and polarization
constraints, as the presence of massive neutrinos modify the
matter distribution along the line of sight through their free
streaming nature, reducing clustering and, consequently, CMB
lensing. The most constraining cosmological upper bounds to
date on

∑

mν can be obtained combining CMB with different
large scale structure observations and range from

∑

mν <

0.12 eV to
∑

mν < 0.15 eV at 95% CL (Palanque-Delabrouille
et al., 2015; Cuesta et al., 2016; Di Valentino et al., 2016c;
Giusarma et al., 2016; Vagnozzi et al., 2017, 2018; Lattanzi and
Gerbino, 2018), as illustrated in Figure 2.

If themassive neutrino spectrum does not lie in the degenerate
region, the three distinct neutrino masses affect the cosmological
observables in a different way. For instance, the transition to
the non-relativistic period takes place at different cosmic times,
and the associated free-streaming scale is different for each
of the neutrino mass eigenstates. However, the effect on the
power spectrum is very small (permille level) and therefore an
extraction of the neutrino mass hierarchy via singling out each
of the massive neutrino states seems a very futuristic challenge.
This will be possibly attainable only via huge effective volume
surveys, as those tracing the 21 cm spin-flip transition in neutral
hydrogen, see sections 6.4 and 6.5. On the other hand, should
the cosmological measurements of

∑

mν be strong enough to
rule out the

∑

mν parameter space corresponding to the inverted
ordering (i.e., strong enough to establish in a very significant way
that

∑

mν < 0.1 eV), we would know that the neutrino mass
ordering must be normal. A word of caution is needed here when
dealing with Bayesian analyses, usually performed when dealing
with cosmological data: a detection of the neutrinomass ordering
could be driven by volume effects in the marginalization, and
therefore the prior choice can make a huge difference, if data are
not powerful enough (Schwetz et al., 2017).

Another way to probe the neutrino mass ordering, apart
from direct determinations of the sign of the atmospheric
mass splitting 1m2

31 in neutrino oscillation experiments and,
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indirectly, from cosmological bounds on the sum of the neutrino
masses, is neutrinoless double β decay (Rodejohann, 2011;
Gomez-Cadenas et al., 2012; Vergados et al., 2012; Dell’Oro et al.,
2016). This process is a spontaneous nuclear transition in which
the charge of two isobaric nuclei would change by two units
with the simultaneous emission of two electrons and without
the emission of neutrinos. This process is only possible if the
neutrino is a Majorana particle and an experimental signal of the
existence of this process would constitute evidence of the putative
Majorana neutrino character. The non-observation of the process
provides bounds on the so-called effective Majorana mass mββ ,
which is a combination of the (Majorana) neutrino masses
weighted by the leptonic flavor mixing effects (see section 3).
Figure 3 illustrates the (Bayesian) 95.5% and 99.7% credible
intervals for mββ as a function of the lightest neutrino mass
in the case of three neutrino mixing, considering a logarithmic
prior on the lightest neutrino mass. The picture differs from the
plot that is usually shown, which features an open band toward
increasingly smaller values of mββ for mlightest ≃ 5 meV, due to
cancellations which depend on the values of the Majorana phases
αi (see section 3). In the Bayesian sense of credible intervals, the
values of αi which produce such a suppression of mββ represent
an extremely small fraction of the parameter space, which is
therefore not relevant when computing the 95.5% and 99.7%
credible intervals. In other words, given our knowledge of the
neutrino mixing parameters, having mββ . 2 × 10−4 eV would
require some amount of fine tuning in the Majorana phases.
This figure is in perfect agreement with the results shown in
Figure 1 of Agostini et al. (2017a), which shows that most of
the allowed parameter space is not concentrated at small mββ

if one considers a linear prior on the lightest neutrino mass.
We also show the most conservative version of some of the
most competitive current limits, as those from KamLAND-Zen

(mββ < 61 − 165 meV at 90% CL) Gando et al. (2016), GERDA
Phase II (mββ < 120−260 meV at 90% CL) Agostini et al. (2018)
and CUORE (mββ < 110 − 520 meV at 90% CL) Alduino et al.
(2018a). Please note that a detection of the effective Majorana
mass will not be sufficient to determine the mass ordering if the
lightest neutrinomass is above∼ 40meV: in this case, indeed, the
normal and the inverted ordering become indistinguishable from
the point of view of neutrinoless double beta decay. Similarly to
the case of the cosmological bounds on the neutrino mass

∑

mν ,
in which only constraining

∑

mν to be below 0.1 eV could be
used to disfavor the inverted mass ordering, only a limit on mββ

below ∼ 10 meV could be used to rule out the inverted ordering
scheme, and only assuming that neutrinos areMajorana particles.

Since neutrino oscillation measurements, cosmological
observations and neutrinoless double beta decay experiments
are cornering the inverted mass ordering region, it makes sense
to combine their present results. Indeed, plenty of works have
been recently devoted to test whether a preference for one
mass ordering over the other exists, given current oscillation,
neutrinoless double beta decay and cosmological data. A
number of studies on the subject (Hannestad and Schwetz,
2016; Caldwell et al., 2017; Capozzi et al., 2017; Gerbino et al.,
2017b; Wang and Xia, 2018) found that the preference for
the normal vs. the inverted mass scenario is rather mild with

current data, regardless the frequentist vs. Bayesian approach. In
the latter case, however, the results may be subject-dependent,
as a consequence of different possible choices of priors and
parameterizations when describing the theoretical model, for
example in the case of sampling over the three individual
neutrino mass states. Therefore, one must be careful when
playing with different priors, as recently shown in Gariazzo
et al. (2018a). The current status of the preference of normal
vs. inverted ordering will be further investigated carefully
throughout this review. Furthermore, as it will be carefully
detailed in section 5, the Bayesian global fit to the 2018 publicly
available oscillation and cosmological data points to a strong
preference (3.5 standard deviations) for the normal neutrino
mass ordering vs. the inverted one.

To summarize and conclude this introductory part, we resume
that the current available methods to determine the neutrino
mass ordering can be grouped as:

a) neutrino oscillation facilities;
b) neutrinoless double beta decay experiments, with the caveat

that the results will only apply in case neutrinos are Majorana
fermions;

c) CMB and large scale structure surveys.

For each of these three categories we will review the current status
and also analyse the future prospects, with a particular focus on
the existing experiments which will be improved in the future
and on new facilities which aim at determining the neutrino
mass ordering in the next 22 years7 In the second part of this
review we will also focus on possible novel methods that in the
future will enable us to determine the neutrino mass ordering, as
for example future cosmological observations of the 21 cm line,
the detection of neutrinos emitted by core-collapse supernovae,
measurements of the electron spectrum of β-decaying nuclei and
the direct detection of relic neutrinos.

We shall exploit the complementarity of both cosmology
and particle physics approaches, profiting from the highly
multidisciplinary character of the topic. We dedicate sections 2,
3, and 4 to explain the extraction of the neutrino mass ordering
via neutrino oscillations, β and neutrinoless double β decays and
cosmological observations, which will be combined in section 5
where we present the analysis of current data related to these
three data sets. Future perspectives are described throughout
section 6 and its subsections, while the final remarks will be
outlined in section 7.

2. NEUTRINO OSCILLATIONS

Our current knowledge on the neutrino mass ordering comes
mainly from the analysis of the available neutrino oscillation
data. The sensitivity to the neutrino mass spectrum at oscillation
experiments is mostly due to the presence of matter effects in
the neutrino propagation. Therefore, one can expect that this
sensitivity will increase with the size of matter effects, being
larger for atmospheric neutrino experiments, where a fraction of

7See also the review Qian and Vogel (2015), focused mostly on neutrino oscillation

perspectives.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org October 2018 | Volume 5 | Article 36129

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


de Salas et al. Neutrino Mass Ordering in 2018

FIGURE 3 | 95.5 and 99.7% Bayesian credible intervals for the effective Majorana mass, mββ , as a function of the lightest neutrino mass (Left) or of the sum of the

neutrino masses
∑

mν (Right), taking into account the current uncertainties on the neutrino mixing parameters (angles and phases), when three neutrinos are

considered. The horizontal bands indicate the most conservative version (obtained by each collaboration when assuming a disfavorable value for the nuclear matrix

element of the process) of some of the most competitive upper bounds, as those reported by KamLAND-Zen Gando et al. (2016), GERDA Phase II Agostini et al.

(2018) and CUORE Alduino et al. (2018a). The vertical band in the Right indicates the strongest limit reported by Planck Aghanim et al. (2016b), using the Planck

TT,TE,EE + SimLow + lensing data combination.

neutrinos travel through the Earth. For long-baseline accelerator
experiments, matter effects will increase with the baseline, while
these effects will be negligible at short-baseline and medium-
baseline experiments.

When neutrinos travel through the Earth, the effective matter
potential due to the electron (anti)neutrino charged-current
elastic scatterings with the electrons in the medium will modify
the three-flavor mixing processes. The effect will strongly depend
on the neutrino mass ordering: in the normal (inverted) mass
ordering scenario, the neutrino flavor transition probabilities
will get enhanced (suppressed). In the case of antineutrino
propagation, instead, the flavor transition probabilities will get
suppressed (enhanced) in the normal (inverted) mass ordering
scenario. This is the Wolfenstein effect (Wolfenstein, 1978),
later expanded by Mikheev and Smirnov Mikheev and Smirnov
(1985, 1986), and commonly named as the Mikheev-Smirnov-
Wolfenstein (MSW) effect (see e.g., Blennow and Smirnov, 2013
for a detailed description of neutrino oscillations in matter).

Matter effects in long-baseline accelerator or atmospheric
neutrino oscillation experiments depend on the size of the
effective mixing angle θ13 in matter, which leads the transitions
νe ↔ νµ,τ governed by the atmospheric mass-squared difference
131 = 1m2

31/2E. Within the simple two-flavor mixing
framework, the effective θ13 angle in matter reads as

sin2 2θm13 =
sin2 2θ13

sin2 2θ13 +
(

cos 2θ13 ∓
√

2GFNe
131

)2
, (2)

where the minus (plus) sign refers to neutrinos (antineutrinos)
and Ne is the electron number density in the Earth interior. The
neutrino mass ordering fixes the sign of 131, that is positive
(negative) for normal (inverted) ordering: notice that, in the
presence of matter effects, the neutrino (antineutrino) oscillation
probability P(νµ → νe) [P(ν̄µ → ν̄e)] gets enhanced if the

ordering is normal (inverted). Exploiting the different matter
effects for neutrinos and antineutrinos provides therefore the
ideal tool to unravel the mass ordering.

Matter effects are expected to be particularly relevant when the
following resonance condition is satisfied:

1m2
31 cos 2θ13 = 2

√

2GFNeE . (3)

The precise location of the resonance will depend on both the
neutrino path and the neutrino energy. For instance, for1m2

31 ∼

2.5 × 10−3 eV2 and distances of several thousand kilometers, as
it is the case of atmospheric neutrinos, the resonance effect is
expected to happen for neutrino energies∼ 3− 8 GeV.

In the case of muon disappearance experiments, in the ∼

GeV energy range relevant for long-baseline and atmospheric
neutrino beams, the Pµµ survival probabilities are suppressed
(enhanced) due to matter effects if the ordering is normal
(inverted). If the matter density is constant, the Pµµ survival

probability at terrestrial baselines8 is given by

Pµµ = 1− cos2 θm13 sin
2 2θ23 × sin2

[

1.27

(

1m2
31 + A+ (1m2

31)
m

2

)

L

E

]

− sin2 θm13 sin
2 2θ23 × sin2

[

1.27

(

1m2
31 + A− (1m2

31)
m

2

)

L

E

]

(4)

− sin4 θ23 sin
2 2θm13 sin

2
[

1.27(1m2
31)

m L

E

]

,

8For an expansion including also the solar mixing parameters, see Ref.Akhmedov

et al. (2004).
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where A = 2
√

2GFNeE, θ
m
13 is that of Equation (2) and

(1m2
31)

m
= 1m2

31

√

√

√

√sin2 2θ13 +

(

cos 2θ13 ∓
2
√

2GFNeE

1m2
31

)2

.

(5)
The dependence of the survival probability Pµµ on the neutrino
energy E and the cosine of the zenith angle cos θz , related to
the distance the atmospheric neutrinos travel inside the Earth
before being detected at the experiments, is shown in Figure 4 for
normal (Left) and inverted (Right) ordering. There, we can see
that reconstructing the oscillation pattern at different distances
and energies allows to determine the neutrino mass ordering (see
also section 6.1).

Until very recently, oscillation experiments were not showing
a particular preference for any of the mass orderings, not even
when combined in a global analysis (see for instance Forero
et al., 2014). Lately, however, the most recent data releases
from some of the experiments have become more sensitive
to the ordering of the neutrino mass spectrum. In particular,
the long-baseline experiments T2K and NOνA on their own
obtain a slight preference in favor of normal mass ordering,
with 1χ2

≈ 4 each (Hartz, 2017; Radovic, 2018). Note that
these results have been obtained imposing a prior on the mixing
angle θ13, according to its most recent determination at reactor
experiments. Relaxing the prior on the reactor angle results in a
milder preference for normal over inverted mass ordering. The
latest atmospheric neutrino results from Super-Kamiokande

also show some sensitivity to the neutrino mass ordering. In this
case, the collaboration obtains a preference for normal ordering
with 1χ2

≈ 3.5, without any prior on the reactor angle.
Constraining the value of θ13, the preference for normal mass
ordering increases up to 1χ2

≈ 4.5 Abe et al. (2018a).
The full sensitivity to the ordering of the neutrino mass

spectrum from oscillations is obtained after combining the data
samples described above with all the available experimental
results in a global fit (de Salas et al., 2018). This type of analysis
exploits the complementarity among the different results as
well as the correlations among the oscillation parameters to

obtain improved sensitivities on them. In the global analysis
to neutrino oscillations, the parameters sin2 θ12 and 1m2

21 are
rather well measured by the solar experiments (Cleveland et al.,
1998; Hosaka et al., 2006; Aharmim et al., 2008, 2010; Cravens
et al., 2008; Abdurashitov et al., 2009; Kaether et al., 2010;
Abe et al., 2011b; Bellini et al., 2014; Nakano, 2016) and the
long-baseline reactor experiment KamLAND Gando et al. (2011).
The short-baseline reactor neutrino experiments Daya Bay An
et al. (2017), RENO Pac (2018) and Double Chooz Abe et al.
(2014) are the most efficient ones in measuring the reactor
angle θ13 and also measure very well the atmospheric mass
splitting, 1m2

31. Notice however that the atmospheric mass
splitting is best measured by the combined data from MINOS
(beam and atmospheric) and MINOS+, as shown in Adam
(2018). This mass splitting is also measured, together with
the atmospheric angle θ23, by the atmospheric experiments
IceCube-DeepCore Aartsen et al. (2015), ANTARES Adrian-
Martinez et al. (2012) and Super-Kamiokande Abe et al.
(2018a), where the latter shows some sensitivity to θ13 and
δCP, too. The long-baseline accelerator experiments are also
sensitive to these four parameters through their appearance
and disappearance neutrino channels. Apart from the already
mentioned T2K Hartz (2017) and NOνA Radovic (2018), the
global fit also includes the previous experiments K2K Ahn et al.
(2006) and MINOS Adamson et al. (2014).

The result of the global analysis is summarized in Table 1

and Figure 5. Before discussing the sensitivity to the neutrino

mass ordering, we shall briefly discuss some other features of

this global fit. Notice first that now the best-fit value for the

atmospheric mixing angle θ23 lies in the second octant, although

values in the first octant are still allowed with 1χ2
= 1.6 (3.2)

for normal (inverted) ordering. Therefore, the octant problem
remains unsolved so far. Note also that, for the first time, the
CP violating phase δCP is determined with rather good accuracy.
The best-fit values for this parameter lie close to maximal
CP violation, being δCP = 1.32π for normal ordering and
δCP = 1.56π for inverted ordering. As can be seen from
the 1χ2 profile in Figure 5, values around δCP ≈ 0.5π are
now highly disfavored by data. Indeed, only around 50% of the

FIGURE 4 | Survival probability Pµµ, as a function of the neutrino energy E and the cosine of the zenith angle cos θz , for normal (inverted) ordering in the (Left, Right).
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FIGURE 5 | Summary of neutrino oscillation parameters, 2018. Red (blue) lines correspond to normal ordering (inverted ordering). Notice that the 1χ2 profiles for

inverted ordering are plotted with respect to the minimum for normal neutrino mass ordering.

parameter space remains allowed at the 3σ level, roughly the
interval [0.9π , 1.9π] for normal and [1.1π , 1.9π] for inverted
ordering. In the case of normal ordering, CP conservation
remains allowed at 2σ , while it is slightly more disfavored for
inverted ordering. For the remaining oscillation parameters,
one clearly sees that neutrino oscillations are entering the
precision era, with relative uncertainties on their determination
of 5% or below. For a more detailed discussion about these
parameters we refer the reader to de Salas et al. (2018)
and1.

Concerning the neutrino mass ordering, we obtain a global
preference of 3.4σ (1χ2

= 11.7) in favor of normal ordering.
This result emerges from the combination of all the neutrino
oscillation experiments, as we explain in the following. Starting
with long-baseline data alone, the inverted mass ordering is
disfavored with 1χ2

= 2.0, when no prior is considered on
the value of θ13. However, as explained above, the separate
analysis of the latest T2K and NOνA data independently report
a 1χ2

≈ 4 among the two possible mass orderings when a
prior on the reactor angle is imposed. This comes from the
mismatch between the value of θ13 preferred by short-baseline
reactor and long-baseline accelerator experiments, which is more
important for inverted ordering. Besides that, the combination
of T2K and reactor data results in an additional tension relative
to the preferred value of the atmospheric mass splitting 1m2

31,
which is again larger for the inverted mass ordering. This further
discrepancy results in a preference for normal ordering with
1χ2

= 5.3 for the combination of “T2K plus reactors” and
1χ2

= 3.7 for the combination of “NOνA plus reactors”. From

the combined analysis of all long-baseline accelerator and short-
baseline reactor data one obtains a 1χ2

= 7.5 between normal
and inverted ordering, which corresponds to a preference of 2.7σ
in favor of normalmass ordering. By adding the atmospheric data
to the neutrino oscillations fit, we finally obtain 1χ2

= 11.79,
indicating a global preference for normal ordering at the level
of 3.4σ .

3. MASS ORDERING AND DECAY
EXPERIMENTS

3.1. Mass Ordering Through β-Decay
Experiments
The most reliable method to determine the absolute neutrino
masses in a completely model independent way is to measure the
spectrum of β-decay near the endpoint of the electron spectrum.
The reason for this is related to the fact that, if neutrinos are
massive, part of the released energy must go into the neutrino
mass and the electron spectrum endpoint shifts to lower energies.
When there are more than one massive neutrino, each of the
separate mass eigenstates contributes to the suppression of the
electron energy spectrum and it becomes possible to study the
pattern of the neutrino masses. Nowadays none of the β-decay
experiments can reach the energy resolution required to be able

9Note that this extra sensitivity comes essentially from Super-Kamiokande,

since the effect of IceCube DeepCore and ANTARES is negligible in

comparison.
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FIGURE 6 | Kurie function in β-decays. The red (blue) line indicates the normal

(inverted) ordering case for a massless lightest neutrino, while the black line is

for the case of three massless neutrinos. The green curve shows how the

Kurie function of a normal ordering scenario with mlightest ≃

√

1m2
31 can

mimic the inverted ordering case.

to determine the mass hierarchy10, but we will explain in the
following how, in principle, future experiments may aim at such
result.

The best way to depict the effects of the separate mass
eigenstates is to compute the Kurie function for β-decay. The
complete expression can be written as (see e.g., Giunti and Kim,
2007):

K(T) =

[

(Qβ − T)

N
∑

i=1

|Uei|
2
√

(Qβ − T)2 −m2
i 2(Qβ − T −mi)

]1/2

,

(6)
where Qβ is the Q-value of the considered β-decay, T is the
electron kinetic energy, 2 is the Heaviside step function and
|Uei|

2 is the mixing matrix element that defines the mixing
between the electron neutrino flavor and the i-th mass eigenstate
with a mass mi. The standard scenario features N = 3, but the
formula is valid also if a larger number of neutrinos exists (i.e., if
there are sterile neutrinos, as explained for example in Gariazzo
et al., 2016).

The Kurie function of Equation (6) is depicted in Figure 6,
where we show in red (blue) the result obtained using a massless
lightest neutrino and the current best-fit mixing angles and mass
splittings for normal (inverted) ordering, as described in the
previous section. As a reference, we also plot K(T) for a case
with massless neutrinos only (in black). Should we consider
higher values for the lightest neutrino mass, the detection of
the mass ordering would be increasingly more difficult, since

10In the case of quasi-degenerate spectrum, the distortion of the spectrum will

consist of just a bending and a shift of the end point, similar to the case of an

electron neutrino with a given mass without mixing Farzan et al. (2001), and the

ordering cannot be measured. Therefore, for future β-decay searches, measuring

the neutrino mass ordering will be practically the same as measuring the neutrino

mass hierarchy.

the separation of the mass eigenstates would decrease, eventually
becoming negligible in the degenerate case. For this reason we
will only discuss the case of a massless lightest neutrino from the
perspective of the β-decay experiments.

Given the unitarity of the mixing matrix (
∑N

i=1 |Uei|
2
= 1),

the normalization of the Kurie function is the same at Qβ −

T ≫ mi. Since we are interested in the small differences which

appear near the endpoint, the plot only focuses on the very end

of the electron spectrum and the common normalization is not
visible for the inverted ordering case. In the considered range,
however, the effect of the different correspondence between the
mass eigenstates and the mixing matrix elements introduces
a difference which in principle would allow to determine the
mass ordering through the observation of the β-decay spectrum.
The observation of the kinks in the electron spectrum is very
challenging, especially in the case of normal ordering, for which

even the more pronounced kink (at Qβ − T ≃

√

1m2
21 ≃

8 meV) is barely visible in Figure 6. In the case of inverted
ordering, since the mass difference between the two lightest mass

eigenstates is the largest possible one (
√

1m2
31 ≃ 50 meV), and

the lightest neutrino is the one with the smallest mixing with the
electron neutrino, the amplitude of the kink is much larger. As
a consequence, an experiment with enough energy resolution to
measure the spectrum in the relevant energy range can directly
probe the mass ordering observing the presence of a kink. Note
that this measurement can be obtained even without a detection
of the lightest neutrino mass. As we show in Figure 6, however, it
is crucial to have a non-zero observation of the electron spectrum

between Qβ and Qβ −

√

1m2
31, otherwise one could confuse the

inverted ordering spectrum with a normal ordering spectrum

obtained with a larger lightest neutrino mass mlightest ≃

√

1m2
31

(green curve).
Another consideration is due. One could think to probe the

neutrino mass ordering just using the fact that the expected
number of events is smaller in the inverted ordering than in

the normal ordering case. As we discussed above, this could be
possible only if some independent experiment would be able to
determine the mass of the lightest neutrino, in order to break
the possible degeneracy between mlightest and the mass ordering
depicted by the blue and green curves in Figure 6, otherwise the
conditions required to observe the electron spectrum between

Qβ and Qβ −

√

1m2
31 would be probably sufficient to guarantee

a direct observation or exclusion of the kink. The best way to

determine the neutrino mass ordering, however, may be to use
an estimator which compares the binned spectra in the normal

and inverted ordering cases, as proposed for example in Stanco
et al. (2017) in the context of reactor neutrino experiments. The
authors of the study, indeed, find that a dedicated estimator can

enhance the detection significance with respect to a standard χ2

comparison.
To conclude, today the status of β-decay experiments is far

from the level of determining the mass ordering, since the energy
resolution achieved in past and current measurements is not
sufficient to guarantee a precise probe of the interesting part
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of the spectrum. KATRIN, for example, aims at a sensitivity of
0.2 eV on the effective electron neutrino mass (Angrik et al.,
2004; Sejersen Riis et al., 2011), only sufficient to probe the fully
degenerate region of the neutrino mass spectrum.

3.2. Mass Ordering From Neutrinoless
Double Beta Decay
In the second part of this section we shall discuss instead the
perspectives from the neutrinoless double beta decay (see e.g., the
reviews Gomez-Cadenas et al., 2012; Dell’Oro et al., 2016 and also
Pascoli and Petcov (2002)), a process allowed only if neutrinos are
Majorana particles (Schechter and Valle, 1982), since it requires
the lepton number to be violated by two units. Neutrinoless
double beta decay experiments therefore aim at measuring the
life time T0ν

1/2 of the decay, which can be written as:

1

T0ν
1/2(N )

= GN

0ν |M
0ν
N
|
2

(

|mββ |

me

)2

, (7)

where me is the electron mass, GN

0ν is the phase space factor,
M

0ν
N

is the nuclear matrix element (NME) of the neutrinoless
double beta decay process, N indicates the chemical element
which is adopted to build the experiment andmββ is the effective
Majorana mass, see below. In case no events are observed, a
lower bound on T0ν

1/2 can be derived. Recent constraints on
the neutrinoless double beta decay half-life come from the
EXO-200 Albert et al. (2014), KamLAND-Zen Gando et al.
(2016), CUORE Alduino et al. (2018a), Majorana Aalseth et al.
(2018), CUPID-0 Azzolini et al. (2018), Gerda Agostini et al.
(2018), and NEMO-3 Arnold et al. (2018) experiments. The
strongest bounds to date on the half-life of the different isotopes

are: T0ν
1/2(

76Ge) > 8.0 × 1025 year from Gerda Agostini et al.

(2018), T0ν
1/2(

82Se) > 2.4 × 1024 year from CUPID-0 Azzolini

et al. (2018), T0ν
1/2(

130Te) > 1.5 × 1025 year from CUORE

Alduino et al. (2018a) and T0ν
1/2(

136Xe) > 1.07 × 1026 year from
KamLAND-Zen, Gando et al. (2016).

The effective Majorana mass reads as:

mββ =

N
∑

k=1

eiαk |Uek|
2mk , (8)

where N is the number of neutrino mass eigenstates, each
with its mass mk, αk are the Majorana phases (one of which
can be rotated away, so that there are N − 1 independent
phases), and Uek represents the mixing between the electron
flavor neutrino and the k-th mass eigenstate. Notice that the
conversion between the half-life of the process and the effective
Majorana mass depends on the NMEs (see e.g., Vergados et al.,
2016; Engel and Menéndez, 2017), which are typically difficult
to compute. Several methods can be employed and there is no
full agreement between the results obtained with the different
methods. As a consequence, the quoted limits on T0ν

1/2 can be
translated into limits on mββ which depend on the NMEs. If
the most conservative values for the NMEs are considered, none
of the current constraints reaches the level required to start

constraining the inverted ordering in the framework of three
neutrinos, see Figure 3.

If we computemββ as a function of the lightest neutrino mass
with the current preferred values of the mixing parameters and in
the context of three neutrinos, we discover that the value of mββ

depends on the mass ordering only for mlightest . 40 meV, see
Figure 3. For this reason, neutrinoless double beta experiments
can aim to distinguish the mass ordering only for the smallest
values of the lightest neutrino mass. Please note that this also
means that if the lightest neutrino has a mass above ∼ 40 meV,
perfectly allowed by all the present constraints on the neutrino
mass scale, the two mass orderings will never be distinguished in
the context of neutrinoless double beta decay experiments.

When going to smaller mlightest, the situation changes, as
mββ becomes independent of mlightest. In the region mlightest .

10 meV, a difference between the two mass orderings appears,
since the effective Majorana mass is constrained by the mass
splittings to be larger than∼ 10 meV for inverted ordering, while
it must be below ∼ 7 meV for normal ordering. This means that
experiments which can test the region mββ < 10 meV can rule
out the inverted scenario. Note that a positive detection of T0ν

1/2
in the range that corresponds to mββ & 10 meV, on the other
hand, would not give sufficient information to determine the
mass ordering without an independent determination ofmlightest.
To resume, in the context of three neutrino mixing, neutrinoless
double beta decay experiments alone will be able to determine the
neutrino mass ordering only ruling out the inverted scheme, that
is to say if the ordering is normal andmlightest . 10 meV.

In any case, we should remember that if no neutrinoless
double beta decay candidate event will ever be observed we
will not have determined the mass ordering univocally: Dirac
neutrinos escape the constraints from this kind of process, so that
it would be still perfectly allowed to have an inverted ordering
scheme and no Majorana fermions in the neutrino sector.
Due to the presence of the Majorana phases in Equation (8),
unfortunately, there is a small window for mlightest in normal
ordering that can correspond to almost vanishing values of mββ ,
which will possibly never be observable. As we show in Figure 3,
however, the region of parameter space where this happens has a
very small volume if one considers the phases to vary between 0
and 2π , so that the credible region formββ in a Bayesian context
shows that it is rather unlikely to have mββ . 2 × 10−4 eV,
as a significant amount of fine tuning would be needed in the
(completely unknown) Majorana phases. Our statement, which
arises from assuming a logarithmic prior onmlightest, is in perfect
agreement with the results of Agostini et al. (2017a), where a
linear prior onmlightest is assumed.

Please note that the situation depicted in Figure 3 is only
valid if there are only three neutrinos. If, as the current DANSS
Alekseev et al. (2018) and NEOS Ko et al. (2017) experiments
may suggest, a sterile neutrino with a mass around 1 eV exists
(see e.g., Dentler et al., 2017, 2018; Gariazzo et al., 2017, 2018b),
the situation would be significantly different. The allowed bands
for mββ as a function of the lightest neutrino mass when a light
sterile neutrino is introduced are reported for example in Giunti
and Zavanin (2015) (see also Gariazzo et al., 2016). In this three
active plus one sterile neutrino case (3+1), the contribution of the
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fourth neutrino mass eigenstate (mainly mixed with the sterile
flavor) must be added in Equation (8), with the consequence
that the allowed bands are located at higher mββ . In Figure 7,
adapted from Giunti (2017), we reproduce the dependence of the
effective Majorana mass on the lightest neutrino mass when one
assumes the 3+1 neutrino scenario, compared with the standard
three neutrino case. As we can see, with the introduction of
an extra sterile neutrino state, mββ is significantly increased
for the normal ordering case, reaching the level of the inverted
ordering bands, which are less shifted toward higher values of
mββ . Furthermore, in the 3+1 scenario, also in the inverted
ordering case it is possible to have accidental cancellations due
to the three independent Majorana phases in Equation (8) (see
the detailed discussion of Giunti and Zavanin, 2015), so that
a non-detection of the neutrinoless double beta decay process
would never be sufficient to rule out the inverted ordering.
The opposite situation may occur in case the lightest neutrino
mass will be independently constrained to be below ∼ 10 meV
while mββ . 10 meV: in this case, however, we would rule
out normal ordering. Consequently, if a light sterile neutrino
exists, neutrinoless double beta experiments will never be able
to determine the mass ordering if the mass ordering is normal,
while some possibility remains if the ordering of the three active
neutrino masses is inverted, provided that the lightest neutrino
is very light and the Majorana phases are tuned enough. The
KamLAND-Zen, Gerda, and CUORE experiments, using three
different materials, may very soon start probing the inverted
ordering region in the case of 3+1 neutrino mixing for all the
possible values of the NMEs, see Figure 7, where the current
KamLAND-Zen Gando et al. (2016) constraints are reported.

To conclude and summarize the current status: neutrinoless
double beta decay cannot yet provide constraints on the neutrino
mass ordering. Depending on the lightest neutrino mass and on
the existence of a fourth (sterile) neutrino, it would be possible
that not even far-future experiments could be able to reach this
goal.

4. RESULTS FROM COSMOLOGY

Massive neutrinos affect the cosmological observables in different
ways, that we shall summarize in what follows. For a
comprehensive review of the effects of neutrino masses in
cosmology, we refer the reader to the recent work presented in
Lattanzi and Gerbino (2018).

A very important epoch when discussing the impact of
massive neutrinos in the cosmological expansion history and
in the perturbation evolution is the redshift at which neutrinos
become non-relativistic. This redshift is given by

1+ znr,i ≃ 1890
( mi

1 eV

)

, (9)

withmi referring to the mass of each massive neutrino eigenstate.
Current bounds on neutrino masses imply that at least two
out of the three massive eigenstates became non-relativistic in
the matter dominated period of the universe. As stated in the
introductory section, and as we shall further illustrate along

this section, cosmological measurements are currently unable to
extract individually the masses of the neutrino eigenstates and
the ordering of their mass spectrum and, therefore, concerning
current cosmological data, all the limits on the neutrino mass
ordering will come from the sensitivity to the total neutrino
mass

∑

mν . Consequently, in what follows, we shall mainly
concentrate on the effects on the cosmological observables of
∑

mν , providing additional insights on the sensitivity to the
ordering of the individual mass eigenstates whenever relevant.

4.1. CMB
There are several imprints of neutrino masses on the CMB
temperature fluctuations pattern once neutrinos become non-
relativistic: a shift in the matter-radiation equality redshift or
a change in the amount of non-relativistic energy density at
late times, both induced by the evolution of the neutrino
background, that will, respectively, affect the angular location
of the acoustic peaks and the slope of the CMB tail, through
the Late Integrated Sachs Wolfe (ISW) effect. The former will
mostly modify 2s, i.e., the angular position of the CMB peaks,
which is given by the ratio of the sound horizon and the
angular diameter distance, both evaluated at the recombination
epoch. Massive neutrinos enhance the Hubble expansion rate,
with a consequent reduction of the angular diameter distance
and an increase of 2s, which would correspond to a shift of
the peaks toward larger (smaller) angular scales (multipoles).
The latter, the Late ISW effect, is related to the fact that
the gravitational potentials are constant in a matter-dominated
universe. The inclusion of massive neutrinos will delay the dark
energy dominated period and consequently reduce the time
variation of the gravitational potential at late times, suppressing
the photon temperature anisotropies in the multipole region
2 < ℓ < 50. A very similar effect occurs at early times
through the so-called Early ISW effect, which governs the height
of the first CMB peak. Light active neutrino species, indeed,
reduce the time variations of the gravitational potential also
around the recombination period, due to the different evolution
of these potentials in radiation/matter dominated epochs, leaving
a signature on the CMB photon fluctuations when they become
non-relativistic. Massive neutrinos will therefore decrease the
temperature anisotropies by 1Cℓ/Cℓ ∼

(

mν,i/0.1 eV
)

% in the
multipole range 20 < ℓ < 500 (Lesgourgues and Pastor, 2012).

Unfortunately, the Late ISW effect affects the CMB spectrum
in a region where cosmic variance does not allow for very
accurate measurements. From what regards the other two effects,
i.e., the shift in the location of the acoustic peaks and the
Early ISW effect, they can both easily be compensated varying
other parameters which govern the expansion of the universe.
For example, within the minimal 3CDM framework, the total
amount of matter in the universe and the Hubble constant H0

can be tuned in order to compensate the effects of massive
neutrinos. Therefore, CMB primary anisotropies alone can not
provide very tight bounds on the neutrino masses, due to the
strong parameter degeneracies. This automatically implies that
CMB measurements alone are unable to extract any information
concerning the neutrino mass ordering, as shown in Figure 8,
obtained by means of the publicly available Boltzmann solver
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FIGURE 7 | Effective Majorana mass as a function of the lightest neutrino mass in the three neutrino (Left) and 3+1 neutrino (Right) scenarios, at 99.7% CL,

comparing normal (red) and inverted (blue) ordering of the three active neutrinos. Adapted from Giunti (2017). The green band represents the 90% CL bounds from

KamLAND-Zen Gando et al. (2016), given the uncertainty on the NME.

FIGURE 8 | Relative ratio of the temperature and polarization anisotropies for

the inverted over the normal mass orderings, see the text for details.

Cosmic Linear Anisotropy Solving System (CLASS) (Blas et al.,
2011; Lesgourgues, 2011a,b; Lesgourgues and Tram, 2014). In
the figure we can notice that the difference between normal and
inverted neutrino mass orderings, for

∑

mν = 0.12 eV11 is
almost negligible. Moreover, the largest differences appear in the
multipole range where cosmic variance dominates.

11This is the most constraining 95% CL limit Palanque-Delabrouille et al. (2015)

at present, excluding combinations of data sets that are in tension, and we have

chosen it as the benchmark value in the following discussions throughout this

review.

Among the secondary CMB anisotropies, i.e., those
generated along the photon line of sight and not produced
at recombination, there are two effects that can notably
improve the sensitivity to the total neutrino mass

∑

mν from
CMB observations. One of them is CMB lensing, that is, a
distortion of the photon paths because of the presence of matter
inhomogeneities along the line of sight. Due to such distortion,
the CMB acoustic oscillation features will be smeared out in a
scale-dependent way, mostly due tomatter overdensities at z . 5.
By measuring the non-gaussianities of CMB polarization and
temperature maps it is possible to extract the power spectrum
of the lensing potential. This, in turn, contains very useful
information on the integrated matter distribution along the line
of sight. Since massive neutrinos behave differently from a pure
cold dark matter component, characterized by zero velocities, the
small-scale structure suppression induced by the non-negligible
neutrino dispersion velocities will decrease the CMB lensing
signal expected in the absence of neutrino masses (Kaplinghat
et al., 2003; Song and Knox, 2004; Lesgourgues et al., 2006; Smith
et al., 2006; de Putter et al., 2009; Allison et al., 2015), leaving

unchanged the power spectrum of the lensing potential at large
scales, and suppressing it at small scales. Furthermore, since
CMB lensing involves high redshifts, non-linearities do not enter
in the calculation of the matter density field. Therefore, CMB
lensing enhances the capabilities to bound the neutrino masses
using CMB data. In the future, this technique may even surpass
weak lensing capabilities, based on statistical analyses of the
ellipticity of remote galaxies, see below and section 6.4. Indeed,
nowadays, measurements from the Planck satellite constrain
the neutrino masses dominantly through CMB gravitational
lensing. As stated in Ade et al. (2014), increasing the neutrino
mass implies an increase on the expansion rate at redshifts z ≥ 1,
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corresponding to a suppression of clustering at scales below the
size of the horizon at the non-relativistic transition. This effect
leads to a decrease in CMB lensing that, at multipoles ℓ = 1, 000,
is∼ 10% for

∑

mν = 0.66 eV.
On the other hand, we have the reionization process in the late

universe, when the first generation of galaxies emitted ultraviolet
(UV) photons that ionized the neutral hydrogen, leading to
the end of the so-called dark ages. Reionization increases the
number density of free electrons ne which can scatter the CMB
with a probability given by a quantity named reionization optical
depth, τ , which can be computed as an integral over the line of
sight of ne. The consequence of an increase of τ on the CMB
temperature fluctuations is the suppression of the acoustic peaks
by a factor exp(−2τ ) at scales smaller than the Hubble horizon
at the reionization epoch. Even if from the point of view of
CMB temperature anisotropies this effect is highly degenerate
with a change in the amplitude of the primordial power spectrum
As, which governs the overall amplitude of the CMB spectra,
reionization induces linear polarization on the CMB spectrum,
leading to a “reionization bump” in the polarization spectra
at large scales, which otherwise would vanish. Even if the
reionization signal is rather weak, as it amounts to no more than
∼ 10% of the primary polarization signal (Aghanim et al., 2008),
very accurate measurements of the reionization optical depth τ

sharpen considerably the CMB neutrino mass bounds (Vagnozzi
et al., 2017), as they alleviate the degeneracy between As and τ

and consequently the existing one between
∑

mν and As.

4.2. Large Scale Structure of the Universe
The largest effect of neutrino masses on the cosmological
observables is imprinted in the matter power spectrum (Bond
et al., 1980; Hu et al., 1998). Neutrinos are hot dark matter
particles and, therefore, due to the pressure gradient, at a given
redshift z, the non-relativistic neutrino overdensities can only
cluster at scales for which the wavenumber of perturbations is
below the neutrino free streaming scale kfs (i.e., at scales k < kfs ),
with

kfs (z) =
0.677

(1+ z)1/2

( mν

1 eV

)

√

�m hMpc−1 , (10)

being �m the ratio of the total matter energy density over the
critical density at redshift zero. The free-streaming nature of
the neutrino will be directly translated into a suppression of
the growth of matter fluctuations at small scales. One could
then conclude that extracting the neutrino relic masses and their
ordering is a straightforward task, once that measurements of
the matter power spectrum at the relevant scales are available
at a different number of redshifts. The former statement is
incorrect, not only because it does not consider the existence
of degeneracies with the remaining cosmological parameters,
but also because a number of subtleties must be taken into
account, as we shall explain in what follows. The decrease of the
matter power spectrum due to the total neutrino mass

∑

mν

is, in principle, currently measurable. Nonetheless, when fixing
∑

mν , the total mass could be splitted differently among the
three neutrino mass eigenstates (i.e., m1, m2 and m3), modifying
slightly the relativistic to non-relativistic transition. This will

affect both the background evolution and the perturbation
observables (Lesgourgues et al., 2004): the different free-
streaming scales associated to each of the three neutrino mass
eigenstates will be imprinted in the matter power spectrum.
Figure 9 shows the ratios of the matter power spectrum for
normal over degenerate, inverted over degenerate, and inverted
over normal neutrino mass spectra for a total neutrino mass of
0.12 eV. We illustrate such ratios at different redshifts. Notice
that the differences among the possible neutrino mass schemes
are tiny, saturating at the 0.06% level at k > 0.2h Mpc−1.
Therefore, only very futuristic means of measuring the matter
power spectrum could be directly sensitive to the neutrino
mass ordering, and, eventually, be able to isolate each of the
free-streaming scales associated to each individual neutrino
mass eigenstate. We shall comment on these future probes in
section 6.5.

Since, at present, matter power spectrum data constrain
exclusively

∑

mν , it is only via these bounds, combined with
CMB or other external data sets, that nowadays a limit on
the neutrino mass ordering can be obtained, see section 4.3.
Nevertheless, and as aforementioned, there are a number of
problems which may interfere with a proper understanding of
the scale-dependent neutrino mass suppression of clustering.
The first of them is due to the fact that observations measure
the spatial distributions (or their Fourier transforms, the power
spectra) of galaxies, clusters, or quasars, e.g., of given tracers,
mapping the large scale structure of the Universe at a number
of redshifts, by measuring the growth of fluctuations at different
scales. However, the matter distribution is not directly measured,
i.e., it needs to be inferred from the tracers observed. A simple
model of structure formation suggests that at large scales and,
therefore, when the perturbation evolution is still in the linear
regime, the galaxy power spectrum is related to the matter
one by a constant named b, the light-to-mass bias (Desjacques
et al., 2018). The galaxy bias can be determined either separately
by independent methods or to be considered as an additional
free parameter to be measured together with the neutrino mass
∑

mν . This approach has been followed in many studies in
the past (Cuesta et al., 2016; Giusarma et al., 2016; Vagnozzi
et al., 2017). However, when dealing with neutrino masses,
the relationship between the tracers and the underlying matter
field may be more complicated, as neutrinos themselves may
induce scale-dependent features in the bias (Castorina et al.,
2014; LoVerde and Zaldarriaga, 2014;Muñ̃oz andDvorkin, 2018)
due to their free-streaming nature (see also the recent work
of Giusarma et al., 2018 for a new method to extract a scale-
dependent bias, based on the cross-correlation of CMB lensing
maps and galaxy samples).

Another additional complication when extracting the
neutrino mass from clustering observations arises from to the
presence of non-linearities at scales k & k0NL ≡ 0.1−0.2 hMpc−1

at z = 0. The effect of neutrinomasses is very-well understood on
linear scales, i.e., scales below kNL at z = 0 (or located at slightly
larger values of k but at higher redshifts). Massive neutrinos
induce a suppression in the linear matter power spectrum below
their free streaming scale 1P/P ∝ −8fν , with fν the fraction
of matter in the form of massive neutrinos (Hu et al., 1998).
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FIGURE 9 | The Top (Middle) shows the ratios of the matter power spectrum

of normal (inverted) ordering over the degenerate case. The Bottom shows

the ratio of the matter power spectra for the normal and inverted mass

orderings. See the text for details.

Accurate descriptions of the matter power spectrum in the
non-linear regime are therefore mandatory in order to be
sensitive to the full neutrino mass signature. This is particularly

important in the case of galaxy surveys, in which the information
depends on the number of independent modes available, and
where going to smaller scales (i.e., larger values of k) has a
profound impact on the sensitivity to neutrino masses. Several
approaches have been followed in the literature to account for
the effect of massive neutrinos in the non-linear regime, most
of them relying on N-body cosmological simulations, which
have been upgraded to include the effects of neutrino clustering
in the evolution of the cosmological structures. Methods range
from perturbative attempts (Saito et al., 2008; Brandbyge and
Hannestad, 2009; Shoji and Komatsu, 2010; Ali-Haimoud and
Bird, 2012; Archidiacono and Hannestad, 2016; Upadhye et al.,
2016; Dakin et al., 2017; Senatore and Zaldarriaga, 2017) to the
fully non-linear inclusion (Villaescusa-Navarro et al., 2014a;
Inman et al., 2015; Banerjee and Dalal, 2016; Dakin et al., 2017;
Banerjee et al., 2018; Liu et al., 2018) of neutrinos as an extra
set of particles. A conservative alternative consists on using
exclusively power spectrum measurements within the linear
regime (i.e., k < 0.1 h Mpc−1). Some of the cosmological
constraints have also been obtained using the mildly non-linear
regime (k < 0.2 h Mpc−1) by means of the so-called Halofit
formalism (Smith et al., 2003; Takahashi et al., 2012). The Halofit
prescription models the non-linear matter power spectrum, and
it has been calibrated against a wide range of CDM simulations.
It has also been extended for massive neutrino cosmologies (Bird
et al., 2012). Other predictions for the non-linear matter power
spectrum include the Coyote emulator (Heitmann et al., 2014),
which is based on a set of high-accuracy N-body simulations.

However, there is also another avenue to use large scale
structure information, the geometrical approach, which exploits
the so-called Baryon Acoustic Oscillations (BAO) rather than
the measurements of the broad-band shape of the galaxy power
spectrum. The BAO signal appears as a peak in the two-point
mass correlation function corresponding to the distance a sound
wave can travel in the photon-baryon fluid from very early
in the universe until the drag epoch, when the baryon optical
depth equals one. The BAO signature provides a standard ruler
to measure the distance to various redshifts, and it can be
measured either along the line of sight, in which the radial
distance is inversely proportional to the Hubble expansion rate
H(z), or across the line of sight, in which case the angular
distance is proportional to an integral of H(z), the angular
diameter distance dA(z). To use the BAO method, one must,
therefore, extract the acoustic scale from the clustering of
some tracer of the baryon distribution (galaxies, quasars). This
is typically done statistically using the two-point correlation
function of the spatial distribution of tracers, or from its Fourier
transform, the power spectrum. From these functions, it is
possible to measure two different quantities corresponding to the
oscillations parallel and perpendicular to the line of sight, that
is rsH(z) and dA(z)/rs, with rs the sound horizon at the drag
epoch. Many of the BAO analyses to date have used spherically
averaged clustering statistics, measuring an effective distance

DV ≡ (zdA(z)
2/H(z))

1
3 , which is the volume-averaged distance.

Some of the most recent BAO extractions by the Sloan Digital
Sky Survey III (SDSS-III) (Eisenstein et al., 2011) Baryon
Oscillation Spectroscopic Survey (BOSS) (Dawson et al., 2013)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org October 2018 | Volume 5 | Article 36138

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


de Salas et al. Neutrino Mass Ordering in 2018

have achieved, by measuring the clustering of 1.2 million galaxies
with redshifts 0.2 < z < 0.75, 1.8% precision on the radial
BAO distance and 1.1% precision on the transverse distance
in the z < 0.75 redshift region (Beutler et al., 2017b; Ross
et al., 2017; Vargas-Magaña et al., 2018). These results improve
former determinations from previous data releases of BOSS and
SDSS (Eisenstein et al., 2005; Anderson et al., 2013, 2014; Tojeiro
et al., 2014; Ross et al., 2015) or other galaxy surveys (Percival
et al., 2001; Cole et al., 2005; Beutler et al., 2011; Blake et al., 2011;
Kazin et al., 2014), see also the recent works of Bautista et al.
(2017b) for a 2.6% measurement of DV at 2.8σ significance with
the extended Baryon Oscillation Spectroscopic Survey (eBOSS)
from SDSS-IV Dawson et al. (2016). The Dark Energy Survey
(DES) has also achieved a 4.4% accuracy on the measurement of
dA(z)/rs at z = 0.81 Abbott et al. (2017).

Galaxy clustering measurements can also be exploited to
constrain, at a number of redshifts, the product of the linear
growth rate f × σ8

12, by means of the so-called redshift space
distortions, caused by galaxy peculiar velocities, see the recent
analyses of Beutler et al. (2017a), Satpathy et al. (2016), and
Sanchez et al. (2017).

Apart from the spatial distribution of galaxies, there are also
other ways of mapping the large scale structure of the universe
at different cosmic times. The Lyman-α forest power spectrum
from distant quasars plays a major role for constraining the
neutrino masses, as it is sensitive to smaller scales, where the
effect of neutrino masses is more pronounced. We refer the
reader to the seminal works of Croft et al. (1999), Seljak
et al. (2005), Goobar et al. (2006), Seljak et al. (2006), Gratton
et al. (2008), Fogli et al. (2008), and Viel et al. (2010). In
addition, since the redshifts at which Lyman-α forest probes
are sensitive to are higher than those corresponding to galaxy
surveys, a fixed scale k will be closer to the linear regime in
the Lyman-α case. An additional benefit of going to higher
redshifts is that uncertainties related to the evolution of the
dark energy fluid will be sub-dominant, as dark energy effects
are expected to be more prominent at very low redshifts.
However, modeling the neutrino mass effect in the Lyman-α
forest power spectrum is highly non-trivial as it may strongly
rely on hydrodynamical simulations (Viel et al., 2010). These
numerical calculations try to properly account for the late
time non-linear evolution of the intergalactic medium (IGM),
including reionization processes (Viel et al., 2010; Villaescusa-
Navarro et al., 2013). The BAO signature can also be measured
in the flux correlation function of the Lyman-α forest of quasars,
first detected at a mean redshift z = 2.3 in Busca et al. (2013, see
also Slosar et al., 2013; Font-Ribera et al., 2014a; Delubac et al.,
2015; Bautista et al., 2017a; Bourboux et al., 2017 and Aubourg
et al., 2015), in which joint constraints from the BAO signature
from galaxies and quasars have been presented.

Galaxy clusters provide yet another test which allows us to
trace the clustering of matter perturbations and, therefore, to test
the suppression due to the presence of a non-zero

∑

mν . Galaxy
clusters are, by far, the largest virialised objects in the universe,

12Here, σ8 corresponds to the normalization of the matter power spectrum on

scales of 8h−1 Mpc, see Equation (13).

providing a measurement of the so-called cluster number count
function dN/dz. This function gives the number of clusters of a
certain mass M within a redshift interval (bin) z + δz and, for a
given survey:

dN

dz

∣

∣

∣

M>Mmin

= fsky
dV(z)

dz

∫

∞

Mmin

dM
dn

dM
(M, z) . (11)

The quantity fsky = 1�/4π refers to the fraction of sky covered
by the survey and the unit volume is given by

dV(z)

dz
=

4π

H(z)

∫ z

0
dz′

1

H(z′)2
. (12)

While the redshift is relatively easy to measure, the main
uncertainty of this method comes from the cluster mass
estimates, determined through four main available methods: X-
rays, velocity dispersion, Sunyaev-Zeldovich (SZ) effect13 and
weak lensing. The overall error in the cluster mass determination
is usually around 1M/M ∼ 10%. Furthermore, in order to
relate the cluster number count function to the underlying
cosmological parameters, one needs as an input a mass function
dn(z,M)/dM describing the abundance of virialised objects
at a given redshift, usually obtained by means of N-body
simulations (Tinker et al., 2008; Costanzi et al., 2013). This mass
function depends on both the matter mass-energy density and on
the standard deviation (computed in linear perturbation theory)
of the density perturbations:

σ 2
=

1

2π2

∫

∞

0
dkk2P(k)W2(kR) , (13)

where P(k) is the matter power spectrum, W(kR) is the top-hat
window function, R is the comoving fluctuation size, related to
the cluster massM as R = (3M/4πρm)

1/3, and

W(kR) =
3
(

sin(kR)− (kR) cos(kR)
)

(kR)3
. (14)

There are still some degeneracies in the cosmological parameters
probed by cluster surveys, whose results are reported by means
of a relationship between the matter clustering amplitude σ8
(obtained from Equation 13), and thematter mass-energy density
�m parameters. More concretely, cluster catalogs measure the
so-called cluster normalization condition, σ8�

γ
m, where γ ∼

0.4 (Allen et al., 2011; Weinberg et al., 2013). Current cluster
catalogs include X ray clusters (see e.g., Hilton et al., 2018; Sohn
et al., 2018 and references therein), the optically detected SDSS
photometric redMaPPer cluster catalog (Rozo and Rykoff,
2014; Rykoff et al., 2014; Rozo et al., 2015) and the Planck SZ
galaxy clusters (PSZ2) Ade et al. (2016a), which contains more
than a thousand confirmed clusters. Other SZ cluster catalogs
are those detected from the Atacama Cosmology Telescope
(ACT) (Hilton et al., 2018) and from the South Pole Telescope
(SPT) (de Haan et al., 2016).

13The thermal SZ thermal effect consists on a spectral distortion on CMB photons

which arrive along the line of sight of a cluster.
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Last but not least, weak lensing surveys are also an
additional probe of the large scale structure effects of massive
neutrinos (Cooray, 1999; Abazajian and Dodelson, 2003;
Hannestad et al., 2006b; Kitching et al., 2008; De Bernardis et al.,
2009; Ichiki et al., 2009; Tereno et al., 2009; Debono et al., 2010;
Jimenez et al., 2010). Light rays from distant galaxies are bent
by the matter density perturbations between the source galaxies
and the observer, thereby inducing distortions in the observed
images of the source galaxies (see the reviews Munshi et al., 2008;
Kilbinger, 2015). Commonly, the deformations in the source
galaxies are rather weak and to extract the lensing signature
one needs a correlation among different galaxy images, the so-
called shear-correlation functions. By measuring the angular
correlation of these distortions, one can probe the clustering
statistics of the intervening matter density field along the line
of sight, without relying strongly on bias assumptions, setting
therefore independent constraints on the neutrino masses. Weak
lensing surveys usually report their cosmological constraints in
terms of the clustering amplitude σ8 and the current matter
energy density �m. More specifically, they make use of the
combination S ≡ σ8

√

�m as an accurate description of the
amplitude of structure growth in the universe. The most recent
weak lensing cosmological analyses profiting of weak lensing data
from DES and from the Kilo Degree Survey (KiDS), consisting of
∼ 450 deg2 of imaging data, are presented in Abbott et al. (2018),
Hildebrandt et al. (2017),Joudaki et al. (2017), and Köhlinger
et al. (2017), respectively.

4.3. Cosmological Bounds on Neutrino
Masses and Their Ordering
In the following, we shall review the current cosmological
bounds on neutrino masses and on their ordering, firstly in the
standard 3CDM scenario and then when considering extended
cosmological models.

4.3.1. Constraints Within the 3CDM Universe
Focusing on bounds exclusively from the Planck collaboration,
making use of their CMB temperature anisotropies
measurements in the multipole range ℓ . 2500 (Planck
TT) and of their low-multipole (up to ℓ = 29) polarization
data, lowP, a bound of

∑

mν < 0.72 eV at 95% CL Ade et al.
(2016b) is reported. When high-multipole (i.e., small scale,
ℓ > 30) polarization measurements are included in the analyses
(Planck TT,TE,EE + lowP), the quoted constraint is
∑

mν < 0.49 eV at 95% CL. As the Planck TT,TE,EE data
combinationmay still have some systematics due to temperature-
to-polarization leakage (Ade et al., 2016b), the bounds including
these measurements provide the less conservative approach
when exploiting CMB data. In 2016, the Planck collaboration
presented a series of new results based on a new analysis, in
which the modeling and removal of unexplained systematics in
the large angular polarization data were accounted for Aghanim
et al. (2016b). The value of the optical depth τ found in these
refined analyses (using the SimLow likelihood) was smaller
than that quoted in previous analyses (Ade et al., 2016b): while
the lowP data was providing τ = 0.067 ± 0.022, the SimLow
likelihood results in τ = 0.055 ± 0.009. The most important

TABLE 2 | Jeffreys’ scale Jeffreys (1961) for estimating the strength of the

preference for one model over the other (adapted from Trotta (2008)) when

performing Bayesian model comparison analysis.

| lnBNO,IO| Odds Strength of

evidence

Nσ for the mass

ordering

<1.0 . 3 : 1 inconclusive <1.1σ

∈ [1.0, 2.5] (3− 12) : 1 weak 1.1− 1.7σ

∈ [2.5, 5.0] (12− 150) : 1 moderate 1.7− 2.7σ

∈ [5.0, 10] (150− 2.2× 104) :1 strong 2.7− 4.1σ

∈ [10, 15] (2.2× 104 − 3.3× 106) : 1 very strong 4.1− 5.1σ

>15 >3.3× 106 :1 decisive >5.1σ

The fourth column indicates the approximate correspondence between the quoted Bayes

factor levels and the Nσ probabilities computed for a Gaussian variable.

consequence of this lower value of τ on the CMB bounds on
∑

mν is related to the degeneracy between the amplitude of the
primordial power spectrum, As, and τ , as already introduced
in section 4.1: a lower value of τ will imply a lower value of As,
thus implying a lower overall normalization of the spectrum,
leading therefore to tighter constraints on neutrino masses.
The 95% CL limits of

∑

mν < 0.72 eV and
∑

mν < 0.49 eV,
respectively from the Planck TT + lowP and Planck

TT,TE,EE + lowP analyses, are updated to
∑

mν < 0.59 eV
and

∑

mν < 0.34 eV when using Planck TT + SimLow

and Planck TT,TE,EE + SimLow, respectively. These
constraints are clearly located away from the region in which a
preference for a given mass ordering (normal vs. inverted) may
show up. Indeed, the CMB data alone were used by the authors
of Gerbino et al. (2017b) which, by means of a novel approach
to quantify the neutrino mass ordering, have shown that the
odds favoring normal ordering vs. inverted ordering are 1 : 1
and 9 : 8 in the case of the Planck TT + lowP and Planck
TT,TE,EE + lowP data combinations, respectively. These
results point to an inconclusive strength of evidence, see Table 2.
Based on a full Bayesian comparison analysis, Gariazzo et al.
(2018a) has shown, using Planck TT,TE,EE + lowP

measurements together with global neutrino oscillation data,
that the Bayes factor for such a combination is log(BNO,IO) ≃ 2.5
for almost all the possible parameterizations and prior choices
considered. This valuev of the Bayes factor, which only points to
weak preference for normal ordering, is entirely due to neutrino
oscillation data, in agreement with the results of Caldwell
et al. (2017). Therefore, Planck temperature and polarization
measurements alone can not further improve our current
knowledge of the neutrino mass ordering from global oscillation
data.

The CMB limits on neutrino masses can also include the
lensing likelihood, which leads to

∑

mν < 0.59 eV at 95% CL
for the case of Planck TT,TE,EE + lowP + lensing

measurements (Ade et al., 2016b). Notice that the bound with
the lensing likelihood is less tight than that obtained without the
lensing potential extraction (

∑

mν < 0.49 eV at 95% CL from
Planck TT,TE,EE + lowP). The reason is related to the
fact that, while the Planck CMB power spectra favor a larger
lensing amplitude, the lensing potential reconstructions prefer
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a lower one. Since increasing the neutrino masses reduces the
lensing amplitude, the one dimensional posterior distribution
of
∑

mν arising from the combination of CMB temperature,
polarization and lensing data sets shifts the neutrino mass
constraints away from zero, so that less posterior volume is
found near zero than when constraining

∑

mν only with CMB
temperature and polarization data.

A significant strengthening on the aforementioned limits
can be obtained by means of additional data sets, which help
enormously in breaking the degeneracies which are allowed
when only CMB data are considered. Among them, the one
existing between

∑

mν and the Hubble constant H0 (see
e.g Giusarma et al. (2013b)). Large scale structure data from
galaxy clustering are of great help in breaking degeneracies.
When exploited in the geometrical (BAO) form, the Planck
collaboration quotes 95% CL limits of

∑

mν < 0.17 eV from the
combination Planck TT,TE,EE + SimLow + lensing

+ BAO data Aghanim et al. (2016b)14. Concerning the neutrino
mass ordering, the addition of BAO measurements to CMB
Planck measurements leads to odds for the normal vs. the
inverted ordering of 4 : 3 and of 3 : 2, in the case of the Planck
TT + lowP + BAO and Planck TT,TE,EE + lowP +
BAO respectively, suggesting only very mild evidence for the
normal ordering case Gerbino et al. (2017b). These results
confirmed the previous findings obtained in Hannestad and
Schwetz (2016). The authors of Vagnozzi et al. (2017) reported
odds for the normal vs. the inverted ordering of 2.4 : 1 from the
combination of Planck TT,TE,EE + BAO plus the SimLow
prior on the reionization optical depth, i.e., τ = 0.05 ± 0.009.
Notice that if data are not informative enough, the choice of prior
onmlightest will make a difference in the odds ratio15.

Another possible avenue to exploit galaxy clustering data is
to use the information contained in the full-shape of the galaxy
power spectrum (see e.g., Allen et al., 2003; Elgaroy and Lahav,
2003; Hannestad, 2003; Spergel et al., 2003; Barger et al., 2004;
Crotty et al., 2004; Hannestad and Raffelt, 2004; Tegmark et al.,
2004, 2006; Fogli et al., 2007, 2008; Hamann et al., 2007b, 2008,
2010a; de Putter et al., 2012, 2014; Riemer-Sorensen et al., 2012,
2014; Giusarma et al., 2013a, 2016; Zhao et al., 2013; Cuesta et al.,
2016; Vagnozzi et al., 2017). Notice however that using BAO is
currently a more robust method, as the effects of the galaxy bias
and non-linearities are not as severe as in the shape approach.
In the minimal 3CDM scenario, the BAO geometrical approach
can supersede the neutrino mass constraints obtained from the
shape one (see e.g., Hamann et al., 2010a; Giusarma et al., 2013b).
Indeed, a dedicated analysis has been devoted in Vagnozzi et al.
(2017) to compare the constraining power of these two different
approaches to large scale structure data with the SDSS-III
BOSS measurements. The conclusions are that, even if the latest

14The BAOmeasurements exploited by the Planck collaboration include the 6dF

Galaxy Survey (6dFGS) Beutler et al. (2011), the BOSS LOWZ BAO extraction of

the spherical averagedDv/rs (Anderson et al., 2014; Ross et al., 2015) and the BOSS

CMASS-DR11 data of Anderson et al. (2014).
15See e.g., the work of the authors of Simpson et al. (2017) and the explanation

of their results in Schwetz et al. (2017) andGariazzo et al. (2018a). See also Long

et al. (2018), Heavens and Sellentin (2018), Handley and Millea (2018) for useful

discussions concerning the prior choice on the neutrino mass ordering extraction.

measurements of the galaxy power spectrum map a large volume
of our universe, the geometric approach is still more powerful, at
least within the minimal 3CDM +

∑

mν cosmology. The better
performance of BAO measurements is partly due to the upper
cutoff applied in the scale k of the power spectrum when dealing
with shape analyses (mandatory to avoid non-linearities), and
partly due to the fact that two additional nuisance parameters
are further required to relate the galaxy power spectrum to
the matter power one16. As an example, the 95% CL bound of
∑

mν < 0.118 eV obtained with Planck TT,TE,EE + BAO
plus SimLow is degraded to

∑

mν < 0.177 eV when replacing
part of the BAO data [more concretely, the high redshift BOSS
CMASS Data Release 11 (DR11) sample by the full-shape power
spectrum measurements from the BOSS CMASS Data Release
12 (DR12)].

An alternative tracer tomap out the large scale structure in our
universe and improve the CMB-only bounds on the sum of the
three active neutrinos is the Lyman-α forest, leading to neutrino
mass bounds which turn out to be among the most constraining
ones. By means of the one-dimensional Lyman-α forest power
spectrum extracted by Palanque-Delabrouille et al. (2013) and
combining these measurements with Planck TT,TE,EE +

lowP + BAO, the authors of Palanque-Delabrouille et al. (2015)
find a 95% CL upper limit of

∑

mν < 0.12 eV. It is also
remarkable the fact that, even without the addition of CMB
data, the combination of the Lyman-α forest power spectrum
of Palanque-Delabrouille et al. (2013), together with those from
the XQ-100 quasars at z ≃ 3.5 − 4.5 and the high-resolution
HIRES/MIKE spectrographs at z = 4.2 and z = 4.6 (Viel et al.,
2013), is already able to provide a limit of

∑

mν < 0.8 eV (Yeche
et al., 2017), showing clearly the enormous potential of small-
scale probes to extract the neutrino masses.

