About this Research Topic
Phenotypic and functional differences between endothelial cells exist dependent on their unique microenvironment, and these are characteristics are influenced by the species and tissues in which they reside. Differences also exist in the function of macrovessels and microvessels within the same tissue, for example in inflammatory responses and leukocyte trafficking. The vascular biology of peripheral nerves has been relatively overlooked in studies relevant to peripheral nerve morphogenesis and repair, infection/inflammation and pharmacologic drug delivery, to mention a few. Relatively little is directly known about how the human blood-nerve barrier facilitates peripheral nerve homeostasis and how the cellular components of peripheral nerves (e.g. Schwann cells) receive essential nutrients for survival from and how waste products of cellular metabolism are removed to the systemic circulation. As a consequence, knowledge gaps also exist in the structural, molecular and functional changes at the blood-nerve barrier in different disease states. These deficiencies have resulted in limited specific therapies for peripheral nerve disorders and neuropathic pain.
Due to the isolation, development and characterization of primary and immortalized mammalian peripheral nerve endothelial cell lines guided by in situ and in vivo observational data, there have been significant advances in our understanding of blood-nerve barrier composition and function, as well as biophysical properties under normal physiological and pathophysiological states, including recent deduction of the human blood-nerve barrier transcriptome. Such knowledge is essential to our understanding of peripheral nerve homeostasis, and will guide fundamental translationally relevant research to decipher blood-nerve barrier function in health and adaptations in disease. This knowledge has significant implications for neurologists, anesthesiologists, neuroscientists, vascular biologists, pharmacologists and medicinal chemists working to better understand peripheral nerve function and develop effective treatments for peripheral neuropathies, traumatic nerve injury and neuropathic pain with limited systemic adverse effects, prevent toxic neuropathies such as chemotherapy-induced peripheral neuropathy as well as induce effective local and regional anesthesia. Effective drug design strategies to enhance peripheral axonal regeneration will need to consider the specific characteristics and complexity of the human blood-nerve barrier in a similar vein as the blood-brain barrier in targeted brain drug delivery approaches.
Keywords: Biophysical properties, Blood-nerve barrier, Endothelial cells, Molecular composition, Peripheral nerves
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.