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In the last few years, advances in human structural and functional neuroimaging (fMRI, 
PET, EEG/MEG) have resulted in an explosion of studies investigating the anatomical and 
functional connectivity between different regions of the brain. More and more studies have 
employed resting and task-related connectivity analyses to assess functional interactions, and 
diffusion-weighted tractography to study white matter organization. Many of these studies 
have addressed normal human function, but recently, a number of investigators have turned 
their attention to examining brain disorders.

The study of brain disorders is a complex endeavor; not only does it require understanding 
the normal brain, and the regions involved in a particular function, but also it needs a deeper 
understanding of brain networks and their dynamics. This special issue will provide the 
scientific community with an overview of how to apply connectivity methods to study brain 
disease, and with perspectives on what are the strength and limitations of each modality.

For this Research Topic, we solicit both reviews and original research articles on the use of 
brain connectivity analysis, with non-human or human models, to explore neurological, 
psychiatric, developmental and neurodegenerative disorders from a system perspective. 
Connectivity studies that have focused on one or more of the following will be of particular 
interest:

(1) detection of abnormal functional/structural connectivity;
(2) neural plasticity, assessed by changes in connectivity, in patients with brain disorders;
(3) assessment of therapy using connectivity measures;
(4) relation of connectivity changes to behavioral changes.
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The review articles can be roughly divided into (1) those that 
focus on a connectivity method, and use one or more disorders to 
illustrate the method, and (2) those whose emphasis is placed on 
a particular disorder, and discuss a number of relevant functional 
and structural connectivity studies investigating the disorder. In 
the first category of reviews, Rowe (2010) provides an overview 
of fMRI-based functional and effective connectivity, with a focus 
on its applications to neurological disorders. One of the most 
widely used effective connectivity techniques is dynamic causal 
modeling (DCM; Friston et al., 2003), and Seghier et al. (2010) 
present an extensive review of its application to all brain disorders. 
This article also includes a useful introduction to Bayesian model 
selection (Penny et al., 2004), a key component of DCM. Another 
“functional” connectivity method that has been applied to inves-
tigate brain disorders is transcranial magnetic stimulation (TMS), 
and the article by Hampson and Hoffman (2010) contains a nice 
overview of the method, along with a review of its applications 
to psychiatric and neurological disorders. In TMS, an externally 
applied changing magnetic field is used to induce electrical stimula-
tion in a cortical brain area which propagates through long-range 
connections to other brain regions. David et al. (2010) discuss a 
similar method, direct electrical stimulation (DES), applied using 
intracranial electrodes in some epileptic patients during presurgical 
evaluation prior to epileptogenic tissue resection. DES is applied 
directly to cortical tissue and tracts with extremely well-defined 
spatial definition, and in this sense, it provides human data that 
are unattainable by any other method. Epilepsy also provides the 
basis for two other reviews. Wendling et al. (2010) discuss a variety 
of functional connectivity techniques that have been applied to 
electrophysiological data obtained from scalp and intracerebral 
EEG recordings, whereas the review by Lemieux et al. (2011) offers 
a broad overview of both EEG-based and fMRI-based functional 
and effective connectivity analyses. Finally, Alexander-Bloch et al. 
(2010) provide a useful overview of the basic concepts and math-
ematics of graph theory as applied to fMRI resting data. As an 
example of graph theory as applied to resting state fMRI, they 
present results of a study comparing childhood-onset schizophre-
nia with normal controls, showing disrupted modularity and local 
connectivity in the patients.

The second category of review articles focuses on disorders. 
Schipul et al. (2011) provide a detailed review of autism. In 
many ways autism represents the classic example of a disorder 
where analyses of imaging data at the single brain region level 
yielded very little insight, but network analyses have proven 
quite fruitful in furthering our understanding of the condition. 
A second brain disorder that is reviewed here is coma (and 
related disorders of consciousness). Noirhomme et al. (2010) 

In the past few years, advances in human structural and func-
tional neuroimaging, especially with respect to magnetic reso-
nance imaging, have resulted in an explosion of studies exploring 
the anatomical and functional connectivities between different 
regions of the brain. More and more studies have employed rest-
ing and task-related connectivity analyses to assess functional 
interactions, and other studies have used diffusion-weighted trac-
tography to examine the organization and integrity of white mat-
ter tracts. Many of these studies have addressed normal human 
function, but recently, a number of investigators have turned their 
attention to examining brain disorders. We are on the verge of 
being able to better understand the pathophysiology of neurologi-
cal and psychiatric disorders and the effect of treatments on brain 
function. The study of brain disorders is a complex endeavor: 
not only does it require understanding the normal brain, and the 
regions involved in a particular function, but also it needs a deeper 
understanding of brain networks and their dynamics. Moreover, 
in many cases, disorders are progressive, and thus imaging could 
potentially become a source of biomarkers for early detection 
and assessment of the course of a disease (Horwitz and Rowe, 
2011), and for evaluating potential treatments. The articles that 
appear in this special topics ebook represent the current status 
of the applications that employ brain connectivity analysis to 
investigate brain disorders.

Although certain types of connectivity analyses have become 
very popular recently [e.g., resting state fMRI functional connectiv-
ity – see the special topics issue of Frontiers in Systems Neuroscience 
edited by Uddin and Menon (2010)], we have chosen to cover arti-
cles that represent the broadest possible set of connectivity meth-
ods, employing the widest possible spectrum of imaging techniques, 
and applied to the full range of neurological, psychiatric, and devel-
opmental disorders. In this way, we hope that readers acquire an 
understanding of how these relatively new connectivity analysis 
methods enable investigators to address brain disorders from a 
network perspective. Even pathology localized to one area of the 
brain can lead to dysfunctional network behavior, since no brain 
region is an island onto itself. The insights offered by the network 
paradigm have, therefore, important ramifications for using neu-
roimaging to help detect and diagnose brain disorders, interpret 
the symptoms of many disorders, and assess potential treatments.

Two types of articles comprise this special topics ebook – review 
articles and papers that include primarily the results of original 
research. Here, we provide a brief overview of the review articles. 
See the Horovitz and Horwitz editorial (Introduction to research 
topic – Brain connectivity analysis: investigating brain disorders. 
Part 2: original research articles) for a corresponding overview of 
the research papers.

Introduction to research topic – Brain connectivity analysis: 
investigating brain disorders. Part 1: the review articles

Barry Horwitz1* and Silvina G. Horovitz2

1 Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
2 Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
*Correspondence: horwitzb@nidcd.nih.gov
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published: 13 February 2012
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show that such studies can shed important light on what medi-
ates conscious awareness. Two articles address stroke, in par-
ticular focusing on using brain connectivity analyses to assess 
functional recovery. Westlake and Nagarajan (2011) provide 
an overview of functional connectivity in relation to motor 
performance. Their review emphasizes PET, fMRI, and EEG/
MEG studies. In the other review, Johansen-Berg et al. (2010) 
examine white matter connectivity results, obtained using dif-
fusion tensor imaging (DTI). Their paper includes information 
on how this technique can be used to test for dynamic changes 
in structural connectivity with learning or with recovery from 
the effects of a stroke.
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cortical functions are not simply determined by inputs from the 
periphery, but are modulated by back-projections within networks 
of primary, secondary, and association cortices. Neurological dis-
orders that are manifest by dysfunction of distributed cognitive 
processes may arise from changes in the interactions (connectivity) 
within the cortical and subcortical networks, as well as isolated 
abnormalities within any one “node” of the network. This principle 
was established in early modern neurology by Lichtheim’s antici-
pation and identification of conduction aphasia, and it remains 
highly relevant today.

Second, many neuropathologies are themselves distributed 
widely (Braak and Braak, 1997; Braak et al., 2006). The reasons 
for selective vulnerability of a subset of brain networks to disease 
are rarely clear cut, but a consequence of distributed pathology 
is that there may be severely impaired function of the network 
without consistent and sufficiently severe localized abnormali-
ties to detect group-based localized deficits. This applies not only 
to neurodegenerative disorders such as Parkinson’s disease (PD) 
but also multifocal cerebral insults such as subcortical ischemia 
or demyelination.

Third, a localized lesion may not cause relevant functional 
abnormalities in only its own location and immediate connec-
tions. There can also be remote consequences within the neural 
network in which the lesion is embedded. In complex networks, 

IntroductIon
Neurological and neuropsychiatric disorders are major causes of 
morbidity and mortality worldwide. They include developmental 
and degenerative processes, as well as focal brain injury from stroke 
or trauma, and are subject to many genetic and environmental 
influences. The heterogeneity and complexity of individual clinical 
syndromes reflect interactions among patterns of neuropathology, 
individual differences in premorbid function and the distributed 
functional anatomy of normal cognitive and motor processes. 
This presents a double challenge for clinical translational cognitive 
neuroscience – to define simultaneously the processes or systems 
underlying neuropsychiatric syndromes, and to understand their 
functional anatomical abnormalities.

For many years, a neuropsychological approach was the only way 
to dissociate functional components of behavioral syndromes, and 
often localize clinical phenomena to specific brain regions. With 
the advent of structural brain imaging, combined with behavioral 
analysis and larger case series, this approach remains informative 
(Mort et al., 2003; Sapir et al., 2007; Verdon et al., 2010). However, 
methods that identify localized or functionally segregated disease 
effects are fundamentally limited, for several reasons.

First and foremost is that cognitive processes depend fundamen-
tally on interactions among multiple brain regions, rather than on 
isolated processes within regions. Even seemingly basic early  sensory 

Connectivity analysis is essential to understand neurological 
disorders

James B. Rowe1,2,3*
1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
2 Cognition and Brain Sciences Unit, Medical Research Council, Cambridge, UK
3 Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, UK

Neurological and neuropsychiatric disorders are major causes of morbidity worldwide. A systems 
level analysis including functional and structural neuroimaging is particularly useful when the 
pathology leads to disorders of higher order cognitive functions in human patients. However, 
an analysis that is restricted to regional effects is impoverished and insensitive, compared to 
the analysis of distributed brain networks. We discuss the issues to consider when choosing an 
appropriate connectivity method, and compare the results from several different methods that 
are relevant to fMRI and PET data. These include psychophysiological interactions in general 
linear models, structural equation modeling, dynamic causal modeling, and independent 
components analysis. The advantages of connectivity analysis are illustrated with a range of 
structural and neurodegenerative brain disorders. We illustrate the sensitivity of these methods 
to the presence or severity of disease and/or treatment, even where analyses of voxel-wise 
activations are insensitive. However, functional and structural connectivity methods should 
be seen as complementary to, not a substitute for, other imaging and behavioral approaches. 
The functional relevance of changes in connectivity, to motor or cognitive performance, are 
considered alongside the complex relationship between structural and functional changes 
and neuropathology. Finally some of the problems associated with connectivity analysis are 
discussed. We suggest that the analysis of brain connectivity is an essential complement 
to the analysis of regionally specific dysfunction, in order to understand neurological and 
neuropsychiatric disease, and to evaluate the mechanisms of effective therapies.
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with reciprocal connections or large scale circuit loops, the local 
and remote changes in connectivity can be difficult to predict, 
in clinical (Sharma et al., 2009) and simulated data (Kim and 
Horwitz, 2009).

Several methods to study connectivity are commonly used at 
present (see Table 1). We begin by considering the choice of methods. 
Subsequent sections will emphasize the commonalities of methods, 
and the importance of using these methods in order to fully under-
stand disorders of the nervous system, as well as effective treatments. 
The challenges of these complex network interactions apply not only 
to disease, but also the neural basis of healthy individual differences. 
Although this review focuses on neurological disorders, the principles 
are also relevant to individual differences in the healthy population.

WhIch method of connectIvIty should one choose?
There are many available methods to study large scale neural net-
works from functional neuroimaging data (Table 1). I will illus-
trate several of them in this review including psychophysiological 

interactions (PPIs), structural equation modeling (SEM), dynamic 
causal modeling (DCM), independent components analysis (ICA), 
and partial least squares (PLS), with an emphasis on fMRI data in 
neurological conditions.

A distinction is often drawn between functional connectivity 
and effective connectivity. Functional connectivity refers to cov-
ariance over time among spatially distributed brain regions which 
may arise because they are part of a common network. However, 
it may also be observed in the absence of causal influences among 
the regions if there are common inputs from other areas; multifocal 
effects of drugs; or common sources of noise. In contrast, effective 
connectivity refers explicitly to the causal influences of one region 
over another (see Limitations, Counter Intuitive Results and Naive 
Expectations). It often also implies that these influences are related 
to the study paradigm or an intervention such as transcranial mag-
netic stimulation. Some methods are clearly designed to study effec-
tive connectivity, based on temporal precedence (e.g., GCM) or 
dynamic causal models (e.g., DCM). Other methods (e.g., PPIs) 

Table 1 | Glossary and outline of methods discussed.

DCM Dynamic causal 

modeling

A deterministic approach within a generative model that characterizes neural activity in terms of driving inputs to a 

distributed neural network, intrinsic connections, and linear or non-linear modulations of connectivity arising from 

tasks or neural activity (Friston et al., 2003). Critical features of DCM as implemented by SPM software are the 

simultaneous estimation of a forward model of neurovascular coupling and the interactions among network regions at 

the level of neuronal activity. These are estimated to optimize a free energy estimate of the log-evidence of a model in 

a Bayesian framework. DCM is currently applicable to single subject and group studies of fMRI and M/EEG data, with 

extensions able to incorporate multiple state representations at each region and stochastic or spontaneous activations. 

See www.fil.ion.ucl.ac.uk/spm

GCM Granger causality 

modeling and 

Granger causality 

mapping

These methods examine connectivity in terms of “Granger causality” (Roebroeck et al., 2005, 2009a), emphasizing 

the role of temporal precedence in the inference of causality. They are closely related to multivariate autoregressive 

modeling, which like SEM has its roots in econometrics, and can be applied to test anatomically defined neural 

network models (Granger causality modeling), or explore the interactions between a source region all other regions 

(Granger causality mapping). An invaluable discussion of issues related to GCM for fMRI data is contained in the 

exchange between Friston and Roebroeck (see Friston, 2009; Roebroeck et al., 2009a,b). See www.brainvoyager.com

ICA Independent 

component 

analysis

Model-free fMRI analysis which may in some packages also estimate the number of interesting noise and signal 

sources in the data (McKeown et al., 1998; Beckmann et al., 2005). This approach does not assume anatomical 

connectivity or directionality of influences within the networks, but component networks can be mapped to task 

events or contexts. See www.fmrib.ox.ac.uk/fsl/melodic or afni.nimh.nih.gov/sscc/gangc/ica

PLS Partial least 

squares

Related to principal components analysis, PLS identifies functionally connected brain networks and can identify 

subject- or experimental-variables associated with them (McIntosh et al., 1996; McIntosh and Lobaugh, 2004) as well 

as identifying psychophysiological interactions. See www.rotman-baycrest.on.ca/

PPI Psycho–

physiological 

interactions

A general conceptual framework in which physiological interactions between regions are modulated by psychological 

or physiological contexts. It can be used to test hypotheses of effective connectivity (Friston et al., 1997), or explore 

functional connectivity. However, the term PPI is also used to refer to a specific implementation within general linear 

models (PPI-GLMs). These PPI-GLMs use moderator variables that express the interactions between regional 

activations and contexts (and higher order interactions with between-subjects factors like age or disease risk factors) 

(Buchel and Friston, 1997; Rowe et al., 2006; Passamonti et al., 2009). See www.fil.ion.ucl.ac.uk/spm

RSN Resting state 

networks

ICA of fMRI data acquired at rest identifies a small number (∼10) of consistent spatially distributed covarying brain 

networks. One of these is also commonly identified by the brain state when not engaged in typical experimental 

tasks, known as the default mode network (DMN)

SEM Structural 

equation 

modeling

Introduced into neuroimaging from econometrics and social sciences for the analysis of brain effective connectivity 

analysis (McIntosh and Gonzalez-Lima, 1994; McIntosh et al., 1994), to determine task-dependent (McIntosh et al., 

1994; Buchel and Friston, 1997; Honey et al., 2002) or group-dependent (Grafton et al., 1994; Horwitz et al., 1995; 

Rowe et al., 2002b) changes in a hypothesized causal structure formalized in a path model. Commonly implemented 

for fMRI data by LISREL or SPM toolbox software.
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spatiotemporally covarying networks. If one is able to predefine the 
specific experimental manipulations or disease factors that deter-
mine the changes in connectivity, these factors may be incorporated 
as hypothesized modulatory influences, e.g., in DCM, SEM or PPI-
GLMs. Alternatively, data driven approaches such as PLS or post hoc 
interrogation of independent components analysis may be used to 
identify relevant factors that define a network’s function.

Second, the appropriate methods may be restricted by the 
clinical conditions, by disease-related confounding factors such as 
medication, or by the cognitive systems of interest. Some tasks are 
not well suited to temporally precise network models, e.g., tasks 
with long epochs without discrete events are not easily modeled 
accurately in DCM. Such tasks include imagination of movements 
without precise timing of imagined “events”; observation of video 
clips with imprecise timing of critical perceptions; or long working 
memory delays. Another problem arises from the use of a canonical 
hemodynamic response function to estimate interactions between 
task, context and disease, e.g., SEM or PPI-GLMs. These might be 
confounded by a disease or medication that fundamentally alters 
the hemodynamic response function (Iannetti and Wise, 2007). In 
contrast, other methods such as DCM, which estimate a subject-, 
session-, and region-specific forward model of the neurovascular 
BOLD response, can accommodate disease or drug dependent dif-
ferences in hemodynamic response function. In addition, general 
linear models of psychophysiological interactions are less suited 
to rapid event-related designs, which might be required to study 
the psychological or behavioral phenomenon of relevance to the 
disease such as the response to unexpected events.

A third factor is the information already available from the lit-
erature. Can one justify a set of cognitive and anatomical models, 
within which to evaluate the effects of disease on network connec-
tivity? If so, then models embodying anatomically defined regions 
of interest and the causal relations among them can be tested, e.g., 
DCM or SEM. In addition, DCM, can be used to compare the 
effects of disease or treatment within multiple plausible models, and 
identify the most likely causal network model for a given cognitive 
process even in heterogeneous groups with between-subject dif-
ferences in network dynamics (Penny et al., 2004a; Stephan et al., 
2009a). Alternatively, an exploratory approach may be required, 
using PPIs, GCM, or ICA of whole brain data. These methods can 
be applied without restricting the analysis of disease effects on con-
nectivity to a predefined anatomical network and without defining 
unidirectional or bidirectional interactions among regions.

A related question is whether it is justified to restrict analy-
sis to connectivity changes induced by experimental manipula-
tions? Deterministic models, such as those embodied by DCM, 
are powerful tools to define linear or non-linear networks related 
to experimental tasks, and their interactions with psychological 
contexts, diseases or pharmacology. However, current versions of 
DCM do not support stochastic or spontaneous processes within 
defined networks. The latter call for SEM which includes sponta-
neous activity (“innovations”) arising within the network, rather 
than external or driving inputs to the network. However, a vari-
ational Bayes approach to DCM can approximate non-linear and 
stochastic dynamic models (Stephan et al., 2008; Daunizeau et al., 
2009), encompassing endogenous sources of changing connectivity. 
Alternatively, connectivity may be inferred from model  independent 

can be used either to test causal models  (effective  connectivity) 
or to explore changes in task related covariance (functional con-
nectivity). If functional connectivity is sufficient to generate or test 
hypotheses, then validated options include partial least squares 
(PLS) (McIntosh et al., 2004; McIntosh and Lobaugh, 2004), prin-
cipal components analysis (PCA), or independent components 
analysis (ICA) (McKeown et al., 1998).

It is therefore necessary for each study to be clear about the 
hypotheses being tested and the biophysical interpretation of con-
nectivity parameters (Buchel and Friston, 2000; Penny et al., 2004b; 
Ramnani et al., 2004; Lee et al., 2006; Friston, 2009; Roebroeck 
et al., 2009a,b; Cole et al., 2010). With this in mind, I will show 
these different methods can each contribute to our understand-
ing of the complex network interactions in the brain; their rel-
evance to neurological disease; and discuss how to choose an 
appropriate method.

Few studies directly compare multiple methods on the same 
data, despite the lack of consensus for many years (Horwitz, 2003). 
There are many reasons why two methods might differ in the 
inferred changes in connectivity, including a different biophysical 
interpretation of connectivity parameters and differential sensitiv-
ity to artifacts. Nonetheless, direct comparisons are interesting. 
Passamonti et al. (2008) directly compared psychophysiological 
interactions in general linear models (PPI-GLM) and dynamic 
causal modeling (DCM). They examined the connectivity between 
amygdala and medial frontal cortex, in relation to individual per-
sonality differences. The conclusions of these two methods were 
congruent. In the context of Parkinson’s disease (PD), Palmer et al. 
(2009) compared SEM and multivariate autoregressive modeling. 
Both methods revealed similar dopamine-dependent group dif-
ferences in connectivity, despite significant differences in methods 
and their interpretation. Using simulated data, Witt and Meyerand 
(2009) compared SEM, autoregression analysis, Granger causality 
modeling (GCM), and DCM and again found that each method was 
able to detect the underlying system dynamics (although GCM was 
adversely sensitive to differences in imaging and modeling param-
eters). Thus, methods do appear to yield consistent, although not 
identical results. However, different methods permit different infer-
ences, and they are not all appropriate for every circumstance.

How then should one choose the right method to study the 
effects of disease or treatments? This depends on a number of prac-
tical considerations. First, what types of inference are relevant? 
For example, are inferences of directional and causal influences 
required? If so, then dynamic causal modeling (DCM) (Friston 
et al., 2003; Penny et al., 2004a; Sonty et al., 2007; Stephan et al., 
2008; Rowe et al., 2010), SEM (McIntosh and Gonzalez-Lima, 1994; 
Buchel and Friston, 1997; Rowe et al., 2002b; Sharma et al., 2009) 
or Granger causality modeling (GCM) (Roebroeck et al., 2005) 
should be considered. Note that GCM of fMRI data is the youngest 
of these methods, and important theoretical considerations have 
been discussed recently (Friston, 2009; Roebroeck et al., 2009a,b). 
Alternatively, is it sufficient to establish differences in spatiotem-
poral covariance? If so, functional connectivity methods such as 
simple correlations analysis, partial least squares (PLS) (McIntosh 
et al., 2004; McIntosh and Lobaugh, 2004), principal components 
analysis or independent components analysis (McKeown et al., 
1998) may be preferable to infer the presence or connectivity of 
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primates (Kotter, 2004; Stephan et al., 2001), sufficient to build 
simple but plausible anatomical models related to action which 
can be supplemented by human anatomical connectivity estimates 
using diffusion weighted imaging (Johansen-Berg and Rushworth, 
2009; Stephan et al., 2009b).

The function of this extended motor system is clearly relevant 
to understanding the common movement disorder Parkinson’s dis-
ease (PD) and its treatment. Many studies have used mass univariate 
analyses of regional activation (e.g., Statistical Parametric Mapping 
of the fMRI response arising from focal neural activity) to com-
pare movement related activations in PD “on” or “off” medication, 
against healthy adults (Hughes et al., 2010). These studies have iden-
tified abnormalities in the supplementary or pre-supplementary 
motor area (SMA) and lateral premotor cortex (PMC). However, 
the network function could not be inferred from differences in 
localized activations alone.

Whereas Rowe et al. (2007) examined a few specified connec-
tions, the correlations or covariances among multiple brain regions 
can be examined without prior specification of network nodes or 
structure. Orthogonal spatiotemporal patterns of activation may 
be identified by partial least squares (PLS) or principal components 
analysis (PCA) and related back to task demands or disease states 
(McIntosh et al., 2004; McIntosh and Lobaugh, 2004). This enables 
exploration but also hypothesis testing for complex networks. For 
example, PLS analysis of PET data has shown that to learn motor 
sequences as effectively as controls, patients with PD over-express 
the same fronto-parietal network that is associated with the task 
in healthy adults (Mentis et al., 2003). One cannot infer the struc-
ture of direct or indirect causal connections within this covarying 
network, or the temporal dynamics of the network from PET data. 
Nonetheless, the PLS was sufficient to test major hypotheses regard-
ing efficiency versus additional recruitment of brain networks in 
PD. Relatively few studies of neurological disorders have so far 
used PLS/PCA for fMRI data. However, they may be more sensi-
tive to group effects than mass-univariate methods (McIntosh and 
Lobaugh, 2004) and the lack of assumptions about the anatomy or 
architecture of affected networks is a potential advantage.

One of the earliest examples of network analysis of neuroimag-
ing data was SEM of cortico-subcortical interactions in PD, using 
positron emission tomography (PET) before and after treatment 
by pallidotomy (Grafton et al., 1994). Grafton et al. (1994) used 
published anatomical and electrophysiological data (e.g., Alexander 
et al., 1990) to build an anatomical model, and then used SEM 
to identify differences in movement-related connectivity between 
groups, before and after therapeutic pallidotomy. Their path analy-
sis again revealed significant differences in connectivity even when 
categorical differences in activity within regions was not observed 
between groups.

Grafton et al. (1994) also showed that treatment by pallidotomy 
attenuated thalamocortical connectivity, “downstream” from the 
lesion. This illustrates another recurrent finding, that connectiv-
ity changes may be remote from the lesion in complex networks. 
Indeed, in circuits with recurrent projections, the effects of a lesion 
may be seen in altered connectivity apparently “upstream” of the 
lesion. For Grafton et al. (1994), this occurred in SMA projections to 
the putamen, but it also occurs in SEM simulations of focal lesions 
in complex networks (Kim and Horwitz, 2009).

functional connectivity methods such as independent components 
analysis (ICA) of “spontaneous” resting state fluctuations (see 
Distributed (dis-)Connectivity for Distributed Neuropathology). 
In brief, different methods are currently required to examine con-
nectivity changes resulting from spontaneous processes compared 
to changes resulting from to experimental manipulations.

Whilst there are important theoretical considerations behind 
the right choice of method, each of the methods has been help-
ful in understanding the effects of disease. These methods may 
broadly agree, where commonalities are sufficient to enable direct 
comparisons. Often, the connectivity analysis is presented alongside 
an analysis of regionally specific effects (e.g., mass univariate voxel-
wise analysis underlying traditional statistical parametric mapping) 
and the two approaches should be seen as complementary. In the 
next sections we focus on specific advantages or insights gained 
from connectivity analyses.

connectIvIty analyses demonstrate Increased 
sensItIvIty to dIsease
Many studies of neurological disease have reported significant 
effects in terms of network integration when none was found 
in terms of activation of individual nodes of the network. This 
phenomenon has been observed with many different connectivity 
methods, from some of the earliest applications in aging (Horwitz 
et al., 1986), Parkinson’s disease (Grafton et al., 1994) and neu-
rodevelopmental disorders (Horwitz et al., 1988) to more recent 
fMRI studies (below).

Rowe et al. (2007) combined fMRI and focal brain lesions in 
adults, to test the predictions of a model of prefrontal cortical 
function that had been developed from neuroimaging of healthy 
subjects (Sakai and Passingham, 2003, 2006). It was proposed 
that prefrontal cortex was essential to support task-set activations 
within task-specific non-prefrontal cortical regions in anticipation 
of future cognitive tasks. However, prefrontal lesions that included 
sites of activation in normal subjects did not diminish activation 
in surviving regions of the dorsal and ventral streams associated 
with anticipated future spatial and letter tasks. Could it really be 
that activation of prefrontal cortex in healthy volunteers was redun-
dant? The authors then examined the correlations among surviving 
task-related brain regions during long delay intervals (Figure 1). 
Unlike DCM or SEM, no assumptions were required about the 
presence or direction of causal influences among these regions, 
nor the sources of perturbation of network activity. It was clear 
that the functional connectivity was impaired among surviving 
regions following prefrontal cortical lesions, even though the mean 
level of activation of each region during the task was not altered 
in patients. This illustrates that even a simple correlations method 
was sufficient to test the hypothesis regarding necessity of a region, 
and to identify group differences that were not apparent from the 
analysis of regional activations.

Many neurological disorders affect movement and action – how 
actions are chosen, learned, imagined, and executed. These “motor” 
processes depend on an extended motor system of cortical and 
subcortical regions, including motor and premotor cortex, pre-
frontal and parietal association cortex, striatum, thalamus, and 
cerebellum. The anatomical connections among these regions of 
the motor network have been extensively described in non-human 
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Structural equation modeling has several other limitations 
(Buchel and Friston, 1997; Penny et al., 2004b; Kim et al., 2007). 
These include the inability to compare non-nested alternative 
network models (where one network is not a component of 
the other); the assumption of stationary of neural responses; 
severe restrictions on the complexity of models; and in some 
implementations an inflexible canonical hemodynamic response 
function. These disadvantages can be circumvented by DCM 
while retaining the hypothesis led investigation of the effects of 
PD on intrinsic network connectivity and context-dependent 
modulatory influences of connectivity (note that DCM still 
requires the same data, i.e., nodes, in all models, even if they 
are not nested).

Rowe et al. (2010) therefore revisited the effects of PD on an 
extended cortical motor network in the frontal lobe using DCM. 
Participants made simple hand movements that were either self-
selected or externally specified (rather than attended to as in the 
earlier study). Again, voxel-wise analysis revealed no significant 
action-related or choice-related activation differences between PD 
and control subjects in the SMA or PMC. The DCM employed a 
Bayesian framework to identify subject-specific and region-specific 
neurovascular forward models; the effects of choice on connec-
tivity; and estimated the model-evidence of each member of a 
large set of candidate models. DCM model selection procedures 
re-identified the same optimal model in young and old healthy 
controls, and were reliable across repetitions several weeks apart. 
In accordance with the earlier SEM study, there was contextual 
modulation of connectivity from the lateral prefrontal cortex to the 
pre-SMA (Figure 2). Given the commonalities between attention 

Rowe et al. (2002a,b) used SEM of fMRI to study simple finger 
movement and attention to action in Parkinson’s disease. The SEM 
again used an anatomical model derived from human and ani-
mal data in the literature. The model also embodied psychophysi-
ological interactions (Friston et al., 1997) in terms of modulatory 
influences of attention on inter-regional connectivity. Voxel-wise 
analysis revealed no significant group activation differences in 
prefrontal cortex or lateral premotor cortex. SMA activation was 
greater in patients than controls for simple movements, but less 
in patients for attention to action, consistent with previous fMRI 
studies (Catalan et al., 1999; Sabatini et al., 2000). SEM indicated 
that attention to action specifically enhanced connectivity from 
prefrontal cortex to SMA and premotor cortex (PMC) in healthy 
adults. However, the SEM also revealed that the modulatory effect 
of attention to action on connectivity disappeared in patients with 
PD. This was interpreted as a functional disconnection of the SMA 
(Dick et al., 1986). In other words, the SEM approach showed that 
the SMA was not inherently over- or under-active in Parkinson’s 
disease, but instead it was no longer subject to appropriate modula-
tion by prefrontal afferents.

One feature of the model used by Rowe et al. (2002a,b) was that 
the changes in connectivity might have arisen within either direct 
cortico-cortical connections or at some unspecified point in the 
cortico-striato-thalamo-cortical loops. For some readers, the ability 
to identify cortico-cortical connectivity at a systems level, without 
specifying intermediate paths, is an advantage. However, for oth-
ers, the inadequacy of the models leaves unanswered important 
questions about the mechanisms of effect of PD on movement 
related networks.

FIGuRe 1 | During sustained task set, for future verbal or spatial working 
memory tasks, the lesions of left prefrontal cortex (A) made no significant 
difference to behavior or activations in surviving non-prefrontal cortex. For example, 
the estimates percent BOLD signal change in left inferior frontal gyrus (B) were not 

lower in four patients (black bars) compared with health controls (gray bars). 
However, the correlations among five surviving regions (C) associated with verbal 
set (red) or spatial set (green) were reduced in patients (D), especially when the 
same task set was repeated in subsequent trials (stay trials) (Rowe et al., 2007).
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the effects of PD on motor network connectivity could be 
 formulated in terms of model selection, as this was both reli-
able and sensitive.

The superior sensitivity of DCM to neurodegenerative disease, 
compared to analysis of regional activation, has also been observed 
for primary progressive aphasia (PPA), a subtype of frontotemporal 
dementia (Sonty et al., 2007). PPA is a structurally and cognitively 
restricted syndrome, with left perisylvian and temporal lobe atro-
phy and progressive language impairments, clearly suited to an 
hypothesis-led anatomically constrained approach like DCM. For 
a semantic task during fMRI, there were clear task-specific activa-
tions in the left inferior frontal gyrus (Broca’s area) and posterior 
superior temporal gyrus (Wernicke’s area) regions in both groups. 
Neither region’s activity differed significantly between groups. 
However, despite the lack of differential activation within these 
regions, connectivity between Wernicke’s and Broca’s area was 
reduced in patients. The functional relevance of this connectivity 
difference is considered in the next section.

The previous studies of PD and PPA might have revealed changes 
in connectivity because either area or the connections between them 
are directly affected by the pathology. This direct effect of pathol-
ogy in a network is not always the case. For example, Sharma et al. 
(2009) studied the imagination of movement following subcorti-
cal stroke. This was primarily motivated by the need to study the 
motor system in patients with weakness of actual movements. With 
the exception of primary motor cortex, healthy subjects trained to 
imagine hand movements demonstrated activation throughout the 
motor network, to a very similar degree as actual movements of 

to action and attentional selection of action, it is notable that the 
two very different connectivity methods – SEM and DCM – led to 
similar conclusions.

Despite the lack of significant differences in local activations 
between PD and controls, the DCM revealed clear differences in 
group connectivity. Not only was DCM more sensitive than clas-
sical voxel-wise analysis to the effects of PD, it was also sensitive 
to the connectivity changes associated with effective dopaminergic 
therapy (Rowe et al., 2010; cf Grafton et al., 1994). For patients in 
an “off” state after drug withdrawal, PD abolished the contextual 
modulation of prefrontal connectivity to the pre-SMA (self-selected 
versus specified actions), replaced by contextual modulation of 
connectivity from prefrontal cortex to lateral PMC. When patients 
were “on” after dopaminergic medication, the normal pattern of 
connectivity was restored.

Rowe et al. (2010) also showed that DCM was reproducible 
in health, at least in terms of the model selection procedures. 
However, there were significant posterior covariances among 
parameter estimates. These meant that individual parameters 
were not uniquely identifiable. The lack of unique identification 
means that estimated parameter values may correlate poorly 
across sessions even for the same tasks in the same subjects 
across sessions, making them unsuitable for use as dependent 
variables in statistical comparisons of groups. This is despite 
the excellent reliability of model selection procedures. For other 
tasks and models, DCM connectivity parameter estimates may 
be identifiable and therefore more reliable (Schuyler et al., 2009). 
In practice, we suggest that the major hypotheses  regarding 

FIGuRe 2 | (A) During manual action selection, there is activation of prefrontal 
cortex (PFC), pre-supplementary motor area (pre-SMA), lateral premotor cortex 
(PMC) and primary motor cortex (M1). These activations did not differ between 
patients with Parkinson’s disease (PD) and control subjects, by voxel-wise group 
comparisons. (B) Dynamic causal modeling (DCM) was used to model the 
interactions among these regions. Forty-eight models were compared in all, 
differing in terms of anatomical connections, feed-forward versus feedback, and 
the connections which are subject to modulation by selection of action (FvS). The 
two leading models are shown in detail here (E1 and E2). (C) In healthy subjects, 

and patients on their dopaminergic medication, model E2 was more likely (by the 
posterior model probability, based on the free energy estimate of the log of model-
evidence, adjusted for model complexity) in which the selection of action (FvS) 
was associated with greater connectivity of PFC to pre-SMA. When withdrawn 
from medication, to a relative “off” state, the connectivity pattern in PD patients 
changed to a state in which the selection of action was associated with greater 
connectivity between PFC and the PMC, model E1. This confirmed the hypothesis 
of a functional disconnection of the pre-SMA, and an enhanced role of the lateral 
PMC in action selection in PD. From Rowe et al. (2010).
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Connectivity differences were concentrated on the  interactions 
between prefrontal cortex, the premotor cortex and SMA, remi-
niscent of the abnormalities of frontal motor networks seen in PD. 
Thus, this study of stroke reiterates two findings: that connectivity 
analyses can be more sensitive to disease than analyses of regional 
activations, and that connectivity effects may be distant from a 
focal pathology.

dIstrIbuted (dIs-)connectIvIty for dIstrIbuted 
neuropathology
Neurodegenerative diseases often have characteristic anatomical 
distributions reflecting selective vulnerability of neurons (Braak 
and Braak, 1997; Braak et al., 2006). Even within frontotempo-
ral dementia there are distinct behavioral and language clinical 
phenotypes characterized by different anatomical  distributions 

the same rate. However, without actual movements, it is difficult 
to specify the times of imagined movements. This led Sharma et al. 
(2009) to use SEM of fMRI data, rather than DCM, adopting the 
assumptions of stationarity rather than dynamic networks and 
sacrificing model selection procedures in favor of an anatomical 
model based on the literature.

Following significant partial recovery from stroke, the regional 
activations in patients were not different from healthy control sub-
jects (Sharma et al., 2009). However effective connectivity within 
the motor system remained abnormal, both for actual and imag-
ined movements (Figure 3). An earlier study of stroke patients 
performing manual actions data had also shown functionally rel-
evant changes in cortical connectivity using DCM rather than SEM 
(Grefkes et al., 2008). Importantly for Sharma et al. (2009) the corti-
cal motor network model did not include the  subcortical lesions. 

FIGuRe 3 | During the imagination of movement, healthy subjects 
(A) and patients with subcortical strokes (B) show similar patterns of 
voxel-wise activation during fMRI, with no significant group differences 
in regional activations. However, Structural equation modeling of fMRI 
data revealed persisting abnormities of connectivity between groups 

(C) even after substantial clinical recovery. Patients showed increased 
connectivity from left prefrontal cortex to the SMA and premotor cortex. 
Moreover, the connectivity path coefficient from right PFC to the SMA 
correlated with the function of the recovered arm (D). From Sharma  
et al. (2009).
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2009) occurred in parts of a network that were not directly affected 
by the lesion (tumor resection and stroke respectively). It is also 
possible that neurochemical depletion rather than focal atrophy or 
white matter disease may cause differences in connectivity (Rowe 
et al., 2002b, 2008b,c; Palmer et al., 2009; Wu et al., 2009).

connectIvIty changes can be functIonally relevant
In this section, we consider the functional relevance of changes in 
effective and functional connectivity. We have already seen that in 
primary progressive aphasia, DCM measures of connectivity were 
abnormal even when regional activations were not. Sonty et al. 
(2007) went on to show that the abnormality of DCM connectiv-
ity correlated with cognitive tests of disease severity. Specifically, 
in patients but not controls, the connectivity between Wernicke’s 
and Broca’s areas correlated with performance on a semantic task 
but not a lexical task. Thus, the change in connectivity reflected 
the functionally relevant cognitive defects that characterize the 
PPA syndrome.

It is interesting to compare the task-specific abnormal fronto-
temporal connectivity in PPA (Sonty et al., 2007) with the abnor-
mal RSN in other forms of frontotemporal dementia (Seeley et al., 
2009). The former provides a direct connectivity-based mechanism 
of the cognitive clinicopathological correlations within PPA. In 
contrast, the latter study helps one begin to understand the basis 
of selective vulnerability of distributed neural networks to differ-
ent pathological processes between neurodegenerative syndromes. 
This difference reinforces the suggestion (Section Which Method 
of Connectivity Should One Choose?) that the method to study 
connectivity should be chosen according to the hypothesis to be 
tested and type of inferences that are sought.

There is further evidence of the functional relevance of dif-
ferences in connectivity. Following subcortical stroke, prefrontal 
interactions with premotor cortex and SMA were abnormal even 
though none of the regions was directly affected by the stroke 
or differentially activated during the task (Sharma et al., 2009). 
Moreover, the degree of connectivity (SEM path coefficients) in 
the frontal lobe motor network correlated with functional indices 
of recovery (Figure 3). For example the SEM path coefficient for 
prefrontal cortex to SMA during motor imagery correlated with 
the motricity index of arm function.

In the studies of PD outlined above, the analyses of effective con-
nectivity have been shown to be sensitive to conventional effective 
therapies. Both pallidotomy and l-DOPA medication lead to sig-
nificant differences in effective connectivity using SEM and DCM 
respectively (Grafton et al., 1994; Rowe et al., 2010). Interestingly, 
not all PD related changes in connectivity are normalized by 
l-DOPA (Palmer et al., 2009), consistent with noradrenergic and 
serotonergic contributions to cognitive dysfunction in PD (Marsh 
et al., 2009; Rodriguez-Oroz et al., 2009).

Even the RSN abnormalities may be directly related to functional 
ability, over and above their indexing of network dysfunction. For 
example, although RSNs are recorded at “rest,” the properties of 
these networks are functionally relevant to performance on specific 
cognitive tasks (Kelly et al., 2008; Hayden et al., 2009). Despite the 
evidence presented so far of the sensitivity, reproducibility, and func-
tional relevance of connectivity measures, there are serious problems 
and caveats to be considered. We turn to these in the next section.

of disease burden (Pereira et al., 2009; Rohrer et al., 2010). 
How do these relate to distributed functional systems in the 
normal brain?

Progress in understanding the relationship between pathol-
ogy, structural, and functional networks has been made in recent 
years by the integration of multiple imaging modalities. This stems 
from the recognition of a small set of functionally connected (co-
activated) networks, conserved across spontaneous fluctuations 
in primate networks (Vincent et al., 2007); humans with impaired 
consciousness (Boly et al., 2008; Greicius et al., 2008); and during 
rest in awake humans (Beckmann et al., 2005; Damoiseaux et al., 
2006; Fox and Raichle, 2007; Smith et al., 2009). One of these “rest-
ing state networks” (RSNs) is a “default mode” that is prominent 
during the interval between focused cognitive tasks in humans 
(Fox and Raichle, 2007; Buckner et al., 2008). The robustness of 
RSNs has attracted considerable interest to understand or predict 
the effects of distributed neuropathologies.

Resting state networks are particularly useful for studying 
severely impaired clinical populations. The advantage lies not only 
the avoidance of some practical difficulties such as training and 
differential performance on cognitive tasks; long scanning sessions; 
and dependence on prior specification of anatomical model con-
nectivity. RSNs also enable the comparison across multiple clinical 
conditions on multiple brain networks.

In two seminal papers, Seeley et al. (2009; Zhou et al., 2010) ana-
lyzed RSNs in several heterogeneous neurodegenerative diseases, 
including Alzheimer’s and frontotemporal dementia. The disorders 
varied in their pathology and the distribution of disease burden 
across cortical and subcortical regions. There were corresponding 
disease-specific changes in RSNs that were robust enough to enable 
classification of disease (Zhou et al., 2010). The abnormal RSNs 
were in accordance with functional deficits typical of each disorder 
with evidence that the RSNs are selectively vulnerable to neuropa-
thology, measured by focal atrophy (Greicius, 2008; Supekar et al., 
2008; Seeley et al., 2009).

The correspondence of structural and functional connectivities 
does not imply that the progression of neuropathology through the 
networks depends on the same structural interconnections. This 
might be the case, especially for diseases with prior-like behavior of 
aggregating proteins, including PD and Alzhiemer’s disease (Soto 
and Estrada, 2008; Angot and Brundin, 2009; Morales et al., 2010). 
However, it may also result from developmentally or environmen-
tally determined predispositions to neuropathology in function-
ally related neurons, even when distributed widely across the RSN 
and in the absence of direct connection. In addition, artifactual 
sources of functional connectivity must also be considered, such 
as aliased cardiorespiratory signals or gross head movements (Birn 
et al., 2006) which may differ systematically between patient groups. 
Fortunately, where these sources of noise are measured, ICA can be 
used to identify and account for their otherwise misleading contri-
butions to disease-specific RSNs (Beckmann et al., 2005).

Interestingly, disease-specific changes in RSN functional con-
nectivity can occur in the absence of known direct structural con-
nectivity (Damoiseaux and Greicius, 2009; Honey et al., 2009). The 
presence of indirect structural connections is one possible explana-
tion. However, recall that the task-based changes in effective con-
nectivity in the previous section (Rowe et al., 2007; Sharma et al., 
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2004a; Garrido et al., 2007). For example, “top-down” cognitive 
 control may manifest as changes in feed-forward connections (Rowe 
et al., 2008a). This was identified using DCM, as modality specific 
changes in connectivity from prestriate to parietal and temporal 
cortex during a task in which cognitive set varied between visual 
and spatial domains (Figure 4). Fortunately, evidence-based model 
selection procedures in DCM can be used to determine whether 
the functional anatomical network has significant feed-forward 
and feed-back connections, even where these do not map directly 
to cognitive psychological constructs such as “top-down” and “bot-
tom-up” control (Mechelli et al., 2003; Rowe et al., 2008a).

Limitations, counter intuitive resuLts, and naive 
expectations
The analysis of effective connectivity and the terminology used in 
neuroimaging are inspired by neurophysiology, neuropsychology, 
and a computational analysis of neuronal interactions (Gerstein 
and Perkel, 1969; Aertsen et al., 1989; Friston, 2007). There are 
attempts to explicitly bridge between cellular and whole brain 
methods (Chawla et al., 1999; Riera et al., 2006), and the concep-
tual framework from cellular models has proven useful in imaging 
analysis. However, it should be borne in mind that there is much 
that we do not know about the translation between neuronal activ-
ity and the PET and BOLD signals (Logothetis and Pfeuffer, 2004; 
Goense and Logothetis, 2008). Pre- and post synaptic functions of 
neurotransmission as well as spike rates are relevant to the genera-
tion of a vascular response, via complex and incompletely charac-
terized coupling mechanisms. The BOLD signal underlying most 
of the results discussed here is therefore only an indirect measure 
of neuronal function, and this may be an important caveat for 
neuroimaging applications to specific diseases or treatments. More 
generally, it means that the connectivity measures in, say, DCM, 
PPIs, or SEM, cannot therefore be interpreted in terms of single 
excitatory or inhibitory synapses.

This limitation partly reflects the fact that current structural 
models in DCM or SEM are specified at a systems level, rather 
than the mono- or poly-synaptic connections of direct, indirect, 
or parallel connections between regions. In addition, current fMRI 
provides a single state representation for each node (voxel or region) 
in which the functions of all types of neuron and all types of synapse 
in a voxel are collapsed to a single value at any given timepoint. A 
richer descriptive framework with multi-state representations per 
region is beginning to emerge, at least for M/EEG data (Chen et al., 
2008, 2009; Marreiros et al., 2008). Meanwhile, the uncertainty over 
the physical basis of connectivity in, say, PPI-GLMs, may explain 
some results that otherwise appear contradictory (Passamonti 
et al., 2009).

Confounding factors and correlations among model parameters 
must also be considered (Deneux and Faugeras, 2006; Rowe et al., 
2010). For example, Rowe et al. (2010) found that DCM model 
comparison was very reliable, but posterior covariances among 
parameters meant that individual model parameters were no longer 
uniquely identifiable, and were therefore not reliable. This would 
inflate the false negative rate of group or drug comparisons. In 
addition, correlations among parameters can lead to the counter-
intuitive result that the arithmetic mean of parameters for a group 
may differ markedly (even in terms of sign) from the precision 
weighted Bayesian “averaging” of parameters across the group. 
If using DCM, a consistent, principled and prior specification of 
the analysis protocol must therefore be developed to reduce bias 
(Stephan et al., 2010). Alternative approaches to causal dynamic 
models (related conceptually to DCM and GCM) have also been 
developed (Smith et al., 2010a) with a view to reliable parameter 
estimation, but it is too soon to comment on their application to 
clinical populations.

Connectivity approaches like DCM have further highlighted the 
problems of simplistic interpretations or inconsistent applications 
of “top-down” and “bottom-up” processes in terms of feed-back 
and feed-forward connections (Mechelli et al., 2003; Penny et al., 

Figure 4 | (A) During a two-modality continuous performance task, subjects 
monitored a letter stream for successive verbal targets (A then X) or 
successive spatial targets (3 then 6 o’clock positions). Three correct targets 
within a modality were rewarded. Reward expectations lead to a graduated 
bias toward verbal or spatial cognitive sets, according to the recent history of 
spatial versus verbal targets. (B) The effects of this “top-down” modulation 
from cognitive set were studied using dynamic causal modeling of fMRI data. 
The figure shows modulatory (bilinear) effects representing psycho–
physiological interactions in the most likely causal model (selected by 
Bayesian model comparison). This model included the medial frontal (MF) 
cortex, the dorsal (PFd) and ventral (PFv) lateral prefrontal cortex, the superior 
frontal sulcus (SF), the intraparietal cortex (IP), the fusiform gyrus (FG), and the 
prestriate cortex (PS), with intrinsic connections indicated by the presence of 
arrows (of any color). Values are time constants (Hz) for the modulatory 
influences of task bias for which the group posterior mean was positive (solid 
lines) or negative (dashed lines) for verbal bias (thick green), spatial bias (thick 
red), or both (thick black). These modulatory effects have strong evidence that 
they are non-zero, confirmed by post hoc t-tests. The “top-down” modulation 
of task set resulting from higher reward expectations was associated not only 
with changing connectivity of the lateral prefrontal cortical regions, but also 
the feed-forward connections from pre-striate cortex. Moreover, the 
feed-forward connections were enhanced to parietal cortex with spatial task 
set bias, and to temporal cortex with verbal task set bias. This illustrates that 
domain specific “top-down” control is not restricted to changes in feedback 
connections from higher cortical areas, but is also manifest by changes in 
feed-forward connectivity. From Rowe et al. (2008a).
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studies, although the use of parametric modulations of task or 
performance indices can be used to try to circumvent the difficulty 
in interpreting categorical differences. Connectivity studies have the 
added problem of interpreting connectivity differences if there are 
differences in regional activations. In the extreme case, if a disease 
reduces a region to noise only, or removes a region altogether, then 
changes in its connectivity are not meaningful. However, as we have 
seen, diseases can cause significant changes in connectivity among 
surviving regions with normal activation (Rowe et al., 2007, 2008b; 
Sonty et al., 2007; Sharma et al., 2009).

concludIng remarks
We have shown that the analysis of brain connectivity has much to 
contribute to understanding the consequences and mechanisms of 
neurological disease, and complements other neuroimaging meth-
ods. It is sensitive to disease and therapies, and relates to functional 
loss or recovery, following a wide variety of focal and distributed 
pathologies.

Colleagues have sometimes asked “I have this experiment that 
hasn’t really worked so should I do connectivity analysis?” or 
“A reviewer has asked me to do a connectivity analysis, but isn’t 
clear why. What should I do?” There are clearly cases in which 
the standard analysis of regional activations has yielded minimal 
results, despite functionally relevant difference in connectivity. 
The investment of time and resources in undertaking the con-
nectivity analysis is certainly worthwhile. However, if a planned 
study of regional activations has failed in its main aims, it is best to 
begin by revisiting the hypotheses that led to the experiment and 
considering potential causes and confounds underlying negative 
results. Many of the same problems will undermine a connectivity 
analysis as well.

Despite the yield from the analysis of connectivity, these meth-
ods should be motivated by specific hypotheses. Moreover, it is often 
better to plan a new experiment with the intention of connectivity 
analysis in mind. This may require modifications to the range of 
stimulus conditions, or the reformulation of specific hypotheses, 
e.g., in terms of model selection rather than non-zero path param-
eters. Bear in mind that an experimental design may not be suitable 
for some connectivity methods, even if optimal for other forms of 
analysis (Henson, 2007). As for other neuroimaging studies, it is 
important to specify in advance the protocols for construction of 
models, optimization, and inference, in order to reduce biases in 
inference and estimation of the presence or size of connectivity 
effects (Kraft, 2008; Kriegeskorte et al., 2009; Vul et al., 2009).

Through this article, we hope to encourage researchers to engage 
in formal analyses of brain connectivity. These methods are practi-
cable, insightful, and exciting. Each of the methods I have discussed 
here is supported by readily available freeware or commercial soft-
ware (see Table 1), with discussion forums and on-line support to 
supplement published methods. Although the methods are evolv-
ing rapidly, we have no doubt that they will continue to make an 
essential contribution to our understanding of neurological and 
neuropsychiatric disease.
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Like mass-univariate modeling of regional activations, connec-
tivity methods are also prone to technical, statistical, and inferen-
tial problems arising from clinical group differences in confounds, 
sources of variance, and performance. Important confounding fac-
tors to consider are motion artifacts (which are often greater in clin-
ical populations), cardiorespiratory signals (altered by anxiety or 
medications such as beta-blockers), age, and systematic differences 
in the hemodynamic response function (Iannetti and Wise, 2007). 
A patient population will often have additional sources of variance 
due to the heterogeneity of disease phenotype, duration, severity 
and response to treatments, or differences in artifacts as above. 
Group level inferences of connectivity should attempt to accom-
modate or adjust for these inequalities of variance, whether at the 
first level adjustment of the data to include in time-series analysis 
(Glover et al., 2000) or second level random effects models (Stephan 
et al., 2009a). Otherwise, outlying subjects or mixed generative 
models within a group may compromise group comparisons.

The problem of differential sources of variance between groups 
can have other counterintuitive consequences. Using simulated 
fMRI data, Kim and Horwitz (2009) compared SEM network 
connectivity in controls with patients following a focal network 
lesion. Surprisingly, goodness of fit (GFI) estimates were better 
for the patients, yet patients showed significantly larger error vari-
ances throughout the network. The better GFI values had resulted 
from better modeling of error variance on each node rather than 
the values of inter-regional connectivity. High GFI values for 
models of patient data might therefore arise when regional acti-
vations are affected mostly by their noise inputs. Understanding, 
minimizing, and controlling for group differences in variance is 
therefore essential.

We have presented several cases in which connectivity analy-
sis revealed effects of disease or treatment when the analysis of 
regional activations did not. This may reflect a true higher sen-
sitivity to the neurophysiological effects of disease or treatment, 
although one cannot rule out a publication bias and investigator 
bias toward connectivity analysis when traditional approaches 
“fail.” Multivariate methods like PLS or PCA may have intrinsi-
cally higher power than univariate analyses. This is supported by 
simulated and clinical data (McIntosh et al., 2004; Asllani et al., 
2008; Habeck et al., 2008), but methods differ widely (Smith et al., 
2010b) and increased sensitivity to network changes is generally 
at the expense of information about the organization of interac-
tions within that network. For the analysis of effective connectiv-
ity, within theoretically motivated and anatomically constrained 
networks, it does not seem that methods like DCM have inher-
ently higher power to detect underlying effects. For example, 
in a fMRI study of face emotion processing in two populations 
(Goulden et al., 2010) the number needed to achieve reasonable 
power (>0.7) to detect large effects (0.8) in DCM parameters was 
approximately 20 subjects. This estimate is similar to the number 
indicated for typical mass-univariate analysis of voxel-wise activa-
tions (Desmond and Glover, 2002; Murphy and Garavan, 2004; 
Mumford and Nichols, 2008).

Performance difference between groups must also be considered. 
If patients do not perform a task, then there is an inherent ambigu-
ity to differences in neuroimaging data (Price and Friston, 1999; 
Price et al., 2006). This ambiguity is often not resolved in clinical 
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2007; Li et al., 2009; Bressler and Menon, 2010), including structural 
equation modeling (McIntosh and Gonzalez-Lima, 1994), dynamic 
causal modeling (DCM) (Friston et al., 2003), Granger causality 
(Roebroeck et al., 2005), psycho-physiological interactions (Friston 
et al., 1997), dynamic Bayesian networks (Rajapakse and Zhou, 
2007), multivariate autoregressive modeling (Harrison et al., 2003), 
partial correlation analysis (Marrelec et al., 2009), non-linear sys-
tem identification (Li et al., 2010b), and switching linear dynamic 
systems (Smith et al., 2010). Each method has its advantages and 
weaknesses (e.g., see Penny et al., 2004; Ramnani et al., 2004; Witt 
and Meyerand, 2009) and its use should be motivated by the ques-
tion of interest, level of inference, paradigm design, data acquisition 
and analysis.

Here, we consider the use of DCM as a flexible and robust tool 
for assessing effective connectivity (Friston et al., 2003). In contrast 
to functional connectivity, effective connectivity provides a mecha-
nistic account of the cause of the inter-regional interactions that 
would explain the emergence of a particular functional pattern (see 
for more details Friston, 1994, 2002b, 2009b). DCM has been widely 
used across different imaging modalities, populations and tasks (for 
a review see Stephan et al., 2007, 2010; Friston, 2009a). For instance, 
many studies have used DCM of fMRI data to explore inter-regional 
interactions during different cognitive tasks in normal healthy 
subjects. This literature has provided interesting insights about 
how brain regions talk to each other in healthy populations dur-
ing cognitive and motor processing (Grol et al., 2007; Kasess et al., 

INTRODUCTION
Accurate characterization of abnormalities in neural processing is 
important for understanding pathological conditions and recovery 
mechanisms. It may also contribute to the tailoring of efficient 
therapy and intervention procedures. A large fMRI literature has 
already investigated how pathological conditions change neural 
processing, usually in terms of activity or signal changes in a set of 
spatially segregated regions. However, several studies have shown 
that characterizing such abnormal processes in terms of activa-
tion differences in a set of distinct (isolated) brain regions is not 
enough to provide a comprehensive picture of the abnormal brain 
(Meyer-Lindenberg et al., 2001; Ween, 2008). This is due to the 
fact that the function of any brain region cannot be understood 
in isolation but only in conjunction with the regions it interacts 
with during active behavior (e.g., McIntosh, 2000; He et al., 2007; 
Bassett and Bullmore, 2009; Bressler and Menon, 2010; Guye et al., 
2010), a principle known as functional integration (Friston, 1994, 
2002b, 2007).

Functional integration refers to task-dependent processing 
that emerges from changes in interactions among brain regions. 
In this context, deficits in functional integration or connectivity 
are implied when the influence of one brain region on another is 
stronger or weaker in patients relative to control subjects (Price 
et al., 2006; Ween, 2008). There are several approaches that have 
been proposed to assess functional integration or connectivity (for 
a review see Ramnani et al., 2004; Harrison et al., 2007; Rogers et al., 
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Functional imaging studies of brain damaged patients offer a unique opportunity to understand 
how sensorimotor and cognitive tasks can be carried out when parts of the neural system that 
support normal performance are no longer available. In addition to knowing which regions a 
patient activates, we also need to know how these regions interact with one another, and how 
these inter-regional interactions deviate from normal. Dynamic causal modeling (DCM) offers 
the opportunity to assess task-dependent interactions within a set of regions. Here we review 
its use in patients when the question of interest concerns the characterization of abnormal 
connectivity for a given pathology. We describe the currently available implementations of DCM 
for fMRI responses, varying from the deterministic bilinear models with one-state equation to 
the stochastic non-linear models with two-state equations. We also highlight the importance 
of the new Bayesian model selection and averaging tools that allow different plausible models 
to be compared at the single subject and group level. These procedures allow inferences to 
be made at different levels of model selection, from features (model families) to connectivity 
parameters. Following a critical review of previous DCM studies that investigated abnormal 
connectivity we propose a systematic procedure that will ensure more flexibility and efficiency 
when using DCM in patients. Finally, some practical and methodological issues crucial for 
interpreting or generalizing DCM findings in patients are discussed.
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2008), face processing (Fairhall and Ishai, 2007; Li et al., 2010a), 
word reading (Chow et al., 2008; Carreiras et al., 2009; Seghier and 
Price, 2010), speech perception (Leff et al., 2008; Eickhoff et al., 
2009), semantic access (Heim et al., 2009; Fan et al., 2010; Seghier 
et al., submitted), spatial memory (Doeller et al., 2008), emotional 
processing (Ethofer et al., 2006; Smith et al., 2006), attentional 
control (Acs and Greenlee, 2008; Plailly et al., 2008; Wang et al., 
2010), conflict monitoring (Fan et al., 2008), and decision making 
(Alexander and Brown, 2010; den Ouden et al., 2010).

In this review we highlight some of the issues that need to be 
considered when effective connectivity is assessed with DCM of 
patient data. The paper is divided into five sections. The first section 
provides some useful definitions that are important for interpreting 
abnormal functional integration in patients. The second succinctly 
presents the theoretical foundations of DCM including the effective 
connectivity parameters, the available frameworks, and the multiple 
levels of inference that DCM can provide. The third section reviews 
previous studies that used DCM of data from patients with focal 
or non-focal damage to characterize abnormal connectivity. The 
fourth section aims to describe some practical guidelines that we 
believe would improve the use of DCM of patient data. In this 
context, we provide a systematic and unbiased approach to reveal 
abnormal connectivity in patients. The fifth section is concerned 
with some critical methodological issues that need to be taken into 
account when interpreting DCM findings in patients.

DEFINITIONS AND PRINCIPLES
We need first to define some concepts used throughout this review. 
Our review of previous work indicates that different terms have 
been used across studies to refer to the same concept. First, the 
term “network” has been used to refer to a set of temporally and 
spatially segregated regions that interact and engage in multiple 
complex behaviors. A network is by definition dynamic, where 
nodes and interactions between these nodes change continuously 
in time and space across different cognitive processes. A network 
can also be referred to as a “system” or “circuit.” A part of a network 
can be referred to as a “sub-network” or “subsystem.” Second, the 
complex dynamics within the network have been described with 
different terms, including: inter-regional interactions, connectivity, 
coupling, interactivity, interdependency, and co-operative action. 
Here we refer to these complex dynamics as “inter-regional interac-
tions.” Third, when characterizing how inter-regional interactions 
differ in patients and controls, previous studies used the terms: 
altered, abnormal, disturbed, atypical, impaired, or dysfunctional. 
Throughout the review we will use the term of “abnormal” when 
referring to inter-regional interactions in patients that are outside 
the range of those observed in healthy controls.

Using these definitions, we tentatively summarize some of the 
implicit assumptions that motivate studies of functional integra-
tion in patients:

(i) local damage to a part of a network can propagate throu-
ghout the whole network (e.g., Alstott et al., 2009; Kim and 
Horwitz, 2009);

(ii) an abnormal network can be viewed as a “new” network and 
not simply the normal network minus the damaged parts 
(e.g., He et al., 2007);

(iii) an abnormal network can comprise sub-networks that 
 correspond to those seen in healthy subjects and novel sub-
networks that are not typically seen in healthy subjects;

(iv) abnormal behavior can be an indicator of abnormal inter-
regional interactions, however an abnormal network may 
not necessarily produce abnormal behavior;

(v) an abnormal network is not fixed; it can evolve and change 
during the course of therapy and recovery; and

(vi) for a given pathology, an abnormal network can vary from 
patient to patient even within a relatively homogenous 
population.

WHAT IS DCM?
Dynamic causal modeling aims to explain, quantitatively and mech-
anistically, how observed fMRI responses are generated (Friston 
et al., 2003). The key features that make DCM the method of choice 
for estimating effective connectivity can be summarized as follows 
(see detailed description in page 3100 of Stephan et al., 2010): 
(i) DCM is dynamic, in the sense that it uses differential equations 
to model inter-regional interactions, (ii) DCM is causal as it aims to 
infer the directionality of the inter-regional interactions and their 
context-dependent modulations, (iii) DCM is a hypothesis-driven 
approach that can incorporate any known effect (e.g., stimuli and 
tasks) to test specific hypotheses that motivated the experimental 
design, (iv) DCM is Bayesian in all its aspects and uses a generative 
model to constrain effects by prior knowledge, (v) DCM explicitly 
uses an empirical forward model that links observed hemodynamic 
responses to the (hidden) neuronal dynamics, allowing inferences 
to be made at the neuronal level, (vi) DCM estimates a range of con-
nectivity parameters that present parallels with neuro-physiological 
models, including psycho-physiological or physio-physiological 
interactions, (vii) the use of DCM with Bayesian model selection 
(BMS) and averaging tools enables inferences at different levels, 
from a set of plausible models (a family of models) to a specific 
connectivity parameter, and (viii) DCM inferences can be made 
both at the single subject and group level.

Fundamentally, DCM is only appropriate for describing 
responses (fMRI, MEG, ERP) that result from controlled external 
stimuli (Friston, 2009a; Stephan et al., 2010). This requires datasets 
that also include periods when external stimuli are both present and 
absent. DCM is therefore not currently suitable for uncontrolled 
continuous “natural” stimulations such as resting-states. It treats 
the human brain as a dynamic system that is subject to multiple 
inputs and produces multiple outputs. Thus, DCM characterizes 
task-dependent inter-regional interactions.

The starting point for DCM is the selection of a fixed set of 
regions and their possible connections. Each combination of experi-
mentally modulated connections corresponds to a model, which can 
then be compared to other alternative models in order to identify 
which model(s) best predict(s) the data (see illustration in Figure 1 
for details of the practical steps). For a given model, DCM estimates 
three different sets of parameters: (i) input or extrinsic parameters 
that quantify how brain regions respond to external stimuli (i.e., 
the external inputs that perturb the model), (ii) endogenous or 
latent parameters that characterize context-independent (or aver-
age) inter-regional interactions, and (iii) modulatory parameters 
that measure changes in effective connectivity induced by the 
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most suitable for the question of interest. This section presents the 
extensions implemented for DCM of fMRI responses. By default, 
the most widely used DCM version corresponds to the bilinear and 
deterministic implementation with one-state equation per region 
(see below).

Bilinear vs. non-linear
The default implementation in DCM codes the rate change in neu-
ronal activity according to the following bilinear evolution or state 
equation (Friston et al., 2003):

dz

dt
A u B z Cui

i

i

m

= +






+
=
∑ ( )

1  

(1)

where z is the activity of the neuronal population, A is the first-
order (endogenous, latent, or average) inter-regional interactions 
in the absence of inputs, B is the second-order interaction between 
activity and input (the modulatory effect), and C is the extrinsic 
effects of inputs “u” on activity. The bilinear term B is equivalent to 
the psycho-physiological interactions in the network that reflects 
how the inter-regional interactions are modulated by a given input/
context. This fundamental equation in DCM has been extended 

 experimental conditions. These connectivity parameters are each 
expressed in Hz within the DCM framework. They are not neces-
sarily constrained by mono-synaptic (i.e., direct) anatomical con-
nections and can be either positive or negative. A positive parameter 
means that an increase in activity in one region results in increased 
rate of change in the activity of another region. Conversely, a nega-
tive parameter means that an increase in activity in one region results 
in a decreased rate of change in the activity of another region. Note 
that, due to the limited temporal resolution in fMRI, conduction 
delays in inputs and inter-regional interactions are ignored in DCM 
of fMRI responses, but not in DCM for EEG or MEG data (Friston 
et al., 2003). All DCM parameters and their posterior probabilities 
are assessed with Bayesian inversion by means of the expectation-
maximization algorithm (Dempster et al., 1977; Friston, 2002a).

Below, we succinctly present the available implementations of 
DCM, how to compare alternative models, and the different levels 
of inference that can be made with DCM.

MULTIPLE IMPLEMENTATIONS
Since the seminal paper reported by Friston et al. (2003), there 
have been several extensions of the DCM algorithm to increase its 
flexibility. It is therefore necessary to consider which algorithms are 

FIguRe 1 | An illustration of the “cycle” of practical steps in a typical DCM 
analysis. These steps have been made easy and flexible within the SPM 
software package. It starts with the selection of effects of interest (activated 
patterns) and the time-series extraction of the appropriate regions. Then, a 
predefined structure of the model is specified, including the driving inputs and 
where they enter the system, how the regions inter-connect, and where 

modulatory effects are specified. Additional alternative models can be specified 
and then all models can be compared. ROIs, regions of interest; FFX, 
fixed-effect analysis; RFX, random-effect analysis; BMS, Bayesian model 
selection; BMA, Bayesian model averaging; BPA, Bayesian parameter averaging. 
This figure has been adapted from a previous talk given by KE Stephan and L 
Harrison (during the ICN-SPM course in May 2005).
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for an existing anatomical connection between the regions. These 
 anatomically-based priors have been shown to provide stronger evi-
dence for anatomically motivated models (Stephan et al., 2009b) and 
are particularly useful if tractography data (DTI) are available. They 
can also take advantage of the white matter tracts that are specified 
in recent atlases (e.g., Mori et al., 2005, 2008; Catani and Thiebaut 
de Schotten, 2008) and incorporate this information into the DCM 
when defining the appropriate model structure. In the context of 
the current paper, it is interesting to note that information about 
damaged tracts in a group of patients can be explicitly modeled. 
However, because of the deterministic nature of the current DCM 
implementation (see below), indirect influences on regions cannot 
be ruled out even if direct white matter tracts are missing.

Deterministic vs. stochastic
The default implementation of DCM in SPM is deterministic as 
only the explicitly modeled effects are allowed to influence the 
inter-regional interactions. Thus, DCM estimates the interactions 
between the spatially segregated regions that are temporally per-
turbed by the external inputs included in the model. However, it 
is obvious that this framework cannot rule out the influence of 
indirect effects, including interactions with regions not included 
in the DCM or temporal innovations not modeled in the inputs 
(see discussion in Smith et al., 2010). For instance, a connection 
can excite a group of neurons that inhibit another region thereby 
resulting in an overall effect of inhibition. An extended version, 
known as stochastic DCM (Daunizeau et al., 2009), allows such 
subtle indirect effects to be expressed. It extends the previous state 
equation to:
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where η is the state noise that models stochastic innovations in 
the system. The new term η is defined by Gaussian variables with 
a mean of zero and a covariance structure that can express any 
form of innovations. In other words, in this framework, all indirect 
effects are modeled as stochastic phenomena, thereby allowing the 
hidden-states causing the data and any non-controlled exogenous 
inputs to the system to be inferred (Daunizeau et al., 2009). This 
framework can be very useful because it provides more flexibility 
in modeling unknown or indirect pathologic effects in patients.

LEvELS OF INFERENCE WITH BAyESIAN MODEL SELECTION
One exciting tool in DCM is its BMS procedure. This procedure 
compares the evidence for different competing hypotheses. Because 
the exact mechanisms behind any fMRI responses are unknown, 
it might not be possible to have an a priori prediction about the 
“exact” model. Therefore, it is important to specify a range of alter-
native models and search for the best (most useful) model in the 
model space, e.g., Leff et al. (2008), Seghier and Price (2010), and 
Seghier et al. (submitted). This procedure increases the certainty 
of the best model by testing many other potential explanations of 
the data.

During the Bayesian inversion of the model, the probability of 
the data given the model, known as the model evidence, is approxi-
mated by the negative variational Free-energy (Friston et al., 2007; 

for the assessment of physio-physiological interactions in a given 
network. The extension, known as non-linear DCM (Stephan et al., 
2008), is suitable for explicitly testing whether the activity in a given 
region gates or enables interactions between other regions. The 
state equation in non-linear DCM is given by:
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where the new term “D” is a quadratic quantity that represents the 
physio-physiological interactions in the model or the strength of 
the activity-dependent gating of connections.

This non-linear DCM equation can be helpful when modeling 
“neural gain control” mechanisms in short-term synaptic plasticity 
(Stephan et al., 2008) which are likely to be relevant for character-
izing a given pathology. Such mechanisms are critical for various 
cognitive processes, including top-down modulation of attention 
and learning (see example in den Ouden et al., 2010).

One-state vs. two-state neuronal equations
Because each region is modeled by one neuronal state equation only 
(Eq. 1), it is not possible to assess selective changes in excitatory 
(e.g., glutamatergic) and inhibitory (e.g., GABAergic) subpopula-
tions in each region of the DCM model. This is a very important 
issue that needs to be taken into account when, for instance, making 
inferences about potential inhibitory or excitatory mechanisms in 
DCM. To address this, an extended version of DCM exists that 
uses two-state neuronal equations (Marreiros et al., 2008) to 
model excitatory and inhibitory subpopulations in each region. 
This allows for an explicit description of intrinsic (between sub-
populations) connectivity within a region. In other words, each 
region is modeled by two neuronal subpopulations and DCM can 
thus estimate the interactions between these two subpopulations. 
Interestingly, this parameterization confers dynamical stability on 
the system, enforces positivity constraints on the extrinsic connec-
tions, and enables context-dependent changes in the interactions 
to be modeled as a proportional increase or decrease in connec-
tion strength (Marreiros et al., 2008). The two-state DCM can be 
used, for instance, to specifically test whether patients and con-
trols differ in the interactions between excitatory and inhibitory 
subpopulations.

Anatomical-based priors vs. default shrinkage priors
Different priors are embodied within the Bayesian framework of 
DCM. These include priors on the connectivity parameters (see 
for more details Friston et al., 2003) that are referred to as “shrink-
age” priors because they tend to “shrink” posterior means to their 
prior expectation of zero, particularly when the data are noisy. These 
shrinkage priors make the detection of significant inter-regional 
interactions somewhat conservative. Thus only effects that have a 
significant likelihood with high precision are allowed to deviate 
from zero (i.e., when new data strongly support an existing effect). 
However, it has been shown that such priors can be modified 
(relaxed) to take into account an a priori knowledge about ana-
tomical connectivity (Stephan et al., 2009b). The idea is to assign 
a stronger belief (i.e., by relaxing the shrinkage priors) to a par-
ticular interaction between two regions if one has strong evidence 
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probabilities sum to one over all tested models. Note also that there 
are two sampling schemes in random-effects BMS, the first uses a 
Variational Bayes method that is optimal and fast when the number 
of tested models is smaller than the number of subjects (Stephan 
et al., 2009a), and the second uses a Gibbs sampling method that 
is optimal and accurate when the number of models is larger than 
the number of subjects (Penny et al., 2010).

Inference at the family and the model level
When comparing models with BMS, the best model would be the 
winning model that has the most evidence (e.g., significant exceed-
ance probability) compared to other models. However, it is com-
monly found that one single model does not dominate all other 
models, particularly when the number of models is very large with 
many connections shared between models. In this situation, one can 
look for any similarity in model structures that can better explain 
the data. To do this, a recent extension of BMS has introduced the 
ability to make inferences on a “family” of models (Penny et al., 
2010). A family is a subset of models that share similar charac-
teristics such as the same driving region or the same modulated 
connections (see Penny et al., 2010; Seghier and Price, 2010; Seghier 
et al., submitted). The formation of families should be motivated by 
the question of interest to ensure all models in the model space are 
partitioned into different families with no overlap. It is permissible 
to have different numbers of models in each family. BMS can then 
be used to compare these competing families and inferences can 
be made at the family level.

Inference at the connection level
The last level of inference assesses the significance of a particular 
connectivity parameter. Analysis of the connectivity parameters is 
conducted after comparing models or families because the poste-
rior densities of such parameters are conditional on the particular 
model or family selected (Stephan et al., 2010). If a winning model 
has been identified, one can look at the consistency of effects across 
subjects using random-effects analysis (e.g., t-tests). Alternatively, 
fixed-effect approaches can be applied using Bayesian parameter 
averaging where the connectivity parameters are weighted by their 
precision during the computation of the mean across subjects or ses-
sions. Significant effects at the group level are commonly reported 
at a corrected p-value (e.g., using a Bonferroni correction based 
on the number of tested connections, Sonty et al., 2007; Leff et al., 
2008; Seghier and Price, 2010). If the inference has been made at the 
family level, it is possible to use the new Bayesian model averaging 
(BMA) method where the contribution of each model to the mean 
effect is weighted by its evidence (Penny et al., 2010).

PREvIOUS DCM STUDIES OF PATIENTS
In this section we review previous DCM studies of patients. We 
are particularly interested in the way DCM has been carried out 
in patients and how the differences between controls and patients 
have been statistically characterized both at the model and con-
nection level. A PUBMED search was conducted with the follow-
ing inclusion criteria: (i) fMRI studies, (ii) published in English 
that (ii) used DCM in (iv) patients with any disorder. A total of 
28 studies were identified and are listed in Tables 1 and 2 (Bird 
et al., 2006; Mechelli et al., 2007; Rocca et al., 2007a,b; Sonty et al., 

Stephan et al., 2009a). This approximation, as a lower bound on 
the model evidence, points to the optimal compromise between 
the accuracy and complexity of a given model. It provides a better 
estimation for the complexity term, by taking into account the 
interdependency between the estimated parameters. Thus, model 
evidence is not an “absolute” measure of how good a model is; 
instead it is used in BMS to compare between alternative mod-
els. Moreover, by using the negative variational Free-energy as the 
optimal compromise between accuracy and complexity, the current 
implementation of DCM ensures that (i) model complexity will 
not increase if additional parameters are “redundant” to existing 
parameters and (ii) the parameter estimates of a good model are 
as precise and uncorrelated as possible. In short, BMS estimates the 
likelihood that a given model has generated the observed data.

Sampling the model space
The most critical step when using the BMS tool is the definition of 
the DCM model space (i.e., the set of specified models) because any 
inference at the model level depends on the way the model space 
has been defined (sampled). There are three principles that need to 
be considered: compatibility, size, and plausibility. First, compat-
ibility between models is attained by ensuring that all models of a 
given subject have the same regions, that is, the models all contain 
the same data. Specifically, BMS cannot be applied to models that 
are fitted to different fMRI data. For group studies, a good practice 
is to ensure consistent regions between subjects since group BMS 
implicitly assumes functional compatibility of the modeled effects 
across subjects. Second, there are an infinite number of possibilities 
that can explain the data; it is impossible to sample all these pos-
sibilities and thus a practical limitation on the number of models 
(i.e., the size of the model space) is necessary. Third, plausibility 
reflects a systematic way of defining realistic and interpretable mod-
els according to a priori knowledge or some predefined criteria. This 
will automatically limit the size of the model space and crucially 
avoid including bad or unrealistic models.

Random-effects vs. fixed-effects
Once the model space has been defined and estimated in all subjects, 
BMS can be used to identify the best (most useful) models at the 
group level. There are two classic ways of achieving group BMS 
analyses: fixed-effects and random-effects (see Figure 1 in Stephan 
et al., 2010). The former assumes that the best models are compa-
rable across subjects because subjects would reasonably perform 
the task in a similar way (e.g., identical cognitive strategies). The 
latter may be preferable when studying heterogeneous populations 
or using complex cognitive tasks where optimal models are likely to 
vary across subjects. Random-effects BMS is also preferable when 
outlier effects are suspected because the current implementation (in 
SPM8) of random-effects BMS uses a robust hierarchical Bayesian 
approach. It quantifies the likelihood that a specific model gen-
erated the data of a subject chosen at random, measured via two 
quantities: (i) the Dirichlet parameter estimates (alpha) represents a 
measure of the effective number of subjects in which a given model 
generated the observed data, and (ii) the “exceedance” probability 
(xp) describes the belief that a particular model is more likely than 
any other model given the group data (Stephan et al., 2009a). The 
exceedance probability “xp” is particularly intuitive as all  exceedance 
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Mintzopoulos et al., 2009; Shannon et al., 2009; Vaudano et al., 
2009; Agosta et al., 2010; Allen et al., 2010; Goulden et al., 2010; 
Miyake et al., 2010; Rowe et al., 2010). These studies have provided 
valuable insights into the abnormal connectivity in patients with 

2007; Cao et al., 2008; Eickhoff et al., 2008; Grefkes et al., 2008, 
2010; Hamandi et al., 2008; Schlosser et al., 2008, 2010; Abutalebi 
et al., 2009; Almeida et al., 2009a,b; Benetti et al., 2009; Crossley 
et al., 2009; Dima et al., 2009; Fujii et al., 2009; Grezes et al., 2009; 

Table 1 | List of previous DCM studies of patients that used one single model (i.e., DCM model space = 1 model). Studies are listed in alphabetical order.

Study Disorder Np/Nc Task R M Findings

Abutalebi 

et al. (2009)

Bilingual Aphasia 1 pat., 0 con. Picture naming (in 

L1 and L2); 

Longitudinal 

recovery study 

(3 sessions).

5 1 Increased connectivity after therapy between 

regions associated with “language control”.

Agosta et al. 

(2010)

Alzheimer’s disease 25 pat., 11 con. (with 

two groups of 

patients)

A simple motor 

task with the right 

hand.

6 1 Altered endogenous connectivity between 

patients and controls on the primary 

sensorimotor cortex.

Almeida 

et al. (2009b)

Major and bipolar 

depression

31 pat., 16 con. Emotion labeling in 

happy vs. sad 

faces.

4 1 Abnormal connectivity between orbitofrontal 

and amygdala differentiated major from 

bipolar depressed patients.

Bird et al. 

(2006)

Autism spectrum 

disorder

16 pat., 16 con. Attention 

modulation in faces 

and houses.

3 1 Reduced attentional modulation in patients 

compared to controls.

Cao et al. 

(2008)

Dyslexia 12 pat., 12 con. 

(children)

Rhyme judgment 

task.

4 1 Reduced connectivity modulation in dyslexics 

compared to controls between fusiform and 

parietal regions.

Correlations between reading skills and 

connectivity in left parietal.

Crossley 

et al. (2009)

Schizophrenia 26 pat., 13 con. (with 

two groups of 

patients)

Working memory 

task.

5 1 Connectivity between superior temporal and 

middle frontal gyrus was negative in controls 

and positive in patients.

Eickhoff 

et al. (2008)

heterotopic hand 

replantation

2 pat., 14 con. Motor (hand 

movement).

8 1 Abnormal inhibition from ipsilateral to 

contralateral M1.

Goulden 

et al. (2010)

Major depression 30 pat., 29 con. Emotional face 

processing task.

4 1 Improved group differences on connectivity 

parameters when using permutation testing.

Grefkes 

et al. (2008)

Stroke patients 

(subcortical lesions)

12 pat., 12 con. Motor (hand 

movement).

8 1 Reduced coupling between bilateral M1 

during stroke-affected hand movements.

Correlation between reduced connectivity 

and degree of impairment.

Mechelli 

et al. (2007)

Schizophrenia 21 pat., 10 con. (with 

two groups of 

patients)

Voice detection 

from spoken words 

task.

5 1 Abnormal connectivity between anterior 

cingulate and superior temporal gyrus, in 

particular in patients with verbal 

hallucinations.

Mintzopoulos 

et al. (2009)

Stroke patients 5 pat., 12 con. Motor (squeezing a 

robotic device).

3 1 Reduced endogenous connectivity between 

M1 and cerebellum and increased 

connectivity between SMA and M1 in 

patients relative to controls.

Miyake et al. 

(2010)

Patients with eating 

disorders

36 pat., 12 con. (with 

3 groups of patients)

Detection of 

negative vs. neutral 

words.

2 1 Significant group differences in the 

endogenous connectivity from medial frontal 

to the amygdala.

Rocca et al. 

(2007a)

Patients with 

multiple sclerosis

12 pat., 14 con. A simple motor 

task with the right 

hand.

4 1 Stronger endogenous connectivity in patients 

than controls between right primary 

sensorimotor cortex and cerebellum.

Shannon 

et al. (2009)

Externalizing 

behavior disorder

21 pat., 11 con. A reward and 

non-reward task.

2 1 Significant differences between controls and 

patients on both endogenous and non-reward 

modulatory effects, mainly on the caudate.

Np, number of patients; Nc, number of controls; R, number of regions; M, number of models.
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Table 2 | List of previous DCM studies of patients that used and compared more than one model (DCM model space ≥ 2 models).

Study Disorder Np/Nc Task R M Findings

Allen et al. 

(2010)

Schizophrenia 15 pat., 15 con. Sentence completion 

task.

3 14 Best model identical in controls and patients.

Increased endogenous connectivity between anterior 

cingulate and middle temporal regions in patients 

compared to controls.
Almeida 

et al. (2009a)

Bipolar disorder 21 pat., 25 con. Emotion labeling in 

happy vs. neutral 

faces.

3 4 Best model identical in controls and patients.

Abnormal increase in endogenous connectivity between 

parahippocampal and cingulate cortex in patients 

compared to controls.
Benetti et al. 

(2009)

Schizophrenia 26 pat., 14 con. 

(with two groups 

of patients)

Working memory task. 2 4 Models have different regions.

Endogenous connectivity between right hippocampus 

and inferior frontal gyrus was stronger in controls than 

patients.
Dima et al. 

(2009)

Schizophrenia 13 pat., 16 con. Perception of the 

hollow-mask illusion.

5 2 Best model identical in controls and patients (but not 

when using RFX analysis).

No significant correlations between connectivity and 

symptoms.
Fujii et al. 

(2009)

Blind patients 15 pat., 24 con. Tactile Braille 

discrimination task.

5 2 Model comparison done in patients, and the best model 

was then used in controls.

Modulations between parietal and occipital regions were 

positive in patients and negative in controls.

Early blind showed stronger connectivity than the late 

blind patients.
Grefkes et al. 

(2010)

Stroke patients 

(subcortical 

lesions)

11 pat., 0 con. Motor (hand 

movement); 

interference with TMS.

6 4 TMS applied to the contralesional motor cortex.

TMS enhanced endogenous connectivity between 

ipsilesional SMA and M1.
Grezes et al. 

(2009)

Autism spectrum 

disorder

12 pat., 12 con. Perception of fearful or 

neutral actions 

(videos).

6 2 The connectivity parameters of both models were 

compared between patients and controls.

Stronger connectivity in controls than patients during 

fearful compared to neutral context, in particular on the 

amygdala.
Hamandi 

et al. (2008)

Epileptic patients 1 pat., 0 con. Interictal epileptiform 

discharges.

2 2 Onsets defined as spikes (visual monitoring in EEG);

Increased connectivity from left parahippocampal to 

lingual gyrus during epileptic discharges.
Rocca et al. 

(2007b)

Patients with 

benign multiple 

sclerosis

15 pat., 19 con. Stroop color-word 

task.

6 2 The best model of driving inputs in controls was then 

used in patients.

Endogenous and modulatory effects were different in 

patients vs. controls, and they were correlated to the 

severity of the structural damage.
Rowe et al. 

(2010)

Parkinson’s 

disease

16 pat., 17 con. Action selection in 

finger-tapping task; 

Dopaminergic therapy.

4 48 Best model identical in controls and patients.

Model selection is reproducible.

Connectivity parameters are less reliable across sessions
Schlosser 

et al. (2008)

Major depression 16 pat., 16 con. Stroop color-word 

task.

5 4 Best model identical in controls and patients.

Higher endogenous connectivity between anterior 

cingulate regions in patients compared to controls.
Schlosser 

et al. (2010)

Obsessive 

Compulsive 

disorder

21 pat., 21 con. Stroop color-word 

task.

6 5 Best model identical in controls and patients.

Increased modulation between frontal and cingulate 

cortex in patients during incongruent trials.
Sonty et al. 

(2007)

Primary 

Progressive 

Aphasia

8 pat., 8 con. Semantic word 

matching.

6 5 Best model identical in controls and patients.

Reduced connectivity between Broca and Wernicke’s area 

in patients compared to controls.

Reduced connectivity was correlated with accuracy.
Vaudano 

et al. (2009)

Epileptic patients 7 pat., 0 con. Generalized spike 

wave discharges.

3 3 Discharges used as driving inputs and enter the system at 

different regions.

The best model showed spike wave discharges input on 

precuneus.

Np, number of patients; Nc, number of controls; R, number of regions; M, number of models.
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within the best model structure given the data. Other studies have 
used a model that is less complex than the fully connected ver-
sion when a priori hypotheses concerning the architecture of the 
optimal model are possible on the basis of previous structural 
and functional connectivity findings (e.g., Grefkes et al., 2008; 
Abutalebi et al., 2009; Crossley et al., 2009; Goulden et al., 2010). 
Irrespective of which model is selected, single model studies were 
more concerned about the differences in connectivity parameters 
and thus their findings do not address differences between patients 
and controls at the network level.

STUDIES WITH MULTIPLE COMPETINg DCM MODELS
To avoid heavy reliance on a predefined model other studies have 
used BMS to identify the best model from competing alterna-
tives (varying from 2 to 48 models, see Table 2). The compari-
son between connectivity parameters is then performed on the 
parameters of the best model. This procedure has the advantage of 
providing the opportunity to make inferences both at the model/
system level and the parameter/connection level within the optimal 
structure. It is perfectly valid (and sufficient) to limit the infer-
ence to the system level, for instance by showing whether or not 
patients are using the same network as the controls (e.g., is the 
winning model identical in patients and controls?). That said, all 
previous studies were mainly interested in inferences at the con-
nection level and the BMS was usually presented as an intermedi-
ate analysis step. To ensure the possibility of such inference, these 
studies used different methods to guarantee that the final selected 
model is the same between controls and patients. This conceptual 
limitation will be unnecessary when the new BMA tool for making 
comparisons across multiple models or families is implemented 
in SPM (see Penny et al., 2010).

Practically, three methodologies have been used to compare the 
best model in patients and controls. First, the majority of studies 
used BMS on the same set of alternative models and implemented 
this independently in patients and controls (e.g., Sonty et al., 2007; 
Schlosser et al., 2008, 2010; Almeida et al., 2009a; Allen et al., 2010; 
Rowe et al., 2010). All these studies showed the winning model 
to be identical in patients and controls. Note however that this 
similarity may depend on whether RFX or FFX methods are used; 
for instance, patient and control models were found to be identical 
with FFX analysis but different with RFX analysis (Dima et al., 
2009). Second, an alternative approach used by Rocca et al. (2007b) 
in a study of patients with multiple sclerosis performing a Stroop 
task involved the use of BMS within controls only to find the best 
model in controls, followed by a comparison of the parameters 
of that model in patients and controls (Rocca et al., 2007b). For 
instance, when faced with the choice of where inputs enter the 
system, Rocca and colleagues defined two alternative models with 
two different driving regions. They then identified the best model 
and used the driving region of the winning model as a driving 
region for patients as well (Rocca et al., 2007b). The third proce-
dure was used by Fujii et al. (2009) to study blind patients during 
tactile Braille discrimination tasks. It involved identification of the 
best model in patients and then used this model in comparison to 
controls (Fujii et al., 2009). Note that the last two procedures rely 
on the hypothesis that the best model of one group is identical to 
the best model in the second group.

a range of pathologies. However, the aim of our review is not to 
discuss the relevance of their  findings. This would necessitate a 
separate review that considered the models tested, tasks and stimuli 
used, region selection, driving and modulatory inputs, and the rel-
evance of the findings in light of previous neuropsychological and 
computational models. Instead, the current review considers the 
methodological approaches that have been used (see Tables 1 and 
2) and we refer to these studies for illustrations of the methods.

Consistent with the most widely used implementation of DCM, 
all 28 studies were deterministic and used the bilinear one-state 
neuronal equation without anatomical-based priors. Matched 
groups of controls were included in all but four studies (Hamandi 
et al., 2008; Abutalebi et al., 2009; Vaudano et al., 2009; Grefkes 
et al., 2010). The driving inputs were specified in standard block or 
event-related designs in all but two studies (Hamandi et al., 2008; 
Vaudano et al., 2009) where internally generated epileptogenic wave 
discharges from the epileptic patients being studied were used as 
the driving inputs.

The models used varied in their complexity, from simple 
models with two regions (e.g., Benetti et al., 2009) to complex 
models with eight regions (e.g., Grefkes et al., 2008). All studies 
involved adult subjects except one study of dyslexic children (Cao 
et al., 2008). The tasks and stimuli varied extensively between 
the studies because they were purposely designed to maximize 
differences between patients and controls. For instance, working 
memory tasks were used in patients with schizophrenia (Benetti 
et al., 2009; Crossley et al., 2009), Stroop word-color tasks were 
used in patients with depression (Schlosser et al., 2008), and 
semantic tasks were used in aphasic patients (Sonty et al., 2007; 
Abutalebi et al., 2009). One critical difference between these 
studies concerns the level of inference made in both patients 
and controls. We thus divided the 28 studies into two sets: a set 
of 14 studies that tested one model only (Table 1) and therefore 
did not require the BMS procedure and a second set of 14 stud-
ies that used BMS to compare at least 2 models in patients and 
controls (Table 2).

STUDIES WITH ONE FIxED DCM MODEL
The 14 studies with only one DCM model in both patients and 
controls were exclusively interested in how connectivity param-
eters differed between groups. The same model (i.e., same regions, 
driving inputs, and modulatory inputs) was defined in patients and 
controls and the connectivity parameters of that model were com-
pared between patients and controls on a connection by connec-
tion basis. The main motivation of such strong reliance on a single 
model is to ensure the same model is tested on both populations so 
that connectivity parameters can be compared. This avoids the case 
when the winning model is not the same in patients and controls. 
Because the parameters are conditional on the selected model the 
definition of one unique model can be problematic. Some studies 
have used a fully connected model because it allows all possible 
combinations of inter-regional connections to be estimated and 
tested (e.g., Bird et al., 2006; Mechelli et al., 2007; Rocca et al., 
2007b; Cao et al., 2008; Agosta et al., 2010; Miyake et al., 2010). 
However, we argue that a fully connected model is by definition the 
most complex and may lead to over-fitting of the data. Moreover, 
it cannot guarantee that connectivity parameters are estimated 
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A SySTEMATIC PROCEDURE FOR DCM IN PATIENTS
The studies reviewed above have used a variety of procedures to 
assess effective connectivity in patients. This makes any meaning-
ful comparison between their findings difficult. This diversity 
also illustrates the different procedures that have been used to 
address the methodological challenges that arise when DCM is 
used with patient data. In this section, we propose a practical 
procedure that can be used to compare effective connectivity 
in patients and controls. This involves the standard DCM pro-
cedures (see Definitions and Principles above) but with some 
specific modifications that are particularly relevant for patient 
studies. They relate to region selection, the definition of the driv-
ing regions, the definition of plausible models, identifying the 
best model or family of models, and the comparison of con-
nectivity parameters in patients and controls. Note however we 
are not claiming this approach is the only correct way of using 
DCM in patients; the optimal approach should always be tailored 
to the specific questions, the selected effects of interest, and the 
definition of the model space.

REgION SELECTION
Models should, by definition, be comparable between patients 
and controls. This means models must have identical nodes. 
Accordingly, only commonly activated regions in patients and 
controls can be included in DCM. Thus, DCM in patients focuses 
on the characterization of abnormal connectivity in a common 
network of regions (see schematic illustration in Figure 2). A fuller 
characterization of patient data would therefore benefit from a 
report of abnormalities at the level of regions (areas that are more 
or less activated in patients than controls) in addition to a report of 
abnormal connectivity within the set of areas commonly activated 
in patients and controls. Second, there should be minimal inter-
subject variability in the anatomical location of a given region. 
This is because large variability in region locations may result in 
the comparison of functionally different regions across patients 
and controls (for a similar rationale, see Seghier and Price, 2010; 
Seghier et al., submitted). This is particularly critical in regions 
where functional specialization may vary at a high spatial scale. 
As a general rule, the distance between corresponding regions in 
different individuals should correspond to the size of the spatial 
smoothing kernel. Third, the distance between different regions 
in the same individual needs to ensure that the data included in 
one region is not also entered into another region. Fourth, we also 
advocate the definition of proper F-contrasts of interest that can 
be used to adjust the extracted time-series and thus minimize the 
contribution of other confounds (e.g., session effect, head motion, 
incorrect trials).

DRIvINg REgIONS
After extracting the ROIs, an important step in the construction 
of plausible models is the choice of driving regions (i.e., where 
the inputs enter the system). It is wise to specify primary sen-
sory regions as driving regions if they are included in a model. 
However, for other regions, the motivation for selecting driving 
regions should be carefully based on prior anatomical or func-
tional knowledge as all connectivity parameters depend on how 
the information flow is assumed to propagate from driving regions. 

DIFFERENCES IN CONNECTIvITy PARAMETERS
After defining the best model in both patients and controls, previ-
ous studies have tested whether the parameters of that model differ 
between the two groups. Some studies have limited this comparison 
to the endogenous connectivity (e.g., Rocca et al., 2007a; Benetti 
et al., 2009; Miyake et al., 2010), whereas other studies have looked 
at how patient connectivity differed in the context of stimulus or 
task changes (e.g., Bird et al., 2006). Abnormal connectivity in 
patients has been found to correspond to either a change in the 
strength of connectivity (stronger or weaker parameters than con-
trols) or a change in polarity (positive vs. negative). For instance, 
Schlosser et al. (2008) found patients with major depression have 
stronger connectivity between anterior cingulate regions when 
compared to controls during a Stroop color-word task (Schlosser 
et al., 2008). Conversely, Sonty et al. (2007) illustrated reduced con-
nectivity by showing that, relative to controls, patients with primary 
progressive aphasia have weaker connectivity between Broca and 
Wernicke’s areas during semantic word matching tasks. An example 
of reversed polarity has also been shown with negative modulatory 
effects between parietal and occipital regions in controls compared 
to positive modulations in blind patients (Fujii et al., 2009).

Interestingly, a few studies have also investigated the correla-
tions between abnormal connectivity and other behavioral or 
diagnostic measures in patients. For instance, Rocca et al. (2007b) 
showed a significant correlation between abnormal connectivity 
and the severity of structural damage in patients with multi-
ple sclerosis. Cao et al. (2008) found that reduced modulations 
between the fusiform and parietal regions correlated with reading 
skills in dyslexic children (Cao et al., 2008). Another example is 
provided by Grefkes et al. (2008) who found a significant correla-
tion between reduced connectivity in primary motor regions and 
the degree of motor impairment in stroke patients with subcor-
tical lesions (Grefkes et al., 2008). Moreover, other studies have 
used connectivity parameters to distinguish between different 
pathological groups. For instance, Almeida et al. (2009b) found 
that the abnormal connectivity between the orbitofrontal cortex 
and the amygdala differentiated patients with major depression 
from patients with bipolar depression during a task of emotional 
labeling of happy vs. sad faces (Almeida et al., 2009b). Miyake 
et al. (2010) found that endogenous connectivity between the 
medial frontal gyrus and the amygdala during the detection of 
negative vs. neutral words showed variable patterns between three 
subgroups with different types of eating disorders (Miyake et al., 
2010). Furthermore, two other studies illustrated how external 
interventions can be monitored with DCM in diseased popu-
lations. The first was a longitudinal study of a bilingual apha-
sic patient by Abutalebi et al. (2009) and assessed connectivity 
between five regions of interest during a picture naming task in 
two languages. Increased connectivity was found after therapy in 
regions associated with “language control,” consistent with the 
patients’ behavioral recovery (Abutalebi et al., 2009). The sec-
ond study combined DCM and transcranial magnetic stimulation 
(TMS) (Grefkes et al., 2010) and focused on stroke patients with 
subcortical lesions during hand movement tasks. In their study, 
Grefkes et al. (2010) found that applying TMS to the contral-
esional motor cortex increased connectivity between ipsilesional 
motor regions (Grefkes et al., 2010).
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BMS FOR THE BEST MODEL OR FAMILy OF MODELS
First, it should be stressed that it is better to use the most recently 
available negative variational Free-energy model evidence measure 
instead of the suboptimal AIC or BIC measures (for more details 
see Stephan et al., 2009a). The problem with AIC and BIC (still 
used in some recent work) is that they may bias model selection 
toward more simplistic models and do not take into account the 
interdependency between connectivity parameters. Using the nega-
tive variational Free-energy measures, BMS can be run separately on 
patients and controls to identify the best family of models in patients 
and controls (assuming the same model space is defined in both 
groups). Family inference enables the investigator to test and report 
the evidence for an optimal class of models in patients or controls. 
If patients and controls show a different winning family or model 
then this is an interesting result to report, particularly in the con-
text of a commonly activated set of regions (see previous section). 
This would mean that data from patients and controls cannot be 
adequately and sufficiently fitted by the same model structure (e.g., 
Horwitz et al., 1995), suggesting that the patterns of fMRI activation 
observed in patients have emerged from other alternative models 
that can be tested and identified with the BMS. Moreover, differences 
can be investigated at the level of inter-subject variability within and 
between patients and controls. For example, some patients may have 
similar winning models to controls and other patients may have 
different winning models. Inter-subject variability within groups 
can then be related to behavioral measures acquired in or out of the 
scanner. This is particularly interesting when the aim of the study is 
to predict performance at the individual subject level.

DIFFERENCES AT THE CONNECTION LEvEL
If inference is sought at the connection level it is important to only 
compare models that are tested within the same model space in both 
groups, including the same winning model or family of models. 
For the same winning model, two sample t-tests or ANOVAs can 

In the absence of a priori knowledge, it is useful to perform a 
preliminary BMS procedure that systemically varies the site of 
driving regions across a set of candidate regions. This can be done 
by specifying all plausible models (in terms of endogenous and 
modulatory effects) and repeating them with each combination 
of driving regions (for a similar procedure, see Leff et al., 2008; 
Penny et al., 2010; Seghier et al., submitted). Then, by using a RFX 
BMS across patients and controls, the winning family represent 
the best driving regions.

PLAUSIBLE MODELS
This step should be systematic in the sense that it needs to explore 
a set of alternative plausible models for a given set of regions, par-
ticularly when prior knowledge of a network is uncertain. Even 
if the inference of interest is at the connection level, it is difficult 
to interpret and generalize differences in connectivity parameters 
in patients that have only been compared to controls in the con-
text of one fixed model. Our concern is based on the fact that the 
connectivity parameters are conditional on the predefined model. 
Thus, evidence is stronger when it is known to be based on several 
competing models. It is also helpful (if possible) to classify models 
in a set of meaningful families that can then be compared with BMS. 
For instance, family categorization could be based on the exist-
ence of a commonality at the level of an endogenous connection, 
modulated connection, or driving input. Additional constraints 
help to limit the size of the DCM model space. This is necessary, 
since, for example, there are over one billion possible models in 
the model space of a fully connected DCM with six regions if it is 
searched in an unconstrained manner for the best modulated con-
nections. Limiting the model space to the most plausible models 
limits the possibility of diluting evidence with the inclusion of bad 
or implausible models. It would also be helpful if authors detailed 
how they constrained the model space as this may aid in the design 
of future studies.

FIguRe 2 | Illustration of the problem of the “missing nodes” in 
DCM when comparing patients to controls. Regions A and B are 
activated in both groups, region D is damaged in patients but present in 
controls, and region C is a compensatory region that is only activated in 
patients. The deterministic DCM can assess the interactions between 

A and B [noted int(AB) on a solid black line], but would ignore the indirect 
effects of regions D and C (shown with gray lines). The interactions between 
A and B are thus a complex mixture of these effects [e.g., in patients = int(AB) 
in the context of C without D; in controls = int(AB) in the context of  
D without C].
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(5) How generalizable are conclusions concerning abnormal 
connectivity? This issue is particularly critical for studies that 
aim to define a biomarker for a given pathology. First, the 
results identified in a particular group of subjects can only 
be translated to other subjects that show significant effects in 
all the regions of interest. What then happens when patients 
have one or two missing nodes? Second, generalizability also 
depends on abnormalities that manifest outside the network 
of interest, because the effects could have indirect influen-
ces on the sub-network of interest. This problem concerns 
all levels of inference in the implementation of determini-
stic DCM and should be carefully considered when genera-
lizations are made about abnormal connectivity. It is even 
more critical if one is interested in making inferences at the 
individual level (e.g., if abnormal connectivity is being used 
as a biomarker for distinguishing between patients and con-
trols or for classifying new patients). Nevertheless, it should 
be noted that patient and control connectivity parameters 
represent the same thing and are directly comparable when 
the analysis of patient and control data is based on the iden-
tical model space with identical priors for the model parame-
ters (including those for the forward hemodynamic model 
and those for neuronal coupling).

FUTURE DEvELOPMENTS
In addition to the methodological issues highlighted above that 
warrant further investigations, other developments can potentially 
add more flexibility to the use of DCM in patient studies. We focus 
here on four future developments: (1) quantify the vulnerability 
of a given network after damage, (2) sample the model space in an 
unconstrained manner, (3) include new computational models in 
DCM, and (4) combine DCM with other approaches.

(1) Quantifying the vulnerability of the network to damage. 
Parallels can be made with the increased interest in graph 
theory for complex brain network analysis (for review see 
Bassett and Bullmore, 2009; Bullmore and Sporns, 2009; 
Bressler and Menon, 2010; Guye et al., 2010). Using graph 
theory, previous studies have investigated connectivity chan-
ges that result from an insult to a given part of the network 
(e.g., Kaiser et al., 2007; Honey and Sporns, 2008; Alstott 
et al., 2009), for instance by using structural network proper-
ties of the lesion site to predict the functional (i.e., dynamic) 
consequences of the focal damage. This literature has yielded 
the development of different measures to quantify the “resi-
lience” or the “vulnerability” of a given network after insult 
(see different coefficients in Rubinov and Sporns, 2010) and 
also proposed new statistical approaches for identifying 
differences in networks between patients and controls (see 
Zalesky et al., 2010). The translation of these sorts of measu-
res to the DCM framework would be a valuable contribution 
for future studies of patients.

(2) Sampling model space in an unconstrained manner. Defining 
the model space in a comprehensive way is a challenging step 
(e.g., see critique in Tauchmanova and Hromcik, 2008), in 
particular when the number of nodes or inputs is relatively 
high. One exciting possibility is the ability to sparsely sample 

be used to compare connectivity parameters between patients and 
controls. Alternative permutation testing (Goulden et al., 2010) 
can be used in studies with small samples. For the same family of 
models, the latest BMA procedure is more suitable (see illustration 
in Penny et al., 2010; Seghier et al., submitted) when the two groups 
differ in the distribution of model evidence across the model space 
(e.g., the posterior probabilities of plausible models are different in 
the two groups). Moreover, it is sometimes interesting to look for 
correlations between connectivity parameters in patients and their 
phenotype or genotype. This helps to interpret differences between 
patients and controls and to determine whether any connectivity 
pattern can serve as a biomarker for a particular deficit or signature 
of a particular reorganization mechanism.

CONCEPTUAL AND METHODLOgICAL ISSUES
Other conceptual and methodological issues should be acknowl-
edged when using DCM in patients (see for instance Daunizeau 
et al., 2010). We focus here on five issues that we believe are crucial 
for interpreting or generalizing DCM findings. All five warrant 
further systematic investigations, on both simulated and real data, 
in order to characterize their influences.

(1) Effective connectivity, like functional responses, varies across 
subjects. Although group effects are easy to report and 
important in showing the most consistent effects in a given 
population, variable connectivity patterns across patients 
can indicate different ways a given deficit can be expressed 
and the strategies that patients may be using to compen-
sate for those deficits. It is also possible that variability may 
change with the level of inference, as shown recently in a 
group of patients with Parkinson’s disease where inferences 
at the model level were more reliable and reproducible than 
inferences at the connection level (e.g., Rowe et al., 2010).

(2) The network of areas included in a DCM are typically only 
part of the complete and complex neural system that supports 
the task. Therefore, the inter-regional interactions within the 
selected sub-network are only a parsimonious model of the 
“true” system.

(3) The problem of missing nodes is crucial for DCM (see Smith 
et al., 2010). As highlighted above, the deterministic DCM 
will only test the differences in connectivity within the com-
monly activated network, ignoring the regional effects that 
are absent or novel in patients compared to controls. For 
this reason we have suggested that the abnormalities should 
be reported at the level of regions in addition to the level of 
connectivity.

(4) The remote effect of abnormal connectivity in another net-
work. This problem concerns the influence of abnormal 
parts in a subsystem that may propagate to other networks 
causing “indirect” abnormal connectivity in the subsystem 
of interest. For instance, it is possible that damaged parts 
within one functional system manifest as abnormal connec-
tivity that is not necessarily related to the main task/process 
of interest. This effect is linked to the more global problem of 
the missing nodes that can sometimes be sufficiently strong 
to invalidate DCM results of a given subsystem (see discus-
sion in Daunizeau et al., 2010).
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and Rushworth, 1999), sustained cognitive disturbances induced 
by TMS in humans have not been observed (Pascual-Leone et al., 
1993; Rossi et al., 2009).

Excellent reviews of TMS from the perspectives of neuropsy-
chology (Walsh and Rushworth, 1999), psychiatry (George et al., 
1999) neurology (Rossini and Rossi, 2007) and safety (Rossi et al., 
2009) have been published. In this review, we focus primarily on 
approaches in which connectivity mapping and TMS can be used 
in conjunction to study neurological and psychiatric disorders in 
order to provide a sense of the more common available techniques 
and examples of these approaches. By connectivity mapping, we 
mean imaging techniques that assess connectivity between distal 
brain areas, such as functional connectivity analyses and diffusion 
tensor imaging. Thus, we focus primarily on TMS studies of inter-
regional, rather than intraregional, connectivity.

Another form of non-invasive brain stimulation, transcranial 
direct current stimulation, or tDCS, can produce changes in brain 
excitability that can persist for a period of time after stimulation 
(Priori, 2003). To date, this technology has been less extensively 
used in conjunction with connectivity mapping, and will not be 
covered in this review except to note that several recent papers 
have reported that tDCS may modulate distal brain areas via inter-
regional connectivity (Boros et al., 2008; Galea et al., 2009; Stagg 
et al., 2009).

IntroductIon
Transcranial magnetic stimulation (TMS) allows focal, non-invasive 
stimulation of the human brain using very brief duration magnetic 
waves administered by an electromagnetic coil positioned on the 
scalp. Stimulation coils typically generate magnetic field pulses of 
approximately 1.5–2 T that pass relatively undistorted through the 
scalp and skull (George et al., 1999). Rapidly oscillating magnetic 
fields within the brain induce corresponding electrical fields, which 
stimulate underlying gray matter. A standard figure-8 configured 
coil achieves relatively focal direct stimulation with a 2–2.5 cm 
diameter spread at the cortical surface under the crossing of the 
figure-8, while a circular coil delivers a wider spread of stimulation 
(Cohen et al., 1990). Direct neural activation is achieved up to ∼2 cm 
from the surface of the magnet (Rudiak and Marg, 1994), which 
is sufficient to reach the gray/white interface of cortex adjacent to 
skull. The exact nature of neural effects induced by TMS is not 
known, but complex, enduring changes in spontaneous and evoked 
activity and synchronization of neural firing have been shown to 
be induced when administered to the cat visual cortex (Allen et al., 
2007). Overall, TMS has proved to be relatively safe with a few cases 
of seizures associated primarily with repetitive stimulation at higher 
frequencies (i.e., 10 Hz or above, Wassermann, 1998; Rossi et al., 
2009). Although momentary virtual “lesions” can be induced by 
TMS that are detectable via  neuropsychological methods (Walsh 
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types of stImulatIon
There are two broad classes of stimulation paradigms for TMS: 
single/paired/triple-pulse paradigms, and repetitive stimulation 
paradigms.

sIngle/paIred/trIple-pulse
Single pulse TMS can be used to interfere with activity in the stimu-
lated region, and thus to act as a temporary lesion. By applying such 
pulses at different times and to different regions, and examining the 
behavioral consequences, the roles of different regions in a cognitive 
process, and their temporal dynamics, can be studied (Terao et al., 
1998; Zangaladze et al., 1999). A single pulse does not always have an 
inhibitory effect on a region: in some cases, facilitatory effects have 
been reported (Grosbras and Paus, 2002). However, the temporal 
profile of such facilitatory effects can also be informative.

Paired-pulse paradigms can be used to investigate interactions 
between motor or visual regions of the brain. When applied to the 
primary motor cortex (M1), a single pulse can induce a motor 
evoked potential (and the corresponding body movement), and 
when applied to the primary visual cortex (V1), the perception of 
a phosphene can be induced. The response elicited by a single pulse 
(that is, the motor evoked potential or phosphene) can be modulated 
by the application of preceding pulses in the same, or a connected 
brain region in a manner dependent on the temporal relationship 
of the pulses. In this fashion, paired pulses, that is, a conditioning 
pulse followed by a test pulse, can be used to examine connectivity 
and cortical dynamics in the motor and visual systems.

More complex aspects of cortical dynamics can be studied with 
triple-pulse paradigms. The effect of a conditioning pulse on a 
subsequent test pulse can be altered by preceding them both with 
an earlier pulse. Paradigms like this have been used to investigate 
the possible cellular mechanisms underlying different forms of 
intracortical inhibition and facilitation (Sanger et al., 2001) and 
to investigate how intracortical dynamics affect interregional inter-
actions (Koch et al., 2007).

repetItIve tms
Repetitive stimulation typically involves short trains of high- frequency 
stimulation (≥5 Hz) or long trains of low-frequency stimulation 
(≤2 Hz) applied at a single site. Low-frequency stimulation typically 
results in depression of the target brain area for a period of time follow-
ing stimulation, while high-frequency stimulation typically induces 
facilitation of the region (Pascual-Leone et al., 1994; Chen et al., 1997; 
Speer et al., 2000). However, one particular high- frequency stimula-
tion paradigm, referred to as theta burst stimulation, can produce 
either inhibitory or facilitatory effects that extend for many minutes 
after stimulation (Huang et al., 2005). This paradigm involves short 
bursts of very high-frequency stimulation (3 pulses at 50 Hz) repeated 
at 200 ms interval (which corresponds to the 5 Hz theta frequency). 
If the stimulation pattern is applied continuously, facilitatory effects 
are produced, but when applied intermittently (2 s trains repeated 
every 10 s), inhibitory effects can result.

Repetitive TMS (rTMS) has been investigated as a treatment for 
a variety of psychiatric illnesses. By examining behavioral, clinical, 
or cognitive changes before and after rTMS, repetitive stimulation 
can also be used in basic research to study how perturbations in 
activity in a focal brain area affect the network function.

InvestIgatIng connectIvIty wIth tms alone
Single-pulse TMS paradigms can, in some scenarios, provide infor-
mation regarding connectivity in the human brain. The excitability 
of the primary motor and visual cortices can vary depending on the 
cognitive context in which stimulation occurs, and this dependence 
on cognitive state provides a window into the connectivity between 
these areas and cognitive regions. For example, during some lan-
guage tasks, the motor cortical hand area in the language dominant 
hemisphere of healthy subjects is more excitable, as reflected by 
larger motor evoked potentials recorded following TMS (Tokimura 
et al., 1996; Meister et al., 2003). This finding provides evidence 
of functional connectivity between the hand area of motor cortex 
and language areas in healthy subjects, and allows investigation of 
the integrity of these connections in patient groups. In patients 
with mild cognitive impairment, for example, language tasks were 
shown to have a reduced effect on motor cortex excitability, sug-
gesting decreased connectivity between motor and language areas 
in this patient group (Bracco et al., 2009). In patients recovering 
from post-stroke aphasia due to a dominant hemisphere lesion, the 
motor cortical hand area in the right (non-dominant) hemisphere 
was found to be more excitable during reading aloud, suggesting 
a reorganization of language function with greater recruitment of 
right hemisphere circuitry (Meister et al., 2006).

Paired-pulse paradigms using two sequential pulses provide an 
alternative and more spatially focused approach to probing inter-
regional connectivity. The first pulse is referred to as the condition-
ing stimulus, and the second is referred to as the test stimulus. The 
latter is applied to a region with an observable output response. 
Typically, primary motor cortex (M1) receives the test stimulus, 
and motor evoked potentials are recorded in the affected muscles. 
By applying a preceding conditioning stimulus to another motor 
area and measuring how it affects the motor potentials induced 
by the test stimulus, connectivity between the region receiving the 
conditioning stimulus and M1 can be probed (Civardi et al., 2001). 
Individual differences across subjects in specific connections to 
M1 can be estimated in this manner and correlated with subject 
variables such as personality dimensions (Hofman and Schutter, 
2009) in order to gain greater insight into the role of those specific 
connections in mental function.

A variety of creative paradigms have been adopted using paired 
pulse stimulation to examine connectivity in the motor system 
and its role in behavior. For example, it has been reported that 
a conditioning stimulus to the ventral premotor cortex during 
grasp preparation facilitates motor evoked potentials (in response 
to M1 stimulation) in the muscles specific to the grasp prepared 
(Davare et al., 2009). This supports the view that ventral premotor 
cortex contains populations of neurons that exert grasp-specific 
facilitatory influences on M1. Another study examining excita-
tion of the hand area of M1 during foot movements revealed 
that dorsal premotor cortex influenced the hand region of M1 
in a manner that facilitated isodirectional hand and foot move-
ments (Byblow et al., 2007). Paired-pulse paradigms have revealed 
aberrant patterns of connectivity to primary motor cortex associ-
ated with disorders that have long been hypothesized to involve 
dysfunctional connectivity, such as schizophrenia and epilepsy 
(Daskalakis et al., 2005; Loscher et al., 2007; Koch et al., 2008a; 
D’Argenzio et al., 2009).
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positively correlated with changes in blood flow in ipsilateral soma-
tosensory areas, lateral premotor cortex, and contralateral supple-
mentary motor area (SMA), and negatively correlated with changes 
in blood flow in contralateral M1. Paus et al. (1997) stimulated 
the left frontal eye field (FEF) and detected blood flow increases 
in the superior parietal and medial parieto-occipital regions; level 
of propagated activation correlated with number of TMS pulses 
delivered. Patterns of distal effects in both studies conformed to 
expectations based on connectivity studies in non-human species, 
providing evidence that activity in the stimulated area was propa-
gating to those distal areas via neural connections. Soon afterward, 
a study examining regional cerebral glucose consumption across the 
brain during rTMS of the left sensorimotor cortex was published 
(Siebner et al., 1998). A significant increase in glucose consumption 
in the SMA was identified during the repetitive stimulation of sen-
sorimotor cortex, providing evidence of neural interaction between 
the two regions. A later PET study by Paus et al. (2001a) showed that 
repetitive rTMS delivered to the left mid-dorsolateral frontal cor-
tex robustly modulated brain activity in a fronto- cingulate circuit, 
which was predicted by a parallel rat experiment using electrical 
stimulation and field-potential recordings. More recently, TMS of 
prefrontal and motor cortical areas was shown to activate subcorti-
cal regions via trans-synaptic connections using simultaneous PET 
(Ferrarelli et al., 2004).

In addition to measuring the net neural activity in different 
brain regions, PET can be used to measure the activity associated 
with specific neurotransmitter systems. This feature of PET is par-
ticularly exciting from a neuropsychiatric perspective, as it allows 
researchers to probe how specific neurotransmitter systems may 
be disrupted in different disorders, and thus how drugs that target 
particular neurotransmitters may influence the function of brain 
networks. Combined TMS–PET studies have reported changes in 
dopamine and serotonin activity in regions that are distal to the 
stimulation site (Strafella et al., 2001, 2005; Sibon et al., 2007; Ko 
et al., 2008; Cho and Strafella, 2009). For example, an [11C]raclo-
pride study of dopamine activity following stimulation of the left 
dorsolateral prefrontal cortex reported changes in binding in the 
left dorsal caudate nucleus in healthy subjects (Strafella et al., 2001) 
and another [11C]raclopride study of dopamine activity follow-
ing stimulation of left M1 reported changes in binding in the left 
putamen (Strafella et al., 2003). A follow-up study in patients with 
early Parkinson’s disease and unilateral motor symptoms revealed 
that the TMS-induced dopamine release in the striatum following 
ipsilateral M1 stimulation was lower and more spatially diffuse in 
the symptomatic hemisphere (Strafella et al., 2005).

In addition to Parkinson’s disease, simultaneous TMS–PET 
has been used to examine connectivity patterns in other patient 
groups. Chouinard et al. (2006) studied recovery of motor func-
tion following stroke, and detected complex shifts in cross-hemi-
sphere and basal ganglia connectivity when stimulating ipsilateral 
and contralateral M1 using TMS. Another study compared early 
versus late blind subjects and sighted controls when rTMS was 
delivered over sensorimotor cortex. Only the early blind group 
showed significant activation of early visual areas during stimula-
tion, which was significantly greater than in late blind subjects but 
not when compared to controls (Wittenberg et al., 2004). These 
data suggest that tactile information is transmitted to early visual 

Triple-pulse paradigms can probe more complex relationships. 
For example, a study of interactions between dorsal premotor cor-
tex (which was stimulated with a pair of pulses) and contralateral 
M1 (which received a single pulse) in focal arm dystonia failed to 
reveal the usual pattern of interaction between pairs of premotor 
stimuli (Koch et al., 2008b). Thus, disrupted intraregional dynam-
ics in premotor cortex may play a role in the aberrant influence 
premotor cortex exerts on M1 in this disorder.

To a lesser extent, connectivity in the visual system has also 
been probed using paired-pulse paradigms. For example, although 
in healthy subjects, a conditioning stimulus to MT/V5+ does not 
modulate the perception of phosphenes in contralateral V1, in a 
patient with a unilateral V1 lesion, a conditioning stimulus to MT/
V5+ in the damaged hemisphere did modulate phosphenes induced 
by a test stimulus to V1 in the intact hemisphere (Silvanto et al., 
2009). This finding was consistent with prior reports of increased 
connectivity between right and left MT/V5+ in that patient.

In summary, using a variety of experimental designs in which the 
context is modified, single, paired, and triple-pulse TMS paradigms 
can be effective tools for probing connectivity in the motor and 
visual systems in both healthy and patient populations. However, 
these paradigms are limited to studying connectivity to regions 
with overt responses (that is, M1 and V1). In order to study con-
nectivity between other regions of the brain, paradigms combining 
TMS with other imaging modalities are utilized.

InvestIgatIng connectIvIty patterns by combInIng 
tms wIth ImagIng
Transcranial magnetic stimulation can be used in conjunction 
with a variety of brain imaging technologies to map connectivity 
patterns in the human brain. A site is stimulated, and the subse-
quent activation occurring in distal areas is assessed. Such data 
can provide information on connectivity patterns. If propagated 
activation is assessed using electrophysiological methods, con-
duction delays can also be estimated. However, it is important to 
remember that physiological propagation of activation between 
brain regions under natural conditions may not be precisely 
reflected by the patterns elicited during TMS, which stimulates 
the brain in a highly unnatural manner. Despite this caveat, the 
combination of TMS with brain imaging can be very useful in 
probing brain systems.

Transcranial magnetic stimulation and imaging can be used 
together in a multitude of ways. They can be combined together in the 
same sessions, or used in alternate sessions. The first three subsections 
below describe approaches in which TMS is combined with different 
imaging modalities simultaneously. These studies are frequently used 
to examine patterns of connectivity between brain areas. In the final 
subsection, we discuss studies that use both TMS and imaging, but in 
different sessions. Such methods can be effective tools for examining 
changes in connectivity patterns induced by TMS.

tms and posItron emIssIon tomography
The ability to examine interregional connectivity using simulta-
neous TMS and positron emission tomography (PET) was first 
demonstrated by two studies published in 1997 (Fox et al., 1997; 
Paus et al., 1997). Fox et al. (1997) stimulated M1 with TMS and 
reported that changes in blood flow in the stimulated region were 
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tms and functIonal magnetIc resonance ImagIng
Functional MRI has superior spatial resolution to other functional 
imaging modalities and temporal resolution on a seconds timescale. 
Furthermore, it does not expose subjects to ionizing radiation as 
PET does. These features make it an extremely popular imaging 
technique. However there are daunting technical challenges inher-
ent in combining functional magnetic resonance imaging (fMRI) 
and TMS related to interference between the magnetic field of the 
scanner and that of the stimulator, to imaging artifacts caused by 
the presence of even small amounts of metal in the scanner room, 
and to possible torquing of the TMS coil when used in the scan-
ner field.

Despite these technical challenges, TMS and fMRI have been 
used together effectively by several research labs. The capability of 
collecting fMRI data interleaved with TMS stimulation was first 
demonstrated by Bohning et al. (1998). Soon after, it was reported 
that activity in areas distal to the stimulation site were detected using 
interleaved fMRI/TMS protocols, illustrating the promise of this 
technique for mapping patterns of connectivity between brain areas 
(Bohning et al., 1999; Nahas et al., 2001; Bestmann et al., 2004).

Combined fMRI/TMS has now been used to explore the 
functional architecture of many different brain systems, and in 
some cases, to identify the functional consequences of specific 
 interregional interactions. For example, a study stimulating the 
FEF reported a distinctive pattern of activity changes in early vis-
ual areas: activity increased in regions representing the peripheral 
visual field and decreased in regions representing the central visual 
field (Ruff et al., 2006). Furthermore, a psychophysical experiment 
confirmed that FEF stimulation enhanced contrast perception in 
the peripheral visual field relative to central visual field. These find-
ings suggest that the FEF exerts top–down effects on early visual 
cortex in a manner that enhances contrast of peripheral relative 
to central stimuli.

Most combined fMRI/TMS studies to date have examined brain 
systems in healthy individuals, although one exception is a study of 
the neural basis of the perception of phantom hand movements in 
an amputee patient that was found to be elicited by TMS applied to 
the contralateral motor cortex (Bestmann et al., 2006). In a novel 
experimental design, TMS trials producing phantom movements 
were compared to trials not producing these sensations that cor-
responded to the same TMS intensities. The experience of phantom 
movement was specifically associated with coactivation in the pri-
mary motor cortex, dorsal premotor cortex, anterior intraparietal 
sulcus, and caudal SMA.

At present, there is great deal of unexplored potential for clinical 
research using combined fMRI/TMS paradigms. However, acces-
sibility to this technique is still limited, as not many sites have devel-
oped the technical capacity for using TMS in the MR scanner.

studIes usIng tms and ImagIng In separate sessIons
Studies using imaging and TMS in separate sessions have been 
used to study a variety of phenomena, such as the neural substrates 
enabling functional recovery after stroke (Lee et al., 2003; O’Shea 
et al., 2007; Conchou et al., 2009). For the purposes of this review, 
the most relevant studies have used imaging to examine changes 
in connectivity induced by TMS.

regions via cortico-cortical pathways in early blind subjects, pos-
sibly providing a mechanism for enhanced tactile processing in 
this population.

tms and electroencephalography
Combining TMS with electroencephalography (EEG) to charac-
terize connectivity was first reported by Ilmoniemi et al. (1997). 
Ordinary EEG amplifiers are saturated by TMS pulses. However, 
this difficulty was overcome by using a sample-and-hold circuit 
that pinned the amplifier output to a constant level during the TMS 
pulse with amplifier recovery in just 100 μs. Using this methodol-
ogy combined with signal averaging, single pulse stimulation of the 
left sensorimotor cortex produced a near immediate response at 
the stimulated site, with spread of activation to adjacent ipsilateral 
motor areas within 5–10 ms and to homologous regions in the 
opposite hemisphere within 20 ms. Similar activation patterns were 
generated by magnetic stimulation of the visual cortex. A variety 
of other systems have since been described for simultaneous EEG/
TMS recording (Thut et al., 2003; Bonato et al., 2006), and analysis 
approaches have been introduced for minimizing artifacts (Litvak 
et al., 2007).

The effects of TMS on the EEG signal have been studied both in 
the time domain (Paus et al., 2001b; Iramina et al., 2002; Iwahashi 
et al., 2008; Lioumis et al., 2009; Casali et al., 2010) and the frequency 
domain (Paus et al., 2001b; Iramina et al., 2002; Fuggetta et al., 
2005, 2008). Several studies have reported changes in  coherence 
between electrodes associated with the stimulation (Fuggetta et al., 
2005, 2008), suggesting a reorganization in interregional interaction 
associated with the stimulation.

Combined TMS–EEG has been used to examine a range of clini-
cal conditions. A study of Alzheimer’s disease patients found that 
TMS delivered to M1 was less effective in activating widespread 
regions in Alzheimer’s patients compared with controls (Julkunen 
et al., 2008). In patients with schizophrenia, TMS delivered to a 
premotor area was found to be less effective at eliciting responses 
in the gamma range in fronto-central regions when compared to 
healthy controls (Ferrarelli et al., 2008). These data were interpreted 
as indicating deficient thalamocortical interactions in this patient 
group. Another study compared healthy controls and patients with 
schizophrenia when TMS was applied to the Cz electrode position 
(Levit-Binnun et al., 2010); the patient group failed to generate 
an early phase frontal negativity (detected in the control group 
∼29 ms after stimulation) and demonstrated reductions in coin-
cident parietal positivity as well as abnormalities in subsequent 
peaks when compared to controls. A study of epilepsy patients 
and controls found that TMS-induced activation at various scalp 
sites elicited a late phase response in a majority of patients that 
was absent in healthy subjects (Valentin et al., 2008). Of interest is 
that this method detected abnormalities in some epilepsy patients 
where interictal EEG records were normal.

Electroencephalography has intrinsic limitations in terms of 
spatial resolution. Nonetheless the very high temporal resolution of 
EEG allows the possibility of detecting differential effects of brain 
disturbance on conduction time or frequency-specific interregional 
oscillations that could have wide applicability for characterizing the 
functional networks underlying pathological conditions.
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usIng connectIvIty mappIng to target tms 
stImulatIon
There is wide recognition that TMS is a powerful tool for studying 
and modulating connectivity in the human brain, but perhaps less 
awareness that connectivity mapping can be a useful tool for guid-
ing TMS stimulation. For example, when brain areas with disrupted 
function are not accessible to TMS, connectivity mapping can iden-
tify connected regions to be stimulated, and the inaccessible regions 
may thus be influenced indirectly via propagated activity patterns. 
Or, if the precise locus of only one region in a network of interest is 
known, connectivity mapping can be used to identify other nodes 
of a functional network in a subject-specific manner; thus multiple 
targets for TMS can be identified that may prove clinically effective 
for disrupting a pathological process involving that network.

Both structural and functional connectivity mapping can be 
used to identify target sites for TMS. In a study investigating the role 
of the prefrontal cortex in suppressing irrelevant somatosensory 
information during working memory tasks, diffusion tensor imag-
ing was used to identify regions of prefrontal cortex anatomically 
connected with the primary somatosensory cortex (S1) in each 
subject (Hannula et al., 2010). Stimulation of this specific site (but 
not other sites) in prefrontal cortex was then shown to suppress 
somatosensory evoked potentials and to facilitate working memory 
performance, consistent with the view that the connected prefrontal 
region was acting on S1 in a manner that suppressed processing of 
irrelevant sensory stimuli.

Functional connectivity mapping has also been used to identify 
target regions for TMS. An example of this is a study by our group 
in which TMS was used to probe the circuitry involved in auditory 
hallucinations of schizophrenic subjects (Hoffman et al., 2007). 
In each subject, three to six sites were selected for stimulation. 
For intermittent hallucinators, the target regions were identified 
by comparing brain activity during hallucinations to brain activ-
ity at rest and selecting peak areas in the resulting hallucination-
related activation maps. However, a subgroup of the patients in the 
study had continuous hallucinations and thus no rest periods for 
comparison purposes. For these individuals, maps of functional 
connectivity to Wernicke’s region were created, and peaks in those 
maps within classic language areas were targeted. Wernicke’s area 
was selected as the seed region for functional connectivity maps 
given other studies showing activation in this region during audi-
tory hallucinations (Shergill et al., 2000). Regions showing high 
functional connectivity with this seed region were then targeted 
with “suppressive” low-frequency TMS. rTMS positioned using 
these functional connectivity maps did not produce better clinical 
responses compared to targeting Wernicke’s area itself. However, 
a noteworthy finding is that the level of Wernicke’s seeded func-
tional connectivity assessed relative to the right homologue of 
Broca’s area strongly and negatively predicted the capacity of low-
frequency rTMS to suppress auditory hallucinations. These data 
suggested that especially tight functional coupling incorporating 
these regions was able to override rTMS effects. Consistent with 
this finding is a recent fMRI study showing that right homologue 
of Broca’s area corresponds to the most prominent site of corti-
cal activation coincident with auditory hallucinations (Sommer 
et al., 2008).

Protocols that examine EEG coherence before and after a session 
of rTMS have provided a window into the cortical reorganiza-
tion induced by TMS (Jing and Takigawa, 2000; Strens et al., 2002; 
Oliviero et al., 2003). For example, high and low-frequency rTMS 
to left motor cortex induced decreasing and increasing alpha-band 
coherence, respectively, between the stimulated site and ipsilateral 
premotor cortex (Strens et al., 2002; Oliviero et al., 2003). The 
contrasting effects of high and low-frequency rTMS on connec-
tivity are consistent with the opposite effects of these stimulation 
paradigms on motor cortical excitability.

As discussed above, PET can be used in conjunction with 
TMS to assess connectivity. Therefore, paradigms using com-
bined PET–TMS before and after an rTMS session can potentially 
provide information regarding how the rTMS session modulates 
connectivity (Paus et al., 2001a). However, assessment of changes 
in connectivity based on differences (before and after rTMS) in 
the activity induced in distal sites in the combined PET–TMS 
sessions can become complicated when the region stimulated 
during the PET–TMS session has an altered response to stimula-
tion after rTMS. In such a case, changes in activity in the distal 
regions could be due to differences in interregional connectivity, 
but they could also be due to a different amount of activation in 
the stimulated region propagating through an unchanged con-
nection. Alternatively, PET on its own can be used to assess con-
nectivity if a sufficient number of PET scans can be collected 
for each subject. Using this approach, effective connectivity in 
the motor system immediately after rTMS to M1 was shown to 
differ from the connectivity patterns after sham stimulation of 
the same region (Lee et al., 2003). The changes in connectivity 
were similar to those seen after stroke, suggesting rTMS could 
provide a reversible lesion with which to study acute plasticity 
in the brain following stroke.

A very promising approach for studying TMS-induced con-
nectivity changes is the use of fMRI to assess connectivity before 
and after rTMS. Functional magnetic resonance imaging has 
recently become an extremely popular tool for assessing func-
tional (Hampson et al., inpress) and effective (McIntosh and 
Gonzalez-Lima, 1994; Friston et al., 2003; Goebel et al., 2003; 
Marrelec et al., 2005) connectivity. To date, however, fMRI stud-
ies of functional/effective connectivity before and after rTMS 
have been limited. However, a recent paper using dynamic causal 
modeling to assess effective connectivity in the motor system 
before and after rTMS of contralesional M1 in stroke patients 
illustrates the potential of this approach (Grefkes et al., 2010). 
rTMS reduced transcallosal connectivity between homologous 
parts of M1 during motor task performance and enhanced 
intrinsic connectivity between M1 in the lesioned hemisphere 
and the SMA. These changes in connectivity were accompa-
nied by, and possibly responsible for, an improvement in motor 
performance.

In addition to examining changes in connectivity changes 
induced by TMS, studies using TMS and connectivity mapping 
in separate sessions can provide other forms of information. For 
example, a recent diffusion tensor imaging study reported that 
connectivity patterns predicted TMS response in patients with 
post-stroke pain (Goto et al., 2008).
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summary
These studies, considered together, show how diverse neuroimaging 
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ditions. These methods may not only elucidate pathophysiology, 
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future dIrectIons
The effects of TMS at a cellular level are not well understood, 
and the relationship between activity of different cell types in a 
region and the signals measured via PET, fMRI, or EEG are also 
not well understood. Efforts to bridge these gaps are needed. One 
approach is the development of large-scale neurobiologically 
realistic models. For example, a model of TMS applied to visual 
areas during a delayed-match-to-sample task reproduced both 
local and distal changes in regional cerebral blood flow associated 
with stimulation, and allowed investigation of the different pat-
terns of blood flow changes associated with stimulating inhibi-
tory versus excitatory units (Husain et al., 2002). Neurobiological 
models that span multiple spatial scales, from cellular to systems-
level neuroscience, may be particularly enlightening for neural 
disorders in which certain populations of cells are hypothesized 
to be abnormal.

Modeling of the effective connectivity between regions is also a 
promising avenue for future work. One of the most exciting aspects 
of TMS is that brain activity in one region is directly induced 
and the propagation of that activity to other regions can thus 
provide information regarding causal interactions between areas. 
A study using exploratory structural equation modeling of PET/
TMS data extracted a model of effective connectivity (that is, of 
causal interactions between brain areas) with an excellent fit to 
the data that was also highly consistent with known anatomical 
connectivity (Laird et al., 2008). This suggests that combining 
PET/TMS (or PET/fMRI) data with structural equation modeling 
is a promising approach to mapping out effective connectivity in 
the human brain.

From a clinical perspective, more studies are needed examin-
ing how specific interventions influence brain dynamics in patient 
populations. A study of the effects of l-dopa on the motor network 
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Since the pioneering works of Penfield and Jasper (1954) 
 performed during surgical interventions, it is also well known that 
direct electrical stimulation (DES) of cortical regions and axonal 
tracts allows a number of very specific perceptual or behavioral 
responses to be obtained. Despite the development of neuroimag-
ing techniques, DES remains the gold standard for mapping brain 
functions, particularly regarding functional specialization whereas 
some interrogations remain when assessing functional integration 
(Mandonnet et al., 2010). For instance, DES of language areas per-
formed during tumor resection induces very specific speech dis-
turbances in awake patients (Duffau et al., 2008). Similarly, using 
subdural and/or depth electrodes implanted in epileptic patients 
for presurgical evaluations, various sensations, or behavioral effects 
elicited by DES have been reported (see below Section “Functional 
Mapping of the Eloquent Cortex Using DES”). In addition to these 
functional studies, several teams have used DES either to estimate 
functional anatomical connectivity (Buser and Bancaud, 1983; 
Matsumoto et al., 2004, 2007; Catenoix et al., 2005; Lacruz et al., 
2007; Rosenberg et al., 2009), or to identify the epileptogenic area 
by searching for after-discharge thresholds (Cherlow et al., 1977; 
Engel et al., 1981; Chitoku et al., 2003) or abnormal brain responses 
(Valentin et al., 2002, 2005a,b; Flanagan et al., 2009), and by elicit-
ing auras (Schulz et al., 1997) or complete seizures (Wieser et al., 
1979; Bernier et al., 1987; Munari et al., 1993; David et al., 2008). 
These epileptic events induced by DES are likely to occur because 
epileptogenic networks may be particularly prone to short-term 
plasticity of synaptic weights induced by DES, at least in mesial 
temporal lobe epilepsy (Wilson et al., 1998; David et al., 2008).

IntroductIon
Epilepsy is a common chronic neurological disorder characterized 
by recurrent spontaneous seizures showing paroxysmal electrical 
activity. A cortical imbalance between excitation and inhibition 
within local and large-scale networks is likely to trigger abnormal 
brain electrical activity and, thus, to be the pathophysiological 
basis for epilepsy. In models of epilepsy, either in vitro or in vivo, 
such imbalance can be induced in several ways. For instance, status 
epilepticus, i.e., seizures lasting more than 30 min, can be initiated 
by blocking inhibition by injecting GABA receptors antagonists, 
e.g., bicuculline (Jefferys and Whittington, 1996). In the kindling 
model (Morimoto et al., 2004), permanent increases in seizure sus-
ceptibility can be provoked by repeated, although sparse, electrical 
stimulation of some brain sites.

Some patients with drug-resistant focal epilepsy in whom the 
epileptogenic zone cannot be defined with non-invasive measures 
are explored using depth electrodes (stereoelectroencephalogra-
phy, SEEG) and/or subdural grids and strips (electrocorticography, 
ECoG) (Spencer et al., 2006). These techniques allow to obtain data 
of exceptional value for studying brain dynamics in correlation with 
pathophysiological (Jirsch et al., 2006) and cognitive (Jerbi et al., 
2009) processes. In particular, they allow measuring intracranial 
functional responses to assess connectivity of the human brain 
beyond limitations of other techniques, such as post mortem dis-
sections (Mesulam, 1979), diffusion tensor imaging (Jones, 2008), 
functional magnetic resonance imaging (Roebroeck et al., 2009), 
and combination of transcranial magnetic stimulation and neu-
roimaging (Paus et al., 1997).
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Direct electrical stimulation is thus a very powerful technique to 
investigate network mechanisms in epilepsy. Here, we will review 
how brain connectivity can be assessed from responses obtained 
after electrical stimulation of cortical regions in epileptic patients 
implanted with depth or subdural grids. We will cover neither 
animal studies, nor therapeutic brain stimulation (for review, see 
Saillet et al., 2009). After a brief summary of mechanisms of action 
of brain electrical stimulation, we will first recall the conceptual 
framework that is classically used in imaging neuroscience to study 
brain connectivity. It appears that DES studies do not fit easily in 
this interpretational context, because electrical stimuli are non-
physiological and elicit unusual neural responses. Second, we will 
briefly review studies that aimed at assessing the main brain func-
tions using DES in epileptic patients. Third, abnormal responses 
to DES will be reviewed in the context of the identification of the 
seizure onset zone. Fourth, we will show how DES can be used to 
study brain plasticity. Finally, we will indicate how weak stimulation 
can also be tailored to anticipate seizures by using properties of 
brain responses to DES in relation to short-term structural changes 
of brain networks. From this review, we will conclude that this pool 
of exceptional data is underexploited by fundamental research on 
brain connectivity and leaves much to be learned.