The degeneracies among
∑

mν and the other cosmological
parameters that appear when considering CMB data only can also
be strongly alleviated by the addition of Supernova Ia luminosity
distance data and/or local measurements of the Hubble
parameter17. Concerning Supernovae Ia data, the most complete
photometric redshift calibrated sample joins the SuperNova
Legacy Survey (SNLS) and SDSS supernova catalogs. This
Joint Light-Curve Analysis (JLA) catalog (Betoule
et al., 2013, 2014; Mosher et al., 2014) has been used by the
Planck collaboration and by other analyses to improve the
constraints on

∑

mν , being its impact particularly crucial in
non-minimal cosmologies (Vagnozzi et al., 2018), as we shall
explain toward the end of this section. Concerning the value of
H0, as there exists a strong anti-correlation between the Hubble
constant and

∑

mν when considering CMB measurements,
larger mean values of H0 will lead to tighter constraints on the
neutrino mass and consequently on the inverted mass ordering.
When performing combined analyses of CMB and H0 data, the

16As stated in Vagnozzi et al. (2017), in the future, a deeper understanding of the

non-linear regime of the galaxy power spectrum with massive neutrinos included,

plus a better understanding of the galaxy bias could change the constraining power

of full-shape analyses vs. BAO ones.
17See Jackson (2007) and Freedman and Madore (2010) for dedicated reviews

concerning the different possible local measurements ofH0. Among them, the one

based on Cepheid variables.
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2015 Planck release relies on the reanalysis Efstathiou (2014)
of a former H0 measurement based on the Hubble Space

Telescope (HST) (H0 = (73.8 ± 2.4) km s−1 Mpc−1;Riess
et al., 2011), which was in mild (2.5σ ) tension with the value
of the Hubble parameter derived from 2013 Planck CMB
data Ade et al. (2014). This reanalysis (Efstathiou, 2014) considers
the original Cepheid data of Riess et al. (2011) and uses a new
geometric maser distance estimate to the active galaxy NGC
4,258 (Humphreys et al., 2013), which is used as a distance
anchor to find a value of the Hubble constant H0 = (70.6 ±

3.3) km s−1 Mpc−118. The limit on the sum of the three active
neutrino masses reported by the Planck collaboration using
this value of H0 is

∑

mν < 0.23 eV at 95% CL, when combined
with Planck TT + lowP + lensing + BAO + SNIa data.
Other estimates of the Hubble constant, however, exist. The
2.4% determination of Riess et al. (2016) profits from new, near-
infrared observations of Cepheid variables, and it provides the
value H0 = (73.02 ± 1.79) km s−1 Mpc−1 Riess et al. (2016). As
the former mean H0 value is higher than the one considered by
the Planck collaboration, it will lead to tighter limits on

∑

mν .
Indeed, the work of Vagnozzi et al. (2017) quotes the 95% CL
bounds of

∑

mν < 0.196 eV and
∑

mν < 0.132 eV when
combining with external data sets using the priors H0 = (70.6±
3.3) km s−1 Mpc−1 and H0 = (73.02 ± 1.79) km s−1 Mpc−1,
respectively. Focusing on the less conservative choice H0 =

(73.02 ± 1.79) km s−1 Mpc−1, odds for the normal vs. the
inverted neutrino mass ordering of 3.3 : 1 were found for both
the Planck TT,TE,EE + BAO + SimLow + H0 and the
Planck TT,TE,EE + BAO + SimLow + H0 + Planck SZ

data sets (Vagnozzi et al., 2017). The 95%CL upper bounds on the
neutrino mass for these two combinations are

∑

mν < 0.094 eV
and

∑

mν < 0.093 eV, respectively. These results indicate, once
again, very mild evidence for the normal mass ordering, even
within these more aggressive and less conservative scenarios,
in which the very tight limit on

∑

mν is mostly due to the
tension between CMB and direct measurements of the Hubble
constant H0, together with the strong degeneracy between

∑

mν

and H0. Using these results, we stress that having an upper
bound

∑

mν . 0.1 eV at 95% CL is not equivalent to having
a 95% CL preference for normal ordering: the probabilities for
normal ordering and inverted ordering, as computed from the
odds 3.3 : 1, are approximately 77 and 23% (see also section 5.1).

In general, the combination of data sets that are inconsistent
is potentially dangerous. Apart from the constraining effect on
the neutrino mass limits when considering a particular prior
on the Hubble constant H0, there have been also other related
cases in which the neutrino masses were a tool to accommodate
tensions among different data sets. For instance, in the case of
galaxy cluster counts, a larger neutrino mass could in principle fit
both CMB and low-redshift universe constraints on the power
spectrum normalization σ8 Allen et al. (2003). The effect of
combining CMB and BAO observations with clusters and/or

18The final result of Efstathiou (2014) is howeverH0 = (72.5±2.5) km s−1 Mpc−1,

when the combination of the H0 results obtained with three different distance

estimators is performed. The value H0 = (70.6 ± 3.3) km s−1 Mpc−1 is the only

one of the three which shows a milder tension with theH0 estimate from Planck.

shear data is presented in Costanzi et al. (2014), where it is
shown that the inclusion of either cluster or shear measurements
in the Planck + BAO joint analysis indicates a preference for
∑

mν > 0 at more than 2σ . However, the authors clearly
state that these results can not be interpreted as a claim for
a cosmological detection of the neutrino mass, but rather as a
remedy to palliate the existing tension between clusters/shear
data and Planck/BAO observations.

Finally, weak lensing constraints from the Dark Energy

Survey Year 1 results Abbott et al. (2018) (DES Y1), have also
recently provided bounds on the sum of the total neutrino mass.
Based on 1321 deg2 imaging data, DES Y1 analyses exploit the
galaxy correlation function (from 650.000 luminous red galaxies
divided into five redshift bins) and the shear correlation function
(from twenty-six million source galaxies from four different
redshift bins) as well as the galaxy-shear cross-correlation. The
95% CL upper bound reported on the neutrino mass after
combining their measurements with Planck TT,TE,EE +

lowP + BAO +JLA is
∑

mν < 0.29 eV, ∼ 20% higher than
without DES measurements. The reason for this higher value of
∑

mν is that the clustering amplitude in the case of DES Y1 is
mildly below the one preferred by Planckmeasurements. Since
larger values of the neutrino mass will decrease the value of the
clustering amplitude, the upper limit on the total neutrino mass
is loosened by∼ 20% after the DES results are also considered.

4.3.2. Extensions to the Minimal 3CDM Universe
So far we have discussed the neutrino mass and neutrino
mass ordering sensitivities within the minimal 3CDM universe.
However, these limits will change when additional parameters are
introduced in the analyses.

The first and most obvious scenario one can consider is to
test the stability of the neutrino mass limits when new physics is
added in the neutrino sector. As alreadymentioned in section 3.2,
short baseline neutrino experiments indicate that a light sterile
neutrino at the eV scale may exist. These extra sterile species
will contribute to the effective number of relativistic degrees of
freedom, Neff, defined by

ρrad =

(

1+
7

8

(

4

11

)4/3

Neff

)

ργ , (15)

where ρrad (ργ ) is the total radiation (CMB photons) energy
density. In the standard picture Neff = 3.046 (Mangano et al.,
2005; de Salas and Pastor, 2016). This number accounts for the
three active neutrino contribution and considers effects related
to non-instantaneous neutrino decoupling and QED finite
temperature corrections to the plasma evolution19. Variations
in Neff, apart from the light sterile neutrino, may be related
to the existence of additional relativistic particles, as thermally-
produced axions (see below). Analyses in which both the active
neutrino masses and the number of additional massless or

19The work of de Salas and Pastor (2016), including three-flavor neutrino

oscillations, has revisited previous calculations including all the proper collision

integrals for both diagonal and off-diagonal elements in the neutrino density

matrix and quotes the value of Neff = 3.045.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org October 2018 | Volume 5 | Article 36142

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


de Salas et al. Neutrino Mass Ordering in 2018

massive species are varied simultaneously have been extensively
carried out in the literature (Hamann et al., 2007a, 2010b,
2011; Giusarma et al., 2011, 2013b; Archidiacono et al., 2013a,b;
Di Valentino et al., 2013; Riemer-Sorensen et al., 2013), showing
that the bounds on the active neutrino mass are relaxed when
additional sterile species are added to the fermion content of
the SM of particle physics. The constraints on the total neutrino
mass

∑

mν are less stringent than in the standard three neutrino
case due to the large degeneracy between

∑

mν and Neff, which
arises from the fact that a number of massless or sub-eV sterile
neutrino species contributing to the radiation content of the
universe will shift both the matter-radiation equality era and
the location of the CMB acoustic peaks. This effect could be
compensated by enlarging the matter content of the universe,
implying therefore that larger values for the neutrino masses
could be allowed. Consequently, a priori, the constraints on
∑

mν when Neff is also a free parameter in the analyses are
not very competitive. Fortunately, CMB measurements from
the Planck collaboration help enormously in sharpening the
measurement of Neff, especially when considering polarization
measurements at small scales: including data at high multipoles,
one obtains 1Neff < 1 at more than 4σ significance from
Planck CMB observations alone. Indeed, the limit on the sum
of the three active neutrino species considering also additional
radiation neutrino species (i.e., massless sterile neutrino species)
is
∑

mν < 0.178 eV at 95% CL from Planck TT,TE,EE

+ lowP + BAO data, very similar to the bound
∑

mν <

0.168 eV at 95% CL arising from the very same dataset
within the minimal 3CDM scenario with three active massive
neutrinos. Another possible way of relaxing (or even avoiding)
the cosmological neutrino mass limits is via the addition of non-
standard interactions in the active neutrino sector (Beacom et al.,
2004; Fardon et al., 2004; Afshordi et al., 2005; Hannestad, 2005b;
Bell et al., 2006; Brookfield et al., 2006a,b; Bjaelde et al., 2008;
Ichiki and Keum, 2008; Mota et al., 2008; Boehm et al., 2012;
Archidiacono and Hannestad, 2014; Dvali and Funcke, 2016;
Di Valentino et al., 2018b).

Furthermore, additional relics different from sterile neutrinos,
as thermal axions (Peccei and Quinn, 1977a,b; Weinberg, 1978;
Wilczek, 1978), contributing to both Neff at early times and
to the hot dark matter component in the late-time universe,
suppress small-scale structure formation and show effects very
similar to those induced by the (active) three massive neutrino
species. Therefore, the cosmological bounds on the three active
neutrino masses are modified in scenarios with thermal axions
(see Hannestad et al., 2007, 2008, 2010; Melchiorri et al., 2007;
Archidiacono et al., 2013c; Giusarma et al., 2014; Di Valentino
et al., 2015, 2016a,b), as these two species have to share the
allowed amount of dark matter. Nonetheless, there are non-
negligible differences among neutrinos and thermal axions: (a)
axions are colder than neutrinos, as they decouple earlier; (b)
since the axion is a scalar particle, an axion mass larger than the
neutrino one is required in order to make identical contributions
to the current mass-energy density of the universe; (c) in the
case of axions, the contribution to Neff is related to their
mass, while for neutrinos this is usually not true. Consequently,
the bounds on the axion mass are always less constraining

than for the neutrino, and
∑

mν is slightly more constrained
in scenarios in which thermal axions are also present. For
instance, Di Valentino et al. (2016c) quotes

∑

mν < 0.175 eV
at 95% CL from the Planck TT,TE,EE + lowP + BAO
data combinations when considering only neutrinos, while the
analyses in Di Valentino et al. (2016b), including massive axions,
find

∑

mν < 0.159 eV and ma < 0.763 eV, both at 95% CL, for
the very same data combination.

There are also other ways of relaxing the cosmological
neutrino mass bounds, related either to the early or the late-
time accelerating periods in the universe. In the former case
one can play with inflationary processes. There have been a
number of studies devoted to explore their degeneracies with
the neutrino sector( see the recent works of Hamann et al.,
2007b; Archidiacono et al., 2013b; Joudaki, 2013; de Putter
et al., 2014; Canac et al., 2016; Di Valentino et al., 2016a;
Gerbino et al., 2017a). The authors of Di Valentino et al. (2016a)
have considered a non-standard and parametric form for the
primordial power spectrum, parameterized with the PCHIP

(piecewise cubic Hermite interpolating polynomial) formalism
with twelve nodes between k1 = 5 × 10−6 Mpc−1 and k2 =

10 Mpc−1 and derived the neutrino mass constraints within
this more general scenario. When only Planck TT + lowP

measurements were considered, the 95% CL mass bound of
∑

mν < 0.75 eV obtained with the usual power-law description
of the primordial power spectrum was relaxed to

∑

mν <

2.16 eV. This large value is explained in terms of the strong
degeneracy between

∑

mν and the PCHIP nodes corresponding
to the wave-numbers where the contribution of the Early ISW
effect is located, in such a way that the effect induced by a
non-zero neutrino mass is easily compensated by an increase
of the primordial power spectrum at these scales only. BAO
information improves considerably the limits in the PCHIP

prescription, but it is the addition of high-ℓ polarization data
what further constrains the effect. The 95% CL upper limit in
the PCHIP scenario from the Planck TT,TE,EE + lowP

+ BAO data combination is
∑

mν < 0.218 eV, quite close
to the bound found when the usual power-law description is
applied (

∑

mν < 0.175 eV). Reference Gerbino et al. (2017a)
deals instead with the robustness of the constraints on the scalar
spectral index ns under several neutrino physics scenarios. The
authors have explored the shifts induced in the inflationary
parameters for different choices of the neutrino mass ordering,
comparing the approximate massive neutrino case (one massive
eigenstate plus two massless species when the total mass is
close to the minimum allowed value by oscillation data, and
three degenerate massive neutrinos otherwise) vs. the exact case
(normal or inverted mass orderings). While the mass-ordering
assumptions are not very significant when

∑

mν is fixed to its
minimum value, there is a shift in ns when

∑

mν is a free
parameter, inherited from the strong degeneracies in the

∑

mν ,
H0 and �mh

2 parameter space. Fortunately, BAO measurements
revert the

∑

mν-ns anti-correlation present with CMB data only,
and the shift in the spectral index turns out to be negligible.

The other possibility is to play with the late-time acceleration
period and study how the neutrino mass bounds change. The
current accelerated expansion of the universe, explained in terms
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of a cosmological constant in the minimal 3CDM scenario, may
be due to a dynamical dark energy fluid with a constant equation
of state w 6= −1 or a time-dependent w(z) (Chevallier and
Polarski, 2001; Linder, 2003), or to quintessence models, based
on the existence of a cosmic scalar field (Peebles and Ratra, 1988;
Ratra and Peebles, 1988; Wetterich, 1995; Caldwell et al., 1998;
Zlatev et al., 1999; Wang et al., 2000), which provide a dynamical
alternative to the cosmological constant scenario with w = −1. It
is naturally expected that the neutrino mass bounds will increase
when enlarging the parameter space. Indeed, when the dark
energy equation of state is allowed to vary within the phantom
region w < −1, there is a very well-known degeneracy between
the dark energy equation of state w and the sum of the three
active neutrino masses, as first noticed in Hannestad (2005a) (see
also La Vacca and Kristiansen, 2009; Archidiacono et al., 2013b;
Joudaki, 2013; Lorenz et al., 2017; Sutherland, 2018; Vagnozzi
et al., 2018)20. It has been pointed out that for very high neutrino
masses only dark energy models lying within the phantom region
will be allowed. The reason for that is the following: a larger
∑

mν can be compensated by a larger �m, which in turn can
be compensated by a smaller equation of state of the dark
energy component, i.e., w < −1. Interestingly, the recent work
of Vagnozzi et al. (2018) shows that the cosmological bounds
on

∑

mν become more restrictive in the case of a dynamical
dark energy component with w(z) ≥ −1. Following the usual
dynamical dark energy description, whose redshift dependence
is described by the standard Chevallier-Polarski-Linder (CPL)
parametrization (Chevallier and Polarski, 2001; Linder, 2003),
the authors of Vagnozzi et al. (2018) have shown that the
combination of Planck TT,TE,EE + BAO + JLA plus the
SimLow prior on the reionization optical depth provides, at
95% CL,

∑

mν < 0.11 eV in the CPL case when restricting
w(z) ≥ −1 (within the physical, non-phantom region), while
∑

mν < 0.13 eV in the 3CDM case. When w(z) is also allowed
to be in the phantom region (w(z) < −1) within the CPL
parameterization, the resulting 95% CL constraint on the three
active neutrino masses is

∑

mν < 0.37 eV. These results have a
direct impact on the cosmological preference for a given neutrino
mass ordering. Following Hannestad and Schwetz (2016) and
Vagnozzi et al. (2017), it is found that the normal ordering is
mildly preferred over the inverted one, with posterior odds 3 : 1
for the data combination quoted above when w(z) ≥ −1. On
the contrary, if there is no such a restriction and w(z) can also
take values in the phantom region, the odds are 1 : 1. The odds
in the non-phantom dynamical dark energy case show a mild
preference for normal ordering. Therefore, if neutrino oscillation
experiments or neutrinoless double beta decay searches find
that the neutrino mass ordering is the inverted one, if the
current cosmic acceleration is due to a dynamical dark energy
component, one would require this component to be phantom.

As a final point in this section, we would like to note that
also in scenarios in which the current accelerated expansion is
explained by means of modifications of gravity at ultra-large

20Interacting dark energy models can also change the neutrino mass constraints

(see e.g., Gavela et al., 2009; La Vacca et al., 2009; Lopez Honorez and Mena, 2010;

Reid et al., 2010; Guo et al., 2018).

length scales, the cosmological limits on neutrino masses will
differ from those in the standard3CDMmodel ( see e.g., Huterer
and Linder (2007), Baldi et al. (2014), Hu et al. (2015), Shim et al.
(2014), Barreira et al. (2014), Bellomo et al. (2017), Peirone et al.
(2018), Renk et al. (2017), and Dirian (2017).

5. GLOBAL 2018 DATA ANALYSIS

In this section we shall combine the available measurements that
allow us to constrain the neutrino mass ordering, updating the
results presented in Gariazzo et al. (2018a).

5.1. Bayesian Model Comparison
Before performing the analysis, we will briefly summarize the
method we will adopt to compare the two possible orderings.

We will follow a Bayesian approach to model comparison (see
previous work suggesting the Bayesian method as the most suited
one for the mass ordering extraction in Qian et al., 2012 and
Blennow, 2014)21, which makes use of the Bayesian evidence Z.
This quantity, which is also known as the marginal likelihood, is
defined as the integral over the entire parameter space�M of the
prior π(θ) ≡ p(θ |M) times the likelihood L(θ) ≡ p(d|θ ,M),
where θ is the set of parameters that describe the modelM and d
represents the available data:

ZM =

∫

�M

L(θ)π(θ) dθ . (16)

The posterior probability of the modelM can be written in terms
of its prior probability π(M) times the Bayesian evidence ZM:

p(M|d) ∝ ZM π(M) , (17)

where the proportionality constant depends only on the data.
In our case we will be interested in comparing normal ordering
(NO) and inverted ordering (IO), which can be considered as two
different competing modelsM1 ≡ NO andM2 ≡ IO. The ratio
of the posterior probabilities of the two models can be written as

p(NO|d)

p(IO|d)
= BNO,IO

π(NO)

π(IO)
, (18)

having defined the Bayes factor as

BNO,IO = ZNO/ZIO . (19)

Assuming the same prior probabilities for normal and inverted
ordering, the Bayes factor is what determines the odds in favor
of one of the competing models. In particular we will indicate
the results in terms of its natural logarithm lnBNO,IO, which
will be positive when data will prefer normal ordering and
negative otherwise. Quantitatively, the preference is given in
terms of posterior odds, which are always |BNO,IO| : 1 in favor
of the preferred model. The strength of the preference can be

21We also refer the reader to Blennow et al. (2014), which provides a

comprehensive study of the sensitivity reach to the mass ordering in the context

of the frequentist approach.
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also translated into an empirical scale, which in our case is
summarized in the third column of Table 2.

Let us briefly discuss the correspondence of the quoted levels
that classify the strength of the preference in favor of one of the
competing models. In the case of the neutrino mass ordering,
we have only two possibilities (normal or inverted), so that
p(NO|d) + p(IO|d) = π(NO) + π(IO) = 1. If we assign the
same prior probability to the two cases, π(NO) = π(IO) = 1/2,
it is easy to compute the posterior probability for each of the two
cases, which will be

p(NO|d) = BNO,IO/(BNO,IO + 1) , (20)

p(IO|d) = 1/(BNO,IO + 1) , (21)

having used Equations (18, 19). The confidence levels for the
rejection of the disfavored (e.g., inverted) mass ordering will
then be x = 100 × (1 − |BNO,IO|

−1) %. For example, a
Bayes factor BNO,IO = 10 corresponds to a rejection of
the inverted ordering at 90% CL. If, instead, we want to
reproduce the probability levels P = erf(N/

√

2) that are usually
associated to the classical Nσ levels for a Gaussian measurement,
being erf the error function and considering, for example,
N ∈ (1, 2, 3, 4, 5), the corresponding Bayes factors B can be
computed to be B = P/(1 − P), which gives us lnBNσ ≃

0.77, 3, 5.9, 9.7, 14.37. Therefore, our “strong”, “very strong”
and “decisive” levels roughly correspond to the > 3σ , > 4σ
and > 5σ probabilities, as indicated in the fourth column of
Table 2.

5.2. Parameterization and Data
Our two competing models are described by the same number of
parameters, listed with their priors in Table 3: the three neutrino
mixing angles (sin2 θ12, sin2 θ13, sin2 θ23), the CP violating
phase δCP and the parameters associated with neutrino masses,
neutrinoless double beta decay (0νββ) and cosmology, as we shall
describe now.

We consider in our analysis the parameterization that uses the
two mass splittings (1m2

21 and 1m2
31) and the lightest neutrino

mass mlightest with logarithmic priors. This parameterization,
strongly motivated by the physical observables, was shown to
provide the optimal strategy to successfully explore the neutrino
parameter space (see Gariazzo et al., 2018a)22. Within the other
possible choice, that is, within the parametrization that uses the
three neutrino masses as free parameters, most of the parameter
space at high neutrino masses is useless for the data fit. Therefore,
this second possibility is penalized by the Occam’s razor and we
shall not explore it here.

The neutrino mixing parameters are constrained using
the same data we described in section 2. The complete
oscillation data set is indicated with the label “OSC” in the
following.

For the cosmological part, we will describe the universe using
the 3CDM model and its six parameters: the baryon and cold

22As we are making use of logarithmic priors here, we shall not report the upper

limits we obtain on the sum of the neutrino masses, as they will be much smaller

than the usually quoted results due to the volume effects associated with the use of

the logarithmic prior, that naturally leads to a preference for small neutrinomasses.

dark matter densities, �bh
2 and �ch

2; the optical depth to
reionization, τ ; the angular scale of the acoustic peaks through
2s and the amplitude log(1010As) and tilt ns of the power
spectrum of initial curvature perturbations. In addition, we add
the effect of the three massive neutrinos computing the evolution
of the cosmological observables assuming three independent
mass eigenstates, which, in terms of the parameters involved in

our analyses, read asm1 = mlightest

(

m1 =

√

m2
lightest

+ |1m2
31|

)

,

m2 =

√

m2
lightest

+ 1m2
21

(

m2 =

√

m2
lightest

+ |1m2
31| + 1m2

21

)

and m3 =

√

m2
lightest

+ 1m2
31

(

m3 = mlightest

)

for normal

(inverted) neutrino mass orderings.
When considering cosmological data, we will focus on the

Planck measurements of the CMB spectrum and on the
most recent results from BAO observations. For the former we

consider the 2015 Planck release (Adam et al., 2016; Ade
et al., 2016b) of the high-ℓ likelihood (Aghanim et al., 2016a),
together with a prior on τ as obtained in the 2016 intermediate
results (Aghanim et al., 2016b). For the purposes of our analyses,
this will be sufficient to mimic the final Planck release which

is expected within the next few months. Complementary to the
CMB, we include in our calculations the final constraints from
the SDSS BOSS experiment, the DR12 release, in the form
denoted as “final consensus” Alam et al. (2017), which provides
constraints from observing 1.2 million massive galaxies in three

separate bands at effective redshifts 0.38, 0.51, and 0.61, plus
results from the 6DF survey at z = 0.106 (Beutler et al., 2011)
and from the SDSS DR7 MGS survey at z = 0.15 (Ross et al.,
2015). The combined dataset including the mentioned CMB and
BAO data will be denoted as “Cosmo.”

In addition, we shall impose a prior on the Hubble parameter
as obtained in the recent results from Riess et al. (2016):

H0 = (73.24 ± 1.74) km s−1 Mpc−1. We will denote the data
combinations including this prior with the label “H0.”

Finally, concerning neutrinoless double beta decay, we vary
the two Majorana phases in the entire available range (0–2π) and
the NMEs according to the range allowed by recent theoretical

calculations. We revised the NME ranges adopted in Gariazzo
et al. (2018a), which were the ones suggested in Giuliani and
Poves (2012). Here we use these new ranges: [3.3 – 5.7] for 76Ge
and [1.5 – 3.7] for 136Xe, following the 1σ range proposed in
Vergados et al. (2016).

We use 0νββ data from the 136Xe experiments
KamLAND-Zen Gando et al. (2016) and EXO-200 Albert
et al. (2014) and from the 76Ge experiment Gerda, for
which we use the results in Agostini et al. (2017b), since
the latest publication Agostini et al. (2018) does not contain
enough information that allows us to parameterize a likelihood

function. The most stringent bounds, anyways, still come from
KamLAND-Zen, so that not including the new Gerda results
does not affect significantly our results. For the very same reason
we do not include the results of CUORE Alduino et al. (2018a),
for which the uncertainty on the NME of 130Te is very large and
the constraints corresponding to most of the values of M0ν

130Te
are much looser than the ones from KamLAND-Zen, and of
CUPID-0 Azzolini et al. (2018), which establishes a much less
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TABLE 3 | Neutrino, cosmological and 0νββ parameters used in the analysis, with the adopted priors.

Neutrino mixing and masses Cosmological 0νββ

Parameter Prior Parameter Prior Parameter Prior

sin2 θ12 0.1 – 0.6 �bh
2 0.019 – 0.025 α2 0 – 2π

sin2 θ13 0.00 – 0.06 �ch
2 0.095 – 0.145 α3 0 – 2π

sin2 θ23 0.25 – 0.75 2s 1.03 – 1.05 M
0ν
76Ge

3.3 – 5.7

δCP/π 0 –2 τ 0.01 – 0.4 M
0ν
136Xe

1.5 – 3.7

1m2
21/eV2 5× 10−5 – 10−4 ns 0.885 – 1.04

1m2
31/eV2 1.5× 10−3 – 3.5× 10−3 log(1010As) 2.5 – 3.7

log10(mlightest/eV) −5 – 0

All the priors are linear in the corresponding quantity.

stringent limit on the 82Se half-life. The complete neutrinoless
double beta set of data will be denoted as “0νββ .”

All the previously listed data are coded as likelihood terms in
a full Bayesian analysis. We compute the cosmological quantities
using the Boltzmann solver CAMB Lewis et al. (2000), the
likelihoods using the interface provided by CosmoMC Lewis
and Bridle (2002), modified in order to take into account
the oscillation and neutrinoless double beta decay data, while
the calculation of the Bayesian evidence is committed to
PolyChordHandley et al. (2015a,b).

5.3. Constraints on the Mass Orderings
The main results are depicted in Figure 10. The first data point
corresponds to the Bayesian evidence from oscillation data only.
Notice that the Bayes factor [ln(BNO,IO) = 6.5 ± 0.2 for
concreteness] indicates strong evidence for the normal mass
ordering from oscillation data only. This Bayes factor is translated
into a ∼ 3.2σ evidence favoring normal mass ordering. This
result was expected in light of the results presented in section 2,
arising from the frequentist joint analysis. There it was reported
a 1χ2

= 11.7 in favor of the normal mass ordering from the
combination of all long baseline, reactor and atmospheric data,
which corresponds, roughly, to ∼ 3.4σ . Adding information
from neutrinoless double beta decay searches does not affect
the Bayesian analysis, as shown by the second data point in
Figure 10, and as expected from previous work Gariazzo et al.
(2018a).

Once CMB and BAO measurements are also added in the
Bayesian analysis, ln(BNO,IO) = 7.4 ± 0.3 is obtained (see
the third point in Figure 10), improving the significance of
the preference for normal ordering from ∼ 3.2σ to ∼ 3.4σ .
Notice that, even if the preference for the normal neutrino mass
ordering is mostly driven by oscillation data, the information
provided by cosmological observations is more powerful than
that in the analysis carried out in Gariazzo et al. (2018a), as the
Bayesian analyses here also include BAOmeasurements, together
with CMB data. Indeed, from the two Bayes factors obtained
considering oscillation data only [ln(BNO,IO) = 6.5 ± 0.2]
and oscillation plus cosmological measurements [ln(BNO,IO) =

7.4 ± 0.3], it is straightforward to infer the probability odds for
normal ordering arising exclusively from cosmology. By doing
so, one obtains odds of 2.7 : 1 for the normal ordering against the

FIGURE 10 | Graphical visualization of the Bayesian factors comparing normal

and inverted ordering.

inverted one, in perfect agreement with the analyses of Vagnozzi
et al. (2017), where odds of 2.4 : 1 with cosmological data only
were reported when considering the very same data sets adopted
here (albeit the odds were derived with an alternative method).

Finally, the addition of the prior on the Hubble constant
raises the evidence for the normal ordering to ln(BNO,IO) =

7.7 ± 0.3 (i.e., ∼ 3.5σ ). This improvement is expected, as
previously explained in section 4, since a prior on the Hubble
constant breaks the degeneracy between

∑

mν and H0 and,
therefore, sharpens the neutrino mass bounds from cosmology.
By performing a similar exercise to the one previously quoted,
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one finds that the odds for normal vs. inverted ordering from
cosmology data only are 3.3 : 1 for the combination of CMB, BAO
plus the H0 prior, again in excellent agreement with the results
obtained in Vagnozzi et al. (2017).

6. FUTURE PROSPECTS

In this last section, we will explore the future prospects for
the detection of the neutrino mass ordering. Let us clarify
that many of the proposed methods are much less robust than
the ones involving neutrino oscillations through matter (see
section 6.1), and will likely give their first results much after
the first experimental 5σ determinations which are likely to be
reached in the next 5− 10 years. Many of the discussed methods,
indeed, will give constraints on the neutrino mass ordering only
as a secondary product of their operation and not as a main
result, hence they are not optimized nor mainly focused on
the mass ordering determination. Nevertheless, it is interesting
to discuss these additional methods for different reasons. First
of all, independent tests of the neutrino mass ordering from
differentmethods are surely welcome to havemore robust results.
Secondly, the different methods can provide complementary
information: if some inconsistencies or anomalies will appear, we
will have new hints for our quest toward new physics beyond
our current knowledge. In conclusion, even if the question
regarding the neutrino mass ordering will be solved within the
next few years by the currently running experiments or their
immediate extensions, its study through the other methods we
discuss here will be useful to shed more light on the topic
and provide more interesting information on neutrino physics
and beyond. This is why we do not focus only on neutrino
oscillation experiments (section 6.1), which will probably provide
the first and strongest results, but also on more exotic cases as
determinations from decay experiments (sections 6.2 and 6.3)
cosmological constraints (section 6.4), measurements from the
21 cm surveys (section 6.5), and probes which involve neutrinos
emitted by core-collapse supernova explosions (section 6.6) or
relic neutrinos from the early Universe (section 6.7).

6.1. Prospects From Oscillations
As we have seen in section 2, the combination of all current
neutrino experiments leads to a preference for normal ordering
of 3.4σ , within the context of the latest frequentists global data
analyses. The Bayesian analysis described in the previous section
confirms these results, as we have reported a 3.2σ evidence
for normal mass ordering. In principle, one may expect to
achieve further sensitivity on the neutrino mass ordering from
more precise data by the current long-baseline and atmospheric
neutrino experiments, since these experiments will still run
for some time before the new experiments will take over.
However, it is not easy to predict the final results of current
experiments, since the sensitivity to the mass ordering is highly
correlated to the true value of the CP phase δCP. The NOνA
experiment alone expects a 3σ sensitivity for 30–50% of the
values of δCP by 2,024 Himmel (2018). If δCP = 3π/2, the
expected sensitivity would be higher than that and, then, a very
strong result could be obtained by 2,024 Himmel (2018). Note,

however, that the NOνA sensitivity analysis considers a fixed
value of θ13 and does not marginalize over 1m2

31. Upgrading
T2K to T2K-II will improve the sensitivity substantially, since
the experiment should gather around 20 × 1021 POT by 2026,
which would be roughly 6 times the current amount of data23.
Combining beam data from T2K with atmospheric data from
SK can improve the sensitivity even further, as shown in Abe
et al. (2018a). Performing a combined fit of T2K, NOνA and
eventually SK could bring the sensitivity to the 5σ level within
a few years. In any case, apart from the combinations of different
experiments, a very robust determination of the neutrino mass
ordering from a single current experiment seems rather unlikely.
Indeed, one of the main goals of the next-generation neutrino
oscillation experiments, including new long-baseline, reactor,
and atmospheric neutrino detectors, will be to perform the
determination of the mass ordering by a single experiment. The
upcoming facilities will be able to measure the neutrino mass
ordering with astonishing precision. In this section we briefly
discuss some of the proposed projects and their physics potential.

Long-Baseline Experiments
The Deep Underground Neutrino Experiment (DUNE) (Acciarri
et al., 2015, 2016a,b; Strait et al., 2016) will be a new long-baseline
accelerator experiment, with a small near detector and a huge far
detector with a fiducial mass of 40 kton located 1,300 km away
from the neutrino source at Fermilab. With its powerful 1.1 MW
beam, it will be exposed to around 15 × 1020 POTs (protons
on target) per year, which will lead to a huge number of events
and therefore to high precision measurements of the neutrino
oscillation parameters. As explained in section 2, the presence
of matter affects differently the neutrino appearance probabilities
for normal and inverted mass orderings. DUNE, with the longest
baseline ever for an accelerator neutrino experiment, will be able
to measure the neutrino mass ordering with a significance above
5σ for any set of the oscillation parameters (θ23, δCP) after 7
years of data taking. Note that this sensitivity could be further
increased by using an improved energy reconstruction method,
as shown in De Romeri et al. (2016). On the other hand, the
sensitivities could also be biased by the potential presence of
new physics beyond the SM, such as non-standard neutrino
interactions (Miranda et al., 2006; Coloma, 2016; Coloma and
Schwetz, 2016; de Gouvêa and Kelly, 2016; Forero and Huber,
2016; Masud and Mehta, 2016; Bakhti and Khan, 2017; Coloma
et al., 2017; Deepthi et al., 2017; Forero and Huang, 2017;
Farzan and Tortola, 2018), deviations from unitarity Blennow
et al. (2017); Dutta et al. (2017); Escrihuela et al. (2017) or the
presence of light-sterile neutrinos (Berryman et al., 2015, 2016;
Agarwalla et al., 2016; Coloma et al., 2018). Indeed, besides
providing very precise information about the neutrino oscillation
mechanism, the DUNE experiment will also be very useful to test
different models for neutrino masses and mixings (Chatterjee
et al., 2017a,b; Pasquini et al., 2017; Agarwalla et al., 2018b;
Chakraborty et al., 2018; Srivastava et al., 2018a,b) as well
as to check for various effects of new physics such as the

23We are not aware of any study showing the T2K or SK expectations to the mass

ordering in the next few years.
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ones mentioned above, neutrino decay scenarios (Coloma and
Peres, 2017; Ascencio-Sosa et al., 2018; Choubey et al., 2018c),
quantum decoherence Balieiro Gomes et al. (2018) or even CPT
invariance (de Gouvêa and Kelly, 2017; Barenboim et al., 2018b,c)
and Lorentz invariance (Barenboim et al., 2018a; Jurkovich et al.,
2018).

There are also plans to build a larger version of the
Super-Kamiokande detector, Hyper-Kamiokande Abe
et al. (2018b), that will be very similar to its predecessor
but with a fiducial mass of 560 kton, 25 times larger than
Super-Kamiokande. The Hyper-Kamiokande detector
will be a requirement for the upgrade of T2K, the T2HK (Tokai-
to-Hyper-Kamiokande) experiment (Abe et al., 2015). The very
massive detector together with the upgraded neutrino beam
from J-PARC will guarantee a huge number of neutrino events
and therefore larger statistics. As a consequence, T2HK will
be able to determine the neutrino mass ordering after few
years of running time with very high significance, as well as
to explore new physics scenarios (see for instance Abe et al.,
2017, 2018b; Agarwalla et al., 2018a). In combination with
atmospheric data from Hyper-Kamiokande, a 3σ rejection
of the wrong mass ordering would be expected after 5 years
of data taking. A third project has been proposed as an
extension of T2HK to Korea, the T2HKK (Tokai-to-Hyper-
Kamiokande-and-Korea) experiment (Abe et al., 2018c). This
proposal includes a second far detector facility for the J-
PARC neutrino beam, located at 1,000–1,300 km from the
source. The longer path traveled within the Earth by the
neutrinos detected in T2HKK will result in an enhanced
sensitivity to the neutrino mass ordering if compared to T2HK
alone.

The synergies and complementarities among the three long-
baseline proposals above, DUNE, T2HK and T2HKK, have
been discussed in Ballett et al. (2017). It is found that the
combination of their experimental results may significantly
mitigate the limitations of a given experiment, improving the
precision in both the determination of the mass ordering and the
measurement of CP violation.

Note that, although here we have focused on the long-
baseline side of DUNE and Hyper-Kamiokande, they are
actually designed as multi-purpose experiments, with a rich
physics program aiming to study the neutrino oscillations
with accelerator, atmospheric and solar neutrinos as well as
to detect neutrinos from astrophysical sources and proton
decay.

Atmospheric Experiments
In atmospheric neutrino experiments, the sensitivity to the mass
ordering comes from the matter effects that distort the pattern of
neutrino oscillations inside Earth, see Equation (4). Based on the
oscillatory pattern that depends on the reconstructed neutrino
energy and zenith angle, an ideal experiment would observe a
given number of events in each energy and zenith angle bin as
shown in Figure 11. Comparing the observed two-dimensional
histograms with the theoretical ones for normal (Left) or inverted
ordering (Right) allows to determine the true mass ordering that

is realized in nature. In the following we list some of the future
projects with this aim.

The Oscillation Research with Cosmics in the Abyss (ORCA)
experiment Adrian-Martinez et al. (2016) will be a large neutrino
telescope placed deep inside the Mediterranean sea. It will detect
the Cherenkov light emitted by the muons and electrons created
by the interactions of atmospheric neutrinos in the sea and that
propagate into water. Unlike its precursor, ANTARES, with 12
lines and a separation of 70 meters between neighboring optical
modules, ORCA will have 60 lines with modules separated by 9
m. Due to the matter effects on the propagation of atmospheric
neutrinos, the ORCA experiment will be able to measure the
neutrino mass ordering with very good precision. In particular,
a 3σ determination of the mass ordering can be expected after
only 3 years of data taking, with even higher significance for the
case in which nature has chosen normal ordering and the upper
octant for the atmospheric mixing angle. Several studies have
been performed in order to analyze the sensitivity of ORCA to
the standard oscillation parameters (Ribordy and Smirnov, 2013;
Yañez and Kouchner, 2015). Its potential to determine the Earth
matter density through neutrino oscillation tomography Winter
(2016) or to test new physics scenarios (Ge et al., 2017; Capozzi
et al., 2018b) have also been extensively discussed.

PINGU (Precision IceCube Next Generation Upgrade)
(Aartsen and Adelaide, 2014) is a planned upgrade of the
IceCube DeepCore detector, an ice-Cherenkov neutrino
telescope which uses the antarctic ice as a detection medium.
The IceCube design aims at the detection of very high
energy neutrinos, with an energy threshold above the relevant
energy range for neutrino oscillations. However, the denser
instrumented regionDeepCore allowsIceCube to decrease its
energy threshold down to Eth = 6.3GeV. A further improvement
with an even denser zone, PINGU, could lower Eth to only
a few GeV. With this very low-energy threshold, one of the
main purposes of PINGU is the determination of the neutrino
mass ordering, with expected sensitivities similar to the ORCA
experiment24. Besides that, PINGU is expected to have the best
sensitivity to ντ appearance and to determine accurately the
octant of the atmospheric mixing angle. The PINGU capabilities
to detect high-energy supernova neutrinos (Murase, 2018), and
to investigate scenarios beyond the Standard Model, such as
non-standard interactions (Choubey and Ohlsson, 2014) or
dark matter self-interactions (Chen et al., 2014; Robertson and
Albuquerque, 2018) have been also analyzed in the literature.

The India-based Neutrino Observatory (INO) is a very
ambitious project, aiming to detect atmospheric neutrinos with
a 50 kton magnetized iron calorimeter (ICAL) (Ahmed et al.,
2017). The most outstanding feature of the INO experiment will
be its capability to distinguish neutrinos from antineutrinos in
an event by event basis. As a result, the identification of the
matter effects in the neutrino and antineutrino propagation will
be much cleaner in comparison with the sea water/ice Cherenkov
detectors. Indeed, one of the main scientific goals of INO will
be the determination of the neutrino mass ordering (Ghosh

24The effect of statistic and systematic uncertainties on the PINGU sensitivity to

the mass ordering has been presented in Capozzi et al. (2015).
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FIGURE 11 | Expected number of events (arbitrary units) for an hypothetical atmospheric neutrino detector with perfect energy resolution as a function of the

reconstructed neutrino energy E and the cosine of the zenith angle cos θz , for normal (Left) and inverted (Right) ordering.

et al., 2013). According to the Physics White Paper of the ICAL
(INO) Collaboration Ahmed et al. (2017), after 10 years run,
INO will be able to identify the correct neutrino mass ordering
with a significance larger than 3σ . As the experiments discussed
above, the atmospheric neutrino results from INO can also be
used to test the presence of new physics beyond the SM, such
as CPT- or Lorentz violation (Chatterjee et al., 2014), sterile
neutrinos (Behera et al., 2017; Thakore et al., 2018), dark matter
related studies Dash et al. (2016); Choubey et al. (2018a), non-
standard neutrino interactions Choubey et al. (2015) or decaying
neutrinos (Choubey et al., 2018b).

Medium-Baseline Reactor Experiments
We have focused so far on extracting the neutrino mass ordering
from matter effects in the neutrino propagation through the
Earth interior. An alternative technique is that provided by
medium-baseline reactor neutrino experiments Petcov and Piai
(2002). For baselines of the order of 50 km, the survival
probability for reactor antineutrinos exhibits a pattern that may
allow the discrimination between normal and inverted mass
orderings. Indeed, for such distances, the electron antineutrino
survival probability is given by the following expression:

Pνe→νe = 1− cos4 θ13 sin
2 2θ12 sin

2 121

− sin2 2θ13
[

sin2 131 + sin2 θ12 sin
2 121 cos 2131

∓

sin2 θ12

2
sin 2121 sin 2|131|

]

, (22)

where 1ij =

1m2
ijL

4E and the minus (plus) sign in the last term
corresponds to normal (inverted) mass ordering. This probability
contains a main oscillatory term with a frequency given by the
solar neutrino mass splitting 1m2

21, plus an additional term
whose frequency depends on the sign of the atmospheric splitting
1m2

31, i.e., on the neutrino mass ordering. The effect of the
ordering over the neutrino survival probability in a medium-
baseline reactor experiment is illustrated in Figure 12. There,
we depict in black the oscillatory term corresponding to the
solar splitting frequency. The red (blue) line corresponds to the

FIGURE 12 | Electron antineutrino survival probabilities in a medium-baseline

reactor experiment with L = 53 km. The red (blue) line corresponds to normal

(inverted) mass ordering using the best-fit values from Table 2, while the black

line contains the main term in the survival probability, given by the solar mass

splitting frequency by setting 1m2
31 = 0.

full neutrino survival probability for normal (inverted) mass
ordering. Note that this plot was obtained using the best-fit values
from Table 1 for each ordering.

The Jiangmen Underground Neutrino Observatory
(JUNO) An et al. (2016) is a 20 kton multi-purpose underground
liquid scintillator detector. The site of the experiment, located
53 km away from the Yangjiang and Taishan nuclear power
plants in China, was chosen to optimize its sensitivity to the
neutrino mass ordering, one of its main physics goals. Like any
other reactor neutrino experiment, JUNO will be sensitive to the
disappearance of electron antineutrinos, with about 105 events
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expected after 6 years of run time. From this high-statistics
data sample, JUNO will try to reconstruct with extremely good
precision the neutrino oscillation spectrum and to discriminate
the different high-frequency behavior for normal and inverted
mass ordering, as illustrated in Equation (22) and Figure 12. For
a projected energy resolution of 3% at 1 MeV, JUNO will be able
to establish the neutrino mass ordering at the level of 3-4σ in 6
years. Its combination with the PINGU facility could lead to a
high significance improvement of the individual capabilities of
these two experiments (see Blennow and Schwetz, 2013).

Apart from the mass ordering, JUNO will also provide
precision measurements of the solar oscillation parameters,
θ12 and 1m2

21, with an accuracy of around 1%. In this
sense, JUNO might help to solve the observed disagreement
between the mass splitting measured at solar experiments and
at the reactor experiment KamLAND. If the discrepancy persists
after new measurements by JUNO and future solar results by
Super-Kamiokande, it could be considered as an indication
of new physics Farzan and Tortola (2018). Moreover, JUNO will
be sensitive to different types of new physics scenarios beyond
the SM, as studied in Khan et al. (2013), Bakhti and Farzan
(2014), Girardi et al. (2014), Li and Zhao (2014), Ohlsson et al.
(2014), Abrahão et al. (2015), Liao et al. (2017), Zhao et al. (2017),
and Krnjaic et al. (2018) .

In parallel to JUNO, there is a proposal to extend the already
existing experiment RENOwith a thirdmedium-baseline detector
located at a distance of 47 km. This new project is known
as RENO-50 Kim (2015), given its location, at approximately
50 km from the Hanbit power plant, in South Korea. The
detector would consist of a 18 kton ultra-low-radioactive liquid
scintillator instrumented with 15,000 high quantum efficiency
photomultiplier tubes. Using the same technique described
above, RENO-50 will be able to determine the neutrino mass
ordering as well as the solar oscillation parameters with extremely
good precision. Conceived as multi-purpose detectors, JUNO
and RENO-50 will have a wide physics program, including not
only the observation of reactor and solar neutrinos, but also
neutrinos from supernova bursts, the diffuse supernova neutrino
background, atmospheric neutrinos and geoneutrinos.

6.2. Prospects From Beta-Decay
Experiments
As already mentioned in section 3, the determination of the mass
ordering through the observation of the energy spectrum near
the endpoint of β-decay or similar will be extremely challenging,
because an impressive energy resolution is required to distinguish
the kink due to the second and third mass eigenstates in the
spectrum. We list here the main projects that aim at detecting
the neutrino mass in the future and comment their perspectives
for the mass ordering determination.

The first experiment we will comment on is KATRIN, which
has recently started operations and aims at a detection of the
effective electron antineutrino mass with a sensitivity of 0.2 eV
(Angrik et al., 2004; Sejersen Riis et al., 2011). The first results
from KATRIN are expected in early 2019, but the final target
statistics will be reached after 3 year of data taking. Thanks to the

detailed study of the detector systematics which has been carried
out, it is possible that the final mass determination will reach
a better sensitivity than the nominal one of 0.2 eV, eventually
reaching something closer to 0.1 eV (Parno, 2018). Even with
the more optimistic sensitivity, however, it will be impossible for
KATRIN to determine the mass ordering.

Other tritium experiments exploiting different technologies
include the Project-8 (Doe et al., 2013; Asner et al., 2015;
Esfahani et al., 2017) experiment, which will use the Cyclotron
Radiation Emission Spectroscopy (CRES) in order to determine
the mass of the electron antineutrino. The technique consists
in measuring the frequency of cyclotron radiation emitted by
the electrons released during tritium decay and spiraling into
a magnetic field. The frequency can then be related with the
electron energy and consequently the energy spectrum can be
determined. At the moment, Project-8 is in the calibration
phase (phase-II) (Rybka, 2018) for a small prototype which
will not have enough sensitivity to be competitive in the
determination of the neutrino mass. Next phases include a large
volume system using molecular tritium (phase-III), starting in
2020, which will be competitive in determining the neutrinomass
and will serve as an intermediate step before moving to phase-
IV, which will use atomic tritium, required in order to avoid
uncertainties related to the existence of excited molecular tritium
states. Project-8 in its atomic tritium phase is expected to
reach the sensitivity mν̄e . 40 meV with an exposure of 10 −

100 m3 year, sufficient to probe the values of mν̄e allowed in the
context of inverted ordering (Esfahani et al., 2017), so that in
case of no observation we will know that the ordering of neutrino
masses must be normal.

Another interesting class of the experiments includes the
HOLMES (Alpert et al., 2015; Giachero et al., 2017) and
ECHo (Eliseev et al., 2015) experiments, which both aim
at the determination of the electron neutrino mass through
observations of the endpoint of the electron capture decay of
163Ho, which practically proceeds through the measurement of
de-excitation transitions of the Dy atoms, which are produced in
the process 163Ho+ e− →

163 Dy∗+νe (De Rujula and Lusignoli,
1982). As for the tritium β-decay, also the endpoint of the 163Ho
electron capture spectrum depends on the value of the neutrino
masses and, in principle, it would be possible to determine
the mass ordering in this way. Besides the experimental and
theoretical problems that the HOLMES and ECHo collaborations
must face, however, it seems that the current technology is not
yet at the level of precision required for the mass ordering
determination. The HOLMES demonstrator, currently running,
should reach a sensitivity of mνe . 10 eV by the end of 2018,
while the full-scale experiment, possibly starting in 2019, has
a target sensitivity of mνe . 1 eV (Gastaldo, 2018). ECHo,
on the other hand, is running a first phase (ECHo-1k) which
has also a target of mνe . 10 eV in 1 year, while the full
scale ECHo-100k will reach mνe . 1.5 eV in 3 year of data
taking, expected to start in 2019 (Gastaldo, 2018). Both results
are impressive when compared with the current upper limit on
the electron neutrino mass using the same isotope, which is
225 eV (Springer et al., 1987), more than two orders of magnitude
larger.
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Finally, to conclude this subsection we want to mention that
the PTOLEMY proposal (Betts et al., 2013; Baracchini et al., 2018),
aiming at the detection of the relic neutrino background and
recently approved by the Scientific Committee of the Laboratori
Nazionali del Gran Sasso (LNGS), will be able to study and
possibly determine the mass ordering through the observation
of the β-spectrum of tritium decay. PTOLEMY will be discussed
later in section 6.7.

6.3. Prospects From Neutrinoless Double
Beta Decay
We list here the future perspectives for neutrinoless double beta
decay experiments in terms of sensitivity to the half-life for the
processes of interest (where possible). As we already commented
in section 3.2, the conversion between the half-life T0ν

1/2 and the
effective Majorana massmββ depends on the NME and the phase

space factor of the process of interest, see Equation (7). In order
to exclude the inverted ordering allowed range for mββ (in case
there is no sterile neutrino), one would need to constrainmββ .

10 meV, which corresponds to T0ν
1/2 ≃ 1 × 1028 year, with some

dependence on the material (phase space and NME). This means
that none of the current generation experiments will be able to
reach the required sensitivity, and we will have to wait for next-
generation upgrades and new projects. Many of the information
listed in the following has been taken from Agostini et al. (2017a)
and Giuliani (2018).

Current Generation Experiments
Let us firstly address the current generation of experiments,
which at most will be able to start exploring the three-neutrino
inverted mass ordering regime or to probe the upper range for
mββ allowed within the 3+1 neutrino scenario. The experiments
will be listed in alphabetical order.

AMoRE Alenkov et al. (2015) is an experiment devoted to
determine the life-time of 100Mo. After a first pilot run, the
current status (AMoRE-I) is to test the technology with a 100Mo
mass of 5-6 kg, in order to demonstrate the scalability before
moving to the full scale (AMoRE-II) detector, which will use
200 kg of material and is expected to start around 2020, with a
final target sensitivity of T0ν

1/2 ≃ 5× 1026 year.
CUORE Artusa et al. (2015) and Alduino et al. (2016, 2018b),

already mentioned in section 3.2, works with 130Te and is already
taking data with the full scale detector, which will have as ultimate
sensitivity T0ν

1/2 ≃ 9×1025 year after 5 year of data taking (Adams
et al., 2018; Ouellet, 2018).

The KamLAND-Zen experiment (Gando et al., 2016; Gando,
2018), after the previous successful data taking period, is
now upgrading the detector for a new observation run with
approximately 750 kg of 136Xe and a new balloon inside the
KamLAND detector. The target sensitivity for the upcoming phase
is around T0ν

1/2 ≃ 5 × 1026 year, a factor of five larger than the
current limit (Gando et al., 2016).

A smaller experiment is NEXT (Martín-Albo et al., 2016),
which is running background studies in the Canfranc
laboratories in Spain. NEXT will use high pressure 136Xe
TPCs, which will allow an impressive tracking of the emitted
particles through scintillation and electroluminescence. A

prototype with 10 kg of natural Xenon will start data taking this
year to demonstrate that the expected background control and
particle tracking have been achieved. In 2019 NEXT is expected
to start a new phase with 100 kg of 136Xe, which will reach
T0ν
1/2 ≃ 1× 1026 year with 5 year of data.
A similar project is called Panda-X-III (Chen et al., 2017),

which is based in the Jinping underground laboratories in China.
Panda-X-III will run the first phase using 200 kg of 136Xe to
reach T0ν

1/2 ≃ 1× 1026 year in 3 year.
Going to a different concept, SNO+ (Andringa et al., 2016)

will feature a detector of 760 ton of ultra-pure liquid scintillator.
SNO+ will be a multipurpose detector, as it will be capable of
studying reactor, solar, supernova and geoneutrinos, and also to
probe proton decay (Orebi Gann, 2018). After the background
studies will be completed, a 0.5% loading will be performed,
inserting 130Te in the detector to measure double beta decay
processes. The target sensitivity after 5 year is T0ν

1/2 ≃ 2 ×

1026 year. Future plans for the SNO+ experiment include the
further 130Te loading to 1%, or even more, of the detector mass,
with the advantage that increasing the 130Te amount will not
influence the backgrounds but only the signal. The final target for
this second phase is to reach T0ν

1/2 ≃ 1 × 1027 year, thus starting
to cover the inverted ordering allowed range.

Let us finally comment the SuperNEMO experiment (Arnold
et al., 2010; Patrick and Xie, 2017), which uses 82Se for its
study. SuperNEMO is particularly interesting because it will be
able to perform a full topological reconstruction of the events,
which is extremely important in case of detection because it
opens the possibility to directly test the mechanism that underlies
neutrinoless double beta decay and, in principle, to determine the
lepton-number violating process. A first demonstrator of about
7 kg is expected to start in 2018 and to reach T0ν

1/2 ≃ 6×1024 year
with 2.5 year of data. The subsequent plans include an extension
with a ∼ 100 kg scale detector with 20 modules, which will be
able to probe T0ν

1/2 up to 1 × 1026 year, and the possibility to

use the 150Nd isotope, for two reasons: to have a more favorable
phase space when converting T0ν

1/2 to mββ and to get rid of the

Rn background which affects the 82Se measurements (Giuliani,
2018).

As a summary, some of the current generation experiments
will be able to probe the inverted ordering range of mββ

within the standard three neutrino framework and assuming an
exchange of light Majorana neutrinos. However, none of them
will be able to rule out completely the inverted mass ordering,
because of the uncertainty related to the NMEs.

Next Generation Experiments
The situation will be different for the following generation of
experiments, which are mostly the natural evolution of current
experiments to the ton-scale of decaying material. With the
increased amount of material, a larger statistics will be achieved
and stronger bounds, of the order of T0ν

1/2 ≃ 1 × 1028 year, will
be feasible.We briefly discuss here themain current proposals for
the next 10–20 years. The time schedules for these projects will be
necessarily vague, as they will depend on the results of the present
ones.
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Let us start with CUPID (CUORE Upgrade with Particle
ID) (Wang et al., 2015; Azzolini et al., 2018), which will be
the evolution of the previously discussed CUORE experiment.
The goal of CUPID is to use particle tracking in order to
have a better discrimination of background and ultimately
allow a background-free experiment: the target is < 0.1
counts/(ton year) (Ouellet, 2018). A first demonstrator, named
CUPID-0 (Azzolini et al., 2018), is already running with about
5 kg of 82Se, and already obtained the strongest-to-date constraint
on the life-time on this isotope. In order to reach the target
sensitivity T0ν

1/2 & 1 × 1027 year, however, further improvement
in the crystals quality and radio-purity is required. A full
development plan for CUPID is currently under discussion.

Although not specifically designed for neutrinoless double
beta decay searches, the DARWIN (DARk matter WImp search
with liquid xenoN) experiment (Aalbers et al., 2016) will have
sensitivity to a number of rare decay phenomena. The primary
target of DARWIN is to perform direct detection of dark matter
in a wide mass-range of the experimentally accessible parameter
space for Weakly Interacting Massive Particles (WIMPs), to the
level at which neutrino interactions with the target become an
irreducible background (the so-called neutrino floor). The core
of the detector will be a multi-ton liquid xenon time projection
chamber. Having a large mass, low-energy threshold and ultra-
low background level, DARWIN will also search for solar axions
or galactic axion-like particles, measure the low-energy solar
neutrino flux with < 1% precision, observe coherent neutrino-
nucleus interactions, detect galactic supernovae neutrinos and
study the double beta decay of 136Xe (Aalbers et al., 2016). Even if
it will be build using natural Xenon without isotope enrichment,
DARWINwill contain 3.5 t of 136Xe. If the target energy resolution
of 1− 2% at 2.5 MeV will be achieved, the sensitivity of DARWIN
will be T0ν

1/2 ≃ 5.6 × 1026 year with an exposure of 30 t yr
(Aalbers et al., 2016). The estimated ultimate sensitivity, which
will be achieved only with a complete mitigation of the material
background and 140 t year of exposure, is claimed to be T0ν

1/2 ≃

8.5× 1027 year (Aalbers et al., 2016).
The successor of KamLAND-Zen, KamLAND2-Zen (Shirai,

2017; Gando, 2018; Giuliani, 2018) will benefit the upgrades
of KamLAND into KamLAND2, including the improved light
collection and better energy resolution guaranteed by the new
photomultipliers, together with an increased amount of 136Xe, to
reach at least 1 ton of material. These upgrades will be performed
after the completion of KamLAND-Zen 800, expected to start
this year. The target sensitivity after 5 year will be mββ .

20 meV25, sufficient for “fully covering the inverted ordering
region” (Shirai, 2017). Future studies will also test the possibility
to accommodate scintillating crystals inside the detector and run
a multi-isotope experiment.

Back to 76Ge-based experiments, the efforts of the Gerda
and Majorana collaborations will join to work on the LEGEND
(Large Enriched Germanium Experiment for Neutrinoless
Double beta decay) experiment. Learning from both its
precursors, LEGEND will need further background rejection and

25The collaboration does not report the sensitivity in terms of the half-life of the

decay.

will be built in different phases. The first module, LEGEND-200,
made of 200 kg of Germanium and expected to start in 2021,
will be built on top of the existing Gerda infrastructures and
will have a target sensitivity T0ν

1/2 ≃ 1 × 1027 year in 5 year. The
full scale detector, LEGEND-1000, consisting in several modules
summing up to a total of 1 ton ofmaterial, will have as an ultimate
goal T0ν

1/2 ≃ 1× 1028 year in 10 year (Abgrall et al., 2017), giving
a full coverage of the inverted mass ordering region.

Even larger in size, nEXO (Albert et al., 2018; Kharusi et al.,
2018) will replace the EXO-200 experiment after its completion,
expected this year. The new detector will use 5 ton of Xenon in
order to reach T0ν

1/2 ≃ 1 × 1027 year with just 1 year of data and

T0ν
1/2 ≃ 1× 1028 year with the full statistics, after 10 year.
After the completion of the upcoming phase, NEXT-100 will

be possibly upgraded into NEXT 2.0, which will need a 1.5 ton
of Xenon to obtain the statistics for achieving T0ν

1/2 ≃ 1 ×

1027 year after 5 year of running (Agostini et al., 2017a; Giuliani,
2018).

In the same way, the Panda-X-III collaboration is also
planning a 1 ton scale phase II with a target of T0ν

1/2 ≃ 1 ×

1027 year (Chen et al., 2017).
The last comment regards another interesting

possibility related to the SNO+ experiment. The THEIA

proposal (Orebi Gann, 2015) is a concept study for a gigantic
detector of something around 30–100 kton of target material
which will use water-based liquid scintillator. Such target allows
to track both Cherenkov and delayed scintillation light, thus
enabling high light yield and low-threshold detection with
attenuation close to that of pure water. The result is that such a
detector would be able to achieve excellent background rejection
thanks to directionality, event topology, and particle ID, with
very large statistics. Loading of metallic ions which can undergo
neutrinoless double beta decay would enable to use the THEIA
detector for studying the Dirac/Majorana nature of neutrinos.
Given the size of the detector, a 0.5% loading will allow to
store several tons of decaying material, which naturally result
in huge statistics when compared with current experiments.
A 3% loading with natural (not enriched) Tellurium will be
sufficient to reach, assuming mββ ≃ 15 meV, a 3σ discovery in
10 year (Alonso et al., 2014; Giuliani, 2018).

6.4. Prospects From Cosmology
There are a number of studies in the literature focused on
forecasting the expected sensitivity from both future CMB
and large scale structure surveys to the total neutrino mass
∑

mν (de Putter et al., 2009; Abazajian et al., 2011; Carbone
et al., 2011, 2012; Hamann et al., 2012; Basse et al., 2014; Font-
Ribera et al., 2014b; Allison et al., 2015; Archidiacono et al., 2017;
Amendola et al., 2018; Di Valentino et al., 2018a; Sprenger et al.,
2018).

Awaiting for very futuristic measurements which may allow
for the extraction of each of the individual masses associated to
the neutrino mass eigenstates (see section 4), the extraction of
the neutrino mass ordering strongly relies on the error achieved
on
∑

mν for a chosen fiducial value of the neutrino mass.
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A complete, updated and useful summary is provided in
Table II of (Lattanzi and Gerbino, 2018), which shows
the expected sensitivity [σ (

∑

mν)] from different future
cosmological probes, assuming the fiducial value

∑

mν =

0.06 eV. Nevertheless, the authors of Gerbino et al. (2017b)
considered different fiducial values for the total neutrino mass
and computed the odds for the normal vs. the inverted
ordering for possible combinations of future cosmological probes
including the current information from oscillation experiments.
We shall comment on these results toward the end of this section.

6.4.1. CMB Prospects
Two main missions are expected to lead the next decade
generation of CMB experiments, albeit a number of other
experiments are in progress between now and then. The
latter list includes ground-based observatories as the ACT

(Atacama Cosmology Telescope) (De Bernardis et al., 2016),
the SPT-3G (South Pole Telescope-3G) (Benson et al., 2014),
the Simons Array (Suzuki et al., 2016), CLASS (Essinger-
Hileman et al., 2014), BICEP3 (Ahmed et al., 2014), and
the Simons Observatory26. The two main missions are
expected to be the CMB-Stage IV project (Abazajian et al.,
2016) and CORE (Cosmic Origin Explorer) (Delabrouille et al.,
2018). The former, the CMB-Stage IV project (Abazajian
et al., 2016), expected to be the definitive ground-based CMB
experiment, aims at 250000 detectors operating for 4 years,
covering a 40% fraction of the sky. Depending on the beam size
and on the effective noise temperature, CMB Stage IV could
reach sensitivities of σ (

∑

mν) = 0.073 − 0.11 eV, assuming
∑

mν = 0.058 eV as the fiducial model and an external prior
on the reionization optical depth of τ = 0.06 ± 0.01, see
(Abazajian et al., 2016) for the precise configuration details.
The latter, CORE, a medium-size space mission proposed to
the European Space Agency (ESA) (Delabrouille et al., 2018), is
expected to have an one order of magnitude larger number of
frequency channels and a twice better angular resolution than
Planck. With these improved capabilities, CORE could achieve
a sensitivity of σ (

∑

mν) = 0.044 eV (Di Valentino et al., 2018a;
Lattanzi and Gerbino, 2018), for a fiducial total neutrino mass
of 0.06 eV. As it is evident from these estimates, future CMB
experiments alone will not be able to determine the neutrinomass
ordering.

6.4.2. Large Scale Structure Prospects
From the large scale structure perspective, in analogy to the
future CMB probes, there are also two main surveys, DESI
(Dark Energy Spectroscopic Instrument) (Levi et al., 2013;
Aghamousa et al., 2016), a ground-based telescope which will
improve the SDSS-III and IV legacies (BOSS Dawson et al.,
2013 and eBOSS galaxy surveys Dawson et al., 2016), and the
Euclid space mission (Amendola et al., 2018). The baseline
design of DESI assumes that it will run over 5 years, covering
14000 deg2 of the sky targeting four different tracers: Bright,

26For a detailed study on the prospects from pre- and post-2020 CMB experiments

on the extraction of cosmological parameters, including the total neutrino mass
∑

mν , see also (Errard et al., 2016).

Luminous Red and Emission Line Galaxies plus quasars in
the redshift interval (0.05 < z < 1.85), and a Lyman-α
survey in the 1.9 < z < 4 redshift interval. The expected
error in

∑

mν from DESI and Planck data is 0.02 eV. This
number corresponds, approximately, to a 2σ determination of
the neutrino mass ordering in case neutrinos have the minimal
mass within the normal ordering scenario (Aghamousa et al.,
2016). The authors of (Font-Ribera et al., 2014b) have also
explored a number of possible combinations of DESI with
other surveys. Namely, combining DESI measurements with
the final results from DES, an error of 0.017 eV in

∑

mν

could be achieved. Their most constraining result, σ (
∑

mν) =

0.011 eV, however, arises from an extension of the DESI

survey, together with data from Euclid and LSST (Large
Synoptic Survey Telescope) (Ivezic et al., 2008; Abell et al., 2009)
(see below). In case this small error is achieved, the neutrino
mass ordering can be determined with a high accuracy, again
assuming a massless lightest neutrino and normal ordering.
Other analyses have also reduced the nominal σ (

∑

mν) =

0.02 eV expected from the DESI survey replacing the Planck
CMB information with that expected from the future CMB

Stage IV (Abazajian et al., 2016) or CORE (Di Valentino et al.,
2018a) probes.

Euclid, an ESA mission expected to be launched early in
the upcoming decade, mapping ∼ 15, 000 deg2 of the sky,
has also been shown to provide excellent capabilities to test
the neutrino properties (Amendola et al., 2018). Euclid will
focus on both galaxy clustering and weak lensing measurements,
which, combined with PlanckCMB data, will provide errors on
the sum of the neutrino masses of σ (

∑

mν) = 0.04 eV (Carbone
et al., 2011) and σ (

∑

mν) = 0.05 eV (Kitching et al.,
2008), respectively, albeit exploiting the mildly non-linear regime
could highly reduce these errors (Audren et al., 2013). While
these errors are large to extract useful information concerning
the neutrino mass ordering, the weak gravitational lensing
abilities from Euclid have also been considered to extract
the neutrino mass ordering when it lies far enough from the
degenerate region (see e.g., Amendola et al., 2018). The addition
of future CMB measurements, as those from CORE, could
notably improve the expectedEuclid sensitivity. The authors of
Archidiacono et al. (2017) have shown that CMB measurements
from CORE, combined with full shape measurements of the
galaxy power spectrum and weak lensing data from Euclid,
could reach σ (

∑

mν) = 0.014 eV. This result clearly states
the complementarity of cosmic shear and galaxy clustering
probes, crucial to test the neutrino mass ordering. Further
improved measurements of the reionization optical depth τ

could strengthen this bound and consequently the sensitivity
to the ordering of the neutrino masses (Liu et al., 2016;
Archidiacono et al., 2017; Sprenger et al., 2018), see the following
section. Other future large scale structure surveys are the
aforementioned LSST and WFIRST (Spergel et al., 2013, 2015),
that will lead as well to accurate measurements of the total
neutrino mass. Their combination with e.g., Euclid could
provide an error of a few meV on the total neutrino mass,
σ (
∑

mν) . 0.008 eV (Jain et al., 2015).
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The above neutrino mass (neutrino mass ordering) projected
errors (sensitivities), even if strongly constraining, are highly
dependent on the fiducial value of

∑

mν , in the sense that the
majority of the forecasts (a) are usually carried out assuming
the minimal neutrino mass allowed within the normal ordering
scheme, i.e.,

∑

mν ≃ 0.06 eV27; (b) the quoted sensitivities in
the neutrino mass ordering are computed via an extrapolation
of the error on the sum of neutrino masses rather than from
proper Bayesian comparison tools. The authors of Gerbino
et al. (2017b) found that a future CMB CORE-like satellite
mission, even combined with a 1% measurement of the Hubble
constantH0 and with the future DESI survey (Font-Ribera et al.,
2014b; Aghamousa et al., 2016) can not extract the ordering if
nature has chosen a value for the neutrino masses of

∑

mν =

0.1 eV. Odds for the normal vs. the inverted ordering of 1 : 1
were reported (Gerbino et al., 2017b). When considering the
minimum allowed value for the total neutrino mass set by
neutrino oscillation experiments, i.e.,

∑

mν = 0.06 eV, they
quote odds of 3 : 2 (9 : 1) for the case in which CORE and the prior
on H0 without (with) DESI measurements are considered28.
Therefore, the next generation of CMB and large scale structure
surveys will be sensitive to the mass ordering only if it is normal
and the lightest neutrino mass is close to zero. The significance of
such a measurement will crucially depend on how far

∑

mν lies
from its minimum allowed value from oscillation probes.

