About this Research Topic
To this end, data assimilation and control theory provide important techniques to match diverse experimental data with an underlying model. The techniques yield an optimal combination of observations and model to achieve a certain goal. This goal may represent optimal fitting of model parameters, providing optimal forecast estimations or control of the system's dynamics to make the system perform a specific task. Besides the classic applications in meteorology and robot control, in recent years an increasing number of applications have been found in life sciences, such as neuroscience, biology, biochemistry or medicine.
The present Research Topic aims to bring together both recent theoretical work in data assimilation and control and applications in life sciences. This collection will reflect the state-of-the-art in current research in data assimilation and control in, originally, distinct research domains. Examples of theoretical topics (as an unconstrained open list) are Kalman filters, variational assimilation techniques, regression techniques, stochastic optimization techniques, adaptive, optimal and stochastic control. Applications may range from the parameter estimation in genetic regulatory networks over forecasts of cardio-vascular activity to control of human limb movements.
Keywords: Kalman filter, forecast, optimal parameter search, neuroscience, biology
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.