MechanIsMs of actIon of braIn electrIcal 
stIMulatIon
The effects of brain electrical stimulation within the central nerv-
ous system can be studied using neural modeling, neural recording, 
neurochemistry, and functional imaging (for review see McIntyre 
et al., 2004). Mechanisms of action of brain electrical stimulation 
are however not well understood because of the large number of 
intermingled processes that are initiated. Charge injection across 
the electrode/electrolyte (brain tissue) interface involves both 
capacitive and Faradaic mechanisms that interact and result in 
complex electrochemical reactions (Merrill et al., 2005). In view of 
this complexity, the choice of electrode material and geometry, and 
of stimulating patterns is crucial. One method that is commonly 
used for functional electrical stimulation of excitable tissue is the 
current-controlled method, in which a current source is attached 
between the working and counter electrode. Of considerable impor-
tance is the shape of current pulses. Specifically, it has been shown 
that monophasic pulses induce more tissue damage than biphasic 
pulses (Piallat et al., 2009), and should thus be avoided for long 
periods of stimulation. However, monophasic pulses are more effi-
cient to initiate action potentials (Merrill et al., 2005), and are com-
monly used for short trains of stimulation in patients implanted 
with depth electrodes (Valentin et al., 2002, 2005a,b; Catenoix et al., 
2005; Zumsteg et al., 2006a,b; David et al., 2008; Flanagan et al., 
2009; Rosenberg et al., 2009). Biphasic pulses are nonetheless also 
used for acute stimulation by several teams (Wilson et al., 1990, 
1998; Zangaladze et al., 2008; Jacobs et al., 2010).

It is now commonly accepted that the primary targets of intrac-
erebral electrical stimulation are (large myelinated) axons, and not 
cell bodies (Nowak and Bullier, 1998a,b; Holsheimer et al., 2000; 
Kiss et al., 2003), and in particular that the initial segment of axons 
is the most excitable element recruited by electrical stimulation 
(Rattay, 1999). This has important implications for functional 
connectivity studies of DES responses. Indeed, both  orthodromic 

and antidromic action potential propagation, which activates 
 respectively the output and input structures of the stimulated area, 
can be observed. Also, one cannot completely exclude the activa-
tion of en passant fibers (axonal tracts), in particular when small 
deep nuclei are stimulated with strong currents. It is thus clear that 
localized microstimulation has remote effects, in addition to local 
ones. This is well documented from intracranial recordings that 
are specifically reviewed here, but also from functional imaging 
(Zonenshayn et al., 2000; Tolias et al., 2005; Canals et al., 2008).

Intracranial measurements of electrophysiological responses to 
DES are thought to capture mainly postsynaptic potentials resulting 
from indirect mono- or poly-synaptic cell activation (Jankowska 
et al., 1975) and thus provide a very interesting window on func-
tional connectivity. However, there is an important limitation to this 
technique: DES delivers non-physiological stimuli and may activate 
pathways in an unusual way, e.g., antidromically. Therefore, because 
DES causes patterns of activation that may be different than natu-
ral neural activity, there will always be a potential indeterminacy 
in assessing true directionality of anatomo-functional connections 
identified with this technique. In other words, results of DES alone 
cannot be used to unequivocally establish that a given structure is 
naturally involved in a given function, despite DES of this structure 
has specific effects on that function. Empirically though, DES studies 
give invaluable insights into brain function and brain connectivity.

concepts of braIn connectIvIty In the context of 
des studIes
Historically, behavioral consequences of localized brain lesions and 
biophysical measures of brain responses to various stimuli helped 
define what is now accepted as functional specialization of brain 
regions. This has led to localizationist theories of brain functions, 
but functional specialization is obviously not limited to location, 
because dense interregional connectivity makes any region of the 
brain part of an extended network (Sporns et al., 2005). Adhering to 
the principle of functional specialization thus does not necessarily 
imply that any function can be localized in a single area. Conversely, 
a single area may support different functions depending on its 
different connections.

For clarity, we will adopt the following definition:

Definition 1. A brain region participates in a brain function if 
a change in its activity is correlated to a change in that function, 
as assessed by subject’s perception or behavior.

Note that this definition may be difficult to address experimen-
tally if unconscious, or weakly observable, processes take place. In 
the context of DES studies, one could think of:

Corollary 1.1. A change in subject’s perception or behavior 
induced by DES of a brain region indicates the functional spe-
cialization of that region.

This view of DES as a means to demonstrate functional speciali-
zation of specific brain regions predominates in the literature, and 
has proved to be very useful for functional neurosurgery of eloquent 
cortex. However, as perfectly reviewed in (Mandonnet et al., 2010), 
since each area responsive to stimulation is in fact an input gate 
into a large-scale network rather than an isolated discrete functional 
site, DES may lead to interpretations that a structure is crucial 
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In theory, functional connectivity does not necessitate  anatomical 
connectivity. For instance, it has been shown in rat hippocampal 
slices bathing in low-Ca2+ solution that extracellular diffusion, most 
probably of potassium, was sufficient to synchronize anatomically 
unconnected populations of neurons and propagate low-frequency 
epileptiform activity (Lian et al., 2001). However, in the context of 
cortical electrical stimulation, we will assume functional connectiv-
ity is implicitly supported by anatomical connectivity, by the means 
of direct or indirect pathways.

functIonal MappIng of the eloquent cortex usIng des
Direct electrical stimulation has been extensively used in epilepsy, 
and a few other neurological disorders such as Parkinson’s disease, 
for mapping of normal functions in the human brain. For epilepsy 
resective surgery, the main goal of DES is to identify the eloquent 
cortex, i.e., crucial functional regions to be spared by surgery.

One must be careful when assessing the effect of DES of epi-
leptic cortices, because of possible structural changes that may 
have occurred in the lead-up or in response to repeated seizures. 
However, not every part of the brain studied by intracerebral or 
subdural electrodes is pathological (Lachaux et al., 2003), and 
DES results in epileptic patients have revealed the same soma-
totopic organization of the primary sensori-motor areas as in 
healthy brains, as well as congruent findings with those coming 
from functional magnetic resonance imaging studies in normal 
volunteers (Lobel et al., 2001). However the physiological signifi-
cance of DES should be questioned when the stimulation is applied 
inside or at the vicinity of an epileptogenic lesion, or when it elicits 
after- discharges, i.e., electroencephalographic seizures evoked in 
response to cortical stimulation.

Largely for historical reasons, the commonly applied method 
of stimulation for functional mapping consists of using 3–20 s 
trains of constant current 50–60 Hz biphasic square wave pulses 
of 0.2–1 ms duration, at current intensity (∼<10 mA) set below the 
threshold for evoking after-discharges (Penfield and Jasper, 1954; 
Luders et al., 1986). High frequency stimulation elicits both posi-
tive behavioral response (e.g., muscle contraction) and negative 
response (e.g., speech arrest). However, a number of brain areas 
seem to be “silent” after DES, which does not mean lack of function 
of those regions because subtle cognitive or behavioral changes 
can be missed. Recently, it has been demonstrated that stimulat-
ing at low frequencies (5–10 Hz) may be as effective for functional 
mapping, with the significant benefit of reducing the tendency 
of electrical stimulation to produce after-discharges (Zangaladze 
et al., 2008). In contradiction, DES at lower frequencies (1 Hz) 
would be of special interest for eliciting seizures (Munari et al., 
1993). Whatever the frequency used, the electrical field produced 
by DES depends on other stimulation parameters such as the pulse 
duration and current intensity, and bipolar DES produces a more 
localized current distribution than unipolar stimulation (Nathan 
et al., 1993).

Below, we will briefly review DES assessment of sensorimotor 
and language processing, which are the systems most commonly 
investigated by DES. In principle, numerous other processes can be 
examined, such as verbal memory (Ojemann, 2003), spatial cog-
nition, experiential auras, mental rotation (Thiebaut de Schotten 
et al., 2005), limbic responses (Elliott et al., 2009), out-of-body 

because of the induction of a transient functional response when 
stimulated, whereas this effect is caused by the backward spreading 
of neuronal waves to another essential area. This might explain, at 
least in part, why apparently similar electrically induced symptoms 
can be elicited by distant areas (Mulak et al., 2008). An important 
modification to Corollary 1.1 is therefore required:

Corollary 1.2. A change in subject’s perception or behavior 
induced by DES of a brain region indicates the functional spe-
cialization of a large-scale network of which that region either is 
an input/output or a part.

Though the physical effects of DES are very focal (<5 mm), 
“physiological” effects of DES clearly suggest that functional spe-
cialization is only meaningful in the context of functional integra-
tion. In DES experiments, the stimulated point is only an input gate 
into a large distributed network. As suggested by others (Mandonnet 
et al., 2010), one should forget about distinct localizationist and 
connectionist models and shift toward a theory that integrates these 
two when analyzing how DES works.

Functional integration is quantified using measures of functional 
connectivity which can be thought of as an extension of functional 
specialization in which the activity of a brain region is no longer 
correlated to an extrinsic measure (behavior or perception), but 
to the activity of one, or more, other brain regions:

Definition 2. Two regions are functionally connected if their 
activities co-vary.

In the context of mechanisms of action of DES, this can be 
rephrased as:

Corollary 2.1. Brain regions showing specific responses to DES 
of a brain region are functionally connected to it, or send axonal 
tracts passing through this region.

Corollary 2.1 clearly indicates that there is an inherent inde-
terminacy in the interpretation of connectivity results from DES 
experiments, which may not appear at first sight of the standard 
Definition 2 of functional connectivity. This has to be kept in mind 
for the following of this review.

Note also that, according to Definition 2, functional connec-
tivity depends on how brain activity is defined (raw local field 
potentials, firing rate, etc.) and also on the measure of correlation, 
or covariation, of this activity. Therefore, there are as many meas-
ures of functional connectivity as ways of defining covariations 
between variables (for reviews see Quian Quiroga et al., 2002; David 
et al., 2004; Wendling et al., 2009). Approaches can rely on linear 
or non-linear metrics, can be bivariate (e.g., simple linear correla-
tion) or multivariate (e.g., multivariate autoregressive models), and 
can account for time delays if necessary. An important distinction 
concerns statistical models versus biophysical models. Statistical 
models consider brain time series as any time-embedded process, 
and compute standard measures of interactions. Historically, they 
clearly predominate. Biophysical models are marginal and recent in 
comparison, but have the interesting feature to give access to vari-
ables that are neuronally interpretable (e.g., synaptic efficacy). This 
class of models includes dynamic causal models (DCM) (Friston 
et al., 2003; David et al., 2006a).
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des as a tool for revealIng neuroanatoMIcal 
pathways
The vast majority of literature devoted to functional connectivity 
studies using cortical electrical stimulation in epileptic patients 
(Wilson et al., 1990; Catenoix et al., 2005; Lacruz et al., 2007; 
Rosenberg et al., 2009) considers DES as an efficient way to esti-
mate which brain regions are anatomically connected to the site of 
stimulation. Responses to DES usually consist of a sharp deflection 
followed by a slow wave (Lacruz et al., 2007). Estimation of neuro-
anatomical pathways is performed by (i) the detection of sites show-
ing such a response to the stimulation (by looking at amplitude 
variations above a threshold defined according to baseline level); 
(ii) the measure of first peak latency to estimate roughly whether 
anatomical connections are direct or indirect. Methodology is 
thus typically limited to quantifying amplitude and delay of DES-
evoked responses. Our recent study, discussed in a following sec-
tion (David et al., 2008), went beyond this by using biophysical 
modeling of intracranial data to assess brain  connectivity from 
responses to DES.

Because patients suffering from mesial-temporal lobe epilepsy 
are good candidates for resective surgery, they are commonly 
explored with depth electrodes, located in temporal limbic regions 
and also in suspected regions of seizure propagation such as tem-
poral, insular, and frontal neocortex. As a consequence, functional 
anatomical connectivity of the temporal and of the frontal lobes is 
extensively discussed in the DES literature.

In Wilson et al. (1990), connections within the human mesial 
temporal lobe were investigated using brief, single pulses of elec-
tric stimulation of 8 different limbic areas in 74 epileptic patients. 
Biphasic, rectangular pulses of 100 μs/phase duration were deliv-
ered at a rate of 0.1 Hz or less, with currents ranging from 0.25 to 
5.0 mA. Specific measures included response probability, amplitude, 
latency (first peak detection) and conduction velocities (estimated 
distance between targeted stimulation and recording site divided 
by the onset response latency). Evoked responses were obtained 
in amygdala, entorhinal cortex, presubiculum, hippocampus, and 
parahippocampal gyrus. The authors were able to differentiate fast 
pathways (perforant path connecting entorhinal cortex to anterior 
hippocampus; 4.4 ms conduction delay and 3.64 m/s conduction 
speed) from slow pathways (connection between amygdala and 
middle hippocampus; 24.8 ms and 0.88 m/s). In addition, from 
the absence of contralateral responses to the stimulation of the 
mesial temporal structures, they did not find a functional contral-
imbic projection in the human brain, which appears consistent with 
reduced hippocampal commissural connections in lower primates 
as compared to lower animals.

In (Lacruz et al., 2007), functional anatomical connectiv-
ity between frontal (medial, lateral, and orbital) and temporal 
(entorhinal, medial, and lateral) lobes has been described exten-
sively using brain responses to 1 ms single pulses, delivered every 
10 s at current intensity ranging between 4 and 8 mA, obtained 
in 51 epileptic patients implanted with subdural and depth elec-
trodes. The measured variables were the presence or absence of 
early responses at different recording sites when stimulating each 
location and the latency of contralateral responses. Anatomical 
functional connections were assessed by quantifying the number of 

experiences (Blanke et al., 2002), and dreamy state phenomena 
(Vignal et al., 2007). For completeness, note that an exhaustive 
review focused very recently on perceptual and behavioral phe-
nomena induced by DES in human beings (Selimbeyoglu and 
Parvizi, 2010).

sensorIMotor processIng
The classic work of Penfield and Boldrey (1937) brought evidence 
in humans that cortical maps representing body parts (somato-
topic maps) could be found in the primary motor and sensory 
cortices. In addition to body parts, it was proposed recently to 
map the motor cortex with DES as a function of behavioral rep-
ertoire (Graziano and Aflalo, 2007). The specific contribution 
to motor control of the different medial premotor areas was 
also evaluated using DES, including supplementary motor area 
(SMA), pre-SMA and cingulate motor area (CMA) (Lim et al., 
1994; Luders et al., 1995; Chassagnon et al., 2008; Sumner et al., 
2007). These studies particularly suggest that SMA and pre-SMA 
are strongly involved in motor inhibition. DES was also very use-
ful to delineate human frontal eye fields in BA6 (Blanke et al., 
2000; Lobel et al., 2001) and to examine cortico-spinal connectiv-
ity and muscle contraction during voluntary movement (Ikeda 
et al., 2002; Szelenyi et al., 2005).

Regarding sensory processing, early attempts discovered the pos-
sibility to obtain olfactory, gustatory, auditory, and somato-sensory 
responses to DES, Recently, the temporo-peri-Sylvian vestibular 
cortex was described in human from DES (Kahane et al., 2003) and 
DES of the insula was reported to be able to elicit pain (Afif et al., 
2008). Visual responses to DES in the occipital lobe are common 
but vary according to stimulated areas and range from simple to 
complex visual form, color, and illusions (Lesser et al., 1998; Puce 
et al., 1999; Lee et al., 2000).

language processIng
Direct electrical stimulation for language mapping in pharma-
cologically intractable epilepsy patients undergoing resection of 
epileptogenic cortex in the language dominant hemisphere has 
been widely and successfully used to diminish the probability of 
occurrence of language decline following the surgery. Because 
of response specificity, the tasks chosen to evaluate the effect of 
DES on language processing are critical. For instance, DES may 
induce speech arrest during counting in only 1/3 of all positive 
sites (i.e., sites where DES affected task performance) identified 
using other tasks such as naming or reading (Hamberger, 2007). 
It is therefore important to test in each patient several tasks, 
which incidentally makes DES very useful to identify individual 
components of language processing and their neural correlates. 
Hence, tasks such as visual or auditory object naming, automatic 
speech (e.g., counting), writing and reading were used to map 
language functions distributed in the frontal–temporal–parietal 
language network. Word retrieval was associated with posterior 
temporal lobe stimulated sites (Hamberger, 2007; Mani et al., 
2008), whereas more anterior sites were involved in semantic 
processes per se (Sharp et al., 2004; Boatman and Miglioretti, 
2005; Trebuchon-Da Fonseca et al., 2009) and speech production 
(Afif et al., 2010).
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et al., 2004; Kalitzin et al., 2005) stimulation have been shown to 
be useful in localizing the seizure onset zone in patients suffering 
from various forms of focal epilepsy.

epIleptIc responses to sIngle pulses or to short traIns  
of pulses
In a series of papers (Valentin et al., 2002, 2005a,b; Flanagan et al., 
2009), Alarcón and colleagues classified responses to single pulses 
into three types: (i) “early responses” composed of a sharp wave 
often followed by a slow wave, which is ubiquitous and reflects nor-
mal processes. This is the type of response exploited for anatomical 
functional studies and discussed so far in this review; (ii) “delayed 
responses” that resembles an epileptiform discharge occurring later 
than 100 ms after stimulus, thus indicating polysynaptic processes. 
They are thought of as pathological responses generated by areas 
of seizure onset; (iii) “repetitive responses” that look like early 
responses, but with longer lasting oscillations which may be initi-
ated by reverberating loops. In fact, they are similar to damped 
oscillations that can be obtained with neural mass models with 
connectivity parameters tuned so as to be just below the threshold 
of stability, e.g., with strong intrinsic excitatory efficacy or feedback 
connections (David et al., 2005).

Recently, Gotman and colleagues studied the effects of another 
standard type of stimulation, i.e., short trains of high frequency 
pulses, in patients having either mesiotemporal or neocortical sei-
zure onset zones (Jacobs et al., 2010). They found that the sites 
showing interictal high frequency oscillations (HFOs – ripples, 
80–250 Hz; fast ripples, 250–500 Hz), thought to be linked to seizure 
onset (Jirsch et al., 2006), were the same as those showing after-
discharges or seizures elicited by electrical stimulation (bipolar 
biphasic 60 Hz stimulus, pulse width = 0.5 ms, 3–4 s duration, 
electrical currents <2 mA in mesial temporal and <10 mA in neo-
cortical regions), especially in neocortical regions.

plastIcIty of epIleptogenIc networks Induced by repeated 
electrIcal stIMulatIon
Delayed, repetitive and HFO responses directly point toward the 
idea that epileptogenic networks are hyperexcitable. In addition, 
there is evidence that epileptogenic networks are prone to exhibit 
fast structural modifications via the reorganization of synaptic 
weights: From in vitro and in vivo animal studies, it is well known 
that repeated electrical stimulation may induce massive reorganiza-
tion of brain networks, particularly in the hippocampus (Bliss and 
Lomo, 1973). In humans, although long-term potentiation cannot 
be easily demonstrated because of lack of experimental possibilities, 
it has been possible to identify short-term plasticity effects.

The most standard, but not unique, paradigm of stimulation to 
study short-term plasticity is paired-pulse stimulation. Paired-pulse 
stimulation detects excitability changes on the assumption that 
the first (conditioning) stimulus acts to recruit recurrent excita-
tory or inhibitory activity, which affords detecting facilitatory or 
suppressive effect upon the response to the second (test) stimulus. 
Paired-pulse inhibition is thought to reflect changes of presynap-
tic release probability and the influence of recurrent inhibition 
(Zucker and Regehr, 2002). Analyzing the different patterns of 
paired-pulse facilitation and paired-pulse inhibition may also give 

electrodes showing evoked responses. Contralateral temporal con-
nections were found to be rare (<9% of stimulated hemispheres), as 
in (Wilson et al., 1990). This appeared distinct to interhemispheric 
frontal connections, which were faster and more common (>57% 
of stimulated hemispheres). Intralobar connections were frequent, 
either in the temporal (>67% of stimulated hemispheres) or in the 
frontal (>78% of stimulated hemispheres) cortices. In addition, 
ipsilateral connections from frontal toward temporal cortices were 
found to be more prominent than in the opposite direction. Because 
of limited spatial sampling, but also of physiological limitations 
such as attenuation of the signal in polysynaptic pathways and 
the recruitment of inhibition, these connectivity figures should be 
regarded as the lower limit of the true functional connectivity.

Using single pulses (3 mA current intensity, 1 ms duration, 
0.2 Hz frequency), Catenoix et al. (2005) were the first to describe 
orbitofrontal cortex responses following electrical stimulation of 
temporomesial structures in humans, in a small group of three 
patients. They found a long latency of the main response (222 ms 
on average) that suggested a polysynaptic projection of the hip-
pocampus to the orbitofrontal cortex. In the absence of strong 
hippocampal commissural pathway in humans (Wilson et al., 1990, 
1991), these results strongly support the existence of a temporal 
frontal pathway for the interhemispheric propagation of mesial 
temporal seizures (Lieb et al., 1991).

Using the same stimulation protocol, this team recently pub-
lished an extension of this work on temporal frontal connections, 
where the focus was on reciprocal thalamocortical connectivity of 
the medial pulvinar (PuM) estimated in seven epileptic patients 
implanted with thalamic and cortical electrodes (Rosenberg et al., 
2009). Cortical-evoked potentials to PuM stimulation were recorded 
from all explored cortical regions, except striate cortex, anterior cin-
gulate, and postcentral gyrus. Response rate was high, and ranged 
from 80% in temporal neocortex, temporoparietal junction, insula, 
and frontoparietal opercular cortex to 34% in mesial temporal 
regions. Reciprocally, PuM responses were observed following cor-
tical stimulation, with response rate ranging from 14% (insula and 
frontoparietal opercular cortex) to 76–80% (temporal neocortex 
and mesial temporal regions). From these findings, it is clear that 
there exist functional pathways between thalamic medial pulvinar 
nucleus and numerous cortical regions, with preferential and fastest 
pathways that interconnect the PuM with the temporal neocortex, 
the temporoparietal junction and the insulo-opercular region. This 
explains why PuM is involved in most of temporal and insular lobe 
seizures (Rosenberg et al., 2006). These results agree with data gath-
ered in non-human primates, except for the important connectivity 
between pulvinar and hippocampus in primates. Another important 
point is the unexpected imbalance between some reciprocal pathways 
(with the insula, notably), which could not be found using magnetic 
resonance tractography for instance (Behrens et al., 2003), whereas 
the connections between the major sensory thalamic relay nuclei and 
cortex are considered as “reciprocal” (Steriade et al., 1997).

des as a tool for revealIng epIleptogenIc networks
Single pulse (Valentin et al., 2002, 2005a,b; Flanagan et al., 2009), 
paired pulse (Wilson et al., 1998), and repetitive (i.e., trains of 
pulses) (Buser and Bancaud, 1983; Kahane et al., 1993, 2004; Landré 
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receives afferents from all over the anterior temporal cortex and an 
 amygdala-temporal fascicle that originates at the rostrolateral sur-
face of the amygdala and specifically connects to the temporal pole 
(Klingler and Gloor, 1960; Chabardes et al., 2002). Furthermore, it 
is known from visual analysis of SEEG recordings that the temporal 
pole is a determinant structure, concomitantly with the hippoc-
ampus, during the onset of seizures in temporal lobe epilepsy in 
many patients (Kahane et al., 2002; Chabardes et al., 2005). The 
results obtained from this small DCM study call for an interpreta-
tion of the genesis of a certain type of mesial temporal lobe epi-
lepsy as a preictal increase of the hippocampal afferents coming 
from the temporal pole, which could be triggered by the amygdala. 
This putative type of mesial temporal lobe epilepsy remains to be 
fully characterized.

It is important to develop further models of DES to better 
understand the network mechanisms of action of this type of 
stimulation. Among the different lines of research, a possibility is 
to extend the current DCM framework (Daunizeau et al., 2009) 
and, under due consideration of the limits of statistical inver-
sion, represent different neurobiological mechanisms of synaptic 
plasticity more explicitly, such that their relative importance can 
be disambiguated by model selection. Since aberrant plastic-
ity is a central pathological mechanism in many brain diseases, 
and particularly epilepsy, developing plastic DCMs that can dis-
tinguish between different aspects of synaptic plasticity has an 
interesting potential for establishing physiologically interpretable 
diagnostic markers. As an academic exercise, we have made an 
early attempt in this direction by proposing a reinterpretation 
of short-term plasticity induced by 1 Hz DES in the context 
of autopoietic theory (Varela et al., 1974; David, 2007). This 
deserves to be pursued.

actIve antIcIpatIon of seIzure usIng des
Brain networks are very complex and generate spontaneous brain 
dynamics that are difficult to understand fully. In the recent 
years, emphasis has been put on synchronous oscillations which 
have been proposed to support large scale integration during 
cognitive processes (Varela et al., 2001). Another interpretation 
of transient features of brain dynamics correlated to behavior, 
or thoughts, has generalized and extended frequency-specific 
synchronization using tools from non-linear physics that embed 
brain signals in a multidimensional “state space.” Successive tran-
sient synchronization of brain activity may then be thought of 
as the evolution of the system through a temporal sequence of 
different local attractors segregated in that state space (Tsuda, 
2001). This latter theoretical framework is interesting for reading 
epileptic signals because a seizure is characterized by hypersyn-
chronous and non-linear oscillations, two properties that are 
well captured by the formalism of non-linear dynamics. Briefly, 
transient hypersynchronicity corresponds to the transition of 
the state of the system from a region of high-dimensional chaos 
toward a low-dimensional attractor, the shape of which depends 
on the kind of non-linearity of the signals. Thus a seizure can 
be interpreted as a transition of the brain states from a succes-
sion of high- dimensional “physiological” states toward a low-
dimensional “epileptic” state. It is important to question what 
sorts of dynamics govern that transition.

some insights for distinguishing neuronal drivers from neuronal 
modulators (Reichova and Sherman, 2004). In mesial temporal 
lobe epilepsy (MTLE), paired-pulse induced changes of synaptic 
and intrinsic excitability are usually more easily observed in the 
hippocampus than in the neocortex (Koch et al., 2005). In vitro 
experiments (Feng et al., 2003) allowed to gather more information 
about neuronal mechanisms involved. Modulation of NMDA or 
kainate receptors, the receptor type depending on the structures 
involved, was systematically found to be associated with electrically 
induced short-term plasticity in epilepsy. As shown by using trains 
of stimuli at different frequencies (Feng et al., 2003; Schiller and 
Bankirer, 2007), short-term plasticity is frequency-dependent and 
can be either inhibitory or excitatory. When repetitive stimulation 
has an anti-epileptic effect, this effect is mediated mainly by short-
term synaptic depression of excitatory neurotransmission (Schiller 
and Bankirer, 2007).

In MTLE patients, in vivo, a significantly greater paired-pulse 
suppression has been observed in epileptic regions, by comparing 
the epileptic hemisphere to the contralateral intact hemisphere in 20 
patients (Wilson et al., 1998). Hippocampal pathways and perforant 
path responses located in the epileptogenic lobe showed greater 
paired-pulse suppression of population post-synaptic potentials. 
These authors derived from these responses interesting hypotheses 
about adaptive enhanced inhibition to inhibit seizures produced by 
abnormal recurrent excitatory circuits. In other words, increased 
short-term plasticity has been interpreted as a functional conse-
quence of the formation of abnormal recurrent inhibitory and 
excitatory pathways in the sclerotic hippocampus.

By analyzing the preictal modulation in time of the shape of 
responses evoked by 1 Hz stimulation in twenty MTLE patients, 
we have shown that the seizure onset zone was particularly likely to 
show fast changing evoked responses to DES, even of remote areas 
(David et al., 2008). In this study, we have first developed a pure 
data-driven analysis to illustrate that short-term plasticity could be 
quantified easily for clinical purposes. However, this type of data 
analysis, which is commonly used in DES studies, is very limited 
for the explanation of the underlying neural mechanisms. In a 
second step, we moved further and showed how synaptic plasticity 
could be explicitly modeled using generative models of local field 
potentials (David et al., 2005). We used dynamic causal modeling 
(DCM) (David et al., 2006a) and assumed different possible neural 
network configurations within the temporal lobe, with some con-
nections expressing synaptic plasticity via a modulation of their 
weight between successive stimulations. After parameter estimation 
(intrinsic neural parameters and coupling between regions) from 
measured evoked responses and Bayesian model selection (Penny 
et al., 2004), we were able to estimate the general architecture of 
stimulated temporal networks, and to demonstrate that observed 
modification of the shape of evoked responses to DES was suf-
ficiently explained by a modulation of excitatory efficacies within 
temporal lobe circuitry.

For instance, in two patients stimulated in the amygdala who 
showed a strong increase of the amplitude of responses in the ante-
rior hippocampus a few stimulations before the seizure onset, an 
increase of effective connectivity between the temporal pole and 
the anterior hippocampus was found. This pathway is supported 
by human anatomical studies showing that the hippocampus 
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showed that spontaneous brain electrical activity at the moment of 
DES delivery could be predictive of an after-discharge occurrence 
that was often restricted to sites belonging to the same functional 
network (motor, sensory, or language) as the site of stimulation. 
Therefore, these authors speculated that similar rapid variations 
may occur during normal intracortical communication and may 
underlie changes in the cortical organization of functions. A poten-
tially very interesting line of research for the coming years would 
thus be exploit further this hypothesis and to examine (i) how the 
perceptual and behavioral effects of DES may vary according to 
the undergoing cognitive task, (ii) how functional connectivity is 
affected after DES is applied during various cognitive tasks and 
(iii) how resting state connectivity at the moment of DES delivery 
might predict DES effects, both at the behavioral and electrophysi-
ological levels.

Because they allow transient modifications of brain dynamics, 
DES studies can investigate short-term plastic network proper-
ties of several systems in a limited amount of time. Under the 
hypothesis that epileptogenic networks are hyperexcitable, and 
thus prone to exhibit short-term plasticity, plasticity analysis 
of DES responses is potentially a very powerful clinical tool to 
quickly identify epileptic foci (David et al., 2008). Thus, DES 
studies go well beyond lesion studies performed in animals or in 
stroke patients. However, they present some important limitations 
for connectivity analyses: though perceptual, behavioral, and epi-
leptic phenomena can easily be induced by DES in human beings 
(Kahane et al., 2004; Selimbeyoglu and Parvizi, 2010), the use of 
macroelectrodes precludes the precise control of the mechanisms 
by which neurologists or neurosurgeons interact with patients’ 
brain. For instance, it is difficult to evaluate in what exact pro-
portions antidromic and orthodromic propagation take place, 
or if observed effects are mainly mediated by the activation of 
local neuronal populations, or by the stimulation of en passant 
fibers that target distributed remote regions. These experimental 
limitations are crucial regarding the key concepts of functional 
brain mapping that underlie the way we analyze recorded data 
(see above Section “Concepts of Brain Connectivity in the Context 
of DES Studies”). In that respect, DES studies differ from other 
functional studies because they elicit unusual brain responses 
mediated by the means of unusual input gates to the human brain. 
This is something that has to be kept in mind when anatomical, 
functional, or computational models of the brain are derived 
from the DES literature. In terms of biophysical modeling of DES 
responses, the experimental uncertainty summarized in Corollary 
2.1, i.e., in a given experiment does DES target local neuronal 
populations or en passant fibers?, must be taken into account. 
For instance in the framework of DCM, this could correspond 
to loose priors on how DES input perturb the system, i.e., on the 
extrinsic connectivity matrix (David et al., 2008). Hopefully, in 
addition to these theoretical considerations, new data coming 
from the optogenetic literature in animals (Miesenbock, 2009) 
will shed new light on how one can model human brain con-
nectivity from DES responses.
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In the previous sections, we have shown that repetitive 
 stimulation using strong current intensity (>1 mA) was able to 
initiate after-discharges and complete seizures (David et al., 2008), 
possibly by the means of short-term plasticity mechanisms in brain 
networks. These seizures then represent transitions due to shifts in 
one or more parameters of the system. These parameters, e.g., syn-
aptic efficacies, are structural in the sense that they govern dynamic 
responses of the brain, e.g., evoked responses to a brief stimulation 
(David et al., 2006b). If the preictal modifications of the parameters 
show a slow time evolution which can take several minutes, hours 
or days, analyzing dynamical properties of the brain to a stimula-
tion is a way to reveal structural modifications. In principle, it can 
thus be used to anticipate seizures.

Stimulation-based seizure anticipation, reviewed in (Kalitzin 
et al., 2010), has been proposed by Lopes da Silva and colleagues. 
Early trials were based on photic stimulation in patients having 
photosensitive epilepsy (Kalitzin et al., 2002; Parra et al., 2003). 
This was followed by an experimental validation using intracerebral 
stimulation of the hippocampus in six patients (Kalitzin et al., 2005) 
and by simulations (Suffczynski et al., 2008). They used intermit-
tent pulse stimulation (0.5–1 mA; 0.1 ms pulse width; trains of 
5 s duration) in the frequency range 10–20 Hz and quantified the 
responsiveness of neural networks using a quantitative measure of 
spectral phase demodulation called the relative phase clustering 
index (rPCI). Although seizures could not be anticipated precisely, 
regions showing high interictal rPCI correlated with the seizure 
onset zone. Measurements of the modulation of neural synchro-
nization of brain networks by the means of electrical stimulation 
are thus potentially an interesting approach for seizure anticipation 
techniques. More clinical trials are needed to better evaluate the 
specificity of such findings.

conclusIon
In this review, we have tried to show the multiple possibilities of 
DES to study network mechanisms in epilepsy. They mainly relate 
to the opportunity to identify, in the human brain, epileptogenic 
and plastic network properties, in addition to oriented neuroana-
tomical pathways, which is unique. Strikingly, these exceptional 
data have not yet been the object of many methodological stud-
ies, possibly, at least in part, because of ethical aspects that can-
not be underestimated. This let us suppose that many interesting 
features regarding brain connectivity remain to be discovered 
from DES data, should adequate signal analysis techniques be 
applied to them, and experimental protocols be not deleterious 
for the patients.

Though we have not reviewed extensively this issue here, there 
are actually very few DES studies that combine direct stimulation 
and recordings of cortical activity during fluctuations of resting 
state, cognitive tasks and/or behavioral evaluations (e.g., Sinai et al., 
2009; see for review Selimbeyoglu and Parvizi, 2010). Among them, 
an attempt was made to decipher brain connectivity in an epileptic 
patient during vivid memory recollection following perirhinal DES 
(Barbeau et al., 2005). This study showed that there was a wide-
spread (between limbic and visual brain areas) theta synchroniza-
tion quantified using cross-correlation analyzes. Another recent 
advance on DES mechanisms and their relationship to local physi-
ological brain states was made (Lesser et al., 2008). These authors 
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Electroencephalography is the technique most suited to capture 
the dynamical properties of a seizure. In some specialized Epilepsy 
Surgery Units, direct exploration of brain regions using intracerebral 
depth-electrodes is performed (Bancaud and Talairach, 1973; Chauvel 
et al., 1993, 1996; Guenot et al., 2001; Cossu et al., 2005; McGonigal 
et al., 2007). These depth-EEG recordings have long been consid-
ered as the “gold standard” for EZ identification. Although they allow 
for better definition of the EZ, the complete delineation of the EZ 
may remain elusive, such that suppression of seizures is not always 
obtained. The reason is that in most of the cases the organization of 
the EZ is quite complex. This organization corresponds to that of a 
network of neuronal populations (showing “hyperexcitabilty” and 
“hypersynchronization” properties) distributed in distinct and distant 
brain structures. This network is often referred to as the epileptogenic 
network (Spencer, 2002; Bartolomei et al., 2008b). Accurate identi-
fication of epileptogenic networks is the thus the central problem in 
drug-resistant epilepsies and novel methods have to be proposed to 
achieve this goal (Wendling et al., 2009). In particular, the demand is 
high for diagnostic methods allowing for better characterization and 
interpretation of depth-EEG signals, in terms of underlying neuronal 
networks and pathophysiological mechanisms taking place in these 
networks (Rampp and Stefan, 2006).

IntroductIon
Epilepsies constitute a common neurological disorder that affects 
about 1% of the world population (Engel et al., 1993). Epilepsies 
are characterized by the repetitive seizures (called ictal periods), 
the frequency and duration of which is variable. In 20–30% of the 
cases, seizures remain drug-resistant and considerably affect the 
patient’s quality of life. Drug-resistant epilepsies are often partial 
or focal, with an origin located in relatively circumscribed brain 
regions. For patients with partial epilepsy, a surgical treatment can 
be considered. The problem is then to determine which brain areas 
which must be removed such that seizures are suppressed under the 
constraint that post-surgical deficits (sensory-motor or cognitive) 
induced by surgery are limited. In other words, the epileptogenic 
zone (EZ) that is responsible for seizures must be defined from 
anatomo-functional observations acquired during pre-surgical 
evaluation (Bartolomei et al., 2002).

The delineation of the EZ is the essential diagnostic step, prior to 
surgery. As the epileptic seizure is a dynamic phenomenon, imaging 
techniques providing “static” images of the brain (MRI, PET scan) 
are frequently not the best tools to identify the EZ. About 20–30% 
of patients have either no lesion or some lesions but without any 
clear link with their epilepsy.
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In this context, signal analysis techniques have considerably 
developed since the middle of the last century (Brazier and Casby, 
1952; Barlow and Brazier, 1954). It is now admitted that signal anal-
ysis can provide relevant information regarding epileptic processes 
(either during interictal or ictal periods) when three conditions are 
met, at least: (i) signal processing methods are specifically adapted 
to phenomena under study, (ii) methods have been successfully 
evaluated on “control” datasets and (iii) the information conveyed 
by computed quantities is appropriately interpreted.

More specifically, methods aimed at quantifying interactions 
between recorded structures are of particular interest for identifying 
functional networks involving spatially distributed brain regions. 
Over the past decades, considerable effort has been devoted to the 
development of such methods allowing for characterization of 
functional and/or effective brain connectivity (Friston, 1994; Jirsa 
and McIntosh, 2007; Sporns, 2010). A consequence of this increas-
ing interest is that now a plethora of methods is available, each 
method being based on specific assumptions about the underlying 
model of relationship between analyzed signals. The objective of 
this paper is not to provide a comprehensive review of all these 
methods but rather to focus on those aimed at quantifying func-
tional connectivity from EEG signals. A particular attention is paid 
to a well-established method in the field of EEG signal processing, 
namely non-linear regression analysis. Over the past decade, this 
method has been extensively used in our group to analyze EEG 
signals recorded in epileptic patients. In this paper, its behavior 
is illustrated on a typical activity that has long been considered 
as a hallmark of the EZ: low-voltage rapid discharges observed in 
depth-EEG signals at the onset of partial seizures. Based on realistic 
models of coupled neuronal populations, it is showed that this 
method can provide relevant information on connectivity and can 
thus be used to interpret the behavior of brain structures involved at 
the onset of seizures. Finally, the advantages and the limitations of 
brain connectivity methods will be discussed in the context of the 
identification of epileptogenic networks from electrophysiological 
signals, which remains a difficult and still unsolved issue.

MaterIals and Methods
FroM eeG sIGnals to braIn FunctIonal connectIvIty: a brIeF 
overvIew
The idea of extracting, from EEG recordings, some information 
about brain connectivity is not new. Research in this domain has 
been – and is still – very active (Uhlhaas and Singer, 2006) and 
novel methods (or improvement of existing ones) are continu-
ously reported. The underlying assumption is quite simple: the 
temporal evolution of the cross-correlation (in a wide sense) 
between electrophysiological signals recorded (with appropriate 
time resolution) from spatially distributed brain regions is a reflec-
tion of the functional connectivity among these regions. The word 
“functional” here is important as it marks a difference with the 
concept of “anatomic connectivity” (the actual brain circuitry) and 
the concept of “effective connectivity” (the actual influence of one 
region over another one). Regarding functional connectivity, the 
first methods (Barlow and Brazier, 1954) were developed in the 50s, 
just after fast Fourier transform (FFT) algorithms were introduced 
(Cooley and Tukey, 1965). Authors made use of either the cross-
correlation function in the time domain or the coherence function 

in the frequency domain. The first results about the propagation of 
interictal events as observed in human intracerebral EEG data were 
reported by Brazier (1972). A few years later, quantitative analysis 
of these events was performed on scalp-EEG data (Lopes da Silva 
et al., 1977). From 1980, with the fast development of computers 
and EEG digital systems, signal processing methods spread more 
and more rapidly in the field of neurophysiology (for both clinical 
and research purpose). In the context of epilepsy, Gotman (1987) 
made use of the averaged coherence function computed on signals 
recorded from both hemispheres to study the evolution of inter-
hemispheric interactions over the entire duration of partial seizures. 
This coherence function was also used to reveal the possible exist-
ence of activities propagating over short- or long-range connection 
fibers (Thatcher et al., 1986) as well as synchronization mechanisms 
particularly at the onset of seizures (Duckrow and Spencer, 1992). 
A corollary study was the estimation of time delays from coherence 
values (Avoli et al., 1983; Ktonas and Mallart, 1991) as measured 
“latencies” can be related to the propagation of activity among 
distant structures. In this category of coherence-based methods, 
some attempts to use time-varying linear models (autoregressive 
models) were also reported. These parametric methods were used 
to measure the degree of synchronization of interictal and ictal 
EEG signals and to characterize the relationship between brain 
oscillations in the time and/or frequency domain (Haykin et al., 
1996; Franaszczuk and Bergey, 1999).

It is noteworthy that the aforementioned methods are said to be 
linear. This means that they can only capture the linear component 
of the relationship between analyzed time series. However, it is com-
monly admitted that most of the mechanisms at the origin of the 
generation of EEG signals are non-linear. Therefore, research effort 
was also devoted to the development of so-called non-linear meth-
ods (Pikovsky et al., 2001). A first family of non-linear methods was 
introduced in the field of EEG about twenty years ago. It included 
mutual information (Mars and Lopes da Silva, 1983) and non-
linear regression analysis (Pijn and Lopes da silva, 1993b; Wendling 
et al., 2001b). A second family developed later on, based on works 
related to the analysis of non-linear dynamical systems and chaos 
(Iasemidis, 2003; Lehnertz, 1999). Regarding this second family 
of methods, the number of variants is high. Basically, two groups 
have emerged: (i) phase synchronization methods (Bhattacharya, 
2001; Rosenblum et al., 2004) which first estimate the instantane-
ous phase of each signal and then compute a quantity based on 
co-variation of extracted phases to determine the degree of rela-
tionship and (ii) generalized synchronization methods (Arnhold 
et al., 1999; Stam et al., 2002, 2003) which also proceed according 
to two steps. Firstly, state space trajectories are reconstructed from 
scalar time series signals. Secondly, a similarity index is computed 
to quantify the similarity between these trajectories.

As shown by this brief literature review the panel of methods 
that can be used to estimate functional connectivity is wide. In 
a recent comparative study, we have analyzed the performances 
of ten methods aimed at characterizing functional connectivity 
from EEG signals. These methods belonged to three families (linear 
and non-linear regression, phase synchronization, and generalized 
synchronization) and were evaluated according to a model-based 
methodology. In considered simulations, the underlying relation-
ship was known a priori (ground truth). It could be controlled 
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The h2 coefficient is asymmetric (hXY
2  is different from the 

 quantity hYX
2 ). This asymmetry property was shown to provide 

insight into causality (Arnhold et al., 1999): if signals X and Y 
are of the same order of complexity and if Y is (at least partially) 
driven by X then the difference h hXY YX

2 2−  is positive. Finally, in Eq. 
(1), parameter τ corresponds to the time shift that maximizes the 
value of the h2 coefficient. Due to the asymmetry property, this time 
shift can take two values (either τ

XY
 or τ

YX
) depending on the way 

the computation of the h2 coefficient is performed (from X to Y or 
vice versa). As a notation convention, we will consider that τ

YX
 > 0 

(resp. τ
YX

 < 0) in the case where signal Y is delayed (resp. in advance) 
with respect to X. The time delay information corresponds to the 
notion of latency classically used in neurophysiology. It can also be 
related to causality as the delayed activity is more likely – caused 
by – rather than – causing – the preceding activity.

To end with this section on non-linear regression analysis, it is 
noteworthy that the asymmetry information and the time delay 
information were combined in single quantity named “direction 
index” D (Wendling and Bartolomei, 2001; Wendling et al., 2001a). 
This quantity allows for more reliable estimation of the direction 
of coupling between systems that generate signals, compared to 
the case where asymmetry information and time delay are consid-
ered separately. Briefly, the direction index D starts from the fact 
that the difference ∆h2 = h hXY YX

2 2−  and the difference ∆τ = τ
YX

 − τ
XY

 
are both positive when signal Y is dependent on – and is delayed 
with respect to – signal X. The idea is thus to make a conjoint 
use of the sign of ∆h2 and ∆τ in order to provide a probabilistic 
information on the direction of coupling. A possible formula is 
D h= +1 2 2/ [sgn( ) sgn( )]∆ ∆τ  when the same weighting coefficient is 
used for the asymmetry and delay information. In this case, D = +1 
(respectively −1) denotes that Y (respectively X) is dependant on – 
and delayed with respect to – X (respectively Y). Conversely, D = 0 
denotes either (i) a situation where there is a constant discrepancy 
between the information provided by the asymmetry (∆h2) and 
by the time delay (∆τ) or (ii) a situation where the sign of ∆h2 
and the sign of ∆τ continuously fluctuates, over the considered 
time window.

a Model oF depth-eeG sIGnals Generated FroM coupled 
neuronal populatIons
A general scientific approach that has proven useful in the study of 
complex systems is to capture some essential properties in a formal 
description – a model – which allows for thorough analysis of pos-
sible behaviors based on parameters considered in the model. More 
particularly, in the field of epilepsy, computational neuroscience 
has developed quite rapidly over the three past decades (Soltesz 
and Staley, 2008). Besides experimental models, computational 
models have gained maturity. They are now considered as an effi-
cient way of structuring the tremendous amount of data coming 
from neurobiological and neurophysiological research in order to 
interpret experimental findings and, in some cases, to generate 
hypotheses that can be tested experimentally (Suffczynski et al., 
2006). Basically, two complementary approaches developed since 
the 1970s and led to either detailed (i.e., microscopic) or lumped 
(i.e., mesoscopic) models of neural systems involved in the genera-
tion of epileptic activity. Readers may refer to (Bartolomei et al., 
2008b; Lytton, 2008; Ullah and Schiff, 2009) for recent reviews 

using a parameter representing a degree of coupling in the three 
types of models (coupled stochastic signals, coupled non-linear 
dynamical systems, and coupled neuronal populations) that were 
used to generate output signals. Readers may refer to (Ansari-Asl 
et al., 2006; Wendling et al., 2009) for detailed results. In brief, the 
most salient findings of this study can be summarized as follows. 
First, we could demonstrate that some methods are insensitive to 
the coupling parameter in considered models (for instance, phase 
synchronization methods when the relationship between simulated 
signals only involves their envelope). Second, results showed strong 
dependence on the frequency distribution of signals (broad band 
versus narrow band). Third, we found that there is no “universal” 
method, i.e., none of the studied methods performed better than the 
other ones whatever the considered situation. Nevertheless, results 
revealed that methods belonging to the family of linear and non-
linear regression analyses showed to be always sensitive to the cou-
pling parameter in considered models. In particular, in the context 
of ictal activity simulated from coupled populations of neurons, the 
non-linear correlation coefficient h² showed good performances. 
The behavior of this method on simulated and on real depth-EEG 
signals is illustrated in section Application to the identification of 
epileptogenic networks in partial epilepsies. Theoretical aspects as 
well as basic principles of the modeling approach are summarized 
in the next two sections.

non-lInear reGressIon analysIs: non-lInear correlatIon 
coeFFIcIent, tIMe delay and dIrectIon Index
Non-linear regression analysis was first introduced in the field of 
EEG analysis by Lopes da Silva et al. (1989) as a non-parametric 
method for characterizing the dependency of a signal Y on a signal 
X, from signal samples only and independently of the type of rela-
tion between the two signals. Readers may refer to (Pijn, 1990; Pijn 
et al., 1992; Pijn and Lopes Da Silva, 1993a; Kalitzin et al., 2007) for 
theoretical aspects of this method and to (Bartolomei et al., 2001; 
Wendling and Bartolomei, 2001; Wendling et al., 2001b) for practi-
cal application of this method in the context of epileptic activity 
analysis. In short, the dependency between considered signals is 
quantified by a normalized non-linear correlation coefficient hXY

2  
given by

h
VAR Y t X t

VAR Y tXY
2 1( )

[ ( )/ ( )]

[ ( )]
τ τ

τ
= − +

+  
(1)

where

VAR Y t X t E Y t h X t
h

( )/ ( ) arg min [ ( ) ( ( ))]+[ ]= + −( )∧τ τ 2

 
(2)

and where h is a non-linear fitting curve which approximates the 
statistical relationship between X and Y. In practice, this function h 
can be obtained from the piece-wise linear approximation between 
the samples of the two time series. Conceptually, hXY

2  quantifies the 
reduction of variance of signal Y that is obtained when Y sam-
ples are predicted for X samples. Indeed, as depicted from Eq. (1), 
hXY

2 0=  when there exists no relationship between X and Y (i.e., the 
conditional variance VAR[Y(t + τ)/X(t)] is equal to the marginal 
variance VAR[Y(t + τ)). Conversely, signal Y is fully determined 
by signal X, the conditional variance VAR[Y(t + τ)/X(t)] = 0 and 
hXY

2 1= .
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into an average density of APs fired by the subset. This function is 
non-linear and accounts for threshold and saturation effects clas-
sically observed in neuronal physiology. In addition to the specific 
input from population P2 (resp. P1), an input noise p

1
(t) (resp. 

p
2
(t)) is used to describe the influence of non-specific afferences 

to population P1 (resp. P2). Both signals p
1
(t) and p

2
(t) represent a 

density of action potentials. They were chosen to have a Gaussian 
distribution (mean = 90, SD = 30). Finally, the model output that 
is usually chosen is the summation of EPSPs and IPSPs generated 
at the level of pyramidal cells. Indeed, it can be shown that these 
summated PSPs are the principal contribution to the local field 
potential (LFP, the signal that would be recorded by an extracellular 
electrode positioned in the vicinity of the neuronal population). 
Note that this output can be directly used as an estimate of the 
temporal dynamics of the LFP if one neglects the source-sensor 
transfer function (quasi-static assumption).

In the particular context of this study, two important aspects 
must be underlined. Firstly, this model corresponds to a network 
of coupled non-linear dynamical systems. Coupling parameters 
(degree, direction) corresponding to “inter-population” excitatory 
connections can be tuned. Second, in this network, the behavior 
of each “node” is governed by “intra-population” parameters, typi-
cally the efficacy of excitatory and inhibitory synaptic transmis-
sion among local subsets of neurons comprised in the population. 
These two aspects are illustrated in Figure 1B. In this example, two 
coupled populations are considered. Inside each population, the 
scenario is as follows: the excitatory synaptic efficacy is constant 

on this topic. In this section, we focus on a mesoscopic model of 
coupled neuronal populations, illustrated in Figure 1A. This type 
of model has been described in previous reports (Wendling et al., 
2000, 2002, 2005). It is intended to reproduce the activity of two 
(or more) populations of neurons interacting through excitatory 
synaptic connections. Each population contains different subsets 
of neurons, typically main cells, and local interneurons. Figure 1A 
shows a model of two bi-directionally coupled neuronal popula-
tions. Each population comprises a subset of excitatory pyrami-
dal neurons (with collateral glutamatergic excitation) and two 
subsets of inhibitory interneurons which receive excitatory input 
(glutamatergic) from pyramidal cells and which, in turn, provide 
inhibition (GABAergic) to pyramidal cells. It is noteworthy that 
the mesoscopic approach provides a description of the “average” 
activity in the considered populations of neurons. This means that 
it does not require an explicit representation of single units and that 
it leads to “much smaller” sets of ordinary differential equations, 
especially when compared to high-dimensional networks in which 
each neuron is described using a multicompartmental model. Two 
main input–output functions are used at the level of each subset 
in order to describe the whole population activity. The first func-
tion transforms the average density of incoming action potentials 
(APs) into an average post-synaptic potential (PSP). This average 
PSP can be either excitatory (EPSP) or inhibitory (IPSP) depend-
ing on the nature of the considered subset of cells. The kinetics 
of PSPs (rise and decay times) are adjusted to match experimen-
tally recorded PSPs. The second function changes the average PSP 

Figure 1 | (A) Mesoscopic model of coupled neuronal populations reproducing 
the activity of two (or more) populations of neurons interacting through 
excitatory synaptic connections. Each population contains pyramidal cells and 
local interneurons projecting either to the perisomatic or dendritic region of 

pyramidal cells. (B) Simulated signals obtained for gradual disinhibition in both 
neuronal populations (see text for details). This neuronal population model is 
available at: http://senselab.med.yale.edu/modeldb/showmodel.
asp?model=97983.
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trajectory of each electrode remains visible. Finally, a CT scan/MRI 
data fusion is performed to anatomically locate each contact along 
each electrode trajectory. In practice, SEEG is carried out as part of 
normal clinical care of patients who give their informed consent 
about the use of data for research purposes.

transItIon to Ictal actIvIty In teMporal lobe epIlepsy (tle): 
descrIptIon oF Intracerebral electrophysIoloGIcal sIGnals
An example of intracerebral SEEG recording is given in Figure 3. 
In this example, the patient had mesial TLE. Signals were recorded 
on a 128-channel Deltamed™ system and were sampled at 256 Hz. 
The only filter present in the acquisition procedure is a hardware 
analog high-pass filter (cut-off frequency equal to 0.16 Hz) used to 
remove very low frequency variations of the baseline. For simplicity, 
only signals recorded from contacts located in the hippocampus 
(anterior and posterior parts), in the entorhinal cortex, in the amy-
gdala and in the lateral temporal cortex (middle temporal gyrus) 
are represented in Figure 3. This electrophysiological pattern is 
very typical in TLE and reproducible in the various ictal episodes 
of a given patient (Wendling et al., 1996, 1997). Interictal and pre-
ictal spikes (generally of higher amplitude) are usually observed in 
limbic structures (Figure 3A, before seizure onset). They are also 
observed in lateral structures of the temporal lobe relatively fre-
quently (Wendling et al., 2003). Of particular interest is the activity 
observed at the onset of seizures. Indeed, in TLE (but not only), the 
onset of seizures is very often characterized by the appearance of a 
fast activity (also referred to as rapid discharge) in mesial structures 
(Figure 3A, seizure onset). This fast onset activity dramatically dif-
fers from interictal background activity recorded far from seizure 
(in time). The salient feature is a re-distribution of the energy of 
intracerebral EEG signals into higher frequency bands. Typically, 
in the temporal lobe, the dominant frequency ranges from 20 to 
30 Hz (Figure 3B) which corresponds to the low gamma frequency 
band. The duration of the rapid discharge may vary from patient to 
patient. Generally, it lasts for 5 to 10 s. Then, as the seizure devel-
ops, the signal frequency gradually slows down and the amplitude 
progressively increases. The activity becomes more rhythmic and 

but has been augmented with respect to “normal” value while the 
average IPSP on pyramidal cells is progressively decreased with 
time. This gradual disinhibition leads to dynamical changes in the 
system as reflected by simulated signals. Indeed, a first transition 
from background activity (interictal phase) to spikes (pre-ictal 
phase) is observed in this simulation. Spikes occur synchronously, 
they become more frequent and then an abrupt change to higher 
frequency activity happens (onset phase). This fast activity finally 
changes into higher-amplitude lower-frequency activity (ictal 
phase). Such dynamics and transitions match those occurring in 
depth-EEG signals recorded from limbic structures in temporal 
lobe epilepsy (TLE) as already reported in (Wendling et al., 2002, 
2005) and as briefly described in the next section.

applIcatIon to the IdentIFIcatIon oF epIleptoGenIc 
networks In partIal epIlepsIes
stereoelectroencephaloGraphy as a presurGIcal exploratIon 
technIque
Among pre-surgical evaluation methods, stereoelectroencepha-
lography (SEEG) permits direct recording of electrical activity 
from brain structures that are potentially part of the epileptogenic 
zone. It provides electrophysiological markers of epileptic activi-
ties (interictal and ictal) in the form of time series signals with 
excellent temporal resolution (about 1 ms). The term “stereoelec-
troencephalography” was introduced by Bancaud et al. (1965) to 
emphasize the fact that recording of electrical activity is performed 
within the intracranial space (rather than from the surface) and that 
stereotaxic determination of the anatomical structures is necessary 
to “strategically” position intracerebral multi-contact electrodes 
(Figure 2). The positioning of electrodes is determined in each 
patient from available non-invasive information and hypotheses 
about the localization of his/her epileptogenic zone. Implantation 
accuracy is per-operatively controlled by telemetric X-ray imaging. 
A post-operative CT scan without contrast product is then used 
to verify both the absence of bleeding and the precise 3D location 
of each electrode contact. After SEEG exploration, intracerebral 
electrodes are removed and an MRI is performed on which the 

FiGurE 2 | Example of SEEG exploration in patient with mesial temporal 
lobe epilepsy. (A) Intracerebral implantation scheme. Electrodes are identified 
by one or two capital letters: A, B and C (medial contacts: amygdala, anterior part 
of hippocampus, posterior part of hippocampus; lateral contacts: middle 
temporal gyrus from anterior to posterior part), T (medial contacts, insula; lateral 

contacts, superior temporal gyrus), TB (medial contacts, entorhinal cortex; lateral 
contacts, temporo-basal cortex), TP (temporal pole). (B) Electrode trajectories 
reported on MRI data (coronal view). (C) Each intracerebral electrode is 
composed of 10–15 cylindrical contacts (length: 2 mm, diameter: 0.8 mm, 
1.5 mm apart).
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structures engaged into the fast activity? What is the underlying net-
work and how is it organized? Which “nodes” in this network should 
be removed in the aim to suppress ictal activity? These are typical 
questions faced by epileptologists as they analyze EEG recordings. 
From the signal processing viewpoint, these are particularly difficult 
questions. Indeed, the seizure onset phase is relatively short (a few 
seconds) and the number of seizures, in a given patient, is usually 
limited (typically in the order of 5–10 s). Therefore, statistical sig-
nificance of computed quantities (whatever the quantity) is always 
a delicate issue. The close analysis of rapid discharges reveals that 

more synchronous across the recorded regions. Clinical symptoms 
generally occur during this “clonic” phase. Finally, seizure termi-
nation occurs after a few tens of seconds with respect to onset. A 
striking and reproducible feature is the “abrupt stop” of the ictal 
activity simultaneously observed on all channels.

The diversity of dynamics (and transitions of dynamics) observed 
at the level of depth-EEG signals shows that the epileptic seizure is a 
complex dynamical process. The seizure onset is particularly impor-
tant in this dynamical process as it conveys key information about 
the EZ: what are the involved structures? Why and how are these 

FiGurE 3 | (A) Example of SEEG recording (bipolar signals) performed during 
transition to seizure activity. Only signals recorded from mesial (AMY, HIP, EC) 
and lateral (MTG) structures in the temporal lobe are represented. AMY, 
amygdala; HIP (ant.), anterior part of hippocampus; HIP (post.), posterior part of 
hippocampus; EC, entorhinal cortex; MTG (ant., mid., post.), middle temporal 

gyrus from anterior to posterior part). (B) Normalized power spectral density 
(PSD) computed on the segment of SEEG signal corresponding to seizure onset 
and where a fast activity (about 25 Hz) is observed. (C) A zoom on the fast onset 
activity showing that a jitter is present: as time goes on, signals are either in 
phase or out of phase.
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In order to assess the statistical significance of measured 
quantities, we compared the statistical distributions of the h² 
values, as computed over the seizure onset period and over the 
interictal period that precedes the seizure. As these distributions 
are not normal, a possible approach is to compare the means of 
Z-transformed variables via t-tests. Indeed, it can be shown that 
the variable w = 1/2 × log((1 + r)/(1 − r)) (Eq. 3, where r denotes 
the linear correlation coefficient) follows a Gaussian distribution. 
However, it is worth to mention that this transformation cannot 
be readily applied in the case of non-linear correlation values, as 
those computed in the example shown in Figures 3 and 4. Indeed, 
the r quantity takes values in the interval [−1, 1] and is therefore 
mapped into the interval ]−∞, +∞[. Conversely, the non-linear 
correlation coefficient h² is strictly positive (see Eq. 1). Therefore, 
using Eq. 3, it will be mapped into the R + = ]0, +∞[ interval and 
theoretically can never follow a normal distribution. To deal with 
this issue a solution is to set the variable r equal to (2 × h² − 1) in 
Eq. 3. This transformation is such that r takes values in the interval 
[−1, 1] and that w = 1/2 × log (h²/(1 − h²)) takes values in ]−∞, +∞[ 
with a distribution that can be assumed to be Gaussian (verified 
on empirical histograms). In addition, it worth mentioning that 
the time delay and direction index can only be interpreted in the 
situations where the h² coefficient is significantly high. Indeed, ana-
lyzing those quantities is meaningless when there is no relationship 
between recorded brain sites.

Results are summarized in Figure 4 which shows the behavior 
of estimated quantities. Note that the h² coefficient and the time 
delay were computed according to the two possibilities: dependence 

they often start quasi-synchronously (Figure 3A). As far as limbic 
structures are concerned, their frequency content is quite similar, as 
depicted in Figure 3B which shows the power spectral density (PSD) 
of signals recorded from the amygdala, the hippocampus, and the 
entorhinal cortex during the fast onset activity. This PSD reveals that 
rapid discharges are quite narrow band (15–30 Hz) which is con-
firmed by the plot in Figure 3C where the “sinusoidal” nature and 
amplitude modulation of recorded signals can be easily observed. 
This plot also shows a striking feature of recorded signals: a jitter 
is present as shown by the alternation of epochs where signals are 
either in phase or out of phase. By “jitter,” we mean a “phase shift” 
(between analyzed quasi-sinusoidal depth-EEG signals) that is con-
tinuously and randomly changing over the duration of the fast activ-
ity. This jitter makes the problem of interpreting the propagation of 
epileptic activity quite complicated. Indeed, from visual inspection, 
it cannot be determined whether one signal is in advance – or is 
delayed – with respect to the other signal.

applIcatIon oF non-lInear reGressIon analysIs to Fast onset 
actIvIty
This section illustrates the behavior of non-linear regression analy-
sis as applied on the fast activity recorded at the onset of seizures (as 
described above). The non-linear correlation coefficient h², the time 
delay, and the direction index were computed on signals recorded 
from the amygdala (AMY), the anterior hippocampus (HIP, ant.) 
and the entorhinal cortex where rapid discharges could be observed 
(Figure 3). The three pair-wise combinations (AMY vs. HIP, AMY 
vs. EC, and AMY vs. HIP) were considered.

FiGurE 4 | Non-linear regression analysis applied on real EEG signals 
according to a pair-wise procedure (AMY vs. EC (A), HIP vs. EC (B), AMY vs. 
HIP (C)), during the fast onset activity. Left, middle: h² coefficient values are 
significantly high (**) compared to values measured during interictal periods. 

Time delays (solid line: upper signal vs. lower, dotted line: lower signal vs. upper) 
are stable. Direction index is lower than 0 indicating that lower signal is driving 
the upper signal. Right: Time delays are unstable and direction index stays close 
to 0, providing no clues about the direction of coupling.
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to negative value. This resulted in a direction index which stayed 
close to 0 and which was more difficult to interpret in term of 
effective connectivity.

This example (typical of mesial TLE) shows the difficulty of 
interpreting connectivity measures performed on intracerebral 
EEG data. Indeed, we are facing situations where computed quan-
tities exhibit different behaviors. As described in the next section, 
data simulated from models in which (i) the excitability of neuro-
nal populations and (ii) the underlying connectivity among these 
populations are known a priori may help this interpretation.

Model-based InterpretatIon oF connectIvIty Measures at 
seIzure onset
In this section, we report results about the behavior of non-lin-
ear regression analysis (h², time delay and direction index meas-
ures) as applied on signals simulated from two coupled neuronal 

of the first signal on the second one (Figure 4, solid line) and vice 
versa (Figure 4, dash line). First, results showed that for the two 
first pairs (AMY vs. EC, Figure 4A) and (HIP vs. EC, Figure 4B), 
the behavior of computed quantities is similar. First, the h² values 
averaged over the duration of the fast discharge were found to 
be significantly higher (AMY vs. EC: p = 5.706e−3, HIP vs. EC: 
p = 8.743e−3) than those computed on interictal activity. Second, 
time delays were found to be relatively stable over this seizure onset 
period as the direction index that is negative in both cases, indicat-
ing that the direction of coupling was more likely to be from the 
EC toward the AMY (Figure 4A, fourth plot) and from the EC 
toward the HIP (Figure 4B, fourth plot). Results were quite different 
regarding the third pair (AMY vs. HIP, Figure 4C). The average h² 
values were not found to be different from those computed during 
interictal activity (AMY vs. HIP: p = 0.215). Second, time delays 
were found to be unstable as continuously varying from positive 

FiGurE 5 | Non-linear regression analysis applied on simulated signals, 
using the same method settings compared to Figure 4. (A) Different 
scenarios were considered regarding the intrinsic excitability of neuronal 
populations (thin line: excitability increased, thick line: excitability more strongly 
increased) and regarding the connectivity (no coupling, unidirectional coupling, 

bidirectional coupling). (B–D): both populations generate a fast activity (about 
25 Hz) and a jitter is observed between simulated signals (red vs. green) as in 
real signals. Note that the behavior of non-linear regression analysis (h² 
coefficient, time delays, direction index D) depends on the modeled situation 
(see text for details).

60

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
http://www.frontiersin.org/Systems_Neuroscience/


Frontiers in Systems Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 154 | 

Wendling et al. Brain connectivity and epileptogenic networks

most salient finding is that there was only one situation, among the 
three analyzed situations, for which measured quantities provided a 
non-ambiguous result. This situation is that presented in Figure 5B 
and corresponds to the case where population 2 generated a rapid 
discharge, due to the excitatory drive from population 1.

Therefore, according to the above simulation results, a possi-
ble interpretation of the underlying network organization in the 
example of real data show in Figure 3 is as follows. In the three 
recorded structures (AMY, HIP, and EC), excitability would be 
increased with respect to normal condition. The disinhibition in 
the entorhinal cortex would lead to the generation of a fast activ-
ity. Then, measured h² values (functional connectivity), time delay 
and direction index (effective connectivity) would indicate that the 
EC is driving the fast activity observed in the two other structures 
(AMY and HIP).

dIscussIon
High frequency oscillations occurring at the onset of epileptic sei-
zures have long been considered as a potentially valuable marker 
of the epileptogenic zone (EZ), usually defined as the subset of 
brain structures involved in the generation of seizures. These 
oscillations, also referred to as “fast onset activity” or “rapid dis-
charges” (Allen et al., 1992; Alarcon et al., 1995; Wendling et al., 
2003) have been recognized to be one of the most characteristic 
electrophysiological patterns of the EZ in focal epilepsy (Bancaud 
et al., 1965). Several experimental (Traub et al., 2001; Uva et al., 
2005; Gnatkovsky et al., 2008; de Curtis and Gnatkovsky, 2009) 
and computational modeling (Wendling et al., 2005) studies 
demonstrated the existence of a relationship between the epi-
leptogenicity of the neuronal tissue and its propensity to gen-
erate fast oscillations at seizure onset. From clinical viewpoint, 
resection of regions with rapid discharges has also been found to 
favorably influence the surgical prognosis (Alarcon et al., 1995). 
A striking feature of rapid discharges is that they always involve 
distinct – and possibly distant – brain structures, either in a 
quasi-synchronous or a more delayed manner. Based on these 
observations, an index, called epileptogenicity index, was recently 
proposed (Bartolomei et al., 2008a). This index accounts for both 
spectral (occurrence of fast oscillations) and temporal (delay of 
occurrence with respect to seizure onset) properties of intracer-
ebral EEG signals to quantify the epileptogenic nature of recorded 
neuronal systems.

However, the mechanisms of seizure generation and propagation 
remain elusive. A number of studies have used signal processing 
techniques (in particular those able to characterize the underlying 
connectivity) in order to characterize the seizure dynamics from 
intracerebral EEG data (Gotman, 1987; Lieb et al., 1987; Mormann 
et al., 2003; Schindler et al., 2007; Bartolomei and Wendling, 2009). 
The intent of this paper was to also address this issue with a par-
ticular focus on the mechanisms involved in the generation of fast 
activity at the onset of seizures. We assumed that the epileptogenic 
zone is organized as a network of distributed neuronal populations 
with altered excitability properties and then study how a simple 
computational model (two (un)coupled populations) could help us 
to better interpret connectivity (functional and effective) measures 
performed on real signals (intracerebral EEG). The main findings 
of this study are discussed hereafter.

 populations. Simulations were performed under two constraints: 
(i) the spectral content of simulated signals matches that of real 
signals and (ii) a jitter similar to that observed in real data is also 
present in simulated signals.

Results are reported in Figure 5. A first general result is that the 
model could generate a fast activity (about 25 Hz, as observed) 
at the level of both populations if, and only if, the ratio between 
excitation and inhibition was increased such that the populations of 
neurons become “more excitable.” Note that this result is not new. 
It was already shown (Wendling et al., 2002, 2005) that decreased 
inhibition (at the level of GABAa,slow receptors on pyramidal cells) 
leads to a dramatic change in the model: the fast feedback inhibitory 
loop (involving GABAa,fast receptors on pyramidal cells) becomes 
very active and leads to the generation of fast IPSPs on pyramidal 
cells (GABAa,fast receptors). These IPSPs dramatically affect the 
LFP by adding higher-frequency components.

Starting from this “increased excitability” condition at both 
populations, we found three situations where the model could 
generate signals with the aforementioned constraints.

The first situation is displayed in Figure 5B where excitability 
was strongly increased in population 1 (thick red rectangle) and less 
strongly in population 2 (thin green rectangle) and where popula-
tion 2 received excitatory input from population 1 (unidirectional 
arrow). Note that without this excitatory drive, population 2 did 
not generate a fast activity, as shown in Figure 5A. In other words, 
the fast discharge in population 2 “is caused by” the input from 
population 1. In this situation (Figure 5B), a significant increase 
of the h² value could be measured with respect to the uncoupled 
situation (Figure 5A). Time delays were found to be quite stable and 
symmetric. Finally, the direction index was strictly positive, clearly 
indicating an influence of population 1 on population 2.

The second situation is displayed in Figure 5C. Here, popula-
tions were uncoupled but excitability was strongly increased in both 
populations such that they both generated a fast activity “intrinsi-
cally”. It can be depicted that the behavior of measured quanti-
ties is different compared to the previous situation. The h² values 
were lower and the variance strongly increased. Time delays were 
found to be very unstable, continuously reversing as time goes on. 
Conversely, the direction index D was more stable and centered 
around 0. It did not indicate a preferred direction in the coupling 
between population 1 and population 2.

The third situation is illustrated in Figure 5D. Here, excitability 
was increased and both populations mutually interacted. For each 
population, the excitatory input from the other population was 
such that it generated a fast activity. Again, and as the underly-
ing scenario changed, measured quantities behaved in a different 
manner compared to previous situations. Strikingly, the h² val-
ues measured in a situation where neuronal populations are bi-
directionally coupled were even lower compared to the previous 
uncoupled situation (Figure 5C). Time delays were also found to 
be very unstable. Finally, the direction index was also close to 0 
but the variance was higher compared to the uncoupled situation. 
In order to assess the statistical significance of results, we gener-
ated long-duration simulated signals (400 s) from which we could 
evaluate the asymptotic behavior (mean and standard deviation) 
of measured quantities. Results are summarized in Figure 6. They 
corroborated those obtained on shorter duration segments. The 
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populations and connectivity pattern (no coupling, unidirectional 
coupling or bidirectional coupling). Indeed, we managed to gener-
ate signals that not only have a realistic spectral content but also 
in which a random phase jitter (instability of the phase differ-
ence between signals) is observed. The second insight is that the 
level of excitability is a crucial parameter. In the network, only the 

First, what do we learn from this apparently simple model? This 
question is always raised in any study involving modeling aspects. 
In the present work, the first insight is that rapid discharges with 
properties that are similar to those observed in real signals can be 
generated from different model configurations, in terms of level 
of excitability (moderate vs. major increase) in the two considered 

FiGurE 6 | Asymptotic behavior (mean and standard deviation computed over 500 s) of measured quantities in the four situations considered in Figure 5. 
For one situation measured quantities provide a non-ambiguous result. It corresponds to the case where population 2 generates a rapid discharge, due to the 
excitatory drive from population 1 (see also Figure 5B).
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“nodes” with decreased inhibition (i.e., increased excitability) can 
be involved in the fast onset activity. The tricky question is then 
related to the mode of involvement of neuronal populations into 
the fast run. This question leads to the third insight. Our model 
shows that there are basically two situations. According to the first 
situation, the level of excitability in one population is so high that 
this population “autonomously” generates a fast activity. Of course, 
this population can have excitatory connections to distant popula-
tions (typically on the sub-population of pyramidal cells). When 
the excitability in these “remote” populations is altered (i.e., also 
increased), the model shows that they can be “driven” into the fast 
activity mode. Formally, this “entrainment” would correspond to an 
external perturbation that continuously drives the target dynami-
cal system away from its “normal” behavior. It is noteworthy that 
the driven neuronal population does not become unstable as the 
removal of the external input leads it to return back to “normal 
background activity”. According to the second situation, the level 
of excitability in considered populations is such that they autono-
mously generate a fast activity. In this case, the influence of cou-
plings is much more difficult to determine and would deserve, in 
itself, a detailed analysis.

Second, what do we learn from signal analysis methods aimed 
at characterizing the connectivity? It is difficult to answer this 
question as only one method, among the many methods presented 
in section “From EEG signals to brain functional connectivity: a 
brief overview”, was applied on real and simulated signals. In the 
following we will thus emphasize results we obtained regarding 
non-linear regression analysis which could provide interpretable 
results in the first studied situation. A first interesting aspect in 
this method is that it does not require strong assumptions about 
the properties of analyzed signals (broadband vs. narrow band, for 
instance) nor about the nature of the relationship between these 
signals (linear, non-linear, phase, or amplitude). The only restric-
tion is that the duration of the sliding window (which defines the 
number of independent (X,Y) pairs of amplitude values) is large 
enough to correctly estimate the non-linear fitting curve h in 
Eq. 2. A second interesting aspect is that this method was able to 
provide reliable results in a complicated situation where the phase 
difference between signals is continuously varying. On simulated 
signals, we could obtain statistically significant results regard-
ing the mean non-linear correlation coefficient, time delays (as 
measured in both directions) and direction index values. Indeed, 
measured quantities could be related, without ambiguity, to the 
underlying organization (population 2 receives excitatory input 
from population 1). Nevertheless, this result also means that there 
exist some situations where this method cannot provide univocal 
interpretation of recorded signals. Two examples were presented 
in this study corresponding to two situations where both neu-
ronal populations generate a fast activity. In this case, we could 
not determine, from measured quantities, whether or not the 
two populations are coupled. Therefore, these results show that 
one should be cautious with the interpretation of connectivity 
measures, as already mentioned in several studies (Horwitz, 2003; 
Wendling et al., 2009). In particular, they show that deriving rel-
evant information regarding the underlying effective connectiv-
ity is particularly difficult in the situations where the non-linear 
correlation coefficient is low.

From the physiological viewpoint, these results also show that 
the notion of “propagation of rapid discharges” should be clarified. 
Indeed, in some cases, the fact that rapid discharges are observed at 
different brain sites, is not due to propagation but, instead, to quasi-
synchronous involvement of neuronal populations. According to 
this view, an epileptogenic network would include two types of 
“nodes,” both having a capacity to generate fast activity due to 
altered excitation- and/or inhibition-related mechanisms. Some 
nodes could spontaneously generate rapid discharges and could 
“drive” some other nodes which would act as “relays” of those rapid 
discharges. For instance, in real signals shown in this study, the 
entorhinal cortex would belong to the first category whereas the 
hippocampus and amygdala would go in the second. This latter 
point leads us to a frequently asked question: how are functional, 
effective and anatomical connectivity related one with another? 
This is still a challenging question that cannot be answered in this 
study. However, it can be noticed, in the chosen example, that the 
entorhinal cortex has direct anatomical projections (temporo-
amonic pathway) to the hippocampus (see, for instance, Witter 
and Wouterlood, 2002 for detailed description). Projections to the 
amygdala are less clear. Some detailed studies were performed in 
the cat using tract-tracing techniques (Russchen, 1982a,b; Witter 
and Groenewegen, 1986; Witter et al., 1986). As in the rat (Brothers 
and Finch, 1985; McDonald and Mascagni, 1997), results showed 
entorhinal–amygdala projections arising primarily from deep lay-
ers of the lateral entorhinal cortex. Although little is known about 
details of the projection of the entorhinal cortex to the amygdala in 
primates, such a pathway has been hypothesized in human based on 
neuronal responses evoked by electrical stimulation (Wilson et al., 
1990, 1991). Besides these in vivo studies, functional connections 
as well as spread of epileptic activity were also studied in vitro, 
using slice preparations (rat brain) which preserve the connectivity 
between the hippocampus and the entorhinal cortex (Rafiq et al., 
1993) and also with the amygdala (Stoop and Pralong, 2000). These 
studies confirmed the existence of reciprocal connections between 
hippocampus and entorhinal cortex. In addition, it was found that 
bursting epileptic activity could spread via two different pathways, 
either from entorhinal cortex or hippocampus and both toward 
the amygdala.

To end with this discussion, one should also mention the limita-
tions of this study that lead, in fact, to open issues that should be 
addressed in the future. First, scenarios involving more than two 
coupled neuronal populations should be investigated, keeping in 
mind that the number of combinations becomes rapidly high with 
the number of populations and with the various ways of inter-
connecting populations. Second, an interesting issue would be to 
compare results obtained from “classical” methods (as used here) 
with those obtained with methods “dedicated” to the analysis of 
causality among time series like Granger causality, directed trans-
fer function and partial directed coherence on simulated signals 
(Blinowska et al., 2004; Kus et al., 2004). One advantage of these 
methods is that they make use of multichannel estimates conversely 
to the method used in this study that proceeds according to a bivari-
ate approach, often considered as less powerful. Nevertheless, for 
simulated data, most of the studies which analyze the performances 
of multivariate versus bivariate methods make us of a multivariate 
autoregressive model which may not be the most relevant model for 
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We are motivated by the following two perceived needs: firstly, 
to relate the various measures of connectivity found in the field of 
epilepsy research to the more general language of functional and 
effective connectivity as used in neuroscience (neuroimaging) and 
secondly, to gage the potential benefits of applying state-of-the-art 
connectivity methods to answer scientific questions raised within 
the field of human epilepsy research.

We begin by reviewing basic principles of connectivity, followed 
by a description of connectivity measurement and quantification 
methodologies. We then review some of the main findings of basic 
studies of connectivity in epilepsy, focusing on human data but 
making essential links to animal studies. The last part of this review 
describes the latest developments in models of coupled (distrib-
uted) generators of EEG/MEG and fMRI signals, with the view 
of scrutinizing their possible role as a bridge between scales of 
understanding in epilepsy.

Definitions, PrinciPles, anD the characterization of 
connectivity in ePilePsy
Because of the history of brain connectivity analysis, the functional/
effective dichotomy is a convenient starting point for our discus-
sion. As we shall see, a priori, both forms of connectivity are aimed 
at identifying the presence and strength of connections between 
network nodes and, when possible, their directionality. However, a 
further ambition of effective connectivity is to allow the inference 
of (biophysical) mechanisms by which causal links are expressed in 
measured neuroimaging signals. The study of effective connectivity 
is, therefore, usually a more model-based (or hypothesis-driven) 
approach than that of functional connectivity. It is worth noting 
that the term functional connectivity is not commonly encoun-
tered in the field of epilepsy, particularly in relation to EEG data 
although its use has increased recently in view of growing interest 
in resting-state fMRI data.

introDuction
The brain is essentially an electro-chemical network. Connectivity is 
at the center of the problem of Epilepsy since its defining element is 
the occurrence of seizures, which essentially are periods of abnormal 
inter-neuronal synchrony. Unanswered questions that are central to 
an improved understanding of the mechanisms of epilepsy include 
some which implicate connectivity directly, such as: Why does ictal 
activity spread? Why do seizures persist in some patients, following 
surgical resection? Why do focal insults often give rise to recurrent 
seizures, i.e., epilepsy? And some which do so less directly: Why do 
spike and wave discharges and seizures occur when they do? Why 
does the spatial relationship between the generators of interictal dis-
charges and seizures vary between patients? Answers to these ques-
tions would fundamentally improve our ability to eliminate seizures.

The difficulty of pinning down the concept of brain connectivity 
has already been noted (Horwitz, 2003). Nonetheless at the macro-
scopic scale (brain) connectivity can be partitioned into three main 
concepts: (i) anatomical (or structural) connectivity measured in 
terms of physical (and chemical) connections between neuronal 
populations or individual neurons, (ii) “functional” connectivity 
by which we mean the statistical similarity between activities in 
distributed neuronal populations, and (iii) “effective” connectivity, 
which speaks to the directed influence the activity of one region 
exerts onto another region’s activity in a given context (Sporns, 
2010). This distinction is useful for our discussion in that the meas-
urement instruments and data analytical tools at our disposal have 
mainly focused on each aspect separately (but see Guye et al., 2008).

Here we focus on connectivity of neuronal activity, reflected in 
electrophysiological (LFP, EEG, MEG) and hemodynamic (func-
tional MRI, fMRI) signals measured in humans and animals, but 
with reference to structural connectivity when possible. In the fol-
lowing, we will focus on connectivity assessed in relation to events 
or to (transient) brain states.

Concepts of connectivity and human epileptic activity
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eeG: ProPaGation, sPreaD, source maPPinG, anD connectivity
A key concept in epilepsy is propagation, which is usually under-
stood to mean the observation of similar patterns or of signals 
with different patterns but all suspected of reflecting a common 
underlying phenomenon, on an increasing number of EEG record-
ing channels. This is particularly relevant for seizure activity, where 
it can be commonly observed on intracranial EEG recordings 
(Brazier, 1972; Tao et al., 2007b). There does not seem to be a for-
mal distinction between “spread” and “propagation” in the field of 
epilepsy, although the term spread can be seen as implying spatial 
contiguity and possibly a more passive process than propagation, 
which therefore may be more general. Propagation, and synchroni-
zation to take one of the commonly used measures of propagation, 
implies connectivity and therefore the various ways of character-
izing propagation discussed below are connectivity measures. In 
the following, measures of functional connectivity dominate as 
there have been very few studies attempting to characterize effective 
connectivity in epilepsy.

Signal space connectivity
Continuing with the example of EEG recorded within the brain 
the problem of characterizing propagation is confounded by the 
fact that the most prominent feature may not necessarily reflect 
the driving source (“pacemaker”; Brazier, 1972; Pijn et al., 1990). 
Therefore, early efforts to address the specific problem of identify-
ing the driving component focused on correlation and phase lag 
analysis in the temporal domain or coherence in the frequency 
domain (Walter, 1963). In general, the propagation velocity is 
expected to be large and therefore quantitative methods to detect 
and measure small inter-channel time differences were developed. 
In principle, methods based on spectral estimates such as coherence 
analysis may be best suited to study phenomena of sufficient dura-
tion, such as seizures, while correlation linear or non-linear may 
be applied to shorter epochs (Allen et al., 1992). Event coincidence 
analysis of icEEG data recorded in TLE has been used to identify sets 
of networks involved in interictal epileptiform discharge (IED) gen-
eration with good reproducibility (Bourien et al., 2005; Wendling 
et al., 2009b). For extended discharges (e.g., focal or generalized 
seizures) inter-channel phase difference analyses, evaluated for a 
specific frequency (Brazier, 1972) or over a range of frequencies 
showing a sufficiently high degree of coherence and linear relation-
ship between phase difference and frequency (Gotman, 1983) have 
been used to characterize propagation. Relaxation of the assump-
tion of linearity, which can be violated in epilepsy, has lead to the use 
of more general measures of association (e.g., mutual information 
and non-linear correlation ratio: h2) to study seizure propagation 
(Pijn et al., 1990, 1992; Bartolomei et al., 2001; Wendling et al., 2001, 
2009a; Guye et al., 2006). The ability to identify reliable pre- or early 
ictal connectivity patterns has obvious implications for our ability 
to predict seizures (Litt and Lehnertz, 2002; Mormann et al., 2007; 
see Hughes, 2008 for an interesting historical account).

Another application of the concept of connectivity in epilepsy 
has been the more recent attempts to identify syndrome-specific 
patterns in resting-state EEG data. For example, the concept of 
generalized synchronization has been used to identify functional 
connectivity differences in resting-state scalp EEG at the global 
level or regionally based on icEEG between patient groups with 

potential diagnostic value (Monto et al., 2007; Bettus et al., 2008; 
Douw et al., 2010). Below, we will discuss how the same approach 
has been used on fMRI data.

Scalp EEG and MEG source space connectivity
Changes in scalp EEG/MEG field topography reflect a combination 
of changes in source morphology and strength, and noise (Ebersole 
and Hawes-Ebersole, 2007). Although subjective, the interpreta-
tion of changes in scalp EEG patterns in terms of lobar localization, 
lateralization, and generalization forms an integral part of clinical 
practice. However, characterization of neural connectivity based 
on quantitative analyses of scalp EEG in signal space is particularly 
problematic because the signals result from propagation through the 
head and subject to fundamental ambiguities of source identification 
(Schoffelen and Gross, 2009). Furthermore, even for such simple 
events as focal spikes, propagation, or spread can result in severe vio-
lations of the modeling assumptions, such as synchronized activity 
over a relatively limited cortical area for the case of the single mov-
ing dipole. The demonstration that 10 cm2 of synchronously active 
cortex is necessary to produce a visually recognizable spike on scalp 
EEG (Tao et al., 2005, 2007a) suggests that point dipole mapping 
may often break down. Nonetheless, source tracking has been used 
to characterize spike propagation within the brain, possibly down to 
the sub-lobar level although careful interpretation of any localizing 
information is required in view of the above caveats (Ebersole and 
Hawes-Ebersole, 2007). Ictal activity represents a much greater chal-
lenge due to the length and complexity of the events, with rare studies 
attempting to link the intracranial and scalp EEG representations 
of ictal spread (Tao et al., 2007b). The observed complex dynamic 
patterns of synchrony mean that we are even further from useful 
source-based analyses than for interictal discharges.

It is beyond the scope of this review to discuss the entire range 
of generator models available to the investigator and clinician, from 
the single moving equivalent current dipole (ECD) to distributed 
source models of cortical patches. However, these can be charac-
terized as essentially static, and address the problem of estimating 
spatial activity profile under various spatial constraints at each 
time point. This can be taken to reflect a lag between our under-
standing of the biophysics of generator geometry (point dipole 
as a representation of EPSP and IPSP in the pyramidal neuron) 
versus that of generator dynamics. Although there have been recent 
efforts to incorporate the temporal dimension to source estimation, 
the use of such techniques to assess spread remains to be assessed 
(Daunizeau et al., 2006).

The spread of epileptiform activity, measured as the ratio of the 
regional MEG dipole source strength in a distributed model over 
the local noise level, has been mapped (statistically) at 2.5 ms inter-
vals showing realistic patterns in a few children with focal epilepsy, 
comparing advantageously to the results of serial ECD fitting for 
interictal activity (Shiraishi et al., 2005a,b) and for discharges in 
the early ictal period (Tanaka et al., 2009).

In generalized epilepsy, EEG/MEG source phase synchrony 
analysis based on its surrogate measure, instantaneous narrow-
band frequency locking, has been used to study long-range cortical 
synchronization during 3-Hz generalized spike-wave discharges, 
allowing the identification of a consistent fronto-central network, 
in agreement with other localization studies (Amor et al., 2009).
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Ictal events can also be studied, either fortuitously or intention-
ally, although the occurrence of seizures in the scanner poses a 
specific health hazard which requires special attention. Although 
a priori simultaneous EEG is not always necessary to study ictal 
events using fMRI in a given patient depending on clinical fea-
tures it can be an important source of information. Without EEG 
and in absence of clinical manifestations or ictal trigger, fMRI can 
be used to study the resting-state brain hemodynamics without 
reference to any specific event, allowing comparing features of the 
fMRI signal such as inter-regional temporal correlation patterns 
(i.e., functional connectivity) across patient groups, for example 
(Guye et al., 2008, 2010).

There have now been more than 100 publications describing 
fMRI studies of epileptic activity in humans, mostly with simulta-
neous EEG recording and using a general linear modeling approach, 
which have revealed sometimes complex patterns of IED or seizure-
related BOLD changes in a large proportion of the cases studied. 
Using this approach maps containing multiple significant BOLD 
clusters can be said to represent networks to the extent that the 
signals in those regions show a sufficient high degree of correlation 
with the modeled waveform. However, in the context of functional 
connectivity, it is worth remembering that the fact that two signals 
significantly correlated with a third (e.g., a modeled signal) does not 
imply that the former are significantly correlated with each other. 
Therefore, fMRI functional connectivity analyses are typically based 
on calculating inter-regional correlations directly from the data. 
For example, Waites et al. (2006) showed differences in resting-
state functional connectivity patterns in the language network in 
patients with TLE compared to a group of healthy controls. Also 
in TLE, studies of resting-state fMRI connectivity have focused on 
identifying asymmetries with possible clinical implications (Bettus 
et al., 2009, 2010).

In the above studies, the characterization of networks is per-
formed based on correlation analyses of time series data acquired 
over extended periods of rest, without reference to specific events, 
and do not address causality. There have been a few applications 
of DCM to fMRI data in epilepsy to study effective connectivity in 
networks associated with generalized spike-wave discharges (David 
et al., 2008a; Vaudano et al., 2009). The final section of this article 
focuses on DCM, in particular its possible role in elucidating the 
pathological mechanisms responsible for epileptic activity based 
on electrophysiological and hemodynamic data.

electroPhysioloGical markers of ePilePsy: ictal anD 
interictal ePilePtiform eeG Patterns
The epileptiform patterns commonly observed on scalp EEG record-
ings from patients with epilepsy can be categorized as arising focally 
or appearing simultaneously over a large region or propagating 
to many remote locations. The identification and characteriza-
tion of these patterns form an important element of the patient’s 
assessment and subsequent management. As for all types of brain 
activity neural interactions form a central element in the onset, 
continuation and cessation of epileptic activity. In this section we 
review the phenomenology of epileptic activity and the underly-
ing neural interactions but with special emphasis on the aspects 
of connectivity that can be measured using human brain imaging 
and electrophysiology.

Causality and effective connectivity
A number of generalized measures of signal synchrony possess 
asymmetry which has been used to infer “driver-response” relation-
ships (Le Van Quyen et al., 1998; Quiroga et al., 2002). However, the 
causality inferred from these has been shown to be dubious in the 
presence of noise (Quiroga et al., 2000) although there are examples 
of agreement with clinical data (Le Van Quyen et al., 1998). Of note 
is the use of generalized synchrony on icEEG (inter-channel spike 
peak time delay measurements) to validate a model of effective 
connectivity during seizures based on fMRI data in a rat model of 
epilepsy [David et al., 2008a; see Section “Signal Generation and 
Effective Connectivity Modeling in Epilepsy” on dynamic causal 
modeling (DCM)].

Granger causality (GC, sometimes referred to as Granger–
Geweke causality; see Kaminski et al., 2001) is based on the notion 
that one signal can be called causal with respect to another if the 
latter can be better predicted by using information from the former. 
The directed transfer function (DTF; Kaminski and Blinowska, 
1991), which was subsequently shown to be a generalization of GC, 
has been used to study information flow on icEEG data recorded 
during epileptic seizures (Franaszczuk and Bergey, 1998). More 
recently, a dynamic form of GC has been proposed for the study of 
epileptic spike propagation measured with MEG (Lin et al., 2009). 
The method can be used to track changes in effective connectiv-
ity based in the temporal and frequency domains over sub-spike 
time scales.

Dynamic causal modeling is a model of effective connectivity 
based on a biophysically realistic generative model of the signals 
and there are versions of DCM for EEG, MEG, and fMRI (see 
Section “Signal Generation and Effective Connectivity Modeling in 
Epilepsy” for a more detailed discussion of DCM). DCM is a rela-
tively novel approach that was introduced as a generic formalism for 
studying effective connectivity in a seminal paper by Friston et al. 
(2003). In brief, at the heart of DCM is a set of bilinear differential 
equations (of the same form as Newtonian motion equations) that 
relate the rate of change in regional neuronal activity in terms of 
linearly separable components that reflect the influence of other 
regional state variables (Friston et al., 2003). One of DCM’s main 
claims is that it attempts to model neuronal states through genera-
tive models in contrast to other approaches to effective connectivity 
such as Granger causal modeling, which model the signals (Friston, 
2009). DCM has been used to study plasticity in the human epilep-
tic focus using evoked responses measured intracranially (David 
et al., 2008b).

functional mri: functional anD effective connectivity
Compared to EEG or even MEG, fMRI is a newcomer in the toolkit 
available to investigators interested in studying epileptic activity. 
Among the attractive aspects of the technique in comparison with 
EEG and MEG are: its capacity to image the entire brain more 
or less uniformly without the need to solve the inverse problem, 
its spatial resolution and the potentially complimentary nature 
of the information it provides (hemodynamic). The addition of 
simultaneous EEG recording means that one is able to correlate the 
fMRI time series data with subclinical (unpredictable and brief) 
events, such as IED, with the aim of mapping the associated hemo-
dynamic changes.
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Fast oscillations
Ripple oscillations (100–200 Hz) are physiological phenomena 
that occur in relationship with hippocampal sharp waves. An 
observation in epileptic tissue is the presence of even higher fre-
quency (250–500 Hz) oscillations, also termed fast ripples, which 
seem to be a marker of epileptogenicity (Bragin et al., 1999; Jacobs 
et al., 2009). These can occur in association with IEDs but also may 
precede seizures. It is likely that most high frequency oscillations 
are generated in and remain restricted to small areas of neocortex, 
but more rarely can occur over larger areas which may be more 
indicative of epileptogenic cortex (Schevon et al., 2009). There 
remains controversy about the mechanisms generating such high 
frequency oscillations. These have been proposed to be due either 
to a barrage of high frequency inhibitory postsynaptic potentials 
from fast spiking interneurons impinging on relatively depolar-
ized principal cells (Trevelyan, 2009) or to the synchronous firing 
of principal neurons coupled through non-synaptic mechanisms 
such as gap junction (providing direct electrical coupling of neu-
rons; Roopun et al., 2010).

Partial seizures
Spike discharges can precede a seizure with progressively less effec-
tive after-hyperpolarizations in mesial temporal lobe epilepsy (King 
and Spencer, 1995); however, the hallmark of seizure activity is the 
build up of fast activity that is usually initially spatially confined, 
and is distinct from IEDs. The mechanisms underlying this activ-
ity are unclear but it has been proposed to represent the excessive 
firing of a group of principal neurons, perhaps coupled through 
gap junctions (Traub et al., 2001). This pattern evolves to high 
amplitude spikes that occur at a lower frequency. Two questions 
concerning seizures arise: first, what is it that triggers a seizure? 
And second, what is it about an area of cortex that makes it epi-
leptogenic? The first question is far from clear; there are conflicting 
data from analysis of preictal data (see Mormann et al., 2007) that 
suggest that there may be changes occurring minutes before the 
seizure (i.e., the seizure results as a critical point of network activity 
is reached). The transition from normal to epileptiform behavior 
is probably caused by greater spread and neuronal recruitment 
secondary to a combination of enhanced connectivity, enhanced 
excitatory transmission, a failure of inhibitory mechanisms, and 
changes in intrinsic neuronal properties. The second question is 
therefore easier to address as many of these changes have been 
described, but it is unclear which are most important (Walker 
et al., 2007). Indeed, it is likely that there is no unique process and 
that cortex can become epileptogenic via a variety of mechanisms, 
examples of which are given below.

During the development of epilepsy (epileptogenesis) changes 
have been documented in neuronal properties (Su et al., 2002), ion 
channel expression (Bernard et al., 2004; Shah et al., 2004), and 
GABAergic inhibition (Obenaus et al., 1993; Cossart et al., 2001). 
Moreover GABA(A) receptor potentials can and shift from hyper-
polarizing to depolarizing (potentially excitatory; Cohen et al., 
2002; and the effect of this on, for example, the BOLD response 
to GABAergic inhibition is not clear). Excitatory transmission is 
potentiated not only through changes in receptors (Lieberman 
and Mody, 1999; Porter et al., 2006), but also through sprouting 
of excitatory fibers (Tauck and Nadler, 1985). Sprouting has been 

the Generators of ePilePtiform activity
While our understanding of the basic neurophysiology of the 
generators of epileptic activity has been derived from studies at 
the microscopic level, we envisage increasingly direct links with 
phenomenology at higher scales and that these will be made 
through biophysically realistic models of whole-brain signals, 
such as DCM (to be discussed in Section “Signal Generation and 
Effective Connectivity Modeling in Epilepsy”). The possibility of 
identifying and characterizing the pathological substrate of whole-
brain data within such a framework would rest on models capable 
of representing the neurophysiological excesses and deficiencies 
described below, be they node-specific or network-wide, at the 
appropriate scale.

Interictal discharges
Interictal epileptiform discharges include spikes, which are fast 
electrographic transients lasting less than 70 ms and sharp waves, 
which last 70–120 ms (de Curtis and Avanzini, 2001); these occur 
rarely (<1%) in healthy individuals (Gregory et al., 1993), and 
are strongly associated with epilepsy (Marsan and Zivin, 1970). 
IEDs are generated by the synchronous “activation” of a large 
numbers of neurons – in order to be detectable by scalp EEG, the 
synchronous activation of 10–20 cm2 of gyral cortex is necessary 
(Tao et al., 2007a). Excitatory postsynaptic potentials following 
activation of glutamate receptors cause an influx of sodium into 
dendrites (current sink), and the consequent flow of sodium 
from the soma (current source). The intracellular correlate of the 
interictal spike is the paroxysmal depolarizing shift (Matsumoto 
and Marsan, 1964), a slow depolarizing potential with a high 
frequency (>200 Hz) burst of action potentials. A number of 
pathological mechanisms have been proposed to underlie the 
interictal spike, including changes in the intrinsic burst proper-
ties of neurons (increased neuronal excitability) and increased 
network excitability (secondary to changes in neurotransmission 
and/or neuronal connectivity).

Interictal epileptiform discharges are usually followed by 
a slow wave lasting hundreds of milliseconds. This depends 
upon the activation of hyperpolarizing GABA(A) and GABA(B) 
 receptor-mediated currents and calcium-dependent potassium 
currents (de Curtis and Avanzini, 2001; McCormick and Contreras, 
2001). Therefore, IEDs activate hyperpolarizing currents, resulting 
in a post-spike refractory period during which neuronal activity 
is inhibited (de Curtis and Avanzini, 2001). Increased interictal 
spiking occurs after seizures, raising the possibility that this is 
a compensatory antiepileptic response (de Curtis and Avanzini, 
2001). Indeed, experiments in entorhinal cortex–hippocampal 
slice preparations have confirmed the antiepileptic potential of 
spikes. Spike discharges generated in the CA3 region inhibited 
epileptic activity in the entorhinal cortex, so that sectioning of part 
of the hippocampal circuitry, preventing invasion of the entorhinal 
cortex by these spikes, led to potentiation of entorhinal cortex 
seizure activity (Barbarosie and Avoli, 1997). This leads to two 
important conclusions: first, interictal spikes can have a lasting 
inhibitory effect; second, they can have this effect remote from 
where the spikes arise. This is critical for understanding cortico-
cortical signal propagation as single spikes may disrupt propaga-
tion by, in effect, silencing cortical areas.
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sites through longer range connections. However, recruitment 
depends on not only connections between different brain regions 
but also the ease with which a brain region can be recruited (see 
below). In some situations the observed propagation pattern can 
be rationalized based on general anatomical knowledge and can 
be correlated with the evolution of clinical signs (in the case 
of seizures), however these can significantly vary from event to 
event and our general understanding of these patterns remains 
poor; studies comparing patient-specific structural connectivity 
(MRI tractography) with interictal and ictal propagation pat-
terns are just beginning to emerge (Hamandi et al., 2007; Diehl 
et al., 2010).

Nonetheless, the mechanisms underlying propagation and 
recruitment at these different scales are probably quite similar, 
though may differ for interictal and ictal activity. An IED can be 
considered in three distinct mechanistic stages: initiation, prop-
agation, and termination (Pinto et al., 2005). The threshold for 
initiation depends upon the balance of excitation and inhibition. 
However, propagation velocity depends solely upon excitation, 
probably because the delay between excitatory activity and the 
recruitment of inhibitory activity provides a window during which 
an IED can propagate unimpeded by inhibition. The termination 
of an IED is a complex process including depolarizing block and 
synaptic inhibition.

The propagation of seizures is more complex because, by neces-
sity, these are longer lasting and so cannot depend on the short-
lived delay between excitatory and inhibitory activity. Focal seizure 
activity recruits local inhibitory neurons which importantly pro-
vide a strong “surround” inhibition limiting the spread and time 
course of the abnormal activity (Prince and Wilder, 1967). This 
inhibitory constraint provides a mechanism that limits seizure 
activity in both temporal and spatial domains. Repeated seizure 
activity can however result in the breakdown of this constraint 
and seizure propagation. Moreover, the speed of propagation is 
dependent upon the strength of inhibition with faster propagation 
occurring with less powerful inhibitory constraint (Trevelyan et al., 
2006, 2007a). Furthermore, the arrangement of synaptic inhibi-
tion (divergent) in which feed-forward inhibition will constrain 
a number of pyramidal cells results in a stepwise recruitment of 
groups of principal neurons as inhibition fails. The mechanisms 
underlying the breakdown of the inhibitory constraint are unclear 
and may not be unique.

Although propagation of seizure activity may be well-defined, 
the propagation of discharges that occur during seizure activity is 
less certain. Ictal activity is prolonged and so having propagated 
to a region, later repetitive discharges during the ictus will spread 
according to the pattern of the connections of that area and the 
strength of surrounding inhibition. It is therefore possible that 
later discharges during the ictus may back propagate to areas from 
which the seizure has spread (Trevelyan et al., 2007b). This is also 
observed with human recordings.

siGnal Generation anD effective connectivity 
moDelinG in ePilePsy
In this section we consider the scope for uni- and multi-modal 
data to be brought together in a biophysically realistic modeling 
and data statistical analysis framework, namely DCM.

most clearly demonstrated in the dentate gyrus in which recur-
rent collaterals form between dentate granule cells, and this hyper-
connectivity promotes the formation of local excitatory circuits 
and hyper-excitability. Importantly, however, the probability of a 
connection between any two granule cells is low and the observed 
hyper-excitability may be explained by non-random connectivity 
and the formation of a few, highly connected “hub” cells (Morgan 
and Soltesz, 2008), a feature of small-world networks. Epileptogenic 
insults are also associated with gliosis, altering the regulation of 
external potassium (Lux et al., 1986) and contributing to the 
release of neurotransmitters into the extracellular space (Tian 
et al., 2005). There are also changes in non-synaptic mechanisms 
involving increases in ephaptic transmission and the expression 
of gap junctions which may promote neuronal synchronization 
(Jefferys, 1995). Suggesting that the local spread of seizure activity 
can occur independent of axonal connections.

Some of these changes (e.g., excitatory fiber sprouting, gliosis, 
neuronal death) have an obvious anatomical correlate and can be 
easily quantified by microscopic and, on occasion, macroscopic 
tools. Moreover, pathologies leading to these changes such as 
stroke, tumors, cortical dysgenesis, traumatic brain injury are often 
clearly evident, and although the hallmark of these pathologies 
(e.g., brain damage) may not be the substrate for the epileptogenic 
process, they are an indicator of an epileptogenic process. However, 
these clear anatomical changes are not necessary for a network to 
become epileptogenic and certain changes (e.g., in ion channels 
and receptors) may only be apparent with functional investiga-
tion. Therefore, epileptogenic cortex may not always be discernible 
using anatomic techniques.

Absence seizures and 3 Hz spike-wave discharges
Absence seizures are generalized seizures which are generated within 
the thalamocortical loop. This depends upon the recruitment of 
reticular thalamic neurons by the neocortex. These in turn hyper-
polarize (inhibit) thalamocortical neurons. This activates various 
ionic currents, resulting in the rebound burst firing of thalamocor-
tical neurons which project onto and excite neocortical neurons and 
so the cycle repeats (McCormick and Contreras, 2001). Absences 
were originally believed to be generated subcortically, by thalamic 
neurons initially driving the recruitment of neocortical neurons. 
However, paroxysmal oscillations within thalamocortical loops in 
absence seizures in rats seem to originate in the somatosensory 
cortex rather than the thalamus, with synchronization mediated 
by rapid intracortical propagation of seizure activity (Meeren et al., 
2002). This is supported by anatomical evidence in humans of sub-
tle cortical structural abnormalities in some patients with absence 
seizures (Woermann et al., 1999). Indeed, this and the potential 
of focal pathological change in the medial frontal lobe to generate 
absence-like seizures have blurred the distinction between focal 
and generalized epilepsies.

ProPaGation of ePilePtic activity: observations anD 
mechanisms
Both IEDs and seizures propagate, by which we mean that the 
pathological EEG pattern spreads to distant brain areas, reflect-
ing recruitment of neuronal activity in those areas. This occurs 
locally due to local connections and networks and at more distant 
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Why shoulD We attemPt moDel-baseD effective connectivity 
analyses to stuDy ePilePsy?
As can be abstracted from the previous sections, initiation, propa-
gation, and termination of epileptiform activity are thought to 
result from the complex interplay between the natural balance of 
excitation and inhibition within the system and some pathological 
perturbations of various physiological processes, e.g., neuromodu-
latory activity (impacting upon neuronal excitability). This is most 
probably the reason why epilepsy expresses itself at so many differ-
ent spatial and temporal scales of observation, from e.g., genetic 
disruptions of biomolecular neuronal properties (e.g., conforma-
tional change of ion channels, see Steinlein, 2004) to macroscopic 
structural abnormalities (e.g., cortical thickness in temporal lobe 
epilepsy, see Bernhardt et al., 2010), through impaired resting-state 
activity (e.g., phasic suspension of the attentional network; see 
Gotman et al., 2005; Hamandi et al., 2006; Laufs et al., 2007).

At first glance, it does not seem possible to embrace the diver-
sity of these traits within a common comprehensive theoretical 
framework. However, it must be the case that adequately realis-
tic models of brain dynamics, in conjunction with appropriate 
brain activity measurements, can reveal the link between these 
phenomena (Wendling, 2008). This is because whether or not 
a given trait is related to epilepsy has to do with the observed 
correlation between its occurrence and the presence of epilepti-
form brain activity, such as focal seizures or generalized spike-
wave discharges. For example, if a model is able to account for 
basic cellular mechanisms such as the impact of neurotransmit-
ter levels onto average ion channel dynamics, it might be able 
to link genetic observations to neuroimaging. If such a model 
was also able to account for the relative proportion of cell types 
in different cortical layers (e.g., pyramidal cells in layer IV and 
excitatory/inhibitory interneurons in layer VI), it might be able 
to predict dynamical changes resulting from sufficiently speci-
fied loss of gray matter. Finally, if it was based on the notion of 
a distributed brain network to capture observed transient and 
steady-state macroscopic dynamics, it might well be an appropri-
ate tool to understand the large-scale structure of epileptogenic 
brain networks.

Having said this, the model alone, even if exquisitely realis-
tic, cannot disambiguate between different candidate scenarios 
about, e.g., what is it that triggers, propagates and/or termi-
nates an observed seizure. This is because the seizure etiology is 
expected to vary greatly across patients, or even within patients. 
In other words, the mechanisms that lead to the seizures are con-
text-dependent. Hence, one cannot predict those a priori, on a 
patient-by-patient basis.

Taken together, this means that one wants to embed sophis-
ticated biophysical models into the statistical data analysis, with 
the aim of exploiting the specificities of the observed (neuroim-
aging) data to identify the subject-specific relevant mechanisms 
underlying epileptiform activity. This is the basic idea behind 
DCM (Friston et al., 2003). The DCM framework has two main 
components: biophysical modeling and probabilistic statistical 
data analysis. Realistic neurobiological modeling is required to 
simulate observed brain network dynamics. However, context-
dependent variables of these models cannot be known a pri-
ori, e.g., whether or not activity-dependent plasticity did occur. 

Therefore, statistical  techniques (embedding the above bio-
physical models) are necessary for statistical inference on these 
context-dependent effects, which are the experimental questions 
of interest.

Dcm: state-of-the-art
Nevertheless, existing implementations of DCM restrict the appli-
cation of this generic perspective to more specific questions that are 
limited either by the unavoidable simplifying assumptions of the 
underlying biophysical models and/or by the bounded efficiency of 
the associated statistical inference techniques. In brief, the validity 
of DCM relies upon a careful balance between the realism of the 
underlying biophysical models and the feasibility of the statistical 
treatment. This has motivated the development of many variants 
of DCM, focusing on either of the two DCM components. To date, 
about 30 DCM methodological articles have been published in the 
peer-reviewed literature (see Daunizeau et al., 2010 for a recent 
review).

The (Bayesian) statistical treatment of DCM eventually provides 
model parameter estimates (synaptic time constants, action poten-
tial thresholds, adaptation effects, etc…) and the model marginal 
likelihood. The latter quantity measures how likely is a model given 
the measured (neuroimaging) dataset, and is used to perform sta-
tistical model comparison. This statistical component of DCM is 
further described below (see DCM: Statistical Data Analysis). This 
can be useful to identify epileptogenic mechanisms that are a priori 
likely to underlie ictal or interictal epileptiform activity.

In brief, DCM for fMRI data includes a simple dynamical model 
of coupled brain regions as well as a model of neurovascular cou-
pling, relating neural activity to BOLD time series. In addition, it 
comes in three flavors:

- whether or not distinct excitatory and inhibitory populations 
are considered within each region of the brain network

- whether or not one includes spontaneous (stochastic) fluctua-
tions in the brain network dynamics

- whether or not (non-linear) gating effects, whereby activity in 
one area enables or disables a connection between two other 
areas, are assumed to underlie observed brain dynamics.

In its simplest form, Bayesian model comparison was used in 
Vaudano et al. (2009) to assess the structure of the epileptogenic 
network in terms of the role of three brain structures, namely tha-
lamus, prefrontal cortex, and precuneus in seizure generation or 
facilitation using EEG–fMRI data in seven patients with idiopathic 
generalized epilepsy (IGE). The findings lead the authors to hypoth-
esize a role for the precuneus as a form of modulator of generalized 
spike-wave activity, and by extension, of the occurrence of absence 
seizures, linking spontaneous fluctuations in brain state as reflected 
by the so-called Default-Mode Network of brain activity (Raichle 
et al., 2001) to the occurrence of epileptic discharges (Vaudano 
et al., 2009; Carney et al., 2010).

David et al. (2008a) performed concurrent fMRI and icEEG 
measurements to measure the spread of excitation in a geneti-
cally defined type of epilepsy in rodents. It is important to 
note that in these studies, the onset of EEG epileptic activity 
(back-shifted in time in the case of David et al., 2008a) was 
treated as the input (knowledge of which is required, except 
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- which data features one wants to model, i.e., evoked responses 
in the time domain, steady-state responses in the frequency 
domain, induced responses in the time-frequency domain, 
oscillations in the (within-frequency band) phase domain, etc;

- whether or not voltage-dependent effects on membrane ion 
conductances are included in the model;

- whether local spatial propagation effects are considered, in 
relation to the size of the brain regions participating in the 
network.

The previously mentioned work by David (2007) is a first step 
toward understanding the gradual recruitment of the epileptogenic 
network that gives rise to epileptic discharges within the framework 
of DCM. Some of the critical pathological mechanisms discussed in 
the previous section can already be assessed through DCM analyses. 
This is because one can include these in terms of a priori beliefs onto 
model parameters (e.g., altered voltage-dependent sodium channel 
kinetic time constants) or even on model structure (e.g., anatomi-
cally localized cell type-specific neuronal death), and quantify how 
likely they are, given observed brain dynamics.

Dcm: statistical Data analysis
The need for neurobiological plausibility can make DCMs fairly 
complex, compared to conventional regression-based models of 
effective connectivity, such as structural equation modeling (SEM; 
McIntosh and Gonzalez-Lima, 1994; Büchel and Friston, 1997) 
or autoregressive models (Harrison et al., 2003; Roebroeck et al., 
2005). This complexity induces potential non-identifiability prob-
lems, requiring novel sophisticated model inversion techniques 
that are typically cast within a Bayesian framework. For example, 
the non-linearities of the models, as well as the dimension of the 
dynamical systems involved, have necessitated the development 
of dedicated approximate inference schemes, namely variational 
Bayes (VB; see e.g., Beal, 2003). In brief, VB is an iterative algo-
rithm that indirectly optimizes an approximation to both the 
model evidence (used for model comparison) and the posterior 
density (for parameter estimation), under simplifying assump-
tions about the form of the latter distribution (see, e.g., Friston 
et al., 2007). Furthermore, developments have been required to 
address Bayesian model comparison for group studies. Stephan 
et al. (2009) address random effects on models at the between-
subjects level, i.e., accounting for group heterogeneity or outliers. 
This second-level analysis provides the so-called “exceedance prob-
ability,” of one model being more likely than any other model, 
given the group data. It also introduced model space partitioning, 
which allows one to compare subsets of all models considered, 
integrating out uncertainty about any aspect of model structure 
other than the one of interest. This work was recently extended 
to allow for comparisons between model families of arbitrary size 
and for Bayesian model averaging within model families Penny 
et al. (2010). Allowing statistical inference at the level of families 
of model is important whenever the question of interest may cor-
respond to more than one model within the comparison set (e.g., 
serial versus parallel connectivity structure).

Note that using the model evidence to compare models against 
each other means that the most likely model may not be the model 
“fitting best” the data. One should remember that measuring the fit 

–  exceptionally – for stochastic DCMs) in families of models, 
where each model was distinguished by the choice of input 
node, for comparison to identify the best model. One may 
question the meaning of intrinsic activity being treated as an 
input in this context, given that DCM was conceived based on 
extrinsic inputs under experimental control. In fact, this can 
be interpreted as embodying the empirical assumption that the 
initial cause of the modeled effects corresponds to the time of 
GSW onset. It is worth remembering that the families of models 
considered and the DCM results are as good as the assump-
tions, which they are based on (Penny et al., 2004). Daunizeau 
et al. (2010) has used model comparison on stochastic DCMs 
for fMRI to provide evidence in favor of the existence of (non-
linear) thalamic gating effects onto the cortico-thalamic loop 
during interictal activity1.

“Neural mass” models in DCMs for EEG/MEG/LFP data are 
typically considerably more complex than in DCMs for fMRI. This 
is because the temporal information on neural activity, which can 
be extracted from electrophysiological measurements, can only 
be captured by models that represent neurobiologically detailed 
mechanisms. Here, each region is assumed to be composed of 
three interacting subpopulations (pyramidal cells, spiny-stellate 
excitatory and inhibitory interneurons) whose (fixed) intrinsic 
connectivity was derived from an invariant meso-scale cortical 
structure (Jansen and Rit, 1995). The temporal dynamics of each 
subpopulation relies on two operators: a temporal convolution of 
the average presynaptic firing rate yielding the average postsynap-
tic membrane potential and an instantaneous sigmoidal mapping 
from membrane depolarization to firing rate (see Figure 1). This 
forms the basic building block of DCMs for EEG/MEG/LFP data, 
in the sense that it summarizes the activity within one brain region 
that composes the large-scale network. Such basic building block 
has already been extensively used in the context of epilepsy (see, 
e.g., Wendling, 2008).

Critically though, the qualitative nature of the network dynam-
ics relates to the between-areas connectivity structure. In DCM for 
EEG/MEG/LFP data, three qualitatively different extrinsic (exci-
tatory) connections types are considered (cf. Felleman and Van 
Essen, 1991): (i) bottom-up or forward connections that originate 
in agranular layers and terminate in layer IV, (ii) top-down or back-
ward connections that connect agranular layers, and (iii) lateral 
connections that originate in agranular layers and target all layers. 
Lastly, the model can include the propagation of electromagnetic 
fields through head tissues to address the problem of spatial mixing 
of the respective contributions of cortically segregated sources in 
the measured scalp EEG/MEG data (see e.g., Mosher et al., 1999). 
Existing variants of DCM for EEG/MEG and LFP (local field poten-
tial data) are related to:

1Stochastic DCM refers to an extension of the DCM framework, whereby one as-
sumes that activity within network nodes may by driven by unknown (random or 
stochastic) inputs, in addition to experimentally controlled inputs and influences 
from other areas. In other words, in addition to the usual DCM parameters, one has 
to estimate the trajectory of neural noise that may have distorted the response of 
the system to known inputs. The key idea here is that neural noise can extend the 
dynamical repertoire of the system in a non-trivial way. Besides, stochastic DCM re-
duces to deterministic DCM by a priori constraining the neural noise variance to 0.
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designed to capture these effects. The motivation for including 
the temporal dimension in DCM is actually to allow for feedback 
influences (loopy causal systems), rather than to detect tempo-
ral precedence. This is why DCM is more (though not entirely) 
immune to heterogeneous hemodynamic delays than, e.g., GC 
analyses (David et al., 2008a).

Finally, we would like to stress that DCM is ultimately not an 
exploratory analysis: it is meant to test/compare precise hypoth-
eses about brain function. Furthermore, its mathematical form is 
explicitly based on generic assumptions about brain organization, 
e.g., that the brain enjoys a hierarchical structure. This means that 
DCM is optimally used to answer a specific class of questions, typi-
cally: whether or not feedback/feed-forward influences within the 
network vary as a function of experimental manipulations or per-
turbations (such as diseases). In the context of epilepsy, examples 
of DCM-relevant questions are: (i) whether ictal activity propa-
gates from a region that triggers epileptiform activity, or rather 

(e.g., percentage of variance explained) is not a very good measure 
for the quality of a model. This has to do with the fact that minimiz-
ing residuals can lead to severe lack of generalizability. Correcting 
the fit with complexity penalty terms is the hallmark of Bayesian 
inference schemes, which, as a consequence, do not try to minimize 
the residuals. Within a Bayesian framework, it is thus perfectly 
acceptable to reasonably compromise data fit, if this guaranties 
improved generalizability. Guessing whether or not this trade-off 
is optimal by looking at the fit itself is impossible without factor-
ing in the complexity of the model. In other words, any optimal 
Bayesian inversion only explains in the data what is estimated to 
be generalizable, i.e., reproducible across repetitions of the same 
experiment, given the explanatory factors at hand.

Besides, we would like to further comment on the causal aspect 
of DCM. It is not because DCM relies upon a dynamical formula-
tion that it assesses causal influences from evidence of temporal 
precedence (as, e.g., GC techniques do; see Valdes-Sosa et al., 2011 
for a comprehensive discussion). Time is certainly an important 
dimension of causal influences, but definitely not the main compo-
nent of DCM for fMRI, which, compared to the underlying neural 
events, is poorly temporally resolved. Causality can be inferred from 
non-symmetrical shared variance2 (e.g., see Pearl, 2000). DCM was 

FiGurE 1 | Dynamic causal modeling for EEG/MEG data. (C) Neuronal 
features at the micro-scale that affect the level of the neural ensemble, i.e., at 
the meso-scale (B): (i) sigmoidal transformation, describing how mean 
postsynaptic membrane potential is linked to mean presynaptic firing rate, and 
(ii) temporal convolution (kernel shown) of mean presynaptic firing rate yielding 

mean postsynaptic membrane depolarization. (B) The meso-scale properties 
that affect the macro-scale (A), i.e., within-region invariant connectivity structure 
between pyramidal cells (PC), excitatory interneurons (EI), and inhibitory 
interneurons (II) subpopulations across cortical layers. (A) The macro-scale 
effective connectivity structure.

2Pearl takes the following example: one actually infers that rains causes the grass 
to be wet (and not the reverse), because it does not rain each time the grass is wet 
(due to other – independent – influences, e.g., the gardener), but the grass is wet 
each time it is raining.
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for deactivations (Shmuel et al., 2006; Sotero and Trujillo-Barreto, 
2007). Furthermore, there is no realistic account of the metabolic 
cascade that relates synaptic activity and neuronal metabolism to 
the vasodilatation kinetics (Riera et al., 2006). This is mainly due 
to the simplistic account of neuronal activity in DCMs for fMRI, 
which does not disambiguate between, e.g., postsynaptic membrane 
depolarization and presynaptic firing rate. Also, DCM for fMRI 
has ignored the important role of glial cells (Takano et al., 2006; 
Iadecola and Nedergaard, 2007). We refer the interested reader to 
Rosa et al. (2010) for further reading on the current debate regard-
ing the neurovascular coupling.

Many DCM validation studies have been conducted (see 
Daunizeau et al., 2010 for a review). Among these, the most far-
reaching experimental assessment of the validity of DCM analyses 
so far was done by David et al. (2008a), who performed concurrent 
fMRI and intracerebral EEG measurements to measure the spread 
of excitation in a genetically rat model of absence epilepsy. In brief, 
this study (i) provides supportive evidence for the validity of DCM 
for inferring network structure from fMRI data and (ii) stresses the 
importance of having a realistic model of neurovascular coupling. 
Clearly, further validation studies will be needed. Further invasive 
in vivo measurements of electrical (e.g., implantable miniaturized 
probes or clinical electrodes (combined with fMRI: Vulliemoz et al., 
2010) and optical (e.g., two-photon laser scanning microscopy) 
signals are likely to be very useful for such an experimental valida-
tion (Riera et al., 2008).

Criticisms have also been raised against the statistical com-
ponent of DCM. Most of these are related to the generic proper-
ties of the VB algorithm, which is essentially an approximation 
scheme. We refer the reader to Daunizeau et al. (2010) for a 
comprehensive critical review of the biophysical, statistical and 
practical aspects of DCM. In addition, it has often been advo-
cated that the computational complexity of DCM prevents any 
analysis of a large-scale brain network containing more than a 
handful of nodes/regions. This is supposed to be due to the fact 
that one may have to compare a number of models that is an 
exponentially increasing function of the number of nodes (curse 
of dimensionality). Also, it has been argued that the proportion 
of explained variance in the measured signals was “low,” even for 
the “best” models within the comparison set (this has sometimes 
been referred to as a form of “underfitting”). However, recent 
developments in the statistical treatment of DCM render these 
claims irrelevant:

- The use of Savage–Dickey ratios within a Bayesian framework 
allows one to derive the model evidence of any model that can 
be derived as a reduction of a full “reference” model (i.e., the 
DCM corresponding to an entirely connected network)5. This 
means that one has to perform only one numerical inversion 

that epileptiform activity emerges from self-excitatory influences 
throughout the network; or (ii) how does the system reconfigures 
itself (short-term plasticity) during the interictal to ictal transition. 
DCM is probably not the right data analysis tool to address more 
loosely defined questions about brain organization, e.g., can we 
get a global picture of the networks active during the fMRI data 
acquisition session?…

Dcm: limitations
Neuroanatomical and neurophysiological studies have been cru-
cial in motivating the basic modeling assumptions that underlie 
DCMs for fMRI and electrophysiological data. However, one may 
question whether all neurobiological facts relevant for explaining 
neuronal population dynamics are represented in existing DCMs. 
This question is of particular importance for DCMs of electro-
physiological data, from the healthy or diseased brain, which have 
much more fine-grained representations of neuronal mechanisms 
than DCM for fMRI.

For example, macro-scale propagation effects, mediated by dis-
tance-dependent lateral connections, have not yet been properly 
accounted for3. These effects can be thought of as wave propagation 
in a complex medium, leading to spatiotemporal pattern formation 
or self-organization. Since the early work by Amari (1977), much 
effort has been invested in developing a neural field theory (e.g., 
see Deco et al., 2008 and references therein); incorporating these 
ideas into the DCM framework may prove fruitful.

Also, it is well known that neurons are subject to internal (e.g., 
thermal) noise, which may still have an impact at the population 
scale (see e.g., Soula and Chow, 2007 for “finite size” effects). 
If this is the case, the neural ensemble dynamics would deviate 
from the mean-field theoretical treatment that underlies most 
current modeling efforts in macro-scale neural dynamics (includ-
ing DCMs).

Perhaps most importantly, there are several neurophysiologi-
cal processes at the micro-scale that have been neglected in exist-
ing DCMs, notably activity-dependent plasticity, i.e., continuously 
modified activity-dependent efficacy of synaptic transmission. This 
includes different forms of short-term plasticity, such as synaptic 
depression/facilitation or spike-timing dependent plasticity, and 
long-term plasticity, such as long-term potentiation (LTP) and 
depression (LTD). An important task for the future will be to 
evaluate whether the above processes are necessary for explaining, 
e.g., the transition from interictal to ictal activity, as observed with 
presently available recording techniques.

Concerning DCM for fMRI, the above phenomena are not 
explicitly modeled4. This may (or may not) be a lesser concern than 
for electrophysiological DCMs, since it is unlikely that these fine-
grained mechanisms are accurately reflected in and can be inferred 
from BOLD data. Instead, physiological details of the neurovascular 
coupling are perhaps more important (see Stephan et al., 2004 
for review). So far, it neglects the potential influence of inhibitory 
activity on the hemodynamic response, which is a likely explanation 

3But see Daunizeau et al. (2009a) for a “standing wave” approximation to local pro-
pagation effects.
4But see David (2007), David et al. (2008b), and Stephan et al. (2008) for phenome-
nological accounts of activity-dependent plasticity effects.

5Savage–Dickey ratios rely upon simple conditional probability calculus to nume-
rically derive the relative evidence of nested models from the divergence between 
prior and posterior distributions of the full model. Loosely speaking: if any hypo-
thesis (e.g., θ = 0) is more probable under the posterior than under the prior, then 
it means that the data affords evidence in favor of the hypothesis. It turns out that 
adding such hypotheses to the full model defines nested models, i.e., models with 
fixed (zero) connections in the network. We refer the interested reader to Friston 
et al. (2011) and references therein.
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•	 Stochastic DCMs: Accounting for stochastic inputs to the net-
work may be of particular importance for studying patholo-
gical resting-state data, whereby coherent activity within the 
network is not driven by experimentally controlled inputs 
to the system (which is usually the case in fMRI studies of 
epilepsy). In addition, provided that the probabilistic inver-
sion schemes are properly extended (cf. Friston et al., 2008; 
Daunizeau et al., 2009b), this could also increase the stability 
of the statistical treatment of DCM (e.g., robustness to “mis-
sing regions”).

•	 Plastic DCMs: Aberrant long- and short-term synaptic plasti-
city may play a key role in the gradual recruitment of regions 
within the epileptogenic network. An attractive goal is to 
extend the current DCM framework and, under due consi-
deration of the limits of statistical inversion, represent diffe-
rent neurobiological mechanisms of synaptic plasticity more 
explicitly, such that their relative importance for explaining 
a patient-specific measurement of ictal and interictal acti-
vity can be disambiguated by model selection. Autonomous 
( activity-dependent) plastic effects may turn out to be parti-
cularly important to explain phase transition phenomena, e.g., 
transition from interictal to ictal activity (and back).

These modeling extensions could also benefit from the develop-
ment of explicitly controlled experimental paradigms, provided that 
they can be undertaken ethically. For example, the use of seizure-
inducing repetitive sensory or electrical stimulation might provide 
a statistically very powerful way of disclosing the properties of the 
epileptogenic network. Also, its interaction with non-pathological 
functional networks might be studied in the context of standard 
neuropsychological tasks. Lastly, trans-cranial magnetic stimula-
tion (TMS) and/or deep-brain stimulation (DBS) could be used 
to causally interfere with parts of the network, providing exqui-
site information about the specific role of brain regions within a 
reciprocally connected network. Such experimental paradigms can 
easily be modeled with DCM, as is routinely done nowadays within 
the context of non-clinical neuropsychological research studies.

Discussion anD conclusion
The problem of characterizing the causal chains that give rise to and 
take place during epileptic events is central to our understanding of 
epilepsy, with vital consequences for the development of improved 
seizure management strategies. Following a period dedicated to the 
identification of regional abnormalities, we envisage that studies of 
epileptic activity and its substrate will focus increasingly on network 
aspects. We also believe that the long-term aim of developing non-
invasive (whole-brain) neuroimaging techniques capable of solving 
the presurgical localization problem, by the very nature of the data 
they provide, goes hand in hand with this vision.

We have seen the progressively more sophisticated use of the 
various forms of data available to the investigator interested in 
studying epileptic networks, from scalp EEG to fMRI and alluded to 
increasingly sophisticated models. We have seen how the characteri-
zation of connectivity based on signal propagation relies on empiri-
cal rules mainly based on measures of association. This approach 
has been most rigorous and informative in relation to EEG sig-
nals measured intracranially. Access to hemodynamic brain signals 

(that of the full model) in order to compare all other possi-
ble reduced models (i.e., networks lacking connections). This 
makes it possible to compare thousands of models in a few 
seconds (Friston et al., 2011).

- Following recent developments in probabilistic identification 
of stochastic systems (Friston et al., 2008; Daunizeau et al., 
2009b), the first steps toward stochastic DCMs are now being 
taken (Daunizeau et al., 2011, submitted; Li et al., 2011). These 
models extend the current deterministic DCM framework by 
accounting for unspecific perturbations to the network dyna-
mics. As a result, the proportion of explained variance drasti-
cally increases. Note that being a Bayesian scheme, stochastic 
DCM does not suffer from overfitting, which is the hallmark 
of frequentist statistical techniques.

Having said this, no increase in the sophistication of the statisti-
cal treatment of DCM can legitimately be said to guarantying the 
validity of the overall data analysis. This is already evident when 
considering the bounded realism of the underlying biophysical 
models (c.f. above comments). But more generally, the validity of 
DCM may well be context-dependent. Thus, the relevance of DCM 
within the context of epileptogenic networks has to be quantita-
tively assessed, by cross-validating the analyses with established 
results in the field. In addition, it may be necessary to extend the 
current DCM approach, in order to account for effects that may a 
priori be playing a key role when investigating the genesis, spread 
and termination of epileptic events using neuroimaging techniques. 
We will come to this in the next section.

Dcm: relevant Potential extensions
Despite being so far the most far-reaching experimental assessment 
of the validity of fMRI DCM analyses so far, the study in David et al. 
(2008a) stressed the importance of having a model of neurovascu-
lar coupling. The concurrent use of two important neuroimaging 
modalities (i.e., EEG and fMRI data) raises the need for an inte-
grated framework, whereby the same model is complementarily 
informed by the characteristic spatial and temporal resolutions of 
both datasets, beyond the use of EEG purely as a temporal event 
marker for fMRI modeling or DCM for example (Vaudano et al., 
2009). This appears to be, despite a number of acknowledged theo-
retical and experimental concerns (see Daunizeau et al., 2009c for 
a review about EEG–fMRI information fusion), a promising future 
avenue for studying whole-brain, millisecond range, spontaneous 
or evoked paroxysmal activity and to characterize the underlying 
networks.

But more importantly, other potential extensions of the 
existing DCM framework can be considered to be relevant for 
studying epilepsy:

•	 Field DCMs: By incorporating elements of neural field theory 
(see Amari, 1977), field DCMs could account for local macro-
scale propagation effects. The basic idea here is to account for 
the distributed nature of brain activity (see Daunizeau et al., 
2009a for a first step toward field DCMs). Among other phe-
nomena, this could be helpful to assess within-region spread 
and boundaries of paroxysmal activity (e.g., inhibitory sur-
rounding effects).

Frontiers in Systems Neuroscience www.frontiersin.org March 2011 | Volume 5 | Article 12 | 

Lemieux et al. Epileptic connectivity

75

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Daunizeau, J., Laufs, H., and Friston, K. 
J. (2009c). “EEG-fMRI information 
fusion: biophysics and data analysis,” 
in EEG-fMRI-Physiology, Technique 
and Applications, eds C. Mulert and 
L. Lemieux (Heidelberg: Springer), 
511–522.

Daunizeau, J., Mattout, J., Clonda, D., 
Goulard, B., Benali, H., and Lina, J. 
M. (2006). Bayesian spatio-temporal 
approach for EEG source reconstruc-
tion: conciliating ECD and distributed 
models. IEEE Trans. Biomed. Eng. 53, 
503–516.

David, O. (2007). Dynamic causal models 
and autopoietic systems. Biol. Res. 40, 
487–502.

David, O., Guillemain, I., Saillet, S., Reyt, 
S., Deransart, C., Segebarth, C., and 
Depaulis, A. (2008a). Identifying neu-
ral drivers with functional MRI: an 
electrophysiological validation. PLoS 
Biol. 6, 2683–2697. doi: 10.1371/jour-
nal.pbio.0060315

David, O., Wozniak, A., Minotti, L., and 
Kahane, P. (2008b). Precital short-
term plasticity induced by 1 Hz stim-
ulation. Neuroimage 39, 1633–1646.

de Curtis, M., and Avanzini, G. (2001). 
Interictal spikes in focal epileptogen-
esis. Prog. Neurobiol. 63, 541–567.

Deco, G., Jirsa, V. K., Robinson, P., 
Breakspear, M., and Friston K. J. 
(2008). The dynamic brain: from 
spiking neurons to neural masses 
and cortical fields. Plos. Comput. Biol. 
4, e1000092. doi: 10.1371/journal.
pcbi.1000092

Diehl, B., Tkach, J., Piao, Z., Ruggieri, 
P., LaPresto, E., Liu, P., Fisher, E., 
Bingaman, W., and Najm, I. (2010). 

Büchel, C., and Friston, K. J. (1997). 
Modulation of connectivity in visual 
pathways by attention: cortical inter-
actions evaluated with structural 
equation modelling and fMRI. Cereb 
Cortex 7, 768–778.

Buzsaki, G., Kaila, K., and Raichle, M. 
(2007). Inhibition and Brain Work. 
Neuron 56, 771–783.

Carney, P. W., Masterton, R. A. J., Harvey, 
A. S., Scheffer, I. E., Berkovic, S. F., and 
Jackson, G. D. (2010). The core net-
work in absence epilepsy –  differences 
in cortical and thalamic BOLD 
response. Neurology 75, 904–911.

Cohen, I., Navarro, V., Clemenceau, S., 
Baulac, M., and Miles, R. (2002). 
On the origin of interictal activity in 
human temporal lobe epilepsy in vitro. 
Science 298, 1418–1421.

Cossart, R., Dinocourt, C., Hirsch, J. C., 
Merchan-Perez, A., De Felipe, J., Ben-
Ari, Y., Esclapez, M., and Bernard, C. 
(2001). Dendritic but not somatic 
GABAergic inhibition is decreased in 
experimental epilepsy. Nat. Neurosci. 
4, 52–62.

Daunizeau, J., David, O., and Stephan, K. 
E. (2010). Dynamic causal modelling: 
a critical review of the biophysical and 
statistical foundations. Neuroimage (in 
press).

Daunizeau, J., Kiebel, S. J., and Friston, K. J. 
(2009a). Dynamic causal modeling of 
distributed electromagnetic responses. 
Neuroimage 47, 590–601.

Daunizeau, J., Friston, K. J., and Kiebel, S. 
J. (2009b). Variational Bayesian iden-
tification and prediction of stochas-
tic nonlinear dynamic causal models. 
Physica D 238, 2089–2118.

references
Allen, P. J., Smith, S. J. M., and Scott, C. 

A. (1992). Measurement of interhemi-
spheric time differences in generalised 
spike-and-wave. Electroencephalogr. 
Clin. Neurophysiol. 82, 81–84.

Amari, S. (1977). Dynamics of pattern 
formation in lateral inhibition type 
neural fields. Biol. Cybern. 27, 77–87.

Amor, F., Baillet, S., Navarro, V., Adam, C., 
Martinerie, J., and Le Van Quyen, M. 
(2009). Cortical local and long-range 
synchronization interplay in human 
absence seizure initiation. Neuroimage 
45, 950–962.

Barbarosie, M., and Avoli, M. (1997). 
CA3-driven hippocampal-entorhinal 
loop controls rather than sustains 
in vitro limbic seizures. J. Neurosci. 
17, 9308–9314.

Bartolomei, F., Wendling, F., Bellanger, 
J. J., Regis, J., and Chauvel, P. (2001). 
Neural networks involving the medial 
temporal structures in temporal lobe 
epilepsy. Clin. Neurophysiol. 112, 
1746–1760.

Beal, M. (2003). Variational Algorithms for 
Approximate Bayesian Inference. Ph.D. 
thesis, Gatsby Computational Unit, 
University College London, London.

Bernard, C., Anderson, A., Becker, A., 
Poolos, N. P., Beck, H., and Johnston, 
D. (2004). Acquired dendritic chan-
nelopathy in temporal lobe epilepsy. 
Science 305, 532–535.

Bernhardt, B. C., Bernasconi, N., Concha, 
L., and Bernasconi, A. (2010). Cortical 
thickness in temporal lobe epilepsy. 
Neurology 74, 1776–1784.

Bettus, G., Bartolomei, F., Confort-Gouny, 
S., Guedj, E., Chauvel, P., Cozzone, P. 

J., Ranjeva, J. P., and Guye, M. (2010). 
Role of resting state functional con-
nectivity MRI in presurgical investiga-
tion of mesial temporal lobe epilepsy. 
J. Neurol. Neurosurg. Psychiatry. 81, 
1147–1154.

Bettus, G., Guedj, E., Joyeux, F., Confort-
Gouny, S., Soulier, E., Laguitton, V., 
Cozzone, P. J., Chauvel, P., Ranjeva, J. 
P., Bartolomei, F., and Guye, M. (2009). 
Decreased basal fMRI functional con-
nectivity in epileptogenic networks 
and contralateral compensatory 
mechanisms. Hum. Brain Mapp. 30, 
1580–1591.

Bettus, G., Wendling, F., Guye, M., 
Valton, L., Regis, J., Chauvel, P., and 
Bartolomei, F. (2008). Enhanced EEG 
functional connectivity in mesial tem-
poral lobe epilepsy. Epilepsy Res. 81, 
58–68.

Bourien, J., Bartolomei, F., Bellanger, 
J. J., Gavaret, M., Chauvel, P., and 
Wendling, F. (2005). A method to 
identify reproducible subsets of co-
activated structures during interictal 
spikes. Application to intracerebral 
EEG in temporal lobe epilepsy. Clin. 
Neurophysiol. 116, 443–455.

Bragin, A., Engel, J. Jr., Wilson, C. L., 
Fried, I., and Mathern, G. W. (1999). 
Hippocampal and entorhinal cor-
tex high-frequency oscillations 
(100–500 Hz) in human epileptic 
brain and in kainic acid – treated 
rats with chronic seizures. Epilepsia 
40, 127–137.

Brazier, M. A. (1972). Spread of seizure 
discharges in epilepsy: anatomical and 
electrophysiological considerations. 
Exp. Neurol. 36, 263–272.

physiological techniques, such as depth EEG, and the BOLD sig-
nal (see Buzsaki et al., 2007; Logothetis, 2008). This makes the 
comparison of measures of connectivity based on the two types 
of data even more complex.