6.5. Prospects From 21 cm Surveys
Cosmological measurements of the redshifted 21 cm hydrogen
line provide a unique test of the Epoch of Reionization (EoR)
and the “dark ages,” the period before the first stars formed. The
21 cm line is due to spin-flip transitions in neutral hydrogen
between the more energetic triplet state and the ground singlet
state, and its intensity depends on the ratio of the populations of
these two neutral hydrogen hyperfine levels. At a given observed
frequency ν, the 21 cm signal can be measured in emission or in
absorption against the CMB. The so-called differential brightness
temperature δTb therefore refers to the contrast between the
temperature of the hydrogen clouds and that of the CMB, which,
for small frequencies and up to first order in perturbation theory,
reads as Madau et al. (1997); Furlanetto et al. (2006); Pritchard
and Loeb (2012); Furlanetto (2015)

δTb(ν) ≃ 27 xHI (1+ δb)

(

1−
TCMB

TS

)(

1

1+H−1∂vr/∂r

)

(

1+ z

10

)1/2 ( 0.15

�mh2

)1/2 (
�bh

2

0.023

)

mK , (23)

where xHI is the fraction of neutral hydrogen, δb is the baryon
overdensity, �bh

2 and �mh
2 the present baryon and matter

contributions to the mass-energy budget of the Universe, H(z)
the Hubble parameter and ∂vr/∂r the comoving peculiar velocity

27The authors of Amendola et al. (2018) have nonetheless presented constraints

for different fiducial models.
28For the CORE CMB mission, data were generated following Refs (Bond et al.,

1997, 2000). ForDESI, mock rsH(z) and dA(z)/rs data were generated for the three

DESI tracers in the 0.15 < z < 1.85 redshift range, accordingly to Font-Ribera

et al. (2014b).

gradient along the line of sight. Therefore, 21 cm cosmology
aims to trace the baryon overdensities via transitions in neutral
hydrogen.

There are a number of current and future experimental setups
devoted to detect the 21 cm global signal averaged over all
directions in the sky, as EDGES (Experiment to Detect the
Reionization Step) (Bowman and Rogers, 2010), the future LEDA
(Large Aperture Experiment to Detect the Dark Ages) (Greenhill
and Bernardi, 2012) or DARE (Moon space observatory Dark
Ages Radio Experiment) (Burns et al., 2012). The EDGES

experiment has quoted the observation of an absorption profile
located at a frequency of 78 ± 1 MHz, corresponding to a
redshift of z ∼ 17, with an amplitude of about a factor of
two larger than the maximum expected in the canonical 3CDM
framework (Bowman et al., 2018). This recent claim has led to
a number of studies aiming either to explain the effect or to
constrain some non-standard scenarios (Barkana, 2018; Barkana
et al., 2018; Berlin et al., 2018; Cheung et al., 2018; Clark et al.,
2018; Costa et al., 2018; D’Amico et al., 2018; Ewall-Wice et al.,
2018; Falkowski and Petraki, 2018; Feng and Holder, 2018;
Fialkov et al., 2018; Fraser et al., 2018; Hektor et al., 2018; Hill
and Baxter, 2018; Hirano and Bromm, 2018; Kang, 2018; Liu
and Slatyer, 2018; Mahdawi and Farrar, 2018; McGaugh, 2018;
Mitridate and Podo, 2018; Muñoz and Loeb, 2018; Muñoz et al.,
2018; Pospelov et al., 2018; Safarzadeh et al., 2018; Slatyer and
Wu, 2018; Witte et al., 2018; Yang, 2018).

Fluctuations in the redshifted 21 cm signal can be used
to compute the power spectrum of the differential brightness
temperature. This is the major goal of experiments as GMRT
(Giant Metrewave Radio Telescope) (Ananthakrishnan, 1995;
Paciga et al., 2011), LOFAR (LOw Frequency ARray) (van
Haarlem et al., 2013), MWA (Murchison Widefield Array) (Tingay
et al., 2013) and PAPER (Precision Array for Probing the Epoch
of Reionization) (Parsons et al., 2010; Ali et al., 2015; Pober
et al., 2015), targeting statistical power-spectrum measurements
of the 21 cm signal employing large radio interferometers.
Even if current experiments have not yet detected the 21 cm
cosmological signature, the PAPER collaboration has recently
improved the previous upper limits at z = 8.4 (Ali et al.,
2015). Next decade, high-redshift 21 cm experiments include
the SKA (Square Kilometre Array) (Mellema et al., 2013) and
HERA (Hydrogen Epoch of Reionization Array) (Beardsley et al.,
2015). A three-dimensional map of the 21 cm signal could
also be obtained by means of the so-called intensity mapping
technique, which measures the collective emission from neutral
hydrogen in dense clumps, targeting large regions without
resolving individual galaxies in the post-reionization era (z .

3) (Chang et al., 2008; Loeb and Wyithe, 2008; Wyithe et al.,
2008; Villaescusa-Navarro et al., 2014b). The experimental efforts
for this technique include the GBT-HIM project, with the GBT
(Green Bank Telescope) (Chang et al., 2016), CHIME (Canadian
Hydrogen Intensity Mapping Experiment) (Newburgh et al.,
2014), the Tianlai project (Chen and Xu, 2016) and SKA-mid
frequency (Dewdney et al., 2015)(see e.g., Bull et al., 2015).

Despite the fact that the primary task of future 21 cm
experiments is to improve our current knowledge of the
reionization history, they provide as well an additional tool for

Frontiers in Astronomy and Space Sciences | www.frontiersin.org October 2018 | Volume 5 | Article 36154

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


de Salas et al. Neutrino Mass Ordering in 2018

fundamental cosmology (Scott and Rees, 1990; Tozzi et al., 2000;
Iliev et al., 2002; Barkana and Loeb, 2005a,b; McQuinn et al.,
2006; Santos and Cooray, 2006; Bowman et al., 2007; Mao et al.,
2008; Visbal et al., 2009; Clesse et al., 2012; Liu and Parsons,
2016; Liu et al., 2016), complementary to CMB missions and
galaxy surveys. Indeed, 21 cm cosmological observations will play
a very important role concerning neutrino physics. As previously
stated, there are two types of experiments. First of all, we will have
observations focused on the pre-reionization and EoR periods,
that can probe very large volumes (where the non-linear scale
is small). Remember that the largest signal from relic neutrino
masses and their ordering appears at scales which, at the redshifts
attainable at galaxy clustering surveys, lie within the mildly
non-linear regime. Therefore, one needs to rely on either N-
body simulations or on analytical approximations for the matter
power spectrum to simulate the massive neutrino signature. EoR
21 cm experiments will achieve the scales required to observe
the neutrino signature within the linear regime, avoiding the
simulation problems described in section 4.2. In this regard, these
probes may widely surpass the constraints on neutrino masses
expected from even very large galaxy surveys (McQuinn et al.,
2006; Mao et al., 2008; Pritchard and Pierpaoli, 2008; Tegmark
and Zaldarriaga, 2009; Abazajian et al., 2011; Oyama et al.,
2013, 2016; Shimabukuro et al., 2014). Furthermore, the neutrino
constraints will be largely independent of the uncertainties in the
dark energy fluid, which, as we have seen in section 4.3.2, have
instead a non-negligible impact in lower redshift, galaxy survey
measurements. This is a byproduct of using the 21 cm line to trace
the matter overdensities: at redshifts z . 2, the universe starts to
be dominated by the dark energy fluid and the growth of matter
perturbations is modified depending on the dark energy equation
of state w(z), whose precise time-evolution remains unknown.
Consequently, for a given perturbation in the matter fluid, a
suppression in its structure growth could be either due to the
presence of massive neutrinos or to an evolving dark energy fluid.
Focusing at higher redshifts, the neutrino mass constraints from
21 cm probes will be largely independent of the uncertainties in
the dark energy fluid properties.

Expectations from MWA, SKA and FFTT (Fast Fourier
Transform Telescope) (Tegmark and Zaldarriaga, 2009) were
considered in Mao et al. (2008). Focusing on 4000 h of
observations of two areas in the sky in a range of z = 6.8 − 8.2
(divided into three redshift bins) and a value of kmax = 2 Mpc−1,
the reported errors on

∑

mν are 0.19 (0.027), 0.056 (0.017),
0.007 (0.003) for MWA, SKA and FFTT, respectively, in their
middle (optimistic) scenarios29, when combined with Planck
measurements. These forecasts were performed for a fiducial
�νh

2
= 0.0875, which corresponds to a quite high value for

the neutrino mass, lying in the fully degenerate neutrino mass
spectrum.

The authors of Oyama et al. (2013) devoted a dedicated
analysis to establish the potential for extracting the neutrino
mass ordering combining the FFTT capabilities with future CMB

29These scenarios differ in the assumptions concerning the power modeling, the

prior on the reionization history and the residual foregrounds cutoff scale, among

other factors (see Tegmark and Zaldarriaga, 2009).

polarization measurements. Based exclusively on the induced
effect of the neutrinomass ordering on the cosmic expansion rate,
a robust 90% CL neutrino mass ordering extraction was reported
if
∑

mν < 0.1 eV, regardless the underlying true ordering (i.e.,
normal or inverted). In Oyama et al. (2016), the authors propose
to combine ground-based CMB polarization observations, SKA
Phase 2 and BAO measurements from DESI. With these data
sets, a 2σ extraction of the neutrino mass ordering seems feasible,
unless the neutrino spectrum is degenerate. Notice that these
results arise from the signature induced by the neutrino mass
ordering in the cosmic expansion rate, as the minimum cutoff
of the wavenumber in the 21 cm observations is kmin =

0.06h Mpc−1, while the wavenumber corresponding to the
neutrino free-streaming scale is kmin ≃ 0.02h Mpc−1 for a
0.05 eV massive neutrino.

More futuristic 21 cm experiments, as FFTT, may open the
possibility of going beyond measurements of the total neutrino
mass

∑

mν and measure the individual neutrino masses,
revealing the uniqueness of such experiments for constraining
the neutrino properties. As shown in Figure 9 in section 4,
the differences in the power spectra for the two possible mass
orderings are tiny. Therefore, exquisite precision measurements
are required to identify such signatures. Galaxy surveys, already
discussed in the previous section, are limited by two facts. The
first one is related to non-linearities, which will not allow for a
measurement of the power spectrum at scales k > 0.2h Mpc−1

at small redshifts, see section 4.2. Since the non-linear scale at
z = 8 is k ≃ 3h Mpc−1, both SKA and FFTT can measure
the entire linear region and be more sensitive to the scale-
dependent suppression, which is different in the two neutrino
mass orderings. The second one is related to the fact that a
galaxy survey requires a large number density of tracers to
ensure a good sensitivity at small scales, while for 21 cm surveys,
tracing the ubiquitous permeating hydrogen, a high-density
antennae distribution will already warrant excellent small-scale
sensitivities. One drawback of 21 cm probes are foregrounds,
which should be kept under control.

The authors of Pritchard and Pierpaoli (2008) have studied
the perspectives for extracting the individual neutrino masses
with SKA and FFTT, finding that FFTT could be able to
distinguish all the three neutrino masses from zero at the 3σ
level, due to its enormous effective volume (see Figure 3 of
Pritchard and Pierpaoli, 2008). Extracting the neutrino mass
ordering directly from the individual masses, however, was
shown to be a very difficult achievement. Our calculations show
that, for the total neutrino mass we use here as a reference,
∑

mν = 0.12 eV, the differences among the lightest (l), medium
(m) and heaviest (h) neutrino mass eigenstates between the
normal and inverted orderings are (|1ml|, |1mm|, |1mh|) =

(0.015, 0.0209, 0.0059) eV, which, especially for the case of
|1mh| = 0.0059 eV, are tiny and very difficult to resolve,
even with very futuristic 21 cm measurements. While increasing
the exposure of FFTT may improve its capabilities for this
purpose (the error in the most optimistic FFTT scenario of Mao
et al. (2008) is 0.003 eV), it seems an extremely challenging
task. Figure 13 depicts the differences in the values of the three
neutrino masses as a function of the total neutrino mass between
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inverted and normal orderings. We show with a dashed vertical
line our representative case

∑

mν = 0.12 eV (the present
most constraining 95% CL upper limit) and another one for
∑

mν = 0.34 eV (the most recent 95% CL bound from the
Planck collaboration after the removal of systematics in their
polarization data at high angular scales Aghanim et al., 2016b).
Notice that, as expected, the differences between the values of the
three neutrino masses decrease with the total neutrino mass. In
this regard, the lower the neutrino mass, the easier it could be
to single out the three neutrino mass eigenstates, because they
are more separated. However, an extraction of the mass ordering
in the non-degenerate region via the values of the individual
neutrinomasses seems very difficult. Indeed, Figure 13 illustrates
the values of the individual neutrino masses for the heaviest,
medium and lightest states for the normal and inverted orderings
as a function of the total neutrino mass. The bands, from Top

to Bottom , depict the errors σ (mi) = 0.02 eV and σ (mi) =

0.01 eV, together with the very futuristic FFTT one, σ (mi) =

0.005 eV. For an error of σ (mi) = 0.02 eV, there is no hope to
disentangle the individual neutrino masses, as the error bands
overlap for the heaviest, medium and lightest masses in all the
parameter space. If instead one could achieve σ (mi) = 0.01 eV,
a measurement of the individual neutrino masses in the non-
degenerate region could be possible at the 1 − 2σ level, but
in order to unravel the ordering one would need very extreme
conditions as, for instance, a value of

∑

mν very close to 0.1 eV
independently determined with very small errors. The bottom
plot in Figure 14 shows the results if we assume the futuristic
value of σ (mi) = 0.005, expected to be achieved by FFTT. In
this case, a measurement of the three neutrino masses will be
achieved. Furthermore, in this (very optimistic) situation, the
error bars will be, in principle, sufficiently small to detect the
presence (or the lack) of two massive neutrino states with masses
in the 0.02–0.03 eV range, required if the ordering is normal
to explain

∑

mν ≃ 0.1 eV, which would strongly confirm the
normal (or inverted) neutrino mass ordering. If σ (mi) = 0.005,
the detection of the mass ordering will still be possible even if
∑

mν . 0.1 eV, since the error on
∑

mν will allow to exclude
the inverted ordering with great accuracy.

As already mentioned, another possibility is the so-called
21 cm intensity mapping, which will focus on low redshifts
z . 3 and will measure, with low angular resolution,
the integrated 21 cm flux emitted from unresolved sources
observing large patches of the sky. The lack of high angular
resolution will result in a less precise measurement of non-
linear scales. On the other hand, low angular resolution
will imply a much faster survey. Future planned intensity
mapping surveys are developed within the Phase 1 of the SKA
experiment, which will include a wide and deep survey at
low redshifts (z . 3, the SKA1-MID array) and a narrow
and deep survey at higher redshift (3 . z . 6, the
SKA1-LOW array), and within the Phase 2 of SKA (SKA2).
Since, in some sense, these intensity mapping probes will be
complementary to future planned optical surveys, as DESI or
Euclid, it makes sense to combine their expected results.
The intensity mapping technique, as galaxy clustering, is also
affected by bias uncertainties and non-linearities at small scales.

FIGURE 13 | Differences in the masses for three neutrino mass eigenstates as

a function of the total neutrino mass between inverted and normal orderings.

The vertical dashed lines depict the value
∑

mν = 0.12 eV and
∑

mν = 0.34 eV, which are the present most constraining 95% CL limit on
∑

mν Palanque-Delabrouille et al. (2015) and the latest 95% CL bound

quoted by the Planck collaboration (Aghanim et al., 2016b), respectively.

Different shades of colored bands indicate the possible errors which could be

achieved by future cosmological experiments on the determination of single

neutrino masses: 0.02 eV, 0.01 eV or 0.005 eV.

Several studies have been carried out in the literature to
unravel the perspectives of the intensity mapping technique
in unveiling the neutrino properties. Some of them include
the combination of the expectations from future large scale
structure and intensity mapping surveys (Loeb andWyithe, 2008;
Visbal et al., 2009; Abazajian et al., 2011; Villaescusa-Navarro
et al., 2015; Archidiacono et al., 2017; Sprenger et al., 2018).
Notice that all these studies rely on different assumptions on
the cosmological parameters, on the foregrounds and on the
systematic uncertainties, therefore we can not do comparisons
among them. Instead, we quote the most recent findings and
the impact for an eventual future detection of the neutrino mass
ordering.

The authors of Villaescusa-Navarro et al. (2015) found that,
by combining SKA1-LOW with Planck measurements, the
95% CL error on

∑

mν could be ∼ 0.089 eV. It is remarkable
that such a combination could potentially rule out the inverted
ordering scenario, assuming that normal ordering is realized in
nature. These authors also find that, under identical assumptions
in the forecasted analyses, their combination of intensity
mapping surveys (SKA1-LOW and MID) should be regarded
as competitive with future spectroscopic surveys concerning
neutrino mass properties. The authors of Archidiacono et al.
(2017) showed that constraints of the future CORE CMBmission
and galaxy redshift/weak lensing large scale structure surveys
(as Euclid) on the neutrino mass can be improved if a prior
on the reionization optical depth from 21 cm probes as HERA
or SKA is also included. A prior of σ (τ ) = 0.001 will reduce
the freedom in the amplitude of the primordial power spectrum
As, as CMB measurements mostly constrain the combination
As exp(−2τ ), see section 4.1. Therefore, the direct correlation
between

∑

mν and As, both modifying the amplitude of the
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FIGURE 14 | Values of the individual neutrino masses for the heaviest,

medium and lightest mass eigenstates for the normal and inverted orderings

as a function of the total neutrino mass. The panels, from Top to Bottom,

depict the error bands σ (mi ) = 0.02 eV, σ (mi ) = 0.01 eV and σ (mi ) = 0.005 eV.

matter power spectrum (although the change induced by
∑

mν

is, obviously, scale dependent), is largely affected by the presence
of a precise determination of τ . The 1σ sensitivity they find for
the combination of CORE, Euclid plus the prior on the optical
depth from future 21 cm observations is σ (

∑

mν) = 0.012 eV30.

30More recently, this very important synergy between Euclid and future 21 cm

surveys, concretely with the intensity mapping survey SKA1, has been further

assessed in Sprenger et al. (2018).

Nevertheless, as carefully detailed above, even if these tiny
errors on

∑

mν will be reached and extrapolated to an error
on the individual neutrino mass eigenstates, the possibility
of extracting the neutrino mass ordering via singling out the
neutrino mass eigenstates with cosmological observables remains
unfeasible, unless very visionary scenarios, as FFTT under the
most optimistic assumptions, are envisaged.

6.6. Prospects From Core-Collapse
Supernova
Neutrinos from core-collapse supernovae offer an independent
and complementary way to test neutrino physics. The existence
of these neutrinos was robustly confirmed by the detection
of 25 events from Supernova 1987A in the Large Magellanic
Cloud (Alekseev et al., 1987; Bionta et al., 1987; Hirata et al.,
1987), located at ∼ 50 kpc from our Milky Way galaxy. Such a
detection allowed to set very compelling bounds on a number of
neutrino properties (Schramm and Truran, 1990; Raffelt, 1999).
Even if laboratory experiments have surpassed some of these
limits, the eventual detection of supernovae neutrinos will still
provide precious information about the details of the explosion
process (see e.g., Janka, 2012; Mirizzi et al., 2016; Scholberg, 2018
and references therein), and also of neutrino mixing effects in
dense media, see also Horiuchi and Kneller (2018).

Neutrino production in core-collapse supernovae occurs in a
number of different stages. The first one is the infall, in which
electron neutrinos are produced, confined, as a result of the
process e− + p → n + νe. When electrons are converted,
the outwards pressure they generate disappears and the gravity
forces are no more balanced: the core will start to collapse
until its density reaches that of matter inside atomic nuclei,
i.e., nuclear densities. Once these densities are reached, matter
becomes incompressible, and a hydrodynamic shock is formed.
As this shock wave propagates outwards, it heats up the nuclei
and disintegrates them, releasing neutrinos. This initial neutrino
release is commonly known as neutronization burst, and it
is mainly composed of νe and may last for a few tens of
milliseconds. After the neutronization burst, the remnant proto-
neutron star may evolve into a neutron star or collapse to a
black hole, depending on the mass of the progenitor star. During
this phase of explosion and accretion, which lasts for 1–2 s, the
νe contribution is still the dominant one, albeit there is also
a contribution from other (anti)neutrino flavors, in particular
ν̄e. The neutrinos produced in the cooling stage give the main
contribution to the total flux, as it is in this phase when the
supernova releases its energy via all-flavor neutrino-antineutrino
pair production, reaching its final cold state. This process lasts for
about tens of seconds. The differences in the mean temperature
of the neutrino fluxes of νe, ν̄e and νx (ν̄x) are due to the different
medium opacity of each species. The larger the opacity, the lower
the temperature that the (anti)neutrino will have at decoupling.
The neutrino fluxes read as Scholberg (2018)

φ(Eν) = N0
(α + 1)(α+1)

〈Eν〉Ŵ(α + 1)

(

Eν

〈Eν〉

)α

exp

(

−(α + 1)
Eν

〈Eν〉

)

,

(24)
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where N0 is the total number of emitted neutrinos, and both α

and the mean energy 〈Eν〉 are flavor dependent. The supernova
neutrino energy spectra peaks around the 10− 20 MeV region.

The most popular process for supernova neutrino detection
is inverse beta decay on protons (ν̄e + p → n + e+). Other
possibilities include elastic scattering on electrons (ν + e− →

ν + e−), whose kinematics may provide information on the
supernova location. Supernova neutrinos can also interact with
nuclei via charged current or neutral current interactions, giving
rise to charged leptons and/or excited nuclei which may provide
flavor tagging. A very important process on argon nuclei is
νe +

40 Ar → e− +
40 K∗, which allows for electron neutrino

tagging. In practice, water Cherenkov and scintillator detectors
are mostly sensitive to electron antineutrinos via inverse beta
decay, while the liquid argon technique mainly detects electron
neutrinos. While other flavors may also be detected, the two
processes above are the dominant ones. Large detector volumes
(dozens of kilotons) are required to detect neutrinos from core-
collapse supernovae located at∼ O(10) kpc. A convenient way to
scale the total number of supernova neutrino events in a detector
of given effective mass is Beacom and Vogel (1998); Mena et al.
(2007)

N = N0

(

EB

3× 1053 erg

)(

10 kpc

DOS

)2

. (25)

In the expression above, EB is the gravitational binding energy
of the collapsing star and DOS the distance between the observer
and the supernova. Assuming sensitivity to all reactions, the
reference rate is N0 = O(104) for the Super-Kamiokande
water Cherenkov detector with 32 kton and 5 MeV energy
detection threshold. (Scholberg, 2012, 2018) give an estimate
of the number of neutrino events for a number of ongoing
and future facilities, based on different detection techniques:
water Cherenkov (including also those with long string
photosensors in ice, as Icecube and PINGU), liquid argon
time projection chambers, and liquid scintillators. Upcoming
neutrino detectors, already described in section 6.1 and crucial
for oscillation physics measurements, such as the JUNO liquid
scintillator (An et al., 2016), the liquid argon DUNE (Acciarri
et al., 2015, 2016a,b; Strait et al., 2016) and the water Cherenkov
Hyper-Kamiokande (Abe et al., 2015) can lead to a number
of 6000, 3000 and 75000 supernova neutrino events respectively,
assuming that the explosion occurs at 10 kpc from our position.

Flavor transitions inside a supernova have been carefully
reviewed in Refs. Mirizzi et al. (2016); Scholberg (2018) (see also
Lunardini and Smirnov, 2001a,b, 2003, 2004; Akhmedov et al.,
2002). Here we summarize the most relevant results. As we have
seen in section 2, when neutrinos propagate through matter their
mixing effects undergo the so-called MSW mechanism, feeling
a matter potential which is proportional to the electron number
density Ne. If the supernova matter density has a profile which
varies slowly, the neutrino matter eigenstates will propagate
adiabatically and their final flavor composition will depend
on the neutrino mass ordering, which will establish whether
or not resonant transitions associated to each neutrino mass

squared difference (solar and atmospheric) take place31. In the
normal ordering case, the neutrino fluxes will have a significantly
transformed spectrum, while the electron antineutrino one will
only be partially transformed (Ffinalνe

= Finitialνx
and Ffinalν̄e

=

cos2 θ12F
initial
ν̄e

+ sin2 θ12F
initial
ν̄x

). In the inverted ordering case,
the effects on the electron neutrino and antineutrino fluxes will
be approximately the opposite ones (Ffinalνe

= sin2 θ12F
initial
νe

+

cos2 θ12F
initial
νx

and Ffinalν̄e
= Finitialν̄x

). Once neutrinos exit from
supernovae, they can still undergo flavor transitions if they
traverse the Earth. Their final flavor composition at the detector
location will again depend on the neutrino mass ordering, as
matter effects in Earth depend on it (see e.g., Scholberg, 2018)
and references therein.

Furthermore, collective effects from neutrino self-interactions,
due to νe + ν̄e → νx + ν̄x flavor processes, can lead to
departures from the above summarized three-flavor oscillation
picture (Hannestad et al., 2006a; Duan et al., 2007, 2010; Esteban-
Pretel et al., 2007, 2008; Raffelt and Sigl, 2007;Mirizzi et al., 2016).
The effective potential, proportional to the difference between the
electron antineutrino and the muon/tau antineutrino fluxes, and
inversely proportional to the supernova radius, should dominate
over the standard matter one, leading to spectral swaps or
splits (Raffelt and Smirnov, 2007a,b; Dasgupta et al., 2009, 2010).
In the early stages, these self-interacting effects are sub-leading
for mass ordering signatures, albeit we shall comment on possible

non-thermal features in the neutrino or antineutrino spectra

which depend on the mass ordering (Choubey et al., 2010).
In the following, we shall summarize the most relevant

available methods to extract the neutrino mass ordering using
the mentioned fluxes. For a recent and thorough review of
the mass ordering signatures from supernovae neutrinos, we

refer the reader to Scholberg (2018). The electron neutrinos
produced in the neutronization burst undergo the MSW effect

being fully (only partially) transformed, i.e., Ffinalνe
= Finitialνx

(Ffinalνe
= sin2 θ12F

initial
νe

+ cos2 θ12F
initial
νx

) if the mass ordering is
normal (inverted), respectively. Therefore, detectors with good
νe tagging, such as liquid argon or water Cherenkov ones, will
detect a neutronization burst only in the inverted neutrino mass
ordering case. Concerning the accretion phase, and once electron
antineutrinos are also produced, as they are almost unchanged in
the MSW resonance, the largest signature is expected to occur for
the normal ordering case for the three type of aforementioned
detector types (liquid argon, water Cherenkov and scintillator),
although the Icecube detector, with its excellent capabilities
to reconstruct the time dependence of the signal, could also
distinguish between the normal and inverted mass orderings (Ott
et al., 2013). While a devoted study with precise and accurate
mass ordering sensitivities attainable at these three detector types
via supernova neutrinos is, to our knowledge, missing in the
literature, we exploit the event rates during the accretion phase
quoted for normal and inverted orderings in Scholberg (2018) for
a supernova located at 10 kpc. For a 40 kton liquid argon detector,

31In case the matter potential inside the supernova suffers from discontinuities,

the neutrino transitions will be non-adiabatic and the final flavor composition will

depend on the precise matter profile.
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374 kton water Cherenkov and 20 kton scintillator, the normal
mass ordering could be extracted with∼ 2, 6 and 2 σ significance,
respectively, based on a pure statistical-error analysis.

On the other hand, collective effects, which lead to spectral
swaps in the electron (anti)neutrino spectra, show very sharp
features at fixed energy values which depend, among other
factors, on the neutrinomass ordering. However, these signatures
are not as robust as the ones existing in the neutronization
and accretion phases. Finally, a very significant imprint of
the neutrino mass ordering on the supernovae neutrino fluxes
is that due to their propagation through the Earth interior,
where the standard MSW effect will induce a few percent-
level oscillatory pattern in the 10 − 60 MeV energy range, in
the electron (anti)neutrino spectra in case of (normal) inverted
mass ordering. The detection of these wiggles requires however
excellent energy resolution.

6.7. Prospects From Relic Neutrino Direct
Detection
In the early Universe, neutrinos decoupled from the cosmic
plasma during the cool down, in a process similar to the one
leading to the formation of the CMB but at an earlier time,
when the universe was seconds to minutes old. These neutrinos
have been free-streaming for such a long time that they have
decohered and are currently propagating as mass eigenstates.
The decoupling of neutrinos occurred just before e± annihilated
and reheated photons, leading to the following ratio between the
photon (Tγ ) and neutrino (Tν) temperatures, see Equation (15):

Tν

Tγ

=

(

4

11

)1/3

. (26)

Today, the temperature of the neutrino background is T0
ν ≃

1.6× 10−4 eV. Their mean energy is 〈Eν〉 ≃ 3Tν ≃ 5× 10−4 eV,
much smaller than the minimal mass of the second-to-lightest
neutrino as required by flavor oscillations, so that at least two out
of three neutrinos are non-relativistic today. The cosmic neutrino
background (CνB) is the only known source of non-relativistic
neutrinos and it has never been detected directly.

Apart from the imprints that relic neutrinos leave in the
CMB (see section 4.1), which allow to have an indirect probe
of their existence through the determination of Neff, the direct
detection of the CνB would offer a good opportunity to test
neutrino masses and their ordering. Capturing relic neutrinos
is not only rewarding from the point of view of what we can
learn about neutrino properties, but also because it would be
a further confirmation of the standard Big Bang cosmological
model. Different ideas on how to achieve such a detection
have been proposed (Weinberg, 1962; Weiler, 1982, 1984; Duda
et al., 2001; Eberle et al., 2004; Barenboim et al., 2005; Gelmini,
2005; Ringwald, 2005; Cocco et al., 2007; Li, 2015; Vogel, 2015;
Domcke and Spinrath, 2017), ranging from absorption dips
in the ultra-high-energy (UHE) neutrino fluxes due to their
annihilation with relic neutrinos at the Z boson resonance, to
forces generated by coherent scattering of the relic bath on a
pendulum and measured by laser interferometers. Most of these
proposed methods are impractical from the experimental point

of view. The one exploiting UHE neutrinos Weiler (1982, 1984);
Eberle et al. (2004); Barenboim et al. (2005) has two problems,
one related with the fact that it is difficult to think about a source
that produces such UHE neutrinos, of energies

Eresν =

m2
Z

2mi
≃ 4 · 1022

(

0.1 eV

mi

)

eV, (27)

and another one regarding the difficulties of detecting a large
enough sample of UHEneutrinos in order to resolve the dips. The
method based on interferometers (Domcke and Spinrath, 2017)
is even more complicated to address. At interferometers, current
sensitivities to accelerations are of the order of a ≃ 10−16 cm/s2,
with an optimistic estimation of a ≃ 3 · 10−18 cm/s2 (Domcke
and Spinrath, 2017) for the incoming generation. However,
expected accelerations due to relic neutrino interactions are of the
order of

(

10−27
− 10−33

)

cm/s2 (Duda et al., 2001; Domcke and
Spinrath, 2017), many orders of magnitude below the sensitivity
of the next-generation interferometers.

The most promising approach to detect relic neutrinos is to
use neutrino capture in a β-decaying nucleus A

(−)
νe + A → e± + A′, (28)

where the signal for a positive detection is a peak located about
2mν above the true β-decay endpoint (see below). In particular,
tritium is considered as the best candidate since it has a high
neutrino capture cross section, low Q-value and it is long-
lived (Cocco et al., 2007; Blennow, 2008; Lazauskas et al., 2008;
Faessler et al., 2011; Long et al., 2014). The proposal for an
experiment chasing this purpose was made in Cocco et al. (2007).
Currently, efforts are put for such experiment, the PonTecorvo
Observatory for Light Early-Universe Massive-Neutrino Yield
(PTOLEMY) (Betts et al., 2013; Baracchini et al., 2018), to be built.
The experiment has recently been approved by the Scientific
Committee of the Italian National Laboratories of Gran Sasso
and, in the following months, the existing prototypes for various
components are expected to be moved from Princeton, where the
R&D has been performed up to now, to Gran Sasso. The idea is
to implant the tritium source on graphene layers, to avoid the
problems related to a gaseous source, then collect and measure
the energy of the emitted electrons using a combination of MAC-
E filter, radio-frequency tracking andmicro-calorimetry to obtain

a determination of the β-decay and neutrino capture spectrum of
tritium with an energy resolution of the order1 ≃ 0.05−0.1 eV.

The total expected event rate from relic neutrino capture for a
PTOLEMY-like experiment, assuming the estimated tritium mass
of 100 g, is

ŴCνB =

[

n0(νhR )+ n0(νhL )
]

NT σ̄

3
∑

i=1

|Uei|
2 fc(mi) , (29)

where n0(νhR,L ) is the averaged number density of relic neutrinos

with right (R) or left (L) helicity, NT = MT/m(3H) is the
approximated number of tritium atoms in the source, σ̄ ≃

3.834 × 10−45 cm2 (Long et al., 2014), and fc(mi) is a mass-
dependent overdensity factor that accounts for the clustering of
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relic neutrinos under the gravitational attraction of the matter
potential (mostly from the dark matter halo) of our galaxy. This
last factor was originally computed in Singh and Ma (2003)
and Ringwald and Wong (2004) and later updated in de Salas
et al. (2017) (see also Zhang and Zhang, 2018), where smaller
masses were considered for the neutrinos, and the treatment of
the matter potential of the Milky Way was improved. The values
of fc(mν) range from 1.1− 1.2 for a neutrino withmν = 60 meV
to 1.7− 2.9 formν = 150 meV (de Salas et al., 2017).

For unclustered neutrinos (i.e., fc = 1) and 100 g of tritium,
the expected number of events per year is Long et al. (2014)

ŴD
CνB ≃ 4 year−1, ŴM

CνB = 2ŴD
CνB ≃ 8 year−1, (30)

where the upperscripts D and M stand for the possible Dirac
and Majorana neutrino character. If neutrinos are Majorana
particles, the expected number of events is doubled with respect
to the Dirac case. The reason is related to the fact that, during
the transition from ultra-relativistic to non-relativistic particles,
helicity is conserved, but not chirality. The population of relic
neutrinos is then composed by left- and right-helical neutrinos
in the Majorana case, and only left-helical neutrinos in the Dirac
case. Since the neutrino capture can only occur for left-chiral
electron neutrinos, the fact that in the Majorana case the right-
handed neutrinos can have a left-chiral component leads to a
doubled number of possible interactions. While this means that
in principle it is possible to distinguish the Dirac or Majorana
neutrino nature with a precise determination of the event rate,
there are two problems. First of all, even without assuming new
physics, the factor of two coming from the neutrino nature is
degenerate with the clustering factor, see Equation (29), so that
a precise calculation of fc is required to determine if neutrinos
are Dirac or Majorana particles through the direct detection of
relic neutrinos (de Salas et al., 2017). Moreover, non-standard
interactions can increase the event rate in the Dirac case by a
factor larger than two, canceling the difference with Majorana
neutrinos in some scenarios (Arteaga et al., 2017).

Let us come back to the PTOLEMY proposal. Instead of
considering the total event rate, for this kind of experiment
it is much better to study the energy spectrum, as the direct
detection of relic neutrinos can only be possible if one can
distinguish the signal events due to neutrino capture from the
background events due to the β-decay of tritium. A crucial issue
for such an experiment, actually more important than the event
rate, is therefore the energy resolution. In order to distinguish
the peak due to the captured relic neutrinos from the β-
decay background, a full-width half maximum (FWHM) energy
resolution 1 . 0.7mν is needed (Long et al., 2014). If neutrinos
are non-degenerate in mass, the neutrino capture signal has a
peak for each of the separate neutrino mass eigenstates. The full
expression of the energy spectrum of neutrino capture, given an

energy resolution σ = 1/
√

8 ln 2, can be written as:

d˜ŴCNB

dEe
(Ee) =

1
√

2πσ
n0NT σ̄

Nν
∑

i=1

|Uei|
2 fc,i × exp

{

−

[Ee − (Eend +mi +mlightest)]
2

2σ 2

}

,

(31)

FIGURE 15 | Electron spectrum in a PTOLEMY-like experiment, comparing

normal (red) and inverted ordering (blue) with mlightest = 10 meV and three

different energy resolutions: 1 = 10 meV (Top), 1 = 20 meV (Middle),

1 = 50 meV (Bottom). Dashed lines indicate the spectrum as it would be

measured by an experiment with perfect energy resolution.

where Eend is the energy of the β-decay endpoint, Eend = Eend,0−
mlightest, being Eend,0 the endpoint energy when mlightest = 0. If
the energy resolution is good enough, the three peaks coming
from the three neutrino mass eigenstates could be resolved,
each of them with an expected number of events modulated by
|Uei|

2. This might lead to a positive detection of the neutrino
mass ordering, since the electron-flavor component of ν1 is
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larger than the one of ν2 and ν3, and therefore the furthest
peak from the β-decay endpoint (again if neutrinos are non-
degenerate) is enhanced if the ordering of neutrino masses is
inverted. This can be seen in the three panels of Figure 15,
which also show the effect of changing the mass ordering on the
β-decay spectrum. Dashed lines represent the spectrum which
would be determined by an experiment capable of measuring
the β spectrum with zero energy uncertainty, while solid lines
represent the shape of the spectrum that one would observe in
a real experiment. We plot in red (blue) the spectrum obtained
using normal (inverted) ordering, a FWHM resolution 1 =

10 meV (top), 1 = 20 meV (middle), 1 = 50 meV (bottom)
and a lightest neutrino mass mlightest = 10 meV. As we can
see from the figure, the kink commented in section 3 is clearly
visible when one observes the huge number of events that come
from the 100 g of decaying tritium with a sufficient energy
resolution. While for distinguishing the relic neutrino events
from the β-decay background and for having a direct detection
of the CνB the energy resolution is a crucial requirement, in
principle even a worse energy resolution may allow to determine
the neutrino mass scale and the mass ordering, thanks to the fact
that we expect less events near the endpoint when the ordering
is inverted. A direct observation of the amplitude of all the CνB
peaks, however, would give a much cleaner signal, because the
peak corresponding to the heaviest neutrino would be always
higher in the inverted ordering case, independently of any other
factor.

In summary, the CνB capture event rate in a PTOLEMY-
like experiment (Equation (31)), even within SM physics and
without considering non-standard interactions, depends on
several main unknowns: i) the absolute neutrino mass, ii) the
matter distribution (especially that of dark matter) in our galaxy,
iii) the nature of neutrino masses (whether neutrinos are Dirac
or Majorana particles), and iv) the true mass ordering. This last
dependence is encoded in the |Uei|

2 factor in Equation (31) and it
is only accessible if neutrinos are non-degenerate. A quantitative
study on the PTOLEMY capabilities in determining the mass
ordering has not been published yet, but a new Letter of Intent
is in preparation (Baracchini et al., 2018)32.

7. SUMMARY

Identifying the neutrino mass ordering is one of the major
pending issues to complete our knowledge of masses andmixings
in the lepton sector. The two possibilities, normal vs. inverted,
may result from very different underlying symmetries and
therefore to single out the one realized in nature is a mandatory
step to solve the flavor puzzle, i.e., to ensure a full theoretical
understanding of the origin of particle masses and mixings. We
have presented a comprehensive review on the current status
and on future prospects of extracting the neutrino mass ordering
via a number of different ongoing and upcoming observations.
Furthermore, the most updated and complete result on the

32We suggest the interested readers to look forward to the publication of this

document, which will describe in more detail the physics reach and the technical

characteristics of PTOLEMY.

preference for a given neutrino mass ordering from a Bayesian
global fit to all 2018 publicly available neutrino data has also been
presented.

Currently, among the three available methods to extract the
neutrino mass ordering (oscillations, neutrinoless double beta
decay searches and cosmological observations), the leading probe
comes from oscillations in matter, measured at long-baseline
accelerator or atmospheric neutrino beams in combination with
reactor experiments. The latest frequentists global data analysis
results in a preference for normal mass ordering with 1χ2

=

11.7 (∼ 3.4σ ), mostly arising from the combination of the long-
baseline T2K and NOνA data with reactor experiments (Daya
Bay, RENO and Double Chooz), plus the latest atmospheric
neutrino results from Super-Kamiokande. Similar results for
the preference in favor of the normal mass ordering arise from
other global fit analyses (Capozzi et al., 2018a).

Cosmological measurements are able to set indirect,
albeit independent bounds on the neutrino mass ordering.
Neutrinos affect Cosmic Microwave Background (CMB) primary
anisotropies by changing the gravitational potential at the
recombination period when they become non-relativistic.
However, for sub-eV neutrino masses this effect is tiny and the
most prominent effect on the CMB is via lensing, as neutrinos,
having non-zero velocities, will reduce the lensing effect at small
scales. Nevertheless, the largest impact of neutrinos in cosmology
gets imprinted in the matter power spectrum. Once neutrinos
become non-relativistic, their large velocity dispersions will
prevent the clustering of matter inhomogeneities at all scales
smaller than their free streaming length. At present, the
cosmological constraints on the neutrino mass ordering come
from the sensitivity to the total neutrino mass

∑

mν and not via
the effects induced in the CMB and matter power spectrum by
each of the individual neutrino masses mi. Within the context
of the minimal 3CDM model with massive neutrinos, current
cosmological probes cannot provide odds stronger than ∼ 3 : 1
in favor of normal ordering.

Neutrinoless double beta decay searches can also test the
neutrino mass ordering if neutrinos are Majorana particles.
However, present constraints on the so-called effective Majorana
mass do not affect the overall Bayesian analyses.

All in all, the 2018 Bayesian global analysis, including all
the neutrino oscillation data available before the Neutrino
2018 conference, results in a 3.2σ preference for the normal
neutrino mass ordering which, in Bayesian words, implies a
strong preference for such a scenario. One can then combine the
oscillation data with 0νββ data from KamLAND-Zen, EXO-200
and Gerda and cosmological observations from Planck, SDSS
BOSS, 6DF and SDSS DR7 MGS. Using this conservative
cosmological data combination, the aforementioned preference
becomes 3.4σ , which raises to 3.5σ if a prior on the Hubble
parameterH0 from local measurements is considered in addition.
This clearly states the current power of oscillation results when
dealing with neutrino mass ordering extractions.

While in the very near perspective an improved sensitivity
(i.e., above the 3.5σ level) is expected mostly from more
precise measurements of current long-baseline and atmospheric
experiments, and, to a minor extent, from cosmological surveys
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(Planck, DES and eBOSS among others), there will be a
number of planned experiments which will be crucial for
extracting the neutrino mass ordering in the non-immediate
future.

Of particular relevance are the upcoming neutrino oscillation
facilities, as they will be able to measure the neutrino
mass ordering with astonishing precision without relying on
combinations of different data sets. Such is the case of the Deep
Underground Neutrino Experiment (DUNE), that will be able
to measure the neutrino mass ordering with a significance of
5σ with 7 years of data. Atmospheric neutrino observatories as
PINGU or ORCA will also mainly focus on the mass ordering
measurement. Some of these future devices could also identify the
neutrino mass ordering via the detection of matter effects in the
neutrino fluxes emitted at the eventual explosion of a supernova
in our galaxy or in its neighborhood. On the other hand, medium
baseline reactor neutrino detectors such as JUNO or RENO will
also be able to extract the neutrino mass ordering despite matter
effects are negligible for these two experiments. They will focus
instead on an extremely accurate measurement of the survival
electron antineutrino probability.

Improved masses and detection techniques in neutrinoless
double beta decay future searches could go down the 10 meV
region in the effective Majorana mass mββ , and they could be
able to discard at some significance level the inverted mass
ordering scenario, in the absence of a positive signal. These
limits, however, will apply only in case neutrinos have aMajorana
nature. Moreover, the determination of the neutrino mass
ordering may be complicated by the presence of a light sterile
neutrino at the eV scale, as currently suggested by the NEOS and
DANSS results.

Concerning future cosmological projects, the combination of
different probes will still be required. Near-future CMB and large
scale structure surveys will only be sensitive to the neutrino
mass ordering via their achieved error on

∑

mν . Furthermore,
the accuracy in the extraction of the neutrino mass ordering
will strongly depend on how far

∑

mν lies from the minimum
allowed value from oscillation probes. The future CMB mission
CORE plus the DESI galaxy survey could provide odds of 9 : 1
for normal neutrino mass ordering assuming

∑

mν = 0.056 eV.
Even if very futuristic surveys, based on the observation of the
21 cm redshifted line in neutral hydrogen, may be able to extract
the individual values of the neutrino masses, their precision
on the mi values may not be enough to guarantee a direct
determination of the neutrino mass ordering by these means,
albeit they can achieve an accurate measurement of the ordering
thanks to their unprecedented precision on

∑

mν .
Last, but not least, relic neutrino capture in tritium in a

PTOLEMY-like experiment could also establish the neutrinomass
ordering via an almost perfect energy reconstruction of the

β-decay spectrum, ensured by the extremely large amount of
tritium adopted. The detection is possible both from a kink
in the β-decay spectrum which only appears if the ordering is
inverted and from the peaks due to neutrino capture just above
the endpoint.

All these future probes may either confirm or reject
the current strong preference (3.5σ ) in favor of the
normal neutrino mass ordering. Such a preference has
kept gaining significance in the recent years, thanks to
the fact that current neutrino oscillation experiments have
enormously improved our knowledge of neutrino flavor
physics.
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Asymptotic safety generalizes asymptotic freedom and could contribute to

understanding physics beyond the Standard Model. It is a candidate scenario to

provide an ultraviolet extension for the effective quantum field theory of gravity through

an interacting fixed point of the Renormalization Group. Recently, asymptotic safety has

been established in specific gauge-Yukawa models in four dimensions in perturbation

theory, providing a starting point for asymptotically safe model building. Moreover, an

asymptotically safe fixed point might even be induced in the Standard Model under the

impact of quantum fluctuations of gravity in the vicinity of the Planck scale. This review

contains an overview of the key concepts of asymptotic safety, its application to matter

and gravity models, exploring potential phenomenological implications and highlighting

open questions.

Keywords: quantum gravity, beyond standard model, renormalization group, asymptotic safety, gauge theories

1. INVITATION TO ASYMPTOTIC SAFETY

Asymptotic safety (Weinberg, 1980) is a quantum-field theoretic paradigm providing an ultraviolet
(UV) extension or completion for effective field theories. The high-momentum regime of an
asymptotically safe theory is scale invariant, cf. Figure 1. It is governed by a fixed point of
the Renormalization Group (RG) flow of couplings. As such, asymptotic safety is an example
of a fruitful transfer of ideas from statistical physics to high-energy physics: In the former,
interacting RG fixed points provide universality classes for continuous phase transitions (Wilson
and Fisher, 1972; Zinn-Justin, 2002), in the latter these generalize asymptotic freedom to a scale-
invariant UV completion with residual interactions. This paradigm is being explored for physics
beyond the Standard Model in several promising ways. Following the discovery of perturbative
asymptotic safety in weakly-coupled gauge-Yukawamodels in four dimensions (Litim and Sannino,
2014), the search for asymptotically safe extensions of the Standard Model with new degrees of
freedom close to the electroweak scale is ongoing. Mechanisms for asymptotic safety also exist
in nonrenormalizable settings, making it a candidate paradigm for quantum gravity (Weinberg,
1980; Reuter, 1998). After the discovery of the Higgs boson (Aad, 2012; Chatrchyan, 2012), we
know that the Standard Model can consistently be extended up to the Planck scale (Bezrukov et al.,
2012; Buttazzo et al., 2013; Bezrukov and Shaposhnikov, 2015). Hence, the interplay of the Standard
Model with quantum fluctuations of gravity within a quantum field theoretic setting is under active
exploration.

This review aims at providing an introduction to asymptotic safety for non-experts, highlighting
mechanisms that generate asymptotically safe physics, explaining how these could play a role
in settings relevant for high-energy physics and discussing open questions of (potentially)
asymptotically safe models. An extensive bibliography is intended to serve as a guide to further
reading, providing more comprehensive and in-depth answers to many points only touched upon
briefly here.
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Eichhorn Asymptotically Safe Gravity and Matter

FIGURE 1 | Schematic RG flow for an asymptotically safe coupling. Beyond

the transition scale at k/k0 ≈ 109, (approximate) scale-invariance is realized;

full scale-invariance is realized asymptotically at k/k0 → ∞.

2. ASYMPTOTIC SAFETY - THE KEY IDEA

Quantum fluctuations induce a momentum-scale dependence
in the couplings of a model, breaking scale invariance even in
classically scale-invariant models. Scale invariance is restored at
RG fixed points. These can be non-interacting, in which case
the theory is asymptotically free, or interacting in at least one
of the couplings, in which case the theory is asymptotically safe.
Both fixed points underlie theories that are fundamental in a
Wilsonian sense: For a theory that is discretized, e.g., on a lattice,
an RG fixed point guarantees that a continuum limit exists.
Scale-invariance protects the running couplings in a model from
Landau poles which can signal a breakdown of a description of
an interacting system by this model because of triviality1. Hence,
the introduction of new physics is one viable theoretical option
instead of a necessity.

Scale-invariance requires a fixed point in the dimensionless
couplings gi, obtained from their dimensionful counterparts
ḡi with canonical dimension dḡi by multiplication with an
appropriate power of the RG scale k

gi(k) = ḡi(k) k
−dḡi . (1)

A scale-invariant point is a zero of all beta functions,

βgi = k ∂k gi(k) = 0 at gi = gi ∗. (2)

1Models affected by the triviality problem can only hold up to arbitrarily

high momentum scales if the coupling vanishes at all scales, rendering the

models noninteracting, or trivial. Establishing triviality requires going beyond

perturbation theory. Nonetheless, an intuitive understanding of the problem can

be gained from perturbation theory, e.g., in scalar λφ4 theory in four dimensions.

The one-loop beta function for the quartic self-interaction λ is βλ = #λ2, where

# > 0 holds. Integrating the beta function leads to a logarithmic divergence.

Pushing the scale 3 of the divergence (the Landau pole) to infinity requires

λ0 = λ(k0) = 0, since 3/k0 = e
1

#λ0 .

Then, dimensionful couplings2 scale with their canonical

dimensionality, i.e., ḡi(k) ∼ kdḡi , since gi(k) = gi ∗ =

const in a scale-invariant regime. This must hold for all
couplings in the infinite-dimensional theory space, spanned by
all interactions allowed by symmetries, including higher-order,
i.e., canonically irrelevant interactions. Quantum fluctuations
generically generate all interactions, as familiar from effective
field theories. Moreover, there is no a priori physical argument to
exclude higher-order terms from the dynamics. The restriction to
perturbatively renormalizable terms that is commonly assumed is
actually an automatic consequence of the universality class of the
Gaussian, i.e., free fixed point which renders higher-order terms
irrelevant for perturbative low-energy physics.

2.1. Predictivity in the Infinite-Dimensional
Space of Couplings
The main consequence of an RG fixed point is not that it
provides a fundamental theory—after all, experiments are limited
to finite scales—but that it generates universal predictions for
low-energy physics. It imposes relations between the couplings
encoding the location of the UV-critical surface of the fixed
point. This hypersurface is spanned by all couplings along which
RG trajectories emanate from the fixed point as one lowers k
toward the infrared (IR). The corresponding relevant directions

parameterize the deviation from scale invariance, i.e., the flow
toward the IR can only deviate from the fixed point along the
relevant directions. They constitute free parameters, as a range
of values of relevant couplings can be reached along different
trajectories emanating from the fixed point, cf. Figure 2. It can be
more intuitive to understand that a free parameter is associated
to such a direction, as IR-repulsiveness equals UV-attractivity.
Irrespective of its IR value, a UV-attractive coupling reaches the
fixed point at high scales as one reverses the flow toward the
UV. (Nevertheless, recall that althoughwemeasure physics at low
energies and try to extrapolate toward viable UV physics, nature
works the other way: IR physics emerges as a consequence of UV
physics).

Toward the IR, the irrelevant, i.e., IR-attractive directions
are automatically pulled toward the fixed point, cf. Figure 2.
Accordingly, no free parameter is associated to them – this is the
universality-generating property of an RG fixed point: Initializing
the RG flow at some scale k0, the flow maps a UV interval of
values for an irrelevant coupling at k0 to a much smaller IR
interval. The latter shrinks to zero as one takes k0 → ∞. As a
one-coupling example with an IR attractive fixed point, consider

βg = g(g − g∗), (3)

2Weinberg (1980) motivates the focus on dimensionless couplings gi instead

of their dimensionful counterparts ḡi by requiring finiteness of observables.

Measurable quantities at some energy scale E, e.g., a scattering cross-section σ ,

can be written as σ = E#f (gi), where # is the canonical dimension of σ , multiplied

by a function of the dimensionless couplings gi that enter. Herein the RG scale is

equated to a physical energy scale. If the dimensionless couplings diverge at a finite

energy scale, this typically entails divergences in physical quantities.
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FIGURE 2 | Left panel: Illustration of a fixed point (light purple dot) with its UV critical hypersurface (purple). RG trajectories starting off the critical hypersurface (teal)

are pulled toward the fixed point along the irrelevant direction (roughly aligned with g3), before the IR repulsive directions g1 and g2 kick in and drive the flow away

from the fixed point. The linearized flow is indicated by the black (relevant directions) and green (irrelevant direction) arrows. Right panel: A fixed point with two

relevant directions in the space of three couplings g1,2,3, where g3 corresponds to the IR attractive direction. The purple trajectories emanate from the fixed point, and

g2,3 fully determine the deviation from scale invariance. The arrows indicate the RG flow toward the IR. The corresponding beta functions of one canonically marginal,

relevant and irrelevant interaction are given by βg1 = 2g1 − 3g21 − 3g21 g2, βg2 = −2g2 + 2g1 − 3g1 g2 and βg3 = −g1 g3 + g33.

with the solution

g(k) =
g∗

1+
(

k
k0

)g∗ ( g∗
g0

− 1
) , (4)

where g(k0) = g0. As the initial scale k0 → ∞, g(k) → g∗. For
a finite k0, the difference g(k) − g∗ goes to zero as k/k0 → 0.
For a trajectory that emanates from the fixed point, there is
no freedom of choice for the value for an irrelevant direction:
the fixed-point requirement restricts the flow to lie within the
critical hypersurface, resulting in completely determined values
for the irrelevant directions. For instance, at the free fixed point,
higher-order couplings do not play a role in the IR: the RG flow
drives them toward zero for all perturbative initial conditions in
the UV. This generates universality and independence of the IR
physics from the UV physics in all but the (marginally) relevant
couplings.

To determine the set of IR-repulsive (= UV attractive)
directions, it suffices to examine the linearized flow about the
fixed point3 at Eg = Eg∗,

βgi =

∑

j

∂βgi

∂gj

∣

∣

∣

Eg=Eg∗

(

gj − gj ∗
)

+O
(

gj − gj ∗
)2
. (5)

In terms of the critical exponents4

θI = −eigMij = −eig
∂βgi

∂gj

∣

∣

∣

Eg=Eg∗
, (6)

3To determine the basin of attraction of the fixed point, one numerically integrates

the RG flow to generate full trajectories.
4The opposite sign convention is sometimes used in the literature.

and corresponding (right) eigenvectors VI , the solution to
Equation (5) is

gi(k) = gi ∗ +
∑

I

cI V
I
i

(

k

k0

)

−θI

. (7)

k0 is an arbitrary reference scale and cI are constants of
integration. Typically, the set of couplings Eg does not diagonalize
the stability matrix Mij at Eg = Eg∗ and the eigenvectors VI are
superpositions. As the stability matrix need not be symmetric,
the eigenvalues need not be real. Their imaginary part results in
a spiraling behavior of the flow in the vicinity of the fixed point,
where the real part determines whether the spiraling is inwards
or outwards. To determine the set of free parameters, it therefore
suffices to consider the real parts. For the following discussion
we will thus assume that the eigenvalues are real. For θI > 0,
the corresponding eigenvector VI constitutes an IR repulsive
direction: Toward the IR, the distance to the fixed-point regime
grows, and the IR values of couplings appearing in VI depend
on cI . Fixing this free parameter requires experimental input.
Accordingly, predictivity requires a finite number of directions
with θI > 0.

In contrast, for θI < 0, the IR values of couplings are
independent of the corresponding cI , cf. Equation (7): For θI < 0,
any deviation from the fixed-point value in VI is washed out
by the RG flow to the IR. Once a choice of coordinates in
theory space is made, the critical hypersurface typically exhibits
curvature. If the critical hypersurface had no curvature, the
values of irrelevant couplings would be constant. Curvature of
the critical hypersurface generates a scale dependence which is
completely fixed once the values of all relevant couplings are
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specified, cf. Figure 2. The values of the corresponding irrelevant
couplings depend on the scale, but not independently of the
relevant couplings, cf. green trajectory in Figure 3.

For asymptotic safety, the finite contribution to the θI due to
residual interactions at Eg∗ shifts the critical exponents away from
the canonical dimensions of couplings, e.g.,

θi = −

∂βi

∂gi

∣

∣

∣

gi=gi ∗
= −

∂

∂gi
(∂t ḡi k

−dḡi )
∣

∣

∣

gi=gi ∗
= dḡi gi ∗ + η(g2i ∗),

(8)
for a coupling gi that is an eigendirection of Mij. This can
enhance the predictive power of interacting over free fixed points.

The interpretation of asymptotic safety as a way of imposing
predictivity on a model specified by its field content and
symmetries is crucial in the context of quantum gravity. The
simplest interpretation of the Planck scale suggests that it acts
as a minimal length, inducing discreteness for quantum-gravity
models at the kinematical level. This might suggest that one
need not search for a continuum limit in quantum gravity.
Yet, by requiring a continuum limit one restricts the dynamics
to a trajectory within the critical surface, leaving just a finite
number of free parameters to determine the dynamics at all
scales. In the presence of an explicit cutoff scale, the microscopic
dynamics might be defined anywhere in the theory space,
requiring specification of an infinite number of couplings for the
UV dynamics (see also Eichhorn, 2018b). Similarly, predictivity
at high scales breaks down in effective field theories. Moreover,
physical discreteness can arise in quantum gravity even in a
continuum theory, through the dynamical emergence of a scale
(see e.g., Reuter and Schwindt, 2006; Percacci and Vacca, 2010),
or through discreteness in the spectra of operators (Rovelli and
Smolin, 1995; Ashtekar and Lewandowski, 1997).

2.2. Asymptotic Safety in a Nutshell
The development of the Standard Model was based on the
principle of renormalizability. This is one way of implementing
predictivity, i.e., constructing a low-energy theory with a
finite number of free parameters.Yet, as, e.g., φ4 theory in 4
dimensions highlights, a perturbatively renormalizable theory
is not guaranteed to exist as a fundamental theory in the
Wilsonian sense, due to the triviality problem. Analogously, the
Standard Model is actually expected to be an effective low-
energy theory. Asymptotic safety is a paradigm that combines
the requirement of predictivity with the possibility of obtaining
a fundamental theory through an RG fixed point at high
momenta with a finite number of relevant directions. The
fixed point ensures nonperturbative renormalizability, while
the finite dimensionality of the critical hypersurface guarantees
predictivity of the model.

2.3. Non-fundamental Asymptotic Safety
Instead of providing a “fundamental” UV completion,
asymptotic safety might serve as one step forward in our
understanding of microscopic physics, with more fundamental
physics to be discovered beyond. While providing a UV
completion for some RG trajectories, a fixed point can
simultaneously act as an IR attractor for a more fundamental

description. This follows, as a fixed point’s UV repulsive
directions correspond to its IR attractive directions. Hence, it is
a misconception that a fixed point is either UV or IR - whether
trajectories emanate from it in the UV, or approach it in the IR
depends on the initial conditions for the RG flow. Given two
fixed points connected by an RG trajectory, the distinction into
a UV and an IR fixed point (which is also expected to satisfy the
a-theorem Cardy, 1988) follows from the trajectory.

For specificity, assume that a cutoff scale kUV exists, such
that for k > kUV a (quasilocal) quantum field theoretic
description is impossible or requires additional fields and/or
symmetries. At k ≤ kUV, the dynamics can be described in
the asymptotically safe theory space. Initial conditions for the
RG flow are determined by the underlying fundamental model
at k = kUV. It they lie close to or on the IR-critical surface
of a fixed point, the flow is attracted toward the fixed point
along its IR-attractive directions. The flow is actually driven
toward the UV-critical surface, cf. purple trajectories in Figure 3.
Trajectories can even spend a large amount of RG “time” close
to the fixed point. At ktrans < kUV the effect of the IR-repulsive
directions kicks in and the flow is driven away from the fixed
point along its IR-repulsive directions. This trajectory will result
in IR-values of couplings close to those of a “true” fixed-point
trajectory (cf. Figure 3 see Percacci and Vacca, 2010). The above
is nothing but a detailed account of how a fixed point generates IR
universality. Thus, asymptotically safe fixed points could generate
universal IR predictions, even in the presence of kUV.

2.4. Mechanisms for and Selected
Examples of Asymptotic Safety
A special case of an RG fixed point is that of an asymptotically
free one. To generate it, antiscreening contributions have to
dominate in the beta function of the respective coupling. In
contrast, asymptotic safety is generated by several different
mechanisms and can be realized both in the perturbative and
the nonperturbative regime, i.e., with near-Gaussian or far-
from-Gaussian critical exponents. As a second key difference,
an interacting fixed point allows to combine finite, predictable
IR values of couplings with UV completeness. For the free
fixed point, finite IR values typically require the corresponding
coupling to be an IR repulsive direction, i.e., relevant. This
negates the possibility to predict the value of the coupling which
remains a free parameter based on the free fixed point alone. (Of
course, an interacting fixed point can dominate the flow in the IR,
at which the coupling in question could be IR attractive. In this
case it is again the universality class of the interacting fixed point
which provides a prediction for a finite value of a coupling).

2.4.1. Canonical Scaling vs. Quantum Effects
This mechanism is available for couplings which are
asymptotically free in their critical dimension dcrit, where
they are dimensionless, i.e., their one-loop beta function is given
by

βgi

∣

∣

∣

d=dcrit
= β1 g

#
i , (9)
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FIGURE 3 | Left panel: The beta functions βg = 2g− 2g2 and βy = −g y + 2y3 feature a fixed point at g = 1, y = 1/
√

2 that has one UV attractive and one IR

attractive direction. The UV critical surface is indicated in green, the IR critical surface in red. The RG flow toward the IR is attracted toward the UV critical surface,

such that the relation between g and y that parameterizes the UV critical surface is approximately realized also for trajectories (in purple) that start off the UV critical

surface. Right panel: The flow described by βg = 2g− 2g2 and βg2 = −2g2 + 2g22 features a fixed point at g = g2 = 1, which is IR attractive in g2 and where the

UV critical surface has no curvature. Therefore, g2(k) = 1 for the trajectories emanating from this fixed point.

with β1 < 0 and # = 2, 3. In d = dcrit + ǫ, the coupling is
dimensionful, gi = ḡi k

cǫ , where c > 0 depends on the coupling
under consideration. For ǫ ≪ 1, the one-loop beta function reads

βgi

∣

∣

∣

d=dcrit+ǫ
= c ǫ gi + β1 g

#
i . (10)

An interacting fixed point lies at

g∗i =

(

−

c ǫ

β1

)1/(#−1)

. (11)

This mechanism is realized in Yang-Mills theory in d = 4 + ǫ

(Peskin, 1980), nonlinear sigma models in d = 2 + ǫ (Polyakov,
1975; Bardeen et al., 1976; Friedan, 1980; Higashijima and Itou,
2003; Codello and Percacci, 2009; Fabbrichesi et al., 2011) and
the Gross-Neveu model in d = 2+ ǫ (Gawedzki and Kupiainen,
1985; Kikukawa and Yamawaki, 1990; de Calan et al., 1991; He
et al., 1992; Hands et al., 1993; Braun et al., 2011).

For Yang-Mills theory, the ǫ-expansion has been extended
up to fourth order, indicating a fixed point in d = 5 (Morris,
2005), cf. Figure 4, corroborating functional RG results (Gies,
2003), in contrast to lattice results (Knechtli and Rinaldi, 2016).
For instance, consider SU(3) Yang-Mills, cf. Figure 4. The ǫ

expansion in Morris (2005) yields for α̃ =
6

(4π)2
g2

βα̃ = ǫ α̃ − b1 α̃2
− b2 α̃3

− b3 α̃4
− b4 α̃5, (12)

b1 = 3.67, b2 = 5.67, b3 = 13.23, b4 = 39.43+
51.22

9
,

(13)

resulting in

α̃∗ = 0.272ǫ − 0.115ǫ2 + 0.024ǫ3 − 0.016ǫ4. (14)

Couplings which are marginally irrelevant in their critical
dimension dc can achieve interacting fixed points for d < dc,
where they correspond to irrelevant directions. In contrast to
the case in dc, where the free fixed point results in a vanishing
coupling at all scales in order to be a UV fixed point (triviality
problem), in d = dc − ǫ, the interacting fixed point requires a
unique finite value of the coupling in the IR, corresponding to the
fixed-point value, unless the UV critical hypersurface is curved.
Thus, the interacting theory is UV complete for one unique value
of the coupling. Conversely, asymptotically free trajectories reach
the interacting fixed point in the IR.

For instance, for scalar theories, the marginally irrelevant
nature of the quartic coupling in d = 4 implies the existence
of a fixed point in d = 4 − ǫ. The well-known Wilson-Fisher
fixed point is IR attractive in the quartic coupling (Wilson and
Fisher, 1972) and serves as the IR endpoint of an asymptotically
free trajectory. It has been characterized with various methods
(Guida and Zinn-Justin, 1998; Campostrini et al., 1999; Pelissetto
and Vicari, 2002; Canet et al., 2003; Litim and Zappala, 2011; El-
Showk et al., 2012, 2014; Gliozzi and Rago, 2014) and serves as a
benchmark example for many techniques. For d > 4, a possible
fixed point (Fei et al., 2014) lies at negative quartic coupling,
appearing to be at odds with a stable microscopic potential
(Percacci and Vacca, 2014; Eichhorn et al., 2016).

Fixed points generated by such a mechanism are weakly
coupled at small ǫ, where the critical exponent is equal to minus
the canonical dimension.
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FIGURE 4 | Left upper panel: Based on results in Morris (2005), the beta function for SU(3) Yang-Mills theory in the epsilon expansion for α̃ =
6

(4π )2
g2 for ǫ = 0

(black line), ǫ = 1 at one loop (dotted), two loops (dot-dashed), three loops (dashed) and four loops (green). Right upper panel: Fixed-point value for α as a function

of ǫ up to ǫ (dotted), ǫ2 (dot-dashed), ǫ3 (dashed), and ǫ4 (continuous) emerge from the free fixed point at d → dcrit, i.e., ǫ → 0. Lower panel: Results from the FRG

calculation taken from Gies (2003) for α =
g2

4π
.

A key example is gravity: Slightly above its critical dimension
d = 2, where the Einstein action is purely topological, the
beta function for the dimensionless Newton coupling G =

GN kd−2 at one loop reads (Weinberg, 1980; Gastmans et al.,
1978; Christensen and Duff, 1978),

βG = ǫG− β1 G
2, such that G∗ =

ǫ

β1
, θ = −ǫ, (15)

where β1 depends on the parameterization of metric fluctuations
hµν around a background ḡµν . Note that in these calculations the
Jacobian that arises in the path-integral measure from relating the
different parameterizations is not taken into account. Specifically
the functional RG in the limit d → 2 yields (Percacci and Vacca,
2015)

β1 = −

2
(

19− 38β + 13β2
)

3(1− β2)
, (16)

for the linear parameterization gµν = ḡµν + hµν ,

β1 = −

2
(

25− 38β + 19β2
)

3(1− β)2
, (17)

for the exponential parameterization gµν = ḡµκexp[h..]
κ
ν ,

where β is a gauge parameter, such that for β → 0 the result β1 =

−38/3 is found (Tsao, 1977; Brown, 1977; Kawai and Ninomiya,

1990; Jack and Jones, 1991) for the linear parameterization and
β1 = −50/3 for the exponential parameterization (David, 1988;
Distler and Kawai, 1989; Kawai et al., 1993a,b, 1996; Aida et al.,
1994; Nishimura et al., 1994; Aida and Kitazawa, 1997; Codello
and D’Odorico, 2015). A continuous extension to d = 4 might be
possible (Falls, 2015, 2017).

2.4.2. One-Loop vs. Higher-Loop
In perturbation theory, the signs of the one-loop and two-loop
coefficients can differ, leading to a cancellation at a finite fixed-
point value, schematically

βgi = β1 g
#1
i + β2 g

#2
i + ... (18)

with

βgi

∣

∣

∣

gi=gi ∗
= 0, gi ∗ =

(

−β1

β2

)
1

#2−#1
. (19)

The fixed point is real for sign(β2) = −sign(β1). For it to lie
at small values, where higher-loop terms are small, we require
|β1| < |β2|. Actually, the two-loop coefficient is a proxy for the
higher-loop terms: the fixed point is generated by the competing
signs of the one-loop vs. the “effective” two-loop term. As one
extends the asymptotic perturbative series to higher loops, the
fixed-point value shifts to compensate for the change, but as long
as the sign of the “effective” two-loop term is unchanged, a fixed
point exists, cf. Figure 5.
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FIGURE 5 | Beta function of the gauge coupling αg for the model in Litim and

Sannino (2014) at next-to-leading order (two loop, blue continuous line) and

next-to-next-to-leading order (three loop, green dashed line), cf. Equation (34)

for the two-loop beta function. The fixed-point value for αy at the

corresponding order has been inserted and ǫ = 0.1 has been chosen.

The interacting fixed point is IR attractive (repulsive) for
β1 < 0 (> 0). Additionally, a UV (IR) attractive fixed
point lies at gi ∗ = 0. Therefore, a complete trajectory exists
between the free (interacting) fixed point in the UV and the
interacting (free) fixed point in the IR for β1 < 0 (> 0).
The former case is known as the Banks-Zaks fixed point
in the case of non-Abelian gauge theories (Caswell, 1974;
Banks and Zaks, 1982). The latter underlies new developments
in gauge-Yukawa models (Litim and Sannino, 2014), see
section 3.

2.4.3. Competing Degrees of Freedom
In models with several degrees of freedom, a scale-invariant
fixed-point regime can be achieved if the effect of different
degrees of freedom can balance out - either within a perturbative
expansion or at the nonperturbative level and for dimensionless
as well as dimensionful couplings. Schematically,

βg = β(d.o.f.1)
g − β(d.o.f.2)

g , (20)

where, e.g., d.o.f1 might be a bosonic and d.o.f.2 a fermionic
contribution. (N = 4) super Yang Mills could be seen as a special
example (Sohnius, 1985).

A competition of fermionic and bosonic degrees of freedom
also occurs in the beta function of a quartic scalar coupling
which couples to fermions through a Yukawa coupling. This
competition actually underlies Higgs mass bounds in the SM
(Altarelli and Isidori, 1994; Hambye and Riesselmann, 1997).
Perturbatively, the Yukawa coupling in simple Yukawa models
is UV unsafe. Hints for a nonperturbative fixed point have been
found (Gies and Scherer, 2010; Gies et al., 2010), but been
called into question in Vacca and Zambelli (2015) in extended
truncations of the RG flow.

3. GAUGE-YUKAWA MODELS:
ASYMPTOTIC SAFETY AT WEAK
COUPLING

In d = 4 dimensions, gauge-Yukawa models can exhibit
perturbative asymptotic safety, discovered in Litim and Sannino
(2014), achieved through a balance of one- vs. two-loop effects.
We follow Litim and Sannino (2014) and consider a simple gauge
theory with gauge coupling g with

αg =
g2

(4π)2
, (21)

with 2-loop beta function

βαg =
(

−B+ C αg

)

α2
g . (22)

An interacting fixed point lies at

αg ∗ =

B

C
. (23)

For the case B > 0, C > 0, this is the Banks-Zaks fixed
point (Banks and Zaks, 1982), which is IR attractive in

the gauge coupling. Accordingly, a complete RG trajectory
can be constructed, emanating from the free fixed point
in the UV and ending in a conformal regime in the
IR. This can be achieved within the conformal window,
e.g., 11/2Nc < Nf < 34N3

c /(13N
2
c − 3) for Nf fermions in the

fundamental representation of SU(Nc), Ryttov and Shrock
(2011); Pica and Sannino (2011), and Ryttov and Shrock (2016).

Asymptotic safety in the form of an IR-repulsive interacting
fixed point occurs where asymptotic freedom is lost, i.e.,
the antiscreening effect of non-Abelian gauge bosons is
overcompensated by the screening effect of charged matter. This
requires B < 0 (see Caswell, 1974; Tarasov and Vladimirov,
1977; Jones, 1982; Machacek and Vaughn, 1983), and accordingly
C < 0 for the coupling g to be real. As shown in Caswell (1974),
see also Bond and Litim (2017), this is not possible to achieve with
fermions only. Adding scalars to the model provides a Yukawa
coupling

αy =
y2

(4π2)
, (24)

that results in

C → C − Dαy. (25)

This facilitates asymptotic safety. The one-loop Yukawa beta
function reads

βαy = ∂t αy =
(

Eαy − F αg

)

αy, (26)

see Fischler and Oliensis (1982) and Machacek and Vaughn
(1984) for two-loop results. The above system of beta functions
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admits three solutions

αg ∗ = 0, αy ∗ = 0, (27)

αg ∗ =

B

C
, αy ∗ = 0, (28)

αg ∗ =

B

C − D F
E

, αy ∗ =

B

C − D F
E

F

E
, (29)

where appropriate conditions on the coefficients of the beta
function ensure that fixed-point values are real. The second fixed
point is a generalization of the Banks-Zaks fixed point. The fully
interacting fixed point has one IR attractive and one IR-repulsive
direction. The corresponding critical exponents are

θ1,2 =

−BE

2(C E− DF)2

(

−BC E− C E F + DF2 ± (30)

√

B2C2E2 − 2B F(C E− 2DF)(C E− DF)+ F2(C E− DF)2
)

.

Perturbative asymptotic safety in four-dimensional gauge
theories requires the presence of fermions and scalars (Litim
and Sannino, 2014), providing a possible justification for the
existence of fundamental scalars in nature. Moreover, (gravity-
free) theories in four dimensions cannot exhibit weakly-coupled
fixed points, i.e., arising from a balance of one-loop vs. two-
loop effects, unless gauge interactions are present (Bond and
Litim, 2017, 2018a). This explains why tentative proposals
for interacting fixed points in four-dimensional fermion-scalar
theories lie in a nonperturbative regime (Gies and Scherer, 2010;
Eichhorn et al., 2018a).

As couplings can be rescaled arbitrarily (without an impact
on the critical exponents), the fixed-point values of couplings do
not automatically convey information on whether the fixed point
is perturbative. To achieve strict perturbative control over the
fixed point, the critical exponents should be arbitrarily close to
the canonical ones. This can be achieved in the Veneziano limit
which allows to continuously emerge the fixed point from the free
one. Hence we now focus on an SU(Nc) gauge theory with Nf

flavors of Dirac fermions in the fundamental representation to
take the Veneziano-limit, Veneziano (1979),

Nf → ∞, Nc → ∞, with ǫ =

Nf

Nc
−

11

2
finite. (31)

C = 25 (Caswell, 1974) holds in this limit without Yukawa
interactions. The simplest way to add a Nf × Nf matrix H of
complex scalars is to have them uncharged under the gauge
group,

LH−pot = −uTr
(

H†H
)2

− v
(

TrH†H
)2

. (32)

Then the two quartic couplings decouple from the beta functions
for the gauge and Yukawa coupling at the above order in
perturbation theory and in the Veneziano limit (Litim and
Sannino, 2014, see Jack and Osborn, 1984; Machacek and
Vaughn, 1985; Ford et al., 1992) for the two-loop beta functions.

In the limit (31), fixed-point values are controlled by ǫ and
remain perturbative for ǫ << 1 (Litim and Sannino, 2014). For a

study of gauge groups and representations for which such a fixed
point exists (see Bond et al., 2018). Asymptotic safety is achieved
in appropriately rescaled couplings that guarantee well-behaved
large-N-beta functions,

α̃y =
y2 Nc

16π2
, α̃g =

g2 Nc

16π2
. (33)

The beta functions read

βα̃g = α̃2
g

(

4

3
ǫ +

(

25+
26

3
ǫ

)

α̃g − 2

(

11

2
+ ǫ

)2

α̃y

)

, (34)

βα̃y = α̃y

(

(13+ 2ǫ) α̃y − 6α̃g

)

. (35)

While the one-and two-loop contribution of the gauge coupling
to βα̃g are positive, the contribution of the Yukawa coupling is
negative. Accordingly a finite fixed-point value of the Yukawa
coupling induces a physically acceptable fixed point, i.e., α̃g ∗ > 0.
In turn, the positive contribution∼ α̃y in βα̃y can balance against
the negative one ∼ α̃g to generate a physically acceptable fixed
point at α̃y > 0. This results in an interacting fixed point
emerging from the Gaussian one, since ǫ can become arbitrarily
small for large enough numbers of fields,

α̃g ∗ =

26ǫ + 4ǫ2

57− 46ǫ − 8ǫ2
,

α̃y ∗ =

12ǫ

57− 46ǫ − 8ǫ2
. (36)

To leading order in ǫ, the critical exponents are given by

θ1 =
104

171
ǫ2, θ2 = −

52

19
ǫ, (37)

which go back to the canonical, vanishing values for ǫ → 0.
There is one IR repulsive and one IR attractive direction, fixing
the Yukawa coupling at all scales in terms of the gauge coupling
(or vice-versa). In other words, the value of one of the couplings
in terms of the other is a prediction of the setting.

In a setting with “non-fundamental” asymptotic safety (with
new physics kicking in at some kUV), it is important that the
velocity of the flow in the IR-attractive direction is of order ǫ,
whereas it is of order ǫ2 in the IR-repulsive direction. At the
transition scale to the more fundamental description, initial
conditions for the values of couplings are typically not the fixed-
point values. Toward the IR, the flow is pulled toward the fixed
point along the IR-attractive direction with a velocity O(ǫ) and
repelled from the fixed point along the IR-repulsive direction
with a velocity O(ǫ2). Accordingly, near-fixed-point scaling
could determine the behavior of a larger class of trajectories,
cf. Figure 6.

At the next order in the approximation, quartic scalar self-
interactions have to be included. For the corresponding large N
couplings

αh =
uNf

16π2
, αv =

vNf

16π2
, (38)
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FIGURE 6 | The flow toward the IR from the fixed point in Equation (36) for ǫ = 1/10 features one strongly IR attractive and one weakly IR repulsive direction. The

green and purple, thick, continuous lines are the two only “true” fixed-point trajectories. Initial conditions in the UV away from the fixed point (red dots) result in

trajectories that are indistinguishably close to the fixed-point trajectories in the IR. The right panel shows a zoom into the vicinity of the fixed point, where the

“non-fundamental” trajectory narrowly misses the fixed point, but approaches the critical hypersurface arbitrarily closely, resulting in universal predictions in the IR.

the one-loop beta functions are given by Jack and Osborn (1984);
Machacek and Vaughn (1985), and Ford et al. (1992)

βαh = −(11+ 2ǫ)α̃2
y + 4αh

(

α̃y + 2αh

)

, (39)

βαv = 12α2
h + 4αv

(

αv + 4αh + α̃y

)

. (40)

Due to the Yukawa coupling, fermionic fluctuations generate a
scalar potential (cf. first term in Equation 39) and cannot be
set to zero consistently if α̃y ∗ 6= 0; therefore a nontrivial fixed
point of the system α̃y, α̃g ,αv,αh has to be found. To satisfy Weyl
consistency conditions (see below), the beta function of the gauge
coupling is extended to three-loop order and that of the Yukawa
coupling to two-loop order, where there is also a contribution ∼

αh. The double-trace coupling αv decouples from the remainder
of the system. The system admits a joint, asymptotically safe fixed
point at αh ∗ > 0, and αv ∗ < 0 with αh ∗ + αv ∗ > 0, indicating
a fixed-point potential that is bounded from below Litim and
Sannino (2014). A study of the effective potential that includes
quantum fluctuations at all scales on a trajectory emanating from
the fixed point also indicates its stability (Litim et al., 2016). At
the fixed point, the scalar couplings are irrelevant, therefore the
full model only features one free parameter.

The inclusion of two-loop effects in the gauge coupling and
one-loop effects in the Yukawa coupling (or three-loop in the
gauge, two-loop in the Yukawa, and one loop in the scalar
couplings) is suggested byWeyl consistency conditions (Jack and
Osborn, 1990, 2014), which relate derivatives of beta functions.
They arise by considering the model on a curved (but fixed)
background and performing Weyl rescalings of the metric. As

two subsequent Weyl rescalings commute, it follows that ∂β i

∂gj
=

∂β j

∂gi
. Herein β i

= χ ijβj, where χ ij is a metric in the space of

couplings which depends on the couplings. An expression for
χ ij for gauge-Yukawa models has been derived in Antipin et al.
(2013).

These conditions should hold for the full RG flow and can
be imposed on the perturbative expansion. For a discussion of
the corresponding ordering scheme for beta functions as well as
other systematic choices of perturbative orders in the context of
gauge-Yukawa theories (see also Bond et al., 2018).

Residual interactions in canonically marginal couplings at
an interacting fixed point provide finite contributions to beta
functions of higher-order, canonically irrelevant couplings.
Higher-order couplings in the scalar potential develop near-
Gaussian fixed-point values of their own (Buyukbese and
Litim, 2017). Accordingly, their scaling exponents follow the
expectation that these couplings should remain irrelevant at a
perturbative asymptotically safe fixed point.

The interacting fixed point in gauge-Yukawa systems
constitutes a four-dimensional example of asymptotic safety,
established within perturbation theory. It provides a new
universality class which calls for an in-depth study of its possible
extensions and generalizations.

The extension to a supersymmetric setting has been discussed
in Intriligator and Sannino (2015); Bajc and Sannino (2016);
Bond and Litim (2017); and Bajc and Dondi (2018). While
perturbative asymptotic safety cannot be realized in the
supersymmetric setting with a simple gauge-group (Intriligator
and Sannino, 2015), it can exist in settings with semi-simple
gauge groups (Bond and Litim, 2017; Bajc and Dondi, 2018). This
highlights how an added symmetry can allow to derive strong
no-go-theorems for asymptotic safety.
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The fixed-point structure in gauge-Yukawa models is more
intricate in a setting away from four dimensions (Codello et al.,
2016) (or under the inclusion of potential quantum-gravity
effects Christiansen et al., 2017), where the degeneracy of the free
fixed point is lifted, and fixed-point collisions can occur.

Given that asymptotic safety appears in a range of gauge
theories where asymptotic freedom is lost, the phase diagram
of gauge theories could be richer than previously thought. In
fact, indications for an interacting fixed point at leading order
in 1/Nf go back to Palanques-Mestre and Pascual (1984) and
Gracey (1996), see Holdom (2011) for a recap and a discussion
of higher orders in 1/Nf . With a view toward the potential
phenomenological importance of such fixed points (Antipin and
Sannino, 2017; Antipin et al., 2018a), employ a resummation of
the fermionic bubble diagrams that contribute at leading order in
1/Nf to all orders in perturbation theory to the beta function for
the non-Abelian gauge coupling. This provides indications for an
interacting fixed point: In a 1/Nf expansion, the first nontrivial
order vanishes in the large Nf limit, unless there is a value of
the coupling where it features a pole. In that case, depending on
the sign of that contribution, a zero of the beta function can be
generated. Indeed a corresponding pole can be found, providing
an indication for a fixed point at a non-perturbatively large value
of the gauge coupling. A similar resummation for the gauge
contribution to the leading nontrivial order of the beta function
of the Yukawa coupling has been performed in Kowalska and
Sessolo (2018), see also Alanne and Blasi (2018) and Alanne and
Blasi (2018).

The a-theorem (Cardy, 1988) has been explored in this setting
(Antipin et al., 2018b; Dondi et al., 2018), showing that, as
expected, the Jack and Osborn a function (Jack and Osborn,
2014) takes a larger value at the UV fixed point than at the IR
fixed point.

These developments pave the way for asymptotically safe
model building beyond the Standard Model (e.g., Abel and
Sannino, 2017a,b; Bond et al., 2017; Mann et al., 2017; Molinaro
et al., 2018).

3.1. Asymptotically Safe Phenomenology
The idea that scale-invariance is realized in physics beyond
the Standard Model has received a lot of attention (see e.g.,
Meissner and Nicolai, 2007; Shaposhnikov and Zenhausern,
2009a,b; Holthausen et al., 2013; Khoze, 2013; Lindner et al.,
2014; Gies and Zambelli, 2017; Lewandowski et al., 2018),
mostly focusing on settings with classical scale invariance. It
is therefore highly intriguing to explore whether extensions of
the Standard Model are asymptotically safe along the lines in
Litim and Sannino (2014), realizing quantum scale invariance.
Measurements showing a decreasing SU(3) coupling as a
function of energy only cover a finite energy range and hence do
not exclude asymptotic safety.

Steps toward an asymptotically safe Standard Model include
the observation that asymptotic safety can be achieved in
semi-simple gauge groups (Esbensen et al., 2016; Bond and
Litim, 2018b) and with chiral fermions (Mølgaard and Sannino,
2017). To render the non-Abelian Standard Model gauge
couplings asymptotically safe, new fermionic states transforming
in nontrivial representation of SU(2) and/or SU(3), have to

be added. Asymptotic safety might be achieved for one of
the non-Abelian gauge couplings, with the others becoming
asymptotically free, depending on the representation the new
(vectorlike) fermions transform in Kowalska et al. (2017). The
matching scale, essentially corresponding to the mass scale of the
new fermions, which separates the regime of power-law running
below the fixed point from the regime of logarithmic running in
the Standard Model, adds new free parameters to these models.

Yet, the non-Abelian gauge groups of the Standard Model are
SU(2) and SU(3), not SU(Nc) with Nc → ∞, as required for
the Veneziano limit. Accordingly, the addition of fermions to
the Standard Model such that the non-Abelian gauge couplings,
together with the BSM Yukawa coupling become asymptotically
safe (Bond et al., 2017; Mann et al., 2017), is difficult to reconcile
with a perturbative nature of the extension (Barducci et al., 2018),
at least if one also insists on solving the U(1) triviality problem.
This is evident, e.g., in the large values of the critical exponents
that lead to a fast flow away from the fixed point toward the
IR (see e.g., Bond et al., 2017; Mann et al., 2017). Hence, large
Nf fixed points (Palanques-Mestre and Pascual, 1984; Gracey,
1996; Holdom, 2011; Antipin and Sannino, 2017; Antipin et al.,
2018a; Kowalska and Sessolo, 2018) play a key role in these
developments. Accommodating the Higgs at the correct mass is
a challenge (Pelaggi et al., 2018). This could change in a grand
unified setting (Molinaro et al., 2018), which could also become
asymptotically safe (Abel and Sannino, 2017b).

Asymptotic safety beyond the Standard Model could have
intriguing phenomenological consequences in astrophysics and
cosmology (Nielsen et al., 2015). For instance, asymptotically
safe dark matter could accommodate a significant running
of the portal coupling to visible matter between the dark-
matter-mass scale—relevant for thermal production of dark
matter in the early universe—and the scale of direct detection
experiments (Sannino and Shoemaker, 2015). In the WIMP-
paradigm, the darkmatter relic density is linked to the probability
of direct detection, since the cross-section for dark-matter-
annihilation into Standard Model particles is related to the
cross-section for dark matter scattering off Standard Model
particles. Hence, the lack of direct detection has put severe
constraints on the paradigm (Tan et al., 2016; Akerib et al.,
2017; Aprile et al., 2018). These might be circumvented by
introducing additional fields, providing a new parameter that
decreases the tension between direct experimental bounds on
the cross-section and the relic-density constraints. Asymptotic
safety could provide an alternative explanation (Sannino and
Shoemaker, 2015): the value of the coupling at the higher
scale is larger as it approaches an interacting fixed point. This
might accommodate thermal production of the full dark matter
relic density while being consistent with bounds from direct
searches.

4. ASYMPTOTICALLY SAFE QUANTUM
GRAVITY

4.1. Status of Asymptotic Safety in Gravity
Einstein gravity, quantized perturbatively, loses predictivity
at (trans)planckian scales due to its perturbative
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nonrenormalizability. Infinitely many free parameters are
associated with counterterms required to absorb new divergences
appearing at every loop order5 (Deser and Nieuwenhuizen,
1974a,b; ’t Hooft and Veltman, 1974; Goroff and Sagnotti, 1986;
van de Ven, 1992). At momenta p below the Planck scale, only
a finite number of the counterterms contribute (Donoghue,
1994a,b) if one assumes that the corresponding dimensionless
couplings are all of order one. Then, higher-order terms are
suppressed by (p/MPlanck)

#, # > 2. Thus, gravity and quantum
physics are actually compatible, but a perturbative quantization
only holds up to the Planck scale (Donoghue, 2012). The key
challenge is to find an ultraviolet completion. The minimalistic
and conservative nature of asymptotic safety as compared to
many other approaches to quantum gravity make it a useful
starting point for this endeavor: If this ansatz for quantum
gravity fails, more radical notions on the quantum nature of
spacetime are required.

As the free fixed point is IR attractive in the Newton coupling,6

the first mechanism for asymptotic safety cf. Sec. 2.4.1, which is
realized in d = 2 + ǫ dimensions (Brown, 1977; Tsao, 1977;
Christensen and Duff, 1978; Gastmans et al., 1978; Weinberg,
1980; David, 1988; Distler and Kawai, 1989; Kawai andNinomiya,
1990; Jack and Jones, 1991; Kawai et al., 1993a,b, 1996; Aida et al.,
1994; Nishimura et al., 1994; Aida and Kitazawa, 1997; Codello
and D’Odorico, 2015), might also determine the fate of gravity in
d = 4 dimensions. The physical mechanism behind asymptotic
safety in gravity (Nink and Reuter, 2013) is the antiscreening
nature of metric fluctuations that shield the Newton coupling,
similar to the effect of self-interacting gluons in the Yang-Mills
vacuum.

An extension of the ǫ expansion to higher order, combined
with an appropriate resummation, could provide indications
for or against a fixed point in four dimensions. This is also
a goal of discrete approaches to the gravitational path-integral
where spacetime configurations are constructed from scratch
from microscopic building blocks: Causal (Ambjorn et al., 2000,
2001) (and possibly also Euclidean Laiho and Coumbe, 2011;
Laiho et al., 2017) Dynamical Triangulations) (CDT) feature a
higher-order phase transition (Ambjorn et al., 2011, 2012, 2017)
facilitating a continuum limit. This could provide a universality
class for quantum gravity. Complementary to Monte Carlo
simulations of dynamical triangulations, an analytical approach

5The enhanced symmetry in supergravity rules out many of these counterterms,

shifting the expected order of divergence in the maximally supersymmetric theory

to higher orders (Bern et al., 2017, 2018).
6In the higher-derivative theory with the additional invariants R2 and RµνR

µν

the marginal couplings are asymptotically free (Stelle, 1977; Fradkin and Tseytlin,

1982; Avramidi and Barvinsky, 1985). Around flat space, this theory features a

kinetic instability (see Salvio, 2018) for a review. Breaking Lorentz symmetry

allows to use higher-order spatial derivatives while keeping the action at

second order in time derivatives (Horava, 2009), resulting in perturbatively

renormalizability. Yet, the projectable version propagates an additional scalar that

becomes nonperturbative in the IR. As the non-projectable version features a larger

number of couplings, asymptotic freedom has only been established in 2 + 1

(Barvinsky et al., 2017) dimensions and not 3 + 1, as well as in the large N limit

for N scalars coupled to Horava gravity (D’Odorico et al., 2014). Constraints from

pulsars (Yagi et al., 2014) and gravitational waves from a neutron-starmerger (Emir

Gümrükçüoğlu et al., 2018) constrain these models.

FIGURE 7 | The regulator Rk (p
2) (continuous red line) acts as a suppression

term for IR modes. In the flow equation Equation (43) its derivative with respect

to k (dotted purple line) acts as a suppression for UV modes, as well, such that

the main contribution to the scale dependence of the dynamics at k comes

from modes at that momentum scale.

to search for a suitable continuum limit is based on tensor
models (Ambjorn et al., 1991; Godfrey and Gross, 1991; Gross,
1992; Benedetti and Gurau, 2012; Gurau, 2016), see Sec. 4.2.4.
Lattice studies based on Euclidean Regge calculus have also been
put forward as indications for asymptotic safety (Hamber, 2009,
2015).
Intriguingly, perturbative techniques in d = 4 yield indications
for an asymptotically safe fixed point (Codello and Percacci, 2006;
Niedermaier, 2009, 2010), providing a hint at a near-perturbative

nature of asymptotically safe gravity.
Most of the compelling evidence for asymptotic safety in

gravity comes from Euclidean functional RG (FRG) studies
based on the Wetterich equation7. This framework provides beta
functions for the dependence of couplings on the momentum
scale k. The scale is introduced into the generating functional
through an infrared cutoff function Rk(p

2), called the regulator,

Zk[J] =

∫

Dϕ e−S[ϕ]− 1
2TrϕRk(p

2)ϕ+TrJ ϕ , (41)

Ŵk[φ] = sup
J

(

TrJ φ − lnZk[J]
)

−

1

2
TrφRk(p

2)φ, 〈ϕ〉k = φ,

(42)

reducing to the standard definitions at k = 0. Rk(p
2) and

its derivative k∂k Rk(p
2) are sketched in Figure 7. This setup

provides a flow equation, the Wetterich equation (Wetterich,
1993), also Ellwanger (1994) and Morris (1994), pioneered for
gauge theories in Reuter and Wetterich (1994) and gravity in
Reuter (1998). The regulator acts as a simultaneous IR- and UV

7A variant of the Polchinski equation also provides support for the asymptotic-

safety conjecture (de Alwis, 2018).
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cutoff, such that the change of a coupling at scale k is mainly
driven by quantum fluctuations at that scale:

∂tŴk = k ∂kŴk =
1

2
Tr

[

(

δ2Ŵk[φ]

δφ2
+ Rk

)−1

∂tRk

]

. (43)

For gravity, the covariant Laplacian 1̄with respect to an auxiliary
background metric ḡµν takes the role of the momentum p2,
Reuter (1998); Dou and Percacci (1998); Souma (1999), and
Lauscher and Reuter (2002). For general introductions and
reviews (see Berges et al., 2002; Polonyi, 2003; Pawlowski, 2007;
Rosten, 2010; Braun, 2012; Delamotte, 2012; Gies, 2012, for
gravity, see Reuter and Saueressig, 2012; Nink et al., 2013;
Ashtekar et al., 2014; Percacci, 2017; Eichhorn, 2018a). The
method is well-suited to models with dimensionful couplings,
and therefore widely-used in condensed-matter physics and
statistical physics (Kopietz et al., 2010; Metzner et al., 2012;
Platt et al., 2013). Its relation to perturbation theory, which is
straightforward at one loop, has been explored at higher loops
in Papenbrock and Wetterich (1995) and Codello et al. (2014).

The FRG tracks the scale dependence of all couplings that
are compatible with the symmetries, not just the perturbatively
renormalizable interactions. For practical calculations, theory
space is truncated to a (typically finite-dimensional) subspace,
introducing a systematic error. To highlight that quantitative
results can already be achieved in relatively small truncations,
we provide the leading scaling exponents for the Ising model in
Table 1.

For fixed points that arise via the mechanism in section 2.4.1,
the scaling is near-canonical near the critical dimension,
providing a systematic way to devise truncations that
include all relevant couplings. There are indications that
in quantum gravity four dimensions is close to two in the
sense that the canonical dimension is a good predictor
of relevance at the fixed point (Falls et al., 2013, 2016),
enabling the setup of robust truncations by canonical power-
counting. These indications require further confirmation,
e.g., by including operators of the form R2

nR (De Alwis,
2018).

Considerable evidence for the existence of the
interacting Reuter fixed point has accumulated, starting
from the seminal work (Dou and Percacci, 1998; Reuter,
1998; Souma, 1999; Lauscher and Reuter, 2002; Reuter
and Saueressig, 2002), employing truncations of the
form

Ŵk = −

1

16πGN

∫

d4x
√

g (R− 23) + Ŵk higher−order +
1

32πGN α
∫

d4x
√

ḡḡµν

(

D̄κhµκ −

1+ β

4
D̄µh

)(

D̄λhνλ −

1+ β

4
D̄νh

)

−

√

2

∫

d4x
√

ḡc̄µ

(

(

ḡµρ D̄κgρνDκ + D̄κgκνDρ

)

−

1+ β

2
D̄µDν

)

cν .

(44)

The third term is a gauge fixing term with two parameters α,β
(see, e.g., Falkenberg and Odintsov, 1998; Gies et al., 2015; de
Brito et al., 2018 for studies of the off-shell gauge dependence and
Benedetti, 2012 for gauge-independent on-shell results) and the

TABLE 1 | Relevant and leading irrelevant critical exponent as well as the

anomalous dimension for the Ising model obtained with the FRG in a derivative

expansion to leading order (local potential approximation, LPA, to order 2n in the

field) and next-to-order (LPA’) with field-independent anomalous dimension.

Truncation ν = 1/θ1 ω = −θ2 η

LPA 2 1/2 1/3 0

LPA 3 0.729 1.07 0

LPA 4 0.651 0.599 0

LPA 5 0.645 0.644 0

LPA 6 0.65 0.661 0

LPA 7 0.65 0.656 0

LPA 8 0.65 0.654 0

LPA’ 2 0.526 0.505 0.0546

LPA ’ 3 0.684 1.33 0.0387

LPA’ 4 0.64 0.703 0.0433

LPA ’5 0.634 0.719 0.0445

LPA’ 6 0.637 0.728 0.0443

LPA ’ 7 0.637 0.727 0.0443

LPA ’8 0.637 0.726 0.0443.

For the dimensionless potential u[ρ] =

∑

i=2
λi
i! (ρ − λ1 )

i with ρ = ϕ2/2, the flow

equation from which the beta functions for the couplings λi are derived, reads ∂tu[ρ] =

−4u + (d − 2 + η)ρ u′ [ρ] + 1
2·(4π )2

(

1−
η
6

)

1
1+u′ [ρ]+2ρu′′ [ρ] . The underlying derivation of

the flow equation can be found (e.g., Berges et al., 2002; Delamotte, 2012) and the

numerical evaluation of fixed-point values and critical exponents requires a basic numerical

solver, such as Mathematica’s FindRoot routine. At fourth order in the derivative expansion

(Canet et al., 2003), one obtains ν = 0.632 and η = 0.033 (see also Litim and Zappala,

2011) (compared to, e.g., ν = 0.6304 and η = 0.0335 from 7-loop studies Guida and

Zinn-Justin, 1998).

third line is the corresponding Faddeev-Popov operator8. Barred
quantities refer to a background metric ḡµν with respect to which
the metric gµν can be gauge fixed, and a local coarse-graining
scheme is set up. The fluctuation field is

hµν = gµν − ḡµν . (45)

A discussion of background-independence is given in
section 4.2.3. All results below are in the background-
approximation, where gµν = ḡµν is used in the RG flow.
Results from selected key truncations are summarized in Table 2.

For purposes of illustration, we also quote beta functions in
the Einstein-Hilbert truncation with G = GNk

2 and λ = 3/k2

from Codello et al. (2009), with anomalous dimensions ηh(c)
for the metric (ghost) (e.g., in Donà et al., 2014), and for the
functional f (R̃), from Benedetti and Caravelli (2012) as found in
Dietz and Morris (2013a).

8A nontrivial wave-function renormalization (Eichhorn and Gies, 2010; Groh and

Saueressig, 2010) and ghost terms beyond the Faddeev-Popov are generated by the

flow and have nonvanishing fixed-point values (Eichhorn, 2013).
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TABLE 2 | The operators beyond Einstein-Hilbert, the number of relevant/irrelevant directions, and the values of the positive critical exponents are indicated.

References Gauge Cutoff Operators included # rel. # irrel. Reθ1 Reθ2 Reθ3

beyond dir. dir.

Einstein-Hilbert

Reuter and Saueressig, 2002 α = 1,β = 0 exp. - 2 - 1.94 1.94 -

Litim, 2004 α = 0 Litim (Litim, 2000, 2001) - 2 - 1.67 1.67 -

Lauscher and Reuter, 2002 α = 0,β = 0 exp.
√

gR2 3 0 28.8 2.15 2.15

Machado and Saueressig, 2008 β = 1,α = 0 Litim
√

gR2,
√

gR3 3 1 2.67 2.67 2.07

Codello et al., 2009 α = 1,β = 1 Litim
√

gR2,
√

gR3 3 1 2.71 2.71 2.07

Machado and Saueressig, 2008 β = 1,α = 0 Litim
√

gR2,
√

gR6 3 1 2.39 2.39 1.51

Codello et al., 2009 α = 1,β = 1 Litim
√

gR2, ...,
√

gR8 3 6 2.41 2.41 1.40

Falls et al., 2013, 2016 α = 0,β = 0 Litim
√

gR2, ...,
√

gR34 3 32 2.50 2.50 1.59

Benedetti et al., 2009 α = 0, h/o Litim
√

gR2,
√

gRµνR
µν 3 1 8.40 2.51 1.69

Gies et al., 2016 β = α = 1 Litim
√

gCµνκλCκλρσC
ρσ

µν 2 1 1.48 1.48 -

All truncations listed above, employing the linear parameterization and single-metric approximation (cf. section 4.2.3) feature an asymptotically safe fixed point with no more than three

relevant directions. (All results in the literature for finite-dimensional truncations feature an asymptotically safe form in qualitative agreement with these results.)

βG = 2G−

G2

12 · 4π

(

52(4− ηh)

1− 2λ
+ 40(4− ηc)

)

,

βλ = −2λ +

G

12 · 4π

(

20(6− ηh)

1− 2λ
− 16(6− ηc)

)

−

G λ

12 · 4π

(

52(4− ηh)

1− 2λ
+ 40(4− ηc)

)

, (46)

∂tf = 4f − 2R̃ f ′ +
1

384π2

[

−20
∂tf

′
− 2R̃ f ′′ + 8f ′

(R̃− 2)f ′ − 2f
− 36− 12− 5R̃2 (47)

+

(R̃4 − 54R̃2 − 54)(∂tf
′′
− 2R̃ f ′′′)− (R̃3 + 18R̃2 + 12)(∂tf

′
− 2R̃ f ′′ + 2f ′)− 36(R̃2 + 2)(f ′ + 6f ′′)

2
(

−9f ′′ + (R̃− 3)f ′ − 2f
)

]

.

Here, R̃ = R/k2 is the dimensionless curvature
and primes denote derivatives with respect to
R̃. Equation (47) provides the beta functions for
couplings of Rn upon a Taylor expansion in the
curvature.

The Newton coupling and cosmological constant are
relevant, cf. Figure 8. Accordingly, the IR value of the
cosmological constant is unrestricted. The choice of different
fixed-point trajectories in Figure 8 results in different values
of the dimensionful cosmological constant in the IR 3IR.
To realize 3IR/M2

Pl
<< 1, a specific trajectory has to

be chosen. The question, why this particular trajectory
is realized, is the finetuning “problem.” Yet, any relevant
coupling is actually linked to a similar question. For
instance, the value of the QCD coupling at the electroweak
scale would be different on other, also asymptotically
free trajectories. The question how a more fundamental
principle selects one out of many viable trajectories for
the relevant couplings exists irrespective of whether the
coupling is logarithmically or power-law sensitive to
the momentum scale. (The need for successive tuning
at each order in perturbation theory for the power-law
case is a consequence of that particular approximation
scheme, not a signature of a consistency problem of the
theory).

At the interacting Reuter fixed point, canonical ordering
appears to hold9, cf. Table 2. This provides a scheme to set up
consistent truncations: Assume for simplicity that the operators
in Table 2 diagonalize the stability matrix, resulting in critical
exponents

θi = dḡi + ηi. (48)

Unless the anomalous scaling contribution ηi would grow with
the canonical dimension, the canonical dimension dominates
for canonically highly irrelevant couplings, rendering them
irrelevant at an interacting fixed point. In fact, already at the
level of canonically marginal couplings of R2 and RµνR

µν , there
appears to be only one relevant direction10. All canonically
irrelevant operators that have been examined are irrelevant at
the fixed point. In Falls et al. (2013) and Falls et al. (2016),
the normalized difference of canonical and quantum scaling
dimension decreases with decreasing canonical dimension for
Rn, cf. Figure 9. The near-Gaussian scaling spectrum (at
higher orders in the curvature expansion) is also in line with
the possibility to find indications of asymptotic safety from

9A combined truncation of Gies et al. (2016) with the operators in Benedetti et al.

(2009) remains to be explored.
10Results in the exponential parameterization even yield one relevant direction less

(Ohta et al., 2016; de Brito et al., 2018).
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FIGURE 8 | The RG flow to the IR in the Einstein-Hilbert truncation in the setup discussed in Donà et al. (2014) for a type Ia cutoff features a trajectory—passing very

close to the free fixed point—on which the dimensionful Newton coupling and cosmological constant reach constant values in the IR in agreement with

measurements. Left panel: pure gravity case; right panel: including minimally coupled matter as in the Standard Model (4 scalars, 12 vectors, 45 Weyl fermions). The

two eigendirections of the fixed point are superposition of G and λ.

perturbation theory (Codello and Percacci, 2006; Niedermaier,
2009, 2010).

Systematic truncation errors can be estimated given that in
approximations schemes for QFTS, dependencies on unphysical
parameters arise even at the level of observables. The better the
approximation, the weaker such a dependence. Tests include
gauge-parameter dependence (Gies et al., 2015), regulator
dependence (Reuter and Saueressig, 2002) and dependence on
the parameterization for metric fluctuations (Gies et al., 2015;
Ohta et al., 2016; de Brito et al., 2018).

Going beyond finite-dimensional truncations, the closed
fixed-point equation for f (R̃), e.g., Equation (47) has been
investigated. Depending on the choice of regulator, it contains a
varying number of fixed singularities, as the regulator introduces
additional field-dependence in the background approximation.
Thus, specific choices of the regulator allow for global solutions
(Benedetti and Caravelli, 2012; Demmel et al., 2012; Dietz and
Morris, 2013a,b; Demmel et al., 2015; Ohta et al., 2015) while
others do not (Codello et al., 2009). One might conclude that
extensions of the truncation are required, going beyond the
background- approximation for f (R̃) (see Christiansen et al.,
2018, see section 4.2).

Many gravitational theories are classically dynamically
equivalent to GR. Thus different theory spaces could allow for
asymptotic safety (Krasnov and Percacci, 2018). For instance,
the vielbein and the connection can be treated as independent
variables (Daum and Reuter, 2012, 2013; Harst and Reuter, 2015,
2016), or torsion can be included (Pagani and Percacci, 2015;
Reuter and Schollmeyer, 2016). The dimension of theory space
and the number of relevant couplings decrease by one (Eichhorn,
2015) in unimodular gravity (Unruh, 1989; Finkelstein et al.,

2001; Ellis et al., 2011), where the determinant of the metric
is a fixed density, removing the cosmological constant from
the action. Further, fluctuations in topology, dimensionality,
signature etc. might be included in the gravitational path integral.
The corresponding additional configurations either prevent the
existence of a continuum limit/ RG fixed point, lead to an
asymptotically safe fixed point in the same universality class as
Table 2, or provide another gravitational universality class which
differs in its physical implications and can therefore (in principle)
be probed experimentally.

In two dimensions, the conformal field theory underlying
asymptotic safety has been studied (Nink and Reuter, 2016). In
d = 4, scale-invariance need not imply conformal invariance
(in fact, sufficient conditions for this are not known). If it
were possible to extend the conformal bootstrap program
(Simmons-Duffin, 2016) to a gravitational setting, a search for
the corresponding universality class with relevant directions
according to Table 2 might answer whether there is a conformal
theory behind asymptotically safe gravity.

4.2. Open Questions & Future Perspectives
4.2.1. Lorentzian Signature
There is no simple Wick-rotation in quantum gravity, thus the
above results do not directly imply Lorentzian asymptotic safety.
In an ADM decomposition of the metric, the change of signature
can be implemented by changing one parameter. This has been
used in Manrique et al. (2011a) to find hints for asymptotic
safety in a Lorentzian setting for the Einstein-Hilbert truncation.
Further, RG flows in the ADMdecomposition have been explored
in Rechenberger and Saueressig (2013), Biemans et al. (2017), and
Biemans et al. (2017). The FRG can be formulated in a Lorentzian
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FIGURE 9 | Data from Falls et al. (2016) on the critical exponents in a truncation
∑

n
√

gRn, compared to the canonical dimension.

setting (Floerchinger, 2012), underlying the study of real-time
correlators, e.g., in QCD (Pawlowski and Strodthoff, 2015).

Alternatively, a proposal (Eichhorn, 2018b) to search for
Lorentzian asymptotic safety employs causal set quantum gravity.
This is an intrinsically Lorentzian, discrete approach to quantum
gravity, based on the path integral over all causal sets (Bombelli
et al., 1987). Under the restriction to manifoldlike causal sets
(implemented as a path integral over sprinklings Henson, 2006;
Dowker, 2013) the space of couplings might feature a second-
order phase transition (Surya, 2012; Glaser, 2018).

4.2.2. Propagating Degrees of Freedom
Higher-order derivatives in QFTs on a flat background
generically imply an instability in the kinetic term (Ostrogradsky,
1985; Woodard, 2015), translating into a violation of reflection
positivity for the Euclidean propagator (Arici et al., 2017). In a
quantum setting, the unboundedness of the Hamiltonian can be
traded for unitarity violation through negative-norm states in the
Hilbert space (Woodard, 2015).

In quantum gravity, an analysis of unitarity is presumably
rather more subtle for several reasons.

Firstly, positivity violation in gauge-variant propagators
occurs in unitary theories such as QCD (Cucchieri et al., 2005;
Bowman et al., 2007). [A direct analogy with QCD has been
proposed for (asymptotically free higher-derivative) gravity in
Holdom and Ren, 2016a,b.] The physical “graviton” as the
transverse traceless part of the metric propagator is defined
perturbatively; but non-perturbatively no local separation of
gauge and physical degrees of freedom is possible.

Secondly, an instability in the flat-space propagator is not
in conflict with observations, given that the cosmological
background appears to be FRW-like.

Thirdly, Ostrogradski instabilities occur under a crucial
assumption, namely that of finitely many higher-order terms.
Yet the case with infinitely higher order terms can feature
a well-defined propagator, translating into a well-posed initial
value problem at the level of the equations of motion (Barnaby
and Kamran, 2008). Examples include string-field theory, see
Barnaby and Kamran (2008) and references therein. Accordingly,
truncated dynamics in asymptotically safe gravity might contain

spurious instabilities (just as an analysis of a truncated effective
action for string theory would).

Fourth, even at the level of curvature-squared actions, the
mass of the “ghost” (analyzed around flat space) runs as a
function of momentum. Hence, such ghosts might not appear as
physical states (see Floreanini and Percacci, 1995; Benedetti et al.,
2009; Becker et al., 2017).

Finally, if asymptotic safety is “non-fundamental”
(cf. section 2.3), the mass-scale of the ghosts (if these exist
on physically relevant backgrounds) sets an upper bound on
kUV.

CDT satisfies reflection positivity (Ambjorn et al., 2000,
2001). Thus, its continuum limit, which might correspond to
asymptotically safe gravity, inherits this property. As many other
examples, this reinforces that the quest to understand quantum
spacetime can be accelerated by searching for links between
quantum-gravity approaches.

In addition to ghost-like states, higher-order gravity can
(but again, need not) contain additional propagating degrees
of freedom. These might be of phenomenological interest, e.g.,
driving inflation or leading to modifications of GR detectable in
black holes and/or gravitational waves.

Determining the spectrum of propagating gravitational
degrees of freedom in asymptotically safe gravity is an important
outstanding question. A comprehensive answer in the FRG
approach requires studying the full propagator (at k = 0, where
all quantum fluctuations contribute) around a solution to the
quantum equations of motion.

4.2.3. Background Independence
Background independence is a key property of quantum gravity,
meaning that all configurations in the path integral should be
treated on an equal footing. This appears to be at odds with the
introduction of a local coarse graining scheme, as this relies on a
metric. Specifically, the regulator in the flow equation depends
on a background metric ḡµν . Additionally, a local formulation
of gauge theories requires gauge fixing to derive the propagator.
The flow equation is based on a background gauge-fixing.
Nevertheless, background independence can be achieved, if all
backgrounds are treated on the same footing (Becker and Reuter,

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2019 | Volume 5 | Article 47190

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Eichhorn Asymptotically Safe Gravity and Matter

TABLE 3 | Fixed-point results from Becker and Reuter (2014) for the “dynamical”

couplings in the Einstein-Hilbert truncation and their background counterparts.

G* λ* GB * λB * θ1 θ2 θB 1 θB 2

0.70 0.21 8.2 -0.01 3.6+4.3i 3.6 -4.3i 4 2

Critical exponents can be split into the two sectors, as the background couplings do not

couple into the flow of the dynamical couplings and accordingly the stability matrix is

upper/lower triangular in the background sector yielding canonical exponents.

2014), i.e., if gµν and ḡµν are both kept as distinct arguments
of the flowing action. In the limit k → 0, where the regulator
vanishes, setting gµν = ḡµν yields an effective action that
inherits diffeomorphism invariance and therefore background
independence from the auxiliary background-diffeomorphism
invariance that is kept intact for an appropriate choice of
gauge fixing and regulator function. Therefore, ultimately we are
interested in Ŵk→0[ḡµν , gµν = ḡµν], or Ŵk→0[ḡµν , hµν = 0],
respectively. Crucially, the flow is driven by the fluctuation

propagator,
(

Ŵ
(0,2)
k

[ḡµν , gµν]
)

−1
=

(

δ2

δgκλδgρσ
Ŵk[ḡµν , gµν]

)

−1
, or,

equivalently,
(

Ŵ
(0,2)
k

[ḡµν , hµν]
)

−1
. As the regulator and gauge

fixing break the symmetry between gµν and ḡµν , this is not the

same as
(

Ŵ
(2,0)
k

[ḡµν , gµν]
)

−1
. Schematically,

∂tŴk[8bck,8phys] =

1

2
Tr





(

δ2Ŵk[8bck,8phys]

δ82
phys

+ Rk[8bck]

)

−1

∂tRk[8bck]] . (49)

In the background approximation, one equates 8phys = 8bck

after the derivation of
δ2Ŵk[8bck,8phys,]

δ82
phys

. Accordingly, projections

on field monomials pick up the auxiliary background-field
dependence of the regulator in this approximation.

As an intermediate step to obtaining an effective action that
respects background independence, one has to derive the flow
of the fluctuation field propagator (Christiansen et al., 2017,
2016, 2015; Denz et al., 2018) in a setting that makes explicit
use of a background. Alternatively, one can map this to a
“bimetric” truncation, in which the propagator of the full metric
is distinguished from the background metric, and drives the
RG flow (Manrique and Reuter, 2010; Manrique et al., 2011b,c;
Becker and Reuter, 2014), see Table 3.

The fluctuation-field dynamics are not protected by an
auxiliary diffeomorphism invariance (as the background
dynamics is). Accordingly, the theory space is that of a spin-2-
field, with (modified) Slavnov-Taylor identities relating different
couplings as a consequence of the symmetry. In a vertex
expansion, this results in distinct “avatars” of couplings. For
instance, expanding the Einstein-Hilbert action to nth order
in the fluctuation field results in n “avatars” of the Newton
coupling and cosmological constant, λn and Gn. Table 4 lists
fixed-point results for these “avatars”. We use the notation
µ = −2λ2 and also provide the fluctuation field anomalous

dimension ηh and ghost anomalous dimension ηc. Where
their full momentum dependence has been evaluated, as in
Christiansen et al. (2017); Christiansen et al. (2015); and
Denz et al. (2018), the numbers provided refer to anomalous
dimensions at vanishing momentum. “Hybrid” calculations,
which evaluate the anomalous dimensions of the fluctuation
fields, but equate the background and fluctuation Newton
couplings, GB and cosmological constants, 3B are included.

The example of a background-deformed regularization for
scalar field theory shows how the background dependence
of the regulator can spoil the study of fixed-point results
for the Wilson-Fisher fixed point (Bridle et al., 2014). A
symmetry identity, namely the shift Ward-identity, follows from
background independence. It is structurally similar to the flow
equation and relates the background-field-dependence on φ̄ and
the fluctuation-field-dependence on ϕ of the flowing action
(Reuter and Wetterich, 1997; Litim and Pawlowski, 2002; Bridle
et al., 2014; Safari, 2016),

δŴk

δφ̄
−

δŴk

δϕ
=

1

2
Tr

[

(

δ2Ŵk

δϕ2
+ Rk[φ̄]

)−1
δRk[φ̄]

δφ̄

]

. (50)

Imposing the shift Ward-identity allows to recover background-
independent results (Bridle et al., 2014). In a similar spirit, studies

imposing the shiftWard identity in background- approximations
for gravity (where the analog of Equation (50) is supplemented by
contributions from the gauge fixing sector) have been performed
in Morris (2016); Percacci and Vacca (2017); Labus et al. (2016);
Ohta (2017); and Nieto et al. (2017).

Dynamical triangulations are background-independent as
there is no preferred configuration and even the foliation
structure in CDTs appears to be dispensable (Jordan and Loll,
2013). Therefore, establishing whether a universal continuum
limit exists in the same universality class (i.e., with matching
physical critical exponents) as FRG studies indicate, tests
background independence of asymptotically safe gravity. One
can either approach this by the well-tested method of computer
simulations, based on aMonte-Carlo approach, or explore tensor
models (see Sec. 4.2.4).

4.2.4. The RG Perspective on (Discrete) Quantum

Gravity
The use of RG ideas in quantum gravity has been gaining
traction in various forms over the last few years. Interacting
fixed points play a role in several different approaches (see,
e.g., Eichhorn and Koslowski, 2013, 2018; Ambjorn et al.,
2014; Benedetti et al., 2015; Bahr and Steinhaus, 2016, 2017;
Dittrich et al., 2016a,b; Dittrich, 2017; Ben Geloun et al.,
2018) and references therein. In particular, in models that
introduce a discretization, RG tools enable searches for a
universal continuum limit encoded in RG fixed points. As
one example, consider tensor models. These are spacetime-
free models which encode the gluing of fundamental building
blocks of a triangulation in their combinatorics. They generate
the sum over all simplicial pseudomanifolds (triangulations)
through their Feynman-diagram expansion, thereby generalizing
the success-story of matrix models (Di Francesco et al., 1995)
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TABLE 4 | Fixed-point results for fluctuation couplings.

References Gauge Regulator Bckr. µ* λ3 G3* G4* ηh ηc Re θ1 Re θ2 Re θ3

Groh and Saueressig, 2010 β = α = 1 Litim sphere 3B = 0.14 - GB = 0.86 – – −1.77 1.94 1.94 –

Eichhorn and Gies, 2010 β = α = 0 exp. flat/sphere 3B = 0.32 – GB = 0.29 – – −0.78 2.03 2.03 –

Eichhorn and Gies, 2010 β = α = 1 exp. flat/sphere 3B = 0.48 – GB = 0.18 – – −1.31 1.39 1.39 –

Christiansen et al., 2017 β = 1,α = 0 Litim flat −0.49 – 0.83 – 0.5 −1.37 1.87 1.87 1.37

Codello et al., 2014 α = β = 1 Litim flat 3B = −0.06 – GB = 1.62 – 0.69 −1.36 4.12 4.12 -

Christiansen et al., 2015 β = 1,α = 0 Litim flat -0.59 0.11 0.66 – ηh(p
2) ηc(p

2) 1.4 1.4 −14

Denz et al., 2018 β = 1,α = 0 Litim flat -0.45 0.12 0.83 0.57 ηh(p
2) ηc(p

2) 4.7 2.0 2.0

Knorr and Lippoldt, 2017 β = 1,α = 0 Litim curved 0.20 -0.008 0.20 – - – 1.65 1.65 −5.43

Christiansen et al., 2018 β = 1,α = 0 Litim curved -0.38 −0.12 0.60 – – – 2.1 2.1 −3.5

We caution that where several “avatars” of a coupling are present these are related by STIs. Accordingly not all critical exponents are physical.

to higher dimensions (Ambjorn et al., 1991; Godfrey and Gross,
1991; Gross, 1992). A universal continuum limit might exist if
the couplings are tuned to critical values while the tensor size
N is taken to infinity (Gurau, 2011). This limit corresponds to
a fixed point of an abstract, non-local RG flow set up in the
tensor size N, Brezin and Zinn-Justin (1992) and Eichhorn and
Koslowski (2013). This coarse-graining flow goes from many
degrees of freedom (large N), to fewer degrees of freedom (small
N). It is background independent by making no reference to
locality or spacetime. Therefore, if a viable fixed point, leading to
a physically acceptable phase of spacetime (where the “emergent”
spacetime is four dimensional at large scales) can be identified,
this provides an indication for a universal continuum limit -
i.e., asymptotic safety - in a background independent setting. In
Eichhorn and Koslowski (2013) an FRG approach was proposed
for matrix models and generalized for tensor models in Eichhorn
and Koslowski (2018), also triggering activity in related group
field theories (e.g., Benedetti et al., 2015; Ben Geloun et al., 2018).

4.2.5. Toward Asymptotically Safe Phenomenology in

Astrophysics and Cosmology
As a candidate for a model of quantum spacetime, asymptotic
safety should explain the structure of spacetime in the very
early universe (see Bonanno and Saueressig, 2017) for a review
and in those regions of black-hole spacetimes that contain
classical curvature singularities. Within the FRG language, the
UV physics is encoded in the limit of the full effective action
Ŵk→0 in which physical scales, e.g., curvature scales, are taken
to (trans)planckian values. External physical scales can act
as an IR cutoff for quantum fluctuations, as is most easily
seen for the external momenta in scattering processes. This
motivates the use of “RG improvement” techniques that provide
quantum-gravity “inspired” models. The RG-improvement is
performed by upgrading all couplings to running couplings and
subsequently identifying k with a physical scale of the system
in question, either at the level of the action, the equations of
motion or the classical solutions. In settings with a high degree
of symmetry and correspondingly a single physical scale, the
identification is unique and dictated by dimensional arguments
(e.g., k2 ∼ R is the unique choice for a deSitter-type setting).“RG
improved” results indicate dimensional reduction of the spectral

dimension (Lauscher and Reuter, 2005; Reuter and Saueressig,
2011; Calcagni et al., 2013), singularity resolution in black holes
(Bonanno and Reuter, 1999, 2000, 2006; Falls et al., 2012; Becker
and Reuter, 2012; Falls and Litim, 2014; Koch and Saueressig,
2014a,b; Kofinas and Zarikas, 2015; Pawlowski and Stock, 2018;
Adeifeoba et al., 2018), finite entanglement entropy (Pagani and
Reuter, 2018) as well as an inflationary regime generated through
quantum gravity effects (Bonanno and Reuter, 2008; Bonanno
et al., 2011a,b; Reuter and Saueressig, 2013; Kofinas and Zarikas,
2016).

5. ASYMPTOTICALLY SAFE QUANTUM
GRAVITY AND MATTER

Our universe contains gravitational and matter degrees of
freedom which are coupled to each other. Thus, to understand
the quantum structure of spacetime in our universe it is neither
necessary nor sufficient to show consistency of quantum- gravity
models disregarding matter. This does not imply that quantum
gravity must be a unified theory of all interactions, or that it needs
to contain matter as fundamental degrees of freedom. It simply
means that at observationally accessible scales accessible, all
degrees of freedom, gravitational and matter, must be accounted
for and their predicted dynamics compatible with observations.
As the Standard Model contains NS = 4 scalars, NV = 12 and
ND = 24 fermions (including right-handed neutrinos) but there
is only one metric, the microscopic gravitational dynamics might
even be well-approximated by the dynamics obtained from an
appropriate large Ni approximation.

The measured Higgs mass of Mh ≈ 125GeV (Aad, 2012;
Chatrchyan, 2012) lies within a narrow band where no new
physics is required for the consistency of the Standard Model
below the Planck scale. A Higgs mass higher than about 180
GeV (Hambye and Riesselmann, 1997) leads to Landau-pole
type behavior in the quartic coupling below the Planck scale. In
the absence of higher-order terms in the Higgs potential (see
e.g.,Branchina and Messina, 2013; Gies et al., 2014; Eichhorn
et al., 2015) the lower bound on the Higgs mass from absolute
vacuum stability lies at Mh = 129GeV in a three-loop study for
3NP = MPl, (Bezrukov et al., 2012), rendering the electroweak
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vacuummetastable. As its lifetime exceeds the age of the universe
(Elias-Miro et al., 2012), see Markkanen et al. (2018) for a review,
the next scale of new physics for the Standard Model could be
the Planck scale. Such a “desert” provides an exciting opportunity
for quantum gravity: The initial conditions for the RG flow of
matter interactions are set by quantum gravity at the Planck scale.
In the absence of the “desert,” new physics at intermediate scales
could shield the quantum gravity scale from view. Conversely, in
a “desert”-like setting, there is a direct link between Planck-scale
physics and electroweak-scale physics.

5.1. Impact of Quantum Gravity on Matter
There are two effects of asymptotically safe gravity on matter
in truncated FRG studies. Firstly, it generates nonzero fixed-
point values for particular higher-order matter couplings,
see section 5.1.1. Secondly, it impacts the scale dependence
of the canonically marginal Standard Model couplings, see
section 5.1.2. Both effects result in observational consistency
constraints on the microscopic gravitational parameter space.

5.1.1. Matter Interacts in the Presence of

Asymptotically Safe Quantum Gravity
The interacting nature of the asymptotically safe gravitational
dynamics percolates into the matter sector. There cannot be UV
fixed point with all matter interactions set to zero, Eichhorn and
Gies (2011)11 12. Interactions respecting the global symmetries
of the kinetic terms for matter fields cannot be set to zero
consistently (Eichhorn and Held, 2017). Finite contributions to
their beta functions are generated by gravitational fluctuations.
These prevent a free fixed point, as they are independent of the
matter coupling and instead scale with the Newton coupling
G (Eichhorn and Gies, 2011; Eichhorn, 2012; Eichhorn et al.,
2016; Christiansen and Eichhorn, 2017; Eichhorn andHeld, 2017;
Eichhorn et al., 2018e). Thus, the free fixed point that exists in the
limit of vanishing Newton coupling, G → 0, is shifted to a finite
value, the shifted Gaussian fixed point (sGFP). Matter couplings
χ̄ invariant under the global symmetries of the kinetic terms13

feature canonical dimensions dχ̄ < 0 in d = 4. Schematically,
the FRG beta function reads

βχ = −dχ̄χ + #1Geffχ + #2 G
2
eff + #3 χ#. (51)

We focus on # = 2 (see Eichhorn and Gies, 2011; Eichhorn, 2012;
Eichhorn et al., 2016; Christiansen and Eichhorn, 2017; Eichhorn

11That four-fermion interactions are generated by quantum gravity fluctuations

but remain finite implies that chiral symmetry, protecting the light fermions of the

StandardModel, remains intact (see alsoMeibohm and Pawlowski, 2016; Eichhorn

and Held, 2017). The effective background curvature in the UV can nevertheless

break chiral symmetry (Gies and Martini, 2018).
12In d 6= 4, where specific matter models feature interacting fixed points, it is

an intriguing question whether a new, combined universality class for matter and

asymptotically safe gravity exists (see e.g., Elizalde et al., 1996; Percacci and Vacca,

2015; Labus et al., 2016).
13 Notwithstanding arguments that suggest that quantum gravity should break

global symmetries (Kallosh et al., 1995), studies of the FRG flow in truncations

indicate the opposite result. This might be tied to the potential existence of black-

hole remnants in asymptotic safety (Bonanno and Reuter, 2000; Falls et al., 2012).

This implies that, e.g., Standard-Model couplings do not feature a contribution

∼ #2, only a term∼ #1.

FIGURE 10 | The weak gravity bound in the (G,µ = −23) plane for the

Yang-Mills system (from Christiansen and Eichhorn, 2017) in orange, bounded

by the dark dashed line, and the weak gravity bound in scalar-fermion systems

(from Eichhorn et al., 2016; Eichhorn and Held, 2017) in dark red, bounded by

the red continuous line, lie close to each other.

and Held, 2017). Geff =
G

1+µ
−

G
(1+µ2)

parameterizes the effective

strength of gravity fluctuations in the Einstein-Hilbert truncation
(see Eichhorn and Held, 2017) for higher-order terms. The fixed
points are

χ1/2 ∗ =

d − #1 Geff ±

√

−4#2 #3 G
2
eff

+ (#1Geff − dχ̄ )2

2 #3
, (52)

such that χ1 ∗ is the sGFP. For sign#3 = sign#2, these two fixed
points collide at

G eff, crit =
dχ̄

#1 − 2
√

#2 #3
. (53)

Beyond, the sGFP is complex, thus G > Geff, crit is inconsistent.
As Geff measures the effective strength of gravity fluctuations,
Geff, crit marks the (truncation dependent) weak-gravity bound.
Once gravitational fluctuations exceed this bound, cf. Figure 10,
they trigger novel divergences in matter couplings, restricting the
viable microscopic parameter space to the remaining region. As
the induced matter couplings are canonically irrelevant, they are
power-law suppressed below the Planck scale and presumably
irrelevant for particle physics at lower scales.

5.1.2. A Link That Could Matter: From the Planck

Scale to the Electroweak Scale
Asymptotically safe gravity could uniquely fix the values of
marginally irrelevant Standard Model (SM)-couplings (Abelian
gauge couplings, Yukawas, Higgs quartic) at the Planck scale.
Thismight allow to confront asymptotic safety with observations,
since those couplings run logarithmically below the Planck scale,
retaining a “memory” of their Planck-scale values.

For the marginal SM couplings gSM, the quantum-gravity
contribution to βgSM is linear in gSM, as the gravitational RG flow
cannot generate the SM interactions once they are set to zero due
to their distinct symmetry structure (Eichhorn and Held, 2017).
Technically, this is encoded in the diagrams underlying the FRG
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flow (see, e.g., Eichhorn et al., 2016; Christiansen and Eichhorn,
2017; Eichhorn and Held, 2017; Eichhorn, 2018; Eichhorn and
Versteegen, 2018). Hence, the quantum-gravity contribution is

βgSM

∣

∣

∣

grav
= −fgSM gSM, (54)

where fgSM ∼ G is the contribution of metric fluctuations to the
corresponding interaction vertex and additionally contains the
gravity contribution to the anomalous dimensions of the matter
fields. This contribution acts like a scaling dimension, i.e., like
an effective change in spacetime dimensionality. For canonically
irrelevant couplings, a UV completion requires fgSM > 0,
resembling an effective dimensional reduction. It is unclear
whether and how this fits with other indications for dimensional
reduction in quantum gravity (Carlip, 2017).

Asymptotic freedom in non-Abelian gauge theories is a key
cornerstone in the construction of the SM. This property could
persist, as

βg = −fg g − #g g
3, ... (55)

for gauge couplings g, where fg ≥ 0 holds in all FRG studies
to date (Daum et al., 2010; Folkerts et al., 2012; Harst and
Reuter, 2011; Christiansen and Eichhorn, 2017; Eichhorn and
Versteegen, 2018; Christiansen et al., 2017). #g depends on the
gauge group and matter content while the gravity contribution
is blind to the internal index structure and accordingly gauge-
group independent. Additional gravity contributions are indirect
ones, arising through quantum-gravity-induced higher-order
interactions which couple into the flow of the gauge coupling
(Christiansen and Eichhorn, 2017) (note that the sign of the
w-term in η is incorrect; accordingly this indirect contribution
strengthens asymptotic freedom.)