Nonetheless, the advent of models of effective connectivity 
such as DCM, incorporating increasingly sophisticated models 
of neuronal activity at various scales, combined with our improved 
understanding of the interictal and ictal states and the transi-
tion between them offers the opportunity for the first time to 
explore epileptic networks over the entire brain in a mechanistic, 
causal framework through model comparison. Efforts to tackle 
this challenge have already been made in relation to generalized 
spike-wave activity and absence seizures, due to the presence of 
a good rationale for a limited number of alternative models. The 
challenge is much greater in focal epilepsy where the phenom-
enology is much more varied. In addition, through our increasing 
understanding of the integrative aspects of brain activity derived 
from whole-brain cognitive neuroimaging studies this may help us 
answer questions such as: What is the interaction between fluctua-
tions in connectivity associated with normal brain activity and the 
networks associated with paroxysmal events? Why do spikes and 
seizures occur when they do?

measured non-invasively during spontaneous epileptic activity in 
humans is a novel and potentially important avenue for the study 
of the temporal relationship between activities in different brain 
regions in a complementary way to electrophysiological study. For 
example, such studies may be able to reveal changes taking place 
over long time scales more easily than using electrophysiological 
techniques.

In the context of attempts to characterize the networks 
involved in seizure onset, propagation and cessation based on 
macroscopic measurements such as EEG/MEG and fMRI, the 
lack of a complete understanding, particularly in humans, of the 
underlying network dynamics poses a challenge and therefore 
an opportunity. This is because we do not really know what 
we are looking for with neuroimaging; the limitations of our 
gold standard (currently icEEG and post-surgical outcome) are 
clear to see. Therefore, we are still essentially at the stage of 
mapping hemodynamic changes based on temporal coincidence 
with scalp EEG and/or clinical manifestations. Even if we had a 
more complete electrophysiological description of such networks 
which for example could be used to devise more sophisticated 
GLMs, we do not yet fully understand the relationship between 
neuronal activity as measured using the most advanced electro-

Frontiers in Systems Neuroscience www.frontiersin.org March 2011 | Volume 5 | Article 12 | 

Lemieux et al. Epileptic connectivity

76

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


temporal lobe epilepsy. J. Clin. 
Neurophysiol. 12, 32–45.

Laufs, H., Hamandi, K., Salek-Haddadi, 
A., Kleinschmidt, A. K., Duncan, J. 
S., and Lemieux, L. (2007). Temporal 
Lobe Interictal Epileptic Discharges 
Affect Cerebral Activity in ‘‘Default 
Mode’’. Brain Regions. Human Brain 
Mapping 28, 1023–1032.

Le Van Quyen, M., Adam, C., Baulac, M., 
Martinerie, J., and Varela, F. J. (1998). 
Nonlinear interdependencies of 
EEG signals in human intracranially 
recorded temporal lobe seizures. Brain 
Res. 792, 24–40.

Li, B., Daunizeau, J., Stephan, K. E., 
Penny, W., and Friston K. J. (2011). 
Stochastic DCM and generalized fil-
tering. Neuroimage (in press).

Lieberman, D. N., and Mody, I. (1999). 
Properties of single NMDA receptor 
channels in human dentate gyrus gran-
ule cells. J. Physiol. 518(Pt 1), 55–70.

Lin, F. H., Hara, K., Solo, V., Vangel, M., 
Belliveau, J. W., Stufflebeam, S. M., and 
Hamalainen, M. S. (2009). Dynamic 
Granger–Geweke causality modeling 
with application to interictal spike 
propagation. Hum. Brain Mapp. 30, 
1877–1886.

Litt, B., and Lehnertz, K. (2002). Seizure 
prediction and the preseizure period. 
Curr. Opin. Neurol. 15, 173–177.

Logothetis, N. K. (2008). What we can do 
and what we cannot do with fMRI. 
Nature 453, 869–878.

Lux, H. D., Heinemann, U., and Dietzel, I. 
(1986). Ionic changes and alterations 
in the size of the extracellular space 
during epileptic activity. Adv. Neurol. 
44, 619–639.

Marsan, C. A., and Zivin, L. S. (1970). 
Factors related to the occurrence of 
typical paroxysmal abnormalities in 
the EEG records of epileptic patients. 
Epilepsia 11, 361–381.

Matsumoto, H., and Marsan, C. A. (1964). 
Cortical cellular phenomena in experi-
mental epilepsy: interictal manifesta-
tions. Exp. Neurol. 9, 286–304.

McCormick, D. A., and Contreras, D. 
(2001). On the cellular and network 
bases of epileptic seizures. Annu. Rev. 
Physiol. 63, 815–846.

McIntosh, A. R., and Gonzalez-Lima, F. 
(1994). Structural equation modelling 
and its application to network analy-
sis in functional brain imaging. Hum. 
Brain Mapp. 2, 2–22.

Meeren, H. K., Pijn, J. P., Van Luijtelaar, E. 
L., Coenen, A. M., and Lopes da Silva, 
F. H. (2002). Cortical focus drives 
widespread corticothalamic networks 
during spontaneous absence seizures 
in rats. J. Neurosci. 22, 1480–1495.

Monto, S., Vanhatalo, S., Holmes, M. D., 
and Palva, J. M. (2007). Epileptogenic 
neocortical networks are revealed 
by abnormal temporal dynamics in 

definition of human brain organiza-
tion? Curr. Opin. Neurol. 21, 393–403.

Guye, M., Bettus, G., Bartolomei, F., and 
Cozzone, P. J. (2010). Graph theoreti-
cal analysis of structural and func-
tional connectivity MRI in normal and 
pathological brain networks. MAGMA 
23, 409–421.

Guye, M., Regis, J., Tamura, M., Wendling, 
F., McGonigal, A., Chauvel, P., and 
Bartolomei, F. (2006). The role of 
corticothalamic coupling in human 
temporal lobe epilepsy. Brain 129, 
1917–1928.

Hamandi, K., Powell, H. W., Laufs, H., 
Symms, M. R., Barker, G. J., Parker, 
G. J., Lemieux, L., and Duncan, J. S. 
(2007). Combined EEG-fMRI and 
tractography to visualise propaga-
tion of epileptic activity. J. Neurol. 
Neurosurg. Psychiatry 79, 594–597.

Hamandi, K., Salek-Haddadi, A., Laufs, 
H., Liston, A., Friston, K., Fish, D. 
R., Duncan, J. S., and Lemieux, L. 
(2006). EEG-fMRI of idiopathic and 
secondarily generalized epilepsies. 
Neuroimage 31, 1700–1710.

Harrison, L., Penny, W. D., and Friston, 
K. (2003). Multivariate autoregres-
sive modeling of fMRI time series. 
Neuroimage 19, 1477–1491.

Horwitz, B. (2003). The elusive concept 
of brain connectivity. Neuroimage 19, 
466–470.

Hughes, J. R. (2008). Progress in predict-
ing seizure episodes with nonlinear 
methods. Epilepsy Behav. 12, 128–135.

Iadecola, C., and Nedergaard, M. (2007). 
Glial regulation of the cerebral 
microvasculature. Nat. Neurosci. 10, 
1369–1376.

Jacobs, J., Levan, P., Châtillon, C. E., 
Olivier, A., Dubeau, F., and Gotman, 
J. (2009). High frequency oscillations 
in intracranial EEGs mark epilep-
togenicity rather than lesion type. 
Brain 132(Pt 4), 1022–1037.

Jansen, B. H., and Rit, V. G. (1995). 
Electroencephalogram and visual 
evoked potential generation in a math-
ematical model of coupled cortical 
columns. Biol. Cybern. 73, 357–366.

Jefferys, J. G. (1995). Nonsynaptic modu-
lation of neuronal activity in the brain: 
electric currents and extracellular ions. 
Physiol. Rev. 75, 689–723.

Kaminski, M., Ding, M., Truccolo, W. A., 
and Bressler, S. L. (2001). Evaluating 
causal relations in neural systems: 
Granger causality, directed transfer 
function and statistical assessment of 
significance. Biol. Cybern. 85, 145–157.

Kaminski, M. J., and Blinowska, K. J. 
(1991). A new method of the descrip-
tion of the information flow in the 
brain structures. Biol. Cybern. 65, 
203–210.

King, D., and Spencer, S. (1995). Invasive 
electroencephalography in mesial 

Diffusion tensor imaging in patients 
with focal epilepsy due to cortical 
dysplasia in the temporo-occipital 
region: electro-clinico-patholog-
ical correlations. Epilepsy Res. 90, 
178–187.

Douw, L., de Groot, M., van Dellen, E., 
Heimans, J. J., Ronner, H. E., Stam, 
C. J., and Reijneveld, J. C. (2010). 
‘Functional connectivity’ is a sensitive 
predictor of epilepsy diagnosis after 
the first seizure. PLoS ONE 5, e10839. 
doi: 10.1371/journal.pone.0010839

Ebersole, J. S., and Hawes-Ebersole, S. 
(2007). Clinical application of dipole 
models in the localization of epilepti-
form activity. J. Clin. Neurophysiol. 24, 
120–129.

Felleman, D. J., and Van Essen, D. C. 
(1991). Distributed hierarchical 
processing in the primate cerebral 
cortex. Cereb. Cortex 1, 1–47.

Franaszczuk, P. J., and Bergey, G. K. (1998). 
Application of the directed transfer 
function method to mesial and lateral 
onset temporal lobe seizures. Brain 
Topogr. 11, 13–21.

Friston, K. (2009). Causal modelling 
and brain connectivity in functional 
magnetic resonance imaging. PLoS 
Biol. 7, e33. doi: 10.1371/journal.
pbio.1000033

Friston, K. J., Harrison, L., and Penny, W. 
D. (2003). Dynamic causal modelling. 
Neuroimage 19, 1273–1302.

Friston, K. J., Li, B., Daunizeau, J., and 
Stephan K. E. (2011). Network dis-
covery with DCM. Neuroimage (in 
press).

Friston, K. J., Mattout, J., Trujillo-Barreto, 
N. J., Ashburner, J., and Peeny, W. 
(2007). Variational free energy and the 
Laplace approximation. Neuroimage 
34, 220–234.

Friston, K. J., Trujillo-Barreto, N. J., and 
Daunizeau, J. (2008). DEM: a varia-
tional treatment of dynamical systems. 
Neuroimage 42, 849–885.

Gotman, J. (1983). Measurement of 
small time differences between EEG 
channels: method and application 
to epileptic seizure propagation. 
Electroencephalogr. Clin. Neurophysiol. 
56, 501–514.

Gotman, J., Grova, C., Bagshaw, A., 
Kobayashi, E., Aghakhani, Y., and 
Dubeau, F. (2005). Generalized epi-
leptic discharges show thalamocorti-
cal activation and suspension of the 
default state of the brain. Proc. Natl. 
Acad. Sci. U.S.A. 102, 15236–15240.

Gregory, R. P., Oates, T., and Merry, R. T. 
(1993). Electroencephalogram epilep-
tiform abnormalities in candidates for 
aircrew training. Electroencephalogr. 
Clin. Neurophysiol. 86, 75–77.

Guye, M., Bartolomei, F., and Ranjeva, J. P. 
(2008). Imaging structural and func-
tional connectivity: towards a unified 

 seizure-free subdural EEG. Cereb. 
Cortex 17, 1386–1393.

Morgan, R. J., and Soltesz, I. (2008). 
Nonrandom connectivity of the epi-
leptic dentate gyrus predicts a major 
role for neuronal hubs in seizures. 
Proc. Natl. Acad. Sci. U.S.A. 105, 
6179–6184.

Mormann, F., Andrzejak, R. G., Elger, C. 
E., and Lehnertz, K. (2007). Seizure 
prediction: the long and winding road. 
Brain 130(Pt 2), 314–333.

Mosher, J. C., Leahy, R. M., and Lewis, P. S. 
(1999). EEG and MEG: forward solu-
tions for inverse methods. IEEE Trans 
Biomed Eng. 46, 245–259.

Obenaus, A., Esclapez, M., and Houser, 
C. R. (1993). Loss of glutamate 
decarboxylase mRNA-containing 
neurons in the rat dentate gyrus fol-
lowing  pilocarpine-induced seizures. 
J. Neurosci. 13, 4470–4485.

Pearl, J. (2000). Causality: Models, 
Reasoning, and Inference. New York: 
Cambridge University Press.

Penny, W., Joao, M., Flandin, G., 
Daunizeau, J., Stephan, K. E., 
Friston, K. J., Schofield, T., and Leff, 
A. P. (2010). Comparing families of 
dynamic causal models. Plos Comput. 
Biol. 6, e1000709. doi: 10.1371/journal.
pcbi.1000709

Penny, W. D., Stephan, K. E., Mechelli, A., 
and Friston, K. J. (2004). Comparing 
dynamic causal models. Neuroimage 
22, 1157–1172.

Pijn, J. P., Velis, D. N., and Lopes da Silva, F. 
H. (1992). Measurement of interhemi-
spheric time differences in generalised 
spike-and-wave. Electroencephalogr. 
Clin. Neurophysiol. 83, 169–171.

Pijn, J. P., Vijn, P. C., Lopes da Silva, F. 
H., Van Ende, B. W., and Blanes, W. 
(1990). Localization of epileptogenic 
foci using a new signal analytical 
approach. Neurophysiol. Clin. 20, 1–11.

Pinto, D. J., Patrick, S. L., Huang, W. 
C., and Connors, B. W. (2005). 
Initiation, propagation, and termi-
nation of epileptiform activity in 
rodent neocortex in vitro involve 
distinct mechanisms. 25, 8131–8140.

Porter, B. E., Cui, X. N., and Brooks-Kayal, 
A. R. (2006). Status epilepticus dif-
ferentially alters AMPA and kainate 
receptor subunit expression in mature 
and immature dentate granule neu-
rons. Eur. J. Neurosci. 23, 2857–2863.

Prince, D. A., and Wilder, B. J. (1967). 
Control mechanisms in cortical epi-
leptogenic foci. “Surround” inhibition. 
Arch Neurol. 16, 194–202.

Quiroga, R. Q., Arnhold, J., and 
Grassberger, P. (2000). Learning 
driver-response relationships from 
synchronization patterns. Phys. Rev. E 
61, 5142–5148.

Quiroga, R. Q., Kraskov, A., Kreuz, T., and 
Grassberge, P. (2002). Performance of 

Frontiers in Systems Neuroscience www.frontiersin.org March 2011 | Volume 5 | Article 12 | 

Lemieux et al. Epileptic connectivity

77

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


ing the magnetoencephalographic 
epileptiform activity in patients with 
epilepsy. J. Child Neurol. 20, 363–369.

Shmuel, A., Augath, M., Oeltermann, A., 
and Logothetis, N. K. (2006). Negative 
functional MRI response correlates 
with decreases in neuronal activity in 
monkey visual area V1. Nat Neurosci. 
9, 569–577.

Sotero, R. C., and Trujillo-Barreto, N. J. 
(2007). Biophysical model for inte-
grating neuronal activity, EEG, fMRI 
and metabolism. Neuroimage 39, 
290–309.

Soula, H., and Chow, C. C. (2007). 
Stochastic dynamics of a finite size 
spiking neural network. Neural 
Comput. 19, 3262–3292.

Sporns, O. (2010). Networks of the Brain. 
Cambridge, MA: MIT Press.

Steinlein, O. (2004). Genetic mecha-
nisms that underlie epilepsy. Nat. Rev. 
Neurosci. 5, 400–408.

Stephan, K. E., Harrison, L. M., Penny, 
W. D., and Friston, K. J. (2004). 
Biophysical  models of  fMRI 
responses. Curr. Opin. Neurobiol. 14, 
629–635.

Stephan, K. E., Kasper, L., Harrison, 
L., Daunizeau, J., Den Ouden, H., 
Breakspear, M., and Friston K. J. 
(2008). Nonlinear dynamic causal 
models for fMRI. Neuroimage 42, 
649–662.

Stephan, K. E., Penny, W. D., Daunizeau, 
J., Moran, R., and Friston K. J. (2009). 
Bayesian model comparison for group 
studies. Neuroimage 46, 1004–1017.

Su, H., Sochivko, D., Becker, A., Chen, 
J., Jiang, Y., Yaari, Y., and Beck, H. 
(2002). Upregulation of a T-type 
Ca2+ channel causes a long-lasting 
modification of neuronal firing mode 
after status epilepticus. J. Neurosci. 22, 
3645–3655.

Takano, T., Tian, G. F., Peng, W., Lou, 
N., Libionka, W., Han, X., and 
Nedergaard, M. (2006). Astrocyte-
mediated control of cerebral blood 
flow. Nat. Neurosci. 9, 260–267.

Tanaka, N., Cole, A. J., von Pechmann, 
D., Wakeman, D. G., Hamalainen, M. 
S., Liu, H., Madsen, J. R., Bourgeois, 
B. F., and Stufflebeam, S. M. (2009). 
Dynamic statistical parametric map-
ping for analyzing ictal magnetoen-
cephalographic spikes in patients 
with intractable frontal lobe epilepsy. 
Epilepsy Res. 85, 279–286.

Tao, J. X., Baldwin, M., Hawes-Ebersole, 
S., and Ebersole, J. S. (2007a). Cortical 
substrates of scalp EEG epileptiform 
discharges. J. Clin. Neurophysiol. 24, 
96–100.

Tao, J. X., Baldwin, M., Ray, A., Hawes-
Ebersole, S., and Ebersole, J. S. (2007b). 
The impact of cerebral source area 
and synchrony on recording scalp 

 electroencephalography ictal patterns. 
Epilepsia 48, 2167–2176.

Tao, J. X., Ray, A., Hawes-Ebersole, S., 
and Ebersole, J. S. (2005). Intracranial 
EEG substrates of scalp EEG interictal 
spikes. Epilepsia 46, 669–676.

Tauck, D. L., and Nadler, J. V. (1985). 
Evidence of functional mossy fiber 
sprouting in hippocampal formation 
of kainic acid-treated rats. J. Neurosci. 
5, 1016–1022.

Tian, G. F., Azmi, H., Takano, T., Xu, Q., 
Peng, W., Lin, J., Oberheim, N., Lou, 
N., Wang, X., Zielke, H. R., Kang, J., 
and Nedergaard, M. (2005). An astro-
cytic basis of epilepsy. Nat Med. 11, 
973–981.

Traub, R. D., Whittington, M. A., Buhl, E. 
H., LeBeau, F. E., Bibbig, A., Boyd, S., 
Cross, H., and Baldeweg, T. (2001). 
A possible role for gap junctions in 
generation of very fast EEG oscil-
lations preceding the onset of, and 
perhaps initiating, seizures. Epilepsia 
42, 153–170.

Trevelyan, A. J. (2009). The direct relation-
ship between inhibitory currents and 
local field potentials. J. Neurosci. 29, 
15299–15307.

Trevelyan, A. J., Sussillo, D., and Yuste, 
R. (2007a). Feedforward inhibition 
contributes to the control of epilepti-
form propagation speed. J. Neurosci. 
27, 3383–3387.

Trevelyan, A. J., Baldeweg, T., van 
Drongelen, W., Yuste, R., and 
Whittington, M. (2007b). The source 
of after discharge activity in neocorti-
cal tonic-clonic epilepsy. J. Neurosci. 
27, 13513–13519.

Trevelyan, A. J., Sussillo, D., Watson, B. 
O., and Yuste, R. (2006). Modular 
propagation of epileptiform activ-
ity: evidence for an inhibitory 
veto in neocortex. J. Neurosci. 26, 
12447–12455.

Vaudano, A. E., Laufs, H., Kiebel, S. J., 
Carmichael, D. W., Hamandi, K., 
Guye, M., Thornton, R., Rodionov, 
R., Friston, K. J., Duncan, J. S., and 
Lemieux, L. (2009). Causal hierarchy 
within the thalamo-cortical network 
in spike and wave discharges. PLoS 
ONE 4, e6475. doi: 10.1371/journal.
pone.0006475

Vulliemoz, S., Carmichael, D. W., 
Rosenkranz, K., Diehl, B., Rodionov, 
R., Walker, M. C., McEvoy, A. W., and 
Lemieux, L. (2010). Simultaneous 
intracranial EEG and fMRI of interic-
tal epileptic discharges in humans. 
Neuroimage 54, 182–190.

Waites, A. B., Briellmann, R. S., Saling, 
M. M., Abbott, D. F., and Jackson, G. 
D. (2006). Functional connectivity 
networks are disrupted in left tem-
poral lobe epilepsy. Ann. Neurol. 59, 
335–343.

different synchronization measures in 
real data: a case study on electroen-
cephalographic signals. Phys. Rev. E 
65, 041903.

Raichle, M. E., MacLeod, A. M., Snyder, A. 
Z., Powers, W. J., Gusnard, D. A., and 
Shulman, G. L. (2001). A default mode 
of brain function. Proc. Natl. Acad. Sci. 
U.S.A. 98, 676–682.

Riera, J. J., Schousboe, A., Waagepetersen, 
H. S., Howarth, C., and Hyder, F. 
(2008). The micro-architecture of 
the cerebral cortex: functional neu-
roimaging models and metabolism. 
Neuroimage 40, 1436–1459.

Riera, J. J., Wan, X., Jimenez, J. C., and 
Kawashima, R. (2006). Nonlinear 
local electrovascular coupling. I: a 
theoretical model. Hum. Brain Mapp. 
27, 896–914.

Roebroeck, A., Formisano, E., Goebel, R. 
(2005). Mapping directed influence 
over the brain using Granger causal-
ity and fMRI. Neuroimage 25, 230–242.

Roopun, A. K., Simonotto, J. D., Pierce, 
M. L., Jenkins, A., Nicholson, C., 
Schofield, I. S., Whittaker, R. G., Kaiser, 
M., Whittington, M. A., Traub, R. D., 
and Cunningham, M. O. (2010). A 
nonsynaptic mechanism underlying 
interictal discharges in human epi-
leptic neocortex. Proc. Natl. Acad. Sci. 
U.S.A. 107, 338–343.

Rosa, M. J., Daunizeau, J., Friston, K. J. 
(2010). EEG-fMRI integration: a 
critical review of biophysical model-
ling and data analysis approaches. J. 
Integr. Neurosci. 9, 453–476.

Schevon, C. A., Trevelyan, A. J., Schroeder, 
C. E., Goodman, R. R., McKhann, G. 
Jr., and Emerson, R. G. (2009). Spatial 
characterization of interictal high fre-
quency oscillations in epileptic neo-
cortex. Brain 132(Pt 11), 3047–3059.

Schoffelen, J. M., and Gross, J. (2009). 
Source connectivity analysis with 
MEG and EEG. Hum. Brain Mapp. 30, 
1857–1865.

Shah, M. M., Anderson, A. E., Leung, 
V., Lin, X., and Johnston, D. (2004). 
Seizure-induced plasticity of h chan-
nels in entorhinal cortical layer III 
pyramidal neurons. Neuron 44, 
495–508.

Shiraishi, H., Ahlfors, S. P., Stufflebeam, S. 
M., Takano, K., Okajima, M., Knake, S., 
Hatanaka, K., Kohsaka, S., Saitoh, S., 
Dale, A. M., and Halgren, E. (2005a). 
Application of magnetoencephalog-
raphy in epilepsy patients with wide-
spread spike or slow-wave activity. 
Epilepsia 46, 1264–1272.

Shiraishi, H., Stufflebeam, S. M., Knake, 
S., Ahlfors, S. P., Sudo, A., Asahina, N., 
Egawa, K., Hatanaka, K., Kohsaka, S., 
Saitoh, S., Grant, P. E., Dale, A. M., and 
Halgren, E. (2005b). Dynamic statis-
tical parametric mapping for analyz-

Walker, M., Chan, D., and Thom, M. 
(2007). “Hippocampus and human 
disease,” in The Hippocampus Book, 
eds P. Andersen, R. Morris, D. G. 
Amaral, T. Bliss, and J. O’Keefe 
(Oxford: Oxford University Press), 
769–812.

Walter, D. O. (1963). Spectral analysis for 
electroencephalograms: mathemati-
cal determination of neurophysi-
ological relationships from records 
of limited duration. Exp. Neurol. 8, 
155–181.

Wendling, F. (2008). Computational 
models of epileptic activity: a bridge 
between observation and pathophysi-
ological interpretation. Expert Rev. 
Neurother. 8, 889–896.

Wendling, F., Ansari-Asl, K., Bartolomei, 
F., and Senhadji, L. (2009a). From EEG 
signals to brain connectivity: a model-
based evaluation of interdependence 
measures. J. Neurosci. Methods 183, 
9–18.

Wendling, F., Bartolomei, F., and 
Senhadji, L. (2009b). Spatial analy-
sis of intracerebral electroencepha-
lographic signals in the time and 
frequency domain: identification of 
epileptogenic networks in partial epi-
lepsy. Philos. Trans. Math. Phys. Eng. 
Sci. 367, 297–316.

Wendling, F., Bartolomei, F., Bellanger, J. J., 
and Chauvel, P. (2001). Interpretation 
of interdependencies in epileptic sig-
nals using a macroscopic physiological 
model of the EEG. Clin. Neurophysiol. 
112, 1201–1218.

Woermann, F. G., Free, S. L., Koepp, M. 
J., Sisodiya, S. M., and Duncan, J. S. 
(1999). Abnormal cerebral structure 
in juvenile myoclonic epilepsy dem-
onstrated with voxel-based analysis 
of MRI. Brain 122(Pt 11), 2101–2108.

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential conflict 
of interest.

Received: 05 August 2010; accepted: 24 
February 2011; published online: 22 March 
2011.
Citation: Lemieux L, Daunizeau J and 
Walker MC (2011) Concepts of con-
nectivity and human epileptic activity. 
Front. Syst. Neurosci. 5:12. doi: 10.3389/
fnsys.2011.00012
Copyright © 2011 Lemieux, Daunizeau 
and Walker. This is an open-access article 
subject to an exclusive license agreement 
between the authors and Frontiers Media 
SA, which permits unrestricted use, distri-
bution, and reproduction in any medium, 
provided the original authors and source 
are credited.

Frontiers in Systems Neuroscience www.frontiersin.org March 2011 | Volume 5 | Article 12 | 

Lemieux et al. Epileptic connectivity

78

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Frontiers in Systems Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 147 | 

SYSTEMS NEUROSCIENCE
Original research article

published: 08 October 2010
doi: 10.3389/fnsys.2010.00147

groups of nodes with many intra-modular links to each other but 
few inter-modular links to external groups (Newman and Girvan, 
2004). Graph theoretical work has shown that human brain func-
tional modules are hierarchically organized (Meunier et al., 2009b; 
Bassett et al., 2010), that their structure is altered in normal aging 
(Meunier et al., 2009a) and in adolescence (Fair et al., 2009), and 
that their structure is relatively consistent for fMRI and diffusion 
spectrum imaging (DSI) of the same subjects (Hagmann et al., 
2008). The brain, at least the healthy brain, is a modular system.

  Here we test the hypothesis that the normal modular com-
munity structure of functional brain networks might be somehow 
disrupted in neuropsychiatric disease, specifically in schizophrenia. 
There are theoretical reasons to posit that the brain’s modularity 
is crucial in terms of its evolution and healthy neurodevelopment. 
Modularity may allow the brain to adapt to multiple, distinct selec-
tion criteria over time (Kashtan and Alon, 2005). Modules may 
also represent stable subcomponents of the brain, which facili-
tate the construction of a complex system from simple building 
blocks (Simon, 1962). In the context of the recent focus on the 

IntroductIon
One of the most ubiquitous properties of complex systems, like 
large-scale functional brain networks, is that they generally have a 
modular community structure (Bullmore and Sporns, 2009). Using 
resting-state fMRI analysis, functional communities or modules 
can be broadly defined as groups of brain regions whose fMRI 
time series are similar to each other and dissimilar from other 
groups. How to partition the brain into such functional communi-
ties, and the related question of how to assess the quality of these 
partitions, are methodological issues that have been approached 
from the perspectives of both unsupervised learning and graph 
theory. In the context of unsupervised learning, where brain regions 
are considered as objects in n-dimensional functional space to be 
classified into their “natural” groups, hierarchical cluster analysis 
has been used to decompose the brain into a small number of 
functional modules that resemble known patterns of neural con-
nectivity (Cordes et al., 2002; Salvador et al., 2005). In graph theory, 
on the other hand, brain regions are nodes (or vertices), functional 
connections between nodes are edges (or links), and modules are 
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Modularity is a fundamental concept in systems neuroscience, referring to the formation of local 
cliques or modules of densely intra-connected nodes that are sparsely inter-connected with nodes 
in other modules. Topological modularity of brain functional networks can quantify theoretically 
anticipated abnormality of brain network community structure – so-called dysmodularity – in 
developmental disorders such as childhood-onset schizophrenia (COS). We used graph theory to 
investigate topology of networks derived from resting-state fMRI data on 13 COS patients and 
19 healthy volunteers. We measured functional connectivity between each pair of 100 regional 
nodes, focusing on wavelet correlation in the frequency interval 0.05–0.1 Hz, then applied global 
and local thresholding rules to construct graphs from each individual association matrix over 
the full range of possible connection densities. We show how local thresholding based on the 
minimum spanning tree facilitates group comparisons of networks by forcing the connectedness 
of sparse graphs. Threshold-dependent graph theoretical results are compatible with the results 
of a k-means unsupervised learning algorithm and a multi-resolution (spin glass) approach to 
modularity, both of which also find community structure but do not require thresholding of the 
association matrix. In general modularity of brain functional networks was significantly reduced 
in COS, due to a relatively reduced density of intra-modular connections between neighboring 
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childhood-onset schizophrenia. We devise a way of applying a local 
threshold to construct brain graphs, which ensures that all of the 
graphs are node-connected at minimal densities, in contrast to the 
variability of node-connectedness that typically arises when graphs 
are constructed by a global threshold. We compare standard graph 
theoretical modularity results with the results of an unsupervised 
learning approach, using a generalization of the k-means algorithm 
known as partition around medoids (PAM), and a multi-resolution 
spin glass algorithm. In addition to modularity, we estimate sev-
eral other properties of the graphs, most of which have previously 
been investigated in adult-onset schizophrenia (Liu et al., 2008; 
Rubinov et al., 2009; Lynall et al., 2010). Finally, we ground the 
complex network analysis by looking at simpler properties of the 
fMRI time series in these subjects, such as the variability of the time 
series and its internal homogeneity within anatomical regions of 
interest. We find evidence in support of network dysmodularity in 
COS, and explain this finding in the context of the other proper-
ties of the fMRI phenotype that we investigate. To our knowledge 
this is the first study to report less modular brain organization or 
abnormal community structure of brain functional networks in 
any human population.

MaterIals and Methods
saMple
Thirteen COS patients and 19 controls or “normal volunteers” (NV) 
were recruited as part of an ongoing National Institute of Mental 
Health study of COS and normal brain development (ClinicalTrials.
gov Identifier: NCT00001246). All patients met the DSM-IV criteria 
for childhood-onset schizophrenia, and consent was acquired from 
both patients and their legal guardians. The populations did not 
differ significantly in terms of age (COS sample mean age = 18, 
standard deviation = 4; NV sample mean age = 19, standard devia-
tion 4; t-test p-value = 0.29) or gender (8 female, 5 male COS; 10 
female, 9 male, NV; chi squared test p-value = 0.89).

IMage acquIsItIon and preprocessIng
All images were acquired using a 1.5T General Electric Signa MRI 
scanner located at the National Institutes of Health Clinical Center 
(Bethesda, MD). One anatomical T1-weighted fast spoiled gra-
dient echo MRI volume was acquired: TE 5 ms; TR 24 ms; flip 
angle 45Â°; matrix 256 × 256 × 124; FOV 24 cm. In addition, two 
sequential 3 min EPI scans were acquired while subjects were 
lying quietly in the scanner with eyes closed: TR 2.3 s; TE 40 ms; 
voxel 3.75 mm × 3.75 mm × 5 mm; matrix size 64 × 64; FOV 
240 mm × 240 mm; 27 interleaved slices. The first four volumes 
of each functional scan were discarded to allow for T1 equili-
bration effects. AFNI was used for slice time correction and for 
motion correction (Cox, 1996). In terms of motion, the maxi-
mum displacement of brain voxels due to motion did not differ 
significantly between the groups (sample mean COS maximum 
displacement = 2.45 mm; sample mean NV maximum displace-
ment = 1.93 mm; t-test p-value = 0.41). FSL’s FLIRT (Jenkinson 
and Smith, 2001; Jenkinson et al., 2002) was used to register each 
subject’s functional scans to that subject’s structural scan using a 
6 degrees of freedom transformation, and to register the structural 
scan to MNI stereotactic standard space using a 12 degrees of free-
dom transformation. Although registering both pediatric and adult 

 developmental phenotypes of neuropsychiatric disease (e.g., 
Gogtay et al., 2008; Giedd et al., 2009), it makes sense to meas-
ure properties of neuroimaging data, such as modularity, that are 
theoretically linked to network development and that may pro-
vide sensitive markers of abnormal brain development in disorders 
such as schizophrenia. In fact, dysmodularity in schizophrenia has 
already been proposed as a neuropsychological theory, implying the 
breakdown of information encapsulation between brain systems 
that are specialized to carry out different tasks (Fodor, 1983; David, 
1994). In the functional neuroanatomical context, possible exam-
ples might include pathological crosstalk between inner speech 
and auditory areas in the pathogenesis of hallucinations (Shapleske 
et al., 2002), or between left and right prefrontal cortex in work-
ing memory tasks (Lee et al., 2008). However, it is clear that this 
point can be argued from both sides: For example, patients seem 
to be more susceptible than controls to the Müller-Lyer illusion 
(Pessoa et al., 2008), a visual illusion that persists in spite of explicit 
knowledge about the nature of the illusion, which has been held 
up as an exemplar of perceptual modularity. At any rate, it is not 
obvious how to relate the notions of psychological modularity and 
topological modularity as it is quantified in complex systems, and 
the dysmodularity hypothesis has not yet been tested with any rigor 
in neuroimaging experiments.

  There are methodological barriers to testing this hypothesis. 
As already noted there are a number of possible ways in which 
the community structure of functional networks can be described, 
and these alternatives have not been comparatively evaluated. 
Moreover it is non-trivial to make comparisons of modularity, 
however measured, between two groups of brain graphs with dif-
ferent topological properties. Even random graphs show complex 
properties including modularity to an extent that varies depending 
on the number of nodes and edges in the graphs (Bollobás, 1985; 
Anderson et al., 1999; Guimerà et al., 2004). Network properties 
can change dramatically around the percolation threshold where 
graphs become node-connected (Dorogovtsev et al., 2008), where 
“node-connected” means that none of the nodes is entirely isolated, 
each is linked by at least one edge to a single giant connected cluster. 
To ensure that statistical comparisons of brain network properties 
are meaningful, therefore, all of the graphs should ideally have the 
same number of nodes and edges, and they should all be node-
connected. This last point is crucial because graphs constructed by 
global thresholding from data on different subjects may often show 
different degrees of node-connectedness, especially if the graphs 
are sparse. While differences in node-connectedness, e.g., as meas-
ured by percolation threshold, may be informative in their own 
right (Chen et al., 2007), they should ideally be controlled when 
considering group differences in other more edge-based network 
metrics such as degree. One conceptually simple way of doing this 
is to restrict evaluation of network metrics to a range of connection 
densities for which all graphs are node-connected (Bassett et al., 
2008; Lynall et al., 2010). However, this approach may preclude 
comparative analysis of network properties at sparser connection 
densities where complex topological features such as modularity 
are typically most prominent.

  We explore some of these methodological issues in the con-
text of a preliminary investigation of the modularity and other 
properties of brain functional networks measured using fMRI in 
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pairs of regions. The regional strength of connectivity s(i) for a 
region i was defined as the mean of the correlations with the N − 1 
other regions:

s i

r

N

i j
j i( )

,

=
−

≠
∑

1  
(1)

We also explored the covariability of the voxels within each 
anatomical region, treating each anatomical region as a distinct 
subnetwork. If x is a voxel within a region i, and K is the number 
of voxels within i, the average voxel connectivity strength s(x) over 
all K is a measure of the internal homogeneity of the signal from 
region i. Although at a different spatial and temporal scale, this 
statistic is similar to so-called regional homogeneity (ReHo; Zang 
et al., 2004), which has been calculated between neighboring voxels. 
For greater consistency with this prior work, we also calculated 
Kendall’s coefficient of concordance, 0 ≤ W(i) ≤ +1, between the 
voxels in each region i:

W i
R n R

K n n

x( )
( )

=
( ) −

−( )
∑ 2 2

2 31

12  

(2)

Here, K is the number of voxels in region i; n is the length of the 
time series; R

x
 is the sum of the ranks of the x th voxel; and R

−
 is the 

mean of R
x
, over all K voxels. The numerator in Eq. 2 is the variance 

of the sums of the ranks, and the denominator is the maximum 
possible variance given the number of voxels and the length of the 
time series (Sheskin, 2007). The advantages of this statistic are that 
it is non-parametric and that it is defined for a region containing 
any number of voxels. The average regional concordance is the 
mean of W over all N regions.

Graph construction
Note that R code used for graph construction is publicly available 
at http://brainnetworks.sourceforge.net, and the Appendix contains 
definitions of some commonly used graph theoretical terms. To make 
a graphical model of brain network connectivity, the usual approach 
is to generate a binary adjacency matrix A from a continuous asso-
ciation or connectivity matrix C. It is also possible to measure net-
work properties by analysis of the connectivity matrix using tools 
which do not require a binary thresholding operation to generate 
an adjacency matrix. Here we explored two different (global and 
local) thresholding methods to construct an adjacency matrix from 
the 100 × 100 connectivity matrix, C, where C

i,j
 = |r

i,j
|, the absolute 

wavelet correlation coefficient for a pair of regional time series i and 
j. We also investigated two complementary methods – the unsuper-
vised learning algorithm “partition around medoids” (PAM) and 
the multi-resolution spin glass model of modularity – to measure 
network properties without thresholding the connectivity matrix.

Most human neuroimaging studies to date have used global 
thresholding to construct functional brain networks. Using this 
method, any |r

i,j
| of the functional connectivity matrix greater than 

a threshold, τ, implies an edge in the corresponding element of 
the adjacency matrix, A, meaning that A

i,j
 = 1. If r

i,j
 < τ, then A

i,j
 = 0. 

Thresholding at a different value of τ creates a graph with a differ-
ent edge density or cost, which is the number of edges in a graph  

brains to the MNI adult brain template image could result in some 
age-specific differences in spatial normalization, these differences 
are unlikely to affect fMRI results because of fMRI’s relatively low 
spatial resolution (Burgund et al., 2002; Kang et al., 2003) and 
because functional activity is represented by regional mean time 
series averaged over multiple voxels comprising regions of the par-
cellation template image. Both these factors suggest that the scale 
of any possible age-related mis-registration is likely to be small 
in comparison to the relatively coarse-grained scale of functional 
network analysis applied to the data. We note that adult template 
images have previously been used as a basis for normalization of 
fMRI data on participants in similar and even younger age-ranges 
than our sample (Durston et al., 2003; Turkeltaub et al., 2003; 
Cantlon et al., 2006; Crone et al., 2006; Galvan et al., 2006).

Wavelet measures of variability and covariability at 
different scales
For each functional scan, 111 anatomical regions were defined 
using the combined cortical and subcortical Harvard-Oxford 
Probabilistic Atlas (Smith et al., 2004) thresholded at 25%. Because 
of low quality signal due to susceptibility artifacts in some regions, 
quantified as the majority of a region being absent from the EPIs 
of the majority of subjects, the brainstem and 5 bilateral corti-
cal regions at the inferior frontotemporal junction were excluded, 
which resulted in a dataset of 100 regions for each functional scan. 
In addition to the voxel time series, 100 regional time series were 
estimated by averaging the voxels within each of the regions, while 
one global time series was estimated by averaging the voxels within 
all of the regions.

The maximal overlap discrete wavelet transform (MODWT) 
with a Daubechies 4 wavelet was used to band-pass filter the time 
series (Percival and Walden, 2006) and, in what follows, we will 
focus on the results obtained using the scale 2 frequency interval, 
0.05–0.111 Hz. This frequency scale was chosen to minimize the 
impact of higher frequency physiological noise while maximiz-
ing the degrees of freedom available for wavelet correlation, as 
well as for consistency with previous work. Wavelet coefficients 
with boundary effects from the MODWT were excluded, and the 
coefficients of the sequential functional scans were concatenated 
to form a single series of 144 wavelet coefficients which was the 
basis for all further analyses of variability and covariability (e.g., 
see Figures 2B,D).

Variability of the global and regional signals
We quantified the variability of the low frequency MRI signal sim-
ply as the sample variance of the MODWT wavelet coefficients at 
scale 2. (To make comparisons between the variability of the signal 
at different temporal scales, the wavelet variances would have to 
be corrected for the redundancy of the MODWT, but we focus 
exclusively on differences between the clinical populations at the 
same scale.) Variability was estimated for each of the anatomical 
regions and also for the global signal.

Covariability between and within regions
The wavelet correlation, −1 ≤ r

i,j
 ≤ +1, was used as an estimate 

of the covariability between two time series i and j. For N ana-
tomically defined regions, this value was found for all (N 2 − N)/2 
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general have lower signal-to-noise. In addition, there is less het-
erogeneity between the graphs of different subjects, as the adja-
cency matrices are identical and only the weights of the edges can 
differ. Finally, only some network measures, such as modularity 
(discussed below), have analogs that can be applied to weighted 
complete graphs.

Global netWork measures
We report network properties over the whole of range of edge 
density or cost, from 0.02 to 0.98 at 0.02 intervals, for both globally 
and locally thresholded graphs. As a summary statistic, we also 
calculated the mean of each metric over the range of costs from 
0.3 to 0.5. This range was chosen for several reasons: (1) most of 
the globally thresholded graphs become connected by a cost of 

comprising N nodes, divided by the maximum number of possible 
edges, (N2 − N)/2. A difficulty with global thresholding is that at sparse 
densities it can result in graphs that are not  node-connected, i.e., there 
is not a finite path between every pair of nodes. Disconnectedness 
of the graphs affects the quantitative values of many network met-
rics. Therefore, comparisons of network metrics between different 
subjects may be biased if the network for one subject is connected 
at the chosen threshold, but the network for the other subject is 
fragmented or disconnected. We anticipated that this might be a 
significant challenge in making a fair comparison between networks 
estimated in healthy volunteers versus patients with COS.

To address the issue of disconnectedness that can arise as a result 
of global thresholding, we explored an alternative thresholding 
method that forces graphs to be connected even at sparse densities. 
To this end we made use of the standard graph theoretical concepts 
of the minimum spanning tree (MST; Kruskal, 1956; Prim, 1957) 
and the k nearest neighbor graph (k-NNG; Eppstein et al., 1992). 
The k-NNG is composed of those edges that link each node to the 
k nearest other nodes, where “nearest” in this case means highest 
functional connectivity. The MST is composed of those edges that 
node-connect the graph with the lowest possible number of edges 
and the highest possible functional connectivity. Put differently, 
an MST of a graph is a node-connected subgraph that includes 
the minimum total weight, and here we interpret the weight of an 
edge between two nodes as one minus the nodes’ functional con-
nectivity. Although in theory there could be more than one MST 
or k-NNG for a given network, in practice this does not occur in 
our data. Algorithmically, the MST can be found by starting with 
the 1-NNG, that is by including an edge between every node and its 
single nearest neighbor. If the 1-NNG is connected, then it is identi-
cal to the MST; if the 1-NNG is disconnected, including fragmented 
groups of nodes with no finite path between them, then additional 
edges are added to link these fragments. For a given graph with N 
nodes, the MST always has N − 1 edges, which include the edges 
of the 1-NNG as a subset.

Although the MST itself can be used as a sparse representation of 
the whole network, it is somewhat implausible biologically because 
the MST is by definition acyclic (no loops or triangles) and its edges 
do not form clusters or cliques. For example, the clustering coef-
ficient (Watts and Strogatz, 1998) of an MST will always be zero. 
For this reason, it has been previously proposed to start with the 
MST as a minimal connected skeleton of the brain network and 
then grow the tree by adding extra edges according to a standard 
global thresholding rule (Hagmann et al., 2008). Alternatively, we 
developed a new method to grow the MST by adding extra edges 
according to a local thresholding rule. Specifically, we add the edges 
of the k-NNG in step-wise fashion, for higher and higher k. Since 
the MST is a connected superset of the 1-NNG, we generalize the 
concept to connected supersets of the k-NNG. See Figure 1 for an 
illustration of these different graph construction methods, applied 
to a “toy” connectivity matrix composed of 11 of the 100 nodes 
of a typical subject.

A final alternative is to avoid thresholding altogether, using net-
work measures that can be appropriately applied to the unthresh-
olded connectivity matrix. This sidesteps the potentially arbitrary 
decision of how to threshold the connectivity matrix. However, 
the unthresholded graphs – also called “complete” graphs – will in 

Figure 1 | Schematic illustrating local and global thresholding methods, 
and how these methods impact on the modular structure of graphs 
constructed from a correlation matrix. Starting with a model correlation 
matrix, which shows the functional connectivity between a subset of 11 brain 
regions for one subject, the two different thresholding methods are used to 
construct graphs with increasing numbers of edges. On the left, applying a 
local threshold produces connected supersets of the k nearest neighbor graph 
(k-NGG), which includes edges for each node’s k highest functional 
connections, shown here for k = 1, 2, 3. The minimum spanning tree (MST) is 
a connected superset of the 1-NNG, and connects all 11 nodes with the 
lowest possible number of edges and the highest possible functional 
connectivity. On the right, applying a global threshold simply includes edges 
between the pairs of nodes with the highest functional connectivity in order. 
Nodes of the same color are in the same module, as determined by the fast 
greedy algorithm, showing the influence of graph construction and edge 
density on the modular partition.
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Clustering
The regional or nodal clustering coefficient, C(G, i), of a node i 
in a graph G is the ratio of connected triangles, δ

v
 to connected 

triples, τ
v
. In other words, it is the proportion of i’s neighbors that 

are also neighbors of one another. For the graph as a whole, the 
clustering coefficient is:

C G
V

v

vv V

( )
| |

=
′ ∈ ′

∑1 δ
τ  

(5)

where V ′ is the set of nodes with degree >2 (Watts and Strogatz, 
1998; Schank and Wagner, 2004). Clustering is a measure of the 
locally aggregated structure in a graph.

Small-worldness
Small-world networks have high clustering, C, but low average 
minimum path length, L, compared to random networks. The 
small-worldness, σ(G), of a graph G is calculated as:
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Here, C
R
 is the clustering of random graph rewired so as to 

preserve the degree distribution of G, and L
R
 is the average mini-

mum path length of such a random graph. For connected graphs, 
the average minimum path length is identical to the inverse of the 
(unweighted) global efficiency, so we can also write λ(G) = E

R
/E(G). 

For disconnected graphs, formally σ(G) is undefined, but we can 
again substitute λ(G) = E

R
/E(G) to get a related quantity. A net-

work is generally accepted as “small-world” if σ > 1 (Humphries 
et al., 2006).

Robustness
As a measure of robustness, we looked at the resistance of the net-
work to fragmentation after removal of nodes either in random 
order or in decreasing order of their degree. Suppose that there 
are M fragments in the network, i.e., M subgraphs that are con-
nected internally but disconnected from each other. Resistance to 
fragmentation is defined as:
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where N
j
 is the number of nodes in fragment j, and N is the number 

of nodes in the graph. N − 1 nodes are removed in order, and 
robustness is the mean of R over all of these smaller graphs (Chen 
et al., 2007).

ModularIty
We explored modularity using three complementary meth-
ods from unsupervised learning and graph theory: partition 
around medoids (PAM), fast greedy optimization of thresh-
olded graphs, and simulated annealing of a spin glass model. 
See Figure 1 for an illustration of these methods, applied to a 
model network.

0.3; (2) previous work suggests that above a cost of 0.5 graphs 
become more random (Humphries et al., 2006) and less small-
world; and (3) the network measures are relatively constant over 
this range. Statistics were calculated in R (R Development Core 
Team, 2009) using original code as well as the following packages: 
wmtsa, brainwaver, cluster, MASS (Venables and Ripley, 2002), and 
igraph (Csardi and Nepusz, 2006).

Randomized graphs
It is important to contrast the brain graphs with comparable ran-
dom graphs (Watts and Strogatz, 1998). We used two procedures 
to construct such graphs. With one method, the edges of the graph 
were replaced by edges chosen completely at random, with every 
pair of nodes having an equal probability of being connected in 
the new graph. Thus the only constraint is that the random graphs 
have the same number of nodes and edges as the original graphs 
(Erdös and Rényi, 1959). Alternatively, the graphs were “rewired” 
so as to preserve the degree distribution of the original graph. This 
is accomplished by picking two edges at random, between nodes 
A and B and between nodes C and D, and replacing these with 
edges between nodes A and C and between nodes B and D. Enough 
iterations of this process ensure a randomized graph where every 
node still has the same degree as in the original graph (Milo et al., 
2004). We also explored graphs that were only partially randomized, 
where some proportion of the edges had undergone one or the 
other randomization procedure.

Global efficiency
The global efficiency, E(G), of a graph G is

E G
N N Li ji j G

( )
,

=
− ≠ ∈

∑1 1
2

 

(3)

where L
i,j
 is the minimum path length, or the minimum number of 

edges that must be traversed between regions i and j (Latora and 
Marchiori, 2001; Achard and Bullmore, 2007). Note that if there is 
not a finite path between nodes i and j, then (1/L

i,j
) = 0. The regional 

or nodal efficiency of one brain region can also be calculated by 
averaging 1/L

i,j
 over each node separately. When calculating L

i,j
 for 

weighted graphs, the edges themselves are treated as varying in 
length according to the weight matrix W, where W

k,l
 = 1 − C

k,l
. For 

weighted graphs, the global efficiency at a given cost is normalized 
by dividing by the global efficiency of the unthresholded, complete 
graph. (Theoretically, this is the case for binary global efficiency as 
well, but the global efficiency of the complete graph is 1).

Local efficiency
The local efficiency, E

loc
(G, i), of a node i in a graph G is 

computed as:

E G i E Giloc( , ) = ( )
 

(4)

Here, G
i
 is the subgraph including only the neighbors of i (not 

i itself), and E(G
i
) is the global efficiency of G

i
. The local efficiency 

of the graph is the average of the local efficiency of all of its nodes. 
This metric can be extended to weighted graphs in the same 
manner as global efficiency (Latora and Marchiori, 2001; Achard 
and Bullmore, 2007).
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weight in the weighted modularity calculation is actually one 
minus that edge’s weight in the calculations of weighted global 
or local efficiency.

There are several known algorithms to assign nodes to modules 
so as to maximize Q. The principal benefits of the fast greedy algo-
rithm that we use are its computational speed and the fact that it 
has been used in prior fMRI studies (e.g., Meunier et al., 2009a,b). 
This algorithm starts by assigning each node to its own module, 
and then agglomerates modules in a step-wise fashion, choosing 
the 2 modules whose combination results in the highest Q. The 
modularity value for the graph is then the highest Q that results 
throughout this step-wise process (Clauset et al., 2004). We applied 
this algorithm over the full cost range using a global threshold and 
a local threshold, for weighted and unweighted graphs.

Multi-resolution spin glass model
Finally, we employed a graph theoretical algorithm that looks at the 
modular structure at different resolutions. It has been shown that 
there is a resolution limit to modularity, in that modules smaller than 
a certain size are not found by traditional approaches (Fortunato and 
Barthélemy, 2007). Thus the modular structure is biased toward a 
certain scale, which is particularly problematic when considering a 
multi-scale system like the brain. This problem can be addressed by 
adding an additional parameter into the definition of modularity. 
One approach (Reichardt and Bornholdt, 2006) equates the problem 
of partitioning a graph with the problem of minimizing the energy 
of an infinite range Potts spin glass model, where the group indices 
become spin states. Groups of nodes with dense internal connections 
end up having parallel spins. The Hamiltonian, H, of a graph G is:

H( ) ,G A P M Mij ij i j
i j

= − −( ) ( )
≠
∑ γ δ

 

(11)

Here, γ > 0 is the additional, adjustable parameter. The γ parameter 
can be thought of as a resolution parameter, such that higher values 
result in higher number of modules, each of which has fewer mem-
bers on average. To find the optimal partition at different resolutions, 
this quality function H is minimized for different values of γ, using a 
simulated annealing approach. When γ = 1, minimizing this function 
is equivalent to maximizing modularity as defined in Eq. 10. One 
of the virtues of the spin glass algorithm is that, although it can be 
applied to graphs with any cost, it can also be appropriately applied 
to the unthresholded connectivity matrix, so we do not have to set 
a threshold (Heimo et al., 2008). One drawback of the algorithm is 
that there is no obvious way to choose between the partitions found 
with different values of γ. A potential solution is to focus on partitions 
that are stable over a range of values of γ if a such a partition exists 
(Lambiotte, 2010). It is also informative to look at the pattern of how 
the modular structure changes with different values of γ.

results
varIabIlIty and covarIabIlIty of the MrI tIMe serIes
There were clear differences between groups in terms of some  statistically 
elementary properties of the images: global mean variability, strength of 
functional connectivity, and within-regional  homogeneity. The global 
mean wavelet-filtered time series had significantly reduced variability 
in COS versus healthy volunteers (sample mean global  variability NV 
= 2.08; COS = 0.95; permutation test p = 0.007; Figures 2A,B). There 

PAM
PAM, like the more widely known method of hierarchical cluster-
ing, is an unsupervised learning algorithm that does not require 
thresholding of the connectivity matrix (Kaufman and Rousseeuw, 
1987). Modules are referred to as “clusters” in the unsupervised 
learning literature, but to avoid confusion we will use the graph 
theory terminology. PAM is a generalization of the k-means algo-
rithm that is more robust to noise and outliers. It requires as inputs 
the number of expected modules and the dissimilarity between 
every pair of nodes i and j. For our purposes, the dissimilarity 
between i and j is defined as 1 − C

i,j
 for the connectivity matrix C. 

The algorithm finds each module a representative node (medoid), 
and assigns other nodes to modules so as to minimize their dis-
similarity with these medoids. The silhouette width, S, can be used 
to assess the quality of this partition:

S
A B

A Bi
i i

i i

=
−( )
( )max ,

 

(8)

Here, i is a brain region, A
i
 is the mean dissimilarity between 

i and the other regions in its module, and B
i
 is the mean dissimi-

larity between i and the regions in the next nearest module. The 
silhouette width ranges from −1 to 1, and a high positive number 
means that i is well-classified. The mean silhouette width over every 
region provides a global measure of the quality of the partition. It 
is explored over a range of possible numbers of modules.

Graph theoretical modularity
The modularity, Q, of a graph G can be quantified as the proportion 
of G’s edges that fall within modules, subtracted by the proportion 
that would be expected due to random chance alone, for a given 
partition of nodes into modules. This can be written as (Newman 
and Girvan, 2004):

Q G
m

A P M Mij ij i j
i j

( ) ,= −( ) ( )
≠
∑1

2
δ

 

(9)

Here, m is the total number of edges; A
ij
 = 1 if an edge links i and 

j and 0 otherwise; δ(M
i
, M

j
) is 1 if i and j are in the same module 

and 0 otherwise, and ensures that only intra-modular edges are 
added to the sum; finally, P

ij
 is the probability that there would be 

an edge between i and j, given a random graph comparable to G. 
The value of P

ij
 depends on what counts as a “comparable” random 

graph, the so-called null model. We use

P
k k

mij

i j=
2  

(10)

where k
i
 is i’s degree, the number of other nodes to which i is linked 

by an edge. We include this information in the null model because 
it affects the expected proportion of intra-modular edges.

Weighted modularity is calculated analogously. In Eqs 9 and 
10, the total number of edges, m, becomes the total weight of 
the edges. The degree, k

i
, is replaced by i’s strength, which is the 

total weight of i’s edges. And finally the adjacency matrix, A, 
is replaced by the weight matrix, W; the ones in the adjacency 
matrix are replaced weights of the edges. P

ij
 can be understood 

as the expected weight between i and j. Note that an edge’s 
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graph theoretIcal propertIes
Comparing locally thresholded with globally thresholded graphs, 
both methods of network construction revealed a similar pattern 
of results. However, there were clear advantages to using locally 
thresholded networks, because differences in node-connectedness 
complicate group comparisons on other metrics at low costs. On 
average, using a global threshold, not all of the graphs become 
connected until a cost of 0.3, and the healthy volunteers gener-
ally become connected at higher costs than the patients (for some 
healthy subjects the minimum cost of node-connectedness >0.5). 
Another way of saying this is that the percolation threshold is set 
higher in healthy volunteers than in people with COS. On one level 
this difference is perhaps diagnostically interesting, but it is also 

was a similar but less obvious trend towards decreased variability at 
the regional level in the COS population (Figures 2C,D). The mean 
strength of  between-regional functional connectivity was significantly 
reduced in COS versus healthy volunteers (sample mean pair-wise 
wavelet correlation NV = 0.37; COS = 0.26; permutation test p = 0.001). 
This finding extends to decreased strength of functional connectivity 
at the level of individual regions, if we consider each region’s average 
wavelet correlation with all other regions of the brain (Figure 2E). 
The within-regional  homogeneity of the fMRI signal was significantly 
reduced in COS versus healthy volunteers (sample mean regional con-
cordance, Kendell’s W, NV = 0.11; COS = 0.08;  permutation test p = 
0.002). This decreased regional concordance extends to almost every 
region considered individually (Figure 2F).
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FIguRe 2 | Plots showing differences between the schizophrenic patients 
and the controls in terms of relatively simple, non-graph-theoretical 
properties of their MRI time series. (A) The variability in the scale 2 
(0.05–0.111 Hz) global MR signal is higher in the controls than in the COS 
population. (B) The difference in the variability of the global MR signal is 
illustrated with the time series from the median subjects of each population. 
The green line shows the boundary between the successive scans, whose 
wavelet coefficients were concatenated. (C) There is a trend toward greater 
variability in the MR signal of anatomical regions, in the control population 

relative to the COS population. (D) The difference in the variability of the 
regional MR signals is illustrated with the time series from the median 
subjects of each population for one of the regions that shows a difference, the 
left insula. (e) Regional strength, the average wavelet correlation between 
each region and every other region, is decreased in the COS population. (F) 
Kendall’s coefficient of concordance (W), a measure of the homogeneity of the 
signal within each anatomical region, is decreased in the COS population. Error 
bars are standard mean error, and asterisks signify p < 0.05 uncorrected 
p-value from a t-test.
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cal regions had significantly reduced clustering in COS relative to 
controls [permutation with 2000 tests, corrected for N = 100 mul-
tiple comparisons with false positive correction p < (1/N) = 0.01]. 
The cortical regions with abnormally reduced local connectivity 
included left and right superior temporal gyrus, left ventral occipital 
cortex, right cingulate, right insula, and right frontal operculum. In 
addition there were subcortical decreases of clustering bilaterally 
in the thalamus, caudate, and accumbens. The results for regional 
efficiency were less striking, but five anatomical regions had sig-
nificantly increased efficiency in COS relative to the controls after 
correction for multiple comparisons. These increases were located 
in the right inferior parietal lobule, left ventral temporal cortex, 
bilateral frontal operculum, and right planum polare.

Another way of describing this pattern of global and regional 
topological abnormality is in terms of a relative randomization of 
network organization in childhood-onset schizophrenia. We found 
that we could quite accurately simulate the COS network data by 

methodologically inconvenient because comparison of any other 
network parameter between the two groups will be confounded if 
more of the networks are connected in one group than the other. For 
this reason we judged it was preferable to use a local thresholding 
method to compare graphs with low connection density.

For both types of thresholding, we found that simple binary 
functional networks on average showed decreased clustering and 
local efficiency in people with COS, relative to the healthy con-
trols. These measures of reduced local connectivity in COS were 
associated with increased global efficiency and robustness, both 
implying relatively stronger global connectivity in COS (Table 1; 
Figure 3). Broadly speaking, the balance of global and local con-
nectivity in functional brain networks was abnormally shifted 
toward the global end of the scale in childhood-onset schizophre-
nia. This can be quantified by a change in the small-worldness 
parameter σ. Although networks in both groups were small-world 
(σ > 1) over the whole cost range, indicating that they  generally 
had  greater-than-random clustering but near-random global 
 efficiency, small-worldness was abnormally reduced because of 
the disproportionate reductions in local connectivity or clustering 
in the COS group.

The pattern of reduced local clustering and increased efficiency 
at a whole brain level was reflected by a convergent pattern of 
results at a regional level of analysis (Figure 5). Nineteen anatomi-
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FIguRe 3 | Plots showing differences between the schizophrenic 
patients (red) and the controls (black) in terms of the graph theoretical 
properties of the brain networks, which have been constructed using 
local and global thresholding methods. The two methods produce a similar 
pattern of group differences. However, local thresholding ensures connected 
graphs and appears to be more sensitive to group differences in some 
complex network metrics. The six different graph theoretical measures are 
shown as a function of connection density or topological cost, which is the 
proportion of edges included. Error bars are standard mean error, and 
asterisks signify an uncorrected p < 0.05 for a t-test between the COS 
population and control population.

Table 1 | For 18 metrics, the mean value for the childhood-onset 

schizophrenia (COS) population, the mean value for the controls or 

“normal volunteers” (NV), and the p-value for a permutation test of the 

group difference. Tests were based on 2000 permutations.

 Mean Mean Permutation 

 COS NV p-value

Global variability 0.95 2.08 0.007

Average regional variability 4.20 5.75 0.152

Average regional strength 0.26 0.37 0.001

Average regional concordance 0.08 0.11 0.002

Global efficiency, global threshold* 0.70 0.69 0.025

Local efficiency, global threshold* 0.80 0.83 0.002

Clustering, global threshold* 0.60 0.65 0.003

Robustness, global threshold* 0.90 0.85 0.044

Global efficiency, local threshold* 0.70 0.70 0.002

Local efficiency, local threshold* 0.77 0.80 0.001

Clustering, local threshold* 0.54 0.58 0.001

Robustness, local threshold* 0.96 0.94 0.11

Weighted global efficiency,  0.92 0.94 0.003 

local threshold*

Weighted local efficiency,  0.93 0.96 0.001 

local threshold*

Weighted modularity,  0.24 0.26 0.027 

local threshold*

Modularity, local threshold* 0.19 0.24 0.001

Modularity, global threshold* 0.17 0.19 0.041

PAM modularity** 0.14 0.18 0.005

*For the statistics based on thresholded graphs, the values are the mean over 
the cost range 0.3–0.5. **PAM modularity is summarized as the mean regional 
silhouette width, averaged over partitions with 2, 3, and 4 modules.
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thresholded graphs (not shown). However, there were also quan-
titative differences in modularity between the groups. See Figure 7 
for a representative example of the modular structure of the brain 
networks and the difference between the groups.

Both the graph theoretical and unsupervised learning approaches 
provided evidence for relatively reduced modularity in COS net-
works. Decreased graph theoretical modularity implies that there 
are relatively less intra-modular edges and more inter-modular 
edges, compared to what would be expected by chance, in the COS 
population. For locally thresholded binary graphs, this decrease 
in modularity occurred at all costs >0.1. For weighted graphs and 
globally thresholded binary graphs, modularity was also lower in 
COS, but for a narrower range of costs (Figures 3 and 6A,B). Similar 
results were found with the unsupervised learning algorithm PAM, 
which projects brain regions into n-dimensional functional space 
and groups nearby nodes into the same module. The average sil-
houette width, which quantifies how well the modules are separated 
from each other, was lower in the COS population (Figure 6C).

Decreased modularity in the COS population is most clear when 
the networks are partitioned into fewer than 5 modules. For all 
the subjects, as more edges are included in the graphs at higher 
costs, the optimal partitions include fewer modules. On average, 
modularity is maximized with <5 modules for locally and globally 
thresholded graphs with costs >0.1 and >0.3 respectively. These are 
the same costs at which decreased modularity in COS emerges. 
Consistently, as quantified by decreased average silhouette width, 
the PAM algorithm finds less modular structure only when the 
networks are partitioned into less than 5 modules.

randomizing only 5% of the between-regional connections in the 
healthy volunteer networks (Figure 4). This is true whether the 
edges are randomized so as to preserve the degree distribution, 
or whether the degree distribution is allowed to change; and it 
is true across the range of cost densities, although a greater per-
cent of edges must be randomized to simulate the COS data at 
higher densities.

The different global network measures are correlated with each 
other and with the non-graph theoretical measures, as shown in 
Figure 8. For example, binary global efficiency and robustness are 
correlated, as are local efficiency and clustering, for both locally and 
globally thresholded graphs. Weighted global network measures pro-
vide complementary results to the binary measures (not shown). 
Weighted local efficiency is decreased in the schizophrenia popula-
tion, similar to binary local efficiency. However, weighted global effi-
ciency was higher in the schizophrenic population than in the normal 
population, a reversal of the finding for binary global efficiency. In 
fact weighted global efficiency is correlated with weighted local effi-
ciency, average regional strength, and clustering. This indicates that 
between-group differences in strength or weight of functional con-
nectivity between pairs of regions, rather than differences in topology, 
are driving the difference in weighted global efficiency.

ModularIty
The functional networks of both the patients and the controls have 
a modular community structure. All of the graphs were signifi-
cantly more modular than random graphs with the same degree 
distributions, for the whole cost range of both globally and locally 
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FIguRe 4 | The quantitative properties of the schizophrenic patients’ brain 
networks can be approximated by randomizing a small proportion of the 
edges of the controls’ brain networks. Illustrated on graphs with 0.2 
topological cost (A) and on graphs with 0.4 topological cost (B), the control 
networks have 0–20% of their edges randomized. The straight lines show the 
mean values of the controls (black) and patients (red) in clustering coefficient, 

global efficiency and small-worldness (sigma). The gray curves show the effect 
on these network properties of randomizing the control networks: The light gray 
curves result if the edges are rewired completely at random, whereas the dark 
gray curves result if the edges are rewired so as to preserve the degree 
distribution of the original graphs. See Section “Materials and Methods” for 
explanations of the network measures and the randomization procedures.
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network properties found in COS, e.g., relative to an ADHD cohort. 
Randomization of functional network topology is arguably consist-
ent with various neurodevelopmental models of the pathogenesis of 
schizophrenia, including abnormal axonal growth, synaptic prun-
ing (Feinberg, 1982) or white matter development (Davis et al., 
2003). We cannot distinguish between these and other putative 
developmental mechanisms for abnormal brain network organiza-
tion based solely on a cross-sectional study of fMRI networks in 
patients compared to healthy volunteers. However, one potential 
advantage of using graph theory to describe network organiza-
tion empirically is that graphical models of network growth or 
development can be formulated computationally and used to test 
various competing hypotheses about growth mechanisms driving 
the formation of the observed network. A classic example of this 
approach was the demonstration that the observed scale-free degree 
distribution of the worldwide web could be plausibly explained 
by a simple growth rule based on preferential attachment (new 
nodes added to the network tend to become attached preferentially 
to existing nodes of high degree) (Barabasi and Albert, 1999). In 
future, it may be possible to use biologically more sophisticated 

In terms of the multi-resolution structure of the graphs as 
explored with the spin glass algorithm, none of the brain graphs 
have a clear plateau in their structure, indicating that the  modularity 
of the graphs is not specific to a certain scale. There is group 
 difference in that the graphs of the healthy controls are on average 
more sensitive to changes in the γ parameter (Figure 6D), separat-
ing into a greater number of modules, each of which is composed 
of fewer nodes on average.

dIscussIon
the balance betWeen global and local connectIvIty In 
schIzophrenIa
The data suggest the intriguing possibility that COS networks could 
be less effectively configured for topologically local communication, 
but better configured for global communication, relative to healthy 
adolescents, as evidenced by reduced clustering and modularity 
but greater connectedness, robustness, and global efficiency. Other 
resting-state fMRI studies of adult-onset schizophrenia have found 
decreased clustering (Liu et al., 2008) and increased robustness (Lynall 
et al., 2010). As far as the anatomical foci of the network differences 
are concerned (Figure 5), Lynall et al. (2010) also found decreased 
clustering in the superior temporal gyrus and anterior cingulate. 
Looking to the broader literature on task-activated fMRI, almost all 
of the brain areas that show decreased regional clustering or increased 
efficiency in COS – including the insula, the ventral occipital lobe, 
and the inferior parietal lobule – have been previous implicated in 
schizophrenia (Glahn et al., 2005; Minzenberg et al., 2009).

As small-world networks like the human brain are a balance 
between global and local efficiency (Watts and Strogatz, 1998; 
Achard et al., 2006), it could be argued that a global optimization 
process that is crucial for healthy neurodevelopment has been abnor-
mally biased in schizophrenia. Decreased small-worldness, which 
has also been reported previously in adult-onset schizophrenia (Liu 
et al., 2008; Lynall et al., 2010), could result if the increase in global 
efficiency comes at the expense of a disproportionate decrease in 
clustering. Taken a speculative step further, if an intermediate phe-
notype with increased global efficiency were evolutionarily favored, 
this could help explain the persistence of schizophrenia as a disease 
(Lynall et al., 2010). Admittedly this argument is limited by the 
fact that while the increase in binary global efficiency is statisti-
cally significant, the absolute difference between the groups is quite 
small. Indeed while decreased clustering in schizophrenia has been 
replicated in other studies, the story for global efficiency is less clear 
(Liu et al., 2008; Bassett et al., 2009). Sibling studies will be crucial 
to better characterize potential intermediate phenotypes.

The shift in the balance between local and global efficiency is 
consistent with a process of randomization in COS. For all of the 
network measures that we investigated, the schizophrenic graphs 
were roughly equivalent to healthy graphs with 5% of the edges 
randomized (Figures 4A,B). This represents a quantification of 
what has been previously described as the “subtle randomization” 
of schizophrenia (Rubinov et al., 2009). Encouragingly it is also 
testable model for future experiments, because it predicts the direc-
tion of the change in schizophrenics relative to controls for any 
network measure. As network randomization or dedifferentiation 
has been suggested as an intermediate phenotype for a variety of 
diseases, it would be very informative to look at the specificity of 

Regional Differences in Clustering between COS and NV

Regional Differences in Efficiency between COS and NV

 7 4.6/4.6  7

COS > NV NV > COS

          -log(p value < .01)

 7 4.6/4.6  7

COS > NV NV > COS

          -log(p value < .01)

FIguRe 5 | Illustrations of the anatomical foci of decreased clustering 
and increased global efficiency in schizophrenic (COS) patients relative 
to controls (NV). At a local threshold of 0.3 topological cost, permutation 
tests estimated the significance of the differences in regional clustering and 
efficiency, which are calculated in the same way as the clustering coefficient 
and the global efficiency, but for each of the 100 nodes individually. 
Estimations of significance were based on 2000 permutations per region, 
with p-values corrected for 100 multiple comparisons using a false positive 
correction p < 1/N = 0.01 Surface representations were created using Caret 
(http://brainmap.wustl.edu/caret/).
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Alon, 2005), predicting cognitive deficits. Decreased topological 
modularity is also consistent with David’s neurocognitive (1994) 
hypothesis of dysmodularity in schizophrenia. Of course topological 
modularity in fMRI networks is not equivalent to neurocognitive 
modularity. For example, while the relationship between perceptual 
and attentional systems is crucial to most renditions of the thesis 
of psychological modularity (Fodor, 1983), our data is agnostic on 
this issue. David’s account in particular implies that brain systems 
are hyperconnected in an absolute sense, whereas graph theoretical 
dysmodularity signifies increased inter-modular connectivity only 
relative to intra-modular connectivity, and is compatible with the 
absolute decrease in average connectivity that we also observe in 
this patient sample. Still, our results provide experimental support 
for the core prediction of a breakdown of the boundaries between 
specialized brain systems.

growth models (Goh et al., 2006) to explain the generative devel-
opmental mechanisms driving formation of normal and abnormal 
brain networks.

ModularIty
The convergence of our evidence from different methodologi-
cal approaches points to a disrupted modular organization, with 
less community structure, in the brain networks of COS patients 
(Figures 3, 6, and 7). This finding makes sense in the context of a 
vast literature on the modularity of complex systems, the brain and 
the mind. As modularity is thought to lessen the potential for error 
in the construction of complex systems (Simon, 1962), decreased 
modularity may jeopardize the development of a functional brain 
network. In theory, a less modular brain would be less able to adapt 
to multiple and changing goals in the environment (Kashtan and 
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FIguRe 6 | The modular structure of brain networks is disturbed in the 
childhood-onset schizophrenia (COS) population (red) relative to the control 
population (black). (A) Modularity is calculated using the fast greedy algorithm 
on binary, locally thresholded graphs. The COS networks have lower modularity, 
especially in the range of topological costs where the networks are partitioned 
into less than 5 modules. (B) The fraction of intra-modular edges, which link nodes 
in the same module, is decreased in COS. This value is the same as modularity 

except not normalized by the expected fraction of intra-modular edges. (C) Using 
the unsupervised learning algorithm Partition Around Medoids (PAM), when the 
graphs are partitioned into less than 5 modules, the healthy controls have higher 
modularity as quantified by the average silhouette width. (D) Using a spin glass 
model with simulated annealing, which looks at the modular structure at different 
resolutions depending on the gamma parameter, the controls have a wider range 
of modular structure at different scales.
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controls than the COS population, as reflected by greater sensitivity 
to the gamma parameter of the spin glass algorithm, but quantify-
ing this hypothesis is an area for future work.

tIMe serIes statIstIcs
It is unsurprising that in counterpoint to the differences in the 
complex networks, simpler properties of the MRI time series 
also differ in COS. The COS population shows decreased inter-
nal homogeneity of the MRI signal within anatomical regions, 
decreased variability of the signal, and decreased average con-
nectivity between anatomical brain regions. Although the exact 
metric is different, decreased homogeneity of the MRI signal 
within anatomical regions is consistent with decreased regional 
homogeneity (ReHo; Zang et al., 2004), which has been reported 
in some brain regions in an adult-onset schizophrenia population 
(Liu et al., 2006). The decreases reported with ReHo were for 
spatial volumes at the scale of a voxel and its nearest neighbors, 
between 7 and 27 voxels total, so our finding of a decrease of the 
homogeneity within regions hundreds of voxels in volume is a 
similar finding at a lower spatial resolution. Decreased regional 
homogeneity could also be interpreted as yet another aspect 
of decreased modularity, at a different spatial scale. As for the 
decreased variability of the global MRI signal, nothing similar 
has to our knowledge been reported in schizophrenia. A metric 
called the “resting state activity index” (RSAI), which is ReHo 
multiplied by the variance of the band-pass filtered time series 
of a voxel, has been reported as increased in some brain regions 
in an ADHD cohort (Tian et al., 2008). Our results indicate that 
this measure would be decreased in COS, although at a different 
spatial scale.

Finally, decreased average strength or connectivity between 
anatomical brain regions is a confirmation of a finding in two 
adult-onset samples (Liu et al., 2008; Lynall et al., 2010). There 
is a potential link between decreased average strength and topo-
logical randomness. Since the connectivity matrices of the graphs 
are composed of thresholded correlation coefficients, decreased 
overall connectivity implies that, at a given graph density, there 
is a lower signal-to-noise ratio in the COS graphs. Assuming that 
this increased noise is spread equally throughout the nodes, it 
would be expected to result in increased topological randomness. 
Topological randomness could also result from other processes, 
e.g., highly correlated regional time series could result in graphs 
with the same properties as random graphs. But since our study 
shows both decreased correlations and increased randomness, it 
seems likely that they are two sides of the same coin.

MethodologIcal Issues
As the globally thresholded graphs show group differences in 
connectedness, it would not be implausible for this to drive 
the differences in other network metrics. The introduction of 
local thresholding ensures that the disparity between the COS 
and controls are not due simply to this issue. The known lack 
of uniformity in the quality of the MR signal from different 
anatomical regions also makes it reasonable to employ a local 
threshold, rather than apply the same threshold to regions with 
different signal-to-noise. The limitations of simply applying a 

Although differences in modularity have not previously been 
reported in human brain networks, differences have been found in 
the modular partition itself, i.e., which brain regions are grouped 
together into functional communities. For example, Meunier et al. 
(2009a) found that the brains of a healthy aging population con-
tained more functional modules than younger adults, and Fair et al. 
(2009) found that during adolescence modules are composed of 
brain regions that are further apart in physical space. We do not 
find strong evidence for a group difference in the physical disper-
sion of brain modules, but it is slightly greater in the controls (not 
shown). Although the finding that brain networks are modular at 
multiple resolutions is anticipated by their hierarchical modular 
organization (Meunier et al., 2009b; Bassett et al., 2010), this is 
the first study to define modularity across a continuous range of 
resolutions. Our results may suggest that the modular structure of 
the functional brain networks is more multi-scale in the healthy 

 NV and COS Subjects with Median Modularity

COS

Cortical
Partition

Edges 
Within 
Modules 
(67%)

Edges 
Between 
Modules 
(33%)

Cortical
Partition

NV
Modularity
0.338

Edges 
Within 
Modules 
(76%)

Edges 
Between 
Modules 
(24%)

Modularity
0.305

FIguRe 7 | An illustration of modularity, using representative brain 
networks from the childhood-onset schizophrenia (COS) population and 
the control (NV) population. At a local threshold of 0.22 topological cost, the 
modular partition is shown for the median NV subject (above) and the median 
COS subject (below), in terms of modularity estimated by the fast greedy 
algorithm. Each module is assigned a specific color, and the modular structure 
of each subject is illustrated in three different ways: the cortical partition shows 
the anatomical location of the modules; the left-hand topological plot shows 
the density of intra-modular edges, between nodes in the same module; and 
the right-hand topological plot shows the density of inter-modular edges, 
between nodes in different modules. The layouts of the topological plots are 
determined by a force-directed algorithm (Fruchterman and Reingold, 1991).
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global threshold to a correlation matrix have previously been 
documented in physics and economics, and several alternatives 
have been proposed (Onnela et al., 2002; Tumminello et al., 2005; 
Serrano et al., 2009). Our method is fast, simple, ensures con-
nected graphs, and is defined over the whole cost range. Lacking 
knowledge of a “true” functional network to provide a gold stand-
ard for evaluation of results, it is inappropriate to be too assertive 
about which graph construction algorithm is best. From a statisti-
cal perspective on the individual pairs of time series, we have the 
most confidence that the edges in a globally thresholded network 
are genuine functional connections, but the locally thresholded 
networks have desirable topological constraints and facilitate 
group comparisons. Side by side contrasts – whether visually 
on small “model” networks (Figure 1) or in terms of statistical 
comparisons between groups (Figure 3) – reveal a high degree 
of similarity in the differently constructed graphs, with some 
divergence probably due to network fragmentation issues that 
arise with global thresholding. In addition, for both threshold-
ing schemes, the patient trend in complex network properties 
is consistent with randomization of a small percentage of the 
edges in the control networks, as illustrated in Figure 4 for locally 
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FIguRe 8 | An illustration of the relationship between the different properties of brain networks, including both graph theoretical and non-graph-theoretical 
metrics. The metrics from Table 1 are correlated between all the subjects in the study and presented as a heat map, with the color value corresponding to the 
Pearson’s correlation coefficient. The layout is organized by complete linkage hierarchical clustering, according to the dendrogram shown at the left of the figure.

thresholded graphs. In short, on the basis of current data, it seems 
likely that both global and local thresholding rules can be used to 
construct broadly consistent results but that the between-group 
comparisons based on local thresholding are simpler to interpret 
because these networks will all be node-connected by design even 
at low connection densities. Future studies should attempt to 
compare these and other methods of graph construction more 
rigorously using modeled data with known and biologically 
plausible properties.

Unsupervised learning and graph theoretical algorithms to 
quantify the community structure of a functional brain network 
have different strengths and weakness. In the context of fMRI net-
works, one strength of unsupervised learning algorithms such as 
partition around medoids (PAM) is that they deal with similarities 
between objects in n-dimensional space, while graph theory deals 
with relations between objects. Unsupervised learning methods are 
thus appropriate to the complete, unthresholded correlation matrix. 
In contrast graph theoretical approaches allow us to query the com-
munity structure of the same, thresholded graphs for which we 
discuss other network properties. Another difference is that graph 
theoretical algorithms naturally output an optimum number of 
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modules, which is non-trivial for unsupervised learning algorithms. 
With PAM, one solution is to maximize the silhouette width over a 
range of possibilities for the number of modules; this is a potential 
virtue of PAM compared to hierarchical clustering as it is generally 
implemented, where the dilemma becomes one of how to cut the 
dendrogram. In a sense the spin glass algorithm with simulated 
annealing is intermediate between the two other classes of methods. 
Similarly to PAM, it can be applied to the unthresholded, weighted 
graphs, but it also outputs an optimal number of modules, at least 
for a given value of the gamma parameter. However the inclusion of 
the gamma parameter, while allowing us to explore the multi-scale 
modular structure of the graphs, introduces the non-trivial ques-
tion of which if any scale of description best captures the modular 
structure. Another serious drawback of the spin glass algorithm is 
that it is by far the slowest computationally of the 3.

This study is based on a small sample size with short MRI scans. 
With only 13 COS subjects included, the group differences that we 
have found will need to be verified in a larger study. In terms of the 
scans, concatenating two consecutive 3-min scans is probably infe-
rior to having one 6-min scan; however, it would seem comparable 
to concatenating the interleaved rest blocks from a task-activation 
study, which has been suggested as acceptable data for a resting-state 
fMRI study (Fair et al., 2007). In our case, the short consecutive scans 
are unavoidable, because children and adolescents with severe neu-
ropsychiatric disease often find it difficult to tolerate longer scans. 
The total acquisition time of 6 min is also quite short, but it has 
been argued that correlations between brain regions stabilize with 
even shorter acquisition times (Dijk et al., 2010). The short scanning 
time does prevent us from looking at very low frequency fluctuations 
(<0.05 Hz), as the statistical power starts to become quite low.
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Minimum spanning tree (MST): For a weighted graph, an MST 
is composed of the edges that connect all of the nodes of the graph 
while including the lowest possible total weight.

Modularity: A measure of the community structure of a graph, 
based on an optimal partition of the nodes into distinct communi-
ties or modules, which can be defined for weighted or unweighted 
graphs. There are many different approaches to this problem. In 
the multi-resolution spin glass model, the gamma (γ) parameter 
adjusts the resolution of the modular partition.

Network: See Graph.
Node or vertex: An object in a graph, usually illustrated as a 

circle.
Path length: The shortest path length between two nodes is the 

length of the shortest sequence of edges that links the nodes. The 
characteristic path length of a graph is the average shortest path 
length between every pair of nodes.

Random graph: A random graph is generated by a set of rules 
with minimal topological constraints. For example, each edge 
could occur independently with some probability. Different meth-
ods of generating random graphs result in different topological 
properties.

Sigma (σ): See Small-world.
Small-world: A small-world graph has a high clustering coef-

ficient and a low characteristic path length, compared to random 
graphs. The extent to which a graph is small-world is captured by 
the quantity sigma (σ).

Strength: The strength of a node is the sum of the weights of all 
of its edges. Depending on the context, “strength” can also refer to 
the average functional connectivity of a brain region

Weighted graph: A graph where each edge is assigned a quan-
titative value, which could for example reflect how strongly the 
nodes interact. Depending on the context, it can be convenient 
to assign higher weights either to stronger interactions or to 
weaker interactions. An unweighted graph is also called a “binary” 
graph.

permits unrestricted use, distribution, and reproduction in any medium, provided the 
original authors and source are credited.

appendIx
graph theory terMs
Clustering coefficient: A measure of cliquishness, or the extent to 
which edges are locally agglomerated, which can be defined for a 
graph as a whole or for each node individually.

Complete graph: A graph where every node is linked by an edge 
to every other node.

Connected or node-connected graph: A graph in which each 
node is linked by a finite number of edges to every other node, i.e., 
all nodes are part of a giant connected component. A disconnected 
graph is also called “fragmented.”

Connection density or topological cost: The number of edges 
in a graph, divided by the number of edges in a complete graph 
with the same number of nodes.

Degree: The degree of a node is its number of edges.
Edge or link: An interaction between nodes in a graph, usually 

illustrated as a straight line.
Gamma (γ): See Modularity.
Global efficiency: A measure of global integration, which can 

be defined for a graph as a whole or for each node individually, for 
weighted or unweighted (binary) graphs.

Graph: A group of elements and their interactions, represented 
as nodes and edges.

k Nearest Neighbors Graph (k-NNG): For a weighted graph, the 
k-NNG includes edges linking each node to its k nearest neighbors, 
where the weight of an edge is interpreted as the distance between 
the nodes.

Local efficiency: Conceptually similar to the clustering coef-
ficient, a measure of the local agglomeration of edges, which can 
be defined for weighted or unweighted (binary) graphs.
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sources into a unified whole. This hypothesized integration deficit 
thus provided an account that can be applied to all three areas of 
impairments in autism. For example, impairments in social interac-
tions can be attributed by weak central coherence theory to inad-
equate integration of many types of concurrent social information, 
such as the content and context of the dialog, the speaker’s tone 
of voice, the speaker’s facial expression and body language, the 
speaker’s relationship with the listener, etc. Moreover, the spar-
ing of certain behaviors can be explained in terms of the spared 
domains relying less on multiple information sources. Although 
the weak central coherence theory provides a compelling concep-
tual description that explains the clinical symptoms of autism, it 
does not indicate what specific cognitive or biological mechanism 
may underlie this general integration deficit. Several other cogni-
tive-level theories of autism have also been proposed, including 
Theory of Mind disruption (Baron-Cohen et al., 1985), executive 
processing dysfunction (Ozonoff et al., 1991), complex information 
processing disorder (Minshew et al., 1997), and enhanced percep-
tual functioning (Mottron and Burack, 2001). While each of these 
theories accounts for some aspects of the behavioral symptoms 
of autism, neuroimaging research has the potential to identify a 
biological mechanism underlying and explaining the behavioral 
manifestations of this disorder in a unified account.

Since the advent of neuroimaging, autism researchers have 
attempted to use imaging methods to identify atypical character-
istics of brain function and brain structure in autism. Magnetic 
resonance imaging (MRI) studies can be used to measure the size 
and properties of various gray and white matter structures in the 
brain. Functional MRI (fMRI) studies measure the brain activation 
in gray matter regions during the performance of various tasks. 
Furthermore, the synchronization of the activation between brain 

IntroductIon
The diagnosis of autism is currently based on observed behavioral 
characteristics, without the aid of biological markers. The triad of 
behavioral impairments that characterize this neurodevelopmental 
disorder consists of seemingly diverse types of deficits: social reci-
procity, language skills, and restricted repetitive and stereotyped 
patterns of behavior (American Psychiatric Association [APA], 
2000). Individuals with autism also often show intact (if not 
enhanced) perceptual functioning (Mottron et al., 2006). Autism 
is a spectrum disorder, such that individuals who meet the diagnosis 
can have a wide range of severity of impairment in these three areas 
(Frith, 1989). Language impairments can vary widely, ranging from 
near absence of language or gestures in cases of low-functioning 
autism to the near normal language in high-functioning autism, but 
with persistent pragmatic communication difficulties (Frith and 
Happé, 1994). Social impairments include a lack of seeking to share 
enjoyment with others, a lack of emotional reciprocity, and marked 
impairment in the use of non-verbal behaviors such as eye-to-eye 
gaze (APA, 2000). Restricted repetitive and stereotyped patterns 
of behavior include repetitive motor mannerisms and inflexible 
adherence to specific routines (APA, 2000). As awareness about 
autism has increased dramatically in the past decade, so has research 
into the behavioral and biological characteristics of autism. This 
diverse set of behavioral impairments in autism provides a formi-
dable research challenge, namely, to identify a biological mechanism 
that can explain all of them in a unified way.

The influential theory of autism known as “weak central coher-
ence” (Frith, 1989) aimed to explain an extended set of behavioral 
characteristics of autism in behavioral terms. The theory proposed 
that underlying the distinct behavioral impairments of autism is 
a general deficit in the ability to integrate multiple information 
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regions has been used as a measure of inter-regional coordination 
or functional connectivity. Recently, new techniques have been 
developed to measure the integrity of white matter pathways in 
the brain, providing a more precise characterization of anatomical 
connectivity. These neuroimaging techniques have explored differ-
ences between individuals with autism and neurotypical control 
individuals to investigate the possibility of localized deficits in spe-
cific areas of the brain in autism as well as network-wide disruptions 
throughout the brain.

What a number of fMRI studies examining brain activation in 
a diverse set of tasks collectively show is that the diverse behavioral 
symptoms of autism are not underpinned by the activity of any 
single brain area. Instead, these studies indicate that many different 
sets of brain areas are involved in the performance of tasks that 
show behavioral abnormalities in autism (see Di Martino et al., 
2009 for a recent meta-analysis). This outcome suggests that the 
disturbance underlying autism is more likely a non-localized dis-
ruption. Recent neuroimaging findings have led to the hypothesis 
that a network-wide disruption in brain connectivity may explain 
the varied set of behavioral impairments in autism.

Based on neuroimaging evidence of anatomical and functional 
connectivity disruptions in autism, Just et al. (2004, 2007) pro-
posed the underconnectivity theory of autism. This theory suggests 
that the behavioral markers of autism are directly or indirectly 
caused by limitations of the communication between frontal and 
posterior brain regions, and predicts that these limitations will 
impact those tasks that require extensive coordinated functioning 
of frontal and posterior processing centers. For example, in both 
language comprehension and social interaction processes, fMRI 
studies have shown that extensive, coordinated activity between 
frontal and posterior brain areas is involved. The theory accounts 
for restricted repetitive and stereotyped patterns of behavior in 
terms of the inability of the frontal executive system to exert control 
over posterior processing centers. The theory characterizes spared 
behaviors as those that do not require extensive frontal–posterior 
coordination, such as some perceptual processes. Thus the theory 
posits a biological mechanism, frontal–posterior underconnectiv-
ity, which may be able to explain the full set of diverse impairments 
that characterize autism.

Neuroimaging studies have demonstrated that coordinated 
functioning of frontal and posterior processing centers is critical for 
the types of behavior in which individuals with autism are impaired. 
Language comprehension and production require the coordinated 
functioning of at least the inferior frontal gyrus (Broca’s area, in 
the left hemisphere) and the posterior superior temporal gyrus 
(Wernicke’s area, in the left hemisphere). Similarly, social process-
ing requires the coordinated functioning of at least medial frontal 
areas and posterior (right-hemisphere dominant) areas, such as 
the temporo-parietal junction (associated with Theory of Mind 
processing), the superior temporal sulcus (associated with process-
ing biological motion), and the fusiform gyrus (associated with 
face processing). Restricted repetitive and stereotyped patterns of 
behavior may arise as a result of poor coordination between frontal 
executive systems that guide attention through suppression or focus 
and posterior systems that execute the repeated behavior. The spar-
ing of certain visuospatial abilities in autism may be due to these 
processes being less reliant on the participation of frontal systems 

and more reliant on posterior (parietal and occipital) systems. Thus, 
the full set of behavioral impairments that characterize autism may 
be explainable by impaired integration of frontal and posterior 
brain systems, caused by frontal–posterior underconnectivity.

Below we review different sources of evidence of underconnec-
tivity in autism, including measures of both functional [positron 
emission tomography (PET), fMRI, and electroencephalography 
(EEG)] and anatomical connectivity (T1-weighted structural 
imaging, DTI, and histological analyses). Importantly, as pointed 
out by Horwitz (2003), we note that methodological factors in 
measuring connectivity affect the inferences that can be drawn, 
and that because of this, the conclusions may differ depending on 
the particular way that connectivity is measured. Most neuroim-
aging studies only include high-functioning individuals (IQs in 
the normal range), and the majority of the studies reported here 
include only high-functioning individuals with autism spectrum 
disorders (ASD). One exception is that several structural imaging 
studies of children under 5 years of age do not restrict their ASD 
group based on IQ. We also consider the growing evidence of the 
relations between measures of connectivity and behavior. Finally, 
we discuss the implications of these findings for the treatment of 
autism and future directions for this area of research.

FunctIonal connectIvIty In autIsm
In a groundbreaking paper in autism neuroimaging, Horwitz et al. 
(1988) provided the first evidence that disrupted coordination 
among brain regions might be an important factor underpinning 
the behavioral manifestations of the disorder. This evidence was 
based on cross-participant, between-region correlations of regional 
cerebral glucose metabolism during rest, measured with PET. The 
striking finding from this study was that a group of adult males with 
autism showed a lower than normal degree of correlation between 
the level of metabolic activity in various activated brain regions, 
particularly when considering correlations between frontal and 
parietal regions. Interestingly, this study also found reduced across-
subject correlations in autism for frontal–subcortical correlations 
of metabolic rates, but not for inter-hemispheric, homologous 
regions. It took over a decade for the next breakthrough to occur, 
a period of time during which fMRI methods were developed, 
which allowed for even more fine-grained, repeated measurement 
of task-related activation within the same participant. These new 
methods made it possible to extract a time series of the activa-
tion in each area and measure the correlations of the time series 
across areas within participants, rather than just within groups. 
In recent years, a variety of methods have been used to assess how 
functional connectivity compares between individuals with and 
without autism. Across many tasks and paradigms, the vast majority 
of studies of brain activity have reported converging findings of 
disrupted synchronization of brain activation in autism.

Functional connectivity is a measure of the synchronization, 
or covariance, of activation among different brain regions, and 
it is often interpreted as an indirect measure of the communica-
tion or coordination of processing between the regions. In fMRI 
studies, functional connectivity is typically measured by calculat-
ing the simple Pearson correlation coefficient between two time 
courses of activation measured in different regions. Moreover, the 
measurement of dyadic coordination rather than coordination 
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biological activity unrelated to cognition. This review focuses on 
the findings of task-dependent functional connectivity differences 
in autism related to cognitive processing, but also includes the find-
ings of task-independent functional connectivity.

Frontal–posterIor FunctIonal connectIvIty In autIsm
The most consistent finding of functional connectivity differences 
in autism is a pattern of lower frontal–posterior functional con-
nectivity relative to neurotypical individuals. Many studies have 
found decreased synchronization between whatever frontal and 
posterior regions are recruited for a given task. For example, in a 
task designed to require the integration of spatial processing and 
language comprehension, decreased functional connectivity was 
found in autism1 between frontal language regions and parietal 
spatial processing regions (Kana et al., 2006). Participants had to 
judge sentences such as the following as true or false: The number 8 
when rotated 90° looks like a pair of eyeglasses. Similarly, in a working 
memory task where participants were asked to judge whether a face 
they were viewing was the same as one seen previously, decreased 
functional connectivity was found in autism between frontal execu-
tive regions and the fusiform gyrus, an area involved in face process-
ing (Koshino et al., 2008). This latter study illustrates that what 
is impaired in autism is not just the functioning of a particular 
brain area (although the activation in the fusiform gyrus was in a 
slightly offset location in autism), but that, in addition, the func-
tional connectivity between the fusiform gyrus and frontal regions 
was abnormally low. Furthermore, this pair of studies illustrates the 
point that functional underconnectivity emerges between whatever 
frontal and posterior regions are centrally involved in the task. 
Almost all complex language, social, and executive tasks, precisely 
where behavioral deficits are typically found in autism, would be 
expected to show frontal–posterior functional underconnectivity. 
(An example of a task that might be expected not to draw heavily on 
frontal regions is a perceptual task that can be performed without 
strategic control, and this is also the type of task where one might 
expect sparing in autism. It will be interesting to learn about the 
functional connectivities among posterior regions in autism in such 
tasks, which have not yet been reported).

Similar findings of lower functional connectivity in autism in 
relevant frontal and posterior areas have been reported in a wide 
variety of cognitive tasks. For example, in a passage comprehen-
sion task in which participants had to make inferences about the 
characters’ intentions, decreased functional connectivity in autism 
was found between frontal and parietal Theory of Mind areas, as 
well as between frontal language areas and parietal Theory of Mind 
areas (Mason et al., 2008). Figure 1 depicts the frontal–posterior 
underconnectivity in autism during this task (where line width cor-
responds to the group difference in functional connectivity). In a 
Tower of London task, decreased functional connectivity in autism 
was found between frontal and parietal working memory areas 
(Just et al., 2007). In a task which required participants to make 
inferences about the intentions of computer-animated geometric 

among larger numbers of areas is simply a matter of convenience. 
Where appropriate, higher-order measures of coordination among 
a larger set of areas can be informative, showing for example, that 
the groupings of areas are different and smaller in autism in some 
tasks (Koshino et al., 2005). The more general issue concerns 
impaired communication between the frontal and posterior brain 
areas that concurrently perform a given task. If two brain areas 
show synchronized patterns of activation, it implies that they are 
performing their functions within some coordinated, coherent sys-
tem, possibly involving dyadic communication and coordination 
between them; a better term for “functional connectivity” may have 
been informational connectivity. Measurements of functional con-
nectivity can be used to examine how the communication between 
distinct brain areas differs between individuals with autism and 
neurotypical individuals.

Despite the fact that all studies of functional connectivity some-
how measure inter-regional covariance of activation levels, the 
particular techniques used to assess this covariance can differ sub-
stantially across imaging modalities, laboratories, and studies. At 
the most basic level, the choice of imaging modality will determine 
the spatial and temporal resolution at which such covariance can be 
measured. As noted above, early PET studies (e.g., Horwitz et al., 
1988) lacked the temporal resolution to evaluate functional connec-
tivity within individual subjects, and later PET studies could only 
evaluate such connectivity at the temporal resolution of lengthy 
(e.g., 45-s) blocks of data acquisition (Castelli et al., 2002). With 
the advent of fMRI, these limitations on temporal resolution were 
removed, but different techniques resulted in functional connectiv-
ity being measured at different spatial resolutions.

One approach that is well-suited to fMRI measurement of the 
coordination of information processing involves averaging the acti-
vation time course of all the voxels in each region which have been 
shown to be activated in the task at hand. The analyses then examine 
the correlations among all pairs of these averaged time series in a 
given task (e.g., Just et al., 2004). Alternatively, voxel-based analyses 
can measure the synchronization between one seed region [based 
on a single voxel or an average of all voxels in a predefined region 
of interest (ROI)] and all the remaining voxels throughout the 
brain. This latter method focuses on measuring the synchroniza-
tion between the activation in a specific brain structure and the 
rest of the brain, rather than examining connectivity between all 
possible pairs of regions, but allows group differences in this con-
nectivity with a single region to be assessed in each voxel over the 
entire brain.

In the measurement of functional connectivity in fMRI, it is 
important to note which range of frequencies is being included in 
the measurement and with what rationale. The majority of fMRI 
studies of functional connectivity correlate activation measurements 
that occur once every second or 2 s during task performance. These 
studies focus on the synchronization of activation that is assumed to 
reflect conjoint modulations of the information processing activity 
in each of two regions. By contrast, a few fMRI studies of func-
tional connectivity have instead examined only the slow activation 
changes (occurring over the course of 10 s or more) that are inde-
pendent of task performance. (This is done by removing frequen-
cies above 0.1 Hz.) This approach assesses whether the functional 
connectivity differences in autism are present in slower-changing 

1As we report findings, we use either autism or autism spectrum disorders (ASD) to 
reflect the author’s use. The two terms generally have different qualifications, with 
ASD typically being a superordinate category that may include autism, Asperger’s 
syndrome, and pervasive developmental disorder.
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 spontaneous, naturally occurring patterns of brain activity. Studies 
of resting state in autism have revealed a “default network” of areas 
(very similar to the neurotypical default network), which includes 
the medial prefrontal cortex, anterior and posterior cingulate cortex, 
the precuneus, and the inferior parietal cortex (Cherkassky et al., 
2006). The majority of resting state studies have found decreased 
functional connectivity in autism in both frontal–posterior pairs 
and other pairs. Decreased functional connectivity in autism during 
rest was found in 94% of possible pairs among the default network 
ROIs, including between the anterior cingulate and the posterior 
cingulate and precuneus (Cherkassky et al., 2006). In another study, 
decreased functional connectivity in ASD was found within the 
task-negative network (medial prefrontal cortex, posterior cingu-
late, and angular gyrus), but not in the task-positive network (intra-
parietal sulcus, superior precentral sulcus, and middle temporal 
gyrus; Kennedy and Courchesne, 2008). Functional connectivity 
was also found to be lower in ASD between the superior frontal 
gyrus and the posterior cingulate (Monk et al., 2009). Notably, 
Monk et al. (2009) found that among posterior regions (involving 
posterior cingulate, temporal lobe, and parahippocampal gyrus), 
the functional connectivity was higher in ASD, providing a sugges-
tion that connectivity among posterior regions may not only be 
unaffected in autism, but that there may be compensatory poste-
rior overconnectivity. Decreased functional connectivity was also 
found in adolescents with ASD between the posterior cingulate 
and 9 of the 11 other default network regions, including medial 
prefrontal and superior frontal (Weng et al., 2010). These studies 
show decreased functional connectivity within the default network 
in autism while participants are at rest, suggesting that functional 
underconnectivity in autism is not necessarily dependent on the 
performance of overt complex cognitive tasks.

As mentioned above, task-independent functional connectiv-
ity has also been examined in autism. This method focuses on 
the synchronization of the task-independent, very low-frequency 
activation fluctuations that are not related to cognitive processing. 
It is unclear how this task-independent measure of synchronization 
is related to disruption of thought in autism. Nevertheless, several 
such studies have also found functional connectivity differences in 
autism between frontal and posterior areas. Functional undercon-
nectivity in autism has been reported between the visual cortex and 
several frontal regions (Villalobos et al., 2005), and lower frontal–
posterior connectivity was found in ASD both with and without 
regressing out task effects in an overt verbal fluency task (Jones 
et al., 2010). However, there have also been findings of increased 
frontal–posterior functional connectivity in ASD using this method 
(Noonan et al., 2009). The findings of atypical task-independent 
functional connectivity in autism may suggest that even at the bio-
logical level, differences are present in this disorder.

FunctIonal connectIvIty In autIsm In paIrs other than 
Frontal–posterIor
Disturbances of functional connectivity in autism have also been 
reported between pairs of regions other than frontal–posterior pairs, 
but the findings in such pairs have been less consistent across stud-
ies, as shown in Table 1. For example, lower functional connectivity 
in ASD has been reported between the amygdala and temporal and 
frontal regions (Monk et al., 2010), between the anterior cingulate 

figures, individuals with autism had lower functional connectivity 
between frontal and posterior Theory of Mind areas (Kana et al., 
2009). In a reading comprehension task with sentences of varying 
complexity, underconnectivity was found in autism between fron-
tal and posterior areas involved in language comprehension and 
working memory (Just et al., 2004). In a working memory task with 
alphabetic characters, lower functional connectivity was reported 
between frontal and parietal working memory areas (Koshino et al., 
2005). In a complex inhibition task, functional connectivity was 
lower in autism between the frontal inhibition network and the 
inferior parietal lobe (Kana et al., 2007). In a cognitive control 
task, lower functional connectivity was reported in ASD between 
the frontal executive system and several posterior regions in the 
brain, including parietal working memory areas and the visual cor-
tex (Solomon et al., 2009). In the context of a working memory 
task with faces and houses (similar to that of Koshino et al., 2008, 
described above), lowered functional connectivity was found in 
ASD between the fusiform gyrus and the amygdala (both related to 
face processing), as well as between the fusiform gyrus and the pos-
terior cingulate (Kleinhans et al., 2008). These studies collectively 
illustrate that functional underconnectivity has been observed in 
autism in a wide variety of frontal–posterior pairs. The communi-
cation between the members of each of these pairs is necessary for 
the integration of the multiple cognitive processes required for a 
given task. These findings support the underconnectivity theory’s 
claim that decreased frontal–posterior connectivity in autism spe-
cifically affects behaviors that require the extensive coordinated 
functioning of frontal and posterior processing centers.

Findings of underconnectivity in autism have also been reported 
in the absence of task performance, while participants are at rest. 
Such “resting state” studies offer the advantage of measuring 
the functional connectivity between different brain regions in 

FIguRe 1 | This diagram depicts functional underconnectivity, 
specifically between frontal and posterior areas, in autism during an 
inferential text comprehension task. The width of each connecting line 
represents the t-value of the difference in functional connectivity between the 
participants with autism and the neurotypical participants. Blue nodes are 
frontal regions and red nodes are posterior regions. The widest lines 
(reflecting the greatest group differences) are those connecting frontal and 
posterior regions. Data from Mason et al. (2008), with permission. MedFG, 
medial frontal gyrus; LIFG, left inferior frontal gyrus; RTPJ, right temporo-
parietal junction; LMTG, left middle temporal gyrus; LMTGa, anterior left 
middle temporal gyrus.
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connectivity in autism in these other pairs, some studies have 
reported increased functional connectivity in autism, most often 
in subcortico-cortical pairs. It should be noted that all findings of 
overconnectivity in ASD come from studies using non-standard 
methods, such as psychophysiological interaction connectivity 
analysis (Monk et al., 2010), multidimensional scaling (Welchew 
et al., 2005), and task-independent functional connectivity analy-
ses (Mizuno et al., 2006; Turner et al., 2006; Noonan et al., 2009), 
and, with the exception of Noonan et al. (2009), all of these studies 
reported differences in pairs involving the amygdala or subcortical 
structures. Further research is necessary to determine if these find-
ings of increased functional connectivity in autism reflect unique 
properties of subcortico-cortical connections in autism. In addi-
tion, several studies reported decreased functional connectivity in 
autism in non-frontal–posterior pairs, but this varied set of findings 
has yet to illustrate a clear pattern of disturbance. Future research 
in this area should be able to produce a more complete account 
of functional connectivity disturbances in autism, using a variety 
of tasks and measurement methods. It is possible that whatever 
biological mechanisms lead to frontal–posterior underconnectivity 
in autism may have also affected other connections, but to a lesser 
degree or less consistently. It may be that frontal–posterior con-
nections are most strongly affected by the biological disturbance 
underlying autism, but functional connectivity differences may 
occasionally appear in any number of other connections.

alternatIve methods oF assessIng FunctIonal connectIvIty
Functional connectivity in fMRI data has also been measured with 
various other techniques. For example, independent component 
analysis (ICA) identifies temporally coherent networks by select-
ing spatially independent brain areas whose hemodynamic time 
courses closely co-vary. ICA is a data-driven method which does 
not rely on a priori ROIs or the performance of a cognitive task. An 
ICA examination of resting state fMRI data revealed that individu-
als with ASD had decreased strength of functional connectivity 
between both the precuneus and the anterior cingulate cortex and 
a default network consisting of the posterior cingulate cortex, the 
inferior parietal lobule, and the medial prefrontal cortex (Assaf 
et al., 2010). Thus, ICA is a novel technique which is producing 
findings in accordance with previous reports of functional under-
connectivity in ASD during resting state (Cherkassky et al., 2006; 
Kennedy and Courchesne, 2008; Weng et al., 2010).

Another data-driven approach to measuring functional con-
nectivity is the measurement of regional homogeneity (ReHo), 
which tests for local correlations in fMRI time series. This tech-
nique calculates the Kendall’s coefficient of concordance (KCC) 
for each voxel with its neighboring voxels, thereby estimating the 
local connectivity of every voxel in the brain. While the two exist-
ing studies of ReHo in ASD have somewhat divergent results, both 
find decreased ReHo in young adolescents with ASD in the fron-
tal lobe (Paakki et al., 2010; Shukla et al., 2010). However, while 
Shukla et al. (2010) also found decreased ReHo in the superior 
parietal lobule and increased ReHo in the temporal lobe, Paakki 
et al. (2010) instead found decreased ReHo in right superior tem-
poral sulcus and cerebellum with increased ReHo in the right tha-
lamus, left inferior frontal gyrus/subcallosal gyrus, and cerebellum. 
These divergent results may stem from methodological differences: 

and frontal eye fields (Agam et al., 2010), within a motor network 
consisting of primary and supplementary motor areas, anterior 
cerebellum, and the thalamus (Mostofsky et al., 2009), between 
the prefrontal cortex and premotor and somatosensory cortices 
(Lombardo et al., 2010), and between the fusiform gyrus and the 
amygdala, the posterior cingulate and the cuneus (Kleinhans et al., 
2008). Based on activation results, Silk et al. (2006) proposed a 
disruption in the frontostriatal network in ASD. While these studies 
all report functional underconnectivity in autism in non-frontal–
posterior pairs, the findings vary across a wide variety of pairs 
of regions and across a large range of tasks, making it difficult 
to isolate a specific pattern of disturbance. Furthermore, the fact 
that two studies have reported increased functional connectivity 
in ASD in non-frontal–posterior pairs of areas (Welchew et al., 
2005; Monk et al., 2010) further illustrates the variability of func-
tional connectivity findings in autism for pairs of regions other 
than frontal–posterior pairs.

Functional MRI studies of task-independent functional connec-
tivity have also found group differences in other pairs of areas, often 
focusing on subcortical regions. Although decreased functional 
connectivity in autism was reported between the visual cortex and 
the thalamus and cerebellum (Villalobos et al., 2005), and between 
the superior frontal gyrus and the caudate (Turner et al., 2006), 
studies have also found increased connectivity in autism in many 
pairs involving subcortical regions. Increased functional connectiv-
ity in autism was reported between the thalamus and several areas 
throughout the cortex (Mizuno et al., 2006), as well as between 
the caudate and many other regions, including frontal regions, the 
cingulate, and the cuneus (Turner et al., 2006). Increased task-
independent functional connectivity in ASD was also reported 
in frontal–frontal and posterior–posterior pairs (Noonan et al., 
2009). The most consistent finding of increased task-independent 
functional connectivity in autism is in subcortico-cortical pairs. 
Because this method measures task-independent synchronization, 
it remains unclear how these findings may be related to the integra-
tion of cognitive processes during task performance, although they 
may suggest differences in autism even at the biological level.

As this section has illustrated, functional connectivity differ-
ences in autism have also been found in pairs of areas that are not 
frontal–posterior, in both task-dependent and task-independent 
measures. While the majority of studies report lower functional 

Table 1 | Summary of fMRI functional connectivity results.

Task Pairs of Functional 

 regions underconnectivity in autism

Task Frontal– Just et al. (2004, 2007), Koshino

performance posterior pairs et al. (2005, 2008), Kana et al. 

  (2006, 2007, 2009), Kleinhans et al. (2008), 

  Mason et al. (2008), Solomon et al. (2009)

Task Other pairs Kleinhans et al. (2008), Mostofsky

performance  et al. (2009), Agam et al. (2010), 

  Lombardo et al. (2010), Monk et al. (2010)

Resting state Frontal– Cherkassky et al. (2006), Kennedy

 posterior pairs and Courchesne (2008), Monk

  et al. (2009), Weng et al. (2010)
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by adulthood, individuals with autism tend to have more poorly 
developed white matter pathways relative to neurotypical indi-
viduals, as described below. Evidence from several neuroimaging 
methods has also revealed an atypical developmental pattern of 
cortical connectivity in autism. Individuals with autism show a 
large increase in white matter growth in very early childhood, fol-
lowed by a period of relatively slowed growth. There are several 
sources of evidence of white matter abnormalities in autism that 
can affect connectivity.

volume measurements oF whIte matter In autIsm
Infants who are later diagnosed with ASD show typical brain char-
acteristics at birth, but shortly thereafter show atypically fast brain 
growth. Based on measurements of head circumference (a rough 
estimate of brain size), newborns with ASD had slightly smaller 
head circumferences than typical infants, but then showed an atypi-
cally large increase in head size within the first 6–14 months of 
age, resulting in atypically large head circumferences (Courchesne 
et al., 2003). Structural MRI measurements of brain volumes have 
revealed converging evidence of increased volumes in children with 
autism between the ages of 2 and 4 years in both cerebral gray and 
white matter. Ninety percent of 2- to 4-year-olds with autism had 
increased brain volumes in gray and white matter relative to neu-
rotypical children (Courchesne et al., 2001). Greater brain volumes 
in 2- to 4-year-olds with autism were more pronounced in the 
frontal lobe, with no differences in the occipital lobe (Carper et al., 
2002). Together, these findings suggest that children with autism 
show atypically rapid increases in frontal gray and white matter in 
the first 2 years of life.

The pattern of rapid brain growth in autism reverses around 
age 4, such that children with autism then show a decreased rate 
of brain growth in white matter from ages 3 to 12 (Courchesne 
et al., 2001). Neurotypical children showed a 59% increase in 
white matter volume during this time period, while children with 
autism showed only a 10% increase. Greater volume of white 
matter was found, particularly in frontal radiate white matter in 
5- to 11-year-olds with autism, as well as volumetric increases and 
decreases in a number of other regions, indicating the disruption 
of the white matter (Herbert et al., 2004). The period of slowed 
growth eventually results in a smaller volume of white matter 
in adolescents with autism relative to neurotypical adolescents 
(Courchesne et al., 2001). A similar pattern was found in cortical 
gray matter. Thus, brain volume measurements have revealed that 
the rate of brain growth in autism slows after age 4, leading to 
a decreased volume of white matter in adolescents with autism 
relative to neurotypical adolescents. Given that white matter is 
the medium which is used for inter-regional brain communica-
tion, it seems incontrovertible that brain connectivity is disrupted 
in autism.

The presence of a temporary excess of white matter in children 
with autism does not necessarily denote superior connectivity. 
These data simply indicate that white matter in the frontal lobe is 
increasing in volume earlier in children with autism than in neuro-
typical children. However, the white matter may not be developing 
properly during its rapid growth in autism. Therefore, it is useful to 
also examine the quality of white matter in individuals with autism 
using diffusion tensor imaging.

Shukla et al. (2010) calculated ReHo as the KCC of each voxel 
and its six neighboring voxels, while Paakki et al. (2010) used 27 
neighboring voxels. Thus, the two studies may be examining dif-
ferent levels of neuronal organization. Nevertheless, this method 
may provide new insight into local functional connectivity in ASD, 
although it is at yet unclear how this measure would relate to long-
distance inter-regional functional connectivity. Graph theory is 
another tool now being used to characterize both functional and 
anatomical networks in the neurotypical brain (see Bullmore and 
Sporns, 2009, for a review), and future research may apply these 
techniques to the investigation of underconnectivity in autism. 
Many novel techniques are being used to examine characteristics of 
brain connectivity and have the potential to further illuminate the 
characteristic properties of the brains of individuals with autism.

Yet another measure that has also shown differences in ASD is 
effective connectivity (Wicker et al., 2008), a measure that attempts 
to assess the influence of the activation in one region on the activa-
tion in another region (Friston, 1994). Wicker et al. (2008) used 
structural equation modeling to assess effective connectivity in the 
BOLD response in a dynamic face processing task. The resulting 
findings of weaker path coefficients in ASD in many connections 
with the prefrontal cortex converge with Koshino et al.’s (2008) 
findings of decreased frontal–posterior functional connectivity in 
a working memory task with faces, discussed above. A potential 
contribution of effective connectivity measures seems most likely in 
cases where there might be a group difference in the inter-regional 
control relations. However, the activity among association areas 
may be too interactive to allow detection of differences in inter-
regional influence.

Finally, functional connectivity differences in ASD have also 
been found through other imaging methods, including PET 
(Castelli et al., 2002), EEG (Murias et al., 2007), and magnetoen-
cephalography (MEG; Coskun et al., 2009). While fMRI and PET 
measure the blood flow in the brain on the order of seconds, EEG 
and MEG measure electrical and magnetic signals of neuron firing 
on the order of milliseconds and, therefore, may reflect properties 
of brain function that are distinct from those revealed by fMRI 
data. However, EEG studies have also found reduced long-range 
coherence in ASD between frontal and posterior areas in both the 
alpha band (Murias et al., 2007) and the delta band (Barttfeld et al., 
2011), as well as elevated short-range coherence in both the theta 
band (Murias et al., 2007) and the delta band (Barttfeld et al., 2011). 
Furthermore, Barttfeld et al. (2011) used graph theory metrics to 
determine that the network of activated brain regions is less well 
organized in ASD, as reflected by longer path lengths, less cluster-
ing, and increased modularity. While the focus of this review is on 
functional connectivity as measured in fMRI data, current work 
in EEG is also providing insights into the characteristics of brain 
connectivity in autism.

anatomIcal connectIvIty In autIsm
The lower frontal–posterior functional connectivity in autism 
might be attributable to an impairment in anatomical connec-
tivity. (It is also logically possible for the functional connectiv-
ity between two areas to be poor because of the communication 
protocols rather than the carrier anatomical link.) The anatomi-
cal evidence that is most relevant to underconnectivity is that 
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relatIng FunctIonal connectIvIty, anatomIcal 
connectIvIty, and behavIor In autIsm
The underconnectivity theory of autism proposes that anatomical 
and functional connectivity are related, and that both of these meas-
ures should be related to behavior. Findings of correlations across 
subjects between functional connectivity, anatomical connectivity, 
and behavior provide support for this hypothesis. In fact, neuroim-
aging studies have shown evidence of such relations between each 
of these measures of connectivity and behavior.

relatIng FunctIonal connectIvIty and behavIor In autIsm
If decreased functional connectivity is truly a neural mechanism 
underlying behavioral impairments of autism as proposed, one 
would expect functional connectivity measurements to be related 
to behavioral markers of autism. Several studies have found a relation 
between functional connectivity measures and measures of autism 
characteristics as measured by the Autism Diagnostic Observation 
Schedule (ADOS) and the Autism Diagnostic Interview-Revised 
(ADI-R). The ADOS and ADI-R are diagnostic tools that measure 
behavioral characteristics of autism. The ADOS has subscores for 
social behavior and communication, which are combined into a total 
score. The ADI-R has three separate scores for reciprocal social inter-
action, communication and language, and restricted and repetitive, 
stereotyped interests and behaviors. Although these measures were 
developed to optimize their diagnostic rather than their psychometric 
properties (e.g., the range of scores on these tests is fairly low among 
people with high-functioning autism), they nevertheless produce 
sensible correlations with functional and anatomical connectivity 
measures. One study found that high-functioning individuals with 
more severe cases of autism (higher total ADOS score) had lower 
frontal–parietal functional connectivity (Just et al., 2007). Other 
studies have also shown that individuals with ASD with poorer social 
functioning (high ADI-R social score) have lower functional con-
nectivity between the superior frontal gyrus and posterior cingulate 
(Monk et al., 2009; Weng et al., 2010). Lower functional connectivity 
between frontal structures and the posterior cingulate was found in 
participants with more severe repetitive behaviors (Weng et al., 2010). 
These findings suggest that impaired frontal–posterior functional 
connectivity may be directly related to more severe autistic traits in 
language, social functioning, and repetitive behaviors.

There have also been reports of increased functional connectiv-
ity in non-frontal–posterior pairs in individuals with more severe 
autistic traits. The higher functional connectivity between posterior 
regions may develop in some people with autism in compensation for 
decreased connectivity between frontal and posterior areas, with more 
such compensation in cases with poorer frontal–posterior connectiv-
ity. Adolescents with ASD who had higher functional connectivities 
within various areas of the default network during rest had lower 
abilities in both verbal and non-verbal communication (Weng et al., 
2010). Higher functional connectivity between the posterior cingu-
late and the parahippocampal gyrus was associated with more severe 
repetitive behaviors (Monk et al., 2009), as was higher functional 
connectivity between the anterior cingulate and the frontal eye fields 
(Agam et al., 2010).

Individuals with autism with the most impaired inter-regional 
communication between frontal and posterior areas also show larger 
behavioral deficits. Thus, if an intervention were able to  facilitate the 

dIFFusIon tensor ImagIng assessment oF whIte matter In 
autIsm
Diffusion tensor imaging methods can be used to examine the 
integrity of white matter tracts in the brain. This technique meas-
ures the movement of water molecules as they diffuse along white 
matter tracts, reflecting characteristics of white matter architecture. 
An increasing number of studies are finding areas of lower struc-
tural integrity in autism.

Children with autism show areas of decreased white matter integrity 
relative to typically developing children, similar to the developmental 
pattern reflected in volume measurements of white matter. Fractional 
anisotropy (FA) is a measure of the coherence of diffusion directional-
ity, such that lower FA suggests decreased white matter integrity. FA was 
found to be reduced in children and adolescents with autism in white 
matter adjacent to the prefrontal cortex, the anterior cingulate, and 
the temporo-parietal junctions (Barnea-Goraly et al., 2004). Lower FA 
has also been reported in adolescents with autism in frontal–temporal 
pathways (Sahyoun et al., 2010). Decreased white matter integrity was 
found in both adolescents and children with ASD in the arcuate fascic-
ulus, which connects frontal and posterior language regions (Fletcher 
et al., 2010; Kumar et al., 2010). FA was lower in short- but not long-
range fibers in the frontal lobe in individuals with ASD as young as 
5 (Sundaram et al., 2008). Thus, many studies have shown that older 
children and adolescents with autism show reduced white matter integ-
rity in the frontal lobe, relative to typically  developing children.

However, several studies involving children with ASD of varying 
age ranges have found areas of not only decreased but also increased 
FA in ASD (ages 1–3 years old: Ben Bashat et al., 2007; ages 6–14 years 
old: Cheung et al., 2009; Ke et al., 2009; ages 10–18 years old: Cheng 
et al., 2010). Such heterogeneous findings might arise because of large 
variance due to rapid developmental changes in the integrity of white 
matter in autism during this period of childhood. Despite the incon-
sistencies of DTI findings in such young children with autism, older 
children and adolescents with autism consistently show decreased 
white matter integrity relative to their neurotypical peers.

Decreased white matter integrity in autism has been found to per-
sist into adulthood. Several clusters of decreased FA near the corpus 
callosum in the frontal and temporal lobes were reported in autism 
participants between the ages of 10 and 35 (Keller et al., 2007). Lower 
FA was also reported in individuals with ASD from ages 7 to 33 in 
the corpus callosum (Alexander et al., 2007) and in the temporal 
lobe (Lee et al., 2007). Thus, decreased white matter integrity per-
sists into adulthood, possibly constituting the biological basis of the 
decreased functional connectivity in adults with autism.

It is as yet undetermined how early brain overgrowth in autism 
may be related to decreased white matter integrity in adulthood. It 
is noteworthy that early brain overgrowth is greatest in the frontal 
lobe, while impaired functional connectivity later in life is most 
prevalent in synchronizations between the frontal lobe and more 
posterior regions. Evidence of smaller and more numerous cortical 
minicolumns in autism in the frontal and temporal lobes (Casanova 
et al., 2002) may suggest an increased formation of short-range 
connections within these lobes. Such increased short-range con-
nectivity may be the cause or consequence of poor inter-regional 
connectivity. Future investigation of the molecular origins underly-
ing brain connectivity differences in autism may further illuminate 
the connectivity phenomena.
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Functional MRI evidence has shown that it is possible to observe 
increases in functional connectivity through learning over a very 
short time period in neurotypical participants (Büchel et al., 1999). 
Schipul et al. (2008) examined functional connectivity during learn-
ing in autism: participants both with and without autism learned to 
discriminate between lying and truth-telling avatars (animations of 
human-like speakers) over the course of a 20-min experiment. The 
results showed that the functional connectivity increased in both the 
autism and control groups as they learned to perform the task, but 
the control participants showed a much larger increase in functional 
connectivity than the autism participants throughout the brain. 
These findings suggest that as participants practice a task and learn 
new strategies, inter-regional communication may increase, perhaps 

communication between frontal and posterior processing centers 
in individuals with autism, this may result in improvements in the 
behavioral impairments associated with autism.

relatIng anatomIcal connectIvIty and behavIor In autIsm
Studies have also found relations between anatomical connectivity 
and behavioral markers of autism. Lower FA (lower white mat-
ter integrity) was related to more severe disruptions manifested 
in social function, communication, and repetitive behaviors (as 
measured by ADI-R scores; Cheung et al., 2009). This finding sug-
gests that decreased anatomical connectivity may lead to greater 
behavioral impairments in autism. Specifically, decreased integrity 
in fronto-striato-temporal pathways was related to more impaired 
social functioning and communication abilities, while decreased 
integrity in more anterior and posterior pathways, including the 
splenium of the corpus callosum, was related to more severe repeti-
tive behaviors. Lower FA (specifically in the white matter underlying 
the anterior cingulate cortex) was also associated with more severe 
ADI-R repetitive behavior scores (Thakkar et al., 2008). The major-
ity of findings have shown that decreased integrity in white matter 
tracts is associated with more severe autistic behaviors, suggesting 
that impaired anatomical connectivity may underlie the behavioral 
characteristics of autism.

relatIng FunctIonal and anatomIcal connectIvIty In autIsm
Several studies have reported correlations between functional con-
nectivity and corpus callosum area measurements in autism. The 
corpus callosum is a major white matter tract connecting the two 
hemispheres, and many studies have reported smaller corpus cal-
losum sizes in ASD (Vidal et al., 2006; Hardan et al., 2009; Keary 
et al., 2009). Although this effect has not always been found at lower 
magnetic field strengths (0.5–1.5 T: Gaffney et al., 1987; Rice et al., 
2005; Tepest et al., 2010), two meta-analyses found that smaller cor-
pus callosum size in ASD is significant across MRI studies (Stanfield 
et al., 2008; Frazier and Hardan, 2009). Furthermore, magnetic field 
strength was shown to be a marginally significant predictor of group 
differences, such that stronger magnets show larger discrepancies in 
corpus callosum size between ASD and neurotypical participants 
(Frazier and Hardan, 2009). Because the corpus callosum is such 
a critical pathway in the brain and is often found to be smaller 
in autism, corpus callosum size is sometimes used as an index of 
general anatomical connectivity in the brain. Several studies have 
found measures of functional connectivity to be positively corre-
lated with corpus callosum size in autism (Cherkassky et al., 2006; 
Kana et al., 2006; Just et al., 2007; Mason et al., 2008), as illustrated 
in Figure 2. Furthermore, in all of the above studies, this correla-
tion was not found in the control group, suggesting that only in 
autism is communication between distinct brain areas constrained 
by impaired anatomical connectivity.

ImplIcatIons For the treatment oF autIsm
The body of work described in this article provides substantial 
evidence that behavioral impairments in autism may be caused 
by limitations in brain connectivity. These findings suggest that 
it may be fruitful to develop intervention methods that aim to 
improve inter-regional communication in the brain in individuals 
with autism.

FIguRe 2 | Correlations between functional and anatomical connectivity. 
Functional connectivity is correlated with corpus callosum size in autism 
participants (A) but not control participants (B). Adapted from Just et al. (2007).
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of neurological and psychiatric illnesses, but the basis of any con-
nectivity disorder may vary from illness to illness. But regardless 
of its basis, disordered brain connectivity can give rise to a wide 
variety of behavioral impairments, indicating the centrality of brain 
connectivity to all types of cognition.

Future dIrectIons
The majority of the functional connectivity studies reviewed above 
involved adult participants with high-functioning autism. In order 
to fully explain this disorder, especially in light of the anatomical 
findings of the atypical development of white matter, it is neces-
sary to examine functional connectivity throughout development. 
Furthermore, it is also important to include participants with 
autism across all IQ levels. While it is difficult to collect functional 
imaging data in the context of complex task performance in young 
children and individuals with low IQs, it is feasible to collect resting 
state fMRI data in these populations. It is important that future 
research determine to what degree underconnectivity applies to 
different age and IQ ranges within the autism population.

It will also be important for future research to explore the 
links between functional connectivity and diffusion tensor imag-
ing measures of white matter integrity. Biologically realistic neu-
ral models also have great potential to examine the relationship 
between functional connectivity and anatomical connectivity 
(Horwitz et al., 2005).

conclusIon
Recent findings of atypical patterns in both functional and ana-
tomical connectivity in autism have established that autism is a not 
a localized neurological disorder, but one that affects many parts of 
the brain in many types of thinking tasks. fMRI studies repeatedly 
find evidence of decreased coordination between frontal and poste-
rior brain regions in autism, as measured by functional connectiv-
ity. Furthermore, neuroimaging studies have also shown evidence of 
an atypical pattern of frontal white matter development in autism. 
These findings indicate that limitations of brain connectivity give 
rise to the varied behavioral deficits found in autism. As research 
continues to explore these biological mechanisms, new intervention 
methods may be developed to help improve brain connectivity and 
overcome the behavioral impairments of autism.
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contributing to improved behavioral performance. Therefore, autism 
intervention methods that incorporate guided repetition of tasks 
involving frontal–posterior coordination may be able to temporarily 
or permanently improve inter-regional brain communication.

White matter connectivity has been shown to be amenable to 
such intervention. A study of children with impaired reading ability 
found that after 100 h of intensive remedial instruction in reading, the 
structural integrity increased in the specific white matter structure 
that was previously impaired in these children (Keller and Just, 2009). 
Moreover, the degree of white matter improvement was correlated 
with the degree of reading improvement. This finding suggests that 
it is possible to improve the wiring of the brain through behavio-
ral training. Therefore, it may be possible to design intervention 
methods for autism which will improve the anatomical connectivity 
and  inter-regional communication in the brain, which may lead to 
improvements in behaviors that are often impaired in autism.

relatIon to other dIsorders
Altered functional connectivity has also been found in other dis-
orders, including schizophrenia (Meyer-Lindenberg et al., 2001), 
attention deficit hyperactivity disorder (Tian et al., 2006), mul-
tiple sclerosis (Au Duong et al., 2005), and dyslexia (Pugh et al., 
2000). These findings suggest that disordered brain connectivity 
may underlie a variety of cognitive impairments. While autism 
is primarily associated with frontal–posterior underconnectivity, 
preliminary evidence suggests that these other disorders are linked 
with impairments in other types of connections (Pugh et al., 2000; 
Meyer-Lindenberg et al., 2001; Au Duong et al., 2005; Tian et al., 
2006). Therefore, the location of the impaired connections may 
be specific to the associated cognitive impairments. For example, 
dyslexia, which impairs reading, has been associated with under-
connectivity between the angular gyrus, an area implicated in 
reading, and occipital and temporal regions (Pugh et al., 2000). 
Furthermore, the disordered functional connectivity associated 
with each of these disorders may arise for different reasons and 
may be either a cause or a consequence of the disorder. Moreover, 
the disordered functional connectivity can arise at different times 
in development: whereas disordered brain connectivity appears in 
childhood in autism, it may not arise until later in disorders such 
as schizophrenia, whose symptoms first appear at a much later age 
than autism. The impairments associated with the various psychi-
atric disorders include hallucinations, disorganized speech, atten-
tion problems, hyperactivity, and reading difficulties, illustrating 
the wide range of effects that may be associated with disordered 
brain connectivity. Thus, assessments of functional and anatomical 
connectivity may be able to provide useful insights into a number 
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Higher-order areas encompassing lateral and midline frontopari-
etal networks show no activation in either volunteers under deep 
anesthesia or in patients in a “vegetative state.” At the opposite, 
patients in minimally conscious state can show activation of the 
higher-order areas sometimes similar to healthy control subjects 
(Laureys, 2005).

A common finding of studies on both pathological and phar-
macological coma is an impairment in the activity of a widespread 
cortical network, encompassing bilateral frontoparietal associative 
cortices, but not of “lower level” sensory cortices (Baars et al., 2003; 
Alkire and Miller, 2005; Laureys, 2005). As we will see, a decrease 
in regional activation seems not sufficient to loose awareness but 
also requires a functional disconnection within that network and 
with the thalami, in line with a number of current theoretical 
views on consciousness (Tononi, 2004; Dehaene et al., 2006; Seth 
et al., 2006).

Altered stAtes of consciousness
Altered states of consciousness here refer to an alteration in the 
level and content of conscious awareness during to sleep, general 
anesthesia, seizure or coma, and related states. In the latter case, they 
are coined DOC and encompass a spectrum of clinical conditions 

introduction
Functional brain imaging and particularly fMRI and PET is increas-
ingly showing its interest in the diagnosis (Laureys et al., 2000a; 
Hirsch, 2005; Schiff et al., 2005; Phillips et al., 2010) and prognosis 
(Di et al., 2008; Coleman et al., 2009) of patients with disorders 
of consciousness (DOC). Active paradigms are now enabling to 
probe patients’ awareness and communication by identifying 
command following independent of muscle activity (Monti et al., 
2010). However, besides some exceptional cases, in the absence 
of a full understanding of the neural correlates of consciousness, 
even a near-to-normal activation in response to passive stimula-
tion (e.g., auditory, visual, or somatosensory) can be difficult to 
interpret in terms of unequivocal proofs of consciousness. All that 
can be inferred is that a specific brain region is, to some degree, 
still able to activate and process relevant sensory stimuli. Studies on 
pharmacological coma, i.e., general anesthesia, can help us better 
understand residual brain functional integration and perception 
in patients with DOC. Healthy volunteers studied under anesthe-
sia may show residual activation of segregated cortical islands in 
response to external stimuli (auditory, visual, or somatosensory) 
encompassing the brainstem, thalamus, and “low-level” primary 
cortices, similar to findings obtained in unconscious DOC patients. 
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(Boly et al., 2008a) that was not observed in patients in a vegetative/
unresponsive state (Laureys et al., 2002). Compared with healthy 
controls, patients in minimally conscious state had impaired con-
nectivity between sensory cortex and anterior and posterior midline 
cortices (Boly et al., 2008a).

Resting state fMRI studies with pharmacologically induced 
loss of consciousness have shown contrasting results. In a study 
using midazolam sedation (Greicius et al., 2008), independent 
component analysis (McKeown and Sejnowski, 1998) was used to 
isolate sensory-motor, mid-cingulate, and supplementary motor 
networks. At low-sedative dose without loss of consciousness, the 
network was still covering both hemispheres and increased connec-
tivity was found in the mid-cingulate area. These results are in line 
with an fMRI resting state study (Kiviniemi et al., 2005) employing 
correlation analyses showing increased correlation at low-sedative 
dose in “low-level” sensory areas. However, a PET study (White and 
Alkire, 2003) employing higher sedation dose with either halothane 
or isoflurane leading to loss of consciousness demonstrated (using 
psychophysiological interaction analyses) a decreased functional 
connectivity between the thalamus and primary motor cortex, 
and between the thalamus and supplemental motor area. In the 
same study, a structural equation modeling (assessing effective con-
nectivity; McIntosh and Lobaugh, 2004) showed disconnections 
between supplementary motor and thalamic areas and between the 
former and primary motor cortex. A fMRI resting state study using 
sevoflurane anesthesia (again leading to loss of consciousness) and 
a seed-voxel cross-correlation analysis also showed a decreased con-
nectivity of the primary motor cortex (Peltier et al., 2005). In this 
study, the activity of the seed region in the primary motor cortex in 
the awake state correlated with bilateral sensorimotor and supple-
mentary motor areas. When sevoflurane was given upto the point of 
loss of consciousness, the seed exhibited reduced connectivity with 
the opposite hemisphere. At higher even doses of the anesthetic, 
functional connectivity was virtually absent. We recently assessed 
functional connectivity in auditory and visual networks by means 
of both independent component and seed-correlation analyses dur-
ing induced propofol anesthesia using resting state fMRI (Boveroux 
et al., 2010). When comparing deep sedation to wakefulness, no 
significant differences in cortico-cortical and thalamo-cortical con-
nectivity could be identified in early visual and auditory networks. 
On the other hand, we found a linear decrease in cortico-cortical 
connectivity with the level of sedation of “higher-order” associative 
areas. Finally, Alkire et al. (2008a), studied the influence of emo-
tion on memory during light sedation with structural equation 
modeling. During 0.25% sevoflurane anesthesia (a subanesthetic 
dose), the connections between right hippocampus and amygdala 
and between right hippocampus and nucleus basalis of Meynert 
were suppressed, as compared to normal wakefulness.

“HigHer-order” frontopArietAl ActivAtion
A large frontoparietal network encompassing bilateral frontal and 
temporo-parietal associative cortices has its activity commonly 
impaired during altered states of consciousness (Baars et al., 2003; 
Alkire and Miller, 2005; Laureys, 2005) (Figure 1). This network 
can be divided into several parts with distinct functions (Boly et al., 
2008b,c; Vanhaudenhuyse et al., 2010a). In particular, a distinc-
tion can be made between a network involved in the awareness of 

involving profound disruption in wakefulness and/or awareness 
due to severe brain lesions (Giacino et al., 2002; Laureys et al., 2004; 
Bernat, 2006; Schiff, 2006). The clinical definition of conscious-
ness distinguishes between two components, namely wakefulness 
and awareness (Laureys, 2005). Patients in coma are unconscious 
because they cannot be awakened (i.e., the never open the eyes). 
Following coma, some patients may “awaken” (meaning they open 
the eyes) but remain unaware. This condition is called the “vegeta-
tive state” (Jennett and Plum, 1972) recently renamed “unrespon-
sive wakefulness syndrome” (Laureys et al., 2010).

Minimally conscious state refers to patients who are unable 
to reliably communicate but show reproducible albeit fluctuat-
ing behavioral evidence of awareness (i.e., non-reflex movements 
or command following; Giacino et al., 2002). Locked-in syn-
drome patients (Plum and Posner, 1972) are fully conscious but 
are completely paralyzed except for small movements of the eyes 
or eyelids.

Pharmacologically induced unconscious states are commonly 
named deep sedation or general anesthesia. All sedative anesthetic 
agents do not act on the brain in the same way. They can be sepa-
rated into three main categories: (i) classic anesthetic agents (e.g., 
propofol, midazolam, halothane, isoflurane, or sevoflurane) are 
able to induce graded states of sedation and combine alterations of 
wakefulness and awareness; (ii) dissociative anesthetic agents (e.g., 
ketamine or nitrous oxide), are able to blunt out conscious proc-
esses while maintaining signs of wakefulness; and (iii) minimally 
sedative agents induce graded alterations of wakefulness while pre-
serving several cognitive brain functions (Boveroux et al., 2008). 
At low-sedative doses anesthetic agents may cause a state similar 
to drunkenness and subjects may present an increased sleepiness 
distorted time perception and depersonalization (Alkire et al., 
2008b). Furthermore, they show a reduced response to pain and 
loss of memory. Next, when the anesthetic dose is increased, the 
subject will fail to move in response to commands and is therefore 
considered unconscious. During surgery, higher anesthetic doses 
are used to prevent movement and response to painful stimulation, 
also ensuring stable hemodynamic function.

disconnected islAnds of sensory “low-level” 
corticAl ActivAtion
In response to external stimulation, islands of activation can be 
observed in the brain of patients with DOC (Laureys et al., 2004; 
Laureys, 2005; Boly et al., 2008a; Owen and Coleman, 2008), or 
anesthetized healthy subjects (Alkire and Miller, 2005; Ramani and 
Wardhan, 2008). Few studies looked at the functional connectivity 
between these cortical islands and the rest of the brain. PET H

2
O15 

activation studies on auditory processing in patients with DOC 
using psychophysiological interaction analyses (Friston et al., 1997), 
showed a higher functional connectivity between auditory sensory 
cortex and a widespread network of “higher-order” frontotempo-
roparietal areas in normal volunteers (Laureys et al., 2000a, 2002) 
and in patients in a minimally conscious state (Boly et al., 2004) 
as compared to patients in a vegetative/unresponsive state. Similar 
psychophysiological interaction analyses of noxious processing 
revealed preserved modulation between primary somatosensory 
cortex and a large set of associative areas, again including fron-
toparietal associative areas, in patients in minimally conscious state 
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unresponsive state (Laureys et al., 1999). More recently, fMRI stud-
ies on the default/internal network confirmed a decreased cortico-
cortical connectivity in patients with DOC (Boly et al., 2009; Cauda 
et al., 2009; Vanhaudenhuyse et al., 2010b) and an absence of con-
nectivity in brain death (Boly et al., 2009) (Figure 2). Paralleling 
clinical experience, a non-linear correlation was found between 
this default/“internal” network connectivity and the level of con-
sciousness ranging from healthy volunteers and pseudocoma/
locked-in syndrome, to minimally conscious, vegetative/unre-
sponsive, and comatose patients (Vanhaudenhuyse et al., 2010b). 

self (the “internal” midline default mode network) encompassing 
precuneus/posterior cingulate, mesas-frontal/anterior cingulate, 
and temporo-parietal cortices (Gusnard and Raichle, 2001; Mason 
et al., 2007) and an “external” more lateral and dorsal frontopa-
rietal network involved in the awareness of environment (Boly 
et al., 2008b). Activities of both internal and external networks 
are anticorrelated.

Functional connectivity studies with PET and psychophysiolog-
ical interaction analyses identified a disturbed cortico- cortical con-
nectivity within the frontoparietal network in patients in  vegetative/

FIguRE 1 | The internal network of a healthy subject awake, under mild 
sedation and after loss of consciousness. The network was extracted 
with ICA. The black and white contour represents a template of the internal 
network extracted from 11 awake healthy subjects with ICA. Yellow and 
orange colors represent the areas which activities positively correlate with 

the time course of the internal network. The green and blue colors 
represent the areas which activities are anticorrelated with activities of 
the internal network, i.e., the external network. The anticorrelation 
disappears during deep sedation. The figure is based on data from 
Boveroux et al. (2010).

FIguRE 2 | The internal network of patients with brain death, coma, 
vegetative state (VS), minimally conscious state (MCS), and Locked-in 
syndrome (LIS). The network was extracted with ICA. The black and white 
contour represents a template of the internal network extracted from 11 

awake healthy subjects with ICA. Yellow and orange colors represent the 
areas which activities positively correlate with the time course of the 
internal network. The figure is based on data from Boly et al. (2009) and 
Vanhaudenhuyse et al. (2010b).
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or content of consciousness, and possibly be related to underly-
ing anatomical connectivity (Vincent et al., 2007; Greicius et al., 
2009), and the other part being more tightly related to the pres-
ence of conscious cognitive processes (Vanhaudenhuyse et al., 
2010a,b). fMRI connectivity studies in patients with DOC need 
to deal with major methodological issues (Soddu et al., 2010). 
When studying non-collaborative patients, especially patients that 
show a significantly reduced neuronal activity, the first issue is 
the possible contamination by artifact and noise sources. Major 
confounds in fMRI acquisitions and analyses are movement, pulse, 
and respiration artifacts. Furthermore, patients with pathological 
alterations of consciousness often suffer from severe diffuse brain 
injuries leading to extreme brain atrophy and secondary ex-vacuo 
hydrocephalus (i.e., dilated ventricles) or from major focal lesions 
resulting in a largely deformed brain. This implies that a spatial 
normalization procedure is difficult to apply, and the selection 
of the regions under study becomes difficult and requires visual 
inspection of an expert eye.

In studies on general anesthesia, a potential bias may be that 
most studies use relatively low sedation levels. Indeed, most if 
not all studies use just enough sedative agent to reach uncon-
sciousness. Deeper sedation levels as those used in the operating 
room probably would result in much more profound functional 
cerebral disconnections. The use of classical anesthesia as a model 
for studying human consciousness can also be discussed. Indeed, 
classical sedative anesthetic agents, as all the ones reviewed in the 
present paper, decrease both wakefulness and awareness while 
DOC may present a dissociation between both (e.g., the vegeta-
tive or unresponsive syndrome). Dissociative agents have some 
properties more similar to the latter but also some disadvantages 
related to the induction of confusion and motor agitation mak-
ing their use in a scientific setting more difficult. Further studies 
should investigate brain connectivity changes under these differ-
ent yet challenging dissociative anesthetic agents such as ketamine 
or xenon.

From a methodological point of view, most presented studies rely 
on functional connectivity which measures temporal correlation 
between cerebral activities in distinct brain areas but cannot infer 
causality. Effective connectivity methods which can infer causality 
have been proposed but seldom used in studies on consciousness. 
They suffer from their higher complexity and from the difficulty to 
assess causality from the low pass filtered hemodynamic signal in 
fMRI studies. A more straightforward approach would rely on tran-
scranial magnetic stimulation coupled to electroencephalography 
(TMS–EEG) to infer effective connectivity from the brain response 
to a TMS pulse. This perturbation approach has shown promising 
results in sleep (Massimini et al., 2005) and anesthesia (Ferrarelli 
et al., 2010). Methods specifically developed to measure conscious-
ness based on the information integration theory (Tononi, 2004) 
like causal density (Seth, 2005) also used connectivity information 
but remain difficult to measure (Seth et al., 2008) and have never 
been applied in these contexts. In our view, the upcoming challenges 
are to apply effective connectivity approaches to altered states of 
consciousness aiming to infer causality between brain areas, to 
integrate hemodynamic and electromagnetic information, and 
to explain empirical data with theoretical models using specific 
measures of consciousness.

Furthermore, precuneus connectivity was found to be significantly 
stronger in minimally conscious patients compared to vegetative/
unresponsive state patients, while locked-in syndrome patients’ 
default/”internal” network connectivity was shown not to be sig-
nificantly different from healthy control subjects. Finally, thalamo-
cortical connectivity with the higher-order frontoparietal network 
was only studied in patients in vegetative/unresponsive state with 
H2

O15 PET (Laureys et al., 2000b) where it shown to be severely 
disturbed and recovered near normal modulation after recovery 
of consciousness.

Functional connectivity studies during anesthesia reported 
decreased cortico-cortical connectivity in “internal” (Greicius et al., 
2008; Boveroux et al., 2010) and “external” (Boveroux et al., 2010) 
networks in healthy volunteers during light sedation with either 
midazolam or propofol. During deep sedation with propofol induc-
ing clinical unconsciousness, partially preserved residual functional 
connectivity could be identified both in the internal and external 
networks (Figure 1). Across sedation states, functional connectivity 
strength in key nodes of both networks and in thalamo-cortical 
connectivity with internal and external networks showed a linear 
correlation with decreasing consciousness (Boveroux et al., 2010). 
Finally, anticorrelations between internal and external networks 
also showed a linear trend and could not be identified during loss 
of consciousness.

future directions
In conclusion, PET and fMRI connectivity studies on pathologi-
cal and pharmacological coma emphasize the two different kinds 
of brain function that can be encountered during unconscious-
ness. On one hand, the functional connectivity in “low-level” sen-
sory networks (i.e., auditory, somatosensory, visual, and motor) 
seems independent of the level and content of consciousness. On 
the other hand, the connectivity between these primary cortices 
and “higher-order” associative cortices as well as connectivity 
inside the nodes of the default/“internal” network show a cor-
relation decreasing consciousness in both coma and anesthesia. 
Thalamo-cortical connectivity follows the same distinction with 
preserved connectivity between the thalamus and primary cor-
tices, and impaired connectivity between the thalamus and the 
default/“internal” and perceptual/“external” networks during states 
of altered consciousness.

Even when consciousness vanishes, i.e., in vegetative/unrespon-
sive state or anesthesia, residual functional connectivity can be iden-
tified in both networks. These results are in line with recent findings 
in anesthetized monkey (Vincent et al., 2007), and in humans dur-
ing light and slow wave sleep (Horovitz et al., 2008, 2009). During 
light sleep, the functional connectivity of the default/”internal” 
network is partially preserved, while during slow wave sleep, there 
is a functional disconnection between frontal and parietal nodes 
of the networks. The preservation of functional connectivity in 
the absence of consciousness could be seen as reflecting preserved 
anatomical/structural connections with some degree of basal func-
tional connectivity dissociated from higher cognitive functions as 
they disappear in brain death (Boly et al., 2009).

Taken together, these findings suggest a two-layer view of rest-
ing state fMRI “internal” and “external” network connectivity: one 
part of the connectivity would persist independently of the level 
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Functional connectivity in relation to motor performance and 
recovery after stroke
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Plasticity after stroke has traditionally been studied by observing changes only in the spatial 
distribution and laterality of focal brain activation during affected limb movement. However, 
neural reorganization is multifaceted and our understanding may be enhanced by examining 
dynamics of activity within large-scale networks involved in sensorimotor control of the limbs. 
Here, we review functional connectivity as a promising means of assessing the consequences 
of a stroke lesion on the transfer of activity within large-scale neural networks. We first provide 
a brief overview of techniques used to assess functional connectivity in subjects with stroke. 
Next, we review task-related and resting-state functional connectivity studies that demonstrate 
a lesion-induced disruption of neural networks, the relationship of the extent of this disruption 
with motor performance, and the potential for network reorganization in the presence of a stroke 
lesion. We conclude with suggestions for future research and theories that may enhance the 
interpretation of changing functional connectivity. Overall findings suggest that a network level 
assessment provides a useful framework to examine brain reorganization and to potentially 
better predict behavioral outcomes following stroke.

Keywords: stroke, functional connectivity, brain, recovery of function, neuroimaging, neuroplasticity

Recently, the creation of anatomically connected network maps 
in healthy brains has led to a conceptualization of the impact of 
lesions in brains affected by stroke. To a certain extent, these models 
have shown that the unpredictability in functional outcomes may 
indeed be due to the lesion location (Alstott et al., 2009). However, 
the reasons extend beyond the localized function of the region 
and emphasize the importance of whether the lesion occurred at 
a node of a large-scale brain network and whether it has caused 
dysfunction at other nodes in the network (Kaiser and Hilgetag, 
2004; Honey and Sporns, 2008; Alstott et al., 2009). If at a central-
ized location, symptoms may be more severe and reflect distributed 
effects than when the lesion is less centralized, in which case the 
effects may be largely attributed to the specialized function of the 
ischemic area (Alstott et al., 2009). Accordingly, recovery of func-
tion may depend on the repair and redistribution of activity in 
structurally intact, yet functionally disconnected nodes of a task-
relevant network.

In this review, we aim to explore the subject of functional con-
nectivity, defined as temporal correlations between neural or hemo-
dynamic signals arising from distinct brain regions. We focus on 
functional connectivity in relation to motor recovery after stroke 
by providing a synthesis of findings that highlight three important 
points. First, an ischemic stroke lesion causes disruptions in func-
tional connections to areas remote to the site of the lesion. Second, 
the intrinsic architecture of the residual functional connections 
reflects the behavioral consequences of stroke. Third, reorganiza-
tion within a functional network is possible and plays a key role in 
the recovery of motor function. We begin with a description of cur-
rent analysis techniques used to assess functional connectivity after 
stroke. We then discuss functional networks in a stroke population 

IntroductIon
Stroke lesions cause neural dysfunction both at the lesion site and 
in remote brain regions. Historically, reduced neural function of 
distant, structurally intact regions was thought to be due to edema 
and increased pressure on the remaining neurons. It was not until 
1914 when Constantin von Monakow coined the term diaschisis 
that disruption in the transfer of information between connected 
brain regions became more widely acknowledged. He described 
diaschisis associative – cortical dysfunction due to lesions of con-
nected areas within the ipsilesional hemisphere, and diaschisis 
commissuralis – cortical dysfunction due to lesions of the intercon-
nections to the contralesional hemisphere (Von Monakow, 1914). 
Years later, Geschwind (1965a,b), echoing the ideas of Wernicke 
(1874), provided further theoretical support for non-local effects 
of brain lesions with a thorough account of “disconnection syn-
dromes.” He contended that the various forms of aphasia, apraxia, 
and agnosia were the result of anatomical disconnections caused by 
white matter lesions or lesions of association cortices (i.e., poste-
rior sensory areas). Nevertheless, with a lack of empirical evidence 
supporting these principles, the prevailing belief for many years 
was that a reasonable symptomatic explanation could be obtained 
merely by defining the locus of a lesion, which inversely confirmed 
the function of that region. Even with the advent of functional 
neuroimaging, regional shifts of activity have come to define plas-
ticity following stroke and yet still do not sufficiently capture the 
widely variable recovery of motor function. Therefore, in order to 
comprehend and treat persistent motor impairments, it appears 
crucial to move beyond segregated perspectives of brain function 
and characterize the lesioned brain as an integrated and reorgan-
ized functional network.
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as they relate to anatomical substrates, motor task performance, 
and resting-state paradigms. The final sections shed some light 
on concerns specific to the relationship of functional connectivity 
with motor recovery after stroke as well as suggestions for future 
research. Because motor recovery of the upper extremity is most 
commonly evaluated in neuroimaging studies, we focus here on 
the recovery of sensorimotor arm and hand function.

technIques for assessment of functIonal 
connectIvIty
The synchronous firing of transient neural signals is what func-
tionally binds widely distributed sets of neurons (Singer, 1999). 
Currently, there is no consensus on the most accurate method of 
assessing functional connectivity, but in many respects, the tem-
poral resolution (milliseconds) of electroencephalography (EEG) 
and magnetoencephalography (MEG) is optimal for non-invasively 
capturing the precise timing of this activity. Changes in the electro-
magnetic field related to neuronal activity can be acquired over a 
broad frequency spectrum and spectrally decomposed into distinct 
frequency bands. Measurements of “coherence” or “phase synchro-
nization” are two techniques that are specific to these two modalities 
and may be employed to depict the functional coupling between 
neural populations. Coherence is a technique that evaluates the 
covariance of the phase and amplitude of oscillations while phase 
synchronization assesses the precision of neuronal discharges inde-
pendent of amplitude. Functional connectivity analyses of EEG and 
MEG data is sometimes performed at the level of sensor correla-
tions which can be difficult to interpret in terms of the underlying 
brain structures involved. More recently, studies have examined 
correlations between inferred brain activity obtained by solving 
the MEG/EEG inverse problem. While these studies allow us to 
interpret the functional connectivity of underlying brain struc-
tures involved, caution must be placed on these findings due to 
potential confounding effects resulting from the reconstruction 
algorithms used.

Evaluations of coordinated neural activity have also been derived 
from covariations of the amplitude and latencies of hemodynamic 
signals arising from distinct brain regions. Techniques such as fMRI 
and PET make indirect inferences about neural activity through 
recordings of alterations in blood oxygen level dependent (BOLD) 
signals or metabolic activity. In an ischemic brain, the hemody-
namic underpinnings of these signals may be confounded and 
must be cautiously interpreted and appropriately modeled through 
advanced statistical techniques. Still, in many cases it is possible to 
define functionally connected nodes within a widespread neural 
network located remote to the site of the lesion.

The two most commonly applied techniques to measure func-
tional connectivity following stroke are seed-based correlation and 
component analysis, which can capture both resting and task-based 
activity in the brain. Seed-based approaches were first introduced 
by Biswal et al. (1995), who correlated the mean time course of the 
BOLD signal within a region of interest (in this case, left motor 
cortex) with the time courses of all other brain voxels. The results 
indicated correlated brain activity between bihemispheric primary 
and secondary sensory and motor areas and supplementary cortex 
even in a resting brain state. To explain this phenomenon, Biswal 
proposed that the fluctuations in blood oxygenation or flow is a 

result of functional connectivity between these regions (Biswal 
et al., 1995). A limitation of this technique, however, is that a pri-
ori data assumptions are required to define the seed region, which 
may introduce selection bias. This point becomes particularly 
relevant following stroke when the focal lesion may cause wide-
spread network changes that can no longer be defined by expected 
normal distributions. As an alternative to seed-based connectivity, 
independent component and principal component analysis tech-
niques have been applied (Friston et al., 1993; Calhoun et al., 2001; 
Beckmann et al., 2005). These statistical approaches evaluate the 
extent of signal covariance between all voxel (volume element) 
pairs for the entire voxel matrix of brain space. The resulting set 
of components account for independent (orthogonal) amounts of 
variance in the observed data. In terms of functional connectivity, 
each component represents a spatially distinct functional neural 
network that is highly intercorrelated.

Other, more advanced techniques that are gaining recognition 
as a meaningful indices of connectivity are based on graph theory. 
Within this framework, information processing and propaga-
tion is topographically represented by a set of nodes (i.e., brain 
regions) and links between the nodes (i.e., functional connec-
tions; Bullmore and Sporns, 2009). A variety of metrics have been 
proposed to quantify network structure based on graph theoretic 
criteria (Gerloff and Hallett, 2010). For instance, networks can be 
described as either regular, small world, or random based on the 
number of local connections at each node and the path length 
between nodes. In general, a small world may be considered opti-
mally efficient, having a high clustering coefficient (i.e., number 
of local connections) with some long-range connections. On the 
other hand, a random network demonstrates less clustering and 
more long-range connections. Thus, by virtue of the distance in 
which most information must travel, random networks are con-
sidered relatively inefficient. The degree of efficiency is one metric 
that has been used to quantify brain networks and is defined by 
an inverse relationship with path length (i.e., distance required to 
go from one network node to another) and a positive relation-
ship to clustering coefficients. By this measure, brain networks are 
found to be small world. Another popular graph theoretic metric 
is the degree of centrality. Nodes with a high degree of connections 
linking it to other nodes of the network are referred to as having 
high centrality, which elevates the importance of the hub within 
the overall network. Graph theoretic methods allow us to quan-
tify network structure. While currently many of these measures 
describe global properties in brain networks, more efforts should 
be aimed at quantifying localized metrics as a means of probing 
local network structure.

Techniques described thus far represent functional connectivity 
and must be distinguished from a more recently applied subset of 
techniques known as effective connectivity. While functional con-
nectivity represents two connected regions, effective connectivity 
depicts the intrinsic or task dependent influences that a particu-
lar area exerts over another. Two statistical methods of effective 
connectivity have been employed to evaluate the impact of stroke 
lesion and subsequent reorganization patterns (Penny et al., 2004). 
Dynamic causal modeling is one approach, whereby the brain is 
treated as a deterministic system in which known external inputs 
cause changes in neural activity (Marreiros et al., 2008). Accordingly, 
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passive diffusivity of water molecules, which preferentially travel 
parallel to white matter axonal fiber bundles. Despite the remark-
able contribution of these approaches to the recreation of axonal 
networks within the brain, an ongoing limitation is the uncertainly 
by which a tract can be delineated (Chung et al., 2006). Water 
molecules inevitably encounter crossing, merging, or kissing fibers 
throughout the brain, thereby leading to false positives and false 
negatives when defining the principal diffusion direction of a given 
fiber tract. This limitation is particularly true with DTI fiber track-
ing techniques as opposed to q-ball deterministic or probabilistic 
tracking that specifically accounts for crossing fibers. Moreover, 
a common assumption in attempting to predict functional from 
structural connections is that the relationship will be one to one. 
Certainly, a direct relationship is possible, but functional connec-
tions may also be characterized as one to many or even many to 
one, which are very difficult to structurally resolve considering that 
many of these connections involve small and difficult to discern 
intra- and intercortical connections. Also, because tractography 
assesses the probability of finding a tract rather than the strength 
of the connection, results cannot be directly compared to the 
resulting functional connections, which are defined by strength. 
Nonetheless, while acknowledging these limitations, there still exists 
a pronounced need for more directed studies aimed at resolving 
the implied structure–function relationship in an integrated, mul-
timodal approach. In subjects with stroke, these techniques have 
mostly been assessed in parallel, which underscores the difficulty in 
linking the two modes of neural connectivity as a comprehensive 
depiction of recovery.

To support and understand interhemispheric functional con-
nections apart from DTI techniques, studies of the corpus cal-
losum – the largest connective structure in the brain – provide 
evidence of a feasible anatomical substrate. While there has been 
considerable debate on whether the interhemispheric transfer of 
information is excitatory or inhibitory in healthy controls, the gen-
eral consensus is that most connections between the two primary 
motor cortices are inhibitory to maximize the segregation of cross-
cortical activity (Ferbert et al., 1992). Another intriguing postulate 
is that the inhibitory and facilitatory nature of the transcallosal 
connections may differ depending on the particular dynamics of the 
task demand. For example, TMS studies of healthy controls found 
motor preparation to initially be accompanied by inhibition, fol-
lowed by facilitation immediately prior to movement onset (Murase 
et al., 2004). Following stroke, the interhemispheric balance may be 
altered, such that both movement preparation and execution are 
accompanied by an abnormal persistence of intracortical inhibi-
tion on ipsilesional M1 (Murase et al., 2004; Hummel et al., 2009). 
One question currently being pursued is whether these inhibitory 
mechanisms are interfering with recovery rather than helping it as 
was found in some patients with subcortical lesions and moderate 
to good recovery (Murase et al., 2004; Hummel et al., 2009). As an 
alternative hypothesis, the contralesional M1 and premotor cortex 
may be a potentially relevant substrate for recovery. Using single 
pulse TMS, Johansen-Berg et al. (2002) demonstrated the impor-
tance of contralesional premotor cortex in people with profound 
motor impairments performing a simple reaction time task. As an 
extension to these findings, Lotze and colleagues used rTMS and a 
“virtual lesion” approach to demonstrate that the control complex 

neuronal activity is explicitly modeled using direction and timing 
information. Structural equation modeling is the second technique 
and is similar in approach to dynamic causal modeling in that it 
confirms how well a model fits the data, but structural equation 
modeling assumes that the interactions are instantaneous or driven 
by an unknown source (Penny et al., 2004). Because only a select 
number of regions can be included for either dynamic causal mod-
eling or structural equation modeling, it is important to keep in 
mind that changes may exist in regions outside of the pre-defined 
model (Mechelli et al., 2002).

Finally, while not considered a measure of functional connec-
tivity per se, transcranial magnetic stimulation (TMS) approaches 
have been employed to probe intra- and intercortical physiology 
and causal changes in the intrinsic circuits in the brain (Reis et al., 
2008). In a stroke population, recent attention has been directed 
toward the notion of interhemispheric inhibition (IHI) leading 
from the contralesional to the ipsilesional motor cortex (Dimyan 
and Cohen, 2010). Within this context, a paired pulse technique is 
used, whereby a test stimulus over the ipsilesional cortex is preceded 
by a suprathreshold conditioning stimulus to the contralesional 
motor cortex. Electromyographic (EMG) electrodes over the mus-
cle of interest then record the resulting modulation of, what is 
known as, a motor evoked potential (MEP). Another approach used 
to assess connectivity is known as “jamming” or “virtual lesion,” in 
which trains of repetitive TMS (rTMS) can used to inhibit activity 
arising from a pre-defined region, such as contralesional M1 or 
premotor cortex (Johansen-Berg et al., 2002; Lotze et al., 2006). 
The behavioral effects are simultaneously measured during motor 
task performance. Therefore, rather than a direct measure of con-
nectivity, inferences about the influential state of cortical connec-
tions may be evaluated using TMS. One limitation, however, is that 
since current is reduced as a function of distance from the TMS 
stimulation coil, resulting brain stimulation and subsequent IHI or 
regional inhibition is generally restricted to the cortical level. Also, 
as with structural equation modeling and seed-based functional 
connectivity, interpretation of TMS observations only go as far as 
the pre-defined areas of stimulation/inhibition. By incorporating 
a thorough understanding of the anatomical underpinnings and 
important nodes of a functional network, TMS offers an immense 
potential to provide further insight into brain connectivity and to 
better guide rehabilitation efforts following stroke.

anatomIcal substrates of functIonal connectIvIty
It is widely assumed that, for the most part, functional connections 
reflect neuro-anatomical substrates (Fransson, 2005; Greicius et al., 
2009; Honey et al., 2009; van den Heuvel et al., 2009). The strong-
est correlations of oscillating neural signals are thought to exist 
between structurally connected regions, while weaker functional 
ties reflect indirect structural connections (Honey et al., 2009). 
However, one crucial point to keep in mind is that the nature of 
the relationship between functional and structural connectivity is 
far from clear. Current methods used to quantify disrupted neural 
connections are anatomical tracings such as diffusion tensor imag-
ing (DTI) in conjunction with tractography and high angular reso-
lution diffusion imaging (HARDI) with residual bootstrap q-ball 
fiber tracking (Stinear et al., 2007; Berman et al., 2008; Schaechter 
et al., 2009). These techniques provide information about the 
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involved in both networks remains unanswered. One intriguing 
explanation is that remote resting network changes induced by the 
lesion may, in fact, facilitate motor recovery. However, a relationship 
between either of these networks and motor performance at the 
time of imaging (i.e., chronic stage) was not demonstrated, leaving 
questions as to the relevancy of these connectivity patterns to motor 
impairments and the process of recovery. Nevertheless, this early 
study highlighted the potential usefulness of a functional network 
approach, beyond localization theories, to identify disrupted brain 
activity following stroke.

Electroencephalography coherence studies during affected hand 
movement have also shown changes in the patterns of cortical 
interactions compared to healthy controls, yet still with limited 
relationship with motor performance. For instance, Strens et al. 
(2004) recorded brain activity from nine electrodes in 25 subjects 
in the chronic (1–6 years) post-stroke stage during a 25% maxi-
mal handgrip task. Corticocortical coherence was determined in 
the combined alpha and low beta-frequency bands (9–25 Hz) and 
averaged across six connectivity groupings: left lateral frontal (three 
electrode pairs), right lateral frontal (three electrode pairs), left 
mesiolateral (nine electrode pairs), right mesiolateral (nine elec-
trode pairs), mesial (three electrode pairs), and interhemispheric 
(nine electrode pairs). Of these regions, coherence was greater in 
subjects with stroke compared with control subjects during task 
execution in three connectivity patterns, namely, between ipsile-
sional mesial (SMA) and lateral frontal region (sensorimotor 
cortex), over contralesional lateral frontal region (sensorimotor 
cortex), and over contralesional mesial motor region (SMA). The 
authors speculated that increased connectivity of mesial and lateral 
frontal regions related to increased attention to task that, in cases 
of incomplete recovery, represented a compensatory mechanism. 
Also of note was that the group differences appear specific to the 
task execution since no differences were identified during the task 
preparation phase (Strens et al., 2004). Although these changes 
were interesting from a connectivity perspective, there was again 
a general lack of association with motor performance, which may 
merely reflect the limitations in the EEG coherence metric used 
to identify cortical changes. Specifically, the authors considered a 
“hand difference score” representing asymmetries in cortical coher-
ence obtained during affected and unaffected hand movement. 
Therefore, group differences in the degree of asymmetry may have 
partially been driven by reorganization of cortical networks during 
unaffected hand movement as may have arisen through compen-
satory overuse of this hand. Consequently, interpretation of these 
results was somewhat confounded and required further research 
to isolate changes of the affected hand.

Apart from the relatively unknown association with motor per-
formance, one particularly surprising finding of the previous study 
was the lack of change in interhemispheric connectivity. Given 
that the commonly observed increased activity of ipsilesional 
sensorimotor cortex is suggestive of increased output from this 
region, the authors conducted a follow-up study to further evalu-
ate the interhemispheric coupling (Serrien et al., 2004). Within 
this study, they also chose to disentangle changes due to move-
ment of the unaffected from those of the affected hand. Using 
a directed coherence approach, it was observed that, in the low 
beta-frequency band, information flowed from the contralesional 

sequential finger movements in well-recovered subjects relies on the 
contribution of the contralesional premotor and primary motor 
cortex. Nevertheless, since TMS studies present a coarse perspec-
tive of network function, a better understanding the underlying of 
functional architecture may enhance interpretation and provide 
direction as to the most important regions of stimulation.

task-based connectIvIty
To date, theories of the brain’s response to a stroke lesion emphasize 
extensive changes in localized functional activation patterns during 
a motor task compared to that of a healthy control population. In 
general, the response to affected limb movement initially includes 
a bilateral overactivation in primary and secondary sensorimo-
tor regions. During the process of recovery, a reduction in activa-
tion is observed that can either persist in a bilateral distribution 
or become lateralized toward the perilesional tissue and motor 
regions of the lesioned hemisphere (Calautti et al., 2001; Ward 
et al., 2003). Presumably, these changes represent an attempt to 
maximize the residual cortical output, but the involvement of mul-
tiple areas is generally inversely related to recovery. In the event 
that the ipsilesional primary motor cortex is no longer capable of 
functional contributions, secondary regions gain importance, and 
perhaps become a necessary component to sustain further, albeit 
incomplete, recovery. In this case, cortico-cortico and corticospi-
nal tract are the two primary connections, although the specific 
contribution of each pathway to motor recovery is still unknown. 
While the identification of these localized activation patterns has 
been informative with respect to the recovery process, we now have 
the analysis tools to deepen the understanding of the underlying 
neural integration. That is, spatial reorganization implies an under-
lying network of activity, but the analysis fails to explicitly identify 
functional connections and, more importantly, the evolution of 
these connections as a process of recovery.

functIonal connectIvIty
Moving beyond investigations of the reorganization of localized 
neural activations, Seitz et al. (1999) was the first to probe func-
tional network changes induced by a stroke lesion. PET data was 
collected in seven subjects in the chronic (∼6 months) stage after 
infarction. Subjects were scanned at rest and during performance 
of finger movement sequences as accurately and fast as possible. 
Using principal component analysis, results indicated that of the 
eight principal components representing 80% of PET data vari-
ance, two were differentially expressed in controls and subjects with 
stroke. The first component, deemed, the “lesion-affected” network, 
was expressed in the absence of task and supported the widespread 
abnormalities occurring in regions remote to the ischemic core. 
Specific changes included the ischemic core and perilesional area, as 
well as contralesional and subcortical structures. The second com-
ponent was expressed during finger movement and correlated with 
motor scores acquired within a few days of stroke. Consequently, 
the authors deemed this component a “recovery-related” network. 
Of particular interest was the spatial overlay of the lesion-affected 
and recovery-related networks, which demonstrated similar areas of 
connectivity in the thalamus and visual association areas. Because 
the thalamus is an area of visual processing, it is not surprising that 
these regions fall within an integrated network, but why they are 
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to contralesional M1 compared to healthy controls. Moreover, a 
reduced facilitation was demonstrated from ipsilesional SMA to 
contralesional M1 that correlated with bilateral hand motor deficit. 
Even in the absence of task performance, differences in interhemi-
spheric coupling between both SMAs and ipsilesional coupling 
between SMA and M1 were identified and were suggested as further 
mechanisms underlying hand motor impairment (Grefkes et al., 
2008). While these results corroborated previous TMS studies of 
IHI during a unimanual motor task, dynamic causal modeling ena-
bled the assessment of the motor network beyond M1. As stated 
by the authors, these findings may have important implications 
for treatment. If bilateral arm activities can improve the facilita-
tory effect of SMA, then promoting activity of contralesional M1 
may, in turn, facilitate ipsilesional M1 as seen in healthy controls. 
Presumably, the facilitatory effect would extend to unimanual 
movements of the affected hand. Further longitudinal interven-
tions are required to support these hypotheses.

In addition to effective connectivity analysis of the classical 
motor network, the inclusion of cognitive regions revealed new 
areas of connectivity after stroke during a bilateral hand task (Walsh 
et al., 2008). Using fMRI and structural equation modeling, inter-
hemispheric connectivity of prefrontal cortex with ipsilesional 
SMA was observed in subjects with stroke that was not apparent 
in healthy controls, suggesting that attention to action or explicit 
learning may be a key compensatory mechanism following stroke. 
Clinical implications may initially include the promotion of this 
mechanism to facilitate SMA and, through interhemispheric con-
nectivity, ipsilesional M1. Later, as recovery ensues, movement may 
become more implicit such that the activation is again limited to 
the classical motor network, in the absence of prefrontal input.

Recognizing a need to identify whether pathological changes in 
connectivity may be reversed through targeted TMS interventions, 
Grefkes et al. (2010) assessed subjects using fMRI and effective 
connectivity analysis immediately before and after paired pulse 
TMS stimulation. Dynamic causal modeling revealed that TMS 
did indeed induce interhemispheric network changes resulting in 
reduced suppression from contralesional to ipsilesional M1 dur-
ing a unimanual affected hand task. These network changes were 
observed in relation to enhanced motor performance. A bilateral 
task was additionally evaluated, but because of an overall positive 
coupling between all motor regions during a bilateral task, network 
changes during bimanual movements were not observed. In other 
words, a suppression of contralesional M1 was not indicated in this 
model and therefore, was not expected to induce changes (Grefkes 
et al., 2010).

Effective connectivity changes within an extended motor net-
work have also been revealed during motor imagery following 
stroke. Sharma et al. (2009) evaluated the extent to which motor 
recovery is associated with network reorganization induced by 
motor imagery compared to motor execution. fMRI and struc-
tural equation modeling were assessed in subjects who were 
1 week to 2 years post-stroke. Results revealed differential con-
nectivity patterns in motor imagery and execution networks 
between subjects with stroke and controls. Specifically, a reduc-
tion in the connectivity between ipsilesional SMA and premotor 
cortex was found in both networks, while only during motor 
imagery was increased coupling observed between ipsilesional 

to the  ipsilesional sensorimotor cortex during affected hand move-
ment in less recovered subjects. Directed information flow was also 
found from mesial to contralesional sensorimotor cortex, again 
highlighting the importance of SMA as part of a larger network. 
Thus, in patients with incomplete recovery, the importance of con-
nectivity in the contralesional sensorimotor cortex, possibly act-
ing under the influence of mesial areas is supported in this study. 
However, whether these integrative effects are facilitatory or inhibi-
tory remained blurred and have since become an important focus 
of TMS research (Dimyan and Cohen, 2010). Also, it should be 
kept in mind that the inclusion criteria were primarily based on 
motor impairment status (i.e., weakness of wrist and finger exten-
sors). As a result, differences in lesion location (cortical, subcortical, 
left, right), lesion type (ischemic, hemorrhagic), and initial level of 
severity may have introduced important confounding variables to 
the connectivity patterns and data interpretation.

In an effort to further clarify network contribution of cont-
ralesional primary motor cortex to motor recovery in a very spe-
cific patient cohort, Gerloff et al. (2006) employed a multimodal 
analysis. Eleven subjects with chronic ischemic lesions (1–9 years 
post-stroke onset) of the left internal capsule and mild to moder-
ate extremity impairments were included. Functional connectivity 
was assessed using EEG corticocortical coherence during affected 
finger extension and interpreted using TMS MEP of ipsilesional and 
contralesional M1. An increase in functional coupling was observed 
between contralesional motor/premotor cortex and SMA in all fre-
quency bands tested (low alpha 8–10 Hz; high alpha 11–13 Hz; low 
beta 16–20 Hz, high beta 22–26 Hz) compared to healthy controls. 
In contrast, reduced connectivity was found between links of ipsile-
sional motor/premotor cortex with SMA and contralesional motor/
premotor cortex in the low beta band. These results largely cor-
roborate findings of Serrien et al. (2004), supporting key connec-
tions between SMA and contralesional M1 in subjects with residual 
motor deficits. Interestingly, TMS applied to contralesional M1 
did not induce a motor response of the affected hand, essentially 
refuting the possibility of compensation through corticospinal 
commands from this hemisphere, at least in subjects with mild 
impairments. Gerloff et al. (2006) additionally tested the localiza-
tion of functional activation using PET during affected hand move-
ment. Without any insight other than a bilateral activation response 
pattern, the advantages of assessing functional connections over 
local activations to understand neural changes after stroke were 
clear. However, although there are benefits to using a multimodal 
approach to better inform EEG and fMRI functional connectivity, 
interpretation may be enhanced by considering the directionality 
of information flow using measures of effective connectivity.

effectIve connectIvIty
Grefkes and colleagues used fMRI and dynamic causal modeling to 
identify the impact of subcortical stroke lesions on neural networks 
during whole hand flexion/extension. Subjects were assessed in the 
subacute (5–32 weeks) stage of recovery and each demonstrated 
mild weakness of their hand. During affected hand movement, 
inhibitory influences from contralesional to ipsilesional M1 were 
observed that related to the extent of motor impairment (Figure 1). 
Bilateral hand movements were also included and resulted in a 
reduction in the facilitatory drive leading from ipsilesional M1 
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ipsilesional premotor cortex. Whether the influence of this region 
is compensatory due to enhanced attention to task mechanisms 
or marks true reorganization of the motor network has yet to be 
resolved.

Despite the potential usefulness of task-based activation stud-
ies, at least two important limitations must be considered. First, 
subjects are typically selected because they are able to perform a 
standardized task, thereby limiting the generalizability of findings 
to the function of the particular task and to subjects with moderate 
to good motor recovery (Dong et al., 2006; Calautti et al., 2007). 
Second, mirror movements and increased effort are two common 
occurrences during affected limb movement leading to exaggerated 
activation of the unaffected hemisphere (Wittenberg et al., 2000; 
Ward et al., 2007). Although it is clear that lesions induce broad 
changes within a cortical network or activity, the dependency on 
task performance in the previously mentioned studies leaves criti-
cal uncertainties of the behavioral link. Are these network changes 
representative of the recovery process and cortical reorganization 
after stroke or are they merely an epiphenomenon?

restIng-state connectIvIty
Resting-state functional connectivity represents a reliable and prom-
ising means of assessing the intrinsic transfer of neural informa-
tion within a network while avoiding many task-based confounds 
(Damoiseaux et al., 2006). Although the physiological source of 
spontaneous activity is unclear, validation studies using fMRI and 
EEG identified a spectral profile of rhythmic neural activity within a 
number of functionally relevant networks. For example, neural oscil-
lations within a combination of primarily low frequency bands was 
found to contribute to the BOLD signal contributing to a sensorimo-
tor network (Mantini et al., 2007; Nir et al., 2008). Moreover, using 
MEG, regions identified as having the highest density of  functional 

prefrontal and both premotor cortex and SMA. These results 
are in line with previous work demonstrating the importance of 
premotor cortex to stroke recovery (Johansen-Berg et al., 2002) 
and the inhibitory coupling between SMA and M1 in healthy 
controls (Solodkin et al., 2004). In terms of motor perform-
ance, only connectivity within the motor imagery network, and 
not the motor execution network, was relevant. That is, positive 
correlations were observed between hand function (assessed fol-
lowing motor imagery) and connectivity from contralesional 
prefrontal cortex to SMA as well as from ipsilesional prefrontal 
cortex to premotor cortex. Therefore, increased connectivity with 
prefrontal cortex may have also facilitated recovery. Negative cor-
relations were identified with connectivity between ipsilesional 
SMA and premotor cortex. The authors contend that abnormal 
integration of the prefrontal cortex within the motor network in 
patients with stroke is due to the important role of this region 
in motor preparation and planning. In particular, the cogni-
tive rehearsal of the motor planning program that inevitably 
takes place during motor imagery may be the reason for the 
increased connectivity in this population. Once again, it should 
be mentioned that differences between subjects with stroke and 
controls were not observed using classical analysis of changes in 
localized functional activations for either task (motor imagery 
or execution), thereby reinforcing the importance of evaluating 
motor network changes (Sharma et al., 2009).

In general, the interpretation of the combined findings of these 
studies is that lesions in one hemisphere cause dysfunctional con-
nections with contralesional motor regions that appear to medi-
ate unimanual and bimanual impairments during hand motor 
tasks. Evidence is in support of the importance of secondary 
motor regions, particularly SMA, that influence ipsilesional M1, 
either directly or indirectly through contralesional motor cortex or 

Figure 1 | effective connectivity of motor network during unimanual hand 
movements. (A) Functional coupling in healthy control subjects during right 
hand movement. (B) Significant differences in functional coupling during 
affected (right) hand movement between healthy control subjects and subjects 

with stroke. (C) Significant correlation between rate of affected hand movement 
and strength of inhibitory connections from contralesional M1 to ipsilesional M1. 
SMA, supplementary motor area; PMC, premotor cortex; M1, Primary motor 
cortex. Reproduced with permission from Grefkes et al. (2008).
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unclear, the authors site the possibility of changes occurring on 
a cellular level that are known to include a random outgrowth of 
new axonal connections (Kaiser et al., 2009). Regardless of the 
cause, however, a shift toward random networks is not new to brain 
pathology and has been shown before in the presence of brain 
tumors (Bartolomei et al., 2006), Alzheimer’s disease (de Haan 
et al., 2009; Stam et al., 2009), epilepsy (van Dellen et al., 2009), 
and traumatic brain injury (Nakamura et al., 2009). Therefore, 
as the authors of this study state, network randomization may 
represent a final common pathway for many brain pathologies 
when normal connections are impaired. Further investigations 
are required to better understand this phenomenon and whether 
randomization is indeed facilitating recovery or merely hindering 
the potential for further recovery.

Along with network efficiency changes, the emergence of asym-
metries in the importance of centralized “hubs” of connectivity 
within a motor network appear to be related to the recovery process 
after stroke. As time post-stroke progresses, Wang and colleagues 
also report that the greater the degree of centralization within 
ipsilesional M1 and contralesional cerebellum (dentate nucleus), 
the better the clinical outcomes, while the inverse was true of the 
ipsilesional cerebellum and thalamus (Figure 2C). Compared to 
controls, specific regions to which ipsilesional motor cortex demon-
strated increased connectivity included contralesional motor cor-
tex, post-central gyrus, and ventrolateral premotor cortex, as well 
as bilateral dorsolateral premotor cortex. Contralesional cerebellum 
revealed increased connectivity with ipsilesional ventrolateral pre-
motor cortex. In contrast, regions to which ipsilesional thalamus 
demonstrated reduced connectivity included bilateral dorsolateral 
premotor cortex and basal ganglia as well as contralesional SMA. 
Ipsilesional cerebellum was less connected with contralesional 
cerebellum and bilateral basal ganglia. Importantly, the notion of 
increased connectivity within key regions may have critical implica-
tions for prognosis and treatment (Wang et al., 2010).

Lesions identified within the above-mentioned centralized hubs 
of connectivity create models in which lesion location is of high 
importance and may offer a good predictor of recovery potential. 
In a sophisticated computational model of known structural con-
nections, Alstott et al. (2009) deleted nodes based on centrality 
within the theoretical network and effectively predicted non-local 
brain effects. For example, deletion of nodes within regions of the 
frontal cortex resulted in particularly large and widespread effects, 
whereas lesions directly over primary sensory or motor cortices 
induced smaller, but primarily interhemispheric as opposed to 
intrahemispheric, disruptions (Figures 3A,B). One consideration 
in employing a network model to predict recovery is the time in 
which connectivity changes develop, which may depend on the 
delayed spread of local neural disruption from the lesion site. For 
instance, the randomization noted by Wang et al. (2010) did not 
begin to emerge until 10–14 days after stroke, suggesting that a 
certain amount of time must elapse before the deterioration and 
reorganization of connections leading to and from remote regions 
may be statistically captured and used to predict outcomes. This 
timeline is in contrast to previous stroke predictive markers based 
on early identification of penumbral size and the extent of Wallerian 
degeneration of the corticospinal tract (Witte et al., 2000; DeVetten 
et al., 2010). Since it is well known that early stroke deficits are not 

connections in the alpha “idling” frequency band reflected the high 
functional demands placed on these regions during daily tasks 
including somatosensory, visual, and language cortices (Guggisberg 
et al., 2008). Clearly, because this testing paradigm is not induced by 
an active task, it allows for an assessment of functional connectivity 
within multiple neural networks collected during a single experimen-
tal session. Equally important is the possibility to overcome many of 
the limitations of task-based paradigms, particularly as they relate 
to stroke as mentioned in the previous section. Such intrinsically 
connected networks have also been proposed as useful biomarkers 
of sensorimotor impaired brain states such as Parkinson’s disease 
(Stoffers et al., 2008; Wu et al., 2009), amyotrophic lateral sclerosis 
(Mohammadi et al., 2009), multiple sclerosis (Lowe et al., 2002; Cover 
et al., 2006), and brain tumors (Guggisberg et al., 2008). Because 
the concept of resting-state networks as they apply to neurologi-
cal conditions is still relatively new, only a handful of studies have 
employed this method to assess the influence of stroke. However, the 
consensus within these studies is that resting-state connectivity is 
indeed disturbed by a stroke lesion and the resulting spatial patterns 
of connectivity are related to functional outcomes.

The sensorimotor resting network, in particular, has proven to 
be important in understanding motor deficits. Carter et al. (2009) 
used seed regions within an attention and motor network to evalu-
ate interhemispheric and intrahemispheric connectivity in relation 
to clinical motor deficits in an acute (9–31 days) stage after stroke. 
Regions of the motor network included bilateral sensorimotor cor-
tex, SMA, secondary somatosensory cortex, putamen, thalamus, 
and cerebellum. Results revealed a disruption to interhemispheric 
functional connectivity of homologous pairs within both networks 
that correlated with upper extremity impairment. Remarkably, int-
rahemispheric connectivity, even within the lesioned hemisphere, 
did not relate to behavioral outcomes. Also, although the focus of 
this review is on upper extremity impairments, it is worth men-
tioning that lower extremity deficits and gait impairment were 
most highly correlated with the attention network rather than the 
sensorimotor network. This finding is well in line with the clinical 
observation of the marked difficulty in attending to a secondary 
task while walking. Thus, the critical point in this study was that 
the strength of cross-cortical functional connections assessed in the 
resting brain are related to motor tasks. Equally important is that 
these results could not be explained by structural damage, since 
for the most part, the attention and motor networks were outside 
of the lesion core (Carter et al., 2009).

While the strength of connectivity is one characterizing feature 
of resting-state functional connectivity, pathological changes may 
also be quantified by the degree of efficiency in which information 
flows between connected regions. In a recent longitudinal study, 
Wang et al. (2010) described dynamic changes in network efficiency 
using a graph theoretical approach. fMRI data was collected at five 
post-stroke time points (1 week, 2 weeks, 1 month, 3 months, and 
1 year). The primary finding was that changes occurring within a 
motor network, defined by 21 brain regions, progress toward a ran-
dom, less optimized network (Figures 2A,B). That is, nodes tend 
to become less clustered and information must travel over longer 
distances as more time passes from the stroke event. Interestingly, 
the degree of randomization positively related motor recovery. 
Though the underlying mechanisms of this process remain 
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subjects within the intervention group. Interestingly, the two 
subjects who improved the most as a result of the intervention 
were the only subjects to demonstrate an increased influence 
of SMA on ipsilesional premotor cortex, which then indirectly 
influenced ipsilesional M1. Although the different types and loca-
tion of stroke included in this study may have confounded the 
results, these findings highlight the potential for asymmetrical 
reorganization to occur in relation to recovery after stroke rather 
than a return to the symmetrical connections seen in healthy 
controls (James et al., 2009).

As with task-based paradigms, limitations in resting-state 
approaches also exist. For example, recent TMS data with simul-
taneous motor task suggest that network activity is modulated 
from rest to executed movement. At this point, it remains unclear 
whether these changes are comparable between subjects with stroke 
and healthy controls. For resting-state analyses, these findings open 
several questions that have yet to be resolved. That is, precisely what 
information can we gain from resting-state activity that extends 
beyond knowledge of structural anatomy? How is “resting-state” 
defined? What is the consistent set of instructions that should be 
provided to all subjects (i.e., “Be free of thought?” “Eyes open or 
closed?”). Until a consensus is reached on the resting-state para-
digm, comparisons across studies must be cautiously interpreted.

representative of eventual outcomes, it may be that the delays in 
network changes are at least one of the mechanisms accounting 
for further damage or repair.

Because functional resting-state networks appear to repre-
sent the foundation of neural activity, the possibility to induce 
change through rehabilitation is an intriguing concept. In a 
recent study, James et al. (2009) used fMRI and structural equa-
tion modeling to assess whether a novel intervention could alter 
the driving influences of connectivity within a resting motor 
network in subjects in the subacute stage (34–55 days) after stroke 
(Figure 4). The intervention followed a task specific training 
protocol including repetitive, goal-directed movements of the 
affected upper extremity at a dose of 2 h per day, 5 days per 
week, for 3 weeks. The structural equation modeling analysis 
included anatomically defined regions of bilateral primary motor 
cortices, lateral dorsal premotor cortices, and SMA. Following 
treatment, an increased influence of ipsilesional premotor cortex 
on contralesional premotor cortex was observed that positively 
related to improvements in motor performance. In contrast, a 
control subject with stroke who did not receive the intervention, 
demonstrated the reverse pattern: contralesional premotor cortex 
influenced ipsilesional premotor cortex. An intrahemispheric 
influence of ipsilesional premotor on M1 was also found in four 

Figure 2 | Changes in network efficiency over time post-stroke. (A) 
Significant negative correlation between clustering coefficients (fitted gamma) 
and time post-stroke represents shift toward a random network configuration. 
(B) Non-significant positive correlation between the shortest path length (fitted 
lambda) and time post-stroke (C) Connectivity parameters between nodes of 
the motor network. Increased connectivity (red lines) are primarily seen as 
interhemispheric connections between M1 and contralesional sensorimotor 

regions. Reduced connectivity (blue lines) is mainly found in ipsilesional 
subcortical areas and cerebellum. IH, ipsilesional hemisphere; CH, contralesional 
hemisphere; M1, primary motor cortex; PCG, post-central gyrus; PMd, 
dorsolateral premotor cortex; PMv, ventrolateral premotor cortex; SMA, 
supplementary motor area; Th, thalamus; BG, basal ganglia; SPL, superior 
parietal lobule; SCb, superior cerebellum; DN, dentate nucleus; AICb, anterior 
inferior cerebellum. Reprinted with permission (Wang et al., 2010).
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 component was evenly distributed across the eight outcome meas-
ures, reflecting global disability. The second component was found 
to reflect scores describing hand and upper limb function (Strens 
et al., 2004). In general, during these early investigations of stroke-
related recovery patterns, the challenge will be to adequately model 
motor performance to best derive meaning from the relationship 
with functional connectivity. Just because behavioral correlations 
of a selected group of outcomes did not correlate does not mean a 
behavioral relationship does not exists with other, potentially more 
meaningful motor outcomes.

Loss of motor control of the so-called “unaffected” upper or 
lower extremity should also be considered. Given that a lesion may 
affect a bilaterally distributed motor network, it seems plausible 
that the ipsilateral limb may be affected. A handful of studies have 
evaluated this possibility with kinetic and kinematic measures and 
demonstrated bilateral impairment in grasp following unilateral 
subcortical stroke (Quaney et al., 2005; Nowak et al., 2007). At least 
two possible mechanisms account for these bilateral deficits. The 
first is that a subcortical lesion may damage the small percentage 
of ipsilesional descending corticospinal tract fibers. The second 
possibility is that a unilateral lesion-affected the inhibitory bal-
ance between the two homologous motor cortices. Consequently, 
these deficits must be taken into account when evaluating and 
interpreting the behavioral correlates of changes in widespread 
brain networks.

notes on measurement of recovery
One of the surprisingly understated considerations in any study of 
the neural substrates of stroke recovery is the definition of recovery. 
Clearly, the choice of the clinical outcome by which recovery is 
judged and, in turn, used to interpret changes in brain connectiv-
ity patterns is tremendously important. Unfortunately, a familiar 
limitation of clinical outcome scales is that they often do not cap-
ture true motor recovery inasmuch as they capture compensatory 
changes at the behavioral level (Levin et al., 2009). To overcome 
these limitations and to generate an overall impression of recovery, 
it is recommended that either a composite score based on several 
outcome measures (Ward et al., 2003) or kinematic and kinetic 
variables should be employed. Moreover, since hemiparesis is gen-
erally more severe in the distal musculature, and less severe in the 
proximal musculature (Colebatch and Gandevia, 1989), evaluation 
of recovery should consider hand movement in isolation (i.e., grip) 
and in combination with proximal upper extremity movement (i.e., 
reach). In doing so, differential recovery of both grasp and reach-
ing, if present, will be captured. If clinical scales are used, redun-
dancy can be avoided by including data reduction techniques such 
as principal component analysis (Strens et al., 2004; Chouinard 
et al., 2006). For example, Strens et al. (2004) assessed subjects 
using a range of eight outcome measures. A principle component 
factor analysis revealed that only two principal components were 
required to adequately describe 82% of the total variance. The first 

Figure 3 | Computational modulations in connectivity resulting from lesions in (A) Frontal cortex and (B) Sensorimotor cortex. Red lines indicate increased 
strength in connectivity. Note the widespread disruption caused by a lesion in the prefrontal cortex compared with the relatively constrained, intrahemispheric 
changes resulting from a lesion of the sensorimotor cortex. Reproduced with permission from Alstott et al. (2009).
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Besides adequately defining clinical outcome, capturing motor 
recovery also necessitates that a change in motor skill is measured. 
Therefore, while cross sectional designs are useful to determine the 
association between patterns of neural connectivity and the extent 
of motor control, only a longitudinal assessment will truly define 
the changes in neural connectivity associated with recovery. This 
point has been made clear in studies evaluating focal activation 
data (Ward et al., 2003) and now needs to be applied to connec-
tivity data.

Finally, when evaluating functional networks during task per-
formance across a group of subjects or at sequential time points, it 
is essential to control the amount of effort exerted during the task. 
For example, asking patients and control populations to reproduce 
a small percent of their maximal effort will help to match the initial 
performance level of all subjects. Otherwise, a fixed maximal level 
of exertion will inevitably overestimate changes associated with 
recovery (Ward et al., 2007).

What Is next?
The distributed impairments of connected neural systems after a 
stroke lesion will likely have widespread implications for clinical 
neuroscience. Clearly, with the relatively sparse number of stud-
ies evaluating stroke recovery from a neural network perspective, 
more research is needed. At this point, it remains unclear whether 
differences in functional connectivity between control subjects and 
subjects with stroke are related to adaptive or maladaptive brain 
reorganization, motor performance compensation, or if they are 
merely an epiphenomenon such as the release of the contralesional 
hemisphere from suppression of the ipsilesional hemisphere (Strens 
et al., 2004).

Overall, with a growing body of literature to support a functional 
connectivity approach, it is crucial that future research continue to 
expand the understanding of the spectrum of changes occurring 
in the brain after stroke. In this capacity, investigations of lesion-
induced network plasticity are anticipated to challenge current 

Figure 4 | effective connectivity within the motor network pre and 
post TMS intervention. Gray shading indicates lesioned hemisphere. 
Numbers above each line correspond to the strength of the path coefficient. 
ASAP, training group; UCC, usual care subject; Control, healthy control; LM1, 

left primary motor cortex; RM1, right primary motor cortex; LPM, left 
premotor cortex; RPM, premotor cortex; SMA, supplementary motor 
area. Reproduced with permission from James et al. (2009). Thomas Land 
Publishers, Inc.
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such damage can have significant functional consequences (Catani 
and ffytche, 2005) and recent studies have exploited DWI and trac-
tography to relate damage to specific white matter pathways to 
particular impairments such as neglect or aphasia (Bird et al., 2006; 
Catani and Mesulam, 2008). Motor impairment is particularly com-
mon following stroke, affecting about 80% of patients, many of 
whom are left with a persistent disability (Jorgensen et al., 1995). 
This review will consider whether assessment of structural brain 
connectivity can offer valuable insights into motor impairment, 
recovery and rehabilitation. Although impairment can be reduced 
through rehabilitative interventions (Winstein et al., 2004; Stewart 
et al., 2006; Wolf et al., 2006), outcomes for individual patients 
are highly variable. It is likely that some of this variation is due to 
variation in residual brain anatomy. Imaging measures of white 
matter microstructure (potentially in combination with functional 
measures; Stinear et al., 2007) could be used to predict responses to 
an intervention in order to allow for individual tailoring of thera-
peutic interventions to optimize outcomes (Dobkin, 2004; Ward 
and Cohen, 2004). In addition, longitudinal imaging of patients 
could provide insights into putative substrates for rehabilitation-
mediated improvements in performance.

Repetitive motor task practice is a key component of many 
effective neurorehabilitation interventions (Langhorne et al., 
2009). At a neuronal level, response to rehabilitation is thought 
to depend on brain systems typically employed for learning of 
novel motor skills (Karni and Bertini, 1997; Krakauer, 2006). 
Motor skill learning has therefore been used as an experimental 
model for rehabilitation following stroke (Pohl et al., 2001; Boyd 
and Winstein, 2003; Orrell et al., 2006; Stinear et al., 2007) and 
we propose that studying the systems involved in motor learning 
and practice in the healthy brain will help shed light on processes 
involved in motor recovery and rehabilitation following stroke. 
We will address similar questions in the healthy brain to those 
posed above for the damaged brain. Specifically, do individual 

IntroductIon
White matter fiber pathways form the brain’s communication net-
work. The physical condition of a given pathway will influence how 
effectively it can be used to transmit signals between brain regions 
and might thereby influence performance of behaviors that rely on 
that pathway (Fields, 2008). Individual differences in white matter 
structure may therefore be expected to correlate with variations 
in behavioral performance (Scholz et al., 2009b; Johansen-Berg, 
2010). In addition, changes in white matter structure over time 
might accompany behavioral decrements or gains in perform-
ance due to disease, recovery or learning. This review considers 
evidence that an individual’s movement abilities are determined 
in part by white matter microstructure both in the healthy brain 
and  following stroke.

White matter microstructure can be interrogated non-invasively 
using diffusion-weighted magnetic resonance imaging (DWI). This 
imaging method probes tissue structure by measuring restrictions 
to local water diffusion. It has been suggested that cell membranes, 
myelin sheaths and the cytoskeleton, might hinder water diffusion 
(Beaulieu, 2002). If, due to the presence of cellular structures, water 
diffusion is no longer uniform in space, diffusion is called anisotropic 
(i.e., directionally dependent). In tissue with well-aligned structure, 
such as axons in white matter, this anisotropy reflects the underly-
ing tissue structure. Here, diffusion is hindered by physical barriers, 
predominantly the axon membranes, in the direction perpendicular 
to the axons and relatively unrestricted parallel to it. Fractional ani-
sotropy (FA) is a DWI-derived measure that quantifies the degree of 
anisotropy. FA is high (i.e., closer to 1) in highly organized white mat-
ter bundles, such as the corpus callosum and the corticospinal tract 
and low (i.e., closer to 0) in brain regions with little or no directional 
structure, such as cerebrospinal fluid within the ventricles.

Damage to the brain, such as stroke, often disrupts white matter 
pathways, either directly (Stys, 2004) or through secondary degen-
eration (Kuhn et al., 1988). The “disconnection” that results from 
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differences in structural connectivity correlate with variations in 
behavior and can changes in structural connectivity be induced 
by training?

We will focus on the degree to which imaging measures of struc-
tural brain connectivity can inform our study of motor behavior 
and motor training in the healthy brain and following stroke in 
three different domains: (1) to assess network degeneration with 
healthy aging and following stroke, (2) to identify a structural 
basis for individual differences in behavioral responses, and (3) to 
test for dynamic changes in structural connectivity with learning 
or recovery.

Structural network degeneratIon
Many physiological and pathological changes occur during the 
healthy aging process, but a particularly consistent change is a grad-
ual decrease over time in the number of neurons as they die and are 
not replaced. Neuronal death is followed by a gradual degeneration 
of the proximal axons; a process known as Wallerian degeneration 
(Waller, 1850). As the axons degenerate, the surrounding structures 
and myelin sheaths are also lost, resulting, theoretically at least, 
in a greater overall decrease in total white matter volume than in 
gray matter volume.

Post-mortem studies have reported a gradual decline in brain 
weight after the age of 60 (Mrak et al., 1997) and have shown that 
this is primarily caused by significant loss of white matter volume 
(Meier-Ruge et al., 1992; Mrak et al., 1997). However, the results 
from conventional in vivo MRI studies are not entirely consistent 

with these post-mortem findings. A number of MRI studies have 
shown a gradual loss of the gray matter specifically from young 
adulthood onwards (Ge et al., 2002; Sowell et al., 2003; Walhovd 
et al., 2005; Lehmbeck et al., 2006), but have also described a con-
comitant non-linear increase in white matter volume until the end 
of the fifth decade before a gradual decline with advancing age 
(Bartzokis et al., 2001; Ge et al., 2002; Sowell et al., 2003; Walhovd 
et al., 2005).

Studies using DWI to assess age related white matter change 
have demonstrated that FA is potentially a more sensitive met-
ric to assess microstructural degeneration of brain networks than 
conventional structural MR, with decreases in FA observed from 
young (23–40 years) to middle (41–59 years) adulthood (Salat et al., 
2005; Ardekani et al., 2007; Giorgio et al., 2010), at a time when 
the total volume of white matter in the same subjects was relatively 
stable (Giorgio et al., 2010) (Figure 1). Decreases in FA continue 
to occur after this time, even in healthy aging in people without 
atypical cortical atrophy or a large number of white matter lesions 
(O’Sullivan et al., 2001; Head et al., 2004; Madden et al., 2004; 
Giorgio et al., 2010; Michielse et al., 2010).

Although structural changes with age are diffuse and widespread 
across the white matter, regional differences in the rate of decline 
in FA have been reported, with greater decreases in FA (and there-
fore greater inferred disruption in the white matter structure) in 
frontal areas, with temporal and posterior areas relatively preserved 
until later stages of aging (Abe et al., 2002; Salat et al., 2005; Ota 
et al., 2006; Sullivan et al., 2006; Michielse et al., 2010), though the 

A

B

C

FIguRe 1 | Structural brain changes with age. Comparisons of fractional 
anisotropy (blue), gray matter volume (green), and white matter volume (yellow) 
between young (aged 23–40 years), middle-aged (aged 41–60 years), and older 
(aged 60–82 years) adults. (A) Comparisons between the young and middle-
aged groups revealed widespread reductions in fractional anisotropy and 

reductions in GM density predominantly in frontal lobe. (B) Comparisons 
between middle and older aged adults revealed later reductions in white matter 
and gray matter volume. (C) Comparisons between young and older adults 
revealed widespread reductions in all measures. Adapted from Giorgio et al. 
(2010) with permission.
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fact that white matter microstructural changes in the contralesional 
hemisphere are not typically found in MRI studies (Liang et al., 
2007), suggests that, if present, such changes are subtle or variable 
in spatial distribution.

degree to which this differential is evident varies between studies 
(Giorgio et al., 2010). While the preferential loss of prefrontal white 
matter integrity has been demonstrated with aging even in highly 
functioning older people (Pfefferbaum et al., 2005), reduced FA in 
frontal white matter have been found to correlate with poor per-
formance on a test executive function in healthy elderly adults with 
normal structural MRI scans (O’Sullivan et al., 2001). However, 
when compared with age-matched healthy adults, patients with 
early stage dementia did not have significantly greater white matter 
abnormalities within frontal regions but did have greater disruption 
to posterior white matter (Head et al., 2004).

These findings, in groups of individuals in whom conventional 
structural imaging is likely to be normal, highlight the sensitivity of 
diffusion imaging as a technique for investigating subtle changes in 
network structure, and its potential not only to identify disruption 
in white matter tracts over time with healthy aging, but as a tool to 
distinguish pathological processes from normal aging.

In addition, changes in white matter metrics over time may allow 
investigation of the relationship between white matter deterioration 
and cognitive decline. One study has investigated the relationship 
between FA and response times in a visual detection task. In young 
adults (19–25 years) response times correlated with FA in the sple-
nium of the corpus callosum whereas for older adults (60–70 years) 
response times were best correlated with FA in the anterior limb of 
the internal capsule. This distinction between age groups suggests 
that there is an alteration in cortical networks required to perform 
a task with increasing age (Madden et al., 2004).

In the clinic, diffusion MRI has a well-established role in detect-
ing acute stroke pathology, and is a more sensitive and specific 
imaging modality than conventional MRI or CT for detection of 
early ischemic signs in the hyperacute setting (Saur et al., 2003). 
Both gray and white matter are vulnerable to primary ischemic 
damage (Stys, 2004) and, following the acute stage, slowly evolving 
secondary degeneration of white matter can occur. DWI can detect 
these patterns of anterograde (Wallerian) and retrograde white 
matter tract degeneration in the days and months following stroke 
(Werring et al., 2000; Pierpaoli et al., 2001; Thomalla et al., 2004; 
Liang et al., 2007) (Figure 2). In the acute phase, reductions in FA 
have been observed within 16 days of stroke within distant regions 
within the corticospinal tract, at a time when conventional MRI 
was normal in this area (Thomalla et al., 2004). This decrease in 
FA is in line with the temporal evolution of Wallerian degeneration 
in these tracts, which has been demonstrated to occur as early as 
2–7 days after experimental ischemic lesions in rat models (Iizuka 
et al., 1990). In a study by Thomalla et al. (2004), the degree of FA 
decrease was correlated with the patient’s clinical score at the time 
of the MRI (Figure 2G), suggesting that these changes may have 
functional importance, but despite this cross-section relationship 
the FA decrease in the acute phase did not predict clinical outcome 
3 months later.

Structural studies in the chronic stages of stroke recovery have 
tended to highlight damage or degeneration of pathways in the 
stroke-affected hemisphere but studies of remote functional change 
following stroke have identified the phenomenon of transhemi-
spheric diaschisis (Andrews, 1991), raising the possibility that 
more remote interconnected regions, even in the contralesional 
hemisphere, undergo alterations following stroke. However, the 

A

D

B

E

C

G

H I

F

FIguRe 2 | White matter degeneration following damage. (A–g) Effects 
of stroke. (A–F) Coronal (top row) and axial (bottom row) MR sections taken 
in a patient with left striatocapsular infarction, 12 days after onset. The 
lesion area can be localized on T1- (A,D) and T2- (B,e) weighted scans. 
Fractional anisotropy (FA) is not only reduced in the lesion area, but also 
further along the pyramidal tract (C) and in the cerebral peduncle (F, short 
arrows). (g) The fractional anisotropy ratio between affected and unaffected 
side (rFA) for the cerebral peduncle correlates with the Motricity Index. 
Individuals with a more symmetric fractional anisotropy distribution had 
better motor performance. (H,I) Example of Wallerian degeneration in the 
peripheral nervous system. The example shows Wallerian degeneration in a 
mouse peripheral nerve after cut injury. (H) Thirty-seven hours after cut 
injury with few individual fluorescent axons are broken into fragments. (I) 
Forty-two hours after cut injury most labeled axons appear fragmented. 
(A–g) Adapted with permission from Thomalla et al. (2004). (H,I) Adapted 
with permission from Beirowski et al. (2005).
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all had left hemisphere subcortical strokes around the basal gan-
glia/internal capsule and regions of reduced communicability 
clustered around this area in the stroke hemisphere and around 
remote, but interconnected, mirror locations in the contralesional 
hemisphere. This pattern of change is consistent with the idea that, 
in addition to direct ischemic damage to white matter, secondary 
degeneration occurs along distributed white matter pathways.

relatIonShIpS between Structural connectIvIty 
and behavIor In health and dISeaSe
To what extent do changes in structural connectivity following 
stroke have functional consequences? It is well-established that the 
functional (Rapisarda et al., 1996; Delvaux et al., 2003; Brouwer and 
Schryburt-Brown, 2006) or structural (Jang et al., 2005; Jang et al., 
2008) integrity of the corticospinal tract in the lesioned hemisphere 
is a major determinant of motor recovery following stroke. Recent 
studies, however, suggest that motor performance following stroke 
may have a more complex dependence on widespread pathways, not 
limited to primary corticospinal outputs from the lesioned hemi-
sphere. For example, Schaechter et al. (2009) reported that a motor 
skill measure (a composite score based on pegboard performance 
and index finger tapping speed) correlated with bilateral clusters 
in the posterior limb of the internal capsule. Post hoc analysis sug-
gested that while poorly recovered patients had reduced FA rela-
tive to controls in the contralesional posterior limb of the internal 
capsule, well-recovered patients had elevated FA relative to controls. 
The authors therefore suggest that motor performance following 
stroke depends on the net effect of degeneration and remodeling 
of motor related pathways in both hemispheres.

The fact that we can find such brain–behavior relationships 
raises the possibility that imaging measures of structural connec-
tivity could be used to predict how an individual might behave 

One promising approach for detecting subtle or spatially vari-
able changes in structural connectivity is to use complex network 
analysis methods. These are a class of techniques that have been 
employed to interrogate network structure in a variety of con-
texts such as protein interactions, social networks or the internet 
(Barabasi, 2009), and that have proved powerful in exploring the 
network structure of the brain (Bullmore and Sporns, 2009). We 
recently used a novel network measure of weighted communi-
cability (Estrada and Hatano, 2008; Crofts and Higham, 2009) 
to assess differences in structural connectivity between stroke 
patients and age-matched healthy controls using probabilistic 
tractography on diffusion data to generate estimates of struc-
tural connectivity between brain regions (Crofts et al., 2010). 
Communicability measures the ease with which information can 
travel between brain regions by considering not only the direct 
path between them but also all possible indirect paths. We used 
clustering methods to test whether or not this measure could 
differentiate between structural brain networks of chronic stroke 
patients and controls. When considering data from the stroke 
hemisphere (Figure 3A) we found a clear separation between 
patients and controls – as expected given the presence of a lesion 
and widespread degeneration in this hemisphere (Werring et al., 
2000; Pierpaoli et al., 2001). However, more surprisingly, we 
also found that clustering differentiated between patients and 
controls even when considering only the structural connections 
of the  contralesional hemisphere (Figure 3B). This suggests that 
subtle changes in structural connectivity, that are not appar-
ent on conventional MRI or maps of FA (Liang et al., 2007), 
are present bilaterally following stroke and potentially provide 
a structural correlate of transhemispheric diaschisis (Andrews, 
1991). The separation between groups depended on communi-
cability changes in a few brain regions (Figure 3C). Our patients 

A B

C

FIguRe 3 | Network analysis detects changes in contralesional structural 
connectivity following stroke. (A,B) Results of reordering of participants using 
structural connectivity data. Chronic stroke patients are indicated by red circles 
and age-matched healthy controls by blue stars. Ordering of participants is 
achieved using spectral reordering and is based on the right singular vector, v[2], 
which is plotted on the y-axis (see Crofts et al., 2010 for details). Individuals are 
ordered along the x-axis based on increasing values of [v]2. Clear separation 

between patients and controls is apparent when using communicability 
information from both the lesioned (A) and the contralesional hemisphere (B). 
(C) Areas driving the separation between patients and controls are shown in 
blue. These regions have significantly lower communicability in patients 
compared to controls. They tend to be clustered around the lesion location 
(overlap map of lesions is shown in red to yellow). Based on data presented in 
Crofts et al. (2010).
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is associated with anatomical properties, such as increased myeli-
nation, that we might expect to speed conduction time, and so 
enhance performance (Fields, 2008). However, one study reports 
the opposite pattern: slower performance on a simple choice reac-
tion time task is associated with higher FA in the right optic radia-
tion, which might sub-serve the visuospatial component of the 
task (Tuch et al., 2005) (Figure 4B). This result does not fit the 
simple-minded idea that “bigger is better” when it comes to FA. 
However, FA is a complex measure that does not always relate in a 
straightforward way to fiber architecture. One explanation of the 
observed relationship, for example, is the complex crossing fiber 
architecture in this specific region, where increased myelination or 
axonal coherence of one fiber population could lead to an overall 
decrease in FA within a voxel.

Not only general motor performance, but also changes in 
motor performance that occur during learning are related to 
white matter microstructure. For example, the rate of adapta-
tion in a visuo-motor tracking task correlated with FA in the 
cerebellum (Della-Maggiore et al., 2009). Some of these structur-
ally correlating regions have also been found to be functionally 
more active in individuals who are faster at learning a similar task 
(Della-Maggiore and McIntosh, 2005). Microstructural variation 
in cerebellar white matter, as well as white matter underlying 
dorsal premotor cortex, has also been related to variation in per-
formance on visuo-motor tracking task in which individuals learn 
a sequence of repeating hand grip forces (Tomassini et al., 2010). 
Taken together, this evidence suggests that the cellular features 
associated with increased FA in the cerebellum might support 

in a particular scenario. From a clinical perspective this suggests 
opportunities to define imaging biomarkers that could be used to 
predict behavioral responses to a therapeutic intervention.

A previous study has attempted to define baseline measures able 
to predict response to a subsequent training intervention by assess-
ing the structural and functional integrity of the corticospinal tract 
in chronic stroke patients who went on to receive a 30-day program 
of motor training (Stinear et al., 2007). For the subgroup of patients 
with poor residual functional connectivity in the affected corti-
cospinal tract (as defined by the absence of an identifiable muscle 
response to transcranial magnetic stimulation of the affected motor 
cortex), the response to training depended on the structural integ-
rity of the corticospinal tract: those with lower structural integrity 
of the affected corticospinal tract (measured using FA) showed no 
functional improvements (Stinear et al., 2007).

In the healthy brain, significant relationships have been detected 
between white matter microstructure and behavior across a broad 
range of cognitive tasks (Figure 4) (Johansen-Berg, 2010). These 
findings suggest that even in healthy subjects, subtle variations in 
brain anatomy have consequences for behavior. For example, bet-
ter performance on a bimanual co-ordination task is associated 
with increased white matter integrity in the body of the corpus 
callosum, suggesting that callosal connections between medial wall 
areas are most critical in bimanual motor co-ordination (Johansen-
Berg et al., 2007) (Figure 4A). In the majority of published stud-
ies, correlations between behavioral performance and FA within 
task-relevant pathways is positive – such that better performance is 
associated with higher FA. This is intuitively attractive as higher FA 

FIguRe 4 | Relationship between fractional anisotropy (FA) and 
behavioral indices for a range of different tasks. Brain images show voxels 
where a significant correlation was found. Scatter plots illustrate spread of 
behavioral and fractional anisotropy values across subjects. (A) Individuals 
with higher callosal fractional anisotropy performed better at an asynchronous 
bimanual finger-tapping task (closed circles represent males, open circles 
females). (B) Counter-intuitively, individuals with higher fractional anisotropy in 
the right optic radiation (OR) performed worse on a choice reaction time task 

(i.e., had higher reaction times). (C) Individuals with higher fractional 
anisotropy averaged over tracts arising from Broca’s area were better at 
implicitly extracting grammatical rules from artificial grammars. (D) Higher 
fractional anisotropy in the fornix tail was found to be associated with 
significantly better recollection memory. (A) Adapted from Johansen-Berg 
et al. (2007) with permission; (B) adapted from Tuch et al. (2005) with 
permission; (C) adapted from Floel et al. (2009) with permission; (D) adapted 
from Rudebeck et al. (2009) with permission.
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difficult to distinguish genetic, epigenetic, and experience-related 
factors with cross-sectional paradigms, a shortcoming that can only 
be addressed with longitudinal imaging.

The prospect that brain structures can change in response to 
experience, training or practice even in adults holds promise for 
patients recovering from injury or disease. Recent imaging studies 
provide evidence in both healthy individuals and stroke patients 
that dynamic changes in white matter microstructure can be 
induced by experience.

For example, a recent study showed an increase in FA in children 
(8–10 years) with poor reading skills who underwent 100 h of 
intensive reading training over a 6-month period (Keller and Just, 
2009). The increase in FA in the left anterior centrum semiovale 
correlated with improvement in phonological decoding ability. This 
suggests that, at least in the young brain, targeted behavioral inter-
vention can bring about changes in task-specific cortico-cortical 
white matter tracts.

It might be the case that white matter is only malleable during 
the first two decades of life, when ongoing maturation takes place 
(Casey et al., 2005). However, we recently found evidence that white 
matter continues to be susceptible to structural change even in 
adulthood (Scholz et al., 2009a). In response to 6 weeks of juggling 
training FA changed in white matter underlying the intraparietal 
sulcus of previously naïve adults (21–32 years) (Figure 5). These 
white matter changes were accompanied by structural changes 
in overlying gray matter regions. This suggests that brain mat-
ter continues to be malleable during adulthood and that learning 
might rely on reorganization of specific brain regions and their 
connections.

To what extent can such remodeling be harnessed in response 
to damage? There is currently little direct evidence from human 
studies for white matter remodeling after stroke. As discussed above, 
cross-sectional studies have demonstrated that the FA within the 
contralesional internal capsule correlates with residual function in 
the paretic hand (Schaechter et al., 2009). However, by their cross-
sectional nature, such studies are not able to determine what these 

more efficient communication between cerebellar regions and 
other cortical and subcortical regions important for visuo-motor 
adaptation.

Correlations between learning-related behavioral change and 
brain structure have been found in other domains such as language. 
Individuals who were better at learning an artificial grammar had 
higher FA in white matter integrity surrounding Broca’s area, and 
within cortico-cortical fibers arising from this area. This suggests 
that rule-based grammar learning might rely on and potentially 
benefit from increased connectivity of Broca’s area (Floel et al., 
2009) (Figure 4C).

A number of recent studies have shown that variations in 
performance of specific aspects of memory can also be related 
to structural variation in particular white matter pathways. For 
example, microstructure of white matter within the left uncinate 
fasciculus was related to auditory–verbal memory in children 
and adolescents (Mabbott et al., 2009). Further, inter-individual 
differences in the white matter microstructure in the fornix, 
the main link between episodic-memory regions of the medial 
temporal lobe and medial diencephalon, were found to reflect 
variations in recollection memory performance (Rudebeck et al., 
2009) (Figure 4D). Finally, inter-individual differences in true 
and false memory retrieval has been associated with differences 
in FA in inferior and superior longitudinal fascicles respectively 
(Fuentemilla et al., 2009).

dynamIc changeS In braIn Structural connectIvIty 
wIth learnIng and wIth recovery from Stroke
The results of cross-sectional studies of behavior–structure correla-
tions, such as those discussed above, need to be interpreted carefully. 
Inter-individual differences in brain structure might be the result 
of variations in life experience or of different genetic predisposi-
tions. In other words, greater white matter integrity might reflect 
cellular changes caused by experience. Alternatively, an individual 
might have been born with a white matter pathway that supports 
a particular skill. These two scenarios illustrate the fact that it is 

FIguRe 5 | Structural changes after juggling training. (A) Fractional anisotropy (blue) and gray mater density (red) increase in occipito-parietal areas following the 
training period. (B) Mean fractional anisotropy change from scan 1 in the cluster shown in (A). Adapted from Scholz et al. (2009a) with permission.
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training had led to cortico-cortical rewiring. Such rewiring has also 
been observed in response to brain damage; in squirrel monkeys 
that had received a lesion to the primary motor cortex, axons origi-
nating in the ventral premotor cortex were found to grow around 
the lesioned area to innervate somatosensory cortex (Dancause 
et al., 2005). Because somatosensory cortex projects directly to 
the spinal cord, this re-routing might provide an alternative route 
for premotor cortex to innervate the spinal cord following motor 
cortex damage.

Therefore, animal studies have identified potential mecha-
nisms for observed patterns of white matter microstructural 
change with learning or recovery. Future studies could aim to 
perform imaging and histological analyses in parallel in order 
to test more directly hypotheses on their correspondence. For 
example, it has been suggested that changes in FA observed in 
the songbird brain are correlated with changes in myelination 
observed with histology (De Groof et al., 2008). The songbird 
brain undergoes dramatic structural changes in a seasonal cycle. 
It is possible that these changes involve both the creation of new 
axons or axon collaterals as well as the modification of existing cir-
cuitry by changes in myelination. In the context of disease, a recent 
study in a rat model found that, after an initial decrease in FA in 
the area surrounding an experimental lesion, FA increased over 
6 weeks. Subsequent histological investigations suggested that 
the increased FA reflected increasing axon density with  recovery 
(Ding et al., 2008).

concluSIonS and future dIrectIonS
The physical structure of white matter pathways influences behav-
ior both in healthy individuals and following stroke. Damage or 
degeneration of pathways with healthy aging (Salat et al., 2005; 
Ardekani et al., 2007; Giorgio et al., 2010) or following stroke 
(Werring et al., 2000; Pierpaoli et al., 2001; Thomalla et al., 2004) 
can be detected using diffusion MRI and has consequences for 
behavior (O’Sullivan et al., 2001; Madden et al., 2004). Measures 
of white matter microstructure in specific pathways related to 
motor execution and motor learning can be used to predict recov-
ery following stroke (Jang et al., 2008) or response to interven-
tion (Stinear et al., 2007) across groups of individuals. Future 
studies should assess the degree to which such measures could 
be used to design targeted interventions for individual patients. 
It is likely that combination of multi-modal structural imag-
ing measures, along with measures of functional connectivity 
provided by imaging or electrophysiology (Stinear et al., 2007), 
will be most powerful in predicting individual responses. Even 
in healthy individuals, inter-individual variations in white mat-
ter microstructure of task-relevant pathways can predict varia-
tion in behavioral performance in motor, cognitive and learning 
domains (Scholz et al., 2009b; Johansen-Berg, 2010). Finally, 
recent evidence suggests that white matter microstructure may 
be susceptible to experience-dependent modification (Keller 
and Just, 2009; Scholz et al., 2009a). Future studies should test 
whether such changes can be detected in response to rehabilita-
tion following stroke (Schlaug et al., 2009) and, if so, whether they 
can be used to identify potential therapeutic targets. However, 
the clinical relevance of such observations is currently limited by 
the challenge of interpreting changes in diffusion MRI measures 

brain–behavior relationships reflect. The observed relationships 
between motor performance and structural integrity could be due 
to pre-existing differences in white matter structure between the 
patients in these areas, to the effects of ischemic damage or sec-
ondary degeneration or to positive remodeling of the tracts during 
recovery. One observation from the study by Schaechter et al. (2009) 
supports that notion that white matter remodeling may occur at 
least in some patients. They found that patients who had made 
a poorer functional recovery had lower FA in the contralesional 
corticospinal tract than age-matched healthy controls. However, 
patients who had made a better recovery had higher FA than healthy 
controls within the contralesional corticospinal tract, although this 
was in a more inferior region than that demonstrating the correla-
tion with behavior (Schaechter et al., 2009).

One recent study has sought to answer the question of cau-
sality directly using a longitudinal study design. Schlaug et al. 
(2009) investigated the strength of the arcuate fasciculus; the 
white matter connection between the two major language cent-
ers, Broca’s area and Wernicke’s area, in six stroke patients with 
chronic aphasia, before and after a intensive period of 75–80 daily 
sessions of intonation-based speech therapy. All patients’ speech 
improved after training and there was an increased number of 
tractography-derived “fibers” in the arcuate fasciculus in the right 
hemisphere after therapy, a finding the authors suggest represents 
an increased recruitment of the homologues of the speech areas 
within the right hemisphere. This finding was specific to the right 
arcuate fasciculus and was not seen in the corticospinal tract. In 
addition, for these six patients, a relationship was observed between 
increase in number of fibers and improvement in clinical score, such 
that patients who demonstrated the greatest speech improvements 
also had the greatest increase in fiber number. Although the study 
is limited by the relatively small number of patients, these initial 
findings suggest that, in line with animal models, remodeling of 
white matter may occur in regions distant to the lesion after stroke. 
However, although it is tempting to interpret tractography-derived 
fiber number as a measure of density of axonal projections between 
two regions, there are numerous other factors that will influence 
such the performance of a tractography algorithm (such as tract 
geometry, length, data quality etc) (Johansen-Berg and Behrens, 
2006). It would be useful to test the effects of such an intervention 
on a range of diffusion and other structural measures in order 
to gain a better understanding of potential biological events that 
underlie the observed change.

More generally, understanding the biological basis of changes in 
diffusion parameters is challenging. What do observed changes in 
MR measures of white matter signify in terms of cellular changes? 
Here animal studies of white matter plasticity can give clues to the 
most likely underlying structural changes. In vitro experiments have 
shown that myelination can be positively and negatively regulated 
by increasing and decreasing the firing rate of neurons with neuro-
toxins (Demerens et al., 1996). Alterations in white matter micro-
structure have also been observed in studies of behaving animals 
with training or recovery from damage (Johansen-Berg, 2007). In 
macaque monkeys that were trained for 2 weeks to retrieve food 
with a rake, tracers revealed more connections between the tem-
poro-parietal junction and the intraparietal sulcus compared to a 
control group (Hihara et al., 2006), suggesting that the  experience of 
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One of the most challenging aspects of studying the brain 
is its amazing adaptive capabilities. It often reorganizes itself in 
response to occurrences in the external world; that is why we are 
able to remember past events, why we are able to learn new skills, 
and why we send our children to school. But, the brain also can 
reorganize to changes within the brain itself, including disease. 
Thus, an important set of issues for understanding brain disorders 
is to determine which changes are compensatory and which are 
maladaptive. Three articles presented here investigate connectivity 
changes accompanying reorganization. Turner et al. (2011) report 
on an fMRI study of traumatic brain injury (TBI) patients. By 
combining brain–behavior and functional connectivity analyses, 
they sought to determine whether the compensatory brain changes 
they found in the patients represented functional reorganization 
(novel brain region recruitment) or altered functional engagement 
(differential recruitment of similar brain regions between patients 
and controls based on task demands). The other two articles focus 
on developmental changes in the visual system following loss of 
vision. The paper by Sani et al. (2010) used fMRI to investigate 
motion processing in sighted and blind (loss of vision from birth 
or before 2 years of age) adults. They compared the differences 
between the two groups in functional connectivity of the human 
middle temporal complex (hMT+), parts of which are activated 
in sighted subjects by visual motion and parts of which can be 
activated by non-visual motion. The third paper in this group, by 
Bock et al. (2010), is unique in that its study population consists 
of ferrets, thus allowing one to compare neuroimaging results with 
detailed histopathological data. The question they addressed relates 
to understanding the neural basis of the changes observed in DTI 
data following early bilateral enucleation of the eyes.

The remaining articles present connectivity analyses of data 
from patients with specific neurological and psychiatric disorders. 
Amyotrophic lateral sclerosis (ALS), a progressive neurodegera-
tive disorder affecting motor neurons, is the topic of the article by 
Jelsone-Swain et al. (2010). They studied this disorder using resting 
state functional connectivity analysis, focusing on early stage ALS 
and directing their analysis to the connectivity changes of motor 
cortex. Another neurodegenerative disorder, Parkinson’s disease 
(PD), was addressed by Kwak et al. (2010). They also employed 
resting state fMRI functional connectivity analysis, applying it to 
data acquired from PD patients as well as healthy controls. An 
interesting feature of this paper was the fact that the PD patients 
were studied in both the ON and OFF l-DOPA medication states 
(a drug used to treat the symptoms of PD). The psychiatric disor-
ders examined by the remaining papers were depression and social 
phobia. Resting state fMRI connectivity analysis of depression was 
covered in the article by Veer et al. (2010), who applied ICA to their 

Although the review articles discussed in part 1 (Introduction to 
research topic – Brain connectivity analysis: investigating brain 
disorders.  Part 1: the review articles) give a nice overview of the 
scope of brain connectivity analysis as applied to brain disorders, 
the original research papers included in this collection enable the 
reader to see how one actually goes about employing such analy-
ses on real data sets. In these articles we see the specific steps that 
are necessary to perform each particular connectivity analysis. We 
believe that these articles will be especially useful as guides for other 
researchers attempting brain connectivity analyses.

Several articles focus on normal brain function, but these papers 
are included because the subject groups that are investigated expe-
rience changing patterns of brain connectivity, and as such, share 
some of the conceptual difficulties that occur when studying brain 
disorders. Karunanayaka et al. (2011) evaluate the developmental 
trajectories of fMRI effective connectivity using linear structural 
equation modeling (SEM) during the verb-generate task in a large 
group of children whose ages ranged between 5 and 18 years. Allen 
et al. (2011) present an independent component analysis (ICA) of 
the effects of healthy aging (12–71 years) and gender on resting state 
fMRI networks. As with the previous paper, the study population 
is quite large (over 600 subjects). Both studies provide results that 
can act as baselines for future investigations. A much smaller-scale 
study by Beauchamp et al. (2010) employs fMRI–SEM to examine 
the interaction of sensory systems (visual and tactile) during mul-
tisensory integration. This is an important issue, especially in aged 
populations where deterioration of peripheral sensory systems is 
common.

Language processing is the topic addressed by three of the 
original research connectivity articles. Turken and Dronkers 
(2011) used both DTI tractography and resting state fMRI 
functional connectivity to investigate in healthy subjects the 
structural and functional connectivity of white matter pathways 
between left hemisphere brain regions critical for language com-
prehension. These critical regions were identified in an earlier 
voxel-based lesion–symptom mapping analysis of data from 
aphasic patients (Dronkers et al., 2004). Reading is the issue 
examined in the other two articles. Frye et al. (2010) compared 
young adult normal and dyslexic readers. They used Granger 
causality applied to MEG data to investigate the relation between 
effective connectivity between left inferior frontal gyrus and 
other brain areas and phonological decoding. The work of Davis 
et al. (2010) is interesting in that it shows how neuroimaging 
may impact education. They present DTI data analyzed using 
probabilistic tractography that were acquired from first-grade 
children who differed in their levels of responsiveness to read-
ing instruction.
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resting state fMRI data and identified thirteen relevant networks. 
In the paper by Danti et al. (2010), fMRI data obtained during 
a face perception task were analyzed using functional connectiv-
ity analysis in patients with social phobia and in control subjects, 
with the goal of examining communication between sensory and 
emotional processing brain areas.
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Moreover, a priori model testing based on fewer free parameters 
presents significant challenges for an investigation that deals with 
the developmental trajectories of skills sub-serving verb genera-
tion. In particular, such limitations significantly impact our ability 
to test specific models (e.g., regionally weighted or focal network 
models) of language development using neuroimage data as input 
to connectionist approaches for neurocognitive modeling. In the 
connectionist approaches a system behavior is captured by adjust-
ing the weights on connections between elements in the network 
to investigate how the statistical structure of inputs influences the 
behavior of the network (Plaut et al., 1996). Therefore, with more 
parameters (degrees of freedom) one is better positioned to capture 
any development shifts in neurocognitive modeling.

The utility of independent component analysis (ICA) for exam-
ining changes in brain networks associated with age and brain 
development has recently been demonstrated in the context of 
resting state (Stevens et al., 2009a) as well as active neurocogni-
tive processes (Stevens et al., 2009a,b) such as language function 
(Schmithorst et al., 2006; Karunanayaka et al., 2007, 2010, 2011; 
Kim et al., 2011). Unlike model-based approaches, ICA is a data-
driven technique capable of detecting additional task-related neu-
ral networks that exhibit activity with different temporal behavior 
(Calhoun et al., 2001a). This approach has significant advantages 

IntroductIon
Functional brain imaging methods have recently emerged as means 
of investigating connectivity and the dynamic flow of information 
across neural networks sub-serving cognitive functions (McIntosh 
and Gonzalez-Lima, 1994; McIntosh et al., 1994; Friston et al., 2003; 
Penny et al., 2004a,b). These methods measure, e.g., the gener-
ated electrical/magnetic fields (EEG/MEG) or the hemodynamic 
response associated with neural activity (fMRI). The functional 
data analysis methods frequently focus on identifying areas of acti-
vation under different behavioral conditions with less attention 
paid to the behavior of the underlying network (Friston et al., 1995).

Until recently, fMRI studies have employed model-based 
approaches predicated upon a priori knowledge of an applied 
stimulus and the brain’s response [hemodynamic response function 
(HRF)] to the stimulus (Bandettini et al., 1993; Worsley and Friston, 
1995). Such models are typically based on canonical forms for the 
HRF and do not reflect individual variations or account for differ-
ences between individuals of different age, sex, or pathologies. We 
have previously discussed that this statistical approach may not cap-
ture the complexity of brain networks supporting a language task 
such as covert verb generation (Karunanayaka et al., 2010). Several 
methods have been proposed to circumvent this drawback by avoid-
ing assumptions about the shape of the HRF (Ollinger et al., 2001). 
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Human language is a complex and protean cognitive ability. Young children, following well defined 
developmental patterns learn language rapidly and effortlessly producing full sentences by the 
age of 3 years. However, the language circuitry continues to undergo significant neuroplastic 
changes extending well into teenage years. Evidence suggests that the developing brain adheres 
to two rudimentary principles of functional organization: functional integration and functional 
specialization. At a neurobiological level, this distinction can be identified with progressive 
specialization or focalization reflecting consolidation and synaptic reinforcement of a network 
(Lenneberg, 1967; Muller et al., 1998; Berl et al., 2006). In this paper, we used group independent 
component analysis and linear structural equation modeling (McIntosh and Gonzalez-Lima, 
1994; Karunanayaka et al., 2007) to tease out the developmental trajectories of the language 
circuitry based on fMRI data from 336 children ages 5–18 years performing a blocked, covert 
verb generation task. The results are analyzed and presented in the framework of theoretical 
models for neurocognitive brain development. This study highlights the advantages of combining 
both modular and connectionist approaches to cognitive functions; from a methodological 
perspective, it demonstrates the feasibility of combining data-driven and hypothesis driven 
techniques to investigate the developmental shifts in the semantic network.
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prenatal period (Wada et al., 1975; Chi et al., 1977), which suggests a 
structural basis for early left hemisphere lateralization of related func-
tions (Foundas et al., 1994). While functional asymmetries are not 
present at birth (Kotilahti et al., 2010) the anatomical asymmetries, 
in association with genetic factors, may underlie later development of 
functional asymmetries (Szaflarski et al., 2002; Francks et al., 2007). 
In fact, previous reports from the parent project that generated this 
data set (Szaflarski et al., 2006a,b; Holland et al., 2007) and others 
(Wood et al., 2004; Chou et al., 2006) have indicated that the initial 
left lateralization in this area strengthens with age with maximum 
left lateralization achieved around the age of 20–25 years followed 
by gradual decrease in the observed asymmetries with increasing age 
(Szaflarski et al., 2002, 2006a). Therefore, in this study we expected 
to confirm the age-related changes in the networks (inter and intra) 
that sub-serve verbal abilities.

Because the noun must be held in working memory as the verbs 
are generated, we expect that the temporal cortex must be connected 
to a fronto-parietal network that is routinely activated in studies 
involving working memory (Chein et al., 2003). This includes acti-
vation of the inferior frontal gyrus, dorsolateral prefrontal cortex, 
and parietal cortex. More specifically, the superior temporal cortex 
is functionally connected to the inferior frontal gyrus (through the 
arcuate fasciculus) as the anatomical connections between these two 
regions are well established (Catani et al., 2005). The dorsolateral pre-
frontal (executive control) and parietal (sustained attention to words) 
cortices modulate activity in this region through either the superior 
branch of the arcuate fasciculus (Catani et al., 2005) or the superior 
longitudinal fasciculus. Because working memory shows age-related 
improvement, we would expect that the associated neural regions will 
also show age-related changes. Furthermore, the protracted period 
of development of the frontal lobes (Giedd et al., 1999; Schmithorst 
et al., 2002; Giedd, 2004; including connections with Brodmann’s 
areas 17, 18, 31, and 32) may make the associated cognitive func-
tions, the underlying regions, and the connections with these regions 
particularly dynamic through the course of childhood.

To generate a verb that is plausibly related to the noun, the 
child must select semantic concepts that are associated with the 
meaning of the noun. On the output side, semantic retrieval is 
likely to engage the middle and inferior temporal regions (seman-
tic knowledge) and the hippocampi (information retrieval). The 
semantic concepts must be coded into phonological form, typi-
cally thought of as the second stage of the word retrieval process 
(Binder et al., 2008). Because semantic associations refine over 
the course of childhood (McDonald, 1997; McGregor et al., 2002; 
Beitchman et al., 2008), it is likely that activation in both of these 
areas will change with age. The phonological form is further coded 
into subvocal speech (Thompson-Schill et al., 1997). This suggests 
a second activation by inferior frontal gyrus for subvocal phono-
logical encoding as well as contributions by the insula for speech 
coordination in subvocal naming. In the covert verb generation task 
the speech motor network is still engaged but must be inhibited so 
that words are not spoken overtly (Skipper et al., 2005). We would 
also expect age-related changes in the neural networks supporting 
these cognitive components and the connections between them.

There is evidence to suggest that the developing brain adheres to 
two rudimentary principles of organization: functional integration 
and functional specialization (Berl et al., 2006). At a  neurobiological 

when compared to the model-based methods that may not identify 
brain areas with temporal behavior that is not correlated with the 
experimental design matrix. However, ICA generates a considerable 
number of components that may not necessarily be part of the stud-
ied network (Calhoun et al., 2001b). To address this issue, we have 
incorporated several additional steps in our ICA method that make 
the results of our study more targeted and objective (Karunanayaka 
et al., 2010). In particular, we have adopted a theory-driven focus 
based on the Wernicke–Geschwind model of the language network 
with the aim of investigating developmental shifts in the verb gen-
eration circuitry in children from 5 to 18 years of age (Geschwind, 
1965a; Anderson et al., 1999). Inclusion of such a focus yields a 
biologically plausible network model for covert verb generation 
predicted by the methods proposed here, which is more inclusive 
and specific in comparison to models extracted using general linear 
modeling (Yuan et al., 2006; Holland et al., 2007).

In the present paper, we explore the age dependency of the 
connections between the nodes of the language network that 
sub-serve the verb generation task. The verb generation model 
discussed here is based on nodes generated from a group ICA of 
fMRI data obtained from 336 children ranging in age from 5 to 
18 years: which has been discussed in detail in one of our previ-
ous publications (Karunanayaka et al., 2010). The current analysis 
takes the previously described ICA analysis further by investigating 
interactions within the identified verb generation network using 
linear structural equation modeling (LSEM). The initial investiga-
tion of verb data using group ICA specifically dealt with: (1) ICA 
decomposition of verb data; (2) age effects in the task-relatedness 
of each individual IC map (at individual network level) using an 
a priori criterion (e.g., correlation with the task reference) and 
Bayesian formalism; (3) brief description of the steps leading to the 
present model (Karunanayaka et al., 2010). In the current analysis, 
the previously described model is further expanded with input 
functions (processing of presented nouns) and output functions 
(retrieval and covert verb production) together with hypothesized 
connections within and between them. In addition, a theory-driven 
focus has been proposed taking the biological plausibility of the 
verb model into account; evaluated against the literature with the 
focus on the language circuitry. Thus, the current investigation 
provides an elegant methodology capable of providing unique 
insight into the framework of neurocognitive brain development 
in children: by combining and extending previously published 
ICA results (Karunanayaka et al., 2010) with some of the figures 
reproduced in this paper for convenience and completeness. Thus, 
in the present work the emphasis is placed on the neurocogni-
tive brain development and on estimating the age dependency of 
inter- and intra-network connectivity predicted using LSEM and 
correlation analysis.

The verb generation task begins with an auditory presentation of 
a noun: requires the listener to process the noun’s phonological form, 
and attach meaning to that form (Hickok and Poeppel, 2004). Based 
on our previous description, this process begins with an input via 
the superior temporal gyrus (Karunanayaka et al., 2010). Processing 
in this area extends posteriorly from primary auditory cortex, as the 
act of accessing word’s meaning is presumed to activate a broader 
network (Levelt et al., 1999; Pulvermuller, 2001). The posterior supe-
rior temporal cortex is known to be structurally asymmetric from the 
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generation networks extending the finding of our previous study 
(Karunanayaka et al., 2010). The previously described group ICA 
provides a complete recipe of the prerequisite steps involved in ICA 
decomposition to identify the key elements underlying a biologi-
cally plausible neural network that sub-serve a specific neurocogni-
tive task (Schmithorst and Brown, 2004; Schmithorst et al., 2006; 
Karunanayaka et al., 2010, 2011; Kim et al., 2011). A complete age 
and sex breakdown of the included subjects (native, monolingual, 
English speakers) is detailed in Table 1. Based on the Edinburgh 
Handedness Inventory (Oldfield, 1971), 311 subjects were right-
handed, 24 left-handed, and 1 ambidextrous. All subjects were 
prescreened for any conditions which would prevent an MRI scan 
from being acquired (Karunanayaka et al., 2010). Out of 336 sub-
jects, 331 received the Wechsler Preschool and Primary Scale of 
Intelligence (WPPSI-R, ages below 6) or the Wechsler Intelligence 
Scale for Children [Third Edition (WISC–III, ages 6–16 years); 
Wechsler, 1991] or the Wechsler Adult Intelligence Scale, Third 
Edition (WAIS–III, ages 17 and 18 years; Wechsler, 1997). 
Similarly, 330 subjects received the Oral and Written Language 
Scales (Carrow-Woolfolk, 1996). The age range for all subjects 
was 4.92–18.92 years; Mean Wechsler Full-scale IQ = 111.6 ± 13.84 
(range = 70–147); Mean OWLS = 107.7 ± 14.3 (range = 66–151).

FunctIonal ImagIng
All images were acquired using a Bruker 3T Medspec (Bruker 
Medizintechnik, Karlsruhe, Germany) imaging system. An MRI-
compatible audiovisual system was used for presentation of the 
stimuli. Details of the techniques used to obtain fMRI data from 
younger children are discussed elsewhere (Byars et al., 2002). 
EPI–fMRI scan parameters were: TR/TE = 3000/38 ms; 125 kHz; 
FOV = 25.6 cm × 25.6 cm; matrix = 64 × 64; slice thickness = 5 mm. 
Twenty-four slices were acquired, covering the entire cerebrum. 
One hundred ten whole-brain volumes were acquired (with the 
first 10 being dummy scans) in 5 min 30 s. Techniques detailed 
elsewhere (Byars et al., 2002) were used to acclimatize the subjects 
to the MRI procedure and make them comfortable inside the scan-
ner. A whole-brain T1 weighted MP-RAGE scan was also acquired 
for anatomical co-registration.

Verb generatIon task
The fMRI paradigm of silent verb generation (Holland et al., 2001, 
2007) is a 30-s on–off block design. All stimuli were presented 
using MacStim (White Ant Software, Melbourne, VIC, Australia) 
at a rate of one noun every 5 s, for six stimuli during each 30 s 
epoch. During the active epochs, the subjects silently generated 

level, this distinction can be identified with progressive specialization 
or focalization reflecting the consolidation of synaptic reinforce-
ment of a network (Lenneberg, 1967; Muller et al., 1998; Berl et al., 
2006). In this paper, we present a unified framework and examine 
the developmental trajectories in the language circuitry based on 
fMRI data using complementary modeling approaches. As previ-
ously (Karunanayaka et al., 2010), we employ ICA, a data-driven 
method, to identify spatially coherent activation patterns. In the 
current investigation, we extend these analyses by applying correla-
tion analysis and LSEM to model connectivity between these spatial 
distributions. Several, other approaches have previously been pro-
posed to investigate network interactions following ICA analyses. 
Stevens et al.’s (2007) used dynamic causal modeling (DCM) to 
search for the presence of a meaningful causal structure among 
selected IC time courses in an event related fMRI study of visual 
Go/No–Go task. Another study examined the functional network 
connectivity (FNC) between schizophrenia patients and healthy 
controls based on the temporal dependency among ICA compo-
nents (Jafri et al., 2008). Demirci et al. (2009) extended this analysis 
one step further by incorporating Granger causality test (GCT) to 
investigate causal relationships between brain activation networks; 
we also have recently implemented Granger causality analysis to 
investigate the connections within the epileptic network (Szaflarski 
et al., 2010). Several, other investigations have further highlighted 
the usefulness of combining ICA with Granger causality on sim-
ulated, single subject and group data (Londei et al., 2006, 2007, 
2010). Some of the above mentioned methods are relatively sophis-
ticated and more suitable for investigating specific group differences 
between healthy and patient populations. However, the emphasis 
of the current analysis is on investigating the overall developmental 
trends associated with the language circuitry and presenting the 
findings in the framework of a theoretical model for neurocog-
nitive brain development. Thus, given the large sample size, the 
simplicity of the proposed partially data-driven approach can be 
considered more suitable for understanding the global network 
structure (including connectivity) associated with complex verbal 
language tasks in general, and verbal fluency tasks in particular.

materIals and methods
subjects
One hundred sixty-five boys and 171 girls took part in the study 
following Cincinnati Children’s Hospital Institutional Review 
Board approval. Informed consent was obtained from parent 
or guardian, an assent was also obtained from subjects 8 years 
and older. Exclusion criteria were: previous neurological illness; 
learning disability; head trauma with loss of consciousness; cur-
rent or past use of psychostimulant medication; pregnancy; birth 
at 37 weeks gestational age or earlier; or abnormal findings at 
a routine neurological examination performed by an experi-
enced pediatric neurologist. All subjects were considered healthy 
based on neurological, psychological, and structural measures 
(Holland et al., 2007). Subjects included in this report were also 
included in our previous studies focusing on verb generation in 
children (Holland et al., 2001, 2007; Karunanayaka et al., 2010) 
and adults (Szaflarski et al., 2006a). While this report includes 
fMRI data from the same subjects, it describes an entirely new 
analysis of  connectivity ( causality) associated with covert verb 

Table 1 | Age and gender breakdown of the study population (165 boys 

and 171 girls).

Age in years 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sex

M 9 8 9 17 14 12 17 18 17 9 10 9 13 3

F 7* 12 17 10 11 12 11 15 21 11 11 10 12 11

*Includes one girl 4 years 11 months. The ethnic background of the subjects was: 
302 Caucasian, 21 African–American, 2 Asian, 3 Hispanic, 1 Native American, 2 
Asian/European, and 5 Multi-Ethnic.
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basis for  completion of the task through the age of the oldest sub-
jects (18 years). By concatenating the data from the entire cohort 
and searching for the components (or networks) that are com-
mon across the age group, we are able to identify the persistent 
structural elements (network nodes) underlying the fMRI verb 
generation task consisting of seven IC networks and shown in 
Figure 1. Table 2 contains a summary of the respective activation 
foci for each of the components. Coordinates listed for each IC 
correspond to the center of mass of each individual spatial element 
contained in the IC map.

To summarize, the selection of IC maps is based on three criteria: 
(1) power spectral analysis at the task frequency; (2) phase and 
(3) relevance of the spatial maps to the theoretical model of verb 
generation. Thus, by following the above mentioned criteria, the 
results of this ICA analysis can be replicated by other researchers 
in the field.

From this point on, we focus on estimating the changes in con-
nectivity between elements of the model identified by ICA using 
LSEM which is a unique contribution of this work.

appropriate verbs such as drink or fill, to aurally presented nouns 
such as cup. Subjects were asked to tap their fingers in response to a 
modulated tone presented at 5 s intervals during the control epochs. 
The control task was specifically designed to control for sublexical 
auditory processing and also to divert subjects to stop generating 
verbs into the control epochs. The fMRI task was selected such that 
children as young as 5 years old would be readily able to perform 
the task without any difficulty.

group Ica
A complete description of the group ICA methodology for verb 
generation fMRI data has been discussed in detail elsewhere 
(McKeown et al., 1998; Calhoun et al., 2001a; Schmithorst et al., 
2006; Karunanayaka et al., 2010). Basic steps involved in ICA 
decomposition are briefly mentioned here for the purpose of com-
pleteness. ICA is a data-driven analysis technique that does not 
rely on any prior knowledge of the task performed and is capable 
of identifying spatially independent components that have similar 
time courses. The power of group ICA in making statistical infer-
ences from fMRI data has been presented in several investigations 
(Calhoun et al., 2001a; Schmithorst and Brown, 2004; Schmithorst 
and Holland, 2006; Karunanayaka et al., 2010).

The ICA decomposition entails several preprocessing steps [nor-
malizing (mean centering) and 40 retained principal components 
(PCA)] at the single subject level. The data from all subjects are then 
concatenated into a single dataset before a second PCA reduction 
resulting in 50 retained components. Finally, 25 runs of the Fast 
ICA algorithm (Hyvarinen, 1999b) are combined with hierarchical 
agglomerative clustering (Himberg et al., 2004) to estimate and 
validate the independent component maps sub-serving covert verb 
generation. Performing multiple runs (when combined with hier-
archical agglomerative clustering) ensures that our analysis resulted 
in the most reliable components even after taking into account the 
stochastic nature of the Fast ICA algorithm. Although, ICA can be 
used to remove motion-related artifacts, individual motion has 
been fully characterized before performing the ICA decomposition. 
A detailed analysis of motion (including task-related movement) 
related to this task is discussed elsewhere (Yuan et al., 2009).

The task-relatedness of each IC map is then investigated using 
the associated IC time course by examining the spectral power at 
the task frequency and the phase of the IC time course relative to 
the task reference function as detailed previously (Karunanayaka 
et al., 2010). It should be noted that, by definition, spatial ICA 
requires independence only in the spatial domain and not in 
the time domain. Thus, an analysis performed in one domain 
(e.g., time) can be followed by analysis in another domain (e.g., 
spatial) without adding any undue bias to subsequent statisti-
cal manipulations. Finally, a voxel-wise random effects analysis 
(one-sample t test) is performed on selected individual IC maps 
in the spatial domain to determine the cortical regions active in 
the entire cohort. To further clarify this step, if one were to reverse 
the domains of the preceding analysis (e.g., spatial followed by 
time), the end result would be the same because of the above 
mentioned symmetry. An assumption inherent in this approach 
is that the structural components of the network for verb genera-
tion are in place by the age of the youngest subjects in our cohort 
(5 years) and continue to get fine tuned to form the structural 

FIguRe 1 | Seven task-related spatial independent components maps are 
shown in panels a-g. These ICs are computed using group ICA analysis of 336 
children ages 5–18 performing the task of covert verb generation (Karunanayaka 
et al., 2010). Slice range: Z = −25 to +50 mm (Talairach coordinates). Three 
corresponding single subject IC maps are shown at bottom (g, b, d). These individual 
spatial maps  and the associated time courses (Figure 2B) are estimated using a 
back propagation algorithm following the ICA decomposition at the group level and 
used in the subsequent LSEM analysis. All images are in radiologic orientation.
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of each group IC map (Karunanayaka et al., 2007). Specifically, 
 representative average time courses were extracted from the func-
tional data set (i.e., real signal intensities) based on these function-
ally defined ROIs. It is important to remember that ROIs derived 
from spatial IC maps often include multiple anatomical brain areas, 
as outlined in Table 2. For all of the IC maps shown in Figure 1, 
except for IC d, ROIs were defined separately for the left and right 
hemisphere components of the IC. Based on these ROIs, as men-
tioned earlier, extracted real signal time courses from the functional 
data set were then used for the between hemispheres intra-network 
connectivity computations.

A variety of models can be tested in SEM to capture relationships 
among variables and can provide a quantitative test for a hypoth-
esized theoretical model. SEM takes the entire variance–covariance 
structure into consideration when evaluating models. Furthermore, 
SEM is a generalization of regression, path and confirmatory fac-
tor models that have been extensively used in psychology, eco-
nomics and other social sciences. The model estimation in SEM 
involves minimizing the difference between the observed variance–
covariance structure and the one predicted by the implied model. 
However, when using SEM to model brain activity no distinction 
is made between the neuronal and the hemodynamic levels (Penny 
et al., 2004b) which can be considered a drawback of the method.

In the presented model, which is based on Figure 1, we only 
evaluated the feed-forward connections. As noted above, repre-
sentative time courses for each of the components (elements) in the 
LSEM are comprised of individual IC time courses from the previ-
ously performed ICA decomposition. The individual LSEM(s) were 
then solved for optimal path coefficients using the Amos software 
(Arbuckle, 1989) which utilizes an iterative maximum likelihood 
method. These optimal path coefficients (connection strengths) 
correspond to the solution of the structural equations where the 
difference between the observed and the predicted covariance 
matrix is a minimum. Finally, we evaluated the goodness of fit 
between the predicted and the implied covariance matrices using 
the χ2 distribution with m (m + 1) − n degrees of freedom (m 
corresponds to the number of elements and n corresponds to the 
number of coefficients in the LSEM respectively). The details of 
LSEM implementation for fMRI data have been discussed else-
where (McIntosh and Gonzalez-Lima, 1994; Solodkin et al., 2004; 
Karunanayaka et al., 2007; Dick et al., 2010). The LSEM itself was 
used (constrained by the proposed verb generation model discussed 
in the introduction) in a semi-exploratory manner when selecting 
the final LSEM. Advantages of alternative methods for brain activity 
modeling (such as DCM) have also been discussed by other authors 
(Friston et al., 2003; Penny et al., 2004b). Recently, an extended ver-
sion of SEM called unified structural equation modeling (uSEM; 
Smith et al., 2010) has been proposed capable of estimating con-
temporaneous as well as lagged effects simultaneously (Stoeckel 
et al., 2009). An automatic search procedure has also been proposed 
to uSEM making it entirely data-driven by increasing its flexibil-
ity substantially (Kim and Horwitz, 2009). However, DCM is still 
appears to be the most statistically sophisticated approach that 
incorporates neuronal hemodynamic relationship into a dynamic 
model of BOLD activities using Bayesian estimation (Friston et al., 
2003; Friston and Stephan, 2007; Sarty, 2007). Thus, given the fact 
that the relationship between BOLD signal and neuronal activity 

lInear structural equatIon modelIng
Linear Structural Equation Modeling is a statistical method mainly 
used for hypothesis testing regarding causal influences among meas-
ured or latent variables. In addition, SEM is capable of statistically 
testing a variety of theoretical models that hypothesize how sets of 
variables define constructs and how these constructs are related to each 
other. In terms of neuroimaging, SEM relates to effective connectivity 
that captures causal relationships (directionality) in terms of path coef-
ficients in the model. This approach differs from a typical functional 
connectivity analysis that can only determine the degree to which two 
brain regions co-vary (Friston et al., 1997). As mentioned elsewhere, 
our group ICA decomposition is based on the methods developed by 
Calhoun et al. (2001b) and is designed to evaluate individual IC maps 
and corresponding time courses based on group results. In other words, 
in this method individual IC time courses are estimated using a back 
propagation method which is followed by the ICA decomposition at 
the group level. In this paper, we use these individual IC time courses as 
input to estimate LSEM(s) at the subject level in order to examine the 
effective connectivity within the network model for verb generation.

A second level, intra-network functional connectivity analysis 
was also performed using representative real signal intensity average 
time courses from ROIs defined based on the spatial distribution 

Table 2 | Activation foci (Talairach coordinates) for the ICA components 

displayed in Figure 1.

Anatomical region BA Talairach

  X,  Y,  Z

A

R. parahippocampal gyrus 30/35 22,  −41, −5

L. parahippocampal gyrus 30/35 −26,  −41, −5

R. inferior temporal gyrus 19/37 42, −57, −5

L. inferior temporal gyrus 19/37 −46, −57,  −5

R. medial temporal gyrus 19/39 34,  −69, 20

L. medial temporal gyrus 19/39 −26, −73,  25

B

Cuneus 17 2,  −77, 10

C

R. inferior frontal gyrus 44 34,  11,  10

L. inferior frontal gyrus 44 −34,  11,  10

D

L. medial temporal gyrus 21 −54, −41, −5

L. inferior frontal gyrus 45/46 −46,  27, 15

L. inferior/medial frontal gyrus 44/9 −42, 7, 35

L. middle frontal gyrus 6/8 −6, 23, 45

L. angular gyrus/inferior parietal lobule 39/40 −30, −65, 40

e

R. superior temporal gyrus 22 50, −29, 5

L. superior temporal gyrus 22 −54, −45, 10

F
R. inferior frontal gyrus 45/47 30, 31, 0

L. Inferior frontal gyrus 45/47 −38, 23, 0

G
R. insula Insula 38, 11, 0

L. insula  −38, 11, 0
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IC based on known functional neuroanatomy (knowledge-base) 
ascribed to each Brodmann’s area encompassed by the component. 
As mentioned previously, a theory-driven focus (Geschwind, 1965a; 
Anderson et al., 1999) complements data-driven methods such 
as ICA by way of corroborating prior hypotheses about cognitive 
functions sub-serving the verb generation fMRI task.

Depending on the modularity (or function), IC modules are 
then connected to one another to form the LSEM. In this study, 
LSEM is directly derived from the covert verb generation model as 
discussed in the Section “Introduction”. For studies of developmen-
tal changes within a network, LSEM of an fMRI task can investigate 
what changes in functional connectivity explain the neural basis of 
development in language networks. This physiological approach 
should be guided by the weak constraint that anatomical proximity 
and connectivity of brain regions are incorporated in the model 
(Karunanayaka et al., 2007). Alternatively, a cognitive approach 
can also be implemented to investigate how functional/effective 
connectivity changes are related to cognitive development. The 
emphasis of the current analysis is inline with the latter approach 
where the effective connectivity changes between IC modules sub-
serving covert verb generation are investigated.

Finally, a second level Pearson correlation analysis was per-
formed on path coefficients in the LSEM to investigate any age 
effects associated with the proposed cognitive model for covert 
verb generation.

results
Six out of the seven IC maps shown in Figure 1 were detected in all 
25 IC runs while the component shown in Figure 1a was detected 
in 17 IC runs assuring high reliability (Karunanayaka et al., 2010) 
and defines the covert verb generation network for each subject 
included in the study. The maps in the lower row (individual sub-
ject level) of Figure 1 shows three corresponding individual sub-
ject level IC maps with corresponding IC time courses: estimated 
following the ICA decomposition at the group level and used in 
the subsequent subject level LSEM analysis. Figure 2A shows two 
of the corresponding average time courses for IC maps shown in 
Figures 1a,d. Figure 2B shows the individual IC time courses for 
these networks in two subjects: used as the input to the LSEM 
computations. The phase progression of the average time courses 
from leading to lagging the task reference time course (indicated by 
dark and light gray background) is clearly visualized in Figure 2A.

The developmental trajectories, network behavior (lateraliza-
tion, task-relatedness, etc.) and the language functions attributed 
to each IC have been discussed in detail elsewhere (Karunanayaka 
et al., 2010). The highly left-lateralized IC map shown in Figure 1d 
(with lateralization index equal to 1) was identified previously as 
capturing most of the left-dominance observed in a standard GLM 
analysis for the covert verb generation task (Holland et al., 2007). 
To perform the intra-network connectivity analysis for this left-
lateralized network, four separate ROIs were defined in the left 
hemisphere as shown and labeled in Figure 3. As explained above, 
only the real signal time courses from activated regions (refer to 
Table 2 for further details) inside the colored circles are included in 
the ROI analysis. The connection between (1) left middle temporal 
gyrus (LMTG) → (3) left middle inferior frontal gyrus (LMIFG) 
showed significant age dependent connectivity changes (r = 0.15, 

is poorly understood (de Marco et al., 2009), LSEM may be a very 
effective method for making inferences about changes in the causal 
structure from fMRI time series data.

In addition, several methods have been employed to obtain rep-
resentative time courses for the components included in a SEM 
analysis: one popular method being the maximum active voxel rep-
resentation (Jennings et al., 1998; Goncalves et al., 2001) which we 
employed previously to investigate developmental trends associated 
with the narrative story comprehension in children (Karunanayaka 
et al., 2007). However, in the current analysis, IC time courses were 
used to evaluate individual LSEMs to investigate the verb genera-
tion task in children. A brief description of the differences between 
the two methods are included in the section below and also in the 
Section “Discussion.”

bIologIcal constraInts
Several principles have guided the process of constructing a biologi-
cally plausible linear structural equation model for verb generation. 
As the first step (described above), ICA was used as a data-driven 
descriptor of neural elements involved in performing the fMRI 
paradigm. The second step involved a Fourier method in the time 
domain to determine which ICs were most task-related by testing 
the correlation between the fundamental frequency of each IC time 
course and the task frequency. The third step involved constructing 
a biologically plausible LSEM using the knowledge of the sequence 
of neurocognitive functions involved in the task with IC mod-
ules as building blocks (Karunanayaka et al., 2007). The IC maps 
require only independence in the spatial domain allowing highly 
correlated temporal structures to form the theoretical basis for the 
current SEM analysis. Finally, the phase of the Fourier transform 
of the associated IC time courses and the known neuroanatomi-
cal constraints were also taken into consideration when imposing 
connections between the model elements.

Some individual ICs out of the seven selected, contain more 
than one Brodmann’s area even though the representative time 
course for the IC represents all of the voxels included in the spatial 
map. This is because ICA reveals a set of chronoarchitectonically 
identified areas (Bartels and Zeki, 2004) or functionally connected 
regions that may span several Brodmann’s areas. If a given cognitive 
task recruits only one of the observed regions in a given map, then 
there will be another component separated out by ICA containing 
only that region. However, if two distinct cognitive functions have 
very similar time course, they may well be grouped into a single 
ICA component. This is a limitation of correlational analysis. Still, 
under certain minimal assumptions, the spatial independence of 
IC maps can be equated with their modularity, establishing a cor-
respondence between the IC component and a specific cognitive 
task (Duann et al., 2002; Calhoun et al., 2004). A limitation of this 
assumption is our inability to determine spatial independence of 
components with absolute certainty due to the finite number of 
voxels in fMRI experiments. However, this limitation may have only 
a minimal effect on the current investigation because of the excel-
lent signal to noise ratio provided by the large number of subjects 
in the study. Therefore, we argue that it is reasonable to assume that 
each IC map constitutes a module (a cognitive functional unit) in 
the proposed LSEM. Depending on the spatial distribution of the 
IC (activation), a specific language function can be assigned to each 

Karunanayaka et al. A developmental model for language

Frontiers in Systems Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 29 | 140

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


As described in the Section “Materials and Methods,” an LSEM 
was constructed using the functional IC maps with reference to 
the literature for prior knowledge (i.e., knowledge-base) about the 
known neuroanatomy of the brain regions involved in the language 
circuitry. This LSEM was further refined based on the hypothesized 
cognitive functions associated with the brain regions encompassed 
within each spatial IC map, forming the basis for the proposed 
theoretical cognitive model for covert verb generation as shown 
in Figure 5. Of note is that the connections between brain regions 
may not be explicitly included in the proposed model if they are 
implied by inclusion within a single IC. For example, IC d includes 
frontal, temporal, and parietal regions. The cartoon in Figure 5 
demonstrates this aspect of the model by using an extended ROI 
spanning these lobes to illustrate the spatial extent of IC d.

Table 3 shows the average value of each standardized path coef-
ficient and the age-related changes in path coefficients computed 
for the LSEM shown in Figure 5. A similar figure (model) was 
included in a previous study by Karunanayaka et al. (2010); though 
that diagram did not include the path coefficients computed here 
as a parameter expressing brain connectivity. As mentioned earlier, 
the focus of the present analysis is on developmental changes in 
connectivity within the neural circuitry of language; therefore, we 

p = 0.007). The Functional connectivity between (1) LMTG → (4) 
left angular gyrus (LANG) showed no significant age effects. 
Similarly, the functional connectivity between (4) LANG → (2) 
left inferior frontal gyrus (LIFG) showed significant age effects 
(r = 0.143, p = 0.0089) while the functional connectivity between (4) 
LANG → (3) LMIFG did not. Finally, the functional connectivity 
between (3) LMIFG → (2) LIFG showed a highly significant age 
effect (r = 0.18, p = 0.002).

Similarly, we also examined the inter-hemispheric functional 
connectivity based on individual spatial IC maps. The IC map 
shown in Figure 1c showed a highly significant age effect (r = −0.3, 
p = 2.457e − 008) in the connectivity between the hemispheres 
(Figure 4). Similarly, the IC map shown in Figure 1f also showed 
significant age effect (r = −0.132, p = 0.015) in inter-hemispheric 
connectivity. However, the IC shown in Figure 1e (bilateral supe-
rior temporal gyri; BA 22) did not exhibit significant age effects 
in functional connectivity between the left and right hemispheres 
(Figure 4). Similarly, IC modules a, b, and g also did not exhibit 
any age-related inter-hemispheric functional connectivity changes. 
Thus, for these components, we have not included the results of 
the above mentioned inter-hemispheric functional connectivity 
analysis.

FIguRe 2 | (A) Associated averaged time courses from two group IC 
networks shown in Figure 1. Horizontal axis is time and the vertical axis is 
intensity (pseudo). Gray and white background indicates the timing of the 
task reference function; (B) associated IC time courses from two subjects 

(red and blue) corresponding to Figures 1a,d networks. These IC time 
courses correspond to similar individual subject networks as shown in the 
lower row (individual subject level) of Figure 1. These IC time courses are 
used in subject level LSEM evaluations.
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attributed to the youngest subjects having higher than average IQ 
(Karunanayaka et al., 2010). To be more specific, when the children 
between the ages 5 and 8 years were excluded, the weak correlation 
between age an IQ did not reach significance and consequently we 
have not included IQ as a covariate in the analysis.

dIscussIon
Methods for network connectivity analysis based on functional 
neuroimaging data are developing rapidly as a means of expand-
ing our understanding of neurocognitive function beyond what 
the neo-phrenology or functional blobology of fMRI have been 
able to reveal (Friston et al., 2003; Schmithorst and Holland, 2007; 
Schmithorst et al., 2007; Rajapakse et al., 2008; Dick et al., 2010). 
ICA is an ideal preliminary step for network connectivity analysis 
because it is able to detect areas that exhibit task-related behavior 
which might not correlate highly with an a priori model or refer-
ence function. In the present analysis, we began with ICA of verb 
generation data which detected activations in multiple networks 
with different temporal signatures. Multiple activation time courses 
detected in the same brain regions (specifically frontal and temporal 
cortex) provide direct evidence of their participation in multiple 
cognitive aspects of the verb generation task. ICA provided the basis 
for construction of a LSEM for the network that sub-serves verb 
generation task and allowed us to use this standard statistical meth-
odology to explore the age dependency of the relationships among 
cognitive modules revealed by the ICA analysis (Karunanayaka 
et al., 2007).

The theoretical framework guiding this research focuses on 
investigating the developing brain from a network perspective 
and lays the foundation for deciphering any developmental trends 
as interactions between underlying networks. Starting with the 
Wernicke–Geschwind model for the language network, we used 
a data-driven approach to analyze results from an fMRI experi-
ment in a large sample of children over a wide age range in order 
to extract key network elements supporting verb generation. This 
classical model guided our thinking about how to connect mod-
ules identified by group ICA results as having a strong correlation 
with the task behavior. We then examined the network structure to 
identify developmental trajectories that correlate with age and abil-
ity of children to think and reason at increasing levels of maturity 
(Schmithorst et al., 2006, 2007). We have shown elsewhere, how ICA 
can be used to explore developmental changes in brain activation 
patterns associated with individual neural networks supporting 
covert verb generation (Karunanayaka et al., 2010). The current 
analysis takes this approach one step further by incorporating 
LSEM to the investigations of the theories of brain development 
using the regionally weighted or focal network models (Berl et al., 
2006). Although, these hypothesized brain developmental models 
draw support from current neuroimaging literature, our analysis 
seems to favor the regionally weighted model of normal language 
development.

Independent component analysis by itself is not capable of reveal-
ing the precise cognitive correlates of the identified components 
(Schmithorst et al., 2006). Instead, this data-driven method must 
be utilized to identify spatial distributions (IC maps) from fMRI data. 
As with GLM-based analyses, the function of the detected regions 
must be inferred and should be constrained by prior knowledge of 

examined changes in the path coefficients estimated by the LSEM 
as a function of age. The following path coefficients exhibited age-
related changes: The path coefficient between IC e → IC f showed 
an increase in connectivity with age (r = 0.13, p < 0.017). The path 
coefficient between IC e → IC d showed a modest (identified with 
a trend) age-related connectivity decrease (r = −0.111, p < 0.044). 
However, the path coefficient between IC f → IC d exhibited a 
highly significant age-related increase in connectivity (r = 0.18, 
p < 0.00088). Figure 6 graphically displays the corresponding 
standardized path coefficients that showed statistically significant 
age-related changes. These values are italicized in Table 3.

For the group of children included in this study, subject age was 
significantly correlated with the full-scale IQ (Spearman’s r = −0.18, 
p < 0.0008). This small but significant negative correlation is mainly 

FIguRe 3 | Regions included (only the active areas) in the intra-
component functional connectivity analysis for IC d are 1medial temporal 
gyrus (LMTg), 2inferior frontal gyrus (LIFg), 3middle inferior frontal gyrus 
(LMIFg), 4angular gyrus (LANg). Each brain region will be represented by 
the average activation within that ROI across time. Slice range: Z = −25 to 
+50 mm (Talairach coordinates). All images are in radiologic orientation (left in 
the picture is right in the brain).

FIguRe 4 | graphical representation of the age dependence of functional 
connectivity between left and right hemispheres corresponding to IC 
maps shown in Figures 1C,e. IC c exhibits a highly significant functional 
connectivity between the left and the right inferior frontal gyrus.
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(Karunanayaka et al., 2010). Given the limitations [(Wright’s rules; 
Write, 1934) and the number of nodes in the model] in evaluating 
LSEM(s), a careful consideration must be given before selecting either 
approach. In general, any theoretical model for language related 
cognitive functions will be a compromise between the complexity 
of the neural system sub-serving language comprehension and the 
interpretability of the resulting models. Complex models can account 
for intricate dependencies (both anatomical and functional) but the 
interpretability of the resulting models would be severely compro-
mised (McIntosh and Gonzalez-Lima, 1994; Dick et al., 2010).

As suggested by Dick et al. (2010), one approach would be to use 
the hypotheses being tested as guiding the constraining aspects of the 
model development. An alternative, more appealing approach would 
be to model brain functions in terms of interactions between underly-
ing sub-networks, inline with the method we have proposed in this 
paper. To circumvent inherent drawbacks of the second approach, in 
addition to the theory-driven focus, we incorporated a secondary cor-
relation analysis specifically to investigate the within network behavior 
sub-serving covert verb generation in children (Friston et al., 1997).

The functional connectivity results of IC d revealed unique fea-
tures related to semantic processing circuitry in children. Several 
studies have implicated activation in the middle temporal gyrus 

the functional neuroanatomy. However, once the spatial distributions 
are known, depending on the complexity either a physiological or 
a cognitive approach can be employed for the connectivity analysis 

FIguRe 5 | The proposed covert verb generation model based on group ICA 
maps shown in Figure 1. This model is based on our previous publication 
(Karunanayaka et al., 2010; Figure 4). The brain cartoon shows the approximate 
locations of each IC map from Figure 1. Transparent ellipses indicate regions 
located medially within the brain and not visible from the lateral surface whereas 
opaque ellipses correspond to regions that are mainly located on the lateral surface 

of the brain. IC d is represented in both frontal and temporal–parietal regions as 
reflected in the distributed nature of this left-lateralized network. The network is 
divided into word processing (shown in blue) and word generation modules (shown 
in green). The SEM block diagram at bottom shows how these brain networks are 
graphically connected forming the basis for the cognitive model for the covert verb 
generation task. Only the Feed Forward Connections are evaluated.

Table 3 | The age-related changes in the standardized path coefficients (r 

and p value) for the SeM shown in Figure 5 are shown in column 2 as 

Pearson correlations between the path coefficient and age. Column 3 

shows the average value of each standardized path coefficient for the entire 

age range of 5–18 years included in the analysis. Path coeffiences with a 

significant age correlations are highlighted in bold font.

Connection r value, p value Avg. value of Std.  

  path coefficient

IC e → IC f 0.1295, 0.0175 0.31

IC e → IC a −0.0429, 0.4326 0.16

IC e → IC d 0.1804, 0.0444 0.27

IC f → IC d 0.1804, 0.000888 0.33

IC d → IC a −0.07917, 0.1475 0.17

IC a → IC b −0.1036, 0.0577 0.36

IC a → IC g −0.0232, 0.6660 0.23

IC g → IC c −0.0385, 0.4807 0.57
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lateralization and localization over the course of language devel-
opment (Ahmad et al., 2003; Gaillard et al., 2003). Our previous 
findings of increasing left lateralization of IFG activation with 
age for the verb generation task in children are consistent with 
the functional connectivity findings showing decreasing left–right 
connectivity with age suggesting that the left hemisphere is able 
to act more autonomously in support of word generation as the 
brain matures (Holland et al., 2007). This interpretation is also 
consistent with the regionally weighted model of normal language 
development. Further, this finding alone can explain the differ-
ences between young and old subjects in language recovery after 
left-hemispheric injury with the ability of the language functions 
to shift to the right hemisphere in the early (prenatal and early 
postnatal injury) but dependence on the left-hemispheric regions 
for aphasia recovery in late life stroke (Tillema et al., 2008; Saur 
et al., 2010).

The inter-hemispheric functional connectivity between the 
posterior aspects of superior temporal gyrus (IC e) showed no 
age effects. The time courses for IC e and IC c described above 
have shown the highest increase in task-relatedness (developmental 
trend) as detailed in a previous study involving the same subject 
population (Karunanayaka et al., 2010). However, the age depend-
ence of these networks differs in terms of the inter-hemispheric 
connectivity as seen in Figure 4, with no significant age trend found 
in the posterior network encompassed by IC e (BA22).

Although the relationship between structural maturation and 
functional activation is rather complex, the present functional con-
nectivity data provides additional evidence in support of language 
lateralization being dominated by the inferior frontal brain regions. 
While one recent study did not observe any asymmetries in lan-
guage lateralization in newborns (Kotilahti et al., 2010), this study 
also found a more uniform involvement of the left hemisphere in 
speech processing indicating that left-hemispheric specialization 
for language processing may already be present at birth. Dehaene-
Lambertz et al. (2002) also found that left lateralization of lan-
guage function was present in posterior brain regions in infants as 
young as 3 months of age. These findings are inline with previously 
reported left lateralization of language functions noted in 6- to 

in the acquisition of semantic representations (Blumenfeld et al., 
2006; Booth et al., 2007). Similarly, research in adults suggests that 
more activation in the inferior frontal cortex is associated with more 
effortful retrieval or greater selection demands (Seger et al., 2000; 
Gurd et al., 2002; Whatmough et al., 2002; Booth et al., 2007). Age 
effects seen in the functional connectivity between these two regions 
suggest that the selection demands imposed on the inferior frontal 
gyrus increase with age. This may be due to the fact that the present 
verb generation task does not impose restriction on the number 
of verbs a subject can generate for a given noun. Evidence suggests 
that this design is successful in minimizing the amount of variance 
attributable to performance (Gaillard et al., 2003).

The functional connectivity between LMTG → LANG showed 
no significant age effects. The inferior parietal cortex has been 
implicated in feature integration and semantic categorization to 
form a coherent concept so that semantic relationships between 
words can be determined (Grossman et al., 2003; Karunanayaka 
et al., 2010). The demand for such processes may be at a minimum 
for this task (ceiling effect) since we developed this fMRI task in 
such a manner that even the youngest children in our study can 
perform this task easily. Nevertheless, Booth et al. (2007) have sug-
gested that the inferior parietal lobule may have distinct areas for 
processing semantic versus phonological information. This may 
explain observed age effects in functional connectivity: between 
LANG → LMIFG with no age effects and between LMIFG → LIFG 
with highly significant age effects.

The significant decrease in functional connectivity with age 
between right and left hemisphere elements of IC c implies a sub-
stantial change in the degree to which the left and right brain 
regions (inferior frontal gyrus) co-vary. Note that structural and 
functional asymmetries have also been found in the prenatal and 
early postnatal brain (Wada et al., 1975; Chi et al., 1977; Dehaene-
Lambertz et al., 2002) suggesting a bias for left hemisphere language 
lateralization very early in life. The anatomical data suggest that 
early brain development may lead to an underlying architecture 
that preferentially supports language within the left hemisphere: a 
normal variant of the focal network model (Berl et al., 2006). This 
neuroanatomical bias is hypothesized to be related to functional 

FIguRe 6 | Standardized path coefficients corresponding to the SeM shown in Figure 5 that showed significant changes with age are plotted as a 
function of age in months.
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verb generation in the developing brain. As mentioned previously, 
compared to DCM, the current investigation only models contem-
poraneous connections without taking into account the neuronal 
hemodynamic relationships explicitly (Penny et al., 2004b). The 
emphasis is, therefore, on the overall network behavior confirm-
ing or facilitating the generation of new hypothesis. The current 
investigation focused on the overall connectivity pattern shedding 
more insight into several networks that need further investigations 
using more sophisticated methods like uSEM, DCM, or Granger 
causality (Stevens et al., 2007; Jafri et al., 2008; Demirci et al., 2009; 
Londei et al., 2010; Smith et al., 2010). SEM is useful in this regard 
in that it provides a quantitative measure of overall model fit 
which allows the optimum set of path coefficients to be identified 
objectively. These coefficients can then be examined as a function 
of age to determine how connection strengths change with brain 
development. Finally, LSEM was also used as an exploratory tool 
in the proposed theoretical model in a highly restrictive manner. 
By introducing a theory-driven focus we partially avoided evaluat-
ing models of different structures. However, model selection (or 
identifying the true network structure) is a challenging statistical 
problem that has received increased attention in the neuroimaging 
community in recent times (Zheng and Rajapakse, 2006; Rajapakse 
and Zhou, 2007). We have already developed a Spectral Bayesian 
Network method (based on Model Averaging) to identify the most 
plausible models based on fMRI data, which is inline with our 
long-term objective of developing statistical methods capable of 
confirming (or rejecting) existing theoretical models for cognitive 
development.

lImItatIons
Study limitations inherent in covert verb generation task have 
been discussed in detail elsewhere (Szaflarski et al., 2006a,b; 
Karunanayaka et al., 2010). Therefore, we will only review addi-
tional limitations pertaining to the analyses employed in this paper.

In this study, we have only focused our attention on task-related 
networks even though considerable amount of intrinsic fluctua-
tions are typically inherent in fMRI time courses. ICA, in general, 
tends to over specify the problem imposing severe limitations on 
our computational ability for connectivity analysis. Implementing 
objective methods to select non-task-related components to be 
included in the connectivity analysis is non-trivial. On the other 
hand, including such components is very subjective making inter-
pretations difficult. The SEM should also be limited to a reasonable 
number of nodes (maximum of 10∼15) as any data set can be fit-
ted to models with increasing complexity. Thus, we have adopted 
a theory-driven focus coupled with proper selection processes to 
guide the analysis and interpretations circumventing above men-
tioned drawbacks. Therefore, we had no option but to limit the 
analysis to task-related components. However, if one can overcome 
the computational (and methodological) limitations, DCM might 
be more suitable to investigate intrinsic connectivity that is affected 
by the context of the task in ways which do not show up as a strictly 
task-related modulation of the time course.

As previously mentioned, ICA is a data-driven technique and, 
therefore, its use obviates conventional statistical approaches 
to hypothesis testing. Consequently, one extension of this data 
analysis method would be to incorporate constraints at the ICA 

12-month-old children (Minagawa-Kawai et al., 2007) and later 
studies of language lateralization in older children, adolescents and 
young adults (Holland et al., 2001; Szaflarski et al., 2006a).

The proposed LSEM for verb generation is hypothesized to sup-
port both word processing and word generation. However, only 
the networks included in the word processing module exhibited 
age dependent effective connectivity changes. Each of these net-
works represents a unique spatial distribution with corresponding 
time course that sub-serves specific functions of the network (e.g., 
working memory, visual imagery, or acoustic word recognition). As 
mentioned earlier, although the spatial distributions of IC maps are 
independent, the corresponding time courses are allowed to have 
highly correlated temporal structures.

According to the focal network theory, the underlying neural 
network structure for language processing is generally well estab-
lished by the age of 5 (Ahmad et al., 2003) with first evidence of 
network structure seen already in newborns (Kotilahti et al., 2010). 
Therefore, it is reasonable to assume that interactions between 
functions such as coordination of speech articulation, subvocal 
word production, and visual imagery at network level are well 
established for this group of children. However, based on our 
results, there is ample evidence to suggest that the within network 
(intra-network) behavior is undergoing a continuous process of 
dynamic change. As discussed in detail elsewhere (Karunanayaka 
et al., 2010), the areas of a distributed network can change the 
degree of engagement making it a more efficient component of the 
normally developing network. This forms the basis for the region-
ally weighted model and the differences in weights may account 
for the observed normal variations in cognitive skill level, use of 
different cognitive strategies and changes in the biological substrate 
for a function (Berl et al., 2006). This picture is consistent with the 
intra- component functional connectivity results observed for IC 
c, d, and e. (Karunanayaka et al., 2010).

As mentioned above, module IC d is the most left-lateralized 
part of the network for this task and is presumed to be associated 
with semantic representations of the nouns that are being heard 
(Karunanayaka et al., 2010). All connections to this module are 
age dependent. This module may also sub-serve working memory 
required by the verb generation task. Several studies have reported 
age-dependent BOLD signal and connectivity changes mainly in 
the frontal areas of the brain (Gaillard et al., 2000; Schlaggar et al., 
2002; Schmithorst et al., 2002; Schapiro et al., 2004). We suggest 
that these later aspects of development are captured by the observed 
connectivity changes within the word processing module in our 
proposed model. Finally, in terms of the regionally weighted model, 
these changes can be interpreted as increasing the participation of 
this left-lateralized network supporting phonological and semantic 
expressive functions as part of covert verb generation.