The non-universality of beta functions, setting in at three
loops for dimensionless couplings, starts at leading order for
dimensionful couplings. Hence, the gravity contributions to beta
functions in approximations differ in different schemes (see
Robinson and Wilczek, 2006; Pietrykowski, 2007, 2013; Toms,
2007, 2008, 2009, 2010, 2011; Ebert et al., 2008, 2009; Mackay
and Toms, 2010; Rodigast and Schuster, 2010; Anber et al.,
2011; Felipe et al., 2011; Anber and Donoghue, 2012; Ellis
et al., 2012; Narain and anishetty, 2013; Gonzalez-Martin and
Martin, 2017) for perturbative studies. At the level of observables,
such dependences must cancel. The same physics is encoded
in different ways in distinct schemes. As the FRG is applicable
to settings with dimensionful couplings (including a multitude
of extensively probed universality classes in statistical physics),
one could argue that it is well-suited to explore quantum gravity
in simpler approximations. The non-universality of the gravity-
contribution is reflected in the regulator-dependence of fg in

truncations: Within a background-field study, fg =
6
π
G81

1(0)

(Daum et al., 2010), where 81
1(0) > 0 always holds, but the

value depends on the choice of regulator, e.g., 81
1(0) = 1 for the

Litim-cutoff and 81
1(0) = π2/6 for the exponential cutoff. This

dependence is expected to cancel against regulator-dependence
of gravitational fixed-point values (at least at the level of physical
observables).

FIGURE 11 | The transplanckian RG flow for α = g2
Y
/(4π ) described by

Equation (56) features trajectories emanating from the free fixed point (black,

continuous line), which approach the interacting fixed point at α*. One unique

trajectories (blue, thin line) is the fixed-point trajectory for the interacting fixed

point. UV unsafe trajectories are pulled toward the IR fixed point as well (red,

dashed lines). Adapted from Eichhorn et al. (2018d).

For the Abelian gauge coupling the free fixed point is IR
attractive in the absence of gravity, such that the observation
of a nonvanishing Abelian gauge coupling in the IR presumably
prevents an asymptotically free UV completion of the SM (Gell-
Mann and Low, 1954). The quantum gravity contribution is the
same as in the non-Abelian case (cf. Equation 55), thus

βgY = −fg gY +

41

6

g3Y
16π2

+ ... (56)

Fixed points of Equation (56) lie at

gY ,∗ 1 = 0, gY ,∗ 2 =

√

fg 6 · 16π2

41
. (57)

The first is IR repulsive, the second IR attractive. If it lies at small
enough values, then higher-order terms remain negligible and
Equation (56) suffices to analyze the consequences. According
to Equation (56), the IR repulsive fixed point at gY ∗ 1 = 0 can
be connected to a range of values for gY at the Planck scale14.
However, no values above an upper bound, gY = gY ∗ 2, can be
reached, as gY ∗ 2 is IR attractive, cf. Figure 11. Only one unique
trajectory emanates from gY ∗ 2. Along this trajectory, gY (k) =

const until quantum-gravity contributions switch off below the
Planck scale, where fg quickly drops to tiny values and SM fields
drive the flow. Unlike in the SM without the gravity-extension,
the initial condition for the RG flow of gY is fixed at the Planck
scale. Testing whether this results in an observationally viable
value at the electroweak scale constitutes a strong observational
test of the model. It also highlights that confronting quantum
gravity with observations might be possible without reaching
Planckian energies.

14Couplings that are asymptotically free, not asymptotically safe, already run at

transplanckian scales.
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The fixed-point structure underlying such “retrodictions” was
found for the Abelian gauge coupling in Harst and Reuter (2011),
further explored in Eichhorn and Versteegen (2018), cf. right
panel in Figure 12 and extended to a GUT setting in Eichhorn
et al. (2018d).

In Zanusso et al. (2010); Vacca and Zanusso (2010); Oda and
Yamada (2016); Eichhorn et al. (2016); Eichhorn andHeld (2017);
and Hamada and Yamada (2017), the gravity-contribution fy to
the Yukawa sector was calculated. Using beta functions of the
form

βyt (b) =

yt (b)

16π2

(

3y2
b (t)

2
+

9y2
t (b)

2
−

9

4
g22 − 8g23

)

− fy yt (b)

−

3yt (b)

16π2

(

1

36
+ Y2

t (b)

)

g2Y , (58)

for the quarks of the third generation, withYt = 2/3,Yb = −1/3,
supplemented by the assumption that the gauge sector of the SM
is asymptotically free, and gravitational fixed-point values from a
background-approximation results in a uniquely fixed top mass
of about 170 GeV (Eichhorn and Held, 2018), cf. left panel of
Figure 12.

Intriguingly, the SM beta functions with gravity in the
approximation defined by Equations (57, 58) also admit an
interacting fixed point such that the top Yukawa, bottom Yukawa
and Abelian gauge coupling are fixed uniquely. They reach IR
values in the vicinity of the observed ones, if the two gravity
contributions fg and fy take appropriate values (Eichhorn and
Held, 2018). In this scenario, the difference between top mass
and bottom mass is generated through an interacting fixed point
induced by gravity due to their different charges.

The fixed-point structure could be simpler in the scalar sector.
Asymptotically safe quantum gravity flattens the Higgs potential:
If all other SM couplings are asymptotically free, a fixed point
at vanishing Higgs potential exists in line with intact shift-
symmetry (Eichhorn and Held, 2017). It is IR attractive (Narain
and Percacci, 2010; Percacci and Vacca, 2015; Labus et al., 2016;
Oda and Yamada, 2016; Hamada and Yamada, 2017; Eichhorn,
2018). This extends to the Higgs portal coupling to scalar dark
matter (Eichhorn, 2018). Taking the corresponding fixed-point
values λh∗ = 0 (for the Higgs quartic) and λhχ ∗

= 0 (for the
Higgs portal coupling) as initial conditions for the RG flow at the
Planck scale, and setting all SM couplings to their observationally
preferred Planck-scale values, one reaches a Higgs mass in the
vicinity of the observed value, while the Higgs portal coupling
remains zero at all scales. The first is a prediction (Shaposhnikov
and Wetterich, 2010) put forward before the discovery of the
Higgs at the LHC (Aad, 2012; Chatrchyan, 2012), see also
Bezrukov et al. (2012). The second appears to be consistent with
the non-detection of a scalar Higgs portal through direct searches
(Athron et al., 2017; Aprile et al., 2018).

“Retrodictions” of SM couplings could be a much more
generic consequence of quantum gravity than just of asymptotic
safety as discussed in section 2.3.

5.2. Impact of Matter on Quantum Gravity –
Backreaction Matters?
The impact of quantum fluctuations of matter on the
gravitational fixed point has been studied in simple truncations.
The corresponding theory space also contains non-minimal
matter-curvature couplings (Narain and Percacci, 2010; Percacci
and Vacca, 2015; Eichhorn and Lippoldt, 2017; Eichhorn et al.,
2018e).

Matter fields deform the gravitational fixed point in
truncations. Adding a small number of matter fields leads to
the continued existence of a viable interacting fixed point. At
larger number of matter fields, there are indications that further
extensions of the truncation could be required (Meibohm et al.,
2016; Eichhorn et al., 2018b).

Assuming that asymptotic safety in gravity is driven by
antiscreening metric fluctuations inducing a fixed point in the
Newton coupling, the matter contribution to βG is critical.
Specifically,

βG

∣

∣

∣

matter
= NS G

2 aS + ND G2 aD + NV G2 aV , (59)

where aS > 0 (Donà et al., 2014; Percacci and Vacca, 2015;
Meibohm et al., 2016; Labus et al., 2016; Don‘a et al., 2016;
Biemans et al., 2017; Alkofer and Saueressig, 2018; Eichhorn
et al., 2018b), agreeing with perturbative studies for d = 2 + ǫ

dimensions (Christensen and Duff, 1978) and studies of the
one-loop effective action using heat-kernel techniques (Kabat,
1995; Larsen and Wilczek, 1996). Similarly, fermions screen the
Newton coupling15 aD > 0 (Donà et al., 2014; Meibohm et al.,
2016; Eichhorn et al., 2018c), in agreement with perturbative
studies (Kabat, 1995; Larsen and Wilczek, 1996). For vectors,
aV < 0 (Donà et al., 2014; Christiansen et al., 2017; Biemans
et al., 2017; Alkofer and Saueressig, 2018; Eichhorn et al., 2018c),
also found with perturbative techniques (Kabat, 1995; Larsen
and Wilczek, 1996). Background and fluctuation results are in
agreement on this result (for fluctuation results, it is crucial to
include the anomalous dimensions Don‘a et al., 2016; Eichhorn
et al., 2018b).

A strong indication for (near-perturbative) asymptotic safety
in matter-gravity systems comes from a comparison (Eichhorn
et al., 2018b,c) of distinct “avatars” of the Newton coupling
(Don‘a et al., 2016). It can be read off from the three-graviton
vertex as well as gravity-matter vertices, just like the gauge
coupling in gauge theories. For a dimensionless gauge coupling
in the perturbative regime, two-loop universality equates the
different avatars. Beyond perturbation theory, the Slavnov-
Taylor-identities relating the avatars become nontrivial. Simply
put, the stronger quantum effects are, the less trivial are the
relation of classically equal couplings. Eichhorn et al. (2018b,c)

15For the background Newton coupling, this is more subtle: Choosing to impose

the regulator on the spectrum of ∇2, or on /∇
2
= ∇

2
− R/4 results in a different

sign of the fermionic contribution to the running of G (Dona and Percacci, 2013

see also Alkofer, 2018; Alkofer and Saueressig, 2018). This highlights that the

(unphysical) background-field dependence of the regulator can alter results in

the background approximation in simple truncations, suggesting the need for a

fluctuation calculation. The first choice agrees with the result from fluctuations

calculations.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2019 | Volume 5 | Article 47195

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Eichhorn Asymptotically Safe Gravity and Matter

FIGURE 12 | From Eichhorn and Held (2018) and Eichhorn and Versteegen (2018). Based on the beta functions (Equations 56, 58) with fg > 0 and fy > 0,

respectively, an IR attractive fixed point results in a unique trajectory and serves as an upper bound.

FIGURE 13 | Both panels: RG flows in an approximation as in Equation (56), see Eichhorn and Held (2018) and Eichhorn and Held (2018) for details. Left panel: Flow

of gauge couplings and top and bottom Yukawa with quantum-gravity parameterized by fg = 9.8 · 10−3 and fy = 1.13 · 10−4 above the Planck scale and fg = 0 = fy

below the Planck scale as in Eichhorn and Held (2018). Right panel: Standard-Model RG flow including running gravitational couplings as in Donà et al. (2014) and is

taken from Eichhorn and Held (2018).

observe an effective universality of distinct avatars of the Newton
coupling, which agree within an estimate of the systematic
truncation error. This signals a near-perturbative nature of
asymptotically safe gravity. Further, the delicate cancellations
required between different contributions to the beta functions
in order to achieve effective universality strongly point toward
a physical fixed point instead of a truncation artifact.

6. OUTLOOK

Asymptotically safe models are of inherent theoretical interest
when it comes to a comprehensive understanding of fundamental
quantum field theories. Exciting progress in the last few years
even hints at a possibility of asymptotically safe extensions of
the Standard Model – with or without gravity. In quantum
gravity, the idea of asymptotic safety resonates with a wider effort
to analyze quantum spacetime from a Renormalization Group
point of view. Hence, the many intriguing open questions that

remain to be answered in this area appear worth tackling, and
the new (asymptotically safe) perspective on high-energy physics
is exciting and potentially useful to explore.
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Adding the terms quadratic in the curvature to the Einstein-Hilbert action renders

gravity renormalizable. This property is preserved in the presence of the most general

renormalizable couplings with (and of) a generic quantum field theory (QFT). The price to

pay is a massive ghost, which is due to the higher derivatives that the terms quadratic

in the curvature imply. In this paper, the quadratic gravity scenario is reviewed including

the recent progress on the related stability problem of higher derivative theories. The

renormalization of the theory is also reviewed and the final form of the full renormalization

group equations in the presence of a generic renormalizable QFT is presented. The

theory can be extrapolated up to infinite energy through the renormalization group if

all matter couplings flow to a fixed point (either trivial or interacting). Moreover, besides

reviewing the above-mentioned topics, are some further insight on the ghost issue and

the infinite energy extrapolation are provided. There is hope that in the future, this scenario

might provide a phenomenologically viable and UV complete relativistic field theory of all

interactions.

Keywords: renormalization group, gravity, fixed point, relativity, field theory

1. INTRODUCTION AND SUMMARY

Relativistic field theories are the commonly accepted framework to describe particle physics and
gravity, at least at currently accessible energies. An important question is whether such a framework
could hold up to infinite energies and still agree with the experimental data. There are two serious
difficulties that one has to overcome in order to give a positive answer to such a challenging
question: the non-renormalizability of Einstein gravity [1, 2] and the presence of Landau poles
in the Standard Model (SM).

Even if one does not quantize the gravitational field, it is known that quantum corrections due to
any relativistic QFT generate terms that are not present in the Einstein-Hilbert action: specifically,
local terms quadratic in the curvature tensor and with coefficients of dimension of non-negative
powers of energy are generated [3], even if one sets them to zero at the classical level. Therefore, it
is not possible to avoid them in a relativistic field theory. The resulting theory is commonly known
as quadratic gravity1 (QG). Starobinsky [4] exploited these unavoidable terms and noted that a
non-singular solution that is initially in the de Sitter space can be obtained by taking them into
account. This resulted in a pioneering model of inflation, one of the models favored by the Planck
collaboration [5].

What happens if the quantum dynamics of the gravitational field is taken into account in QG?
Weinberg [6] and Deser [7] suggested that QG is renormalizable (all physical quantities can be
made finite by redefining the parameters and re-normalizing the fields) and few years later Stelle
proved it rigorously [8].

1Other names sometimes used are “R2 gravity” and “higher derivative gravity,” as terms quadratic in the curvature have more

than two derivatives of the gravitational field.
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The presence of these local quadratic terms implies that
classical QG belongs to the class of higher derivative theories
analyzed a long time ago by Ostrogradsky [9], who proved
that their Hamiltonian is unbounded from below. In QG, this
manifests in the presence of a massive ghost, which is the price
to pay to have a relativistic field theory of quantum gravity2.
The importance of the quantum gravity problem has, however,
encouraged several physicists to investigate whether QG can
make sense and some recent progress in the ghost problem
has been made. Most of the work done so far addressed the
ghost problem within finite dimensional quantum mechanical
models, and therefore, the case of a relativistic field theory (and
in particular of QG) remains an important target for future
research.

Another potential issue of QG is the clash between stability
(understood as the absence of tachyons) and the absence of
Landau poles [12, 13]: whenever the parameters were chosen
to ensure stability, perturbation theory featured a Landau pole.
Specifically, this Landau pole affected the parameter f0 appearing
in the Lagrangian as

√

−gR2/f 20 , where g is the determinant of the
spacetime metric gµν and R is the Ricci scalar. Some progress has
also been made in regards to this problem. In Salvio and Strumia
[14], it was shown that QG coupled to a renormalizable QFT
can hold up to infinite energies provided that all the couplings
flow to a UV fixed point and the gravitational sector flows to
conformal gravity (a version of gravity that is invariant under
Weyl transformations, gµν(x) → e2σ (x)gµν(x), where σ is a
generic function of the spacetime point x.). The requirement that
the QFT part enjoys a UV fixed point indicates the presence of
several particles beyond the SM, which could be searched for with
current and/or future particle experiments and could account for
the strong evidence of new physics that we undoubtedly already
have (such as neutrino oscillations and dark matter).

The aim of this work is to review what is known so far about
QG (taking into account the coupling to a general renormalizable
QFT). Other monographs and books on QG are present in the
literature (see e.g., [15, 16], which focused on the renormalization
of the theory). This review also includes the recent progress on
the two problems mentioned above (the ghost and the Landau
poles) and provides further insight on these issues. The article is
structured as follows:

• In section 2, the action of QG coupled to a generic
renormalizable QFT is discussed and the known physical
degrees of freedom are identified with a new physically
transparent method.

• Section 3 discusses the renormalizability of the theory; given
that detailed proofs are present in the literature and, as
mentioned above, books and reviews on this subject already

2It should be noted that QG is distinct from the asymptotic safety proposal for

quantum gravity made in Weinberg [10], where all the possible terms (including

the non-renormalizable ones beyond the quadratic order) are included: in QG

only renormalizable interactions are introduced so that only a finite number of

parameters are present. This guarantees the predictivity of the theory. Possibly

the ghost can be avoided by introducing an infinite series of higher-derivative

terms [11], which can be viewed as non-local terms, but the resulting gravity

theories contain infinite free parameters and are not known to be renormalizable.

exist, we recall and elucidate a known intuitive argument
in favor of renormalizability by providing more details than
those currently available. In section 3, we also collect from
the existing literature the full renormalization group equations
(RGEs) for the dimensionless and dimensionful parameters of
QG coupled to the most general renormalizable QFT.

• Section 4 is devoted to a pedagogical and detailed discussion of
the ghost problem and the recent progress that has been made
on this subject; most of the discussion, however, will be limited
to simple finite dimensional quantum mechanical models and
the extension to the full QG case remains an important target
for future research.

• Section 5 reviews the issue of the Landau poles and how QG
can flow to conformal gravity even in the presence of a generic
QFT sector.

2. THE THEORY (INCLUDING A GENERAL
MATTER SECTOR)

In this review, we do not consider only pure gravity but also its
couplings to a general renormalizable matter sector.

2.1. Jordan-Frame Lagrangian
The full action in the so-called Jordan frame is,

S =

∫

d4x
√

−g L, L = Lgravity + Lmatter + Lnon−minimal.

(2.1)
We describe in turn the three pieces—the pure gravitational
Lagrangian, Lgravity; the matter Lagrangian, Lmatter; the non-
minimal couplings, Lnon−minimal.

The Pure Gravitational Lagrangian
Lgravity in quadratic gravity is obtained from the Einstein-
Hilbert action by adding all possible local terms quadratic in
the curvature, whose coefficients have the dimensionality of
non-negative powers of energy:

Lgravity = αR2 +βRµνR
µν

+ γRµνρσR
µνρσ

−

M̄2
P

2
R−3, (2.2)

where Rµνρσ , Rµν , and R are the Riemann tensor, Ricci tensor,
and Ricci scalar, respectively3, and the Greek indices are
raised and lowered with gµν . Furthermore, α, β , and γ are
generic real coefficients. If the theory lives on a spacetime with
boundaries, then one should also introduce in Lgravity a term
proportional to 2R, where 2 is the covariant d’Alembertian, in
order to preserve renormalizability [17–19]; in the applications
described in this review such a term will not play any
role and, therefore, will be neglected. Finally, M̄P and 3

are the reduced Planck mass and the cosmological constant,
respectively.

3In this review we use the signature ηµν = diag(+1,−1,−1,−1) and define

R ρ
µν σ ≡ ∂µŴ

ρ
ν σ − ∂νŴ

ρ
µσ + Ŵ ρµ τŴ

τ
ν σ − Ŵ ρν τŴ

τ
µ σ , Ŵ ρµσ ≡

1

2
gρτ

(

∂µgστ

+∂σ gµτ − ∂τ gµσ
)

, Rµν ≡ R ρ
ρµ ν , R ≡ gµνRµν .
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One combination of the terms in (2.2) is a total (covariant)
derivative, the topological Gauss-Bonnet term:

G ≡ RµνρσR
µνρσ

−4RµνR
µν
+R2 =

1

4
ǫµνρσ ǫαβγ δR

αβ
µνR

γ δ
ρσ = divs.,

(2.3)
where ǫµνρσ is the antisymmetric Levi-Civita tensor and “divs"
represents the covariant divergence of some current. This total
derivative does not contribute to the field equations and can be
often ignored. It is therefore convenient to write (2.2) as,

Lgravity = (α−γ )R2+(β+4γ )RµνR
µν

+γG−

M̄2
P

2
R−3. (2.4)

Furthermore, for reasons that will become apparent when the
degrees of freedom will be identified in section 2.3, it is also
convenient to express RµνR

µν in terms of W2
≡ WµνρσW

µνρσ ,
whereWµνρσ is the Weyl tensor.

Wµναβ ≡ Rµναβ +
1

2
(gµβRνα − gµαRνβ + gναRµβ − gνβRµα)

+

1

6
(gµαgνβ − gναgµβ )R. (2.5)

One has

1

2
WµνρσW

µνρσ
=

1

2
RµνρσR

µνρσ
− RµνR

µν
+

1

6
R2, (2.6)

which, together with the definition of G in (2.3), gives

RµνR
µν

=

W2

2
+

R2

3
−

G

2
. (2.7)

By inserting this expression of RµνR
µν in (2.4), one finds,

Lgravity =
R2

6f 20
−

W2

2f 22
− ǫG−

M̄2
P

2
R−3. (2.8)

where

f 20 ≡

1

2β + 2γ + 6α
, f 22 ≡ −

1

β + 4γ
, ǫ ≡

β

2
+ γ . (2.9)

We have introduced the squares f 20 and f 22 because the absence of
tachyonic instabilities requires f 20 > 0 and f 22 > 0, as we will see
in Sections 2.2, 2.3, and, in a more general context, in section 5.

The Matter Lagrangian
The general matter content of a renormalizable theory includes
real scalars φa, Weyl fermions ψj, and vectors VA

µ (with field

strength FAµν) and its Lagrangian is,

Lmatter = −

1

4
(FAµν)

2
+

Dµφa D
µφa

2
+ ψ̄ji /Dψj

−

1

2
(Ya

ijψiψjφa + h.c.)− V (φ)−
1

2
(Mijψiψj + h.c.),

(2.10)

where

V(φ) =
m2

ab

2
φaφb +

Aabc

3!
φaφbφc +

λabcd

4!
φaφbφcφd, (2.11)

where all the terms are contracted in a gauge-invariant way. The
covariant derivatives are4:

Dµφa = ∂µφa + iθAabV
A
µφb Dµψj = ∂µψj + itAjkV

A
µψk

+

1

2
ωab
µ γabψj

The gauge couplings are contained in the matrices θA and
tA, which are the generators of the gauge group in the scalar
and fermion representation, respectively, whereas Ya

ij and λabcd
are the Yukawa and quartic couplings, respectively. We have
also added general renormalizable mass terms and cubic scalar
interactions. Of course, for specific assignments of the gauge and
global symmetries, some of these parameters can vanish, but here
we use a general expression.

The Non-minimal Couplings
Lnon−minimal represents the non-minimal couplings between the
scalar fields φa and R:

Lnon−minimal = −

1

2
ξabφaφbR, (2.12)

where all terms are contracted in a gauge-invariant way. Non-
minimal couplings are required by renormalizability, and if they
are omitted at the classical level, quantum corrections generate
them (as we will see in section 3.2.1).

2.2. Einstein Frame Lagrangian
The action in the Jordan frame is most suited to address the
quantum aspects and to make contact with particle physics.
However, when it comes to cosmological applications it is often
better to express the gravitational part of the theory in a form
closer to Einstein gravity [20, 21]. This will also help us in
identifying the degrees of freedom in section 2.3. We now review
how to obtain such a form of the theory and, in doing so, we shall
neglect quantum corrections, which are anyway best studied in
the Jordan frame.

The non-standard R2 term can be removed by adding to the
Lagrangian the term

−

√

−g
(R+ 3f 20 χ/2)

2

6f 20
, (2.13)

where χ is an auxiliary field. This Lagrangian vanishes once the
χ EOM are used and we are therefore free to add it to the total
Lagrangian. However, this has the effect of modifying the non-
minimal couplings. The term linear in R in the Lagrangian now
reads as:

−

1

2

√

−g f (χ ,φ)R, f (χ ,φ) ≡ M̄2
P+ξabφ

aφb+χ . (2.14)

4The spin-connection ωab
µ is defined as usual by ωab

µ = eaν∂µe
bν

+ eaρŴ
ρ
µσ e

bσ and

γab ≡
1
4 [γa, γb].
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In order to get rid of this remaining non-standard term, we
perform a Weyl transformation:

gµν →
M̄2

P

f
gµν , φa →

(

f

M̄2
P

)1/2

φa, ψj →

(

f

M̄2
P

)3/4

ψj, VA
µ → VA

µ . (2.15)

Now the Lagrangian can still be written as in (2.1), but with

Lgravity = −

W2

2f 22
−

M̄2
P

2
R+ divs., Lnon−minimal = 0, (2.16)

Lmatter = −

1

4
(FAµν )

2
+ ψ̄ji /Dψj −

1

2
(Ya

ijψiψjφa + h.c.)

−

√

6M̄P

2ζ
(Mijψiψj + h.c.)+

6M̄2
P

ζ 2

Dµφa D
µφa + ∂µ ζ∂

µζ

2

−U(ζ ,φ), (2.17)

where we defined5 ζ ≡

√

6f and

U(ζ ,φ) ≡
36M̄4

P

ζ 4

[

V (φ)+3+

3f 20
8

(

ζ 2

6
− M̄2

P − ξabφaφb

)2
]

.

(2.18)
In Lgravity, we have not explicitly written the total derivatives as
they typically do not play an important role in cosmology. These
total derivatives emerge when theWeyl transformation is applied
to the two terms proportional to ǫ in (2.8).

The advantage of this form of the Lagrangian, known as the
Einstein frame, is the absence of the non-minimal couplings and
the R2 term. The latter has effectively been traded with the new
scalar ζ , which appears non-polynomially. The scalar kinetic
terms are non-canonical and cannot be put in the canonical
form with further field redefinitions given that the scalar field
metric is not flat. Moreover, the Einstein frame potentialU differs
considerably from the Jordan-frame one, V + 3. This result is a
particular case of a more general theorem involving the generic
functions f (R) of the Ricci scalar (for a review on f (R) theories
see e.g., [22] and references therein). Also, note that theW2 term
is present in the Einstein frame.

It is instructive to write the potential for ζ when the
other fields φa are not present or are at the minimum of the
potential and are not allowed to fluctuate (for example, because
they have very large masses). In this case, one can make the
kinetic term of ζ canonical through the field redefinition ζ =
√

6M̄P exp(ω/(
√

6M̄P)). The new field ω feels a potential,

U(ω) = 3e−4ω/
√

6M̄P
+

3f 20 M̄
4
P

8

(

1− e−2ω/
√

6M̄P

)2
, (2.19)

where we have neglected V (φ) and ξabφaφb as they can be
absorbed in3 and M̄2

P, when the scalar fields φa are absent or they
are fixed to constant values. This is the potential of the famous
Starobinsky’s inflationary model [4]. There is a stationary point
of U for

e−2ω/
√

6M̄P
=

3f 20 M̄
4
P/8

3+ 3f 20 M̄
4
P/8

(2.20)

5Notice that in order for the metric redefinition in (2.15) to be regular one has to

have f > 0, and thus we can safely take the square root of f .

whenever the right-hand side of the above equation is positive.
For positive cosmological constant, 3 > 0, such a stationary
point always exists for f 20 > 0 when it is a point of minimum,
but for f 20 < 0 either the stationary point does not exist or it is
a point of maximum, not minimum. This situation is illustrated
in Figure 1 and it is a special case of a more general result (valid
when the other scalars φa can fluctuate freely), which proves that
a minimum of the potential exists only for f 20 > 0 and will be
presented in section 5.

2.3. The Degrees of Freedom of Quadratic
Gravity
In section 2.2 we have seen that the R2 term is equivalent to a
real scalar ζ . We now complete the determination of the degrees
of freedom of QG. We do so by working in the Einstein frame,
where the gravity Lagrangian is the same as that in (2.16). The
degrees of freedom associated with the matter Lagrangian can be
identified with standard field theory methods and, therefore, we
do not discuss them explicitly here.

The total derivatives (“divs") in (2.16) do not modify the
degrees of freedom and for this reason will be neglected.
Therefore, we focus on the following two terms in the gravity
action:

SW + SEH , (2.21)

where SW is the part due to the unusual Weyl-squared term,

SW =

∫

d4x
√

−g

[

−

W2

2f 22

]

, (2.22)

and SEH is the usual Einstein-Hilbert part,

SEH =

∫

d4x
√

−g

[

−

M̄2
P

2
R

]

. (2.23)

We will use a 3+ 1 formalism (where space and time are treated
separately). We do so because the identification of the degrees of
freedom is particularly simple within that formalism.

In this section, however, we will expand the metric around
the flat spacetime, ds2

flat
= dt2 − dEx2 as that is sufficient to

determine the degrees of freedom perturbatively6. By choosing
the Newtonian gauge, the metric describing the small linear
fluctuations around the flat spacetime can be written as,

ds2 = (1+ 28(t, Ex))dt2 − 2Vi(t, Ex)dtdx
i
−

[

(1− 29(t, Ex))δij

+hij(t, Ex)
]

dxidxj. (2.24)

By definition, the vector Vi (not to be confused with the
spatial components of the gauge fields VA

µ ) and the tensor hij
perturbations satisfy the following conditions:

∂iVi = 0, hij = hji, hii = 0, ∂ihij = 0. (2.25)

The Newtonian gauge is often used to study the small linear
fluctuations around the Friedmann-Robertson-Walker (FRW)

6For a discussion of a possible form of the non-perturbative spectrum see Holdom

and Ren [23, 24].
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FIGURE 1 | Einstein frame potential as a function of the canonically normalized scalar ω equivalent to the scalar ζ corresponding to the R2 term in the Lagrangian.

The quantity f20 is chosen to be positive (negative) on the left (right). A minimum exists only for f20 > 0, which corresponds to Starobinsky’s inflationary model.

TABLE 1 | Degrees of freedom in the gravitational sector.

Field Spin Mass

Graviton 2 0

Ghost 2 M2 ≡ f2
¯MP/

√

2

Scalar ζ 0 M0 ≡ f0
¯MP/

√

2+ . . .

The scalar ζ is due to the R2 term in the Lagrangian; the dots in its mass M0 represent

the possible contribution of other scalars mixing with ζ (if any), which can be present in

specific models.

cosmological metric (see e.g., [25] for a textbook treatment).
Instead, here we study the fluctuations around the flat spacetime
for simplicity. Also, sometimes the Newtonian gauge is defined
for the scalar perturbations 8 and 9 only (see e.g., [25]). Here
we consider a generalization, which also includes the non-scalar
perturbations7. In Table 1, we provide the degrees of freedom of
the gravitational sector (the part of the spectrum due to Lgravity).
This includes the scalar ζ found in section 2.2 and the ordinary
graviton and a massive spin-2 ghost graviton, which will be
identified in the following sections (2.3.1, 2.3.2, and 2.3.3).

2.3.1. Helicity-2 Sector
We start with the helicity-2 sector, whose quadratic action is
denoted as S(2). Both SEH and SW contribute to this action. The
helicity-2 quadratic action from SEH and SW are, respectively,

S
(2)
ES =

M̄2
P

8

∫

d4x
(

˙hij ˙hij + hij E∇
2hij

)

,

S
(2)
W = −

1

4f 22

∫

d4x
(

¨hij ¨hij + 2˙hij E∇
2 ˙hij + hij E∇

4hij

)

, (2.26)

7A possible gauge dependent divergence of hij has been set to zero by choosing the

gauge appropriately.

where a dot denotes a derivative w.r.t. to time t, E∇4
≡ ( E∇2)2 and

E∇
2 is the three-dimensional Laplacian. Therefore,

S(2) = SEH + SW =

M̄2
P

8M2
2

∫

d4x
[

−
¨hij ¨hij − 2˙hij E∇

2 ˙hij − hij E∇
4hij

+M2
2

(

˙hij ˙hij + hij E∇
2hij

)]

, (2.27)

whereM2
2 ≡ f 22 M̄

2
P/2.

One can go to momentum space with a spatial Fourier
transform,

hij(t, Ex) =

∫

d3p

(2π)3/2
eiEp·Ex

∑

λ=±2

hλ(t, Ep)e
λ
ij(p̂), (2.28)

where eλij(p̂) are the usual polarization tensors for helicities λ =

±2. We recall that for p̂, along the third axis, the polarization
tensors satisfying (2.25) are given by,

e+2
11 = −e+2

22 = 1/2, e+2
12 = e+2

21 = i/2, e+2
3i = e+2

i3 = 0,

e−2
ij = (e+2

ij )∗ (2.29)

and for a generic momentum direction p̂ we can obtain eλij(p̂)

by applying to (2.29) the rotation that connects the third axis
with p̂. The polarization tensors defined in this way also obey the
orthonormality condition,

eλij(q̂)(e
λ′

ij (q̂))
∗

= δλλ
′

. (2.30)
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By using the Fourier expansion in (2.28), one obtains

S(2) =

M̄2
P

8M2
2

∑

λ=±2

∫

dtd3p
[

−
¨h∗λ
¨hλ + 2˙h∗λEp

2 ˙hλ − h∗λEp
4hλ

+M2
2

(

˙h∗λ
˙hλ − h∗λEp

2hλ

)

]

=

M̄2
P

8M2
2

∑

λ=±2

∫

dtd3p
[

−
¨h∗λ
¨hλ + (ω2

1 + ω
2
2)|

˙hλ|
2

−ω2
1ω

2
2|hλ|

2
]

, (2.31)

where

ω1 ≡

√

Ep 2
+M2

2 , ω2 ≡ |Ep |. (2.32)

The action S(2) is the sum of the actions of Pais-Uhlenbeck
oscillators, which will be studied in section 4.1.2. There we
will see that this system is equivalent to a ghost d.o.f. with
frequency ω1 and a normal d.o.f. with frequency ω2. Therefore,
the conclusion is that the helicity-2 sector features a massless
field (the ordinary graviton) and a ghost field8 with mass M2 ≡

f2M̄P/
√

2. Therefore, as anticipated before, we see that f 22 > 0
is required to avoid tachyonic instabilities. Lorentz invariance
implies that the helicity-1 and helicity-0 components of the
massive ghost should be present too.Wewill see how they emerge
in the following sections 2.3.2 and 2.3.3. The derivation of the
ghost field presented here simplifies and agrees with previous
proofs based on the hµν propagator [8, 27].

2.3.2. Helicity-1 Sector
Next, we move to the helicity-1 sector, whose quadratic action
is denoted here by S(1). S(1) is given by the sum of the Einstein-
Hilbert contribution,

S
(1)
EH =

M̄2
P

4

∫

d4x
(

∂iVj

)2
, (2.33)

and the Weyl contribution,

S
(1)
W = −

1

2f 22

∫

d4x
(

∂iV̇j∂iV̇j − Vi E∇
4Vi

)

. (2.34)

Therefore, the full quadratic action in the helicity-1 sector is,

S(1) =

∫

d4x
M̄2

P

4M2
2

[

V̇j E∇
2V̇j + Vi E∇

4Vi −M2
2Vj E∇

2Vj

]

. (2.35)

Given that E∇
2 is a negatively-defined operator, we see that Vi

has a ghost kinetic term and a mass M2 and has, therefore, to be
identified with the helicity-1 components of the massive spin-2
ghost.

8Starting from the initial action (2.8), it is possible to perform field redefinitions

and use the auxiliary field method to make the ghost field explicitly appear in the

Lagrangian [26]. This is equivalent to what has been done in section 2.2 to make

the scalar field ζ appear explicitly in the Lagrangian.

2.3.3. Helicity-0 Sector
We denote the helicity-0 action by S(0), which has one
contribution from the Weyl-squared term and one from the

Einstein-Hilbert term, S(0) = S
(0)
W + S

(0)
EH . Expanding around the

flat spacetime leads to the following helicity-0 action (modulo
total derivatives)

S
(0)
W = −

2

3f 22

∫

d4x
[

E∇
2 (8+9)

]2
, (2.36)

S
(S)
ES =

M̄2
P

2

∫

d4x
[

−69̇2
+ 49 E∇

28− 29 E∇
29
]

. (2.37)

The variation of S(0) with respect to8 gives

−

4

3f 22 M̄
2
P

E∇
4 (8+9)+ 2 E∇29 = 0. (2.38)

We see that this equation does not depend on the time derivative
of the fields and, therefore, has to be considered as a constraint.
Solving for8:

8 = −9 + 3M2
2
E∇
−29 . (2.39)

In the expression above, E∇
−2 denotes the inverse Laplacian,

which can be defined by going to momentum space, Ep,
and identifying E∇

−2
→ −1/Ep 2. Inserting (2.39) into

Equations (2.36) and (2.37) we get,

S(0) =

M̄2
P

2

∫

d4x
[

−69̇2
− 69 E∇

29 + 6M2
29

2
]

= 3M̄2
P

∫

d4x
[

−(∂9)2 +M2
29

2
]

. (2.40)

We see that the kinetic term of9 is of the ghost type and its mass
is M2. Therefore, 9 represents the helicity-0 component of the
ghost spin-2 field.

3. RENORMALIZATION

One of the main motivations for considering QG is its improved
quantum behavior with respect to Einstein theory. Therefore, it
seems appropriate to discuss the renormalization properties right
after the definition of the theory.

3.1. Renormalizability
The renormalizability of QG is suggested by simple power
counting arguments, general covariance, and dimensional
analysis. It is therefore not surprising that some authors [6, 7]
noted this property several decades ago. There are also formal
proofs [8, 28] of the renormalizability of QG, but we do not
reproduce them here because they are described in detail in the
original articles9.

It is illuminating, however, to recall the main ingredients
of the intuitive arguments in favor of renormalizability. Let
us consider the expansion of QG around the flat spacetime,

9These formal derivations can also be extended to include the general

renormalizable matter sector considered in section 2.
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gµν = ηµν + hµν , and a generic loop correction in momentum
space. The vertices involving hµν contain at most 4 powers of
the momenta p, whereas the hµν-propagator behaves as 1/p4

for large momenta if an appropriate quantization is used [8]
(see below). Therefore, in this case, the superficial degree of
divergence should be four or less (see, for example, Chapter 12
of [29]). This conclusion holds good both in the pure QG and in
the presence of the most general renormalizable QFT.

It is instructive to illustrate the quantization that leads to a
propagator that behaves as 1/p4 for large momenta. The presence
of the ordinary graviton and the spin-2 ghost with mass M2 tells
us that the hµν-propagator should have two poles,

Zgraviton

p2 + iǫ
,

Zghost

p2 −M2
2 + iǫ′

, (3.1)

where Zgraviton and Zghost are the corresponding residues and we
have allowed for two a priori different prescriptions, ǫ and ǫ′.
Both the poles are proportional to the same tensor structure as
they both have spin-2. The requirement that the hµν-propagator
behaves as p4 for largemomenta leads to the condition Zgraviton =

−Zghost. In this case, the hµν-propagator is proportional to,

1

p2 + iǫ
−

1

p2 −M2
2 + iǫ′

= −

M2
2

(p2 + iǫ)(p2 −M2
2 + iǫ)

(3.2)

+π iδ(p2 −M2
2)(sign(ǫ

′)− sign(ǫ)),

where we have used the formula,

1

x± iǫ
= P

1

x
∓ iπδ(x) (3.3)

with P being the principal part. The second term on the right-
hand side of Equation (3.3) corresponds to the fact that the poles
are shifted in different directions in the complex energy plane
for sign(ǫ′) 6= sign(ǫ). Therefore, one obtains a propagator that
behaves as 1/p4 only if10 sign(ǫ′) = sign(ǫ). Given that the
absolute values of ǫ and ǫ′ are not important this final condition
can be simplified to ǫ = ǫ′.

The condition ǫ = ǫ′ implies that the ghost should be
quantized by introducing an indefinite metric on the Hilbert
space [8]. The easiest way to show this is by looking at the action
S(0) of the helicity-0 component of the ghost in (2.40). This
allows us to avoid the complications due to spacetime indices.
The corresponding Lagrangian is,

L
(0)

=

1

2

(

−9̇2
−9 E∇

29 +M2
29

2
)

, (3.4)

where we have canonically normalized 9 by rescaling 9 →

9/
√

6M̄P. The conjugate variable is then,

59 =

∂ L
(0)

∂9̇
= −9̇ (3.5)

10To convince ourselves of the correctness of this statement one could insert the

propagator in (3.3) in a loop integral; the effect of the Dirac δ-function is to drop

onemomentum integration and to add a power of momentum at the denominator,

for a total of two (not four) momenta in the power counting.

and the canonical commutators are:

[9(t, Ex), 9̇(t, Ey)] = −iδ(3)(Ex− Ey), [9(t, Ex),9(t, Ey)] = 0,

[9̇(t, Ex), 9̇(t, Ey)] = 0. (3.6)

Performing a spatial Fourier transform and demanding 9 to
solve its EOM leads to,

9(t, Ex) =

∫

d3p
√

2(2π)3ω(Ep)

(

b0(Ep)e
iEp·Ex−iω(Ep)t

+ b0(Ep)
†e−iEp·Ex+iω(Ep)t

)

,

(3.7)

where ω(Ep) ≡

√

Ep 2
+M2

2 , and the commutation rules above

imply the following:

[b0(Ep), b0(Eq)
†] = −δ(Ep− Eq), [b0(Ep), b0(Eq)] = 0. (3.8)

At this point we have a choice. We can either

1 interpret the b0 (b
†
0) as annihilation (creation) operators, or

2 interpret the b0 (b
†
0) as creation (annihilation) operators.

In Case 1, as we will see in section 4.2.1, one should introduce an
indefinite metric on the Hilbert space. In Case 2, the indefinite
metric can be avoided, but the energies are negative; this
statement will be shown in section 4.2.1, but its correctness is
intuitive because in that case one would interpret −ω(Ep) (rather
than +ω(Ep)) as the energy. Let us compute the propagator P(x)
in the two cases. The definition is,

P(x) ≡ 〈0|T9(t, Ex)9(0)|0〉 = θ(t)P+(x)+ θ(−t)P−(x), (3.9)

where

P+(x) ≡ 〈0|9(t, Ex)9(0)|0〉, P+(x) ≡ 〈0|9(0)9(t, Ex)|0〉 (3.10)

1 In Case 1, we have,

P+(x) = −

∫

d3p e−ipx

2(2π)3p0
, P−(x) = P+(−x) (3.11)

where p0 ≡ ω(Ep). The minus sign in (3.11) is due to the
minus sign in the commutation relation (3.8). Therefore, by
using a standard text-book derivation,

P(x) = −

∫

d4p e−ipx

(2π)4(p2 −M2
2 + iǫ)

, (3.12)

where ǫ > 0. We see that this corresponds to Zghost =

−Zgraviton and ǫ
′
= ǫ.

2 In Case 2, we still have,

P+(x) = −

∫

d3p e−ipx

2(2π)3p0
, P−(x) = P+(−x), (3.13)

but now p0 = −ω(Ep) (the energies are negative) and one
ends up with

P(x) = −

∫

d4p e−ipx

(2π)4(p2 −M2
2 − iǫ)

. (3.14)
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Note that the overall minus sign has a different origin than
in Case 1: here it is due to the negative energy condition
p0 = −ω(Ep), not to the commutators as the role of b0
and b†

0 is switched. So, in this case, one still has Zghost =

−Zgraviton but ǫ′ = −ǫ and renormalizability does not
occur.

Therefore, the conclusion is that renormalizability requires a
quantization with an indefinite metric on the Hilbert space.
In section 4.2.1, we will show that such a metric should be
introduced also to ensure that the Hamiltonian is bounded from
below. This raises an interpretational problem as in quantum
mechanics the positivity of the metric is related to the positivity
of probabilities. This problem will be addressed in section 4.2.6,
where the state of the art of the related literature will be
discussed.

3.2. RGEs
The renormalizability of the theory (including the gravitational
sector) allows us to use the standard renormalization group
machinery developed for field theories without gravity. The
modified minimal subtraction (MS) scheme will be adopted in
this review.

3.2.1. RGEs of the Dimensionless Parameters
The 1-loop RGEs of the dimensionless parameters are
independent of the dimensionful quantities and it is therefore
convenient to present them separately. Their expression for a
general renormalizable matter sector is,

df 22
dτ

= −f 42

(

133

10
+

NV

5
+

NF

20
+

NS

60

)

, (3.15)

df 20
dτ

=

5

3
f 42 + 5f 22 f

2
0 +

5

6
f 40 +

f 40
12

(δab + 6ξab)(δab + 6ξab), (3.16)

dǫ

dτ
= −

[

196

45
+

1

360

(

62NV +

11

2
NF + NS

)]

, (3.17)

dξab

dτ
=

1

6
λabcd (6ξcd + δcd)+ (6ξab + δab)

∑

k=a,b

[

Yk
2

6
−

Ck
2S

2

]

+

−

5f 42
3f 20

ξab + f 20 ξac

(

ξcd +
2

3
δcd

)

(6ξdb + δdb), (3.18)

dYa

dτ
=

1

2
(Y†bYbYa

+ YaY†bYb)+ 2YbY†aYb
+

+Yb Tr(Y†bYa)− 3{C2F ,Y
a
} +

15

8
f 22 Y

a, (3.19)

dλabcd

dτ
=

∑

perms

[

1

8
λabef λefcd +

3

8
{θA, θB}ab{θ

A, θB}cd

−TrYaY†bYcY†d
++

5

8
f 42 ξabξcd +

f 40
8
ξaeξcf (δeb

+6ξeb)(δfd + 6ξfd)++

f 20
4!
(δae + 6ξae)(δbf + 6ξbf )λefcd

]

+λabcd

[

∑

k=a,b,c,d

(Yk
2 − 3Ck

2S)+ 5f 22

]

, (3.20)

where

τ ≡ ln (µ/µ0) /(4π)
2, (3.21)

µ is the MS energy scale, µ0 is a fixed energy, and NV , NF , and

NS are the numbers of gauge fields, Weyl fermions, and real scalars,

respectively. Also, Yk
2 , C

k
2S, and C2F are defined by

Tr(Y†aYb) = Ya
2 δ

ab, θAacθ
A
cb = Ca

2Sδab, C2F = tAtA. (3.22)

The sum over “perms" in the RGEs of the λabcd runs over the 4!
permutations of abcd. We do not show the RGEs of the gauge
couplings because they are not modified by the gravitational
couplings (see [30–33]).

Some terms in the 2-loop RGEs have been determined [14].
For example, switching off all couplings, except f0, one obtains
the 2-loop RGE for f0 [14] as,

df 20
dτ

=

5

6
f 40 −

1

(4π)2
5

12
f 60 . (3.23)

However, a complete expression of the 2-loop RGEs for all
couplings is not available yet.

Note that the coefficient ǫ of the topological term G does
not appear in the RGEs of the other parameters. Indeed, G
vanishes when the spacetime is topologically equivalent to the flat
spacetime, and the RGEs, being UV effects, are independent of
the global spacetime properties.

The RGEs obtained as above are the result of several works.
The first attempt to determine the RGEs of f2 and f0 was presented
in Julve and Tonin [34]. The results of Julve and Tonin [34] are
incomplete and contain some errors. An improved calculation
was later provided by Fradkin and Tseytlin [30, 35], which,
however, still contains an error in the RGE of f0. The first correct
calculation of the RGE of f0 in the pure gravity case appeared
in Avramidi and Barvinsky [13]; indeed, the result of Avramidi
and Barvinsky [13] was later checked by Salvio and Strumia
[33] and Codello and Percacci [36] with completely different
techniques. Salvio and Strumia [33] also extended the results
of Avramidi and Barvinsky [13] to include the general couplings
to renormalizable matter sectors. The RGE for ǫ in the presence
of general renormalizable matter fields can be found in Avramidi
[16] (see also [37] for a more recent discussion). Also, Ohta and
Percacci [38] checked the RGEs of f2, f0, and ǫ with functional
renormalization group methods.

Equations (3.15) and (3.16) clearly show that even if the
spacetime metric is not quantized and we do not introduce the
terms quadratic in the curvature in the Lagrangian, such terms
are anyhow generated by loops of matter fields, as originally
shown in Utiyama and DeWitt [3].

3.2.2. RGEs of the Dimensionful Parameters
The 1-loop RGEs of the dimensionful parameters are,

dM̄2
P

dτ
=

1

3
m2

aa +
1

3
Tr(M†M)+ 2ξabm

2
ab +

(

2f 20
3

−

5f 42
3f 20

+2X) M̄2
P, (3.24)

d3

dτ
=

m2
ab
m2

ab

2
− Tr[(MM†)2]+

5f 42 + f 40
8

M̄4
P

+(5f 22 + f 20 )3+ 43X, (3.25)
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dM

dτ
=

1

2
(Y†bYbM +MY†bYb)+ 2YbM†Yb (3.26)

+Yb Tr(Y†bM)+−3{C2F ,M} +

15

8
f 22M +MX,

dm2
ab

dτ
= λabefm

2
ef + AaefAbef − 2

[

Tr(Y{aY†b}MM†)+

+Tr(Y†{aYb}M†M)+ Tr (YaM†YbM†)

+Tr (MY†aMY†b)
]

+

+

5

2
f 42 ξabM̄

2
P +

f 40
2
(ξab + 6ξaeξeb) M̄

2
P +

+f 20

(

m2
ab + 3ξbfm

2
af + 3ξafm

2
bf + 6ξaeξbfm

2
ef

)

+

+m2
ab





∑

k=a,b

(Yk
2 − 3Ck

2S)+ 5f 22 + 2X



 , (3.27)

dAabc

dτ
= λabefAefc + λacefAefb + λbcefAefa +

−2 Tr
(

Y{aY†bYc}M†
)

− 2 Tr
(

Y†{cYaY†b}M
)

+

+f 20
(

Aabc + 3ξafAfbc + 3ξbfAfac + 3ξcfAfab

)

+

+6f 20
(

ξaeξbfAefc + ξaeξcfAefb + ξbeξcfAefa

)

+

+Aabc





∑

k=a,b,c

(Yk
2 − 3Ck

2S)+ 5f 22 + X



 , (3.28)

where the curly brackets represent the sum over the
permutations of the corresponding indices, e.g., Y{aY†b}

=

YaY†b
+ YbY†a. The symbol X represents a gauge-dependent

quantity [14]. The RGEs of massive parameters are gauge
dependent as the unit of mass is gauge dependent. Any
dimensionless ratio of dimensionful parameters is physical and
the corresponding RGE is indeed gauge-independent, as it can be
easily checked from Equations (3.24) to (3.28).

The RGEs above for the most general renormalizable matter
sector were obtained in Salvio and Strumia [14] and later checked
in Anselmi and Piva [39]. However, before Salvio and Strumia
[14] appeared, a number of articles computed the RGEs of some
massive parameters in less general models. The RGE for 3/M̄4

P
in the pure gravity theory was determined in Avramidi and
Barvinsky [13] and a detailed description of the methods used
can be found in Avramidi [16]. The RGE of the ratio between
the Higgs squared massM2

h
and M̄2

P was computed in Salvio and
Strumia [33] (where the matter sector was identified with the
SM).

These general RGEs can be used to address issues related to
the high-energy extrapolation, such as the UV-completeness or
the vacuum stability of generic theories of the sort studied here.

4. GHOSTS

In this section, we discuss systems (such as quadratic gravity)
featuring ghosts, recall the related problems, and present some
possible solutions. We will mostly focus on finite dimensional
systems but also discuss both the classical and quantum
mechanical aspects.

4.1. Ghosts in Classical Mechanics
We consider a physical system described by a certain number of
coordinates11 qi and restrict our attention to Lagrangians that
depend on qi, q̇i, q̈i and, possibly, on time t,

L(q, q̇, q̈, t), (4.1)

where the dot is the derivative w.r.t. t and, from now on,

we understand the index i. This setup covers the case we are
interested in: the Lagrangian of quadratic gravity depends both
on the first and second derivatives of the field variables because
of the extra terms quadratic in the curvature; moreover, an
explicit dependence on time emerges, e.g., when a cosmological
background is considered [21].

In the following paragraphs, we will first discuss the derivation
of Euler-Lagrange equations of motion and then introduce the
Hamiltonian approach. This discussion will be valid for QG as a
particular case.

The least action principle in this context tells us that the
variation δS of the action, S ≡

∫

dtL, with respect to variations δq
of the coordinates that vanish on the time boundaries (together
with their first derivatives, δq̇) should be zero12:

0 = δS =

∫

dt

(

∂L

∂q
δq+

∂L

∂ q̇
δq̇+

∂L

∂ q̈
δq̈

)

. (4.2)

Here, we should require that δq̇ also vanishes on the time
boundaries because the values of q at two times are not sufficient
to identify the motion as the equations involve derivatives higher
than the second order. On performing integration by parts
once on the second term in (4.2) and twice on the third term,
we obtain the Euler-Lagrange equations of motion for four-
derivative theories as follows,

d

dt

(

∂L

∂ q̇
−

d

dt

∂L

∂ q̈

)

=

∂L

∂q
. (4.3)

We nowmove to the Hamiltonian approach.We start by defining
two canonical coordinates,

q1 ≡ q, q2 ≡ q̇. (4.4)

In this case, the conjugate momenta are defined by

pl ≡
δL

δq̇l
≡

∂L

∂ q̇l
−

d

dt

∂L

∂ q̈l
, (4.5)

where the index l runs over {1, 2}. Amotivation for this definition
will be given below in section 4.1.1. For l = 1 and l = 2
separately, the conjugate momenta read

p1 =
∂L

∂ q̇
−

d

dt

∂L

∂ q̈
, p2 =

∂L

∂ q̈
. (4.6)

Then as usual, one defines the Hamiltonian H as,

H = plq̇l − L(q, q̇, q̈, t). (4.7)

.

11Note that the case of fields can be obtained by interpreting the index i as a space

coordinate Ex.
12The summation on the index i is understood, for example, ∂L

∂q δq ≡

∑

i
∂L
∂qi
δqi.
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4.1.1. The Ostrogradsky Theorem
Under a non-degeneracy assumption, i.e., the fact that13

det(∂2L/∂ q̈2) 6= 0, it is possible to argue that the system is
classically unstable14.

Indeed, this assumption allows us to express q̈ as,

q̈ = f (q, q̇, p2, t), (4.8)

where f is the inverse of ∂L/∂ q̈ viewed as a function of q̈. Once
Equations (4.4) and (4.8) are used, H reads

H = p1q2 + p2f (q1, q2, p2, t)− L(q1, q2, f (q1, q2, p2, t), t), (4.9)

which is manifestly a function of the form,

H = H(ql, pl, t). (4.10)

The form of H in (4.9) implies the celebrated Ostrogradsky
theorem [9]: the Hamiltonian obtained from a Lagrangian of
the form L(q, q̇, q̈, t), which depends non-degenerately on q̈ (i.e.,
det(∂2L/∂ q̈2) 6= 0), is not bounded from below. Indeed, the
expression of H in (4.9) shows that H depends linearly on the
momentum p1 and therefore goes to −∞ if p1 tends either to
+∞ or −∞ (when q2 is non-vanishing). Note that this result is
valid for QG as a particular case.

One may wonder why the conjugate momenta is defined as in
(4.5). The reason is that the standard form of the Hamiltonian
equations of motion follows in this case and, therefore, the
Hamiltonian is a constant of motion if it does not depend
explicitly on time. In order to see this, let us consider an
infinitesimal variation of the Hamiltonian and compute it in two
different ways, by using (4.7) and (4.10). Respectively we have,

dH = pldq̇l + q̇ldpl −
∂L

∂q
dq−

∂L

∂ q̇
dq̇−

∂L

∂ q̈
dq̈−

∂L

∂t
dt, (4.11)

dH =

∂H

∂ql
dql +

∂H

∂pl
dpl +

∂H

∂t
dt. (4.12)

By using the definition of the conjugate momenta in (4.6) and
q2 = q̇ in the first expression of dH, we obtain,

dH = q̇ldpl−
∂L

∂q
dq−

d

dt

∂L

∂ q̈
dq̇−

∂L

∂t
dt = q̇ldpl−

∂L

∂q
dq− ṗ2dq̇−

∂L

∂t
dt.

(4.13)
The Euler-Lagrange equations allow us to write the term ∂L

∂qdq as

follows:

∂L

∂q
dq =

d

dt

(

∂L

∂ q̇
−

d

dt

∂L

∂ q̈

)

dq = ṗ1dq (4.14)

so,

dH = q̇ldpl − ṗldql −
∂L

∂t
dt. (4.15)

13∂2L/∂ q̈2 denotes the Hessian matrix of L, whose elements are ∂2L/∂ q̈i∂ q̈j.
14Lagrangians that depend on even higher derivatives of q have been considered

in the literature in the time-independent case [40], but these situations go beyond

our scope as the quadratic gravity Lagrangian only depends on the derivative of q

up to the second order.

Now, by comparing this expression with the one in (4.12) we
obtain,

q̇l =
∂H

∂pl
, ṗl = −

∂H

∂ql
,

∂H

∂t
= −

∂L

∂t
. (4.16)

Therefore, we see that in theories with a Lagrangian of the
form L(q, q̇, q̈, t), which depends non-degenerately on q̈ (i.e.,
det(∂2L/∂ q̈2) 6= 0), the Hamiltonian equations have the standard
form provided that the definition of the conjugate momenta are
modified according to (4.5). By inserting the first two equations
in (4.16) into (4.12), we obtain that the Hamiltonian is a constant
of motion provided that ∂H/∂t = 0.

(In)stabilities
If a system fulfills the hypothesis of the Ostrogradsky theorem,
then it can develop instabilities. However, this theorem does not
directly imply that all solutions of such a system are unstable.
Here, by “stable solution” we mean a solution of the equations
of motion such that for initial conditions close enough to the
region of the phase space spanned by this solution the motion
is bounded (it does not run away). There are several examples
of systems of this type that feature bounded motions: the Pais-
Uhlenbeck model [40] to be discussed in section 4.1.2 (in some
cases even in the presence of interactions [41–46]) and quadratic
gravity expanded at linear level around the flat or de Sitter
spacetime [21, 47, 48].

4.1.2. The Pais-Uhlenbeck Model
The Ostrogradsky theorem applies to a large class of higher
derivative theories, but we have seen that it does not directly
forbid the existence of stable solutions. To further understand
the issues of higher derivative theories, it is convenient to
analyze a simple system, which captures some of the essential
characteristics of quadratic gravity. Therefore, in this section we
focus on the Pais-Uhlenbeck model [40], whose Lagrangian is

L = −

q̈2

2
+ (ω2

1 + ω
2
2)
q̇2

2
− ω2

1ω
2
2

q2

2
− V(q) = (4.17)

−

1

2
q(

d2

dt2
+ ω2

1)(
d2

dt2
+ ω2

2)q− V(q)+ total derivatives.

Here, V is a function of q representing a possible interaction,
and ω1 and ω2 are real parameters. As we will see, ω1 and ω2

represent the frequencies of two decoupled oscillators when V =

0. Apart from its simplicity, another reason for considering this
model is that it closely resembles the helicity-2 sector of QG (see
Equation 2.31). In QG ω1 6= ω2 at finite spatial momentum
(see Equation 2.32); therefore, the unequal frequency case is
particularly relevant.

Lagrangian Analysis
The Lagrangian equation of motion is,

(
d2

dt2
+ ω2

1)(
d2

dt2
+ ω2

2)q+ V ′(q) =
d4q

dt4
+ (ω2

1 + ω
2
2)
d2q

dt2

+ω2
1ω

2
2q+ V ′(q) = 0. (4.18)
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Equation (4.18) makes it clear why one chooses ω2
1 and ω2

2 to
be positive; otherwise the solutions of the equations of motion
would feature tachyonic instabilities at least for vanishing V .

The corresponding classical solution, for given initial
conditions q0 ≡ q(0), q̇0 ≡ q̇(0), q̈0 ≡ q̈(0),

...
q0 ≡

...
q(0) at t = 0,

is

q(t) = −

ω2
2q0 + q̈0

ω2
1 − ω

2
2

cos(ω1t)+
ω2
1q0 + q̈0

ω2
1 − ω

2
2

cos(ω2t) (4.19)

−

ω2
2q̇0 +

...
q0

ω1(ω
2
1 − ω

2
2)

sin(ω1t)+
ω2
1 q̇0 +

...
q0

ω2(ω
2
1 − ω

2
2)

sin(ω2t).

This is a well-behaved system without run-away issues for

unequal frequencies, ω1 6= ω2. By taking the limit ω1 → ω2 ≡ ω

in the expression above, one obtains

q(t) = sin(tω)

[

t
(

q0ω
2
+ q̈0

)

2ω
+

3q̇0ω
2
+

...
q0

2ω3

]

+ cos(tω)

[

q0 −
t
(

q̇0ω
2
+

...
q0
)

2ω2

]

. (4.20)

Note that the amplitudes of the sine and cosine functions above
grow linearly with t.

Run-away (i.e., unstable) solutions can also appear for
ω1 6= ω2 if a non-quadratic potential, i.e., V 6= 0, is
introduced. However, it has been found numerically that the
system admits stable solutions regardless of the unboundedness
of the Hamiltonian for some choices of V , such asV(q) ∝ sin(q)4

[43]. The situation for this potential is illustrated in Figure 2.
In Pavs̆ic̆ [45], it was found that the solutions are unstable unless
V is bounded from below and above. Of course, this can only be
generically true for ω1 6= ω2 because, for equal frequencies, we
have seen that the motion is unbounded even for V = 0, which is
certainly bounded from below and above.

Hamiltonian Analysis
We can now construct the Hamiltonian15 by using the general
formulæ of section 4.1. Ostrogradsky’s canonical variables
defined in (4.5) and (4.4) in this case read

q1 = q, p1 =
∂L

∂ q̇
−

d

dt

∂L

∂ q̈
= (ω2

1 + ω
2
2)q̇+

...
q ,

q2 = q̇, p2 =
∂L

∂ q̈
= −q̈.

(4.21)

Note that the non-degeneracy hypothesis of the Ostrogradsky
theorem is obviously satisfied in this case: ∂2L/∂ q̈2 = −1 6= 0.
Indeed, by using the general formula in (4.9) we obtain (in the
Pais-Uhlenbeck model f (q, q̇, p2, t) = −p2),

H = p1q2 −
1

2
p22 −

ω2
1 + ω

2
2

2
q22 +

ω2
1ω

2
2

2
q21 + V(q1), (4.22)

15An analogous construction for QG was performed in Buchbinder et al. [15],

Buchbinder and Lyakhovich [49, 50], and Kluson et al. [51].

which is obviously unbounded from below. From (4.16) the
Hamiltonian equations of motion are,



















q̇1 =
∂H

∂p1
= q2, ṗ1 = −

∂H

∂q1
= −ω2

1ω
2
2q1 − V ′(q1),

q̇2 =
∂H

∂p2
= −p2, ṗ2 = −

∂H

∂q2
= −p1 + (ω2

1 + ω
2
2)q2.

(4.23)
They imply the classical Euler-Lagrange equation of motion in
(4.18).

When ω1 6= ω2, the Hamiltonian in (4.22) can be brought in
diagonal form (except for the effect of the interaction V)

H = −

1

2
(p̃21 + ω

2
1 q̃

2
1)+

1

2
(p̃22 + ω

2
2 q̃

2
2)+ V(q1) (4.24)

through the canonical transformation,

q1 =
q̃2 − p̃1/ω1
√

ω2
1 − ω

2
2

, q2 =
p̃2 − ω1q̃1
√

ω2
1 − ω

2
2

,

p1 = ω1
ω1p̃2 − ω

2
2 q̃1

√

ω2
1 − ω

2
2

, p2 =
ω2
2 q̃2 − ω1p̃1
√

ω2
1 − ω

2
2

. (4.25)

which satisfies q1p1 − q2p2 = p̃2q̃2 − p̃1q̃1. Its inverse is

q̃1 =
p1 − ω

2
1q2

ω1

√

ω2
1 − ω

2
2

, q̃2 =
ω2
1q1 − p2

√

ω2
1 − ω

2
2

,

p̃1 = ω1
ω2
2q1 − p2

√

ω2
1 − ω

2
2

, p̃2 =
p1 − ω

2
2q2

√

ω2
1 − ω

2
2

. (4.26)

Note that, given the first equation in (4.25), V(q1) introduces
interactions between q̃2 and p̃1. However, from (4.24) one can
see that the system for V = 0 is equivalent to two decoupled
oscillators with frequencies ω1 and ω2. Note that the first
oscillator contributes negatively to the Hamiltonian; this is the
manifestation of the Ostrogradsky theorem in this basis. Since the
derivation of (4.24) is valid only for ω1 6= ω2 (because otherwise
the transformation in (4.25) would be singular), one might hope
to have a classical Hamiltonian that is bounded from below for
ω1 = ω2. This is not the case as the Hamiltonian in the form
given in (4.22) is valid for ω1 = ω2 too and is not bounded from
below.

4.2. Quantum Mechanics With Ghosts
Before examining the peculiar features of the quantization with
ghosts, let us spell out some basic assumptions of standard
quantummechanics, which will bemade in the presence of ghosts
too, including in the case of QG.

• Quantizing the theory consists in substituting the canonical
coordinates qj and conjugate momenta pj with some operators
acting on a vector space, whose elements are identified with
the possible states of the system16.

16For simplicity, we will continue to use the same symbol to denote the quantum

operators and the corresponding classical variables (when this does not create

confusion).
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FIGURE 2 | Solution to the equation of motion (4.18) of the Pais-Ulhenbeck model with V (q) = λ sin(q)4. The plot is presented in units of ω2. The other parameters

are set as follows: ω1 = 2.1, λ = 1.022. The motion appears to be bounded and periodic (the vertical dashed lines indicate the period).

• The HamiltonianH in quantummechanics is defined as a self-
adjoint operator (H†

= H) with respect to some metric on the
vector space of states.H generates the time evolution: the state
|ψt〉 at time t is given by,

|ψt〉 = U(t)|ψ0〉, U(t) ≡ e−iHt . (4.27)

Moreover, the Hamiltonian is assumed to have the same
expression in terms of qj and pj as in classical mechanics,
Equation (4.10).

• The canonical coordinates qj and their conjugate momenta
pj are promoted to operators by imposing the canonical
commutators, i.e.,

[qj, pk] = iδjk, [qj, qk] = 0, [pj, pk] = 0 (4.28)

and requiring them to be self-adjoint: q†
j = qj and p†

j = pj.

The possible probabilistic interpretations of quantum theories
with ghosts will be discussed in section 4.2.6.

Most of the efforts that have been done so far in quantizing
theories with ghosts have focused on simple toy models, which
isolate the main source of concern—the presence of four time-
derivatives. The model that is typically studied is the quantum
version of the Pais-Uhlenbeck construction given in section 4.1.2,
which is perhaps the simplest four-derivative extension of an
ordinary quantum mechanical model. Therefore, we will mostly
focus on it. However, some of the results reviewed in this section
can be applied to other models too.