The biological relevance of the model derives from two sources. 
First, the highly task-related elements of the model are selected 
based on the data-driven ICA results. Secondly, the biological plau-
sibility originated with the close correspondence to the Wernicke–
Geschwind model and has been evaluated against the literature for 
the neural circuitry of language; especially for the semantic process-
ing network (Kim et al., 2011). These biological underpinnings for 
our model give us confidence that the proposed model is indeed rel-
evant to the cognitive and biological processes taking place during 
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 decomposition step to guide the analysis and increase the predic-
tive power (Lu and Rajapakse, 2005). Finally, the verb genera-
tion task utilized here was not specifically designed to acquire 
in-scanner performance data. Consequently, performance effects 
on the connectivity coefficients cannot be completely discounted 
even though the fMRI task design enabled the youngest children 
in the study to complete the task without any difficulty. Since, 
performance can be related to IQ, including IQ as a covariate can 
produce overcorrected, anomalous, and counterintuitive findings 
about neurocognitive functions (Dennis et al., 2009). It has also 
been shown that IQ should only be used as a covariate in those 
rare circumstances where selection bias has produced problems of 
non-representativeness in the sample (Dennis et al., 2009). Clearly, 
such a condition was not present here although we observed a 
small negative correlation between age and IQ. This was mainly 
due to our youngest subjects having higher than average IQ scores. 
Furthermore, in one of our previous connectivity studies (narrative 
story comprehension) with the same population, the effects of the 
age × IQ interaction term were investigated using a multivariate 
regression model and were found not to confound the age-related 
tendencies associated with SEM path coefficients (Karunanayaka 
et al., 2007). This performance-related limitation can be addressed 
in the future by collecting intra-scanner performance data using 
either sparse fMRI data collection (Schmithorst and Holland, 2004) 
or block-design task with forced responses (Szaflarski et al., 2002). 
Such a design will also allow real-time performance on the task to 
be monitored and potentially included as a covariate in the analysis 
of age dependence in connectivity. Recently we have shown that 
brain activation during covert verb generation correlates with the 
number of verbs generated during an overt phase of verb generation 
during the same task (Vannest et al., 2010). While both overt and 
covert verb generation produced similar patterns of activation, the 
correlation with performance suggests that performance could also 
be related to connectivity in the language networks sub-serving the 
tasks. This question could be specifically addressed with a modi-
fied overt verb generation task in which the number of responses 
is explicitly controlled as a design parameter.

conclusIon
A theoretical model for covert verb generation was investigated 
using fMRI data from a large cohort of children and adolescents 
between the ages 5–18 years undergoing fMRI study with such a 
task. Previously identified, spatially independent and task-related 
networks (IC maps) were combined with SEM to investigate age 
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critical functions such as vision, audition, motor planning, and 
directing attention (Calhoun et al., 2002a; Beckmann et al., 2005; 
Damoiseaux et al., 2006; Smith et al., 2009). These networks show 
surprisingly consistent, though not identical, patterns of activa-
tion in the presence or absence of a particular task (Calhoun et al., 
2008a; Harrison et al., 2008; Laird et al., 2009; Smith et al., 2009), 
and are often acquired while subjects are at rest. Despite evalua-
tion during a relatively unconstrained state, resting-state networks 
(RSNs) exhibit high reproducibility (Damoiseaux et al., 2006) and 

1 IntroductIon
Measurement of the blood oxygen level-dependent (BOLD) signal 
with functional magnetic resonance imaging (fMRI) has become 
a powerful tool for studying large-scale in vivo brain function. 
Following the seminal discovery by Biswal et al. (1995) that distinct 
brain regions exhibit synchronous fluctuations in intrinsic activity, 
our understanding of so-called functional connectivity has grown 
substantially. Several different methods have successfully deline-
ated a large number of temporally coherent networks that subserve 

A baseline for the multivariate comparison of resting-state 
networks
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As the size of functional and structural MRI datasets expands, it becomes increasingly important 
to establish a baseline from which diagnostic relevance may be determined, a processing 
strategy that efficiently prepares data for analysis, and a statistical approach that identifies 
important effects in a manner that is both robust and reproducible. In this paper, we introduce 
a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. 
We demonstrate the utility of this mega-analytic approach by identifying the effects of age and 
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with the analysis approach and statistical framework described here, provide a useful baseline 
for future investigations of brain networks in health and disease.
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moderate to high test-retest reliability (Franco et al., 2009; Shehzad 
et al., 2009; Zuo et al., 2010), suggesting a robust examination of the 
intrinsic functional architecture, or “connectome,” of the human 
brain (Biswal et al., 2010).

Because functional connectivity between regions is believed to 
characterize large-scale system integrity (Van Dijk et al., 2010), 
there is great interest in understanding the variability of these net-
works in normal development and clinical contexts. Studies of the 
default-mode network (DMN), a set of brain regions preferentially 
active when subjects are not focused on the external environment 
(Raichle et al., 2001; Buckner et al., 2008), have established that this 
network not only shows a high degree of heritability (Glahn et al., 
2010), but also shows alterations in a number of different neuro-
logical disorders (see Greicius, 2008 and Broyd et al., 2009 for recent 
reviews). For example, in autism, functional connectivity between 
DMN regions is substantially reduced, though coactivation within 
the dorsal attention network, a set of brain regions implicated in 
directing attention during cognitively demanding tasks, appears 
relatively unaffected (Kennedy and Courchesne, 2008). The parallel 
between altered connectivity (specific to regions associated with 
internal, self-referential processes) and symptoms that character-
ize autism suggests that straightforward investigations into func-
tional connectivity can elucidate the etiology of complex disorders. 
Similar success has been found with regard to schizophrenia, where 
impaired modulation of the DMN has been observed in schizo-
phrenia patients as well as their first-degree relatives, identifying 
an endophenotype based on large-scale connectivity (Whitfield-
Gabrieli et al., 2009; Abbott et al., 2010). Furthermore, increased 
connectivity between particular DMN regions is associated with 
the severity of positive symptoms, suggesting a correspondence 
between specific “hyperconnectivity” and psychosis (Garrity et al., 
2007; Whitfield-Gabrieli et al., 2009). The spectral properties of net-
work activation in schizophrenia have also been explored, revealing 
a signature of reduced low frequency power and increased high 
frequency power in the DMN as well as many other RSNs (Garrity 
et al., 2007; Calhoun et al., 2008b, 2009).

While multiple aspects of intrinsic functional connectivity show 
potential for clinical applications, the utility of network evalua-
tion as a reliable diagnostic tool depends on the ability to inter-
pret aberrant findings in the presence of an appropriate baseline. 
Fundamental factors, such as age and gender, are expected to exert 
large influences on functional connectivity based on their strong 
associations with underlying anatomy. For instance, most cortical 
regions show rapid gray matter loss as the brain matures through 
adolescence, followed by more gradual reductions in adulthood and 
advanced aging (Good et al., 2001; Sowell et al., 2003; Tamnes et al., 
2010), though this trend is heterogeneous across structures and par-
ticularly variable in subcortical regions (Østby et al., 2009). White 
matter shows a different developmental trajectory, with volume and 
tract integrity peaking in adulthood (approximately 25–35 years 
of age) then declining slowly with age (Sowell et al., 2003; Sullivan 
and Pfefferbaum, 2006; Tamnes et al., 2010). Structural differences 
are also observed between genders; effects are smaller and some 
findings lack consistency, however studies concur that females show 
modest increases in gray matter volume localized to frontal, tempo-
ral, and parietal cortices and basal ganglia (BG) structures (Good 
et al., 2001; Luders et al., 2005, 2009; Sowell et al., 2007).

As anticipated, recent investigations have identified effects 
of age and gender on functional connectivity. With regard to 
age, reports suggest network maturation in childhood (Szaflarski 
et al., 2006; Karunanayaka et al., 2007; Fair et al., 2008), pro-
gressive decreases in network mutual influences throughout 
adolescences into adulthood (Stevens et al., 2009), followed by 
decreases in functional connectivity and coherence in middle 
and late adulthood (Andrews-Hanna et al., 2007; Damoiseaux 
et al., 2008; Esposito et al., 2008; Koch et al., 2009; Biswal et al., 
2010). Gender-related differences have received less attention 
but there appears to be some consensus of slightly greater con-
nectivity in females localized to the precuneus and posterior 
cingulate cortex (Bluhm et al., 2008; Biswal et al., 2010). While 
these studies establish the influence of age and gender on func-
tional connectivity, most unfortunately limit their investigations 
to the DMN, creating a dearth of reported effects with regard to 
other regions. In part, this bias reflects the unique function of 
the DMN related to internal mental processes and the desire to 
explicitly explore the “cognitive baseline” (Raichle et al., 2001). 
However, the relatively narrow scope of prior studies may also 
reflect the difficulty and somewhat overwhelming nature of 
investigations of full brain connectivity (Bullmore and Sporns, 
2009). As the dimensions of data increase, so do the challenges 
associated with each analysis step, extending from data collection 
and processing to interpretation and visualization (Biswal et al., 
2010; Costafreda, 2010).

Given the need for a more comprehensive understanding of 
functional connectivity and the methodological challenges associ-
ated with such a pursuit, the current study has two primary goals. 
First, we aim to present a statistical framework optimized for the 
analysis of large datasets that can be easily applied to investiga-
tions in other areas. We advocate a hierarchical approach where 
multivariate models are used first to identify important covariates, 
reducing the number of subsequent univariate tests and decreasing 
the risk of spurious findings. For multivariate analyses, we exploit 
the autoregressive structure common to many types of data and 
recommend appropriate dimension reduction of response variables 
to enhance the sensitivity and specificity of model estimation.

Our second goal is to apply this statistical framework in a detailed 
and careful investigation of the effects of age and gender on large-
scale resting-state functional connectivity throughout the brain. 
To this end, we focus our analysis on data from a large number of 
healthy subjects (M = 603) collected on a single instrument, and 
employ group independent components analysis (GICA) to identify 
a set of robust and reliable RSNs (Calhoun et al., 2001). We examine 
the effects of age and gender on three ICA-derived outcome vari-
ables describing distinct but complementary facets of functional 
connectivity. These include (1) the power spectra of RSN time 
course (TCs), related to level of coherent activity within a network; 
(2) the intensities of RSN spatial map (SMs), related to the con-
nectivity and degree of coactivation within a network; and (3) the 
functional network connectivity (FNC; Jafri et al., 2008), related to 
the connectivity between networks. Furthermore, we consider these 
outcome measures as a function of local gray matter concentration 
(GMC) to determine the extent to which functional changes reflect 
those observed in the structural domain (Damoiseaux et al., 2008; 
Glahn et al., 2010).
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13 and 30 years old). We therefore use a normalizing transforma-
tion, log(age), to reduce the leverage of older subjects in regression 
analyses (Figure 2A).

2.2 data acquIsItIon
All images were collected on a 3-Tesla Siemens Trio scanner with 
a 12-channel radio frequency coil. High resolution T1-weighted 
structural images were acquired with a five-echo MPRAGE sequence 
with TE = 1.64, 3.5, 5.36, 7.22, 9.08 ms, TR = 2.53 s, TI = 1.2 s, flip 
angle = 7°, number of excitations = 1, slice thickness = 1 mm, field 
of view = 256 mm, resolution = 256 × 256. T2*-weighted functional 
images were acquired using a gradient-echo EPI sequence with 
TE = 29 ms, TR = 2 s, flip angle = 75°, slice thickness = 3.5 mm, 
slice gap = 1.05 mm, field of view 240 mm, matrix size = 64 × 64, 
voxel size = 3.75 mm × 3.75 mm × 4.55 mm. Resting-state scans 
were a minimum of 5 min, 4 s in duration (152 volumes). Any 
additional volumes were discarded to match data quantity across 
participants. Subjects were instructed to keep their eyes open during 
the scan and stare passively at a foveally presented fixation cross, 
as this is suggested to facilitate network delineation compared to 
eyes-closed conditions (Van Dijk et al., 2010).

2.3 data PreProcessIng
Functional and structural MRI data were preprocessed using an 
automated preprocessing pipeline and neuroinformatics system 
(Figure 1, step 1) developed at MRN (Bockholt et al., 2009) and 
based around SPM51. Following the completion of a scan, data 
are automatically archived and copied to an analysis directory 
where preprocessing is performed. In the functional data pipeline, 
the first four volumes are discarded to remove T1 equilibration 
effects, images are realigned using INRIalign, and slice-timing 
correction is applied using the middle slice as the reference frame. 
Data are then spatially normalized into the standard Montreal 
Neurological Institute (MNI) space (Friston et al., 1995), resliced 
to 3 mm × 3 mm × 3 mm voxels, and smoothed using a Gaussian 
kernel with a full-width at half-maximum (FWHM) of 10 mm. 
To ensure quality and consistency of spatial normalization across 
subjects we calculate the spatial correlation between each subjects 
normalized data and the EPI template, as well as the degree of 
intersection between the EPI mask (determined by retaining voxels 
greater than the mean of the distribution) and the subject mask 
(determined by the same criteria). For the analysis presented here, 
these two metrics flagged datasets from 35 subjects, three of which 
were uncorrectable due to incomplete brain coverage and one that 
was unusable due to large signal dropout. The remaining 31 scans 
were corrected by manually reorienting the original images (shift in 
the yaw direction), then were re-preprocessed through the pipeline. 
Subsequent to automated preprocessing, the data were intensity-
normalized to improve the accuracy and test-retest reliability of 
independent components analysis (ICA) output (Allen et al., 2010). 
Intensity normalization divides the time series of each voxel by its 
average intensity, converting data to percent signal change units.

For the structural data pipeline, tissue classification, bias cor-
rection, image registration, and spatial normalization were auto-
matically performed using voxel-based morphometry (VBM) in 

Using the described statistical approach, we identify numerous 
effects of age and gender on different aspects of functional con-
nectivity throughout cortical and subcortical structures. Our results 
corroborate previous observations and provide novel findings that 
motivate future in-depth investigations.

2 MaterIals and Methods
2.1 PartIcIPants
This analysis combines existing data from 603 subjects scanned 
on the same scanner and spread across 34 studies and 18 princi-
pal investigators at the Mind Research Network (MRN). Informed 
consent was obtained from all subjects according to institutional 
guidelines at the University of New Mexico (UNM) and all data 
were anonymized prior to group analysis. None of the participants 
were taking psychoactive medications at the time of the scan or had 
a history of neurological or psychiatric disorders. Subjects were 
excluded from analysis if their functional scans showed extreme 
motion (maximum translation >6 mm, roughly two voxels) or 
showed poor spatial normalization to the EPI template (see below). 
Subjects were also excluded if they maintained high levels of sub-
stance use (smoking an average of 11 or more cigarettes per day; 
drinking 2.5 or more drinks per day).

Table 1 provides characteristics of the participants under inves-
tigation. The sample is nearly balanced on gender (305 females), 
and the age distributions for genders are very similar. Because the 
sample is overwhelmingly right-handed (46 ambidextrous or left-
handed individuals) and preliminary tests showed no handedness 
effects, we do not consider handedness from this point forward. 
Similarly, because participants in the white racial category are over-
represented, and some studies did not collect racial information, we 
do not consider race from this point forward. Age is right skewed 
with only seven people older than 50 and the majority of individu-
als in adolescence or young adulthood (80% of subjects between 

1http://www.fil.ion.ucl.ac.uk/spm/software/spm5

Table 1 | Demographic information. Distributions for primary variables 

gender and age, as well as secondary variables handedness and race.

 N %    N %

Gender 603 100  Handedness*

Male 298 49.4  Right  508 91.7

Female 305 50.6  Left and ambi 46 8.3

 Mean SD Min. 25% 50% 75% Max.

Age (years) 23.4 9.2 12 17 21 27 71

Male 23.8 9.1 12 17 21 26 71

Female 23.1 9.3 12 16 21 27 55

Race* LTN AI ASN NH AA WH MOR

N 14 26 12 1 27 276 20

% 4 7 3 0.3 7 73 5

LTN, Latino; AI, American Indian/Alaska native; ASN, Asian; NH, native Hawaiian 
or other Pacific islander; AA, Black or African American; WH, White; MOR, more 
than one race.
*Race and handedness frequencies and percentages do not account for missing 
values.
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yielded similar findings to those found with GMC, and the choice 
of GMC or GMV would have little impact on our general results 
or interpretation.

2.4 grouP IndePendent coMPonent analysIs
Data were decomposed into functional networks using spatial ICA. 
Spatial ICA applied to fMRI data identifies temporally coherent 
networks by estimating maximally independent spatial sources, 
referred to as SMs, from their linearly mixed fMRI signals, referred 
to as TCs (Figure 1, step 2). We use ICA, rather than seed-based 
approaches, to identify networks as this multivariate data-driven 
method eliminates the somewhat arbitrary choice of seed regions 
and simultaneously takes into account the relationships between all 
voxels (as opposed to simple pairwise correlations). Furthermore, 
compared to seed-based methods, ICA may provide increased sen-
sitivity to detect subtle differences between subjects (Koch et al., 
2009).

A detailed description of the GICA implemented in this study 
is provided in Appendix A. Here, we describe the choices we made 
to prioritize detailed and reliable ICA outcome measures, as well 
as a processing strategy to accommodate our large dataset and 
resource-intensive analysis.

Group independent components analysis was performed 
using the GIFT toolbox2. We chose relatively high model order 
ICA (number of components, C = 75) as previous studies have 
demonstrated that such models yield refined components that 
correspond to known anatomical and functional segmentations 
(Kiviniemi et al., 2009; Smith et al., 2009; Abou-Elseoud et al., 2010; 
Ystad et al., 2010). Subject-specific data reduction principal com-
ponents analysis (PCA) retained T

1
 = 100 principal components 

(PCs) using a standard economy-size decomposition. The relatively 
large number of subject-specific PCs has been shown to stabilize 
subsequent back-reconstruction (Erhardt et al., 2010). Group data 
reduction retained C = 75 PCs using the expectation-maximization 
(EM) algorithm, included in GIFT, to avoid otherwise prohibitive 
memory requirements (Roweis, 1998). The Infomax ICA algorithm 
(Bell and Sejnowski, 1995) was repeated 20 times in Icasso3 and 
resulting components were clustered to estimate the reliability of the 
decomposition (Himberg et al., 2004). The quality of component 
clusters was quantified using the index I

q
, which ranges from 0 to 

1 and reflects the difference between intra-cluster and extra-cluster 
similarity (Himberg et al., 2004). Aggregate SMs were estimated 
as the centrotypes of component clusters to reduce sensitivity to 
initial algorithm parameters. Subject-specific SMs and TCs were 
estimated using the recently developed GICA3 back-reconstruction 
method based on PCA compression and projection (Calhoun et al., 
2001, 2002b; Erhardt et al., 2010). There are desirable properties in 
GICA3 not available in other methods, including that the aggregate 
SM is the sum of the subject-specific SMs, analogous to a random 
effects model where the subject-specific effects are zero-mean dis-
tributed deviations from the group mean effect. Compared with 
dual regression, a least-squares alternative to back-reconstruction 
(Filippini et al., 2009), evidence suggests that noise-free PCA with 
noise-free ICA using GICA3 provides more robust results with a 
more intuitive and natural interpretation (Erhardt et al., 2010).

SPM5, wherein the above steps are integrated into a unified model 
(Ashburner and Friston, 2005). Unmodulated gray matter images, 
estimating local GMC were then smoothed using a Gaussian kernel 
with a FWHM of 10 mm and resliced to 3 mm × 3 mm × 3 mm to 
match the functional image dimensions. Our choice of unmodu-
lated rather than modulated images is based on a previous study 
showing that modulated images confer greater inter-subject vari-
ability and thus reduced sensitivity to detect differences between 
groups (see Figure 2 of Meda et al., 2008). For the analyses pre-
sented here, modulated data, i.e., gray matter volume (GMV), 

2http://icatb.sourceforge.net/groupica.htm
3http://www.cis.hut.fi/projects/ica/icasso

FIGuRe 1 | Schematic of the analysis pipeline. Boxes on the left indicate 
general steps potentially applicable to a variety of data and analysis types; 
boxes on the right indicate particular choices made for the data and analysis 
presented here. See Section 2 for details and abbreviations.
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on the response matrices as a whole (Figure 1, step 4). Analogous to 
a standard ANOVA F-test with subsequent pairwise univariate con-
trasts, our strategy performs backward selection by testing whether 
each predictor in our model explains variability in the multivariate 
response using a multivariate analysis of covariance (MANCOVA), 
and for the reduced model of significant predictors proceeds to 
perform univariate tests corrected for multiple comparisons.

2.6.2 Design matrix
The design matrix, D, includes gender (coded as one for female 
and zero for male) and age as covariates of interest, as well as a 
gender by age interaction. In addition, we include three nuisance 
predictors related to motion and spatial normalization. Although 
spatial ICA successfully identifies motion-related sources which are 
removed from analysis (McKeown et al., 2003; Kochiyama et al., 
2005), residual motion-related variance may also be present in RSNs. 
Thus we incorporate motion covariates, defined as the average scan-
to-scan rotation and translation from INRIalign motion estimates, 
to improve our evaluation of age and gender effects. Similarly, we 
include a measure of spatial normalization accuracy, defined as the 
Spearman correlation between the warped T2*-weighted image and 
the EPI template. We apply normalizing transformations to all con-
tinuous variables to improve symmetry and reduce disproportionate 
influence (leverage) of outlying values on the model fit. Age, rota-
tion, and translation are log-transformed, while spatial correlation is 
Fisher-transformed. The distributions of these variables and effects 
of transformation are displayed in Figure 2.

In general, covariates of interest were not strongly associated 
with nuisance predictors. No significant correlations were observed 
between (transformed) age and translation (r = −0.02; p > 0.69), rota-
tion (r = −0.04; p > 0.27), or spatial normalization (r = 0.01; p > 0.80). 
Genders did not show a difference in translation (t

601
 = 1.25; p > 0.20) 

or rotation (t
601

 = 1.22; p > 0.20), but showed a slight difference in 
spatial normalization (t

601
 = 2.53; p < 0.01), with females having higher 

correlations to the EPI template than males. Accurate estimation of 
model coefficients is unlikely to be affected by the relatively low cor-
relation between these columns in the design matrix (r = 0.10).

In follow-up analyses, we also considered GMC (averaged over 
each component region) as a predictor variable. However, because 
GMC and age were highly negatively correlated over all regions 
(r ≈ −0.7, Figure A2A), we used a modified approach to disam-
biguate the predictive power of these covariates (see Appendix C) 
and did not include GMC in our standard design matrix.

2.6.3 Response variables
For each of i = 1, …, M subjects, we have c = 1, …, C

1
 power spectra 

(P
ic
), c = 1, …, C

1
 SMs (S

ic
), and a single vector of FNC correlations 

(K
i
). Each of these response variables is modeled separately. Prior 

to modeling, response variables are transformed and dimension-
reduced, as simulations suggest that these steps optimize model 
selection (see Appendix D and Figure A3). Spectra are element-
wise log-transformed, which is useful because it normalizes the 
highly skewed power distribution and facilitates dimension esti-
mation with minimum description length (MDL) in the next step. 
Similarly, FNC correlations are Fisher-transformed [z = atanh(k)]. 
Response matrices are then formed by concatenation of the subject 
response vectors:  P P Pc c Mc= [ og( ), , log( )] ,l 1

T T T   S S Sc c Mc= [ , , ] ,1
T T T  

and  K K K=[atanh( ) atanh ]1
T T T, , ( ) .M

2.5 Feature IdentIFIcatIon
2.5.1 RSN selection
We identified a subset of C

1
 components considered to be RSNs (as 

opposed to physiological artifacts) by inspecting the aggregate SMs 
and average power spectra (see below; Figure 1, step 3). Four viewers 
rated the components from 0 (definite artifact) to 1 (certain RSN) 
based on expectations that RSNs should exhibit peak activations in 
gray matter, low spatial overlap with known vascular, ventricular, 
motion, and susceptibility artifacts, and TCs dominated by low fre-
quency fluctuations (Cordes et al., 2000). To facilitate evaluation, 
spectra were characterized with two metrics used previously to clas-
sify components (Robinson et al., 2009): dynamic range, the differ-
ence between the peak power and minimum power at frequencies 
to the right of the peak, and low frequency to high frequency power 
ratio, the ratio of the integral of spectral power below 0.10 Hz to the 
integral of power between 0.15 and 0.25 Hz (Figure 3). Tallied votes 
from the four raters were used to separate components into three 
broad classes: artifact (score equal to zero), mixed (score between zero 
and three), and RSN (score of three or greater and no votes equal to 
zero). This classification scheme constitutes somewhat conservative 
selection criteria for RSNs, though we feel it is appropriate given our 
larger goal of discovering associations with gender and age.

2.5.2 Outcome measures
For the set of selected RSNs, we considered three outcome vari-
ables: (1) component power spectra, (2) component SMs, and (3) 
between component connectivity (FNC).

Spectra were estimated on the detrended subject-specific TCs 
(involving removal of the mean, slope, and period p and 2p sines 
and cosines over each TC) using the multi-taper approach as imple-
mented in Chronux4, with the time-bandwidth product set to 3 and 
the number of tapers set to 5 (Mitra and Bokil, 2008).

Component SMs were thresholded to focus our analysis on the 
subset of voxels most representative of each network. Thresholding 
was based on the distribution of voxelwise t-statistics to identify 
voxels with strong and consistent activation across subjects, as 
explained in Appendix B (Figure A1). From this point forward, 
descriptions of component SMs refer to the thresholded maps, 
which include regions most associated with component TCs.

Functional network connectivity was estimated as the Pearson’s 
correlation coefficient between pairs of TCs (Jafri et al., 2008). 
Subject-specific TCs were detrended and despiked using 3dDespike5, 
then filtered using a fifth-order Butterworth low-pass filter with a 
high frequency cutoff of 0.15 Hz. Pairwise correlations were com-
puted between RSN TCs, resulting in a symmetric C

1
 × C

1
 correla-

tion matrix for each subject. For all FNC analyses, correlations were 
transformed to z-scores using Fisher’s transformation, z = atanh(k), 
where k is the correlation between two component TCs.

2.6 statIstIcal analysIs
2.6.1 Overview
Our primary aim is to develop a statistical approach optimized for 
the large dimensions of the three ICA-derived outcome measures. We 
propose a multivariate model selection strategy to reduce the total 
number of statistical tests performed and facilitate testing predictors 

4http://chronux.org 
5http://afni.nimh.nih.gov/afni
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FIGuRe 2 | Distributions of continuous covariates of interest (A) and 
nuisance predictors (B). Distributions of covariates are skewed (light gray, left 
panels) so are transformed to have more symmetric distributions (dark gray, 
right panels). This reduces disproportionate influence of more extreme 
observations on the MANCOVA and univariate model fits.

Because of the large number of columns of each response matrix, 
and because of autoregressive correlation structure between col-
umns, we perform a PCA dimension reduction on each matrix. For 
dimension reduction, we use MDL to estimate the “true” number 
of dimensions, u. Let Pc

∗ be the dimension-reduced matrix of power 
spectra, keeping the first u PCs, with Sc

∗ and K* defined similarly. 
Over the C

1
 components, spectra with 129 frequency bins were 

reduced to a range of 25–27 dimensions. SMs with 2000–6000 vox-
els were reduced to 10–25 dimensions, and the FNC matrix with 
378 pairwise correlations was reduced to 31 dimensions.

2.6.4 Backward selection
In this section, we describe model selection in terms of the spec-
tra; the procedure is identical for SM and FNC response matrices. 
For each of the C

1
 components, the MANCOVA model predicting 

 spectral power is P DB E,c
∗ = +  where Pc

∗ is the M × u response matrix, 
D is the design matrix, B is the matrix of regression coefficients, 
and E is the matrix of errors. Backward selection is implemented 
in mStepwise from the MANCOVAN toolbox6. Each step performs 
an F-test using the Wilks’ Lambda likelihood ratio test statistic 
(Christensen, 2001) comparing the current full model with each 
reduced model, defined by removing one column of the current 
D and the associated interactions, if present. The F-test evaluates 
whether the associated row(s) of B are simultaneously equal to zero. 
When all reduced models have been assessed, the term associated 
with the least significant reduced model (largest p-value) is removed 
from the design matrix, and this reduced model becomes our full 
model in the next iteration. The final reduced model, D

r
, has all 

terms not associated with higher-order interactions significant at 
a = 0.01. Note that reduced models are independently selected for 
each response matrix, i.e., Pc

∗ and Sc
∗, for c = 1, …, C

1
, and K*.

There are criticisms of stepwise selection methods, including 
that redundant (or correlated) predictors can adversely affect model 
selection and that resulting models have an inflated risk of cap-
turing chance features of the data (Mantel, 1970; Henderson and 
Velleman, 1981; Judd et al., 1989; Derksen and Keselman, 1992). 
We minimize the potential negative impact a stepwise procedure 
can have on a resulting model by carefully considering a small full 
model (for example, not blindly including all pairwise interactions 
or higher-order terms), by performing only backward selection 
for the fewest model comparisons, and by not including highly 
correlated predictors of interest (see Appendix C and Figure A2). 
Simulations evaluating the performance of backward selection on 
spectra-like data show that it typically identifies the correct model 
(see Appendix D and Figure A3) suggesting that backward selec-
tion of a well-considered full model is an effective heuristic for 
model selection.

2.6.5 Univariate tests
At last, we wish to discover which spectral bins, SM voxels, or FNC 
correlations are associated with gender and age. Given the reduced 
model terms, univariate models are fit to the original (not dimen-
sion-reduced) response data,  



P S Kc c, , , , ,c C= 1 1 and , to test the 
association with gender and age (Figure 1, step 5). Associations 
are visualized by plotting the log of the p-value with the sign of 
the associated t-statistic, −sign(t) log

10
(p), which provides infor-

mation on both the directionally and statistical strength of the 
result. Univariate tests were corrected for multiple comparisons 
at an a = 0.01 significance level using false discovery rate (FDR; 
Genovese et al., 2002). We calculate partial correlation coefficients 
to measure the strength of the linear relationship between two 
variables [e.g., log(power) and log(age)] after adjusting for other 
predictors (the remaining regressors in the model). This is calcu-
lated as the correlation between the residualized variables, obtained 
by fitting models between the remaining predictors and each of the 
variables as response vectors (Christensen, 1996). For visualization, 
scatter plots display the response adjusted for nuisance predictors, 
where the fitted nuisance terms of the model are subtracted from 
the response vector.

6http://www.mathworks.com/matlabcentral/fileexchange/27014-mancovan
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component focused at the temporo-parietal junction (IC 71) and 
overlapping the alerting system (Fan et al., 2005), and an anterior 
cingulate and insular network (IC 55) observed to activate dur-
ing demanding tasks and conflict processing (Ridderinkhof et al., 
2004; Klein et al., 2007; Eichele et al., 2008). Finally, we observe 
a number of frontal networks (FRONT; ICs 42, 20, 47, and 49) 
known to mediate executive as well as memory and language func-
tions (Koechlin et al., 2003; Koechlin and Summerfield, 2007). 
Consistent with previous findings (Krienen and Buckner, 2009), 
we observe coactivation between medial prefrontal cortex and the 
contralateral cerebellum (IC 49). We note that a similar fronto-
cerebellar network was observed as the bilateral homologue of IC 
49, however this component (IC 18) was not classified as an RSN 
due to contamination with motion.

Functional connectivity between RSNs is presented in 
Figure 4B. Correlations between component TCs reveal pat-
terns of connectivity highly consistent with known functional 
relationships. For example, clusters of positive correlations cor-
respond to greater connectivity within functional domains, and 
negative correlations between DMN components and sensory-
related networks reflect the natural opposition of these systems 
as attention drifts between external and internal mental states 
(Buckner et al., 2008).

3 results
We performed a 75-component GICA using resting-state fMRI 
data from 603 healthy participants. Demographic information for 
these subjects is provided in Table 1. Each of the 75-components 
had a cluster quality index greater than 0.8, indicating a highly 
stable ICA decomposition. Based on visual inspection of SMs and 
power spectra, we identified 35 components as ventricular, vas-
cular, susceptibility or motion-related artifacts, 28 components 
as RSNs, and 12 components as mixed, representing a mixture 
of RSNs and artifactual sources (see Figure 3 and Section 2 for 
details). The set of mixed components is composed of networks 
with activation in subcortical regions (e.g., thalamus and caudate) 
that extends into neighboring ventricles, cerebellar components 
showing spatial overlap with sinuses, and components at frontal 
and occipital poles contaminated by motion. To reduce the likeli-
hood of spurious results, only components classified as RSNs are 
considered further.

3.1 restIng-state networks
Spatial maps of the 28 selected RSNs are shown in Figure 4A. 
Coordinates of their peak activations are provided in Table 2. The 
observed networks are similar to those identified previously with 
low model order ICA (roughly 20 components; Beckmann et al., 
2005; Damoiseaux et al., 2006; Calhoun et al., 2008a; Smith et al., 
2009) and nearly identical to those identified using high model 
order (roughly 70 components; Kiviniemi et al., 2009; Smith et al., 
2009; Abou-Elseoud et al., 2010). For this reason, we describe the 
RSNs only briefly here, and provide citations to more comprehen-
sive references.

Resting-state networks are grouped by their anatomical and 
functional properties. The BG are represented by a single com-
ponent (IC 21) with activation focused in the putamen and pal-
lidum (Robinson et al., 2009; Ystad et al., 2010). IC 17 forms a 
rather prototypical representation of the large parts of the auditory 
system (AUD), including bilateral activation of the superior tem-
poral gyrus, superior temporal sulcus, and middle temporal gyrus 
(Seifritz et al., 2002; Specht and Reul, 2003). Motor and somato-
sensory functions (MOT) are captured by six components (ICs 7, 
23, 24, 38, 56, and 29) situated in the vicinity of the central sulcus. 
Similar to previous studies (Krienen and Buckner, 2009; Abou-
Elseoud et al., 2010), we find corresponding cerebellar coactivation 
in bilateral and lateralized networks. The visual system (VIS) is also 
represented by six components (ICs 46, 64, 67, 48, 39, and 59) in 
good agreement with the anatomical and functional delineations 
of occipital cortex (Grill-Spector and Malach, 2004). The DMN 
is captured in four components, separating the full map reported 
initially by Raichle et al. (2001) along the anterior-posterior 
and inferior-superior axes (Buckner et al., 2008; Harrison et al., 
2008). We classify several RSNs known to be involved in direct-
ing and monitoring behavior as attentional networks (ATTN). 
These include lateralized fronto-parietal networks (IC 34 and 60) 
similar to the ventral attention network (Corbetta and Shulman, 
2002; Vincent et al., 2008), a parietal and frontal-eye field network 
(IC 52) reminiscent of the dorsal attention network (Corbetta 
and Shulman, 2002), a component centered in the central and 
 anterior precuneus (IC 72) which is implicated in directing atten-
tion (Cavanna and Trimble, 2006; Margulies et al., 2009), a bilateral 

FIGuRe 3 | Spectral characteristics of component TCs. (A) Average power 
spectrum of independent component (IC) 52 illustrating the features used to 
compute dynamic range and low frequency (LF) to high frequency (HF) power 
ratio. (B) Scatter plot of LF to HF power ratio versus dynamic range for all 
components. Along with spectral characteristics, SMs were used to categorize 
components as RSNs (green), artifacts (red) or mixture of the two (yellow).
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FIGuRe 4 | Functional connectivity within and between RSNs. 
(A) SMs of the 28 components identified as RSNs. SMs are plotted as 
t-statistics, thresholded at tc > mc + 4sc (see Appendix B), and are displayed 
at the three most informative slices. RSNs are divided into groups based on 
their anatomical and functional properties and include basal ganglia (BG), 

auditory (AUD), sensorimotor (MOT), visual (VIS), default-mode (DMN), 
attentional (ATTN), and frontal (FRONT) networks. (B) Functional network 
connectivity matrix. Pairwise correlations between RSN TCs were Fisher 
z-transformed and averaged across subjects, then inverse z-transformed 
for display.

3.2 MultIvarIate results
We applied a multivariate model selection strategy to determine 
the effects of age and gender on RSN power spectra, SMs, and 
FNC while accounting for variance associated with nuisance 

regressors. Results from the multivariate analysis are displayed in 
Figure 5, which provides the significance of model terms gender, 
log(age), their interaction, and several nuisance parameters related 
to motion and spatial normalization in predicting response vari-
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(Continued)

 BA V

 tmax Coordinate

BASAl GANGlIA NeTwoRK

IC 21 (0.98)

 R putamen  1454 108.7 25, −1, 0

 L putamen  1407 108.7 −25, −3, 0

AuDIToRy NeTwoRK

IC 17 (0.98)

 L superior temporal gyrus 22 2374 107.0 −51, −18, 7

 R superior temporal gyrus 22 2257 108.3 52, −15, 5

 R middle cingulate cortex 24 165 42.8 2, −4, 49

SeNSoRIMoToR NeTwoRKS

IC 07 (0.98)

 L precentral gyrus 6 1814 81.0 −52, −9, 31

 R precentral gyrus 6 1694 78.3 52, −7, 29

 L cerebellum (declive)  116 45.5 −16, −63, −22

 R cerebellum (declive)  84 40.9 17, −63, −21

IC 23 (0.98)

 L precentral gyrus 4 3623 86.8 −35, −27, 54

 R cerebellum  342 40.3 24, −52, −23

 R postcentral gyrus  252 35.6 44, −28, 56

 R inferior frontal gyrus 45 79 23.7 54, 29, 0

 R precuneus  76 26.7 8, −62, 32

IC 24 (0.98)

 R precentral gyrus 4 3882 83.3 37, −25, 53

 R middle temporal gyrus  165 36.1 50, −64, −2

 L cerebellum  99 26.1 −20, −53, −24

 L middle temporal gyrus  63 23.5 −61, −28, −8

 L middle temporal gyrus  44 24.5 −51, −70, 4

IC 29 (0.98)

 Bi paracentral lobule 6 3199 100.9 1, −28, 61

 L insula 13 44 40.1 −35, −24, 15

IC 38 (0.98)

 L supramarginal gyrus 2 1377 110.5 −55, −34, 37

 R supramarginal gyrus 2 963 96.2 56, −32, 40

 L inferior frontal gyrus 44 207 58.6 −48, 5, 18

 Bi middle cingulate cortex 24 189 51.5 1, 7, 38

 L middle temporal gyrus 37 128 54.4 −57, −60, −2

IC 56 (0.97)

 Bi supplementary motor area 6 3770 122.7 1, −3, 61

 R superior temporal gyrus 22 193 48.2 50, 8, 4

 L inferior frontal gyrus 44 149 42.7 −53, 5, 14

 R inferior parietal lobule 40 61 41.1 58, −29, 24

 L inferior parietal lobule 40 26 35.9 −58, −32, 23

VISuAl NeTwoRKS

IC 46 (0.96)

 Bi lingual gyrus 17, 18 3654 87.3 1, −87, −2

 Bi middle cingulate cortex 31 230 34.1 1, −45, 32

IC 64 (0.90)

 Bi calcarine gyrus 17, 18 3694 117.9 1, −71, 13

IC 67 (0.89)

 R lingual gyrus 18 1740 97.7 17, −55, −9

 L lingual gyrus 18 1820 94.8 −15, −56, −8

IC 48 (0.96)

 R lingual gyrus 18, 19 1367 86.5      29, −76, −8

 L lingual gyrus 18, 19 1324 83.6   −29, −76, −7

 L inferior parietal lobule 40 43 41.0   −49, −55, 42

IC 39 (0.97)

 R inferior temporal gyrus 37 1800 91.9 48, −63, −8

 L inferior temporal gyrus 37 667 80.7 −47, −63, −14

 R inferior parietal lobule 40 33 46.2 42, −39, 50

IC 59 (0.92)

 Bi cuneus 19 3079 113.7 2, −84, 28

DeFAulT-MoDe NeTwoRKS

IC 50 (0.96)

 Bi precuneus 7 2902 102.5 1, −64, 43

IC 53 (0.95)

 Bi posterior cingulate cortex 23 2387 139.6 0, −52, 22

 L angular gyrus 39 332 71.5 −43, −69, 33

 R angular gyrus 39 194 59.8 47, −66, 32

 Bi medial frontal gyrus 10 61 50.7 −1, 45, −9

IC 25 (0.98)

 Bi anterior cingulate cortex 32 3126 114.5 0, 41, 4

 Bi middle cingulate cortex 31 358 53.6 1, −30, 41

 R inferior frontal gyrus  93 48.2 32, 22, −15

 R middle frontal gyrus 46 63 37.8 40, 43, 8

IC 68 (0.85)

 L middle frontal gyrus 8 1490 95.2 −26, 26, 42

 R middle frontal gyrus 8 1210 87.9 26, 33, 41

 Bi middle cingulate cortex 32 450 67.6 0, 21, 40

ATTeNTIoNAl NeTwoRKS

IC 34 (0.98)

 L inferior parietal lobule 40 1383 124.6 −47, −57, 39

 L middle frontal gyrus 8 1000 76.3 −27, 24, 49

 R inferior parietal lobule 40 482 75.3 49, −54, 39

 L precuneus 31 373 63.4 −6, −52, 37

 L middle temporal gyrus 21 233 75.3 −62, −37, −12

 R superior temporal gyrus 22 124 44.1 56, 0, 2

IC 60 (0.93)

 R inferior parietal lobule 40 2480 120.8 42, −56, 42

 R middle frontal gyrus 8 2137 87.3 34, 24, 44

 L superior temporal gyrus 22 318 46.9 −61, −2, 0

 R middle temporal gyrus 21 249 58.7 64, −39, −11

 L inferior parietal lobule 40 163 45.7 −45, −53, 45

IC 52 (0.96)

 L angular gyrus 39 2841 100.6 −33, −64, 31

 L inferior frontal gyrus 45 295 54.2 −43, 24, 21

 R superior parietal lobule 7 283 57.8 27, −65, 44

 L middle frontal gyrus 6 119 52.3 −25, 1, 60

 L superior temporal gyrus 22 24 40.4 −50, −5, −4

IC 72 (0.93)

 Bi precuneus 7 3283 105.2 0, −53, 61

 L superior frontal gyrus 9 111 35.8 −32, 38, 39

Table 2 | Peak activations of RSN SMs. The quality index (Iq) associated with each RSN is listed in parentheses adjacent to the component number. BA, 

Brodmann area; V

, number of voxels in each cluster; tmax, maximum t-statistic in each cluster; Coordinate, coordinate (in mm) of tmax in MNI space, following 

LPI convention.

 BA V

 tmax Coordinate
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3.3 unIvarIate results
The strength of a multivariate selection process is its ability to iden-
tify which covariates are important when each separate response 
vector (power spectrum, SM, or FNC matrix) is considered as a 
whole. The multivariate results of dimension-reduced responses, 
however, are difficult to interpret. Thus, we performed univariate 
tests on each of the covariates of interest retained in the final model 
to understand the nature and extent of the relationship between 
these variables and RSN properties.

3.3.1 Power spectra
Univariate results summarizing the effects of age on RSN power 
spectra are shown in Figure 6A. We observe a decrease in low fre-
quency power with age across all RSNs (Figure 6A1). Significant 
effects are found primarily between 0 and 0.15 Hz, consistent with 
the frequency range over which synchronous fluctuations between 
brain regions are detected (Cordes et al., 2000; Sun et al., 2004). Age-
related reductions in spectral power are slightly more significant in 
attentional and DMN components, however the rate of decrease 
is fairly consistent over networks (Figure 6A2), suggesting that a 
single process underlies these somewhat global trends.

Given the profound structural changes that occur with age 
(Good et al., 2001; Sowell et al., 2003; Østby et al., 2009; Tamnes 
et al., 2010), we performed additional analyses to address the extent 
to which decreases in low frequency power could be explained by 
decreases in GMC (see Appendix C). These analyses demonstrated 
that age has more explanatory power over and above that of GMC 
than GMC has over and above that of age (Figure A2B), meaning 
that age is a better predictor of spectral power than GMC. While 
this could be due to the error associated with measuring and com-
puting local GMC, it may also imply that age includes informa-
tion related not only to gray matter but also other factors, such as 
vascular compliance or degree of neural activation, that are related 
to differences in RSN spectral power.

Information regarding the effects of gender on spectral power 
is displayed in Figure 6B. Gender differences are found in only a 
few sensorimotor and attention-related RSNs and indicate slightly 
greater spectral power in males than females at very low frequencies 
(<0.05 Hz). Effects of gender are considerably smaller than those 
observed for age, both in terms of the test statistics at individual 
frequency bins and the fraction of the spectrum showing significant 
effects (Figures 6B1,B2).

Typical examples of the relationships between spectral power 
and the covariates of interest are shown in the rightmost panels of 
Figure 6. IC 53, representing the “core” of the posterior DMN, shows 
no difference with regard to gender (Figure 6A3, as expected from 
the multivariate results in Figure 5), and a fairly linear relationship 
between log(age) and log(power; Figure 6A4). The partial corre-
lation coefficient, r

p
 = −0.38, is related to the variance accounted 

for by log(age) that is not accounted for by other regressors and 
indicates modest explanatory power. IC 72, composed largely of the 
central and anterior precuneus, shows a similar relationship with 
age and an additional gender effect (Figures 6B3,B4). Though the 
gender difference is statistically significant, distributions of power 
for males and females are highly overlapping and the gender term 
accounts for a relatively small portion of the response variance 
(Figure 6B4, right panel, r

p
 = −0.19). For both IC 53 and IC 72, close 

 R middle frontal gyrus 6 85 32.4 26, 0, 60

 L middle frontal gyrus 6 80 32.4 −23, 0, 63

 R superior frontal gyrus 9 53 30.3 33, 39, 35

IC 71 (0.88)

 R superior temporal gyrus 22 1775 95.0 57, −44, 11

 L superior temporal gyrus 22 1337 89.0 −56, −48, 18

 Bi precuneus 7 123 51.0 1, −51, 51

 R precentral gyrus 6 44 50.0 51, 2, 50

IC 55 (0.95)    

 Bi cingulate gyrus 32 1210 92.8 0, 22, 45

 L insula 47 670 103.1 −46, 15, −5

 R insula 47 331 80.8 45, 18, −6

 L middle frontal gyrus 10 217 65.4 −32, 53, 21

FRoNTAl NeTwoRKS

IC 42 (0.98)

 R inferior frontal gyrus 45 3371 105.7 50, 23, 2

 L insula 44 132 40.0 −41, 10, −2

 L inferior frontal gyrus 45 70 35.3 −42, 39, 5

 R supramarginal gyrus 2 65 35.5 58, −36, 36

 R middle temporal gyrus  56 33.0 63, −45, 0

 L inferior parietal lobule 40 37 31.9 −58, −40, 49

 R caudate nucleus  31 33.5 12, 8, 5

IC 20 (0.98)

 L inferior frontal gyrus 44, 45 1781 103.2 −55, 22, 7

 R inferior frontal gyrus 45 252 50.7 56, 26, 4

IC 47 (0.95)

 L middle frontal gyrus 9 1020 110.8 −48, 17, 29

 R middle frontal gyrus 9, 46 885 97.1 49, 22, 25

 Bi superior medial gyrus 8 259 64.1 −1, 32, 46

 R superior parietal lobule 7 38 49.3 33, −60, 49

IC 49 (0.97)

 R middle frontal gyrus 10 1661 84.3 31, 55, 7

 L pyramis  144 42.2 −39, −66, −44

 L middle frontal gyrus 10 64 33.4 −31, 52, 8

Table 2 | Continued

 BA V

 tmax Coordinate

ables for all RSNs. Darker colors correspond to more significant 
effects, while white squares indicate terms that were not retained 
in the backward selection process (a = 0.01). Gender was found 
to be mildly significant for a few of the spectra and slightly more 
significant for some of the SMs. Age was found to be highly signifi-
cant in all models. Interestingly, the interaction term between age 
and gender was never retained in the backward selection process, 
suggesting that the effects of age are somewhat equivalent between 
genders for the age range and response variables investigated here. 
It should also be noted that either translation or rotation were 
retained in most models, meaning that these terms consistently 
accounted for significant variability in the outcome measures. 
This indicates considerable motion contamination of RSN SMs 
and, particularly, TCs, and strongly supports the incorporation 
of motion-related regressors to improve the estimates related to 
the covariates of interest.
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are shown in Figures 7B3,B4, indicating slightly greater SM inten-
sity in females than in males centered within the bilateral globus 
pallidus (IC 21) and left IFG (IC 20). As before, the distributions 
of intensity largely overlap between genders and the partial cor-
relation coefficients (r

p
 = 0.22 and r

p
 = 0.31 for IC 21 and IC 20, 

respectively) suggest relatively low explanatory power.

3.3.3 Functional network connectivity
Figure 8 shows differences in FNC related to age and gender. 
The majority of between-network correlations decrease with 
age, and significant reductions appear to largely involve motor 
and attention networks (Figure 8A1). In particular, the sup-
plementary motor area (IC 56) and precuneus (IC 72), two of 
the brain’s most interconnected regions (Hagmann et al., 2008; 
Gong et al., 2009), exhibit decreased correlations with a large 
number of other RSNs as a function of age. Gender-related dif-
ferences in FNC are less significant than those observed for age, 
but show a consistent pattern of slightly greater correlations in 
males than females for connections involving motor networks 
(Figure 8B1). This is true for correlations between  components 
within the motor system, for example IC 24 (right sensorimotor 
cortex) and IC 7 (bilateral precentral gyri), and between motor 
RSN and other sensory-related networks, for example IC 24 and 
IC 17 (auditory cortex). Examples of age and gender effects on 
FNC correlations are displayed in Figures 8A2,B2. Correlation 
magnitude between IC 38 (bilateral postcentral gyri) and IC 
56 (supplementary motor area) decreases very slightly with age 
(r

p
 = −0.20), and shows no difference with regard to gender 

(Figure 8A2). Correlations between IC 24 (right sensorimotor 
cortex) and IC 72 (precuneus) reveal a similar trend with age 
(r

p
 = −0.19) and a very modest gender difference with males 

showing slightly stronger correlations than females (r
p
 = −0.15)

(Figure 8B2). These effects are noticeably weaker than those 
found in spectra and SMs (see Figures 6 and 7), suggesting that 
functional connectivity between regions may be less affected by 
age and gender than connectivity within regions.

4 dIscussIon
In the present study, we used a high model order ICA decomposi-
tion of resting-state functional imaging data to delineate a set of 
RSNs on a very large sample (n = 603). We outlined a framework 

inspection of the scatter plots between log(age) and log(power) 
reveals that decreases in power do not begin until roughly 15 or 
16 years of age, with power staying approximately constant or pos-
sibly showing a slight increase between 12 and 15 years. This trend, 
which was observed in additional RSNs, suggests a more complex 
relationship between age and spectral power during development 
(see Section 4).

3.3.2 Spatial maps
The effects of age on SM intensities are summarized in Figure 7A. 
Significant age-related decreases were observed in all RSNs and 
extend across large areas of cortex. Decreases were particularly 
pronounced (with regard to significance and rate of change) 
in several motor networks, frontal regions, and the precuneus 
(Figures 7A1,A2). Increases in SM intensity with age were found 
in a few sensory-related components, however only the BG net-
work (IC 21) showed this effect in large clusters comprising a 
substantial portion of the component. Additional analyses inves-
tigating the contribution of GMC to the changes in SM intensities 
again suggested that age has more explanatory power than GMC 
(Figure A2C).

In Figure 7A, right panels, we show examples of regions with 
age-related decreases (IC 25, centered in anterior cingulate cortex) 
and increases (IC 21, putamen) in SM intensity. Note that both these 
regions also showed slight gender effects, seen in the different inter-
cepts of the regression lines for males and females. For IC 25, the 
relationship between log(age) and intensity (Figure 7A3) is approx-
imately linear and the partial correlation coefficient (r

p
 = −0.45) 

indicates moderate explanatory ability. For IC 21, the scatter plot 
(Figure 7A4) suggests a positive linear relationship between log(age) 
and intensity at younger ages (roughly 12–27 years) that flattens or 
even decreases after 30 years of age. This pattern again implies the 
presence of more complex relationships between age and functional 
connectivity that should be investigated in future studies.

Figure 7B describes differences in SMs with regard to gender. 
Similar to the results for power spectra, gender effects are weaker and 
more sparse than those observed for age. We find evidence of gender 
effects in both directions (i.e., males > females and males < females), 
however the majority of regions passing significance and those 
with the largest spatial extents show greater intensity in females 
(Figures 7B1,B2). Examples of the most pronounced gender effects 

FIGuRe 5 | Results from the reduced MANCoVA models, depicting the 
significance of covariates of interest (top) and nuisance predictors (bottom) 
for power spectra (left), SMs (middle), and the FNC matrix (right) in log10(p) 
units. White cells indicate terms that were removed from the full model during 

backward selection process. Note that the term labels refer to continuous 
covariates following normalizing transformations (e.g., log(age); see Figure 2). 
Also note that the range of log10(p) is limited by computational precision. In our 
analysis, epsilon is 2−52, which corresponds to a maximal −log10(p) value of 15.65.
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FIGuRe 6 | univariate test results showing the effects of age (A) and 
gender (B) on power spectra. Univariate tests were performed only on 
covariates of interest retained in the reduced MANCOVA model (Figure 5). 
Left panels (A1,B1) depict the significance and direction of age (A) and gender 
(B) terms as a function of frequency for each component, displayed as the 
−sign(t)log10(p). Dashed horizontal lines on the colorbar designate the 
FDR-corrected threshold (a = 0.01). Middle panels (A2,B2) show bar plots of 
the average b-values for age (A) and gender (B) terms. b-Values were 
averaged over frequency bands with effects of the same directionality where 
test statistics exceeded the FDR threshold. The color of the bar is proportional 
to the fraction of contributing frequency bins; the absence of a bar indicates 
that univariate tests were not performed or test statistics were not significant. 

Right panels show examples of components with a sole age effect (A, IC 53, 
posterior DMN) and both age and gender effects (B, IC 72, precuneus). Line 
plots of the power spectra (A3,B3) show the mean log(power) ± 1 SE for 
males (blue) and females (red). Horizontal bars on the frequency axis denote 
bands with significant effects for age (white bar, solid line) and gender (gray 
bar, dotted line), and correspond to the range over which log(power) was 
averaged in the scatter plots. Scatter plots (A4, B4) show the covariate of 
interest versus log(power) after adjusting for nuisance regressors and age (for 
gender effects). The model fit is shown by colored lines and squares for age 
and gender, respectively. We indicate the number of frequency bins 
contributing to the data displayed (b


) and the partial correlation coefficient (rp) 

between the covariate of interest and log(power).
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4.1 restIng-state networks
Similar to recent reports, we found that high model order ICA 
yielded extremely stable sources with sufficient spatial segregation 
of functional regions (Kiviniemi et al., 2009; Smith et al., 2009; 

to systematically analyze such high-dimensional datasets and esti-
mated the effects of age and gender on the connectivity properties 
of RSNs. We discuss the findings of each of these steps and their 
relevance to the current literature in turn.

FIGuRe 7 | univariate test results showing the effects age (A) and gender 
(B) on SMs, in a similar format to Figure 6. Left panels (A1,B1) show surface 
and volumetric maps depicting composite renderings of significant effects over 
all RSNs, displayed as the −sign(t)log10(p). Effects are considered significant if 
test statistics exceeded the FDR threshold (a = 0.01) with a cluster extent of at 
least 27 contiguous voxels. Middle panels (A2,B2) show bar plots of the average 
b-values for the age (A2) and gender (B2) terms. b-Values were averaged over 

significant clusters with effects of the same directionality and the color of the 
bar is proportional to the fraction of component voxels contributing to each 
effect. Right panels show examples of components with age effects (A3: IC 25, 
anterior DMN, and A4: IC 21, basal ganglia,) and gender effects (B3: IC 21, basal 
ganglia, and B4: IC 20, left IFG). Scatter plots show the effects for a single 
significant cluster (indicated by asterisks in the −sign(t) log10(p) maps), with the 

number of contributing voxels indicated on each plot (V

).

Frontiers in Systems Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 2 | 

Allen et al. A baseline for network comparisons

162

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
http://www.frontiersin.org/Systems_Neuroscience/


For the set of RSNs, we further characterized large-scale func-
tional connectivity by computing temporal correlations between 
networks. Our examination of a large sample of healthy subjects 
may provide the best estimate of FNC to date, and the structure of 
the correlation matrix identifies a number of interesting features (see 
Figure 4). As would be expected, there is strong clustering within 
functional domains (e.g., VIS, MOT, and DMN), and components 
within the DMN are anti-correlated with other systems. Note that 
negative correlations are observed without the application of global 
mean regression in preprocessing (Murphy et al., 2009; Fox et al., 
2009), supporting the interpretation that temporally anti-correlated 
networks subserve opposing functions (Fox et al., 2005; Fox and 
Raichle, 2007). We also observe that the precuneus (IC 72) exhibits 
heterogeneous functional connectivity with numerous components 
in motor, visual, and attentional systems. This is consistent with 
recent reports implicating the precuneus as a central core in the 
cortical anatomical network (Hagmann et al., 2008; Bullmore and 
Sporns, 2009; Gong et al., 2009; Margulies et al., 2009). Another 
notable feature is the distinction in connectivity between the left and 
right fronto-parietal networks (IC 34 and 60, respectively). The left 
network is positively correlated with the DMNs and anti-correlated 
with visual and motor networks. In contrast, the right fronto-pari-
etal network shows weak positive correlations with visual and motor 
components. Disparate behavior of these lateralized networks has 
been noted previously (Calhoun et al., 2008a; Smith et al., 2009) and 

Abou-Elseoud et al., 2010; Ystad et al., 2010). From 75 compo-
nents, we identified 28 RSNs whose peak activation clusters were 
confined to cortical gray matter that describe direct cortico-cortical 
axonal pathways, indirect polysynaptic connections, and com-
mon feed-forward projections among cortical, subcortical, and 
cerebellar structures. These components are highly reminiscent 
of those described in previous studies regardless of the method of 
 determination (e.g., spatial ICA, tensor ICA, or seed-based corre-
lation), suggesting that they are fundamental components of the 
human connectome (Damoiseaux et al., 2006; Kiviniemi et al., 2009; 
Smith et al., 2009; Abou-Elseoud et al., 2010; Van Dijk et al., 2010). 
An important limitation of the set of RSNs is their breadth. Due to 
contamination of putative RSNs and artifacts (see Figure 3), we lack 
“full coverage” of all brain regions. This is particularly problematic 
for areas neighboring known susceptibility artifacts (orbitofron-
tal cortex), motion edges (frontal/occipital poles), and ventricles 
(subcortical nuclei). Future analyses could employ preprocessing 
steps optimized for subcortical regions (e.g., masking areas not of 
interest, using a smaller Gaussian smoothing kernel) or potentially 
use higher model order to better separate artifactual sources. An 
alternative method to increase coverage is to be less conservative 
with regard to component selection. Though this is a reasonable 
approach for a primary analysis identifying and characterizing net-
works, our ultimate goal is a secondary association analysis thus we 
chose to err on the side of caution using highly selective criteria.

FIGuRe 8 | univariate test results showing the effects age (A) and gender 
(B) on FNC, in a similar format to Figure 6. Top panels depict the significance 
and direction of age (A1) and gender (B1) terms for each pairwise correlation, 
displayed as the −sign(t)log10(p). Dashed horizontal lines on the colorbar designate 

the FDR-corrected threshold (a = 0.01). Bottom panels show examples of age 
effects (A2, temporal correlation (k) between motor RSNs IC 38 and IC 56) and 
both age and gender effects (B2, between motor RSN IC 24 and precuneus RSN 
IC 72). FNC examples are highlighted in panels (A1,B1) by asterisks.
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corresponds well with task-based findings, which demonstrate that 
the ventral attentional system involved in stimulus-driven orienting 
is right-lateralized (Corbetta and Shulman, 2002; He et al., 2007; 
Vincent et al., 2008), whereas the left fronto-parietal network is 
more implicated in explicit memory retrieval (Iidaka et al., 2006). 
Overall, these findings suggest highly distinct functional roles for 
these networks in a variety of mental states.
4.2 age and gender eFFects
For our sample of healthy controls largely composed of adolescents 
and young adults, age accounted for 10–20% of the variance in 
all investigated properties of resting-state functional connectivity. 
With the exception of the BG (see below), age-related decreases 
were observed across all RSNs. These findings are consistent with 
previous studies focusing on DMN regions, though our exami-
nation of a large complement of RSNs suggests that age-related 
changes are most prominent in motor and attentional networks 
(Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; Esposito 
et al., 2008; Koch et al., 2009; Biswal et al., 2010). A near-ubiquitous 
decrease in functional connectivity across cortex may appear at 
odds with Biswal et al. (2010), who in a large multi-site investiga-
tion report both age-related increases and decreases in connectiv-
ity. However, it should be noted that the cortical areas showing 
increases with age also exhibited negative SM loadings, i.e., were 
anti-correlated with seed regions or the component TC (e.g., see 
their Figure 2). Therefore, age-related increases in Biswal et al. 
(2010) correspond to reductions in the magnitude of anti-corre-
lation, consistent with the notion that network activity decreases 
with age. In the current study, we confined analysis only to voxels 
with positive SM loadings, thus the directionality of age-related 
effects have an unambiguous interpretation.

In our analysis only the bilateral putamen (IC 21) showed 
pronounced age-related increases in functional connectivity (see 
Figure 7A). The etiology of this distinction is unclear and certainly 
warrants future in-depth investigation. It is interesting to note that 
gray matter volumes in subcortical regions show very different age-
related trajectories from those found in cortex (Østby et al., 2009), 
suggesting that were they evaluated, additional BG and thalamic 
components would show changes with age that are distinct from 
the cortical trends. As the methodology to delineate these structures 
improves, so can investigations into the development of subcorti-
cal networks and cortical-subcortical interactions (Robinson et al., 
2009; Fair et al., 2010; Ystad et al., 2010).

The specific relationship between age and measures of func-
tional connectivity warrants special attention. As mentioned in the 
Section 3, inspection of the scatter plots for spectra and SMs sug-
gest that reductions with age in cortical RSNs do not typically start 
until mid to late adolescence. Furthermore, the relatively linear 
relationships between log(age) and connectivity measures follow-
ing adolescence indicate more rapid changes in young adulthood 
than in late adulthood. These trends are somewhat reminiscent of 
developmental changes in cortical gray matter (Good et al., 2001; 
Sowell et al., 2003; Østby et al., 2009; Tamnes et al., 2010), consist-
ent with the notion that structural substrates underlie function 
(Hagmann et al., 2008). However, as  indicated in previous studies 
and our own analysis (see Figure A2), alterations in functional 
connectivity  cannot be explained by differences in gray matter 
alone (Damoiseaux et al., 2008; Glahn et al., 2010), and may be 
better predicted when including changes in white matter tracts 

and possible interactions. Future studies should examine changes 
in functional connectivity while considering the underlying struc-
ture and be designed specifically to probe developmental and 
transitional periods. Regression models might also incorporate 
higher-order age terms to capture curvature and non-monotonic 
trends which have been found previously (Szaflarski et al., 2006; 
Kelly et al., 2009; Stevens et al., 2009). It is also important to note 
that cross-sectional analyses, such as those used here, can reduce 
sensitivity to estimate trajectories and may increase bias; future 
studies should consider a longitudinal approach to alleviate these 
issues (Kraemer et al., 2000).

An important consideration for interpreting age-related effects 
in functional connectivity measures, particularly power spectra, 
is the influence of non-neural factors. Changes in the BOLD sig-
nal are a function of complex metabolic and vascular reactions 
and are only indirectly related to changes in resting-state neural 
activity (Schölvinck et al., 2010). The magnitude of spontaneous 
 fluctuations and stimulus-evoked responses is affected by a mul-
titude of physiological variables (e.g., baseline levels of blood flow, 
vascular compliance, cardiac and respiratory rhythms) that are 
known to change with age and therefore preclude a full interpreta-
tion of age-related findings (D’Esposito et al., 2003; Birn et al., 2006, 
2008; Ances et al., 2009). In our analysis, the influence of non-neural 
factors may be mitigated by the use of an ICA framework, which 
appears to partially separate physiological noise sources at higher 
model orders (Birn et al., 2008; Beall and Lowe, 2010; Starck et al., 
2010), however there is almost certainly some remaining contribu-
tion of non-neural variables to the age-related trends in functional 
connectivity measures. In an effort to assess the magnitude of this 
contribution, we performed additional statistical analyses on the 
power spectra and SMs of vascular, ventricular and white matter 
regions, as detailed in Appendix E. As expected, age was found to be 
a significant predictor for nearly all vascular compartments and tis-
sue types, but based on the size of the observed effects these results 
suggest at least a partial neural origin for age-related findings in 
power spectra and a likely neural origin in SMs. Note, however, that 
without direct measurements or the concurrent use of additional 
non-invasive techniques such as EEG (Whitford et al., 2007), NIRS 
(Huppert et al., 2006), or calibrated-fMRI (Ances et al., 2009), it is 
generally not feasible to fully dissociate neural from confounding 
physiological factors. We further note that regardless of their etiol-
ogy, our study demonstrates robust age-related effects in functional 
connectivity measures that must be considered in future analyses, 
even when the age range across subjects is relatively narrow (e.g., 
20–30 years).

Compared to age, gender differences in functional connec-
tivity were smaller (accounting for between 5 and 15 percent of 
response variance) and confined to fewer areas. Despite relatively 
small effects, we note that the inclusion of gender and appro-
priate interaction terms in regression models may be critical for 
discovering and interpreting the effects of other covariates, par-
ticularly when investigating complex phenotypes such as general 
intelligence (Haier et al., 2005; Schmithorst and Holland, 2006, 
2007). Similar to previous studies, we found evidence for greater 
connectivity in females versus males within DMN regions (Bluhm 
et al., 2008; Biswal et al., 2010), though these effects were not nearly 
as pronounced as those in the left IFG or bilateral BG. Gender dif-
ferences in the left IFG (Broca’s area) are consistent with earlier 
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reports showing increased GMC in the same region for females 
(Good et al., 2001; Luders et al., 2005). Given the importance of 
the left IFG in various aspects of speech generation (for review 
see Bookheimer, 2002), the difference likely reflects gender dis-
tinctions in the use or organization of language networks at rest. 
It is possible that the observed increases in GMC and functional 
connectivity relate to a slight enhancement of language skills in 
adult females (Weiss et al., 2003), though the existence and extent 
of this gender difference is debated (Wallentin, 2009). Regardless, 
our results motivate further investigation into the relationship 
between verbal fluency and resting-state activity in language net-
works (Hampson et al., 2002, 2006). Gender differences in the 
BG centered at the pallidum appear to be a novel finding and it 
is not clear why this network might be more coherent in females. 
Sexual dimorphisms in the structural aspects of the BG are found 
throughout development (Good et al., 2001; Luders et al., 2009), 
and further examination of gender-specific function in these 
regions is warranted. Gender differences were also observed in 
FNC and spectral power within the motor and sensory systems, 
where males showed increases relative to females. A greater level 
of basal activity in motor networks, as well as greater coactivation 
between different networks, may be related to increased use and 
coordination between these systems, as suggested by recent studies 
of motor learning and functional connectivity (Albert et al., 2009; 
Xiong et al., 2009). Alternatively, this distinction may reflect an 
inherent gender difference in sensorimotor connectivity, possibly 
related to the enhancement of motor and visuospatial skills in 
males (Weiss et al., 2003; Hamilton, 2008).

4.3 statIstIcal aPProach
Investigations of resting-state functional connectivity provide an 
exciting and potentially rich look into intrinsic architecture of the 
human brain, however this approach brings with it some meth-
odological challenges that must be acknowledged. Unlike analysis 
of task-related data, which typically involves a limited number of 
predefined contrasts and is often constrained to regions of inter-
est, analysis of intrinsic connectivity presents an overwhelming 
number of possible comparisons to be made within and between 
regions. To avoid mass univariate testing with inherent multiple 
comparison correction problems, we propose a hierarchical frame-
work to focus analysis and effectively reduce the number of tests 
performed. At the initial level, we adopt a multivariate approach 
with backward selection on a carefully selected set of predictors 
which refines the model and limits the number of statistical tests 
performed. Using power spectra as an example, the full spectrum 
is PCA compressed over frequency bins and used as a single mul-
tivariate response for model selection. Only when relevant regres-
sors are retained (age and/or gender) are univariate regressions 
performed, saving many tests in the case of gender (see Figures 5 
and 6B1). Note that the use of ICA has also greatly refined the 
testing procedure by initially delineating relevant features: power 
spectra are evaluated for a relatively small number of select compo-
nents (here, C

1
 = 28), rather than the comparatively large number 

of voxels (here, V ≈ 67000) that might be tested in a seed-based 
coherence approach. Simulations indicate that the MANCOVA 
results are robust to false positives and that sensitivity is optimized 
by PCA reduction of response variables to the MDL estimate (see 

Figure A3). There are, of course, limitations to this method, chiefly 
that the effects of interest must be captured in the retained prin-
cipal components. Thus it is possible that age or gender-related 
differences in functional connectivity were not identified in the 
current analysis if the relevant features contributed a small fraction 
of variance to the response. To avoid this limitation, one could use 
alternative multivariate approaches such as discriminatory PCA 
(Caprihan et al., 2008) or coefficient-constrained ICA (Sui et al., 
2009) that “optimize” dimension reduction based on the desired 
contrast. Though such approaches can improve feature identifica-
tion and classification, we opt to use PCA on the response vectors 
independently of predictors to retain statistical tests and interpreta-
tions that are unbiased by an optimization procedure.

Regarding model selection, it is interesting to note that in most 
cases at least one of the motion-related nuisance regressors was 
retained as a predictor (see Figure 5). This indicates mild con-
tamination of motion-related variance in nearly all ICA outcome 
measures and suggests that covariates summarizing motion should 
generally be included in design matrices to improve estimates for 
predictors of interest. Ideally, one would include additional  nuisance 
regressors, such as average heart rate or variability in respiration 
depth, as these variables also contribute to variance in ICA, TCs, 
and SMs (Birn et al., 2008; Beall and Lowe, 2010; Starck et al., 2010). 
Though cardiac and respiratory measures were unfortunately not 
acquired for the group of subjects studied here, their inclusion 
would almost certainly improve estimation and inference of gender 
and age effects.

As a final note on the statistical approach described here, we 
comment on its broad applicability. The proposed method can 
be used to investigate the effects of numerous covariates on func-
tional connectivity, and we anticipate that it will enhance the ability 
to detect differences related to neuropsychiatric disorders while 
controlling for demographic and other factors. Perhaps more 
importantly, this method is easily applied to a variety of datasets 
where response variables have high dimensionality but show con-
siderable collinearity. These include outcome measures estimating 
functional and effective connectivity with various techniques (Sun 
et al., 2004; Karunanayaka et al., 2007; Deshpande et al., 2009), 
multidimensional parameters summarizing full brain network 
topology (Gong et al., 2009), as well as large-scale structural data-
sets such as those describing cortical thickness or white matter 
integrity. Though this multivariate framework provides a relatively 
minor departure from the mass univariate approach typically used, 
we feel it represents an important step toward the development 
of more sophisticated statistical and inferential methods that are 
necessary to comprehend increasingly large and complex data 
(Costafreda, 2010).
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Appendix
A. Group independent Component AnAlysis
Let Y

i
 be the T × V preprocessed and intensity-normalized func-

tional imaging data matrix for subject i, where T time points over 
V voxels are collected on M subjects. For GICA, the data first 
undergo reduction and whitening at the subject and group levels 
using principal component analysis (PCA). Let Y F Yi i

_

i
∗ =  be the 

T
1
 × V PCA-reduced data for subject i, where F Fi

_

i= T is the T
1
 × T 

standardized reducing matrix and T
1
 is the number of principal 

components retained for each subject. Note that Y
i
 has rows of 

zero mean (we remove the mean across space for each time point) 
to improve conditioning of the covariance matrix, however this 
step has no affect on the PCA reduction or GICA decomposi-
tion. Let Y Y Y∗ ∗ ∗= [ , , ]1

T T
 M

T be the MT
1
 × V time-concatenated 

aggregate data (Calhoun et al., 2001, 2002b). Group-level PCA is 
required to reduce the dimension of the data to the number of 
components to be estimated with ICA. Let the T

2
 × V PCA-reduced 

aggregate data be X G Y G G F Y F Y≡ =_

M

_

M

_

M
∗ [ , , ][( ) , ,( ) ]1

T T
1 1 

T T T 
= ∑ = ∑= =i

M
i
M

1 1G F Y Xi i i i
T T ,where G− is the T

2
 × MT

1
 standardized 

reducing matrix. Following square noise-free spatial ICA estimation 
(Hyvärinen et al., 2001), we can write X = ASˆ ˆ where the generative 
linear latent variables ˆ ˆA  Sand  are the T

2
 × T

2
 mixing matrix related 

to subject TCs and the T
2
 × V aggregate SM, respectively.

To estimate subject-specific SMs and TCs, we use the recently 
developed GICA3 back-reconstruction method based on PCA com-
pression and projection (Calhoun et al., 2001, 2002b; Erhardt et al., 
2010). In GICA3, the subject-specific SM is defined as S A G F Yi i i≡ ˆ − T T

i  
which yields exactly that the aggregate SM is the sum of the subject-
specific SMs, Ŝ S≡ ∑ =i

M
i1
 . This is analogous to a random effects model 

where the subject-specific effects are zero-mean distributed devia-
tions from the group mean effect. The natural estimator of subject-
specific TCs is R F G Ai i i≡ − ∧

( )T . The product of each subject-specific 
TC and SM is a perpendicular projection of the data onto the PCA 
column space,   Y R S YF Gi i i C

P
i i

≡ = ( ) i . The PCA compressed fitted val-
ues are exactly the PCA compressed data X, that is, the fitted values 
and data agree in the PCA space. The fitted compressed values, 
 X AS Xi i i≡ =ˆ , are a product of the subject-specific TC and SM, 
and similarly for the mean fitted compressed value,  X X.≡ ∑ ==i

M
i1 X  

Thus, it is the amount of information retained in the PCA steps 
that largely determines the subject-specific TC and SM estimates. 
Compared with dual regression (Filippini et al., 2009), GICA3 
provides more robust and accurate estimates of subject-specific 
components (Erhardt et al., 2010).

B. FeAture seleCtion with mixture model
We developed a model to identify the subset of voxels most rep-
resentative of each component. We considered the distribution of 
voxelwise t-statistics in a SM as a mixture of three distributions. 
In particular, we assumed t-statistics for the voxels not associ-
ated with the component to be normally distributed and acti-
vation to be gamma-distributed at positive or negative values. 
While extreme values will not be estimated well by this mixture 
model, the relatively sparse points at the tails will not strongly 
affect model fit and are always included in the thresholded com-
ponent. Thus, for each component, the distribution of the V × 1 
vector of observed t-statistics, t

c
, is fit by a normal-gamma-gamma 

(NGG) mixture model,

 

p

c c c

c c

c c

p

p p

1 2

1 21

N t t

t

c c| |

|

m s m a b

m a

c c c c1 c1

2

, ,

,

( ) + −( )
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G
G - bbc 2( ),

where N(·) and G(·) indicate normal and gamma distributions. 
The six distribution parameters (m

c
, s

c
, a

c1
, b

c1
, a

c2
, b

c2
) and the two 

proportions (p
c1

 and p
c2

) were estimated by minimizing the residual 
sum of squares using the lsqnonlin function in Matlab with the 
trust-region-reflective Newton algorithm. Conditional on the fit 
of the Gaussian parameters, component-related voxels were deter-
mined as those more extreme than the threshold m

c
 ± 4s

c
. Because 

the distributions of t-statistics for RSNs are typically skewed with 
more extreme positive values, we further limit our statistical analy-
ses to voxels exceeding the threshold on the right tail: t > m + 4s. 
This strategy provided results consistent with what had previously 
been selected by eye and provides an excellent fit to the center of 
the voxel distribution (Figure A1).

C. GrAy mAtter ConCentrAtion And AGe
Age is a highly significant predictor of RSN connectivity (see e.g., 
Figure 5), however given the profound structural changes that 
accompany age (Good et al., 2001; Sowell et al., 2003; Tamnes et 
al., 2010; Ostby et al., 2009), we ask whether gray matter concen-
tration (GMC) might be a better predictor. Because age and GMC 
were highly correlated (Figure A2A), the inclusion of both terms 
in a full model for variable selection would lead to reduced mod-
els that sometimes include one or the other as a strong effect, or 
both predictors together weakly. It is difficult to interpret and make 
inferences from such reduced models, thus we instead assess the 
additional contributions of each variable over the other to deter-
mine which predictor has more explanatory power for the power 
spectra and SMs.

To determine their explanatory power, we first orthogonalize 
age and GMC by fitting two linear regressions, GMC onto age to 
obtain residualized GMC (GMC

r
, GMC information not explained 

by log(age)) and residualized age (age
r
, log(age) information not 

Figure A1 | A typical example of the normal-gamma-gamma (Nggs) 
model, fit to the distribution of t-statistics for iC 38. The distribution (gray) is 
relatively well described by a mixture of a normal (green), positive gamma (red), 
and negative gamma (blue). The full model fit is shown in black, and cutoffs 
(m ± 4s) are determined from the estimated mean (m) and SD (s) of the normal. 
Thresholded SMs include only voxels with positive t-statistics: t > m + 4s.
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D. BackwarD selection anD collinearity simulation
To investigate the effects of backward selection and highly collinear 
data on model estimation, we created a simulation approximately 
matching the size and properties of our data. We begin with 600 
subjects and 3000 response “bins,” but only 13 true Gaussian 
sources uniformly spaced and with moderate overlap over the 
bins. Our design matrix includes two grouping predictors (g

1
, g

2
) 

each with two levels, four continuous predictors (c
1
, c

2
, c

3
, c

4
) nor-

mally  distributed, and all group-covariate interactions as predic-
tors, yielding 15 model terms including the constant. Gaussian 

explained by GMC). We then consider two models: model M
1
 which 

includes age as a predictor and M
2
 which includes GMC in place of 

age. Similar to our main approach, backward selection is performed 
on each model to select a reduced model. We next add GMC

r
 to 

the reduced model M
1
 and add age

r
 to reduced model M

2
 and test 

for significance of the added variables in each model,

 

M

M GMC

1 0 1 2

2 0 1 2

:

: .

P

P

c
∗ = + + +

= + + +∗

b b b

b b b

age GMC and

age

r

r



c

The F-statistics and associated p-values indicate the variability 
in the response explained by the residualized predictor, for example 
in M

1
, by GMC not explained by age.

This process is performed for the spectra and SMs of each RSN. 
Figures A2B,C show the −log

10
(p) values for the addition of GMC

r
 

in model M
1
 and age

r
 in model M

2
 over all components. With the 

exception of a few component SMs, age
r
 almost always contributes 

over GMC alone while GMC
r
 rarely contributes over age alone. 

These model comparisons demonstrate that while age can often 
account for GMC-related changes component spectra and SMs, 
GMC is not sufficient to account for age-related effects. This result 
also justifies the inclusion of age and omission of GMC in the 
primary design matrix used for model selection.

Figure A2 | evaluation of age and gray matter concentration as 
predictors. (A) Typical examples of the relationship between log(age) and 
GMC (averaged over voxels in the thresholded SM). (B,C) Significance of the 
residualized GMC (GMCr, gray) and residualized log(age; ager, black) terms in 
models predicting spectral power (B) and SM intensity (C) for each RSN. 
Wilcoxon signed-rank statistics (W), based on the difference between −log10(p) 
values, are displayed on each plot.

Figure A3 | Simulations showing benefits of dimension reduction 
using the MDL estimate. (A) Average p-values from the MANCOVA F-test 
for each model term over different number of components used, ranging 
from 1 to 100. Dashed black line shows the true number of dimensions 
estimated correctly as 13 by MDL for all 100 simulations. (B) Hit rate 
(fraction of times each model term appeared in the reduced model, 
following backward selection) as a function of components used. (C) True 
positives (average hit rate for true effects) and false positives (average hit 
rate for false effects) as a function of components used. Though difficult to 
see given the scale, the false positive rate was lowest at 11 and 13 
components (0.0067 and 0.0078, respectively), and never rose above 0.024 
(21 components).
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sources are related to the covariates in the following way: source 
1 is q

1i
 = 0.6c

3i 
g

2i
 + e

1i
, source 6 is q

6i
 = 0.7g

1i
 + e

2i
, source 7 is 

q
7i
 = 0.25c

3i
 + 0.8g

2i
 + e

7i
, source 13 is q

13i
 = 0.21c

2i
+ e

13i
, and the 

remaining sources are Gaussian noise. Thus, subject response vec-
tors are associated with covariates g

1
, g

2
, c

2
, c

3
, and a g

2
-by-c

3
 inter-

action. The 13 sources are linearly mixed by addition, Gaussian 
noise is added, and subject data are concatenated for Q. A PCA 
is performed resulting in Q*, and the number of PCs retained is 
varied from 1 to 100. MANCOVA backward selection is performed 
to determine a reduced model and the p-value for each term in that 
reduced model is retained. Simulations were repeated 100 times, 
randomizing the predictors and noise. MDL correctly estimates 
the dimension as 13 for all 100 simulations.

Results from the simulations are displayed in Figure A3. 
Figure A3A illustrates that predictors are most significant (as 
determined from the average p-value) when the correct number 
of dimensions are used, but significance is not greatly sensitive to 
this variable, even with collinear data. With respect to the observed 
level of significance, the simulation is similar to what we observe 
for component spectra. Figure A3B shows that over the 100 simu-
lations, the correct reduced model was often selected for a range 
of dimensions from 13 to 25 PCs, and the four strongest predic-
tor effects were well estimated over a wide range of dimensions. 
Figure A3C emphasizes the same point by showing that the reduced 
model correctly included the important predictors most often 
when the correct dimension was estimated, with a slow decline in 
true positive model reduction with an overestimate of dimension. 
Incorrectly including non-important predictors, false positives, was 
rare for the full range of PCs retained.

e. effects of age on non-rsn components
To examine the effects of age on non-neural signals, we identified 
components with peak activations overlapping large arterial vessels 
(Figure A4A, left panel) and the ventricular system (Figure A4A, 
middle panel), where physiological noise sources should be most 
prominent (e.g., see Figure 5 of Beall and Lowe, 2010). The selected 
components approximately capture the basilar artery (IC 3), verte-
bral arteries (IC 6), fourth ventricle and neighboring cisterns (IC 
16), and lateral ventricles (IC 44). Effects of age on the compo-
nent spectra and SMs were then determined using the MANCOVA 
model with backward selection, identical to the approach used for 
RSNs (see Section 2.6.4).

In addition, we examined the spectra of time series from white 
matter (WM) and cerebrospinal fluid (CSF) regions, as defined by 
anatomical segmentations of the T1-weighted images. To compute 
the regional time series, we began with the spatially normalized, 
unsmoothed group averages of WM and CSF segmentations from 
the VBM analysis (see Section 2.3), resliced to the 3-mm isotropic 
EPI grid. We conservatively thresholded the WM and CSF images at 
probabilities of 0.99 and 0.87, respectively, and spatially restricted 
the CSF mask to the lateral ventricles to maximize temporal coher-
ence across voxels. Figure A4A (right panel) displays the WM and 
CSF masks comprising 3350 and 329 voxels, respectively. We aver-
aged the time series of masked voxels from each subject/s EPI data 
to obtain a representative WM and CSF time course. Power spectra 
were then estimated from the time courses and multivariate model 
selection was performed using the procedures detailed in Sections 
2.6.3 and 2.6.4.

Multivariate results for the power spectra and SMs are displayed 
in Figures A4B,C. The −log

10
(p) values in each plot indicate the 

significance of age in predicting the power spectra (Figure A4B) 
and SMs (Figure A4C) of RSNs (gray circles; same data as shown in 
Figure 5) and non-RSNs (orange squares). As discussed in the main 
text, age accounts for a significant portion of response variance in all 
RSN spectra and SMs. Age is also a significant covariate for non-RSN 
spectra and SMs, though, notably, age is not retained in the models 
predicting the spectra of IC 16 or the SM of IC 3. Furthermore, 
the significance of the age terms for non-RSN spectra are largely 
equivalent to or less than the significance level observed for RSN 
power spectra. Because contributions of vascular, cardiac and res-
piratory signals should be maximal in non-RSN power spectra, we 
can infer that the larger age-related effects in RSN spectra result 
from additional (putatively neural) sources. For SMs, three of the 
four examined components show little or no effect of age; no voxel 
clusters from ICs 6 or 16 passed FDR correction. In contrast, age is a 
highly significant predictor for IC 44 (lateral ventricles). This result 
is expected given the known increase in ventricular volume over the 
lifespan (Barron et al., 1976), as demonstrated in Figure A4D. With 
age, the component distribution appears to expand more posteriorly, 
increasing SM intensity in the trigone of the lateral ventricles and 
decreasing intensity in the frontal horns. These results suggest that 
age-related effects in SMs reflect changes in the spatial distributions 
of activity, whether due to putative alterations in neural connectivity 
or large-scale morphological changes.
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Figure A4 | Comparison of age effects in rSN and non-rSN 
components. (A) SMs of components representing vascular (VASC, left 
panel) and ventricular (VENT, middle panel) networks. SMs are plotted as 
t-statistics following the format of Figure 4. Right panel shows the CSF 
(green) and WM (red) masks used to determine the ROI time series; see text 
for details. (B,C) F-test results of log(age) from the reduced MANCOVA 
models. −log10(p) values indicate the significance of age in predicting power 
spectra (B) and SMs (C) of RSNs (gray circles) and non-RSNs (orange 
squares). Note that for power spectra, non-RSNs comprise manually 
identified components (ICs 3, 6, 16, 44) as well as anatomically defined CSF 
(green) and WM (red) regions. When the log(age) was removed from the 
model during backward selection, the symbol is displayed at the significance 

threshold (a = 0.01, dashed line; IC 16 spectra; IC 3 SM). Note that the 
saturation of −log10(p) values is due to limited computational precision; for 
our analysis, epsilon is 2−52 thus −log10(p) is maximally 15.65. (D) Origin of 
significant age effect for the SM of IC 44 (lateral ventricles). Left panel: 
scatter plot of age versus lateral ventricular volume, as determined from the 
CSF segmented images with a probability threshold of 0.95. Middle panel: 
SMs of IC 44, averaged over the youngest quartile (<17 years, n = 134) and 
oldest quartile (>28 years, n = 137) of subjects. Right panel: statistical map 
of univariate results for IC 44 following the format of Figure 7. With age, the 
component distribution expands more posteriorly, increasing SM intensity in 
the trigone of the lateral ventricles and decreasing intensity in the 
frontal horns.
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multisensory integration in macaque monkeys. Morgan et al. 
(2008) found that the effective weight of visual inputs into area 
MST decreased when the visual stimulus was made less reliable. 
However, Morgan et al., derived these weights from response 
measurements within a single area without directly measuring 
connection strengths between areas.

In order to better understand the neural substrates of reliability-
weighted multisensory integration, we measured activity in both 
early and late areas using blood-oxygen level dependent functional 
magnetic resonance imaging (BOLD fMRI). Subjects detected 
viewed and felt touches delivered to the right index finger. The 
reliability of each sensory modality was adjusted by varying the 
signal-to-noise ratio (SNR) of the stimulus.

We used the average BOLD signal change to assess the neural 
activity associated with visual and somatosensory processing within 
early sensory areas. To measure connection strengths between early 
sensory areas and later multisensory ones, we used structural equa-
tion modeling, a validated technique for examining the effective 
connectivity between different brain areas (McIntosh et al., 1994; 
Horwitz et al., 1995; Buchel and Friston, 2001; Stein et al., 2007). 
The weighted connections model predicts that connection weights 
should be modulated by reliability, independent of the level of 
activity in early sensory areas.

Materials and Methods
Experiments were conducted in accordance with the Institutional 
Review Boards of the University of Texas Health Science Center at 
Houston and the City University of New York. Written informed con-
sent was obtained from each subject prior to experimentation.

introduction
Integrating information from different sensory modalities is criti-
cal for obtaining an accurate representation of the environment. 
On a windy day, it may be more accurate to rely on the visual 
modality to determine if an insect has landed on one’s arm because 
the somatosensory stimulation of the skin by the breeze renders 
the somatosensory modality unreliable, while on a calm day the 
somatosensory modality may be more reliable. Behavioral experi-
ments show that neurologically normal subjects take reliability into 
account when making behavioral decisions, weighting each modal-
ity by its reliability (Ernst and Banks, 2002; Alais and Burr, 2004). 
A better understanding of the neural mechanisms for reliability-
weighted multisensory integration may help in the development 
of treatment and rehabilitation strategies for the many disorders in 
which the information from a sensory modality is degraded, such 
as vision loss due to macular degeneration.

Computational modeling studies have suggested that reli-
ability weighting could occur by a simple linear summation of 
neuronal responses (Ma et al., 2006; Ma and Pouget, 2008). This 
model, which we term the “linear summation” model, predicts 
that increasing stimulus reliability scales the responses of neurons 
in sensory cortex (“early” areas) that respond to that stimulus. 
An explicit prediction of this model is that connection weights 
between early and late areas should not change (Ma et al., 2006). 
In an alternative model, which we term the “weighted connections” 
model, the connection weights between early and late areas change 
depending on the reliability of the stimulus (and are independent 
of the level of activity in early areas). This model receives some sup-
port from a recent electrophysiological study of  visual-vestibular 
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sensory stiMuli and task
Subjects performed a two-alternative forced choice task, deciding 
whether a touch was delivered to the index finger of the right hand 
or not. Visual stimuli consisted of a 1.5 s video of an animated 
triangular probe approaching the tip of the index finger of a pho-
tograph of an actor’s hand (Figure 1). On “visual touch” trials, the 
probe contacted the finger at t = 1.0 s and then withdrew. On “visual 
no-touch” trials, the probe stopped just short of the fingertip at 
t = 1.0 s and then withdrew.

The reliability of the visual stimulus was manipulated by adjust-
ing the transparency of the dynamic noise. First, the digital video 
of the probe approaching the finger was generated using Apple 
FinalCut software. Next, single video frames containing white noise 
(i.e., dynamic random black and white bit maps) were generated 
using Matlab and overlaid on the video. Finally, Neurobehavioral 
Systems Presentation software was used to combine each frame of 
the probe video and a randomly-selected white noise frame using 
the alpha-channel compositing method (Porter and Duff, 1984). 
Every pixel in the image was assigned the same alpha-channel trans-
parency value, which was then used to combine the two images, 
with lower values indicating more transparency of the white noise 
frame and high values indicating more opacity of the white noise 
frame. Transparency of the noise made it easy to discriminate the 
touch and no-touch stimuli (reliable); opacity of the noise made 
it difficult to discriminate the stimuli (unreliable).

Somatosensory stimuli were delivered using piezoelectric bend-
ers attached to the tip of the index finger of the subject’s right hand. 
The somatosensory stimulus consisted of a small deflection of the 
piezoelectric benders that was perceived as a faint tap. The deflec-
tion was created by a 150 ms Gaussian-modulated sine wave deliv-
ered to the benders under computer control at t = 1.0 s, precisely 
synchronized with the visual touch during multisensory trials.

On multisensory trials, subjects perceived the visual probe 
touching the index finger shown on screen as “causing” the tap 
delivered by the bender to their index finger, an inference familiar to 
those who have played video games that provide tactile feedback.

To adjust the reliability of the somatosensory stimulus, a 100 Hz 
background oscillation of variable amplitude was introduced into 
the piezoelectric benders throughout the entire 1.5 s stimulus 
period, analogous to the dynamic noise in the visual stimulus. This 
background noise was perceived as a tactile hum, and was distinct 

from the “tap” percept produced by the Gaussian monopulse. A low 
amplitude of the background noise resulted in the tap being easily 
detectable above the background (reliable); high-amplitude noise 
made it difficult to detect the tap (unreliable). On “somatosensory 
touch” trials, taps were delivered; on “somatosensory no-touch” 
trials, no tap was delivered (only background noise).

Behavioral experiMent
In the first experiment, 21 subjects participated in a behavioral 
experiment of visual-somatosensory multisensory integration. 
Subjects always performed the same touch/no-touch judgment. 
Subjects viewed the video on a 21″ CRT display placed 42 cm from 
the face. The right hand was placed out-of-sight on a table in a 
palm up position, corresponding to the posture of the viewed right 
hand on the display. Subjects responded verbally as to whether 
or not they saw or felt a tap; each response was entered into the 
computer by an experimenter. In the first part of the experiment, 
subjects performed a staircase level-setting procedure to find the 
stimulus reliability level (adjusted by manipulating the SNR of the 
stimulus) that produced 70% correct performance on each of the 
modalities in isolation. Then, subjects viewed and felt unisensory 
visual touches, unisensory somatosensory touches, and congruent 
and incongruent multisensory touches. In congruent multisen-
sory trials, a touch stimulus was presented in both modalities or a 
no-touch stimulus was presented in both modalities. In incongru-
ent trials, a touch stimulus was presented in one modality (e.g., 
tactile tap) and a no-touch stimulus was presented in the other 
modality (e.g., a video showing the probe missing the finger). 
In the neuroimaging experiment, only congruent touches were 
presented.

During unisensory somatosensory touches, subjects viewed a 
fixation crosshairs that changed intensity to signal the beginning of 
each trial. Subjects were presented with the somatosensory stimu-
lus. Then, the fixation crosshairs changed intensity again, signaling 
subjects to respond. During unisensory visual touches, subjects 
viewed the stimulus video until it was replaced by fixation cross-
hairs, signaling them to respond. During multisensory trials, the 
somatosensory and visual stimuli commenced at the same time, 
and trial offset was signaled by the return to fixation crosshairs. 
Congruent and incongruent multisensory trials were equally dis-
tributed and randomly intermixed, with 40 of each type.

A B 

FIguRe 1 | The visual stimulus. The visual stimulus consisted of a video of an 
animated probe (triangular shape) approaching the image of a hand. Three 
frames of the video are shown. (A) Reliable visual stimulus. Dynamic random 

noise was overlaid on the visual stimulus. During reliable visual stimulation, the 
dynamic noise was transparent. (B) Unreliable visual stimulus. During unreliable 
visual stimulation, the dynamic noise was opaque.
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Visual-somatosensory stimuli can produce changes in response 
criteria in addition to true changes in sensitivity (Johnson et al., 
2006). Therefore, our primary behavioral measure was d′, a measure 
of sensitivity independent of response biases.

neuroiMaging experiMent
In the second experiment, nine subjects participated in an fMRI 
experiment (data from one subject was discarded due to sleepi-
ness). An MR-compatible eye-tracking system (Applied Science 
Laboratories, Bedford, MA, USA) was used to monitor fixation and 
behavioral state. The visual display was projected into the bore of 
the MR scanner using an LCD projector but was otherwise identical 
to the visual stimuli in the behavioral experiment. The right hand 
was placed out-of-sight at the side of the subject in the palm up 
position, corresponding to the posture of the viewed hand. Subjects 
responded with an fMRI compatible button box (Current Designs, 
Philadelphia, PA, USA) held in the left hand. Before scanning 
commenced, the same level-setting procedure as in the behavioral 
experiment was used to find the appropriate dynamic noise level 
for each modality.

anatoMical Mri
Anatomical MRI scans were obtained from each subject using a 
3 T whole-body MR scanner (Phillips Medical Systems, Bothell, 
WA, USA). Images were collected using a magnetization-prepared 
180° radio-frequency pulses and rapid gradient-echo (MP-RAGE) 
sequence optimized for gray–white matter contrast with 1 mm thick 
sagittal slices and an in-plane resolution of 0.938 mm × 0.938 mm. 
AFNI software (Cox, 1996) was used to analyze MRI data. 3D corti-
cal surface models were created with FreeSurfer (Fischl et al., 1999a) 
and visualized in SUMA (Argall et al., 2006). Surface averages were 
created using the FreeSurfer template (Fischl et al., 1999b) and vol-
ume averages were created using the N27 template brain (Mazziotta 
et al., 2001).

fMri experiMental design and data analysis
Functional images were collected using a gradient-recalled-echo 
echo-planar-imaging sequence sensitive to the BOLD signal. 
Thirty-three axial slices were collected with a repetition time (TR) 
of 2000 ms, an echo time of 30 ms and a flip angle of 90°. Slice thick-
ness was 3 mm and in-plane resolution was 2.75 mm × 2.75 mm. 
Each scan series contained 150 scans. Following motion correc-
tion and slice timing correction, data were smoothed with a spatial 
Gaussian filter with root-mean-square deviation of 3 mm.

experiMental conditions and region of interest creation
A block design was used in all scan series. Each block contained 
10 trials with total duration of 20 s followed by 10 s of fixation 
baseline in which no stimulus was presented. Each trial within a 
block consisted of the presentation of a 1.5 s stimulus, followed by 
a 0.5 s response window for total trial duration of 2.0 s.

There were nine block types: unisensory visual (reliable and 
unreliable); unisensory somatosensory (reliable and unreliable); 
multisensory visual + somatosensory (both modalities reliable or 
both modalities unreliable); multisensory visual + somatosensory 
(visual-reliable/somatosensory-unreliable and visual-unreliable/
somatosensory-reliable); and passive tactile stimulation (touches 

only, with no behavioral task). The multisensory stimuli were 
always congruent and touch and no-touch trials were randomly 
intermixed within each block.

We had strong a priori hypotheses about three brain regions: 
the secondary somatosensory cortex, lateral occipital cortex, 
and anterior intraparietal sulcus (IPS). In previous studies using 
piezoelectric benders, we have observed robust activity in inferior 
parietal lobe and the parietal operculum (Beauchamp et al., 2007, 
2009), the location of secondary somatosensory cortex and associ-
ated areas (Disbrow et al., 2000; Francis et al., 2000; Ruben et al., 
2001; Beauchamp et al., 2007, 2009; Eickhoff et al., 2007, 2008; 
Burton et al., 2008). fMRI studies using visual motion stimuli 
(such as the moving probe) and biological stimuli (such as the 
image of the hand) the strongest activity was observed in lateral 
occipital cortex (Tootell et al., 1995; Beauchamp et al., 1997, 2002, 
2003; Downing et al., 2001; Wheaton et al., 2004; Pelphrey et al., 
2005). Examinations of visual-somatosensory interactions have 
implicated the anterior IPS for visual-somatosensory integration, 
at the junction with the postcentral sulcus (Grefkes and Fink, 
2005; Culham and Valyear, 2006; Stilla and Sathian, 2008; Pasalar 
et al., 2010). The somatosensory stimulus was delivered to the 
right hand, evoking somatosensory-related responses in the left, 
contralateral hemisphere, while the behavioral response was made 
with the left hand, resulting in motor-related responses in the 
right hemisphere. In order to maximize the contribution of the 
somatosensory stimulus and minimize the contribution of the 
motor response to the observed activity, ROIs were formed only 
in the left hemisphere. Independent data from each subject was 
used to create the ROIs and perform the comparisons of interest 
(BOLD amplitude between reliable and unreliable stimulation) 
to prevent bias (Simmons et al., 2007; Vul et al., 2009).

Bold aMplitude Measures
We used the 3dREMLfit program in the AFNI package (Cox, 1996) 
to account for serial correlations in the fMRI data by fitting an 
autoregressive moving average model with one autoregressive term 
and one moving average term separately to each voxel. The time 
series data were analyzed with the general linear model; the motion 
correction estimates were used as regressors of no interest. A sepa-
rate regressor of interest was used for each block type. The beta-
weight of the regressor for each block type was converted to percent 
signal change and used as a measure of response amplitude. The full 
F (omnibus) statistic from only reliable stimuli was thresholded at 
p < 0.001 corrected for false discovery rate (Genovese et al., 2002) 
to identify voxels that responded significantly.

structural equation Modeling
In BOLD fMRI, measures of activity correlation can be used to 
derive the connection strength between areas (Buchel and Friston, 
2001; Stein et al., 2007). For each subject and each ROI, a normal-
ized time series was constructed by subtracting the amplitude of the 
mean response to each condition from the average time series, pre-
venting the high-amplitude block onset and offset from artificially 
inflating the correlation between ROIs (Buchel and Friston, 1997).
We used the 1ddot program in AFNI to calculate the correlation 
matrix between the ROI time series. Two separate matrices were 
constructed, one for the time series during each of two block types: 
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reliable modality more heavily in their judgment (Ernst and Banks, 
2002; Alais and Burr, 2004). As predicted, subjects were much more 
likely to report that a touch occurred when a touch was presented in 
the more reliable modality (Figure 2B). This effect was significant 
for both visual and somatosensory modalities as measured with 
a paired t-test (visual-reliable: 70 ± 3% visual wins vs. 30 ± 3% 
somatosensory wins, p < 1e − 6; Somatosensory reliable: 24 ± 4% 
visual wins vs. 76 ± 4% somatosensory wins, p < 1e − 6).

localizers: active Brain areas
When subjects viewed and felt touches, the largest clusters of activ-
ity were observed in extrastriate visual areas in lateral occipital 
cortex, in inferior parietal lobe in the location of secondary soma-
tosensory cortex and associated areas, and in anterior IPS near 
the junction with postcentral sulcus (see Figure 3 and Table 1 
for a list of all active regions). We measured BOLD fMRI activity 
in three regions of interest (visual, somatosensory, and IPS) in 
order to test the two competing models of multisensory integra-
tion (see Figure 3 for the average time series from each ROI for 
each stimulus condition). As shown in Figure 4, the response to 
unreliable stimuli was slightly greater than the response to reli-
able stimuli (0.92% vs. 0.76% for somatosensory, 2.7% vs. 2.3% 
for visual, p = 0.06 in a paired t-test). We examined the con-
nectivity between visual cortex, somatosensory cortex and IPS 
during presentation of multisensory stimuli with varying stimu-
lus  reliability (Figure 5). The connection weight, measured as a 

visual-reliable/somatosensory-unreliable and visual-unreliable/
somatosensory-reliable. The correlation weights were calculated 
independently for each subject and then averaged.

results
Behavioral experiMent: Multisensory increases in sensitivity
For reliable unisensory stimuli, subjects were able to determine 
with near perfect accuracy whether or not a visual or somato-
sensory touch occurred. For unreliable unisensory stimuli, per-
formance decreased to 68 ± 5% SEM for visual and 58 ± 5% for 
somatosensory. When unreliable stimuli were presented in both 
modalities simultaneously, performance improved to 79 ± 3% 
for visual-somatosensory (Figure 2A). As measured with d′, a 
 criterion-independent measure of performance, there was a sig-
nificant benefit of multisensory stimulation, demonstrating that 
the visual-somatosensory stimulus successfully induced multisen-
sory integration [d′ = 1.98 ± 0.17 for visual-somatosensory vs. 
d′ = 1.44 ± 0.19 for visual and d′ = 1.34 ± 0.13 for somatosensory, 
F(2,40) = 12.41; p = 6e-5]. There were no differences in criterion 
between the conditions [mean c = 0.31, F(2,40) = 1.78; p = 0.18].

reliaBility Weighting
In order to study the effectiveness of each modality in driving 
behavior, we presented incongruent multisensory stimuli in which 
a touch occurred in one modality but not the other. The reliability-
weighting literature predicts that subjects should weight the more 
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FIguRe 2 | Behavioral measures of visual-somatosensory multisensory 
integration. (A) In the visual condition (Vis, orange), subjects made a touch/
no-touch judgment, discriminating between noisy movies of a probe touching 
or just missing the finger (see Figure 1). In the somatosensory condition (SS, 
blue) a touch/no-touch judgment was performed on a background vibration 
delivered to the finger with or without an additional touch. In the congruent 
multisensory condition (Vis + SS, green) the touch/no-touch judgment was 
performed on a touch that was both seen and felt, or neither seen nor felt.  
The error bars show the SEM (n = 21 subjects). (B) In the incongruent 
multisensory condition, subjects made a touch/no-touch judgment for stimuli 

which were reliable in one modality but not the other (e.g., probe clearly 
missed the finger in the video but a barely detectable touch was delivered in 
the somatosensory modality). The orange bars show the percentage of 
responses that corresponded to the visual stimulus; the blue bars show the 
percentage of responses that corresponded to the somatosensory stimulus, 
collapsed across touch and no-touch conditions. Subjects responses usually 
matched the stimulus presented in the more reliable modality, with responses 
corresponding to the visual modality in the visual-reliable condition (left bars) 
and the somatosensory modality in the somatosensory-reliable condition  
(right bars).
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signal change (lower for reliable stimuli). The connection weight 
between visual cortex and somatosensory cortex was unaffected 
by reliability (0.11 vs. 0.15, p = 0.3).

discussion
We found that a somatosensory tap to the finger in combination 
with a video showing a finger touch produced behavioral visual-
somatosensory multisensory integration. Behavioral studies have 
shown that vision can enhance touch perception, especially for 
touches to the hand (Kennett et al., 2001; Ro et al., 2004; Haggard 
et al., 2007 for a review see Maravita et al., 2003). While it might 
seem surprising that a video of an actor’s hand being touched by 
an artificial probe could result in  multisensory integration, it is 
consistent with previous results that a video feed of the subject’s 

 correlation  coefficient, between somatosensory cortex and IPS was 
lower during somatosensory-unreliable stimulation than during 
 somatosensory-reliable stimulation (0.24 vs. 0.38, p = 0.002 in a 
paired t-test), even though somatosensory cortex was slightly more 
activated in the unreliable condition. Similarly, the connection 
weight between visual cortex and IPS was lower during visual-
unreliable stimulation than during visual-reliable stimulation 
(0.23 vs. 0.32, p = 0.001), even though visual cortex was slightly 
more activated in the unreliable condition. As predicted by the 
weighted connections model, the connection weights were higher 
for the reliable stimulus modality despite there being less activ-
ity in the unisensory cortices for the reliable as compared to the 
unreliable conditions. The connection weight changes (higher for 
reliable stimuli) were in the opposite direction as the mean BOLD 
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FIguRe 3 | Summary of fMRI activations. (A) Activation during performance of 
the multisensory touch detection task shown on an inflated average cortical surface 
model (left hemisphere, single subject). The orange circle highlights active visual 
areas in lateral occipital cortex. The blue circle highlights active areas in inferior 
parietal lobe, the location of secondary somatosensory cortex. The green circle 
highlights active areas in and around the intraparietal sulcus (IPS). The horizontal 

dashed white line shows the intraparietal sulcus, vertical dashed white line shows 
the postcentral sulcus. (B) Group activation map from n = 8 subjects. (C) Time 
course of the BOLD response in the visual cortex ROI during 20 s stimulation  
blocks of each experimental condition, averaged across blocks and subjects (black 
lines show the mean percent signal change, gray lines show + -SEM). (D) Time 
course of the somatosensory cortex response. (e) Time course of the IPS response.
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of different modalities deteriorates at different rates and the brain 
must compensate. Ernst and Banks (2002) made the important 
discovery that behavioral reliability weighting of visual and soma-
tosensory stimuli is statistically optimal. By artificially adjusting 
the amount of noise in the visual stimulus, they showed that we 
weight visual stimuli in inverse proportion to their variance. This 
finding has been extended to other visual-somatosensory tasks 
(Helbig and Ernst, 2007) and other  modality combinations (Alais 
and Burr, 2004). The ubiquitous nature of reliability weighting 
suggests that it may be a fundamental building block of multi-
sensory integration.

own hand (Tipper et al., 1998), a flash of light near the subject’s 
hand (Johnson et al., 2006), or an image or line drawing of a hand 
(Schaefer et al., 2005; Igarashi et al., 2008) can result in multisen-
sory integration. Multisensory enhancements are even noted at 
the end of tools that serve to artificially extend the hand (Farne 
et al., 2007; Holmes et al., 2007). The behavioral multisensory 
integration that occurred during a touch to the finger was reliabil-
ity weighted, with the more reliable modality receiving a stronger 
behavioral weighting. Reliability  weighting during multisensory 
integration makes intuitive sense as an adaptation to cope with 
changes in sensation: as we age or in some diseases, the sensitivity 

Table 1 | Summary table showing all active brain areas during the localizer scan series using the contrast of multisensory touch vs. fixation 

baseline. Constructed from the group average volume activation map (n = 8 subjects). The active brain areas are ordered by the size of the active region, as 

shown in the first column, followed by the location of the peak activation within the active region, and the t-statistic of the peak activation. The center of the 

coordinate system is the anterior commissure, with left, posterior, and inferior the negative direction and right, anterior and superior the positive direction. The 

final column shows the anatomical description.

Volume (ml) Standard coordinates of peak Peak-statistic Anatomical/functional description

 x y z  

LeFT heMISPheRe

15.33 −53 −27 30 9.5 Somatosensory cortex and intraparietal sulcus

3.34 −45 −61 6 5.3 Lateral occipital visual areas

2.41 −25 7 32 9.1 Inferior frontal gyrus

2.10 −51 1 26 7.0 Premotor cortex

1.09 −31 27 12 8.6 Anterior insular cortex

0.99 −9 −1 20 6.8 Caudate nucleus

RIghT heMISPheRe AND MIDLINe AReAS

11.10 11 −87 8 7.8 Primary and secondary visual cortex

5.46 55 −1 32 9.3 Premotor cortex

5.38 31 −23 48 9.0 Motor cortex

5.06 47 −39 48 6.6 Parietal cortex

4.34 −3 −5 54 14.7 Supplementary motor cortex

2.66 21 −25 6 8.6 Thalamus

2.33 39 −65 0 6.7 Lateral occipital visual areas

0.94 49 −53 34 4.3 Supramarginal gyrus
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FIguRe 4 | Response to reliable and unreliable unisensory stimuli. (A) The 
average BOLD signal change in the visual cortex ROI during 20 s stimulation 
blocks of unisensory visual-reliable stimulation (left plot) and visual-unreliable 
unisensory stimulation (right plot). Black line shows mean response, gray lines 

shows ±SEM (n = 8 subjects). (B) The average BOLD signal change in the 
somatosensory cortex ROI during unisensory somatosensory-reliable 
stimulation blocks (left plot) and somatosensory-unreliable stimulation blocks 
(right plot).
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conducted a transcranial magnetic stimulation (TMS) study that 
disrupted activity in the IPS while subjects performed a touch/
no-touch discrimination task using visual and somatosensory 
stimuli similar to those used in the present study (Pasalar et al., 
2010). Without TMS, a significant behavioral improvement for 
multisensory compared with unisensory stimuli was observed. 
However, when activity in the IPS was disrupted with TMS, mul-
tisensory behavioral improvement was eliminated. Unisensory 
discrimination performance was not affected, illustrating that the 
effect was specific to multisensory integration. Furthermore, TMS 
of a control brain location did not interfere with multisensory 
integration, illustrating that the effect could not be attributed to 
non-specific effects of TMS, such as the auditory click produced 
by each TMS pulse.

We classified the visual and somatosensory ROIs as “early” 
and the IPS ROI as “late,” based on their location in the corti-
cal processing hierarchy (Felleman and Van Essen, 1991). Early 
areas responded more to less reliable sensory stimuli. While this 
is contrary to the predictions of the linear summation model 
(Ma et al., 2006; Ma and Pouget, 2008) it is likely to be a result 
of our method of creating unreliable stimuli, and therefore does 
not disconfirm the linear summation model. In our experiments, 
we determined the threshold for visual and tactile stimulation, 
and then decreased the reliability of the stimuli by adding noise. 
This added noise is likely to evoke neural activity in a broad 
population of neurons in the sensory cortex, causing the observed 
increases in the BOLD fMRI signal. However, the linear summa-
tion model hypothesizes only that the neurons carrying infor-
mation about the sensory stimulus (in this case, the touch vs. 
no-touch distinction) show decreased activity with decreasing 
reliability. With BOLD fMRI, we cannot easily distinguish the 
neural activity of the  relatively small population of neurons in 
a voxel that carry information about the sensory stimulus (and 
presumably show a decreased response with increasing noise) 

To study the neural mechanisms of reliability weighting, we 
performed BOLD fMRI experiments of human subjects detecting 
a touch to the index finger of the hand. Consistent with previous 
studies of visual-somatosensory integration, brain activity was 
observed in a network of brain areas. These areas were subdi-
vided into three regions of interest: visual, somatosensory, and 
multisensory. The visual ROI contained a group of visual areas 
in lateral occipito-temporal cortex, centered on posterior middle 
temporal gyrus and inferior temporal sulcus, which corresponds 
to areas that respond strongly to moving objects and pictures or 
videos of hands and hand-held manipulable objects (Downing 
et al., 2001; Beauchamp et al., 2002, 2003; Wheaton et al., 2004; 
Pelphrey et al., 2005). While these areas are located in classical 
visual cortex, they are also responsive to touch (Amedi et al., 
2001, 2002; Hagen et al., 2002; James et al., 2002; Prather et al., 
2004; Beauchamp et al., 2007; Summers et al., 2009). The soma-
tosensory ROI contained a group of areas in the inferior parietal 
lobe that respond to hand stimulation that have been labeled S2+ 
(Disbrow et al., 2000; McGlone et al., 2002; Burton et al., 2004, 
2008; Beauchamp et al., 2007; Eickhoff et al., 2007, 2008). For 
reasons that are not fully clear, in fMRI studies that stimulate the 
hand, especially with vibrotactile stimuli like those used in the 
present study, S2+ activation is much stronger than S1 activation 
(Ruben et al., 2001; Gizewski et al., 2005; Beauchamp et al., 2007, 
2009). S2+ is also active during observation of touch (Keysers 
et al., 2004; Blakemore et al., 2005; Schaefer et al., 2006). The 
multisensory ROI contained association areas in and around the 
IPS thought to be critical for the integration of vision and touch 
(Grefkes and Fink, 2005). Although many studies have used fMRI 
to show that the IPS responds to visual and somatosensory stimu-
lation (Bremmer et al., 2001; Saito et al., 2003; Makin et al., 2007; 
Peltier et al., 2007; Nakashita et al., 2008; Stilla and Sathian, 2008; 
Tal and Amedi, 2009) this does not demonstrate the necessity 
of the IPS for behavioral multisensory integration. We recently 
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FIguRe 5 | Connection weights during reliable and unreliable 
stimulation. (A) Connectivity in the multisensory somatosensory-reliable/
visual-unreliable condition in an individual subject, viewed on that subject’s 
inflated cortical surface. Colored regions show areas with a significant fMRI 
response during the localizer scan used to create the regions of interest, with 
a different color for each region of interest (orange for visual, blue for 
somatosensory, green for IPS). The numbers adjacent to each arrow show the 
weights between that pair of ROIs, as derived from the structural equation 

model. (B) Connectivity in the multisensory somatosensory-unreliable/
visual-reliable condition in the same subject. (C) Group data showing 
connection strengths across subjects during multisensory reliable and 
unreliable stimulation (n = 8 subjects). The blue bars show the connection 
strength from somatosensory cortex to the IPS, the orange bars show the 
connection strength from the visual ROI to the IPS ROI. The solid bar in each 
pair represents the reliable condition for that modality; the hatched bar in each 
pair is the unreliable condition.
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and thus should evoke a larger response in visual areas. We saw 
the  opposite pattern, with a trend towards reliable stimuli evoking 
smaller responses in visual areas (although this may have been a 
consequence of the visual noise that we added to make the stimuli 
less reliable). Conversely, if we suppose that subjects attended more 
to the unreliable visual stimuli because it was harder to see, the 
connection weight between visual cortex and IPS should increase 
for the unreliable visual condition (Buchel and Friston, 1997), 
which is the opposite of the observed weight change. Therefore, our 
BOLD fMRI data is incompatible with a simple effect of top-down 
visual attention, and consistent with behavioral studies showing 
that reliability weighting is independent of attention (Helbig and 
Ernst, 2008).

An caveat to the reliability-weighting model is that effective 
and functional connectivity methods applied to BOLD fMRI data 
do not necessarily correspond to direct axonal projections from 
one area to another (Buchel and Friston, 2001). Information may 
instead flow through a third area that is not modeled, such as tha-
lamic nuclei in the “porpoise model” of Sherman (2007). However, 
there is anatomical evidence for direct connections between IPS, 
somatosensory cortex and visual cortex. Tracer-injection studies 
in macaque monkeys have shown that area VIP in anterior IPS 
receives strong inputs from extrastriate visual areas including area 
MST and weak or absent connections from primary visual cortex, 
V1, and area VIP and nearby areas also receive direct projections 
from the upper-body representation of secondary somatosen-
sory cortex (Boussaoud et al., 1990; Lewis and Van Essen, 2000). 
Diffusion tensor imaging tractography studies in humans have 
shown comparable results, with anterior IPS showing the strongest 
anatomical connectivity with the superior longitudinal fasciculus 
connecting temporal, parietal, and frontal regions (Rushworth 
et al., 2006).

The results of the present study suggest a number of promis-
ing avenues for future exploration. In the influential behavio-
ral experiments of Ernst and Banks (2002) and Alais and Burr 
(2004), subjects made quantitative estimates about stimulus 
properties using different sensory modalities. When discrepan-
cies between the modalities were introduced, the quantitative 
weight given to each modality in the sensory judgment could 
be measured experimentally. However, in our behavioral experi-
ment, the judgment was qualitative (touch vs. no-touch) rather 
than quantitative, so we were unable to precisely measure the 
weights of different modalities. Multidimensional scaling could 
be used to extend optimal integration to situations in which 
perceptual judgments are qualitative instead of quantitative, such 
as word perception (Ma et al., 2009).

By introducing incongruent stimulation (even though the judg-
ments were qualitative), our behavioral experiment demonstrates 
that subjects gave more weight to the more reliable modality in their 
perceptual decision. However, in our neuroimaging experiment, all 
of the stimuli were congruent. Therefore, we were unable to meas-
ure the perceptual reliability-weighting or compare the percept 
on each trial with the BOLD fMRI data from the different ROIs 
for that trial. The neural connection strengths could be compared 
with the  percepts for incongruent stimuli on a trial by trial basis 
to ascertain the relationship between neural connection strengths 
and perception.

from other neurons in the voxel that do not carry information 
about the sensory stimulus (and show an increased response to 
the dynamic noise present in the unreliable condition). In future 
experiments, it may be possible to create a better test of the 
linear summation model by using fMRI adaptation to measure 
activity in only those neurons that carry information about the 
sensory stimulus, or by manipulating reliability in other ways, 
such as decreasing the signal strength by making the visual and 
tactile stimuli weaker.

Unlike the linear summation model, the weighted connections 
model makes no predictions about the response amplitude of early 
sensory areas. Instead, it predicts that the connection strength 
between early and late areas should be proportional to reliability. 
To test this prediction, structural equation modeling was used to 
assess the connection strengths. During presentation of reliable 
visual stimuli, the connection strength between visual cortex and 
IPS was high; during presentation of unreliable visual stimuli, this 
connection strength decreased. Conversely, during presentation of 
reliable somatosensory stimuli, the connection strength between 
somatosensory cortex and IPS was high, and during presentation 
of unreliable somatosensory stimuli, this connection strength was 
low. These findings match the predictions of the weighted con-
nections model.

The double dissociation of connection strengths between the IPS 
and somatosensory and visual cortex in the two conditions mir-
rored the pattern of behavioral responses observed during incon-
gruent multisensory stimulation, in which the reliable modality was 
more effective at driving behavior. The correspondence between 
the neural connection strengths and behavior substantiates the 
notion that connection weight changes underlie behavioral reli-
ability weighting.

Two recent studies in non-human primates examined visual-
vestibular integration (Morgan et al., 2008; Fetsch et al., 2009). 
Responses in single MST neurons were a function of the weighted 
sum of visual and vestibular responses: the weight of the visual 
modality decreased as the visual stimulus was degraded, while the 
strength of the vestibular responses increased. This converging evi-
dence from two different modality combinations (visual-vestibular 
and visual-somatosensory) and techniques (electrophysiology and 
BOLD fMRI) supports the weighted connections model. However, 
the electrophysiological data might also be consistent with a modi-
fied version of the linear-sum model (Morgan et al., 2008; Fetsch 
et al., 2010).

We considered the possibility that the weighted connections 
model could be more parsimoniously explained by visual atten-
tion. Attention to the visual modality increases the connection 
weights between early visual cortex and parietal regions (Buchel 
and Friston, 1997). In the attention scenario, if subjects attended 
more to the visual modality in the visual-reliable stimulus con-
dition, the visual-to-IPS connection weights would increase (as 
predicted by the weighted connections model) but the weight 
change would be mediated by top-down visual attention and not 
by reliability. However, in addition to changing weights, visual 
attention also increases the response in early visual areas, includ-
ing lateral occipital areas such as area MT (Beauchamp et al., 1997; 
Buchel et al., 1998; Kastner et al., 1998; Saenz et al., 2002). In the 
 attention scenario, visual-reliable stimuli attract more attention 
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1979, 1982, 1993; Naeser et al., 1982, 1987; Alexander et al., 1989; 
Damasio, 1992; Dronkers et al., 1994, 2000b, 2004; Caplan et al., 
1996, 2007; Damasio and Damasio, 2002; Bates et al., 2003; Binder, 
2003; Tyler and Marslen-Wilson, 2008). Functional neuroimaging 
investigations have also highlighted distributed activation patterns 
in the healthy brain during the performance of tasks that involve 
language comprehension and the processing of lexical-semantic 
information (Demonet et al., 1992; Demb et al., 1995; Binder et al., 
1997, 2009; Price, 2000, 2010; Bookheimer, 2002; Friederici, 2002; 
Vigneau et al., 2006; Ferstl et al., 2008).

Thus, an extensive left-lateralized network for language com-
prehension is indicated by both lesion–symptom correlations in 
aphasia and functional imaging findings in the healthy brain. This 
network is distributed throughout association areas in the left peri-
sylvian cortex and neighboring regions, including parts of the pos-
terior middle temporal gyrus (MTG), inferior temporal regions, 
the inferior parietal lobe (IPL), inferior frontal gyrus (IFG), as 
well as other frontal regions not directly involved in language but 
facilitating comprehension through working memory and cogni-
tive control operations (Dronkers et al., 2004). The  anatomical 

IntroductIon
The brain regions that subserve verbal comprehension are tradition-
ally associated with Wernicke’s and, to some extent, Broca’s areas. 
Following the seminal work of Wernicke (1874), who described 
neurological patients with trouble understanding spoken language, 
it has been assumed that the posterior superior temporal cortex in 
the left hemisphere is primarily responsible for language compre-
hension (Geschwind, 1970, 1972; Goodglass, 1993). Broca’s area has 
also been implicated in sentence comprehension in that patients 
with Broca’s aphasia have difficulty processing the syntactic rules 
that affect sentence meaning. However, this position is gradually 
giving way to a network perspective, which emphasizes the contri-
bution of several brain regions organized into a large-scale network 
via long-distance association pathways (Mesulam, 1990; Damasio, 
1991). Lesion–deficit correlation findings with aphasic patients have 
led to an appreciation of how several other brain regions within and 
outside the left temporal lobe also contribute to language compre-
hension. It has been shown in several studies that language com-
prehension deficits can be produced by lesions in several posterior 
and frontal cortical areas and subcortical structures (Kertesz et al., 
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extent of this network is consistent with the notion that language 
comprehension is a complex process which, like other complex 
behaviors, is the product of the coordinated activity of several brain 
regions, each contributing to several subprocesses of comprehen-
sion. The functioning of the overall network can be disrupted by 
brain lesions damaging different cortical nodes and disconnecting 
the white matter (WM) pathways that subserve their interactions. 
Better understanding of the functional anatomy of the language 
comprehension network and its disorders requires a detailed 
characterization of the underlying connectional architecture that 
allows the functional integration of the brain structures that com-
prise the language network.

The specific contributions of individual brain regions to the 
large-scale networks specialized for different aspects of cognition 
are determined by their connectivity patterns (Mesulam, 1990, 
1998, 2005; Schmahmann and Pandya, 2008). Each brain region 
acquires its particular function in a brain network by virtue of 
how it interacts with other regions in the brain. This highlights 
the need to delineate the WM pathways that interconnect distinct 
components of the language network in order to elucidate how each 
part is functionally integrated to the overall network and makes 
specific contributions to language processing, and to understanding 
why lesions in different brain regions cause the particular symp-
toms observed in aphasic patients. Behavioral deficits can also be 
produced by WM lesions that disconnect healthy brain regions, 
and the resulting deficits can be as severe as those produced by 
damage to the areas that subserve cortical information process-
ing (Lichtheim, 1885; Geschwind, 1965a,b; Catani and Mesulam, 
2008a,b). Reorganization of the architecture of functional networks 
is a key factor for the recovery of function following neurological 
injury, and this process might be mediated by the connections that 
allow intact regions to acquire new functions and enable the surviv-
ing sections of damaged regions to be reintegrated into functional 
networks (Heiss et al., 2003; Dancause et al., 2005; Ward, 2005; 
Marsh and Hillis, 2006; Murphy and Corbett, 2009). Thus, better 
knowledge of the connectional anatomy of the language network is 
essential for understanding the consequences of the disruption of 
WM pathways due to brain injury, and the contributions of these 
pathways to functional recovery.

While the arcuate fasciculus (AF) has traditionally been viewed 
as the single critical WM pathway that provides the scaffolding for 
the language network (Dronkers et al., 2000a; Catani and Mesulam, 
2008a; Friederici, 2009), the growing knowledge of WM anatomy 
indicates that the language network is subserved by a richer net-
work of fiber systems than originally appreciated. The arcuate 
itself has been shown to be composed not of a single arc, but at 
least three segments, including a direct pathway between tempo-
ral and frontal regions, and an indirect segment involving inferior 
parietal regions (Catani et al., 2005). Histological tracing studies 
of the homologues of human language areas in the monkey brain 
have shown the existence of a distinct parieto-temporal pathway, 
the middle longitudinal fasciculus (MdLF), that interconnects the 
superior temporal and inferior parietal cortices (Seltzer and Pandya, 
1984, 1994; Schmahmann et al., 2007), and long fibers that pass 
through the extreme capsule (EmC) to link posterior superior tem-
poral regions with the IFG (Petrides and Pandya, 1988, 2009). These 
connections have also been characterized in the human brain using 
in vivo imaging techniques (Frey et al., 2008; Makris and Pandya, 

2009; Makris et al., 2009). The inferior occipito-frontal fasciculus, a 
major pathway extending from frontal cortex to temporal, parietal, 
and occipital cortices, has been implicated in semantic processing 
by subcortical stimulation data from neurosurgical patients (Duffau 
et al., 2005, 2008). It has also been proposed, on anatomical grounds, 
that semantic processing might be subserved by a two-step pathway 
involving the inferior longitudinal fasciculus (ILF), which runs along 
the whole length of the temporal lobe, and the uncinate fasciculus 
(UF), which connects the temporal pole with the inferior frontal 
regions (Vigneau et al., 2006). It is important to examine these new 
findings in relation to the lesion anatomy in aphasia in order to 
appreciate the functional contributions of these pathways.

Here, we investigated the structural and functional connectiv-
ity of the brain regions found to be critical for auditory sentence 
comprehension in an earlier investigation from our laboratory 
(Dronkers et al., 2004). Sentence comprehension is a complex func-
tion that engages many components of the language network and 
other brain regions that support language, such as working memory 
and cognitive control systems (Friederici, 2002; Dronkers et al., 
2004). Thus, sentence comprehension is an ideal task for exploring 
the language comprehension network. In our previous investiga-
tion, auditory sentence comprehension deficits were analyzed in 
relation to lesion anatomy in 64 chronic stage aphasic patients who 
had suffered focal left hemisphere damage due to stroke. Sentence 
comprehension was assessed by the Curtiss-Yamada Comprehensive 
Language Evaluation, Receptive Language Test (CYCLE-R; Curtiss 
and Yamada, 1988). Lesions that significantly alter sentence compre-
hension performance were mapped on a standard template using 
voxel-based lesion-symptom mapping (VLSM, Bates et al., 2003). 
Subgroups of patients whose lesions encompassed each of these 
regions were also examined separately, using their scores on each 
CYCLE-R subtest, and their performance on the Western Aphasia 
Battery (WAB; Kertesz, 1982). Five brain regions were highlighted 
in this analysis as being critical for language comprehension: the 
MTG and underlying WM (hereafter referred to as “MTG”), the 
anterior superior temporal gyrus (“anterior STG/BA22”), a region 
including parts of the posterior superior temporal sulcus (STS) 
and the angular gyrus (“STS/BA39”), Brodmann’s area 47 in pars 
orbitalis of the IFG (“BA47”), and a part of Brodmann’s area 46 in 
the middle frontal gyrus (“BA46”; Figures 1,2).

Patients with lesions in MTG and adjacent white matter,  includ-
ing those classified with a severe Wernicke’s aphasia, were impaired in 
all but the simplest sentences, indicating a word-level deficit, which 
was also confirmed by data from the WAB Auditory Comprehension 
subtests. Lesions in other areas affected sentence level processing 
as difficulty level increased (Dronkers et al., 2004, Figure 5), sug-
gesting higher-level contributions to language comprehension. 
For example, the performance of patients with anterior STG/BA22 
lesions declined when the syntactic structure of test items influ-
enced the interpretation of the sentence, suggesting a role for this 
region in basic morphosyntactic processing. Patients with lesions 
in frontal regions BA46 and BA47 were impaired only for the most 
complex sentence structures. The BA47 finding was interpreted as 
reflecting the impairment of a working memory system for seman-
tic information, whereas the BA46 involvement was attributed to 
deficits in general cognitive control processes. Finally, posterior STS/
BA39  involvement was attributed to auditory short-term memory 
 impairments, as patients with lesions in this region were most 
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(Biswal et al., 1995, 2010; Lowe et al., 1998; Greicius et al., 2003; 
Damoiseaux et al., 2006; Buckner et al., 2009; Van Dijk et al., 
2010). Correlated fluctuations of spontaneous brain activity, as 
assessed by the blood oxygenation-level dependent (BOLD) func-
tional magnetic resonance imaging (fMRI) signal, provide infor-
mation about which regions are physiologically coupled, either 
via direct structural connections, or indirect polysynaptic links. 
Thus, high correlations between the amount of oxygen consumed 
simultaneously by multiple regions are believed to mirror which 
brain areas typically interact with each other. Several investiga-
tions have shown that the functional organization of large-scale 
brain networks can be assessed by mapping with this approach 
the regions that show coherent resting-state activity (Fox et al., 
2005; Damoiseaux et al., 2006; Dosenbach et al., 2007; He et al., 
2007; Vincent et al., 2007; Buckner et al., 2009; Biswal et al., 2010), 
including those that may be related to language (other than com-
prehension; Hampson et al., 2002; Kelly et al., 2010; Koyama 
et al., 2010; Xiang et al., 2010). In order to examine the language 
comprehension network, we used the cortical ROIs derived from 
the previous lesion analysis findings and computed whole-brain 
correlation maps for each ROI.

By combining the information from these two connectivity 
analyses, we sought to determine the relationships among the brain 
regions identified as being important for auditory sentence com-
prehension in our previous lesion analysis with aphasic patients 
(Dronkers et al., 2004). This was achieved by identifying in the 
healthy brain (1) the major pathways associated with these regions, 
and (2) the functional connectivity of these regions with other 
cortical areas.

In this way we explored how these regions might fit into a net-
work that supports language comprehension. We also examined the 
implications of our findings in the context of the lesion anatomy 
of comprehension deficits in aphasia.

MaterIals and Methods
Structural and functional connectivity patterns of the regions that 
were found to be critical for language comprehension in our brain 
lesion analysis were investigated using diffusion tensor imaging and 
fMRI data. Streamline tractography was applied to the DTI data 
from 25 healthy subjects to trace the principal WM pathways associ-
ated with each of the regions. The functional connectivity profile 
for each region was assessed using resting-state fMRI data from 
another group of 25 healthy subjects. These data processing and 
analysis steps are described in detail in the following sections.

defInItIon of regIons of Interest for the language 
coMprehensIon network analysIs
The regions identified by the VLSM analysis of sentence compre-
hension deficits (Figure 1; Dronkers et al., 2004) were transformed 
from the DeArmond et al. (1989) atlas space, in which the original 
results were produced, to the Montreal Neurological Institute (MNI) 
space. A mapping from the DeArmond et al. atlas space to the MNI 
space was determined by the following steps. The MNI anatomical 
template was aligned to the atlas plates by a 7° rotation of the axial 
plane. Eleven slices were identified on the re-oriented MNI template 
that best match the axial photographic images of the brain in the 
DeArmond et al. atlas. The corresponding anatomical landmarks 
were marked by manually selecting several control points on each 

impaired on items that relied on auditory rehearsal. Patients whose 
lesions spared all of these regions showed only minor deficits on 
the most difficult items. Critically, lesions in the two regions which 
have traditionally been considered to be at the core of language 
functioning in the brain, Broca’s area (IFG pars opercularis and pars 
triangularis) and posterior superior temporal gyrus, the cortical 
zone commonly attributed to Wernicke’s area, were not found to be 
associated with significant language comprehension deficits in this 
investigation. A small WM region medial to the posterior STS was 
also identified as being critical for sentence comprehension, sug-
gesting that not only cortical damage but a disconnection produced 
by a lesion in WM adjacent to posterior STG and MTG might also 
produce language comprehension deficits.

In order to investigate how the above brain regions might par-
ticipate in a larger network of interconnected areas, we analyzed 
brain imaging data from healthy subjects using two new magnetic 
resonance imaging (MRI) techniques. The first, diffusion tensor 
imaging (DT-MRI), examines the fiber pathways that structur-
ally link brain regions to each other (Basser et al., 1994; Pierpaoli 
et al., 1996). We used this technique to determine which pathways 
were associated with the regions found to be critical for auditory 
sentence comprehension from our previous lesion analysis. The 
second technique, resting-state functional MRI (RS-fMRI), reveals 
functional brain networks by correlating blood oxygenation levels 
across brain regions over time to identify which parts of the brain 
are simultaneously active (Lowe et al., 1998; Greicius et al., 2003; 
Biswal et al., 2010; Van Dijk et al., 2010). We applied the second 
method to identify brain areas that were functionally connected 
with each of the regions critical for auditory sentence comprehen-
sion. We used these two approaches, described below, with data 
from healthy subjects to examine the structural and functional 
architecture of the brain regions associated with sentence compre-
hension deficits as previously found in aphasic patients.

Diffusion tensor magnetic resonance imaging shows the micro-
structural organization of white matter in the living brain. With 
this information, it is possible to perform tractography analysis and 
determine the trajectories of long-distance pathways by tracing the 
dominant orientation of fiber groups at different points in brain 
white matter (Conturo et al., 1999; Basser et al., 2000; Catani et al., 
2002; Mori et al., 2002). DT-MRI tractography has been used to 
examine the anatomical organization of the pathways that support 
language in the brain, to determine which pathways interconnect 
specific brain regions, and to interpret the functions subserved by 
individual pathways based on their cortical termination patterns 
(Catani et al., 2005, 2007; Croxson et al., 2005; Makris et al., 2005, 
2009; Parker et al., 2005; Anwander et al., 2007; Vernooij et al., 
2007; Frey et al., 2008; Glasser and Rilling, 2008; Saur et al., 2008; 
Makris and Pandya, 2009; Kaplan et al., 2010; Brauer et al., 2010). 
In this investigation, we used the regions of interest (ROIs) from 
the lesion findings which were described earlier to constrain whole-
brain streamline tractography results, in order to isolate the fiber 
pathways associated with the WM contained in each ROI. We then 
identified the major WM structures associated with these fibers 
using digital WM atlases (Wakana et al., 2004; Burgel et al., 2006; 
Catani and Thiebaut de Schotten, 2008; Mori et al., 2008).

The analysis of interregional correlations in RS-fMRI data 
is another technique for mapping the connectivity profiles of 
individual brain regions as well as complete functional circuits 
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assessMent of structural connectIvIty wIth dIffusIon 
IMagIng tractography
Diffusion tensor imaging data
Diffusion tensor imaging datasets from 25 healthy subjects were 
randomly selected from the publicly-available ICBM DTI-81 
database3,4, which includes diffusion imaging data from young and 
middle-aged healthy right-handed subjects (Oishi et al., 2008). The 
subject demographics, data acquisition protocols and the probabil-
istic maps of major pathways developed using these data have been 
described in publications by the ICBM researchers (Hua et al., 2009; 
Mori et al., 2008; Oishi et al., 2008; Zhang et al., 2008). The diffusion 
imaging data were acquired on Siemens 1.5T MRI scanners at the 
MNI and University of California Los Angeles using single-shot 
echo-planar imaging (EPI) sequences with sensitivity encoding and 
a parallel imaging factor of 2.0, 96 × 96 imaging matrix, field of view 
(FOV) = 240 mm × 240 mm, 60 transverse sections (2.5 mm slice 
thickness) parallel to the anterior commissure–posterior commis-
sure line (AC–PC), two repetitions of a sequence of five images with 
minimal diffusion weighting and 30  diffusion-weighted (1000 s/
mm2) images with 30 gradient  orientations (Mori et al., 2008).

DTI post-processing
First, an anatomical reference image was produced from the EPI 
images with minimal diffusion weighting (B0 images) by correcting 
for head motion by rigid-body alignment in SPM8, and averaging 
over the realigned scans. All diffusion-weighted images were co-
registered to this reference image. Using SPM8, a brain mask was 
derived from the reference image by applying a tissue segmentation 
algorithm and then applied to the other scans to exclude non-brain 
tissue. The reference image was also normalized to MNI space for 
the ROI-based analyses. The diffusion datasets were  resampled 
to 2.0 mm3 resolution and averaged over the repeated series to 
improve signal-to-noise ratio. Using the methods implemented in 
the MedInria software package5 (Fillard et al., 2007), the diffusion 

slice and used for 2D non-linear warping of the DeArmond et al. 
slices to MNI template slices using the Image Processing Toolbox 
for MATLAB1. The DeArmond et al. atlas slices were then realigned 
to the MNI space orientation and linearly interpolated to obtain 
a 2-mm inter-slice distance. A software implementation of this 
atlas transformation is included as part of the VLSM 1.6 package 
for MATLAB2.

Region of interests in MNI space were then obtained from the 
VLSM results for the lesion–symptom analysis in DeArmond et al. 
(1989) atlas space (Figure 1; Dronkers et al., 2004, Figures 3 and 4) 
using the same procedure. A smoothing filter (8 mm FWHM 
Gaussian) was applied to each ROI in order to compensate for reg-
istration errors and the residual anatomical variability that remains 
after the spatial normalization of the healthy subject datasets to 
MNI space. These ROIs for the MTG, anterior STG/BA22, BA47, 
BA46, STS/BA39, and the WM subjacent to the STS were saved 
as binary mask images for the subsequent analyses (Figure 2). It 
should be noted that the VLSM findings include WM regions as 
well as the cortical areas listed in Table 3 of Dronkers et al. (2004). 
Tractography analysis of structural connectivity revealed the WM 
pathways associated with each ROI, while the functional connectiv-
ity analysis was restricted to the cortical gray matter (GM) contained 
within each ROI.

Figure 1 | Voxel-based lesion-symptom mapping findings for the regions 
critical for auditory sentence comprehension, as assessed by the CYCLe-r. 
The t-map is visualized on 11 slices from the DeArmond et al. (1989) brain atlas, 
which was used as the template for lesion reconstructions. Significant voxels 
from this map comprised five distinct regions, each associated with a different 
pattern of performance (see text). (Reprinted with permission from Dronkers 
et al., 2004).

Figure 2 | regions of interest in MNi space based on the lesion-
symptom mapping findings for the posterior MTg (n), anterior STg/
BA22 (n), BA47 (n), BA46 (n), STS/BA39 (n), and white matter underlying 
the STS (n). Slice positions are marked on a mid-sagittal view of the MNI 
template on the upper right side.

1www.mathworks.com
2http://crl.ucsd.edu/vlsm

3http://www.loni.ucla.edu/ICBM
4https://www.mristudio.org
5http://www-sop.inria.fr/asclepios/software/MedINRIA
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each functional imaging session, subjects were instructed to rest 
with their eyes open. Signed informed consent, approved by the 
institutional review boards of the New York University School of 
Medicine and New York University, was obtained from each subject 
prior to participation.

fMRI data pre-processing
Functional magnetic resonance imaging datasets were pre- processed 
using the standard SPM88 protocol which includes slice-timing 
correction, correction for head movements using rigid-body rea-
lignment to the mean EPI image from each session, co-registra-
tion of EPI data to the anatomical scan for each subject, tissue 
segmentation and normalization of anatomical scans to standard 
(MNI) space with the unified segmentation and normalization 
algorithm implemented in SPM8 (Ashburner and Friston, 2005). 
The EPI datasets were transformed to standard space using the 
normalization parameters for anatomical scans, with a final spatial 
resolution of 2.5 mm3 isotropic voxels. A Gaussian smoothing filter 
(6.125 mm full width at half maximum) was applied to enhance 
the signal-to-noise ratio. Tissue segmentation of the anatomical 
images isolated the GM, WM, and cerebrospinal fluid (CSF) com-
partments, which were used in the functional connectivity analysis 
described below.