4.2.1. Trading Negative Energies With Negative

Norms
The first thing one can prove is that some Hamiltonians that are
not bounded from below can be quantized in a way that their
quantum spectrum is instead bounded from below, but this is
achieved by introducing an indefinite metric on the Hilbert space
(as we will see, this is precisely the metric with respect to which
H, qj, and pj have been assumed to be self-adjoint). A classic
example is the Pais-Uhlenbeck Hamiltonian17 in Equation (4.24)
for vanishing V , which we will now discuss in some detail.

17It is important to recall that Hamiltonian (4.24) is equivalent to the original

Hamiltonian in (4.22) when ω1 6= ω2 a condition that is assumed to hold

here (for the quantization of the equal frequency Pais-Uhlenbeck model see

e.g., [46, 52–55]).

The part of the classical Hamiltonian that contributes
negatively is

H1 ≡ −

1

2
(p̃21 + ω

2
1q̃

2
1), (4.29)

and it is on this part that we shall focus as the other one H2 ≡

1
2 (p̃

2
2 + ω2

2 q̃
2
2), being positive, can be quantized with standard

methods. Note that the quadratic Hamiltonian of the ghost of QG
can be written as the sum of Hamiltonians of the form (4.29), as
is clear from Equations (2.40) and (2.35) and the fact that the
Lagrangian (2.31) of the helicity-2 sector of QG is the sum of
Pais-Uhlenbeck Lagrangians.

What allows us to trade the negative energy in Equation (4.29)
with negative norm is the exchange of creation and annihilation
operators: one defines the annihilation and creation operators,
respectively, as

ã1 ≡

√

ω1

2

(

q̃1 − i
p̃1

ω1

)

, ã†
1 ≡

√

ω1

2

(

q̃1 + i
p̃1

ω1

)

, (4.30)

where we used q̃†
1 = q̃1 and p̃†

1 = p̃1. The relative signs between
q̃1 and p̃1 have been switched with respect to the standard case.
Here, we keep the label 1 to recall that the oscillator with label
2 is subject to the usual definition of annihilation and creation
operators:

ã2 ≡

√

ω2

2

(

q̃2 + i
p̃2

ω2

)

, ã†
2 ≡

√

ω2

2

(

q̃2 − i
p̃2

ω2

)

. (4.31)

From the canonical commutators (4.28) and by using the
canonical transformation in (4.26) it follows

[q̃j, p̃k] = iδjk, [q̃j, q̃k] = 0, [p̃j, p̃k] = 0, (4.32)

which leads to

[ãj, ã
†

k
] = ηjk, [ãj, ãk] = 0, [ã†

j , ã
†

k
] = 0, (4.33)

where η11 = −1, η22 = 1, η12 = η21 = 0. One can now express

q̃1 and p̃1 in terms of ã1 and ã†
1 as usual and find

H1 = −ω1ã
†
1ã1 +

ω1

2
≡ ω1N1 +

ω1

2
, (4.34)
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where we defined a number operator N1 ≡ −ã†
1ã1 (see below)

with an unusual minus sign. Indeed, with this definition N1, ã1,

and ã†
1 satisfy the usual commutation relations

[N1, ã1] = −ã1, [N1, ã
†
1] = ã†

1, (4.35)

which allows us to interpret ã1 and ã†
1 as annihilation and

creation operators, respectively: the eigenstates of N1, i.e.,
N1|n1〉 = n1|n1〉, satisfy

ã1|n1〉 = c(n1)|n1 − 1〉, ã†
1|n1〉 = d(n1)|n1 + 1〉. (4.36)

We can determine c and d up to an overall phase, once the
normalization of |n1〉 is fixed. Here, for reasons that will become
clear shortly, we allow some norms to be negative and we choose
the normalizations18 〈n1|n1〉 = νn1 , where νn1 = ±1. Notice now

−νn1n1 = 〈n1|ã
†
1ã1|n1〉 = |c(n1)|

2
〈n1−1|n1−1〉 = |c(n1)|

2νn1−1,
(4.37)

which leads to

|c(n1)|
2
= −

νn1

νn1−1
n1. (4.38)

If all the norms are positive, i.e., all νn1 = 1, then it
is possible to show with a standard textbook argument
that the spectrum of N1 (and therefore, because of
Equation (4.34), that of the Hamiltonian) is not bounded
from below. This is because Equation (4.38) tells us
that n1 < 0 and we can then reach an arbitrary large
and negative value of n1 by acting with the annihilation
operator.

The only way to avoid n1 < 0 is to take νn1 = −νn1−1. Indeed,
in this case (4.38) gives19

|c(n1)|
2
= n1, (4.41)

which as usual implies that the spectrum of N1 is
{n1} = {0, 1, 2, 3, ...} (and therefore N1 can appropriately
be identified with a number operator) and the spectrum
of the Hamiltonian is thus bounded from below. The
state with n1 = 0 is interpreted as that without ghost
quanta and so we require it to have a positive norm.
Therefore, νn1 = −νn1−1 implies that the states with an
even (odd) number of ghost quanta have positive (negative)
norm.

A similar reasoning can be done in QG linearized around
the flat spacetime: the energy becomes bounded from below

18More general assignments, νn1 6= ±1 are equivalent because we can always re-

normalize the states in a way that νn1 = ±1 as long as there are no zero norm

states, which we assume here.
19In order to fix d(n1) consider

− νn1 (n1 + 1) = 〈n1|a
†
1a1 − 1|n1〉 = 〈n1|a1a

†
1|n1〉 = |d(n1)|

2
〈n1 + 1|n1 + 1〉

= |d(n1)|
2ηn1+1, (4.39)

which gives

|d(n1)|
2
= n1 + 1. (4.40)

if an indefinite metric on the Hilbert space is introduced
(see section 3.1). Furthermore, we saw in section 3.1 that an
indefinite metric should also be present in order for QG to
be renormalizable. Therefore, insisting on having arbitrarily
negative energies to preserve the positivity of the metric appears
to have very little motivation.

Asmentioned before, in this construction qj, pj, andH are self-
adjoint w.r.t. the indefinite metric. This leads to problems in the
definition of probabilities, which we shall address in section 4.2.6.

4.2.2. The Problem of the Wave-Function

Normalization
So far we have given some features of the quantum theory, but
we have not yet specified completely the quantization procedure.
We still have to define the spectrum of the operators qj.

Let us discuss this point in the Pais-Uhlenbeck model with
ω1 6= ω2 for the sake of definiteness. One possibility would be
to assume, as usual, that the spectrum is real for both q1 and
q2. However, this leads to non-normalizable wave functions [56,
57]. To see this, we consider the ground-state wave function
ψ0(q1, q2) ≡ 〈q1, q2|0〉, where |0〉 is the vacuum, defined as
ã1|0〉 = 0 and ã2|0〉 = 0, while |q1, q2〉 is an eigenstate of
q1 and q2. Using the standard representation for the conjugate
momentum acting on the wave functions, pi = −i∂/∂qi, one
obtains the ground-state wave function

ψ0(q1, q2) ∝ exp

(

−q21ω1ω2 + q22
2

(ω1 + ω2)− iq1q2ω1ω2

)

.

(4.42)
With this quantization, ψ0(q1, q2) is non-normalizable along the
q2-direction. However, ψ0(q1, q2) becomes normalizable when
one performs the integral of |ψ0(q1, q2)|

2 on the imaginary q2-
axis.

This suggests that one could obtain a consistent quantization
by requiring q2 to have a purely imaginary spectrum, while
assuming a standard quantization (with real spectrum) for
q1 [58].

4.2.3. The Dirac-Pauli Quantization
The quantization with purely imaginary eigenvalues for a
canonical variable x̂ was first discussed by Pauli [59] for
Lagrangians with at most 2 time-derivatives, elaborating on a
previous work by Dirac [60]. In the rest of this work, we will refer
to this unusual quantization as the Dirac-Pauli quantization. To
proceed, let us deduce some basic properties of the Dirac-Pauli
quantization for a generic variable x̂.

The defining property is that the spectrum of x̂ is purely
imaginary:

x̂|x〉 = ix|x〉. (4.43)

It follows 〈x′|x̂|x〉 = ix〈x′|x〉, which, together with the self-
adjointness of x̂, i.e., 〈x′|x̂|x〉 = 〈x|x̂|x′〉∗ = −ix′〈x|x′〉∗ =

−ix′〈x′|x〉, implies (x + x′)〈x′|x〉 = 0. The general solution to
this equation is 〈x′|x〉 = δ(x + x′)h(x), where h is a function that
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we set to 1 without loss of generality: this can always be done by
rescaling the states |x〉. Then, one obtains

〈x′|x〉 = δ(x+ x′) (4.44)

and the completeness20 condition reads

∫

dx|x〉〈−x| = 1, ⇐⇒

∫

dx|x〉〈x| = η,

⇐⇒

∫

dx|x〉〈x|η = 1, (4.45)

where η is the operator defined by η|x〉 = | − x〉.
It can be shown that the variable p̂ canonically conjugate to

x̂ is also a Dirac-Pauli variable: i.e., p̂|p〉 = ip|p〉, where p is
a generic real number. To show this, we first notice that the
operator exp(p̂a), where a is a generic real number, generates
translations in the coordinate space; for an infinitesimal a we
have,

x̂ep̂a|x〉 = x̂(1+ p̂a)|x〉 = i(x+ a)ep̂a|x〉, (4.46)

where, in the second step, we have used the canonical
commutators in (4.28). This means

ep̂a|x〉 = |x+ a〉 (4.47)

(a possible overall factor k(a, x) in front of |x + a〉 can be set to
one by a suitable definition of p̂). From here we can construct the

entire spectrum of p̂. By applying ep̂a on
∫

dx|x〉, one discovers
that this is an eigenstate with zero momentum, and by applying
e−px̂ on it, where p is a generic real number, one generates all
possible eigenstates |p〉:

|p〉 =
1

√

2π

∫

dx e−px̂
|x〉 =

1
√

2π

∫

dx e−ipx
|x〉,

⇐⇒ 〈x|p〉 =
1

√

2π
eipx (4.48)

where the factor 1/
√

2π has been introduced to ensure the
normalization condition

〈p′|p〉 = δ(p+ p′), (4.49)

which, once again, leads to the completeness relation
∫

|p〉〈p|η =

1. The states |p〉 satisfy

p̂|p〉 = ip|p〉. (4.50)

There are no other eigenstates as ip̂ is self-adjoint with respect to
the positively defined metric 〈.|.〉η ≡ 〈.|η|.〉 and, therefore, p̂ can
only have purely imaginary eigenvalues.

The Dirac-Pauli quantization may look strange at first sight,
but it can be seen as a complex canonical transformation
performed on variables quantized in the ordinary way: x → ix,
p → −ip.

In Table 2, the basic properties of a Dirac-Pauli variable are
summarized.

20We require the completeness of the states |x〉 as part of the definition of the vector

space.

4.2.4. Making the Wave Functions Normalizable
Let us now come back to our original problem, the non-
normalizability of the wave functions. For the sake of
definiteness, we again consider the Pais-Uhlenbeck model with
ω1 6= ω2 and assume that q2 is a Dirac-Pauli variable, whereas q1
is an ordinary one. Then we obtain

ψ0(q1, q2) ∝ exp

(

−q21ω1ω2 − q22
2

(ω1 + ω2)+ q1q2ω1ω2

)

,

(4.51)
which is now normalizable:

〈0|0〉 =

∫

dq1dq2〈0|q1,−q2〉〈q1, q2|0〉

=

∫

dq1dq2ψ0(q1,−q2)
∗ψ0(q1, q2) <∞, (4.52)

where we have used the decomposition of the identity in terms
of eigenstates of the coordinate operators and we have taken
into account Equation (4.45) for the Dirac-Pauli variable q2.
Moreover, recall that we have earlier required 〈0|0〉 to be positive;
we fix 〈0|0〉 = 1 by appropriately choosing the normalization
constant. Then, by using (4.33), one can easily show that the state
|n1, n2〉, where n1,2 are the occupation numbers of ã1,2, has norm
(−1)n1 . So, not only the ground state but also all the excited states
are normalizable with this quantization.

At this point it is good to mention that Hawking and
Hertog [61] proposed a way to deal with four-derivative
degrees of freedom, but they ended up with non-normalizable
wave functions. They then suggested solving the problem by
integrating out q̇. As we have seen, this issue does not arise if the
appropriate quantization described above is performed (treating
q as an ordinary variable and q̇ as a Dirac-Pauli one)

Other consistent quantizations are possible [62, 63]. For
example, one could quantize q̃1 à la Dirac-Pauli, by treating q̃2
as an ordinary variable (the variables with a tilde have been
defined in Equation 4.26). We will address this point after having
introduced the path-integral formulation of the theory.

A Dirac-Pauli quantization for the ghost of QG has not been
studied yet and is a very interesting topic for future research. By
analogy, with the results obtained in the Pais-Uhlenbeck model,
one expects normalizable wave functions in the QG case too.

4.2.5. Path-Integral Formulation
We now present the path-integral formulation of a theory with
an arbitrary number of ordinary canonical variables q1, ..., qn
and Dirac-Pauli variables q̄1, ..., q̄m [58, 64]. A state with definite
canonical coordinates is denoted here as,

|q〉 = |q1, ..., qn, q̄1, ..., q̄m〉. (4.53)

We are interested in understanding whether the quantization
presented above is consistent in the presence of interactions. Even
in ordinary quantum theories the real-time path integral is only a
formal object, whose consistency at the rigorous level is unclear.
For this reason, we consider the imaginary-time path integral
(what would be called the Euclidean path integral in a QFT).
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TABLE 2 | Basic properties of a Dirac-Pauli variable (and its conjugate momentum) compared to the ordinary case.

Canonical variable x̂ on states p̂ on states x̂ on functions p̂ on functions

Dirac-Pauli variable x̂|x〉 = ix|x〉 p̂|p〉 = ip|p〉 〈x|x̂|ψ〉 = −ix〈x|ψ〉 〈x|p̂|ψ〉 = d
dx

〈x|ψ〉

x̂|p〉 = −
d
dp

|p〉 p̂|x〉 = d
dx

|x〉 〈p|x̂|ψ〉 = −
d
dp

〈p|ψ〉 〈p|p̂|ψ〉 = −ip〈p|ψ〉

Ordinary variable x̂|x〉 = x|x〉 p̂|p〉 = p|p〉 〈x|x̂|ψ〉 = x〈x|ψ〉 〈x|p̂|ψ〉 = −i d
dx

〈x|ψ〉

x̂|p〉 = −i d
dp

|p〉 p̂|x〉 = i d
dx

|x〉 〈p|x̂|ψ〉 = i d
dp

〈p|ψ〉 〈p|p̂|ψ〉 = p〈p|ψ〉

These properties are derived in the text or are simple extensions of the properties derived in the text.

In formulating a quantum theory with the path integral, one
notices that the full information on the dynamics of the system is
encoded in the object 〈qf | exp (−iHt)|qi〉, where |qi〉 and |qf 〉 are
generic states with definite coordinates. Indeed, once this object
is known we can determine how the wave function evolves in
time. In the presence of some Dirac-Pauli variables, one can do
something similar, but one inserts an operator η defined by

η|q1, ..., qn, q̄1, ..., q̄m〉 ≡ |q1, ..., qn,−q̄1, ...,−q̄m〉. (4.54)

Namely, instead of considering 〈qf | exp (−iHt)|qi〉, one

tries to evaluate 〈qf |η exp (−iHt)|qi〉. This is convenient
for reasons that will become apparent soon, but note that
〈qf |η exp (−iHt)|qi〉 encodes the full dynamical information just
like 〈qf | exp (−iHt)|qi〉 as they both give the matrix elements of
the time-evolution operators with respect to a complete basis.

Working with an imaginary time t → −iτ , one
is thus interested in computing the matrix element
〈qf |η exp (−H1τ )|qi〉, where 1τ is some imaginary-time
interval. This, as usual, can be done by decomposing 1τ in the
sum of a very large number N of very small intervals dτ , i.e.,
dτ ≡ 1τ/N. By writing exp (−H1τ ) = 5N

j=1 exp (−Hdτ ) and

inserting N − 1 times the identity
∫

dq|q〉〈q|η = 1, one ends up
with

〈qf |η e
−H1τ

|qi〉 =

∫ N
∏

j=1

〈qj|η e
−Hdτ

|qj−1〉

N−1
∏

k=1

dqk, (4.55)

where qN ≡ qf and q1 ≡ q0. To evaluate 〈qj|η exp (−Hdτ )|qj−1〉,

we insert the identity in the form
∫

dpj−1η|pj−1〉〈pj−1| = 1:

〈qj|η exp (−Hdτ )|qj−1〉 =

∫

dpj−1〈qj|pj−1〉〈pj−1|e
−Hdτ

|qj−1〉(4.56)

=

∫

dpj−1

2π
eipj−1(qj−qj−1)−H̄(qj−1 ,pj−1)dτ ,

where we have used Equation (4.48) and defined

H̄(q, p) ≡
〈p|H|q〉

〈p|q〉
. (4.57)

Here we use a compact notation where the indices and sums over
the various degrees of q1, ..., qn and q̄1, ...., q̄m are understood.

By letting N → ∞, one, thus, obtains the imaginary-time path
integral

〈qf |η e
−H1τ

|qi〉 =

∫

δqδp e
∫

dτ (ipq′−H̄(q,p)) where

δqδp =

dp0

2π
lim

N→∞

N−1
∏

j=1

dqjdpj

2π
, (4.58)

a prime denotes a derivative w.r.t. τ , the integral over τ is from
an initial time τi and a final time τf , such that 1τ = τf − τi and
it is understood that the integral over δq is performed only over
those configurations that satisfy q(τi) = qi and q(τf ) = qf .

We see that, modulo the usual subtleties related to the
integration over an infinite-dimensional functional space that are
present in any quantum theory, the only requirement for the
existence of the path integral is that the real part of H̄(q, p) (not21

the classical Hamiltonian H(q, p)) be bounded from below and
that H̄(q, p) diverge fast enough when the canonical coordinates
tend to infinity (so that the integrations over q and p converge).

These conditions are satisfied in the Pais-Uhlenbeck model
where q1 is quantized in the ordinary way and q2 is quantized à la
Dirac-Pauli, at least when the interaction termV is bounded from
below22 (the usual condition). Indeed, from the Hamiltonian
(4.22) it follows

H̄(q, p) = ip1q2+
1

2
p22+

ω2
1 + ω

2
2

2
q22+

ω2
1ω

2
2

2
q21+V(q1), (4.59)

which has the required properties. For the Pais-Uhlenbeck
model, the Euclidean path integral is

〈qf |η e
−H1τ

|qi〉 =

∫

δq1δq2δp1δp2 exp

[ ∫

dτ (ip1q
′

1+ip2q
′

2−H̄(q, p))

]

.

(4.60)
This expression can be further simplified since some integrations
can be explicitly performed. Given the first term in (4.59), the
δp1 integral gives δ(q2 − q′1), such that the δq2 path integral

21In ordinary quantum theories H̄(q, p) = H(q, p), but in the presence of Dirac-

Pauli variables this is not generically the case because of the extra i appearing in the

eigenvalues of the Dirac-Pauli coordinates and momenta.
22If one introduces a more complicated interaction that depends on the other

coordinate and momenta V(q, p), the condition is that ReV̄(q, p) be bounded from

below.
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just fixes q2 = q′1. Next, the remaining terms in H̄ are a
sum of positive squares and V(q1) so all other integrals are
convergent assuming that V is bounded from below. Performing
the remaining integrals, one finds the Lagrangian Euclidean path
integral:

〈qf |η e
−H1τ

|qi〉 ∝

∫

δq exp

[

−

∫

dτLE(q)

]

, (4.61)

where the classical Euclidean Lagrangian is

LE =

1

2

(

d2q

dτ 2

)2

+

ω2
1 + ω

2
2

2

(

dq

dτ

)2

+

ω2
1ω

2
2

2
q2 + V(q). (4.62)

The Lagrangian path integral appears to be well-defined as LE is
bounded from below.

The expression in (4.62) also allows us to study the classical
limit. Going back to real time one obtains precisely the
Lagrangian we started from, Equation (4.17). As discussed in
section 4.1.2, for some interactions V(q) (bounded from below
and above) there are stable solutions. In a generic theory, one
expects that the requirement of having stable solutions place
stringent conditions on the possible interactions, which so far
have not been fully classified. The path integral formulation
tells us that, in the classical limit, the dynamics is dominated
by the solution(s) with least Euclidean action. In the Pais-
Uhlenbeck case, these correspond to time-independent solutions

that minimize the full potential
ω2
1ω

2
2

2 q2 + V(q). All unbounded
solutions, if any, should be negligible in the classical limit as the
derivative terms always contribute positively to the Lagrangian
in (4.62). As usual, perturbations around a given solution should
be computed through the path integral and, given that the path
integral appears to be well-defined, no pathologies are expected.
Therefore, it is possible that the Dirac-Pauli quantization could
solve the potential problems raised by the Ostrogradsky theorem.

The path integral (4.61) makes it clear that, if V(q) is chosen
to be non-negative everywhere, no negative energies can be
present. If they did, then we should observe a divergence of
〈qf |η exp (−H1τ )|qi〉 as 1τ → ∞, but the right-hand side of
(4.61) does not diverge in that limit as the Lagrangian is a sum of
positive terms.

Another issue is that in a theory where the Hamiltonian H
is self-adjoint with respect to an indefinite norm (and nothing
else is known) there is no theorem guaranteeing the reality of the
energy spectrum. However, it is still possible that the spectrum
is real, as we have seen in the case of the unequal-frequency
Pais-Uhlenbeck model in section 4.2.1. Even if one introduces
a non-trivial interaction term V 6= 0 in the Pais-Uhlenbeck
model with generic unequal frequencies, no complex energies
can appear as long as V is small enough that perturbation theory
can be trusted. Indeed, a complex energy would require a zero-
norm state, but only positive and negative norm eigenstates of H
with no degeneracies are found in section 4.2.1. In a theory where
some of the eigenvalues of H turn out to be complex, one should
find a sensible interpretation for them. A possible interpretation
could be that those states are unstable and some of them (the ones
with eigenvalues with positive imaginary parts) lead to a violation

of causality23 [66, 67]. However, in Sotiriou and Faraoni [21] it
was pointed out that there are some conditions to be fulfilled in
order for this violation of causality to be observable and it is easy
to engineer a model where these conditions are not met.

Let us come back to the path integral. What would have
happened if we had used a different quantization? One could have
quantized q̃1 à la Dirac-Pauli and q̃2 as an ordinary variable (the
variables with a tilde have been defined in Equation (4.26) when
ω1 6= ω2). Then, one would have obtained

〈q̃f |η e
−H1τ

|q̃i〉 =

∫

δq̃1δq̃2δp̃1δp̃2 exp

[ ∫

dτ (ip̃1q̃
′

1+ip̃2q̃
′

2−H̄(q̃, p̃))

]

,

(4.63)
where

H̄(q̃, p̃) =
1

2
(p̃21 + ω

2
1 q̃

2
1)+

1

2
(p̃22 + ω

2
2 q̃

2
2)+ V̄(q̃2, p̃1) (4.64)

and, according to Equation (4.25),

V̄(q̃2, p̃1) = V(
q̃2 − ip̃1/ω1
√

ω2
1 − ω

2
2

). (4.65)

Given that V is computed in the complex quantity (q̃2 −

ip̃1/ω1)/
√

ω2
1 − ω

2
2 , the requirement that ReH̄(q̃, p̃) is bounded

from below leads to very peculiar conditions on the function
V , which seems very hard to be fulfilled for reasonable V , and
thus very hard to be kept in generalizing these results to QG.
Therefore, while other quantizations could still be consistent,
dedicated studies of these alternative path-integral quantizations
in the presence of interactions are not known.

The computation of the Lagrangian path integral has been
carried out here within the Pais-Uhlenbeck model. We have used
explicitly that some variables are quantized à la Dirac-Pauli. If
a Dirac-Pauli quantization for QG will be provided, then one
could also perform the same calculation in QG. One expects that
the Lagrangian path-integral for QG is consistent if the classical
Euclidean Lagrangian is bounded from below, which is the case
for some choices of the parameters, but there is no substitute of a
complete calculation to reach this conclusion. Such calculation
would also provide a non-perturbative definition of quantum
QG.

4.2.6. Probabilities
We now turn to the possible definitions of probabilities in the
presence of ghosts. We have learned in Sections 3.1 and 4.2.1
that both the renormalizability of QG and the requirement that
the quantum Hamiltonian must be bounded from below lead
to the presence of an indefinite metric. This raises problems in
defining the probability that a certain event occurs. In quantum
mechanics, the possible outcomes of the measurement of an
observable A (a self-adjoint operator, A†

= A) are in one-to-one

23Nevertheless the commutators between any two field operators at points

separated by a spacelike distance are zero [65], like in usual QFT. In QG, this

property can be easily proved by using the expansion of the free ghost field in

creation and annihilation operators introduced as in section 4.2.1 and then by

applying the unitary operator that transforms the free ghost field in the interacting

one.
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correspondence with the eigenstates |a〉 of A with probabilities
given by the Born rule

P(ψ → a) =
|〈a|ψ〉|2

〈a|a〉〈ψ |ψ〉
, (4.66)

where |ψ〉 is the state of the system before the measurement.
If some of the states have negative norms, then the direct
application of the Born rule in the presence of ghosts leads to
some negative probabilities.

Since P(ψ → a) can be negative only when the denominator
〈a|a〉〈ψ |ψ〉 is negative, a first idea could be to substitute (4.66)
with the following modified Born rule:

P(ψ → a) =
|〈a|ψ〉|2

|〈a|a〉〈ψ |ψ〉|
, (4.67)

However, (4.67) does not generically satisfy another basic
requirement, that the sum of P(ψ → a) over all possible
eigenvalues a is 1. This is because

∑

a

|〈a|ψ〉|2

|〈a|a〉〈ψ |ψ〉|
=

∑

a

〈ψ |a〉〈a|ψ〉

|〈a|a〉〈ψ |ψ〉|
(4.68)

and here generically we have

∑

a

|a〉〈a|

|〈a|a〉|
6= 1. (4.69)

Indeed, if we assume the eigenstates |a〉 to form a complete basis
and decompose an arbitrary state |α〉 as |α〉 =

∑

a′ αa′ |a
′
〉, where

αa′ are complex numbers, we have

∑

a

|a〉〈a|ψ〉

|〈a|a〉|
=

∑

aa′

αa′ |a〉〈a|a
′
〉

|〈a|a〉|
(4.70)

and in general 〈a|a′〉/ |〈a|a〉| is not equal to δaa′ because some of
the states can have negative norm. This is what some people call
the “unitarity problem" (we do not use this terminology here as
the time evolution operator is unitary w.r.t. indefinite norm).

We now discuss the most popular ways to address this
problem.

Lee-Wick Idea
Lee and Wick [68] proposed that a theory with an indefinite
metric can still have a unitary S-matrix provided that all stable
states have positive norm. Since the S-matrix connects only
asymptotic states that, by definition, are stable, one expects
that under this hypothesis the transition probabilities between
asymptotic states are positive and add up to one. The Lee-Wick
idea has been studied in the context of QG in a number of
papers [39, 69–76].

To understand this idea more in detail, let us denote with
|σ 〉 and |σ ′

〉 two generic stable states and consider the S-matrix
elements

Sσ ′σ ≡ 〈σ ′

|S|σ 〉, (4.71)

where we have normalized |σ 〉 and |σ ′
〉 to 1 (the Lee-Wick

hypothesis implies that the norm of stable states are positive
and therefore can be normalized to 1). The operator S ≡

lim1t→∞ U(1t) is unitary with respect to the indefinite norm by
construction, but we are interested in proving the unitarity of the
S-matrix in 4.71 because this is what would allow us to claim that
the probabilities add up to one: indeed, using the standard Born
rule (4.66) leads to

∑

σ ′

P(σ → σ ′) =
∑

σ ′

|〈σ ′

|S|σ 〉|2 =
∑

σ ′

S∗σ ′σ Sσ ′σ . (4.72)

Now, one can rewrite

∑

σ ′

|〈σ ′

|S|σ 〉|2 =
∑

σ ′

〈σ |S†
|σ ′

〉〈σ ′

|S|σ 〉 (4.73)

and this expression would be equal to 1 in two cases:

1. if
∑

σ ′ |σ
′
〉〈σ ′

| = 1 or, more generally,
2. if S|σ 〉 can be written as a linear combination of the stable

states only.

The first condition cannot be true because we know there are
negative norm states, which can never be written as linear
combinations of positive norm states only; indeed, in the
presence of negative norm states

∑

σ ′ |σ
′
〉〈σ ′

| = 1 is replaced
by

∑

σ ′

|σ ′

〉〈σ ′

| = 1−5−, (4.74)

where 5− is the projector on the negative-norm subspace. So,
one has to assume Condition 2, which, although plausible (as
one expects S to connect stable states with stable states only), has
to be proved. To see when the important probabilistic condition
∑

σ ′ |〈σ
′
|S|σ 〉|2 = 1 is satisfied, it is convenient to rewrite it in

a form that can be more easily verified by an explicit calculation.
To do so, we note that

∑

σ ′

〈σ |S†
|σ ′

〉〈σ ′

|S|σ 〉 = 1− 〈σ |S†5−S|σ 〉, (4.75)

where we have used Equation (4.74). By writing as usual S ≡

1+ iT, one has

〈σ |S†5−S|σ 〉 = 〈σ |T†5−T|σ 〉, (4.76)

which follows from 5−|σ 〉 = 0. The unitarity of S implies
i(T†

− T) = T†T and, by taking the diagonal matrix element
Tσσ ≡ 〈σ |T|σ 〉 and using once again Equation (4.74),

2ImTσσ =

∑

σ ′

〈σ |T†
|σ ′

〉〈σ ′

|T|σ 〉 + 〈σ |T†5−T|σ 〉 (4.77)

Given that 5− can be written as
∑

g |g〉〈g| where |g〉 represents

a complete basis on the negative-norm subspace, we see that the
condition that the probabilities sum up to one is equivalent to
the condition that the ghost states |g〉 do not contribute to the
imaginary part of the forward scattering amplitude, represented
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here by Tσσ . Anselmi [75] has recently found that this condition
is satisfied if one modifies appropriately the prescription to
determine the ghost propagator24.

One issue is that, in order to claim that the negative norm
states are unstable, which is a basic assumption of the Lee-
Wick proposal, one needs a consistent way of computing the
probability of ghost decays; otherwise how do we tell if the ghost
is unstable or not? Since there is one ghost field in QG, the use of
the standard Born rule (4.66) to compute this probability leads to
a negative number. This is not necessarily a non-sense as Lee and
Wick proposed to consider as physical states only the asymptotic
ones and regard the ghost just as a virtual state, which is not
directly observable. In this case, it might be consistent to assign
negative probabilities to such somewhat unobservable events, as
pointed out by Feynman [79].

However, one can also argue that the Lee-Wick proposal
might not address all potential problems because scattering
theory (described by the S-matrix) is not the only application of
quantum mechanics.

Defining Positive Norms
Although renormalizability and the existence of a state of
minimum energy lead to an indefinite metric, one can still try
to define positively defined metrics with the desired property:
positive probabilities that add up to one when used in the Born
rule. This possibility was studied in a number of articles [58, 63,

80–85].
Let us consider an example of a positively defined metric.

The path-integral formula (4.58) suggests to consider the η-
metric 〈.|.〉η ≡ 〈.|η|.〉, where η is defined for a generic theory
in Equation (4.54). This metric is positively defined because

〈q′1, ..., q
′

n, q̄
′

1, ..., q̄
′

m|η|q1, ..., qn, q̄1, ..., q̄m〉 =

n
∏

j=1

δ(qj − q′j)

m
∏

k=1

δ(q̄j − q̄′j)

(4.78)
and |q1, ..., qn, q̄1, ..., q̄m〉 is complete. In (4.78), we used (4.44) for
the Dirac-Pauli variables q̄1, ..., q̄m and the usual normalization
〈qj|q

′

j〉 = δ(qj − q′j) for the ordinary variables q1, ..., qn. The η-

metric can be used to compute the probabilities of measuring
q1, ..., qn, q̄1, ..., q̄m and the corresponding conjugate momenta (in
the case of Dirac-Pauli variables, the outcomes of an experiment
can be identified with the imaginary parts of the eigenvalues).
Below we will show that the probabilities add up to one.

Before doing so, we generalize this approach to other
observables. First, we have to clarify the meaning of “observables"
in this context. An observable A is represented by an operator
with a complete set of eigenstates, |a〉. Indeed, in this case we
can define a positively defined metric in the following way. Let
us define an operator PA through25

〈a′|PA|a〉 ≡ δaa′ . (4.79)

24See also Abe et al. [77] and Donoghue and Menezes [78] for other discussions

about unitarity.
25This defines PA because an operator is defined once we give all matrix elements

in a complete basis.

Note that PA satisfies P†
A = PA and depends in general on A. The

new positively defined metric is defined by

〈ψ2|ψ1〉A ≡ 〈ψ2|PA|ψ1〉, (4.80)

where |ψ1,2〉 are generic states. By using this new metric, one can
define the probabilities with the usual Born rule: the probability
that the outcome of an experiment will measure a for an
observable A given that the state before the measurement is |ψ〉
is given by

P(ψ → a) ≡
|〈a|ψ〉A|

2

〈a|a〉A〈ψ |ψ〉A
. (4.81)

These probabilities indeed satisfy the basic properties—they are
positive and they add up to one,

∑

a

P(ψ → a) =

∑

a

〈ψ |a〉A〈a|ψ〉A

〈a|a〉A〈ψ |ψ〉A
=

〈ψ |PA
√

〈ψ |ψ〉A
(

∑

a

|a〉〈a|PA

〈a|PA|a〉

)

|ψ〉
√

〈ψ |ψ〉A
= 1, (4.82)

where we used

∑

a

|a〉〈a|PA

〈a|PA|a〉
= 1, (4.83)

which follows from the completeness of {|a〉} and the defining
property of PA, Equation (4.79). Note that this result also holds
for time-dependent |ψ〉 and, therefore, probability is conserved
under time evolution. In the specific case when 〈a|a〉 is either
positive or negative (it never vanishes), an explicit expression for
PA is (after having normalized the state in a way that 〈a|a〉 = ±1)

PA ≡ 5A
+
−5A

−
, (4.84)

where 5A
+
and 5A

−
are the projectors on the positive norm and

negative norm eigenstates of A, respectively.

4.3. Cosmology
In practice, the cosmological predictions of QG would be
basically those of a standard QFT coupled to Einstein gravity
if it were not for the W2 term. This term, as we have seen,
corresponds to a spin-2 ghost with mass M2 = f2M̄P/

√

2.
Therefore, unless one takes f2 really tiny, the only significant
effects of the ghost occur in an inflationary context. We will focus
then on the inflationary behavior of the theory here.

The first step in studying the cosmological applications
of the theory is to find an FRW metric that satisfies the
classical equations. From the experience gained with the Pais-
Uhlenbeck model in section 4.2.5, one expects that the classical
limit provides precisely the classical action we started from,
Equations (2.8), (2.10), and (2.12). This is what is assumed
basically in the entire literature on the subject. The actual
proof of this property would be a significant progress in the
understanding of QG.

The FRWmetric is

ds2 = dt2 − a(t)2δijdx
idxj, (4.85)
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where a is the scale factor and we have neglected the spatial
curvature parameter as during inflation the energy density is
dominated by the scalar fields. The metric in (4.85) leads to
standard Friedmann equations as the W2 term vanishes on
conformally flat metrics and does not contribute to the equations
of motion. When the hypothesis of homogeneity and isotropy is
relaxed the W2 term contributes instead and its effect has been
studied in a number of works [21, 47, 86–94] (see [21] for a
general treatment), where the perturbations around the FRW
metrics were considered. We do not reproduce the calculations
here as they are performed in detail in the original articles.
One of the most important results obtained so far is that all
perturbations found by solving the linear equations around the
FRW metric remain bounded as time passes by Peter et al.
[19], Salvio [21], Ivanov and Tokareva [47], Tokareva [48], and
Salles and Shapiro [95], contrary to what one would naively
expect from the Ostrogradsky theorem. Moreover, by quantizing
these linear perturbations with an indefinite metric (with an
appropriate generalization of section 4.2.1) one obtains that
the conserved Hamiltonian of the full system is bounded from
below [21]. What happens beyond the linear order, however, has
not been discussed in detail and is an important target for future
research.

In QG, there are several possible inflaton candidates.
First, QG gives a natural implementation of Starobinsky’s
inflationary model [4] as the R2 is mandatory in order to have
renormalizability. Furthermore, other possible scalar fields can
participate: at the very least the theory should contain the Higgs
boson, which has been discovered at the Large Hadron Collider.
A detailed analysis of the inflationary dynamics and observable
predictions in some specific realizations of the QG scenario is
provided in Kannike et al. [20], Salvio [21], and Salvio and
Strumia [33].

4.4. Black Holes
After the discovery of gravitational waves interpreted as the
product of a binary black hole merger [96], the interest in
black hole solutions have increased. Therefore, it is important
to study the existence and properties of static spherically
symmetric solutions in QG, where the metric is given in spherical
coordinates {r, θ ,ϕ} by two functions f1 and f2 of r:

ds2 = f1(r)dt
2
−

dr2

f2(r)
− r2(dθ2 + sin2 θdϕ2). (4.86)

This has been initiated in a number of articles. The first work was
done by Stelle [12], who computed the correction to Newton’s
law due to the extra gravitational terms. A first, the observation
is that the Schwarzschild solution of Einstein gravity in the
vacuum (f1(r) = f2(r)) is also a solution of the vacuum
equations of QG (i.e., in the absence of matter) [12, 97, 98].
Also, Lu et al. [98], Holdom [99], Lü et al. [100, 103], Cai
et al. [101], Lin et al. [102], Goldstein and Mashiyane [104],
Kokkotas et al. [105], and Stelle [106] found numerically and
studied new black hole solutions (not present in Einstein gravity)
and Holdom and Ren [107] identified a new class of static

spherically symmetric solutions without horizon (called the 2-2-
hole), which can, nevertheless, mimic the Schwarzschild solution
outside the horizon, with interesting implications for the black
hole information paradox.

Keeping in mind the Ostrogradsky theorem, an important
question is whether a stable black hole (or pseudo black hole, such
as the 2-2-hole) exists in the theory. Lü et al. [103] pointed out
that the Schwarzschild solution is stable for large horizon radius
rh, but becomes unstable (see also [108]) when rh is taken below
a critical value set basically by the inverse ghost mass ∼ 1/M2

(see also [106]). The endpoint of the instability is conjectured
to be another black hole solution, which is not present in
Einstein gravity and may be stable when rh is small. Holdom
and Ren [107] considered the creation of a static spherically
symmetric solution generated by a thin spherically symmetric
shell of matter; when the shell radius l . rh the new 2-2-hole
is found.

Once again in all these works the classical equations (valid as
h̄ → 0) of QG are taken to be those generated by the starting
action in (2.8), which is what we expect, but as pointed out in
section 4.3, a proof is still missing in the literature.

5. REACHING INFINITE ENERGY

Given that QG (coupled to a general renormalizable matter
sector) is renormalizable, one can hope that the theory remains
valid up to infinite energy. However, soon after the calculation of
the gravitational β-functions of Avramidi and Barvinsky [13] it
was realized to be a major obstacle to UV-completeness: the β-
function of f 20 in (3.16) is not negative for f 20 > 0 and, therefore,
the theory features a growth of f0 as the energy increases, until
perturbation theory in f0 cannot be trusted anymore26.

Then, a number of authors [15, 109–113] explored the case
f 20 < 0 claiming that asymptotic freedom can be achieved
for all couplings (both the gravitational and matter couplings)
if the matter sector is chosen appropriately. Although such
programme can lead to mathematically consistent asymptotically
free theories, there is a big phenomenological problem when one
chooses f 20 < 0.

Let us consider for simplicity the case where the scalar ζ
(corresponding to the R2 term and introduced in section 2.2)
does not mix with other scalars (if any). Then, the squared
mass of ζ equals M2

0 = f 20 M̄
2
P/2 (see Table 1), which clearly

indicates that for f 20 < 0 the scalar ζ is tachyonic. One way to
obtain M2

0 = f 20 M̄
2
P/2 is to use the Einstein frame Lagrangian

in (2.17) and (2.18) and compute its quadratic approximation
for the small fluctuations around the flat spacetime. Another way
is to calculate (directly in the Jordan frame) the propagator of
hµν ≡ gµν − ηµν , a procedure that was originally performed in
Stelle [8], which obtained precisely the masses given in Table 1.
This confirms that f 20 < 0 leads to a tachyonic instability27. Yet

26Different statements in the literature (even recent) appear because some results

for the β of f0 (obtained before the correct results of [13]) contained wrong signs.
27Similarly, f 22 < 0 leads to a tachyonic instability in the ghost sector and,

therefore, this case is commonly avoided as not even consistent with asymptotic

freedom (for a discussion of the tachyonic case see, however, [115–117]).
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another way to see why f 20 < 0 is phenomenolgically problematic
is to look at the Newtonian potentialVN(r) due to the Lagrangian
(2.8) [12, 114],

VN(r) = −

GNM

r

(

1−
4

3
e−M2r

+

1

3
e−M0r

)

, (5.1)

where GN is Newton’s gravitational constant and M is the
mass of the point particle generating the potential. As noted
even in the original article [12] by Stelle, this expression only
gives an acceptable Newtonian limit for real M2 and M0 (i.e.,
for positive f 22 and f 20 ): otherwise one would obtain oscillating
1/r terms.

One could hope that a phenomenologically viable f 20 < 0 is
achieved by introducing more scalars (besides ζ ). However, a
general argument, which we now describe, indicates that this is
not the case. Consider the Einstein frame potential U (defined in
Equation 2.18) along the ζ -direction, which can be conveniently
parameterized as

U =

1

ζ 4

[

a1 + a2(ζ
2
− a3)

2
]

(5.2)

where a1, a3 are suitable coefficients, which depend on the other
scalar fields, whereas a2 = 3f 20 M̄

4
P/8 < 0 (having assumed f 20 < 0

here). A necessary condition for the existence of a minimum of
U is that

∂U

∂ζ
= 0, that is ζ 2 =

a1 + a2a
2
3

a2a3
. (5.3)

Notice that, if the solution for ζ 2 exists, that is (a1+a2a
2
3)/a2a3 >

0, then it is unique. Moreover, note that a2 < 0 implies that U
goes to a negative value as ζ → ∞. Therefore, there are only
three possibilities:

• There is no acceptable solution to (5.3) (no solution with ζ 2 >
0).

• The solution to (5.3) is a maximum of the potential (or at most
a saddle point once the other scalars are included).

• The solution to (5.3) is a point of minimum of U, but occurs
for a negative value of U (in contradiction with the positive
value of the observed cosmological constant). Indeed, if it
corresponded to a positive value of U then there would also be
a maximum (or a saddle point) given that U goes to a negative
value for ζ → ∞ and this would contradict the uniqueness of
the solution in (5.3).

The conclusion is that a minimum ofU (if any) must haveU < 0.
This argument generalizes the situation illustrated in Figure 1,
where only the field ζ was considered.

5.1. Conformal Gravity as the Infinite
Energy Limit of Quadratic Gravity
Given that the experiments lead us to take f 20 > 0, what happens
when f0 grows and leaves the domain of validity of perturbation
theory? In Salvio and Strumia [14] (see also references therein),
by using a perturbative expansion in 1/f0, it was shown that,
when f0 grows up to infinity in the infinite energy limit, the

scalar due to the R2 term decouples from the rest of the theory
and f0 does not hit any Landau pole, provided that all scalars
have asymptotically Weyl-invariant couplings (see below) and
all other couplings approach fixed points. Then, QG can flow
to a Weyl-invariant theory, a.k.a. conformal gravity, at infinite
energy. Given the importance of Weyl invariance for the high-
energy limit of QG, let us give some more details on this topic.
A Weyl transformation acts as follows on the various fields (the
metric gµν , the scalars φa, the fermions ψi, and the vectors
VA
µ ):

gµν(x) → e2σ (x)gµν(x), φa(x) → e−σ (x)φa(x),

ψi(x) → e−3σ (x)/2ψi(x), VA
µ → VA

µ , (5.4)

where σ is a generic function of x. A scalar has Weyl-
invariant couplings when all dimensionful parameters vanish
and ξab = −δab/6. This precise value of ξab emerges because
in this case the non-invariance of the kinetic term of the
φa precisely cancels the non-invariance of the non-minimal
couplings, Equation (2.12).

The idea that one can approach a Weyl-invariant theory at
large energy has been investigated in a number of articles [78,
118–124]. We do not reproduce the proof of Salvio and
Strumia [14] because it is described in detail there, but
some remarks are in order regarding the implications of this
result.

It is important to note that the condition to have a UV
fixed point guarantees not only the UV-completeness of the
QFT part28 but also of the gravitational part of the theory
(when all parameters flow to their conformal value). This opens
the road to the construction and study of relativistic field
theories of all interactions that are fundamental, i.e., hold up
to infinite energy. This scenario leads to several extra fields
(in addition to those present in the SM) as the study of
the one-loop β-functions of the SM reveals the presence of
Landau poles. These new fields can then be used to explain in
an innovative way the current pieces of evidence for physics
beyond the SM (such as neutrino oscillations, dark matter, and
baryon asymmetry of the universe). This nearly unexplored
field of research represents a very important target for future
research.

5.2. RGEs for Conformal Gravity and Matter
Although flowing to conformal gravity at infinite energy can be
consistent, at finite energy, conformal invariance is broken by the
scale anomaly and the R2 term as well as a non-vanishing value of
δab + 6ξab are generated. However, this is a multiloop effect (see
[14, 130–132] and references therein). The full set of one-loop

28Some SM extensions including gauge fields, fermions and scalars can feature a

UV fixed point for all couplings and their corresponding phenomenology have

been studied [125–129].
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FIGURE 3 | Schematic behavior of the gravitational couplings as functions of the energy in a possible interesting scenario. At high energies the theory is

approximately given by conformal gravity, with small corrections (which include the UV irrelevant Einstein-Hilbert and cosmological constant terms). Both 1/f0 and

δab + 6ξab remain very small for the reasons given above. The coupling f2 associated with the W2 term is also chosen to be small both to maintain perturbativity and

thus calculability and to provide interesting and potentially observable effects at the inflationary scales. The running of f2 is depicted only up to the mass of the

corresponding degrees of freedom, M2 = f2
¯MP/

√

2. A large coupling f0 influences physics only at energies much above the Planck mass as its role compared to the

Einstein-Hilbert term is suppressed by E2/(f20
¯M2
P
), where E is the typical energy of the process under study. Below M2 the gravitational theory resembles Einstein

gravity plus small corrections. The energy flows from the scale below which strong interactions are non-perturbative, 3QCD, up to infinite energy (passing through the

mass of the W-boson MW , the ghost mass M2 and the Planck mass MPl ).

RGE in conformal gravity are given by,

df 22
dτ

= −f 42

(

199

15
+

NV

5
+

NF

20
+

NS

60

)

(5.5)

dYa

dτ
=

1

2
(Y†bYbYa

+ YaY†bYb)+ 2YbY†aYb
+

+Yb Tr(Y†bYa)− 3{C2F ,Y
a
} +

15

8
f 22 Y

a, (5.6)

dλabcd

dτ
=

∑

perms

[

1

8
λabef λefcd +

3

8
{θA, θB}ab{θ

A, θB}cd

−TrYaY†bYcY†d
++

5

288
f 42 δabδcd + λabcd

[

∑

k=a,b,c,d

(Yk
2 − 3Ck

2S)+ 5f 22

]

(5.7)

for f0 → ∞ and ξab → −
1
6δab. We do not show the

RGE of the gauge couplings because they are not modified
by the gravitational couplings (see [30–33]). The RGE of f2
was originally derived in Salvio and Strumia [14], Fradkin
and Tseytlin [30], Shapiro and Zheksenaev [133], de Berredo-
Peixoto and Shapiro [134], while those of Ya and λabcd were
obtained in Salvio and Strumia [14]. Also, Ohta and Percacci
[135] checked the RGEs of f2 with functional renormalization
group methods. This set of equations allows us to search for
fundamental theories that enjoy total asymptotic freedom/safety:
all couplings (including the gravitational ones) flow either to zero
or to an interacting fixed point in the UV.

In Figure 3, a pictorial representation of a possible resulting
gravitational scenario (described in the caption) is provided.
That behavior suggests a new paradigm of inflation based on a
quasi-conformal theory, a theory where f0 is large and ξab ≈

−δab/6, which so far has been left as a very interesting future
development.

The general RGEs in (5.5)–(5.7) can be used to address high-
energy issues in the scenario presented above, e.g., the actual
verification of a UV fixed point and vacuum stability.

6. CONCLUDING REMARKS

QG, appropriately extended to include renormalizable couplings
with and of a QFT, gives a renormalizable relativistic field
theory of all interactions, which is predictive and computable.
It has therefore attracted the interest of several researchers since
decades and continues to be an important framework in the quest
for a UV complete and phenomenologically viable relativistic
field theory.

The price to pay is the presence of a ghost and consequently of
an indefinite norm on the Hilbert space (which is implied both by
renormalizability and the requirement of having a Hamiltonian
that is bounded from below). Therefore, much of this review
has been dedicated to illustrate some possible ways to address
the ghost problem (such as the Dirac-Pauli quantization, the
Lee-Wick approach and the possibility to introduce positively
defined metrics on the Hilbert space) focusing on simple finite
dimensional quantum mechanical models. The full extension of
these techniques to the field theory case (and especially the QG
case) has not been done yet and is an important goal for future
research.

If QG is coupled to a QFT, which enjoys a UV fixed point, then
the whole theory can hold up to infinite energy29 and might still

29If a full solution of the ghost problem in quadratic gravity is found and the

theory can be made UV complete (possibly with the inclusion of matter fields) one

could also have a window on strongly coupled theories through the holographic

principle [136, 137] (in particular the AdS/CFT correspondence [138]) by using

QG as the higher dimensional theory on an asymptotically anti-de Sitter (AdS)

space. Actually, several works in this direction already appear in the literature (see

e.g., [139–142]).
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be compatible with data. So far, potentially viable theories have
only be found for f 20 > 0, given that f 20 < 0 leads to a tachyonic
instability (as is clear both in the Jordan and Einstein frame). The
explicit construction of a QFT sector that satisfies all collider and
cosmological bounds and explain the evidence for new physics
has not been achieved yet and is an outstanding target for future
research. The deep UV behavior of the theory may be the one
of a Weyl invariant theory (conformal gravity): the gravitational
coupling f0 and the non-minimal couplings of the scalar ξab reach
the Weyl invariant values f0 → ∞ and ξab → −δab/6, whereas
all other couplings approach a UV fixed point.
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Euclidean Wormholes, Baby
Universes, and Their Impact on
Particle Physics and Cosmology
Arthur Hebecker*, Thomas Mikhail and Pablo Soler
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The euclidean path integral remains, in spite of its familiar problems, an important

approach to quantum gravity. One of its most striking and obscure features is the

appearance of gravitational instantons or wormholes. These renormalize all terms in

the Lagrangian and cause a number of puzzles or even deep inconsistencies, related

to the possibility of nucleation of “baby universes.” In this review, we revisit the early

controversies surrounding these issues as well as some of the more recent discussions of

the phenomenological relevance of gravitational instantons. In particular, wormholes are

expected to break the shift symmetries of axions or Goldstone bosons non-perturbatively.

This can be relevant to large-field inflation and connects to arguments made on the basis

of the Weak Gravity or Swampland conjectures. It can also affect Goldstone bosons

which are of physical interest in the context of the strong CP problem or as dark matter.

Keywords: string theory, quantum gravity, euclidean wormhole, axions, particle physics -cosmology connection,

inflation, weak gravity conjecture, gravitational instanton

1. INTRODUCTION

It is reasonable to think that a consistent theory of quantum gravity has to allow for topology
change. Indeed, if the euclidean path integral has any relevance at all, then it appears unnatural
to forbid 4-manifolds with non-trivial topology. After all, they are locally indistinguishable from
R
4. Further evidence in favor of topology change comes, for example, from string theory: String

interactions and loops rely entirely on topology change in the worldsheet theory, the latter being a
relatively well-understood examples of 2d quantum gravity. In addition, 10d supergravity theories
with their stringy UV completion involve controlled examples of topology change. These occur if
one dynamically moves through special loci in Calabi-Yau moduli space, e.g., through a conifold
point.

However, our point of departure will be more simple minded, focusing on topology change
in 4d effective quantum gravity. Consider the evolution of 3d spatial manifolds in time. It is
natural to think that in the course of this evolution an R

3 can transit to an R
3 plus an S3 “baby

universe,” which subsequently reunite becoming again an R
3 (cf. Figure 1). This can be viewed

as a tunneling transition, which gains quantitative support from the existence of a corresponding
euclidean solution—the Giddings-Strominger wormhole (Giddings and Strominger, 1988a). While
topology change has been discussed before (Wheeler, 1955; Regge, 1961; Hawking, 1978, 1987,
1988; Ellis et al., 1984; Lavrelashvili et al., 1987), the Giddings-Strominger solution (Giddings and
Strominger, 1988a) and especially the application to the cosmological constant problem suggested
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by Coleman (1988c) led to an enormous spike of
activity (Coleman, 1988a; Giddings and Strominger, 1988b,
1989b; Grinstein and Wise, 1988; Hawking and Laflamme,
1988; Lee, 1988; Rubakov, 1988; Abbott and Wise, 1989; Brown
et al., 1989; Burgess and Kshirsagar, 1989; Choi and Holman,
1989; Coleman and Lee, 1989, 1990a,b; Duff, 1989; Fischler
and Susskind, 1989; Gilbert, 1989; Grinstein, 1989; Grinstein
and Hill, 1989; Klebanov et al., 1989; Nielsen and Ninomiya,
1989; Polchinski, 1989b; Preskill, 1989; Preskill et al., 1989; Rey,
1989; Tamvakis, 1989; Carlip and De Alwis, 1990; Grinstein
and Maharana, 1990; Grinstein et al., 1990; Hawking, 1990a,b,
1991a,b; Hawking and Page, 1990; Tamvakis and Vayonakis,
1990; Lyons and Hawking, 1991; Linde, 1992; Twamley and Page,
1992; Kaplunovsky, unpublished; see Coleman et al., 1991 for an
early overview).

As part of these investigations, severe problems in the
resulting picture of a macroscopic spacetime surrounded by
baby universes were uncovered (Fischler and Susskind, 1989;
Kaplunovsky, unpublished; Polchinski, 1989b; Hawking, 1990b).
While the interest has then subsided, important results have
continued to appear over the years (Kallosh et al., 1995; Nirov
and Rubakov, 1995; Barcelo et al., 1996; Gibbons et al., 1996;
Rubakov and Shvedov, 1996a,b; Green and Gutperle, 1997; Rey,
1999; Gutperle and Sabra, 2002; Bergshoeff et al., 2004, 2005;
Maldacena and Maoz, 2004; Collinucci, 2005; Bergshoeff et al.,
2006; Dijkgraaf et al., 2006; Arkani-Hamed et al., 2007b; Bergman
and Distler, 2007; Chiodaroli and Gutperle, 2009a,b; Cortes and
Mohaupt, 2009; Mohaupt and Waite, 2011; Betzios et al., 2018).
It has, however, neither been shown that wormholes and baby
universe are unphysical nor has a satisfactory overall picture
been developed. Thus, euclidean wormholes or gravitational
instantons have remained a lurking fundamental issue in our
understanding of quantum gravity. We emphasize that this issue
is not easily dismissed as a problem of the UV completion. On the
contrary, large wormholes tend to be as puzzling as small ones,
such that the problems appear to be there even in the low-energy
effective theory1.

More recently, the interest in wormholes has been renewed
in the context of large-field inflation, axion-physics, and the
widespread excitement (see e.g., Cheung and Remmen, 2014;
Brown et al., 2015, 2016; de la Fuente et al., 2015; Hebecker et al.,
2015; Heidenreich et al., 2015; Montero et al., 2015; Rudelius,
2015; Bachlechner et al., 2016; Choi and Kim, 2016; Junghans,
2016; Kaloper et al., 2016; Kappl et al., 2016; Kooner et al., 2016;
Klaewer and Palti, 2017) about the Weak Gravity Conjecture and
the Landscape/Swampland paradigm (Vafa, 2005; Arkani-Hamed
et al., 2007a; Ooguri and Vafa, 2007, 2016; Brennan et al., 2017).
This is natural since wormholes have the potential to break global
symmetries, such as the shift symmetry of the axion. In addition,
they may be considered the macroscopic, gravitational version
of instantons in pretty much the same way as charged black

1In this review we focus on large wormholes. An interesting and closely related

topic, which lies beyond the scope of this work, are topological fluctuations of

spacetime at small scales (the Planck scale Wheeler, 1955; Hawking, 1978 or string

scale Iqbal et al., 2008) as constituents of a microscopic description of quantum

gravity.

FIGURE 1 | Wormhole corresponding to the creation and absorption of a

baby universe.

holes are the macroscopic version of charged particles. Thus,
the interest in the Weak Gravity Conjecture and its implications
for phenomenology naturally lead to an enhanced interest in
(euclidean) wormholes (Hebecker et al., 2015; Montero et al.,
2015; Heidenreich et al., 2016; Harlow, 2016; Alonso andUrbano,
2017; Hebecker et al., 2017; Hertog et al., 2017; Ruggeri et al.,
2018; Shiu and Staessens, 2018).

Our review is motivated in several ways: First, as just
explained, it is timely to reconsider the wormhole issue in view
of the growing interest in generic quantum gravity constraints
on effective field theories. Second, the unsolved problems from
the 90’s are, in our opinion, as important as ever. Additionally,
one of the main phenomenological targets in the otherwise
rather theory-driven wormhole debate have always been axions2.
Since axions are becoming more and more central in Beyond-
the-Standard-Model research, scrutinizing their generic features
is of particular importance. Finally, we believe that the post-
90’s theoretical developments of AdS/CFT, holography and
(gravitational) entanglement have not yet been fully exploited in
the context of euclidean wormholes. Thus, significant technical
progress may be expected concerning the fundamental issues
raised by those objects.

In the long run, we can think of two different outcomes:
On the one hand, wormhole effects may turn out to be absent
from certain theories, in particular from the 4d quantum gravity
describing the real world. This would solve many puzzles.
Advocates of this possibility have to address a number of
questions. In particular, what is the specific mechanism behind
this “wormhole censorship”? As we will argue, it appears
difficult to imagine such a mechanism which would not also
forbid topology change in general. This, of course, would be
a radical step. Related to this: How can we forbid wormholes
in 4d while maintaining their central role in the 2d quantum
gravity known as string theory? Furthermore, if wormholes are
forbidden, what is the generic gravitational effect responsible
for the breaking of global shift symmetries of axions? On the
other hand, if wormholes exist, they represent a radical departure
from standard interpretations of effective field theories. As we
will describe, the correct understanding of their effects requires
solving numerous fundamental problems. In the hope that these
questions can be successfully addressed in the near future, we

2We will use the name axion for any shift-symmetric periodic scalar, even if

unrelated to QCD.
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consider it worthwhile summarizing the state of the art and
describing themain puzzles and open issues posed by wormholes.

We start in section 2 by recalling how instantons (of
either gauge-theoretic or stringy nature) generate a potential
for any scalar to which they are minimally coupled. We then
describe the famous Giddings-Strominger solution (Giddings
and Strominger, 1988a), which corresponds to a throat with cross
section S3, connecting two points inR

4 (cf. Figure 1). The throat
is supported byH3 flux, and the dual ofH3 is the field strength of
an axion. This axion then naturally couples to the two wormhole
ends, which can locally be interpreted as instanton and anti-
instanton. The axionic shift symmetry is potentially broken by
a “dilute gas” of such wormholes. We also briefly comment on
dilatonic instantons as they generically arise in string theory,
emphasizing that it has by now been established that wormhole
solutions do really arise in string-derived models (Tamvakis,
1989; Bergshoeff et al., 2005; Arkani-Hamed et al., 2007b; Hertog
et al., 2017).

Next, in section 3, we discuss how the low-energy effective
action is corrected by wormholes (of Giddings-Strominger type
and, more generally, by any “spacetime handles” of the form
displayed in Figure 1). We follow the pioneering work by
Coleman (1988c) and Preskill (1989). Crucially, in contrast
to instantons, wormholes induce a bilocal action, which has
the potential to break locality or even quantum coherence.
However, the bilocal correction can be turned into a local one
by introducing appropriate auxiliary integration variables (α
parameters). Alternatively, this can be captured by thinking
in terms of a “state of baby universes,” the absorption and
emission of which is described by operators a† and a. In this
language, the α parameters are simply the eigenvalues of α̂ =

a + a†. If the (infinitely many) α parameters take definite and
not excessively large values, effective 4d locality and the dilute
gas approximation are maintained. However, exact predictivity
for Lagrangian parameters on the basis of some underlying
microscopic theory is lost.

Section 4 is devoted to phenomenological applications. The
early literature focuses on the indeterminacy of effective coupling
constants. In particular, Coleman argued that the cosmological
constant is statistically driven to zero value by the distribution
of α parameters and their interplay with large-scale 4d gravity
(Coleman, 1988c). The violation of axionic shift symmetries and
other global symmetries has also been studied from the beginning
(see e.g., Rey, 1989). More recently, the shift symmetry of a large-
f axion has been discussed in the context of wormholes and their
interplay with the Weak Gravity Conjecture (Hebecker et al.,
2015; Montero et al., 2015; Heidenreich et al., 2016). We review
some of this discussion, pointing out in particular difficulties
in making strong, generic arguments against large-field axionic
inflation (Hebecker et al., 2017). Additionally, we discuss possible
wormhole effects on axions with f < MP (including but not
limited to the QCD axion) following (Alonso and Urbano, 2017).
These may be relevant to ultralight dark matter, axion stars and
black hole superradiance.

Open conceptual issues are the main subject of section 5.
There are many of those, making the whole subject interesting
but at the same time very difficult. We start with the

FKS catastrophe (Fischler and Susskind, 1989; Kaplunovsky,
unpublished), which turns Coleman’s cosmological constant
calculation into an argument for an overdensity of large
wormholes. We go on to briefly discuss the generic problems of
euclidean quantum gravity and, in particular, the negative-mode
problems possibly affecting the Giddings-Strominger solution
(Rubakov and Shvedov, 1996a; Alonso and Urbano, 2017;
Hertog et al., 2017). Finally, we discuss the quantum cosmology
involving macroscopic universes and a baby universe state. This
can be relatively well undestood in a 1d toy model, but becomes
already rather complicated in 2d quantum gravity. The latter
case has of course received particular attention since its “large
universe” may be the worldsheet of a fundamental string, while
the baby universe state is represented by the dynamical target
space of string theory. Finally, we analyse the Wheeler-DeWitt
perspective as well as issues arising in the AdS/CFT paradigm.
We conclude in section 6.

2. FROM INSTANTONS TO WORMHOLES

In this section we describe the simplest wormhole configurations,
extrema of the euclidean action of Einstein gravity coupled to
axionic fields (and possibly dilatons). We start with a brief
description of the related but much better understood case of flat
spacetime, where instantons arise as euclidean saddle points of
gauge theories.

2.1. Instantons
Let us start by recalling the familiar case of a 4d gauge theory with

L =

1

2g2
tr FµνF

µν . (1)

For simplicity the gauge group is taken to be SU(2). The
euclidean path integral necessarily involves certain finite action
configurations (instantons) for which the field strength is non-
zero in the vicinity of some point x0 ∈ R

4 and falls off quickly as
|x− x0| → ∞. Moreover, the value of

n =

1

8π2

∫

tr(F ∧ F) (2)

is integer, with n = ±1 characterizing a single instanton or anti-
instanton (see e.g., Coleman, 1979; Vainshtein et al., 1982; Tong,
2005; Bianchi et al., 2008; Vandoren and van Nieuwenhuizen,
2008). The minimal action for such n = ±1 configurations is

S =
8π2

g2
. (3)

The underlying solutions have 8 moduli: the components of x0,
a size modulus, and three zero modes associated to global SU(2)
transformations.

In calculating the partition function of the theory, one has
to sum over any number of such instanton or anti-instanton
configurations and integrate over all their moduli. This can be
done very explicitly (see below) in the so-called dilute instanton
gas approximation, i.e., assuming that the regions where F is
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FIGURE 2 | Gauge theory instantons as well-separated, localized lumps of

field strength.

FIGURE 3 | Euclidean brane instanton as particle-antiparticle fluctuation

wrapping the compact space.

significantly non-zero are much smaller than their distance.
Unfortunately, this clashes with the fact that a large contribution
comes from very extended instantons, making the calculation
e.g., in the practically interesting case of QCD non-trivial. A
relevant toy model can however be obtained by Higgsing the
gauge theory at M ≫ 3, with 3 the confinement scale. The
largest instantons now have size ∼ 1/M and the dilute gas
approximation can be parametrically controlled (cf. Figure 2).

Another equally familiar case is that of stringy or exotic
instantons. To recall this case, start with the toy model of a 5d
gauge theory on R

1,3
× S1. Clearly, if charged particles exist,

this theory has tunneling processes in which a particle-anti-
particle pair emerges from the vacuum and annihilates after
passing around the S1 in opposite directions (cf. Figure 3). In
the euclidean theory, this corresponds to a 0-brane wrapped on
the S1 at some point x0 ∈ R

4. The generalization to string
compactifications with appropriate Dp-branes (or Ep-branes,
with “E” for euclidean) wrapped on (p+ 1)-cycles of the compact
space is obvious (for reviews see e.g., Akerblom et al., 2007;
Blumenhagen et al., 2009; Ibanez and Uranga, 2012).

Crucially, in both of the above examples a shift symmetric,
periodic scalar coupling to the instantons is naturally expected
to be present. In the first case, it is the analog of the QCD axion,

coupling through

L ⊃ θ tr(F ∧ F)/8π2. (4)

In the second case, it is the “Wilson-line” scalar descending from
the 5d gauge field or, more generally, the 4d scalar descending
from the Ramond-Ramond Cp+1-form field dimensionally
reduced on the appropriate (p+ 1) cycle.