Resting-state functional connectivity analysis
The Functional Connectivity Toolbox9 for SPM8 was used for 
 deriving the functional connectivity maps for each ROI. The BOLD 
time-series for each of the ROIs was extracted, averaging over the 
GM voxels (derived from the tissue segmentation of anatomical 
images) included in the ROI. Resting fMRI data need to be corrected 
for artifacts of non-neural origin associated with physiological (res-
piratory and cardiac) events, instrument noise, and head move-
ments, which can induce spurious correlations into the connectivity 
analysis. Confounding signals were estimated from the WM and 
CSF segments using the CompCor method (Behzadi et al., 2007). 
These signals together with movement-related covariates were 
removed from the fMRI data using regression. Next, the residual 
BOLD time-series were band-pass filtered over a low-frequency 
window of interest (0.008 Hz < f < 0.08 Hz). Correlation maps for 
each ROI in each session and each subject were then produced by 
computing the Pearson’s correlation coefficients between the ROI 
time-series and the time courses for all brain voxels. The correlation 
maps for all subjects were converted to normally-distributed scores 
using Fischer’s transform and submitted to one-sample t-tests to 
compute the group-level maps of functional connectivity for each 
ROI. Only positive correlations were mapped for this investigation. 
The resultant statistical parametric maps after testing for statisti-
cal significance using a voxel-wise threshold of p < 0.01, corrected 
for multiple comparisons (family-wise error rate across all brain 
voxels), and a cluster extent threshold of 100 mm3 (40 contiguous 
voxels). Only the cortical extents of these maps are reported in the 
present manuscript. The anatomical distributions for the functional 
connectivity maps were assessed in relation to digital atlases for 

6http://www.trackvis.org
7http://www.nitrc.org/projects/fcon_1000

tensor was computed (Basser, 1995), and streamline tractography 
was applied to derive fiber pathways following the principal diffusion 
direction at each voxel. The default settings in MedInria were used 
for this analysis. The tractography results were then imported into 
the TrackVis package6 (Wang et al., 2007) for visualization and the 
isolation of WM tracts for the structural connectivity analyses.

The ROIs described in the preceding section were transformed 
to each subject’s native dataset space for isolating the tractography-
 defined fibers associated with each ROI. For this purpose, the defor-
mation fields produced by the normalization of the reference (mean 
B0) image were inverted using the Deformations utility in SPM8, 
and the resulting reverse mapping was applied to each ROI defined 
in MNI space to identify the corresponding regions in each sub-
ject’s brain. The fiber groups intersecting these reverse-normalized 
ROIs were isolated and manually segmented into fiber bundles 
corresponding to known anatomy and published diffusion imag-
ing atlases (Wakana et al., 2004; Burgel et al., 2006; Catani and 
Thiebaut de Schotten, 2008; Hua et al., 2009; Lawes et al., 2008; 
Mori et al., 2008; Oishi et al., 2008). For this purpose, additional 
ROIs were used to delineate several major pathways, consistent with 
the published guidelines for identifying and isolating fiber bundles 
using the multiple-ROI approach (Wakana et al., 2007; Catani and 
Thiebaut de Schotten, 2008; Hua et al., 2008). These additional ROIs 
for isolating individual pathways were first drawn in MNI space 
on a color-coded principal diffusion direction map derived from 
the ICBM DTI-81 group-averaged tensor map. They were then 
reverse-normalized to native space datasets for tract identification. 
Custom MATLAB code was used to extract the fiber groups associ-
ated with the ROIs. The extracted bundles were compared against 
the ICBM DTI-81 probabilistic maps and tractography publications 
to verify their identity. The two authors independently completed 
this process. Fiber tract findings are reported in the results section 
if at least 10 tractography streamlines were found in at least 20 
(80%) of the 25 subjects.

assessMent of functIonal connectIvIty wIth restIng-state 
fMrI data
Functional magnetic resonance imaging
Resting-state fMRI data from 25 healthy subjects were acquired 
from a publicly available database of functional and structural 
imaging data7 (Biswal et al., 2010). We chose to use the NYU Test 
Retest Reliability dataset from the 1000 Functional Connectomes 
Project database, as the subjects in this study were scanned on 
three different dates and the stability of the functional connectiv-
ity patterns have been demonstrated (Shehzad et al., 2009). The 
image acquisition protocol (NYU Test Retest Reliability dataset, as 
described in previous publications that presented findings from 
these data (Margulies et al., 2009; Shehzad et al., 2009; Kelly et al., 
2010), was: EPI on a Siemens Allegra 3.0 Tesla scanner with repeti-
tion time (TR) = 2000 ms, echo time (TE) = 25 ms; flip angle = 90°, 
matrix = 64 × 64; FOV = 192 mm; voxel size = 3 mm × 3 mm × 3 mm, 
39 axial slices, 197 functional volumes, and a high-resolution 
T1-weighted anatomical image (magnetization-prepared gradient 
echo sequence with 1 mm × 1 mm × 1 mm resolution). During 

8http://www.fil.ion.ucl.ac.uk/spm/
9http://www.nitrc.org/projects/conn
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(Figure 3). These pathways were: the direct (temporo-frontal) and 
indirect (temporo-parietal) segments of the AF; the IOFF; the MdLF; 
the ILF; and posterior corpus callosum fibers, consistent with the tem-
poro-temporal interhemispheric connections through the tapetum.

As for the fiber bundles linking the MTG ROI with the other ROIs 
(Figure 4), those passing through the MTG ROI and reaching the 
BA47 ROI were identified as being part of the IOFF. Short  fibers con-
necting the MTG with the STS/BA39 ROI were identified as fibers of 
the indirect segment of the AF. Those passing adjacent to the MTG 
and reaching the anterior STG/BA22 ROI were  recognized as MdLF 
fibers, based on their trajectory12. Connections with the BA46 ROI 
could not be consistently traced, for reasons further discussed in the 
section entitled Anterior Middle Frontal Gyrus (BA46 ROI).

Resting-state functional connectivity
The whole-brain resting functional connectivity map for the MTG 
ROI revealed an extensive network of cortical association areas, 
importantly, several peri-sylvian and neighboring regions that have 
been implicated in language, and their right hemisphere homo-
logues (Figure 5). Because of the broad extent of this map, we 
also identified the regions that show the strongest correlations at 
a more stringent threshold (t > 12.13, cluster extent > 62.5 mm3), 
which are reported in Table 1. In the left lateral temporal lobe, we 
identified a zone running from the temporal pole to the temporo-
parietal and temporo-occipital regions, extending into the inferior 
temporal cortex (BA 20 and BA 37), the STS, and parts of the STG 
(BA 22), but excluding the primary auditory cortex (BA 41 and 

cortical areas and gyral anatomy (Harvard–Oxford probabilistic 
atlas, Desikan et al., 2006; AAL atlas, Tzourio-Mazoyer et al., 2002), 
distributed with the FSL10 and MRICron11 software packages.

In addition to the whole-brain resting-state functional connec-
tivity maps for the five cortical ROIs, the pair-wise interregional 
correlations between these regions were also examined. The mean 
BOLD time-series for all the GM voxels contained in each ROI 
was obtained, after performing band-pass filtering and artifact 
correction as described above. Pearson’s correlation coefficients 
were computed for each pair of ROIs in each subject, and analyzed 
across subjects with one-sample t-tests (p < 0.01, corrected for 
multiple comparisons).

results
In the following sections, the structural and functional connectivity 
patterns associated with each of the five ROIs are reported, followed 
by a summary of the findings. The structural connectivity findings 
are illustrated in figures for two representative subjects, showing 
the distinct fiber pathways associated with each ROI. Each path-
way was reliably traced in at least 80% (20 out of 25) of the DTI 
datasets. Functional connectivity maps have been rendered on a 
semi-inflated view of the single-subject cortical surface reconstruc-
tion provided in SPM8.

posterIor MIddle teMporal gyrus (Mtg roI)
Structural connectivity
Streamline tractography revealed that the white matter contained 
within the MTG ROI contains fibers from several major path-
ways, which were consistently identified in at least 80% of subjects 

12It should be noted that while the MdLF has been shown to interconnect  inferior 
parietal regions with the multimodal areas of the STG in the monkey brain 
 Schmahmann et al. (2007), it is still unknown how this fiber bundle relates to the 
MTG in the human brain.

Figure 3 | Major pathways associated with the left MTg region of 
interest. Streamline tractography results from two subjects are presented as 
exemplars. Each row depicts the individual subject’s ROI warped to their own 
native space (left, yellow), followed by sagittal, axial, and coronal perspectives of 

the fiber bundles involved. The direct and indirect segments of the arcuate 
fasciculus, the inferior occipito-frontal fasciculus, the middle longitudinal 
fasciculus, the inferior longitudinal fasciculus, and transcallosal projections, 
consistent with the tapetum, are shown.

10www.fmrib.ox.ac.uk/fsl
11www.nitrc.org/projects/mricron

Frontiers in Systems Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 1 | 

Turken and Dronkers Aphasia and language comprehension networks

189

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
http://www.frontiersin.org/Systems_Neuroscience/


Figure 4 | Pathways linking the posterior MTg region of interest with the 
other rOis: BA47, STS/BA39, and anterior STg/BA22. Each row again depicts 
the findings for each sampled individual, with the ROI and fiber bundles depicted 
in the subject’s native space (left, yellow). Fibers passing between the MTG and 

BA47 were identified as part of the IOFF. Those connecting MTG with STS/
BA39 were consistent with fibers of the indirect segment of the AF. The pathway 
likely to connect the MTG ROI with the anterior STG/BA22 ROI was identified 
as the MdLF.

42), which was mirrored in the right temporal lobe. The parietal 
regions showing the strongest correlations with the MTG were the 
left angular gyrus (BA 39) and superior parietal lobe (BA 7). A 
medial posterior parietal region was also functionally connected 
with the MTG. Frontal lobe functional connectivity was bilateral 

(more extensive in the left hemisphere) and comprised three zones: 
a broad cortical swath running along the superior–inferior direc-
tion on the lateral prefrontal cortex, including parts of the middle 
frontal gyrus and the precentral gyrus dorsally, continuing through 
the pars opercularis (BA44) and pars triangularis (BA45) of the IFG 
and ending inferiorly into the pars orbitalis (BA47); a dorso-medial 
zone including parts of BA6, BA8, BA9, and BA 32; and the gyrus 
rectus (BA11) in the ventromedial frontal cortex. Regions of interest 
that showed functional connectivity with the MTG included STS/
BA39, BA47, and parts of anterior STG/BA 22, but not BA46.

anterIor BrodMann’s area 22 In the superIor teMporal gyrus 
(anterIor stg/Ba22 roI)
Structural connectivity
The middle longitudinal fasciculus and UF fibers were associated 
with the anterior STG/BA22 ROI in all subjects (Figure 6). Fibers 
passing adjacent to this ROI and the MTG ROI were identified as 
belonging to the MdLF. Pathways between the anterior STG/BA22 
and STS/BA39, BA47, and BA46 ROIs could not be found consist-
ently across subjects.

Resting-state functional connectivity
The functional connectivity map for the anterior STG/BA22 ROI 
included the whole extent of the superior temporal gyrus and 
neighboring sections of the MTG, BA 37, the temporal pole, the 
rolandic operculum, IFG pars orbitalis (BA 47) and the anterior 
cingulate cortex (BA 24), the supplementary motor area, the pre-
central gyrus (BA 6), and the insula (Figure 7). All of these regions 
were identified in both hemispheres. Other ROIs that showed func-
tional connectivity with the anterior STG/BA22 ROI were parts of 
the MTG and BA47.

Figure 5 | Functional connectivity profile of the left posterior middle 
temporal region that was previously found to be critical for the core 
processes supporting sentence comprehension (Dronkers et al., 2004). 
The regions that showed highly correlated (p < 0.01, corrected, cluster 
extent > 100 mm3) spontaneous activity with the left MTG seed are shown on 
a semi-inflated view of the cortical surface. The left and right hemispheres are 
shown on the left and right columns, respectively. The upper row shows the 
lateral surface, and the lower row, the medial surface of the cerebrum. Colors 
indicate t-values (dark red = lowest, yellow-white = highest, with the voxels 
within the ROI showing the highest correlation).
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Table 1 | Cortical areas found to be functionally connected to the left MTg seed region at a stringent threshold for significance (t > 12.13, cluster 

extent > 62.5 mm3).

Hemisphere and lobe Cluster size (voxels) Maximum t value Peak coordinates Anatomical label (AAL atlas) 

where cluster is found   x,   y,   z (mm)

Left temporal 1327 35.39 −63 −31  −5 Middle temporal gyrus (BA 21)

  29.55 −55 −61 −12 Inferior temporal gyrus (BA 37)

  13.96 −45 −49 −15 Inferior temporal gyrus (BA 20)

Right temporal 233 21.89  70 −41 −10 Inferior temporal gyrus (BA 20)

  16.85  70 −26  −7 Middle temporal gyrus (BA 21)

  13.91  63 −51 −17 Inferior temporal gyrus (BA 37)

Left frontal 234 18.8 −50   42 −15 IFG pars orbitalis

  17.09 −40   37 −17 IFG pars orbitalis

  14.85 −55   34   3 IFG pars triangularis

Left frontal 190 18.42 −50   14  26 IFG pars triangularis

  15.24 −55   17  8 IFG pars opercularis

  14.26 −48    7  38 Precentral gyrus (BA 6)

Right frontal 28 16.73  43   39 −15 IFG orbitalis (BA 47)

Left parietal 47 14.73 −35 −59  48 IPL (BA 7)

Left parietal 35 14.34 −43 −56  31 AG (BA 39)

Figure 6 | Pathways associated with the anterior STg/BA22 region of interest (left, red). Streamline tractography results from two subjects are presented as 
exemplars. The middle longitudinal fasciculus and the uncinate fasciculus were found to be associated with this ROI.

pars orBItalIs of the InferIor frontal gyrus (Ba47 roI)
Structural connectivity
The BA47 ROI was consistently found to be associated with the inferior 
occipito-frontal fasciculus (Figure 8). In all subjects, streamlines consist-
ent with the IOFF passed through both the BA47 and MTG ROIs.

Resting-state functional connectivity
The functional connectivity map for BA47 consisted of six clusters 
(Figure 9). The largest cluster was centered in the IFG, extending to pars 
opercularis (BA 44), inferior precentral gyrus (BA 6), and the temporal 

pole (BA 38). Other clusters were in the MTG bilaterally, the right IFG, 
a left posterior region which included parts of the left angular gyrus 
(BA 39) and the superior temporal gyrus (BA 22, but not anterior STG/
BA22), and the left medial frontal cortex (SMA, BA 6, 8, and 9).

anterIor MIddle frontal gyrus (Ba46 roI)
Structural connectivity
Tractography analysis of the BA46 ROI did not reveal a  consistent 
pattern across subjects, possibly due to the smaller size of this 
ROI, intersubject anatomical variability that affected  registration 
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posterIor superIor teMporal sulcus and BrodMann’s area 39 
(sts/Ba39 roI)
Structural connectivity
Fibers associated with the direct and indirect segments of the AF 
were found to pass through the WM region included in the pos-
terior STS/BA39 ROI (Figure 11). Short, vertically-oriented fibers 
interconnecting the MTG and STS/BA39 ROIs were also found in 
all subjects. Also of note was a robust bundle of short fibers con-
necting the STS/BA39 ROI with other parts of the angular gyrus. 
Fibers between STS/BA39 and BA47 or anterior STG/BA22 could 
not be consistently identified across subjects.

Resting-state functional connectivity
The functional connectivity pattern of the STS/BA39 ROI included 
two large clusters running along the MTG bilaterally, forming a 
bridge between the temporal pole and the angular gyrus, and 
extending into the superior and inferior temporal gyri (Figure 12). 
Other functionally-connected regions were in the left lateral 
 prefrontal cortex, including the pars orbitalis (BA 47) and pars 
triangularis, the left middle frontal gyrus, bilateral dorso-medial 
frontal regions, right BA 47, the gyrus rectus, mid-cingulate cortex, 
and the medial posterior parietal cortex, bilaterally. Other ROIs that 
showed functional connectivity with the STS/BA39 ROI included 
parts of the MTG, BA47, and anterior STG/BA22 ROIs, but not 
the BA46 ROI.

whIte Matter underlyIng the superIor teMporal sulcus (sts 
wM roI)
The fiber composition of a WM region subjacent to the STS was 
also analyzed. This region was reported in our lesion–symptom 
mapping analysis as part of the STS/BA39 ROI (Dronkers et al., 
2004), but it was also noted that it could represent a distinct func-

Figure 7 | resting-state functional connectivity of the left anterior STg/
BA22 rOi. (Lateral and medial views of the left and right hemispheres, 
p < 0.01, corrected, cluster extent > 100 mm3, colors indicate t-values, dark 
red = lowest, yellow-white = highest, with the voxels within the ROI showing 
the highest correlation).

Figure 8 | Pathways associated with the BA47 rOi (left, blue). Streamline tractography results from two subjects are presented as exemplars. The inferior 
occipito-frontal fasciculus as well as a group of IOFF fibers associated with the posterior MTG ROI were identified.

 accuracy, and/or limitations of streamline tractography. It is 
important to note the BA46 ROI does not cover the entire extent 
of Brodmann’s area 46 and that an analysis of the entire region 
would undoubtedly reveal an extensive connectivity pattern.

Resting-state functional connectivity
The functional connectivity map for the BA46 ROI included 
 bilateral middle frontal gyri, small sections of the supramarginal 
gyrus (SMG), and anterior cingulate cortex (BA 24, 32) as well as 
the left anterior insula (Figure 10).
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Figure 10 | Functional connectivity of the BA46 rOi. (Lateral and medial 
views of the left and right hemispheres, p < 0.01, corrected, cluster 
extent > 100 mm3, colors indicate t-values, dark red = lowest, yellow-
white = highest, with the voxels within the ROI showing the highest 
correlation).

Figure 9 | resting-state functional connectivity map of the BA 47 region 
of interest. (Lateral and medial views of the left and right hemispheres, 
p < 0.01, corrected, cluster extent > 100 mm3, colors indicate t-values, dark 
red = lowest, yellow-white = highest, with the voxels within the ROI showing 
the highest correlation).

tional unit on its own (Dronkers et al., 2004, p. 159, Figure 4, slice 7, 
footnote 2). This small region was found to contain fibers associated 
with five fiber systems: the direct (temporo-frontal) and indirect 
(temporo-parietal) segments of the AF, the IOFF, the MdLF, and 
transcallosal fibers consistent with the tapetum (Figure 13).

addItIonal analyses
Subdivisions of the posterior MTG
The extensive connectivity pattern of the MTG ROI was a surprising 
result. It is possible that ROI size, rather than location, may have 
contributed to this novel finding, as this ROI covers the whole 

extent of the MTG along the anterior–posterior axis (y = −18 to 
−70 mm) and also goes deeply into WM. For this reason, we sub-
divided the MTG ROI into subregions of equal length along the 
anterior–posterior axis, and analyzed their connectional anatomy 
patterns. Resting functional connectivity maps revealed an anterior-
to-posterior gradient, with the compartments in the anterior half of 
the MTG showing more widely distributed functional connectivity 
patterns than those in the posterior half (Figure 14). The second 
quarter of the MTG showed a distribution that best matched the 
extent of the original MTG functional connectivity profile. This 
subregion is consistent with the main MTG termination of the 
ascending section of the AF, and the STS WM ROI [the subsection 
entitled White Matter Underlying the Superior Temporal Sulcus 
(STS WM ROI)] is  situated superior to this section of the MTG. The 
IOFF, AF, MdLF, ILF and fibers of the tapetum all course through 
the WM underlying this segment of the MTG, so that a lesion in 
this region alone can affect all five fiber systems.

“Wernicke’s area”
Although Wernicke’s area has traditionally been associated with 
language comprehension, our 2004 lesion–symptom mapping 
results did not associate this region with language  comprehension 
impairments. To test if functional connectivity analysis could offer 
additional information regarding the role of this area in the lan-
guage network, Harvard–Oxford atlas-based ROIs were used. The 
functional connectivity maps for the planum temporale and the 
posterior SMG – regions associated with Wernicke’s area in some 
models (Geschwind, 1972; Bogen and Bogen, 1976) – showed dis-
tinctly different patterns compared to our MTG map, suggesting 
that these regions belong to separate networks (Figure 15).

structural and functIonal connectIons lInkIng the regIons 
of Interest: suMMary of fIndIngs
Table 2 summarizes the structural and functional connectivity 
patterns for the five cortical regions of interest. The MTG ROI 
was linked with the anterior STG/BA22 and STS/BA39 and BA47 
ROIs via several major pathways, although cortical terminations 
could not be ascertained in each case. In addition, the MdLF  fibers 
 associated with the anterior STG/BA22 ROI were found pass 
through a WM region subjacent to the STS, and course medially 
to the STS/BA39 ROI, suggesting that these two ROIs could be 
linked via the MdLF. Functional connectivity analysis of the ROI-
to-ROI correlations were found to be significant for all pair-wise 
combinations of the MTG, anterior STG/BA22 and STS/BA39 and 
BA47 ROIs, whereas the BA46 ROI was only correlated with the 
MTG ROI (p < 0.01, corrected).

dIscussIon
Our analysis of the structural and functional connectivity of 
the key regions implicated in auditory sentence comprehension 
by our previous work (Dronkers et al., 2004) revealed a bilateral 
temporo-parieto-frontal network supported by numerous WM 
pathways and interacting with several other brain regions outside 
the  traditionally-recognized language areas.

The structural connectivity analyses revealed that six long- 
distance fiber pathways were associated with these regions: 
the AF, the IOFF, the ILF, the MdLF, the UF, and the tapetum. 
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Figure 11 | Pathways associated with the left STS/BA39 region of 
interest (left, green). Streamline tractography results from two subjects are 
presented as exemplars. The primary fiber pathway associated with this ROI is 

the arcuate fasciculus, with its direct and indirect compartments shown. Short 
fiber bundles connecting this ROI to the MTG ROI and the angular gyrus are 
also represented.

Functional connectivity analyses revealed an extensive network 
of cortical association areas within the left hemisphere, extend-
ing to homologous regions of the right hemisphere. The extent 
of this network is consistent with the notion that a complex 
 process such as understanding spoken sentences is not mediated 
by a single region or pathway alone, but requires the integrated 
functioning of a broadly-distributed constellation of regions 

Figure 12 | resting-state functional connectivity pattern for the 
posterior STS/BA39 region of interest. (Lateral and medial views of the left 
and right hemispheres, p < 0.01, corrected, cluster extent > 100 mm3, colors 
indicate t-values, dark red = lowest, yellow-white = highest, with the voxels 
within the ROI showing the highest correlation).

 interacting via multiple routes within and outside the language 
areas (Mesulam, 1998; Dronkers, 2000; Dronkers et al., 2000a; 
Damasio and Damasio, 2002).

One important implication of the present findings is that the left 
MTG holds a key position within this network for language compre-
hension, indicated by the richness of its structural and functional 
connectivity as described here. This region appears to function 
as a focal point with no less than five major fiber pathways pass-
ing beneath it and a broadly distributed set of cortical association 
areas functionally connected with it. It is not surprising that injury 
to this region, rich in connections, results in severe and persist-
ing language comprehension impairments. This observation also 
highlights an important notion. Regions such as the MTG and its 
underlying white matter, where multiple fiber pathways converge, 
could serve as the backbone of a complex network, but such regions 
also become the most vulnerable part of the whole network when 
neurological damage occurs.

Another major finding supports the proposal (Duffau et al., 
2005) that the IOFF, a pathway that is not part of the canonical 
language network, might play an important role in the compre-
hension and production of meaningful speech. We found that 
the IOFF fibers pass through the temporal white matter region 
highlighted in our lesion analysis, providing a bridge between the 
middle temporal region and inferior prefrontal area 47, which has 
been implicated in high-level language comprehension by sev-
eral findings, including our lesion analysis (Bookheimer, 2002; 
Dronkers et al., 2004; Hagoort et al., 2004; Binder et al., 2009). 
Our functional connectivity findings also support a direct link 
between the MTG and BA47 that is mediated by the fibers that 
travel along the IOFF.
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Figure 13 | Fiber pathways passing through the white matter underlying 
the superior temporal sulcus. Five different fiber bundles were found to 
contribute fibers to this small white matter region (left, green). Direct and 

indirect segments of the arcuate fasciculus, the inferior occipito-frontal 
fasciculus, the middle longitudinal fasciculus, and the tapetum are shown for the 
two subjects chosen as exemplars.

Figure 14 | resting functional and structural connectivity profiles of 
subregions of the posterior MTg, divided into four parts of equal length 
along its anterior–posterior extent (y = −18 to −70 mm). An anterior-to-posterior 
gradient was observed in these maps, with the two anterior subregions showing 
more widely-distributed functional connectivity and richer structural connectivity 
patterns. The individual compartments are indicated on the top row, functional 

connectivity maps are presented in the middle row, and tractography results for 
one subject chosen as an exemplar are in the bottom row. The results for the 
whole MTG ROI are shown in the first column, followed by the findings for the 
individual subregions. In the functional connectivity maps, colors indicate t-values 
(dark red = lowest, yellow-white = highest, with the voxels within the ROI 
showing the highest correlation).

Finally, the AF was found to have extensive connections within 
the MTG, consistent with other recent findings (Powell et al., 2006; 
Glasser and Rilling, 2008; Rilling et al., 2008). Traditional models 
of language processing have previously considered this tract to 
connect the posterior superior temporal gyrus with inferior fron-

tal regions. However it is important to remember that the termi-
nations of this tract are not restricted to the superior temporal 
gyrus but reach the MTG as well. Thus, future models of language 
processing must also take into account the vast connections of this 
important fiber pathway including those that extend into the MTG. 
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the AF, the IOFF, the ILF, the MdLF, the UF, and the tapetum. The 
left MTG, with the most extensive structural and functional con-
nectivity profile, emerged as a central component of the language 
comprehension network. Of the six major pathways implicated in 
the present study, only the UF was not associated with the MTG. 
Regions of functional connectivity for the MTG included large 
territories in temporal, parietal, and frontal cortices in the two 
hemispheres. The anterior STG/BA22 ROI included fibers from the 
MdLF, consistent with its functional connectivity pattern extending 
posteriorly along the superior temporal gyrus toward the supra-
marginal and angular gyri, as well as fibers of the UF, which link 
anterior sections of the temporal lobe with the IFG. However, direct 
pathways linking this region with the MTG, STS/BA39, and BA47 
could not be consistently identified. The STS/BA39 ROI was asso-
ciated with fibers from the AF and had a functional connectivity 
pattern that bridged the middle temporal and the angular gyri. The 
structural and functional connectivity findings for the BA46 ROI 
did not link this area with the other regions of interest, which could 
be due to the technical limitations of the small ROI size and high 
inter-individual anatomical variability in this location. BA47 was 
found to be part of a lateral and dorso-medial prefrontal network, 
as indicated by its functional connectivity pattern, and was structur-
ally connected to posterior brain regions via the IOFF.

The overall pattern is remarkably consistent with a recent 
characterization of the functional anatomy of the verbal semantic 
system based on a meta-analysis of 120 functional neuroimaging 
investigations (Binder et al., 2009). The congruence between the 
two sets of findings, as seen in Figure 16, provides further sup-
port for the notion that language comprehension is subserved 
by an extensive network of regions distributed throughout the 
left hemisphere.

structural and functIonal connectIvIty of the left MIddle 
teMporal gyrus: IMplIcatIons for understandIng the role of 
the Mtg In language and of Mtg lesIons In aphasIa
The left MTG’s rich pattern of structural and functional connectiv-
ity suggests a core function in the language comprehension net-
work. This pattern can also help explain the severe nature of the 
 comprehension deficits produced by lesions affecting the MTG 
and underlying white matter (Dronkers et al., 1995, 2004; Binder 
et al., 2003). We found that fibers from five major pathways are 

The present findings and their implications for  understanding 
 comprehension impairments in aphasia are discussed in more 
detail in the  following sections.

the extended network for language coMprehensIon
The present findings indicate the involvement of a large-scale net-
work in language comprehension, including the left MTG, anterior 
STG/BA22, BA47, and STS/BA39, which had been identified in 
our earlier lesion analysis findings (Dronkers et al., 2004). Several 
long-distance white matter pathways are associated with the lesion-
symptom mapping findings: the direct and indirect segments of 

Figure 15 | resting-state functional connectivity maps for the left planum temporale (left) and the left posterior supramarginal gyrus (right) according to 
the Harvard–Oxford cortical atlas. These maps suggest that the network associated with the posterior MTG is distinct from the networks that include the planum 
temporale and the posterior SMG. Colors indicate t-values (dark red = lowest, yellow-white = highest, with the voxels within the ROI showing the highest correlation).

Table 2 | Summary of the structural and functional connectivity findings 

for each region of interest in relation to the other rOis.

rOi Functional connectivity Structural connectivity

MTG STS/BA39 STS/BA39 via the AF indirect,  

 Anterior STG/BA22 anterior STG/BA22 via the  

 BA47 MdLF*, BA47 via the IOFF*

 BA46 

STS/BA39 MTG MTG via the AF indirect,  

 Anterior STG/BA22 anterior STG/BA22 via the MdLF^

 BA47 

Anterior MTG MTG via the MdLF*,  

STG/BA22 STS/BA39 STS/BA39 via the MdLF^

 BA47 

BA47 MTG MTG via the IOFF*

 STS/BA39 

 Anterior STG/BA22 

BA46 MTG

*It must be noted that the fiber pathways implicated here cannot be confirmed 
with the streamline tractography technique currently utilized. While these fibers 
do pass through both regions of interest, they cannot be traced to their cortical 
terminations as these would intermix with the ascending fibers of the arcuate 
fasciculus that run close to the cortical surface in this region.
^Though MdLF fibers were not specifically seen to enter the STS/BA39 ROI, 
current knowledge of the anatomy of this tract is that it does traverse beneath 
the STG toward Brodmann’s area 39, and thus would be the likely pathway to 
connect the Anterior BA22 ROI with the STS/BA39 ROI.
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level comprehension is indicated by our previous lesion-symptom 
mapping analysis (Dronkers et al., 2004). Other investigations on 
the effects of brain lesions (Hart and Gordon, 1990; Hillis et al., 
1999; Boatman et al., 2000; Bates et al., 2003) and  functional neu-
roimaging findings with healthy individuals also support this 
conclusion (Binder et al., 1997, 2009; Bookheimer, 2002; Vigneau 
et al., 2006; Price, 2010). Binder (2003) has also reviewed the 
neurological evidence implicating the MTG in comprehension 
deficits in Wernicke’s aphasia. Mapping lexical representations 
to their concepts relies upon extensive links between distributed 
representations throughout the cerebrum, including regions that 
support sensory and motor experiences, such that associations can 
be formed between words and their meanings.

The extensive connectivity of the left MTG also suggests a 
role that Mesulam (1990, 1998) describes as a neural epicenter. 
Mesulam introduced a framework for thinking about large-scale 
functional networks which are widely distributed but also include 
core regions that serve as transmodal gateways. This concept also 
finds a parallel in Damasio’s convergence zones model positing that 
highly connected brain regions serve to bind together distributed 
representations (Damasio, 1989). Mesulam further predicted that 
lesions affecting such gateways would produce multiple discon-
nections, disrupting upstream, and downstream network func-
tions. For the language network, the MTG could be such a critical 
neural epicenter.

A brain lesion affecting the MTG and underlying white matter 
would disrupt the functionally and structurally connected network 
that we found here in the healthy brain. For example, such a lesion 
could produce a disconnection between left temporal and frontal 
regions, as both the AF and the inferior occipito-frontal fascicu-
lus would be affected. Communication across the length of the 
temporal lobe would be disrupted because of damage to the ILF. 
Lateral temporal and inferior parietal regions would be discon-
nected because of damage to the indirect segment of the AF and 
the MdLF. Temporo-temporal interhemispheric communication 
would also be affected by the loss of tapetum fibers. Thus, even a 
small lesion in a strategic place such as the MTG would have far 
more serious ramifications than a comparable lesion elsewhere in 
the network.

a seMantIc workIng MeMory pathway vIa the InferIor 
occIpIto-frontal fascIculus?
We found that the left MTG and BA47 were functionally con-
nected, and that their interaction was most likely to be medi-
ated through a direct pathway via the IOFF. It has been proposed 
that the larger Brodmann’s area 47, together with parts of the 
adjacent BA 45, might support higher-level processes in com-
prehension that are required only when processing demands 
are high (Bookheimer, 2002; Friederici, 2002; Dronkers et al., 
2004). Proposals for BA 47 functions include working memory 
for semantic features and thematic structure (Friederici, 2002), 
the unification of individual semantic features into an overall 
representation at the multi-word level, and the controlled aspects 
of the retrieval, selection, and evaluation of semantic  information 
(Thompson-Schill et al., 1997; Gabrieli et al., 1998; Poldrack et al., 
1999). In our earlier lesion-symptom mapping investigation, 
patients whose lesions included BA47 were only impaired when 

included in the white matter adjacent to the MTG. These pathways, 
the inferior occipito-frontal fasciculus, the AF, the inferior and mid-
dle longitudinal fasciculi, and the tapetum, mediate long-distance 
interactions between temporal, parietal and frontal regions and 
temporo-temporal interhemispheric communication. Consistent 
with its structural connectivity pattern, the functional connectivity 
profile of the MTG includes a broad network of left peri-sylvian 
association cortical areas known to be involved in language, homolo-
gous regions in the right hemisphere, as well as several association 
areas that extend beyond the classical canonical language network. 
This extensive functional connectivity pattern also accords with a 
resting-state functional connectivity mapping study of the brain 
regions involved in reading, which found the left MTG as a common 
node in a conjunction analysis of six different networks investigated 
(Koyama et al., 2010). A recent resting-state fMRI found that the 
MTG is among the most highly connected regions in the cerebral 
cortex (“cortical hubs”; Buckner et al., 2009). The left MTG peak 
reported by Buckner and colleagues (−62, −38, −12 mm, Buckner 
et al., 2009, Table 3) is also consistent with the MTG subdivision 
we have found to have the most extensive functional connectivity 
profile (Figure 14; second section of the MTG ROI).

It is perhaps not surprising that a region that supports core 
lexical-semantic processes should be highly integrated with broadly 
distributed brain networks. That the MTG is involved even in word-

Figure 16 | (A) A large-scale network for verbal semantic processing 
identified by a meta-analysis of 120 functional neuroimaging studies, 
and the underlying structural connections inferred from tracing studies 
of the homologous regions in the macaque from (Reprinted with 
permission from Binder et al., 2009, page 2779, Figure 7). (B) Resting 
functional connectivity pattern for the left posterior MTG ROI, assessed 
in the present investigation, is largely consistent with the  
meta-analysis findings.
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Before reaching the frontal lobe, the IOFF passes between the 
insula and the putamen at the inferior level of the extreme and 
external capsules (Kier et al., 2004; Burgel et al., 2006; Fernandez-
Miranda et al., 2008; Martino et al., 2010). Histological tracing 
studies in the monkey brain have revealed a pathway between the 
posterior superior temporal gyrus and monkey homologues of BA 
44 and BA 45 in the IFG (Schmahmann and Pandya, 2006). These 
were later traced in the human brain with high-angular resolution 
diffusion imaging (Frey et al., 2008). Makris and Pandya (2009) also 
examined the trajectory of the frontal–posterior long association 
fibers through the extreme capsule in the human brain with stream-
line tractography, and found fibers extending to temporal, parietal, 
and occipital regions (Makris and Pandya, 2009, Figures 1C, 3 and 
4). Saur et al. (2008, 2010) used probabilistic tractography to show a 
pathway through the EmC that links BA 47 and BA 45 with the most 
posterior extension of the MTG. These studies all describe fiber 
systems connecting temporal and frontal regions via an inferior 
pathway, which may contribute to language processing, Though 
they may not have been labeled as such, we believe all of the above 
investigations may have demonstrated fibers consistent with the 
IOFF, as their shape and trajectory are consistent with numerous 
fiber atlases and post-mortem examinations of the human brain 
(Ture et al., 2000; Catani et al., 2002; Mori et al., 2002, 2008; Kier 
et al., 2004; Burgel et al., 2006; Catani and Thiebaut de Schotten, 
2008; Fernandez-Miranda et al., 2008; Lawes et al., 2008; Martino 
et al., 2010).

the arcuate fascIculus and language coMprehensIon
The AF fibers that we found to be associated with the MTG are 
consistent with the emerging knowledge of this tract’s anatomy; 
diffusion imaging investigations of the human brain indicate a 
considerably more complex architecture than traditional language 
models presume. In the temporal lobe, AF fibers have been found 
not only in the superior temporal gyrus but in the MTG as well 
(Powell et al., 2006; Glasser and Rilling, 2008; Rilling et al., 2008). 
Temporal projections to and from the parietal lobe have been 
identified via an indirect AF segment (Catani et al., 2005). Frontal 
terminations have extended beyond BA 44 and 45 into BA 47, BA 9, 
BA 46, and BA 6 (Rilling et al., 2008). Traditional language models 
that only consider the AF as connecting Broca’s and Wernicke’s areas 
overlook the other possible ways in which AF fibers could support 
language and related cognitive processes.

One of these alternative functions could fall in the realm of 
semantic integration. In our previous study, lesions in the MTG and 
underlying white matter were associated with severe lexical compre-
hension impairments (Dronkers et al., 2004). In the present study, 
the MTG ROI was found to include the AF, specifically the direct 
and indirect segments as described by Catani et al. (2005). Whether 
these middle temporal AF fibers are critical for lexical comprehen-
sion cannot be determined from the existing data. However, the 
present findings do suggest that fibers of this tract connecting to 
the MTG could support the integration of lexical-semantics with 
other cognitive and linguistic mechanisms that are also involved in 
language comprehension. Lexical–semantic integration is certainly 
not the only function of this tract. Among other functions, the AF 
has been proposed as a dorsal route for auditory-motor mapping 
(Saur et al., 2008, 2010) in accordance with a dual-stream model 

presented with the most syntactically-complex sentences. This 
finding is consistent the view that BA 47 is engaged only when 
successful performance depends on the ability to keep track of sev-
eral pieces of information and to resolve between the alternative 
interpretations of sentence components. This could be achieved 
by reciprocal interactions between BA 47 and the MTG, so that 
the appropriate lexical-semantic representations can be selected, 
sustained in short-term memory throughout sentence processing, 
and integrated into the overall context. The structural substrate 
for these functional interactions could be provided by a direct 
connection between the two regions via the IOFF.

Evidence for a direct link between BA 47 and mid-lateral tem-
poral cortex comes from tract tracing work in the monkey brain 
(Petrides and Pandya, 1988, 2006; Schmahmann et al., 2007). 
Walker’s area 12, the monkey homolog of BA 47, was found to 
connect to the STS and adjacent dorsal inferotemporal cortex, the 
likely evolutionary precursor of the MTG (Rilling and Seligman, 
2002). In our investigation, streamline tractography revealed a 
pathway with terminations in BA47, running toward posterior 
regions via the white matter underlying the MTG. This pattern 
was consistent with the trajectory of the inferior occipito-frontal 
fasciculus as identified in other diffusion imaging tractography 
investigations (Catani et al., 2002; Mori et al., 2002, 2008; Catani 
and Thiebaut de Schotten, 2008). Even though its existence has been 
disputed in the monkey brain (Schmahmann and Pandya, 2007), 
several recent post-mortem investigations have described this tract 
in the human brain (Ture et al., 2000; Kier et al., 2004; Burgel 
et al., 2006; Fernandez-Miranda et al., 2008; Lawes et al., 2008; 
Martino et al., 2010). While streamline tractography did not show 
IOFF terminations in the MTG, we did observe that IOFF fibers 
approached within a centimeter of the MTG cortex. It is possible 
that streamline tractography failed to resolve IOFF fibers enter-
ing the MTG by crossing the other major pathways in this region; 
high-angular resolution diffusion imaging techniques designed to 
trace fibers through regions with complex fiber architecture might 
be best suited for this task (Wedeen et al., 2008). Thus, it will be 
important to better characterize the relationship between the IOFF 
and the MTG in future investigations using new techniques.

A role for the IOFF in language has also been proposed by 
Duffau and colleagues (Duffau et al., 2005; Duffau, 2008) after 
finding that semantic paraphasias could be induced by electrical 
stimulation of the IOFF while patients undergoing neurosurgery 
performed a picture naming task. Their interpretation of this 
finding is that the IOFF may serve as the principal pathway for 
a ventral semantic system. We propose an extension of this idea. 
It is possible that the top-down control signals from BA 47 that 
modulate temporal lobe semantic selection processes are dis-
rupted during IOFF stimulation, causing the semantic misnaming 
errors observed by Duffau and colleagues. Others have reported 
comprehension deficits in patients with thalamic infarcts that 
affect the temporal isthmus and adjacent peri-ventricular white 
matter (Naeser et al., 1982, 1987; Alexander et al., 1989). An inter-
esting possibility, which can be tested with diffusion imaging data 
from patients with focal white matter lesions, is that the IOFF 
is affected as well in such cases, since IOFF fibers pass through 
the temporal isthmus, between the acoustic and optic radiations 
(Burgel et al., 2006).
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predict the functional impact of well-circumscribed brain lesions 
and to examine where the network might be most vulnerable 
to neurological damage (Achard et al., 2006; Kaiser et al., 2007; 
Nomura et al., 2010). Finally, better characterization of the lan-
guage network and the relationship between lesion anatomy and 
behavioral disturbances will also allow a better characterization of 
patterns of recovery in aphasia, which is one of the key questions 
in behavioral neurology (Price, 2010).

lIMItatIons
Each of the methods presented here naturally has its own limita-
tions. The regions of interest that served as our starting point reflect 
the lesion-symptom mapping findings from only one study. While 
this study included a large a number of aphasic patients, there are 
certainly other lesion analyses and functional neuroimaging studies 
that can be used to identify and further refine regions of interest. 
The lesion findings were also restricted to the vascular territories 
affected in stroke. Therefore, cortical areas that emerged from the 
functional connectivity analysis, such as the dorso-medial frontal 
regions, would not have been identified in the patient findings. 
Structural and functional connectivity measures derived from 
in vivo magnetic resonance imaging data need to be interpreted 
with caution until they are fully validated with histological meas-
ures (Mesulam, 2009). While streamline tractography with DTI 
provides information on the trajectories of the core sections of 
major tracts, it cannot determine their cortical terminations with 
certainty (Hagmann et al., 2006). The utilization of established 
streamline tractography protocols in this investigation allowed us 
to identify the pathways associated with our earlier lesion find-
ings in relation to DTI-based WM atlases (Catani and Thiebaut de 
Schotten, 2008; Mori et al., 2008), and to make predictions about 
the cortical destinations. Future investigations using high-angular 
resolution diffusion imaging protocols (Hagmann et al., 2008) and 
probabilistic tractography algorithms (Frey et al., 2008) can provide 
more precise mapping of these pathways. Resting-state functional 
connectivity reveals which regions exhibit coherent activity pat-
terns, but cannot distinguish between monosynaptic and polysy-
naptic connections (Kelly et al., 2010). Despite such limitations, 
combining findings from neurological patients, with the newly 
available tools for assessing connectional anatomy of the brain, is 
a step in the right direction, both for understanding how language 
is organized in the brain, and for understanding the disorders that 
are caused by a disruption within the language network.

conclusIon
In this research, we analyzed the structural and functional connectivity 
of the brain regions found in our earlier investigation with apha-
sic patients to be critical for sentence comprehension. This analysis 
revealed a broadly distributed network of peri-sylvian and neighbor-
ing cortical association areas residing primarily, but not exclusively, 
in the left hemisphere and supported by numerous long-distance 
white matter pathways. These tracts span temporal, parietal, and 
frontal association cortices and provide a structural backbone for 
the language comprehension network, integrating the neural com-
putations carried out by key cortical nodes. The additional finding of 
an extensive connectivity pattern underlying the left MTG answered 
an earlier question as to why lesions affecting these structures pro-

which segregates phonological and semantic processing (Hickok 
and Poeppel, 2004). Most likely, the AF is a composite structure 
with multiple compartments specializing in transmitting different 
types of information. Whether this hypothesis is true is a question 
for future investigations.

other oBservatIons and soMe questIons for future research
The present study identified numerous major fiber pathways 
and functional connections that may form the backbone of the 
language comprehension network. Some of these structural and 
functional pathways and the cortical regions associated with them 
might be uniquely dedicated to auditory sentence comprehen-
sion. Another possibility is that each component of the language 
comprehension network might play multiple roles in the large-
scale distributed neural systems that support different aspects of 
language and cognition. This possibility is suggested by the over-
lapping but distinct connectivity profiles that we found for each 
of the regions of interest.

What is specific to language comprehension might be the coor-
dinated recruitment of these components to form a functional 
network to process verbal information. Thus, there are two impor-
tant questions to be addressed in future investigations. One ques-
tion is the precise delineation of the functional roles of individual 
fiber pathways and cortical regions in the language comprehension 
process. The other question is the characterization of the organ-
izing principles that shape the overall architecture of the language 
comprehension network.

While several white matter pathways and cortical regions were 
found to be associated with the regions identified as being criti-
cal for comprehension by our earlier lesion-symptom analysis 
(Dronkers et al., 2004), the present findings do not establish which 
of these play essential roles. For instance, our findings suggest the 
involvement of the MdLF and the UF in language comprehension. 
However, surgical removal of parts of these pathways does not 
appear to elicit permanent language deficits (Duffau et al., 2009; 
De Witt Hamer et al., 2010). The fact that these structures were 
associated with our regions of interest does not necessarily mean 
that they support language comprehension per se. More informa-
tion regarding the roles of these pathways may come from studies 
involving neurological patients.

Our functional connectivity findings implicate the right hemi-
sphere homologues of key left hemisphere areas in the language 
comprehension network. Our tractography findings indicate that 
left hemisphere lesions that produce comprehension deficits affect 
temporo-temporal interhemispheric connections via the tapetum. 
Right hemisphere involvement in the language comprehension net-
work (Just et al., 1996; Jung-Beeman, 2005) is another important 
question for future investigations.

Detailed analysis of neurological patient data with advanced 
imaging protocols will provide important clues as to the organiza-
tion of this system, how it is affected by well-circumscribed lesions 
to its cortical and WM components, and the specific roles of each 
of these components in the overall functioning of the network. 
Combined analysis of data from healthy subjects and neurologi-
cal patients will also play an important role (Turken et al., 2008). 
Further insights will also be gained by computer simulations of 
the effects of lesions in different parts of the language network to 
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and the ventral occipital–temporal areas (VOTAs; Pugh et al., 
2000a). This study will focus on the IFAs and its connection to 
these other two brain areas.

Functional activation oF the inFerior Frontal area in dyslexic 
readers
The IFA has been reported to have abnormal activation in DRs as 
compared to TRs in several studies. However, differences in IFA 
activation between DRs and TRs during phonological word decod-
ing tasks are not consistent across studies. Functional magnetic 
resonance imaging (fMRI) studies have reported over-activation 
of the left IFA (Hoeft et al., 2007; MacSweeney et al., 2009), the 
right IFA (Shaywitz et al., 2003), or neither IFA (Eden et al., 2004; 
Hoeft et al., 2006; Richards et al., 2007; MacSweeney et al., 2009) 
in DRs as compare to TRs during phonological word decoding 
tasks. Other fMRI studies have found underactivation of the IFA in 
DRs as compared to TRs during phonological word decoding tasks 
(Aylward et al., 2003; Cao et al., 2006). In fact, two meta-analyses 

introduction
Developmental dyslexia is the most common learning disorder 
worldwide, affecting both children and adults with a prevalence 
ranging up to 17.5% (Shaywitz, 1998). Dyslexia is a lifelong dis-
order with a wide variability in prognosis regardless of the qual-
ity of remediation. Reading disability may be represented on a 
continuum of severity with multiple genetic and environmental 
risk factors interacting to result in the phenotype known as dys-
lexia (Pennington and Lefly, 2001; Snowling, 2008). Individuals 
with developmental dyslexia have atypical patterns of cortical 
folding and migrational anomalies, both of which are consist-
ent with a prenatal origin of dyslexia (Galaburda et al., 1985; 
Kaufmann and Galaburda, 1989; Humphreys et al., 1990; Frye 
et al., 2010a). Many neuroimaging studies have compared pat-
terns of functional activation between dyslexic readers (DRs) 
and typical readers (TRs). Three regions of the brain that are 
often atypically activated in DRs as compared to TRs, include the 
inferior frontal areas (IFAs), the temporoparietal areas (TPAs) 

Greater pre-stimulus effective connectivity from the left 
inferior frontal area to other areas is associated with better 
phonological decoding in dyslexic readers
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Functional neuroimaging studies suggest that neural networks that subserve reading are 
organized differently in dyslexic readers (DRs) and typical readers (TRs), yet the hierarchical 
structure of these networks has not been well studied. We used Granger causality to examine 
the effective connectivity of the preparatory network that occurs prior to viewing a non-word 
stimulus that requires phonological decoding in 7 DRs and 10 TRs who were young adults. 
The neuromagnetic activity that occurred 500 ms prior to each rhyme trial was analyzed from 
sensors overlying the left and right inferior frontal areas (IFA), temporoparietal areas, and ventral 
occipital–temporal areas within the low, medium, and high beta and gamma sub-bands. A mixed-
model analysis determined whether connectivity to or from the left and right IFAs differed across 
connectivity direction (into vs. out of the IFAs), brain areas, reading group, and/or performance. 
Results indicated that greater connectivity in the low beta sub-band from the left IFA to other 
cortical areas was significantly related to better non-word rhyme discrimination in DRs but not 
TRs. This suggests that the left IFA is an important cortical area involved in compensating for poor 
phonological function in DRs. We suggest that the left IFA activates a wider-than usual network 
prior to each trial in the service of supporting otherwise effortful phonological decoding in DRs. 
The fact that the left IFA provides top-down activation to both posterior left hemispheres areas 
used by TRs for phonological decoding and homologous right hemisphere areas is discussed. In 
contrast, within the high gamma sub-band, better performance was associated with decreased 
connectivity between the left IFA and other brain areas, in both reading groups. Overly strong 
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activation and deactivation of sub-networks once the non-word appears.

Keywords: Granger causality, effective connectivity, magnetoencephalography, reading, dyslexia, top-down, compensatory 
mechanisms

Edited by:
Barry Horwitz, National Institutes of 
Health, USA

Reviewed by:
Ben Xu, National Institutes of Health, 
USA
Jason Smith, National Institutes of 
Health, USA

*Correspondence:
Richard E. Frye, Department of 
Pediatrics, University of Texas Health 
Science Center, 7000 Fannin—UCT 
2478, Houston, TX 77030, USA
e-mail: richard.e.frye@uth.tmc.edu

204

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/Systems_Neuroscience/about
https://www.frontiersin.org/systems_neuroscience/10.3389/fnsys.2010.00156/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=12818&d=2&sname=RichardFrye
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17781&sname=Meng_Hung_Wu
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17782&sname=JacquelineLiederman
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17783&sname=JanetMcGraw_Fisher
http://www.frontiersin.org/Systems_Neuroscience/


Frontiers in Systems Neuroscience www.frontiersin.org December 2010 | Volume 4 | Article 156 | 

Frye et al. Preparatory neural network structure in dyslexia

Functional connectivity in normal and dyslexic readers
As opposed to just studying regions of activation and deactivation, 
functional connectivity has been used to illuminate how subsystems 
interact to enable reading. One landmark study used positron emis-
sion tomography (PET) during single word reading of exception 
words or pseudowords. Correlational analyses were computed within 
task, between regions, and across subjects (Horwitz et al., 1998). Adult 
DRs as compared to TRs had weaker connectivity between the left 
fusiform gyrus and the left angular gyrus (Horwitz et al., 1998). This 
finding was similar to that reported by Pugh et al. (2000b) who used 
fMRI to determine functional connectivity between cortical areas. 
Pugh et al. (2000b) concluded that adult DRs as compared to TRs 
had weaker connectivity in the left hemisphere between the extrastri-
ate cortex and left angular gyrus. In the right hemisphere, however, 
DRs as compared to TRs had stronger connectivity between these 
structures. Recently Koyama et al. (2010) examined fMRI functional 
connectivity between key brain regions consistently implicated in 
reading during the resting state. Conjunction analysis identified the 
posterior part of the left IFA and the posterior part of the left middle 
temporal gyrus as loci of functional interactions with the majority 
of the other cortical regions involved in reading.

Newer effective connectivity techniques measure causal connec-
tivity. Structural equation modeling and dynamic causal modeling 
are the two effective connectivity techniques that have been applied 
to reading. These techniques require the experimenter to set up a 
restricted number of causal models. Free parameters are estimated and 
then the model’s fit to the data is assessed. Such effective connectivity 
techniques have been used in limited studies on reading in TRs (Bitan 
et al., 2009; Levy et al., 2009) and DRs (Cao et al., 2008; Quaglino 
et al., 2008). These studies have provided insight into the relation-
ship among key areas involved in reading for DRs. A recent study 
using structural equation modeling applied to fMRI data obtained 
during a pseudoword reading task found that causal connectivity 
between the left supramarginal cortex and the left IFA was absent in 
DRs but present in TRs matched for age or reading level. In contrast, 
in the same study, causal connectivity between the left supramarginal 
cortex and the left VOTA was intact for DRs and both groups of TRs 
(Quaglino et al., 2008). These data imply a specific lack of connectivity 
between the left IFA and left TPA in DRs. Similarly, using fMRI and 
dynamic causal modeling, other researchers showed that the top-
down influence from the left IFA to the left TPA found in TRs was 
absent in DRs (Cao et al., 2008). These studies provide support for 
the idea that interactions with IFA and posterior brain regions are 
abnormal in DRs. However, these model-driven techniques restrict 
the number of possible causal hypotheses. Consequently, some stud-
ies on reading have only evaluated one direction of coupling (e.g., 
feedforward; Levy et al., 2009) or analyzed only the left hemisphere 
(Cao et al., 2008; Quaglino et al., 2008; Bitan et al., 2009).

using granger causality to measure eFFective connectivity
In contrast to these model-driven techniques, Granger causality (GC) 
is a data-driven technique that empirically calculates the direction 
and strength of connectivity with minimal assumptions about the 
structure of the neural network. Unlike previous studies using effec-
tive connectivity techniques to study reading which have used fMRI 
and model-driven techniques, the current study uses GC to analyze 
MEG data. MEG has more than 100 times the temporal resolution 
of fMRI, thus providing the ability to resolve brain connectivity at 

of fMRI studies have not verified a consistent increase or decrease 
in activation of either the left or right IFAs (Maisog et al., 2008; 
Richlan et al., 2009).

In contrast to fMRI studies, magnetoencephalography (MEG) 
studies have suggested that it is not the amount of activation per se 
that is different between DRs and TRs, but the timing of the acti-
vation. For example, the onset of TPA activity preceded the onset 
of IFA activity for TRs while the onset of activity for the IFA and 
TPA were not different for DRs before an intervention (Simos et al., 
2007).

The inconsistent findings for IFA activation may be related to 
variation in the characteristics of the participants, in particular, 
the level of remediation. Indeed, it has been repeatedly reported 
in fMRI studies that IFA activity increases following remediation 
(Richards et al., 2002; Temple et al., 2003; Eden et al., 2004). This 
could suggest that IFA activity has a key role in enabling better 
phonological function in DRs. In addition, fMRI studies have 
shown that IFA activity increases from childhood to adulthood 
for DRs but not TRs, suggesting that the maturation of the IFA 
occurs along a different trajectory in DRs and TRs (Brunswick et al., 
1999; Shaywitz et al., 2007). It is noteworthy that the developmental 
increase in IFA activity from childhood through adolescence into 
adulthood for DRs corresponds to the course of phonological skill 
development for DRs that succeed in developing adequate phono-
logical decoding skills (Miller-Shaul, 2005; Svensson and Jacobson, 
2006). Thus, improvement in phonological across this time period 
might be related to IFA maturation.

Timing of the onset of IFA activity may also be related to reme-
diation. In DRs, the onset of activity for the IFA and TPA were 
not different before remediation. After remediation TPA activity 
preceded IFA activity in DRs the way it usually does in TRs (Simos 
et al., 2006, 2007). However, the number of dipoles, the MEG meas-
ure of functional activation, in the IFA did not change after reme-
diation for those participants that responded to the remediation 
therapy (Simos et al., 2006, 2007). These studies suggest that the 
IFA plays an integral role in phonological function, especially in 
the improvement of phonological function over time and with 
remediation, in DRs. However, there also appear to be discrepancies 
in functional activation between fMRI and MEG studies.

The involvement of the IFA in DRs may also be important 
since it subserves several aspects of executive function including 
inhibition and switching (Kenner et al., 2010), analogical reason-
ing (Hampshire et al., 2010), and updating (Tamnes et al., 2010). 
This is of special interest because several lines of evidence point 
to problems with executive function in DRs. For example, defi-
cits in working memory (Willcutt et al., 2001; Gioia et al., 2002), 
planning and organization (Gioia et al., 2002), set shifting and 
organization (Narhi et al., 1997), inhibition (Willcutt et al., 2005), 
sequencing (Brosnan et al., 2002), and problem solving (Lazar and 
Frank, 1998) have been documented in DRs. In fact, dysfunction 
of the executive attentional system has recently been implicated in 
relation to reading ability in DRs (Shaywitz and Shaywitz, 2008). 
Interestingly, the IFA may have an executive role specific to language 
as it has been shown to be involved in regulating language networks 
and word learning (Pugh et al., 2000a; Aron and Poldrack, 2005). 
Moreover, recent studies have shown that top-down regulation of 
the language system from the IFA develops during childhood in 
TRs (Bitan et al., 2009).
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linked to local feature integration (Fries, 2007) and the transient cou-
pling and uncoupling of local neural networks (Lachaux et al., 2008). 
Thus, we hypothesize that the gamma band activity will not be related 
to inter-regional integration signals like the beta-band activity.

materials and methods
ParticiPants
We examined 10 TRs and 7 DRs native English speakers between the 
ages of 18 and 45 years, with normal or corrected vision, normal hear-
ing, and no history of severe psychiatric or neurological illnesses or 
attention defects. DRs reported a childhood diagnosis of dyslexia and 
were either referred from the Office of Disability Services at Boston 
University or recruited from Curry College in Milton, MA, USA.

Reading performance composite was calculated by averaging the 
percentile ranks of reading rate and comprehension of the Nelson–
Denny Reading Test. DRs scored below and TRs scored above the 
25th percentile. All participants scored greater than or equal to 80 
on the Wechsler Adult Intelligence Scale as estimated from vocabu-
lary and block design subtests (Wechsler, 1997) and subtest scores 
were equivalent for DRs and TRs (Table 1). Right-handedness was 
confirmed by a score greater than 50 on the Edinburgh Handedness 
Inventory (Dragovic, 2004). Written informed consent was obtained 
in accordance with our Institutional Review Board regulations. 
Participants underwent an MEG and MRI scan as described below 
and received $20 per hour.

non-word rhyme task
Since equating difficulty across reading groups can be a confounding 
factor, a non-word rhyming task that could be manipulated to pro-
vide equivalent performance across reading groups was developed 
(McGraw Fisher et al., in press). The visual stimuli were projected 
by a Panasonic DLP projector (Model No. PT-D7500U) through an 
aperture in the chamber onto the back of a non-magnetic screen 
located 1.5 m in front of the participant. Non-word target items 
were presented for 400 ms each, and then the non-word test item 
appeared for 400 ms. The total time from trial onset to the onset 
of the test item remained constant at 1650 ms. Depending on the 
block, one, two, or three target items were presented sequentially 
before the test item. The participant’s task was to indicate if any of 
the target non-word(s) rhymed with the test non-word. A keypad 
press with the right index or middle finger indicated a rhyme or 
non-rhyme, respectively. The inter-trial interval was 2000 ms. Each 
testing block consisted of 60 randomly presented novel trials. TRs 
completed six blocks: four with one target item, one with two target 
items, and one with three target items. DRs completed five blocks: 

 multiple brain frequencies. However, the higher temporal resolution 
also allows connectivity to potentially change within the sampling 
window selected for analysis, thereby potentially resulting in a non-
stationary signal. Using a short window can mitigate this issue, but 
guidelines for choosing the window size have not been investigated 
in MEG (Ding et al., 2000; Frye and Wu, in press). For this reason, we 
analyzed effective connectivity before the onset of the experimental 
trial, just before presentation of the stimulus. During this pre-stimulus 
period, brain activity reflects a relatively static preparatory state (Liang 
et al., 2002), allowing the assumption of stationarity with respect to 
brain connectivity (and the first and second moment of the signal).

hyPothesized comPensatory role oF greater toP-down 
inFluence oF the leFt inFerior Frontal area in dyslexic 
readers
One characteristic that is pervasive among DRs is a lack of auto-
maticity in the phonological decoding systems. This has led some 
authors to describe DRs as having “effortful” word processing and 
suggest that the increased IFA activation in DRs represents this 
increased effort (Shaywitz and Shaywitz, 2005). However, despite 
this hypothesis, there is little evidence to specifically link the IFA 
to increased effort. Here we hypothesis that, indeed, the IFA is 
involved in compensating for this lack of automaticity by activat-
ing the language system though top-down influence. The optimal 
time to activate the language network would be prior to the onset 
of the stimulus, during the pre-stimulus periods.

Our main hypothesis is that the left IFA will demonstrate 
increased top-down influence on the posterior language brain areas 
(i.e., left TPA and left VOTA) for DRs but not TRs (since engage-
ment of the language network is automatic in TRs). Moreover we 
predict that a greater degree of top-down activation from left IFA 
to these posterior areas will be associated with better phonological 
decoding only in DRs.

To test this hypothesis, MEG data were extracted from each trial 
during the period just before the first non-word was presented on 
the display. We used GC to measure effective connectivity between 
key regions implicated in the brain networks responsible for pho-
nological word decoding and compared this connectivity between 
TRs and DRs. We also tested whether task performance correlated 
with effective connectivity during the pre-stimulus period.

examining Frequency bands to Further understand the role 
oF the inFerior Frontal area
In MEG, electroencephalogram (EEG), and intracranial studies, 
activity within the beta and gamma frequency sub-bands have been 
linked to phonological and orthographic processes required for read-
ing (Duncan Milne et al., 2003; Mainy et al., 2008; Matsumoto and 
Iidaka, 2008; Cornelissen et al., 2009; Trebuchon-Da Fonseca et al., 
2009; Penolazzi et al., 2010) and beta and gamma sub-bands have been 
reported to be different in TRs and DRs (Ortiz et al., 1992; Ackerman 
et al., 1994; Klimesch et al., 2001). Since beta band activity has been 
linked to large-scale integration of brain activity such as long range 
synchronization of the frontal, parietal, temporal, and occipital areas 
(Gross et al., 2004, 2006) and multimodal integration between cortical 
lobes (von Stein et al., 1999), it is hypothesized that activity within the 
beta frequency band will be related to large-scale inter-regional inte-
gration such as top-down control of frontal areas on posterior brain 
areas. In contrast to beta band activity, gamma band activity has been 

Table 1 | Participant characteristics [mean (standard deviation)].

Characteristic Typical readers Dyslexic readers

Age 21.9 (3.1) 25.0 (6.3)

Male:female 5:5 3:4

Handedness 77.8 (17.2) 87.1 (11.1)

Nelson–Denny rate 35% (21%) 6% (6%)

Nelson–Denny comprehension 65% (32%) 12% (13%)

Nelson–Denny average 50% (21%) 11% (8%)

Vocabulary subtest 12.6 (2.6) 13.6 (3.4)

Block design subtest 12.7 (1.6) 11.4 (2.0)
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trials were extracted for each participant. To reduce the number of 
channels, the signal amplitude at each location was derived from the 
longitudinal and latitudinal planar gradiometers as given in Eq. 1.

Signal amplitude

longitudinal amplitude latitudinal amplitud= +2 ee2

 
(1)

Signals were filtered into low (12–14 Hz), medium (15–19 Hz), 
and high (20–29 Hz) beta and low (30–59 Hz), medium (60–89 Hz), 
and high (90–120 Hz) gamma sub-bands using low-order bidirec-
tional Butterworth filters to prevent frequency and phase distortion. 
The signal was down-sampled by a factor of 2.

Region of interest selection
Data was selected from 24 sensor locations overlying the right and 
left IFA, TPA, and VOTA. A viewer depicting the exact position of the 
selected sensors over the 3D model for each participant was used to 
ensure that the position of the sensors corresponded to the regions 
of interest for each participant. The average Talairach coordinates 
of the cortex underlying the center of the groups of sensors for each 
region of interest are as follows: left IFA −54.2, 22.4, 1.71; left TPA 
−62.5, −51.1, 30.4; left VOTA −42.8, −62.4, −13.2; right IFA 57.7, 26.7, 
7.1; right TPA 58.0, −54.4, 35.8; right VOTA 39.2, −55.1, −14.4.

granger causality analysis
The interaction between multiple brain regions were processed 
using an implementation of GC we recently developed – Dynamic 
Autoregressive Neuromagnetic Causal Imaging (DANCI). DANCI 
uses least-squares linear regression (LSLR) to model the interac-
tions between a large number of MEG sensors or sources (Frye 
and Wu, in press). To calculate GC, a system of autoregressive (AR) 
models was constructed to represent the mutual influence of S sen-
sors on one another. The MEG signal from a set of sensors [1…S], 
where S = 24, with time points [1…T], where T = 20 (see below), 
is given in time series A = [a

s
(t):s = 1…S, t = 1…T]. A system of 

AR models of order P (see Eq. 2) was used to model the time series. 
The model order determines the number of coefficients that are 
used to model each sensor–sensor interaction.
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four with one target item and one with two target items. The block 
with three target items was not given to the DRs since they were 
found in preliminary studies to perform at about chance with such 
a difficult phonological task. In addition, this experimental design 
was found to provide equivalent performance across these two 
reading groups (McGraw Fisher et al., in press).

PerFormance measurements
A signal detection paradigm was used to obtain a measurement of 
performance without response bias. Rhyme trials were considered 
signal + noise trials while non-rhyme trials were considered noise 
trials. Sensitivity (d-prime) was calculated from the hit and false 
alarm rates assuming an equal variance model [i.e., z (hit rate) − z 
(false alarm rate)].

magnetic resonance imaging
After the MEG session, a high-resolution, 3D, T1-weighted struc-
tural MRI of the brain was acquired. Using FreeSurfer software, the 
MRI images were segmented and the cortical surface was recon-
structed (Dale et al., 1999; Fischl et al., 1999). These images were 
used to ensure that the MEG sensors selected were located above 
the true regions of interest.

magnetoencePhalograPhy acquisition
Participant preparation
Four head position indicator coils were placed on both sides of the 
forehead and behind the ears. These coils were used to determine the 
relative position of the head while in the scanner. The coils’ positions 
were measured using a low-intensity magnetic field generated by each 
coil at the start of each run. The positions of the coils, the nasion, and 
auricular points were recorded with a Polhemus Fastrack (Colchester, 
VT, USA) 3-D digitizer (Hämäläinen et al., 1993) and about 70 points 
on the scalp were marked with the digitizer. Electro-oculography 
(EOG) electrodes were placed at each temple and above and below the 
left eye, with the ground on the left lower cheek. Vertical and horizon-
tal EOG was recorded to detect blinks and large eye movements.

MEG recording
Magnetoencephalography recordings were performed at the 
Massachusetts General Hospital Athinoula A. Martinos Center 
for Biomedical Imaging using a whole-head VectorView™ system 
(Elekta Neuromag Oy, Finland) inside a high performance mag-
netically shielded room (Imedco AG, Switzerland; Cohen et al., 
2002). The device has 306 SQUID (superconducting quantum 
interference device) sensors arranged in 102 locations within a 
helmet-shaped array. Each location contained a longitudinal and 
latitudinal planar gradiometers and a magnetometer. Signals were 
filtered at 0.1–172 Hz and sampled at 601 Hz.

MEG data processing
Blinking and other artifacts were excluded by removing epochs with 
EOG amplitudes exceeding 150 μV or gradiometer signals exceeding 
3000 fT/cm. Typically, one or two MEG channels were excluded for 
each participant due to artifacts. To examine the preparatory state 
activity, the neural activity was extracted from 500 to 0 ms before 
the onset of the first stimulus from each trial. Approximately 300 
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Granger causality values with a corresponding F-value that was 
significant to p ≤ 10−4 were used further. The average GC values 
between language areas were calculated by averaging the signifi-
cant GC values between language areas. This whole process was 
performed for each frequency band separately.

statistical analysis
In order to quantitatively analyze GC values, we constructed 
a linear mixed-model similar to models in our recent studies 
(Frye et al., 2007, 2008, 2009, 2010a,b). In our previous stud-
ies we investigated the relation between performance and ana-
tomic connectivity. In these studies we found that this relation 
was not necessarily the same for both reading groups (i.e., DRs, 
TRs). Thus, our previous models contained the fixed effects of 
reading group (TRs vs. DRs), a covariate for performance, and 
the interaction between these effects. In the current study we 
examine effective connectivity to/from the IFA. Since there are 
two directions of connectivity for each connection (in vs. out) 
an additional fixed effect of connectivity direction is included in 
the models. Since the IFA is connected to five other areas (i.e., 
right and left TPA, right and left VOTA, and the contralateral 
IFA) an additional fixed effect which represented brain area was 
included in the model. Thus, the final model for this study had 
fixed effects of area (five levels), reading group (TRs vs. DRs), and 
connectivity direction (in vs. out) with a covariate representing 
performance, which in this case is d-prime (i.e., sensitivity). The 
“mixed” procedure of SAS 9.1 (SAS Institute Inc., Cary, NC, USA; 
see Section “Linear Mixed-Model Used for Statistical Analysis” in 
Appendix) was used to evaluation the model. Participant, cortical 
area and connectivity direction were entered as random effects 
in the mixed-model.

This model provides the ability to test the specific hypothesis 
of this study. Specifically, it was hypothesized that DRs would have 
greater top-down connectivity from the left IFA (i.e., outward) to 
the left hemisphere language areas (TPA, VOTA) as compared to 
TRs, with this connectivity proportional to performance on the 
non-word rhyme task. Thus, a four-way interaction was predicted, 
specifically, a reading group by connectivity direction by perform-
ance by area interaction, such that the DRs, but not the TRs, would 
manifest a relation between performance and outward connectivity 
from the IFA to the left VOTA and left TPA but not to their right 
sided homologs.

Each left and right IFA and frequency sub-band was analyzed 
with a separate mixed-model. For each analysis, all effects along 
with their interactions were examined for significance. In order to 
mitigate the effects of inflated alpha due to performing multiple sta-
tistical models, we corrected the alpha for the full model using the 
Bonferroni method. Since there are six frequency bands examined 
and two IFAs (i.e., left and right) we use an alpha of 0.05/12 = 0.004 
for the overall analysis. All follow-up statistical tests used an alpha 
of 0.05. Model interactions were analyzed by first breaking down 
the model by reading group and then breaking down the model by 
connectivity direction. Differences in connectivity between areas 
were analyzed using orthogonal contrasts. The relationship between 
performance and connectivity was additionally analyzed using two-
tailed Pearson correlations.

In (2) each equation represents a signal a
s
(t) at time t that is 

predicted by previous values of itself and all other signals. For 
example, in (2), coefficients c

1,1,j
 (j = 1…P) quantitatively describe 

the influence of the activity of a
1
(t) on itself, coefficients c

1,2,j
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of a
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s
(t) on a

1
(t), etc. Likewise, coef-
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 (j = 1…P) describe the quantitative influence of signal 
a

1
(t) on signal a

s
(t).

To maintain stationarity, a brief “snapshot” of the signal 
was extracted using the short-window approach (Ding et al., 
2000). To derive observations for the AR model, the data window 
was set at 20 data points and was incrementally moved across 
the 500 ms data epoch. The epoch length was 150 data points 
after down-sampling and these 150 data points fit 131 20-point 
windows. Thus, this yielded 131 observations per trial. Given 
that about 300 data trials were recorded from each participant, 
approximately 39,300 (i.e., 300 × 131) observations were pro-
duced for each participant. The signal was normalized with 
respect to both the individual trial and ensemble amplitude and 
variation by detrending each trial, normalizing by the trial mean 
and standard deviation, and then normalizing by the ensemble 
mean and standard deviation in a point-by-point manner (Ding 
et al., 2000; Frye and Wu, in press). Stationarity was verified 
by examining the unit roots using the Dickey–Fuller test. The 
details of calculating GC from the AR models are provided in 
Section “Calculations of Granger Causality Using Least-Squares 
Linear Regression” in Appendix. To insure that the LSLR algo-
rithm performed adequately, we examined diagnostic residual 
plots, the leverage values and the condition index to eliminate 
the possibility of an ill-condition design matrix, bias, or sys-
tematic autocorrelations.

The optimal model order is typically chosen by estimating sev-
eral AR model with different orders and determining which model 
order optimizes two standard information criteria, the Akaike 
information criterion (AIC) and the Bayesian information crite-
rion (BIC). Since there is no specific criterion to guide the choice 
of model orders to test, we selected a wide range of model orders, 
including 8, 12, and 16. AIC and BIC were optimized with an order 
of 16 for all models.

Using the approach above, we constructed a matrix of GC val-
ues to represent the influence of each MEG sensor on every other 
MEG sensor. We then evaluated the significance of each GC value 
in order to consider only the connections which represented sig-
nificant connectivity. The same measure of error that is used to 
calculate GC can also be used in a partial F-test in order to calculate 
the significance of the GC value. Equation 3 outlines the calcula-
tion of this F-distributed value which has P and O × T − S × P − 1 
degrees of freedom in the numerator and denominator, respectively. 
Granger used the same symptom “F” to signify GC, making the 
notation confusing.
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Middle beta (15–19 Hz) and high beta (20–29 Hz)
Connectivity of the left IFA or right IFA with the other brain areas 
was not influenced by performance, connectivity direction, cortical 
area or reading group for the middle or high beta sub-bands.

gamma Frequency sub-bands
Low gamma (30–59 Hz)
Connectivity between the left IFA and the other cortical areas differed 
depending on the cortical areas [F(4,60) = 4.47, p < 0.004]. Planned 
post hoc contrasts demonstrated that connectivity between the left IFA 
and the left TPA [t(60) = 2.85, p < 0.01] and the right TPA [t(60) = 3.45, 
p = 0.001] was higher than connectivity between the left IFA and the 
other cortical areas, and connectivity between the left IFA and the left 
VOTA [t(60) = 3.26, p < 0.002], right IFA [t(60) = 3.24, p < 0.002], and 
the right VOTA [t(60) = 2.63, p = 0.01] was lower than connectivity 
between the left IFA and other cortical regions (Figure 2A).

Connectivity between the right IFA and the other brain areas 
was not influenced by performance, connectivity direction, cortical 
area, or reading group.

Medium gamma (60–89 Hz)
Connectivity between the left IFA and the other brain areas was not 
influenced by performance, connectivity direction, cortical area, 
or reading group.

Connectivity between the right IFA and the other cortical areas 
differed depending on the cortical area [F(4,60) = 5.32, p = 0.001]. 
Planned post hoc contrasts demonstrated that connectivity between 
the right IFA and the left TPA [t(60) = 3.07, p = 0.003] and the 
right TPA [t(60) = 2.77, p < 0.01] was higher than connectivity 
between the right IFA and the other cortical areas, and connectivity 
between the right IFA and the left IFA [t(60) = 2.46, p = 0.02], left 
VOTA [t(60) = 3.42, p = 0.001], and the right VOTA [t(60) = 2.76, 
p < 0.01] was lower than connectivity between the right IFA and 
other cortical areas (Figure 2B).

High gamma (90–120 Hz)
The relationship between connectivity between the left IFA and 
the other cortical areas was related to performance but this rela-
tionship differed by cortical area (i.e., a performance by cortical 

results
beta Frequency sub-bands
Low beta (12–14 Hz)
Left IFA. Left IFA connectivity was influenced by a three-way 
interaction (i.e., performance by connectivity direction by reading 
group) [F(1,52) = 15.30, p < 0.001]. To investigate the three-way 
interaction in more detail each reading group was analyzed sepa-
rately. The DRs, but not the TRs, were found to demonstrate a per-
formance by connectivity direction interaction [F(1,56) = 57.63, 
p < 0.0001]. Figure 1A depicts the correlation between perform-
ance and the difference between inward and outward connectivity. 
Figure 1A demonstrates that better performance was associated 
with greater outward as compared to inward connectivity from 
the left IFA to other brain areas for DRs (r = −0.96, p < 0.01). The 
relationship between performance and difference between inward 
and outward connectivity was not significant for TRs (r = 0.54, 
p > 0.05).

To examine this performance by connectivity direction in more 
detail for the DRs, the relation between performance and connec-
tivity was examined for each connectivity direction separately for 
DRs. Outward, but not inward, connectivity was associated with 
performance for DRs [F(1,28) = 8.82, p < 0.01] such that greater 
outward connectivity from the left IFA to the other cortical areas 
(right and left TPA, right and left VOTA, right IFA) was associ-
ated with better performance. Figure 1B demonstrates that the 
correlation between outward connectivity and performance for 
DRs was significant (r = 0.80, p < 0.05). The correlation between 
inward connectivity and performance for DRs was not significant 
(r = −0.34, p > 0.05). These findings suggest that the relationship 
between the balance in inward and outward connectivity and per-
formance was primarily driven by outward connectivity from the 
left IFA to other brain regions.

Right IFA. Connectivity between the right IFA and the other corti-
cal areas differed depending on the cortical area [F(4,60) = 5.62, 
p < 0.001]. Planned post hoc contrast demonstrated that across 
reading groups connectivity between the right IFA and the right 
TPA was higher than connectivity between the right IFA and the 
other cortical areas [t(60) = 4.62, p < 0.0001; Figure 1C].

FiGure 1 | Granger causality connectivity for the low beta sub-band. (A,B) 
The relationship between performance on the non-word phonological decoding 
task and Granger causality connectivity for the left inferior frontal area (IFA). (A) 
The relationship between performance and the difference between inward and 
outward connectivity. The relationship was only significant for DRs, for which 
greater outward connectivity (as compared to inward connectivity) from the IFA 

to other areas was associated with better non-word rhyme discrimination 
performance (d-prime). (B) The relationship between performance and inward 
and outward connectivity individually for DRs. Greater outward connectivity 
from the IFA to other areas was associated with better performance in DRs. 
(C) Connectivity between the right IFA and the other cortical areas investigated. 
TPA, temporoparietal area; VOTA, ventral occipital–temporal areas.
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discussion
This is the first study to compare effective neuromagnetic connec-
tivity between DRs and TRs and one of the first studies to examine 
effective connectivity during the pre-stimulus period. In this study, 
we compared IFA connectivity to and from other brain areas known 
to be essential for reading (left and right IFA, TPA, and VOTA) in 
low, medium, and high beta and low, medium, and high gamma 
frequency sub-bands. One aspect of our hypothesis was that greater 
top-down connectivity from the left IFA to other cortical regions 
might serve in a compensatory manner in DRs to facilitate pho-
nological decoding. This hypothesis was confirmed within the low 
beta sub-band. As predicted, this effect was observed in DRs but not 
TRs. In Section “Greater Connectivity from the Left IFA to Other 
Cortical Regions is Associated with Better phonological decoding 
performance in DRs, but not TRs: Does this reflect a compensatory 
mechanism in DRs?” we will examine the implications of this find-
ing. In Section “Greater Top-Down Connectivity from the left IFA is 
not Restricted to Left Hemisphere Reading-Related Structures but 
Instead Includes Their Right Hemisphere homologs,” we will discuss 
the other aspect of our hypothesis wherein it was predicted that 
the relationship between IFA connectivity and improved perform-
ance would be limited to connections between IFA and left-sided 
structures used by TRs during phonological decoding. This aspect 
of the hypothesis was not confirmed since greater left IFA connec-
tivity between both left and right sided homologous structures was 

area interaction) [F(4,52) = 5.35, p = 0.001]. Reading group mem-
bership had no influence on this interaction. Better performance 
was related to lower gamma connectivity with this relationship 
being steeper for connectivity between the left IFA and both the 
left TPA [t(52) = 4.68, p < 0.0001] and the right TPA [t(52) = 4.02, 
p < 0.001] than connectivity between the left IFA and other cortical 
areas. In addition, this relationship was less steep for connectivity 
between the left IFA and the left VOTA [t(52) = 4.05, p < 0.001], 
right IFA [t(52) = 3.92, p < 0.001], and the right VOTA [t(52) = 4.98, 
p < 0.0001] than connectivity between the left IFA and remaining 
brain areas. Figure 2C depicts the relationship between perform-
ance and the left IFA connectivity to TPAs and the non-TPAs sepa-
rately. A significant correlation was found for connectivity between 
the left IFA and TPAs (r = −0.51, p < 0.05) and between the left IFA 
and non-TPA regions (r = −0.49, p < 0.05).

Connectivity between the right IFA and the other cortical areas 
differed depending on the cortical area [F(4,60) = 5.49, p < 0.001]. 
Planned post hoc contrasts demonstrated that connectivity between 
the right IFA and both the left TPA [t(60) = 3.38, p = 0.001] and 
the right TPA [t(60) = 3.01, p = 0.004] was higher than connectiv-
ity between the right IFA and the other cortical areas. In addition, 
connectivity between the right IFA and the left IFA [t(60) = 2.74, 
p < 0.01], left VOTA [t(60) = 2.81, p < 0.01], and the right VOTA 
[t(60) = 3.89, p < 0.001] was lower than connectivity between the 
right IFA and other cortical areas (Figure 2D).

FiGure 2 | Connectivity for gamma frequency sub-bands. (A) Connectivity 
between the left inferior frontal area (IFA) and other cortical areas in the low 
gamma sub-band. (B) Connectivity between the right IFA and other cortical area 
in the medium gamma sub-band. (C) Relationship between performance and 

connectivity between the left IFA and temporoparietal (TPA) and non-
temporoparietal (non-TPA) areas for the high gamma sub-band. (D) Connectivity 
between the right IFA and other cortical areas for the high gamma sub-band. 
VOTA, ventral occipital–temporal areas.
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greater toP-down connectivity fRoM the leFt iFa is not 
restricted to leFt hemisPhere reading-related structures 
but instead includes their right hemisPhere homologs
Although others have recently demonstrated differences in top-
down activation from the IFA to other brain regions between DRs 
and TRs (Cao et al., 2008) this study expands these findings by 
demonstrating that top-down modulatory activity can be related 
to phonological task performance on a continuum in DRs. In the 
current experiment, it was hypothesized that, in DRs, perform-
ance would be related to top-down connectivity from the left IFA 
to the other left-sided posterior language areas typically involved 
in word processing in TRs. Instead, the performance-related top-
down connectivity from the left IFA influenced not only the left, 
but also the right-sided homologs of the cortical areas typically 
involved in word processing.

Our results are consistent with the majority of functional imaging 
studies on DRs which have demonstrated increased right hemisphere 
activation in DRs as compared to TRs (Simos et al., 2000; Temple, 
2002; Heim and Keil, 2004). It is also consistent with studies which 
have reported increased activation of both left and right hemisphere 
TPA areas after remediation (Shaywitz et al., 2003; Temple et al., 
2003). This pattern of connectivity may explain why many indi-
viduals with a history of dyslexia require so many years to develop 
adequate phonological decoding skills and often continue to have 
residual problems with reading-related skills well into adulthood. 
For example, activation of the left TPA and left VOTA by the left 
IFA in DRs could represent a positive compensatory strategy to acti-
vate appropriate posterior language networks. However, concurrent 
activation of the homologous right hemispheric regions could be 
somewhat counterproductive and inhibit the occurrence of the nec-
essary neuroplastic changes for specific activation of left hemisphere 
language networks by leading to the formation of atypical neural 
networks for reading. Developmental of such atypical language 
networks could result an extended periods of time (i.e., decades vs. 
years) for accurate reading skills to develop. Clearly hemispheric 
asymmetries are important in the development of phonological 
function, even in individuals without a history of dyslexia. For 
example, the findings of a recent paper suggest that an intrinsic 
individual difference in the degree of asymmetry of microstructure 
of the arcuate fasciculus, a key cortico-cortical pathway involved in 
connection of anterior and posterior language regions, may predict 
phonological ability (Lebel and Beaulieu, 2009). Since these asym-
metries were found to be age-invariant, these findings could suggest 
that part of the basis for over-involvement of the right hemispheric 
decoding network and individual variation in DRs may have to do 
with the wiring of the arcuate fasciculus from early in life.

greater gamma band eFFective connectivity between leFt iFa 
and other regions was associated with worse Phonological 
decoding PerFormance in both reading grouPs
This study found that greater gamma band effective connectivity 
between left IFA and other regions was associated with worse non-
word rhyme task performance as measured by d-prime within the 
high gamma sub-band. This relationship was steeper for the left and 
right TPAs as compared to the other brain areas (i.e., right and left 
VOTA, right IFA). Therefore during the pre-stimulus period a relatively 
reduced degree of gamma sub-band effective connectivity between left 

associated with better phonological decoding performance in DRs. 
We will discuss the implications of increased bilateral influence of 
the IFA upon posterior cortical areas. In Section “Greater Gamma 
Band Effective Connectivity Between Left IFA and Other Regions 
was Associated with Worse Phonological Decoding Performance in 
Both Reading Groups” we will discuss our finding that greater effec-
tive connectivity in the gamma sub-band was associated with worse 
phonological decoding. In Section “Different Roles for Beta and the 
Gamma Preparatory Activity,” we will comment on why greater beta 
connectivity from IFA to other cortical regions was associated with 
better performance and greater gamma connectivity from IFA to 
other regions was associated with worse performance. In Section 
“Future Studies to Examine the Generalizability of These Findings,” 
we will discuss ways to test the generalizability of our findings.

greater connectivity fRoM the leFt iFa to other cortical 
regions is associated with better Phonological decoding 
PerFormance in drs, but not trs: does this reFlect a 
comPensatory mechanism in drs?
During the pre-stimulus period, within the low beta sub-band, 
greater top-down effective connectivity from the left IFA to bilateral 
cortical areas was associated with better phonological decoding 
performance in DRs, but not TRs. The fact that the changes in 
effective connectivity were limited to DRs suggests that they might 
be associated with brain reorganization related to the development 
of dyslexia as a child. This would be consistent with fMRI studies 
that have reported over-activation of the left IFA (Hoeft et al., 2007; 
MacSweeney et al., 2009) in DRs. The fact that outward connectivity 
from the IFA was associated with performance suggests that such 
connectivity could be associated with compensatory reorganiza-
tion. This is consistent with fMRI studies that have shown that left 
IFA activity increases following remediation (Richards et al., 2002; 
Temple et al., 2003; Eden et al., 2004). The relationship between 
the left IFA and improved phonological performance in DRs is 
also consistent with anatomic connectivity studies. For example, 
recent diffusion tensor imaging (DTI) studies have demonstrated 
that phonological performance is related to microstructure of the 
superior longitudinal fasciculus in DRs (Frye et al., 2010b).

A possible developmental sequence could explain the role that 
the left IFA has in compensation for the phonological deficit in 
DRs. Over-activation of the left IFA in preparation for a reading 
task or during a reading task could represent increased top-down 
activation of key cortical regions involved in neural language net-
works for word processing. Remediation training could reinforce 
the individual’s ability to activate language networks in the context 
of tasks that require word processing. Over time, repeated top-down 
activation of the posterior language regions by the left IFA could 
cumulatively strengthen the connectivity between the left IFA and 
the posterior language areas during development. This is compat-
ible with a recent DTI study that has shown that training therapies 
for reading change white matter microstructure of pathways in the 
reading circuit (Keller and Just, 2009). Thus cumulative use of the 
increased top-down left IFA influence could change white matter 
microstructure in the pathways connecting the left IFA and posterior 
language areas and would be compatible with the hypothesis and 
results of the current study. Of course, a longitudinal study would 
be needed to test this hypothesized developmental sequence.
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IFA and other areas may be optimal. This is consistent with intracranial 
EEG data which shown transient desynchronization of gamma activity 
during a reading task in the left IFA (Lachaux et al., 2008).

diFFerent roles For beta and the gamma PreParatory activity
The association between better phonological decoding perform-
ance and increased outward connectivity between the left IFA and 
other brain regions was present in the beta (as opposed to the 
gamma) frequency band. This was predicted because beta activity 
is thought to operate on an inter-regional spatial scale (Gross et al., 
2004, 2006). This may be an example of an advantage of MEG com-
pared to fMRI in terms of GC analysis. Using MEG we were able 
to break down the connectivity analyses into different frequency 
sub-bands and the differential effects of increased connectivity in 
these sub-bands confirms the importance of analyzing the data 
within narrow frequency bands.

In contrast to beta band activity, gamma band synchronization 
has been proposed as a mechanism for facilitating communication 
between neighboring neurons participating in the formation of 
transient neural networks (Fries, 2007). In fact, transient desyn-
chronization of gamma activity has been shown to occur during a 
reading task by means of intracranial EEG in the left IFA (Lachaux 
et al., 2008). Therefore, one interpretation of our findings is that 
within this high gamma sub-band, strong coupling between the 
nodes of the neural network during the pre-stimulus period may 
reduce the ability of the network to decouple and reorganize into 
large-scale cognitive networks during the performance of the actual 
task. In particular, tighter intercortical connectivity between the two 
TPAs during the pre-stimulus period may interfere with a necessary 
shift toward left TPA ascendency. We suggest that this may result in 
slower and less automatic pseudoword phonological decoding.

Future studies to examine the generalizability oF these 
Findings
This study examines connectivity between language regions dur-
ing the pre-stimulus period of a non-word phonological decoding 
task. Other word stimuli such as regular and irregular words may 
be processed through different neural networks as compared to 
non-words. It is not known whether the patterns of cortical con-
nectivity identified in this study will also occur during the pre-
stimulus period of tasks requiring processing of other word types. 
In fact, it is very possible that the patterns of cortical connectivity 
identified may not be word or language specific at all. For example, 
we expected top-down activity from the IFA to have a significant 
influence on the posterior language networks that subserve reading 
which are left hemisphere lateralized. What we found is that the 
IFA appeared to have equal top-down influence on all brain regions 
examined, suggesting that this influence is not word specific. In 
future studies, the pre-stimulus period associated with a non-word 
task should be compared to the pre-stimulus period associated 
with tasks requiring the processing of other types of word features 
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We can apply the same calculation to the system of AR mod-
els presented in (2). The AR models for a signal s in (2) already 
accounts for the influence of all of signals, similar to (A.9) in the 
example above. We can now eliminate the signal of interest by 
reconstructing the matrix Xo leaving out the signal of interest. For 
example, if we were interested in the influence of signal 2 on any 
other signal s, we would reformulate Xo as demonstrated in (A.11), 
recalculate the LSLR and derive the error vector e

s|1,3…S
. Granger 

causality of the influence of signal 2 on signal s given all of the other 
signals 1 to S (expect for 2) would be calculated with (A.12).
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linear mixed-model used For statistical analysis
The general mixed-model is in the matrix form:

y = X +Z +β γ ε  (A.13)

where y is the dependent variable, which in this case is connectivity 
between two cortical regions, X is the design matrix for the fixed 
effects and covariate, β is a vector containing the parameters of the 
fixed effects and covariate, Z is the design matrix for the random 
effects, γ contains the parameters of the random effects and ε is the 
variance–covariance matrix of the model error. The key assumption 
of the mixed model are that both γ and ε have the expected value 
of 0 (i.e., E(γ) = 0 and E(ε) = 0) and known covariance structure 
given by the matrixes Var(γ) and Var(ε). The values for each row 
of the design matrix X are given by:
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where c is the constant with value 1, area is the cortical area repre-
sented by the five dummy variables area

1
… area

5
 (i.e., for analysis of 

the left frontal region, dummy variables would be set up to represent 
the other cortical regions that the left frontal region is connected 

aPPendix
calculations oF granger causality using least-squares 
linear regression
In order to formulate this problem for LSLR we define matrix Xo 
for one data observation o as (A.1). The design matrix (A.2) is 
then defined for all observations from (A.1). The dependent matrix 
(A.3) is then defined from a series of O observations for each sig-
nal s. The coefficients for the above set of equations can then be 
solved for each signal s using the X and Y

s
 (A.4). The coefficients 

derived with (A.4) are the same coefficients outlined in Eq. 2. For 
each signal s, Eq. A.4 derives a coefficient matrix with coefficients 
[c

s,1,1
…c

s,1,P
……c

s,S,1
…c

s,S,P
]. Using the coefficients, the error of the 

AR for each source can be calculated using (A.5). The variance of 
the model error, also known as the mean squared error (MSE) for 
signal s is shown in Eq. A.6.
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Granger causality is a measure of the influence of one signal on 
another signal. This measure is based on the relative change in the 
model error when an independent signal is added to the AR model 
to improve the prediction of the dependent signal (Granger, 1969). 
For example, the signal A = [a(t): 1…T] can be predicted by itself 
using as AR model as given in (A.7).

a t a t jc ta j
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(A.7)

In a similar manner, signal A can also be predicted by signal 
B = [b(t): 1…T] as represented by (A.8).
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Similar to the equations provided in (2), signal A can also be 
predicted by itself, A, and another signal, B, as presented in (A.9).
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Granger causality (Ding et al., 2006) is calculated as the ratio 
of the variance of the model error before and after the addition 
of a new signal. We can calculate the GC of signal B on signal A 
using (A.10).
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z p

p p

( , , )area inout

 area  area  area  area  area  inout= 1 17 1 2 3 4 5[[ ]  
(A.15)

where p is the participant where p
i
 is 1 for participant i and 0 

otherwise. The mixed-model was calculated using the restricted 
maximum likelihood method.

to, for example area
1
 = 1 for left TPA and 0 otherwise, area

2
 = 1 for 

left occipital and 0 otherwise, etc.), inout is connectivity direction 
represented by a dummy variable (i.e., inward = 0, outward = 1), 
read is reading group as represented by a dummy variable (i.e., 
dyslexia = 1, typical = 0) and d

p
 is the centered d-prime value for 

the particular participant, p. The values for each row of the random-
effects design matrix Z are given by
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Individuals with Disabilities Education Act (IDEA; P.L. 108-446; 
IDEA, 2004), RTI may be used to identify students with disabili-
ties. An important question is the degree to which this classifica-
tion can be connected to, and in a sense validated by, anomalous 
neurobiological characteristics.

While functional MRI (fMRI) studies have provided infor-
mation about neuronal response to word stimuli, coordinated 
transfer of information between brain regions within a network 
is also an important component of information processing. White 
matter (WM) tracts connecting different brain regions support 
communication between brain regions, though these have been 
less frequently investigated in imaging studies. Until recently, the 
in vivo investigation of WM integrity was not possible. Now, with 
the advent of diffusion tensor imaging (DTI) WM integrity can be 
evaluated in adults and children. DTI is a technique that examines 
the structure of WM in the brain by measuring the molecular 
diffusion of water. Cell membranes and myelin hinder the dif-
fusive movement of water perpendicular to those membranes. 
Hence diffusion rates are higher parallel to axons than perpen-
dicular to them. Information on the directional preference of dif-
fusion is used to perform fiber tracking and estimate connectivity 
(Conturo et al., 1999; Jones et al., 1999; Mori et al., 1999; Basser 
et al., 2000).

How highly connected gray matter regions are to one another 
appears to be associated with reading ability. In fact, several 
studies comparing children with reading difficulty to normal 
readers have reported significant differences in WM integrity 
in and between the temporal-parietal regions (Klingberg et al., 

IntroductIon
Cognitive tasks engage a set of distributed cortical areas that work 
together toward accomplishing a desired goal. Each neural center 
has its own specialization; activation is synchronized across par-
ticipating areas. In regard to reading ability, the neural network can 
be generally associated with neuroanatomical areas within the left 
perisylvian region. Areas within this region have their own cogni-
tive specialization and vary in their importance to reading ability 
(Shaywitz et al., 2004).

In terms of functional neuroimaging, an abundant literature 
links poor word recognition skill to differences in the neuronal 
functioning of three neuroanatomical areas within the perisyl-
vian network: occipito-temporal cortex (OTC), temporo-pari-
etal cortex (TPC), and inferior frontal gyrus (IFG). A variety of 
studies have shown that the neural signature of brain function 
in individuals with reading disability (RD) is characterized by 
decreased activity in the left OTC (Brunswick et al., 1999; Paulesu 
et al., 2001) and left TPC (Rumsey et al., 1997; Horwitz et al., 
1998; Brunswick et al., 1999) and increased activity in right TPC 
(Shaywitz and Shaywitz, 2003) region. However, this functional 
pattern of RD is malleable: Children with RD who respond to 
intervention exhibit significantly increased activation of left hemi-
sphere TPC and decreased activation of right hemisphere TPC 
(Simos et al., 2002, 2006; Aylward et al., 2003; Shaywitz et al., 
2004). Such differences in functional activation serve to elucidate 
the neurobiological phenotype for responsiveness to interven-
tion (RTI). This is an important point because under the new 
Federal educational policy enacted in the reauthorization of the 
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As the education field moves toward using responsiveness to intervention to identify students 
with disabilities, an important question is the degree to which this classification can be connected 
to a student’s neurobiological characteristics. A few functional neuroimaging studies have 
reported a relationship between activation and response to instruction; however, whether 
a similar correlation exists with white matter (WM) is not clear. To investigate this issue, we 
acquired high angular resolution diffusion images from a group of first grade children who 
differed in their levels of responsiveness to a year-long reading intervention. Using probabilistic 
tractography, we calculated the strength of WM connections among nine cortical regions of 
interest and correlated these estimates with participants’ scores on four standardized reading 
measures. We found eight significant correlations, four of which were connections between 
the insular cortex and angular gyrus. In each of the correlations, a relationship with children’s 
response to intervention was evident.

Keywords: diffusion tensor imaging; probabilistic tractography, reading disability, response to intervention, connectivity, 
magnetic resonance imaging, children

Edited by:
Barry Horwitz, National Institutes of 
Health, USA

Reviewed by:
Kristina Simonyan, Mount Sinai School 
of Medicine, USA
Mohamed L. Seghier, University 
College London, UK

*Correspondence:
Nicole Davis, Vanderbilt University, 
Peabody Box 328, 230 Appleton Place, 
Nashville, TN 37203, USA.
e-mail: nikki.davis@vanderbilt.edu

217

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/Systems_Neuroscience/about
https://www.frontiersin.org/systems_neuroscience/10.3389/fnsys.2010.00150/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17753&d=1&sname=NicoleDavis
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17756&sname=QiuyunFan
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17757&sname=DonaldCompton
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17758&sname=DougFuchs
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17759&sname=LynnFuchs
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17760&sname=LaurieCutting
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17760&sname=LaurieCutting
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17762&sname=AdamAnderson_1
http://www.frontiersin.org/Systems_Neuroscience/


Frontiers in Systems Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 150 | 

Davis et al. Influence of neural pathways

MaterIals and Methods
PartIcIPants
Imaging data were acquired on 15 children with a mean age 
of 7.5 years (SD = .43). All participants were recruited from a 
sample of first graders in Nashville participating in a federally 
funded randomized control trial (RCT). The RCT explores the 
effectiveness of response to intervention (RTI) as a means of 
identifying and preventing RD. All participants, including con-
trol participants, were screened and determined to be at-risk 
for reading difficulties at the beginning of first grade. Children 
with brain injury, other physical disabilities, severe emotional 
problems, uncorrected sensory disorders, ADHD, or an IQ < 80 
were excluded during recruitment for this neuroimaging portion 
of the project. No child who was defined as having limited profi-
ciency in English participated in the imaging study. No restriction 
was made for gender, ethnicity, or socioeconomic status. This 
study was approved by the Vanderbilt University Institutional 
Review Board. Written informed consent was obtained from 
the children’s guardians. Written assent was obtained from the 
children.

Of the 15 datasets, four were not included due to severe head 
motion that rendered the tractography data unreliable. The 
remaining 11 participants were placed into groups based upon 
RCT categorization (described in Behavioral Measures and 
Responsiveness section below). As such, classroom controls (C; 
n = 4) were defined as children who were initially identified as at 
risk in the fall of first grade but benefited from classroom-based tier 
1 instruction and therefore did not qualify for small-group tier 2 
reading intervention. Treatment responders (R; n = 2) were defined 
as children who did not benefit from tier 1 instruction, were eli-
gible for small-group tier 2 reading intervention, and achieved 
adequate results on behavioral measures indicating response to 
intervention. Treatment non-responders (NR; n = 4) were chil-
dren who did not benefit from tier 1 instruction, were eligible 
for small-group tier 2 reading intervention, and did not achieve 
adequate results on behavioral measures, indicating a failure to 
respond to intervention.

2000; Beaulieu et al., 2005; Deutsch et al., 2005; Niogi and 
McCandliss, 2006). While differences between the WM of good 
and poor  readers have been shown, the relationship between WM 
 connectivity and intervention has only recently been investigated 
(Keller and Just, 2009). Using a voxel-based analysis of diffusion 
tensor parameters, Keller and Just (2009) showed changes in 
left medial superior frontal WM in 8–10 year olds after 100 h of 
tutoring. But, they did not examine WM architecture and con-
nectivity as related to an individual’s classification as a responder 
or non-responder to intervention. It should be noted that a few 
neuroimaging studies actually have addressed this issue, but only 
using functional neuroimaging (Simos et al., 2006; Odegard et al., 
2008; Davis et al., in press). Whether a similar correlation exists 
between responsiveness to instruction and WM brain structures 
is not clear. Use of a complementary neuroimaging modality 
that captures WM connectivity thus can provide important and 
unique information.

The purpose of the current study was to investigate the poten-
tial relationship between WM connectivity and responsiveness 
to classroom based instruction in a group of children in the first 
grade, using voxel based analysis of diffusion tensor magnetic reso-
nance imaging data. To investigate the relationship between WM 
connectivity and responsiveness to instruction, we identified nine 
cortical regions of interest that have strong theoretical justification 
for playing a part in reading skill (Table 1). Each region is involved 
with several different processes; therefore, we list in Table 1 only 
the behaviors of interest to the current study. We calculated the 
connectivity strength (defined below) between these gray matter 
regions and correlated the strength estimate with participants’ 
scores on reading measures. We hypothesized that we would rep-
licate previous findings of differences in WM related to reading 
skill. In addition, we anticipated that children’s responsiveness to 
reading intervention would provide additional information. To our 
knowledge, this is the first cortical connectivity study with children 
who differ in their response to a year-long reading intervention. 
However, this is an exploratory study with a small sample size and 
further studies with a larger sample size are needed.

Table 1 | Regions of interest.

Anatomical name Acronym Behavior of interest L Vol* (cm)3 R Vol* (cm)3

Angular gyrus ANG Active during numerous verbal and written tasks 7.0 (1.3) 7.4 (1.5)

Fusiform FUS Related to the automatic recognition of written words 8.5 (2.3) 6.9 (1.9)

Inferior frontal sulcus IFS Active during naming tasks 2.5 (0.6) 2.4 (0.7)

Insula INS Supports phonological processing, particularly sublexical 2.5 (0.5) 2.1 (0.4) 

  spelling to sound translation

Pars opercularis OPE Subregion of Broca’s area mainly related to phonological 4.9 (1.2) 4.0 (1.0) 

  processing but also syntactic processing

Planum temporale PLA Integration of orthographic with phonological and lexical 2.2 (0.8) 1.6 (0.3) 

  features of printed words

Superior temporal cortex STC Associated with linking letters to corresponding phonemes 11.9 (3.0) 11.5 (3.1)

Thalamus THA Related to reading words out of context 7.1 (0.7) 7.0 (0.8)

Pars triangularis TRI Subregion of Broca’s area mainly related to syntactic but also 4.1 (1.0) 4.7 (0.9) 

  semantic and phonological processing

*L Vol, left hemisphere volume; R Vol, right hemisphere volume
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Intake procedure
In May, letters were sent to the parents of children who had success-
fully completed the RCT research protocol (including R, NR, and 
C participants) and met our recruitment criteria. All participants 
attended a single imaging session, in which each child was acclimated 
to the lab and received a child-oriented explanation of the study 
procedures. A play tunnel and a mock scanner were used to practice 
the tasks and prepare the child for the scanning environment.

Imaging and analysis
All imaging was performed on a research-dedicated Philips Achieva 
3T MR scanner.

Structural imaging. High resolution 3D T1-weighted anatomi-
cal images were acquired (in a sagittal orientation) in just under 
6 min. This was an inversion-prepared turbo field echo sequence 
(IR-TFE) with TI = 916 ms, TR = 7.9 ms, TE = 3.6 ms, SENSE 
acceleration factor of 2, matrix size 256 × 256 × 170, and FOV 
170 mm × 256 mm × 256 mm for isotropic 1 mm3 resolution. 
These images were used for subsequent scan prescription and for 
cortical parcellation.

Diffusion imaging. To measure brain tissue microstructure, we 
acquired high angular resolution diffusion images using a pulsed-
gradient spin echo, echo planar imaging (single shot EPI) pulse 
sequence to image the entire brain at 2.5 mm isotropic resolution 
(50 slices, 96 × 96 matrix, TE = 65 ms, TR = 8.5 s, SENSE accelera-
tion factor 2). We acquired 10 non-diffusion weighted and 92 diffu-
sion weighted image volumes (92 directions at b = 1600 s/mm2).

Field map. To correct for EPI distortions, we acquired a field map 
(1.875 mm × 1.875 mm × 4.934 mm voxels, TE = 2.9 and 3.9 ms, 
TR = 173 ms, scan time 28 s).

IMage analysIs
The image analysis procedure performed for each participant is 
shown in Figure 1. As shown, diffusion weighted images were cor-
rected for image distortions due to both eddy current (Netsch and 
van Muiswinkel, 2004) and static magnetic field errors ( Jezzard and 
Balaban, 1995), the latter using the acquired field maps and FSL 
software1. Cortical reconstruction and volumetric segmentation was 
performed with the Freesurfer image analysis suite to identify the cor-
tical and subcortical gray matter regions of interest (Figure 2) on the 
T

1
-weighted structural scan. Briefly, this automated process includes 

motion correction, removal of non-brain tissue (Segonne et al., 
2004), segmentation of the subcortical WM and deep gray matter 
volumetric structures (Fischl et al., 2002, 2004), intensity normaliza-
tion (Sled et al., 1998), tessellation of the gray matter WM boundary, 
automated topology correction (Fischl et al., 2001; Segonne et al., 
2007), and surface deformation (Dale and Sereno, 1993; Dale et al., 
1999; Fischl and Dale, 2000). Information on Freesurfer is freely 
available online2. Regions were registered to the diffusion image space 
using a 12-parameter affine transformation calculated in FSL.

BehavIoral Measures and resPonsIveness
Within the RCT, children’s response to the instruction was esti-
mated with a measure of word identification fluency (WIF; Fuchs 
et al., 2004; Compton et al., 2010), which was administered weekly. 
Growth modeling of WIF over 6 weeks at the beginning of the 
school year indicated each child’s responsiveness to the general 
classroom instruction (prior to small-group tier 2 intervention). 
Children identified as unresponsive to general classroom instruc-
tion were assigned to small-group tier 2 intervention (tier 2), in 
which trained research assistants provided a prescribed reading 
intervention 3 days/week for 17 weeks. For participants receiving 
tier 2 intervention, weekly progress monitoring using WIF con-
tinued throughout the course of intervention. Upon conclusion 
of the intervention, responsiveness was determined using WIF 
intercept and slope over the duration of the intervention.

It is important to note that for the imaging study, limitations 
in sample size necessitated ranking participants by WIF intercept 
and slope and dividing participants to designate equal groups of 
responders and non-responders. These designations of responders 
and non-responders were used in all subsequent analyses.

Measures
Pre- and post-test behavioral measures were administered to all 
participants receiving tier 2 intervention. As stated above, the WIF 
growth was used to identify the participants’ group membership. 
The pre- and post-test measures listed below were correlated with 
DTI data.

Word identification fluency. WIF consists of single-page lists of 
100 high-frequency words randomly sampled from the Dolch pre-
primer, primer, and first-grade level lists (Fuchs et al., 2004). The 
task is to read as many words as possible in 1 min.

Untimed word identification skill. The Woodcock Reading Mastery 
Test – R/NU: Word Identification (WRMT-R: WID, Woodcock, 
1998) is a norm-referenced test in which subjects read indi-
vidual words ordered in difficulty until six sequential incorrect 
responses occur.

Untimed decoding skill. The Woodcock Reading Mastery Test – R/
NU: Word Attack (WRMT-R: WAT, Woodcock, 1998) is a norm-
referenced test that requires subjects to pronounce decodable 
pseudowords presented in ordered difficulty until a ceiling of six 
sequential incorrect responses is reached.

Sight word reading efficiency. The Test of Sight Word Reading 
Efficiency (TOWRE: SWE, Torgesen et al., 1997) is a norm-refer-
enced measure of sight word reading accuracy and fluency in which 
participants read a list of words of increasing difficulty for 45 s.

Phonemic decoding efficiency. The Test of Phonemic Decoding 
Efficiency (TOWRE: PDE, Torgesen et al., 1997) is a norm-ref-
erenced measure of decoding accuracy and fluency that requires 
participants to read a list of decodable pseudowords of increasing 
difficulty for 45 s. 1www.fmrib.ox.ac.uk/fsl

2surfer.nmr.mgh.harvard.edu
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mated uncertainty in the primary diffusion direction. A  pathway 
is comprised of all the streamlines found connecting seed and tar-
get regions. In the current study we were only interested in direct 
pathways connecting region A to region B. Therefore, paths passing 
through the thalamus were excluded except when the thalamus was 
the seed or target region. For each pairing of seed and target regions, 
the number of connecting streamlines was calculated automatically 
by FSL. We divided this number by the number of seed voxels in A 
and used it to quantify the one-way connection ratio, r(A− > B). 

 A probabilistic tractography algorithm (Behrens et al., 2003a,b, 
2007), implemented in FSL, was then used to quantify the connec-
tivity among these gray matter regions. Each of the 18 gray matter 
ROIs was used as a seed region, with the other 8 ROIs in the same 
hemisphere serving as possible termination regions. WM was used 
as a waypoint mask (i.e., all paths had to pass through the WM). 
Streamline tractography was initiated 10,000 times within each 
voxel of the seed region. The streamlines were propagated along 
directions sampled from the distribution characterizing the esti-

FiguRe 1 | Procedure used for imaging analysis.

FiguRe 2 | Regions of interest. Shown on the left column are lateral and 
inferior views of ROIs rendered on the inflated surface of a left hemispherical 
brain. On the right column is a transverse slice of brain showing THA. Eighteen 
ROIs identified in this paper are labeled in the following manner: a prefix for 

cerebral hemisphere (L, left hemisphere; R, right hemisphere), a dot following 
the prefix, and one of the designators: ANG, angular gyrus; FUS, fusiform; IFS, 
inferior frontal sulcus; INS, insula; OPE, pars opercularis; PLA, planum 
temporale; STC, superior temporal gyrus; THA, thalamus; TRI, pars triangularis.
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the behavioral tasks with the volume of each region. We found a 
positive correlation between the PDE subtest of the TOWRE and 
the left planum temporal (p = 0.02) and the left superior temporal 
cortex (p = 0.03).

 To facilitate interpretation of the significant connections, scat-
terplots for each finding are shown in Figures 5 and 6. These scat-
terplots also represent the relationship with response to instruction. 
In these plots, the NR participants are red, R participants are blue, 
and C participants are green.

As shown in Figure 5, increased reading score on each of the 
reading measures is related to greater connectivity between the left 
ANG and INS; the NR participants generally have lower connectivity 
than R or C participants. Similarly, performance on the WAT subtest 
correlated positively with connectivity values between TRI to STC 
(Figure 6). Scatterplots of this correlation showed that NR partici-
pants had lower connectivity than R or C participants (although 
only one R dataset survived outlier rejection). Alternatively, three 
negative correlations were found in which poorer readers, and more 
particularly, NR participants, had a greater magnitude of connectiv-
ity between brain regions than the other two groups. Two correla-
tions involve connections to the THAL, yet in different hemispheres 
of the brain: the first was right THAL to right TRI and the second 
was left THAL to left STC. The third remaining region was also in 
the right hemisphere – TRI to STC.

dIscussIon
Reading relies on a diffuse network of brain regions spread through-
out the entire brain (Pugh et al., 2001). Reading skill is likely a result 
of the level of integration (and potentially segregation) of different 
gray matter regions within a network. Previous studies converge 
on the finding that good and poor readers have significantly differ-
ent FA scores in a left hemisphere temporo-parietal region within 
this network (Klingberg et al., 2000; Beaulieu et al., 2005; Deutsch 
et al., 2005; Niogi and McCandliss, 2006; Rimrodt et al., 2010). 
From these results, the field has gained critical information on 
the structural relationship that exists between the brain and read-
ing skill. However, the previous studies provide information on 
the contribution of a single tract to reading, effectively ignoring 
the connections between gray matter regions which are ultimately 
responsible for the functional processes that underlie reading skill. 
It may be that these findings are the critical pieces of the connectiv-
ity network that differs in good and poor reading. The present study 
attempted to clarify this issue by investigating connectivity strength 
between gray matter regions critical to reading, thus examining 
more directly than the previous studies the putative relationship 
between gray matter (function) and WM (structure).

Specifically, in the current study we used probabilistic tractog-
raphy to calculate the strength of WM connections and investigate 
the potential relationship between WM connectivity and reading 
skill in the first grade. Results demonstrated that eight connectivity 
probability estimates correlated with participants’ reading skill, four 
of which were connectivity estimates between the angular gyrus and 
insula. We are confident that these results are not attributable to 
differences in participants’ gender or age. Furthermore, although we 
found evidence of a correlation between variability in the volume 
of the brain regions and participants’ behavioral scores, these find-
ings involved different regions than the connectivity findings. Our 

The same procedure was done for r(B− > A). The connectivity, or 
connection strength, between regions A and B was defined as the 
symmetrized connection ratio, c (A,B) = (r(A− > B) + r(B− > A))
/2. For each participant, we calculated the volume of each region 
of interest (Table 1). Because volume varied across participants, we 
calculated the correlation between region volume and the different 
behavioral measures. Connectivity was calculated for each of the 
possible 72 pairs of regions. Figure 3 shows the result of these steps, 
a connectivity matrix, for one of the C participants in the study. An 
individual connectivity value that deviated from the original sample 
mean by two standard deviations or more was defined as an outlier 
and removed from the associated correlation analysis.

results
 To test the hypothesis that reading performance was correlated 
with connectivity of key gray matter regions, we correlated each 
element of the connectivity matrix with the participants’ scores 
on standardized tests of reading proficiency. Figure 4 is a visual 
representation of the correlations between participants’ connec-
tivity estimates and their performance on each of the standard-
ized measures. Within these matrices, left hemisphere connections 
are in the bottom triangle and right hemisphere connections are 
in the top triangle. The gray scale denotes significance level, with 
lighter colors indicating more significant correlations. Because 
of the small sample size, significant correlations were reported at 
p < 0.05 uncorrected. Connections with significant correlation at 
the p < 0.05 level are starred. We investigated age and gender influ-
ences on the behavioral and imaging results using two separate one 
way ANOVAs. Results showed a single significant effect: The left 
TRI to IFS pathway had a significant gender effect, in which girls 
had a significantly greater number of WM fibers connecting these 
regions. In addition, we correlated participant’s performance on 

FiguRe 3 | Connectivity matrix. Matrix of connectivity between all 
intra-hemispherical pairs of n = 18 ROIs. Pairs within left-hemisphere are 
displayed in the lower left half, pairs within right-hemisphere in the upper right 
half. All connectivity strengths are displayed with a logarithmic grayscale map.
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Johansen-Berg and Matthews, 2002; Chen et al., 2007; Frith and 
Singer, 2008). By contrast, several studies have concluded that the 
left angular gyrus is important for the lexical processes that occur 
when reading words (e.g., Binder et al., 2009); though, it is pos-
sible that the angular gyrus is involved in phonological processing, 
especially in early years, as inferior parietal lobe is often associated 
with mapping phonological representations to their orthographic 
representations (Pugh et al., 2000). These results may indicate that 
connectivity between these two brain regions is a crucial aspect of 
the neural network that supports word recognition skill.

Alternatively, it may be that the insula and/or angular gyrus 
are simply acting as way stations (or relay stations), connecting 
the gray matter regions that are actually performing the domain 
specific tasks such as phonological processing and sight word rec-
ognition. For example, WM tracts traveling from planum temporale 
(Wernicke’s area) in the superior temporal cortex to Broca’s area in 
the frontal cortex are critical for speech development and normal 
reading (Hickok et al., 2003). These WM tracts may interact with 
the insula as they travel past on their way to frontal cortex. Related 
to this, it is possible that our results would change if a more liberal 
fiber tracking method were used. In the current study, WM tracts 
were counted if they connected a pair of gray matter regions and 

results extend the previous findings of WM differences related to 
reading skill to identify specific connections between gray matter 
regions. In particular, we propose that our findings of connec-
tivity differences between insular cortex to angular gyrus in the 
left hemisphere corresponds to the temporo-parietal WM region 
reported in previous papers (Klingberg et al., 2000; Beaulieu et al., 
2005; Deutsch et al., 2005; Niogi and McCandliss, 2006; Rimrodt 
et al., 2010).

Connectivity between left insula and angular gyrus correlated 
with all four reading tasks, indicating that better readers in general 
had greater connectivity estimates between these two brain regions 
on both timed and untimed reading tasks. Related to this, relative 
to the other two groups, NR had the fewest fiber pathways connect-
ing these two regions. Despite the small sample size in the current 
study, the redundancy of findings across different measures of word 
reading skill is promising. However, interpretation of the findings is 
challenging, as the insula and the angular gyrus have very different 
roles. Within the cognitive domain, functional activation occurs in 
the left insula during language, speech, working memory, and atten-
tion tasks. Evidence exists that the left insula plays an integrative role 
between purely cognitive and other systems, including sensorimo-
tor, social-emotional, and olfacto-gustatory systems (Dolan, 2002; 

FiguRe 4 | Correlation matrices. Matrix of correlations between intra-hemispherical pairs of gray matter regions. Connectivity between each pair of ROIs is 
correlated with Phonological Decoding Efficiency (A), Sight Word Efficiency (B), Word Attack (C), and Word Identification (D), and the significance level of the 
correlation is displayed on a logarithmic scale. Significant correlations were marked by a star (*p < 0.05, uncorrected).
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2002; Dupont et al., 2003; Kurth et al., 2010). Future connectivity 
studies with the insula would benefit from dividing it based on its 
functional differentiation.

In addition, a finding of interest that was unexpected was two 
negative correlations with thalamic connectivity estimates and the 
WAT subtest, a measure of pseudoword reading skill, in which NR 
participants had increased connectivity values compared to both 
R and C participants. Because the thalamus acts as an information 
processing way station for the brain, relaying sensation and motor 
signals and contributing to the regulation of arousal (Portas et al., 

did not touch additional gray matter regions. This method was used 
because connectivity between two regions cannot be established 
with a high degree of reliability once the WM tract passes through 
additional gray matter region(s). Therefore, it would be fruitful 
for future imaging studies on reading skill to investigate both the 
direct connection between the insula and angular gyrus, while also 
considering the indirect role these regions play in the larger peri-
sylvian language network. Additionally, in the current study, the 
entire insula was used as the seed region. However, insular cortex is 
often divided into separate regions with distinct functions (Dolan, 

FiguRe 5 | Angular to insula scatterplots. Correlation scatterplots for L.INS and L.ANG. (A–D) Scatterplots showing detailed relationship between connectivity 
and specific test performances. (e) Locations of L.INS and L.ANG. A single NR participant was identified as an outlier and excluded from this analysis.
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FiguRe 6 | Remaining significant correlations. Scatterplots showing correlations between connectivity and behavioral test performance. Each scatterplot 
corresponds to one pair of gray matter regions: (A) L.TRI and L.IFS, (B) L.THA and L.STC, (C) R.STC and R.TRI, (D) R.THA and R.TRI. Locations of these regions are 
illustrated in (e).
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lIMItatIons
Limitations in the study design hinder the interpretation of the 
results. In particular, the current study lacks a scan prior to inter-
vention. Future studies would benefit from a longitudinal design, 
in which imaging data is acquired before and after intervention. 
This would provide data to investigate whether the group dif-
ferences found in this study are a cause or a result of children’s 
responsiveness to instruction. Large WM tracts are well within 
place by 9 months of age; however, a selective change in con-
nectivity occurs at cortical and subcortical levels through the 
late second decade of life (O’Leary and Stanfield, 1989; Luo and 
O’Leary, 2005). Therefore, it is possible that WM is sculpted by 
life experiences. At our current level of understanding, it is not 
possible to determine the causal relationship between gray and 
WM deficits. It is possible that fiber pathways are abnormal in RD 
due to a deficit in the number of neurons in one reading-related 
region projecting along the fiber to other regions. On the other 
hand, deficits in myelination along a fiber could impact the effi-
ciency and timing of information transfer between regions, which 
would cause reductions in activation. A longitudinal design in 
which functional, structural, and diffusion data were acquired 
would be useful to study this issue. Related to this, it is not clear 
how best to use fiber tractography to quantify pathway differ-
ences. In this study, we used a symmetrized measure of connec-
tivity strength. In an attempt to minimize the variability in one 
way fiber measurements, more sensitive and specific connectivity 
methods may improve the correlations between DTI and behav-
ior in future studies. In addition to a longitudinal design, more 
participants would increase the power of our study, allowing us 
to do more refined analyses of the data. In particular, due to the 
small sample size, conventional statistics were not used to test 
the significance of the results. Thus, replication and expansion 
of the current study’s design with a larger sample size would 
be fruitful.
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1998), it is logical that there would be connections between the 
thalamus and reading related areas (STG and IFG). In fact, previous 
studies have reported individual variability in functional (Price et al., 
1994; Fiebach et al., 2002; Turkeltaub et al., 2002) and structural 
(e.g., Galaburda and Eidelberg, 1982) aspects of the thalamus that 
relate to differences in reading skills, suggesting linkages between the 
thalamus and reading ability. For people who are poor at reading, 
thalamocortical connections may be more strongly related to read-
ing ability than good readers because poor readers rely on these con-
nections to a greater extent than those who are skilled. This would 
explain a negative correlation between strength of connection and 
reading skill (i.e., poorer reading = more connections). Although the 
sample size in the current study is small, these negative correlations, 
coupled with previous negative correlation findings and thalamic 
findings, are intriguing and suggest a need for further exploration. 
This finding requires follow up studies with larger numbers of 
participants to fully interpret its meaning. Other studies have also 
shown negative correlations between reading skill and neuroimaging 
findings (Brunswick et al., 1999; Sarkari et al., 2002; Shaywitz et al., 
2002, 2003; Turkeltaub et al., 2003; Brem et al., 2009), which has 
been interpreted as utilization of alternative pathways. However, the 
exact meaning of these negative correlations is not known. It may be 
that they demonstrate that poor readers implement a compensatory 
strategy via the use of an alternative pathway (e.g., rely on memory 
for sight word reading; articulation based word decoding, etc.), or 
further investigations may reveal that they are in fact a result of 
error in measurement (e.g., multiple comparisons; performance 
differences between ability groups, etc.). For this reason, further 
investigation of this topic is needed to fully understand it.

An additional finding worth noting is that the scatterplots for 
each of the significant correlations showed a potential trend between 
participants’ brain connectivity and their level of responsiveness to 
instruction. Although each correlation showed group differences in 
WM connectivity, the strength of the connections varied with the 
pair of regions under investigation. In other words, compared to 
children who responded to intervention (both R and C groups), the 
NR group had increased connectivity in some regions and decreased 
connectivity in others. Although caution is warranted when inter-
preting these results as the study was based on a small sample size, 
this is a promising finding, which demonstrates the importance of 
considering responsiveness to instruction in future studies of RD.
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performance on an N-back working memory task and activity in 
left PFC in patients with mild and moderate TBI. Similar findings 
were also observed during N-back performance in a sample of 
more severely injured subjects, however, positive correlations were 
limited to posterior brain regions (Newsome et al., 2007). Thus 
it remains an open question as to whether these brain changes 
are compensatory, deleterious, or incidental to task performance 
following TBI. While the presence of functional brain changes in 
the context of preserved behavior suggests that such changes are 
unlikely to be deleterious, these data do not directly address whether 
these changes are compensatory.

Traumatic brain injury is associated with widespread disruptions 
in cerebral microvasculature and metabolic changes (Povlishock 
and Katz, 2005), thus altered functional recruitment may reflect 
physiological or systemic brain changes that, while co-occurring 
with working memory processing, are incidental to behavioral 

IntroductIon
Traumatic brain injury (TBI) is associated with altered patterns 
of neural recruitment during working memory (McAllister 
et al., 1999; Turner and Levine, 2008). This is typically manifest 
as increased activity in homologous regions of prefrontal cortex 
(PFC) or more spatially dispersed activity adjacent to areas impli-
cated in non-injured controls (Christodoulou et al., 2001). Yet 
the cognitive implications of this altered recruitment are poorly 
understood. Altered functional brain response during working 
memory in TBI has been observed in the context of both poorer 
(e.g., Christodoulou et al., 2001) and equivalent task performance 
(e.g., Turner and Levine, 2008; Newsome et al., 2009). A recent 
review of functional neuroimaging studies in TBI reported similarly 
equivocal findings (Levine et al., 2006). To date, few studies have 
directly correlated brain activity and working memory perform-
ance. Perlstein et al. (2004) observed positive correlations between 
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recruitment of homologous regions of PFC (e.g., right ventrolateral PFC during performance 
of a verbal working memory task, possibly in response to damage involving the left PFC). The 
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MaterIals and Methods
PartIcIPants

All subjects were part of the Toronto TBI study (Levine et al., 
2008) and were recruited based upon consecutive admissions to a 
level 1 trauma center. All subjects were right-handed, native English 
speakers and were screened for previous neurologic injury, major 
medical conditions affecting cognition, history of psychiatric ill-
ness, and the use of medications affecting cognition. Further details 
with respect to the patient demographics, injury characteristics, and 
recruitment inclusion and exclusion criteria of the larger sample 
have been reported elsewhere (Levine et al., 2008). Demographic 
and injury characteristics for the subset of patients included in the 
present report have been described in Turner and Levine (2008) 
and are only briefly reviewed here. We recognize that variability is 
a hallmark of TBI and we have addressed this variability in several 
ways. First, all subjects had sustained a closed head injury as a result 
of a motor vehicle accident. All were in the chronic stage of recovery 
at the time of study participation. The injury severity profile of the 
group included moderate and severe TBI participants as deter-
mined by trauma Glasgow Coma Score (GCS, Teasdale and Jennett, 
1974), loss of consciousness and extent of post-traumatic amnesia. 
All participants underwent extensive behavioral testing as part of 
the larger Toronto TBI Study and data are reported in the earlier 
paper (Turner and Levine, 2008; Table 1). Neuropsychologically, 
participants had preserved neuropsychological performance on 
standardized testing and good functional recovery (return to pre-
vious level of work or school). All TBI participants in the current 
study had evidence of DAI-related neuropathology (hemosiderin 
deposits) on neuroradiological report. Moreover, patients were 
excluded from participation if they had evidence of focal lesions 
greater than 3 mm in diameter based on high resolution structural 
MRI, resulting in a final sample of relatively “pure” DAI partici-
pants. Other exclusion criteria included previous head injury, sig-
nificant psychiatric history, or evidence of current or recent alcohol 
and drug abuse. Following screening a total sample of eight TBI 
participants (six male) were recruited for the study. Twelve neu-
rologically normal participants (eight males) were also recruited. 
TBI and control participants were matched on age [t(18) = 0.785 
(p > 0.05; NS)] and education [t(18) = −1.99 (p > 0.05; NS)]. All 
control participants were right-handed, native English speakers, 
and were screened for previous neurological injury, history of psy-
chiatric illness, or drug use.

BehavIoral task
In the present study we employed a modified version of the Alphaspan 
protocol described by Postle et al. (1999) and based on earlier work 
by Craik (1986). For each task trial, participants were required to 
study a letter set consisting of either three or five consonant letter 
strings (set size or “load” manipulation). For the ED manipulation, 
participants were asked to either hold the letter set in mind in it’s 
original sequence (“MAINTAIN” condition) or to order the conso-
nants alphabetically and maintain the new sequence over a brief delay 
period (“ALPHABETIZE” condition). At the end of the delay, a probe 
was presented consisting of a letter and an ordinal position (e.g., 
L-4? – “Was ‘L’ the fourth letter in the set?”). On Maintain trials, the 
probe referred to the ordinal position in the original letter set while on 
Alphabetize trials the probe referred to the letter position following 

performance. Functional brain changes may also be secondary to 
strategy differences between TBI and control subjects as has recently 
been demonstrated in healthy aging (Paxton et al., 2008). Previous 
studies have reported patterns of increased activity in homologous 
regions of lateral PFC or more spatially dispersed recruitment of 
adjacent brain regions in TBI relative to non-injured controls. A 
similar pattern of decreased lateralized response has also recently 
been observed in an electrophysiological investigation of sustained 
attention performance following TBI (Molteni et al., 2009). If these 
altered brain activity patterns are positively associated with task 
performance, this would provide evidence for compensatory func-
tional brain changes. Here we used multivariate analysis (spatial–
temporal partial least squares, PLS; McIntosh and Lobaugh, 2004) 
to identify brain–behavior correlations simultaneously across the 
whole-brain. The emphasis is on those brain regions that are cor-
related with task-behavior in healthy control subjects and whether 
these brain–behavior correlations are altered following TBI.

Characterizing the contribution of functional brain changes to 
behavioral performance following TBI has been hindered by het-
erogeneity in the severity of injury, chronicity, and neuropathology 
[e.g., focal lesions versus diffuse axonal injury (DAI)] as well as 
differences in task demand (Levine et al., 2006). Moreover, vari-
ability in behavioral performance is considered a hallmark of TBI 
(Stuss et al., 1989, 1994) and likely impedes detection of consistent 
brain–behavior correlations in this population. The current study 
directly investigates the relationship between altered functional 
brain response and behavioral performance during verbal work-
ing memory following TBI. To address the challenges identified in 
these earlier reports here we restricted recruitment to participants 
who had sustained a moderate to severe TBI but who had evidence 
of DAI on neuroradiological report but without evidence of focal 
brain damage (see Materials and Methods). In addition, the task 
paradigm varied load and executive demands (EDs) within working 
memory independently, allowing us to identify patterns of func-
tional brain changes related to both maintenance and executive 
control processing separately.

We previously reported enhanced right PFC activity associated 
with increased ED within working memory following TBI (Turner 
and Levine, 2008). Here we examine whether functional changes in 
distributed brain regions following brain injury correlate with verbal 
working memory performance using behavioral PLS (bPLS) analy-
ses (McIntosh et al., 2004). Unlike earlier studies that have corre-
lated voxel-wise univariate changes in brain response with behavior, 
bPLS identifies whole-brain patterns of activity that are predictive 
of task-performance. Additionally, we examine whether functional 
connectivity amongst those network nodes demonstrating the most 
reliable brain and behavior correlations from the bPLS analysis are 
modulated by working memory task demands. Specifically, we ask 
whether functional brain changes observed in these participants 
reflect a pattern of altered functional engagement (i.e., recruitment 
of similar brain regions at lower levels of task demand than con-
trols) or functional reorganization (i.e., recruitment of novel brain 
regions not engaged by controls). In other words, does the altered 
recruitment observed during working memory tasks following TBI 
represent the instantiation of novel neural networks to support 
working memory performance after injury or the unmasking of 
extant, but behaviorally latent, functional connectivity.
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Table 1 | Cluster maxima from the behavior PLS (bPLS) analysis for the 

two-group analysis (LV 1).

Lag x y z Lat. Anat. BA BSR Clust.

0 −4 21 36 L GFd 32 5.71 11

0 40 10 40 R GFm 9 6.25 13

0 −20 −82 −13 L GL 18 8.56 119

0 −8 −46 6 L CG 29 7.40 78

0 0 −21 −36  B. stem  6.34 25

0 −8 −29 −29 L B. stem  4.91 22

0 16 −33 −35 R B. stem  4.64 13

0 16 −59 −14 R Cereb  6.05 24

0 4 −83 −26 R Cereb  7.11 80

1 8 52 27 R GFs 9 5.86 11

1 −20 22 58 L GFs 6 5.90 14

1 −51 −36 53 L LPi 40 5.28 11

1 −28 −52 54 L LPs/LPi 7/40 9.53 18

1 −24 −82 −13 L GF 18 9.02 143

1 −44 −85 15 L GOm 19 7.06 11

1 20 −86 −13 R GL 18 12.10 66

1 −8 21 32 L GC 32 5.66 22

1 −4 −50 6 L CG 30 6.34 20

1 0 −25 −32  B. stem  6.65 62

1 24 −63 −14 R Cereb  6.10 28

2 24 52 38 R GFs 8 5.54 15

2 −48 51 12 L GFm 10/46 5.82 16

2 44 47 16 R GFm 46 13.75 38

2 40 16 18 R GFi 44/45 5.91 25

2 −20 11 62 L GFs 6 6.04 13

2 −32 −51 −14 L GF 37 6.42 24

2 48 18 −21 R GTs 38 6.22 13

2 −24 −53 21 L GTm 39 5.61 22

2 16 −39 76 R LPc 7 7.90 14

2 −16 −64 44 L PCu 7 7.56 82

2 24 −86 −13 R GF 18 10.65 51

2 −44 −88 23 L GO 19 5.86 11

2 −44 −90 −9 L GOi 18 7.67 53

2 0 −46 13  GC 30 6.97 41

2 −20 −25 −39 L B. stem  6.58 81

2 28 −63 −17 R Cereb  6.64 22

3 40 47 16 R GFm 46 9.90 18

3 28 −46 21 R GTm 39 5.74 18

3 −28 −50 14 L GTm 39 5.75 19

3 −24 −59 58 L PCu 7 6.31 69

3 24 −63 58 R PCu 7 5.77 12

3 24 −90 −16 R GF 18 9.49 54

3 16 −33 −39 R B. stem  7.32 11

3 32 −55 −21 R Cereb  5.72 27

4 −16 −83 −26 L Cereb  5.18 11

4 20 −86 −19 R Cereb  5.70 24

This collection of brain regions demonstrated a positive correlation with task 
accuracy differentially across group and condition indicated in Figure 1. Cluster 
thresholds (i.e., how reliably each brain region expressed the LV) was determined 
using a bootstrapping procedure (see Materials and Methods). Here we report 
BSR’s >4.0 (corresponding approximately to p < 0.0001) with a minimum spatial 
extent of 10 voxels. Lag refers to the temporal window with lag 0 corresponding 
to 2–4 s after stimulus onset. Each lag represents a 2-s time window (see 
Materials and Methods for details). Voxel coordinates are reported in Talairach 
coordinates.
Lat, laterality; Anat., anatomical region; abbreviations consistent with the atlas 
(see below). BA, Brodmann area; BSR, bootstrap ratio; Clust., cluster size (in 
voxels); GFd, medial frontal gyrus; GFm, middle frontal gyrus; GL, lingual gyrus; 
CG, cingulate gyrus; B. stem, brain stem; Cereb, cerebellum; GFs, superior 
frontal gyrus; LPs, superior parietal lobule; LPi, inferior parietal lobule; GF, 
fusiform gyrus; GOm, middle occipital gyrus; GFi, inferior frontal gyrus; GTs, 
superior temporal gyrus; GTm, middle temporal gyrus; LPc, paracentral lobule; 
PCu, precuneus; GO, orbital frontal gyrus; GOi, inferior occipital gyrus..

Table 1 | Continued

Lag x y z Lat. Anat. BA BSR Clust.

alphabetization of the list. Probability of a correct probe was set at 
0.5 for all trials in all conditions. Prior to scanning, each participant 
completed a training session consisting of step-by-step instructions 
for each task condition. Once there were no further questions for the 
administrator, all subjects completed 20 further trials (five trials in 
each of the four conditions) immediately prior to entering the MR 
scanner. During scanning, participants completed 28 trials of each 
of the four task conditions (Alphabetize three- and five-letter sets, 
Maintain three- and five-letter sets) during a single scanning session. 
Within each session a total of four individual scans were acquired. 
Trials were grouped by ED with two blocks of seven trials at each level 
of ED presented during a single scan acquisition. Total stimulus onset 
asynchrony was 18000 ms (three-letter trials) or 19000 ms (five-letter 
trials). Each individual scan acquisition was 12 min in duration (see 
Turner and Levine, 2008 for a full trial schematic).

fMrI scannIng and analyses
Scanning was performed at Sunnybrook Health Sciences Centre on a 
research-dedicated whole-body 3.0 T MRI system (Signa 3T94 hard-
ware, VH3M3 software; General Electric Healthcare, Waukesha, WI, 
USA) with a standard quadrature bird-cage head coil. Participants 

were placed in the scanner in supine position, with their head 
firmly placed in a vacuum pillow to minimize head movement. 
Earplugs were provided to reduce the noise from the scanner. A 
volumetric anatomical MRI was performed before functional scan-
ning, using standard high-resolution 3D T1-weighted fast spoiled 
gradient echo (FSPGR) images (TR/TE = 7.2/3.1 ms, inversion-
recovery prepared T1 = 300 ms, flip angle 15°, 256 × 192 acquisition 
matrix, 124 axial slices 1.4 mm thick, voxel size = 0.86 cm × 0.86 cm, 
FOV = 22 cm × 16.5 cm). Functional imaging was performed to 
measure the blood oxygenation level dependent (BOLD) effect 
(Ogawa et al., 1990). Scans were obtained using a single-shot T2*-
weighted pulse with spiral in-out, achieving 26 slices, each 5 mm 
thick (TR/TE = 2000/30 ms, flip angle 70°, 64 × 64 acquisition matrix, 
26 axial slices 5 mm thick, voxel size = 3.125 mm × 3.125 mm, slice 
spacing = 0, FOV = 20 cm × 20 cm). Data pre-processing was per-
formed using Analysis of Functional NeuroImages software (Cox 
and Hyde, 1997). At the beginning of each scan, stimulus presenta-
tion was synchronized with the start of image acquisition through a 
triggering pulse input from the scanner to the E-prime presentation 
software. The initial 10 time points from each functional image 
volume were excluded from the analyses to allow for stabilization 
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the order of conditions for each subject. PLS is recalculated for each 
new sample, and the probability of the permuted exceeding observed 
is determined. To determine the stability of the voxel saliences for 
the LVs retained, bootstrap estimates are calculated using sampling 
with replacement and PLS is rerun keeping the assignment of experi-
mental conditions fixed for all subjects. No corrections for multiple 
comparisons are necessary because the voxel saliences are calculated 
in a single mathematical step on the whole brain. The ratio of the 
salience to the bootstrap standard error is approximately equivalent 
to a z-score and is used assess the reliability of the individual voxel 
saliences. Two forms of PLS were performed. The first, bPLS, was the 
primary analysis to investigate group differences in brain–behavior 
correlations for the working memory tasks. bPLS is a variant of PLS 
that identifies LVs that capture task- and group-dependent patterns 
of brain–behavior correlations (McIntosh et al., 2004). The correla-
tion of behavior measures and the fMRI signal is computed across 
subjects within each task, producing within-task brain–behavior 
correlations for each of the four task conditions and groups. The 
strength and reliability of the LVs for bPLS is carried out as described 
above. For these analyses an LV was considered “significant” if the 
probability of the observed singular value for the LV given permuta-
tion testing was less than 0.01. Effects were considered to be reliable 
if the ratio of observed to estimated effects on bootstrap testing was 
greater than 4. This corresponds to a probability of approximately 
p < 0.0001 assuming bootstrap estimates were normally distributed 
(Figure 1; Table 1). This addressed the fundamental question as to 
whether those regions correlating most strongly with behavior dif-
fered between our two groups. From this analysis we identified seed 
regions of interest (ROI) to be used in the combined behavior and 
functional connectivity analysis.

of the magnetic field gradients. Time-series data were spatially co-
registered (aligned volumetrically to a reference image within the 
run, using the 3dvolreg program in AFNI) to correct for small head 
motion using a 3-D Fourier transform interpolation, and the linear 
trends were removed. Uncorrected head motion (spikes) was identi-
fied through visual inspection and reduced through averaging the 
two surrounding time points. Physiological motion (respiration and 
heart beat) was also removed through linear filtering. Finally, slice 
timing correction was carried out to account for the time dependent 
discrepancy between the initial and final slice acquisitions. Images 
were then spatially transformed to an fMRI spiral scan template gen-
erated from 30 subjects scanned locally. This template was registered 
to the MNI305 template. The transformation of each subject to the 
spiral template was achieved using a 12-parameter affine transform 
with sinc interpolation as implemented in SPM99 (http://www.fil.
ion.ucl.ac.uk/spm; Friston et al., 1995). Images were smoothed with 
an 8-mm isotropic Gaussian filter before analysis. For each subject, 
“brain” voxels in a specific image were defined as voxels with an 
intensity greater than 15% of the maximum value in that image. 
The union of masks was used for group analyses as described below.