For us, the above prelude serves only to motivate the following
model theory of generic (or fundamental) instantons: It is defined
by the partition function

Z =

∫

DφDθ e−S[φ,θ]
∞
∑

n=1

∞
∑

n=1

1

n!n!

n
∏

i=1

(∫

d4xiM
4 e−SI+iθ(xi)

)

n
∏

ı=1

(∫

d4xı M
4 e−SI−iθ(xı )

)

, (5)

which can of course be extended to a prescription for calculating
Greens functions in the usual way. In this theory, the instantons
are fundamental, zero-dimensional objects coupling to the axion-
like field (just axion from now on) in the mathematically natural
way: The axion is interpreted as a zero-form gauge potential
which simply has to be evaluated at the position of the charged
object (in the stringy language a D(−1) brane)3. Furthermore, φ
stands for all other fields in the model and SI is the instanton
action. It arises (together with the typical instanton scale M) as
the tunneling suppression factorM4 exp(−SI), which can also be
interpreted as the instanton density.

Famously, the instanton and anti-instanton sum exponentiate
and the two exponents involving θ combine to produce a cosine.
This gives

Z =

∫

DφDθ exp

(

−S[φ, θ]+

∫

d4x 2M4e−SI cos(θ(x))

)

.

(6)
We emphasize that, apart from possible corrections to the dilute
gas approximation, this is exact. Furthermore, it can be easily
extended to situations in which the instantons couple, in addition
to the necessary topological coupling to the zero-form θ , to other
fields. For example, SI may depend on the background values of
some of the degrees of freedom denoted by φ.

2.2. Giddings-Strominger Solution
At the end of the previous section, we advertised the point
of view that instantons coupled to axions are a limiting case
of the general concept of a p-form gauge theory: In this case
p = 0 and the charged object is zero-dimensional. By analogy
to the gauge theory, one then expects the existence of objects
akin to black branes. In other words, there might exist purely
gravitational solutions charged under the axion which represent

3Note that this coupling remains imaginary even in the euclidean formulation. A

pragmatic way to see this is to recall that θ is introduced as a periodic variable. A

possibly deeper way is to think of instantons as tunneling events in the lorentzian

theory and of exp(iθ) as a relative phase between initial and final state. The latter is

of course not affected by Wick rotation.
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the continuation of instantons into the high-mass (or high-
tension) regime.

An object which fulfills such an expectation at least partially is
the Giddings-Strominger wormhole (Giddings and Strominger,
1988a), sometimes also referred to as a gravitational instanton. It
is based on the euclidean action (MP = 1)

S =

∫

d4x
√

g
(

−

1

2
R+

f 2

2
gµν∂µθ∂νθ

)

. (7)

Equivalently, one can use the dual formulation in terms of a
2-form gauge theory with field strength H3 = dB2:

S =

∫

d4x
√

g
(

−

1

2
R+

1

2f 2
1

3!
HµνκH

µνκ
)

. (8)

At the classical level, the duality relation is simply H = f 2 ∗ dθ .
However, the equivalence of the two theories extends, of course,
to the full quantum systems. To see this, the dualization must
be done under the path integral and care must be taken to
get the signs of the kinetic terms right. The outcome is that,
both in the euclidean and in the lorentzian versions, the fields
have standard (non-ghostlike) kinetic terms on both sides of
the duality (see Burgess and Kshirsagar, 1989; Collinucci, 2005;
Bergshoeff et al., 2006; Arkani-Hamed et al., 2007b; Hebecker
et al., 2017 for details). The wormhole solution to be discussed
momentarily exists only in the euclidean theory, but both in the
0-form and 2-form formulation. However, while the B2/H3 fields
are real, the corresponding values of θ/dθ are imaginary.

Now, the relevance of an “instanton-like” euclidean solution
is, of course, that it defines a saddle point of the path integral
and hence a very specific, easily quantifiable contribution to
the partition function. For the B2 path integral, the Giddings-
Strominger saddle point is then right in the standard integration
domain, i.e., “on the real axis” of field space. By contrast, in the θ
path integral the corresponding saddle point is “on the imaginary
axis,” requiring the deformation of the contour and raising the
question whether such complex saddles contribute. Complex
saddles are certainly known to contribute in certain cases (for
a toy model relevant to the present setting see Arkani-Hamed
et al., 2007b). Thus, while we favor the (real) B2 formulation
for obvious reasons in what follows, there is nothing wrong in
principle with the θ formulation4.

After these preliminaries, let us describe the solution
(Giddings and Strominger, 1988a). It can be motivated by
starting from a field theory instanton and including gravitational
backreaction: If an instanton couples to an axion θ , the dual
theory carries non-zero 3-form flux,

∫

S3
H = n , n ∈ Z , (9)

4Occasionally, the impression is raised that the θ formulation requires a wrong-

sign kinetic term if one wants the wormhole solution to exist. While this

perspective might technically be equivalent to what was said above, we find it

conceptually misleading. In our reading, one studies a well-defined physical theory

without ghost fields. It is only the desire to estimate the contribution from a certain

complex saddle which leads one to work with imaginary θ temporarily.

FIGURE 4 | Wormholes: A semiwormhole (Left), a wormhole connecting two

distinct large asymptotically flat universes (Center) and a wormhole on a

single universe (Right).

on any sphere containing n instantons (or an instanton of charge
n). Placing the instanton(s) at the origin and assuming spherical
symmetry, it is immediately clear that one must have

H =

n ǫ

2π2
. (10)

Here ǫ is defined as the volume form of S3 in the description of
R
4 as R+ × S3.
The aboveH automatically satisfies the Bianchi identity dH =

0 and the equation of motion d ∗ H = 0 (for any spherically
symmetric metric). It induces a non-zero energy momentum
tensor and the corresponding Einstein equation is solved by

ds2 =
(

1+
C

r4

)

−1
dr2 + r2d�2

3, C = −

n2

24π4f 2
. (11)

Here d�2
3 denotes the round metric on the unit sphere.

This geometry is asymptotically flat for r → ∞ and has
a coordinate singularity at r = r0 ≡ |C|1/4. The space
given by restricting r ∈ [r0,∞) forms what is often termed
a semiwormhole (see Figure 4). Gluing two such solutions at
the 3-spheres defined by r = r0, one obtains a smooth
wormhole connecting two flat universes (see Figure 4). A
topologically distinct, approximate solution can be obtained if
the two asymptotically flat regions of Figure 4 are interpreted
as distant parts of the same universe—cf. Figure 4. One then
has a wormhole joining two regions of the same large universe.
This becomes exact in the limit that the two wormhole ends are
infinitely far apart.

The wormhole action is particularly easy to compute using the
trace of the Einstein equation:

Sw =

1

f 2

∫

H ∧ ∗H =

n2

2π2f 2
2

∫

∞

r0

dr

r
√

r4 + C
=

π
√

6

4
·

|n|

f
.

(12)
Notice the factor 2 appearing because a wormhole consists of two
solutions of the form of (11), each restricted to r > r0.

The most straightforward interpretation of this is as follows:
Suppressed by an overall factor exp(−Sw), the partition function
includes processes in which an S3 baby universe supported byH3-
flux “bubbles off” at some space-time point x and is absorbed
later on at y (x, y ∈ R

4). From the low-energy perspective, this
is equivalent to an instanton (of charge n and action Sw/2 ∼

|n|/f ) at x and a corresponding anti-instanton at y. Calculational
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control in semiclassical gravity requires r0 ∼

√

|n|/f ≫ 1. This
should then give rise to a cosine potential for θ and further
instanton-induced operators. It has, however, been argued that,
in contrast to the instantonic situation, no such potential is
induced because of the unavoidable pairing of instanons and
anti-instantons (Heidenreich et al., 2016). Counterarguments
have been given (Hebecker et al., 2017), based essentially on the
intuition that local physics is ignorant of the overall constraint
on instantons vs. anti-instantons in a very large space-time (recall
that the action stays finite as |x− y| → ∞). However, this debate
is overshadowed by a much deeper issue which will permeate
the rest of this review: Once one allows for wormholes, one
has effectively allowed for baby-universes propagating between
points x and y. But then such baby universes must also be allowed
to be part of the initial and final states of any process. More
generally, there exits a “baby-universe state” in addition to our
space-time and any wormhole effects (such as the naive cosine
potential) depend on it.

2.3. Dilatonic Wormholes
Before coming to the physical effects of wormholes and baby
universes, we want to briefly comment on generalizations
of the Giddings-Strominger solution which involve a dilaton
(Giddings and Strominger, 1988a, 1989b; Bergshoeff et al., 2006;
Heidenreich et al., 2016; Hebecker et al., 2017). This is important
since such dilatons are always present in the simplest stringy
models allowing for wormholes.

Consider an action in which the axionic kinetic term depends
on a further massless scalar field φ,

S =

∫

d4x
√

g
(

−

1

2
R+

1

2
K(φ)gµν∂µθ∂νθ +

1

2
gµν∂µφ∂νφ

)

,

(13)
or equivalently

S =

∫

d4x
√

g
(

−

1

2
R+

1

2
F(φ)HµνκH

µνκ
+

1

2
gµν∂µφ∂νφ

)

,

(14)
with F ≡ 1/(3!K). As before, spherical symmetry ensures
that the equation of motion for H is automatically satisfied. A
new, non-trivial differential equation for the radial profile of φ
arises. Remarkably, the differential equation for grr (the only non-
trivial part of the Einstein equation) decouples and the metric
(11) remains a solution5. We will not discuss the solution φ(r)
in any detail. It is, however, interesting to note that, switching
from H3/B2 to dθ/θ for the moment, the common trajectory
{φ(r), θ(r)} describes a geodesic in field space. This generalizes
to the case of several axionic and several non-axionic scalars (cf.
Footnote 5 and Arkani-Hamed et al., 2007b).

5In fact, the metric (11) solves the equations of motion of the more general action

S =

∫

d4x
√

g
(

−

1

2
R+

1

2
GIJ (φ)g

µν∂µφ
I∂νφ

J
)

, (15)

where a set moduli φI and a (non-positive-definite) metric GIJ on moduli space

have been introduced (Arkani-Hamed et al., 2007b).

FIGURE 5 | Extremal (Left) and cored (Right) gravitational instanton.

Motivated by stringy and supergravity examples, we now
restrict attention to the special case

F(φ) =
1

3! f 2
exp(−βφ). (16)

Without loss of generality one can assume β ≥ 0. Three different
classes of solutions can be distinguished: First, as long as β <

2
√

2/3, the Giddings-Strominger wormhole continues to exist
(metric of 11 with C < 0). This is the case of our main
interest. Second, there is the extremal gravitational instanton,
corresponding to C = 0. The geometry is a flat space-time with
the origin removed, but φ diverges as one approaches r = 0.
Third, there are “cored gravitational instantons,” corresponding
to C < 0. In this case one has a curvature singularity at
r = 0 (cf. Figure 5). The last two cases have the significant
drawback that they are not fully controlled within the low-energy
effective theory and we will hence not discuss them further
(see however Bergshoeff et al., 2006; Heidenreich et al., 2016;
Hebecker et al., 2017).

In the simplest (usually highly supersymmetric) string
compactifications, axions are always accompanied by a dilatonic
scalar or saxion, as above. However, the simplest models do
not allow for β < 2

√

2/3. Naively, one may then hope that
wormholes do not arise in consistent theories of quantum gravity.
But it turns out that the problem with the allowed β range can
be overcome (Tamvakis, 1989; Bergshoeff et al., 2005; Arkani-
Hamed et al., 2007b; Hertog et al., 2017). The underlying idea
is simple: A wormhole can be charged under several axions, each
with its own saxion with a certain β . The trajectory which the
solution follows in the saxionic field space involves all the axions
and can be characterized by a single effective β . The latter can be
in the desired range even if the β-values of the ingredients were
not6. Thus, one can by now be certain that Giddings-Strominger
wormholes exist in the euclidean version of supergravity theories
coming from string theory. This makes all the puzzles to be
discussed below even more troubling7.

6The necessary condition for the existence of wormholes and the way in which

multiple axions help to satisfy it can also be discussed in the language of time-like

geodesics in the axion/saxion field space, cf. Footnote 5.
7A simpler but less rigorous argument that wormholes are “not in the swampland”

can be given as follows: Surely somewhere in the string theory landscape there
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3. THE EFFECT OF WORMHOLES

Two results of the previous section are essential for what follows.
First, a dilute gas of instantons can be resummed (or “integrated
out”) to obtain a correction to the effective action. Second, a very
similar contribution to the path integral arises in gravitational
theories with an axion. The objects to be summed over are
wormholes or gravitational instantons. The main novelty is that
they couple to the low-energy degrees of freedom (including
the background metric) at two spacetime points rather than just
at one. We now want to discuss the correction to the effective
action arising in this second case following (Coleman, 1988c;
Preskill, 1989; Coleman and Lee, 1990b). We note that, while
the specific Giddings-Strominger solution discussed above may
be the simplest and best understood euclidean wormhole, the
following analysis does not rely on any of its details.Whatmatters
is that the euclidean path integral includes contributions from
topologies like that of Figure 4 (on the right). All that we will use
is that they are exponentially suppressed by a sufficiently large
euclidean action and that the coupling to soft field modes occurs
at two uncorrelated points (Hawking, 1988, 1990b).

3.1. The Bilocal Action
We begin with a heuristic derivation of the bilocal action which
captures the effect of wormholes at the semi-classical level. For
this, we first recall the field theoretic partition function with
instantons, Equation (5), and restrict it to the one-instanton
sector for notational simplicity:

Z1 =

∫

Dφ Dθ e−S[φ,θ]

(∫

d4x e−SI+iθ(x)

)

. (17)

Here the prefactor M4 has been reabsorbed in the instanton
action. (To be careful, one should then either work in Planck
units or at least choose x dimensionless.)

The above is unnecessarily explicit in that θ has been separated
from all the other fields φ. At the same time, it is oversimplified
in that only the dependence of the instanton action on θ has been
kept: SI[θ] ≡ SI + iθ . A more general version, in which θ is just
one of the many fields denoted by φ, reads

Z1 =

∫

Dφ e−S[φ]

(∫

d4x e−SI [x,φ]

)

. (18)

Here SI[x,φ] is the single-instanton tunneling action for the
space-time point x in a background field φ. It is clear that
obtaining this action in a concrete model is highly non-trivial:
One would have to find the analog of the well-known instanton
or wrapped-euclidean-brane solution in an, in general non-
constant, background of all fields in the theory. However, we are
satisfied with an approximation: the fields φ are restricted to be

exists a low-energy effective theory containing an ungauged abelian Higgs model.

Clearly, the globalU(1) of this model will not be exact. The resulting effective axion

will thus have a non-perturbatively generated cosine potential. This potential is in

general exponentially suppressed and hence very small. The saxion, i.e., the radial

direction of the complex Higgs scalar, is stabilized. Thus, wormholes based on this

effective axion will exist.

soft relative to the instanton scale M. The action can then be
expanded in terms of local operators:

SI[x,φ] = SI + c1φ(x)+ c2φ
2(x)+ c3(∂φ(x))

2
+ · · · . (19)

Here SI is the instanton action on the unperturbed background,
say at φ ≡ 0. With this, the transition to wormholes is simple.

Indeed, the wormhole analog of (18) is

Z1,w =

∫

Dg Dφ e−S[g,φ]

(∫

d4x
√

g(x)

∫

d4y
√

g(y)e−Sw[x,y,g,φ]

)

.

(20)
Here

∫

Dg stands for the integral over all soft (relative to the
wormhole size) metrics on the topologically trivial background
universe into which the wormhole is inserted. In addition, φ
stands for all further fields, including the axion or the dual 2-
form8. As before, appealing to our restriction to soft fields and
metric configurations, the wormhole action can be written as a
series of local operators at x and y:

Sw[x, y, g,φ] = Sw + c1φ(x)+ c1φ(y)+ c3φ(x)φ(y)+ · · ·

+c4(∂φ(x))
2(∂φ(y))2 + · · · (21)

For simplicity terms depending on a non-trivial metric
background have not been displayed. It is clear that such terms,
involving various curvature invariants at x and at y as well
as products thereof, will also be present. The crucial novelty
compared to the instanton case is that one is dealing with a
double functional Taylor expansion and that products of local
operators involving all fields will in general arise. Thus, one
generically has the bilocal expression

Sw[x, y, g,φ] = Sw +

∑

ij

1̃ijOi(x)Oj(y), (22)

or, equivalently,

e−Sw[x,y,g,φ]
=

1

2

∑

ij

1ijOi(x)Oj(y). (23)

In the last expression, the exponential exp
(

∑

ij 1̃ijOiOj

)

has

been expanded and the suppression factor exp(−Sw) has been
absorbed in the new coefficients1ij:

1ij ∼ e−Sw . (24)

Finally, one inserts (23) in (20) and writes down analogous
expressions for any number of wormholes. In doing so, the dilute
gas approximation is used, i.e., that typical distances between
wormhole ends are much larger than the wormhole diameter.
The sum exponentiates, exactly as in the instanton case, giving

Zw =

∫

Dg Dφ e−S[g,φ]+ I (25)

8If one uses specifically the Giddings-Strominger solution, the value of the axion

corresponds to the one far away from the wormhole. The fast change of the axion

inside the throat is not part of what we want to call the background field.
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with the bilocal action

I =
1

2

∫

d4x
√

g

∫

d4y
√

g
∑

i,j

1ijOi(x)Oj(y). (26)

3.2. Local Action Involving α Parameters
Following Coleman (1988c) and Preskill (1989), one can give
the action I a local form at the expense of introducing a set
of auxiliary parameters αi. Up to some irrelevant normalization
factor, one has

eI =

∏

i

(∫

dαi

)

exp



−

1

2

∑

i,j

αi1
−1
ij αj





exp

(

∑

i

αi

∫

d4x
√

gOi(x)

)

. (27)

It is natural to write the original action S of our physical system
using the basis of local operators as in the wormhole action I
above:

S[g; λ] =
∑

i

λi

∫

d4x
√

gOi(x). (28)

Here λi are the coupling constants. For example, λ1, λ2, and
λ3 could be the cosmological constant, the coefficient of the
Einstein-Hilbert term, and of the R2-term, respectively. To
minimize the notational complexity, we suppress the dependence
on the non-metric fields φ here and below. Of course, all of the
above holds with as many further fields as one needs.

Comparing (27) and (28), one sees that the effect of
wormholes amounts to shifting the coupling constants of the
original action: λi → λi − αi. Put differently, one can use the
“shifted” action S[g; λ − α], remembering of course to integrate
over the α parameters. The partition function with wormhole
effects included (see Equation 25 and recall that we suppress φ)
now reads

Zw =

∫

Dg e−S[g;λ]+I[g]

=

∫

Dg Dα G(α) e−S[g;λ−α]

=

∫

Dα G(α)

[∫

Dg e−S[g;λ−α]

]

, (29)

with G(α) = exp
(

−
1
2

∑

i,j αi1
−1
ij αj

)

the gaussian weighting

factor. In the above, we also use the somewhat sloppy notation
Dα for the integration over all αi, in spite of the fact that the index
i is discrete.

In the last expression in (29), one recognizes the familiar
partition function without wormholes inside the square brackets.
The wormhole effect is reduced to shifting the coupling constants
of that theory by αi. Since these α parameters are constants in
space and time, one can take the point of view that they simply
have to be measured and no relevance should be ascribed to the
gaussian weight factor governing their distribution. By contrast,
one may argue that statistical predictions for their values are

FIGURE 6 | The effective action considered as an amplitudes (Left) and an

amplitude including semiwormholes (Right).

possible, which of course involves this weight factor. This is a
multiverse-type situation, discovered (and discussed by many
authors) long before the string theory multiverse entered the
stage.

3.3. Baby Universes
The physics behind α parameters becomes more lucid if one

thinks of the wormholes in terms of S3 baby universes which
are emitted and absorbed by our macroscopic space-time (left
hand side of Figure 6). To derive the corresponding formulae,
one considers the situation with a single operator and hence a
single α parameter for notational simplicity. Equation (27) then
reads

eI =

∫

dα
√

2π
exp

(

−

1

2
α2 + α

√

1

∫

d4x
√

gO(x)

)

, (30)

obtained after rescaling α → α
√

1 and introducing the
normalization factor 1/

√

2π for later convenience.
Equation (30) can be viewed as a power series in O(x)

encoding the sum of process in which baby universes are created
and annihilated at locations corresponding to the various values
taken by x. All of this has of course to be inserted under the Dg
integral over soft backgroundmetrics. Tomake this manifest, one
defines baby universe creation and annihilation operators a†, a
satisfying the usual commutation relation [a, a†] = 1. The state
with no baby universes |0〉 is referred to as the baby universe
vacuum. The normalized state with n baby universes is then given
by

|n〉 =
(a†)n
√

n!
|0〉. (31)

The analogs of the conventional position operator of the
harmonic oscillator and its eigenstates are defined as

α̂ = a+ a†, α̂|α〉 = α|α〉. (32)

Since the ground state obeys |0〉 ∼

∫

dα exp(−α2/4)|α〉, one
immediately sees that

〈0|(a+ a†)n|0〉 =

∫

dα
√

2π
exp

(

−

1

2
α2
)

αn. (33)

This allows one to rewrite (30) according to

eI =

∫

dα
√

2π
exp

(

−

1

2
α2
)

exp
(

α Õ

)

= 〈0| e(a+a†) Õ
|0〉,

(34)
where Õ is an abbreviation for Õ =

√

1
∫

d4x
√

gO(x).
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Equation (34) can be considered a convenient formal
expression for a power series in Õ. But it is much more than
that: It formalizes the interpretation of the partition function
and of the process depicted on the left hand side of Figure 6 in
terms of a baby universe Hilbert space. Equation (34) calculates
the amplitude relating two spatial slices of the parent universe,
allowing for any number of wormholes to be insterted between
initial and final time.

The most important point here is that, in this approach, it
is both easy and obviously necessary to allow for more general
initial and final states: There is simply no reason to treat those
as baby universe vacua. For example, one can also consider
the transition amplitude between states with n1 and n2 baby
universes:

〈n2|e
(a+a†) Õ

|n1〉. (35)

In fact, arbitrary states ψ1 and ψ2 can be considered, another
relevant case being that of so-called α-vacua:

〈α|e(a+a†) Õ
|α〉 = eα Õ . (36)

Here we ignore the divergent prefactor related to the δ-function
normalization of “momentum eigenstates.”

It is easy to see that, for an arbitrary number of operators and
arbitrary initial and final states, the above amplitude generalizes
to

〈ψ2| exp
(

∑

i

√

1ii

∫

d4x
√

gOi(x)(ai + a†
i )
)

|ψ1〉. (37)

Here, a basis of local operators has been chosen such that the

matrix 1ij is diagonal. The a†
i and ai carry the same index as

the local operators and create or annihilate baby universes of
type i. If everything is based on the Giddings-Strominger solution
of lowest charge, one may think of these baby universes as of
transverse spheres S3 in a perturbed wormhole geometry (or
some appropriate quantum superposition thereof).

The Hamiltonian (a + a†) Õ was first derived by Coleman
(1988a) by summing explicitly over all possible wormhole and
semiwormhole configurations. For completeness, we now briefly
explain this computation, for the case of a single type of
wormhole for simplicity. Consider a 4-manifold M of the type
shown in the right hand side of Figure 6. The initial boundary
consists of a large 3-manifold parent universe and n1 incoming
baby universes. Of those, n1 − r later on merge withM. The final
boundary consists again of a large 3-manifold and n2 outgoing
baby universes, n2 − r of which emerged from M. Thus, r baby
universes simply travel from the initial to the final boundary
without interacting with the parent universe. Furthermore m
baby universes form complete wormholes on M. The path
integral sums over all such configuration:

∑

r,m

e−S
∣

∣

n1 ,n2
. (38)

As before, one assumes that each semiwormhole attached to the
parent universe contributes a factor Õ =

√

1
∫

d4x
√

gO(x).

Taking into account the combinatorics and carrying out the
summation overm yields

∑

r,m

e−S
∣

∣

n1 ,n2
=

√

n1!
√

n2! e
Õ

2/2
min (n1,n2)
∑

r=0

Õ
n1+n2−r

(n1 − r)! (n2 − r)! r!

= 〈n2|e
(a†

+a)Õ
|n1〉. (39)

Here the second equality follows by applying Baker-
Campbell-Hausdorff in the form exp[(a + a†)Õ]=
exp(a†Õ) exp(aÕ) exp(Õ2/2) and inserting the identity operator
written as a sum over |r〉〈r|. Thus, the language of a and a†

introduced earlier is nothing but a convenient way of counting
wormhole topologies.

3.4. The Perspective of α-vacua and the
Wormhole Density
It is clear that the appearance of α parameters in the path
integral has the potential to change physics dramatically:
Since these parameters are space-time independent, the whole
universe (including its time evolution) can be thought of as a
superposition of independent universes, each with a specific set
of fixed α parameters.

This has become even more apparent in the last subsection,
when the baby universe state characterized by the α parameters
was introduced. Since all effective operator coefficients or
couplings are shifted according to λi → λi − αi , the baby
universe state determines the 4d low-energy effective field theory.
A whole landscape of such theories, equivalent to the space of
α-vacua, exists. At this level, every hope of predicting coupling
constants from some fundamental theoretical principle appears
to be lost.

The situation might not be, however, quite as bad: for
transitions among baby universe vacua an integral over the α
parameters with a very specific measure arises. This makes sense
in a compact euclidean universe, for example for a large 4-sphere
(or a set of large 4-spheres), where no initial or final baby universe
state is required. Specifically a 4-sphere geometry is reminiscent
of the Hartle-Hawking definition (Hartle and Hawking, 1983)
of the Wheeler-DeWitt wave function of the universe (DeWitt,
1967; Wheeler, 1967). Thus, one may think of the integral over
α parameters (with the concrete measure derived earlier) as of a
preferred wave function of the baby universe state. This point of
view allows for at least a statistical prediction of effective coupling
constants.

It is essential that the α-parameters are eigenvalues of the
Hamiltonian governing the interaction of our large-scale 4d
world with the baby-universe state. This was derived above and it
can also be seen intuitively: one can not distinguish in principle
whether a wormhole attached at a given position x corresponds
to a baby universe being absorbed or being created. Hence one
always encounters the combination (a+a†)O(x) ≡ α̂O(x) in the
effective Hamiltonian. When an operator coefficient is measured,
one is projected to a subsector of the theory belonging to a certain
eigenvalue α. Further dynamical evolution can not change this
value.

As a consistency check one can estimate the density of
wormhole ends following Preskill (Preskill, 1989). This is crucial
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to understand the validity of the dilute gas approximation.
Returning to the perspective of the bilocal action, section 3.1,
one can focus on a single operator, the cosmological constant.
According to (26), the effect of wormhole insertions is then
encoded in

eI ∼ e
1
2V

2
41 =

∞
∑

n=0

1

n!

(1

2
V2
41
)n

, (40)

whereV4 =
∫

d4x
√

g(x) and1 ∼ e−Sw . Here the n-th order term
corresponds to n wormholes. The dominant contribution to the
sum comes from terms with n ∼ Nw ≡

1
2V

2
41, such that the

wormhole density in typical configurations is

Nw

V4
=

1

2
V41. (41)

One arrives at the disturbing conclusion that this density grows
with the volume V4 .

Fortunately, the result changes if one considers physics at fixed
α. According to (36) the wormhole sum is now encoded in

eα V4

√

1
=

∞
∑

n=0

1

n!

(

α V4

√

1
)n
. (42)

This sum is dominated by terms with n ∼ Nw,α ≡ α V4

√

1. A
non-divergent density of wormhole ends in spacetime follows:

Nw,α

V4
= α

√

1. (43)

Thanks to the suppression factor
√

1 ∼ e−Sw/2, this
density is expected to be very small for large wormholes
with a correspondingly large euclidean action. The problem
encountered above in the vacuum-to-vacuum amplitude, |0〉 →
|0〉, appears to have been resolved. Technically, the reason is that
the sum has been re-organized by combining events where a
wormhole is absorbed and created at the same point: a, a†

→

(a + a†). However, together with the suppression factor e−Sw/2

comes, of course, the unknown parameter α. In the integration
over α, the problem of an overdensity of wormhole ends can in
principle reappear. This is the subject of section 5.1

3.5. Multiple Large Universes
Only the case of one large parent universe with many small-
scale wormholes attached has been considered so far. It is,
however, completely logical to allow for multiple large universes.
Wormholes can connect one large universe to itself or to another
large universe, cf. Figure 7. When all wormholes are integrated
out, the large universes become disconnected.

Following Fischler and Susskind (1989) and Preskill (1989),
one can single out one particular large universe and consider the
expectation value of an observableA(x) in that universe. Keeping
the values of the α parameters (which are common to all large
universes) fixed for the moment, one has

〈A(x)〉α =

∫

Dgd e
−S[gd;λ−α]A(x). (44)

FIGURE 7 | Large universes connected by wormholes—figure adapted from

Fischler and Susskind (1989).

Here Dgd (with “d” for disconnected) stands for the
integration over all large-scale metrics, including a summation
over manifolds with many components. Making this
summation over the number of disconnected components
explicit,

〈A(x)〉α =

∞
∑

N

1

N!

N
∏

n=0

(∫

Dgn e
−S[gn;λ−α]

)∫

Dg e−S[g;λ−α]
A(x)

= exp
(

∫

Dg′e−S[g′;λ−α]
)

∫

Dg e−S[g;λ−α]
A(x). (45)

Here, in the first line, g is the metric on the distinguished
large universe and gn are the metrics on the other disconnected
components. The second line used the fact that the sum over
disconnected geometries exponentiates, introducing the variable
g′ for the metric on a generic such component.

Reinstating the α-integration gives

〈A(x)〉 =

∫

Dg Dα G(α) P(α) e−S[g;λ−α]
A(x) , (46)

with the probability distribution

P(α) = exp
(

∫

Dg e−S[g;λ−α]
)

. (47)

In the calculation of the partition function, i.e., without the
insertion of a local operator, no connected component is singled
out. The sum over topologies then exponentiates without the
need to split of one of the factors:

Z =

∫

Dα G(α) P(α). (48)

As discussed later, the double exponential P(α) is
responsible both for the initial excitement in wormhole
physics (Coleman’s solution to the cosmological
constant problem Coleman, 1988c) as well as for
a particularly serious conceptual problem (the FKS
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catastrophe Fischler and Susskind, 1989; Kaplunovsky,
unpublished).

4. PHENOMENOLOGICAL APPLICATIONS

4.1. Random Values of Couplings
and the Cosmological Constant Problem
If one accepts that euclidean wormholes contribute to the path
integral, one may clearly be concerned that all of the familiar
local physics will break down. The reason is that the action of
the wormhole contributions does not grow with the separation of
the two points where they attach to our macroscopic spacetime.
The possible loss of quantum coherence has also been initially
discussed in this context. However, it has quickly been established
(Coleman, 1988a; Giddings and Strominger, 1988b) that a local
effective field theory description can be recovered by introducing
α parameters in the path integral or, equivalently, α vacua in the
canonical approach (cf. the discussion in the last chapter).

The implications of this are nevertheless quite dramatic:
All coupling constants depend on the α vacuum, i.e., on
the a priori unknown baby universe state. This state is an
unavoidable additional piece of information which has to come
on top of the quantum-field-theoretic initial conditions given
on a Cauchy surface of our spacetime manifold. By measuring
couplings one is effectively determining some of the infinitely
many α parameters. There seems to be no hope of predicting
these couplings on the basis of a unique theory of everything,
even if the latter was known to us. From a modern point of
view, this is of course very similar to the situation which has
anyway been widely accepted after the advent of the string
theory landscape (Bousso and Polchinski, 2000; Giddings et al.,
2002; Kachru et al., 2003; Susskind, 2003; Denef and Douglas,
2004). In fact, both ways of randomizing coupling constants
may be at work simultaneously. The familiar deep issue of the
measure problem of enternal inflation (the leading candidate
mechanism for populating the landscape) has a cousin in the
form of the measure on or the dynamics of the baby universe
state.

The above situation may be viewed as the generic
phenomenological implication of euclidean wormholes or
gravitational instantons. For the initial popularity of this
paradigm, it was crucial that an apparently very successful
attempt was made early on to derive a statistical prediction for
one of the couplings—the cosmological constant (Coleman,
1988c) (for early applications of wormholes to other
phenomenologically relevant couplings see Grinstein and
Wise, 1988; Choi and Holman, 1989; Gilbert, 1989; Nielsen and
Ninomiya, 1989; Preskill et al., 1989). In fact, a distribution
infinitely peaked at zero was found, making the prediction
exact. Subsequently many caveats were discovered such that the
“cosmological constant prediction” is not viewed as a central
motivation for wormhole physics at present. Nevertheless,
because of its intrinsic interest and its immense historical
importance we review the argument in the remainder of this
subsection (for reviews discussing this as well as other early

approaches to the cosmological constant problem see Weinberg,
1989; Carroll et al., 1992).

The argument is due to Coleman (1988c) and can be given
using just the leading terms of the bare gravitational action:

S[g] =

∫

d4x
√

g

(

3−

M2
P

2
R+ · · ·

)

=

∫

d4x
√

g
∑

i

λiOi.

(49)
Here λ1 = 3 and λ2 = −M2

P/2 characterize the cosmological
constant and the Planck scale. As discussed before, including
the effects of wormholes and allowing for multiple large parent
universes (as in Figure 7) leads to the partition function
(cf. Equation 48)

Z =

∫

Dα exp



−

1

2

∑

i,j

αi1
−1
ij αj





exp

(

∫

Dg exp

(

−

∫

d4x
√

g
∑

i

(λi − αi)Oi

))

. (50)

Since wormholes have been integrated out, the relevant metric in
the above expression refers to a single parent universe. As argued
in Coleman (1988c), this expression is dominated by values of α
which correspond to 3eff = λ1 − α1 > 0. Furthermore, the sum
over topologies is dominated by spheres. The path integral over
metrics can then be estimated in the saddle point approximation:

Z =

∫

Dα exp



−

1

2

∑

i,j

αi1
−1
ij αj





exp

(

exp

(

−

∫

d4x
√

g

(

3eff −
M2

P, eff

2
R

)))

, (51)

whereM2
P, eff

= M2
P + 2α2 and the sum is restricted to i, j = 1, 2.

Thus, all one needs is the action of a 4-sphere solution with the
above effective Planck scale and cosmological constant. Given
that a 4-sphere of radius r has volume V4 = (8/3)π2r4 and scalar
curvature R = 12/r2, this action is

Ssphere = −

24π2M4
P, eff

3eff
. (52)

This gives

Z =

∫

Dα exp
(

−

1

2

∑

i,j

αi1
−1
ij αj

)

exp

[

exp

(

96π2

(

M2
P/2+ α2

)2

(

3+ α1
)

)]

, (53)

where α1 was redefined α1 → −α1.
The key point of this result is the double exponential

enhancement of the measure governing the α-parameter
integration at the point where the effective cosmological constant
vanishes.
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As already emphasized, serious caveats exist and the above
logic is nowadays generally not considered a valid solution to
the cosmological constant problem. First, the measured value of
the cosmological constant is not any more consistent with zero.
Second, firm evidence exists for cosmological inflation, and it
is not clear how such an early quasi-de-Sitter period fits in the
argument for vanishing 3. Finally, as we will discuss in detail in
sections 5.1 and 5.2, the above argument may run into problems
with an overdensity of wormholes (the FKS catastrophe) and the
sign or negative-mode problem of euclidean quantum gravity.

Nevertheless, reinterpretations of Coleman’s mechanism have
recently been explored in the context of the cosmological
constant and other fine tuning problems of the Standard Model
(Kawai and Okada, 2011, 2012; Hamada et al., 2014, 2015).
The authors take a Lorentzian approach to the dynamics of
multiple large universes connected by wormholes. Such a real-
time formulation avoids the problems of the euclidean path
integral of gravity, but at the same time modifies the conclusions
obtained by Coleman. The analysis is based on the Wheeler-
DeWitt wave function for a system of multiple large universes
emerged in an evolving baby universe gas. By tracing out
the unobserved large and baby universes, a density matrix ρ
describing our large universe is derived. The dependence of ρ
on the universe volume z and on the couplings of the effective
action, i.e., on the wormhole-induced α parameters, is studied. A
problematic feature is the divergence of integrals over universe
volumes z arising in the density matrix calculation. It is treated
by an IR cutoff zIR corresponding to a maximum universe size.
Under these assumptions, it is argued that the density matrix
ρ peaks at vanishing cosmological constant, as in Coleman’s
mechanism, albeit with a much milder power-law dependence.
This is interpreted as a prediction for a vanishing effective
cosmological constant at asymptotically large times.

4.2. Axion Potentials From Wormholes
The main current phenomenological interest in wormholes lies
in their interplay with axions. Axions have been an important
ingredient in models of particle physics and cosmology since
they were first proposed as solutions to the strong CP problem,
and have found much wider applications ever since, e.g., as
components of dark matter or as inflaton candidates. From
a top-down perspective, axions are among the most generic
outcomes of string compactifications, and are hence extremely
well motivated (see e.g., Arvanitaki et al., 2010).

Axions enjoy a global shift symmetry φ → φ + ǫ that
prevents the appearance of a potential at the perturbative level.
It is only non-perturbative effects such as charged instantons
and wormholes that can break these symmetries and give
axions a mass. In fact, the explicit example of the Giddings-
Strominger wormhole arises in the presence of axions and
carries a corresponding charge given by (9). This is precisely
the type of object required to generate an axion potential, as we
review next following Rey (1989) (see also Alonso and Urbano,
2017).

Recall the discussion of section 3.3 on the wormhole
correction I[g,φ] to the low energy effective action of a large
parent universe propagating in a plasma of baby universes. It is

given by the effective Hamiltonian (37), which can be written in
the form Rey (1989)

eI = 〈ψ2| exp

[

∑

n∈Z

e−Sw(n)/2Kn

∫

d4x
√

g(x)On(x)(an + a†
−n)

]

|ψ1〉.

(54)

Here, the exponential factor e−Sw(n)/2 has been extracted from
the matrix 1mn, making the dependence on it explicit. The
remainder is denoted by Kn. The states |ψi〉 live in the Fock
space of baby universes on which the parent universe propagates.

Correspondingly, an and a
†
n represent baby universe annihilation

and creation operators.
Baby universes associated to Giddings-Strominger wormholes

carry an axionic charge given by (9). That is, they satisfy [Q, an] =

−nan and [Q, a†
n] = na†

n, where Q generates the U(1) axionic
shift symmetry. This charge is the reason why the combination

(an + a†
−n) appears in (54), generalizing Equation (37): it is

impossible for an observer in the parent universe to distinguish
between the annihilation of a baby universe of charge n, and the
creation of a baby universe of charge −n. These two processes
hence generate the same local perturbation On. Total charge
conservation implies that the effective operators On(x) must be
charged as well [Q,On] = nOn, i.e., they transform as On(x) →
einǫOn(x) under the axionic shift φ → φ + ǫf . From this one
can deduce that the local operators must be of the form On(x) =
einφ/fOS(x), whereOS(x) is a singlet.

One can explicitly evaluate (54) by choosing the baby
universes to be in an α-eigenstate (introduced in section 3.3), i.e.,

|ψ1〉 = |ψ2〉 = |α〉, with (an+ a†
−n)|α〉 = αn|α〉.

9 The correction
to the low energy action of a large parent universe propagating in
such a background is hence given by

I =
∑

n∈Z

e−Sw(n)/2Kn

∫

d4x
√

g(x)OS(x)|αn| exp
( inφ

f
+ iδn

)

(55)

=

∑

n∈N0

e−Sw(n)/2Kn

∫

d4x
√

g(x)OS(x)|αn| cos
(nφ

f
+ δn

)

where αn = |αn|e
iδn . Of course, it is easy to consider propagation

between more general baby universe states. For example, |ψ1〉 =

|ψ2〉 = |0〉 would lead to an integral of (55) over αn with a
Gaussian measure analogous to (34).

The operatorOS can be expanded in a set of singlet operators,
e.g., O = 1 + aR + . . .. Of these, the most interesting one is
the unit operator, which leads to a potential for the axion. Taking

9Since the operator An : = an + a†
−n is not Hermitian, one may worry that

no basis of eigenvectors exists. To show its existence notice that the operators

Cn : = An + A†
n, C̄n : = i(An − A†

n) are Hermitian. A quick calculation shows

that [Cn, C̄m] = 0, thus Cn and C̄n can be diagonalized simultaneously with

an orthonormal basis. Since 2An = Cn − iC̄n these basis elements are also

eigenvectors of An. This also shows that the eigenvalues of An, which are precisely

the α-parameters, will generically be complex.
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into account only wormholes with charge n = ±1 the induced
potential is of the form

Vw(φ) ∼
|α1|

r40
e−

Sw
2 cos

(

φ

f
+ δ

)

. (56)

The coefficient of the potential is hard to calculate in general. In
most cases (in particular for f < MP) its precise value is not very
relevant due to the dominant exponential suppression e−Sw/2. In
the following, whenever an explicit estimate is needed, we will
follow (Alonso and Urbano, 2017) and use the wormhole neck
radius r40 = C = (24π4f 2M2

P)
−1 as in (56). At this stage, if no

other potential exists, the phase δ ≡ δ1 is unphysical and could be
absorbed by a shift in the axion field. Generically, in the presence
of other terms in the potential, there is no reason why δ1 should
not appear. The dimensionless parameter |α1| depends on the
baby universe state and is not predicted by the theory. For explicit
evaluations one can assume that |α1| is an order one parameter
(Alonso and Urbano, 2017). A possible justification could be the

expectation value
∫

d|α|e−|α|2
|α|2 =

√

π/4 of order one. It is
not unreasonable to use the Gaussian distribution since the latter
appears when considering propagation between baby universe
|0〉-vacua. In principle, however, the α-parameters could take any
value.

4.3. Superplanckian Axions
4.3.1. Large Field Excursions and Inflation
One of the most interesting applications of axions is inflation (see
e.g., Baumann, 2011; Baumann and McAllister, 2015; Westphal,
2015 for reviews with emphasis on stringy contexts). The
perturbative shift symmetry that axions enjoy makes them ideal
inflaton candidates in models of large field inflation. In these
constructions, the inflaton traverses distances in field space larger
than the Planck scale, 1φ & MP. Generically, such large field
displacements imply a high UV sensitivity of the model since
higher-order terms in the potential, 1V(φ) ∼ φn+4/µn

UV ,
become relevant (here µUV . MP is a UV cutoff scale). This
may clash with the slow-roll requirement of a smooth potential.
Successful models of large field inflation hence demand a fine
control of UV corrections, as it is indeed provided by axions.

One of the main reasons for the current interest in large field
models is their prediction of observable primordial tensor modes
in the CMB. These are parametrized by the tensor-to-scalar ratio
r. Under mild assumptions, the Lyth bound (Lyth, 1997) relates r
to the inflaton field displacement,

1φ &
( r

0.01

)1/2
MP. (57)

The current experimental bounds (Ade et al., 2015, 2016b,a) are
r < 0.07 (95% confidence level, Planck, BICEP2/Keck-Array
combined), with near future experiments expected to strengthen
this bound significantly. The combination of these searches with
the Lyth bound and the UV sensitivity of large field inflation
provides an ideal playground for testing UV features of effective
field theories and possibly quantum gravity.

As already emphasized, the main challenge facing large field
models is the control of UV corrections. Symmetries are required

to avoid a drastic tuning of higher dimension operators. This
is naturally realized by axions since, due to the shift symmetry
φ → φ + ǫ, the axion potential vanishes automatically. This
symmetry is mildly broken by non-perturbative effects, such as
instantons and wormholes, which generate a periodic potential
of the form

V(φ) = 34
∑

n

e−Sn cos

(

nφ

f
+ δn

)

= 34e−S1 cos

(

φ

f
+ δ1

)

+ . . . . (58)

Here 3 is a typical UV scale and n-dependent non-exponential
prefactors have been suppressed. As discussed previously,
gauge instantons and axionic wormholes induce such potentials
(Equations (6) and (56), respectively). Different harmonics
correspond to instantons/wormholes of different instanton
number/axionic charge n.

The idea of natural inflation (Freese and Kinney, 2015) is to
use the n = 1 term in (58). Neglecting higher harmonics is
justified in many cases due to the expectation that e−Sn

≪ e−S1

for n > 1. Slow roll inflation then requires f > MP (notice that
the maximum field displacement of the canonically normalized
axion is 2π f ). In this simplest form, models of natural inflation
are disfavored by Planck (Ade et al., 2015, 2016a,b). However,
this can be remedied by small corrections, e.g., from higher
harmonics. More importantly, natural inflation continues to play
the role of a “benchmark model” exemplifying in the simpest way
the interplay between UV theory constraints and observations.
Our considerations also have applications in models of axion
monodromy (Silverstein and Westphal, 2008; McAllister et al.,
2010).

One might try to use wormholes to generate the inflationary
potential, but one immediately runs into difficulties.
Semiclassically, the charge-n wormhole action is Sn ∼ nMP/f .
In the regime of interest, f & MP, higher harmonics are not
sufficiently suppressed, e−Sn+1

6 ≪e−Sn , at least for terms with
n . f /Mp. Thus, there is no hierarchy between the first few
terms in the series (58) and hence no perturbative control.

A closely related and more profound issue is the fact that
the lowest charge instantons are microscopic and subject to
strong corrections. The spectrum of microscopic instantons does
not need to resemble the classical spectrum of macroscopic
wormholes (just like the spectrum of charged elementary
particles does not resemble the spectrum of Reissner-Nordstrom
black holes). This suggests that the dominant axion potential will
be generated by some microscopic non-perturbative effect, over
which one has little control, and macroscopic wormholes will
only induce higher corrections. The ideal situation for inflation
would then take the form

V(φ) = 34
inf cos

(

φ

f

)

+

∑

n> nc

34
we

−Sw(n)/2 cos

(

nφ

f
+ δn

)

.

(59)
Here 3inf is the scale of the inflationary potential, generated
by a microscopic instanton. The sum is only over macroscopic
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wormholes, i.e., those whose radius of curvature is larger than
the cutoff lenght.

Given this setup, one may ask how important the wormhole
contribution is Montero et al. (2015) and Hebecker et al. (2015).
To have a successfulmodel of inflation, it should be subdominant:

34
we

−Sw(n)/2

34
inf

≪ 1. (60)

Because of the exponential dependence, this constraint is highly
sensitive to the wormhole action Sw(n) = (π

√

6/4) |n|MP/f . The
dependence on the prefactor 3w is much milder and one can,
as in (56), write 34

w ∼ r−4
n = 24π4f 2M2

P/n
2, where rn is the

radius of the S3 at the neck of the wormhole. The constraint (60)
becomes

34
we

−Sw(n)/2

34
inf

∼

e−(3π3/2) r2nM
2
P

r4n3
4
inf

≪ 1. (61)

This bound takes its tightest form for the wormholes with lowest
charge. One should, however, only consider those which are
controlled in effective field theory, i.e., whose neck radius rn is
larger than a UV cutoff scale rn & µ−1

UV . This condition defines nc
in (59). The constraint can now be further rewritten in terms of
the cutoff (Hebecker et al., 2015, 2017)

e−(3π3/2)M2
P/µ

2
UV

34
inf
/µ4

UV

≪ 1. (62)

One sees that, parametrically, inflation is in trouble in theories
with a high cutoff, µUV ∼ MP. The reason is that one has
an O(1) number in the exponent, hence an O(1) numerator,
and a parametrically small denominator. However, taking into
account the surprisingly large numerical prefactor 3π3/2 and the
value 34

inf
∼ 10−8MP relevant for phenomenological large field

inflation, the conclusion changes dramatically. One finds that the
inequality (62) is saturated at µUV ≃ 2.5MP (corresponding
to rn ≃ 0.4MP). Thus, even the smallest controlled wormhole
solutions appear to be harmless (Hebecker et al., 2017).10

4.3.2. The Weak Gravity Conjecture (WGC)
The inflationary potential (59) is perfectly acceptable from a
(bottom-up) effective field theory perspective. As just discussed,
macroscopic wormholes do not affect this potential significantly.
However, one may be concerned that the contribution from
smaller wormholes was removed by hand, and this is, at least
naively, the dominant one. To argue for generic constraints

10The exponentials in (61) and (62) are highly sensitive to the precise definition

of the cutoff or, equivalently, the critical radius rc above which wormholes are

considered “macroscopic.” This was analyzed in Hebecker et al. (2017) using

string compactifications with gs = 1 and self-dual compactification radius R.

Equating the (appropriate power) of the wormhole S3 volume with the volume

of the compact torus, (2π2r3c )
2
≡ (2πR)6, one obtains a suppression of e−S/2

∼

10−68. Imposing instead that the great circle of the S3 be equal to the torus S1s,

2πrc ≡ 2πR, the suppression becomes e−S/2
∼ 10−13. In neither of these cases are

macroscopic wormholes able to affect inflation. Nevertheless, minor modifications

of the definition of rc could change this conclusion.

coming from this regime, where one loses semiclassical control,
one has to resort to ideas about the quantum gravity swampland.

The concept of the swampland (Vafa, 2005) refers to the
set of apparently consistent low-energy effective field theories
which are, nevertheless, inconsistent with a UV completion
in quantum gravity. It arises most naturally in string theory,
where it represents the complement, in the space of effective
field theories, of the vast landscape of string compactifications.
Effective theories in the swampland are those that cannot arise
from a UV-complete fundamental theory, and in particular from
string theory.

Several criteria have been conjectured to discern whether
a given theory belongs to the swampland. Most of them
refer to properties of the spectra of operators charged under
gauge symmetries. The simplest and perhaps most solidly
founded of the swampland conjectures are the statements that
every symmetry must be local and that the whole lattice of
corresponding gauge charges consistent with charge quantization
must be populated (see e.g., Banks and Seiberg, 2011). That is,
for every symmetry there must exist a gauge potential (Aµ in the
case of a one-form), and there must exist states carrying every
possible set of charges (every integer charge for a singleU(1) with
an appropriate normalization).

A more stringent, albeit more speculative conjecture is the
WGC (Arkani-Hamed et al., 2007a): It states that at least some of
the charged states must be super-extremal, that is, their charge-
to-mass ratio must be larger than that of the corresponding
extremal gravitational solution:

zWGC ≡

( q

m

)

WGC
≥

(

Q

M

)

ext

. (63)

This is generally described as the statement that “gravity is
always the weakest force,” since when (63) is satisfied, the
gauge repulsion of two distant equal-charge objects dominates
their gravitational attraction. In case of a single U(1), the
extremal object corresponds to an extremal Reissner-Nordstrom
black hole, which in appropriate units satisfies zext = M−1

P .11

Since macroscopic gravitational solutions cannot be super-
extremal (super-extremal black holes contain a naked singularity,
violating cosmic censorship), one expects (63) to be satisfied by
microscopic objects. For such states, quantum corrections can
become relevant, pushing them away from extremality.

Now, what does all of this have to do with axions, wormholes
and inflation? In general, abelian gauge theories arise from p-
form gauge fields under which p-dimensional objects (i.e., whose
world-volumes are p-dimensional) are charged. The swampland
conjectures, and in particular the WGC, are expected to hold for
all possible p (Arkani-Hamed et al., 2007a). The case of particles

11The WGC has been motivated by the requirement that no stable bound

states with arbitrary charge should exist. Super-extremal objects implement this

requirement by permitting otherwise stable extremal black holes to decay through

Schwinger pair production. It remains to be rigorously proven, however, that this

requirement arises from fundamental consistency conditions. Unfortunately, the

exciting and active field of the WGC lies outside the scope of this review and we

limit ourselves to the axionic version and the consequences for natural inflation

since this directly relates to our main subject.
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with electric charge corresponds to p = 1, strings coupled to
a two-form field to p = 2 and, most relevant for our interests,
axions can be understood as p = 0 gauge fields, to which “zero-
dimensional” instantons/wormholes couple. This interpretation
can be made manifest by considering a standard one-form gauge
field in 5d, reduced on a circle to 4d. The component of the gauge
field along the circle, the Wilson line, becomes a periodic axion
in 4d, whose periodicity reflects the higher dimensional gauge
symmetry. In this way, one can relate the mass m and charge q
of a 5d particle to the action Sn and axionic charge n of a 4d
instanton, respectively. The WGC (63), when applied to axions
is hence expected to read

(

n

Sn

)

WGC

≥

(

N

SN

)

ext

. (64)

Just like extremal black holes satisfyM/Q ∼ eMP with e the gauge
coupling, one generally expects extremal instantons to satisfy
SN/N ∼ Mp/f . If the WGC (64) is satisfied by the instanton
of lowest charge n = 1, this means that S1f . MP. This is
incompatible with the basic requirements of large field natural
inflation (f & MP) in regimes of perturbative control, Sinst & 1.12

Setups in which the instanton that satisfies the WGC is not the
one of lowest charge have been proposed as a loophole to this
strong constraint (Rudelius, 2015; Brown et al., 2015, 2016) and
are being actively investigated (Hebecker et al., 2015)13.

The main difficulty in making the requirement (64) more
precise is to properly identify what one means by an extremal
instanton/wormhole. In setups where the axion arises from a 5d
gauge field, one can see that the higher dimensional extremal
black holes correspond to the extremal instantons introduced
in section 2.3. However, these setups always involve a dilaton
field (the radius of the compactification circle) for which the
coupling parameter β of Equation (16) is β = 2

√

2/3. Recall
from section 2.3 that wormhole solutions only exist for β <

2
√

2/3. Since themain interest (at least for inflation) is in the case
where the dilaton has been stabilized and disappears from the low
energy theory, i.e., β = 0, the relation to higher dimensional
black holes is lost, along with a rigorous notion of an extremal
instanton/wormhole.

Hence, with our current understanding, some amount of
guesswork is required to properly interpret (64) in a pure
axion-Einstein theory. Following Hebecker et al. (2017), we
will assume that, on the right hand side of the bound,
one needs to use the classical action of a macroscopic
wormhole. With this interpretation, the WGC states that some

12The loss of perturbative control has a particularly nice interpretation in string

theory compactifications, where one generically finds that trans-planckian axions

f & MP arise only in regimes where either the string coupling becomes strong, or

Kaluza-Klein/winding modes become light (Banks et al., 2003).
13More generally, current approaches to large field axion inflation can be

roughly divided into multi-axion (Kim et al., 2005; Dimopoulos et al., 2008) and

monodromy (Silverstein andWestphal, 2008; McAllister et al., 2010; Blumenhagen

and Plauschinn, 2014; Hebecker et al., 2014; Marchesano et al., 2014) models

(also useful in the relaxion mechanism Graham et al., 2015). The WGC and

related swampland ideas can be generalized to such setups, and lead to interesting

phenomenological features and constraints. The strength of these depends on

subtleties in the precise formulation of the WGC and is being intensely debated.

microscopic “wormhole” has a charge-to-action ratio larger than
its macroscopic counterpart, i.e., that Sn ≤ (π

√

6/4) |n|MP/f .
Finally, we return to the effective model of natural

inflation (59). As discussed before, the sum over macroscopic
wormholes is generically suppressed strongly enough to
be ignored. Ideally, one could hope that the uncontrolled
microscopic wormholes somehow disappear from the low
energy theory. However, the WGC implies14 quite the opposite,
namely that (at least some) microscopic wormholes/instantons
are less suppressed than their macroscopic counterparts and
inflation is strongly affected.

A possible caveat to this conclusion is the implicit assumption
that all instantons enter the potential with O(1) prefactors.
This, however, is not in principle required by the WGC. The
smoothness of the inflationary potential may be preserved if
the coefficients of dangerous corrections vanish or are highly
suppressed, i.e., if 1V ≪ 34

inf
(see de la Fuente et al., 2015 for

a model potentially realizing this possibility).
To discuss this point more generally, one can split the

correction to the potential according to

1V = 1V1 +1V2

1V1(φ) ∼
∑

n r
−4
n e−Sn for rn ≫ µ−1

UV
with

1V2(φ) ∼
∑

n r
−4
n (µUVrn)

α e−Sn for rn . µ−1
UV ,

(65)

with α > 0. Here 1V1 comes from macroscopic instantons or
wormholes and is harmless, as explained above. By contrast,1V2

comes from their microscopic counterparts and is dangerous
according to the WGC. The reason is that small, low-charge
instantons are not exponentially suppressed, e−Sn

∼ O(1) for
n ∼ O(1). However, the prefactor of those instantons can be
smaller than the naively expected r−4

n . This has been has been

parametrized by including a factor (µUV rn)
α .

As an example, let the microscopic instantons be gauge
instantons of some non-abelian 4d gauge theory. The presence
of charged fermions of massm does not affect the contribution of
large instantons (relative to 1/m). By contrast, the contribution
of small instantons is suppressed by (mrn)

α with α proportional
to the number of fermions (as in the lower line in (65)). An
analogous suppression can arise in the case of brane-instantons
due to the presence of fermionic zero-modes. These are generally
lifted by the SUSY breaking required for inflation. The formula
(65) is grossly oversimplified in that just a single threshold, µUV ,
occurs. It is only intended to illustrate how the smallness of
corrections could in principle come about. Indeed, one sees that
1V≪Vinf ∼ H2M2

P may be satisfied (for appropriate α) together
with H . µUV ≪MP. Finding specific implementations of such
a mechanism remains challenging.

To summarize: effects of macroscopic wormholes in the low
energy Einstein-axion theory are in general not strong enough to
constrain models of natural inflation. Nevertheless, expectations
based on the WGC place potentially strong bounds on such

14More precisely, this requires one of the stronger forms of the conjecture. For

example, one may demand that the instanton satisfying the bound Sn/n < MP/f

has n = 1 or at least n ∼ O(1).
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models. In particular, trans-Planckian axion decay constants are
expected to arise only in regimes where perturbative control is
lost, e.g., where microscopic wormholes/instanton spoil slow-roll
conditions. Several possible ways around such constraints exist
and are being actively studied. Whether such loopholes can be
implemented in specific (string theory) setups is the subject of
ongoing research.

4.4. Subplanckian Axions and Goldstone
Bosons
Sub-Planckian axions f < MP are not suitable to accommodate
inflation but they are extremely interesting in other
phenomenological setups. Again, it is their shift symmetry
and the resulting exponential suppression of their masses that
makes them stand out among the plethora of fields relevant at
low energy.

Let us repeat here for convenience the wormhole induced
axion potential (56):

Vw(φ) ≈
|α1|

r40
e−Sw/2 cos

(

φ

f
+ δ

)

. (66)

The mass induced by this potential is given by

m2
= 24π4M2

P|α1|e
−Sw/2

= 24π4M2
P|α1|e

−
π
√

6
8

MP
f . (67)

In contrast to trans-Planckian axions, for a decay constant
smaller than the Planck scale the wormhole contribution is
strongly suppressed through the exponential e−Sw/2. This ensures
that the axion is very light, making it suitable for many
phenomenological applications. The exponential dependence
implies that small changes in f drastically change the value of m,
allowing for a wide range of values for the mass. This observation
will be a recurring theme in the following.

Another feature specific to sub-Planckian axions is that even
wormholes of unit charge are macroscopic, in the sense that
the size of their throat r0 is larger than the Planck scale. This
is a rather peculiar property, but it is necessary for (66) to be
trustworthy. More in general, in an effective theory with UV
cutoff µUV , the validity of (66) requires r−1

0 ∼

√

fMP < µUV .
If the cutoff scale becomes too low, one may expect sizeable
corrections to the action of the wormholes with lowest charge.15

The results described in this section assume the validity of (66),
with Sw taking its classical value. The important caveat just
mentioned should nevertheless be taken into account when
interpreting these results.

We proceed now to review potential phenomenological
applications of axions with an induced wormhole potential of the
form (66). Significant parts of our discussion follows (Alonso and
Urbano, 2017)16.

15The scale µUV ∼

√

fMP itself arises in the context of the (magnetic) WGC as

an intrinsic UV cutoff. The unit charge wormhole lies precisely at this scale, and is

hence potentially subject to relatively sizeable corrections to its action.
16Mild discrepancies with the results of Alonso and Urbano (2017) arise from

the inclusion of a (Gibbons-Hawking-York) boundary contribution to the action

of a semi-wormhole in Alonso and Urbano (2017). Our perspective is that of a

summation over full wormholes, where no such contribution arises. The semi-

wormhole factor e−Sw/2 appears only effectively through a rewriting.

4.4.1. Black Hole Superradiance and Bosenovas
As just explained, axions play a special role in testing quantum
gravity, especially wormhole or baby universe effects. The reason
is their extremely suppressed potential. Furthermore, assuming
that the relevant α parameters take their natural O(1) value, the
potential and hence the mass are predicted in terms of the decay
constant.

However, a generic (in particular non-QCD) axion is hard
to observe. One classical possibility is black hole superradiance
(Damour et al., 1976; Zouros and Eardley, 1979; Detweiler, 1980).
This term characterizes the energy deposition by a spinning
black hole into a light scalar field, not-necessarily an axion, of
suitable mass. The relevance for the discovery of axions has been
emphasized in the context of the “string axiverse” (Arvanitaki
et al., 2010) and continues to receive much attention (see
e.g., Arvanitaki et al., 2015, 2017; Brito et al., 2017a,b; Cardoso
et al., 2018). A recent discussion in the wormhole context appears
in Alonso and Urbano (2017).

The dependence of superradiance on the most important
physics parameters are easily explained. Consider a spinning
black hole with massM, angular momentum J and typical radius
R ≡ M/8πM2

P. One generally uses the spin parameter a =

J/M to characterize its rotation, with a = R correspnding
to extremality.17 Superradiance is a classical instability which
draws energy from the black hole and deposits it in the field
oscillations of a light scalar, localized in a spherical region outside
the horizon. Very roughly, one may think in terms of (classical
analogs of) electron shells of an atom being populated by this
scalar. The effect relies on the black hole being near extremality
and on the Compton wavelength of the axion being comparable
to the black hole radius, R ∼ 1/m.

It is instructive to consider what happens if this latter
condition is not met (Arvanitaki et al., 2010): For an extremal
black hole and R ≫ 1/m, the instability time scale is given by
Zouros and Eardley (1979)

τ ≃ (107 R) exp (1.84mR). (68)

In this regime, the Compton wave length is small and only modes
with a large angular excitation superradiate. But such modes
experience a high and thick centrifugal barrier, leading to an
exponential suppression of the rate 1/τ . For subcritical a the
exponential suppression is even stronger. In the opposite regime
R≪ 1/m, one has (Detweiler, 1980)

τ = 24R (R/a) (mR)−9. (69)

In this limit, lowmodes are available for superradiance. However,
the potential well is now very wide and themodes spread out. One
may say that the scalar’s Compton wavelength is too large such
that the small overlap with the black holes induces a suppression.

Efficient superradiance hence requires a relation between the
black hole mass and the axion Compton wavelength. Stellar black
holes (2 − 100M⊙) correspond to axion masses of 10−13

−

17Intuitively, a is the radius which a shell with mass M, rotating at the speed of

light, would need to have to generate J. It can not exceed the Schwarschild radius

corresponding toM.
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10−10eV and supermassive black holes (106−108M⊙) to 10
−19

−

10−16eV. The crucial signal for an axion in one of these regions
would be gaps in the spectrum of rotating black holes. At present,
spin and mass observations of stellar black holes exclude the
range (Arvanitaki et al., 2015)

6× 10−13eV . m . 2× 10−11eV. (70)

Note that a detection of axion-induced superradiance is also
possible through gravitational waves. The gravitational wave
signals from, e.g., axion annihilation or axion transitions may
be detected by future experiments at LIGO, VIRGO and at LISA
(Arvanitaki et al., 2015, 2017; Brito et al., 2017a,b; Cardoso et al.,
2018).

In our context, i.e., for a pure-quantum-gravity potential, the
relation (67) between mass and decay constant may in principle
provide information beyond the generic axion case. Of course,
the mass is subject to the uncertainties from the α parameter and
fluctuation determinant. However, as can be seen by solving (67)
for f ,

f =
MP (π

√

6/8)

ln(24π4M2
P|α1|/m

2)
, (71)

the sensitivity to these uncertainties is extremely week. Indeed,
for |α1| = 1 the above excluded mass window corresponds to the
surprisingly narrow range 1.23×1016GeV. f . 1.28×1016GeV.
Thus, under the above assumptions, an axion discovery at the
edge of the present mass window would imply a very precise
determination of f . Similarly, the mass window 10−19eV. m .

10−16eV accessible via supermassive black holes translates to
1.06×1016GeV. f . 1.13×1016GeV. However, the key question
is then whether an independent measurement of f for such a
“quantum gravity axion” is conceivable.

It turns out that the answer to this question is positive:
To measure the mass, it suffices to study superradiance at
linear order. However, to get independent information about f ,
higher-order terms in the cos(φ/f ) potential have to be probed.
This is possible, for example, in the context of the so-called
bosenova. The term derives from analogous condensed matter
phenomena (Donley Elizabeth et al., 2001). In a bosenova, the
self-interactions of the growing axion cloud around the black
hole lead to a dynamical collapse: Part of the extracted energy is
ejected and the rest returned to the black hole. This may happen
multiple times until enough spin has been extracted from the
black hole and superradiance (at least for the given level) is lost
(Yoshino and Kodama, 2012).

Among the observable effects are a continuous gravitational
wave signal as well as bursts of gravitational waves. For the
continuous case, an analysis based on a possible axion cloud
of the stellar black hole Cygnus X-1 was reported in Yoshino
and Kodama (2015a). Assuming that the LIGO upper limit is
similar to that for gravitational waves from rotating distorted
neutron stars, an expected exclusion range was derived. For
1.1 × 10−12eV < m < 2.5 × 10−12eV, it restricts f to lie
below 1015–1016GeV. This can be understood intuitively since,
as f grows, the bosenova cuts off the superradiance instability

at higher axion densities, leading to larger signals. Notice that
the bound on f is in the range relevant for wormhole induced
potentials as discussed above. Realistic detection prospects exist
also for gravitational wave bursts (Yoshino and Kodama, 2015b).
Present limitations of the theoretical analysis are related to the
need for including backreaction and extending certain parts of
the numerics from the Schwarzschild to the Kerr solution (for
details see e.g., Yoshino and Kodama, 2015b).

4.4.2. QCD Axion
For the QCD axion an interesting observation can be made
(Alonso and Urbano, 2017). The total potential, including the
contribution from the usual QCD instantons, is given by

V(φ) = −34
QCD cos

(

φ

f

)

−

1

r40
e−

Sw
2 cos

(

φ

f
+ δ

)

, (72)

where the axion φ is defined such that the QCD instanton
induced potential is minimized at φ = 0. The phase δ is redefined
accordingly and is generically non-zero since there is no obvious
reason for the two terms in the potential to have the same
minimum. Furthermore, the |α1| parameter has been set to one.