PartIal least squares analyses
Primary fMRI data analysis was carried out using spatiotemporal 
PLS (McIntosh et al., 1996; and for a full review of the method 
see McIntosh et al., 2004). In brief, PLS computes an optimal least 
squares fit to the “cross-block” correlation between the exogenous 
and dependent measures. Limiting the analysis to this part of a 
correlation or covariance matrix distinguishes PLS from principal 
components analysis (PCA) as solutions are constrained to the 
part of the covariance structure that is attributable to experimental 
manipulations or related to behavior. PLS is particularly suitable for 
neuroimaging data where measures are highly correlated as items 
within a block are not adjusted for these correlations. PLS operates 
on the entire data structure at once with one data matrix for each 
group. Within group, condition blocks are stacked, and each subject 
has a row of data within each block. With n subjects and k condi-
tions, there are n b × k rows in the group matrix. Columns contain 
the hemodynamic response (HRF) signal intensity measure at each 
voxel at each time point. To account for the lag in hemodynamic 
response, the lag window is 6 (TR = 2; 12 s), beginning at trial onset 
−1 TR. The HRF for each trial is expressed as the intensity difference 
from trial onset. The first column has intensity for the first voxel 
at the first time point, the second column has the intensity for the 
first voxel at the second time point etc. With m voxels and t time 
points, there are m × t columns in the matrix.

Singular value decomposition (SVD) is applied to re-express the 
matrix as a set of orthogonal singular vectors or latent variables (LVs). 
LVs are analogous to eigenvectors in PCA and account for the matrix 
in decreasing order of magnitude. Each LV contains a pair of vectors 
relating brain activity and experimental design. Singular values are 
used to calculate the proportion of the matrix accounted for by each 
LV. Statistical assessment of the LVs is done using permutation tests 
(500 permutations) and bootstrap estimation (100 estimations) of 
standard errors for the voxel saliences. The permutation test assesses 
whether the effect represented in a given LV is sufficiently strong, in 
a statistical sense, to be different from random noise. Permutations 
were carried out using sampling without replacement to reassign 

FIguRe 1 | Pattern of brain and behavioral correlations for the first latent 
variable (LV) in the combined group analysis. This LV accounted for the 
greatest magnitude of matrix variance (LV 1, p < 0.01). Colored bars denote 
the extent to which the experimental conditions relate to the differences in 
voxel signals represented in the LV (i.e., the design saliences). Error bars 
denote confidence intervals defined by the standard error of the bootstrap 
estimates. Error bars crossing zero reflect a non-significant contribution of that 
experimental condition to the LV pattern. Significant voxel clusters associated 
with this LV are presented in Table 1.
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This second analysis used a behavior–seed PLS (sPLS) tech-
nique (McIntosh et al., 2004) to address the question of whether 
the behavioral relevance of regions demonstrating reliable brain–
behavior correlations would depend upon their functional con-
nectivity to other brain regions and whether these connectivity 
patterns varied between our two groups. sPLS identifies LVs that 
capture task- and group-dependent changes in functional connec-
tivity between the seed ROI and the rest of the brain (i.e., brain–
seed correlations). The correlation of the fMRI signal for the seed 
and for the rest of the brain is computed across subjects within 
groups within each task, resulting in a matrix of within group and 
within-task brain–seed correlation maps. SVD of the brain–seed 
correlation matrix produces three new matrices: the singular image 
of voxel saliences, singular values, and task saliences. The variation 
across the task saliences indicates whether a given LV represents a 
similarity or difference in the brain–seed correlation across tasks. 
This can also be shown by calculation of correlation between the 
brain scores (dot-product of the voxel salience and fMRI data) and 
seed fMRI signal for each task. The voxel saliences give the corre-
sponding spatiotemporal activity pattern. Statistical assessment is 
identical to that used for bPLS.

results
BehavIor
Full behavioral analyses are presented in Turner and Levine (2008), 
and only the between group results relevant to the current study 
are described here. As we were investigating brain and behavioral 
correlates at different levels of working memory task demand, task 
accuracy provided the best assay as it is less susceptible than reac-
tion time measures to processing demands unrelated to working 
memory (e.g., scanning, retrieval, motor speed). One TBI patient 
was identified as an outlier for accuracy (TBI # 8). Trial-wise analy-
sis for this patient revealed a consistent pattern of timing out on 
Alphabetize trials, greater for five- than for three-letter sets sizes. 
On those trials where responses were recorded, performance was 
within the average range of the TBI group for both three- and five-
letter sets (78 and 67% respectively). This pattern is indicative of a 
task-specific decrement at response as opposed to disengagement 
or poor arousal. As we were interested in neural response during 
encoding and delay trial epochs, and not at probe, we did not exclude 
this patient’s data. For the purposes of statistically assessing group 
effects on task performance, we used a winsorizing procedure by 
which the outlier values for this subject’s accuracy on Alphabetize 
3/5 trials were trimmed to 2 SD below the true mean of the sample 
(i.e., exclusive of the outlier). To confirm that our results were not 
unduly influenced by this outlier correction we ran all analyses with 
this subject’s original data. There was a marginal but insignificant 
impact of the correction on the robustness of the bPLS output (see 
bPLS Results below). There was no impact on the behavioral results. 
Statistical analysis was carried out using a two group (control ver-
sus TBI) × 2 (ED) × 2 (set size) repeated measures ANOVA. There 
was a significant main effect of ED and set size (Set) [F(1) = 18.51 
(ED); F(1) = 11.42 (Set), p < 0.01 for both comparisons] with 
poorer performance observed during the Alphabetize and set size 
five conditions. There was no main effect of group [F(1) = 2.54; NS] 
and no group × ED [F(1) = 0.094, NS] or group × Set [F(1) = 0.182, 
NS] interactions, indicating that the main effects of condition were 

stable across both the control and TBI groups. Post hoc analyses 
revealed that there were no group differences on any of the tasks 
(p > 0.05, all comparisons).

fMrI
Behavior PLS (brain and behavior)
A two-group bPLS with accuracy as the behavioral measure iden-
tified one significant LV (p < 0.01) reflecting brain and behav-
ior correlations for all tasks in the TBI group but only for the 
Alphabetize 5 task in controls1 (Figure 1). Positive saliences for 
this LV (Table 1) were observed in areas commonly implicated 
in neuroimaging studies of working memory (Wager and Smith, 
2003). These task-related differences in brain–behavior correla-
tions between our two groups suggests that TBI subjects were 
engaging this network, which included lateral aspects of PFC 
bilaterally, to support behavioral performance at lower levels of 
task demand than controls. That is, whereas controls engaged the 
network at the highest level of ED, Alphabetize 5, TBI patients 
did so at all levels.

We next conducted bPLS analyses for the control and TBI 
groups separately. For the control group analysis, one significant 
LV emerged (p < 0.01). This LV reflected positive brain and behavior 
correlations for all tasks (Figure 2A; Table 2). Brain regions demon-
strating the highest salience for this LV included two regions of left 
lateral PFC [inferior frontal gyrus (GFi) and middle frontal gyrus 
(GFm)] as well as in posterior parietal and visual association cor-
tices. For the TBI group, one LV approached statistical significance 
(p < 0.058). As with the control group, this LV reflected positive 
brain and behavior correlations for all tasks. However, in contrast to 
the control data, the highest salience for this LV occurred in regions 
of right lateral PFC (Figure 2B; Table 3) in addition to posterior 
parietal regions. These data extend the results of the combined 
group analysis and highlight the role of right lateral PFC in sup-
porting working memory performance following TBI, particularly 
at lower levels of task demand.

Seed PLS (brain, behavior, and functional connectivity)
The results of the bPLS analyses supported our prediction that 
right frontal recruitment during working memory performance 
was compensatory for TBI participants. Next we asked whether 
this right PFC activity represented the instantiation of novel PFC 
networks to support working memory performance (functional 
reorganization) or the engagement of existing functional connec-
tions to support performance as load or executive control demands 
within working memory increase (altered functional engagement). 
For this analysis, we entered the four cluster maxima within PFC 
from the bPLS results (see Figure 2, i–iv; Tables 2 and 3) into 
a combined behavior and functional connectivity PLS analysis 
(Grady et al., 2003). Specifically, we investigated within a single 
PLS analysis: (i) how these regions functionally connect with other 
brain areas, in particular the other frontal ROIs, and how connectiv-
ity is altered by task demand (sPLS) (ii) whether these patterns of 
functional connectivity were related to task performance (bPLS) 

1The brain and behavior correlation (r = 0.48) was also reliable for M3 in con-
trols based on bootstrap estimates of standard error. However, this likely reflects 
near-ceiling performance on this task [mean = 0.96(0.03)] and is not discussed 
further here.
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and (iii) whether these patterns were different for our two groups. 
We present the behavioral and functional connectivity results from 
each of the four ROI seeds individually below.

Left inferior frontal gyrus (BA 44/6)
Latent variable 1 (p < 0.001) demonstrated reliable and positive 
behavior and seed correlations for the A3, A5, and M3 tasks in 
control participants. In contrast, only positive seed correlations 
were reliable in the TBI group (Figure 3Ai). Brain regions dem-
onstrating reliable and positive saliences for this LV included left 
GFm and right inferior parietal lobule as well left occipital cortex 
and bilateral cerebellar cortices (Figure 3Ai).

Left middle frontal gyrus (BA 46)
Latent variable 1 (p < 0.001) demonstrated reliable and positive 
behavior and seed correlations for both the Alphabetize tasks 
(Figure 3Aii) in the control group. As with left GFi, only seed cor-
relations were reliable for all tasks in the TBI group. Brain regions 
demonstrating positive saliences included left GFi, left inferior pari-
etal lobule, bilateral superior parietal lobule, and bilateral temporal 
occipital junction (Figure 3Aii).

Right posterior middle frontal gyrus (BA 46/44)
Latent variable 1 (p < 0.001) demonstrated reliable and positive 
behavior and seed correlations for the Alphabetize and Maintain 
5 conditions for the TBI group. In contrast to the left PFC ROIs, 
only the seed correlations were reliable for controls (Figure 3Aiii), 
with the exception of the Maintain 5 condition, where activity in 
this voxel was negatively correlated with behavior. Brain regions 

reflecting this pattern included bilateral anterior GFm (aGFm) 
(BA 46/10), left posterior cingulate gyrus, left precuneus (BA 7), 
and left posterior middle temporal gyrus (BA 39; Figure 3Aiii).

Right anterior middle frontal gyrus (BA 46/10)
Latent variable 1 (p < 0.001) demonstrated reliable and positive 
behavior and seed correlations for both groups. For the control 
group, positive correlations with behavior and activity in the seed 
region were reliable for Alphabetize 5 and, to a lesser extent, the 
Maintain 3 task (see note 1 above). In contrast, this pattern was 
reliable for both Alphabetize 3 and 5 as well as the Maintain 5 tasks 
in the TBI group (Figure 3Aiv). Positive saliences were observed in 
right posterior GFm (pGFm), left aGFm, posterior cingulate gyrus, 
left superior parietal lobule and the inferior occipital cortex and 
temporal–occipital junction bilaterally (Figure 3Aiv).

In sum, these results suggest a differential pattern of stepwise 
functional recruitment of right PFC regions between our two groups 
as working memory task demands increased. It is important to note 
here that the seed voxels selected for the functional connectivity 
analyses, derived from the bPLS results, were different for our two 
groups (Figure 2; Tables 2 and 3). We cannot rule out that the dif-
ferential patterns of functional connectivity reported here may be, in 
part, attributable to the selection of these different seed ROIs for our 
two groups. Critically, however, the group differences in functional 
connectivity were task-dependent – and this pattern is not compat-
ible with a biased-selection account. The pattern of task-dependent 
changes in functional connectivity between the Control and TBI 
groups is illustrated in Figure 3B. Bilateral functional connectiv-
ity within PFC is evident during working memory performance 

FIguRe 2 | Brain regions showing significant salience for the first LV in 
each group-wise bPLS analyses [i.e., those brain regions demonstrating 
positive correlations between brain response and task accuracy in 
control (A) and TBI (B) groups for all tasks]. Voxel salience reliabilities were 
determined by bootstrap ratios (BSR; range is indicated by the color bar). For 
these images BSR was set at 4 (p < 10−4, corresponding approximately to a 
p < 0.0001) and cluster size was >10 voxels. Roman numerals indicate PFC 

regions with the most reliable and positive brain and behavior correlations 
across all tasks. Talairach coordinates (x, y, z) of cluster maxima: (i) left inferior 
frontal gyrus (GFi: −67, 9, 29); (ii) left middle frontal gyri (GFm: −40, 48, 23);
(iii) right posterior middle frontal gyrus (pGFm: 36, 21, 25); (iv) right anterior 
middle frontal gyrus (aGFm: 40, 47, 16). These voxels are used as 
seed regions in subsequent seed and behavior PLS analyses (see text 
and Figures 3 and 4).
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whenever load is increased or when EDs are present. However, the 
threshold at which this expanded right PFC network is functionally 
necessary for working memory performance is reduced following 
TBI, consistent with an altered functional engagement hypothesis.

dIscussIon
Traumatic brain injury is associated with altered functional recruit-
ment during the performance of cognitively demanding tasks. We 
have recently demonstrated this in the context of working memory 
performance using fMRI methods (Turner and Levine, 2008), These 
functional brain changes have been reported in other cognitive 
domains (e.g., sustained attention; Dockree et al., 2004; and see 
Levine et al., 2006 for a review of functional neuroimaging and 
TBI) and with other imaging modalities (e.g., electrophysiology; 
Dockree et al., 2004; Molteni et al., 2009; see Duncan et al., 2005 
for a review). However, the behavioral implications of this altered 
neural activity have been poorly characterized. Here we investigated 
whether altered patterns of neural recruitment observed following 
TBI are compensatory and, if so, do they represent the instan-
tiation of novel neural networks (i.e., true functional reorganiza-

tion) or enervation of functional networks that are behaviorally 
latent in the undamaged or under-challenged brain (i.e., altered 
functional engagement).

In the first analysis, we used bPLS to investigate whether the 
altered functional recruitment of brain regions observed during 
working memory performance was related to task accuracy. We 
hypothesized, based on previous reports from the functional neu-
roimaging literature (e.g., McAllister et al., 1999; Perlstein et al., 
2004), that over-recruitment of areas within right PFC which we 
had reported previously in this TBI sample would be positively cor-
related with task accuracy (i.e., compensatory). These data provide 
strong support for our hypothesis. Activity in a right lateralized 
network, including two distinct regions of right lateral PFC in 
the vicinity of the aGFm on the border of BA 10/46 and a more 
dorsal region of GFm on the border of BA 44/45 was correlated 
with working memory task accuracy in our TBI group (Figure 2B; 
Table 3). Similar regions of right lateral PFC were observed by 
Perlstein et al. (2004) to track positively with working memory 
load in their TBI sample. This region has also been implicated in 
supra-span working memory performance in non-injured par-
ticipants (e.g., Rypma et al., 1999) and during working memory 
performance in healthy aging (Erickson et al., 2007). However, 
these data represent the first time that activity in this region has 
been directly and positively correlated with performance on a 
working memory task, specifically taxing executive control proc-
esses, in a TBI sample.

In contrast to the right lateralized brain and behavior correla-
tions observed in our TBI sample, task accuracy in the control sam-
ple during all tasks was predominantly associated with activity in 
a network of left lateralized brain regions, including GFi and GFm 
(BA 46/44; Figure 2A; Table 2), although this network expanded 
to include right lateral PFC during Alphabetize 5 trials (Figure 1; 
Table 1). This pattern replicates many previous reports implicating 
lateral PFC in working memory tasks involving a significant execu-
tive control component (Curtis and D’Esposito, 2003; see Cabeza 
and Nyberg, 2000 for a review). These results provide strong sup-
port for our original hypothesis that recruitment of right lateral 
PFC during cognitively demanding tasks, as has now been reported 
in several studies, is compensatory. Moreover, a similar finding from 
our laboratory  using a feature integration task suggests that this 
pattern of compensatory neural recruitment following TBI is not 
specific to working memory but may represent a domain-general 
response to increased cognitive challenge.

Few reports to date have directly correlated brain and behav-
ior measures in a TBI sample. Our findings are consistent with 
those of McAllister et al. (1999) who observed positive correlations 
between activity in left GFi and accuracy on a working memory 
task in patients with mild TBI; a pattern we also observed in our 
healthy controls (they did not report group-specific correlations). 
However, our data are not consistent with those of Newsome et al. 
(2007) who failed to observe significant correlations between 
brain response and performance during the 2-back condition of 
an N-back working memory task. This task is similar to that used 
by McAllister et al. (1999), where maximal brain response during 
the 2-back condition was observed in their sample of mild TBI 
patients. We suggest that patient heterogeneity in the sample of 
Newsome et al. (2007) may have limited their ability to detect 

Table 2 | Cluster maxima from the behavior PLS (bPLS) analysis for the 

control group (LV 1, see Figure 2A).

Lag x y z Lat. Anat. BA BSR Clust. ROI

0 −44 44 16 L GFm 46 5.22 12 

0 28 6 44 R GFm 6 6.17 12 

0 24 −67 −13 R GF 19 7.16 54 

0 −36 −78 −10 L GOm 19 7.89 58 

1 −40 48 23 L GFm 9/46 6.60 22 ii

1 −67 9 29 L GFi 44/6 8.06 20 i

1 28 6 48 R GFm 6 5.44 11 

1 −63 −46 10 L GTs 22 6.34 18 

1 44 −28 53 R LPi 40 5.27 30 

1 −51 −30 31 L Gsm 40 6.67 44 

1 32 −48 50 R LPs 7 4.84 12 

1 −24 −55 58 L LPs 7 5.42 27 

1 −24 −78 −13 L GF/GL 18 7.49 108 

1 28 −78 −13 R GF/GL 18 6.44 75 

2 −44 26 −18 L GTs 38 6.78 21 

2 −51 −29 35 L LPi 40 6.00 24 

2 32 −56 54 R LPs 7 6.10 15 

2 −24 −59 62 L PCu 7 8.14 17 

2 8 −63 66 R PCu 7 5.21 11 

2 −48 −63 −10 L GOm 37/19 6.17 28 

3 −40 −66 −3 L GOm 19 6.33 11 

2 −44 −84 23 L GO 19 6.44 26 

2 28 −90 −16 R GF 18 6.81 91 

2 −8 −98 −9 L GL 18 6.07 11 

3 48 −64 −27 R Cereb  7.44 58 

These regions demonstrated a positive correlation with task accuracy. Cluster 
threshold (BSR) was >4, corresponding approximately to p < 0.0001, with 
minimum size of 10 voxels. All column headings and abbreviations as in 
Table 1.
ROI, region of interest (roman numerals correspond to regions highlighted in 
Figure 2).
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Table 3 | Cluster maxima from the behavior PLS (bPLS) analysis for the 

TBI group (see Figure 2B).

Lag x y z Lat. Anat. BA BSR Clust. ROI

0 −20 −82 −13 L GL 18 −6.25 12 

0 8 −82 −13 R GL 17/18 −5.80 18 

0 0 −35 2 R Pulvinar  −5.47 24 

0 −20 −25 −29 L B. stem  −6.98 15 

1 20 −86 −13 R GL/GF 18 −7.19 22 

1 0 −25 −32  B. stem  −10.13 16 

1 −20 −86 −19 L Cereb  −6.47 19 

2 40 47 16 R GFm 46 −11.98 28 iii

2 36 21 25 R GFm/GFi 46/44 −7.89 12 iv

2 −28 −57 25 L GTm 39 −7.69 14 

2 24 −86 −13 R GF 18 −6.41 13 

2 −20 −29 −36 L B. stem  −7.56 16 

2 12 −29 −39 R B. stem  −6.25 19 

3 44 47 16 R GFm 46 −9.99 16 iii

3 36 21 25 R GFm/GFi 46/44 −6.01 13 iv

3 −28 −50 17 L GTm 39 −5.08 14 

3 −24 −56 54 L LPs 7 −7.13 18 

4 −16 −83 −26  Cereb  −5.23 14 

Cluster thresholding criteria as in Table 2. All abbreviations as in 
Tables 1 and 2.

significant correlations. While other reports examining func-
tional brain changes during working memory performance fol-
lowing TBI did not report direct brain and behavior correlations 
(Christodoulou et al., 2001; Perlstein et al., 2004), these studies 
reported recruitment of right lateral PFC regions during working 
memory task performance, consistent with our findings. Moreover, 
Perlstein et al. (2004) also reported a group by laterality interac-
tion whereby increased working memory load was associated with 
increased activity in left lateral PFC for controls and right lateral 
PFC for TBI consistent with our data (Figure 2).

We were particularly interested in questions of functional con-
nectivity as our TBI sample was carefully screened for evidence of 
focal brain pathology, providing us with a sample of patients with 
relatively “pure” DAI. Higher cognition is increasingly understood 
to be an emergent property of brain activity within large scale neural 
networks anchored by nodes within PFC (McIntosh, 1999; Grady 
et al., 2003). Given that working memory is disrupted following 
TBI (e.g., D’Esposito et al., 2006), we surmised that such networks 
subserving working memory might be particularly sensitive to DAI. 
Moreover, data from our first analysis suggested that compensatory 
functional recruitment of right PFC following TBI was replicated in 
controls, but only at the highest level of ED within working memory. 
Consistent with recent reports in healthy aging (Lustig et al., 2009), 
these data suggested that this pattern of right lateralized recruitment 
may reflect a pattern of task-dependent altered functional engage-
ment rather than functional reorganization per se.

To test this hypothesis, we employed multivariate methods 
(combined bPLS and sPLS) to examine the functional connectiv-
ity and behavioral relevance of networks anchored by four PFC 
“seed” regions, identified in the bPLS analysis as being highly corre-
lated with performance on our working memory tasks. The results 

were consistent with an altered functional engagement hypothesis. 
Lateral regions of PFC including aGFm bilaterally, left GFi and the 
border zone of right GFi and GFm, were functionally connected in 
both groups. Their behavioral relevance, however was differentially 
altered both by task demands and by brain injury (see Figure 4 for 
an overview of these results within PFC). Increasing either load or 
ED above baseline (Maintain 3) resulted in recruitment of right 
anterior PFC into the baseline left lateralized PFC network. Activity 
in this expanded network was only sufficient to support behav-
ioral performance in controls. TBI patients required additional 
recruitment of right posterior lateral PFC to support performance 
at this level of task demand (Maintain 5, Alphabetize 3). Control 
performance was correlated with activity in this broader bilateral 
PFC network only when both ED and load increased (Alphabetize 
5). Thus the stepwise pattern of behaviorally relevant functional 
recruitment observed in our controls as working memory demands 
increased was truncated for TBIs where right PFC brain–behavior 
correlation was observed with any increase in task demand.

When interpreting functional brain changes in neurological 
populations it is critical to consider the potential contribution of 
injury-related changes in the microvasculature, and thus BOLD sig-
nals, to observed group differences (see D’Esposito et al., 2003 for a 
review). We cannot directly rule out the impact of TBI-related vascu-
lar changes in our results. However, we observed robust lateralization 
and task-related differences in both brain and behavior correlations 
(Figure 2; and Figure A1 in Appendix) as well as task-dependent 
differences in patterns of network connectivity (Figure 3) between 
our groups. This pattern of group-wise, task-dependent changes in 
localized brain regions could not be explained by a more generalized 
account of altered BOLD signaling following TBI.

In summary, these results support the altered functional engage-
ment hypothesis following TBI. Existing PFC nodes that are nor-
mally coactivated during working memory task performance are 
behaviorally relevant at an earlier stage of difficulty for TBI patients 
as compared to controls. This finding is inconsistent with the notion 
of reorganization whereby new network nodes not previously 
engaged by the task are related to task performance. This would not 
have been apparent had we not included a functional connectivity 
analysis (sPLS) to assess extant, but latent PFC networks. Without 
such analysis, brain–behavior correlations may be misinterpreted as 
reflecting reorganization when in fact they reflect altered functional 
engagement. It is important to note that the controls’ behaviorally 
relevant left-lateralized network indicated frontoparietal connec-
tivity classically associated with working memory (Postle, 2006), 
whereas the TBI patients’ right-lateralized network also included 
midline posterior regions not present for controls, consistent with 
previous reports (Levine et al., 2006). As this paper focuses on func-
tional changes within PFC related to executive control within work-
ing memory, we cannot rule out that the inclusion of these midline 
posterior regions in the TBI patients reflects functional reorganiza-
tion. However, we did not examine this directly here.

In a review of activation functional imaging in TBI, Levine 
et al. (2006) concluded that brain activity is more widely dis-
persed and weaker in PFC relative to non-injured controls. 
However, they cautioned that confirmation of these functional 
brain changes in TBI would have to await studies of TBI sub-
jects with more homogenous neuropathology, well-validated 
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FIguRe 3 | (A) Behavioral and seed LVs (LV 1 all analyses) for the four PFC 
ROIs indicated in Figure 2. Legend in (Ai) applies to all histograms. For 
consistency of presentation, correlation values are reversed on the x-axis for 
(Ai–iii). Significant brain saliences for these LVs were negative (B), thus 
indicating a positive behavior and seed correlation. Error bars represent 
confidence intervals defined by the standard error of the bootstrap estimates (as 
in Figure 1). (B) BSRs for each of the LVs represented in (A). Slice coordinate in 

Talairach space (z) are indicated in bottom-left (step = 2). Time lags (either 2–4 or 
4–6 s post stimulus onset) are indicated on the left of the images. BSR was set 
at 4 (p < 10−4, corresponding approximately to a p < 0.0001) and cluster size 
was  >5 voxels for all images. As noted above, the sign of the correlation and 
voxel saliences was reversed between images (Ai–iv). This is reflected in the 
voxel color coding in (Aiv). However, this does not affect interpretation; all 
brain–behavior correlations were positive.

 experimental paradigms and matched behavioral performance. 
Our investigation meet these criteria and extend their conclu-
sions in two important ways. First, we demonstrate that the pat-
tern of spatially dispersed activity in TBI positively correlates 
with task performance – i.e., these functional brain changes 
in this population are compensatory. Secondly, the pattern of 
altered functional recruitment we observed in this sample of TBI 

participants mirrored that observed in healthy controls – but at 
lower levels of task challenge. In other words, TBI was associated 
with poor regulation of functional brain activity in response to 
increasing task demand.

The neuropathological profile of our patient sample is similar to 
that reported in studies of healthy aging where diffuse white mat-
ter pathology and generalized reductions in gray and white matter 
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FIguRe 4 | Conceptual representation of combined behavioral and seed 
partial least squares analysis. Dashed lines connecting seed regions 
represent functional connectivity between these regions. Solid lines signify both 
functional connectivity and correlations between activity in the network and 
task accuracy. Roman numerals signify seed regions as defined in Figure 1.

have been observed (e.g., Tisserand et al., 2002; Raz et al., 2005). 
Interestingly, studies examining the functional neuroanatomy of 
working memory in healthy aging (e.g., Rypma and D’Esposito, 
2000; Erickson et al., 2007; see Lustig et al., 2009 for a review), also 
report similar patterns of compensatory right prefrontal recruitment 
as we observed in our TBI sample. This convergence of neuropa-
thology and functional recruitment patterns suggests that healthy 
aging may in part mimic DAI, at least with respect to the functional 
neuroanatomy of higher cognition.

Finally, we have previously reported that our TBI patients 
have evidence of DAI on neuroradiological report. Moreover, 
there were significant group-wise differences in cerebral white 
and gray matter in this TBI group relative to healthy age- and 
education-matched controls (Turner and Levine, 2008). An 
important next step in understanding the neural and behavioral 
sequelae of moderate to severe TBI will be to relate these struc-
tural brain changes to the pattern of functional brain changes 
reported here. Work is currently underway in our laboratory to 
examine this question using diffusion imaging techniques to 
characterize the structural integrity of white matter pathways 
in this population.
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aPPendIx

FIguRe A1 | Correlations between brain activity in anterior middle 
frontal gyrus seed regions (highlighted in Figure 3A). Talairach coordinate 
of left middle frontal gyrus (GFm): −40, 48, 23; right GFm: 40, 47, 16.
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for other “visual” ventral and dorsal extrastriate cortical areas 
(Amedi et al., 2001, 2005; Pietrini et al., 2004; Ricciardi et al., 
2006, 2009; Bonino et al., 2008).

Visual experience, however, does lead to a functional segrega-
tion within hMT+ (Ricciardi et al., 2007). Indeed, tactile motion 
perception in sighted subjects activated the more anterior por-
tion of visual motion-responsive regions but deactivated the more 
posterior subregion that was activated by visual motion only. By 
contrast, perception of tactile motion in congenitally blind subjects 
activated the full extent of hMT+, including the more posterior part. 
In line with these findings, Beauchamp et al. (2007) using fMRI to 
localize functional responses to visual and tactile stimuli within 
hMT+ demonstrated that the anterior and dorsal middle-superior 
temporal area (MST), but not the remaining portion, responded 
to simple vibrotactile stimuli.

Recently, repetitive transcranial magnetic stimulation (rTMS) 
was used to determine whether this more anterior portion of 
hMT+ truly plays a functional role in tactile motion processing. 

IntroductIon
Visual perception of motion in humans activates specific areas of 
the temporo-occipital cortex that classically includes the human 
middle temporal complex, hMT+ (Watson et al., 1993; Zeki et al., 
1993; Tootell et al., 1995). This extrastriate area is activated also 
during apparent and illusory visual motion, and mental imagery 
of movement (Tootell et al., 1995; Goebel et al., 1998; Kourtzi 
and Kanwisher, 2000; Mather et al., 2008). Moreover, hMT+ 
responds to the perception of auditory and tactile motion in 
sighted (Hagen et al., 2002; Ricciardi et al., 2007; Ptito et al., 
2009; Summers et al., 2009), as well as in congenitally blind 
individuals (Poirier et al., 2006; Ricciardi et al., 2007). These 
latter findings indicate that hMT+ also processes non-visual 
sensory inputs of motion, and that visual experience is not a 
prerequisite for the development of the functional organization 
of this motion-responsive area. In addition, these results extend 
to motion-responsive temporo-occipital areas the supramodal 
functional organization that has been previously demonstrated 

Effects of visual experience on the human MT+ functional 
connectivity networks: an fMRI study of motion perception in 
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Human middle temporal complex (hMT+) responds also to the perception of non-visual 
motion in both sighted and early blind individuals, indicating a supramodal organization. Visual 
experience, however, leads to a segregation of hMT+ into a more anterior subregion, involved 
in the supramodal representation of motion, and a posterior subregion that processes visual 
motion only. In contrast, in congenitally blind subjects tactile motion activates the full extent of 
hMT+. Here, we used fMRI to investigate brain areas functionally connected with the two hMT+ 
subregions (seeds) during visual and tactile motion in sighted and blind individuals. A common 
functional connectivity network for motion processing, including bilateral ventral and dorsal 
extrastriate, inferior frontal, middle and inferior temporal areas, correlated with the two hMT+ 
seeds both in sighted and blind individuals during either visual or tactile motion, independently 
from the sensory modality through which the information was acquired. Moreover, ventral 
premotor, somatosensory, and posterior parietal areas correlated only with the anterior but 
not with the posterior portion of hMT+ in sighted subjects, and with both hMT+ seeds in blind 
subjects. Furthermore, a correlation between middle temporal and occipital areas with primary 
somatosensory seeds was demonstrated across conditions in both sighted and blind individuals, 
suggesting a cortico-cortical pathway that conveys non-visual information from somatosensory 
cortex, through posterior parietal regions, to ventral extrastriate cortex. These findings expand 
our knowledge about the development of the functional organization within hMT+ by showing 
that distinct patterns of brain functional correlations originate from the anterior and posterior 
hMT+ subregions as a result of visual experience.
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In  blindfolded sighted individuals who were asked to detect tactilely 
changes in the velocity of a random Braille-like dot pattern with 
the tip of their index and middle fingers, accuracy, and reaction 
times were significantly impaired only when rTMS was applied 
on the more anterior part of hMT+, but not on a control parieto-
occipital area (Ricciardi et al., 2010). These results indicate that 
hMT+ recruitment is not an epiphenomenon but is truly necessary 
for tactile processing of motion, and provide additional evidence to 
the hypothesis of a “supramodal” functional organization for the 
more anterior part of this sensory motion processing area.

Over the last several years, increasing attention has been devoted 
to exploring interregional connectivity during a specific task, 
defined as “functional connectivity” (Friston et al., 1993; Horwitz, 
2003; Horwitz et al., 2005). To characterize neural interactions 
across the whole brain, functional connectivity analyses select a 
voxel, or a group of voxels, as a reference (the so-called seed region of 
interest – seed-ROI), and cross-correlate the seed-ROI time course 
with the whole brain to identify functionally connected sites, i.e., 
brain regions showing high temporal coherence during a specific 
task or condition.

The present study was designed to examine the functional corre-
lations between the more anterior “supramodal” and the posterior 
“visual” portions of hMT+ and the whole brain during visual and 
tactile processing of motion and the effects of visual experience and, 
conversely, of the lack of visual experience, on the development of 
these correlations. Based on our previous findings discussed above 
(Ricciardi et al., 2007), we hypothesized that the more anterior 
“supramodal” portion of hMT+ would show correlations not only 
within visual occipital areas but also with non-visual sensory brain 
area, or areas of visuo-tactile integration, such as sensorimotor 
and posterior parietal regions (Bremmer et al., 2001; Grefkes et al., 
2002), independently from the specific motion detection task and 
from the occurrence of any visual experience. In contrast, we pos-
tulated that in sighted subjects the posterior part of hMT+ would 
show a wide pattern of correlation only within visual occipital areas. 
Finally, because perception of tactile motion in congenitally blind 
subjects engaged the full extent of hMT+, we predicted that the 
absence of visual experience would lead posterior hMT+ subregion 
to develop a pattern of functional connectivity similar to that shown 
by the more anterior hMT+ portion.

MaterIals and Methods
subjects
For this study, we analyzed brain functional data obtained in a pre-
viously reported fMRI experiment (Ricciardi et al., 2007). In brief, 
we studied seven sighted (one female, 27 ± 2 years) and four blind 
(one female, 37 ± 14 years) right-handed healthy volunteers. Three 
subjects were blind from birth, and one became blind at the age of 
2 years and had no recollection of any visual experience (causes 
of blindness: two congenital glaucoma, retinopathy of prematu-
rity, and congenital optic atrophy). All subjects received medical, 
neurological and psychiatric examinations, and laboratory testing, 
including a structural brain MRI scan exam, to rule out history or 
presence of any disorder (other than blindness in the congenitally 
blind group) that could affect brain function and development. No 
subject was taking any psychotropic medication. All participants 
gave their written informed consent after the study procedures and 

potential risks had been explained. The study was conducted under 
a protocol approved by the Ethical Committee at the University of 
Pisa Medical School (Protocol n. 020850). All participants retained 
the right to withdraw from the study at any moment.

IMage acquIsItIon
fMRI images were acquired using a gradient echo echoplanar (GRE-
EPI) sequence with a GE Signa 1.5 Tesla scanner (General Electric, 
Milwaukee, WI, USA). A scan cycle (repetition time, TR = 3000 ms) 
was composed of 22–26 contiguous axial slices [5 mm thick-
ness, field of view (FOV) = 24 cm, echo time (TE) = 40 ms, flip 
angle = 90°, image in plane resolution = 64 × 64 pixels], and voxels 
dimensions were 3.75 mm × 3.75 mm × 5 mm. We obtained 3–7 
time series of 79 brain volumes (237 s) in all subjects while they 
perceived tactile motion stimuli and, in sighted subjects only, also 
2–4 time series while they perceived visual motion stimuli.

High-resolution T1-weighted spoiled gradient recall (SPGR) 
images were obtained for each subject to provide detailed brain 
anatomy during structural image acquisition.

experIMental task and stIMulI
Tactile stimuli were administered using an MR compatible device 
(Ricciardi et al., 2007) on a polystyrene table placed over the sub-
jects’ legs. Subjects’ hands lay on the table with the index and mid-
dle fingers touching a plastic surface with dot patterns at the same 
time. Tactile stimuli were moving or static Braille-like dot (average 
∅: 1–1.5 mm; height: 0.5–1 mm) random patterns presented on 
a plastic flat surface (a 30-mm wide band). Horizontal translation 
(left-to-right and right-to-left; density 1 dot/cm2, average distance: 
9 mm; speed: 2.2 cm/s) and rotation (clockwise and counterclock-
wise; density 2 dot/cm2, average distance: 6 mm; speed: 93.5°/s) 
motion were used. For the visual tasks, participants were asked 
to fixate a central static white cross (0.15°× 0.15°) while moving 
or static white dots were presented on a black background (dot 
radius: 0.06°, luminance about 20 cd/m2). The same two types of 
motion as for the tactile motion task were used in the visual task: 
horizontal translation (1.8°/s) and rotation (9°/s). Visual stimuli 
were presented on a rear projection screen viewed through a mirror 
(visual field: 25° wide and 20° high).

Moving stimuli were presented in 8–40 s blocks separated by 
intervals with static stimuli of varying duration (11 ± 10 s). Each 
time series began and ended with 30 s of static stimuli. Participants 
were asked to fixate the central cross during the visual task, and 
to keep their eyes closed during the tactile tasks. Sensory modality 
(tactile or visual), type of movement, direction of movement, and 
hand of stimulation (left or right) were constant for each time series, 
and were presented in a pseudo-random sequence counterbalanced 
within and across subjects.

data analysIs
The AFNI and SUMA software package was used to analyze functional 
imaging data (http://afni.nimh.nih.gov/afni, Cox, 1996). Based on the 
local maxima of group Z maps in sighted subjects during the tactile 
motion perception task (Ricciardi et al., 2007), the ROIs to be used 
as the seeds for the whole brain functional connectivity correlation 
analysis in tactile runs were identified bilaterally in a more anterior 
(aMT in Figure 1; Talairach atlas coordinates: X = 44, Y = −48, Z = −5; 
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Finally, to explore the hypothesis of a cortico-cortical  pathway 
that from primary somatosensory cortex, through posterior pari-
etal regions, would convey non-visual (tactile, in this case) infor-
mation to the supramodal extrastriate cortex (Kupers et al., 2006; 
Peltier et al., 2007; Fujii et al., 2009; Matteau et al., 2010), we 
selected seed-ROIs also within the primary somatosensory (S1) 
regions (Talairach atlas coordinates- sighted, tactile runs: X = 44, 
Y = −29, Z = 49, X = −43, Y = −28, Z = 54; sighted, visual runs: 
X = 51, Y = −29, Z = 44, X = −51, Y = −20, Z = 46; blind, tactile 
runs: tactile runs: X = 47, Y = −24, Z = 47, X = −42, Y = −37, 
Z = 60). Definition of the seed-ROI in somatosensory cortex 
(S1) was based on the local maxima for each condition group 
Z maps for sighted and blind individuals, respectively (Ricciardi 
et al., 2007). As explained below, significant voxels (p < 0.0005; 
Z-score > 3.48) falling within 5 mm-radius spheres centered at 
local peak values for the selected ROIs were used to extract indi-
vidual averaged time series. All raw volumes from the different 
runs were concatenated and coregistered, temporally aligned, 
and spatially smoothed (isotropic Gaussian filter, σ = 3.4 mm). 
Individual runs data were normalized by calculating the mean 
intensity value for each voxel, and by dividing the value within 

X = −49, Y = −62, Z = 5) and a more posterior (pMT in Figure 1; 
Talairach atlas coordinates: X = 44, Y = −70, Z = −4; X = −46, Y = −77, 
Z = 2) subregion of hMT+ (Figure 1). Tactile motion perception task 
in sighted subjects activated the more anterior portion of hMT+, 
but deactivated the more posterior subregion that, in contrast, was 
activated by visual motion only (Ricciardi et al., 2007).

Similarly, based on the local maxima of group Z maps in sighted 
subjects during the visual motion perception task (Ricciardi et al., 
2007), the local maxima of hMT+ (vMT in Figure 1; Talairach atlas 
coordinates: X = 43, Y = −73, Z = 7; X = −46, Y = −62, Z = 7) was 
used as the seed-ROI in visual runs. This visual seed-ROI almost 
overlapped with the more posterior subregion of hMT+ (pMT) as 
defined during the tactile motion task. The anterior hMT+ subre-
gion (aMT) was used as a seed-ROI for the whole brain functional 
connectivity correlation analysis also for the visual runs.

Consistently, since blind individuals activated the whole extent 
of hMT+ during tactile motion perception (Ricciardi et al., 2007), 
for the functional connectivity analysis we located two seed-ROIs 
on the same coordinates for the anterior (aMT) and posterior 
(pMT) subregions of hMT+, as defined during the tactile motion 
perception task in the sighted subjects (see above).

FIguRe 1 | group averaged Z map showing brain regions significantly 
correlated with the average time series extracted from the left and 
right more anterior and more posterior subregions of the hMT+ during 
visual and tactile motion perception in sighted subjects, and during 
tactile motion perception in blind subjects (FDR corrected q < 10−6). 

Spatially normalized activations are projected onto a single-subject cortical 
surface template in the Talairach–Tournoux standard space. Lateral views 
of the inflated right and left hemispheres are shown. Green circles 
identify the seed-ROIs used for the functional connectivity correlation 
analysis.
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to Z-scores using Fisher’s Z transformation formula. For each ROI, 
individual and group Z-score correlation coefficient maps were 
computed by multiplying in two different steps the across runs 
and across subjects average Z correlation coefficient values by the 
square root of the number of runs, respectively. Significant cor-
relations were defined by a false discovery rate (FDR) corrected 
q < 10−6. Conjunction maps were created by overlapping significant 
correlations maps for each group and each task condition, in order 
to improve the description of the common network for motion 
processing functionally connected with both subregions of hMT+, 
and the distinctive patterns of functional correlations of the more 
anterior and posterior subregions of hMT+.

results
FunctIonal connectIvIty oF anterIor and posterIor hMt+ 
subregIons In sIghted IndIvIduals
During the visual motion perception task in sighted subjects, both 
the anterior “supramodal” and posterior “visual” seed-ROIs within 
hMT+ (respectively, aMT and vMT in Figure 1; yellow clusters in 
Figure 2, top row) showed correlations bilaterally, with a larger ipsi-
lateral extension, with ventral extrastriate areas, including middle 
temporal, middle occipital and fusiform regions, and dorsal- occipital 
cortex. However, while the more anterior “supramodal” seed-ROI 
within hMT+ correlated bilaterally also with precentral and post-
central cortex, inferior and superior parietal areas, intraparietal 
cortex, dorsal premotor (BA6), dorsal (BA9) and anterior (BA46) 
middle frontal regions (aMT in Figure 1; red clusters in Figure 2, 
top row), the posterior “visual” hMT+ subregion showed additional 

each voxel by its mean to estimate the percent signal change at 
each time point. Effects of no interest (baseline shifts and linear/
quadratic drifts) were removed from the pre-processed EPI time 
series of each individual run, and a low-pass filtering (filter cut-off 
frequency = 0.1 Hz) was performed on the signal time series of each 
voxel to eliminate high-frequency noises (Fox et al., 2005; Liang 
et al., 2006). Individual time series were then spatially transformed 
into the standard Talairach and Tournoux Atlas (Talairach and 
Tournoux, 1988) coordinate system, resampled to 1 mm3 voxels, 
and averaged across all voxels of a seed-ROI to derive a reference 
signal time course for each visual or tactile run. The extracted 
time series were used as regressors of interest in a whole brain 
multiple regression analysis. For each subject, the global signal 
(averaged signal across whole brain voxels) and the six movement 
parameters derived from the volume spatial registration in each 
scan series were included in the correlation analysis as covariates 
(i.e., regressors of no interest), in order to factor out signal changes 
due respectively to physiological noise (e.g., cardiac or respiratory 
artifacts; Cordes et al., 2001; Birn et al., 2006) or head movements 
(Jiang et al., 1995; Lowe et al., 1998). The task-related regressor 
(tactile or visual moving stimuli) of each run was also included as 
an additional regressor of no interest in the correlation analysis in 
order to minimize the effect of the specific tasks (Whalley et al., 
2005). For each subject, output maps of the correlation coefficients 
represented the functional connectivity maps of the considered 
seed-ROI with the whole brain. In order to run group analyses, to 
reduce skewness and improve the normality of the distribution of 
the correlation coefficients, correlation coefficients were converted 

FIguRe 2 | Conjunction analysis (logical AND) created by overlapping 
significant (FDR corrected q < 10−6) correlations maps for each group and 
each task condition. The overlap map shows the areas correlated with both the 
more anterior and the more posterior subregion of bilateral hMT+ (shown in 
yellow), as well as the areas correlated only with the anterior (red) and the 

posterior (green) hMT+ seed-ROIs during visual (top row) and tactile (middle 
row) motion runs in sighted subjects, and during tactile (bottom row) motion 
runs in congenitally blind subjects. Lateral views of the inflated right and left 
hemispheres are shown. Right and left sides of the figure show the areas 
correlated respectively with the right and left hMT+ seed-ROIs.
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and middle occipital cortex, dorsal occipital and superior parietal 
areas, postcentral somatosensory cortex, temporo-parietal, ventral 
premotor, and anterior middle frontal clusters (aMT and pMT 
in Figures 1 and 2, bottom row). While the anterior seed-ROIs 
of hMT+ showed a broader correlation with bilateral middle and 
superior temporal cortex and a more distributed connection with 
insular and anterior prefrontal areas (aMT in Figure 1; red clusters 
in Figure 2, bottom row), the posterior seed-ROIs of hMT+ pre-
sented a significant functional connection also with medial occipital 
areas, such as lingual gyri and cuneus (pMT in Figure 1; green 
clusters in Figure 2, bottom row).

FunctIonal connectIvIty oF s1 durIng tactIle and vIsual 
MotIon perceptIon
During the tactile motion perception task in both sighted and con-
genitally blind individuals, the somatosensory seed-ROIs showed 
extensive bilateral connections with contiguous paracentral cortex, 
ventral and dorsal premotor areas, supplementary motor, posterior 
parietal and intraparietal regions, anterior middle, and superior 
frontal clusters (Figure 3). Furthermore, both the left and right 
S1 seed-ROIs were functionally connected with bilateral middle 
temporal and lateral occipital areas, thus including also supramodal 
ventral and motion-responsive extrastriate regions.

A similar pattern was also described for the somatosensory seed-
ROIs during visual motion perception in sighted subjects, including 
the connection with motion-responsive extrastriate regions.

 correlations only with ipsilateral precuneus and middle prefrontal 
cortex, and with small clusters in bilateral temporo-parietal cortex 
(vMT in Figure 1; green clusters in Figure 2, top row).

During the tactile motion perception runs in sighted subjects, 
both the anterior and posterior subregions of left and right hMT+ 
showed positive correlations extensively in bilateral striate and in 
ventral and dorsal extrastriate regions, including fusiform, para-
hippocampal and lingual gyri, middle and inferior temporal areas 
(aMT and pMT in Figure 1; yellow clusters in Figure 2, mid row). 
Clusters of correlations for both hMT+ seed-ROIs were also found 
in inferior frontal/insular areas and subcortical structures, such 
as the thalamus and putamen. As also was the case during visual 
motion perception, while the more anterior “supramodal” seed-
ROIs significantly correlated with bilateral precentral and postcen-
tral cortex, inferior and superior parietal areas, intraparietal cortex, 
dorsal premotor (BA6), middle (BA9) and inferior frontal (BA44) 
regions (aMT in Figure 1; red clusters in Figure 2, mid row), the 
posterior “visual” subregion of hMT+ showed additional positive 
correlations only with the cuneus and anterior temporal regions 
(pMT in Figure 1; green clusters in Figure 2, mid row).

FunctIonal connectIvIty oF anterIor and posterIor hMt+ 
subregIons In congenItally blInd IndIvIduals
In the congenitally blind group, both the anterior and posterior 
seed-ROIs showed similar patterns of functional correlations 
bilaterally, with a larger ipsilateral extension, in middle temporal 

FIguRe 3 | group averaged Z map showing brain regions significantly 
correlated with the average time series extracted from the left and right 
primary somatosensory seed-ROIs during visual and tactile motion perception 
in sighted subjects, and during tactile motion perception in blind subjects (FDR 

corrected q < 10−6). Spatially normalized activations are projected onto a single-
subject cortical surface template in the Talairach–Tournoux standard space. Lateral 
views of the inflated right and left hemispheres are shown. Green circles identify the 
seed-ROIs used for the functional connectivity correlation analysis.

244

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
http://www.frontiersin.org/Systems_Neuroscience/


Frontiers in Systems Neuroscience www.frontiersin.org December 2010 | Volume 4 | Article 159 | 

Sani et al. Functional connectivity of hMT+ subregions

dIstrIbutIon oF negatIve FunctIonal connectIvIty 
correlatIons coeFFIcIents
In addition to the positive correlations, significant negative correla-
tions were found both in sighted subjects during visual and tactile 
motion perception and in blind subjects during tactile motion per-
ception. Specifically, the bilateral seed-ROIs in both hMT+ and 
primary somatosensory cortex showed bilateral significant negative 
correlations with the temporoparietal junction, anterior cingulate 
and medial prefrontal areas, posterior cingulate, and precuneus 
(Figures 1 and 3).

dIscussIon
The aim of the present study was to explore the functional correla-
tions between hMT+ and the rest of the brain during visual and 
tactile motion processing tasks and the effects of visual experience 
and, conversely, of lack of visual experience, on the development of 
these correlations. Specifically, we wished to determine patterns of 
functional correlations between the more anterior “supramodal” 
and the posterior “visual” subregions of hMT+, respectively, and the 
other brain areas during visual and tactile perception of moving dot 
patterns in both sighted and congenitally blind individuals.

a coMMon network For MotIon processIng FunctIonally 
connected wIth both subregIons oF hMt+
Overall, we found that, both in sighted and congenitally blind sub-
jects, a common set of bilateral brain areas, including ventral and 
dorsal extrastriate regions – such as the fusiform, parahippocampal 
and lingual cortex – middle and inferior temporal areas, and infe-
rior frontal areas were positively correlated with both seed-ROIs in 
the anterior and posterior subregions of hMT+, during either the 
visual or tactile motion perception runs. This network is consist-
ent with other brain functional studies that have reported hMT+ 
to be mutually activated along with many of these visual motion 
processing regions (Watson et al., 1993; Zeki et al., 1993; Tootell 
et al., 1995; Shulman et al., 1998; Hampson et al., 2004).

Therefore, these brain areas have developed a common network 
for motion processing that is functionally correlated with the whole 
hMT+, does not depend from the sensory modality through which 
the information is acquired and does not require visual experi-
ence to form (Poirier et al., 2006; Ricciardi et al., 2007, 2010; Ptito 
et al., 2009). Interestingly, the observation that similar functional 
connectivity networks obtained using the hMT+ seed-ROIs are 
present also in congenitally blind subjects during tactile motion 
perception indicates that the involvement of hMT+ in non-visual 
motion detection cannot be interpreted merely as a consequence 
of visual imagery (Beauchamp et al., 2007; Ricciardi et al., 2007; 
Matteau et al., 2010). Altogether, these results are consistent with 
and extend to the hMT+ connectivity networks the supramodal 
functional organization that has been shown both in the ventral 
and dorsal “visual” cortical pathways in relation to object recogni-
tion and motion and spatial discrimination (Pietrini et al., 2004; 
Amedi et al., 2005; Ricciardi et al., 2006, 2007; Beauchamp et al., 
2008; Cattaneo et al., 2008; Mahon et al., 2009; Matteau et al., 2010), 
and in other prefrontal and parietal cortical areas in relation to 
higher-order cognitive functions, such as mental imagery, working 
memory, and action recognition (Bonino et al., 2008; Cattaneo 
et al., 2008; Ricciardi et al., 2009). As a whole, the results of the 

above studies indicate that visual experience is not a mandatory 
prerequisite for the brain to develop its morphological and func-
tional architecture (Pietrini et al., 2004, 2009).

a negatIve FunctIonal correlatIons
In sighted subjects during visual and tactile motion perception and 
in blind subjects during tactile motion perception, the bilateral 
seed-ROIs of both hMT+ and primary sensorimotor cortex showed 
significant negative correlations in the bilateral temporoparietal 
junction, bilateral posterior cingulate and bilateral anterior cingu-
late. Interestingly, these brain regions belong to the so-called default 
mode network (Raichle et al., 2001; Greicius and Menon 2003). 
Since functional connectivity is a measure of the spatiotemporal 
synchrony, or correlation, of the fMRI signal between anatomically 
distinct brain regions within the cerebral cortex (Friston et al., 1993; 
Biswal et al., 1995), these negative correlations may likely indicate 
that the hMT+ and S1 seed-ROIs (that are “task responsive”) are 
significantly anti-correlated with the default mode network regions 
(that are “rest responsive”). Even if negative correlations may be 
sometimes an artifact of global signal regression techniques, includ-
ing those applied here (Chang and Glover, 2009; Murphy et al., 2009), 
these findings reflect the expected anticorrelation with brain regions 
that commonly exhibit activity decreases during the performance of 
various goal-directed tasks, and that have been previously reported 
as anticorrelated to brain regions routinely activated during goal-
directed task performance (Raichle et al., 2001; Greicius and Menon, 
2004; Fox et al., 2005). The neurophysiological meaning of fMRI 
negative correlations, which remains yet to be fully understood, falls 
much outside of the specific aim of this study.

dIstInctIve patterns oF FunctIonal correlatIons oF the More 
anterIor and posterIor subregIons oF hMt+
In addition to this common network of brain regions for motion 
processing, however, differences between the patterns of functional 
correlations for the anterior and posterior hMT+ subregions were 
identified in the two groups.

In the sighted subjects, the functional connectivity network 
obtained using the bilateral anterior “supramodal” seeds of hMT+ 
differed from the set of brain regions connected to the posterior 
“visual” seed of this motion-responsive area during both visual 
and tactile motion perception. As hypothesized, in sighted subjects 
the posterior part of hMT+ showed a wider pattern of correlation 
within visual occipital areas, while the more anterior portion of 
hMT+ revealed correlations also with non-visual sensory brain area, 
or areas of visuo-tactile integration, such as somatosensory and 
posterior parietal cortex, independently from the specific motion 
detection task. Specifically, premotor and somatosensory regions, 
inferior and superior parietal areas, intraparietal, dorsal premo-
tor (BA6), middle (BA9), and inferior frontal (BA44) cortex were 
functionally correlated with the anterior “supramodal” subregion 
of hMT+, but not with the posterior “visual” one.

In the congenitally blind subjects, during the tactile motion 
perception tasks both the anterior and the posterior part of bilateral 
hMT+ revealed a pattern of functional correlations with the ante-
rior middle frontal, ventral premotor, somatosensory and posterior 
parietal areas, that was similar to the network identified using the 
anterior “supramodal” subregion in the sighted subjects.
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2008), may then undergo a cross-modal plastic reorganization and 
become more robust in those individuals who lose sight at birth or 
in the early post-natal period (Wittenberg et al., 2004; Ptito and 
Kupers, 2005; Kupers et al., 2006, 2010; Ptito et al., 2008; Pietrini 
et al., 2009).

lIMItatIons oF the study
The present study of brain regional functional correlations suf-
fers from some methodological limitations. In the first place, the 
number of subjects recruited into the study is relatively small, 
especially for the blind group. While this issue may limit the gener-
ability of the findings, it should be kept in mind that congenitally 
blind individuals represent an exceptionally rare population, and 
even more so when strict medical selection criteria are adopted 
as in this study. As a matter of facts, several recently published 
brain imaging studies on congenitally blind individuals exam-
ined a similar or even smaller sample of subjects (Mahon et al., 
2009, 2010).

Another limitation of this study is the lack of functional local-
izers and the relatively low field strength to properly ensure that the 
seed-ROIs may not overlap, even in part, with neighbor supramo-
dal areas in lateral occipital cortex (LOtv – Amedi et al., 2001), 
or superior temporal sulcus (multisensory STSms – Beauchamp 
et al., 2008). However, the localization of the anterior seed-ROIs 
of hMT+ is sufficiently distant from the more dorsal and anterior 
STSms center-of-mass (x: −44, y: −35, z: 13) and the more ventral 
LOtv localization (x: −45 ± 5, y: −62 ± 6, z: −9 ± 3).

Finally, here we evaluated functional correlations of the distinct 
hMT+ subregions across different task conditions without having a 
resting-state condition, that would have been the optimal paradigm 
to assess the distinctive functional role of the two hMT+ subregions 
in the two experimental groups. However, modeling of the experi-
mental paradigm in our analysis as a regressor of no interest con-
tributes to mitigate the task-associated changes in BOLD responses 
(Whalley et al., 2005). The attempt to “subtract” task-related effects 
should enhance the specific functional features of the connectivity 
patterns in the two experimental groups, independently from task-
related changes in regional activity, as indicated by the similarity 
of functional correlation maps during the different tasks in the 
sighted group. Indeed, the correlations between BOLD variations 
at rest have been found to reflect patterns of known connectivity 
in different cognitive operations (Hampson et al., 2004; Mennes 
et al., 2010).

In summary, these findings expand our previous results on the 
development of the functional organization of hMT+ by show-
ing that distinct patterns of brain functional correlations origi-
nate from the anterior and posterior hMT+ subregions, and that 
these functional correlation patterns are differentially affected by 
visual experience. As a matter of facts, in congenitally blind subjects 
both the anterior and the posterior part of bilateral hMT+ revealed 
similar patterns of functional correlations, thus indicating that in 
the absence of visual experience brain regions responsive to visual 
motion develop toward processing of non-visual inputs. Along 
with previous studies by our and other laboratories, these find-
ings provide a new perspective on how the human brain develops 
its functional organization in relation to the presence or absence 
of visual experience.

Thus, these findings show that the anterior subregion of the 
motion-responsive occipito-temporal cortex develops functional 
correlation networks that do not depend on visual experience and 
that are equally elicited by both visual and tactile motion process-
ing, extending previous findings on the supramodal nature of this 
cortical region to its connectivity networks (Poirier et al., 2006; 
Beauchamp et al., 2007; Ricciardi et al., 2007; Summers et al., 2009; 
Matteau et al., 2010). In contrast, the posterior subregion, that in 
sighted subjects processes visual motion only, develops patterns 
of functional regional correlations across the brain that differ 
between sighted and congenitally blind individuals. Moreover, the 
similarity between the anterior and posterior hMT+ subregion-
related functional networks in congenitally blind individuals 
suggests that in the absence of visual experience the functional 
development of the more “visual” motion-responsive region and 
its related functional connectivity proceed toward the represen-
tation of non-visual motion (Wittenberg et al., 2004; Ricciardi 
et al., 2007; Fujii et al., 2009). As a result, in people lacking of 
visual experience since birth, the posterior “visual” part of hMT+ 
that in sighted individuals correlates more with related visual 
occipital areas, extends its functional connections also to areas of 
multisensory integration, such as somatosensory and posterior 
parietal cortex.

a cortIco-cortIcal pathway May subserve supraModal 
responses In the vIsual cortex
Which mechanisms subserve these supramodal responses in 
the “visual” motion sensitive cortex of both sighted and con-
genitally blind individuals? Which neural pathways mediate the 
functional correlation between extrastriate motion-responsive 
regions and somatosensory and posterior parietal cortex both in 
sighted and blind individuals? Interestingly, in both experimen-
tal groups, when considering S1-seeded functional networks, 
somatosensory areas showed extensive bilateral connections 
with contiguous posterior parietal and intraparietal regions, 
and with middle temporal and lateral occipital areas. Similarly, 
the anterior supramodal subregion of hMT+ in sighted indi-
viduals, and both the anterior and posterior portions of hMT+ 
in congenitally blind subjects, showed a functional correla-
tion with ventral premotor, sensorimotor, and posterior pari-
etal areas. Thus, our data support a cortico-cortical pathway 
from primary somatosensory cortex through posterior parietal 
regions to the supramodal extrastriate areas, in line also with 
previous anatomical and functional studies (Kupers et al., 2006; 
Peltier et al., 2007; Fujii et al., 2009; Matteau et al., 2010). A 
concomitant involvement of a subcortical loop between the two 
sensory cortical areas also has been proposed (Cowey, 2010). 
In this respect, a functional and effective connectivity fMRI 
study recently indicated a direct functional connection between 
the thalamus and hMT+, that would enable motion informa-
tion to reach hMT+ directly from the thalamus bypassing V1 
(Gaglianese et al., 2010).

These anatomical connections, viable also in physiological 
conditions as demonstrated in the brain of blindfolded sighted 
subjects who perform object, spatial, and motion discrimina-
tion tasks through the tactile or auditory modality (Pietrini et al., 
2004, 2009; Amedi et al., 2005; Ricciardi et al., 2006; Bonino et al., 
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because plasticity in the CNS  typically decreases after  critical/sensi-
tive periods (Katz and Crowley, 2002; Olavarria and Hiroi, 2003; 
Innocenti and Price, 2005; Fields, 2008).

A potential way to extend the DTI approach to the developing 
brain is to monitor changes in water diffusion anisotropy within the 
cerebral cortex at the time in which neurons undergo morphologi-
cal differentiation. In the immature cerebral cortex, water diffusion 
is highly anisotropic due to the influence of a different set of cel-
lular structures (e.g., apical dendrites, undifferentiated dendrites, 
and axons) than those that influence water diffusion within WM 
at maturity (e.g., myelinated axons). Apical dendrites of pyramidal 
neurons are aligned perpendicular to the pial surface, and these 
selectively impose restrictions in directions parallel to the pial sur-
face (Neil et al., 1998; McKinstry et al., 2002). However, as the brain 
matures, diffusion within cortex becomes increasingly restricted 
in all directions, causing fractional anisotropy of water diffusion 
to become progressively smaller, although still measurable in the 
mature brain (McNab et al., 2009). Immediately after pyramidal 

IntroductIon
Diffusion tensor imaging (DTI) studies have shown that in several 
neurological disorders, affected individuals possess white matter 
(WM) that is characterized by abnormally low fractional anisotropy 
(FA) in water diffusion (see reviews by Lim and Helpern, 2002; 
White et al., 2008). In WM of mature normal individuals, water 
diffusion is anisotropic because it is preferentially hindered or other-
wise obstructed in directions perpendicular to an axonal fiber tract, 
but less so in directions parallel to the tract. The degree of anisotropy 
in water diffusion is commonly quantified in terms of FA (Basser 
and Pierpaoli, 1996), which ranges from 0 (isotropic diffusion) to 1 
(maximally anisotropic diffusion). Several reports have shown that 
behavioral and/or sensory impairment correlates with a reduction 
in WM FA, and suggest that this reduction is a manifestation of 
abnormal axonal organization within the tract, or abnormal myelin 
structure. Although DTI provides a unique approach for studying 
the biological basis of neurological disorders, the abnormalities in 
WM identified using this strategy likely reflect an  endpoint of  disease 

Diffusion tensor imaging detects early cerebral cortex 
abnormalities in neuronal architecture induced by bilateral 
neonatal enucleation: an experimental model in the ferret
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Diffusion tensor imaging (DTI) is a technique that non-invasively provides quantitative measures 
of water translational diffusion, including fractional anisotropy (FA), that are sensitive to the 
shape and orientation of cellular elements, such as axons, dendrites and cell somas. For several 
neurodevelopmental disorders, histopathological investigations have identified abnormalities in 
the architecture of pyramidal neurons at early stages of cerebral cortex development. To assess 
the potential capability of DTI to detect neuromorphological abnormalities within the developing 
cerebral cortex, we compare changes in cortical FA with changes in neuronal architecture and 
connectivity induced by bilateral enucleation at postnatal day 7 (BEP7) in ferrets. We show here 
that the visual callosal pattern in BEP7 ferrets is more irregular and occupies a significantly 
greater cortical area compared to controls at adulthood. To determine whether development 
of the cerebral cortex is altered in BEP7 ferrets in a manner detectable by DTI, cortical FA was 
compared in control and BEP7 animals on postnatal day 31. Visual cortex, but not rostrally 
adjacent non-visual cortex, exhibits higher FA than control animals, consistent with BEP7 animals 
possessing axonal and dendritic arbors of reduced complexity than age-matched controls. 
Subsequent to DTI, Golgi-staining and analysis methods were used to identify regions, restricted 
to visual areas, in which the orientation distribution of neuronal processes is significantly more 
concentrated than in control ferrets. Together, these findings suggest that DTI can be of utility 
for detecting abnormalities associated with neurodevelopmental disorders at early stages of 
cerebral cortical development, and that the neonatally enucleated ferret is a useful animal model 
system for systematically assessing the potential of this new diagnostic strategy.

Keywords: diffusion tensor imaging, magnetic resonance imaging, ferret, enucleation, interhemispheric callosal 
connections, Golgi, brain, visual system

Edited by:
Silvina G. Horovitz, National Institutes 
of Health, USA

Reviewed by:
Adam W. Anderson, Vanderbilt 
University, USA
Petra Huppi, University of Geneva, 
Switzerland

*Correspondence:
Christopher D. Kroenke, Advanced 
Imaging Research Center, Oregon 
Health and Science University, 3181 
SW Sam Jackson Park Road, Portland, 
OR 97239, USA.
e-mail: kroenkec@ohsu.edu

http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/Systems_Neuroscience/about
https://www.frontiersin.org/systems_neuroscience/10.3389/fnsys.2010.00149/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17816&sname=AndrewBock
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=2284&d=1&sname=JaimeOlavarria
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17817&sname=LindseyLeigland
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17818&sname=ErinTaber
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17819&sname=SuneJespersen
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=8781&sname=ChristopherKroenke


Frontiers in Systems Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 149 | 250

Bock et al. DTI reveals altered neuromorphological development

neurons of the isocortex migrate from germinal zones to the  cortical 
plate, the neuropil, consisting primarily of neuronal and glial proc-
esses and the associated extracellular space, begins to differenti-
ate (Rakic, 1995). Dendrites and axons begin as simple elongated 
structures, oriented perpendicular to the pial surface, and then 
gain structural complexity as they arborize to form interconnected, 
functional neural circuits (Conel, 1939). It has previously been 
proposed that the reduction in FA associated with development 
of the cerebral cortex arises from morphological differentiation of 
the neuropil (McKinstry et al., 2002). This idea is supported by the 
fact that the age-related decreases in cerebral cortical FA coincide 
with developmental changes in neuropil morphology. Indeed, the 
progressive reduction of cortical diffusion anisotropy with age has 
been quantified for several mammalian species (see Leigland and 
Kroenke, 2010 for review), and in each case the period of cortical 
diffusion anisotropy loss occurs immediately following the genesis 
and subsequent migration of pyramidal neurons from ventricular/
subventricular zones to the cortical plate (Kroenke et al., 2009). In 
addition, the neuropil represents 70–80% of the cortical volume 
fraction (Miller and Potempa, 1990; Granger et al., 1995), which 
is significantly greater than the volume fraction of other elements 
such as glial and neuron cell somas (3.6% and 22%, respectively, 
Miller and Potempa, 1990).

It has been established that certain neurodevelopmental disor-
ders are associated with abnormal morphological differentiation 
of the cerebral cortical neuropil (e.g., Rett syndrome, Armstrong 
et al., 1995) and fetal alcohol spectrum disorder (Davies and Smith, 
1981). Determining whether neurological disorders affecting devel-
opment of the cortical neuropil lead to measurable changes in cor-
tical FA would be of significant value because it would provide 
a means of detecting and monitoring the deleterious effects of 
pathological insults on cortical development, as well as allow for 
therapeutic interventions while the brain is still plastic. Here we 
describe an animal model designed to explore the potential of DTI 
techniques for detecting abnormal morphological development of 
the cerebral cortex.

Ferrets are recognized as an ideal model system for studies of 
brain development (Jackson and Hickey, 1985), and they have 
been utilized in numerous studies of visual system plasticity (see 
review by Katz and Crowley, 2002). We chose blindness induced by 
early enucleation as an experimental perturbation because there 
is a vast literature indicating that blindness induced by neonatal 
enucleation or other forms of visual deprivation can alter intra-
cortical cellular morphology, as well as the patterns of cortico–
cortical connectivity in visual areas. For example, in humans, 
early blindness has been shown to be associated with reductions 
in visual WM FA at adulthood (Shimony et al., 2006). Golgi stud-
ies of animals that have been dark-reared (Coleman and Riesen, 
1968; Borges and Berry, 1978), stripe-reared (Tieman and Hirsch, 
1982), or binocularly enucleated (Ryugo et al., 1975; Heumann and 
Rabinowicz, 1982) have documented effects on several aspects of 
dendritic development in the isocortex, including abnormalities in 
dendritic fields of pyramidal cells, and reductions in the number 
of dendritic spines. Moreover, neonatal enucleation induces mas-
sive changes in the distribution and topography of the interhemi-
spheric connections through the corpus callosum (Berman, 1991; 
Olavarria and Li, 1995; Zufferey et al., 1999; Olavarria and Hiroi, 

2003; Innocenti and Price, 2005; Olavarria and Safaeian, 2006). 
At the cellular level, enucleation increases the length of callosal 
axon branches and total length of arbors, without major effects 
on the number of branch tips (Olavarria et al., 2008), and reduces 
the proportion of multiple synaptic boutons in the visual callosal 
projection (Sorensen et al., 2003).

Due to the widespread distribution of callosal connections in 
the brain, the overall cortical area affected by enucleation can be 
readily estimated by determining which regions contain abnormal 
callosal patterns. In turn, this greatly facilitates the identification 
of areas to be analyzed with DTI methods. To test whether DTI 
methods are capable of detecting abnormal neuropil development, 
we compared measurements of FA in visual cortex of control and 
enucleated ferrets at P31, a stage in which neuronal morphological 
differentiation is still underway. We further asked whether changes 
in the organization of dendrites induced by enucleation are linked 
to abnormal changes in cortical FA. To address this question, we 
examined the effect of enucleation on dendrite morphology in 
Golgi-stained sections, and correlated the changes observed with 
abnormal changes in cortical FA. Our data indicate that enuclea-
tion causes morphological changes in the visual system that can 
be detected with DTI methods at early stages of cerebral cortical 
development. Moreover, our Golgi data suggest that abnormalities 
in the development of dendrites may underlie, at least in part, the 
abnormal changes in cortical FA that we observed in visual cortex 
of enucleated ferrets at early developmental stages.

MaterIals and Methods
anIMal handlIng and procedures
Animal care
Our study is based on data obtained from a total of 10 ferrets (Mustela 
putorius furo) purchased from Marshall Bioresources (North Rose, 
NY, USA) and delivered to the Oregon Health & Science University 
(OHSU) Department of Comparative Medicine on postnatal day 
5 (P5). This study, and all procedures involved, were approved by 
the OHSU and University of Washington Institutional Animal Care 
and Use Committees, and were carried out in accordance with the 
NIH “Guide for the Care and Use of Laboratory Animals” (NIH 
publication no. 86-23, revised 1987).

Enucleations
Ferrets were binocularly enucleated on postnatal day 7 (BEP7). 
Animals were placed under 2% isoflurane anesthesia, and arterial 
pulse oxygenation, pulse rate, respiration rate, and core body tem-
perature were monitored throughout surgical in vivo procedures. 
Under aseptic conditions, slits were cut in both eyelids, the eyes were 
removed with iridectomy scissors, and the eyelids sutured closed. 
Topical bupivacaine was administered intra-operatively in the 
orbital cavity immediately after removing the eyes. After full recov-
ery from anesthesia, animals were returned to their mothers.

Tracer injections
Anatomical tracer injections were performed on six animals (three 
controls and three animals binocularly enucleated on P7, BEP7) at 
adulthood (P120 or older). Animals were placed under 2% isoflu-
rane anesthesia, intubated, and arterial pulse oxygenation, pulse 
rate, respiration rate, end-tidal pCO

2
, and core body temperature 
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light microscope images captured at 2.5× magnification (e.g., see 
Figure 2B). Subsequent steps in the analyses of Golgi-stained tissue 
were performed using images captured at 10× magnification.

Quantification of orientation distributions of neuronal processes
Each of the 10× images was stored to disk as a 512 pixel × 512 pixel 
tif image (each pixel represents a 3 × 3 μm area), and a series of 
initial image processing operations were performed using ImageJ 
software (http://rsbweb.nih.gov/ij/). First, binarized images of 
Golgi-stained neurons and neuronal processes were generated by 
applying a threshold operation to each 10× image. These images 
were stored to disk and denoted “somas + processes”. Second, neuro-
nal processes were removed from the binary images by applying an 
erosion operation, followed by a dilation operation. The resulting 
images were stored to disk and denoted “somas”. Third, difference 
images were constructed between the “somas + processes” and 
“somas” images to generate binary images of only neuronal proc-
esses. Last, a skeletonization operation was applied to the images 
of neuronal processes, and the output of this operation was stored 
to disk and denoted “skeletons”.

Binary 2D skeletons representing the set of neuronal process 
were then approximated as a set of linear segments. To accom-
plish this, skeleton images were imported into the Matlab pro-
gramming environment (The MathWorks, Boston, MA, USA) for 
further processing using a series of custom-built image processing 
macros. First, the length (e.g., the number of connected non-zero 
pixels) of each fragment of the skeletonized image was determined, 
and fragments of less than 10 pixels were removed from subse-
quent analysis (by setting the pixel values to 0). Second, a region 
within the cerebral cortex was identified within each image. This 
operation prevented contamination of Golgi-stained white matter. 
In addition, this operation enabled the analysis to be focused on 
cortical areas that have minimal curvature, thus minimizing the 
effect that macroscopic structure of the cerebral cortex may have on 
the orientation of cortical axons and dendrites (e.g., see Figure 4). 
Third, each skeleton fragment within the identified cerebral cortical 
region of interest was approximated using the equation for a line. 
Last, the set of slope parameters were converted to polar angles, θ, 
ranging from − θ

2  to θ
2 , using the relation θ = tan−1(slope).

To facilitate comparisons between sets of axon and dendrite ori-
entations derived from the various images of Golgi-stained tissue, 
the orientation distribution was modeled using the von Mises-type 
axial distribution (Fisher, 1993)

P
I k

( )
exp cos ( )

( )
θ

κ θ α
π 0

=
−( ) 

( )
2

,

in which I
0
(k) is the modified Bessel function of order zero, and 

P(θ) is the observed distribution of angles θ in a region of interest. 
The factor of 2 in the cos argument differs from the expression 
given by Fisher (1993) because the distribution considered herein 
is undirected rather than directed (see Mardia et al., 1979). Such 
modeling is standard in the analysis of circular data; the von 
Mises parameters that provide quantitative characterizations of 
the mean and width of a set of angles are the mean angle, α, and 
the concentration parameter, κ, respectively. The parameter κ 
can be interpreted as the precision of the mean direction, and is 

were monitored throughout surgical procedures. A 1 cm × 2 cm 
craniotomy was performed over the occipital and parietal lobes 
using a hand-held bone drill. Multiple 0.01–0.02 μl injections of 
the anatomical tracer horseradish peroxidase (HRP, 20% in saline), 
separated by 200–300 μm, were administered through glass micro-
pipettes (50–100 μm tip diameter) 600–800 μm below the dura 
throughout the exposed cortex of one hemisphere. Following injec-
tions, the bone chip was replaced and the muscle and skin layers 
were sutured closed.

Histological analyses
Tissue collection
After a survival period of 2 days, animals were injected with 0.5 mL 
euthasol (i.p.) and previously described fixation procedures to 
unfold and flatten the cortical mantle were followed (Olavarria 
and Van Sluyters, 1985). Heparinized phosphate-buffered saline 
(PBS) was injected into the left cardiac ventricle until the fluid of 
the right atria was clear. Phosphate-buffered paraformaldehyde 
(2% for brains to undergo cortical unfolding and flattening, 4% for 
remaining brains, pH 7.4) was perfused through the left ventricle 
for 8 min. Brains were removed from the skull and those fixed 
in 2% paraformaldehyde were placed in PBS at 4°C, and brains 
fixed with 4% paraformaldehyde were post-fixed for 24 h (in 4% 
paraformaldehyde), and then transferred to PBS and allowed to 
equilibrate for at least 48 h prior to DTI experiments.

Callosal connectivity pattern
The hemisphere contralateral to tracer injections was unfolded and 
flattened according to procedures described previously (Olavarria 
and Van Sluyters, 1985, 1995). The patterns of retrogradely labeled 
somas and anterogradely labeled axon terminals in the contralateral 
hemisphere were revealed with standard HRP protocols (Olavarria 
et al., 1987) in histological sections (70-μm thick) cut tangentially 
to the cortical surface. The surface area occupied by callosal con-
nections was calculated from thresholded versions of the patterns 
reconstructed using Adobe Photoshop CS2. The same parameters for 
image analysis were applied to all control and BE animals. Differences 
in the percent of area occupied by callosal connections were analyzed 
statistically using t-tests with the level of significance set at 0.05.

Golgi staining
Four animals (two controls and two BEP7) euthanized on P31 were 
used for Golgi staining and analysis following DTI experiments. 
Golgi staining was performed using the Rapid GolgiStain kit (FD 
NeuroTechnologies, Inc., Ellicott City, MD, USA). Tissue samples 
were frozen in Tissue Tek OCT (optimal cutting temperature) com-
pound (Ted Pella, Inc., Redding, CA, USA) using a dry-ice slurry, 
150-μm thick coronal slices were cut using a rotary microtome. 
Right hemispheres from two animals (herein termed Cntrl-1 and 
BEP7-1) were sectioned in the coronal plane, and hemispheres 
from the remaining two animals (Cntrl-2, left and BEP7-2, right) 
were sectioned in the axial plane. The left hemisphere of Cntrl-2 
was analyzed here because the right hemisphere of this animal was 
used in a prior study (Kroenke et al., 2009, see below). Tissue sec-
tions were directly mounted onto Gelatin subbed slides and left to 
dry and then coverslipped. Photographic montages of entire coro-
nal sections taken from Cntrl-1 and BEP7-1 were prepared from 
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Cortical diffusion anisotropy
For each right hemisphere, surface models were constructed of 
inner (white matter to subplate or layer VI) and outer (layer I to the 
pial surface) boundaries of the cortex (olfactory bulbs were omit-
ted at the lateral olfactory tract in all analyses) using the CARET 
software package (Van Essen et al., 2001). Previously described 
procedures (Kroenke et al., 2009) were followed to project cortical 
FA values onto cortical surface models, and to register surfaces to 
a common atlas.

results
The distribution of labeled cell bodies and axon terminals was 
charted in flattened contralateral hemispheres of control (N = 3) 
and BEP7 (N = 3) adult ferrets following injection of HRP into the 
visual cortex of one hemisphere (Figure 1). Previous physiological 
studies have mapped the locations of visual areas relative to ana-
tomical landmarks such as gyri and sulci (see green shaded areas 
in Figures 1A,B) (Manger et al., 2002, 2004). Figure 1D illustrates 
the overall callosal pattern demonstrated following multiple HRP 
injections into the contralateral visual cortex of a control animal, 
while Figure 1F shows the callosal pattern from a BEP7 ferret. In 
normal animals, the callosal pattern consists of a series of densely 
HRP-labeled bands and patches within extrastriate cortex, outlined 
in green on the flattened cortex (Figure 1C). These patterns were 
compared across animals by using several landmarks as reference, 
including the series of red dots that were drawn along the crown of 
the suprasylvian and ectosylvian gyri, and along the dorsal/caudal 
edge of the occipital lobe (Figure 1). Similar arrangement of labeled 
and unlabeled areas was observed in all three control ferrets studied, 
providing evidence that the callosal pattern in normal animals is 
consistent from animal to animal. Moreover, callosal labeling at 
the 17/18 border of the hemisphere contralateral to injection was 
sparse in all three control animals studied in spite of the fact that, 
in the injected hemisphere, the region of the 17/18 border was 
densely infiltrated with HRP, as confirmed by inspection of the 
cortex and thalamus in the injected hemisphere (data not shown). 
The approximate location of the representation of the horizontal 
meridian is shown as a blue line in Figure 1. In adult BEP7 ferrets 
the visual callosal pattern is more irregular and occupies a sig-
nificantly greater cortical area compared to controls. As illustrated 
in Figures 1F,G, the callosal pattern in BEP7 ferrets consists of 
smaller patches of labeled cells and axon terminations compared 
to controls, and these patches often occupy regions that are rela-
tively free of callosal labeling in control animals. This is particu-
larly striking throughout visual areas 18, 19, and 21 (Figures 1F,G). 
Comparison of thresholded renderings (Figures 1E,G) of the pat-
terns in Figure 1D,F reveals that the percent area occupied by cal-
losal connections is significantly (p < 0.05) greater in BEP7 than 
control ferrets (Figure 1H).

Abnormalities in the callosal pattern induced by neonatal enu-
cleation have been shown in other species to be present at early 
stages of development (Olavarria and Safaeian, 2006; Olavarria 
et al., 2008). Therefore, the abnormal distribution of labeling in 
mature BEP7 ferrets suggests that DTI measurements of cortical 
FA may provide a strategy for detecting developmental abnormali-
ties early in life by characterizing morphological differentiation 
of cerebral cortical neurons. Figure 2A shows a coronal view of 

somewhat analogous to the inverse of the standard deviation of 
a Gaussian distribution of linear data; larger κ reflects less vari-
ability in the set of angles comprising the distribution (a larger 
standard deviation in a Gaussian distribution corresponds to 
more variability). A maximum likelihood approach for estimat-
ing parameters in the von Mises distribution was implemented 
in Matlab using the property that the distribution of 2θ follows 
the standard (unimodal) von Mises distribution with parameters 
κ and 2α.

Orientation distributions were measured for a total of 14 
(seven control/BEP7 pairs) of cortical locations, including five 
in coronal sections from cases Cntrl-1 and BEP7-1, and two in 
axial sections from cases Cntrl-2 and BEP7-2 (see Figure 5). For 
the control cortical locations, a mean ± standard deviation of 
216 ± 80 linear segments representing neuronal processes were 
used to estimate κ; and for the BEP7 locations, the number of 
line segments was 202 ± 153. Analysis of simulated data was 
performed to confirm accuracy of the procedure for estimating 
κ, and to ensure that bias in numerical procedures used to esti-
mate κ is negligible for the sample sizes used. To estimate 95% 
confidence intervals for each of the 14 κ estimates, a bootstrap 
procedure (Fisher, 1993), using the “bootstrp” Matlab function, 
was utilized. For a cortical location with N line elements, this 
involved estimating the von Mises distribution parameters 1000 
times, each time using a random sampling of the N values of θ. 
The 95% confidence interval for κ is estimated to range from 
the 26th to the 975th smallest κ value. A pair of κ values was 
interpreted to be significantly different if their associated 95% 
confidence intervals did not overlap.

dIffusIon tensor IMagIng and cortIcal surface calculatIons
Post mortem DTI procedures
Diffusion tensor imaging was performed on the same P31 brains 
analyzed by Golgi. Each brain was sectioned along the mid-
line prior to DTI measurements. For all cases except one con-
trol brain (Cntrl-2), the right hemisphere was analyzed. For the 
animal in which the left hemisphere was characterized, it’s right 
hemisphere was included in a previously published study (brain 
P31b in Kroenke et al., 2009), and no differences between the 
left and right hemispheres for this animal were observed (data 
not shown). A 2-cm diameter single-turn solenoidal coil was uti-
lized for radiofrequency transmission and reception. Experiments 
were performed using a 11.7 T magnet interfaced with a 9-cm 
inner diameter magnetic field gradient coil (Bruker, Rheinstetten, 
Germany). A Stejskal–Tanner multi-slice spin-echo pulse sequence 
with parameters δ = 12 ms, ∆ = 21 ms, and G = 27.3 G/cm (result-
ing in b = 2.7 ms/μm2) was used to perform DTI measurements. 
Diffusion anisotropy measurements were made using a 25-direc-
tion, icosahedral sampling scheme (Batchelor et al., 2003). Other 
pulse sequence settings were TR > 5 s, TE = 42 ms, and image reso-
lution was isotropic voxels of dimensions (0.25 mm)3. Fractional 
anisotropy was calculated from diffusion-weighted images follow-
ing standard procedures (Basser and Pierpaoli, 1996). To facilitate 
FA comparisons between animals at corresponding coronal planes, 
FA parameter maps for each hemisphere were registered to one 
another using the FMRIB non-linear registration tool (FNIRT) 
(Smith et al., 2006; Klein et al., 2009).
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that longer line segments overlap voxels with larger FA. Subsequent 
to acquiring DTI data, the tissue was stained using the rapid Golgi 
method, and sectioned in the coronal plane. Figure 2B is a mon-
tage of images acquired at 2.5× magnification from a section taken 
at a rostrocaudal level corresponding to that for Figure 2A (this 
level of the brain is indicated by the segmented line in the inset). 

DTI data obtained from a P31 BEP7 animal (case BEP7-1), fol-
lowing tissue fixation. The grayscale underlay in Figure 2A is a 
diffusion-weighted image, and the overlaying red line segments 
indicate principal eigenvector orientations for each voxel, which are 
parallel to the direction of least restricted diffusion. The length of 
each primary eigenvector displayed in Figure 2A is scaled by FA so 

FiGure 1 | effect of bilateral enucleation on postnatal day 7 (BeP7) on the 
distribution of interhemispheric visual callosal connections in the ferret. 
The distribution of callosal connections in one hemisphere of adult BEP7 and 
control ferrets were studied following multiple intracortical injections of the 
tracer HRP in the contralateral hemisphere. Green areas in (A) and (B) include 
regions of visual cortex analyzed. Approximate locations of visual areas 
described in previous reports are indicated in (B); the blue line marks the 
representation of the horizontal meridian. Red dots indicate the crown of the 
suprasylvian and ectosylvian and gyri, and the dorsal/caudal edge of the occipital 

lobe, which were marked directly on the brains before flattening. (C) Flattened 
brain before sectioning, area outlined by green line contains visual areas 
analyzed. Labeled callosal connections (labeled somas and axon terminations) 
appear as dark areas in (D) and (F); and as colored areas in the thresholded 
versions (e, G). The percent area occupied by callosal connections was 
significantly (p < 0.05) greater in BEP7 ferrets than in Control ferrets (H). LG, 
lateral gyrus; PPc, posterior parietal caudal area; PPr, posterior parietal rostral 
area; SSG, suprasylvian gyrus; SSV, suprasylvian visual areas; as, ansate sulcus; 
ls, lateral sulcus, sss; suprasylvian sulcus. Scale = 5 mm.
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sensitive to visual deprivation (cf. Figure 1). Light colored regions, 
indicative of higher FA (gray-tone scale), occupy larger areas in the 
two BEP7 ferrets as compared to control ferrets, suggesting that 
cortical FA in the two BEP7 animals is increased relative to control 
at this position. To characterize diffusion anisotropy throughout the 
entire cerebral cortex, cortical FA was projected onto surface models 
of cerebral cortices for each of the four hemispheres. FA values are 
encoded by the yellow/high, red/low colormap shown in Figure 3. 
A surface region of interest (ROI) corresponding approximately to 
the green shading in Figures 1A,B was drawn, and its boundary is 
indicated by black dots in Figure 3, while the blue dots indicate the 
approximate representation of the horizontal meridian of the visual 
field. A rostrally located control area is also identified, outlined by 
blue-green dots (Figure 3B). Increased cortical diffusion anisotropy 
in visual areas of BEP7 animals is evident in the more extensive 
yellow pattern in the BEP7 brain compared to control. This dif-
ference is quantified for all four animals in Figure 3C. Increased 
cortical FA is observed within visual cortical areas (Figure 3C), but 
not within the rostral control area (Figure 3D), of BEP7 animals. 

Figures 2C,D illustrate the close similarity between the  orientations 
of water diffusion tensor primary eigenvectors (Figures 2A,C) and 
apical dendrites (Figure 2D). The rectangle in Figure 2C indicates 
the size and approximate location of the region shown in Figure 2D. 
The square in Figure 2D illustrates the size of a single DTI voxel. 
As indicated in Figure 2D, the P31 cerebral cortex contains incom-
pletely differentiated pyramidal neurons with dendritic arbors that 
consist primarily of apical dendrites not yet ramified with oblique 
collaterals. Basal dendritic arbors are nascent at this developmen-
tal stage. As a result, cortical diffusion anisotropy at P31 is sig-
nificant (Kroenke et al., 2009) and exhibits a radial orientation 
(Figures 2A,C).

To examine whether potential morphological differences 
between neurons of BEP7 and control animals can be detected 
through cortical diffusion anisotropy measurements at P31, corti-
cal FA was compared between two BEP7 animals and two control 
animals, as shown in Figure 3. Figure 3A shows coronal views of FA 
parameter maps obtained at a rostrocaudal level (white segmented 
line in Figure 3B) running through visual cortical areas that are 

FiGure 2 | Anisotropy in water diffusion within the developing cerebral 
cortex is oriented parallel to apical dendrites of pyramidal neurons. 
Corresponding coronal views of DTI data (A) and Golgi-stained tissue (B) 
obtained from brain BEP7-1. The rostrocaudal level of the coronal plane is 
represented by the dashed line in the inset. (C,D) Close-up views of the region 
of the suprasylvian gyrus indicated by the rectangles in A and B, respectively. 

Diffusion tensor primary eigenvector (C) and apical dendrites (D) are both 
oriented perpendicular to the pial surface. In (D), yellow arrows indicate two 
apical dendrites, and red arrows indicate the associated cell bodies. The 
approximate size of the field in (D) is shown as a rectangle in (C). The size of an 
individual DTI voxel is illustrated as a square in (D). Abbreviations are as in 
Figure 1. Scale bars = 0.5 mm in panels (C) and (D).
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of BEP7-1. To characterize the orientation distribution of line 
segments within a region of cerebral cortex, the slope of each 
line segment is converted to an angle, θ, and the distribution in 
the set of angles is characterized by the von Mises mean α and 
concentration κ parameters. As shown in Figure 4E, the set of 
neuronal processes in the control animal (black) is distributed 
over a broader range than for the BEP7 animal (red), and hence 
the concentration parameter calculated from this data is smaller 
for the control (κ = 1.41) than for the BEP7 animal (κ = 2.08). 
To assess whether the difference in κ values achieved statistical 
significance, 95% confidence intervals in κ were determined using 
a bootstrap procedure. Figure 4F shows the distributions of κ 
values obtained from 1000 random samples from the Cntrl-1 
(black) and BEP7-1 (red) polar angles. The means of the distri-
butions are the values of κ used for the solid lines in Figure 4E, 
and as can be observed in the Figure 4F histograms, the 95% 
confidence ranges for the Cntrl-1 and BEP7-1 estimates of κ do 
not overlap, and therefore the BEP7-1 distribution is considered 
to be significantly more concentrated than Cntrl-1 for location 
3 in Figure 5 (see below).

The difference in mean values of cortical FA distributions between 
BEP7 and control animals was 0.07 in visual areas, but only 0.01 in 
the rostrally located non-visual area.

The cortical FA pattern evident in Figure 3 suggests that the 
neuropil of BEP7 animals is less differentiated in the extrastriate 
visual cortex of P31 animals than in controls. This was further 
investigated by comparing Golgi-stained tissue from BEP7 animals 
to corresponding data from control animals. Figure 4 illustrates 
the method used to quantify differentiation of the cerebral cortex, 
as reflected in the differential distribution of neuronal process 
orientations measured in Golgi-stained tissue. Figure 4A shows 
a region of the extrastriate visual cortex in Cntrl-1 visualized at 
10× magnification (Region 3 in Figure 5, described below). The 
Figure 4B underlay is a skeleton image of neuronal processes, with 
skeleton elements of less than 10 image pixels in length removed. 
For a region of cerebral cortex within the Figure 4B field, the 
set of skeleton elements are approximated as lines, which are 
overlaid on the skeletonized image in Figure 4B and the original 
image in Figure 4C (red lines). Figure 4D shows an image/overlay 
obtained from a similar location within extrastriate visual cortex 

FiGure 3 | Post mortem DTi measurements of two BeP7 hemispheres 
show increased visual cortical FA relative to two control hemispheres at 
P31. Coronal views of FA parameter maps are shown in (A) for two control 
animals (left) and two BEP7 animals (right) according to the gray color scale. In 
(B), cortical FA is presented on cortical surface models for animals Cntrl-1 and 
BEP7-1, according to the red/yellow color scale. In A and B, increased FA is 

evident in visual areas of BEP7 animals compared to controls. Blue dots in (B) 
indicate the approximate location of the representation of the horizontal 
meridian (see Figure 1 for comparison). Red dots indicate crown of gyri, as in 
Figure 1. Histograms reflecting data from all four animals are shown in (C) for 
visual cortex [encircled by black dots in (B)] and a rostrally located control area in 
(D) [encircled by blue-green dots in (B)].
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and control animals (black/gray) in Figure 5C. For all visual regions 
analyzed, κ is larger in BEP7 subjects than in controls. In three of 
these, the difference is sufficient to separate 95% confidence inter-
vals (asterisks, Figure 5C). In contrast, neuronal process orientation 
κ measured within one non-visual cortical region is slightly lower 
within BEP7-1 than for Cntrl-1, and the non-visual region char-
acterized in BEP7-2 and Cntrl-2 exhibits nearly identical κ values. 
For both non-visual regions, there is a large amount of overlap in 
the 95% confidence intervals for κ. These findings indicate that in 
the visual cortex, neuronal process arborizations are less elaborate 
in the BEP7 brain than in the control.

dIscussIon
We found that bilateral enucleation at P7 induces marked changes 
in the overall distribution of callosal connections in visual cortex. 
Cortical areas affected by these structural changes were associ-
ated with increases in cerebral cortical FA measured at P31. At the 
cellular level we observed that neuronal process arbors were less 

Figure 5 summarizes measurements of the orientation distribu-
tion widths (expressed as κ values) of neuronal processes obtained 
from five visual cortical locations and two non-visual locations. 
The position of each cortical location is indicated on the Figure 5A 
surface model. Five locations were analyzed within coronal slices 
obtained from corresponding positions in cases Cntrl-1 and BEP7-1 
(filled bars in Figure 5C; black/gray indicates data from Cntrl-1 
for visual/non-visual locations, respectively; red/orange indicates 
data from BEP7-1 for visual/non-visual locations, respectively). 
The five locations obtained from coronal sections are illustrated 
on the montage images in Figure 5B. In addition, two locations 
were analyzed within axial slices obtained from corresponding posi-
tions in cases Cntrl-2 and BEP7-2 (open bars in Figure 5C; black/
gray indicates data from Cntrl-2 for visual/non-visual locations, 
respectively; red/orange indicates data from BEP7-2 for visual/non-
visual locations, respectively). Concentration parameters reflecting 
the distribution of neuronal process orientations, with associated 
95% confidence regions, are given for BEP7 brains (red/orange) 

FiGure 4 | Characterization of the distributions of neuronal process 
orientations. Golgi-stained tissue visualized at 10× magnification from the 
Cntrl-1 hemisphere is shown in (A). Line segments (red) representing neuronal 
processes throughout a region of the cerebral cortex (corresponding to location 
3 in Figure 5) are overlaid on the skeletonized image and original image in 
(B) and (C), respectively. Line segments derived from the corresponding 
location in BEP7-1 are overlaid on the Golgi image in (D). The polar angle for each 
line segment was determined as described in the text, and in (e), histograms 

representing the distribution of polar angles are shown for the Cntrl-1 (black data 
points) and BEP7-1 (red data points) Golgi fields. Solid lines in (e) represent the 
results of approximating the data points as a von Mises distribution. To estimate 
95% confidence intervals κ, a bootstrap procedure was used in which κ was 
determined 1000 times from randomly sampled subsets of the measured polar 
angles for each field. Histograms, with associated 95% confidence regions, of 
the resulting κ values are shown in (F) for the set of angles derived from Cntrl-1 
(black) and BEP7-1 (red).
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FiGure 5 | Comparison of the distributions of orientations of neuronal 
processes in visual and non-visual areas of BeP7 and control ferrets at 
P31. The value of the parameter κ decreases as the distribution of orientations 
broadens (less concentrated). In (A), filled circles represent locations of 
regions analyzed in coronal sections of Cntrl-1 and BEP7-1, with red indicating 
visual cortical areas, and orange a non-visual area. Open circles represent 
locations of regions analyzed in axial sections of Cntrl-2 and BEP7-2, with red 
and orange indicating visual and non-visual areas, respectively. (B) Cortical 
locations 1–4 and non-visual area 1 are shown in montages of Golgi sections 
(C) Concentration parameters, κ, of von Mises distributions associated with 
the sets of neuronal process orientations are shown for case BEP7-1 (visual 
locations, red filled bars; non-visual location, filled orange bar) and case Cntrl-1 
(visual locations, black filled bars; non-visual location, filled gray bar), and case 
BEP7-2 (visual location, red open bar; non-visual location, open orange bar) 
and case Cntrl-2 (visual location, black open bar; non-visual location, open gray 
bar). Error bars represent 95% confidence intervals for κ. For visual locations 
indicated with asterisks, 95% confidence intervals for BEP7 and control 
regions do not overlap.

 differentiated in Golgi-stained visual neurons from BEP7 animals 
on postnatal day 31 compared to age-matched controls. These 
results suggest that DTI measurements at early developmental 
stages are capable of detecting abnormalities in neuropil develop-
ment induced by neonatal enucleation.

In agreement with previous studies in the rat (Cusick and Lund, 
1982; Olavarria et al., 1987; Olavarria and Li, 1995; Olavarria and 
Hiroi, 2003; Olavarria and Safaeian, 2006), the cat (Innocenti and 
Frost, 1980; Berman, 1991; Olavarria, 1995; Olavarria and Van 
Sluyters, 1995), and the macaque (Dehay et al., 1989), neonatal 
enucleation in the ferret leads to abnormal development of cal-
losal connections. Within visual cortex, we found that the area 
occupied by callosal connections in enucleated ferrets was signifi-
cantly larger than in control ferrets. Based on previous physiological 
subdivisions of ferret visual cortex (Manger et al., 2002, 2004), our 
data indicate that regions showing abnormal patterns of callosal 
connectivity encompassed many visual areas, including areas 18, 
19, and 21.

In BEP7 animals, cortical visual areas exhibiting differences in 
callosal connectivity at adulthood were spatially correlated with 
regions exhibiting altered cortical FA at P31. Water diffusion ani-
sotropy in these visual areas was larger than controls in BEP7 ani-
mals at P31, while no differences in FA were found between BEP7 
animals and controls in a more rostrally located non-visual area. 
This provides further evidence that binocular enucleation perturbs 
the normal development of visual cortex, and supports the notion 
that DTI is capable of detecting changes in connectivity associated 
with binocular enucleation at early stages of brain development. It 
is important to note that, in addition to the abnormalities induced 
on callosal connections, enucleation at P7 in the ferret likely affects 
several other visual connection systems, including thalamocorti-
cal and ipsilateral cortico–cortical projections (Berman, 1991; 
Ankaoua and Malach, 1993; Ruthazer and Stryker, 1996; Toldi 
et al., 1996; Karlen et al., 2006). It is therefore possible that the 
effect on FA within cerebral cortical gray matter we observed over 
much of visual cortex of BEP7 ferrets reflects the effect of enu-
cleation in multiple pathways that either terminate or originate 
in visual cortex.

In order to directly examine the cellular-level determinants of 
the differences between control and BEP7 animals observed by 
DTI, a procedure was developed to quantitatively characterize ori-
entation distributions of neuronal processes within Golgi-stained 
cerebral cortical tissue. For a subset of cortical locations, Golgi-
stained neurons in visual cortex of BEP7 ferrets were found to 
possess less differentiated neuronal processes on postnatal day 31, 
and among these, radially oriented apical dendrites appear to be 
a dominant structure. Control animals were found to have more 
obliquely oriented collaterals of apical dendrites and basilar den-
drites, contributing to a more complex and less organized neuropil 
than BEP7 animals. Although it is possible that the effect of binocu-
lar enucleation on cortical FA is mediated by cellular elements not 
detectable by Golgi staining, the findings reported here are consist-
ent with a study in the rat (Olavarria et al., 2008), which showed 
that bilateral enucleation increased the length of axon branches 
and arbors without changing the number of branches, as well as a 
study in the mouse (Heumann and Rabinowicz, 1982) that showed 
a reduction in the number of spines on apical dendrites of pyramids 
in bilaterally enucleated animals. The possibility that enucleation 
delays the development of radial glial elements into astrocytes is 
unlikely because studies in other species have shown that enuclea-
tion does not affect the timing of other developmental milestones, 
such as the formation of topographically organized cortico–cortical 
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projections (Olavarria et al., 1987; Olavarria and Safaeian, 2006). 
Together, these results suggest that bilateral enucleation affects the 
differentiation of axonal and dendritic arbors in visual cortex.

Our approach builds upon previous comparisons between 
DTI and immunohistochemical studies related to cerebral corti-
cal microarchitecture in the neonatal rat brain (Sizonenko et al., 
2007), in which cortical FA was compared to indices reflecting the 
quantity of neuronal and glial fibers oriented approximately parallel 
to apical dendrites. Since radial glial cells have differentiated into 
astrocytes by P21 (Voigt, 1989), it is unlikely that they contribute 
significantly to cortical FA at the age we performed our analysis 
(P31). Therefore, Golgi-staining procedures were used here to esti-
mate the orientation distribution of neuronal processes. Leergaard 
et al. (2010) have conducted an analysis similar to the approach 
presented here, in which diffusion MRI data were subsequently 
quantitatively validated with histological measurements. However, 
in the study by Leergaard and co-workers, white matter fibers in 
mature rat brain were compared to myelin-stained histological 
images. Though the purpose of the experiments presented herein 
differ from those of Leergaard et al., their study demonstrates the 
utility of performing morphological analysis of tissue to validate 
DTI measurements.

While our data provide evidence that neonatal bilateral enu-
cleation induces alterations of neuronal processes that can be 
detected by DTI at early stages of development, a number of 
issues remain that must be addressed in future studies. First, the 
developmental trajectory of the difference between normal and 
bilaterally enucleated ferrets must be measured by examining 
brains at postnatal ages other than P31, and sample sizes for 
DTI and Golgi data must be increased. Such extensions of the 
approach described here will enable robust delineation of the 
cortical areas affected by enucleation, and identification of the 
developmental stage in which DTI is most sensitive for detecting 
abnormal morphological development of cerebral cortical neu-
rons. Second, DTI methods characterize the three-dimensional 
properties of water diffusion, whereas the Golgi analysis employed 
herein was restricted to two dimensions. For the results presented 
here, care was taken to analyze sections at locations where gyri 
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2009). Additionally, resting-state fcMRI eliminates the interpreta-
tion of task effort or demand, which can pose limitations on task-
based fMRI studies. This is partly because resting-state fcMRI does 
not require patients to engage in any specific task (such as motor 
movements), which may confound BOLD signal interpretation as 
a result of task difficulty effects.

Ten prominent resting-state networks have been previously 
identified (Damoiseaux et al., 2006). Mohammadi et al. (2009) 
examined five of these, including the default mode, sensorimotor, 
parietal–temporo-frontal, posterior, and ventral networks, using 
independent component analysis (ICA) in patients with ALS. Of 
relevance to the present study, sensorimotor network differences 
were observed, showing decreased functional connectivity in the 
premotor cortex. These authors (Mohammadi et al., 2009) examined 
whole-brain voxel-wise effects. In the current study a seed-based 
analysis was used to examine more subtle and systemic changes that 
might occur in the network involving M1 connections.

The primary goal of the current study was to investigate cou-
pling of interhemispheric low frequency BOLD signal fluctua-
tions in the primary motor cortices (M1) using fcMRI during 
rest in patients with ALS. This structure within the sensorimotor 
network was of interest for several reasons. First, it is well estab-
lished that interhemispheric connections between M1 exist. Even 
during rest it has been demonstrated that the left and right motor 

IntroductIon
Amyotrophic lateral sclerosis (ALS) is the most common adult 
motor neuron disease with a lifetime risk of approximately 1 in 2000 
(Bruijn et al., 2004). Yet, the etiology of 90–95% of all ALS cases 
remains unknown. It is reported in the literature an 80% mortality 
rate within 5 years of symptom onset (del Aguila et al., 2003). One 
of the most notable features of ALS is its rapid development of 
motor impairments. ALS progresses from initial muscle weakness 
to complete loss of muscle function resulting in death from respira-
tory failure. Disease progression is associated with dysfunction of 
both upper and lower motor neurons; however, it is unclear as to 
which are more directly affected (van der Graaff et al., 2009). Seeley 
et al. (2009) have shown a direct and potentially unique correlation 
between disease and affected brain networks, and thus suggest that 
disease state can be characterized by quantitative descriptors of 
network metrics such as functional connectivity.

Resting-state functional connectivity magnetic resonance imag-
ing (fcMRI) is a useful method for assessing neural-network con-
nectivity (Biswal et al., 1995). It has been widely used to examine 
clinical populations, and is currently a method of interest in deter-
mining disease-specific neural biomarkers (Grady et al., 2001; Lowe 
et al., 2002; Koshino et al., 2005; Cao et al., 2006; Cherkassky et al., 
2006; Tian et al., 2006; Waites et al., 2006; Wang et al., 2006a,b; 
Greicius et al., 2007; He et al., 2007; Welsh et al., 2008; Monk et al., 
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Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of motor neurons 
that leads to paralysis and eventually death. There is evidence that atrophy occurs in the primary 
motor cortex (M1), but it is unclear how the disease affects the intrinsic connectivity of this 
structure. Thus, the goal of this study was to examine interhemispheric coupling of low frequency 
blood-oxygen-level dependent (BOLD) signal fluctuations in M1 using functional connectivity 
magnetic resonance imaging during rest. Because disease progression is rapid, high-functioning 
patients were recruited to assess neural changes in the relatively early stages of ALS. Twenty 
patients with limb-onset ALS participated in this study. A parceling technique was employed to 
segment both precentral gyri into multiple regions of interest (ROI), thus increasing sensitivity 
to detect changes that exist along discretely localized regions of the motor cortex. We report 
an overall systemic decrease in functional connectivity between right and left motor cortices in 
patients with limb-onset ALS. Additionally, we observed a pronounced disconnection between 
dorsal ROI pairs in the ALS group compared to the healthy control group. Furthermore, measures 
of limb functioning correlated with the connectivity data from dorsal ROI pairs in the ALS group, 
suggesting a symptomatic relationship with interhemispheric M1 connectivity.
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cortices exhibit temporally correlated BOLD signal fluctuations 
(Biswal et al., 1997). Second, M1 is a large and somatotopically 
organized structure (Penfield and Boldrey, 1937). By examining 
the entire M1 we might be more sensitive to localize changes 
related to symptom presentation. Last, seminal work (Lawyer 
and Netsky, 1953; Smith, 1960; Brownell et al., 1970) described 
postmortem precentral gyrus nerve fiber degeneration in ALS, 
which suggests this deterioration occurs during the natural dis-
ease process. Therefore we hypothesized that a systemic decrease 
in functional connectivity across hemispheres would be observed. 
Specifically, we expected that the precentral gyri would show 
overall less correlated interhemispheric time-series fluctuations 
in the ALS group compared to controls.

In the present study, a parceling technique was employed that 
segmented the primary motor cortices into multiple regions of 
interest (ROIs). This was done to better delineate changes that 
might exist along the entire motor strip, thus increasing analysis 
sensitivity to discretely localized regions of this cortex. This inves-
tigation focused on the analysis of limb-only onset ALS patients 
to control for any potential differences in disease progression 
between limb and bulbar onset patients. Limb-onset ALS is most 
common, with the affected limb becoming progressively weaker 
as the disorder spreads to nearby myotomes. Finally, to identify 
whether systemic changes occur in M1 prior to moderate-severe 
symptom presentation, high-functioning and/or early disease stage 
patients were recruited.

MaterIals and Methods
PartIcIPants and BehavIoral data
All ALS participants were recruited through the Department of 
Neurology, were diagnosed by a neuromuscular physician using 
the El Escorial criteria, and were followed in the Motor Neuron 
Disease Clinic at the University of Michigan. Healthy controls 
were recruited from the surrounding area through community 
advertisements (flyers and web-pages). All participants gave writ-
ten consent to participate and the Institutional Review Board 
(IRB) at the University of Michigan approved this study. Twenty 
patients with limb-onset ALS (13 males, mean age 58.3 years) 
within 24 months of symptom onset, and 20 sex-matched healthy 
volunteers (13 males, mean age 57.5 years) were recruited to par-
ticipate in this study. Participants between groups were matched 
as best as possible to age.

Several measurements of behavioral and cognitive function-
ing were taken prior to each participant’s scanning session. 
Physical ability of ALS patients was assessed using the ALS 

functional rating scale, revised version (ALSFRS-r; Cedarbaum 
and Stambler, 1997). The ALSFRS-r is a validated rating instru-
ment of ALS patients’ functional abilities and has been demon-
strated to correlate with physiological measures of the disease 
(Cedarbaum and Stambler, 1997). The ALSFRS-r instrument is 
comprised of 12 questions, each measuring the level of impair-
ment for different behaviors, such as handwriting and walking. 
Each question is scored between four and zero points based 
on ability level, with a maximum total score of 48 points. The 
ALS cognitive behavioral screen (ALS-CBS; Woolley-Levine, 
2006) was administered to assess general cognitive function-
ing. Because the CBS was not incorporated until after project 
initiation, 10 ALS patients and no healthy volunteers were 
tested. Hand dominance was determined by the Edinburgh 
Inventory (Oldfield, 1971), and hand strength was measured 
with a hand-grip dynamometer. The mean of three trials with 
the dynamometer per right and left hand were calculated to 
determine each participant’s hand strength. These measures 
are presented in Tables 1 and 2.

A goal of our study was to examine neural changes in high-
functioning patients that may take place in the early disease stage 
of ALS. Currently there are no standardized criteria to define 
disease stage. Therefore we defined our high-functioning ALS 
subjects as early in his or her disease course such that patients 
were within 24 months of symptom onset at the time of their 
scan. In addition, only patients who were ambulatory, without 
hemiplegia, were able to write, had a negative psychiatric evalu-
ation, did not have dysphasia or breathing problems and were 
not on a ventilator, and were without other complicating mental 
disorders or disease were only included in the study.

IMage acquIsItIon
All scanning was performed at the University of Michigan’s 
Functional MRI Laboratory on a GE 3T Excite 2 (General Electric, 
Milwaukee, WI, USA). During each participant’s session, medi-
um-resolution spin-echo, and high-resolution spoiled-gradient 
recall (SPGR) anatomic images (T

1
-Overlay and T

1
-SPGR respec-

tively) were collected in the axial plane. T2
∗ time-series data were 

acquired in the axial plane (aligned to the anterior–posterior com-
missure) using a reverse-spiral k-space readout. A total of 180 T2

∗

-weighted volumes were collected for each participant during each 
scanning session (repetition time TR = 2 s, 40-slice volumes at 
3 mm slice thickness and no skip, echo-time TE = 30 ms, 64 × 64 
matrix,  field-of-view, FOV = 220 mm). Four T2

∗ volumes at the 
beginning of each time-series acquisition were excited but not 

Table 1 | Group average (mean) demographic information for ALS patients and healthy participants. Range for age, hand strength, ALSFRS-r and CBS 

scores, and months since onset are also presented. Handedness is based on the Edinburgh Inventory (Oldfield, 1971).

Subject Age (years) Gender Dominant Dominant Non-dominant ALSFRS-r CBS M.S.O. 

   hand H.S.(kg) H.S.(kg)

ALS (n = 20),  58.35 (46–67) n = 13M, 7F n = 15R, 5L 20.60 (0–50.75) 11.94 (0–42.42) 39.6 (29–46) 13.1 (7–19) 17.25 (8–24)

HC (n = 20),  57.51 (47–64) n = 13M, 7F n = 19R, 1L 32.99 (11.21–62.12) 30.62 (8.33–54.84) NA NA NA

H.S., hand strength; CBS, cognitive behavioral screening test; ALSFRS-r, ALS functional rating scale, revised version; M.S.O., months between symptom onset and 
testing date.
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fcMrI PreProcessIng
In order to reduce noise and artifact, several preprocessing 
steps were conducted. Using a custom code written in MATAB 
(Mathworks, Natick, MA, USA; Noll et al., 1991), raw fMRI data 
were reconstructed offline. Physiological correction of time-se-
ries data was implemented in the image domain (Hu et al., 1995; 
Pfeuffer et al., 2002). This was done because cardiac cycle and 
respiration give rise to correlated spatial and temporal variance 
during task execution in fMRI experiments, hence contributing 
to residual noise and overall decreased statistical power. Removal 
of physiological confounds is especially important during resting-
state acquisition since no overt task is being executed, otherwise 
presenting the complication of masking true functional connec-
tivity signals or falsely giving rise to functional networks (Lund, 
2001; Peltier et al., 2003).

Using FSL’s MCFLIRT and SLICETIMER within the fMRI analy-
sis package1, motion and slice timing were corrected for, respec-
tively. Realigned images were used for the connectivity analysis, 
and movement was checked to assure that no more than 0.4 mm 

recorded in order to achieve thermal equilibrium of magnetiza-
tion. In addition, physiological recording took place during the 
scanning session (cardiac and respiratory cycles) using a MRI ven-
dor supplied pulse oximeter and respiratory belt. These data were 
collected in order to correct for cardiac and respiratory influence 
on the resting-state signal. Medium-resolution anatomic images 
(T

1
-Overlay) were acquired in the same-slice locations as the 

T2
∗ volumes, however at a higher in-plane resolution (256 × 256 

matrix, 220 mm FOV). The T
1
-SPGR high-resolution images were 

collected with a 256 × 256 matrix, 220 mm FOV, and with 1.2 mm 
slice thickness.

 restIng-state task
Resting-state activity was collected over a period of 8 min for each 
scanning session. During this time, participants were instructed 
to view a white crosshair fixed on a black background. This image 
was projected onto a screen at the head of the scanner bore and 
viewed with a back-projected mirror, placed on the head coil. 
Participants were asked to keep their eyes open and to not think 
about anything in particular to elicit resting-state metabolism 
(Fox et al., 2005).

Table 2 | Individual ALS patient demographic information.

ALS Age Gender Dominant Onset H.S.D.  ALSFRS-r CBS M.S.O. ALSFRS- ALSFRS- 

subject (months)  hand location (kg)    r #4 r #8

1 708 M R Hands 19.33 43 NA 08 3 3

2 576 F L* Right upper 19.83 42 NA 23 1 4 

    extremity

3 709 F R Left upper 25.16 39 NA 22 3 3 

    extremity

4 649 M R Hands 18.34 43 NA 18 3 4

5 721 F L* Right upper 19.00 44 NA 24 3 4 

    extremity

6 553 M R Right leg 12.67 39 NA 21 3 2

7 780 F R Hands 0.06 29 NA 12 2 2

8 721 M R Left foot 14.39 46 NA 23 4 3

9 673 F R Left foot 2.27 33 NA 10 3 2

10 708 M R Hands 1.21 39 7 12 3 4

11 600 M L Left foot 3.04 43 17 21 3 3

12 757 M L Hands 1.82 38 NA 17 3 2

13 732 F R All four limbs 10.06 42 9 12 4 3

14 661 M R Right hand 9.09 43 19 14 3 4

15 780 F R Left leg 7.42 33 15 18 3 2

16 804 M R Legs 3.00 40 7 11 4 2

17 624 M R Left upper 12.87 31 13 12 3 2 

    extremity

18 778 M R Right leg 0.00 45 15 23 4 2

19 699 M R Right Hand 10.06 46 17 23 4 4

20 765 M L* Upper 0.00 33 12 21 3 4 

    extremities

H.S.D., hand strength disparity; CBS, cognitive behavioral screening test; ALSFRS-r, ALS functional rating scale, revised version; M.S.O., months between symptom 
onset and testing date; ALSFRS-r #8, question number 8 on the questionnaire, which pertains to ambulation; ALSFRS-r #4, question number 4 on the questionnaire, 
which pertains to handwriting. Maximum score for these questions is 4 and minimum is 0. *Patients 2, 5, and 20 reported right hand dominance before symptom 
onset, however they were restricted to using the left hand due to weakness in their right hand at the time of their scan. These patients were considered as left 
handed based on results from the Edinburgh Inventory (Oldfield, 1971).

1http://www.fmrib.ox.ac.uk/fsl/slicetier/index.html
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in the distribution of connectivity between the ALS and healthy 
control groups, the K–S test was well suited to evaluate our hypoth-
esis. Correlation-grams were further evaluated by comparing only 
near-homologous and homologous-interhemispheric ROIs to 
assure that differences observed between groups were not due to 
off-diagonal correlations. In other words, ROI pair  correlations 
that may correspond to non-homologous body regions, such as 
the foot and face, were removed from this second analysis. A mask 
was created to only include these homologous- and near-homol-
ogous ROIs, which is represented in Figure 2A. Two additional 
correlation-gram masks were created, which divided the homolo-
gous/near-homologous ROIs into ventral (Figure 2B) and dorsal 
regions (Figure 2C), in order to systemically examine somatotopic 
subdivisions. Specifically, the dorsal motor cortex is functionally 
localized to control limb and trunk regions, whereas the ventral 
cortex corresponds to face regions (Penfield and Boldrey, 1937). 
Correlation-grams per group were averaged and are presented in 
Figures 3 and 4. Coordinates along the axes of this map repre-
sent ROIs in left and right hemispheres, moving from ventral to 
dorsal locations.

BehavIoral analysIs
To examine the possible brain–behavior relationship with limb 
functioning in the ALS group, behavioral test data were compared 
with resting-state functional connectivity. Linear regression tests 
between imaging and limb functioning data were separated into 
three different analyses based on the average functional connec-
tivity correlation coefficients from (A) diagonal-only; (B) ven-
tral–ventral; (C) and dorsal–dorsal ROI pairs (refer to Figure 2). 
Functional connectivity measures from these pairs were entered 
into each regression analysis as the dependent variable. In the 
ALSFRS-r, questions 4 and 8 pertain to upper and lower limb 
functioning. These questions assess the ability to write and walk, 
respectively. Therefore participant scores for these questions were 
entered into the regression analysis as independent variables. Total 
scores from the ALSFRS-r were not used because abilities other 
than limb functioning are measured in this questionnaire, such as 
breathing. Additionally, hand strength disparity was considered a 
factor of limb functioning and was entered as a third independent 
variable into the analysis. Hand strength disparity was calculated 
as the absolute value of strength difference between the right and 
left hands.

translational and 0.1° rotational movement occurred, thereby 
minimizing motion-induced spatial–temporal correlations. Using 
Statistical Parametric Mapping, version 2 (SPM2; Wellcome Trust 
Center for Neuroimaging2), each participant’s T

1
-Overlay volume 

was co-registered to the time-series data; the T
1
-SPGR was then 

co-registered to the co-registered T
1
-overlay image. Spatial normali-

zation to the Montreal Neurological Institute (MNI 152) template 
of the resulting co-registered T

1
-SPGR image was then performed 

using SPM2. The resulting normalization matrix was applied to 
the slice-time-corrected, physiologically corrected time-series data. 
These normalized T2

∗ time-series data were subsequently spatially 
smoothed with a 5-mm Gaussian kernel. The resulting T2

∗ images 
had 3 mm isotropic voxels.

regIons of Interest
The primary goal of this study was to examine relationships 
between the primary motor cortices in ALS and to identify the 
spectrum of changes that may be taking place. Normalized T

1
 

high-resolution images were used to manually create precentral 
gyrus gray matter masks in both hemispheres for each participant 
(using the mean location of the hand knob area as an anatomi-
cal anchor). A group anatomical ROI mask was constructed for 
each hemisphere from voxels shared by ≥10 participants. The 
ROI group masks were parceled along both motor cortices into 
41 and 40 individual 6 mm ROI cubes in the left and right hemi-
sphere, thus allowing for connectivity analyses between localized 
anatomical regions. The motor cortex is a large structure that is 
somatotopically organized (Penfield and Boldrey, 1937). Therefore 
by segmenting this strip into small ROIs we have increased our 
sensitivity to delineating functional connectivity changes along 
this cortex, rather than obscuring what is known about the detailed 
somatotopic organization of M1 (by using large ROIs, for example; 
Craddock et al., 2010).

The ventral and dorsal-most ROI cube locations correspond to 
MNI coordinates (x, y, z in mm) −60.8, −5.7, 26.0: −13.6, −29.3, 74.1 
and 65.3, 0.6, 19.7: 5.4, −29.3, 78.6 in the left and right hemispheres, 
respectively. Because precentral gyrus masks were created from 
shared voxels in the participant group, coordinate locations of left 
and right ventral/dorsal-most ROI cubes are not perfectly symmet-
rical. The average precentral gyri masks are shown in Figure 1.

M1 roI couPlIng correlatIon analysIs
The T2

∗ time-series were detrended to remove slow drift. Additionally, 
the global volume intensity was regressed from the time-series. To 
remove any residual physiological nuisance, the global white matter 
and cerebral spinal fluid (CSF) temporal signals were sequentially 
regressed from the T2

∗ time-series. (Fox et al., 2009). Additionally, 
motion parameters were treated as nuisance and removed via 
regression. Mean time-series data were extracted from these ROIs 
and correlated with each cube in the opposite hemisphere, result-
ing in an r-coefficient correlation-gram for each individual. In 
order to examine global group differences, the r-coefficient corre-
lation-grams by group were then compared using the two sample 
non-parametric Kolmogorov–Smirnov (K–S) goodness-of-fit test 
(Chakravarti et al., 1967). Because we expected a systemic change 

FIGuRe 1 | Group average precentral gyrus masks in left and right 
hemispheres.

2http://www.fil.ion.ucl.ac.uk/spm
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SD = 0.72). Only one patient reported that they were unable to 
write, which was due to weakness in their dominant right hand and 
the resulting ineffective adaptation of writing with the left hand.

restIng-state functIonal connectIvIty
Group comparisons of interhemispheric motor cortex BOLD signal 
r-coefficients, including all ROI pairs, resulted in highly significant 
K–S differences (D) between ALS and healthy participants (D = 0.19, 
p < 7 × 10−26) with ALS being less connected overall than healthy 
controls (see Figures 3 and 4). To control for more homologous 
correspondence, the K–S test was performed along the diagonal of 
the correlation-grams such that mainly homologous regions were 
included while those regions between which no functional con-
nectivity was expected were excluded. That is, by only including 
the homologous- and near-homologous regions, we removed any 
potential for observed statistical difference being driven by negative 
correlations (Fox et al., 2009). The K–S difference was still found 

Bivariate correlation analyses were also conducted, using 
Pearson’s correlation coefficient (two-tailed). In the healthy control 
group, hand strength disparity was correlated with (A) diagonal-
only; (B) ventral–ventral; (C) and dorsal–dorsal ROI pairs. Hand 
strength disparity, months since onset, ALSFRS-r and CBS scores 
from the ALS group were entered into a separate correlation analy-
sis. All behavioral analyses were conducted in SPSS, v.17.

results
grouP PhysIcal and cognItIve BehavIoral data
Group averages for demographic data and behavioral measures are 
shown in Table 1, and individual patient data are shown in Table 2. 
According to the ALSFRS-r, the ALS participants as a group were 
relatively high functioning (mean = 39.23, SD = 5.06). All patients 
were ambulatory, as shown by ALSFRS-r question #8 (mean = 2.95, 
SD = 0.88). In addition, ALSFRS-r question #4 showed that all 
but one of the patients could use their hand to write (mean = 3.1, 

FIGuRe 2 | Masks applied to correlation-grams after initial analysis of all ROI pairs. (A) diagonal-only mask; (B) ventral mask; (C) dorsal mask.

FIGuRe 3 | Correlation-gram displaying all ROI Pearson’s r-correlation 
coefficient means for the healthy control group. Coordinates along the 
axes of this map represent ROIs in left and right hemispheres, moving from 
ventral to dorsal locations.

FIGuRe 4 | Correlation-gram displaying all ROI Pearson’s r-correlation 
coefficient means for the ALS patient group. Coordinates along the axes of 
this map represent ROIs in left and right hemispheres, moving from ventral to 
dorsal locations.
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Hand strength disparity did not significantly correlate with 
months since onset, ALSFRS-r or CBS scores in the ALS group. 
Additionally, ALSFRS-r and CBS scores did not correlate. There 
was a trend toward significance between months since onset 
and ALSFRS-r scores (r = 0.41, p = 0.07) and an even stronger 
trend between months since onset and CBS scores (r = 0.62, 
p = 0.058).

dIscussIon
general dIscussIon
The current study provides new evidence for M1 network impair-
ment in ALS, importantly showing for the first time an interhemi-
spheric disconnect. We observed a decrease in overall functional 
connectivity between parceled motor cortices in the ALS group, as 
shown by less correlated resting-state low frequency BOLD signal 
fluctuations across hemispheres. Importantly, this decrease was seen 
within the first 24 months of ALS symptoms while patients were 
still in the early disease stage. Additionally, a pronounced difference 
was observed between groups in the dorsal half of the motor cortex 
– the half that corresponds to limb and trunk body regions of the 
homunculus. Dorsal M1 connectivity in the ALS group correlated 
with limb functioning, suggesting a brain– behavior  relationship 
between these measures. It was found that the greater the disparity 
between right and left hand strength, the less functionally con-
nected ROIs were in the dorsal motor cortex. This effect was not 
found in the healthy control group. Also, increased connectivity 
in the dorsal motor cortex was associated with better handwriting 
ability in those with ALS.

Results from the current study corroborate converging lines of 
evidence that intrinsic M1 functioning is altered in ALS. In a PET 
study, regional cerebral blood flow (rCBF) in M1 was reduced at 
rest in ALS patients compared to healthy participants. However, 
this reduction was not observed in lower motor neuron disease 
patients, implying upper motor neuron dysfunction in M1 (Kew 
et al., 1994). In an fMRI study, decreased blood oxygenated level 
dependent (BOLD) signal activity was found in contralateral M1 
of ALS patients while performing a continuous unimanual button-
pressing task (Schoenfeld et al., 2005). In this particular study task 
difficulty effects were observed, and the authors suggested that 
decreased motor neurons in M1 contribute to sequential movement 
impairments. The present study provides new evidence for primary 
motor cortex changes between right and left cortices, importantly 
showing for the first time an interhemispheric disconnect (as shown 
by seed-based fcMRI) that is present even when participants were 
not performing a motor task.

Decreased interhemispheric connectivity in the primary motor 
cortex is consistent with recent findings from diffusion tensor imag-
ing (DTI) work as well. For example, several studies have examined 
microstructural integrity within the corpus callosum, which include 
interhemispheric M1 projections. Reduced fractional anisotropy 
(FA), a measure of white matter microstructure, was found within 
the corpus callosum in ALS patients (Senda et al., 2009; Metwalli 
et al., 2010). These studies suggest that interhemispheric structural 
connectivity is compromised in those with ALS. In addition, Bartels 
et al. (2008) found that FA values in the corpus callosum correlated 
with behavioral measurements, specifically with the Contralateral 
Co-Movement Test, in patients with ALS.

to be statistically significant (D = 0.14, p < 9 × 10−9) and not driven 
solely by the off-diagonal components of the correlation-grams. 
Further, separating the gyri into ventral (first 20 ROI cubes) and 
dorsal (remaining ROI cubes) regions, a large effect was observed 
in the dorsal half (D = 0.23, p < 3 × 10−12), corresponding to limb 
and trunk locations of the motor homunculus. The ventral half 
still showed a significant decrease in connectivity, but not to the 
same extent (D = 0.11, p < 0.005).

Participant movement while scanning could potentially present 
confounded functional connectivity results, especially if one group 
moved more than the other. We tested this possible confound by 
running independent post hoc t-tests between groups on the stand-
ard deviations of the motion parameters. These results were null, 
p > 0.05, indicating no differences in movement between the ALS 
and healthy control group.

BehavIoral correlatIon results
The relationship between limb functioning and dorsal motor 
cortex connectivity in the ALS group was further examined in a 
regression analysis, with ALSFRS-r questions 4 and 8 and hand 
strength disparity as predictors of dorsal–dorsal M1 connectivity. 
This regression analysis was significant, F(3, 19) = 3.35, p = 0.045 
(R = 0.62). In this model, hand strength disparity significantly 
predicted dorsal ROI connectivity, t(19) = −2.22, p = 0.04, and 
question 4 reached near significance, t(19) = 1.81, p = 0.08. Hand 
strength disparity and question 4 also significantly correlated 
with dorsal–dorsal M1 connectivity, r = −0.51, p = 0.01 and 
r = 0.44, p = 0.03, respectively. Question 8 was insignificant in 
this model, t(19) = 0.44, p = 0.67; r = −0.13, p = 0.29. Both remain-
ing  regression analyses conducted examining diagonal-diagonal 
and  ventral–ventral M1 connectivity in the ALS patients yielded 
null results. The healthy control group did not show a significant 
correlation with hand strength disparity and functional connec-
tivity for any of the three analyses: (A) diagonal–diagonal; (B) 
ventral–ventral; and (C) dorsal–dorsal pairs. Figure 5 depicts the 
relationship between dorsal ROI connectivity and hand strength 
disparity for both ALS and healthy control groups.

FIGuRe 5 | Scatter-plot showing the correlation between average dorsal 
ROI interhemispheric connectivity per individual and hand strength 
disparity, across groups. Only results from the ALS group are significantly 
(inversely) correlated.
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esis has yet to be tested and was beyond the scope of this current 
investigation. The specificity between motor neuron diseases will 
need to be further tested.

Context of using resting-state fcMRI must also be considered. It 
is assumed that temporally correlated signal fluctuations in brain 
regions imply functional connectivity. Therefore the interpretation 
that connections between right and left M1 are decreasing in ALS 
is based on this assumption. Furthermore, it is not known if this 
decrease in connectivity implies an axonal pathway impairment 
or gray matter loss within M1. Integrating other methods, such as 
DTI, would increase the effectiveness of addressing how the ALS 
disease process affects cortical networks.

Longitudinal methods are needed in order to clarify functional 
connectivity alterations in ALS. Results from the current study were 
from a single time point in the early stage of disease, yet it is sug-
gested that these changes are progressive. Therefore we anticipate 
comparing results with data collected at subsequent sessions within 
the same participant group.

A fourth limitation is that the present results are only representative 
of ALS patients with limb-onset. There are both advantages and disad-
vantages to assessing neural changes in a homogenous patient group. 
This is advantageous in that disease processes specific to limb-onset 
ALS may be better described due to reduced variance by exclusion 
of a heterogeneous population. Also, a homogenous group increases 
our ability to control for any potential differences in disease progres-
sion between limb and bulbar onset patients. Through redefinition 
of inclusion criteria however, such as disease subtypes or  individual 
behavioral symptoms, results may become more generalized to all 
disease processes. It could be potentially helpful for future studies to 
compare subtypes to disentangle pathological differences.

conclusIons
Results from the current study indicate that functional connections 
between the two primary motor cortices are decreased in ALS, and 
that this disconnect between hemispheres may be more specific to 
dorsal versus ventral M1. Dorsal M1 interhemispheric connectiv-
ity was related to metrics of upper limb functioning, specifically 
handwriting, and hand strength disparity. These brain–behavior 
correlations may have important clinical applications. Furthermore, 
neuroimaging methodology may be utilized for those with “possi-
ble” or “suspected” ALS by identifying reliable neural biomarkers.
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The only ALS resting-state fcMRI study to date demonstrated 
reduced functional connections between the premotor cortex and 
other sensorimotor regions during rest (Mohammadi et al., 2009). 
This may indicate that the sensorimotor network is becoming dis-
connected in ALS. Additionally, reduced functional connectivity was 
found in the prefrontal cortex, posterior/ventral-anterior areas of the 
cingulate cortex, and bilateral inferior parietal cortices, hence demon-
strating decreased functional connectivity between core regions of the 
default mode network. Therefore, it is possible that regional increases 
in BOLD activity are related to neural-network breakdown in ALS.

There is a clinical need to establish biomarkers for those who 
will become diagnosed with ALS, and neuroimaging methodol-
ogy may be well suited to identify these biomarkers (Agosta et al., 
2010). This is important given the pronounced duration that occurs 
between symptom onset and diagnosis; for some people diagnosis is 
not established until years after symptoms present (Kraemer et al., 
2010). This is especially true for those with limb onset, as symptoms 
often mimic other diseases (Leigh et al., 2003). Currently, the only 
reliable measurement used to diagnosis ALS is when a patient dem-
onstrates progressive upper and lower motor neuron involvement 
(Turner et al., 2009). Results from the current study indicate that 
cortical neural changes are taking place in the early stages of ALS 
while patients are still highly functioning. Also, these changes are 
primarily occurring in the cortical regions that correspond to limb 
movement. Results from this study may be clinically relevant as a 
biomarker for limb-onset patients who have “suspected” or “prob-
able” ALS. Identifying biomarkers specific to ALS will help increase 
the accuracy of diagnosis, decrease the duration between symptoms 
and diagnosis, and most importantly allow for initiation of early 
treatment (Turner et al., 2009; Ganesalingam and Bowser, 2010).

lIMItatIons and future dIrectIons
An important limitation in the current study is the lack of causal 
interpretation from our results. For example, this study emphasizes 
that interhemispheric M1 connectivity breakdown is more pro-
nounced in the dorsal than ventral half between groups. Although 
the dorsal half corresponds to limb and trunk motor functioning, 
we cannot directly explain this relationship with the present find-
ings. This is partially because it cannot be discerned whether our 
results reflect upper or lower motor neuron atrophy. Specifically, 
atrophy in lower motor neurons could give rise to M1 neural 
changes due to the decrease in afferent signals being received by 
M1. It could also be speculated that this area is more susceptible 
to the ALS disease process, or that it is an initial target of neuro-
degeneration. Another interpretation limitation is that we cannot 
differentiate whether these results are ALS-specific, or reflective 
of motor neuron disease processes in general. For example, neural 
atrophy has been identified in the primary motor cortex of patients 
with primary lateral sclerosis (Tartaglia et al., 2009), which may also 
give rise to functional connectivity changes. However, this hypoth-
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activity (Brown et al., 2001; Levy et al., 2002). Recently, EEG and 
MEG studies have shown that the increase in subcortical oscillatory 
activity is associated with increased intracortical coupling of neural 
activity, which is correlated with disease severity (Williams et al., 
2002; Silberstein et al., 2005; Stoffers et al., 2008; Stam, 2010). For 
example, Stoffers et al. (2008) used MEG to explore how resting 
state cortical functional connectivity evolves over the course of PD. 
They found that even in recently diagnosed drug-naïve patients, 
there was an increase in correlations between time series in the 
alpha 1 frequency band measured by synchronization likelihood. 
Moreover, disease severity was correlated with theta and beta band 
synchronization (Stoffers et al., 2008). Silberstein et al. (2005) also 
found that EEG coherence in the 10–35 Hz range correlated with 
PD symptom severity (as measured via UPDRS). Treatments such as 
l-DOPA or DBS reduce this coherence, and the degree of reduction 
is correlated with clinical improvement (Silberstein et al., 2005).

Resting state functional connectivity MRI (fcMRI) is a non-
invasive imaging technique with good spatial resolution. It identi-
fies brain regions exhibiting correlated patterns of spontaneously 
occurring, slow changes in brain activity. Brain regions with similar 
functions and known anatomical connections have shown strong 
correlations in the low frequency blood oxygen level dependent 

IntroductIon
Parkinson’s disease (PD) is a progressive neurodegenerative dis-
order associated with predominantly motor symptoms such as 
tremor, slowness of movement, rigidity, and difficulties with gait 
and balance, although cognitive and affective symptoms also occur 
(Shohamy et al., 2006; Caballol et al., 2007). The Braak staging 
system describes PD as a schema of ascending pathology, beginning 
in the lower brain stem and anterior olfactory structures, progress-
ing to the basal mid- and forebrain nuclei, and then to the cortex 
(Braak et al., 2003, 2006). In stage 3 of the Braak system, when 
motor symptoms first begin to appear, the neuropathology of PD 
is characterized by a loss of dopaminergic neurons in the substantia 
nigra pars compacta and the ventral tegmental area with degenera-
tion of the striatal nerve terminals (Braak et al., 2006).

One consistent pathophysiological hallmark of PD is an increase 
in spontaneous oscillatory activity in the basal ganglia thalamo-
cortical networks (Gatev et al., 2006; Hammond et al., 2007). This 
increase in neural oscillatory activity is most prominent in the 
10–35 Hz range (beta frequency band) and is often observed in 
local field potential recordings from the subthalamic nucleus (STN) 
(Kuhn et al., 2004, 2006; Foffani et al., 2005). Dopaminergic treat-
ment suppresses this abnormally heightened oscillatory neural 
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(BOLD) signal when participants are at rest (Fox and Raichle, 2007; 
Rogers et al., 2007; Vincent et al., 2007). Given its non-invasive 
nature, it can be used to study network functional connectivity 
in mild to moderate stage PD patients, as opposed to the intra-
operative recordings that are restricted to more advanced stage PD 
patients. Examples of functional networks that have been identified 
with fcMRI in healthy individuals include motor cortical networks 
(Biswal et al., 1995; Peltier et al., 2005), cortico-striatal networks 
(Di Martino et al., 2008; Kelly et al., 2009), and the default mode 
network (Greicius et al., 2008, 2009). Resting state connectivity 
networks exhibit stability across data sets collected from different 
participants using differing acquisition parameters, locations, and 
scanners (Biswal et al., 2010) making the approach well-suited for 
future large scale clinical studies.

A recent fcMRI study identified distinctive cognitive, motor, and 
reward cortico-striatal circuitries (based on connectivity between 
individual striatal seed regions and their cortical projection tar-
gets) in healthy young adults (Di Martino et al., 2008). A follow-up 
study by the same group documented that these connectivity pat-
terns are modulated by l-DOPA administration in healthy young 
adults (Kelly et al., 2009). In their study, functional connectivity 
between the putamen and cerebellum and between the inferior 
ventral striatum and the ventrolateral prefrontal cortex increased 
with l-DOPA administration, whereas ventral striatum and dorsal 
caudate connectivity with the default mode network decreased. This 
group interpreted that l-DOPA significantly changes the motor and 
cognitive networks of the cortico-striatal pathways.

Cortico-striatal networks have also been examined in PD 
using fcMRI ( Wu et al., 2009; Helmich et al., 2010). Both studies 
found that compared to controls, PD patients showed increased 
functional connectivity in some cortico-striatal networks, and 
decreased connectivity in others. However, these studies only 
compared PD patients in the OFF medication state to controls 
and did not examine changes in connectivity patterns with 
dopaminergic medication.

In the current study, we investigated differences in cortico- striatal 
functional connectivity networks between PD patients and age 
matched controls, using the seed regions employed by Di Martino 
et al. (2008) and Kelly et al. (2009). Considering the abnormal 
coherence of cortico-striatal oscillatory activity reported in studies 
that used EEG and/or local field potential recordings (Williams 
et al., 2002; Kuhn et al., 2004, 2006; Foffani et al., 2005; Silberstein 
et al., 2005; Stoffers et al., 2008; Stam, 2010), we hypothesized that 
PD patients would exhibit hyperconnectivity of cortico-striatal 
networks in comparison to controls, and that a clinically relevant 
dose of l-DOPA would alleviate this hyperconnectivity. Given that 
PD patients exhibit increased oscillatory neural activity primarily 
in the alpha and beta frequency bands when off medication (Priori 
et al., 2004), we analyzed the frequency content of the resting state 
BOLD signal in the striatal seed regions. Recent work using simul-
taneous EEG-fMRI demonstrates that changes in the alpha and 
beta frequency content of neuronal activity are reflected in the 
BOLD signal (Goldman et al., 2002; Laufs et al., 2003; Moosmann 
et al., 2003; Laufs, 2008; Rosa et al., 2010). We hypothesized that 
frequency content of the resting state BOLD signal extracted from 
the seed regions would be different in PD off l-DOPA compared 
to controls and to PD on l-DOPA. Furthermore, we predicted that 

the l-DOPA associated change in the frequency content would 
modulate the l-DOPA associated change in cortico-striatal func-
tional connectivity.

MaterIals and Methods
PartIcIPants
Twenty-five mild to moderate stage (Hoehn and Yahr stages 1–2.5) 
(Hoehn and Yahr, 1967) PD patients (64 ± 8 years, 3 females) and 24 
age- and gender-matched healthy controls (63 ± 7 years, 5 females) 
participated in the study. Patients were evaluated using the motor 
section of the Unified Parkinson’s Disease Rating Scale (UPDRS) 
(Fahn et al., 1987) by a neurologist. The more affected body side 
was determined by asking each PD patient and was confirmed by 
the neurologist’s rating. All study participants underwent the Mini-
Mental State Exam (MMSE) (Folstein et al., 1975), the Montreal 
Cognitive Assessment (MOCA) (Nasreddine et al., 2005) and the 
grooved pegboard test (Lafayette Instruments, Lafayette, IN) to 
measure general cognitive and motor abilities. Performance on the 
grooved pegboard test has been shown to be associated with indi-
vidual PD patients’ dopaminergic denervation levels, as indicated 
by [11C]beta-CFT PET scans (Bohnen et al., 2007). These clinical 
assessments were acquired for patients in both the ON and OFF 
medication states on separate days in a counterbalanced order. The 
demographic and clinical characteristics of the patients are listed in 
Table S1 in Supplementary Material. All of our participants were 
diagnosed within 15 years and were in the mild to moderate stage 
of the disease as shown by the Hoehn and Yahr scale (Hoehn and 
Yahr, 1967). Participants signed a consent form approved by the 
Institutional Review Board of the University of Michigan prior to 
participation, and were compensated for their participation. All 
experimental procedures were conducted in accordance with the 
Institutional Review Board of the University of Michigan.

Procedure
Parkinson’s disease patients completed two testing days corre-
sponding to the ON and OFF medication states. Thirteen patients 
were tested ON first and 12 OFF first. We used a single-blind pla-
cebo controlled design using a single dose of l-DOPA. PD patients 
attended both testing days in the OFF state achieved by withdrawal 
from medication 12–18 h prior to testing. For the ON testing day, 
patients received a 50 mg dose of carbidopa followed by a sin-
gle dose of l-DOPA in combination with carbidopa (200 mg of 
l-DOPA and an additional 50 mg of carbidopa). For the OFF testing 
day, they received placebo medications following the same time 
schedule in combination with the 50 mg of carbidopa. All study 
procedures began 1 h after the patient had taken either l-DOPA or 
the placebo, by which time l-DOPA reaches its peak plasma dose. 
Control participants underwent a single testing session without 
any medication procedure.

fMrI data acquIsItIon
fMRI data were collected from a 3 T GE Signa MRI scanner at 
the University of Michigan. A single-shot gradient-echo (GRE) 
reverse spiral pulse sequence (Glover and Law, 2001) was used to 
collect 240 T2* – weighted BOLD images (TR = 2 s, TE = 30 ms, 
flip angle = 90°, FOV = 220 mm × 220 mm, voxel size = 3.4 mm 
× 3.4 mm × 3.2 mm, 40 axial slices). For the structural images, a 
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ventral striatum (VSi (±) 9 9 −8), superior ventral striatum (VSs 
(±) 10 15 0), dorsal caudate (DC (±) 13 15 9), dorsal caudal puta-
men (DCP (±) 28 1 3), dorsal rostral putamen (DRP (±) 25 8 6), 
and ventral rostral putamen (VRP (±) 20 12 −3). A four voxel 
square on the axial plane was placed around these coordinates for 
the seed. Third, the time course of the seed was unit normalized 
to remove differences in variance between subjects. Fourth, the 
seed region time course from the filtered data (averaged across 
the four voxels) was used in a correlation analysis with all other 
low-pass filtered voxels in the brain to form functional connec-
tivity maps for each striatal seed region in each participant. Z 
scores from each participant were entered into the group-level 
random effects analyses, which were carried out using SPM5. We 
first evaluated the functional connectivity maps associated with 
each seed region in PD OFF, PD ON, and controls separately, using 
a threshold of p < 0.05 family-wise error (FWE) correction and 
an extent voxel threshold of 100 (Nichols and Hayasaka, 2003). 
At FWE <0.05, control group results showed significant clusters 
across the whole brain for all seed regions; thus, connectivity maps 
generated from the different seed regions were indistinguishable. 
Thus we report the control group results with a more stringent 
threshold of FWE <0.001. An uncorrected threshold of p < 0.001 
and extent voxel threshold of 10 was used for between group com-
parisons of connectivity maps. Comparisons of either PD OFF 
or PD ON to the control group were performed with between 
subjects t-tests, whereas comparison of PD OFF and PD ON was 
done using a within subjects t-test. We also performed an regions 
of interest (ROI) analysis comparing the connectivity strengths 
between PD OFF versus PD ON in the brain regions identified 
from the PD OFF versus control group comparison in order to 
determine whether l-DOPA corrects for the elevated connectivity 
in these regions. ROIs were defined as the voxel clusters identified 
from the PD OFF versus control group comparison of connectiv-
ity maps. For example, for the inferior ventral striatum network, 
the whole cluster in the dorsomedial thalamus (see Figure 3 and 
Table S5 in Supplementary Material.) was used as an ROI and the 
mean connectivity strength across all voxels within this region was 
compared between PD OFF and PD ON using a paired t-test. In 
cases in which there were multiple ROIs associated with one seed 
region (i.e., dorsal caudal putamen and dorsal rostral putamen), 
repeated measures ANOVA using ROI and medication status as 
within subject factors was performed.

We also combined the connectivity maps associated with the 
three caudate seed regions (inferior ventral striatum, superior 
ventral striatum, and dorsal caudate) and the three putamen seed 
regions (dorsal caudal putamen, dorsal rostral putamen, and ven-
tral rostral putamen) using the ImCalc applet in SPM5 to perform 
numerical addition of the three connectivity maps (Di Martino 
et al. 2008). Direct comparison of the caudate and putamen con-
nectivity maps were performed in controls, PD OFF and PD ON 
separately using an uncorrected threshold of p < 0.001 and extent 
voxel threshold of 10.

Frequency content analysIs oF the fMrI Bold sIgnal
The extracted fMRI BOLD timecourses from the six striatal 
seeds were transformed into the frequency domain using Fast 
Fourier Transformation in Matlab. We low pass filtered our data 

3D T1 axial overlay (TR = 8.9 ms, TE = 1.8 ms, flip angle = 15°, 
FOV = 260 mm × 260 mm, slice thickness = 1.4 mm, 124 slices; 
matrix = 256 × 160) was acquired for anatomical localization. To 
facilitate normalization, a 110 sliced (sagittal) inversion-prepped 
T1-weighted anatomical image using spoiled gradient-recalled 
acquisition in steady state (SPGR) imaging (flip angle = 15°, 
FOV = FOV = 260 mm × 260 mm, 1.4 mm slice thickness) was 
acquired. A visual fixation cross was presented to the subject using 
a rear projection visual display. Participants were instructed to keep 
their eyes centered on the cross and to not think about anything in 
particular. The duration of data collection was 8 min. A pressure 
belt was placed around the abdomen of each subject to monitor 
the respiratory signal. A pulse oximeter was placed on the subject’s 
finger to monitor the cardiac signal. The respiratory, cardiac, and 
fMRI data collection were synchronized.

fMrI data analysIs
The acquired functional MRI data were preprocessed as part of the 
standard processing stream at the University of Michigan. First, 
k-space outliers in the raw data time course greater than two stand-
ard deviations from the mean were replaced with the average of 
their temporal neighbors. Second, images were reconstructed using 
field map correction to remove distortions from magnetic field 
inhomogeneity. Third, physiological variations in the data from the 
cardiac and respiratory rhythms were removed using a regression 
analysis (Glover et al., 2000). This approach removed the effects 
of the first and second order harmonics of the externally collected 
physiological waveforms. Fourth, slice timing differences were 
then corrected using local sinc interpolation (Oppenheim et al., 
1999). Finally, we used MCFLIRT in the fMRIB Software Library 
(Jenkinson et al., 2002) to perform motion correction (using the 
10th image volume as the reference). For all participants, head 
motion was less than 3 mm in the x, y, or z direction.

The preprocessed data were then normalized to MNI space using 
SPM5 (Wellcome Department of Cognitive Neurology, London, 
UK; http://www.fil.ion.ucl.ac.uk). We first registered the 3D T1 
axial overlay to the functional images and then registered the 
high-resolution SPGR image to T1 overlay. The transformation 
to align the SPGR image to the MNI template was finally applied 
to the functional data. In order to have all of the PD patients’ pre-
dominantly disease affected hemisphere aligned, we flipped the 
x direction (i.e., left–right direction) of both the 240 functional 
images and the anatomical images for the 7 left-side more affected 
patients before spatial normalization. The results are presented with 
the left side of the images reflecting patients’ more affected brain 
hemisphere. The same proportion of control subject images was 
also flipped in the x direction.

The following procedures were used to generate functional con-
nectivity images (low frequency time course correlation maps). 
First, the data were low-pass filtered by convolving the time courses 
with a rectangular filter with a cutoff frequency of 0.08 Hz, in 
order to examine the frequency band of interest and to exclude 
higher frequency sources of noise such as heart rate and respiration 
(Biswal et al., 1995; Peltier et al., 2003). Second, the time course of 
activity was extracted from the six striatal seed regions, selected 
from Di Martino et al. (2008, MNI x y z coordinates presented 
and depicted in Figure S1 in Supplementary Material: inferior 
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general, the results paralleled previous findings (Di Martino et al., 
2008; Kelly et al., 2009) (Figure 1). Networks for the three caudate 
seeds followed the ventral–dorsal distinction of cortico-striatal 
connectivity, such that the inferior ventral striatum showed con-
nectivity with the ventral medial prefrontal areas and anterior 
cingulate cortex while the superior ventral striatum and dorsal 
caudate showed connectivity with the more dorsal and lateral 
areas of the prefrontal cortex including the dorsolateral prefron-
tal cortex (BA 46) (Table S2 in Supplementary Material). The 
three putamen seeds showed connectivity with the primary and 
secondary motor cortical areas as well as prefrontal and parietal 
association cortical regions (Table S2 in Supplementary Material). 
Our data also showed that there was less specificity of cortico-
striatal connectivity across the six striatal seed regions compared 
to previous studies (Di Martino et al., 2008). For example, we 
found motor cortical areas associated with the caudate seeds 
and significant involvement of prefrontal areas associated with 
the three putamen seeds. This may be due to the effect of age-
related decreases in the specificity of functional networks in older 
adults, since our control group mean age was 63 years (cf. Park 
and Reuter-Lorenz, 2009; Seidler et al., 2010). This remains to be 
evaluated in future studies.

We found relatively similar cortico-striatal connectivity patterns 
in each of our patient groups (Figure S2 in Supplementary Material, 
Tables S3 and S4 in Supplementary Material). The decreased spe-
cificity of the functional connectivity patterns of the six striatal 
seed regions was also present in the patient groups. In order to 
determine the distinctiveness of the cognitive and motor networks 
we directly compared the connectivity maps for caudate and puta-
men seeds in each group. In the control group, the regions showing 
greater correlations with the caudate seeds than the putamen seeds 
included the ventromedial prefrontal cortex, posterior cingulate 
and the parahippocampal gyrus (Figure 2, Table 1). The regions 
showing greater correlation with the putamen seeds than the cau-
date seeds included the primary and supplementary motor areas 
(Figure 2, Table 1). In PD OFF and PD ON however we did not 
find any regions other than the caudate and putamen themselves 
to be more correlated with caudate or putamen seed regions, with 
the exception of the dorsal prefrontal cortex (BA 8) in PD OFF and 

at 0.08 Hz, and thus we were only able to look at the power 
spectrum between 0.0 and 0.08 Hz. For the normalization of the 
frequency data we took the following steps. We first divided the 
0.08 Hz spectrum into eight frequency bands of approximately 
0.01 Hz bandwidth each. We then computed the percentage of 
the total power contained within each frequency band. Repeated 
measures ANOVA was used to compare the normalized power 
content across the eight frequency bands for PD ON and OFF 
medication, and a mixed model ANOVA was used for the com-
parison of the PD patients to the controls using frequency bands 
as a within subject factor and group (PD OFF versus controls) 
as a between subject factor. The Huynh–Feldt epsilon (Huynh 
and Feldt, 1970) was used to determine whether the repeated 
measures data met the assumption of sphericity (Σ > 0.75). In 
cases where the sphericity assumption was not met, the F statistic 
was evaluated for significance using the Huynh–Feldt adjusted 
degrees of freedom.

results
BehavIoral data
We evaluated patients’ performance on the UPDRS, MMSE, 
MOCA, and grooved pegboard tests between the ON and OFF 
l-DOPA states using paired t-tests. Pegboard performance was 
analyzed separately for the more and less affected sides. Motor 
symptoms measured by UPDRS were significantly worse in PD 
OFF than PD ON (t

24
 = −2.33, p < 0.05), and pegboard perform-

ance for the more affected side was significantly worse for PD 
OFF than PD ON (t

24
 = −2.88, p < 0.01). These results indicate 

that l-DOPA significantly improved motor functioning of the 
patients, and the improvement was most apparent in the more 
affected side.

strIatal FunctIonal connectIvIty In controls, Pd oFF,  
and Pd on
We present our connectivity analyses using the seeds placed in 
the more affected hemisphere; results were generally similar in 
the less affected hemisphere. We first identified striatal functional 
connectivity maps for the control group to evaluate the anatomi-
cal plausibility of the networks (FWE correction of <0.001). In 

Cognitive and motor networks in controls
VMPFC SMAPre-SMA M1

CMA
cau

put

SPL

preCu

FIguRe 1 | An example of cognitive (seed: inferior ventral striatum, red) and motor (seed: dorsal rostral putamen, blue) networks in controls. z = −15, −5, 
15, 35, 45, 55 and x = 5 from left to right (FWE-corrected p < 0.001). VMPFC, ventromedial prefrontal cortex; cau, caudate; put, putamen; Pre-SMA, 
pre-supplementary motor area; SMA, supplementary motor area; SPL, superior parietal lobule; M1, primary motor area; CMA, cingulate motor area; 
preCu, precuneus.
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coMParIson oF caudate versus PutaMen FunctIonal 
connectIvIty In controls, Pd oFF, and Pd on
Next, we compared the connectivity maps associated with each seed 
region between groups. We first compared PD OFF to controls. 
We found increased functional connectivity in PD OFF compared 

the dorsolateral prefrontal cortex (BA 9) in PD ON which exhib-
ited greater correlated activity with the caudate than the putamen 
(Figure 2, Table 1). These results indicate that in both PD OFF and 
PD ON there is decreased specificity of the caudate and putamen 
functional connectivity patterns.

Control PD_OFF PD_ON
SMA

PCC
SFG

MFG
MFG

cau
put

FIguRe 2 | Regions showing greater connectivity with caudate seeds (VSi, 
VSs, and DC combined) than with putamen seeds (DCP, DRP, and VRP 
combined) in red and regions showing greater connectivity with putamen 

seeds than with caudate seeds in blue (p < 0.001, uncorrected). PCC, 
posterior cingulate cortex; SMA, supplementary motor area; SFG, superior 
frontal gyrus; MFG, middle frontal gyrus; cau, caudate; put, putamen.

Table 1 | Direct comparisons between caudate seeds combined and putamen seeds combined.

Contrast Region BA MNI coordinates T-value

   x y z 

CoNTRol

Caudate > putamen Caudate  −12 14 8 264.45

 Inferior temporal gyrus 20 −68 −20 −14 6.13

 Parahippocamal gyrus 36 −26 −18 −22 5.75

 Middle frontal gyrus 11 34 38 −14 4.92

 Rectal gyrus 11 8 32 −18 4.14

 Superior frontal gyrus 10 −28 66 14 4.48

 Posterior cingulate gyrus 23 6 −58 20 4.19

 Inferior frontal gyrus 47 −52 32 −12 3.96

Putamen > caudate Putamen  −28 0 2 276.94

 Precentral gyrus 6 46 12 6 6.02

 Medial frontal gyrus (pre-SMA) 6 6 4 56 4.32

 Superior frontal gyrus 9 32 50 34 5

 Precuneus 7 18 −58 46 4.59

 Postcentral gyrus 7 28 −54 70 3.9

 Superior temporal gyrus 22 66 −8 6 4.64

 Inferior frontal gyrus 47 54 36 −2 4.25

 Inferior parietal lobule 40 −56 −38 46 3.87

 Ventral posterior medial thalamus  18 −22 4 3.75

PD oFF

Caudate > putamen Caudate  6 12 12 4.61

 Middle frontal gyrus 8 −30 10 40 4.23

Putamen > caudate Putamen  −26 −2 −2 4.33

PD oN

Caudate > putamen Caudate  −6 20 4 Inf

 Middle frontal gyrus 9 −28 26 34 3.66

Putamen > caudate Putamen  −22 6 −6 4.33

Inf, infinite T-value.
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dial prefrontal cortex, the anterior cingulate, and the middle and 
inferior temporal gyrus showed greater connectivity in PD OFF 
than controls. The increased connectivity in PD OFF was most 
significantly found in the two dorsal putamen seeds, and we did 
not find any regions showing greater connectivity for the caudate 
seeds except for inferior ventral striatum. There were no regions 
that showed greater connectivity in controls than PD OFF. These 
results indicate that PD patients show greater cortico-striatal func-
tional connectivity compared to controls specifically in the dorsal 
putamen seeds. It is of note that the denervation of dopamine 
in PD is most prominent in the dorsal and posterior striatum, 
including the dorsal putamen, which is selectively affected in the 
earlier stages of the disease (Braak et al., 2003, 2006). Considering 
that the PD patients in the current study were all in the relatively 
early stages of the disease, our results indicate that increases in 
functional connectivity are more prominent in the early disease 
affected striatal subregions.

We also compared PD ON to controls. In general we found 
decreased cortico-striatal functional connectivity in PD ON com-
pared to controls (Figure 4, Table S6 in Supplementary Material). 
Decreases in connectivity were found in the primary and supple-
mentary motor areas and the associative prefrontal and parietal 
regions irrespective of seed location. No regions exhibited greater 
connectivity for any of the striatal seeds in PD ON than controls.

Lastly, we compared connectivity maps for PD OFF versus 
PD ON. We found increased connectivity of the striatal seeds 
in PD OFF compared to PD ON, and the brain regions showing 
increased connectivity with each seed were part of the functional 
network associated with that particular seed (Figure 5, Table S7 in 
Supplementary Material). That is, for the caudate seeds, increased 
connectivity in PD OFF compared to PD ON was found in the 
ventromedial prefrontal (BA 11) and orbitofrontal (BA 10) regions 
for inferior ventral striatum, dorsolateral prefrontal (BA 46) and 
frontal eye field (BA 8) regions for superior ventral striatum and 
dorsal caudate. For the putamen seeds, increased connectivity in 
PD OFF compared to PD on was observed in the primary and 
secondary motor areas (BA 4, BA 6). There were no regions that 
showed greater connectivity in PD ON than PD OFF. These results 
indicate that l-DOPA decreases the abnormally high functional 
connectivity in PD, with specific effects on the functional networks 
associated with each cortico-striatal seed. However, our findings 
indicate that l-DOPA reduces cortico-striatal connectivity in PD to 
a greater extent than is necessary as evidenced by overall decreased 
connectivity in PD ON compared to controls.

The brain regions identified in the voxel-wise comparison of 
connectivity maps between PD OFF and PD ON did not neces-
sarily overlap with the regions identified by the PD OFF versus 
control group comparison. That is, from the voxel-wise compari-
son results we could not determine whether l-DOPA corrected 
the aberrantly elevated functional connectivity in PD. In order to 
address this, we performed an ROI analysis comparing the connec-
tivity strengths between PD OFF and PD ON in the brain regions 
identified from the PD OFF versus control group comparison. The 
mean connectivity strengths across all voxels within the ROIs were 
compared between PD OFF and PD ON. For the inferior ventral 
striatum seed region, we found that mean connectivity strength 
with the dorsomedial thalamus was significantly lower in PD ON 
than PD OFF (t

24
 = 2.44, p < 0.05, Figure S3A in Supplementary 

to controls with the following seed regions: inferior ventral stria-
tum, ventral rostral putamen, dorsal caudal putamen, and dorsal 
rostral putamen (Figure 3, Table S5 in Supplementary Material). 
Regarding the first two seeds, connectivity between the inferior 
ventral striatum and the dorsomedial thalamus and connectivity 
between the ventral rostral putamen and the ventromedial prefron-
tal gyrus was increased in PD OFF compared to controls. For dorsal 
caudal putamen, the inferior temporal gyrus, anterior cingulate 
cortex and superior frontal gyrus showed greater connectivity in 
PD OFF than controls. For dorsal rostral putamen, the ventrome-

Inferior ventral striatum 

Dorsal caudal putamen

Dorsal rostral putamen

Ventral rostral putamen

dmThal

ITG

ACC

IFG

ACC

VMPFC

MTG

RG

FIguRe 3 | Regions showing greater connectivity with the striatal seeds 
for PD oFF than controls (p < 0.001, uncorrected). No results were found in 
the other seeds or for the contrast of controls greater than PD OFF. dmThal, 
dorsomedial thalamus; ACC, anterior cingulate cortex; VMPFC, ventromedial 
prefrontal cortex; IFG, inferior frontal gyrus; RG, rectal gyrus; MTG, middle 
temporal gyrus.
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ated with a change in oscillatory activity of the striatal BOLD signal 
in the resting state, we performed a frequency content analysis of the 
BOLD signal time course extracted from the six striatal seed regions. 
We first compared PD OFF to controls using a mixed between and 
within subjects ANOVA with group as a between subjects factor and 
frequency bands as a within subjects factor in each seed separately. 
Since we analyzed the normalized power (total power of the eight 
frequency bands being 100%) there was inherently no main effect 
of group. We found significant group by frequency band interac-
tions for the inferior ventral striatum (F

4.49, 210.84
 = 2.39, p < 0.05), 

dorsal caudate (F
7, 329

 = 2.01, p = 0.05) and dorsal caudal putamen 
(F

7, 329
 = 2.46, p < 0.05). We followed these up with two sample 

t-tests comparing the frequency content of PD OFF and controls 
in each frequency band for these seed regions. We found significant 
differences in the frequency content in 0.02–0.03 Hz for inferior 
ventral striatum (t

47
 = 2.45, p < 0.05) and dorsal caudate (t

47
 = 2.11, 

p < 0.05), and in 0.03–0.04 Hz for dorsal caudal putamen (t
47

 = 2.27, 
p < 0.05). Normalized mean signal power was significantly greater 
in PD OFF than controls in these frequency ranges (Figure 6). A 
concomitant decrease in signal power for PD OFF was seen in the 
range of 0–0.02 Hz, although it did not reach significance.

Material). For dorsal caudal putamen, which had multiple ROIs 
associated with it, repeated measures ANOVA showed a significant 
main effect of medication status (F

1,24
 = 9.22, p < 0.01, Figure S3B 

in Supplementary Material), reflecting an overall decrease in con-
nectivity strength in PD ON compared to PD OFF. For dorsal rostral 
putamen we found a marginally significant main effect of medica-
tion status (F

1,24
 = 3.66, p = 0.068, Figure S3C in Supplementary 

Material), reflecting an overall decrease in connectivity strength 
in PD ON compared to PD OFF. For ventral rostral putamen, 
connectivity strength with inferior frontal gyrus was lower in PD 
ON than PD OFF but was only marginally significant (t

24
 = 1.81, 

p = 0.08, Figure S3D in Supplementary Material). These results 
demonstrate that l-DOPA indeed corrects for the elevated con-
nectivity in the brain regions that show increased connectivity for 
PD OFF compared to controls.

Frequency content analysIs
Comparison of connectivity maps between groups showed that there 
was an overall elevation of cortico-striatal functional connectivity 
in PD and that l-DOPA decreased this heightened connectivity. In 
order to determine whether increased connectivity in PD is associ-

VSi VSs DC DCP DRP VRP

M1
SMA

Cu

MFG

DLPFC

SMAM1

Cr

SFG
M1

SMA

MFG

MFG

PCG
DLPFC

M1

SFG

DLPFC

Pre-SMA

SMA

STG

SFG

FEF
M1 Pre-SMA

Cr 

STG

FIguRe 4 | Regions showing greater connectivity with the striatal seeds 
in controls than PD oN (p < 0.001, uncorrected). No results were found for 
the contrast of PD ON greater than controls. VSi, inferior ventral striatum; 
VSs, superior ventral striatum; DC, dorsal caudate; DCP, dorsal caudal 
putamen; DRP, dorsal rostral putamen; VRP, ventral rostral putamen; M1, 

primary motor cortex; SMA, supplementary motor area; pre-SMA, pre-
supplementary motor area; DLPFC, dorsolateral prefrontal cortex; Cr II, 
cerebellum Crus II, STG, superior temporal gyrus; SFG, superior frontal 
gyrus; FEF, frontal eye field; cu, cuneus; MFG, middle frontal gyrus; 
PCG, postcentral gyrus.
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arising from the comparison of PD OFF to controls, these data 
demonstrate that there is relatively greater power for the resting 
state BOLD signal oscillations in the 0.02–0.05 Hz frequency band 
for PD OFF, and l-DOPA decreases the elevated oscillations in this 
frequency range.

In order to determine whether this l-DOPA-associated change 
in power content within these specific frequency bands modulates 
l-DOPA-associated connectivity differences in any brain regions, 
we performed an exploratory voxel-wise correlation analysis. In 
this analysis, we performed a voxel-wise regression using the OFF 
and ON difference in the normalized signal content and the OFF 
and ON connectivity difference. Considering that both the com-
parisons of PD OFF to controls and PD OFF to PD ON showed 
significantly increased power in the 0.02–0.05 Hz range, we used 
the OFF–ON normalized signal content of the frequency bands 
that showed significantly greater power for PD OFF than PD ON 
(i.e., 0.04–0.05 Hz for dorsal caudate, 0.03–0.04 Hz for dorsal 
caudal putamen and dorsal rostral putamen) and the OFF–ON 
connectivity maps. Analyses were performed within brain regions 

We also compared the power content for PD OFF versus PD 
ON across the eight frequency bands for each striatal seed region 
using repeated measures ANOVA. We found significant medica-
tion by frequency band interactions for superior ventral striatum 
(F

7, 168
 = 3.53, p < 0.005), dorsal caudate (F

3.97, 95.18
 = 4.42, p < 0.005), 

dorsal caudal putamen (F
4.34, 104.15

 = 2.73, p < 0.05) and a marginally 
significant interaction for dorsal rostral putamen (F

5.12, 122.93
 = 2.2, 

p = 0.057) (Figure 7). We followed up with paired t-tests compar-
ing the frequency content of the signals for PD OFF versus PD 
ON in each frequency band for these seed regions. The results 
showed that across the four seeds, there was a significant difference 
between PD OFF and PD ON in the frequency range 0–0.02 Hz 
and 0.03–0.05 Hz. In general, signal power in 0.03–0.05 Hz was 
greater in PD OFF than PD ON with a concomitant decrease in 
power in the 0–0.02 Hz range (VSs: 0–0.01 Hz, t

24
 = −3, p < 0.01; 

DC: 0–0.01 Hz, t
24

 = −2.44, p < 0.05, 0.01–0.02 Hz, t
24

 = −2.75, 
p < 0.05, 0.04–0.05 Hz, t

24
 = 2.62, p < 0.05; DCP: 0–0.01 Hz, 

t
24

 = −2.03, p = 0.053, 0.03–0.04 Hz, t
24

 = 2.48, p < 0.05; DRP: 
0.03–0.04 Hz, t

24
 = 2.58, p < 0.05). Taken together with the results 

VSi VSs DC DCP DRP VRP

M1

MTG

FEF

cu

M1

MTG

dmThal

FEF
M1

Cr 

preCu

IPL

PCG

OFC

VMPFC

VLPFC

DLPFC

M1

STG

SFG

SFG

dmThal

FEF

DLPFC

FIguRe 5 | Regions showing greater connectivity with the striatal seeds in 
PD oFF than PD oN (p < 0.001, uncorrected). No results were found for the 
contrast of PD ON greater than PD OFF. VSi, inferior ventral striatum; VSs, 
superior ventral striatum; DC, dorsal caudate; DCP, dorsal caudal putamen; DRP, 
dorsal rostral putamen; VRP, ventral rostral putamen; OFC, orbital frontal cortex; 

VLPFC, ventrolateral prefrontal cortex; VMPFC, ventromedial prefrontal cortex; 
DLPFC, dorsolateral prefrontal cortex; FEF, frontal eye field; M1, primary motor 
cortex; SFG, superior frontal gyrus; STG superior temporal gyrus; dmThal, 
dorsomedial thalamus; MTG, middle temporal gyrus; cu, cuneus; Cr I, cerebellum 
crus I; IPL, inferior parietal lobule; PCG, post central gyrus; preCu, precuneus.
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positive correlation between the OFF–ON frequency content dif-
ference in 0.03–0.04 Hz and OFF–ON connectivity with the dor-
somedial thalamus (Figure 9).

We also performed a correlation analysis between the OFF and 
ON difference in frequency content of the 0.03–0.05 Hz and the OFF 
and ON difference in behavioral measures to determine whether the 
change in frequency content is correlated with the medication-asso-
ciated changes in behavior. We used OFF–ON frequency content and 
OFF–ON behavioral performance measured with MOCA, grooved 
pegboard, and UPDRS. We only found a significant negative correla-
tion between OFF–ON frequency content of 0.04–0.05 Hz in dorsal 
caudate with the OFF–ON difference in MOCA score (r = −0.44, 
p < 0.05) (Figure 10). That is, the greater the l-DOPA-associated 
decrease in power in this frequency band of dorsal caudate, the 
greater the improvement in MOCA performance.

Collectively, the results from our frequency content analyses of 
the resting state BOLD time course in the six striatal seed regions 
indicate that there is a relative increase in BOLD signal oscillations 
in the 0.02–0.05 Hz range in PD, and l-DOPA mitigates this effect. 
The l-DOPA-associated decrease in the frequency content in this 
range modulated the change in connectivity strength between dor-
sal caudate and thalamus and dorsal caudal putamen and thalamus. 
Moreover, for dorsal caudate, the change in frequency content due 
to medication also modulated the l-DOPA associated change in 
cognitive performance.

dIscussIon
We observed hyperconnectivity of the cortico-striatal networks in 
PD patients, which was mitigated by l-DOPA. Comparisons of 
connectivity maps between PD OFF and PD ON showed decreased 
connectivity with l-DOPA in brain regions that are known to be 
anatomically connected to each of the seed regions. Additional 
ROI analyses comparing connectivity strength between PD OFF 
and PD ON within the regions that showed hyperconnectivity in 
PD OFF compared to controls also revealed a general decrease 
in connectivity strength with l-DOPA. It is of note however, that 
down-regulation of connectivity strength in these ROIs was not 
observed across the board. Therefore, although l-DOPA normal-
ized the PD-associated hyperconnectvity it was more effective 
in some ROIs than others. Hyperconnectivity in PD patients is 
explained by the shift in the frequency content of the resting state 
striatal BOLD signal oscillations in PD patients. More specifically, 
we found that PD patients OFF l-DOPA had increased functional 
connectivity between striatal seed regions and cortical areas com-
pared to controls in the two dorsal putamen seeds, which are known 
to be the most disease-affected subregions of the striatum in the 
early disease state (Bernheimer et al., 1973; Kish et al., 1988; Frey 
et al., 1996; Rakshi et al., 1999; Braak et al., 2003, 2006). This hyper-
connectivity for PD OFF was also seen in a whole-brain comparison 
relative to PD ON. Furthermore, the regions showing greater func-
tional connectivity for PD OFF than ON reflected the specificity 
of the reward, cognitive and motor circuitry of the cortico-striatal 
pathways. For example, the regions showing greater connectivity 
with the inferior ventral striatum in PD OFF than PD ON were 
structures typically involved in reward processing such as the orbital 
frontal and ventromedial prefrontal cortex (Haber and Knutson, 
2010). The regions showing greater connectivity with the dorsal 

that showed greater OFF than ON functional connectivity using 
an explicit mask of the OFF–ON connectivity map thresholded 
at p < 0.05, uncorrected. The correlation analyses within these 
masks were thresholded at p < 0.005 uncorrected with a voxel 
extent threshold of 10. The results showed that for dorsal caudate, 
the OFF–ON frequency content difference in 0.04–0.05 Hz was 
positively correlated with OFF–ON connectivity differences within 
the dorsomedial thalamus. That is, greater l-DOPA- associated 
decreases in power in this frequency band were associated with 
greater decreases in connectivity strength between the dorsal cau-
date and the dorsomedial thalamus (Figure 8). A similar result was 
found for dorsal caudal putamen, which exhibited a  significant 
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FIguRe 6 | Normalized power across the eight frequency bands in 
controls and PD oFF. Each band consists of approximately 0.01 Hz bandwidth. 
A significant group by frequency band interaction was found in inferior ventral 
striatum (VSi), dorsal caudate (DC), and dorsal caudal putamen (DCP) with PD 
OFF showing greater signal content in the 0.02–0.04 Hz range of the frequency 
band than controls. Error bars indicate standard error. *p < 0.05.
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caudate in OFF than ON included the dorsolateral prefrontal cortex 
which is part of the cognitive cortico-striatal loop (Alexander et al., 
1986), whereas for the putamen seeds, differences in connectivity 
strength were found with the primary and secondary motor corti-
cal areas. These results indicate that there is an increase in the level 
of connectivity between striatal regions and their selective cortical 
targets in PD patients.

The increased connectivity we found in PD patients compared 
to controls is somewhat unique to this clinical group since other 
studies have widely shown disrupted connectivity in patients with 
autism, depression, schizophrenia, and stroke (Greicius, 2008; 
Monk et al., 2009; van Meer et al., 2010; Vercammen et al., 2010). 
However, our observation of hyperconnectivity in PD patients 
OFF medication and down-regulation of this hyperconnectiv-
ity by administration of l-DOPA, is in alignment with previous 
studies reporting increased oscillatory neural activity of the basal 
ganglia and heightened synchronous activity across the basal 
ganglia thalamocortical networks in dopamine depleted states 
including PD (Costa et al., 2006; Gatev et al., 2006; Hammond 
et al., 2007; Eusebio et al., 2009). According to these reports, the 
pathological state of dopamine depletion results in increased 

synchronous oscillatory activity in the basal ganglia and its asso-
ciated networks. Therapeutic measures such as dopaminergic 
medications and deep brain stimulation have been shown to 
reduce these oscillations and the associated increase in coherent 
neural activity across networks (Brown et al., 2001; Williams 
et al., 2002; Priori et al., 2004; Silberstein et al., 2005). The 
increase in cortico-cortical coupling seen in EEG data from PD 
patients has been shown to be associated with symptom sever-
ity (Silberstein et al., 2005). Additionally, decreases in cortico-
cortical coupling due to l-DOPA and deep brain stimulation 
correlate with clinical improvement (Silberstein et al., 2005). 
The effect of dopaminergic modulation on coherence of oscil-
lations in the basal ganglia thalamocortical networks has been 
shown in healthy individuals as well (Honey et al., 2003). Honey 
et al. (2003) assessed the changes in cortico-striatal network 
connectivity associated with different states of dopaminergic 
transmission caused by drug administration in healthy older 
adults. The authors observed increased functional connectivity 
between caudate and thalamus/ventral midbrain in decreased 
dopamine transmission states caused by Sulpiride, a dopamine 
D2 antagonist (Honey et al., 2003).
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FIguRe 9 | Correlation between the difference in oFF and oN frequency 
content and oFF and oN connectivity in dorsal caudal putamen. OFF–ON 
frequency content difference in 0.03–0.04 Hz was positively correlated with 
OFF–ON connectivity differences within the dorsomedial thalamus (p < 0.005, 
uncorrected using OFF–ON connectivity map as a mask).

FIguRe 8 | Correlation between the difference in oFF and oN frequency 
content and oFF and oN connectivity in dorsal caudate. OFF–ON 
frequency content difference in 0.04–0.05 Hz of dorsal caudate was positively 
correlated with OFF–ON connectivity within the dorsomedial thalamus 
(p < 0.005 uncorrected using the OFF–ON connectivity map as a mask).
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FIguRe 10 | Correlation between the difference in oFF and oN frequency content and oFF and oN MoCA performance difference. OFF–ON frequency 
power in 0.04–0.05 Hz of dorsal caudate (DC) negatively correlated with OFF–ON performance difference in MOCA (r = 0.44, p < 0.05).

Oscillatory neural activity in PD and its modulation by drug 
and deep brain stimulation therapies have been examined by ana-
lyzing the frequency content of local field potential recordings or 
EEG/MEG data (Silberstein et al., 2003, 2005; Kuhn et al., 2004, 
2006; Priori et al., 2004; Foffani et al., 2005; Weinberger et al., 2006; 
Stoffers et al., 2008). Some of these studies report that the PD-related 

increase in signal frequency content is most prominent in the beta 
frequency band (10–35 Hz) (Kuhn et al., 2004, 2006; Foffani et al., 
2005; Weinberger et al., 2006). Others have found increased power 
in lower frequency bands including theta, alpha 1 and alpha 2 in PD 
(Stoffers et al., 2008). Studies evaluating the effect of dopaminergic 
therapy on modulation of brain signal frequency content have also 
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dorsal caudate, which predominantly has connections with the 
lateral prefrontal areas including the dorsolateral prefrontal cortex 
(Di Martino et al., 2008).

Our data showed some parallel findings to previous studies 
demonstrating changes in oscillatory neural activity in PD patients. 
Specifically we found changes in the low-frequency spontaneous 
fluctuations of the BOLD signal in PD patients at rest. A careful 
interpretation of our data is necessary however since the nature 
of BOLD signal oscillations could be different from oscillatory 
activity represented in local field potentials or EEG in previous 
studies (Silberstein et al., 2003, 2005; Kuhn et al., 2004, 2006; 
Priori et al., 2004; Foffani et al., 2005; Stoffers et al., 2008). The 
frequency range in our resting state BOLD signal was limited to 
below 0.08 Hz due to the nature of the neurovascular coupling 
(Haller and Bartsch, 2009) whereas the frequency range for local 
field potentials or EEG recordings is not limited to this low fre-
quency range. Recently efforts have been made to understand the 
nature of the BOLD signal, in particular its relationship to neu-
ral activity. Simultaneous intracortical recordings and fMRI have 
demonstrated that the BOLD signal correlates with both local 
field potentials and multi-unit activity, but it is more accurately 
predicted by local field potentials (Logothetis et al., 2001; Goense 
and Logothetis, 2008). Simultaneous EEG and fMRI studies have 
also shown that patterns of fMRI activation can be explained by 
the frequency content of the EEG signal (Moosmann et al., 2003; 
Laufs, 2008; de Munck et al., 2009; Britz et al., 2010; Musso et al., 
2010; Rosa et al., 2010). Additionally, studies have shown that 
the frequency content of the fMRI BOLD signal has behavioral 
relevance (Horovitz et al., 2008; Wu et al., 2008).

One interesting finding associated with the effect of l-DOPA in 
our patient group was that it seemed to overcorrect the hypercon-
nectivity of the cortico-striatal pathways as shown by our results 
comparing PD ON to controls. That is, there was an overall decrease 
in the level of cortico-striatal connectivity in PD ON compared to 
healthy controls. Irrespective of the striatal seed locations, there 
was a predominant decrease in connectivity between the striatum 
and the primary and secondary motor areas in PD ON, which was 
true even for seed regions that did not exhibit a relative hypercon-
nectivity for PD OFF relative to controls. Whether this hypocon-
nectivity for PD ON relative to controls is another side effect of 
l-DOPA that results in deleterious performance outcomes similar 
to the “dopamine-overdose effect” (see Cools, 2006 for review; Kwak 
et al., 2010) needs further investigation. The pattern of results may 
also be due to l-DOPA’s selective effects on the more denervated 
striatal regions, typically the sensorimotor striatum and its motor 
cortical targets (Bernheimer et al., 1973; Kish et al., 1988; Rakshi 
et al., 1999; Braak et al., 2003, 2006).

As mentioned in the Results section, the resting state cortico-
striatal functional connectivity patterns in our data are in line 
with previous findings. That is, separable “cognitive” and “motor” 
circuitries were identified in healthy older adults and PD patients 
ON and OFF l-DOPA. However, one thing we did notice was 
that the cognitive and motor circuitries were less separable in our 
older adult group compared to what has been reported in previ-
ous studies conducted in healthy younger adults (Di Martino et 
al., 2008; Kelly et al., 2009). The reduced specificity of the cogni-
tive and motor circuitries was even more apparent in our patient 

shown that with medication, power decreases in the frequency range 
close to the beta band and concomitantly increases in the lower fre-
quency band (2–7 Hz) (Silberstein et al., 2003; Priori et al., 2004).

In the current study, we compared the frequency content of the 
BOLD signal time course extracted from the striatal seed regions 
across medication states and between PD patients and controls. 
Due to the rate of fMRI data acquisition and BOLD signal pre-
processing including low pass filtering, we were only able to look 
at the frequency range below 0.08 Hz. However, given the sluggish 
nature of the hemodynamic response function (Haller and Bartsch, 
2009), this should be sufficient to capture the frequency range of 
interest. We found an increase in power content of frequency 
bands in the range of 0.02–0.05 Hz and a decrease in power in the 
range of <0.02 Hz for PD OFF compared to PD ON and controls. 
Furthermore for the comparison of PD OFF and PD ON, there 
were no significant interactions between medication and frequency 
bands for the inferior ventral striatum and the ventral rostral puta-
men. These two regions are the most ventral among the six seed 
locations, and are thus relatively intact in the early stages of PD 
(Bernheimer et al., 1973; Kish et al., 1988; Frey et al., 1996; Rakshi 
et al., 1999; Braak et al., 2003, 2006). Given this, our results sug-
gest that l-DOPA affects a specific frequency range of resting state 
BOLD signal oscillations, and this effect is present in the more 
disease affected subregions of the striatum.

An exploratory analysis was performed to determine whether 
the l-DOPA-associated change in the resting state BOLD frequency 
content modulated the l-DOPA-associated connectivity differences 
in any brain regions. We used the frequency bands that showed a sig-
nificant difference in signal content between PD ON and OFF. Our 
results showed that differences in signal content of the frequency 
band modulated the difference in connectivity strength between 
dorsal caudate and dorsomedial thalamus and also between dor-
sal caudal putamen and dorsomedial thalamus. That is, the more 
l-DOPA reduced power in the particular frequency band, the greater 
the reduction in connectivity between the striatal seed regions (i.e., 
dorsal caudate and dorsal caudal putamen) and dorsomedial tha-
lamus. It is of note that the dorsomedial thalamus was commonly 
found in these analyses. Dorsomedial thalamus has traditionally 
been considered as the relay station for prefrontal and limbic con-
nections and is involved in attention and alertness (Smythies, 1997). 
However, recent studies report the involvement of the dorsome-
dial thalamus in cortico-striatal circuitries (Cheatwood et al., 2003; 
Kunzle, 2006). Considering that our approach was exploratory, 
future studies are warranted to confirm these particular l-DOPA 
modulation effects in dorsomedial thalamus.

The l-DOPA-associated change in frequency content of the 
dorsal caudate signal was correlated with change in MOCA per-
formance between ON and OFF l-DOPA. In other words, the 
more that l-DOPA reduced signal content in the frequency band 
the greater MOCA performance improved. To our knowledge, this 
is the first finding that shows l-DOPA associated shift in neural 
oscillation affects change in cognitive performance. Previously 
studies have shown that change in neural oscillation due to medi-
cation is correlated with motor improvement (Silberstein et al., 
2005), however there has been no reports in terms of the rela-
tionship with cognitive improvements. Notably, the seed region 
we found this relationship with cognitive improvement in is the 
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groups. One possible explanation for this discrepancy from previ-
ous findings is that the data processing and analysis streams were 
not identical to these previous studies, although we used the same 
MNI coordinates for the seed regions. Another possible explana-
tion would be that the reduced specificity of the networks is due 
to age-related changes in neural recruitment considering that our 
participants were in their 60 s on average. Given this, the decrease 
in the exclusiveness of the cortico-striatal circuitries may be due 
to the age-related dedifferentiation of neural networks (Park and 
Reuter-Lorenz, 2009; Seidler et al., 2010). This topic awaits fur-
ther investigation. With regards to PD, a decrease in the relative 
separation of the cognitive and motor networks was even more 
apparent. That is, direct comparison of the caudate and putamen 
connectivity maps in the patient group demonstrated that the 
relative separation of the striatal networks present in controls was 
not observed in PD in either the ON or OFF l-DOPA state. This 
suggests that the cognitive and motor cortico-striatal networks 
become more diffuse and overlapping in PD in both the ON and 
OFF medication states.

We found that PD and l-DOPA were associated with shifts in the 
frequency content of resting state striatal signals, and this was corre-
lated with connectivity strength and cognitive performance change, 
but not with changes in UPDRS scores. In fact the controlled dose 
of l-DOPA we used across all patients did not always improve 
UPDRS score, which suggests that it may have not been clinically 
efficient for some patients. Additionally, we cannot directly link 
the frequency range in resting state BOLD signal to the frequency 

ranges that were reported in EEG or local field potential studies. 
A further investigation combining EEG and resting state fMRI in 
PD patients will be required to address this issue.

In conclusion, our results showing a PD-associated increase in 
cortico-striatal functional connectivity and shifts in the power con-
tent of striatal signals parallel previous findings of increased coupled 
neural oscillatory activity in PD, as measured with local field potentials 
and EEG. Moreover we found that the l-DOPA associated changes 
in BOLD signal oscillations modulate changes in connectivity and 
cognitive performance associated with l-DOPA. It is particularly 
interesting that our analysis of the low frequency fcMRI signal paral-
lels previous EEG analyses of neural signal content at much higher 
frequencies. Considering that local field potential recordings can only 
be done in surgical settings and that EEG only captures cortical activ-
ity with low spatial resolution, whereas we found significant changes 
with fcMRI in mild to moderate stage patients, resting state fcMRI has 
great potential to be applied to further clinical research investigating 
the pathophysiology, progression, and treatment of PD.
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FIguRe S1 | location of the six striatal seed regions. The left shows (x = 11) the location of the three caudate seeds: inferior ventral striatum (VSi), superior 
ventral striatum (VSs), and dorsal caudate (DC). The right (x = 28) shows the locations of the three putamen seeds: dorsal caudal putamen (DCP), dorsal rostral 
putamen (DRP), and ventral rostral putamen (VRP).

suPPleMentary MaterIal

Table S1 | Demographic and clinical variables of PD patients.

   Disease Affected 

 Age gender duration (years) body side H and Y uPDRS_oN uPDRS_oFF

PD_01 62 M 6 R 2.5 15 16

PD_02 70 M 8 L 2 23 19

PD_03 70 M 7 R 2 14 21

PD_04 52 M 6 R 2.5 16 20

PD_05 71 M 13 R 2.5 18 24

PD_06 69 M 12 R 2 20 24

PD_07 60 M 3 R 1.5 10 9

PD_08 65 M 8 R 2.5 21 27

PD_09 63 M 7 L 2.5 28 28

PD_10 69 M 9 R 2 24 23

PD_11 66 M 1 L 2 9 9

PD_12 67 M 9 R 2.5 14 14

PD_13 73 M 2 R 2.5 18 14

PD_14 51 M 2 R 2 9 8

PD_15 68 M 2 L 2 25 27

PD_16 72 M 4 L 2.5 27 26

PD_17 59 F 2 R 2 5 6

PD_18 64 M 7 R 2 8 6

PD_19 64 M 3 L 2 28 30

PD_20 80 M 6 R 2 11 13

PD_21 50 M 3 R 1.5 13 13

PD_22 62 M 2 R 2 10 17

PD_23 51 M 3 R 2.5 32 37

PD_24 56 F 1 L 2 11 21

PD_25 55 F 3 R 2 15 14

Mean 63.6  5.2  2.1 17.0 18.6

S.D. 7.8  3.4  0.3 7.4 8.1
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Table S2 | MNI coordinates of the local maxima of brain regions showing functional connectivity with the six striatal seed regions in controls.

Seed Region BA MNI coordinates T-value

   x y z 

Inferior ventral striatum Medial frontal gyrus 32 −6 8 −8 34.22

 Superior temporal gyrus 42 56 16 8 10.2

Superior ventral striatum Lingual gyrus 18 −4 72 −4 13.59

 Superior parietal lobule 7 26 62 54 12.58

 Inferior parietal lobule 40 46 34 54 12.4

 Middle frontal gyrus 6 30 −2 56 11.89

 Paracentral gyrus 6 −6 28 76 10.82

Dorsal caudate Supramarginal gyrus 40 48 50 30 13.65

 Middle frontal gyrus 46 54 28 22 11.45

 Middle frontal gyrus 10 32 54 18 11.34

 Superior frontal gyrus 8 28 20 48 11.23

 Middle temporal gyrus 21 56 30 −2 10.34

 Postcentral gyrus 2 42 26 40 10.16

 Cerebellum Cr I  22 84 26 10.19

Dorsal caudal putamen Anterior cingulate gyrus 32 6 14 36 10.54

 Postcentral gyrus 7 14 54 50 10.39

 Precentral gyrus 4 34 18 58 10.21

Dorsal rostral putamen Insula 13 38 8 6 13.49

 Superior frontal gyrus 9 36 46 30 12.63

 Superior parietal lobule 7 10 68 56 12.52

 Inferior parietal lobule 40 62 30 22 12.25

 Middle temporal gyrus 19 46 74 18 11.05

 Inferior frontal gyrus 44 52 4 22 10.16

 Cerebellum lobule V  12 56 26 12.12

Ventral rostral putamen Superior temporal gyrus 21 58 24 12 17.79

 Medial frontal gyrus (SMA/pre-SMA)  6  -2  0  56  15.22 

 Precentral gyrus  4  44  12  54  12.14 

 Superior frontal gyrus  9  40  40  32  11.84 

 Middle frontal gyrus  9  32  44  26  11.04 

 Parahippocampal gyrus  30  4  48  4  10.81 

 Cuneus  19  16  92  28  14.41 

 Medulla   4  30  36  10.91 
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Cognitive and motor networks in PD OFF and PD ON

PD OFF

PD ON

FIguRe S2 | Cognitive (seed: inferior ventral striatum, red) and motor (seed: dorsal rostral putamen, blue) networks in PD oFF (top) and PD oN (bottom). 
z = −15, −5, 15, 35, 45, 55. FWE-corrected p < 0.05.
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Table S3 | MNI coordinates of the local maxima of brain regions showing functional connectivity with the six striatal seed regions in PD oFF.

Seed Region BA MNI coordiates T-value

   x y z 

Inferior ventral striatum Superior frontal gyrus 10 4 66 10 6.92

 Superior frontal gyrus 11 −6 60 −20 6.84

 Posterior cingulate gyrus 23 0 −50 22 6.54

 Superior temporal gyrus 41 44 −32 8 6.43

 Cerebellum Cr I  24 −84 −26 8.35

Superior ventral striatum Medial frontal gyrus 10 4 68 10 10.08

 Superior frontal gyrus 9 −26 48 28 7.3

 Inferior frontal gyrus 9 56 12 24 6.58

 Middle frontal gyrus 6 −44 6 54 6.54

 Paracentral lobule 5 −8 −44 56 5.96

 Precuneus 7 −8 −66 52 6.86

 Cerebellum lobule VI  42 −70 −18 6.66

Dorsal caudate Inferior temporal gyrus 20 −54 −26 −14 8.39

 Posterior cingulate gyrus 31 −2 −46 26 7.03

 Supramarginal gyrus 40 −50 −54 36 6.76

 Superior frontal gyrus 10 −32 64 −2 6.71

 Superior temporal gyrus 13 52 −40 20 6.69

 Middle frontal gyrus 8 −34 26 46 6.28

 Precuneus 7 −8 −58 44 6.25

Dorsal caudal putamen Medial frontal gyrus (SMA) 6 −2 −8 76 7.59

 Middle frontal gyrus 6 38 2 56 7.45

 Middle frontal gyrus 9 −42 28 34 6.93

 Intraparietal lobule 40 48 −46 26 6.54

 Medulla  8 −26 −34 7.16

Dorsal rostral putamen Posterior cingulate gyrus 30 −2 −48 18 7.22

 Middle frontal gyrus 6 32 0 62 7.14

 Precentral gyrus 4 50 −6 44 6.71

 Precuneus 7 −4 −62 54 6.95

 Lingual gyrus 18 2 −82 −6 6.76

 Intraparietal lobule 40 −56 −46 44 6.62

 Superior frontal gyrus 9 26 50 28 6.62

 Middle frontal gyrus 9 −42 30 36 6.55

 Cuneus 19 −14 −76 30 6.35

 Middle temporal gyrus 39 42 −72 10 6.25

 Cerebellum Cr I  −24 −82 −24 7.68

Ventral rostral putamen Middle frontal gyrus 9 −30 40 36 8.62

 Middle frontal gyrus 10 38 54 0 6.57

 Superior frontal gyrus 10 12 58 22 7.79

 Medial frontal gyrus (SMA) 6 −2 −10 78 7.47

 Lingual gyrus 19 14 −60 2 6.76

 Middle occipital gyrus 19 34 −90 16 6.28

 Pons  6 −18 −24 9.51
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Table S4 | MNI coordinates of the local maxima of brain regions showing functional connectivity with the six striatal seed regions in PD oN.

Seed Region BA MNI coordinates T-value

   x y z 

Inferior ventral striatum Middle temporal gyrus 21 46 −12 −12 10.23

 Postcentral gyrus 7 −4 −60 64 9.89

 Middle frontal gyrus 8 −48 12 42 9.61

 Middle frontal gyrus 6 44 4 40 7.58

 Superior temporal gyrus 39 −46 −60 18 9.32

 Anterior cingulate gyrus 24 6 12 36 8.64

 Inferior frontal gyrus 45 −54 30 4 8.19

 Angular gyrus 39 48 −64 36 7.85

 Inferior parietal lobule 7 30 −72 48 7.7

 Cerebellum lobule III  −12 −40 −22 9.39

 Cerebellum lobule IV  −30 −50 −20 8.86

Superior ventral striatum Fusiform gyrus 20 −62 −18 −22 14.32

 Superior temporal gyrus 22 −62 12 −2 9.98

 Precentral gyrus 6 44 −2 26 8.98

 Supramarginal gyrus 40 −56 −54 36 7.82

Dorsal caudate Middle temporal gyrus 21 −50 −16 −12 10.12

 Supramarginal gyrus 40 −40 −56 36 9.13

 Inferior parietal lobule 40 36 −52 38 9

 Medial frontal gyrus (pre-SMA) 6 0 12 44 9.01

 Middle frontal gyrus 9 40 8 42 8.96

 Middle frontal gyrus 10 26 54 2 7.57

 Posterior cingulate gyrus 31 −10 −50 28 8.69

Dorsal caudal putamen Inferior frontal gyrus 47 58 16 −2 11.06

 Posterior cingulate gyrus 31 10 −40 30 7.91

 Supramarginal gyrus 40 60 −48 22 7.86

Dorsal rostral putamen Posterior cingulate gyrus 31 −12 −46 28 11.27

 Inferior temporal gyrus 20 −60 −20 −26 10.38

 Inferior parietal lobule 40 38 −52 38 9.65

 Supramarginal gyrus 40 −42 −44 36 7.58

 Red nucleus  −10 −18 −2 10.44

 Cerebellum lobule IV  2 −48 −10 7.44

Ventral rostral putamen Superior temporal gyrus 22 52 −14 0 11.37

 Supramarginal gyrus 40 60 −52 22 10.33

 Fusiform gyrus 37 52 −66 −16 10.31

 Precuneus 7 10 −60 44 9.37

 Anterior cingulate gyrus 32 0 46 −4 9.14

 Superior frontal gyrus 8 −14 40 38 8.15

 Middle frontal gyrus 9 −40 8 38 6.99

 Pons  −6 −20 −24 8.77
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Table S5 | MNI coordinates of the local maxima of brain regions showing greater functional connectivity in PD oFF than controls.

Seed Region BA MNI coordinates T-value

   x y z 

Inferior ventral striatum Dorsomedial thalamus  0 −8 12 4.35

Dorsal caudal putamen Inferior temporal gyrus 20 48 −10 −20 4.47

 Inferior temporal gyrus 21 −58 −16 −16 3.73

 Middle temporal gyrus 21 54 −18 −8 3.52

 Anterior cingulate gyrus 24 −12 28 −4 4.02

Dorsal rostral putamen Rectal gyrus 11 12 30 −18 4.42

 Middle temporal gyrus 21 50 −6 −24 3.93

 Inferior temporal gyrus 20 −46 −8 −32 3.81

 Anterior cingulate gyrus 32 −18 34 −8 3.62

 Orbital frontal gyrus 47 −38 26 −22 3.93

 Medial frontal gyrus 10 10 60 8 3.43

Ventral rostral putamen Inferior frontal gyrus 11 −40 28 −18 3.54

288

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
http://www.frontiersin.org/Systems_Neuroscience/


Frontiers in Systems Neuroscience www.frontiersin.org September 2010 | Volume 4 | Article 143 | 

Kwak et al. Striatal connectivity in Parkinson’s disease

Table S6 | MNI coordinates of the local maxima of brain regions showing greater functional connectivity in controls than PD oN.

Seed Region BA MNI coordinates T-value

   x y z 

Inferior ventral striatum Precentral gyrus 4 −34 −20 66 4.13

 Superior frontal gyrus 11 −24 52 −12 3.87

 Superior frontal gyrus 10 −22 66 −8 3.82

 Medial frontal gyrus (SMA) 6 −6 −22 68 3.73

 Lingual gyrus 18 18 −92 −6 3.73

 Cerebellum Cr II  −18 −82 −40 4.63

Superior ventral striatum Postcentral gyrus 3 38 −30 64 5.25

 Precentral gyrus 4 −30 −16 68 4.93

 Superior frontal gyrus 6 −26 2 64 3.54

 Medial frontal gyrus (SMA) 6 −6 −22 72 4.07

 Middle frontal gyrus 6 −32 10 50 3.7

 Middle frontal gyrus 9 42 40 30 4.53

 Middle frontal gyrus 10 −26 66 18 3.91

 Middle frontal gyrus 8 −22 26 44 3.84

 Inferior frontal gyrus 46 48 48 4 4.23

 Superior parietal lobule 7 18 −74 54 3.88

 Cuneus 18 −18 −90 26 3.68

 Lingual gyrus 17 6 −92 −4 3.85

 Globus pallidus  −18 −8 −6 3.78

Dorsal caudate Postcentral gyrus 3 38 −30 70 5.99

 Precentral gyrus 4 −30 −16 70 5.68

 Precentral gyrus 6 32 −10 68 3.99

 Middle frontal gyrus 9 42 42 30 5.17

 Middle frontal gyrus 10 −36 62 18 4.11

 Inferior frontal gyrus 46 48 46 4 4.07

 Inferior frontal gyrus 44 −48 14 32 3.97

 Superior parietal lobule 7 18 −74 54 4.89

 Inferior parietal lobule 40 −50 −40 28 3.77

 Middle temporal gyrus 21 −46 −54 6 3.61

 Cuneus 18 −16 −102 −2 3.59

 Caudate  −18 −18 24 3.86

Dorsal caudal putamen Precentral gyrus 4 −36 −24 64 4.78

 Precentral gyrus 6 22 −16 74 4.23

 Medial frontal gyrus (pre-SMA) 6 −6 14 52 3.97

 Medial frontal gyrus 6 18 −16 50 3.84

 Medial frontal gyrus 32 −10 28 34 4.06

 Middle frontal gyrus 8 −30 34 40 3.96

 Middle frontal gyrus 9 36 12 34 3.46

 Superior frontal gyrus 10 −32 54 26 3.71

 Superior parietal lobule 7 −42 −54 62 4.17

 Lingual gyrus 17 −4 −92 −4 3.67

 Postcentral gyrus 2 −40 −78 −2 3.46

 Putamen  −18 −10 0 3.87

Dorsal rostral putamen Precentral gyrus 4 −58 −20 40 3.57

 Paracentral lobule 5 16 −36 48 3.47

 Postcentral gyrus 2 −68 −24 34 3.76

 Superior frontal gyrus 6 −36 −8 70 7.28

 Superior frontal gyrus 10 −36 56 26 4.68

 Superior frontal gyrus 8 −20 48 50 4.4

 Middle frontal gyrus 8 46 22 46 4.06

 Medial frontal gyrus 32 −10 24 36 3.7

(Continued)
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 Middle frontal gyrus 9 40 48 28 3.73

 Middle frontal gyrus 10 34 58 22 3.56

 Inferior frontal gyrus 44 −44 16 12 4.23

 Superior parietal lobule 7 −18 −82 52 4.41

 Superior temporal gyrus 22 −56 −32 6 4

 Middle temporal gyrus 39 −36 −70 24 3.7

 Middle occipital gyrus 19 −40 −74 8 4.01

 Lingual gyrus 18 −4 −92 −4 3.91

 Precuneus 7 −4 −62 68 3.67

Ventral rostral putamen Precentral gyrus 4 −36 −26 70 4.9

 Precentral gyrus 6 −38 16 8 4.39

 Medial frontal gyrus (pre-SMA) 6 −2 4 56 4.32

 Middle frontal gyrus 9 −40 42 36 4.27

 Inferior frontal gyrus 46 −58 36 8 4.08

 Superior parietal lobule 5 16 −36 52 4.66

 Lingual gyrus 18 18 −92 −6 4.45

 Cuneus 17 −32 −78 10 3.89

 Fusiform gyrus 37 −48 −48 −10 4.06

 Transverse temporal gyrus 41 52 −16 12 3.85

 Cerebellum lobule VIIIA  22 −72 −48 4.42

 Cerebellum Cr II  −8 −78 −42 3.87

Table S6 | Continued

Seed Region BA MNI coordinates T-value

   x y z 
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Table S7 | Brain regions showing greater functional connectivity in PD oFF than PD oN.

Seed Region BA MNI coordinates T-value

   x y z 

Vsi Orbital gyrus 47 4 32 −24 4.81

 Rectal gyrus 11 −2 16 −18 4.75

 Inferior frontal gyrus 47 −10 18 −18 4.41

 Superior frontal gyrus 10 26 66 −8 4.74

 Superior frontal gyrus 11 −20 68 −10 4.62

 Lingual gyrus 18 6 −80 −4 4.05

 Cerebellum Cr II  26 −84 −26 4.99

 Cerebellar lobe VI  −14 −78 −18 4.01

 Putamen  −30 −8 2 3.96

VSs Superior temporal gyrus 38 52 8 −6 4.94

 Inferior frontal gyrus 46 52 44 6 4.36

 Superior frontal gyrus 10 28 60 24 4.33

 Precentral gyrus 6 58 8 36 3.88

 Dorsomedial thalamus  4 −12 8 5.54

DC Middle frontal gyrus 46 48 36 26 4.27

 Middle frontal gyrus 8 58 8 38 4.06

 Dorsomedial thalamus  6 −14 6 4.48

DCP Precentral gyrus 4 32 −26 62 4.32

 Precentral gyrus 6 −44 −16 64 4.52

 Middle frontal gyrus 6 32 0 60 4.54

 Middle frontal gyrus 8 −36 26 44 3.81

 Middle temporal gyrus 21 58 −14 −8 4.34

 Middle occipital gyrus 19 44 −80 14 4.08

 Cuneus 19 −18 −90 32 3.92

 Postcentral gyrus 2 56 −20 44 3.9

DRP Middle temporal gyrus 21 −56 −22 −12 4.52

 Middle frontal gyrus 8 −40 30 46 4.11

 Precentral gyrus 4 58 −18 42 4.07

 Precentral gyrus 6 58 −6 38 3.96

 Dorsomedial thalamus  6 −16 8 4

VRP Inferior parietal lobule 40 56 −26 32 4.43

 Postcentral gyrus 3 −40 −28 60 4.25

 Postcentral gyrus 1 −54 −24 54 4.15

 Precentral gyrus 6 −42 −18 64 3.94

 Cuneus 19 −4 −80 32 3.79

 Precuneus 7 −8 −64 50 3.69

 Cerebellum Cr I  26 −84 −28 4.09
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FIguRe S3 | Connectivity strength difference between PD oFF and PD 
oN in RoIs defined in PD oFF versus controls comparison. Connectivity 
strength between VSi (A), VSs (B), DRP (C), and VRP (D) and each of the 
ROIs are compared across PD OFF and PD ON. VSi, inferior ventral striatum; 
dmThal, dorsomedial thalamus; DCP, dorsal caudal putamen; MTG, middle 
temporal gyrus; ITG_L, inferior temporal gyrus in the less affected side; 
ITG_R, inferior temporal gyrus in the more affected side; ACC, anterior 

cingulated cortex; DRP; dorsal rostral putamen; VMPFC, ventromedial 
prefrontal gyrus; OFG, orbital frontal gyrus; RG, rectal gyrus; VRP, ventral 
rostral putamen; inferior frontal gyrus. Error bars indicate standard error. For 
all comparisons we found significant main effect of medication status 
showing decrease in strength of connectivity in PD ON compared to PD OFF 
with the exception of DRP and VRP which showed marginally significant 
medication main effects.
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in this disease (Mayberg, 2003; Drevets et al., 2008). An imbalanced 
functional integration of these subsystems may lead to a heightened 
response to negative information in ventral regions (bottom–up) 
on the one hand and a failure to regulate this response through 
dorsal regions (top–down) on the other (Phillips et al., 2003). For 
example, engagement of lateral PFC regions has been linked to 
efficient top–down regulation of affective responses (Dolcos et al., 
2006; Pessoa, 2008), a mechanism that has been shown to fail in 
patients suffering depression (Johnstone et al., 2007).

Over the last decade, studying such functional interactions 
between brain regions or systems has become increasingly important 
for understanding the dynamic interactions between neural systems 
in both health and disease (Stephan et al., 2008). In depression, 
several studies have shown abnormal functional connectivity (FC) 
during both cognitive and emotional task paradigms (Urry et al., 
2006; Johnstone et al., 2007; Chen et al., 2008; Matthews et al., 2008), 

IntroductIon
Patients suffering from a major depressive episode typically 
show pervasive depressed mood or anhedonia, accompanied by 
several cognitive and physical symptoms (American Psychiatric 
Association, 1994). The apparent heterogeneity in depressive 
symptom domains (i.e., mood, cognition, motor, and vegetative) 
is unlikely to be explained by the (functional) breakdown of a sin-
gle brain area (Davidson et al., 2002). It has thus been proposed 
that depressive symptoms are associated with dysregulation of a 
brain network encompassing large parts of the prefrontal cortex 
(PFC), limbic areas, and subcortical structures (Mayberg, 1997, 
2003; Drevets et al., 2008).

Based on data from blood flow and glucose metabolism SPECT 
and PET studies, and more recently task-related functional MRI 
(fMRI) studies, current models for depression postulate that ventral 
and dorsal subsystems of this brain network are differentially affected 
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Recently, both increases and decreases in resting-state functional connectivity have been found 
in major depression. However, these studies only assessed functional connectivity within a 
specific network or between a few regions of interest, while comorbidity and use of medication 
was not always controlled for. Therefore, the aim of the current study was to investigate whole-
brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in 
medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data 
of 19 medication-free patients with a recent diagnosis of major depression (within 6 months 
before inclusion) and no comorbidity, and 19 age- and gender-matched controls. Independent 
component analysis was employed on the concatenated data sets of all participants. Thirteen 
functionally relevant networks were identified, describing the entire study sample. Next, individual 
representations of the networks were created using a dual regression method. Statistical 
inference was subsequently done on these spatial maps using voxel-wise permutation tests. 
Abnormal functional connectivity was found within three resting-state networks in depression: 
(1) decreased bilateral amygdala and left anterior insula connectivity in an affective network, 
(2) reduced connectivity of the left frontal pole in a network associated with attention and 
working memory, and (3) decreased bilateral lingual gyrus connectivity within ventromedial 
visual regions. None of these effects were associated with symptom severity or gray matter 
density. We found abnormal resting-state functional connectivity not previously associated with 
major depression, which might relate to abnormal affect regulation and mild cognitive deficits, 
both associated with the symptomatology of the disorder.
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above, we expected that altered connectivity would be observed in 
those RSNs that include areas known to be associated with affective 
(including ventral prefrontal cortex and limbic areas) and more 
cognitive (including lateral prefrontal and parietal areas) process-
ing, as well as RSNs that show cortico–striatal connectivity.

MaterIals and Methods
PartIcIPants
Participants were selected from the MRI study of the large-scale 
longitudinal multi-center Netherlands Study on Depression and 
Anxiety (NESDA)1 (Penninx et al., 2008), which is designed to 
examine the long-term course and consequences of depression 
and anxiety disorders. Participants were recruited through general 
practitioners, primary care and specialized mental care institutions. 
For the current study, all participants were required to be fluent in 
Dutch and right-handed. Patients were included when they met the 
following criteria: (1) a recent diagnosis (i.e., within 6 months before 
inclusion) of MDD as indexed by the fourth edition of the diagnostic 
and statistical manual of mental disorders (DSM-IV) (American 
Psychiatric Association, 1994) based on the Composite Interview 
Diagnostic Instrument (CIDI; lifetime version 2.1), administered by 
a trained clinical interviewer, (2) no current comorbidity with other 
DSM-IV axis-1 disorders, and (3) no use of psychotropic medica-
tion. Exclusion criterion for controls was a history of any DSM-IV 
axis-1 disorder based on the CIDI. Axis-2 disorders were not assessed 
in this study. Exclusion criteria for all participants were: (1) daily 
use of medication or other substances known to affect the central 
nervous system; (2) the presence or history of major internal or 
neurological disorders; (3) history of dependency on or recent abuse 
of alcohol and/or drugs (i.e., in the past year) as diagnosed with the 
CIDI; (4) hypertension; (5) general MRI-contraindications. None of 
the included patients underwent treatment for depression.

For the present study, imaging data were available from 23 MDD 
patients who fulfilled the aforementioned criteria. Two patients were 
removed from the sample due to excessive head motion during 
scan acquisition (>3 mm in any of the acquired volumes). Two 
other patients were removed because no proper age-matched healthy 
control (HC) was available. For each of the remaining 19 MDD 
patients, we included in a pair-wise fashion an age- and sex-matched 
healthy control subject, although education was higher in controls 
(see Table 1). The mean Montgomery–Asberg depression rating 
scale (MADRS) (Montgomery and Asberg, 1979) symptom severity 
score for the MDD group was 14.21, SD 9.62, with five participants 
considered to be in remission (MADRS score <10) at the time of the 
imaging study. Written informed consent was obtained from all par-
ticipants and none received compensation except for reimbursement 
of travel expenses. The study was approved by the Central Ethics 
Committees of the three participating medical centers (i.e., Leiden 
University Medical Center [LUMC], Amsterdam Medical Center 
[AMC], and University Medical Center Groningen [UMCG]).

data acquIsItIon
Participants were scanned at one of the three participating cent-
ers within 8 weeks after completion of NESDA baseline interview 
(Penninx et al., 2008). RS-fMRI data were acquired at the end of 

which have already provided valuable insights on how dysfunctional 
interactions between brain regions may relate to abnormal behavio-
ral response patterns in depressed patients. However, it might also 
be beneficial to explore whether these connections are compromised 
in the absence of goal-directed (i.e., task-induced) behavior. For 
example, resting-state (RS; i.e., without external task demands) FC 
may be able to predict how the brain responds to an externally cued 
task (Mennes et al., 2010). Studies employing RS-FC have shown 
to be successful in mapping large-scale connectivity patterns in the 
brain (Biswal et al., 1995; Lowe et al., 1998; Fox and Raichle, 2007). 
In addition, these so-called resting-state networks (RSNs) are found 
consistently across participants and over time (Damoiseaux et al., 
2006; Shehzad et al., 2009) and show a remarkable overlap with 
patterns of task-induced activity (Smith et al., 2009).

RS-fMRI studies in major depression have recently reported on 
altered FC in several areas within the proposed network model of 
depression (Mayberg, 1997; Drevets et al., 2008). Decreased connec-
tivity of the dorsal anterior cingulate cortex (ACC) with the medial 
thalamus and left pallidostriatum was found in patients suffering 
from depression, and a trend for decreased connectivity between 
the ACC and the amygdala (Anand et al., 2005a,b). In another study, 
depressive patients were found to show increased connectivity of the 
subgenual ACC (cg25) and the thalamus within the default mode 
network (DMN) (Greicius et al., 2007), a canonical RSN (Raichle 
et al., 2001; Greicius et al., 2003). This finding was partially confirmed 
by a recent study showing unique cg25, but not thalamic, connectivity 
within the DMN in the depression group (Zhou et al., 2009). It must 
be noted, however, that for this effect only qualitative comparisons 
were carried out between the groups. Additionally, these researchers 
found increased intra-network connectivity in depression between 
regions of the DMN, and within the task positive network (TPN), 
which is associated with attention and working memory (Fox et al., 
2005), together with increased anticorrelations between regions of 
the two networks (Zhou et al., 2009). A last study did not show any 
FC differences between major depressive disorder (MDD) patients 
and controls using conventional statistics (Craddock et al., 2009). 
However, the authors were able to discriminate between patients 
and controls using support vector classification. In addition to the 
altered FC found in several task-related fMRI studies, these RS find-
ings further support the idea of dysfunctional interactions as a core 
feature of depressive symptomatology.

To date, RS-fMRI studies focusing on depression examined connec-
tivity in a limited number of predefined regions or networks of interest, 
thereby not fully exploring the data as acquired with RS-fMRI. That 
is, recent studies have identified several other networks of simultane-
ously oscillating brain regions (Beckmann et al., 2005; Damoiseaux 
et al., 2006), which may represent multiple functional domains. 
Furthermore, in some of the studies in MDD, comorbidity and use 
of medication could not be ruled out as potential confounders.

The aim of the present study was to investigate FC patterns 
using RS-fMRI in medication-free patients with MDD without 
comorbidity, and carefully matched healthy controls. Rather than 
focusing on predefined regions or networks of interest, we adopted 
an inclusive (exploratory) approach by investigating whole-brain 
RS-fMRI FC at the network level, ensuring the optimal use of the 
wealth of information present in the data. Based on the current 
neurobiological models for depression and the RS studies described 1www.nesda.nl
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and Smith, 2001; Jenkinson et al., 2002). Normalized 4D data sets 
were subsequently resampled to 4-mm isotropic voxels to reduce 
computational burden in the following analysis steps.

extractIng restIng-state networks
Standard group independent component analysis (ICA) was car-
ried out using probabilistic ICA (PICA) (Beckmann and Smith, 
2004) as implemented in FSL’s Multivariate Exploratory Linear 
Decomposition into Independent Components (MELODIC) 
Version 3.09. Default group PICA processing steps were applied 
to the individual preprocessed and normalized data sets: mask-
ing out non-brain voxels, voxel-wise de-meaning of the data, and 
normalization of the voxel-wise variance based on all data sets. 
Subsequently, data sets from both MDD patients and HCs were 
concatenated in time to create a single 4D data set, which was then 
projected into a 20-dimensional subspace using principal com-
ponent analysis. Next, the data set was decomposed into 20 sets 
of independent vectors which describe signal variation across the 
temporal (time-courses) and spatial (maps) domain by optimizing 
for non-Gaussian spatial source distributions using the FastICA 
algorithm (Hyvarinen, 1999). At this model order selection, it 
has been shown that most of the frequently observed large-scale 
RSNs can be discerned in the data when using this method (Abou-
Elseoud et al., 2010). The resulting estimated component maps 
were divided by the standard deviation of the residual noise and 
thresholded at a posterior probability threshold of p > 0.5 (i.e., an 
equal loss is placed on false positives and false negatives) by fitting 
a Gaussian/Gamma mixture model to the histogram of intensity 
values (Beckmann and Smith, 2004).

statIstIcal analyses
Subject specific statistical maps were created to test for differences 
between the MDD and HC groups in the identified components. 
This was done adopting a dual regression procedure (as previ-
ously described in: Filippini et al., 2009). In short, multiple lin-
ear regression of the z-thresholded Group PICA maps against the 
preprocessed individual 4D resampled data sets yielded a subject 
specific time course for each component separately. Next, multi-
ple linear regression of these time courses was carried out against 
the pre-processed individual 4D data sets in the standard space 
resolution (i.e., 2 mm), thereby providing better spatial specifi-
city. This resulted in subject specific z-maps for each of the 20 
components.

Prior to statistical inference 13 out of the 20 components were 
identified as anatomically and functionally relevant RSNs upon vis-
ual inspection, the seven others reflecting distinct artifacts resulting 
from head motion, fluctuations in cerebrospinal fluid, and physi-
ological or scanner noise. Criteria for inclusion were: signal within 
the low frequency range of 0.1–0.01 Hz (Lowe et al., 1998; Cordes 
et al., 2001), connectivity patterns were mainly located in gray mat-
ter, and presence of coherent clusters of voxels (De Martino et al., 
2007). Inference was carried out only on the subject specific z-maps 
of the 13 relevant RSNs. Statistical difference was assessed non-par-
ametrically using FSL’s Randomize tool, Version 2.1, incorporating 
threshold-free cluster enhancement (TFCE) (Smith and Nichols, 
2009). Besides modeling regressors for each of the two groups, addi-
tional nuisance regressors describing scanner location and age were 

the fixed imaging protocol: after completion of three task-related 
functional MRI runs (to be reported elsewhere) and the acqui-
sition of an anatomical scan (scan sequence: Tower of London, 
word encoding, T

1
-weighted scan, word recognition, perception 

of facial expression). In the darkened MR room participants were 
instructed to lie still with their eyes closed and not to fall asleep. 
Compliance to these instructions was verified as part of the exit 
interview.

Imaging data were acquired on a Philips 3.0-T Achieva MRI 
scanner using a six- (Amsterdam) or eight-channel (Groningen 
and Leiden) SENSE head coil (Philips Medical Systems, Best, The 
Netherlands). RS-fMRI data were acquired using T

2
*-weighted 

 gradient-echo echo-planar imaging with the following scan param-
eters in Amsterdam and Leiden: 200 whole-brain volumes; repeti-
tion time (TR) = 2300 ms; echo time (TE) = 30 ms; flip angle = 80º; 
35 axial slices; no slice gap; FOV = 220 × 220 mm; in plane voxel 
resolution = 2.3 mm × 2.3 mm; slice thickness = 3 mm; same 
in Groningen, except: TE = 28 ms; 39 axial slices; in plane voxel 
resolution = 3.45 mm × 3.45 mm. For registration purposes and 
analysis of gray matter density, a high resolution T

1
-weighted image 

was acquired with the following scan parameters: repetition time 
(TR) = 9 ms; echo time (TE) = 3.5 ms; flip angle = 8º; 170 sagittal 
slices; no slice gap; FOV = 256 × 256 mm; in plane voxel resolu-
tion = 1 mm × 1 mm; slice thickness = 1 mm.

data PreProcessIng
The preprocessing of RS-fMRI images was carried out using FEAT 
(FMRI Expert Analysis Tool) Version 5.90, part of FSL (FMRIB’s 
Software Library2) (Smith et al., 2004). The following processing 
steps were applied: motion correction (Jenkinson et al., 2002), 
removal of non-brain tissue (Smith, 2002), spatial smoothing using 
a Gaussian kernel of 4-mm full width at half maximum, grand-mean 
intensity normalization of the entire 4D dataset by a single multi-
plicative factor, high-pass temporal filtering (Gaussian-weighted 
least-squares straight line fitting, with sigma = 50 s; 0.01 Hz cut-off) 
and registration to the high resolution T

1
 and MNI-152 standard 

space (T
1
 standard brain averaged over 152 subjects; Montreal 

Neurological Institute, Montreal, QC, Canada) images (Jenkinson 

Table 1 | Demographic and clinical characteristics for the study sample.

 Healthy controls Major depressive 

 (n = 19) disorder (n = 19)

Age 36.11 ± 10.56 36.21 ± 9.7 

 (21–53) years  (20–57) years

Gender 8 male/11 8 male/11 

 female female

Education * 14 ± 2.67 12.21 ± 2.35 

 (9–18) years (9–18) years

MADRS ** 0.63 ± 1.07 14.21 ± 9.62 

 (0–3) (0–33)

Note: MADRS, Montgomery–Asberg depression rating scale. Except for sex, 
all values are mean ± SD (range). *p < 0.05, **p < 0.001, using independent 
sample t-tests.

2www.fmrib.ox.ac.uk/fsl
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The presence of all 13 networks found with PICA was confirmed 
in both the HC and MDD group by testing the main effects of group 
on the subject specific z-maps of these networks (all p ≤ 0.05, TFCE 
and FWE-corrected). Between-group differences in the voxel-wise 
spatial distribution of the FC maps were subsequently revealed in 
three networks (local FDR-corrected at q ≤ 0.01) (see Figure 2 and 
Tables 2–4). Within these networks nearly all differences indicated 
decreased FC in the MDD group. The first network showed an 
assembly of functionally connected regions in the auditory cortex 
(Heschl’s gyrus) bilaterally, extending into the pre- and postcentral 
gyri, as well as more ventral areas known to be involved in affective 
processing, including the insula and temporal poles bilaterally, the 
medial PFC (BA 10) and bilateral amygdala. Whereas the amygdala 
and left insula showed connectivity with the rest of the network in 
HCs, these regions showed decreased FC in the depressed group. 
In addition, increased FC in the MDD group was found in the 
right inferior frontal gyrus (IFG) within this RSN (Figures 2A,B, 
RSN 12). The second network mainly showed FC within the lateral 
parietal cortex, temporal–occipital junction, and precentral gyrus, 
which are areas involved in attention and working memory. In 
addition, the frontal poles were found to be negatively associated 
with the time course of this network. Reduced FC of the left frontal 
pole was demonstrated in the MDD group (Figures 2A,B, RSN 11). 
The third network showed functionally integrated areas within 
the medial occipital cortex, mostly covering Brodmann area 19, 
involved in visual processing. Although both controls and depressed 
participants demonstrated this connectivity pattern, a consistent 
decrease in functional integration of the lingual gyrus was found 
bilaterally in the MDD group in this RSN (Figures 2A,B, RSN 3).

The wide range in MADRS scores in the patient group allowed 
us to examine the relation between current symptom severity and 
the strength of the functional connections with the areas showing 
abnormal connectivity in this study. Within the depression group, 
Pearson product–moment correlation coefficients were calculated 
between the MADRS scores and the individual z-scores obtained 
from the affected areas within the corresponding individual com-
ponent maps. However, no association was found between strength 
of the FC and symptom severity in any of the affected regions.

gray Matter results
No differences in mean gray matter were observed between con-
trols and depressed participants in either of the three RSNs as a 
whole, or in the areas showing between-group differences within 
these RSNs (all t

36
 < 1, all p > 0.3). In addition, adding GM density 

values as covariates in the statistical model did not change the 
functional connectivity results as described in the previous  section. 
This indicates that the altered FC within the three networks is 
unlikely to be related to macroscopic (i.e., MRI observable) gray 
matter abnormalities.

dIscussIon
In the present study we set out to investigate differences in 
whole brain FC between medication-free MDD patients 
without comorbidity, and a group of age- and sex-matched 
healthy controls using RS-fMRI. It was expected that altered 
 connectivity would be observed in those RSNs which contain 
regions  previously described to show altered RS-FC in depres-

added to the model. Separate null distributions of t-values were 
derived for the contrasts reflecting the between and within group 
effects by performing 5000 random permutations and testing the 
difference between groups or against zero for each iteration (Nichols 
and Holmes, 2002). For each RSN, the resulting statistical maps were 
thresholded at p ≤ 0.05 (TFCE-corrected for  family-wise errors) for 
the group main effects. Between-group effects were thresholded con-
trolling the local false discovery rate (FDR) (Efron, 2004; Filippini 
et al., 2009) at q ≤ 0.01 and subsequently spatially masked with a 
binary representation of the conjunction of the group main effects 
images. Note that we applied a more stringent FDR threshold than 
the more generally accepted q ≤ 0.05, together with masking for the 
group main effects, to decrease susceptibility to type 1 errors when 
testing multiple RSNs.

gray Matter MorPhology
Major depressive disorder-related gray matter (GM) abnormalities 
have been found previously in several regions of the brain, although 
not always consistently (Sheline, 2003; Lorenzetti et al., 2009). To 
test whether altered FC in the present study might be explained by 
MRI-detectable loss of gray matter, a VBM style analysis was run 
on the acquired high resolution T

1
-weighted data sets (Ashburner 

and Friston, 2000; Good et al., 2001). Using FSL’s VBM toolbox, all 
structural images were first brain extracted, then tissue-type seg-
mented, normalized to MNI-152 standard space and non-linearly 
registered to each other (e.g., Douaud et al., 2007). Next, standard 
space binary masks were created from the voxels that covered each 
RSN (conjunction of the FWE-corrected HC > 0 and MDD > 0 
contrast maps) as well as from voxels showing differences between 
the two groups within the separate networks (local FDR controlled 
HC > MDD and MDD > HC contrast maps). The binary masks 
were then used to extract mean gray matter intensity scores within 
these masks for each of the participants. To rule out the influence 
of any subtle GM density variations, we included the GM values, 
from both the difference masks and the RSN as a whole, as regres-
sors in the statistical model (see, e.g., Damoiseaux et al., 2008). 
Additionally, between-group t-tests were carried out on the par-
ticipants’ mean intensity scores derived from each mask using SPSS 
Version 16.0 (SPSS Inc., Chicago, IL, USA) to test whether the two 
groups differed in GM density on average. Note that whole brain 
VBM results of a large sample (including MDD) from the NESDA 
study will be reported elsewhere.

results
restIng-state functIonal connectIvIty
Thirteen functionally relevant RSNs were found using the group 
PICA analysis (Figure 1). Most of these networks have been 
described in previous studies using similar methodology and were 
shown to be stable across participants and over time (Beckmann 
et al., 2005; Damoiseaux et al., 2006). The assemblies of brain areas 
shown in these networks covered the primary [1], lateral [2] and 
medial visual cortex [3], sensory-motor cortex [4], ventral stream 
[8] auditory cortex [12], the hippocampus–amygdala complex [9], 
precuneus [7] together with the DMN [13], a network associated 
with salience processing (Seeley et al., 2007) [10], and networks 
encompassing areas associated with higher order cognition such 
as attention [11] and working memory [5, 6].
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Figure 1 | group iCA functionally relevant resting-state networks. Depicted 
here are the 13 functionally relevant RSNs resulting from the group PICA step 
carried out on the concatenated data sets from both patients and controls. Most 
networks have previously been described (for example in: Beckmann et al., 2005; 

Damoiseaux et al., 2006) and show assemblies of regions associated with 
sensory processing, affective processing, and higher order cognitive processes. 
Images are z-statistics, ranging from 3 to 8, overlaid on the MNI-152 standard 
brain. The left hemisphere of the brain corresponds to the right side in this image.

sion (Anand et al., 2005a,b; Greicius et al., 2007; Zhou et al., 
2009), as well as in other regions known to be involved in affec-
tive pathology (Phillips et al., 2003; Urry et al., 2006; Johnstone 
et al., 2007; Chen et al., 2008; Matthews et al., 2008). In this 
study we mainly found evidence for MDD-related decreased FC 
within three RSNs. These alterations have not been associated 
with major depression before.

First, altered FC was found in a network with regions known to 
be involved in emotional processing and affect regulation, such as 
the anterior insula, dorsal anterior cingulate cortex (dACC), ven-
tromedial prefrontal cortex (vmPFC), temporal poles and  amygdala 
(Pessoa, 2008). MDD patients showed strongly reduced connectivity 
with the amygdala within this RSN. Coupling between the vmPFC 
and amygdala has previously been found during downregulation of 
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Figure 2 | group main effects and between-group effects. Numbering 
corresponds to the networks depicted in Figure 1. (A) Depicted here are the 
group main and between-group effects for three RSNs. Group main effects 
are corrected for family-wise errors (p < 0.05) and between-group effects are 
corrected according to a local false discovery rate of 1%. RSN 12 shows an 
assembly of ventral affective regions, such as temporal poles, insula, medial 
prefrontal cortex, and amygdala, the latter two regions demonstrating 
decreased connectivity within the MDD group. RSN 11 shows brain regions 
linked to attention, of which the left frontal pole shows decreased 

connectivity in the MDD group. RSN 3 shows MDD-related decreased 
connectivity of the bilateral lingual gyrus with other medial visual areas. 
Images are z-statistics, ranging from 2 to 10, overlaid on the MNI-152 
standard brain. The left hemisphere of the brain corresponds to the right side 
in this image. HC, healthy controls; MDD, major depressive disorder. (B) 
Distribution of the mean individual z-scores within the bilateral amygdala (12), 
left frontal pole (11), and bilateral lingual gyrus (3). Depicted in red are the 
controls, in black the MDD group, both sorted from smallest to 
highest z-value.

negative affect in healthy controls (Urry et al., 2006), as was reflected 
by decreasing amygdala activation with increasing vmPFC activa-
tion. In a similar study in depression, MDD patients showed altered 
coupling between these regions, potentially reflecting impaired 
top–down control over amygdala responses and inability to down-
regulate negative affect (Johnstone et al., 2007). Involvement of 
the anterior insula along with dACC and somatosensory regions 
in this network may furthermore underscore its potential role 
in interoceptive awareness and emotional experience (Critchley 
et al., 2004). Besides regions showing decreased FC in this RSN, 
the depression group also demonstrated increased connectivity of 
the rIFG. This region has been implicated in coping with exertion 
of both cognitive (Aron et al., 2004) and emotional (Dolcos et al., 
2006) control. Recently, IFG function was found compromised in 
MDD when executive control had to be exerted in minimizing 
emotional distraction (Wang et al., 2008). Abnormal recruitment of 
the rIFG within the current RSN may indicate a higher propensity 
towards inhibition of emotional responses in depression, although 
the neurocircuitry to successfully do this is compromised. Taken 

together, the observed decoupling of the amygdala, decreased left 
insula connectivity and increased rIFG connectivity within this 
network may be related to the impaired regulation and integration 
of affective responses observed in MDD patients.

Second, we found reduced involvement of the left lateral frontal 
pole in a network often referred to as the TPN (Fox et al., 2005), 
its constituent regions commonly found activated during tasks 
that require cognitive effort or attention (Corbetta and Shulman, 
2002). The lateral frontal poles are thought to play a key role in 
executive function and stimulus oriented behavior (Burgess et al., 
2007a,b), which would complement the proposed function of this 
RSN. Reduced FC of the left lateral frontal pole, as was found in 
depression within this network, may thus reflect a suboptimally 
integrated attention system or reduced externally oriented atten-
tion in MDD. This abnormal connectivity pattern may relate to the 
cognitive deficiencies often observed in depressed patients (Rogers 
et al., 2004; Ebmeier et al., 2006), yet this relation should be assessed 
in task-related imaging studies designed to address this question 
more directly.
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Table 2 | rSN 12 characteristics and statistics.

region Brodmann Center coordinates PFWe Plocal FDr Plocal FDr 

 area (MNi space; LPi)  q < 0.01 q < 0.01

  x y z HC MDD HC > MDD MDD > HC

PoSiTive

Left cerebellum  −16 −68 −22 0.002 <0.001 ns ns

Right cerebellum  18 −68 −22 <0.001 <0.001 ns ns

Left superior temporal gyrus 38 −44 0 −14 <0.001 <0.001 ns ns

 22,41,42 −46 −30 6 <0.001 <0.001 ns ns

Right superior temporal gyrus 38 56 −10 −8 <0.001 0.002 <0.001 ns

 22,41,42 58 −32 6 <0.001 <0.001 ns ns

Left amygdala  −24 −6 −14 0.007 ns <0.001 ns

Right amygdala  24 −4 −16 0.02 ns <0.001 ns

Left/right medial prefrontal cortex 10 0 48 −14 0.005 <0.001 ns ns

Left insula  −40 −6 −2 <0.001 <0.001 ns ns

  −36 4 −18 <0.001 ns <0.001 ns

Right insula  38 −6 6 <0.001 <0.001 ns ns

Right thalamus  12 −22 0 ns 0.008 ns ns

Left/right anterior cingulate gyrus 24 0 2 38 <0.001 <0.001 ns ns

Left pre- and postcentral gyrus 1,2,3,4 −44 −20 44 <0.001 <0.001 ns ns

Right pre- and postcentral gyrus 1,2,3,4 48 −16 44 <0.001 <0.001 ns ns

Left/right postcentral gyrus 5 0 −26 50 0.002 <0.001 ns ns

Right inferior frontal gyrus 45 56 24 16 ns <0.001 ns <0.001

NegATive

Left thalamus  −12 −6 12 ns 0.039 ns ns

Left middle frontal gyrus 46 −28 32 36 0.01 ns ns ns

Left precentral gyrus 6 −28 6 48 ns 0.026 ns ns

Note: Group main effects are FWE-corrected for multiple comparisons, between-group contrasts are corrected for multiple comparisons using a local false discovery 
rate (FDR) of 1%. HC, healthy controls; MDD, major depressive disorder; ns, not significant.

Finally, we demonstrated decreased FC of the bilateral lingual 
gyrus in MDD in a network including ventromedial occipitotempo-
ral areas. Although both groups showed strong connectivity with the 
bilateral lingual gyrus within this network, MDD patients revealed 
a consistent decrease in connectivity strength. Abnormalities in 
the visual stream are not commonly reported in MDD, and the 
interpretation of this effect in the depressed patients in the current 
study must therefore remain speculative.

In the present study we did not find abnormalities in regions 
 previously reported to show altered RS FC in MDD. For example, 
increased involvement of the subgenual ACC and thalamus in the 
DMN has been found in MDD (Greicius et al., 2007; Zhou et al., 
2009), but was not observed in the current study. Previous work fur-
thermore reported increased connectivity of multiple brain regions 
within the TPN (Zhou et al., 2009). In the present study, in contrast, 
we showed MDD-related reduced connectivity of the frontal poles, 
which is at variance with previously found increases in connectivity 
in this network. In addition, support for reduced coupling between 
the dorsal ACC and seeds from the  pallidostriatum and thalamus 
in MDD was not found, as has been described in previous studies 
(Anand et al., 2005a,b).

The discrepancy in results between these studies and ours could 
be ascribed to differences in patient samples and analysis methods. 
In contrast to other studies, we report on a sample of medication-

free MDD patients without comorbidity and with carefully age- and 
gender-matched controls. Secondly, for the current study we employed 
ICA analysis at the group level to obtain whole brain patterns of FC. 
It is conceivable that this method yields different results compared to 
approaches using correlations with, or between a priori defined regions 
of interest, or even when using ICA on individual data sets, although 
little is at present known about cross-validity between the methods.

A limitation of the present study was that our patient sample 
was mildly depressed on average. In addition, some patients already 
showed a clinically significant decrease in symptom severity because 
of the delay between the diagnostic assessment and the time of 
scanning. While this may have decreased the overall sensitivity 
of the study, the method applied was still successful in detecting 
brain functional correlates of depression, even in a mildly affected 
patient sample. Moreover, the effects found here were shown not 
to be associated with the current state of symptom severity, indi-
cating that the observed alterations in FC may not be specific to 
the active state of the disorder and may not cease to exist during 
the remitted state.

Another limitation of the current study was the possible influ-
ence of between-group differences in heart rate variability and 
breathing on the results. The sampling rate used in this study 
(2.2 seconds per volume) was too low to avoid aliasing of these 
physiological signals in the data acquired. Applying a high-pass 
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Table 3 | rSN 11 characteristics and statistics.

region Brodmann Center coordinates PFWe Plocal FDr Plocal FDr 

 area (MNi space; LPi)  q < 0.01 q < 0.01

  x y z HC MDD HC > MDD MDD > HC

PoSiTive

Left inferior temporal gyrus 37 −48 −62 −12 <0.001 <0.001 ns ns

Right inferior temporal gyrus 37 54 −60 −8 <0.001 <0.001 ns ns

Left lateral occipital cortex 19 −40 −80 18 <0.001 <0.001 ns ns

Right lateral occipital cortex 19 44 −72 14 <0.001 <0.001 ns ns

Left supramarginal gyrus 40 −56 −28 24 <0.001 <0.001 ns ns

 40 −46 −38 40 <0.001 <0.001 ns ns

Right supramarginal gyrus 40 58 −40 24 <0.001 <0.001 ns ns

 40 40 −38 40 <0.001 <0.001 ns ns

Left posterior cingulate cortex 31 −10 −38 40 <0.001 <0.001 ns ns

Right posterior cingulate cortex 31 12 −38 42 <0.001 <0.001 ns ns

Left middle frontal gyrus 46 −46 36 12 0.025 ns ns ns

Right middle frontal gyrus 46 50 40 8 0.028 ns ns ns

Right precentral gyrus 6 48 8 26 0.035 ns ns ns

Left/right anterior cingulate gyrus 24 2 2 32 0.037 ns ns ns
NegATive

Left hippocampus  −28 −24 −16 0.002 ns ns ns

Left middle temporal gyrus 21 −58 −30 −10 0.002 0.002 ns ns

Right middle temporal gyrus 21 58 −20 −10 0.003 ns ns ns

Left frontal pole 10 −24 56 −4 <0.001 ns ns <0.001

Right frontal pole 10 32 56 −2 <0.001 <0.001 ns ns

Left paracingulate gyrus 32 −8 32 36 0.003 ns ns ns

Right paracingulate gyrus 32 4 32 38 0.003 0.003 ns ns

Left middle frontal gyrus 8 −36 16 38 ns <0.001 ns ns

Left/right cuneus 19 2 −78 36 <0.001 <0.001 ns ns

Note: Group main effects are FWE-corrected for multiple comparisons, between-group contrasts are corrected for multiple comparisons using a local false discovery 
rate (FDR) of 1%. HC, healthy controls; MDD, major depressive disorder; ns, not significant.

Table 4 | rSN 3 characteristics and statistics.

region Brodmann Center coordinates PFWe Plocal FDr P local FDr 

 area (MNi space; LPi)  q < 0.01 q < 0.01

  x y z HC MDD HC > MDD MDD > HC

PoSiTive

Left lingual gyrus 19 −10 −68 −2 <0.001 <0.001 <0.001 ns

Right lingual gyrus 19 16 −68 −2 <0.001 <0.001 ns ns

  19 16 −50 −2 <0.001 <0.001 <0.001 ns

Left lateral occipital cortex 19 −38 −76 22 <0.001 <0.001 ns ns

Right lateral occipital cortex 19 50 −72 16 0.013 <0.001 ns ns

Left cuneus 19 −14 −76 22 <0.001 <0.001 ns ns

Right cuneus 19 18 −76 22 <0.001 <0.001 ns ns

Right precentral gyrus 6 40 8 28 ns 0.03 ns ns

Left caudate nucleus  −6 8 4 ns 0.011 ns ns

Right caudate nucleus  8 8 4 ns 0.016 ns ns

Note: Group main effects are FWE-corrected for multiple comparisons, between-group contrasts are corrected for multiple comparisons using a local false discovery 
rate (FDR) of 1%. HC, healthy controls; MDD, major depressive disorder; ns, not significant.

temporal filter will therefore not remove all variance caused by 
these signals. Since physiological activity was not monitored in 
the current study, it remains unclear if any difference between 

the two groups has influenced the results. However, it has been 
shown that ICA is capable of detecting signal sources associ-
ated with confounding physiological signals and that it can 
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In conclusion, we showed that (a history of) major depression 
is associated with altered FC within multiple RSNs, which could 
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successfully split these from the signals of interest (Beckmann 
et al., 2005). We therefore think that it is unlikely that any of 
the  differences found in this study were introduced by these 
physiological signals.

Because MDD-related gray matter (GM) abnormalities have 
been reported elsewhere (Sheline, 2003; Lorenzetti et al., 2009), we 
investigated whether our MDD sample showed regions of altered 
GM density, potentially biasing FC within the RSNs. However, no 
differences were observed in average GM density between con-
trols and patients in either of the affected RSNs as a whole, nor 
in the regions showing altered FC within these RSNs. In addition, 
GM density variance did not contribute to the altered FC patterns 
observed. Therefore, it is unlikely that the differences in FC were 
related to global or focal changes in GM density within the current 
study sample.

Our MDD group furthermore consisted of both first episode 
and recurrent episode MDD patients. Recurrency of depressive 
episodes can be considered an aggravation of MDD, which might 
cause – or conversely be caused by – an exacerbation of abnor-
mal FC patterns. However, the small size of both subgroups, 
as well as the cross-sectional nature of the current study, pre-
vented us to address this question and compare the two groups 
in a meaningful way. Nevertheless, follow-up data are currently 
being collected as part of the NESDA study. Analysis of these 
data should allow us to shed more light on this matter and to 
test whether the RS-FC at baseline may have a predictive value 
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Ishai et al., 2005; Benuzzi et al., 2007; Fairhall and Ishai, 2007; Ishai, 
2008, 2010). In a recent fMRI investigation of brain response to 
recognition of angry, fearful, disgusted, happy, and neutral faces, 
we showed that these integrated and distributed systems for face 
perception are differentially recruited in social phobic patients as 
compared to healthy controls (Gentili et al., 2008). Specifically, dif-
ferences in task-related activations between social phobic patients 
and healthy controls were not limited merely to brain areas related 
to the processing of emotional expressions and personality traits 
(e.g., amygdala), but rather extended also to cortical areas that 
are involved in attention and processing of other facial features, 
including the left fusiform, left dorsolateral prefrontal, and bilateral 
intraparietal cortical areas (Gentili et al., 2008).

Furthermore, brain regions of the so-called default mode 
network (DMN), that is, those cortical areas that show higher 
activity while subjects are in a passive resting condition as com-
pared to when they are engaged in an active task (Gusnard et al., 
2001; Raichle et al., 2001; Greicius et al., 2003), and specifically 
the precuneus/posterior cingulate region, showed a differen-
tial activity between social phobic patients and healthy con-
trols. This differential recruitment of the distributed system for 

IntroductIon
According to the Diagnostic and Statistical Manual of Mental 
Disorders IV-TR (APA, 2000), Social Phobia is defined as “the per-
sistent fear of one or more situations in which the person is exposed to 
possible scrutiny by others”. Among others, human faces may rep-
resent “potentially threatening” social stimuli (Stein et al., 2002). 
Distinctive behavioral and brain functional responses to face per-
ception and recognition have been reported in various anxiety dis-
orders (Rauch et al., 2000; Stein et al., 2002; Straube et al., 2004). 
In particular, abnormal neural responses to face perception have 
been described in social phobic patients as compared to healthy 
controls, mainly in the amygdala (Birbaumer et al., 1998; Stein et al., 
2002; Killgore and Yurgelun-Todd, 2005; Phan et al., 2006), in the 
“extended amygdala” including uncus and parahippocampus (Stein 
et al., 2002), in the anterior cingulate cortex (Amir et al., 2005), and 
in the superior temporal sulcus (STS) (Straube et al., 2004).

However, face perception represents a complex cognitive ability 
that involves multiple operations, including for instance recogni-
tion of identity, processing of facial expression and eye gaze, and it 
is subserved by a distributed network of brain areas within the core 
and the extended systems for face recognition (Haxby et al., 2000; 
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face  perception in social phobic patients may be coupled to an 
 alteration of the task-related activation/deactivation trade-off 
(Gentili et al., 2009).

Functional connectivity, as measured by fMRI (fcMRI), reflects 
the temporal correlation between neurophysiological events that 
may occur in regions spatially distant and even not anatomically 
connected (Friston, 1994; Biswal et al., 1995). Thus, functional con-
nectivity represents a powerful tool to understand the functional 
architecture of the brain and to examine how components of large-
scale distributed neural systems are coupled together in performing 
a specific function (Rogers et al., 2007; Stephan et al., 2008; Esposito 
et al., 2009). In other words, by using functional connectivity one 
can measure how distinct brain areas communicate among each 
other while subjects perform a given cognitive task (Horwitz et al., 
2000, 2005; Horwitz, 2003). In patients with a variety of psychi-
atric disorders, functional correlation analysis has shown a mis-
 communication among brain areas for face perception. For instance, 
Wang et al. (2009) showed a significantly reduced functional connec-
tivity between the amygdala and perigenual anterior cingulate cortex 
in patients with Bipolar Disorder as compared to healthy controls 
during processing of face stimuli. Similarly, a reduced functional 
connectivity between the left amygdala and right posterior cingulate, 
precuneus, right fusiform, and parahippocampal cortex has been 
found in pediatric bipolar disorder patients as compared to healthy 
children during a face perception task (Rich et al., 2008).

Based on the findings discussed above, which indicate a wider 
distribution of brain functional abnormalities in patients with 
Social Phobia, the present study was designed to test the hypoth-
esis that also functional regional correlations within the distributed 
network for face recognition would be different between healthy 
controls and patients with Social Phobia. Specifically, we reanalyzed 
our fMRI data – previously acquired and evaluated with a more 
conventional general linear model (GLM) analysis in Gentili et al. 
(2008, 2009) – by using a functional connectivity approach con-
sidering as seeds those cortical areas that had shown a differential 
activity in social phobic patients as compared to healthy controls 
in response to a face perception task with emotional and neutral 
stimuli (Gentili et al., 2008).

MaterIals and Methods
subjects
For this study, we utilized brain functional data originally reported 
in our previous manuscript (Gentili et al., 2008). In brief, eight 
right-handed subjects (4 males/4 females) (mean age 39 ± 7 years) 
with a diagnosis of Social Phobia according to the DSM IV-TR 
criteria (APA, 2000) and seven right-handed healthy controls 
(4 males/3 females) (mean age 30 ± 7 years) were recruited. All 
subjects received a clinical examination to exclude any medical, 
neurological or psychiatric disorder (other than Social Phobia in 
the patient group) that could affect brain function or metabolism. 
They also underwent a brain structural MRI scan exam to rule out 
any brain morphological abnormality or pathology. No subject 
in either group had taken any drug for at least 4 weeks prior to 
the clinical evaluation and the fMRI study. In particular all social 
phobic patients, as they had never received any pharmacological 
and/or psychotherapeutic treatment before, were completely drug-
naïve. Prior to the enrollment into the study, all subjects signed a 

written informed consent, under a protocol approved by the Ethics 
Committee of the University of Pisa, Italy. All subjects retained the 
right to withdraw from the study at any time.

The psychiatric interview included also the following rating 
scales: the Liebowitz Scale for Social Phobia (Liebowitz, 1987), the 
Interaction Anxiousness Scale (Leary and Kowalski, 1993) and the 
Audience Anxiousness Scale (Leary, 1983) to assess the degree of 
social anxiety. In addition, before and after the fMRI session each 
subject completed the State-Trait-Anxiety-Scale (Spielberger et al., 
1970) to assess state anxiety during the experiment.

stIMulI and task
Stimuli comprised faces and non-sense pictures. Faces with emo-
tional expressions belonging to ten different subjects were taken 
from the Ekman and Friesen’s (1976) standardized set. We selected 
faces with angry, fearful, disgusted, and happy expressions as well as 
faces with neutral expressions. As control stimuli we used non-sense 
pictures, which were phase-scrambled images of the faces and were 
matched to the faces in terms of spatial frequencies, luminance, 
and contrast. Both faces and non-sense scrambled pictures were 
in gray scale.

A fast event-related design in which each stimulus was presented 
for 2,000 ms with an inter-stimulus interval (ISI) of 1,500 ms was 
used. During the fMRI sessions, participants were asked to perform 
a one-back repetition detection task based on face identity. For the 
control scrambled pictures a one-back repetition detection task also 
was performed to control for sensorimotor activations. During the 
task for faces, the subjects had to indicate whether each presented 
face image was the same individual as in the immediately preceding 
image by pressing a hand-held button with their right or left hand 
for matches and non-matches, respectively. For scrambled pictures 
the subjects had to indicate whether the successive pictures were 
identical or not using the same response buttons. In this way the 
subjects maintained attention to the stimuli, but the emotional 
task remained implicit. Subjects were instructed to respond dur-
ing the ISI, when a fixation point appeared on the screen. Faces 
and scrambled pictures were presented in a pseudo-randomized 
order: a face with an emotional expression was presented after 
two to four faces with a neutral one. In each run, two blocks of 38 
face stimuli were presented. The two face blocks were separated 
by an interval of 15 s of rest, a block of eight scrambled pictures 
and another 15 s interval of rest. Accuracy and reaction times were 
recorded by computer.

data acquIsItIon, preprocessIng, and functIonal 
connectIvIty analysIs
Responses to different faces and scrambled pictures and emotional 
vs. neutral faces were measured using blood oxygen level depend-
ent (BOLD) contrast fMRI with the acquisition of T2*-weighted 
gradient echo planar images (EPI) in a 1.5T GE scanner (General 
Electric, Milwaukee, WI, USA). In each time series, the whole brain 
volume was acquired 188 times, and each volume consisted of 26 
contiguous 5 mm thick axial slices (TR = 2 s, TE = 40 ms, flip angle 
90°, FOV = 24 cm, matrix resolution = 64 × 64 pixels). Eight runs 
were obtained in each fMRI session. Each time series began with 
30 s of rest before the presentation of the stimuli. High-resolution 
T1-weighted spoiled gradient recall images (SPGR) (1.2 mm thick 
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fusiform gyrus, or specifically responding to facial  expressions, such 
as the STS and the amygdala (Winston et al., 2003, 2004; Campbell 
et al., 2007; Engell and Haxby, 2007). In details, bilateral fusiform 
gyri (FG) were selected as those clusters that showed a significant 
(P < 0.01) response to faces in both healthy controls and social 
phobic patients. The right superior temporal sulcus (R-STS) seed 
ROI was derived from the comparison between emotional and 
neutral faces (P < 0.01) in both social phobic patients and healthy 
controls. The left amygdala (L-Amy) was selected on the basis of 
the contrast between faces vs. scrambled pictures as a seed ROI 
showing a significant (P < 0.01) higher response in social phobic 
patients as compared to healthy controls (Table 1).

A multiple regression analysis was performed to examine the 
whole brain functional connectivity of each seed ROI time series. 
In order to run group analysis, correlation coefficients were con-
verted to Z scores, using Fisher’s Z transformation. For each ROI, 
individual Z-score correlation coefficient maps were computed by 
multiplying the cross-run average Z correlation coefficient values 
by the square root of the number of runs.

In each group, a one-sample t-test was used to define brain 
regions significantly correlated with the seed ROIs (Figure 1). The 
correction for multiple comparisons was made using Monte-Carlo 
simulations (AFNI AlphaSim, http://afni.nimh.nih.gov/afni/doc/
manual/AlphaSim) with a voxel-wise threshold of 0.05 which 
resulted in a minimum cluster volume of 5,852 μL and cluster 
connection radius 1.01 mm for a corrected P value <0.05. Results 
of the one-sample t-test contrasts were superimposed onto the 
anatomical regions of Talairach–Tournoux Atlas (Lancaster et al., 
1997, 2000) to report brain networks significantly correlated to 
distinct seed ROIs, as labeled in Figures 1A–C.

An unpaired t-test between social phobic patients and healthy 
controls was performed to identify the regions differentially cor-
related within the functional networks of the two groups for each 
seed ROI at an uncorrected P < 0.05 and a minimum cluster volume 
of 1,000 μL for the right FG (R-FG) and R-STS, and of 500 μL for 
the seed L-Amy (Figure 2). Due to the complexity of evaluating 
the combinations of positive and negative correlations as resulted 
from the unpaired t-test, we restricted our search volumes to brain 
regions significantly correlated to a specific seed ROI in the two 
groups. Search volumes were defined with a binary mask (logical 
OR) that merged the one-sample t-tests of each seed ROI for each 
group (uncorrected P < 0.05), thus defining overall correlated voxels 
in either social phobic patients or healthy controls.

axial slices, TR = 12.1 ms, TE = 5.22 ms, flip angle = 20°, FOV = 24 
matrix resolution = 256 × 256 pixels) were obtained for each subject 
to provide detailed brain anatomy; the SPGR images were used as 
an anatomical underlay for the statistical maps derived from the 
analysis on the EPI sequences.

Data analysis was performed using the AFNI package (http://
afni.nimh.nih.gov/afni) (Cox, 1996). Functional connectivity was 
defined for each subject on the correlation between the mean BOLD 
signal of the seed region of interest (ROI) and the BOLD time-series 
of all the other voxels in the brain (Friston et al., 1997; Greicius 
et al., 2003). Indeed, after spatial realignment and slice time correc-
tion, time series for each voxel were normalized to the mean, and 
then spatially smoothed (Gaussian kernel 6 mm half-width). Linear 
and quadratic trend of the signal were removed and the images 
were normalized to the Talairach–Tournoux space (Talairach and 
Tournoux, 1988). A temporal low-pass filter at 0.1 Hz on the whole 
signal was applied, to diminish the effect of high-frequency noises 
and to restrict our analysis to an informative frequency range for 
functional connectivity analysis (Cordes et al., 2001). Averaged time 
series extracted from each seed ROI were considered as regressors 
of interest. Task-related regressors, together with the six regressors 
for the estimated head movement (6° of motions: left–right, ante-
rior–posterior, superior–inferior, roll, pitch, yaw) and the global 
signal, were considered as regressors of no interest in the multiple 
regressions analysis to compute the correlations maps (Deary et al., 
2004; Whalley et al., 2005). To remove task-related effects, the task 
conditions (six regressors, one for each face expression, including 
the neutral one) were modeled with the canonical gamma-variate 
hemodynamic response function (Cohen, 1997). We have modeled 
the task as regressors of no interest exactly as in the GLM analysis 
of Gentili et al. (2008). The global signal was calculated as the aver-
age of BOLD signal across all voxels of the whole brain for each 
subject. The global signal was considered in the correlation analysis 
as regressor of no interest to remove artifacts related to physiologi-
cal noise (e.g., heart or respiratory rate), or variations in scanner 
sensitivity (Desjardins et al., 2001; Macey et al., 2004).

Definition of seed ROIs for the functional connectivity analysis 
relied on brain regions that showed a significant recruitment during 
a face recognition task in social phobic patients and healthy con-
trols, as defined in our previous study (Gentili et al., 2008). Relying 
on the functional results of group analysis of variance (Gentili 
et al., 2008), we selected seed ROIs among brain regions involved 
in the early perception of faces (Haxby et al., 2000), such as the 

Table 1 | Seed ROIs for the functional connectivity analysis, as derived from social phobic patients (SPP) and healthy controls (HC) group contrasts 

(uncorrected P < 0.01).

 Talairach coordinates

Seed ROIs Hemisphere Brodmann x y z Contrasts Findings 

  area

Fusiform gyrus R 37 35 −58 −11 Faces vs. baseline  SPP and HC 

 L 37 −40 −55 −10  SPP and HC

Superior temporal sulcus R 41 47 −52 16 Emotional vs. neutral faces  SPP and HC

Amygdala L  −27 −3 −16 Emotional faces vs. scrambled  SPP > HC

See Gentili et al. (2008) for further details.
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last differential clusters in the functional networks of the two groups, 
as defined by the unpaired t-test, are reported in terms of significant 
group similarities or differences across brain regions in Table 2.

results
psychoMetrIc scales and behavIoral results
Patients with Social Phobia had significant higher scores (P < 0.01) 
in all the scales for social anxiety, as compared to the healthy control 
group. In contrast, no significant differences were found in state 
anxiety between pre- and post-scan sessions within either group 
or between the two groups. During the one-back face recognition 
task used in the fMRI study, accuracy (mean ± standard error: 
SPP = 92.4±0.5%; HC = 93.5±0.5%, P = 0.15) was at ceiling level in 
both groups with no significant difference between the two groups. 

The schemes depicted in Figures 3 and 4 aimed to simplify and 
to better characterize the complexity of both the distributed brain 
regions differentially correlated with each seed ROI separately in the 
two groups (Figure 3), and all the combinations of differential positive 
and negative correlations as resulted from the comparison between 
patients and healthy controls (Figure 4). An unbiased approach based 
on an automatic labeling of anatomically defined regions in the human 
brain was used as the best to provide a simplified report of results. We 
selected the 3D database of the Talairach–Tournoux Atlas (Lancaster 
et al., 1997, 2000), and superimposed onto this common atlas either 
those voxels correlated with a specific ROI in social phobic patients 
and healthy controls (Figure 3), or those voxels differentially recruited 
between the two groups (Figure 4). The simplified schemes of Figures 3 
and 4 derive from correlation maps of Figures 1 and 2, respectively. At 

FIguRe 1 | Brain areas positively (red) or negatively (blue) correlated 
(one-sample t-test; corrected P < 0.05) with the seed ROIs [right fusiform 
gyrus/R-Fg (A), right superior temporal sulcus/R-STS (B) and left 
Amygdala/L-Amy (C) in healthy controls (HC) (on the left) and social 
phobic patients (SPP) (on the right), respectively]. Please note that brain 
inflated view could distort some clusters of significant correlation. DLPFC, 
dorsolateral prefrontal cortex; MPFC, medial prefrontal cortex; FEF, frontal eye 

field; SM, sensorimotor cortex; IFG, inferior frontal gyrus; SMG, supramarginal 
gyrus; AngG, angular gyrus; IPS, intraparietal sulcus; PreCun, precuneus; 
MTG, middle temporal gyrus; STG, superior temporal gyrus; STS, superior 
temporal sulcus; Cing, cingulate cortex; A-Cing, anterior cingulate cortex; 
P-Cing, posterior cingulate cortex; Amy, amygdala; Ins, insula; PHip, 
parahippocampus; TPole, temporal pole; Cun, Cuneus; FG, fusiform gyrus; 
IOG, inferior occipital gyrus.
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FIguRe 2 | Brain areas with stronger negative correlations in HC or 
with stronger positive correlation in SPP (red) and brain areas with 
stronger negative correlations in SPP or with stronger positive 
correlations in HC (blue) (unpaired t-test; uncorrected P < 0.05) with the 
seed ROIs [right fusiform gyrus/R-Fg (A), right superior temporal 
sulcus/R-STS (B) and left Amygdala/L-Amy (C)]. Please note that brain 

inflated view could distort some clusters of significant correlation. Ant 
MPFC, anterior middle prefrontal cortex; SM, sensorimotor cortex; S2, 
secondary somatosensory cortex; IFG, inferior frontal gyrus; IPS, 
intraparietal sulcus; IPL, inferior parietal lobule; PreCun, precuneus; STS, 
superior temporal sulcus; Cing, cingulate cortex; Amy, amygdala; FG, 
fusiform gyrus.
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(green boxes). Sensorimotor (gray boxes) and DMN regions (light 
blue boxes) are also included in the functional networks shown 
in Figure 3.

The core system regions (bilateral fusiform gyri and R-STS) 
showed a distinct pattern of positive and negative functional 
correlations with brain areas of both the extended system and 
the DMN in social phobic patients as compared to healthy con-
trols. Similarly, functional connectivity using the left amygdala 
as seed ROI showed a differential distributed network of positive 
and negative correlations with several areas of both the core and 
the extended systems in social phobic patients as compared to 
healthy controls.

Fusiform gyri
Correlation maps for the left and the right fusiform gyrus were 
consistent across subjects within the two groups, and no differences 
were identified in paired t-test between the left and the right con-
nectivity networks (cluster-level corrected; P < 0.05). Thus, only the 
description of the right fusiform gyrus network was reported. In 
both healthy controls and social phobic patients, the right  fusiform 

Also, no significant difference in reaction time was found between 
the two groups (SPP = 1120 ± 110 ms; HC = 1031 ± 112 ms, 
P = 0.08) (see Gentili et al., 2008 for further details).

functIonal connectIvIty results
All seed ROIs were strongly connected to their contralateral 
homologous regions. Furthermore, each ROI showed addi-
tional and specific positive and negative correlations with other 
brain regions.

In Figures 3A,B, we depicted a schematic representation of 
the functional networks previously showed in Figure 1. These 
diagrams represent the functional networks connected with the 
seed ROIs in the healthy control and the social phobic patient 
groups, respectively. These networks comprised areas of the core 
and the extended systems, as defined in the face recognition model 
by Haxby et al. (2000). Thus, we grouped brain regions in a core 
system/extrastriate cortex, which includes occipito-temporal 
extrastriate cortical areas for the visual analysis of faces (yel-
low boxes), and the extended/attention system, which includes 
fronto-tempo-parietal regions for further processing of the faces 

FIguRe 3 | Schematic representation of the functional networks in healthy 
controls (HC) (A) and social phobic patients (SPP) (B), based on the results 
reported in Figure 1. Positive and negative correlations for these functional 
networks (one-sample t-test; corrected P < 0.05) are shown in the first and second 
columns, respectively. Seed ROIs are indicated with a black circle [top: right 
fusiform gyrus (R-FG); middle: right superior temporal sulcus (R-STS); bottom: left 
amygdala (L-Amy), respectively]. Functionally correlated areas of the core system/
extrastriate cortex (yellow boxes), the extended/attention system (green boxes), 
default mode network (light blue boxes) and sensorimotor areas (gray boxes) are 

considered bilaterally, unless otherwise indicated. DLPFC, dorsolateral prefrontal 
cortex; MPFC, medial prefrontal cortex; FEF, frontal eye field; SM, sensorimotor 
cortex; S2, secondary somatosensory cortex; IFG, inferior frontal gyrus; SMG, 
supramarginal gyrus; AngG, angular gyrus; IPS, intraparietal sulcus; IPL, inferior 
parietal lobule; PreCun, precuneus; MTG, middle temporal gyrus; STG, superior 
temporal gyrus; STS, superior temporal sulcus; Cing, cingulate cortex; A-Cing, 
anterior cingulate cortex; P-Cing, posterior cingulate cortex; Amy, amygdala; Ins, 
insula; PHip, parahippocampal regions; TPole, temporal pole; Cun, Cuneus; FG, 
fusiform gyrus; IOG, inferior occipital gyrus.
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 system,  including the dorsal prefrontal and superior temporal areas. 
Negative  correlations were reported also in the sensorimotor corti-
cal areas in healthy controls (Figures 3A,B, top row).

When the two groups were compared (uncorrected P < 0.05; 
minimum cluster volume 1,000 μL), differences in the functional 
connectivity maps were found in the right precuneus (cluster-
level corrected P < 0.05), the right posterior cingulate and the left 
sensorimotor (BA3) cortical areas, with a stronger negative cor-
relation in healthy controls as compared to social phobic patients 
(Figure 4, top).

Right superior temporal sulcus
In healthy controls, the R-STS correlated positively with the 
areas of the extended system (including temporal and insu-
lar areas, and posterior cingulate) and the DMN (precuneus, 
angular gyrus and supramarginal cortex), and negatively with 
the sensorimotor and the dorsal prefrontal regions, the ven-
tral extrastriate areas, the intraparietal sulci and the cingulate 
cortex. Social phobic patients showed a network of positive 
connections with the R-STS, whereas a significant negative cor-
relation was found only in the cingulate cortex (Figures 3A,B, 
middle row).

Table 2 | t-score (unpaired t-test; uncorrected P < 0.05) and Talairach–

Tournoux Atlas coordinates for the local maxima of brain regions that 

show significant differences in the functional connectivity during face 

perception between social phobic patients and healthy controls.

 Talairach 

 coordinates

 Brodmann Hemisphere Volume x y z t-score 

 area  (μL)

RIgHT FuSIFORM gyRuS

Cing 23 R 2,176 7 −60 6 2.3

PreCun 7 R 16,418 14 −58 18 2.6

SM 3 L 2,205 −59 −6 14 2.2

SM 4 L 1,398 −60 −4 16 2.4

RIgHT SuPeRIOR TeMPORAL SuLCuS

IPL 40 L 1,448 −34 −51 38 2.4

IPS 7 L 2,360 −26 −49 43 2.9

IFG 44/6 L 1,820 −63 −5 14 2.2

IFG 44/6 R 1,203 55 −8 14 2.2

PreCun 7 L 2,680 −25 −64 39 2.2

LeFT AMygdALA

Ant MPFC 10 R 672 41 42 22 −2.2

IFG 47 R 728 35 25 −16 2.3

IPL 40 R 668 46 −40 22 −2.2

SM 5 R 710 5 −42 53 2.2 

(paracentral 

lobule)

S2 3 R 607 43 −25 30 −2.3

STS 22 R 1,671 54 −48 10 −2.4

Cing, cingulate cortex; PreCun, precuneus; SM, sensory motor cortex; IPL, 
inferior parietal lobule; IPS, intraparietal sulcus; IFG, inferior frontal gyrus; Ant 
MPFC, anterior middle prefrontal cortex; S2, secondary somatosensory cortex; 
STS, superior temporal sulcus.

FIguRe 4 | Schematic representation of the differences in functional 
networks that resulted from the comparison of SPP vs. HC (unpaired 
t-test; uncorrected P < 0.05). Seed ROIs are indicated with a black circle [top: 
right fusiform gyrus (R-FG); middle: right superior temporal sulcus (R-STS); 
bottom: left amygdala (L-Amy), respectively]. Stronger negative correlations in 
HC (blue boxes), stronger negative correlations in SPP (white boxes with blue 
contour), stronger positive correlation in HC (red boxes) and stronger positive 
correlations in SPP (white boxes with red contour) refer to areas of these 
functional networks that are considered bilaterally, unless otherwise indicated. 
Ant MPFC, anterior middle prefrontal cortex; SM, sensorimotor cortex; S2, 
secondary somatosensory cortex; IFG, inferior frontal gyrus; IPS, intraparietal 
sulcus; IPL, inferior parietal lobule; PreCun, precuneus; STS, superior temporal 
sulcus; Cing, cingulate cortex; Amy, amygdala; FG, fusiform gyrus.

gyrus was positively correlated with the areas of the core system 
and of the ventral extrastriate pathway, while it was negatively 
correlated with large regions of the DMN and of the extended 
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Functional connectivity of regions of the core system for face 
perception, such as the bilateral fusiform gyri and the R-STS, 
showed in social phobic patients as compared to the healthy con-
trols a distinct pattern of positive and negative functional correla-
tions with brain areas of both the extended system and the DMN. 
For instance, both the right fusiform gyrus and R-STS showed a 
stronger negative correlation with the right precuneus in healthy 
controls as compared to social phobic patients. This is in line with 
our previous observation of a significantly smaller deactivation in 
the precuneus during face perception in social phobic patients as 
compared to healthy controls (Gentili et al., 2009). Consistently, 
precuneus abnormalities have been shown also in other anxiety 
disorders (Zhao et al., 2007). As the precuneus is a region of the 
DMN, this abnormal functional correlation is an additional piece 
of evidence in support of an impairment of the normal task-related 
activation/deactivation trade-off in Social Phobia. Since the pre-
cuneus plays a role in self-focus perception, its altered connectivity 
may be related to the attentive bias described in anxiety disorders, 
which leads anxious subjects to attend to the physiological signs 
of anxiety and to experience negative self-evaluation, as originally 
hypothesized by Clark and Wells (1995).

Additionally, the R-STS showed a stronger negative correlation 
with the left inferior parietal (BA40) and anterior intraparietal 
(BA7) cortex in healthy controls as compared to social phobic 
patients. Differences between groups in the patterns of correla-
tions within brain networks associated with attention and other 
aspects of face processing (e.g., increased visual scanpath length 
and reduced foveal fixations of the eyes in social phobic patients; 
Horley et al., 2004) are consistent with our previous findings that in 
social phobic patients face recognition is associated with decreased 
activity in parietal areas, independently from the emotional expres-
sion of the facial stimuli (Gentili et al., 2008). Functional stud-
ies with different social threatening stimuli (e.g., public speech) 
reported similar results of a reduced recruitment of attentional 
networks in social phobic patients as compared to healthy controls 
(Lorberbaum et al., 2004).

Recent studies have shown a stronger amygdala response in social 
phobic patients during a face recognition task not only with emo-
tional facial expressions, but also with neutral faces (Birbaumer 
et al., 1998; Stein et al., 2002; Straube et al., 2004; Cooney et al., 
2006; Phan et al., 2006; Gentili et al., 2008). Here, functional con-
nectivity using the left amygdala as a seed ROI showed a differen-
tial distributed network of positive and negative correlations that 
involved several areas within both the core system (superior temporal 
cortex) and the extended system (frontal and parietal cortical areas) 
for face recognition. Interestingly, the left amygdala was positively 
correlated with the inferior frontal/insular cortical regions only in 
patients with Social Phobia but not in healthy controls, in line with 
previous findings of a significantly increased response in the amy-
gdala and insula during face recognition in social phobic patients 
as compared to healthy controls (Straube et al., 2004; Amir et al., 
2005; Gentili et al., 2008). In particular, since the insular cortex is 
involved in the processing of socially threatening stimuli including 
anger, fear and disgust (Straube et al., 2004; Amir et al., 2005), the 
abnormal activity found in this brain region in social phobic patients 
as well as in patients with other anxiety disorders (Stein et al., 2007) 
may be associated to the dysfunctional monitoring of the bodily 

The group comparison (uncorrected P < 0.05, minimum cluster 
volume 1,000 μL) showed a stronger negative correlation in healthy 
controls as compared to social phobic patients in the left inferior 
parietal and the anterior intraparietal cortex and the left precuneus. 
In addition, social phobic patients showed a stronger positive cor-
relation than healthy controls in the bilateral ventral premotor/
inferior frontal areas (BA44/6) (Figure 4, middle).

Left amygdala
In healthy controls, the left amygdala was positively correlated 
with areas of the extended system, including the parahippocampus, 
the anterior temporal, the insular and the inferior frontal areas. 
Conversely, the left amygdala in healthy controls was negatively 
correlated with a wide network including the anterior cingulate and 
the posterior parietal areas and the medial frontal cortex (extended/
attention system and DMN) and the ventral occipito-temporal 
regions (core system/extrastriate cortex). Social phobic patients 
showed a pattern of functional connectivity similar to healthy 
controls, though distinct positive and negative correlations were 
assessed (Figures 3A,B, bottom row).

The group comparison (uncorrected P < 0.05, minimum cluster 
volume 500 μL) revealed a differential functional connectivity in 
several right-sided brain regions related to face recognition. Stronger 
negative correlations in social phobic patients were found in the 
superior temporal cortex (BA22), the inferior parietal, the ante-
rior middle prefrontal and the postcentral (BA3) cortex, whereas 
a stronger positive correlation was found in social phobic patients 
in the inferior frontal regions (BA47). In contrast, stronger nega-
tive correlation in healthy controls was described in the paracentral 
sensorimotor cortex (BA5) (Figure 4, bottom).

dIscussIon
The present study was designed to examine both positive and negative 
functional correlations among brain regions within the distributed 
system for face perception in social phobic patients as compared to 
healthy controls. Specifically, a whole brain voxel-wise functional con-
nectivity analysis was performed taking as seeds those cortical areas 
that had shown a differential activity in social phobic patients and in 
healthy controls in response to a face perception task with emotional 
and neutral stimuli (Gentili et al., 2008). These areas included the 
bilateral fusiform gyrus, the R-STS and the left amygdala.

Overall, social phobic patients and healthy controls showed 
different patterns of functional connectivity across brain regions 
within both the core and the extended systems for face perception 
(Haxby et al., 2000; Ishai et al., 2005; Benuzzi et al., 2007; Fairhall 
and Ishai, 2007; Ishai, 2008, 2010) as well as within the DMN 
(Raichle et al., 2001; Gusnard et al., 2001; Greicius et al., 2003). 
As accuracy and reaction times were similar in the two groups, 
the differences in brain functional connectivity cannot be due to 
differences in behavioral performance.

The present results extend our previous findings that regions 
within the core and the extended systems for face perception are dif-
ferentially modulated in patients with Social Phobia as compared to 
healthy controls (Gentili et al., 2008) by showing that the pattern of 
functional correlations originated by these brain areas involved in 
face perception and emotional processing also is altered in patients 
with Social Phobia.
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(Deary et al., 2004; Whalley et al., 2005). As far as the potential 
residual task effects are concerned, while we cannot rule out com-
pletely that some residual effects may still be present, we would 
like to emphasize that we have modeled the task-related regressors 
as regressors of no interest exactly in the same manner that was 
adopted in the GLM analysis for the previous study by Gentili 
et al. (2008). Among the possible solutions to mitigate task-related 
effects, this procedure is certainly among the most valid (Deary 
et al., 2004; Whalley et al., 2005). The question of whether the cor-
relation maps obtained with a functional connectivity approach 
can be comparable to the task-related patterns has been previously 
addressed (Biswal et al., 1995; Hampson et al., 2004; Damoiseaux 
et al., 2006; Mennes et al., 2010). For example, Hampson et al. 
(2004) directly compared the correlations between the motion 
sensitive area MT/V5 and other brain regions while subjects where 
in a resting state (that is, in the absence of any visual stimulation) 
and in an active stimulation state (that is, visual perception of 
concentric moving circles). The patterns of correlations obtained 
in the two different conditions greatly overlapped: while the active 
state correlations revealed brain regions more specifically related to 
visual motion processing (middle temporal and occipital cortex), 
the resting state correlations revealed a broader network including 
known functional pathways for general visual processing (lingual 
gyri and cuneus). Thus, while certainly a correlation analysis using 
resting state data would have been of interest in social phobic 
patients, based on the findings from the above studies we would 
expect a substantially similar picture.

In spite of the above discussed limitations and other issues 
whose discussion would fall far outside the topic of this study, 
it is undisputable that functional connectivity has made possi-
ble to investigate the neural underpinnings of brain function in 
terms of cerebral networks rather than of a single, isolated brain 
structure (Horwitz et al., 2005; Kim and Horwitz, 2008; Stephan 
et al., 2008). Indeed, we would like to emphasize a concept that 
applies not only to this specific study but also to the investigations 
of functional connectivity in general. Disruption of functional 
connectivity, that is, of the way two or more regions are func-
tionally related among themselves, may precede any measurable 
alteration of activity in any given region. That is, functional con-
nectivity analysis is a powerful tool to identify brain abnormali-
ties in pre-clinical and sub-clinical stages of a disorder. Indeed, 
this has been shown since the early days of PET studies (see for 
instance works by Horwitz et al., 1991; Azari et al., 1993; Pietrini 
et al., 1993, 2009; Grady et al., 2001; Zhang et al., 2010). Thus, 
individuals with sub-clinical manifestations of Social Phobia may 
show abnormal functional connectivity patterns in the absence 
of any absolute group difference in regional activity, similarly 
to what has been shown in other neuropsychiatric disorders. 
Furthermore, measures of functional connectivity may then be 
used to ascertain the effect of psychological or psychopharma-
cological therapy.

Similarly, by looking at the spatiotemporal synchrony of BOLD 
signal among brain regions, functional connectivity studies are 
providing novel evidence that in anxiety disorders, including Social 
Phobia, a mis-communication among multiple brain areas involved 
in sensory and emotional processing may underlie the main psycho-
pathological manifestations. This possibility is also sustained by the 

states of arousal associated with and contributing to the emotional 
experience of anxiety (Damasio et al., 2000; Critchley et al., 2004). 
Thus, the specific communication between amygdala and inferior 
frontal cortex/insula found only in patients with Social Phobia may 
contribute to explain why anxiety patients process differently the 
emotional-relevant stimuli as compared to healthy controls.

lIMItatIons of the study and of the functIonal 
correlatIon approach
The present study of brain regional functional correlations has 
some limitations, both intrinsic to the specific experimental pro-
tocol and, more in general, relative to the fcMRI approach itself.

The main specific limitation of the study is the relatively limited 
number of subjects. All the social phobic patients, however, had 
a diagnosis of pure Social Phobia without any other concomitant 
mental disorder. Equally important, all patients were drug-naïve at 
the time of the fMRI examinations, as they had never been treated 
before. These uncommon aspects make this sample of patients opti-
mal to investigate brain functional connectivity in the absence of 
any interference due to previous exposure to drugs, psychotherapy 
or to the effects of concomitant psychopathology.

Correlations were run using predefined seed ROIs. While this 
may somewhat limit the ability to uncover potentially abnormal 
functional connectivity networks that originate from seeds dis-
tinct from those used here, the selection derived from a strong a 
priori hypothesis that was based on solid evidence in the literature 
(Birbaumer et al., 1998; Stein et al., 2002; Straube et al., 2004; Phan 
et al., 2006; Gentili et al., 2008) and it was ideal to pursue the main 
goal of this hypothesis-driven study. Specifically, here we wished 
to determine whether or not the functional connectivity networks 
originating from brain regions involved in face perception and in 
emotional processing, and found to respond abnormally in social 
phobic patients as compared to healthy control subjects, also would 
be abnormal in the patient group.

Finally, from a more general perspective, while most of the 
processing steps of fcMRI data are widely agreed upon (e.g., Fox 
et al., 2005), some procedures, such as factoring out task-related 
regressors, or using the global BOLD signal as a regressor of no 
interest are still debated, and may limit the interpretation of specific 
findings, including the neural meaning of negative correlations 
(Deary et al., 2004; Whalley et al., 2005; Fox et al., 2009; Murphy 
et al., 2009; Weissenbacher et al., 2009).

For instance, the impact of preprocessing on sensitivity and spe-
cificity of functional connectivity was recently investigated both in 
simulated data and in resting state datasets (Fox et al., 2009; Murphy 
et al., 2009; Weissenbacher et al., 2009). Though this debate is still 
ongoing, altogether these studies indicated that negative correla-
tions may be in part introduced by global signal regression, and thus 
should be interpreted with caution. Moreover, while global signal 
regression may reduce the sensitivity for detecting true correla-
tions, that is, increase the number of false negatives, it maximizes 
the specificity of positive resting state correlations, as well as the 
correction for white matter and ventricular time courses (Fox et al., 
2009; Weissenbacher et al., 2009).

Another issue to be considered is the effect of modeling the 
experimental paradigm in our analysis as regressor of no inter-
est in order to remove task-induced changes in BOLD response 
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