The dependence of the axion mass on the decay constant is
interesting. With increasing f , the QCD contribution decreases
while the wormhole one grows. Hence, the axion mass features
a minimum as a function of f . It is not unreasonable to
expect, on theoretical grounds, that gravitational effects are
subdominant with respect to gauge contributions. This requires
that f . 1.4 × 1016 GeV. This bound can also be derived
from phenomenological considerations. The the phase of the
wormhole contribution implies a shift of the minimum of the
potential and hence a non-zero QCD θ-parameter θeff. The
experimental bound θeff . 10−10 coming from the neutron
electric dipole moment constrains the wormhole contribution.
Specifically, assuming sin(δ) ∼ O(1), one finds a bound on the
decay constant f . 1.2 × 1016 GeV. One might have suspected
that the tight requirement θeff . 10−10 would lead to a stronger
bound on f . This is not the case, however, due to the strong
exponential dependence of the wormhole contribution.

In the regime of small wormhole corrections, one can expand
the potential (72) and obtain the axion mass and effective θeff
parameter as functions of f ,3QCD andMP:

m2
≈

34
QCD

f 2
+ 24π4M2

P cos(δ) exp
(

−

π
√

6

8

MP

f

)

(73)

θeff ≈ 24π4 sin(δ)
f 2M2

P

34
QCD

exp
(

−

π
√

6

8

MP

f

)

. (74)

Theminimal mass obtained from (73) ism & 4×10−9 eV. Notice
that the bound coming from superradiance described above is
irrelevant in this case.

4.4.3. Axions as Dark Matter
Despite its success on scales larger than 10kpc, the scale of
stellar distributions in typical galaxies, it is not clear yet if the
cosmological 3CDM model is consistent with observations at
smaller distances (Weinberg et al., 2015). The tension arises
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from the cuspy halo cores and an abundance of satellite
galaxies predicted by numerical simulations but incompatible
with observations. Using an extremely light scalar field with mass
10−22

− 10−21eV, it is possible to construct a model of dark
matter with the same large scale predictions as CDM, in which,
however, these problems are absent. The key idea here is that
the large Compton wavelength of a light particle can suppress
the formation of structures on sufficiently small scales. This dark
matter model goes by the name of Fuzzy DarkMatter (FDM) (Hu
et al., 2000).

Because of its extreme lightness, an axion with the induced
potential (66) is an ideal candidate for FDM. Information
about the possible values of f can be obtained by reproducing
the observed relic abundance via the misalignment mechanism
(Abbott and Sikivie, 1983; Preskill et al., 1983; Dine and Fischler,
1983). Assuming an initial misalignment angle of order one
θi = φi/f ≈ 1, the axion contribution to today’s energy density
(normalized by the critical energy density) is given by Arvanitaki
et al. (2010) and Kim and Marsh (2016) (see also Hui et al., 2017)

�ah
2
≈ 0.1

(

f

1017GeV

)2
( m

10−22eV

)
1
2

(75)

where h = 0.678 is the dimensionless Hubble parameter.
Requiring that the axion accounts for (a large fraction of) the
measured dark matter energy density, i.e., that �ah

2
≈ 0.1,

implies a relation between the axion mass and its decay constant.
For the FDM range of masses 10−22 . m . 10−21 eV the axion
decay constant must lie in the range 5.6× 1016 . f . 1017 GeV.

It is interesting to compare these relations to those predicted
by a wormhole induced mass (again using |α1| ∼ O(1) as a
benchmark) (Alonso and Urbano, 2017). Plugging (67) into (75),
one obtains that the correct relic density is obtained when f ≈

1016 GeV, which corresponds to an axionmassm ≈ 7×10−19 eV.
While still valid as a candidate for dark matter, this mass is above
the appropriate regime for the FDM scenariom . 10−21 eV. For
the FDM setup, the exponential suppression e−Sw/2 is too strong
to obtain the full dark matter relic abundance.

This conclusion is rather general and relates to the WGC
described in section 4.3.2: Consider a generic non-perturbative
axion mass m2

= M2
P e

−Si . A mass in the FDM range m .

10−21 eV requires Si & 220. At the same time, obtaining the
right relic abundance through Equation (75) requires a rather
large decay constant f & 5.6 × 1016 GeV. These two estimations
combined lead to the interesting but potentially troublesome
relation fSi & 5MP. The situation is similar to that of natural
inflation described in section 4.3.2: demanding the production
of enough FDM pushes instanton effects into the sub-extremal
range fSi & MP. This regime conflicts with the WGC which
requires the presence of super-extremal (and hence naively
dominant) instantons.

Of course, this conclusion is subject to several caveats. First,
the exponential dependence on the instanton action makes the
constraint highly sensitive to the precise extremality bound
that enters the WGC. As previously discussed, the WGC for
wormhole generated potential suggests fSi ≤

√

6πMP/8 ≈

0.96MP. Other setups (e.g., axio-dilaton instantons) provide

slightly different numerical bounds, but none of them seem
to prevent the conflict. Second, the dark matter abundance
expressed by Equation (75) assumes an initial angle of axion
misalignment θi = φi/f ≈ 1. Larger initial displacements can
lead to an enhanced axion density. Specifically, for generic−π <
θi < π , Equation (75) should read

�ah
2
≈ 0.1

(

f

1017GeV

)2
( m

10−22eV

)
1
2
θ2i f (θi). (76)

The function f (θi) accounts for anharmonicities of the potential
when the initial value of the axion is close to maximum θi → π ,
where it diverges. Using the approximate analytic expression for
f (θi) given in Visinelli and Gondolo (2009), one can estimate that
an initial tuning θi ≈ 0.91π leads to the correct relic abundance
form ≈ 10−21 eV and fSi ≈ Mp.

A third caveat is the fact that, as discussed around
Equation (65), the energy scale at which instantons generate a
mass may be lowered if a UV cutoff µUV exists below the Planck
scale, e.g., due to the presence of fermionic modes. Consider an
axion mass of the form m2

= µ2
UVe

−Si , and assume that the
instantons saturate the bound fSi ≈ MP. It is easy to see that the
linear dependence of m on µUV (as opposed to its exponential
dependence on Si) requires an extremely low instanton scale. In
fact, for generic initial misalignment θi = 1, the cutoff scale
should be µUV ≈ 10−12 eV. When the potential is generated by
wormholes, a similar suppression could be in principle achieved
by tuning the |α1|-parameter.

Finally, as in its applications to large field inflation, mild
formulations of the WGC allow for loopholes in which sub-
extremal instantons dominate the potential, and hence avoid the
above constraints. In particular, systems with multiple axion are
being actively investigated in this respect (see e.g., Bachlechner
et al., 2018).

The above mechanisms can quite possibly reconcile axions
as candidates of FDM with the WGC. It is nevertheless
very interesting that such models, motivated mainly by their
phenomenological applications, are probing quantum gravity
constraints.

Whether fuzzy or not, axions and their induced gravitational
potentials provide well-motivated dark matter candidates.
Further phenomenological features, such as the formation and
stability of substructures (e.g., axion stars or oscillons) also
depend on the ratio of f and m. These will hopefully be
experimentally probed in the near future. Moreover, direct
detection experiments such as CASPEr (Jackson Kimball et al.,
2017) and HeXeniA (Crespo Urrutia et al., unpublished) can also
be expected to test the regime of extremely small (QCD-) axion
masses in the foreseeable future (see also Alonso-Álvarez and
Jaeckel, 2017).

In summary, there exists by now a whole set of promising
phenomenological directions probing very light scalars,
especially axions, which relate in a non-trivial way to quantum
gravity and gravitational instantons.
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5. CONCEPTUAL ISSUES

The discussion of wormholes presented so far has glossed over
some fundamental questions which may change our perspectives
on, or even invalidate, several of the results described in previous
sections. Some of these issues were recognized and thoroughly
discussed immediately after the first wormhole solutions were
constructed, while others have been raised more recently, when
wormholes have been considered in string and holographic
setups. It is fair to say, nevertheless, that none of them has been
fully understood yet. It is possible that the correct interpretation
of wormholes and topology change will remain obscure until
a controllable non-perturbative description of quantum gravity
is found. It may well be, on the other hand, that the puzzles
posed by wormholes can guide us in the pursuit of such a
theory.

5.1. FKS Catastrophe
Following Coleman’s intriguing proposal for a wormhole-based
solution to the cosmological constant problem (Coleman,
1988c), Fischler, Kaplunovsky and Susskind have argued that
an inconsistency may be hidden in the underlying calculation
(Fischler and Susskind, 1989; Kaplunovsk, unpublished).
Concretely, they extended Coleman’s argument by including
an R2 term in the action and by allowing for Wilsonian
renormalization group (RG) running. As a result, they
found an overdensity of wormholes, even of those with large
radius.

The analysis of Fischler and Susskind (1989) follows that of
Coleman (cf. section 4.1) very closely: The starting point is the
action

S[g] =

∫

d4x
√

g

(

3−

M2
P

2
R+ γR2 + · · ·

)

=

∫

d4x
√

g
∑

i

λiOi (77)

with λ1 = 3, λ2 = −M2
P/2 and λ3 = γ . The partition function,

including wormholes and multiple large universes, reads

Z =

∫

Dα exp



−

1

2

∑

i,j

αi1
−1
ij αj





exp

(

∫

Dg exp

(

−

∫

d4x
√

g
∑

i

(λi − αi)Oi

))

. (78)

As before, the integral over metrics is performed in the saddle
point approximation. This amounts to evaluating the action of
(77) on a sphere of radius r and extremizing in r. But, on
dimensional grounds, the R2 part of the action, evaluated on a
sphere, gives an r-independent contribution. Hence the euclidean
de-Sitter solution of Section 4.1 remains entirely unchanged. The
resulting partition function is an exact copy of (53), except that
the R2 part has to be added to the saddle-point action in the

double exponent:

Z =

∫

Dα exp
(

−

1

2

∑

i,j

αi1
−1
ij αj

)

exp

[

exp

(

96π2

(

M2
P/2+ α2

)2

(

3+ α1
) + (γ + α3)

)]

. (79)

Again, α1 has been redefined α1 → −α1, and γ and α3 have been
rescaled to avoid numerical prefactors.

Now, by the samemechanism that drives α1 to−3 (Coleman’s
solution of the cosmological constant problem), the parameter
α3 is driven to infinity. This will turn out to be problematic.
To explain the issue, the Wilsonian RG perspective is
useful.

Start with the effective action at some UV length scale ρUV.
The wormholes to be integrated out come in all sizes ρ > ρUV.
Indeed, even in the simple Giddings-Strominger case with a
single axion, the different wormhole charges give rise to a discrete
set of wormholes of different radii. Thus, one can think of going
down in energy in a renormalization-group-like way: One first
integrates out wormholes of sizes ρ ∈ [ρUV, ρ1], then those
with ρ ∈ [ρ1, ρ2], and so on (with ρUV < ρ1 < ρ2 < · · · ).
Very schematically, the previous formulae can be adjusted to this
perspective by

∫

Dα →

∏

ρ

∫

Dα(ρ) (80)

and

λi − αi → λi −
∑

ρ

αi(ρ). (81)

The above wormhole-induced change of the couplings follows
from iterating the basic step

λi(ρ +1ρ) = λi(ρ)− αi(ρ). (82)

In addition to (and intertwined with) this stepwise
renormalization by wormholes, the usual RG running takes
place. According to Fischler and Susskind (1989), the combined
effect may be described by a set of modified RG equations,

dλ̃i(ρ)

d ln(ρ)
= −β

(

λ̃i(ρ)
)

− α̃i(ρ) , (83)

where λ̃i = λiρ
dim(λi) and α̃i = αi(ρ)ρ

dim(αi) are the
dimensionless coupling constants and α parameters, respectively.
The first part of (83) is just the standard general form
of an RG equation, the additional α̃i terms encode the
wormhole effect. A redefinition of the αi is necessary when
deriving this from the above stepwise procedure (i.e., when
taking the continuum limit 1ρ → 0). This is left implicit
here.
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It will be useful for what follows to spell out the leading terms
in the β function for the simple three-operatormodel considered:

d3̃

d ln(ρ)
= 43̃+ c1 + 3̃/M̃

2
P + γ /M̃

2
P + · · · + α̃1(ρ) (84)

dM̃2
P

d ln(ρ)
= 2M̃2

P + c2 + 3̃/M̃
2
P + γ /M̃

2
P + · · · + α̃2(ρ) (85)

dγ̃

d ln(ρ)
= c3 + 3̃/M̃

2
P + γ /M̃

2
P + · · · + α̃3(ρ). (86)

Here the two leading terms 43̃ and 2M̃2
P correspond to the naive

scaling dimension of the operators. The terms ci arise through
the quartic, quadratic and logarithmic divergence of the three
operator coefficients in question. The numerical prefactors of all
other terms have been suppressed for brevity18.

As the above discussion shows, the Wilsonian procedure
of integrating out high-scale perturbative fluctuations and
wormholes induces a dependence of each effective coupling
constant λi on all the α parameters. The relevant distribution
function, e.g., in (79), hence becomes

P(α) = exp

(

24π2MP(α)
4

3(α)
+ γ (α)

)

, (87)

where in the FKS truncation α ≡ {α1,α2,α3} and the analysis
is restricted to the single-universe-case for simplicity (hence no
double-exponent). We suppress the further complication that
one needs a different αi for each ρ, for the whole range of ρ. It is
sufficient to consider higher scales as having been integrated out,
such that P(α) is interpreted as governing the physics at some low
effective scale 1/ρ, with a single set of α parameters, αi = αi(ρ),
all belonging to that scale.

The next key point is to understand how the α parameters
are related to the wormhole density. To see this, return to the
simple toy model with only one wormhole type and thus one α-
parameter. Consider the Taylor-expansion of the α distribution:

P(α) =

∞
∑

n=0

cn α
n. (88)

Under the integral over the α-parameters, this can be rewritten
using baby universe operators, cf. (33). Thus, the nth term in
the expansion corresponds to an amplitude with the insertion of
n baby universe operators. It represents a configuration with n
wormhole ends. The average number of such wormhole ends is
then given by

N =

1

P(α)

∞
∑

n=0

n cn α
n
=

1

P(α)
α
∂P(α)

∂α
, (89)

18A very naive way to derive, for example, the first equation is to write the loop

corrected cosmological constant in the schematic form 3 = 30 + c1µ
4
+

γµ6/M2
P + 3µ2/M2

P . Here the correction terms correspond to the usual one-

loop quartic divergence and the leading one-loop tadpole diagrams involving γ

and 3 itself. The expression (∂/∂ lnµ)(3/µ4) gives our desired perturbative β-

function if one identifies the regulator scale µ with 1/ρ. Explicit formulae for such

β-functions have more recently appeared in the context of “asymptotic safety,” see

e.g., Reuter (1998), Litim (2004), and Falls et al. (2016).

where P(α) appears in the denominator for normalization.
Utilizing (87) now gives

N ∼ −

MP(3)
4

3(α)2
α
∂3(α)

∂α
+

MP(3)
2

3(α)
α
∂MP(3)

2

∂α
+ α

∂γ (α)

∂α
,

(90)
where several unwieldy numerical prefactors were suppressed.

The curvature-squared of the classical 4-sphere solution is
∼ 3/M2

P. Dividing by the corresponding volume, V4 ∼ M4
P/3

2,
gives the wormhole density

ν =

N

V4
∼ −α

∂3(α)

∂α
, (91)

where only the leading term in the limit of small 3 have been
kept. It is easy to see that the above logic goes through also in the
case of multiple α parameters, giving

ν ∼ −

∑

i

αi
∂3(α)

∂αi
. (92)

Since α3 is driven to infinity, the third term will dominate this
expression. The relevant α3 dependence of 3 follows from the
γ term on the r.h. side of (84). This is clear since γ involves an
additive α3 contribution according to (86). Thus,

ν ∼ α3
∂

∂α3
3 ∼ α3

∂

∂γ

(

γ

M2
Pρ

2
·

1

ρ4

)

∼

α3

M2
Pρ

6
. (93)

However, the maximum attainable density of wormholes of size
ρ is given by ν ∼ ρ−4. Since α3 is driven to large values, (93) will
saturate this bound, corresponding to the maximal α3 value

α3 ∼ M2
Pρ

2. (94)

It follows that the path integral is dominated by close packing
configurations. Moreover, this effect persists as ρ increases,
contrary to the expectation that large wormholes should be
suppressed.

Arguments against this so-called FKS or giant wormhole
catastrophe were raised in Preskill (1989) and Coleman and
Lee (1989), but both proposed resolutions were criticized
by Polchinski in Polchinski (1989b). According to Preskill
(1989), small wormholes can, when they are packed sufficiently
densely, “crowd out” larger wormholes. This “excluded volume”
resolution has been criticized in Polchinski (1989b) on the
grounds that it violates the Wilsonian RG perspective: The effect
of small wormholes should not bemore drastic than to change the
parameters of the effective action at lower energies. Moreover, an
explicit toy model calculation was presented to demonstrate that
the proposed excluded volume mechanism fails to suppress large
wormholes.

The argument of Coleman and Lee (1989) is related but
different at the technical level. Here, it is suggested that
small wormholes induce charge violating interactions which
are sufficiently strong to destabilize larger wormholes. From
a microscopic perspective, small wormholes “bleed off” the
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charge stabilizing the large ones. While this mechanism can be
consistent with a Wilsonian RG perspective, it is clearly peculiar
to the Giddings-Strominger and related wormhole solutions for
which charge (or 3-form flux) is essential. Polchinski (1989b)
argues against this resolution on the grounds that our focus on
classical saddle points is merely due to our technical inability to
treat more general topology-changing transitions (e.g., euclidean
wormholes which do not solve the classical equations of motion).
If included, such more general wormholes will not fall victim to
the destabilization effect of Coleman and Lee (1989), reinstating
the FKS catastrophe.

Finally, as emphasized in Hawking (1990b), the divergence of
the measure P(α) in certain regions of the α parameter space calls
for regularization. Depending on the cutoff procedure, different
preferred values for the α parameters and hence the effective
couplings may be obtained. This can affect both the original
argument for vanishing 3 as well as the “infinite force” driving
α3 to infinity and leading to the giant wormhole problem.

5.2. Euclidean Quantum Gravity and
Negative Modes
The most immediate suspicion that wormholes should give rise
to is that they are based on a very poorly understood sum over
four-geometries and topologies, described by the euclidean path
integral of quantum gravity. As is well known, this formulation
suffers from serious technical and interpretational pitfalls.

Of course, the non-renormalizability of quantum gravity
implies that the effective description in terms of the Einstein-
Hilbert action will break down at some UV scale (e.g., the
string scale) at which new degrees of freedom (excited string
modes) will become important. This should not, however, pose
an obstacle as long as considerations are restricted to wormholes
whose size is much larger than the UV scale, i.e., ρ≫ ℓUV .

Much more worrisome is the fact that the euclidean version of
the Einstein-Hilbert action is unbounded from below. Consider
a conformal transformation gµν → �2gµν , under which

S = −

1

2

∫

d4x
√

g R −→ S = −

1

2

∫

d4x
√

g�2R

−3

∫

d4x
√

ggµν∇µ�∇ν� (95)

By choosing a rapidly varying conformal factor �, one can
make the action arbitrarily large and negative, even when the
original metric gµν satisfies the equations of motion (Rµν = 0
in the absence of a cosmological constant). As a consequence,
saddle points of the action, including the Giddings Strominger
wormhole, necessarily possess negative modes.

This infamous conformal factor problem has been the subject
of much debate, and several prescriptions have been given
in order to avoid it. The most common approach, that of
Gibbons, Hawking and Perry (GHP) (Gibbons et al., 1978),
amounts to a rotation in the path integral contour such that
the conformal factor of the metric takes imaginary values
(see Schleich, 1987; Hartle and Schleich, 1988; Mazur and
Mottola, 1990 for further discussions). This prescription provides
us with a satisfactory action which is bounded from below,

but has dramatic consequences for Coleman’s argument for a
vanishing cosmological constant described in section 4.1 (and
perhaps more generally for Baum and Hawking’s mechanism
Baum, 1983; Hawking, 1984, of which Coleman’s is a particular
implementation). The vanishing of the cosmological constant
arises from divergent probability amplitudes of the form P(α) ∼

exp
[

exp
(

1
43(α)κ4(α)

)]

, whose ultimate origin is the conformal

factor problem. A complex contour of integration leads to
a better defined euclidean quantum gravity, but it results in

a crucial change of sign P(α) ∼ exp
[

exp
(

−
1

43(α)κ4(α)

)]

or P(α) ∼ exp
[

− exp
(

1
43(α)κ4(α)

)]

, depending on how

the contour rotation is precisely implemented. Either way,
these amplitudes give no explanation of the smallness of the
cosmological constant (Fischler et al., 1989; Polchinski, 1989c).

The conformal factor problem also obscures the correct
interpretation of wormholes in a different respect. It is well
known that, in non-gravitational theories, minima of the
euclidean action give a real contribution to the ground state
energy, breaking the degeneracy of classically equivalent vacua,
e.g., by inducing non-perturbative potentials for axions. In the
presence of a negative mode the corresponding contribution
to the energy becomes pure imaginary (from the one-loop
determinant contribution), signaling an instability of a classical
vacuum against tunneling (Coleman, 1979, 1988b). These
statements, however, do not generalize straightforwardly to
gravitational theories where there is no direct correlation between
the euclidean path integral and the WKB prescription, and so
the correct interpretation of negative modes remains unclear
in this case (Lavrelashvili et al., 1985; Tanaka and Sasaki,
1992; Lavrelashvili, 1998; Tanaka, 1999; Khvedelidze et al.,
2000; Lavrelashvili, 2000; Gratton and Turok, 2001; Hackworth
and Weinberg, 2005; Dunne and Wang, 2006; Lavrelashvili,
2006; Brown and Weinberg, 2007; Battarra et al., 2013; Yang,
2013; Lee and Weinberg, 2014; Lee, 2014; Koehn et al.,
2015).

The conformal factor problem would naively suggest that

there is an infinite number of negative modes around wormhole
solutions. The gravitational action, however, is largely redundant
due to its invariance under diffeomorphisms. In order to properly
count the number of the negative modes, one should carefully
fix the gauge and take constraints into account to identify
the physical degrees of freedom of the theory. The negative
modes in the conformal sector of the metric are expected to
be removed in the process, possibly by the GHP or similar
prescriptions. There is an important caveat, however, when one
tries to apply this procedure to wormholes. The gauge constraints
can only be properly taken into account in the real-time
theory, around solutions of the lorentzian equations of motion.
Topologically non-trivial manifolds such as wormholes do not
admit non-degenerate metrics, and hence cannot represent such
real solutions19.

19In two dimensions this is known as the Anderson-DeWitt problem (Anderson

and DeWitt, 1986) (see also Strominger, 1994), but it is generic to higher

dimensions as well (Horowitz, 1991).
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These subtleties in the interplay between gauge redundancies
and constraints, and the transition to euclidean space, have led
to contradictory statements regarding the role of negative modes
around wormhole solutions. Rubakov and Shvedov have argued
in Rubakov and Shvedov (1996a) that, after implementing the
GHP rotation, one physical negative-action deformation of the
Giddings Strominger wormholes exists. This was interpreted as
an instability of large parent universes against decay by emission
of baby universes. It has been argued (Barvinsky, 1998), however,
that such a negative deformation, being in the conformal sector
of the metric, should correspond to a gauge degree of freedom
and hence disappear from the spectrum. In fact, an alternative
computation in which physical modes were identified in the
Lorentzian theory (where the wormhole solution is complex), has
more recently found no negative modes (Alonso and Urbano,
2017). The issue becomes even more obscure in the presence
of extra scalar fields (such as the dilatons of section 2.3),
where scalar and metric deformations are intertwined (Kim
et al., 1997; Khvedelidze et al., 2000), or in the presence
of a cosmological constant. The appropriate interpretation of
negative modes around wormhole solutions is hence still an open
question.

The above considerations make it clear that the path integral
approach to quantum gravity and the role played by gravitational
instantons are still obscure. Our degree of understanding of
different issues is quite disparate. While still mysterious in many
aspects, the euclidean path integral has illuminated important
setups of quantum gravity, several of which involve non
trivial topologies (including the description of thermodynamic
properties of black holes Gibbons and Hawking, 1977, the
instability of hot flat space against black hole nucleation Gross
et al., 1982, or the instability of the Kaluza-Klein vacuum
Witten, 1982). It seems hence quite likely that topology change
through euclidean wormholes is unavoidable and, following the
arguments of section 3, will induce corrections in the low energy
effective action. The interpretation of the resulting path integral
is however still much open to debate.

Alternative formulations of effective quantum gravity will
ultimately be necessary to illuminate these issues. Recently,
an approach to the Lorentzian path integral based on Picard-
Lefshetz theory has been used in Feldbrugge et al. (2017a),
Feldbrugge et al. (2017b), Diaz Dorronsoro et al. (2017),
Feldbrugge et al. (2018), and Diaz Dorronsoro et al. (2018) to
explore certain aspects of quantum gravity. In this approach,
wormholes would correspond to complex extrema of the
Einstein-Hilbert-axion action. Picard-Lefschetz theory would
then determine how the contour in the path integral is to
be deformed into the complexified field space, and which
saddles contribute to the path integral. It would be interesting
to understand in this framework what the role played by
gravitational instantons and wormholes is.

In order to shed some light on the conceptual problems raised
by wormholes, we describe in the following sections toy models
in setups where topology change is better understood, namely,
theories of gravity in lower dimensions. Although some of the
simplifications that arise in such theories surely hide crucial
aspects of quantum gravity in four and higher dimensions, they

allow us to understand some fundamental aspects of wormholes
in relatively controlled settings.

5.3. One-Dimensional Universes: Feynman
Diagrams
In the next four subsections (Sections 5.3–5.6), we discuss the
dynamics of the baby universe state and its interplay with
the dynamics of our large universe. More precisely, almost all
of this discussion will be in the context of toy models, the
most developed and complex of which rely on 2d quantum
gravity (Polchinski, 1989a; Banks and Lykken, 1990; Banks
and O’Loughlin, 1991; Cooper et al., 1991; Hawking, 1991b;
Lyons and Hawking, 1991). Such baby-universe and quantum-
cosmology toy model calculations have been performed in the
context of non-critical string theory (Polchinski, 1989a; Banks
and O’Loughlin, 1991; Cooper et al., 1991) and will be the
subject of section 5.6. However, to prepare the stage, we will
start with 1d quantum gravity in the present section (Strominger,
1988; Hawking, 1991b), and its Wheeler-DeWitt formulation
with baby universes (Banks, 1988; Strominger, 1988; Fischler
et al., 1989; Giddings and Strominger, 1989a; Cooper et al., 1991)
in Sect. 5.4. Two-dimensional quantum gravity corresponding
to critical string theory (Hawking, 1991b; Lyons and Hawking,
1991) will be described in section 5.5.

As promised, we now start with the simplest case
following (Strominger, 1988; Hawking, 1991b). Consider
the one-dimensional diffeomorphism invariant theory with
action

S[X, e] =

∫

dτ
(

e−1gµν Ẋ
µẊν − em2

)

. (96)

This obviously describes a free particle moving in a target space
of D dimensions with metric gµν . Upon quantization of the fields
Xµ, one is dealing the quantum mechanics of that particle.

The interest here, however, is in interpreting this as a theory
of gravity in one dimension. In this sense, one can refer to the
particle as the universe, with euclidean worldline element given
by ds2 = e2dτ 2 and D matter fields Xµ. The parameter m2

hence corresponds to a one dimensional cosmological constant.
Of course, such a toy model lacks many interesting features
that arise in higher dimensions (to begin with, the Ricci
scalar vanishes identically in one dimension, and there is no
corresponding Einstein-Hilbert term in Equation 96). However,
studying topology change in the one dimensional model can
illuminate some points that are obscure in higher dimensions.

The theory described by Equation (96) is gauge invariant
under local time reparametrizations. One can conveniently fix
the gauge such that e = N, where N is constant20. It measures
the proper length of the worldline and hence, in a path integral
approach, it must be integrated over together with the matter
fields:

〈Xf |Xi〉0 =

∫

∞

0
dN

∫ Xf

Xi

DX

exp

[

−

∫ 1

0
dτ
(

N−1gµν Ẋ
µẊν + Nm2

)

]

. (97)

20In one dimension the vielbein e(t) coincides with the lapse function N(t). The

gauge is fixed such that this becomes a constant N(t) ≡ N.
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FIGURE 8 | Topologically non-trivial processes: (Left) a baby universe (dotted

line) is emitted from a parent universe (solid line). (Right) a wormhole is

represented by the emission and absorption of a baby universe line by a

parent universe.

Here (euclidean) time was chosen to run from τi = 0 to τf =

1. The subscript zero indicates that this corresponds to a path
integral of a single-component universe, i.e., a single line in the
absence of wormholes or baby universes.

Just as in higher dimensions, the action in (97) is unbounded
from below if the target space metric gµν has Minkowskian
signature. The negative mode arises in this case from the
matter field X0 associated to the target-space time direction.
The solution is clear here: one needs to Wick rotate the target
spacetime metric (i.e., X0

→ iX0). That is, one considers the
propagation of the euclidean one-dimensional universe (particle)
through a euclidean D-dimensional target spacetime. From now
on, hence, gµν is considered to to have euclidean signature.

The path integral in (97) can be carried out explicitly, yielding
(Strominger, 1988; Hawking, 1991b)

〈Xf |Xi〉0 =

∫

dDP
eiP(Xf−Xi)

P2 +m2
(98)

where scalar products are taken with the target space metric gµν .
This is of course nothing but the euclidean propagator of a free
(as indicated by the subscript) scalar of massm in D dimension.

In order to discuss topology change and the emission of baby
universes, one can introduce in the path integral (the sum over
one-geometries) processes such as those shown in the Figure 8.
To reflect as closely as possible the higher dimensional case,
one would like to implement topology change as a process
in which small baby universes are nucleated from large ones.
Unfortunately, one dimensional universes are pointlike and there
is no notion of big or small. One can, however, introduce baby
universes as a different species of particles (universes) with
much smaller mass than the parent universe. For concreteness,
introduce a single type of baby universe with zero mass:mb = 0.

The effect of a single wormhole on a parent universe
propagator (right diagram of Figure 8) is given by

〈Xf |Xi〉1 =

∫

∞

0
dN

∫ Xf

Xi

DXe−S[X,N]

(

−λ2N2

∫ 1

0
dτ1

∫ 1

0
dτ2〈X(τ2)|X(τ1)〉0,b

)

=

∫

∞

0
dN

∫ Xf

Xi

DXe−S[X,N]

(

−λ2N2

∫ 1

0
dτ1

∫ 1

0
dτ2

∫

dDP
eiP[X(τ2)−X(τ1)]

P2

)

(99)

where λ controls the coupling between parent and baby
universes. Upon summing over arbitrary numbers of wormholes,
their contribution exponentiates in a standard fashion to yield

〈Xf |Xi〉 =

∞
∑

n=0

1

n!
〈Xf |Xi〉n =

∫

∞

0
dN

∫ Xf

Xi

DXe−S[X,N]−I[X,N]

(100)
where S is given by (96), and I is the bilocal wormhole
contribution:

I[X,N] = λ2
∫

dDP

P2

(∫

dτ2 N eiPX(τ2)
)(∫

dτ1 N e−iPX(τ1)

)

.

(101)
As in previous discussions of bilocal operators, one can introduce
(complex) α parameters to make the action local, at the expense
of having variable coupling constants:

e−I[X,N]
=

∫

Dα(P)e−
∫

dDP P2|α(P)|2

exp

[

λN

∫ 1

0
dτ

∫

dDP
(

α(P)eiPX + c.c.
)

]

. (102)

All this discussion resembles closely the description of
wormholes in four dimensions. The one-dimensional theory
has split into super selection sectors, labeled by α(P), which
determine an infinite set of new couplings on the worldline.
The target space momentum P labels the different species of
wormholes, in analogy to the index i of the generic wormhole
parameters αi in previous sections. Following the analogy with
higher dimensional wormholes, one would affirm that the

couplings α(P) have a probability distribution e−|α|2 .
One can also use the advantageous perspective of a parent

universe as a particle propagating inD dimensions. Asmentioned
before, the sum over parent universe one-geometries, in the
absence of baby universes, is nothing but the propagator of a free
scalar field8(X) inD dimensions. The sum over non-trivial one-
geometries is represented naturally by the sum over (connected)
Feynman diagrams, where the field 8(X) has a cubic coupling
to a light baby-universe scalar field φ(X). That is, all the results
described previously can be derived from a quantum field theory
in D-dimensional target space, with action:

S[8,φ] =

1

2

∫

dDX
√

g
(

gµν∂µ8∂ν8

+gµν∂µφ∂νφ +m282
+ λ82φ

)

. (103)

It is in fact easy to check that equation (100) is reproduced by

〈Xf |Xi〉 =

∫

D8Dφ 8(Xi)8(Xf )e
−S[8,φ]. (104)

One can furthermore see that the α(P) parameters induced in
the worldline effective action by wormholes are nothing but the
Fourier modes of the baby universe field

φ(X) =

∫

dDP α(P) e−iPX . (105)
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The D-dimensional space on which this (8,φ)-theory lives is
nothing but the superspace (in Wheeler’s sense) of the one-
dimensional universe.

5.4. The Wheeler-DeWitt Perspective
It is also instructive to take a canonical rather than path integral
approach to wormholes. The basic ingredient in the canonical
treatment of quantum gravity is the Wheeler-DeWitt (WDW)
equation, which imposes time reparametrization invariance as a
constraint on the wave function of the universe. We follow the
discussion of Strominger (1988).

In a one dimensional theory with action given by (96), a single
universe is described by a wave function on superspace 8(X).
After fixing the gauge e(τ ) = N, the action is invariant under
time translations τ → τ + const, which are generated by the
Hamiltonian

H = gµνPµPν/4+m2. (106)

Here, Pµ are the canonical momenta for the matter fields
Pµ =

2
N gµν Ẋ

ν . Invariance of the quantum theory under these
transformations is imposed by the WDW equation

H8(X) = 0 (107)

where Pµ = −i∇µ. Equation (107) should describe the dynamics
of a one-dimensional (pointlike) universe, i.e., its propagation in
target spacetime or superspace. It is not, however, a Schrödinger-
type equation, but rather a Klein-Gordon equation in a (possibly
curved) D-dimensional background. This, together with our goal
of describing a system of an arbitrary number of universes,
naturally suggests that 8(X) should be treated like a quantum
field in superspace rather than as the wave function of a single
universe.

With this interpretation, the linear WDW equation describes
the dynamics of a free quantum field, which acts on the
Fock space of an arbitrary number of universes propagating
in superspace21. One expects that (107) only represents the
leading approximation to a theory of interacting universes. In
fact, such a theory was already introduced in the previous section.
The superspace action S[8,φ] of equation (103) describes the
dynamics of a parent universe field 8(X), interacting with a
baby universe field φ(X) through a λφ82 coupling. The resulting
equation of motion for8,

(

∇
2
−m2

)

8 = λ8φ , (108)

indeed generalizes the WDW equation to the case of interacting
universes.

A meta-observer capable of measuring different multi-
universe states would straightforwardly interpret this theory
as a quantum field theory of point-like particles propagating
in D-dimensional spacetime. However, the interpretation is
much more subtle for an observer living on the worldline of
a single parent universe propagating in a background of baby

21Despite being a free theory, interesting dynamics, such as universe production,

can arise if the target spacetime metric gµν is curved (Fischler et al., 1989).

universes. Such an interpretation was described in section 5.3:
The sum over one-geometries (Feynman diagrams) derived from
the superspace action (103) is reproduced by the worldline
action modified by an infinite set of α-parameters, representing
the baby universe field φ(X). In order for the single parent
universe approximation to be valid, one has to make sure that
the background metric in superspace is adiabatic, and that
interactions among universes are small.

In the classical limit of the superspace theory, one can consider
the baby universe to be in an eigenstate that satisfies the baby
universe equations of motion. That is, one can replace φ(X) by a
solution α(X) of the equation

∇
2α = 0 (109)

where the backreaction of parent universes has been neglected22.
The gravitational worldline theory of the parent universe in such
a classical baby universe background is given by the action:

S =

∫

dτ

(

1

N
Ẋ2

− Nm− Nλα(X)

)

(110)

The worldline observer would measure a potential given by α(X),
which in turn is determined by the superspace equations of
motion (109).

Of course, when quantum fluctuations of the baby universe
field are taken into account, the effective coupling constants
induced on the parent universe worldline theory are no longer
deterministic and are subject to the superspace quantum
uncertainty principle. One would conclude, for example, that
there is an intrinsic indeterminacy in the worldline potential
α(X) once its first derivative has been measured to a finite
accuracy. The interpretation of these quantum uncertainties in
the worldline couplings is still somewhat obscure.

The above logic should generalize to higher dimensional
theories. In the two-dimensional case, which will be considered
in more detail in the following sections, the setup is just
string theory. The WDW operator implementing time-
reparametrization invariance corresponds to the worldsheet
Hamiltonian H23. The WDW equation is then H8(X) = 0,
where 8(X) is the wave function of a single universe, a function
on superspace. In order to discuss multiple universes and
topology change, one promotes 8 to a quantum field, and
interprets the WDW equation as the linearized equation of
motion of the corresponding superspace theory (a string
field theory). This step is sometimes referred to as “third
quantization.” Topology change arises when one introduces
interactions between string fields, leading to a non-linear
generalization of the WDW equation. A two dimensional
observer would interpret this theory as a gravitational theory
on a genus zero worldsheet, with couplings determined by
the background configuration of baby-strings. These would

22Of course, this equation would in general be modified by self interaction terms

coming from a baby universe potential V(φ).
23More generally, the BRST operator which implements full reparametrization

invariance.
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represent, in turn, target space fields such as the metric, two-
form and the dilaton. In the classical limit of the superspace
theory, this background could be in a classical state satisfying the
equations of motion, which would in turn lead to a determination
of the worldsheet couplings. However, just as in one dimension,
quantum fluctuation in superspace would lead to an instrinsic
uncertainty in such couplings.

One can try to understand four dimensional wormholes in
analogy to the previous discussions. The main idea is to promote
the wave function of the universe to a field in superspace, and to
interpret theWDWequation as the linearized equation ofmotion
of the corresponding quantum field theory. Non-linearities arise
when interactions are introduced. These would represent the
effects of wormholes in themulti-universe theory. The qualitative
picture should be similar to the lower dimensional cases. Four
dimensional observers measure coupling constants that are
determined by a background of baby universes that propagate in
superspace. In the classical limit of superspace, these couplings
are determined by the corresponding equations of motion, but in
the quantum theory they are subject to the uncertainty principle.

Unfortunately, the infinite dimensional superspace of four
dimensional universes is too complicated for this approach to be
tractable in practice. One can drastically simplify the problem
by reducing superspace to a finite number of dimensions,
e.g., in mini-superspace approximations. An analysis of such
setups, with emphasis of phenomenological implications, has
been performed in Fischler et al. (1989) (see also Giddings and
Strominger, 1989a). Baby universes are modeled as small spheres,
interacting with large universes through non-linear terms in the
WDW equation. The main phenomenological focus is on the
cosmological constant problem, for which the outcome appears
to be negative: While a variant of the Baum-Hawking-Coleman
enhancement at 3eff → 0 is recovered, it occurs for empty
and cold universes rather than for inflationary or big-bang
cosmologies. A way beyond this negative result would require
a non-standard re-interpretation of boundary conditions in the
WDW equations in the multi-universe setting.

5.5. The Two-Dimensional Case: Critical
Strings
The one dimensional theory described above is useful in
many respects to understand wormhole properties in higher
dimensions. It still lacks, however, important ingredients, some
of which appear in the much richer context of two dimensional
quantum gravity.

The way non trivial one-topologies in the path integral
were introduced was rather ad hoc. In two dimensions, on the
contrary, the sum over non-trivial topologies arises naturally.
It is the basis of (perturbative) string theory. Furthermore,
the superspace of one dimensional theories of gravity is finite
dimensional, in contrast to the infinite dimensional superspace
of worldsheet and higher dimensional theories.

Hence, one would like to discuss string theories as two
dimensional models of quantum gravity. As is well known, in
critical string theory the two-dimensional metric can be (locally)
gauged away, and the resulting theory contains only the matter

fields Xµ, withµ = 1, . . . ,D, as physical degrees of freedom.24 In
conformal gauge, the two-dimensional action is given by

SP[X] =
1

2πα′

∫

d2z
(

∂Xµ∂̄Xµ + R80

)

. (111)

For simplicity, the D-dimensional background on which the
string propagates has a flat metric and constant dilaton, and all
other fields (tachyon, two-form, etc) vanish.

A single spherical universe with g handles (=wormholes)
attached corresponds to worldsheets of genus g > 0. Just like in
the general treatment of previous sections, one can take a dilute
wormhole approximation and replace these wormholes with local
operators at each endpoints. One can show that these operators
are nothing else than the standard vertex operators of string
theory (Lyons and Hawking, 1991).

These vertex operators are in one to one correspondence
with target spacetime fields. In the dilute gas approximation,
only the lowest string modes contribute significantly. These are,
other than possible tachyons, the target space metric, two-form
and dilaton fields. They correspond to the traceless symmetric,
anti-symmetric, and trace parts of the local vertex operators

Vµν(K; z) = ∂Xµ∂̄XνeiKX (112)

where X(z) are the embedding functions of the worldsheeet into
target space, and K is a target spacetime momentum.

As usual, upon summing over wormhole contributions with
such vertex operators attached to each end, one gets a bilocal
contribution to the two-dimensional effective action,

1S =

∫

dDK

[(∫

d2z1 V
µν(K; z1)

)

1µνρσ (K)

(∫

d2z2 V
ρσ (K; z2)

)]

, (113)

where 1µνρσ (K) is the wormhole action, which is nothing but
the D-dimensional target space propagator of massless gravitons,
two-forms and dilatons.

Once again, one can introduce a set of αµν(K) parameters to
turn this into a local contribution to the worldsheet action. The
resulting path integral is:

Z =

∫

DXe−SP[X]−I[X] (114)

where SP is the original Polyakov action, and the wormhole
contribution is given by a path integral

e−I[X]
=

∫

Dαµν(K) exp

[∫

dDK α1−1α∗
]

exp

[∫

dDKαµν∂X
µ∂̄XνeiKX + c.c

]

. (115)

It is important to notice that, since wormholes have been
integrated out, the path integral (114) is only over a sphere,

24We are only considering bosonic degrees of freedom, e.g., by restricting attention

to bosonic string theory with D = 26.
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which is to be interpreted as the parent universe. The effects
of worldsheets with higher genus are encoded in the wormhole
contribution I[X] via α-parameters.

From the parent worldsheet point of view, wormholes
have introduced a randomness in the coupling constants. Of
course, this has a natural interpretation in target space: The α-
parameters, which can be conveniently denoted {αµν(K)} =

{Gµν(K),Bµν(K),D(K)}, simply describe the background of
metric, two-form and dilaton fields on which the string
propagates.

So far only the dominant wormhole contributions, coming
from massless string modes, have been considered. Massive
modes will of course contribute to terms of higher dimension
in the effective action, introducing an infinite set of α(K)-
parameters. Their quantization, i.e., the path integral over this
infinite set of target space fields, should lead to string field theory
(this interesting relation goes beyond the scope of this review).

5.6. Two Dimensional Quantum Cosmology
In this section we would like to consider two dimensional
quantum cosmology in baby universe backgrounds as a toymodel
of the four-dimensional case. String theory in critical dimensions
is not ideal for this purpose since the worldsheet metric can be
gauged away. One can nevertheless follow (Polchinski, 1989a;
Banks and Lykken, 1990; Banks and O’Loughlin, 1991; Cooper
et al., 1991; Carneiro da Cunha and Martinec, 2003) and can
consider a generally covariant theory with scalar matter fields Xi,
with i = 1, . . . ,D and general target space dimension D:

S =
1

8π

∫

d2σ
√

γ
[

γ ab∂aX · ∂bX + ωR+ λ
]

. (116)

Here γab is the worldsheet metric, λ is the cosmological constant,
and the topological ωR-term counts the genus of the worldsheet.
The signature of the D-dimensional X-space is taken to be
euclidean. It is useful to fix the gauge such that the metric
becomes γab = eφ γ̂ab, where γ̂ab is an arbitrary fiducial metric.
The path integral over worldsheet metrics reduces to that over
the Liouville field φ, with an action determined by the conformal
anomaly (Polyakov, 1981):

S =

1

8π

∫

d2σ
√

γ̂
{

γ̂ ab∂aX · ∂bX + λeφ

+

26− D

12

[

γ̂ ab∂aφ∂bφ + 2R̂φ
]

}

. (117)

Here ω has been reabsorbed by a shift of φ and a rescaling of λ.
The equations of motion for φ are solved by metrics of constant
curvature R(γ ) = R(eφ γ̂ ) ∼ λ, supporting the interpretation of
λ as a two-dimensional cosmological constant.

Notice that in (117) the action for the metric degree of
freedom φ takes the same form as that for the matter fields
Xi. One can naturally interpret {φ,Xi

} as parametrising a D +

1-dimensional target space on which the string propagates.
Interestingly, the target spacetime has euclidean signature for
D < 26, and lorentzian for D ≥ 2625. In the latter case, the

25For the Weyl invariant case of the critical string D = 26 the Liouville mode φ is

a gauge degree of freedom and disappears from the spectrum. Of course this is the

Liouville mode φ plays the role of a time-like coordinate in target
space. It is this situation that most closely resembles gravitational
theories in four dimensions (Polchinski, 1989a).

With this interpretation, Equation (117) corresponds to a
subset of a more general class of 2d gravitational theories, where
all D+ 1 scalars enter on equal footing,

S =

1

8π

∫

d2σ
√

γ̂
[

T(X)+
(

γ̂ abGµν(X)+ iǫabBµν(X)
)

∂aX
µ∂bX

ν
+ 2R̂8(X)+ . . .

]

(118)

with X0 corresponding to the Liouville mode φ. The function
T(X) plays the role of a cosmological constant. Preserving
two-dimensional diffeomorphism invariance at the quantum
level is equivalent to conformal invariance and imposes strong
constraints on the couplings {T, Gµν ,8,Bµν , . . .}, namely the
vanishing of their β-functions. These constraints correspond, in
(D + 1)-dimensional target space, to the equations of motion of
a tachyon, the metric, and the dilaton fields (setting Bµν = 0 for
simplicity):

∇
2T −∇8 · ∇T = V ′(T) , (119)

∇
28− 2 (∇8)2 =

1

6
(D− 25)+ V(T) , (120)

Rµν −
1

2
GµνR = −2∇µ∇ν8+ Gµν∇

28+∇µT∇νT

−

1

2
Gµν(∇T)2 (121)

where V(T) = −T2
+ . . . is the target space tachyon potential.

These equations describe the dynamics of the background on
which the string propagates. In our context, this background
is the “baby universe state” surrounding our spacetime. It is
a condensate of baby universes in the same sense that the
string target space is a condensate of string states. Since the
background equations of motion arise from the requirement
of diffeomorphism invariance of the worldsheet, they should
contain the 2d WDW equation. Non-linearities in these
equations go beyond the standard WDW framework and reflect
baby universe interactions. In other words, they come from
topology change.

A solution is given by the linear dilaton background

T(X) = 0, Gµν = ηµν , 8(X) = −

√

D− 25

12
X0. (122)

Notice that the dilaton controls the string coupling gs ∼ e8.
The semiclassical regime is realized in the limit D → ∞ for
positive X0. At early time X0, the theory is strongly coupled. In
the solution (122), the tachyon is balanced on top of its potential.
This vanishing of the two-dimensional cosmological constant
is obviously unstable against condensation of tachyons. In the

best studied case. Lower central charges D ≤ 1 have also received much attention

in the context of matrix models (see e.g., Klebanov, 1991; Ginsparg and Moore,

1993; Klebanov and Hashimoto, 1995; Martinec, 2004).
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linearized approximation V(T) = −T2, this happens with a
homogeneous profile (in the limit D → ∞)

T(X0) = λe

√

12
D X0

. (123)

This solution is valid for small values of T(X). Higher order
terms in the tachyon potential V(T) soon become relevant as the
tachyon rolls down, but are hard to compute. It is conceivable
that these terms produce aminimum away from zero, leading to a
stable solution with constant T. It has been argued (Cooper et al.,
1991) that this stability, i.e., the absence of growing modes in the
WDW equation, will be interpreted by the worldsheet observer
as the vanishing of the cosmological constant.

5.7. Wormholes in AdS/CFT
In the last few sections we have discussed the interpretation and
effects of wormholes in low dimensional theories, where they
are relatively well understood. However, given the simplicity of
these models, in particular of their gravitational sectors, one
should be very cautious when trying to extrapolate conclusions to
four dimensional setups. In order to properly tackle the puzzles
of wormholes, one needs to study them directly in theories of
quantum gravity in higher dimensions. For this, one of the main
tools presently at our disposal is the AdS/CFT correspondence.

Superstring theories in asymptotically AdS spacetimes are
dual to conformal field theories living on the boundary (Gubser
et al., 1998; Witten, 1998; Maldacena, 1999; Aharony et al.,
2000). The partition function of the CFT should be encoded
in a sum over all geometries with the correct asymptotics,
possibly including topologically non-trivial ones. If wormhole
configurations can be embedded in the low energy supergravity
theories that arise in string theory AdS compactifications, one
should arguably be able to interpret their effects, and in particular
the α-parameters they induce, on the field theory side.

This, however, poses severe problems (Bergshoeff et al., 2006;
Arkani-Hamed et al., 2007b; Hertog et al., 2017; Ruggeri et al.,
2018). It has been argued in Arkani-Hamed et al. (2007b) that
AdS wormholes clash with locality of the boundary field theory.
The cluster decomposition principle implies that for boundary
operatorsO1 andO2 separated by a large (Euclidean) time T, the
CFT correlator can be decomposed as

〈O1O2〉 = 〈O1〉〈O2〉 +O(e−ET) (124)

where E is non-zero if the vacuum of the theory is unique. (The
argument can also be extended to cases with a finite set of vacua.)
Using the AdS/CFT dictionary, the correlators in (124) should be
reproduced on the gravity side by a path integral over geometries.
If these include wormholes, α-parameters correct the effective
couplings. Hence, the two point function on the left hand side
of (124) should be given by

〈O1O2〉 =

∫

Dα e−α1
−1α

〈O1O2〉α

=

∫

Dα e−α1
−1α

〈O1〉α〈O2〉α +O(e−EαT) , (125)

where the correlators in the integrand are to be computed in the
AdS gravitational theory with α-shifted couplings. The second
equality assumes the factorization (at large T and for fixed α) on
the AdS side of the duality. We expect this not to be problematic,
at least in the classical limit26. One can similarly compute the
expectation values on the right hand side of (124):

〈O1〉〈O2〉 =

∫

Dα1 e
−α11

−1α1
〈O1〉α1

∫

Dα2 e
−α21

−1α2
〈O2〉α2 .

(126)
Equations (125) and (126) are inequivalent in general, in
contradiction with the locality requirement stated in (124). To
see this explicitly, assume that O1 and O2 are actually the same
operator, just inserted at different times t1 and t2. Then (125)
gives the expectation value of 〈O〉

2
α , interpreted as a function of

α and using a Gaussian probability distribution P(α) = e−α1
−1α .

By contrast, (126) corresponds to the square of the expectation
value of 〈O〉α , with the same α-distribution. These are equal
only if 〈O〉α is independent of α, i.e., if the expectation values
computed in AdS are independent of the couplings affected by
wormholes.

Another problem is that the presence of wormholes in AdS
can result in a violation of the BPS bound on the boundary super
Yang-Mills theory (Bergshoeff et al., 2006). Bulk axions source the
F∧ F operator on the boundary, while the accompanying dilaton
(always present in supersymmetric string compactifications)
sources the gauge kinetic operator F ∧ F̃. It can be shown
(Bergshoeff et al., 2006) that wormholes correspond, on the CFT
side, to configurations that violate the BPS bound, namely, for
which 〈|F − F̃|2〉 < 0. These are obviously inconsistent, and
pose a problem to the correct interpretation of wormholes in the
holographic framework.

One might hope that string theory prevents the presence of
wormholes in holographic setups where these paradoxes arise.
In fact axions are always accompanied by dilatons in superstring
compactifications and, as discussed in section 2.3, the existence
of regular wormholes solutions depends crucially on their
coupling. While the first wormhole constructions in AdS string
compactifications indeed were singular (Rey, 1999; Maldacena
and Maoz, 2004), regular solutions have been obtained more
recently (Arkani-Hamed et al., 2007b; Hertog et al., 2017; Ruggeri
et al., 2018). These analysis suggest that wormholes do exist
in controlled holographic setups and hence represent a sharp
paradox in AdS/CFT.

The correct resolution of this paradox is still not understood.
One possibility is that some mechanism in string theory prevents
topology change in holographic setups. One would need to
understand in this case how such a mechanism is implemented
and if it applies more generally to every string compactification.
It could also be that wormholes exist but their effect on the
effective action is not given in terms of α-parameters (e.g.,
because of issues with negative modes discussed in section 5.2).
Finally, another possibility is that the holographic dictionary, or

26Notice that, for some values of α, massless modes could arise, for which Eα = 0,

and the corrections in (125) would not be exponentially suppressed. This caveat

may affect the above argument, although it is not likely that it could reconcile the

different structures of (125) and (126).
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the correct understanding of the strongly coupled CFT, would
encode the α-parameters in a so far unknown manner. It is
conceivable that the CFT could develop a vacuum degeneracy in
its strong coupling regime which is not directly sees and which
is only accessible through the α parameters of the gravity dual.
Alternatively, one would recover the correct factorization of two-
point functions (124) if one considered the AdS theory to be in an
α eigenstate. It is however unknown how the CFT would encode
the appropriate value of α, or if there is a preferred α in string
compactifications.

Let us now turn to a related apparent puzzle that arises
when a wormhole connects two different AdS spacetimes
rather than two distant regions of one AdS space. Such a
geometry contains two boundaries and is hence dual to a pair
of CFTs. Since the boundaries are disconnected, one naively
expects CFT correlation functions of the type 〈O1(x1)O2(x2)〉CFT,
where x1 and x2 belong to different boundaries, to factorize
as 〈O1(x1)〉CFT1 〈O2(x2)〉CFT2 . But this contradicts the gravity
side computation: Here, the presence of the wormhole, which
connects the two dual AdS spaces, leads to non-trivial correlators
between operators on the different boundaries. This problem is
similar to the one described above, around (124)–(126).

In lorentzian signature the resolution of this puzzle is
well known (Maldacena, 2003): AdS geometries with multiple
boundaries always contain horizons that separate the different
boundaries (Galloway et al., 2001)27. The prototypical example
is an extended AdS-black hole which has two asymptotic AdS
regions connected by a non-traversable wormhole or Einstein-
Rosen bridge (see Figure 9). This geometry is dual to a pair of
CFTs in an entangled state, the correlators of which hence do
not factorize. Furthermore, the entanglement entropy of each
boundary CFT is related to the entropy of the horizon that
separates the boundaries. This can be explicitly checked with
the Ryu-Takayanagi (RT) or the covariant Hubeny-Rangamani-
Takayanagi prescription (Ryu and Takayanagi, 2006a,b; Hubeny
et al., 2007): The entanglement entropy of a spacelike region
A in the CFT is computed in the bulk by the area of a co-
dimension-two minimal surface with boundary anchored on ∂A.
As an example one can take A to be one of the boundaries of
an AdS-black hole geometry. Since each CFT lives on a sphere
one has ∂A = 0. The surface measuring the entanglement
entropy of A then detaches from the boundary and moves
into the bulk, becoming precisely the black hole horizon and
hence measuring its area. This relation between Einstein-Rosen
bridges and entanglement entropy has led to the remarkable
conjecture, known as ER=EPR (Maldacena and Susskind, 2013),
which says that entangled states (even microscopic ones) are
generally described by wormholes.

While lorentzian wormholes, including their description in
AdS/CFT, are a fascinating subject (see e.g., Visser, 1995;
Maldacena and Qi, 2018), the focus of the present review
is different: We are interested in euclidean wormholes, their
interpretation as tunneling events, and the resulting contribution
to the effective actions of gravitational theories. Unfortunately, it

27see however Fujita et al. (2011) and Arias et al. (2011).

FIGURE 9 | Extended AdS-black hole with two boundaries connected by a

wormhole or Einstein-Rosen bridge (horizontal line).

FIGURE 10 | Illustration of a 3d euclidean AdS wormhole geometry with the

two boundary components ∂M1 and ∂M2 corresponding to Riemann surfaces

(Maldacena and Maoz, 2004; Hubeny et al., 2007).

is not immediately clear how to carry over the above discussion,
especially the elegant resolution of the paradox, to this setting.

A promising way forward may be to consider euclidean rather
than lorentzian wormholes which connect AdS spaces with two
disconnected boundary components. The latter correspond to
two euclidean CFTs (Maldacena and Maoz, 2004). Euclidean
wormholes are different from their lorentzian counterparts in
that they do not posses a horizon separating the two boundaries.
In fact, the simplest examples are obtained by starting with global
AdS and modding out a discrete symmetry. In this case there are
no matter fields supporting the wormhole throat and one can not
think of the wormhole ends as being localized at arbitrary points
inside AdS spaces. Rather, the whole AdS space is the wormhole
(cf. Figure 10).

Due in particular to the absence of horizons, the relation of
these wormholes to entanglement entropy is not immediately
clear (Maldacena and Maoz, 2004). However, Hubeny et al.
(2007) have made a very intriguing suggestion (conceptually
related to their time-dependent generalization of RT) for
interpreting such euclidean wormholes in terms of entangled
CFT states. The idea is to focus on a CFT state corresponding,
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for example, to a 1-cylce A in ∂M1 in Figure 10. In this case the
entangling surface is the minimal-length 1-cycle in the bulk to
which A can be deformed. This relates to the minimal width of
the wormhole at its waist. Interesting extensions include those
to multiboundary wormholes (Balasubramanian et al., 2014),
to situations with inflating wormhole interiors (Fischetti et al.,
2015), and many others (see e.g., Mandal et al., 2015; Maxfield,
2015). In our context, the crucial question is whether such an
entanglement interpretation of euclidean wormholes holds the
key to resolving the problems described above. In particular,
it is tantalizing to think that some generalization of ER=EPR
can be applied to Euclidean wormholes, perhaps giving them a
description in terms of “entangled instantons.” Can one hope to
obtain a satisfactory interpretation of Coleman’s α-parameters
in holographic setups in this way? At a more modest level,
the mere existence of well-established entangelement entropy
interpretations of euclidean AdS wormholes strengthens the
case of this review by making it less likely that such exotic
objects can be dismissed altogether. Summarizing, it seems clear
that AdS/CFT correspondence and holographic entanglement
entropy suggest promising avenues to resolving the long-
standing puzzles posed by wormholes.

6. CONCLUSIONS

We have reviewed a number of issues, both theoretical
and phenomenological, arising in the context of gravitational
instantons, euclidean wormholes and baby universes. The more
recent interest in this old subject is related to the weak gravity
conjecture, which is further connected to the interplay between
charged microscopic objects and charged black branes. In the
special case of the axion or 0-form gauge field, this is the interplay
between microscopic instantons and gravitational instantons or
wormholes.

The latter case is, however, very special. Indeed, if one insists
that the macroscopic charged objects are not UV-sensitive,
then cored (i.e., singular) gravitational instantons are excluded
and the objects to be considered are the Giddings-Strominger
wormholes. Those can be interpreted as tunneling processes
in which an S3 baby universe is emitted in some region of
4d non-compact space-time and re-absorbed at an arbitrarily
distant location. Allowing such processes unavoidably introduces
a baby-universe state, characterized by so-called α parameters,
into our description of reality. This is a form of indeterminacy
reminiscent of that induced by the string theory landscape. It
is, however, of very different conceptual origin and potentially
more severe in that parameters are scanned in a continuous
way. While the axionic euclidean wormhole solution of Giddings
and Strominger played a prominent role in the inception of this
picture, it is really not that central: All one needs is some form of
topology change.

Crucially, not only the instanton-induced axionic cosine
potential is affected, but all coupling constants of the 4d
effective theory. Historically, Coleman’s suggested solution to
the cosmological constant problem played a crucial role in this
discussion. This was based on the attempt to integrate over

the α parameters together with the 4d geometry, producing a
probabilistic distribution of 3-values infinitely peaked at zero.
However, this has become less believable due to severe technical
problems and the fact that arguably a cold and empty universe is
predicted.

The more modest recent discussions of phenomenology have
mostly been limited to the axionic cosine potential, under the
assumption that the relevant α parameters take their arguably
natural O(1) value. For (effective) axions with f > MP, this is
relevant in the context of large-field inflation, where wormholes
could in principle have a sizeable impact in the inflaton potential
(Montero et al., 2015; Hebecker et al., 2017). However, it turns
out that in this regime only wormholes with large 3-form flux
are semiclassically controlled. As the UV cutoff is lowered,
the required charge grows together with the wormhole action,
and the induced potential falls exponentially. Thus, bounds
independent of microscopic instantons and the weak gravity
conjecture are hard to obtain. The potentially strong constraints
on large-field inflation arising from the weak gravity conjecture
are being intensely studied, and are one of the main reasons for
the current interest in wormhole physics (Montero et al., 2015;
Heidenreich et al., 2016; Hebecker et al., 2017).

By contrast, for small-f axions, even minimally charged
wormholes have radii above M−1

P and are semiclassically
controlled. This leads to interesting limits on, or even predictions
of, axion masses for axions without (or with highly suppressed)
microscopic instantons (Alonso andUrbano, 2017). Such bounds
have immediate phenomenological relevance for black hole
superradiance and light or ultralight dark matter. In the specific
case of the QCD axion, the wormhole-induced potential starts
to compete with the QCD-instanton effects at f ∼ 1016 GeV,
potentially spoiling the solution of the strong CP-problem at such
relatively large decay constants.

While the above phenomenological considerations are
intriguing and deserve further development, it is important to
emphasize that deep conceptual issues remain unresolved. First,
the Giddings-Strominger wormhole is a solution of euclidean
quantum gravity and the status of the latter is unclear. This
is in particular due to the negative modes associated with the
conformal factor. Also, the question of whether the Giddings-
Strominger solution has negativemodes beyond those generically
present in euclidean gravity, and how they should be interpreted,
is being controversially discussed. However, we consider it
unlikely that arguments along those lines can be strong enough
to entirely forbid wormhole-type tunneling events. Indeed, in
quantum mechanics, as a rule of thumb “anything that can
happen will happen,” even without a stable euclidean saddle
point. In this case one needs to understand which role, if any, is
played by topology change, and what are the resulting effects on
the low-energy effective field theory (e.g., whether α parameters
arise).

More drastically, one could argue that topology change may
be strictly forbidden. Indeed, in lorentzian signature no smooth
and everywhere defined metric can exists on a space-time “with
a handle.” Thus, if one wants to think of the corresponding
tunneling trajectory directly in the lorentzian theory, one is
forced to deal with (mildly) singular points. We can not rule out
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that this will probe unknown UV-features of the theory which
will rule out the desired transitions. However, it must also be
said string theory as our best candidate for a theory of quantum
gravity is built on topology change in 2d and includes many
examples of well-understood and controlled topology change
in 10d. Thus, we find a generic censorship of topology change
unlikely.

Accepting wormholes as a feature of the theory, the problems
do unfortunately not end: One has to deal with the α parameters
and simply integrating over them together with the metric
may lead to problems. One extreme instance of this is known
as the Fischler-Kaplunovsky-Susskind catastrophe, which states
that under reasonable assumptions the density even of large
wormhole ends in 4d space becomes large and the dilute-gas
approximation breaks down.

Stepping back and considering the role of α parameters
from a more fundamental perspective, one discovers that
simply integrating over them is too simplistic. Indeed, the
proper approach is the Wheeler-DeWitt equation describing
the full dynamics of a superposition of many large universes
interacting with a wormhole baby universe “gas” surrounding
them. A helpful 1-dimensional analogy which we described
is that of a heavy particle (electron) emitting and absorbing
light particles (photons), the cloud of which represents a
background field. The latter corresponds to the α parameters,
which hence have their own quantum dynamics. The Wheeler-
DeWitt equation in this case encodes a standard quantum
field theory. A more elaborate toy model takes the point of
view of an observer living on the worldsheet of a string that
propagates through target space. To this 2d observer, the sum
over worldsheet topologies of string theory represents a sum
over wormholes, and his α parameters correspond to target
space fields (metric, dilaton, etc.). Thus, understanding the values
of α parameters amounts to studying string field theory. Very
interesting investigations of this setting have been undertaken in
the context of “2d quantum cosmology” (Cooper et al., 1991).
In particular, in the context of non-critical strings, insights
into issues such as the emergence of time or the evolution
of cosmological parameters (in particular the cosmological
constant) and their interplay with wormholes appear to be within
reach.

Unfortunately, even in these toy models, firm conclusions are
hard to come by. Furthermore, the deep differences between one-
or two-dimensional theories of gravity and higher-dimensional
ones make the extrapolation of results highly speculative
(Fischler et al., 1989; Giddings and Strominger, 1989a). It is
conceivable that some mechanism forbids wormholes in four
dimensions while allowing them in two dimensions. However,

we are not aware of such a constraint. It is hence crucial
to obtain insight directly in higher dimensions. A powerful
tool we have at hand is the AdS/CFT correspondence. In this
context, wormholes pose a new type of puzzles. It has been
argued that, while wormholes can be embedded in AdS string
compactifications, their interpretation in terms of α parameters
lead to problems in the boundary field theory, such as non-
localities or violations of the BPS bound (Bergshoeff et al.,
2006; Arkani-Hamed et al., 2007b; Hertog et al., 2017; Ruggeri
et al., 2018). The resolution of this conflict remains to be
understood.

To summarize: the existence and effects of wormholes in
theories of gravity remains, after almost 40 years, an important
but enigmatic subject with both deep fundamental issues and
potential phenomenological applications to be explored. Despite
new insights into quantum gravity and string theory, progress
in our understanding of wormholes has been slow. Our picture
remains rather incomplete. Whether topology change (at low
energy) is required or forbidden in four and higher dimensions
remains to be conclusively settled. Either possibility opens new
questions to be addressed. If wormholes exists, their effects
lead, as we have discussed, to several puzzles to be resolved.
If wormholes are absent altogether, the censorship mechanism
at work needs to be understood. Furthermore, in this case
one should also ask what are the model- and UV-independent
objects (gravitational instantons) that break global axionic shift
symmetry. We believe that these questions deserve further
investigation.
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